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Foreword 

It was an honor that HSTAM (Hellenic Society of Theoretical and Applied Mechanics) 
assigned to the Laboratory of Mechanics of the General Department ofAÜT the responsi- 
bility of organizing the 6th National Congress of Mechanics in cooperation with the 
Department of Civil Engineering ofAUT. 

Special thanks to A. Kounadis and D. Beskos, president and secretary of HSTAM respec- 
tively, as well as to G. Manolis and D. Talaslidis who served as vice-chairmen of the organ- 
izing committee. 

The Congress is dedicated to the memory of P. Theocaris whose influence on the Mechanics 
Community of Greece will remain for many years. My predecessor G. Lianis and A. 
Armenakas served as honorary chairmen of the Congress. My thanks go to them, as well as 
to the rest of the members of the organizing committees. 

The Congress was organized during a very interesting period of substantial activity in the 
educational and scientific community in Greece. More than two months before the Congress, 
the University administration, at first, and the undergraduate student body as a whole, later, 
opposed certain educational proposals passed by the State, and daily university activities 
came to a standstill. This had a serious impact on the conference organization including the 
disruption of usual e-mail correspondence. 

It was the determination of my graduate students G. Efremidis and P. Sapalidis, the help of 
E Akintayo, K. Kosmidis, K. Kalaitzidou/S. Marras (currently at MTU/USA), the assistance 
of undergraduate students Th. Atmakidis and D. Dodou, as well as the encouragement of A. 
Kounadis, which helped me decide not to postpone the meeting. Special thanks go to George 
Efremidis who took upon himself the responsibility of completing the process of collecting 
the manuscripts, coordinating the e-mail correspondence, and other organizational details. 
My colleagues D. Beskos and G. Manolis were always available for consultation and 
advice. Many faculty of the General Department including its past and newly elected 
Chairman, as well as the Dean of Engineering were very supportive of this event. 

The active participation of the travel agency Aethra, the publisher Giahoudi-Giapouli and 
the personal involvement of the owner of Philippion Hotel Helena Thoidou, who took the 
initiative to help with respective arrangements without requiring pre-payment, is worth 
mentioning. The financial support of the General Department, the College of Engineering, 
and the Research Committee of AUT, as well as of Democritus University of Thrace is 



acknowledged. Also we acknowledge with thanks the financial support of the Ministry of 
Education, the Ministry of Culture and the Municipality of Thessaloniki. We also hope to 
have some financial support from the Ministry of Macedonia-Thrace and the Academy of 
Athens; but, at the time this foreword was composed, we had not yet received a definite deci- 
sion from these governmental agencies, mainly due to difficulties in communication or deci- 
sion-making during this unusual period of academic life. 

Finally, sincere thanks go to all participants, especially those from abroad invited by 
HSTAM and myself or personally encouraged by me to attend. They all honored their com- 
mitment to participate despite the minimal information that could be distributed due to the 
aforementioned unforeseen circumstances. Many of the participants facilitated us greatly by 
pre-registering, thus enabling us to respond to initial financial obligations related to the 
Congress organization. It should be noted that as a result of the unusual circumstances men- 
tioned above, it was not possible to activate a panel for a thorough review of the papers, 
which were accepted on the basis of their abstracts only. 

Last, but not least, I would like to personally acknowledge the support and encouragement 
of the Minister of Yugoslavia, Professor Dragoslav Surname, for developing in Thessaloniki 
a Balkan Center of Mechanics with support from ERO and MTU with the participation of 
leading researchers of Mechanics and Materials of an international stature. In this respect, 
the sincere interest of Sam Sampath and the continuous help of my students I. Mastorakos, 
Avraam and Dimitris Konstantinidis in the organization of related research activities at 
AUT, as well as the scientific support of my student I. Tsagrakis, the research associate Mike 
Zaiser, and my physics colleague S. Logothetidis at AUT, are gratefully acknowledged. 

Elias C. Aifantis 
Chairman 
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1. SUMMARY 

In this contribution we emphasize the relationship between the material Eshelby stress tensor 
and the notion of local structural rearrangements that are responsible for many of the 
macroscopically observed irreversible behaviors of solid-like matter (e.g., anelasticity 
(plasticity, viscoplasticity), damage, phase transitions, growth). All these phenomena take 
place directly on the material manifold. Such a setting, mainly geometrical and 
thermodynamical, can be developed from the inclusive notions of uniformity maps, 
inhomogeneity maps, and material transplants (Epstein-Maugin). This provides a unifying link 
between two of the most innovative theories of continua of the 20th century, those of material 
inhomogeneities by W.Noll and J.D.Eshelby, that were at first completely unrelated. 

2. INTRODUCTION 

So-called configurational forces , also called material forces in modern continuum mechanics 
[l]-[2], and more generally energetic driving forces , are those " forces " which are associated 
by duality to the displacement or motion of whatever may be considered a defect in a 
continuum field theory. Conceptually simple examples of such " defects " are dislocations in 
ordered crystals, cracks and cavities in materials science, propagating fronts in phase- 
transition problems, shock waves in continuum mechanics, and more generally all 
manifestations, smooth or abrupt, of changes in material properties. In such a framework, the 
material symmetry of the physical system is broken by the presence of a field singularity of a 
given dimensionality (point, line, surface, volume). A general framework has emerged in 
recent years, basing on inclusive ideas of J.D.Eshelby - hence the coinage of Eshelbian 
mechanics by the author for the mechanics of such forces. In this framework all 
configurational forces appear as forces of a non-Newtonian nature, acting on the material 
manifold (the set of points building up the material whether discrete or continuous) and not in 
physical space which remains the realm of Newtonian forces and their more modern 
realizations which usually act per quantity of matter (mass or electric charge). That is, 
configurational forces act on spatial gradients of properties, on field singularities, etc. They 
acquire a true physical meaning only in so far as the associated expanded power is none other 



than a dissipation ; accordingly, configurational forces are essentially used to formulate 
criteria of progress of defects in accordance with the second law of thermodynamics. Within 
such a general vision, many irreversible properties of matter (e.g., damage, plasticity, phase 
transition, growth) are seen as irreversible local rearrangements of matter (e.g., material 
particles in an ordered crystal) that are represented by pure material mappings. Although 
configurational forces do not live, if we may say so, in the real world, they are " visible " 
through the duality they enjoy with their thermodynamic partners, material displacements. 
This is here illustrated by various cases. 

3. THE NOTION OF LOCAL STRUCTURAL REARRANGEMENT 

In order to make ideas clear let us consider the case of quasi-statics in the absence of body 

force with an elastic energy density given by W = w(F;X)per unit reference volume, where 

F:= d% I <?X is the deformation gradient, x = ^(X,f) is the sufficiently regular deformation 

mapping from the reference configuration KR to the actual configuration K„ and X denotes the 
material point. Then the basic field equation - bulk equilibrium - in the Piola formalism 
reduces to 

divRT = 0. (1) 

Following Epstein and Maugin [3], we consider (thought experiment) the case where the 
material homogeneity can be artificially removed at each material point X, by effecting a 
change of reference configuration. This is done at each material point, and the reference 
change is therefore local and generally not integrable over the whole body. Such a change is 
called a local structural rearrangement, and this is conceived independently of any action in 
the actual configuration. Let K(X) this reference change so that accounting for the 
accompanying volume change JK =detK, it combines mutiplicatively to the right with F 

and, for energies, we can write 

iv(F;X) = y-'W(FK(X)) = W(F,K) . (2) 

Obviously we can compute the partial derivatives of the last mentioned function W, 
obtaining thus, as easily checked , 

dW    dW    „       dW       , v      _ 
T = ^F="?F'b=-^K=-(T-F-^K    ■ (3) 

Accordingly, 

dW 
b = b.Kr=-T-.Kr=Wl,-T.F. (4) 

This provides an elegant definition of the quasi-static Eshelby stress via the notion of local 
structural rearrangement. Assuming that we just know (1), we can then compute the material 
divergence of b resulting in ( expl means the material gradient at fixed field F) 



dW 
div Rb + f",h =0    , f'"":=-— 

<7A 
(5) 

expl 

where f'"'' is the so-called « material force of inhomogeneity » [1]. But we can also compute 
this material co-vector through the operation 

dW 
= (VÄK>—^ = -(VJ,K)(b.K-r) = b:r, (6) 

expl 

where T is the (geometrical) connection based on the non-integrable mapping K ; that is, in 
components (to avoid any misunderstanding): 

r^:=-(K-*)>.^. (7) 

Therefore, eqn.(5) also reads [3] 

divRb = b:T. (8) 

In some geometrical theories of continuous distributions of dislocations, the connection T is 
directly related to the density of dislocations [1]. Accordingly, we can say that in such 
« continuously dislocated » elastic bodies, dislocations create a material force density which is 
responsible for the non-divergence-free nature of the Eshelby stress tensor. Dislocations, 
which originally are discrete defects, act thus as a materially distributed inhomogeneity force 
in agreement with equation (8). We do not pursue further here this geometrical approach to 
continuously distributed defects (see more on differential geometry, the notions of material 
uniformity and homogeneity, the role of material symmetry groups, crystallographic basis, 
transplants, G-structure, and G-covariance in Epstein and Maugin [4]). 

4. ANELASTICITY AS A STRUCTURAL REARRANGEMENT 

The identification of the driving force of anelasticity is central to a thermomechanical 
approach to this type of irreversible behavior. Anelastic behavior is a macroscopic 
manifestation of microstructural material rearrangements. The corresponding time evolution 
in fact is the evolution of the distribution of microstructural material inhomogeneities, e.g., 
dislocation patterns. Prime importance is thus attributed to the inhomogeneity mapping K of 
Section 2. and its time evolution. The inhomogeneity finite strain and the inhomogeneity 
velocity gradient can be defined by [4]-[5] CK:= K"r.K"' , C^ = K.KT, andLK = K.K"1, 

where a superimposed dot denotes partial time differentiation. The local configuration reached 
after the K mapping at X is called the reference crystal CR by Epstein and Maugin [3]. But if 
K is taken to represent anelastic effects then by simple composition we see thatF.K(X)= F, 

is the elastic deformation gradient. But K being generally non-integrable, this is also the case 
of Fe. Accordingly we can write the Bilby-Lardner-Stroh-Kröner-Lee multiplicative 
decomposition F = Fe.Fp , Fp 2K"1 .where Fp may be referred to as the plastic (in general, 

anelastic) deformation gradient, in fact not a true gradient. The thermomechanics then goes as 



follows. The original Clausius-Duhem inequality per unit volume of the reference 
configuration KR reads 

-(w + Se) + tr{T.F)-e-'Q.VRG>0, (9) 

where S is the entropy per unit reference volume, W is the free energy, 6 is the 
thermodynamical temperature, Q is the material heat flux, V„ denotes the material gradient, 
and a superimposed dot indicates the material time derivative. We set 

Je=detFe , Jp=det¥p=J-1 , 

C, = F;.F, ,C„=F;.F, = CK 
(10) 

and consider free energy densities of the following functional dependence 

W = w{F,a,6) = J-W(F.K(X),a) = JpW(Fe,a), (11) 

where a denotes the set of internal variables of state (e.g., hardening parameters, perhaps F/; 

itself [6]). W — Wi now is the free energy density per unit volume of the so-called 
intermediate configuration K-t. The latter therefore is assimilated to our reference crystal at X. 
This is indeed in agreement with Mandel's [7] concept of isoclinic intermediate configuration. 
There is in fact more connection to Mandel's theory of finite elastoplasticity than that. 
Remember that the Mandel stress M is generally defined by M = T.F. We can also define the 
fully covariant material stress tensor S by S = -C.S.C = -CM , where C = Fr.F . Then 

B:=Gb = G(waÄ-T.F)=C.(waÄ-S.C) = WC + S=b7'.C, (12) 

where the last equality results from the symmetry of the Eshelby stress with respect to C [3]. 
Plastic incompressibility imposes that Jp = J K = 1 and trhK =trhp = 0, where, in 

general L   = -K~'.LK.K . We note that in plastic-incompressibility conditions the 

Mandel and Eshelby stresses are just the same but for a change of sign : M = -b. 
Furthermore, we can check in general that b is also symmetric with respect to CK , i.e., 
b.CK = CK.bT. From (9), the laws of state read 

dW dW dW 
T = — ,S = -—  , A = -— , (13) 

<?F d9 da 

where A is the thermodynamical force associated with the internal variable(s) a. These state 
laws can also be eventually written in terms of W (per unit volume of K,, the intermediate or 
elastically relaxed configuration). Then we let the reader prove the following expressions of 
the intrinsic dissipation : 

•    per unit volume of the reference configuration KR: 



&R=-tr(b.LK)+Aä = tr(M.LK)+Aä , (14) 

or 

®R=-tr(B.(LKC-')s)+Aä; (15) 

•   per unit volume of the intermediate configuration Kt: 

*,=*r(s,.(ceL,)J+4<*- (16) 

Here S, is the second Piola-Kirchoff stress in K{, and a subscript s denotes the operation of 
symmetrization. Accordingly, the skewsymmetric parts of LKC~' and Ce.Lp are left 
indeterminate in the formulations (15) and (16), respectively. We let the reader verify that 

dW 
B-WC = 

in the first case, and 

dW _ —     1 / \ 
S=B-WC = -^=r  , W = w(E,a,e) ,E:=-(lR-C-1), (17) 

a E £ 

S'=2|c"'    Wl=W(Ce'a>e)' (18) 

in the second case. Following the principles enunciated in Maugin [8],[9], the 
thermomechanical formulations (15) and (16) are tantamount to writing the following 
evolution laws for the plastic behavior (regular plasticity surface): 

df(B,A,e)        a/(B,A,e) 

^
LKC

   >S~
X

       5B        ,0t"A       dA       ' (9) 

and 

with associated flow functions/and g, and plastic multiplier X ; more on these developments 
in a recent work of Cleja-Tigoiu and Maugin [6]. Early developments using the notion of 
Eshelby stress tensor as the driving force behind plasticity are given in Maugin [10]. 

5. VOLUMETRIC GROWTH AS A STRUCTURAL REARRANGEMENT 

Basing on a recent work by Epstein and Maugin [11], we view volumetric growth as a 
process that happens to a uniform body , which we describe in terms of a fixed reference 
configuration. As time goes on, more material of the same kind is « squished-in » smoothly 
into the body, but in such a way that material points preserve their identity. In other words, 
the process of growth can be seen as an evolution of material-point neighborhoods in a fixed 
reference configuration, an evolution that finds its expression in temporal changes of density 
and concomitant distorsions of material-point neighborhoods. While preserving the uniform 



material properties, the growth process will in general cause the developments of 
inhomogeneities, responsible for residual stresses in the body. Other types of growth, such as 
inclusions and surface growth (accretion), are beyond the scope of this study. Accretive 
growth is dealt with by Gurtin [12]. Also, we do not deal here with the complicated physical 
or physiological mechanisms responsible for volumetric growth. In contrast with previous 
sections, here mass density, even in the reference configuration, can evolve with time. 
Accordingly, the local mass balance equation reads 

fro 
dt 

n^O, (21) 

where we ignore diffusion. Epstein and Maugin [13] have shown that, for this theory, the first 
Piola-Kirchhoff stress T, and the Eshelby stress tensor b are left formally unchanged while a 
material growth force fsr = Y\ V , V = -F'.v , exists in such a way that the balance equation 

of canonical momentum reads 

dP 

It -(divRb+r'"'') = f"' +fsr, p = p0c.v, f' =svRe. (22) 

The Clausius-Duhem equation takes its standard form. Now we introduce the inhomogeneity 
mapping K called transplant in this growth theory with physiological applications. Let JK = 
det K,  and   pc   the truly  invariant mass density in  CR  so thatp0 = J'^ pc.  By time 

differentiation this shows that growth (increase in density) corresponds lod(detK)/dt <0 

and resorption (decrease in density) corresponds to the opposite condition. With a simplified 

functional dependence of W taken as W = W(F,6,X,t) we can write 

w = y;Ve(F.K(x,0,e). (23) 

We also introduce the following two transplant velocity gradients : 

LK =K.K ' ,   LK =KI.K = -KI.K. (24) 

On account of the relationship between p0 and pc we have 

dpp 

dt 
-p0trhK. (26) 

x 
Comparing to (21) shows that there is no need for an evolution equation for the volumetric 
source, once we know the evolution of K . These must be ruled by the second law of 
thermodynamics. As a matter of fact, T and S receiving their classical form as state laws, the 
reduced dissipation reads as follows : 

<2> = rr(M.LK)-0-'Q.VÄ0>O,. (27) 



where M is the material Mandel stress based on T. The system of constitutive equations must 
now be closed by a heat conduction law (e.g., Fourier's) and the evolution equation for the 
transplant K. The latter can be envisaged as the general relationship between various 

arguments : cp\K,K,M orb,F,FJ = 0,    reflecting thus some kind of 

nonlinear viscoelasticity. Using in variance arguments it can be shown [11] that this can be 

reduced to the following relationship : (p(hK ,bc,Ce,Ce) = 0 .where Ce and Ce come from ¥e 

=F.K - the elastic deformation gradient, LK comes from an invariant combination of K and 

K, and bc is given by bc = JKK~l.b.K . As a simple example of isotropic behavior for the 

symmetric part hs of LK we have the evolution equation 

Ls=%l + 9,be+9«2bJ , (28) 

where the coefficients are functions of the fundamental invariants of bc. Such a law, akin to 
nonlinear viscoelasticity, is exploited in finite-element numerical computations of growth by 
Imatani and Maugin [13]. 

6. CONCLUSION 

The above-given examples are not limitative. Other effects such as smoothly distributed 
damage and bulk phase transitions can be dealt with in the like manner by adapting the notion 
of local structural rearrangement. But what is perhaps more important here is to realize that 
this presentation, starting with the pioneering work of Epstein and Maugin [3], has united in a 
single framework the deeply thought ideas of W.Noll [14] on material uniformity that were 
strongly influenced by the early works of Kondo in Japan, Bilby and co-workers in the U.K, 
and E.Kröner [15] in Germany, and the notion of configurational or material force (e.g., force 
acting on a field singularity) so ingeniously introduced by J.D.Eshelby [16],[17]. The missing 
link has been provided by eqns.(4)-(5) that no authors had given before the end of 1989. Then 
the recognition of the multiplicative decomposition advocated by many authors (among them 
Bilby, Bullough and Stroh [18], Kröner [15] and Lee [19] as a particular case of inverse 
inhomogeneity mapping, and the incorporation of all these into a neat thermomechanical 
framework completed the thermodynamical theory of configurational forces in our view of it 
[9],[20]. 
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QUANTUM PLASTICITY 

Kirk C. Valanis 
Endochronics/University of Portland 

Vancouver, WA., USA 

1. SUMMARY 

In this paper we demonstrate that quantum behavior is not limited to systems of atomic 
dimensions but does in fact occur in macroscopic systems. Currently, quantum behavior is 
associated with systems of atomic dimensions. Such systems occupy discrete energy levels 
and change their energy state by discrete transitions. The energy levels are determined by the 
solution of the Schrodinger Equation specific to a system. However, and most surprisingly, 
similar behavior is exhibited by metal specimens under stress. Plastic states change in a 
sudden fashion and exist only at discrete values of the surface tractions. Here we show that 
the tractions are determined by an equation identical to that of Schrodinger, derived in the 
literature by the author. It is demonstrated that the predicted values of the tractions are in 
excellent agreement with their experimental counterparts published in the literature. 

2. INTRODUCTION 

It is observed that metal specimens, large in reference to their atomic dimensions - such as 
soft aluminum specimens in tension or in torsion - under slow load control, deform uniformly 
and continuously, except at specific values of the applied traction, when they deform 
spontaneously, and in an unstable manner, to a new configuration at constant traction. 
Simultaneously new periodic patterns appear on the surface of the specimens. Such 
observations have been reported initially by Portevin and Chatelier and since then by other 
experimentalists. Of these, the work of Lubahn (1961), Dillon (1965) and Sharpe (1966) is 
given special attention. 

This behavior is strongly reminiscent of the quantum behavior of atomic systems. We pose, 
therefore, the question, whether such behavior may be predicted, or at a minimum depicted, 
by a differential equation similar in form to the Schrodinger Equation for the quantum 
behavior of atomic systems. 

The purpose of this paper is to show that these discrete material instabilities are predicted by 
the solution of a partial differential equation, henceforth referred to as the Quantum Plasticity 
Equation. This equation was derived previously by the author (1996,1997,1998) within the 
scope of the non-affine gradient theory of thermodynamics. There are striking parallels 
between the unstable phenomenological behavior of metals and the time-independent 
quantum behavior of atomic systems as we shall illustrate. 
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3. QUANTUM BEHAVIOR 

The Schodinger Equation 

In the case of an elementary particle, quantum behavior is a phenomenon whereby a particle 
in a time invariant specific potential field U(Xj) occupies only one of a discrete set of energy 

states En En. At the same time the spatial configuration of the particle of the particle is given 
by its wave function yr which satisfies the Schrodinger Equation, Landau and Lifshitz 
(1976): 

(h*2/2m)VV + [E-U(xj)]v/ = 0 (1) 

in R3 where h * is the Planck constant divided by In, m is the mass of the particle and V2 is 
the Laplacian operator. The case of interest here is when U = 0, i.e., when the field is null and 
the particle is in an infinite potential well. This is the case of a 'particle in a box'. In this case: 

(h*2/2m)VV + Ey/- = 0 (2) 

and y/ = 0 on the walls of the box. 

The Quantum Plasticity Equation 

The theory of non-affine deformation has as its basis the observation that during an inelastic 
process, there is a subset of material particles, called the non-affine phase, which migrate 
from their initial neighborhood in the course of deformation. The migration vector field, 
which determines the configuration of the non-affine phase, is called q}. The vector field q^ 

is determined from the equation: 

K2V2qk+skjqj=0 (3) 

where K is a material constant and s is the deviatoric stress vector. The boundary condition 
on q depends on the physics of the surface S. If the surface is impermeable then q = 0 on S. If 
S is permeable then, on S, the normal gradient of q, i.e. 3q/3n = 0. 

Mathematical Equivalence 

Equations (2) and (3) show that that the vector q in eq. (3) plays a counter-role to the wave 
function y in eq. (2). The material constant K replaces h*/2m and the tensor s replaces the 
scalar E. In a like fashion, q = 0 at an impermeable boundary (but 3q/3n = 0 at a permeable 
surface). 

The particle in a box is the atomic analogue of the extension of a box-like macroscopic 
domain. We illustrate this analogy by pointing out that the eigen-energies E of the 
Schrodinger Equation are: 

E = (n2 h *2 /2m)[(n/a)2 + (m/b)2 + (p/c)2], (4) 
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where a,b,c are the dimensions of the box and n,m,p are integers. The analytical expression 
for the wave function \|/ is given by eq. (4a): 

y = V„ sin(n7T x/a) sin(m7T y/b) sin(p7r z/c) (4a) 

Correspondingly, the eigen-tensions T of the Quantum Plasticity Equation are: 

T = (3/2)(^2 K2)[(n/a)2 + (m/b)2 + (p/c)2], (5) 

where a,b,c in are the dimensions of the rectangular specimen under tension and with 
permeable boundaries. The analytical expression for the non-affine displacement qj is given 

by eq. (5a): 

q3 = q° cos(n;r x/a)cos(m;r y/b)cos(p;rz/c) (5a) 

4. EXPERIMENTAL VALIDATION 

Experiments support the proposition that n=m=p, i.e., that the eigen-tractions T at points of 
instability have 'maximal values'. Thus: 

Vf = Vl> (6) 

where 

T0 = (3/2)(n2 K2)[(l/a)2 +(l/b)2 +(l/c)2] (7) 

Thus, the square root of the tensile stress at the points of instability, is proportional to the 
ordinal number of its occurrence. The strain jump is uncorrelated! 

The scalar T0 is the instability coefficient and is composed of two factors: K which is a 
material parameter, which controls the material propensity to instability, and the bracket 
[(1/a)2 + (1/b)2 + (1/c)2], which accounts for the effect of the specimen geometry on the 
collapse loads. We note that if we keep the transverse dimensions b and c fixed, then as the 
length 'a' increases T0 becomes independent of specimen size while as 'a' tends to zero T0 

goes to infinity. Short specimens are more resistant to instability that long ones. The 
extraordinary result of eq. (6) has been validated by the experiments of Lubahn (1961) who 
measured the load P rather than the traction T. 

Experimentally, instabilities are not discernible until the stress reaches a certain threshold. 
This means that there is a minimum nc below which unstable states are not observable, most 
likely because they lie outside the sensitivity of the apparatus. Thus, in view of eq. (6), we 
have the following relation: 

P = P0(nc+r)2;        VP=Vp7(nc+r) (8a,b) 
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where r = n-nc. A plot of the experimental values of VP vs r gave a straight line. The 

intercept on the VF -axis gave ^jP^nc while the slope of the plot gave Jp^. It was found the 

P„ = 3.889 while n   = 14. Thus: 

P = 3.889(14 + r)2;   VP =1.972(14 + r) (9a,b) 

r = 1,2,3.... °o. The match between experimental and calculated values is very close despite 
experimental as well as reading errors. See Table 1 below. 

r 0 1 2 3 4 5 

Observed P 760 860 980 1120 1260 1420 

Calculated P 764 878 998 1122 1263 1407 

Table 1. Comparison of experimental and calculated loads in terms of ordinate numbers, after 
Lubhan 

Experiments by Sharpe 

Sharpe (1966) tested cylindrical specimens of soft aluminum in tension. The solution to the 
cylindrical form differs from its cuboidal counterpart. In this case the non-affine 
displacements field qj is given by eq. (10): 

qz = A J0(/3nr/a)cos(n;rz//) (10) 

where J0, 'a' is the radius and / the length of the cylinder while z is the coordinate along its 
length. Permeable boundaries were considered. 

For 'long' cylinders such as those used by Sharpe, the collapse tractions Tn are given in eq. 
(11): 

T7 = V(3C/2a2)^n (11) 

where ßn are the zeros of the Bessel function Jl. Thus the square roots of the collapse 
tractions should be proportional to the zeros of J,. The theory gives account of the effect of 
both size and shape on the collapse loads. The constant C was determined from the data and 

the numerical value of -N/(3C/2a2) was found and inserted in eq. (12). Thus: 

T„ =0.0227/?„ (12) 
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The extreme agreement between the experimental data and the theoretical values Tn is 

illustrated in Table 2. 

Obs. VT 1.59 1.65 1.73 1.80 1.89 1.95 2.01 2.08 2.15 2.23 2.30 2.37 

Calc. VT 1.59 1.66 1.73 1.80 1.87 1.94 2.01 2.08 2.08 2.23 2.30 2.37 

n 22 23 24 25 26 27 28 29 30 31 32 33 

Table 2. Comparison of experimental and calculated loads in terms of ordinate numbers, after 
Sharpe 

Remark. Subsequent analysis of other experimental data, with specific reference to the work 
of Dillon (1965), involving torsion of hollow and solid cylinders has been reported 
elsewhere. See Valanis (2000,2001). Agreement of theoretical predictions with experiment 
was also very close. 
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1. SUMMARY 

The recent renewed interest in the strain gradient plasticity has been motivated mainly by the 
experimental evidence that plastic flow processes in crystalline solids are inherently size 
dependent. However, similarly as in the previous attempts to introduce formally strain 
gradients into plasticity the current theories have failed to reflect the underlying physical 
mechanisms. Their range of validity has remained uncertain. The two major problems in the 
gradient theories are the choice of the gradients which are to be used and the formulation of 
adequate constitutive equations for them. This paper indicates that the problems can be 
overcome by putting the theoretical framework in correlation with microscopic observations. 
For the case of shear bands it is shown that an advanced non-local plasticity model need not 
be a curve fitting procedure providing that the constitutive equations for additional degrees of 
freedom (strain gradients, directors) are based on knowledge of the mechanism which 
dominates the studied plastic deformation process. 

2. INTRODUCTION 

In the paper [1] Dillon and Kratochvfl stated that at the scale of the order of micrometers the 
theory of plasticity should be formulated as a non-local theory due to interaction among 
dislocations. The formulation has been accomplished by introducing strain gradients into the 
theory of plasticity. However, the formal attempt [1], based on a vague interpretation of the 
plastic strain gradients and lacking correlation with microscopic observations, has failed to 
reflect the underlying physical mechanisms. The observations reveal that the non-local 
character of plasticity is a result of a complex self-organization of dislocations. The self- 
organization process leads to the formation of dislocation structures with a characteristic 
length scale. Plastic deformation is carried by glide dislocations which are flexible line 
defects. The stress needed to move a glide dislocation segment is influenced by the self-force 
which can be expressed through a dislocation curvature and the line tension. The 
incorporation of the dislocation curvature introduces plastic strain gradients into the plasticity 
theory [2]. However, the curvature is just one of the factors governing the nonlocal character 
of the crystal plasticity at mesoscale. The other factors are the properties of stored 
dislocations, namely, the processes controlling fluxes of the stored dislocations. There is not 
enough space here to analyze the problem in more detail; the reader is referred to the 
literature on dislocation pattering [2-8]. Instead, the difficulties of the strain gradient theories 
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of plasticity will be explained through a somewhat simpler problem of plastic strain 
localization. 

The conventional solid mechanics fails to describe localization of deformation in a realistic 
way. It provides a criterion for the occurrence of strain localization in a form of deformation 
bands, however, it predicts infinitesimal width of the bands. The later effect results in a 
pathological mesh-size dependence of FEM simulations of the strain localization. A 
framework aimed to provide a more realistic description of plastic strain localization has been 
proposed by Aifantis [9], Triantafyllidis and Aifantis [10], and Coleman and Hodgdon 
[11,12]. In [9-12] the process of localization is studied within the context of constitutive 
theories that involve second order deformation gradients. The implicit underlying idea is that 
the material microstructure (dislocation arrangements, damage, micro voids, etc.) could 
generate higher order gradients in stress-strain relations through approximate constitutive 
equations. However, the introduced phenomenological constants which are of dimension of 
length and which control the band width have not been related to the microstructure in any of 
the models [9-12]. These models suggest the criterion for the occurrence of the deformation 
bands, as the conventional theory does; additionally they predict the band width and the 
evolution of the bands in the post localization stage. However, for the specific forms of the 
constitutive equations assumed, the predicted shape and the evolution of the shear band 
profiles are not in agreement with observation on metals [13,14]. While the bell-shaped 
profiles predicted by the strain gradient models [9-12] grow with deformation, the shear 
bands observed in single crystal and polycrystalline metals consist of micro bands and 
propagate across samples by increasing their length and width through activation of new 
micro bands, whereas the former ones become inactive [13,14]. In the next section an 
approximate non-local theory of plasticity of the Cosserat type will be presented, which 
reflects the observations and gives the characteristic length of the Cosserat framework a 
concrete physical meaning. 

3. COSSERAT MODEL OF SHEAR BANDS 

The results of the detailed experimental and theoretical analysis of shear banding in copper 
single crystals and mild steel polycrystals have been summarized in [14]. In both of the 
materials studied the observed processes of shear banding were similar. The SEM in situ 
observation on Cu single crystals [13,15] has revealed that a macro-band on the sample scale, 
whose thickness could reach several millimeters, consists of a set of short parallel micro 
shear bands regularly spaced about 0.5 jx m. The micro-bands are approximately parallel to 
one of the slip systems. The structural studies in mild steel polycrystals have shown that 
similarly to the single crystals a macro-band in the polycrystal consists of a set of densely 
spaced micro-bands which are able to penetrate grain boundaries and propagate through 
several grains with only a small deviation. The thickness of the macro bands increases due to 
the activation of new micro bands in the adjacent matrix of the polycrystal The micro bands 
do not follow a particular crystallographic direction in the individual grains. They consist of 
slips locally chosen from the large number of slip systems available in the b.c.c. structure. 
The choice seems to be governed by optimization of the shear band orientation according to 
the laws of continuum mechanics. 

The measurements revealed that the macro bands consists of saturated and active zones 
which divide each macro-band in two parallel parts. The saturated zone is formed by the 
deactivated micro shear bands and its thickness grows with increasing straining. In the active 
zone new micro bands are activated. The active zone shifts with the increasing strain and its 
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thickness remains constant. The Cosserat theory of shear banding has proved to be a 
convenient tool for modeling the strain profiles of the bands. This theory was proposed 
already in [16-18] but was applied for the first time to interpretation of the detailed 
experimental data in [14]. The comparison has indicated that the Cosserat model is a 
promising theoretical tool for analyzing the localization processes. The additional degree of 
freedom of the Cosserat type (directors) are customary related to density of dislocations 
[14,17,18]. It is supposed that the lattice curvature represented by the gradient of the field of 
directors is caused by the geometrically necessary dislocations trapped in a volume element 
of a certain unspecified characteristic size. 

An alternative interpretation of Cosserat directors has been proposed in [19,20]. It is based on 
the observed mesostructure of macro-bands which consist of micro bands. Work hardening of 
the micro bands which limits their shearing capacity and the fact that a new micro band can 
be activated only at a characteristic distance apart control the mesoscale flexibility of the 
material. This feature can be expressed through the Cosserat constitutive equations. Let us 
consider a mesoscale volume element of a linear dimension / represented e.g. by the mesh 
size of the micro grid used in the measurements of the macro band profiles [14]. Let / be 
large enough in comparison with the distance d between the neighboring micro bands (d ~ 
0.5 jl m). A new micro-band is activated in the vicinity of the already formed band when the ■ 
local critical resolved shear stress reaches a value xcrh . Each micro band carries a plastic 

shear yH . When n micro bands enter the mesoscale volume element they cause curvature of 
the material in an analogous way as geometrically necessary crystal dislocations bend a 
crystal. The average material curvature can be expressed by component A" of the curvature 
tensor 

K = ^ (1) 
I2 

At the mesoscale the 'Burgers vector' of the micro band is yBw; w is the width of the micro 
band (w=0.1^m). Angle 6=nyHwll measures the rotation of the material fiber (micro 
grid) with respect to the direction perpendicular to the shear band plane. Note that the angle 
6 and curvature component K depend on the chosen size / of the volume element partly 
filled with the micro-bands; for the same number n of the penetrating micro bands the angle 
6 decreases with increasing /. 

A micro band at the level n is activated when the couple stress component \i equals 

y. = ndxai, (2) 

Unlike the stress Tcrit, the couple stress ß is able to distinguish that the activation takes place 
at the level n. The equilibrium condition for the couple stress transfers the activation signal 
among the volume elements. By excluding n from Eqns. (1) and (2) we get the constitutive 
equation for the couple stress component written in the usual form (G is shear modulus) 

ß = GL2K (3) 

where the phenomenological characteristic length L is 
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L = l\^~ (4) 

Hence, L depends not only on the characteristic material length scales, i.e. on the distance d 
between the neighboring micro bands and the mesoscale 'Burgers vector' yB w (the length 

of the surface step produced by an average micro band), but also on the chosen size I of the 
mesoscale volume element given by the method of measurements. This size can be identified 
with the mesh size of the micro grid used in the interferometric measurements of the band 
profiles [14]. 

The suggested interpretation is close to the interpretation of the Cosserat additional degrees 
of freedom in terms of geometrically necessary dislocations. The principle difference is that 
instead of the geometrically necessary dislocations the micro-bands are considered as the 
main factors. The essential feature is that in both single crystals and polycrystals each micro 
band carries only certain amount of shear before it gets saturated by hardening, and that other 
micro bands are activated at the characteristic distance d from the neighboring ones. As a 
consequence, the mesoscale flexibility of the material is limited and the macro bands are of 
finite width. The interpretation would remain valid even if the micro bands were less ordered. 
It is interesting to note that a similar micro band structure of macro bands appears also in 
many polymers [21] despite the fact that the mechanism of plastic flow is much different than 
in case of metals, as there exit no dislocations here. 

The observation that micro bands have limited shearing capacity and are activated at the 
characteristic distance d from neighboring ones can be probably understood by analogy to 
the formation of the Lüders bands. The simplest form of the Lüders bands, which appear in 
many alloy crystals and e.g. in neutron irradiated Cu, is an analogy to the active zone of a 
macro shear band. The Lüders band front advances by adding new slip bands parallel to the 
old ones. At present the propagation of the Lüders bands is better understood [22] than that of 
the shear bands. The distance of the location of the next activation ahead from the Lüders 
band front is controlled by the local stress produced as a consequence of surface slip steps. 
The strong notch stresses at the growing slip step are shielded by the produced dislocations 
moving into the crystal. The calculations have shown, Hampel et al. [23], that the resulting 
shear stress in the neighboring slip planes has maximum at distances corresponding quite 
well to the observed most frequent slip line and slip band distances. In case of the Lüders 
bands the new slip band starts to operate with a very rapid motion of the first dislocation 
group through the virgin crystal with destructible obstacles causing local softening followed 
by hardening through successive activation of further neighboring dislocation groups. 
Analogously, in a shear banding of a pre-deformed material the intensive shear in a lamella of 
localized deformation first disintegrates the original deformation substructure and then 
massive production of dislocations causes a 'traffic jam' which results in hardening. In both 
cases the elementary distances between the slip or micro shear bands (distance d entering 
equations (2)), which seem to be controlled by the notch effect of the surface steps, and the 
amount of slip carried by the individual slip lines or micro-bands (yBwentering (1)) can serve 
as the convenient intrinsic length scale of a phenomenological model of plastic localization 
processes. 
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4. CURRENT STRAIN GRADIENT THEORIES OF PLASTICITY 

The recent renewed interest in the strain gradient plasticity [24,25], has been motivated 
mainly by the experimental evidence that plastic flow processes in crystalline solids are 
inherently size dependent over a scale that ranges from a fraction of a micrometer to 
hundreds of micrometers. For example, the scaled shear strength of copper wires in torsion 
increases with diminishing wire diameter in the range 100 [i m to 10 \i m by almost a factor 
of three, while the data for uniaxial tensile behavior of the wires, for which imposed gradients 
are absent, show essentially no size effect [24,25]. In this context, the constitutive description 
of the material is proposed to depend both on the strain and the strain gradient. The 
interpretation is based on notions of incompatible lattice deformations and geometrically 
necessary dislocations. According to Fleck et al. [24,25] the dislocations that control the flow 
strength are stored in deformed materials for two reasons: (i) In crystalline materials strained 
uniformly the dislocations are accumulated by random trapping. These are referred by the 
authors as statistically stored dislocations, (ii) When a crystalline material is subjected to a 
plastic strain gradient, geometrically necessary dislocations must be additionally stored. 
Plastic strain gradients appear in a plastically deformed solid either because of the geometry 
(e.g. a strain field near a crack tip) and loading conditions (e.g. torsion), or because the 
material itself is plastically inhomogeneous (e.g. non-deformable phases). 

The above mentioned interpretation can be approximately used if the dislocations are 
averaged over volumes of linear dimension far greater than \i m. At the micrometer scale 
dislocation structures are observed. Strained crystalline materials behave as composites with 
lots of intrinsic geometrically necessary dislocations. At that scale the strain is never uniform 
and intrinsic stress gradients are very high. The externally imposed strain gradients could 
correspond to some geometrically necessary dislocations in a rough averaged sense. In this 
context it is interesting to note that the too rough averaging, as already recognized by 
Kosevich [26], has caused that the theory of continuous distribution of dislocations (from 
witch the relation between strain gradients and density of geometrically necessary dislocation 
has been derived) did not provide any adequate theoretical framework for plasticity. 

As seen in the previous section the correlation of the theoretical framework with microscopic 
observations can substantially improve the formulation and physical meaning of constitutive 
relations of the nonlocal plasticity. On the other hand the attempts based just on the 
phenomenological arguments, e.g. [1,9-12], have proved to be inadequate. From that point of 
view it seems that unless the current attempts to formulate a strain gradient theory of 
plasticity are confronted with detailed microscopic observations they will remain to be a pure 
phenomenology, merely able to describe the observed size-dependent macroscopic behavior 
by curve-fitting with the validity range uncertain. 
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1. SUMMARY 

The Recursive Projection Method (RPM) is implemented in this study in order to accelerate 
the convergence of two time-stepping schemes to stable steady states, as well as to enable 
them to compute mildly unstable ones. This approach forms the basis for the computer- 
assisted stability and bifurcation analysis of the nonlinear dynamic behavior of the underlying 
system model. The effect of the size of the time step in the overall procedure is explored and 
the interplay of the spectra of the underlying system and of the time-stepping scheme with the 
RPM convergence is emphasized. 

2. INTRODUCTION 

The semi-discretization of time-dependent, nonlinear PDEs results in (often large) systems of 
coupled nonlinear ODEs (or DAEs). Equilibrium solutions of the original PDEs can be 
asymptotically obtained by integrating the resulting ODEs (or DAEs) to steady state. This 
approach, when combined with appropriate continuation algorithms, constitutes a systematic 
path towards the computer-assisted stability and bifurcation analysis of the nonlinear dynamic 
behavior of the underlying system model. The efficacy of this "direct simulation" approach is 
inextricably linked to the particular numerical time integration scheme used. Time integration 
can become very slow (and eventually fail) to converge at certain parameter values that are 
close to bifurcations. The Recursive Projection Method (RPM), proposed by Shroff and 
Keller [1], is implemented in this study in order to accelerate the rate of the time-stepper 
approach to steady state and also guarantee convergence under certain conditions. In this 
work, the Galerkin/finite element method for spatial discretization is combined with two time 
integration schemes. The illustrative example consists in locating spatially non-iiniform 
steady states of the Bratu problem in one dimension. The time-steppers employed are a) the 
forward Euler (FE) scheme and b) an implicit-explicit one-step scheme (IE) proposed by 
Akrivis etal.[2]. 
The effect of the size of the time steps used and it's interplay with RPM-assisted convergence 
is explored for both time-steppers. This is correlated with the structure of the eigenvalue 
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spectra of the underlying model problem as well as the time-stepper. Numerical investigation 
shows that for a wide range of time steps, the RPM enhanced the convergence rate of both 
schemes to the corresponding steady states and even allowed the computation of unstable 
solutions. In addition, the most dangerous eigenvalues of the time integration schemes were 
detected with significant accuracy with the help of the RPM. It is observed that the RPM- 
assisted convergence of the IE scheme, is not affected by spatial discretization, while, in 
contrast to the RPM-assisted convergence of the FE scheme [3] which can be - and is - 
severely affected. 

3. THE RECURSIVE PROJECTION METHOD 

In this section, a brief discussion of the Recursive Projection Method is offered. The method 
is described in detail in [1] and a family of related "Newton-Picard" methods in several theses 
(e.g. [4]). Steady state solutions of the parameter-dependent dynamical system: 

u=f(u,?i) (1) 

are also solutions of the fixed point iterative procedure: 

Un+l=F(Un,A.),F:ANxA->A (2) 

F denotes a system time-stepper, a result of numerical integration over a time interval T - the 
reporting horizon of the time-stepper - of the semi-discretization, through finite elements on a 
mesh of N grid points, of eqn. (1); as initial condition is taken the steady state solution for 
X = 0. 
The RPM stabilizes, under certain assumptions, fixed point iterative procedures, such as (2) 
by determining and isolating the subspace, P, corresponding to the directions in which the 
map is slowly contracting or even slowly expanding. The original procedure is then modified 
by performing Newton's method on the subspace P while on it's orthogonal complement, Q, 
the fixed point iteration (2) continues to converge. The fixed point iteration (2) is stable when 
all the eigenvalues of the matrix Fy(U, X) lie in the unit disk. 
Then the stabilized iterative procedure takes the form: 

1. p(()) = PU(,,)(?i),q(,,) = QU(,,)W 
2. Do until convergence: 

(a) Newton step: p(v+1) = p (v) + (I-PFy (U(vU) P)"1 (P F (\JM,X) - p(v)), (3) 
(b) Fixed point iteration: q (v+1) = QF(U(v),l) 

3. u*(X) = p(VM)+q(VM)EEp*+q* 

The main assumption is the existence of a gap between the "strongly stable" and the "slow" 
eigenvalues of the linearization around the fixed point in question. For the method to work, 
the dimension, m, of this latter "slow" subspace should be comparatively low (typically 
O(10) eigenvalues). While this may appear restrictive, there is a large class of dissipative 
system models for which this is a case of interest close to primary instabilities. 
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4. TIME INTEGRATION SCHEMES 

The test case in this study is the Bratu problem in one dimension [5]: 

ü = u xx + Xe" = f (u, X), with u(0) = u(l) = 0 

X is a parameter. The initial condition is the steady state solution for X=0. 

4.1 The forward Euler scheme 

Applying the forward Euler (FE) scheme in the above equation, results in the following: 

(4) 

(un+1-un)/At = uxx+Xeu" =>un+' =un+At-f(u,X) (5) 

Discretization in space is done using the Galerkin/finite element method with quadratic basis 
functions, {^i }£,. Finally, Un+I at each time step is: 

tr^A"1 b (6) 

Ajj = jy<|>jdx , bj = JVuMx + JlAt JVeu°dx- Ju^-^-dx .n df. ,   i,j = l N 
(7) 

In the case of the forward Euler scheme, the stability condition is At/h <1, where h=l/N. 

4.2 The one-step implicit-explicit Euler scheme 

The one-step implicit-explicit scheme (IE) [2], is stable, consistent and very efficient and it is 
applied to equation (5), as follows: 

(u"+1-u")/At = u^+1+?ieun =>un+,-At-uxx
+1 =u"+X-At-eu" 

The Galerkin/finite element method yields: Un+!= A"1 b, where: 

A^Atj^-^-dx + jf^dx, b^jyu-dx + Ti-Atjye^dx   i,j = l,..., 
0 dx dx 0 0 0 

(8) 

N 
(9) 
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5. RESULTS AND DISCUSSION 

The aim of this study is the efficient location of steady states of eqn. (4) using RPM-assisted 
time integration with the schemes mentioned in section 3. The operator f is discretized on a 
spatial grid of 200 points and F(Un,Ä.) is the result of time integration over a time interval T 
for each n. As criterion for convergence to steady state the condition IF(Un+!, X)- F(Un, X.)l < e 
= 10"5 is used. 
The RPM-assisted time-stepping is first implemented in conjunction with an algorithm that 
allows continuation on the physical parameter of the system X. The solution branch is shown 
in Figure 1. To continue past the turning point, which appears at X - 3.512, the arc-length 
continuation algorithm is employed, as described in [1]. In this case T = 0.01. 

Figure 1. The solution branch computed using the RPM 

Implementation of the RPM acceleration procedure results in reducing the number of 
iterations performed until convergence to the steady state. This happens even in the case of 
the, very stable, IE scheme. For two parameter values close the turning point at X = 3.512, the 
number of iterations needed to converge to steady state, are shown in Table 1. 

X iterations iterations with RPM 
3.3 290 16 
3.5 888 21 

Table 1. Number of iterations of the IE scheme performed with and without RPM 

The dimension of the unstable subspace detected by the RPM, in this case, does not exceed 
m = 2. The RPM has the same effect on the less stable FE scheme. For X = 3.3 the number of 
iterations needed for steady state are 2870, whereas with the RPM only 30 are performed 
overall. In each example, T = 0.01. 
In the case of continuation on X, an orthonormal basis, Z eRNxm, of the unstable subspace, is 
computed when the number of fixed point iterations exceeds a preset value, taken here 
nmax= 10- This becomes necessary for X = 3.2 and the dimension of the subspace is m = 2. 
Continuation on X takes place, maintaining the same basis and updating only when it 
becomes necessary. Irj the present implementation, the basis is not updated, since no other 
singularity becomes imminent, and the iterations of the time-stepper at subsequent parameter 
values are as few as 3 or 4. 
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Apart from accelerating the convergence of the time-stepper to steady state, the RPM has the 
attractive feature of enabling the study of the nonlinear character of the system. The small 
mxm matrix H = ZTFuZ contains approximations of the most dangerous eigenvalues of the 
time-stepper F and by monitoring that, it is possible to find the critical parameter value. This 
is illustrated more clearly in Table 2, where the largest eigenvalue of the matrix H is shown at 
different parameter values. The turning point appears when a real eigenvalue becomes equal 
tol. 

Parameter, X 3.2 3.4 3.5 3.51 3.511 
largest eigenvalue 0.96588 0.97837 0.99203 0.99781 0.9985 

Table 2. The value of the leading eigenvalue for different X, approximated by the RPM 

The leading eigenvectors of the original PDE, are also successfully reconstructed from the 
eigenvectors of the small Jacobian, H, as shown in Figure 2. The reconstructed eigenvectors 
are in agreement with the ones computed directly from the full Jacobian of the discretized 
steady state problem. 

Figure 2. Approximations of the leading eigenvectors of the PDEs reconstructed by the 
matrix H at >.=3.2. 

The dimension of the slow subspace detected by the RPM is influenced by the reporting 
horizon, T. The eigenvalues of the "perfect" time stepper, uj, for a linear problem or for the 
linearization of our problem at the steady state, are related to the eigenvalues of the full 
Jacobian of the steady state problem, Xj, according to the relation \i., =ex,T. Therefore, T 
should be big enough so that the unstable modes will decay fast. The effect of the time step 
on the size of the basis, is significant since for T = 0.0001 the dimension of the unstable 
subspace is m = 9 and m = 10 for the FE and IE schemes respectively, whereas for T = 0.01, 
it is found that the corresponding values are m = 1 and m = 2. 
When the spatial discretization becomes finer, the dimension of the slow/unstable subspace 
detected by the RPM applied to the FE scheme, increases significantly (making 
preconditioning necessary [3]). This happens because as the discretization becomes finer, the 
eigenvalues of the Laplacian become large and negative and the eigenvalues of the FE time 
stepper start exiting the unit circle through -1, making the slow/unstable subspace "fatter" and 
eventually destroying convergence. This is not the case for the IE scheme for which the 
slow/unstable subspace dimension remains the same, namely m = 2, for a number of grid 
sizes. The number of iterations also remains the same as shown in table 3. The computations 
are performed at parameter value X - 3.0 and T = 0.1. 
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Grid points number of iterations 
101 13 
201 14 
401 13 
801 13 

Table 3. Number of iterations of the IE scheme with RPM for several 
spatial discretizations. 

6. CONCLUSIONS 

Acceleration of the convergence to steady states of (even very stable) time-stepping schemes, 
has been demonstrated in this work. This is done at little extra cost with the Recursive 
Projection Method, which has the additional benefit of enabling nonlinear 
stability/bifurcation calculations circumventing the calculation of the full system. When 
combined with a stable scheme, like the one-step Implicit-Explicit used here, it becomes a 
powerful tool for efficient steady state computation even for high dimensional systems, since 
big (even inaccurate) time steps can be used as long as the dimension of the slow/unstable 
subspace is small. The true value of detection of steady states through RPM-assisted time- 
stepping, lies in the fact that it is applicable to "black-box", commercial time integration 
codes, even microscopic, i.e. Lattice-Boltzmann, time-steppers [6], the accuracy of which is 
not usually possible to control. 
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1. SUMMARY 

Aspects of dense Lignite-Water Slurry (LWS) rheology were investigated using a controlled 
stress rheometer, with parallel plate geometry. Measurements of the flow curves were carried 
out for various ascending times, shear rates and testing times. In the ascending part of the 
flow curves a transition point was observed, which was characterized by a local maximum 
stress, fftr. The variation of the transition point with respect to solids loading, shear stress 
region and testing time was investigated. For the interpretation of the data, structural aspects 
of the LWS were considered. 

2. INTRODUCTION 

The objective in Coal-Water Slurries (CWS) technology is the preparation of a relatively 
stable dense suspension of coal in aqueous medium having the higher possible solids loading 
with acceptable Theological behavior. The rheological properties of CWS were investigated in 
the past, especially in countries having large deposits of coal like USA (Turian et al. [1]) and 
Australia (Tudor et al. [2]). Numerous investigators were interested in utilising the CWS as 
alternative fuels. It is common that CWS are characterised by broad particle size distributions 
and their rheological behavior is non-Newtonian affected by a number of parameters. For 
example, the relative viscosity, rjr, or the appearance of a yield stress depends on the ratio of 
the solids volume fraction, <p, to the maximum achieved solids volume fraction, <pm, i.e. 
(p/(pm (Botsaris and Astill [3]; Roh et al. [4]; Turian et al. [1]). Shear induced structure in 
concentrated suspensions of spherical particles has been reported in the past (Watanabe et al. 
[5]). Leighton and Acrivos [6] found a short-term increase in the viscosity upon initial 
shearing of the suspension in a Couette device with bob and cup. This behavior was attributed 
to a shear-induced migration of particles across the width of the gap of the device. In the 
present investigation, dense LWS were studied with respect to their rheological behaviour at 
high and low shear stresses, where the slurries exhibit different behavior. 

3. EXPERIMENTAL 

The starting material was dried lignite powder produced at the Public Power Corporation 
(P.P.C.), Ptolemais, Briquettes factory. Among the dominant parameters affecting the 
rheological behavior of the slurries are the physicochemical properties of the particles and the 
pH of the slurries. Therefore, in the dispersion process, i.e. the adsorption of chemical 
additives and stability of the slurry, the humidity content and the ratio of carbon to oxygen 
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(C/O) of the lignite is important (Botsaris and Astill [3]; Roh et al. [4]). The C/O ratio is 
related to the adsorption of the additives on the surface of the particles. In this work this ratio 
was approximately 50/21, on a dry basis. Also the higher the humidity content, the lower will 
be the achieved solids concentration (Turian et al. [1]). The slurryfication process started with 
the wet grinding of the lignite together with the additives in a ball mill. Surfactants and 
polyelectrolytes were used as additives in the slurryfication process to achieve acceptable 
Theological behaviour. Two types of stabilizers were used in the preparation of the slurries, an 
ionic and a non-ionic polymer. Recent published work report that this type of polyelectolyte 
show a high ^-potential for a wide range of salt concentrations and effectively results in a 
long-term stabilization of the slurries (Furusawa et al. [7]). The surfactant chosen for this 
work was a non-ionic alkylphenolpolyethylene oxide, produced by Aldrich®. The total 
amount of additives in the slurries was less than lwt% of the solids. 
The achieved lignite load in the slurries was approximately up to 47.5 wt% or in volume 
fraction 0 equal to 0.44. The concentrations in volume fraction depends on the density of the 
lignite and on the volume of water, which will be absorbed upon contact with water. The 
specification of this parameter is not an easy task, since the lignite is a porous material. In the 
present work the volume fraction 0 of lignite was determined with an accuracy of ±2%. An 
important parameter, of the present work, is the particle size distribution (p.s.d.) of the lignite 
particles in the slurries. Slurries were prepared having a unimodal or bimodal p.s.d while the 
p.s.d. of the lignite slurries was measured by the light scattering method with a Malvern 
Instruments M.07 system. An example of a bimodal p.s.d. of prepared slurries is given in 
Figure 1. The rheological tests were performed with a Carri-Med CLS 100 controlled stress 
rheometer, using parallel plate geometry. 
In order to examine the shape of lignite particles, scanning electron microscope photographs 
(S.E.M.) were taken from slurries of various size distributions. A S.E.M. photo from a sample 
having a unimodal distribution with a maximum particle size 38 //m, appears in Figure 2. The 
shape of the lignite particles in some cases deviates considerably from the spherical shape. 
Spherical shape and uniform size of particles are critical assumptions in most established 
rheological models for dense suspensions. 

25.4     53.1      111 
Particle Size (p m) 

Figure 1. A bimodal p.s.d. of the prepared Figure 2. S.E.M. of a unimodal distribution 
slurries of lignite particles (top size equal to 38 im) 

4. RESULTS AND DISCUSSION 

Systematic viscosity measurements revealed a different behavior of the samples during the 
ascending and the descending part of applied stresses, in the equilibrium flow curve. The 
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suspension shows a typical thixotropic loop during the implementation of the first flow run, 
while in consecutive runs the extent of the loop is reduced and a transition point with a local 
maximum becomes evident. Figure 3 shows a typical flow curve of a LWS sample 
corresponding to the first run together with the flow curve' of the eighth run. On this latter 
flow curve an arrow indicates the transition point. 

120 

° IstFlowLoop 

• 8th Flow Loop 

100        150       200       250       300 

Figure 3. A typical floxw curve of a LWS sample 

The position of the transition point on the "flow curve depends, among others, on the lignite 
concentration in the slurry. This effect is depicted in Figure 4, where the ascending parts of 
the flow curves appear for solids concentration of 38 wt% and up to 46.3 wt%. The samples 
were subjected to the same shear history of consecutive runs, with the same time duration of 
the loop, equal to 9min. The curves in Figure 4 correspond to the 4th consecutive run, while 
the ratio RIGap was 20mm/3mm, where R was the disk radius and Gap was the distance 
between the rotating disk and the plate. The transition stress appears beyond a certain solids 
concentration. In the examined slurry the critical solids concentration, where the transition 
point becomes evident, was approximately 42 wt%. 

50  100  150  200  250  300  350 

Y (*-') 
Figure 4. The effect of the solids loading on the transition stress point 
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In Figure 5 a sample was subjected to six consecutive flow runs; for all these runs the 
maximum shear stress, <rmax, and the duration of the run (flow loop) were the same. For a 
better presentation, the region around the transition points appears magnified in Figure 5. It 
can be seen that the transition stress increases with the number of the runs or the testing time. 
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Figure 5. The effect of the consecutive runs or the testing time on the ascending curve 

The shear stress range and the duration of the ascending or descending parts of a flow curve 
influence the position of the transition point. Figure 6 shows ascending parts of the flow 
curves for three samples of a LWS having the same concentration of 46.3 wt%, 
corresponding to the sixth run and for three shear stress ranges with am3X = 40, 80 and 120 Pa. 
The ascending part duration of all flow curves, ra, was 2 min while the duration of the hold 
point (ffmax = cost.) equal to lmin. It can be observed that the shear stress at the transition 
point increases with the increase of the applied amm. In Figure 6, beyond the transition points, 
the three ascending parts of the curves are almost identical. 
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Figure 6. Ascending curves for three shear stress ranges for the same ascending time and 

solids concentration 

It was discussed above that trtr depends strongly upon 0 and total time of shearing, shear 
stress range and weakly on the flow loop time (Figures 3 and 4). Another parameter of 
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dynamic nature, which influences the aa is the applied shear stress rate, E, in the ascending 
part of the flow curve. Considering for example the stress range between zero and 80 Pa with 
the fa equal to 4 min, the corresponding applied shear stress rate E is calculated as: E = 80 
Pa/4 min = 20 Pa/min. Hence, the parameters fa and <rmax are correlated in one parameter, E. 
Figure 7 shows the oy-data as a function of the time at which the transition occurs, for various 
rates E. It can be observed that data corresponding to the same E are found on the same curve 
even for different ffmax. As E increases the corresponding transition time decreases. 
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Figure 7. The Otr-data as a function of the time at which the transition occurs 

In the following an effort is made to interpret the rheological behavior of dense LWS 
presented above. The first flow loop mainly serves to brake up the initial structure of the 
suspension and to distribute the suspending particles. During the second loop the condition of 
the sample is favourable for the initiation of a different shear induced structure. This 
explanation is based on the fact that the transition stress is evident from the second flow loop 
(Figure 3). From the data presented above, two shear regions with different behavior were 
observed. The high shear region, is the one where the controlling parameters are <j> and y. 
These two parameters are related to the hydrodynamic forces on the particles, i.e. viscous 
drag force and particle-liquid interaction. These forces cause orientation in the flow field of 
the irregular shape particles. As one proceeds towards the other region of low shear rates, 
additional forces become evident. These forces are attractive van der Waals and/or friction 
forces due to interactions between the particles. In the high shear region, a state of dispersed 
particles in the suspending medium results. By decreasing the shear rates y the controlling 
forces of the low shear region contribute to develop a different structure with local clusters of 
particle concentrations. As Jomha et al. [8] state, a shear rate gradient may also develop a 
gradient of osmotic pressure, which can cause particle migration away from regions of high 
shear. As y decreases toward zero, the particle clusters increase in size with a consequent 
increase of the viscosity, i.e. higher slope of the flow curve before the transition point (Figure 
3). The irregular shape and the polydisperse size distribution of the particles contribute also 
to the structure formation in dense suspensions as Jogun and Zukoski [9] reported. 
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In Figure 3 the higher slope of the curve before the transition point suggests that the structure 
is present in the beginning of the flow. The gradual increase of the shear stresses must exceed 
a value at which the formed compact structure brakes up, resulting in a decrease of the 
measured viscosity (lower slope of the curve). This value is the transition stress, alt. After 
that, the hydrodynamic forces predominate and the structure of the suspension attains the 
dispersed state described above. 

5. CONCLUSIONS 

The rheological behavior of dense Lignite-Water Slurries was studied using a controlled 
stress rheometer. The study included the measurement of the flow curves for various testing 
times and various shear stress ranges. Moreover, the position of the transition point, which 
was identified in the ascending part of the flow curves, was further studied. It was found that 
the shear stress at which the transition occurs, depends upon solids concentration and shear 
stress range. It was also found that the shear stress rate under which the slurry is tested is an 
important parameter of its rheological behavior. In an attempt to interpret the rheological 
data, structural aspects of the LWS were considered. 
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1. SUMMARY 

The linear and nonlinear evolution of disturbances, introduced at the inlet of a liquid film 
flowing along an inclined plane wall, is studied numerically with the Galerkin finite element 
method. The numerical results are in satisfactory agreement with available predictions of 
linear stability analysis and with experimental data of the entire evolution process. In 
addition, the computations provide detailed information on the structure of the free surface 
flow. 

2. INTRODUCTION 

Wave evolution on an inclined or vertical falling film is an open-flow hydrodynamic 
instability, which has attracted the attention of many investigators. It has long been 
established that interfacial waves on film flows enhance heat and mass transfer rates in 
process equipment such as condensers, falling film evaporators, absorption columns and two- 
phase flow reactors. On the contrary, the formation of waves on the surface of coating films 
results in degradation of their properties and is highly undesirable. 

Much of the information available for the problem is based on experiments. A technique 
introduced in the pioneering work of Kapitza & Kapitza (1949) and subsequently adopted by 
many investigators (Alekseenko et al. 1985; Liu & Gollub (1994) is to facilitate observations 
of wave development by applying a constant-frequency disturbance at the inlet. In this way 
regular waves are produced, whose form depends to a large extent on the frequency of the 
forcing. These studies have demonstrated that saturated periodic waves result from high- 
frequency disturbances, whereas low-frequency disturbances evolve directly into solitary 
waves. 

On the contrary, direct numerical simulations of film flow by solution of the full Navier- 
Stokes equations are not very numerous. The pioneering work of Bach & Villadsen (1984) 
was followed by few efforts (Kheshgi & Scriven 1987; Ho & Patera 1990; Salamon et al. 
1994), mostly restricted to low Reynolds numbers (Re<10). More recently, Ramaswamy et 
al. (1996) presented computations of film flow by a Galerkin finite-element method. In the 
present work we follow a similar approach, using the Galerkin finite element method and 
emptying at outflow the free boundary condition developed by Malamataris & Papanastasiou 
(1991) and also used by Malamataris & Bontpzoglou (1999). We present results as a function 
of forcing frequency at the inlet, both for the' initial linear growth of very small disturbances 
and for the subsequent nonlinear evolution of larger disturbances. Direct comparison of 
computations with data confirms satisfactory agreement. 
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3. PROBLEM FORMULATION AND SOLUTION 

Gravity-driven flow down a plane with inclination cp relative to the horizontal is considered. 
The mean volumetric flow rate per unit span is denoted by Q and the Re number is defined as 
Re=Q/v where v is the kinematic viscosity, v=\u/p.The location of the free surface generally 
varies in space and time and is described by the function y=h(x,t), where x is the streamwise 
coordinate and y is the normal coordinate starting from the wall. Similarly, the local 
volumetric flow rate is denoted by q(x,t). 

The classical Nusselt solution for uniform flow with thickness H = (3v2 Re/g sin (p){ 

where g is the magnitude of gravity- and parabolic x-velocity profile is given by 

H    2H2 

.     gsincpH2' -     1   "2 ^ 
u{x,y,i)-6 (1) 

v 
A complete description of the flow is provided by the continuity and the Navier-Stokes 
equation. The boundary conditions are no-slip and no-penetration along the wall and a 
balance of forces and the kinematic condition along the free surface. We use the free 
boundary condition at the outflow (Malamataris & Papanastasiou, 1991) and introduce 
constant-frequency disturbances at the inlet by imposing the conditions 

/i(0,f) = l + Acos 275ft (2) 

(3) u(0,y,t) = 
(   y     i   y2 

h(0,t) h(0,t)    2 h(0,ty 

Numerical solution by finite-elements involves expansion of the unknown u and v 
velocities, pressure, p, and free surface location, h, in terms of Galerkin basis functions as 
follows: 

i=i ;=i i=i i=i 

The residuals are evaluated numerically using nine-point Gaussian integration. A system of 
non-linear algebraic equations results, which is solved with the Newton-Raphson iterative 
method. Finally, time integration is performed with the Crank-Nicolson scheme. 

4. RESULTS AND DISCUSSION 

The results of this work are presented in the following way: First, the initial linear evolution 
of very small disturbances is studied numerically and compared with the results of linear 
stability analysis and with relevant data. Next, the nonlinear evolution of larger disturbances 
as a function of forcing frequency is systematically investigated. Finally, detailed information 
on the flow structure is extracted from the simulations. 

Computational linear stability analysis 
The temporal linear stability theory of film flow has developed over many years, by both 
asymptotic (Benjamin (1957); Yih (1963)) and computational methods (Anshus & Goren 
(1966); Orszag (1971)). However, it is now well established that the primary film instability 
is convective and is thus better represented by a spatial analysis. Recent relevant publications 
include the detailed spatial growth-rate data taken by Liu et al. (1993) and the extensive 
numerical results of Brevdo et al. (1999). 

In this work, we impose an infinitesimal disturbance of specific frequency at the entrance 
(initial amplitude equal to 0.2\% of the Nusselt film thickness) and follow its spatio-temporal 
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evolution. In accordance with the convective nature of the instability, the disturbance is 
expected to remain periodic in time and grow or decay exponentially with fetch. We have 
chosen a film with Re=15.33 and We=12.13 at an inclination (p=4.6°. These conditions 
correspond to the data taken by Liu et al. (1993), who used a 50% glycerol-water solution 

Our results indicate the development of a specific wavenumber, with the wave amplitude 
depending exponentially on fetch in the inception region. A comparison of our computations 
with the data of Liu et al. (1993) and the numerical predictions of Brevdo et al. (1999) is 
shown in figures la and lb. Figure la depicts the phase speed of the developing linear mode. 
All three curves show the same trend, with a minimum phase speed around dimensionless 
wavenumber k=0.12. Our computed values are in close agreement with the numerical 
predictions of Brevdo et al. (1999) and exhibit a small systematic deviation from the data of 
Liu et al. (1993). 
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Figure 1: The phase velocity (a) and growth rate (b) of linear disturbances. 

The linear growth rate is shown in figure lb. All three sets of data show the same trend, with 
maximum amplification around k=0.12 or a frequency of 3 Hz and cut-off frequency a little 
higher than 6 Hz. Again, the maximum growth rate presently computed is in close agreement 
with the numerical predictions of Brevdo et al. (1999) and differs somewhat from the 
measurements. The reason for this small discrepancy is not presently clear. It is noted, 
however, that the height differences measured by Liu et al. (1993, their fig. 13) for the 
determination of the growth rate are in the limit of accuracy of their experimental technique, 
and the confidence intervals of the data include our computational values. 

Nonlinear evolution as a function of forcing frequency 
Having confirmed the satisfactory accuracy of the simulation in the linear limit, we proceed 
to compute the spatio-temporal evolution of stronger inlet disturbances. It has been noted 
both in experimental (Liu et al. 1993) and in computational studies (Bach & Villadsen 1984) 
- and is also confirmed by our results - that the qualitative features of downstream evolution 
are independent of the exact form of the inlet disturbance, and an increase of the disturbance 
amplitude has as a sole effect an acceleration of the evolution with fetch. 

In all subsequent computations we have used a constant inlet disturbance with amplitude 
equal to 2% of the Nusselt film thickness. This value - which is an order of magnitude higher 
than that used in the linear stability analysis- helps to keep the flow domain down to a 
reasonable size for the available computational power. In the comparisons with experiments, 
we have not made a systematic effort to fine tune the initial disturbance amplitude so as to 
bring the computed and measured evolution with fetch to exact agreement, because this is an 
extremely time consuming procedure. However, we have performed representative tests, 
which have shown that this manipulation is straightforward. 
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Next, we fix all flow variables and vary the frequency of the inlet disturbance in the range 1-7 
Hz. Our goal is to reproduce quantitatively experimental observations on the dependence of 
the final stationary waveforms on the forcing frequency, and also to capture the entire spatial 
development leading from linear disturbances to the nonlinear stationary solutions. In 
particular, we set the simulation results in perspective with the detailed measurements of Liu 
& Gollub (1994). The simulations performed refer to a film with Re=19.33 and We=5.43 at 
an inclination (p=6.4° and inlet disturbances with frequency 1. Hz, 1.5 Hz, 3. Hz, 4.5 Hz and 
7. Hz. Due to space limitations, only the runs corresponding to disturbance frequencies f=4.5 
Hz and 1.5 Hz are presented. 

Computational results for the frequency, f=4.5 Hz, are shown in Figure 2. An exponential 
disturbance growth is initially observed, which is gradually arrested by nonlinear effects. 
However, the free surface does not equilibrate to a constant waveform but develops a distinct 
overtone (superharmonic). The secondary peak first appears as an instability at the middle of 
the tail of the periodic wave, but moves faster than the primary crest and is eventuallly placed 
in front of it. The evolution appears as a preliminary effort towards creation of solitary humps 
with front-running ripples, which is mitigated by the proximity of the preceding and the 
following crests. This phenomenon corresponds to the quasi-periodic wave regime reported 
by Ramaswamy et al. (1996). 

1000 0 200 400 600 800 
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Figure 2: Spatial development of the a disturbance with frequency f=4.5 Hz. 

Next, we present simulation results for the lowest frequency reported by Liu & Gollub 
(1994), f=1.5 Hz. Shown in Figure 3a is a snapshot of the free surface which exhibits the 
formation downstream of a series of stationary solitary waves. The evolution leading to a 
solitary hump is more clearly demonstrated in Figure 3b, where five consecutive profiles at 
equidistant time intervals are superimposed. A gradual bending-forward of the crest is 
observed, which triggers the development of front-running ripples. The number of ripples 
increases with the height of the crest. In general, the numerical procedure reproduces 
satisfactorily the experimentally observed evolution. 

5. CONCLUSIONS 

The nonlinear evolution of disturbances, introduced at the inlet of a liquid film flowing along 
an inclined plane, is studied numerically with the Galerkin finite-element method. 
Implementation of the free boundary condition at outflow allowed us to formulate the 
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simulation as an initial value problem with streamwise evolution, which is directly relevant to 
experimental observations. 

Introducing very small inlet perturbations, we are able to simulate an extensive linear growth 
region and confirm the agreement of computed phase speeds and growth rates with 
predictions of stability analysis and with experimental observations. Introducing stronger 
perturbations, the entire nonlinear evolution with fetch is computationally recovered, and is 
found to agree with the detailed measurements of Liu & Gollub (1994). In particular, low- 
frequency disturbances lead to solitary waves and high-frequency disturbances to saturated 
periodic waves. The degenerate structure of the intermediate frequency range is also 
accurately captured. 
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Figure 2: (a) Spatial development of the a disturbance with frequency f=1.5 Hz. (b) The free 
surface at five consecutive time steps, indicating the gradual formation of a solitary hump. 
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1. SUMMARY 

A numerical solution for shallow water flow based on the depth averaged Navier-Stokes 
equations for the prediction of coastal circulation in a coastal area is presented. The finite 
element method is advantageous for the solution of the shallow water equations in many 
cases, because of its versatility to model complicated geometries like coastlines, islands and 
strongly varying bathymetry. To reduce the numerical problems associated with the solution 
of these equations, such as the appearance of spurious 2Ax waves on the water surface, the 
characteristic-Galerkin technique was employed. The Smagorinsky equation was applied for 
the modeling of turbulence, whereas a constant eddy viscosity coefficient throughout the 
domain was also tested. The comparison of the new algorithm with the standard Galerkin 
method shows that the characteristic-Galerkin model improves considerably the circulation 
pattern and reduces drastically the 2Ax waves. 

2. INTRODUCTION 

The shallow water equations in depth-averaged form have been successfully applied to many 
engineering problems, particularly in areas such as estuarine and coastal hydrodynamics. 
These equations are often coupled with advection-diffusion models of biochemical processes. 
The finite element method [1] is ideally suited for the simulation of water circulation in lakes, 
estuaries and gulfs, characterized by complicated geometries and bathymetries. However, 
various difficulties associated with the numerical solution of the shallow water equations 
must be resolved. A serious problem in the numerical treatment is the appearance of spurious 
2Ax waves [2] in the water surface elevation for realistic small values of turbulent viscosity 
coefficients, introducing instability to the values of water velocities. 

An efficient technique to reduce this instability is to use the characteristic-Galerkin 
procedure, which minimizes considerably the 2Ax waves. This algorithm has been used 
successfully to treat numerically the advection-diffusion equation for pollutant transport in 
one and two dimensions ([3], [4]). The numerical simulations were conducted for two 
different conditions of turbulence modeling. In the first case the Smagorinsky equation was 
applied, while in the second a constant eddy viscosity coefficient throughout the domain was 
used. As an application, the wind-induced coastal circulation is solved numerically in a 
domain of simple geometry. Simulations were conducted for both the simple and the 
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characteristic-Galerkin technique,  with the Smagorinsky model and the constant eddy 
viscosity in each case. 
3. MATHEMATICAL FORMULATION 

The shallow water equations in their depth-averaged form, can be written as: 

T, du    udu    vdu     , dn     T?x - + _- + _ fv = -g — +    sx 

dt      dx       dy 
bx 9  " 

dx    p H    p H        T dx2 

du    dv 

dy    dx 

dv    udv    vdv . + __ + __ + fu = -g — + 

Tdy 

dn      sy        by 

dt      dx       dy dy    pH    p H 
o       32v 

1 dy2 

Tdx 
du    dv — + — 
3v     dx \  J I 

dn | d(uH) ,3(vtf)_0 

dt dx dy 

(1) 

(2) 

(3) 

where u and v are the velocity components in the x and y direction, h is the mean sea level 
from the bottom, n is the time depended water elevation, H is the quantity h+n, f is the 
Coriolis parameter and vT is the eddy viscosity defined by the Smagorinsky model as [5]: 

^Aflsl (4) 

in which A is the filter width (proportional to the grid size), Cs is the Smagorinsky constant 

(Cs=0.1), and |s| = (2Sjj S-J'2 is the magnitude of the large scale tensor: 

Vi 3UJ    9uj 

3XJ    3XJ 
(5) 

fori,j=l,2. 

The shear forces on the water surface are expressed in terms of the components of the wind 
velocity Wx and Wy as: 

sx ^ Tsy=K-p-Wy-yW2x+W2y Kp-Wx-^W2
X+W2y 

The bottom friction term is given by the well-known Chezy formula: 

•u-Vu   +v p-g-v-vu   +v 

(6) 

Tbx = 
pg 

'by' (7) 
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where p is the water density, K is an empirical coefficient (10"6~3 106) and C is the Chezy 
coefficient. 
4. THE NUMERICAL PROCEDURE 

Equations (1) and (2) can be written, using the summation convention in a compact form as: 

du,    dFu        dn    3G..  L + 'L+g + L 
dt     dx,        dx,     dx, 

+ ß,=0 (8) 

where Fy = usUj, Gy represents the eddy viscosity terms and Q; contains the water surface 
and bottom friction terms. The application of the characteristic-Galerkin procedure to 
equation (8) along the characteristic paths, in explicit form, yields [6]: 

A«.     dFu        dn    dGtj 
—-+—L + g—+^rL 

At     dx,        dx,     dx. 
+ Q,+ 

At 
dx, 

2    k dx, 

3F, 
dx: 

-+Ö, 

dn 
dx. 

(9) 

fori,j,k=l,2. 

Then the standard Galerkin procedure is applied for the spatial discretization of equations (3) 
and (9). The split-time integration scheme [2] was used for the solution of the resulting 
algebraic equations. 

5. APPLICATION AND RESULTS 

The water velocity field was obtained by solving the depth averaged shallow-water equations 
in a rectangular shallow enclosure (1300 m length, 1400 m width, 5 m depth), using the finite 
element technique for north wind of velocity 5 m/s. The starting conditions were zero 
velocities and water elevations through the computational domain. 

The circulation pattern, using the Smagorinsky turbulence model, for the standard Galerkin 
method is depicted in Fig. 1(a), while for the characteristic-Galerkin method in Fig. 1(b). 
Figure 2(a) shows the circulation pattern obtained from the standard Galerkin method using a 
constant eddy viscosity coefficient (vT=l m2/s), while Fig. 2(b) shows the circulation pattern 
for the characteristic-Galerkin technique. 

In Figures 3(a) and 3(b) the water surface elevations are depicted, using the Smagorinsky 
turbulence model, for both the standard Galerkin and the characteristic-Galerkin procedure 
respectively. The water surface elevations, using a constant eddy viscosity coefficient (vT=l 
m2/s), for both techniques (standard Galerkin and characteristic-Galerkin), are depicted in 
Figures 4(a) and 4(b). 

It is obvious that the use of the characteristic-Galerkin model improves drastically the results, 
which, in the case of the standard Galerkin procedure are unacceptable. A serious reduction 
of the 2Ax waves occurs, whereas the circulation distribution improves considerably, even for 
the low value of turbulent viscosity coefficient used herein. The water velocities obtained 
from the constant eddy viscosity simulation are higher than those obtained from the 
Smagorinsky model for turbulence. Comparison of   Figures 3(b) and 4(b) shows that the 
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solution based on the Smagorinsky model yields low amplitude 2Ax irregularities, which are 
not present in the case of constant eddy viscosity. This is because the eddy viscosity 
coefficient in Smagorinsky method is variable, and lower than the constant value (1 m2/s) in 
some cases. 
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Figure 1: Circulation patterns, using the Smagorinsky turbulence model, for: 
a) standard Galerkin method, b) for characteristic-Galerkin method. 
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Figure 2: Circulation patterns, using a constant eddy viscosity coefficient (vx=l m /s), for: 
a) standard Galerkin method, b) for characteristic-Galerkin method. 

Figure 3: Water surface elevation, using the Smagorinsky turbulence model, for: 
a) standard Galerkin method, b) characteristic-Galerkin method. 

Figure 4: Water surface elevation, using a constant eddy viscosity coefficient (vT=l m2/s), for: 
a) standard Galerkin method, b) characteristic-Galerkin method. 
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6. CONCLUSIONS 

A finite element model was applied to the shallow water equations for the study of wind- 
induced coastal circulation in a simple rectangular domain. To overcome various problems 
arising from a numerical solution, such as the appearance of 2Ax waves, the characteristic- 
Galerkin formulation was employed, and the results were compared with those of the 
standard Galerkin technique. In both formulations the Smagorinsky model was used for the 
improvement of turbulence modeling, in addition to the constant eddy viscosity 
approximation. The results show that the characteristic-Galerkin method almost obliterates 
the 2Ax waves and improves drastically the circulation distribution in the flow domain. The 
use of Smagorinsky model for turbulence seems to yield more realistic results, compared to 
those obtained assuming a constant eddy viscosity coefficient. 
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1. SUMMARY 
Nonlinear dynamics of the concentric, two-phase flow of two immiscible fluids in a circular 
tube is studied. A pseudo-spectral numerical method is coupled with an implicit second order 
time-integration scheme to solve the complete mass and momentum conservation equations 
as an initial value problem. The simulations originate with the analytical solution for the 
pressure driven, steady, Core-Annular Flow (CAF) in a tube. The volume fraction of each 
fluid in the tube and the total flow rate of both fluids are imposed. Furthermore, the length of 
the tube is taken to be as long as computationally possible in order to allow for multiple 
waves of different lengths to develop and interact as reported in experiments [1] and in earlier 
weakly nonlinear analyses [2], [3]. Distinct results are obtained in the following two cases: 

1) When the viscosity ratio of the fluid in the annulus to that in the core of the tube is 
smaller than 1, fi<l, gravity acts against the applied pressure gradient and other parameter 
values are such that the experimentally obtained flow charts indicate that both phases retain 
their integrity, but the original steady flow is unstable. Then it was found that indeed 
traveling waves develop with slightly sharper crests (pointing towards the annular fluid) than 
troughs, the so-called "bamboo waves". Despite the uneven interface, the flow in the core 
fluid closely resembles Poiseuille flow, but in the annular fluid small recirculation zones 
develop at the level of each crest. As the Reynolds number or the flow rate of the core fluid 
increase, the average wavelength and the amplitude of these waves decrease, whereas the 
holdup ratio of the core to the annular fluid approaches 2. For large values of interfacial 
tension, waves with even different wavelength move with the same velocity, whereas for 
small values, they attain variable velocities and approach or repel each other but no wave 
merging or splitting is observed. 

2) When fi>l, the steady CAF is linearly unstable and it is necessary to keep the ratio of 
the thickness of the annulus to the radius of the tube small so that the solutions remain 
uniformly bounded. The resulting waves, the so-called "saw-tooth waves", generally travel in 
the same direction and faster than the interface, except for the case with /x=l for which they 
are stationary with respect to the unperturbed interface. Depending on parameter values and 
initial conditions, waves move with the same velocity or interact with each other exchanging 
their amplitudes or merge and split giving rise to either chaotic or organized solutions. For 
fluids of equal viscosities and densities (p=p=l) and for /?e=0.0275 and W=145.4, small 
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amplitude waves are predicted. The increase of // by almost two orders of magnitude does not 
affect their amplitudes, but increases their temporal period linearly. Varying Wby more than 
three orders of magnitude increases their amplitudes proportionately, while their period 
increases with the logarithm of W. Similar to that is the effect of increasing Re. The present 
analysis confirms and extends results based on long wave expansions, which lead to the 
Kuramoto-Sivashinsky equation and its variations. 

This two-phase flow has been studied extensively, because it simulates important 
technological and scientific problems such as the so-called "lubricated pipelining", a 
technique employed to facilitate the transportation of viscous oil through a pipeline using 
water [1]. Similarly it arises in heat exchangers operating with supersaturated steam, in oil 
recovery from underground rocks by injecting steam or water, in trickle-bed reactors for 
reforming oil at high pressure, etc. 

2. GOVERNING EQUATIONS 
We examine the axisymmetric CAF of two incompressible, Newtonian fluids in a pipe of 
constant and circular cross-section with radius R2. The region 0< ?<«,(?,/) is occupied by 
the core fluid (fluid 1) with viscosity and density (#,,/),), while the annular fluid (fluid 2) 
with properties (fi2,p2) is located in the region «,(?,?)< ?<ä2, where («) denotes dimensional 
quantities. The position vector of the fluid/fluid interface is defined by: 
R\ =S.rRl{lt)+elz (2.1) 
The components of the velocity vector of each fluid, are denoted as: 
Ü, =(Üi,0,Wi) = erÜi+eo0 + ezWl (2.2) 

where (p,0,z) are the cylindrical coordinates, ier,ee,e.) are the corresponding unit normal 
vectors while e.  is directed opposite to gravity, and i denotes time. The equations that 
govern the motion of both fluids, i=l, 2, and the fluid/fluid interface are the following: 
V-tf,=0 (2.3) 

DO ■ 

# = &(*.(*■<>'*) (2-5) 

The stress tensor of each Newtonian fluid is defined as usual, f. =fii\/Ü_i +VC/7 j. This set of 

equations is solved subject to the boundary conditions of no slip, no penetration of the tube 
wall and continuity of velocities and stresses at the fluid-fluid interface. In the axial direction, 
we impose that the velocity field, the stress tensor of both fluids as well as the fluid/fluid 
interface are periodic functions with period the length of the computational domain, L. In 
order to achieve a well-defined set of equations, we impose that the volume of the core fluid 
as well as their total volumetric flow rate remain constant in time. Upon making 
dimensionless the governing equations, using as characteristic velocity, w0, one half the 
average velocity in each cross section, the following six dimensionless numbers arise: The 
Reynolds number, Re = AplR2W0/fll ; the inverse Weber number, W = f/(plW„2R2); the inverse 

Froude number, F = {^R2)/[AWO
2
); the viscosity ratio, pi = fi2/fit ; the density ratio, p = p2/Pi; 

and the ratio of volumes of each fluid, V,/V2, where the aspect ratio, A = 2KR2/L, also 
appears and is set for computational reasons. 
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3. TRANSFORMATIONS AND NUMERICAL IMPLEMENTATION 
The above equations are solved in the streamfunction-vorticity, (¥',, fl,) formulation, in each 
fluid, so the respective mass balances are identically satisfied. We also employ the following 
non-orthogonal, body-fitted coordinate transformation (r, z, t) —> (xj, X2, T). 

Core fluid: x, = 1 - 2—r
1-^,x1=z,?-t (3.1) 

Annular fluid: x,=-\+2-—4^-r,*, =z,t=t (3.2) 
1-ä,(Z.O 

This normalization is essential in order to transform the boundaries of the regions that each 
fluid occupies to coordinate lines in the new transformed space given the spectral method that 
we have adopted for the numerical solution of this problem and the need to exactly impose 
the boundary conditions on a deforming surface. The bounds of the new independent 
variables are the following: 
-\<x\<\,0<x2<2n,%>Q (3.3) 

In order to solve numerically the resulting set of equations we use a pseudo-spectral method. 
This method is preferred because of its exponential rate of convergence with mesh refinement 
and for its easy implementation. We approximate every dependent variable by using 
Chebyshev polynomials and Fourier modes in the x\ and x2 directions, respectively. The grid 
points in the ^-direction are defined by the following relation: 

x}k=cos\n — \o<k<N (3.4) 

where N is the highest-order of Chebyshev polynomial that we use while the grid points in 
the .^-direction are taken to be equidistant i.e.: 

x2l=—,Q<l<M-\ (3.5) 
M 

So, every dependent variable in the transformed space, indicated by /, is approximated as a 
sum of products of Chebyshev polynomials, C„ and Fourier modes, Fj, i.e.: 

f<Xi,x1.T)=£Mj?av(?)Cl(xl)Fj[x2) (3.6) 

The derivative of each function represented by eq. (3.6), is evaluated by differentiating term 
by term its spectral expansion, while the unknowns of the above expansion are evaluated by 
exactly satisfying the differential equations at the collocation points. By using M and N 
collocation points in the axial and radial direction, respectively, the total unknowns are 
4MN+M. Typical (and more than sufficient for numerical convergence) values of M and N 
are 111 and 11 (in each fluid), respectively, which result in 4995 unknowns. The time 
integration is performed by using the implicit, second order accurate, Adams-Moulton 
method with typical time step 0.5- 10"3. In order to reduce the time required to invert the final 
Jacobian matrix at every time step, which is a full matrix with approximately 2.5- 107 entries, 
we adopt the modified Newton-Raphson technique. The required CPU time for each dynamic 
simulation is of the order of 3-4 weeks in an ALPHA-DEC DS20 Workstation. 

4. RESULTS AND DISCUSSION: Bamboo waves 
Experiments with very viscous oil in the core and water in the annulus, both flowing against 
gravity and for a rather wide range of flow rates demonstrate that initially small and random 
disturbances of the cylindrical interface increase in amplitude and finally saturate assuming 
the bamboo shape, [1]. This wave shape is composed of sharper crests than troughs and the 
crests are directed from the more viscous to the less viscous fluid. A good indication of the 
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flow regime is given by the hold up ratio, defined as the ratio of the imposed flow rates to the 
ratio of volumes occupied by each phase 

h=m^. (4.D v,/v2 
For perfect (steady) CAF h=2 and it decreases from this value as bamboo waves evolve. 
Earlier theoretical analyses [4], [5], did not obtain satisfactory agreement with experiments 
mainly because they made fairly restrictive assumptions about the interface shape, the fluid 
properties or the operating conditions. As we are interested in simulating as closely as 
possible the development of the bamboo waves we use herein the same conditions under 
which the experiments were performed, [1]. These were conducted in a long tube of circular 
cross section of inner radius fl2=0.48 cm. They used oil of viscosity /}, =6.01 poise and 
density p, = 0.905 gr/cm3 flowing in the core of the tube and surrounded by water of viscosity 
fi2 =0.01poise and density p2 = 0.995 gr/cm3. Thus, throughout we use fi = 0.00166 and 
p = 1.0995. The surface tension of the oil-water system is f = 8.54 dyn/cm [1], or f =26 
dyn/cm, [4]. Given the experimentally imposed volumetric flow rates of oil and water QVQ2, 
respectively, the characteristic velocity and the resulting Re are calculated first: 

The last parameter that we should set is the ratio of the volumes occupied by each fluid. This 
is not reported in the experiments [1], instead we deduce it from the definition of the hold up 
ratio, eq. (4.1), and the fact that in the related experiments it remained constant, h=\39: 

.      N-l 

.02 1 + 1.39- 
Qi 

(4.4) 

where V,,V2,and VT are the volumes occupied by the core fluid, the annular fluid and their 
summation, respectively, while V denotes the volume fraction occupied by the core fluid in 
the tube. 

We present only certain aspects of one of the several simulations of the corresponding 
experiments, the one with ßi=429, ß2=200 cm3/min. A photograph of this experiment, 
showing the saturated shape of the interface can be seen in [1]. This photograph is used in 
order to estimate the average wavelength of the bamboo wave so as to set the length of our 
computational domain. It turns out that the average wavelength equals 1.225 cm, which is 
2.552 times the radius of the tube. Having computed this, we set the length of the domain 
equal to 20.833 times the tube radius expecting in this way to compute a bamboo wave 
having about 8 crests. With these data we compute the characteristic velocity from eq. (4.2) 
to be #„=7.242 cm/s, whereas the values of the dimensionless numbers with f =26 dyn/cm 
are /z=1.39, /I =0.3016, Re=0.\579, W=1.141, F=29.77, V=0.6068. Linear stability theory 
reveals that the perfect CAF for these dimensionless numbers is unstable, since several 
eigenvalues have positive real part. The most unstable eigenvalue corresponds to the Fourier 
mode having wave number equal to 7, while the growth rate of the mode having wave 
number 6 is only by 0.7% smaller than the growth rate of the most dangerous one. 

The volumetric flow rate of the core fluid computed at the entrance of the tube is a good 
measure of the flow field. Here our initial condition is the steady flow field of the perfect 
CAF. Because of this, even up to t~15 the flow cannot be distinguished from the perfect 
CAF, i.e. a long incubation period is needed before instability sets in through numerical 
truncation error. After t~15, the exponential deviation from the perfect core-annular flow 
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becomes visible and at about t~22 the instability seems to have saturated as the core flow rate 
reaches a periodic pattern. We graphically compute the average oscillation period and we find 
it to equal to 0.501, while linear stability theory predicts that the period of oscillation of the 
Fourier modes having wave numbers 5, 6 and 7 are 2JI/10.708=0.587, 0.459 and 0.374, 
respectively. Thus, the graphically computed oscillation period of the saturated bamboo wave 
is closer to the mode with wave number 6 than to any other mode. The wave speed computed 
using the same figure is found to be 2nl{6- 0.501)=2.088 times the characteristic velocity of 
the flow. The time-averaged flow rate also indicates that the onset of the bamboo waves 
results in the deceleration of the oil. 

In fig. 1 we show the instantaneous streamlines of the flow as well as the interface at 
t=27.049 for f = 8.54 dyn/cm. Clearly the waves are not all exactly the same and generally 
the crests are slightly sharper in their front than in their back. It is a non-deforming wave, 
which travels downstream with a constant velocity. In the core fluid the streamlines are 
almost straight indicating that the flow there resembles Poiseuille flow. Also, it can be seen 
that the interface intersects different streamlines revealing in this way the unsteady nature of 
the flow. In part of the annular fluid the streamlines remain straight, whereas small vortices 
arise in it and where each crest is located. Combining the fact that the annular flow rate 
attains its minimum value at a crest with the steady translation of the interface we conclude 
that, if recirculation can arise in the annulus, it will do so at a crest. In the present case this is 
even clearer, since Q2~0 at the crest forcing the axial velocity to change sign along the radius, 
whereas Q2>0 at the trough. For further results and details see [6]. 

Saw-tooth waves 
We present only certain characteristics from one representative simulation for the case with 
fi>l. The other parameter values have been set so that the interface does not break or fold and 
so that earlier approximate analyses, [2], [3], are tested and extended. The parameter values 
used are: p=n=\, A=Q.\, Re=0.0215, W= 145.4, V=0.826. Linear stability theory, performed 
as described elsewhere, [7], [8], predicts that the perfect CAF for these dimensionless 
numbers is unstable, since there are several eigenvalues having positive growth rates and that 
the computational domain includes at least 8 times the most unstable mode. In fact, we first 
performed this linear stability analysis and after finding the wavelength of the most unstable 
wave, we set the length of the domain to be at least 8 times that and, thus, A=0.l. In order to 
validate our numerical scheme of solution we have integrated the non-linear governing set of 
equations in both space and time using as initial condition the perfect CAF seeded with the 
most unstable eigenvector for these values of the dimensionless numbers. Since the perfect 
CAF is unstable the flow departs from it and after a transient period the instability is arrested 
leading to saturation. We can graphically compute the temporal oscillation frequency, which 
is found to equal 5.572, while the one predicted by the linear theory equals 5.568. Similarly 
we compute the linear growth rate, which graphically equals 0.02548, while using linear 
theory it is 0.02734. So, our numerical scheme is validated. Under the present parameter 
values the perfect CAF is unstable due to capillarity as the viscosity ratio equals unity and the 
Reynolds number is relatively small. Despite the fact that capillarity induces the instability in 
the linear regime, capillarity in conjunction with the imposed flow capture it preventing in 
this way rupture of the fluid/fluid interface and as a result shear induced stabilization is 
effective. In the absence of imposed flow, the instability would have broken the interface. 
Because of the small amplitude of these waves the holdup ratio does not deviate appreciably 
from its value for perfect CAF. 
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In fig. 2 we present the time evolution of the interface for initial condition seeded with a 
random disturbance. The time difference between successive snapshots is At=2 while the first 
one corresponds to time f=152. Significant wave interaction can be seen. This observation is 
in accordance with the analyses by [2] for no viscosity stratification that introduces 
dispersion, and [3] for small values of the capillary parameter, which show that the governing 
equation of motion of the interface is the Kuramoto-Sivashinsky equation, which admits 
chaotic solutions. The interaction between neighboring waves leads to their splitting and 
merging, which do not diminish as time evolves. 

Figure 1: Wave interface (thicker line) and streamlines in both fluids in a fully developed 
bamboo wave at f=27.049 for f = 8.54. The upper and lower horizontal lines are the tube 
wall and the axis of symmetry, respectively. Flow is from left to right and gravity opposes it. 

0.4 0,6 

AXIAL DISTANCE 

Figure 2: Development of the interfacial wave for initial condition that of perfect CAF 
seeded with a random disturbance (time increases upwards) 
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1. SUMMARY 

As part of the development of a hydrodynamic model of a natural water body such as an 
estuary or coastal sea, spot depths must be assigned to all nodes of the computational grid. 
This paper presents the results of a statistical analysis of the accuracy of three basic 
techniques, offered by Thompson & Johnson [1], for interpolating between scattered depth 
data. The methods tested include bilinear interpolation, inverse-power interpolation and 
Taylor series interpolation. Initially, the ability of each method to reproduce analytically- 
generated surfaces was investigated and it was found that all methods performed well with 
dense bathymetric data. However, some of the interpolation techniques were found to have 
critical flaws when processing sparsely scattered depth points containing rapid changes in 
gradient. 

2. INTRODUCTION 

In estuaries and near coastal regions the available depth data (or bathymetry) obtained from 
nautical charts will vary in spatial resolution between well surveyed shipping channels and 
sparsely surveyed surrounding shallows. Often, however, the flow behaviour in the shallow 
near-shore region has a significant effect on the overall hydrodynamics of the flow domain. It 
is therefore important that the method of interpolation from the measured bathymetry onto 
the nodes of the hydrodynamic mesh is as accurate as possible and uses the available depth 
data to best effect. The choice of an inappropriate depth interpolation method is likely to be a 
major source of error in any hydrodynamic model. 

This paper investigates the accuracy of three basic interpolation techniques provided in 
the WESCORA computer code (Thompson & Johnson [1], Johnson & Thompson [2]). The 
WESCORA code uses depth interpolation as a precursor to depth-dependent grid adaptation 
but the interpolation methods discussed are also widely applicable to both 2-D and 3-D 
hydrodynamic schemes. 
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3. DEPTH INTERPOLATION 

Depth interpolation is the assignment of representative values of depth to each node of a 
computational grid from a randomly scattered set of bathymetric data points. The interpolated 
depth of the sea bed can then be used in the continuity equation of a shallow water equation 
model or to establish the lower boundary of a 3-D hydrodynamic scheme. 

In theoretical studies, the bed of the domain may be flat or have a prescribed known 
shape which can be found using analytical methods. However, when modelling a natural 
water body such as a river, estuary or coastal sea, bathymetric data will come from a nautical 
chart in the form of a series of surveyed spot depths. These spot depths will not coincide with 
the nodes of the computational grid and therefore interpolation must be employed to obtain 
representative values of depth at each grid node. 

Thompson & Johnson [1] implemented three basic methods for interpolating between 
scattered depth points. The methods assume that the depth at a particular grid node is only 
dependent upon those surrounding spot depths which are nearest to it. Therefore a number of 
depth points must be located around the grid node before interpolation can be performed. The 
rules for choosing depth points to surround a fixed (x,y) position, P, are illustrated in 
Figure 1: 

->nd 
point Pi    nearest depth point to P. 
point P2    nearest depth point such that the vector P2P 

forms an obtuse angle with PiP. 
point P3   nearest    depth    point    lying   between    the 

projections beyond P of PiP and P2P. 
point P4   nearest depth point lying within one of the 

sectors P1P2P3, P1P3P2 or P2P1P3. 
point P5    nearest unused depth point to P. 

•P4 

x 
\ 

Pi 

p^^/ 
"X   \ 

/    x \ 
P3 

/ 
/■"' Ps • 

Figure 1: Choosing depth 
points to surround a fixed 

(x,y) position, P 

To enforce these criteria, algorithms are employed which 
consider the vectors and angles between groups of points. If 
there is no depth point satisfying the above criteria then the 
nearest unused data point is chosen. 

If the grid node in question lies near the boundary it may well be impossible to find 
depth points that surround it, in which case all interpolation methods will effectively 
extrapolate for the depth at that node. Extrapolation is a risky procedure as it can easily lead 
to false results. In order to overcome this problem, extra depth points can be added to the 
bathymetric data along the coastal perimeter and open boundaries. This ensures that the depth 
is always computed using interpolation. 

The three methods of interpolation considered in the present study are as follows: 
(a) Bilinear interpolation:  The bed is assumed to be planar with the equation of the plane 
given by: 

h(x,y) = a + bx + cy + dxy (1) 

The coefficients a, b, c and d can be found by knowing the location of 4 spot depths, or if the 
xy term is ignored, the coefficients a, b and c can be found using 3 spot depths. The 
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interpolated depth, h , at a grid node is then found by substituting the x- and y- coordinates 

of the node into equation (1). 
(b) Inverse-power interpolation: The interpolated depth, h , at the grid node at (x,y) is given 
by a weighted average of the surrounding depth points depending on an inverse power of 
their distance away: 

h(x,y)='-' „ a\ (2) 

X— 
where n is the number of depth points used, 

m is the power at which the weight decreases with distance (usually 2 or 3), 
h(xnyl) is the depth at data point P, 

and      di is the distance of the depth point P, from the grid node. 

(c) Taylor series interpolation: Suppose that (xp,yn) is the nearest depth point to the grid node 
at (x,y). Then the interpolated depth at (x,y) is given by: 

h(x,y) = h(xp,yp) + [x-xp]hx(xp,yp) + [y-yp]hy(xp,yp) 

1 2 1 (3) 

+-[x~xp]
2h„(xp,yp) + -[y-ypYhyx(xp,yp) + [x-xp][y-yp]hXi.(xp,yp) 

This equation contains five unknowns, the five derivatives of h at the depth point {xp,yp). 
These are determined using Taylor series expansions about (xp,yp) to five other surrounding 
depth points. Thus if the five nearest points to (xp,yp) are fcy,) /=1 ,...,5 then: 

Kxl,yi) = h(xp,yp) + [xi-xp]hx(xp,yp) + [yi-yp]hy(xp,yp) 

1 2 1 2 (4) 

+-[x,-xpl hxx(xp,yp) + -[y,-yp] h>y(xp,yp) + [xi -xp ][y, - yp]h„(xp,yp) 

which is a system of 5 equations for the 5 unknowns. If fewer derivatives are included in 
equation (3) then respectively fewer equations of the form shown in (4) are required. Taylor 
series interpolation may also be utilised with two (or more) sets of interpolation points. In this 
case the above process is performed a second time with those depth points used in the first 
sweep removed and the coefficients of the matrix of derivatives of h at (xp,yp) selectively 
updated. 

4. VALIDATION TESTS 

In order to assess the accuracy of each form of interpolation, a domain is required with 
known, analytical bathymetry and a grid generated within its perimeter. The various 
interpolation methods are used to predict the depth at each grid node which can then be 
compared with the analytical depth at the grid node position. The accuracy of the various 
interpolation methods can be expressed in terms of the standard deviation of the depth error. 
If hij is the analytical value of depth at grid node (i,j) and hjj is the interpolated value of depth 
at the same node then the standard deviation of the interpolation, o, is defined by: 
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a = f 
liK-hl 

(5) 

where n is the total number of nodes in the grid. A comparison index is also evaluated which 
expresses the standard deviation for each interpolation method as a ratio of the best observed 
value. 

Initially the domain chosen was a slice of a 
sphere of non-dimensionalised radius 100 (see 
Figure 2). The maximum depth was 29.29 and the 
maximum gradient was unity. A boundary-fitted 
grid of 30 by 30 cells was generated and 1000 
scattered data points were chosen at random 
positions within the perimeter and assigned depth 
values equal to the analytical bathymetry of the 
basin. An extra 120 data points of zero depth were 
equally spaced around the perimeter to overcome 
the problems arising from data extrapolation. The 
results of the various interpolation schemes are 
illustrated in Table 1 and Figures 3 & 4. 1.0 

Table 1: Standard deviation for various °-9 

0.8 ■ 
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Figure 2: Three-dimensional 
representation of spherical 

bathymetry 

interpolation methods 
Interpolation method Standard Deviation SD Index 

Bilinear 3 points 0.09592 3.817 

Bilinear 4 points 0.32422 12.902 

Inverse Square 2 poinls 0.49854 19.839 

Inverse Square 3 points 0.38087 15.156 
0.44056 17.531 

Inverse Square 5 points 0.49455 19.680 

Inverse Cube 2 poims 0.56223 22.373 

Inverse Cube 3 points 0.48399 19.259 
Inverse Cube 4 points 0.51495 20.492 

Inverse Cube 5 points 0.54121 21.536 

Inverse Fourth 2 points 0.61998 24.671 

Inverse Fourth 3 points 0.56554 22,504 

Inverse Fourth 4 points 0.58033 23.093 

Inverse Fourth 5 points 0.59085 23.512 

Taylor 2 points 1 set 2.24031 89.149 

Taylor 3 points 1 set 1.45179 57.771 

Tavlor 4 points 1 set 0.26331 10.478 

Tavlor 5 points 1 set 0.05342 2.126 

Taylor 2 points 2 sets 0.32548 12.952 

Taylor 3 points 2 sets 0.32837 13.067 

Taylor 4 points 2 sets 0.08090 3.219 
Tavlor 5 points 2 sets 0.02513 1.000 

Nearest point 0.92128 36.661 
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Figure 3: Graphical representation of 
standard deviation for various 

interpolation methods 

Figure 4: Depth contours for bilinear interpolation using 3 depth points (left), Taylor series 
interpolation using 5 depth points with 2 sets (middle) and inverse power interpolation using 
4 depth points with m=4 (right) 
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A second hypothetical domain was chosen with a 
sinusoidal bathymetry prescribed by: 

h(x, y) = 2sin(x)sin(>0 
0 < x < 360° 

0 < y < 360° 

(6) 
A Cartesian mesh having 60 by 60 cells was applied 
within the perimeter of the domain and 4000 scattered 
data points were chosen at random positions within the perimeter. Each data point was 
assigned a depth equal to the analytical value calculated from equation (6). An extra 240 data 
points of zero depth were again assigned along the perimeter. The results of the interpolation 
tests are presented in Table 2 and Figures 6 & 7. 

Table 2: Standard deviation for various 
interpolation methods 

Interpolation method Stiimlnrd Dtviution SI) Index 
Bilinear 3 points O.tXMNf. 1.303 
Bilinear 4 points 0.02X44 7.624 

Inverse Square 2 points 0.02938 7.877 
Inverse Square 3 points 0.02241 6.009 
Inverse Square 4 points 0.02623 7.032 
Inverse Sqiisirc 5 pniniN 0.02935 7.870 
Inverse Cube 2 points 0.03330 8.928 
Inverse Cube 3 points 0.02865 7.681 
Inverse Cuhe 4 points 0.03067 8.223 
Inverse Cube 5 points 0.03242 8.691 

Inverse Fourth 2 points 0.03663 9.819 
Inverse Fourth 3 points 0.03333 8.935 
Inverse Fourth 4 points 0.03432 9.202 
Inverse Fourth 5 points 0.035 2l) 9.462 

Taylor 2 points 1 set 0.25192 67.541 
Taylor 3 points 1 set 0.11997 32.165 
Taylor 4 points 1 set 0.31009 83.135 
Taylor 5 points 1 set 0.01575 4.223 
Taylor 2 points 2 sets 0.01530 4.101 
Taylor 3 points 2 sets 0.01590 4.264 
Taylor 4 points 2 sets 0.01239 3.321 
Taylor 5 points 2 sets 0.(H)373 1.000 

Nearest point 0.05448 14.606 

Figure 5: Three-dimensional 
representation of sinusoidal bathymetry 
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Figure 6: Graphical representation of 
standard deviation for various 

interpolation methods 

Figure 7: Depth contours for bilinear interpolation using 3 depth points (left), Taylor series 
interpolation using 5 depth points with 2 sets (middle) and inverse power interpolation using 
4 depth points with m=4 (right) 



57 
Finally the northern part of the Gulf of Thermaikos (Greece) was chosen to test the 

interpolation techniques on a real domain. Unfortunately there are no analytical methods 
available to obtain the depth at an arbitrary (x,y) position in the gulf. Instead 600 random 
depth points from Hellenic Naval Chart No. 255 (approximately one-third of the total number 
of surveyed spot depths) were reserved for comparison purposes. The remaining bathymetric 
data were then used to interpolate the depth at the points that were previously set aside. The 
results of the analysis are illustrated in Table 3 and Figures 8 & 9. 

Table 3: Standard deviation for various *- fc - ■» s 
interpolation methods 

Interpolation method Standard Deviation SD Index 
Bilinear 3 points 1.88311 1.000 
Bilinear 4 poinls 13.21911 7.020 

Inverse Square 2 points 2.24706 1.193 
Inverse Square 3 points 2.06359 1.096 
Inverse Square 4 poinls 2.13189 1.132 
Inverse Square 5 poinls 2.27356 1.207 
Inverse Cube 2 poinls 2.38980 1.269 
Inverse Cube 3 poinls 2.23552 1.187 
Inverse Cube 4 points 2.25302 1.196 
Inverse Cube 5 poinls 2.33408 1.239 
Inverse Fourth 2 points 2.51653 1.336 
Inverse Fourlh 3 poinls 2.38965 1.269 
Inverse Fourlh 4 poinls 2.37568 1.262 

Inverse Fourlh 5 poinls 2.41736 1.284 
Taylor 2 poinls t set 423.12696 224.695 
Taylor 3 points 1 set 31.89027 16.935 
Taylor 4 poinls 1 set 148.84615 79.043 
Taylor 5 poinls 1 sei 75.93301 40.323 
Taylor 2 poinls 2 sels 3.16881 1.683 
Taylor 3 poinls 2 sels 3.64144 1.934 
Taylor 4 poinls 2 sels 2.98405 1.585 
Taylor 5 poinls 2 sels 4.14484 2.201 

Nearest point 3.23704 1.719 
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Figure 8: Graphical representation of 
standard deviation for various 

interpolation methods 

Figure 9: Depth contours for bilinear interpolation using 3 depth points (left), Taylor series 
interpolation using 5 depth points with 2 sets (middle) and inverse power interpolation using 
4 depth points with m=4 (right) 

5. CONCLUSIONS 

This paper has presented a comparison of three basic techniques for interpolating between 
randomly scattered depth data. Results are presented for analytical test geometries and the 
complex bathymetry in the northernmost part of the Gulf of Thermaikos. The tests indicate 
that Taylor series interpolation is the most accurate technique when the bathymetry varies 
smoothly in space. However, if the surveyed depth points contain rapid changes in gradient, 
the Taylor series algorithm is prone to overshoot the supplied bathymetry data, producing 
spurious peaks and troughs in the interpolated depth field. Under these circumstances, the 
bilinear technique becomes the most accurate interpolation procedure. A review of the overall 
accuracy of each of the methods reveals that bilinear interpolation appears to be the most 
robust approach for a wide range of coastal bathymetries. 
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1. SUMMARY 
The study of Stokes flow through a swarm of particles is of great theoretical and practical 
interest. The analytical expressions obtained for the flow fields are very useful for 
determining important engineering quantities in many applications like heat or mass transfer. 
Since the flow was assumed to be axisymmetric, spheroidal geometry is employed. The two 
different complete representations of the flow fields are considered here. The first one is 
obtained through the theory of generalized eigenfunctions, according to which the stream 
function is given in full series expansion in terms of semiseparable eigenmodes. The second 
one, also valid in non-axisymmetric geometries, is the Papkovich-Neuber differential 
representation, where the flow fields are provided in terms of harmonic spheroidal 
eigenfunctions. In the present work, connection formulae are obtained which relate the 
spheroidal harmonic eigenfunctions of the Papkovich-Neuber representation, considering 
rotational symmetry, with the semiseparable spheroidal stream eigenfunctions. 

2. INTRODUCTION 
The steady and creeping flow of an incompressible, viscous fluid is described by the well- 
known Stokes equations (1851), connecting the biharmonic vector velocity with the harmonic 
scalar pressure field [1]. For many interior and exterior flow problems involving small 
particles, spheroidal geometry [2] provides very good approximation. Therefore, in many 
important applications the flow is considered to be axisymmetric [3] since relative physical 
problems enjoy rotational symmetry. Such motions are characterized from the existence of a 
stream function [1], which is employed in order to obtain the velocity and the pressure field. 
The complete solution of the equation for Stokes flow in spheroidal coordinates can be 
obtained through the theory of generalized eigenfunctions and this stream function enjoys the 
representation of a full series expansion in terms of semiseparable eigenmodes [4]. On the 
other hand, Papkovich (1932) and Neuber (1934) proposed a differential representation of the 
flow fields in terms of harmonic functions [3,5]. This representation holds true also for non- 
axisymmetric problems. In the interest of producing ready-to-use basic functions for Stokes 
flow in spheroidal coordinates, we calculate the Papkovich-Neuber eigensolutions, generated 
by the appropriate spheroidal eigenfunctions [6] (excluding singularities on the axis of 
symmetry) where the full series expansion is being demonstrated. Furthermore, connection 
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formulae are obtained through which any solution of the Stokes system, given in terms of 
semiseparable eigenfunctions, can be transformed to the Papkovich-Neuber eigensolutions. 
We show that this procedure is not invertible since these formulae interrelate each Papkovich 
-Neuber potential with a specific combination of semiseparable eigenfunctions. We are, also, 
focused to prolate spheroids, since the results for oblate spheroids are obtained through a 
known transformation [2]. 

3. STATEMENT OF THE PROBLEM - PROLATE SPHEROIDS 

The governing equations of the steady, non-axisymmetric (3-D), creeping flow (Re«\) of an 
incompressible (density p=const), viscous (dynamic viscosity //=const.) fluid, around 
particles embedded within smooth, bounded domains n(/?3), are given by a pair of partial 
differential equations connecting the biharmonic velocity field v(r) (harmonic vorticity 
ffl(r) = Vxv(r)) with the harmonic total pressure field P(r), where r stands for position vector 

juAv(r) = VP(r),    reQ(R^) (1) 

Vv(r) = 0,    reQ(/?3) (2) 

Equation (1) states that, for creeping flow, the generated pressure is compensated by the 
viscous forces while equation (2) secures the incompressibility of the fluid. 

Given a fixed positive number c>0, which we consider to be the semifocal distance of our 
system, we define the prolate spheroidal coordinates {r\,6,(p), 0<r]<+oc, 0<9<2JT, 0<(p<2x 
where introducing the simple transformation x = cosh?7, 1 < x < +<^ and £ = cosö, -1 < £ < 1 
are given as follows (r = (xl,x1,xJ)) [2] 

X\=cylx2 -\TJ\-£
2
 cos<p,  x2 =CVT

2
 -1-^/1 -£2 sin<p,  xi-cxC, (3) 

To every fixed value of Te (1,+°°) ,T0 , there corresponds the unique prolate spheroid 

2 2 2 
~ X\    i  Xo X-\ c      .       1 2     ,        3     =1 (4) 

r"V(T(
2-l)      C2XI 

with major semiaxes (on the axis of symmetry) a3(r) = ex, minor semiaxes a](T) = cVT2 -1 
and eccentricity £(x) = 1 Ix. 

The outward unit normal vector on the surface of the spheroid T = T0, is furnished by the 
formula 

"(T°} = TT==7(T()V1 -C2 cos<p,   T0A/l-£
2sin<p,   ^xj^iq (5) 

where for any nondegenerate spheroid, Sr , it is T()>1. Furthermore, |C|^1- Hence, the 

expression (T
2
-^

2
) is always bounded away from zero for all points exterior to ST , as well 

as on Sr . 

Papkovich-Neuber [5] proposed the following differential representation of the solutions for 
Stokes flow, in terms of harmonic potentials G>(r), C>0(r) (A<D(r)=0, A<Jf,(r)=0, re Q(/?3)) 

v(r) = 0>(r)--V(r<D(r) + O0(r)),    TEQ(/?
3
) (6) 
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P(r) = -AiV-*(r),    reß(Ä3) (7) 

where the differential operators V, A, in prolate spheroidal coordinates, assume the forms 

1 

1 

4 T2-lf -fi^t 

cV-Cz) 3T 
(T2-l)|- ac 

c_a_ i        > a 

9CJ+CV^IVWT¥'^ 

„2^2 
2^ a-n^ acjj CV-DG-CW 

(8) 

(9) 

and f, £, $ denote the coordinate vectors of the system. 

On the other hand, the development of the Stokes Theory [1], for axisymmetric flows, has the 
advantage that demands only one potential (Stokes stream function y/(r), re Cl(R2)) when 
one seeks solutions for Stokes flow, but restricts the dimensions to two. y/tr) satisfies the 
well-known equation of motion 

£>(r) = 0,    reQ(/?2)={(T,0:*>l.-l^C^l} (10) 

where in prolate geometry, the operator E2 is given by the expression 

E2=- (T2-D#T + (1-C2)- (11) 

The vector velocity field for x > 1, I £ l< 1 has the form 

v(T,0=uT(T,Of+VT,C)f (12) 

and the components of the velocity are expressed in terms of the Stokes stream function via 

MT,# = - 
dy(?,Q ,v?(r,Q = - 

9y(T,0 

while the total pressure field is provided as a function of an arbitrary constant pressure, P0 

(13) 

-o^fc^W^^W' (14) 

SV(T,C) (15) 

The vorticity field is easily confirmed to be expressed us 

^ CVT
2
-IVI-C

2 

showing that irrotational fields are described by a stream function y(T,£) which satisfies the 

equation ZSV(T,£) = 0. Hence, every axisymmetric Stokes flow problem is being solved 

once the Stokes stream function y/(r), r e Q.(R2) is known. 

Our goal is to derive connection formulae between the corresponding potentials after the in- 
terrelation of the Papkovich-Neuber axisymmetric flow fields with those of Stokes Theory. 
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4. PAPKOVICH-NEUBER AND STOKES PROLATE SPHEROIDAL POTENTIALS 

Introducing the eigenfunctions S™'
(/)
(T,0 of the ith kind (/=1,2,3,4), of order n («=0,1,2,...) 

and of degree m (m=0,l,2,..., n) in terms of the associated Legendre functions [6] of the first 
(P™ (x), x - z, C, ) and the second (Q"' (x), x = t, £) kind via the formulae 

C(1)(^() = C«'(0. 5„ra(3)(T,C) = ß„m(T)P„m(C) (regular on thex3-axis)        (16) 

■C(2)(T,0 = C(T)Q™(?), S„m'(4)
(T,0 = Q:Wß„m(O (singularities on the jtj-axis)(17) 

for every T > 1 and I £ l< 1, the following complete representation of the Papkovich-Neuber 
potentials which belong to the kernel space of the operator A (equation (9)), is obtained 

<">(>■) = X  III Lm'(')VC('>V(r)] ,    reQ(/?3) (18) 

*o(r) = I   111 k'(0v«r(0'v(r)] ,    re£i(/?3) (19) 
n=()   m=0   i=1    .v=c,fl 

where c"!(°-v =(a,"''(,')-v
)&„m,(,>,c™'(i)j) and rf„ra'(,)s denote the vector and the scalar constant 

coefficients of the harmonic potentials <D(r), <J>0(r), respectively, while 

{COS TYliD      S = C 
.      v* ,   <pG[0,2^)       (20) 

sinmip,   5 = 0 

with ^ characterizing the even (e) and odd (o) part of the potentials. 

On the other hand, any Stokes stream function can be represented [4] as 

^,0=1; i ke^LO+^^o], T>I, I?I<I (2D 
«=()    i=! 

where the sum with the /4-coefficients represents an element of the space ker£2 (separable 
solutions), whereas the sum with the ß-coefficients stands for a function that is mapped to the 
space ker£2 under the action of the operator E2 (equation (11)) (semiseparable solutions 
[4]). The eigenfunctions 0^(T,O and fii°(T,0 of kind (=1,2,3,4 and order n=0,1,2,... are 
provided through the Gegenbauer functions of the first and the second kind, using the theory 
of the generalized eigenfunctions, developed in [4]. The regular-on-the-axis solutions of 
equation of motion (equation (10)), are restricted to the proper subspace of ker£4, which is 
spanned by the eigenfunctions of odd kind and of order greater than or equal to two. 

5. INTERRELATION BETWEEN STOKES AND PAPKOVICH - NEUBER 
EIGENMODES - THE PROLATE AND OBLATE SPHEROID 

Taking into account that the flow fields v(r) and P(r) are given by the two different 
representations (6), (7) (refi(fi3)) and (12), (13), (14) (refi(tf2)), the idea is to find 
transmission relations from one representation to the other. Specifically, for given velocity 
and pressure through the Stokes potential i//(r), re Q(R2) (equation (21)), we seek for the 

equivalent Papkovich-Neuber potentials <D(r), O0(r), re£l(R3) (equations (18), (19)) 
which results with the same flow fields. In order to answer this question we proceed as 
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follows. Substituting equations (18) and (19) to Papkovich-Neuber representation (6), (7) we 
derive relations for the flow fields in 3-D domains, furnished by the formulae 

v« =4l III kra'(°\m'(0s(r) -[(C(,> •r)+C('>Km'(0s(r)} (22) 

for the velocity field, for every r e Q(/f3), while for the total pressure field 

P(r) = -li'Z III tn
m'°')JVC(;)J(r)} ,    refl(Ä3) (23) 

where in prolate spheroidal coordinates the operator V is given by equation (8) and also 

1 -m.(i)-f _ 

^C 
[<C0> cos(p+b?Ws sin^VK^+C^CVrM]? 

+ (-a™'(,> sin 9 + fo„m'(0s cos <p)p (24) 
and 

(c».(/)i .r) = c[(am.(0, cos?) +ft«.(0. sin^V^lJl^ + C^TcJ .   (25) 

Since the Papkovich-Neuber representation refers to 3-D flow fields, we have to reduce the 
dimensions to two, considering rotational symmetry, in order to make the interrelation with 
the Stokes representation (2-D) possible. This is attainable and requires the same .velocity on 
every meridian plane. That is, the velocity is independent of the angle <p 

dv(r)/d<p = 0,    reß(i?2) (26) 

moreover, the velocity lacks of azimuthal component 

0-v(r) = O,    reQ(R2) (27) 

Applying equations (26) and (27) to the velocity field (22), we obtain relations for the 
Papkovich-Neuber constant coefficients, which reflect the required rotational symmetry 

ßm,(».s-= £».,(,> =0i    n>0)   m = 01j    n>   ; = 1,2,3,4,   s = e,o (28) 

cZM'=d?l0'=0,    n>0,  m = l,2,...,n,   i = 1,2,3,4,   s = e,o (29) 

Due to physical arguments which concerns most usual axisymmetric Stokes flow problems, 
we are interested in fields regular on the axis of symmetry fe-axis, £ = ±1). Therefore, the 
terms involving Legendre and Gegenbauer functions of the second kind [6] must be excluded, 

i.e. all the eigenfunctions of even kind S<°(T,0> ®f(J,0 and Q<,°(T,0, i=2,4, n=0,L,2,... 

and the leading two eigenfunctions of odd kind, GJ,°(T,0, Q^fof), «'=1,3, «=0,1, should 
be vanished. Thus, the following constant coefficients are set to nil 

cj0=d»)=0   and   A'n=B'H=0 ,    n>0,   i = 2,4 (30) 

A^=ßi=A, =ß;=0,    i=l,3 (31) 
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After long and tedious calculations, we interrelate the flow fields in view of equations (6), (7) 
with (18), (19) and equations (12), (13), (14) with (21) in addition with equations (28), (29), 
(30) and (31), using certain recurrence and orthogonality relations for the Legendre and the 
Gegenbauer functions [6]. What is actually happening is that the connection of the velocity 
and pressure fields has been transferred to the corresponding connection of the constant 
coefficients of the potentials (18), (19) and (21) 

c(0=. 

f(')_. 

1 

1 

(2n+3)(n + l)(n + 2) 

f     2 

■Bl 
1 

n+2 ' (2n-l)(n-l)n 
■Bl n>%   z' = l,3 (32) 

c   n(n + l) K+l + 
(2n-l)2(2n + 3)2 

(n + l)(2n-iy 

(2n + 5)(n + 2) 
Bl 

4 + - 

and 

rf«=_I A<+c* -cP + 

n(n + l) 

2 

B 
n(2n + 3Y  D< 

"+l    (2n-3)(n-l)   ""' 

25c" 

1     ,•     2    ^ 
— BA B2 
21   4    3   2 

i = 1,3 

n>2,   ( = 1,3 (33) 

(34) 

while specifically B\ = B\ = c,(3) = 0 and also c<°, d <° e R, i = 1,3,   c[" e R -U), ,   =» (35) 

Irrotational flows force, in addition, the constant coefficients B'n Kai cj,°, n>2, i=l,3 to 

become zero as it is dictated by equations (15), (21), and (32). 

The corresponding results for the oblate spheroidal geometry can be readily obtained through 
the simple transformation [6] 

T -> iX      and      c -> -ic (36) 

where 0 < A = sinh7j < +°° and c > 0 are the new characteristic variables of this system. 

6. CONCLUSIONS 

In this work a method for connecting two differential representations for axisymmetric Stokes 
flow is developed. Based on this method we examine the Papkovich-Neuber and the Stokes 
representations, which offer solutions for such problems in spheroidal geometry. 
Furthermore, connection formulae are obtained by interrelating the flow fields using the 
corresponding potentials in terms of spheroidal eigenfunctions. Work under progress involves 
extension to harmonic ellipsoidal eigenfunctions [6] for the Papkovich-Neuber representation 
and their Stokes flow counterparts in order to solve Stokes flow boundary problems involving 
small ellipsoidal particles moving within Stokes fluids. 
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1. SUMMARY 

The numerical study of oscillatory flow past a pair of cylinders is conducted herein. The 
finite element technique was favored for the solution of the Navier-Stokes equations, in the 
formulation where the stream function and the vorticity are the field variables. The 
streamlines and the vorticity contours were used for the flow visualization, and the unsteady 
in-line and transverse forces exerted on the cylinders were evaluated. The solution revealed 
the effect of the spacing of the cylinders on the flow pattern and on the hydrodynamic forces 
exerted on the cylinders. 

2. INTRODUCTION 

The numerical solution of oscillatory flow past a pair of cylinders placed transversely to the 
oncoming flow is attempted in the present study. In the oscillatory flow the flow velocity 
varies sinusoidally according to the relationship 

U(t) = U„,sm<p, <p=2ntlT (1) 

where Um is the maximum flow velocity, T the oscillation period and t the instant from the 
inception of the flow oscillation. The planar oscillatory flow past a cylinder is controlled by 
two dimensionless numbers, the Keulegan-Carpenter number (KC) and the Reynolds number 
(Re). KC is defined as 

KC = U„,T/D (2) 

where D is the cylinder diameter. The Reynolds number is given by 

Re = U„,D/v (3) 

where v is the kinematic viscosity of the fluid. The ratio of these two numbers is known as 
the frequency parameter, ß, and is defined as 

ß = RdKC=D2/vT (4) 
The greatest part of related studies refers to flow past single cylinders.  Experiments at low 
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KC have revealed that the flow can be classified into a number of different flow regimes, 
governed mainly by KC and dependent also on Re (Bearman et al. [1], Williamson [2], 
Sarpkaya [3],Tatsuno and Bearman [4]). At KC«1 the flow remains attached, symmetrical 
and two-dimensional. As KC increases, the flow separates from the cylinder and remains 
symmetrical until KC reaches a critical threshold, whose value depends on the frequency 
parameter. If this critical KC is exceeded, the flow becomes asymmetric and various vortex 
shedding flow regimes are observed, at which the number of vortices shed in each oscillation 
cycle increases with the Keulegan-Carpenter number. 

Apart from the experimental, several computational studies of the phenomenon have been 
conducted. Baba and Miyata [5], Murashige et al. [6], Wang and Dalton [7] and Justesen [8] 
used finite difference schemes, whereas Skomedal et al. [9], Graham and Djahansouzi [10] 
and Smith and Stansby [11] the discrete vortex method. More recently, Iliadis and 
Anagnostopoulos [12, 13] presented results of oscillatory flow past a cylinder with the finite 
element technique. 

Experimental investigation of oscillatory flow past pairs of cylinders has been conducted by 
Williamson [2], and numerical by Skomedal et al. [9] and Koutras et al. [14]. The flow 
pattern past pairs of cylinders is more complicated than the one for flow past a single cylinder 
due to the hydrodynamic interference, which depends on the arrangement and the distance 
between the two cylinders. 

In the study by Koutras et al. [14] the solution was confined to KC numbers extending up to 
4, for which the flow remains symmetrical with respect to the horizontal axis of symmetry of 
the computational domain. In the present work KC numbers in the range between 5 and 10 
are considered, for which asymmetries in the flow pattern are observed, whereas the value of 
the frequency parameter was 50, equal to that of the relevant study by Koutras et al. The two 
cylinders were placed transversely to the oncoming flow, whereas the spacing of their centers 
was varying between 1.2 to 5 diameters, forming a gap ranging between 0.2 to 4 diameters. 
The gap to diameter ratio will be denoted as g. The mathematical model of the problem 
consists of the well-known Navier-Stokes equations. In the present investigation the finite 
element technique was favored for the solution of these equations, in the formulation where 
the stream function and the vorticity are the field variables. The characteristic-Galerkin 
technique was employed for the temporal discretization, in an attempt to improve the 
approximation of time derivatives. The pressure distribution throughout the flow field was 
obtained from the solution of Poisson's equation. Unstructured meshes were employed for the 
solution of each configuration, generated by the advancing front technique. 

3. THE COMPUTATIONAL TECHNIQUE 

The equations of motion of a viscous incompressible fluid, in case that the stream function, 
T, and the vorticity, co, are the field variables, can be written as 

V2vP=-© (5) 

dco    dV_dco    dV_da__  y2 

dt     dy dx     dx dy 

Equation (5) is of Poisson's type, whereas equation (6) is the well-known advection-diffusion 
equation. The characteristic-Galerkin technique, described by Zienkiewicz and Taylor [15], 
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was employed for an improved approximation of the time derivative in equation (6). Its 
application to equation (6), as explained by Seitanis and Anagnostopoulos [16], yields 

Am    dm dm 

At     dy dx 

dV_da_     2       d_ 

dx  dy dx 

u2At dco 

2    dx 
d u2A/ dco 

2    dy _ 
+ uvAt 

d'co 

dxdy 
(7) 

where u and v are the two components of the fluid velocity, determined in terms of ¥ as: 
u = dV/dy and v = -cWldx. 

From the application of the standard Galerkin technique for each element in equations (5) and 
(7) and the assembly for all elements, the following matrix equations are obtained 

Mn.=[**>.+{*.} 

M+-kM {»L,=77M»}.-teM*.} At 

(8) 

(9) 

where n and n+1 are two successive time levels, separated by the interval At. The coefficient 
matrices [Ki], [K2], [K3] and [K4] are of square form, whereas {Ri}, {R2}, {R3} and {R4} are 
column matrices (vectors). 

For the determination of vorticity on the surface of the cylinders the equation of Stokes was 
used, whereas the pressure throughout the solution domain was evaluated from the solution 
of Poisson's equation, as explained by Iliadis and Anagnostopoulos [12]. From the 
distribution of pressure and shear on the surface of the cylinders the hydrodynamic forces Fx 

and Fy* in the in-line and transverse direction were determined. The normalization of forces 
Fx* and Fy* by the quantity 0.5pUm

2D yields the dimensionless values Fx and Fy. 

4. APPLICATION AND RESULTS 

The first task for the solution is the generation of the computational grid. For each spacing 
between the cylinders a suitable mesh of three-node triangular elements was constructed, 
using the advancing front technique (Seitanis et al. [17]). 

For each KC number the computational procedure was conducted for twenty oscillation 
cycles. The flow pattern is not symmetrical with respect to the horizontal axis of symmetry, 
and does not remain periodic at subsequent cycles. The KC number equal to 6 was selected 
for the presentation of the results, for a transverse spacing between the centers of the two 
cylinders equal to 1.4 and 2 diameters (g equal to 0.4 and 1). The streamlines and vorticity 
contours were generated from the nodal values of the stream function and vorticity, and are 
presented for the twentieth cycle at (p=90° in Fig. 1. We can see that for g=0.4 the 
displacement of the two vortices flanking the gap is greater than those at the opposite side, 
forming a narrow passage between the cylinders. For g=l the vortices formed at either side of 
each cylinder do not vary substantially, whereas vortices formed during previous cycles are 
still detectable. Finally, the unsteady in-line and transverse forces on the cylinder were 
calculated from the pressure and shear around the cylinder surface, and are depicted for the 
last ten cycles in Fig. 2. The aperiodicity of the flow field at subsequent cycles is reflected on 
the time histories of the hydrodynamic forces. The amplitude of both the in-line and the 
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transverse force is larger for g=0.4. 

The rms values of Fx and Fy for KC ranging between 0.1 and 10 derived from the force traces 
are illustrated in Fig. 3. The values of Fx (rms) and Fy (rms) are larger for g=0.4, whereas the 
Fy (rms) values become very close for KC between 5 and 6. 

5. CONCLUSIONS 

A numerical study of viscous oscillatory flow past pairs of cylinders was conducted. The 
distance between the cylinders affects the flow pattern and the hydrodynamic forces exerted 
on the cylinders. The rms values of both the in-line and the transverse force increase when 
the spacing between the cylinders is reduced. 

Figure 1: Streamlines (left) and vorticity contours (right), for (p=90 degrees; 
g=0.4 (upper frames), g=l (lower frames). 
The solid lines represent positive and the dashed lines negative vorticity. 
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b) 

Figure 2: In-line and transverse forces on the cylinders; a) g=0.4 and b) g=l. 
The upper graph corresponds to the upper and the lower to the 
lower cylinder. 

Figure 3: Rms value of the in-line and transverse force vs KC. 
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1 SUMMARY 

In the past, Ant Colony Optimization methods have been used to solve combinatorial 
optimization problems, like the well known Traveling Salesman Problem. This paper 
introduces a novel extension of the conventional method which is capable of solving 
optimization problems with continuous search spaces for the free variables. For this 
purpose, various notions which arc implicit to the Ant Colony Optimization techniques 
are modified in conformity with the particularities of search problems in continuous 
spaces. The proposed method will be used for the design of aerodynamic shapes, 
isolated airfoils or compressor cascade airfoils. 

2 INTRODUCTION 

The Ant Colony Optimization (ACO) method is a recently proposed mctahcuristic. In 
the past, it has been used to solve stochastic combinatorial optimization problems, [1], 
[2], such as the Traveling Salesman Problem (TSP) or routing problems. In all these 
problems, integer numbers should be arranged in the proper order which ensures the 
minimization of a functional. In the (ACO) method, ants stand for agents with search 
capabilities similar to those of real ants. They act syncrgetically, i.e. in populations, 
seeking for the optimum route. A new population of ants comes after the previous 
one and inherits coded information about the quality of previously evaluated routes. 
Information is communicated in the form of phcromonc trails laid down by the previous 
populations. Phcromone trails affect ants' decisions about where to go next, with a 
probability which is proportional to the amount of pheromonc. 

This paper aims to extend the ACO methods' capabilities to new scientific areas, 
such as the inverse or optimum design of aerodynamic shapes. In the past, other opti- 
mization methods, such as Genetic Algorithms (GAs), have been widely used for the 
design of ducts of airfoils, [3]. The aim is to design shapes along which the pressure 
(or velocity) distribution at given flow conditions matches a target one. The shape 
parameterization, which points out the design variables, is an evident prerequisite. 
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Computational Fluid Dynamics (CFD) tools are employed for the evaluation of can- 
didate solutions. In contrast to combinatorial problems, the inverse design of a shape 
(IDS) is a problem with continuous search spaces for the design variables and a likely 
complex solution landscape. 

The use of A CO in this kind of problems is, in fact, novel. To the authors knowledge, 
this could be the first use of A CO in a problem with real (continuous) free parameters. 
The concept is simple; provided that we do possess an effective ACO method (and the 
relevant software) for solving the TSP problem, modifications should be employed so 
as to transform the the IDS problem to an equivalent TSP. The route length, which 
is the cost function in the TSP, is taken to be the deviation of the pressure or velocity 
distribution along the shape contour from the target one. 

For the readers which are not familiar with the ACO method, this will be presented 
below at length. Then, its novel implementation to the IDS problem will be described, 
followed by indicative results. 

3      THE A CO METHOD 

Ants, though almost blind animals, are capable of finding the shortest path from their 
nest to areas rich in food. Many individuals, perhaps almost the entire ant colony, 
should cooperate to achieve this goal. In the search of the shortest route to the food, 
ants use to exploit pheromone trails which are laid on the ground by each one of 
them as they move. Pheromone is a substance easily traced by subsequent ants, which 
are likely to follow the trail rather than move randomly. When an ant follows an 
existing pheromone trail, the latter will be further reinforced by its own pheromone. 
Thus, a frequently used trail becomes more attractive and is likely to be followed by a 
continuously increasing number of ants. The ants' behaviour in search of food is the 
concept of the so-called ACO method. This is a population-based algorithm, where 
pheromone trails define the feedback of information between ants. Since moving ants 
act independently, ACO is readily amenable to parallelization. 

The amount of pheromone a moving agent lays on the ground can be computed in 
various ways. We will present one of them on the basis of the TSP problem. In the 
TSP, given n towns (with known coordinates) the salesman should visit all of them 
once and then return to the starting town, with the minimum route length. 

A possible way for solving the TSP using ACO is through as many ants as the 
number of towns (n agents). Each ant starts its route from a different town. The 
next town to be visited is chosen with a probability pij that depends on the distance 
dij between the current i and the next j town to be visited (already visited towns 
are excluded) and the amount of pheromone ry laid on the connecting edge. This 
probability is expressed as follows: 

Pij 
T*d~" 

V • r?d~" 

The inverse of the distance between two towns (d^1) is usually referred to as visibility. 
Upon completion of n (closed) tours by the current population agents, the pheromone 
trails Tij are updated as r?fw = pr£w + Ary, where (1-p) is the evaporation coefficient. 
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The pheromonc quantity Ar^, contributed by the k-th ant which rounded off its tour 
with length Dk is AT^ OC D^1 if the k-th ant used edge (i,j), otherwise AT{J = 0. 

4 INVERSE DESIGN OF AIRFOILS 

The inverse design of airfoils can be envisaged as a minimization problem which em- 
ployes: (a) one or more targets; here the target is to achieve the desired pressure 
coefficient distribution over the airfoil walls, at given flow conditions, (b) the param- 
eterization of the airfoil contour; Bczier-Bcrnstcin polynomials arc used where the 
ordinatcs of the Bczicr points are the design variables of degrees of freedom (dofs), (c) 
the evaluation tool; incomprcsiblc fluids and irrotational flows arc assumed, modelled 
through a simple and non-costly tool, i.e.. the panel method, [4]; however, the method 
may readily incorporate more accurate tools (Navicr-Stokcs or Euler equations solvers), 
in a straightforward manner, (d) the optimization tool, which in our case is a novel 
ACO method, as it will be described in the next paragraph. 

5 THE EXTENDED ACO ALGORITHM 

Let the airfoil contour be described using two Bczicr curves, one for the pressure side 
(from the trailing to the leading edge, with ni control points) and the other for the 
suction side (in the opposite direction, with n2 control points). Leading and trailing 
edge points arc kept fixed. Fixed is also the abscissa of any other control point giving 
rise to n = ni + n2 — 4 dofs. In the example of fig. 1 (left), m = 5, n2 = 5 and n = 6; 
vertical lines indicate the search space for the ordinatcs of the n Bczicr control points. 
Let also assume that the combined effects of the Bczicr polynomial and flow solver on 
the n dofs, Y = (yi, ...,y„), yields a curve (i.e. the pressure distribution) that should 
minimize its deviation from the target curve. Both curves arc shown in fig. 1 (right), 
for the airfoil pressure side. In this example, the payoff value associated with Y is the 
area enclosed by the two curves (plus the corresponding area for the suction side). 

Under the previous assumptions, we should first cast the IDS problem illustrated 
in fig. 1 as an equivalent TSP (to be referred to as eTSP), which will then be solved 
through the modified ACO algorithm. In the eTSP the salesman should visit n terri- 
tories, instead of n towns. Ants should mimic this itinerary. The territories associated 
with each dof arc the vertical lines in fig. 1. The sequence of the territories to be 
visited is known and the tour is closed. The optimization method should locate the 
sequence of visiting points over each territory so that the total path be of minimum 
length. For the path followed by an ant, the term "length" is used metaphorically and 
stands for the cost associated with the corresponding airfoil. To compute this cost, the 
evaluation software described in the previous paragraph should be used. 

In the ACO algorithm, cq. 1, the probability with which the next destination is 
chosen by an ant depends on two parameters, namely the distance d and the pheromonc 
trail r. The former represents a sort of local data (correlating the actual position of an 
agent and the towns that arc likely to be visited next) whereas the latter stands for 
global information (i.e. information related to the evaluation of Y as a whole). Local 
data can be defined in many ways. Here, we will assume that the relative position of the 
kth and (k + l)th Bczicr points is associated with the hatched area shown in fig. 1. This 
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Figure 1: Design of airfoils using Bezier points. Global and local costs and the grids 
for storing probabilities. 

can readily be generalized for all dofs. So, the global cost associated with an agent tour 
and the corresponding airfoil shape splits to partial or "local" costs using separators 
that can either be defined by the user or set automatically (vertical separators in fig. 
1, right). A noticeable feature of the proposed method is that information is stored in 
a discrete way, though it is used as a continuous field. One grid for storing local (i.e. 
distances) and another one for storing global (feromone trails) data are needed for each 
pair of consecutive territories (i.e. dofs), fig. 1. 

A cycle corresponds to n tours with n agents, each starting from a different territory. 
The closed tour by any agent corresponds to n values Y = (yi,-,yn) and yields an 
airfoil shape. Through its evaluation, global and local (or partial) costs are computed. 
These are pieces of information that should be stored over the aforementioned grids. 
On each grid, for instance the kth one, the yk and yk+i values are used to locate a point 
on this grid. The Tfc]fc+1 and dktk+i values are computed as the inverse of the global and 
the corresponding local cost, respectively. Then, all grid nodes are given a feromone 
and distance value by employing a 2D exponential decay based on distances measured 
over the grid. At the end of the cycle, pheromone is allowed to evaporate, using a law 
similar to the one employed in the standard ACO. Probabilities are stored over the 
same nodes by post-processing the stored pheromone and distance values. 

The exploitation of the probabilities stored over the grid nodes during the search is 
simple. The kth agent starts from a point (not necessarily coinciding with a grid node) 
on the kth grid, determined in a probabilistic way on the basis of the nodal probability 
values. Then, each agent moves in the clockwise direction. Its next station on the next 
territory can be found by entering the grid with the abscissa (known from the previous 
station) and by computing the ordinate in a probabilistic way. 

6      RESULTS 

First, an assessment of the present method in the conventional TSP problem will be 
given. In the Eilon's 50-town problem, [5], the best computed route is shown in fig. 
2. The minimum computed route length is equal to 428.1. This is similar to results 
exposed in other works, [5], by means of ACO or GAs. 

The redesign of the symmetric isolated NACA12 airfoil, at zero and 10° incidence as 
well as the redesign of the NACA65 cascade airfoil (stagger angle= 30°, solidity=1.25, 
inlet flow anglc= 48°) have been analyzed using the proposed method. Results are 
presented in figs. 3, 4 and 5. Using the known airfoil shapes and the panel method 
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Figure 2: Optimum solution to the Eilon's 50-town TSP. 

solver, we have first computed the pressure distributions over their contours, at the 
aforesaid flow conditions. These have been used as target distributions, so the sought 
for airfoil shapes were known beforehand. In all cases, a = ß = 0.8 and p = 0.5. In 
the NACA12 case, m = n2 = 8 whereas in the NACA65 one ni = 9 and n2 = 8. 

As it may be seen from the comparison of the best predicted and target distribu- 
tions (or even by comparing starting and predicted airfoils), our method gives very 
satisfactory results. The cost of the three redesigns is illustrated in fig 6. In this figure, 
the abscissa stands for calls to the evaluation CFD tool which determines the comput- 
ing cost of the optimization method. To avoid all misunderstanding, we should point 
out that the use of the panel method leads to almost negligible computing cost per 
evaluation, but the last figure is a very good indication of the computing cost in case 
of a more CP[/-demanding CFD method (eg. Navicr-Stokcs solver). 

Figure 3: Redesign of the NACA12 isolated profile at zero incidence: target and best 
computed pressure coefficient distribution along with the corresponding airfoil shapes. 

Figure 4: Redesign of the NACA12 isolated profile at 10° incidence: target and best 
computed pressure coefficient distribution along with the corresponding airfoil shapes. 

CONCLUSIONS 

A new method has been proposed for optimization problems involving degrees of free- 
dom that may vary over continuous search spaces. Such a typical problem is the inverse 
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Figure 5: Redesign of the NACA66 compressor cascade: target and best computed 
pressure coefficient distribution along with the corresponding airfoil shapes. 
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Figure 6: Convergence histories. 

design of aerodynamic shapes. The new method is based on the Ant Colony Optimiza- 
tion algorithm, used so far only for combinatorial optimization problems. The new 
method required the definition of quantities that mimic any quantity that appears in 
the traditional ACO method. In this respect, global and local costs have been defined 
and used after being stored on properly defined grids. The method proved to be an 
effective optimization tool for the inverse design of isolated airfoils or cascades. 
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1. SUMMARY 

The current study examines the steady two-dimensional laminar flow of a stream of saturated 
vapor flowing over a cylinder that is kept at a uniform temperature, below the saturation 
temperature. Owing to the temperature difference between the vapor stream and the solid 
surface a film of condensate is generated that flows along the surface due to shear, pressure- 
drop and gravity. In the limit as the boundary layer and film thickness remain smaller than the 
radius of curvature of the surface a simplified lubrication-type formulation describes the 
temperature and flow fields in the film, whereas the usual boundary layer formulation is 
applied in the vapor boundary layer. As the effect of adverse pressure drop becomes more 
pronounced it is shown that the solution exhibits two different types of singularity in the rear 
part of the cylinder. The first one takes place in the vapor phase in a region where very small 
velocities prevail in conjunction with vanishing shear rate, giving rise to an off-wall 
separation. The second one is a typical Goldstein singularity, it appears at the tube wall and it 
is associated with vanishing skin friction (wall shear) and rapidly increasing film thickness. 
Preliminary comparison of the computed heat transfer coefficient with experimental 
measurements indicate that heat transfer is enhanced when either one of the two types of 
singularity takes place, owing to flow recirculation. 

2. INTRODUCTION 

Laminar film condensation is of great practical importance in many technical applications 
such as the design and optimal operation of condensers, heat exchangers, wetted wall towers 
etc. In general, it affects the operation of contact devices where saturated vapor is used as a 
means for transferring heat. Early studies applied elements of boundary layer theory in order 
to account for vapor stream-condensate film interaction in the context of free, [1], and forced 
convection, [2], Fujii et al., [3], examined the combined effect of forced and free convection 
on the heat transfer for flow of a stream of saturated vapor over a horizontal cylindrical tube 
taking the direction of the oncoming vapor stream to be parallel with gravity. Ignoring the 
effect of pressure drop in the flow of the condensate and assuming a simplified form of the 
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velocity profile in the vapor boundary layer they were able to calculate the heat transfer 
coefficient and compare it against their own experimental observations with favorable results, 
especially for slow free stream velocities of the oncoming vapor stream. More recently, Rose 
[4], improved the model developed by Fujii et al., in the limit of large suction velocities 
across the vapor-condensate interface, by accounting for pressure drop in the condensate. 
Thus, they were able to capture flow separation in the downstream region of the flow, in the 
form of the classical Goldstein singularity appearing at the tube wall, and predict the heat 
transfer coefficient for large free stream velocities of the vapor stream. The present study 
accounts for the effect of vapor-condensate interaction for both low and large suction 
velocities at the interface and for the effect of pressure drop in the condensate for the same 
combined forced and free convection over the same cylindrical geometry that was tackled in 
[3] and [4]. In this fashion the flow and temperature fields are obtained in the two phases 
until a point of singularity (indicating flow separation or flow recirculation in general) is 
reached. In addition, the location of the singularity is mapped, at the wall or near the interface 
depending on the problem parameters, and a connection is attempted between that location 
and certain discrepancies between predicted and experimentally observed values of the 
Nusselt number. 

2. PROBLEM FORMULATION 

The laminar film condensation of a stream of saturated vapor, temperature Ts, on a horizontal 
cylindrical tube that is maintained at subcooled conditions, temperature TW<TS, is examined. 
The oncoming vapor stream is approaching the tube with a free stream velocity, LL, which is 
taken to be aligned with gravity for simplicity. Owing to the temperature difference between 
the vapor stream and the tube, vapor condensation takes place giving rise to a film of 
condensate that flows down the cylindrical tube surface, Fig. 1. 

vapor boundary 
layer 

LRe-"2£ 

T»>TW 

Figure 1: Schematic representation of the flow pattern under consideration. 

The vapor stream is considered to be isothermal at its saturation temperature which is 
determined by the operating pressure of the process. The temperature of the film is allowed to 
vary from the saturation temperature at the interface down to the wall temperature. With the 
exception of viscosity and thermal conductivity all other properties of the condensate are 
taken to be independent of the local temperature level and acquire values that are obtained at 
saturation conditions using steam tables. Taking advantage of the similarity of the current 
problem with that of the boundary layer flow of air past solid surfaces in the presence of 
rainfall, the methodology developed by Smyrnaios, Pelekasis and Tsamopoulos, [5], is 
adopted. Thus, in the vapor phase the governing equations, assuming that the cylinder radius, 
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R=Un, is much larger than the boundary layer thickness, take the familiar form of the 
classical boundary layer equations for flow past a flat plate. 

At the vapor-condensate interface, y  = eH(x),   y  = H(x) we have: 

continuity of tangential velocity, 

"/ u   =—^-u 
s    £/«,   c 

continuity of mass flow across the interface, 

K, H, 
Vs    U„LRe-"2 

ss 

( \ 
p dH 

v   — — 1  u c p 
, 
dx  c 

(1) 

(2) 

continuity of tangential and normal stress (ignoring the action of surface tension), 

dus _duc^csUf LRe~1/2 

dy   jx    U JC  ^SS      o 
H 

P =/> c      s 
(3a, b) 

'S ■'C  ''   SS      °° / 

balance between the latent heat liberated due to condensation at the interface and the heat 
conducted across the interface and into the condensate, 

kcsAT d0c 
Hf    dyc 

— hr_p__u 
Hfr 

fgHcs f   L 

dH 
 u 
dx  c (4) 

(with hfg denoting the latent heat of condensation per unit mass of steam) and saturation 
conditions for the temperature field, 
0   = 0   =7 

s       c 
In the film of condensate the problem formulation becomes 
x-momentum 

^2^ 

(5) 
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y-momentum and continuity 
dP du       dv 
—c- = 0 

differential heat transfer equation including inertia terms and transverse conduction 

—^ + -^ = 0 
dx     dyc 
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Pr 
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(8) 

no slip, no penetration and constant temperature, at the periphery of the cylindrical tube, 

y   =0,   u   =v   =0,    0  =0 (9) Jc c      c c 
Balancing terms in the tangential stress balance, eq. (3a), and the heat balance at the 
interface, eq. (4), we obtain a measure for the film thickness, ///, and the film velocity «/, 
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More details on the problem formulation as well as the numerical solution are given in 
Smyrnaios, Pelekasis and Tsamopoulos, [6]. 

3. RESULTS 

Once the operating fluid is determined and the bulk pressure of the process is chosen, the 
saturation temperature, Ts, of the system is fixed and so are the thermophysical properties of 
the two phases at saturation. Thus, the density and viscosity ratios, pjpcs, fis/Mcs as well as 
the Prandtl number, Pr, acquire specific values. Next, the wall temperature, Tw, and free 
stream velocity, IL, are assigned values thus setting e and Fr as the last two problem 
parameters. As e increases the film thickness increases as well and, contrary to the findings 
reported in [4] where flow separation was observed only when 

•-ss    °o =F/Ü>± (12) 

Pcsg2R 2     8 

here separation is observed for a much wider range of values with the difference that in the 
present study two different types of separation are observed. In the downstream region and 
for small values of AT the flow exhibits a separation point at the tube wall as a result of the 
adverse pressure gradients that develop in this region. In particular, as the separation point is 
approached the shear stress at the tube wall vanishes and an inflection point appears in the 
vapor stream. In addition, the film thickness starts increasing abruptly, an effect also 
observed in [4], and computations cannot proceed further. These are all typical effects of the 
Goldstein singularity that signal the onset of recirculation and, possibly, separation. As AT 
increases the film thickness increases as well and the inertia of the condensate has a 
lubricating effect on the flow thus pushing the separation point further downstream. The 
lubricating effect of the film has also been observed in [2] in a study of laminar film 
condensation over a cylindrical surface in the absence of gravity. 

Further increase of e results in the appearance of a region with vanishing velocities and shear 
rate near the fluid/fluid interface, i.e. of a singularity of a different type than the one 
discussed above which appears at the tube wall. In this case, the film thickness does not 
exhibit such an abrupt increase. More specifically, near the film-vapor interface a region of 
vanishingly small velocities and shear rates appears indicating the tendency for back-flow to 
appear. Computations cannot capture this part of the flow because the boundary layer 
formulation is no longer valid and an interactive boundary layer formulation has to be 
adopted which is in the scope of a future study. As e further increases the lubricating effect of 
the film persists pushing the point of singularity downstream. 

A similar transition from a wall singularity to an off wall singularity is observed when Fr is 
decreased, or equivalently, as the free stream velocity is reduced corresponding to gradually 
eliminating the component of forced convection from the flow. Due to its orientation, gravity 
opposes the adverse pressure gradients in the downstream region hence weakening the wall 
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singularity. For large values of Fr forced convection dominates and wall separation is 
observed. Below a certain threshold value, the off wall singularity that was described in the 
previous paragraph appears again in the downstream region. In fact as Fr further decreases, 
the singularity disappears, the Nusselt limit is captured and integration of the flow until the 
trailing edge of the tube becomes possible. Figure 2 shows the loci of the points that separate 
the two different regions in (Fr, E) space where one or the other type of singularity appears, 
for different values of the operating pressure or the saturation temperature, T„ for the steam- 
water system. For a given saturation temperature the points belong to a curve that separates 
the two regions in such a way that for large values of Fr, large free stream velocities, and 
small values of e, thin film, "wall separation" takes place. An interesting aspect of Figure 2 is 
that upon proper redefinition of Fr and e as, 

AT \2. 
cs 

Prh 
fg 

v?/2 
cs V 

\l/2 
cs 

V ss 
Fr'-- (13) 

the curves separating the two regions tend to collapse into one. 
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Figure 2: Loci of threshold points separating regions of "off-wall separation" from those 
where "wall separation" is observed in the (Fr, e) space for different values of the saturation 

temperature, Ts, for the steam-water system. 

Finally, the effect of Fr and e on the heat transfer coefficient for the system steam-water is 
shown in figure 3. In particular, increasing the temperature difference between the vapor 
stream and the wall (larger e) results in smaller heat transfer coefficients, Nu^n, and larger 
skin friction coefficients, Cfinn (figure 4), averaged over the front portion of the tube. On the 
other hand, increasing the free stream velocity (larger Fr) results in a thinner condensate and, 
consequently, smaller heat transfer coefficient and skin friction. The same pattern is obtained 
for different saturation temperatures. Overall the above behavior suggests a combination of, 
relatively, small temperature differences and moderate free stream velocities for optimum 
operation of the entire heat transfer process. Comparison with experimental data, [6], 
indicates that heat transfer is enhanced when either one of the two types of singularity takes 
place owing to flow recirculation. It is conjectured that the appearance of a 'singular point' is 
associated with a change in the dominant heat transfer mechanism in the vertical direction 
from conduction to convection (due to the formation of eddies in the bulk of the condensate), 
which enhances heat transfer. The latter is an issue for future study by means of the 
interactive boundary layer formulation, [7]. 
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1. SUMMARY 

The present theoretical study examines the displacement of a more viscous fluid by highly 
pressurized air in a cylindrical tube with a four to one contraction at its downstream end. 
During this process a long, round-ended bubble is created, due to fluid adherence to the tube 
wall. This is known as fingering instability and it is often encountered in practical 
applications, such as enhanced oil recovery, production of hollow membranes and gas- 
assisted injection molding. To simulate numerically this process, we have chosen the finite 
element method, together with a system of elliptic partial differential equations, capable of 
generating a boundary-fitted finite element discretization of the flow domain. It is shown that 
both the finger profile and the thickness of the deposited material on the tube wall are 
affected by the properties of the displaced fluid and the flow conditions. In particular, 
increasing the Reynolds number, the deposited material becomes thinner and the finger 
profile steeper. For sufficiently low Reynolds numbers and high Capillary numbers, that is 
high tip velocities, the fraction of the liquid deposited on the wall of the tube, reaches an 
asymptotic value of 0.60, a theoretical verification of the experiments by Cox [1]. 

2. INTRODUCTION 

Although fluid displacement by air in a capillary has been studied experimentally for many 
years (G.I. Taylor [2], Cox [1] & [3], Kolb & Cerro [4]), its theoretical study has been 
restricted to simplified and usually steady state models (Bremerton [5], Huzyak & Koelling 
[6]). Early on, Taylor [1] examined the effect of the Capillary number, when Ca<2, for 
sufficiently low Reynolds numbers in cylindrical tubes with circular cross-sections and 
lengths about 1000 times their radii. He observed that for the higher displacing speeds the 
fractional coverage on the walls of the tubes (fraction of fluid remaining attached to the wall) 
reached an asymptotic value of 0.56. He also proposed distinctly different streamline patterns 
depending upon the fractional coverage. Latter on, Cox [2] extended Taylor's experiments at 
higher Ca and found that the asymptotic value of the fractional coverage was 0.6. Kolb and 
Cerro [4] performed experiments in tubes with square cross-sections. They found that the 
coating of square capillaries displayed many of the same phenomena as in circular capillaries. 
In particular, the behavior of square and circular cross-sections was nearly identical for 
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Ca>0.7. The effect of the square cross-section became important as Ca was decreased. The 
first theoretical study of gas-bubble penetration was performed by Bremerton [5], who 
studied the steady motion of a bubble for Ca numbers very close to zero applying the 
methods of matched asymptotic expansions. Huzyak & Koelling [6] studied the effects of 
fluid elasticity on the hydrodynamic fractional coverage which is an increasing function of 
Deborah for all De>l. At De~5 the fractional coverage was 30% greater than that for a 
Newtonian fluid. 

The motivation for the present work is a new forming process for polymer melts, the so- 
called Gas-Assisted Injection Molding. The process takes place in a mold filled with a 
polymer melt. Gas at high pressure is injected through the polymer, causing the continuing 
deformation of the free surface. As a result, hollow parts can be produced with higher 
strength to weight ratio, improved surface finish and lower frozen in (residual) stresses. 

3. PROBLEM FORMULATION 

Figure 1 shows a section of the tube between its axis of symmetry and its wall (lower and 
upper horizontal lines, respectively), partially filled with a viscous fluid, while the rest of the 
tube is occupied by air. The fluid sticks to the tube wall, forming a three phase contact line. 
At start up the pressure in the air is increased abruptly and displacing of the fluid is initiated. 
The radius and the length of the primary tube are a, bj, while ac, b2 are the radius and the 
length of the tube with the smaller radius. Scaling lengths with a, pressure with the air 
pressure P^t, velocities with a2~P~,/(Leqß), the following three dimensionless groups arise: 

the Reynolds number Re = pa3^/( Legp
2), the Capillary number Ca = a2Pext/(oLeq) and 

e=a/Leq, where Leq is equal to bj for a straight tube, and b,+b2 for a constricted tube. The 

viscosity and the density of the fluid that is being displaced are denoted by n and p, 
respectively. 

Governing equations 
The governing equations that describe displacement of an incompressible Newtonian fluid 
under isothermal conditions and with negligible gravitational effects are the Navier-Stokes 
equations and the continuity equation. Written in dimensionless form they are: 

Re^-v.a = 0 0) 
Dt 

Vv=0 (2) 

tensor. 

where — = e—+v-Vv is the material derivative and a = —1 + ( Vv + (Vy)T) is the total stress 
Dt     3t   _   _ • =      e = 

Boundary and Initial conditions 
The appropriate boundary conditions are: The velocity field must be (a) bounded at the 
centerline (n • v = 0, tn: o = 0), (b) zero at the tube wall (vr = 0, vz = 0), and (c) fully developed 

far downstream (vr =0, n-Vv =0). At the free surface the velocity field should also satisfy a 

local balance between viscous stresses, surface tension and gaseous pressure: na=—n--n, 

where 2H is twice the mean curvature of the free boundary. Initially, fluid is assumed to be 
stationary under constant pressure and its free surface in contact with the air is flat. 
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OUTFLOW 
BOUNDARY 

Figure 1. Constricted tube filled with partially fluid, displaced by air at high pressure. 

4. NUMERICAL SOLUTION 

The presence of a highly deformable free surface, a time dependent control-volume and the 
stress-singular points (at the three phase contact line and the corners of the tube wall) demand 
an accurate, robust and flexible numerical method. The one we have chosen, is the mixed 
finite element method, together with a system of elliptic partial differential equations, capable 
of generating a boundary-fitted (Lagrangian) finite element discretization. Grid points 
become finite element nodes mapped subparametically. For convenience, the computational 
domain is split into three regions, the tube with the smaller radius, its extension into the main 
tube and the remaining volume of the main tube and, then, these regions are patched together. 

The node distribution scheme is the most important, single factor for the success of this 
numerical simulation. Earlier researchers developed similar mesh generation schemes 
(Tsiveriotis & Brown [7] and Christodoulou & Scriven [8]). These resulted in meshes 
composed of quadrilateral elements such that (a) their corners were almost orthogonal, (b) 
they followed a harmonic distribution in space, and (c) they were regularized so that the ratio 
of their neighboring sides did not exceed certain limits. Because of the time dependent nature 
of the present problem and the extreme deformations that we need to simulate, we modified 
their mesh generation scheme. We included the first two criteria in the equation generating 
the radial distribution of nodes and only the second criterion in the axial distribution of 
nodes: 

V-(e, 
Rl+Zl V^ + EI2V^) = 0, (3) 

Ar| = 0 (4) 
where (R, Z) are the components of the position vector in the physical domain, (^, r\) are the 
components of the position vector in the computational domain, and sn, £12 are empirically 
chosen parameters. Equations (3), (4) constitute an anisotropic transformation that is able to 
capture the great deformation in the Z direction. Even with this scheme it proved necessary to 
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split each quadrilateral into two triangles. This procedure started with the quadrilateral lying 
next to the intersection of the axis of symmetry and the air/fluid interface by drawing its main 
diagonal emanating from this intersection point. In the same fashion and direction all 
quadrilaterals were converted into triangles, see figure 2a. 

As boundary conditions for eqs (3) and (4) we use: (a) On fixed parts of the boundary (tube 
walls and exit of the tube) the equation that defines the boundary curve replaces the mesh 
generation equation associated with the coordinate that is constant on that boundary, (b) The 
remaining degree of freedom is used to control the node distribution along the boundary, (c) 

DR 
At the free surface the two boundary conditions are the kinematic equation -= = y and a 

generalized distribution s(£)= f^ w,R| + w2z^, where wi, w2 are weight functions, which 

have to be adjusted by trial and error to optimize performance. Previous researchers, [7] & 
[8], used an equidistribution condition on the free surface (wi=w2=l) which is useful and 
accurate only when the deformation of the free surface is not very large. In our case Z^ 
becomes much larger than R5, and their scheme produces unsatisfactory results. So we must 
use weights such that wi»w2, in order to prevent strong repulsion of the nodes from the 
front of the bubble or from the neighbor of the contact line, where the curvature of the surface 
is large. 

The velocity field is represented by quadratic basis functions, while the node coordinates and 
the pressure are approached by linear elements (6/3 formulation). For integration in time the 
implicit Euler method is used. The resulting system of the coupled non-linear equations is 
solved using the Newton-Raphson iterative method. 

(a) 

(b) 
Figure 2. (a) Close up of the discretized in triangles domain using equations (3) & (4), 

(b) Close up of the discretized in quadrilaterals domain using the proposed by Christodoulou 
& Scriven equations (Re=0, Ca=5xl03, T=44, bi/a=16, b2/a=4, ac/a=0.25) 

5. DISCUSSION OF RESULTS 

Figure 2(a) shows a snapshot of the discretized flow domain in the neighborhood of its tip, 
when the maximum penetration of the air is about five radii (Re=0, Ca=5xl0 , t=44, bi/a=16, 



b2/a=4, ac/a=0.25). To obtain converged results, 130 elements in the Z direction and 36 in the 
R direction have been used, resulting in 40000 unknowns. The currently applied elliptic mesh 
generation scheme, eqs (3) & (4) and fig. 2a, is clearly more flexible than that originally 
proposed by Christodoulou & Scriven [8], fig. 2b. The mesh generation proposed in [8] was 
based on the minimization of an orthogonality functional in both the R and Z directions, 
resulting in the creation of very restrictive meshes. Such meshes do not allow control of mesh 
spacing, this becomes apparent in fig.2(b). Here two distinct regions inside the domain 
develop, which are separated by a transition zone composed of very large and highly 
deformed (skewed) elements, although their aspect ratios remain close to 1. Also, close to the 
free surface there is a high concentration of elements having very high aspect ratios. All these 
are quite disadvantageous for the accuracy of the accurate calculation for the flow field. 

The evolution of the free surface, for the same set of parameters and using our mesh 
generation scheme, is shown in figure 3. Flow takes place from left to right. It is clear that the 
streamlines smoothly follow the solid wall, except near the air/fluid interface and the tube 
contraction. Apparently there is no flow far upstream from the front of the flow, near the 
contact line, and that a few diameters in front of the finger tip the flow field becomes 
parabolic. At early times the free surface has a parabolic form, which later on becomes a 
round-ended bubble, leaving a fraction of mass stuck on the tube wall. 

(a) T=10 

(b) T=44 

(c) T=88 

(d)T=128 

Figure 3. Sequence of streamlines in the liquid that is being displaced by the gas, at different 
time instances for (Re=0, Ca=5xl03, bi/a=16, b2/a=4, ac/a=0.25). 

In figure 4 we show the effect of the imposed capillary number on the tip velocity, which is 
represented by the local tip capillary number (Ca,i1,=(iUtil,/a). Three distinct regions are 

apparent. In the first region the velocity increases exponentially, because of the step change 
in the applied pressure. Then, the tube contraction provides large resistance to the flow and 
stabilizes the front development and its velocity for a long distance. When the front of the 
bubble reaches the end of the primary tube (T~120), the velocity increases abruptly (third 
region). For all the values of Ca given in fig.4, the fractional coverage is about 0.60 in 
accordance with Cox [1]. 



89 

ü 

■ 

—— Ca-I.OxlB* 

 CaaMHO* 

 1 1 1 ,                            |                           | _...,    , 

- ■ 

1   . 
 Cd.i.ona' 1 _ 

 ■-/! 

■ 

_//    —   -     
/1\ 

■ 1; /*    - -    s J 
1 

• '   _-*~- 

1 I             1       » 1 ■ 1 • 1 *■ < 
40 60 80 

Dimensionless Time x 

Figure 4. Local tip capillary number as a function of dimensionless time for the imposed Ca 
indicated in the figure insert (Re=0, T=44, bi/a=16, b2/a=4, ac/a=0.25). 
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FLOW BETWEEN TWO ROTATING HEATED SPHERES 
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1. SUMMARY 

The steady motion in a spherical shell is studied in the presence of heat when the boundaries 
are rotating. The secondary motion as well as the Nusselt number along a meridional line on 
the outer boundary are affected by the relative rotation of the two spheres. 

2. INTRODUCTION 

The present work considers the steady motion of a viscous incompressible fluid contained 
between two concentric heated spheres that rotate about their vertical diameter with different 
angular velocities. Such configurations are of interest in geophysical and meteorological 
problems, in which the geometry and the rotation play an important role on the fluid motion. 
The convective flow in an annular conduit and the effects of this type of the flow in a 
catheterized artery was studied by Karahalios [1], [2]. The problem of heat transfer with flow 
between two concentric rotating spheres was considered by Bhatnagar and Vayo [3] for small 
Reynolds numbers and for a set of values of the Prandtl and of the Eckert number. In their 
study they neglected the effect of gravitational forces but they considered the effect of heat 
by viscous dissipation. The results they presented were for Re <0.6. Zhang and Gubbins [4], 
[5] examined the thermal convection in the Earth's core under the action of laterally varying 
temperature in the lower mantle and the effect of such non - uniform boundary conditions on 
convective instability. 
Though the problem is of general interest in rotating fluid mechanics, our motivation is 
concerned with several connections to geophysics, such as the possible relation of connection 
in the Earth's mantle to the movement of the continents. 
In the present work we study the flow properties of a viscous incompressible fluid between 
two concentric spheres that rotate about their common vertical diameter with different 
angular velocities and that have constant but different surface temperatures. The approximate 
solutions of the equations of motion and energy are obtained either analytically or 
numerically. In the analytic solution the flow properties, such as steam function, axial 
velocity function and temperature are each expressed in a series of the Reynolds and of the 
Grashoff number of the flow Re=Q0a

2/v and Gr =a3ßg(T,-T2)/v2 respectively where 

Re < 150 and Gr <10 and a is the radius of the outer sphere, fi0 is a typical angular 
velocity, v the coefficient of kinematic viscosity, ß is the thermal expansion coefficient of the 
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fluid, g is the acceleration of gravity, Ti is the temperature of the inner sphere and T2 is the 
temperature of the outer sphere, where Ti > T2. 

3. EQUATIONS OF MOTION AND ENERGY 

Figure 1. Spherical annulus. 

We consider the steady flow of a viscous 
incompressible fluid between two concentric 
spheres, rotating about their vertical diameter 
with different angular velocities Cl\ and Q2. 
where subscripts 1 and 2 correspond to the 
inner and to the outer sphere. Let in addition 
r, = a/k and r2 = a be their radii where 
k>l and Ti and T2 (Ti > T2)their 
temperature assumed constant. The flow is 
symmetric about the axis of rotation and 
hence all quantities are independent of the 
azimuthal angle (p. The non-dimensional 
equations of motion and energy are 

D4f =- 
1 

r siny 

-R 

a(f,p2f) 2_D2fraf        9f 

2X 

3(r,v|/)     rsin\|/ 
r 

—rcos\|/-—sin\|/ 
dr dy 

e   3   •   2 r sin  \|/ 

dy 3T  . —rcos\|/--^sin\|/ 
3r dy 

+ Gr 
30       .    2 Ö&    . — rsm v|/ + —sin\|/cos\|/ 
dr 3v)/ 

(1) 

D»x = -    !      B^ !sin\|/3(r,\)/)' 
(2) 

V20 = P, 1 9(f,e) 
r r2sin\|/ 9(r,\)/)' 

(3) 

where D-|1-^L 3 4 9L, |M=|i3b_^9b   and ^  .s the Reynolds 
or2    r2sin\|/dv    r2 9\|/2     9(x,y)    dx 3y    dy dx 

number of the flow, Gr is the Grashoff number, Pr is the Prandtl number, f is the stream 
function % is the axial velocity function and 0 is the tempetarure. 
The boundary conditions of the flow are 

3f 
f: 

d\|/ 

X = R--Vsin2
V 

X = R^sin2
¥^ 

at    r = l/k (inner boundary), 

at    r = l (outer boundary), 

0 = 1 

= 0 on both boundaries, 

(4) 

(5) 

at   r = l/k,   0 = 0 at r = l. 
(6) 
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4. METHODS OF SOLUTION 

In the present work equations (1) to (3) have been solved both analytically and numerically. 
For the approximate analytic solution we suppose that x, f and 0 can be expanded as power 
series in the Reynolds number and in the Grashoff number when both are small, as follows 

X = X» + ReXio+GrXu+ReXM + ReGrX2l+GrX22+-> 

0 = 0O +Re0,o +Gr0„ + R>©M +ReGr02l + G2022 +..., 

(7) 
f = Ref10 +Grf„ + R2f2() + ReGrf2l + G2f22 +.... 

In this way each one of equations (1) to (3) is split into a number of differential equations that 
are solved analytically. The output of the analytical calculations is compared with that of the 
numerical calculations and the comparison shows that the validity of the analytical solution is 
limited within the range Re<150 and Gr<10. 

For the approximate numerical solution we construct a grid of mesh points with constant 
radial and angular mesh sizes h = (l-l/k)/N and e = n/L where N and L are integers 
indicating the density of the grid of mesh points. We next denote all quantities at a typical set 
of grid points (r0,\|/0), (r0+h,\|/0), (r0,y0 + ^), (r0 -h,\|/0) and (r0,v|;0-£) by the subscripts 
0, 1, 2, 3 and 4 respectively and replace equations (1) to (3) by central differences. We are 
therefore led to an algebraic system of equations in which the matrix of the coefficients of the 
unknowns may be diagonally dominant. Diagonal dominance is a sufficient condition for 
convergence for iterative procedures such as the Gauss - Seitel or the over - relaxation are. In 
the present work the matrix corresponding to the system of equations derived by (1) (to) was 
always diagonally dominant and a relaxation parameter co of order 10"' or 10"2 was found 
necessary for convergence. 
We write 

D2f=-^ (8) 
After lengthy manipulations we finally construct the following equation from equation (1) 

a.Ci +a2C2 +a3C3 +a4£4 
+ aoCo = ~2h2G , (9) 

where C, is the vorticity and a, are known coefficients. 
The boundary conditions for the vorticity function in finite - difference form are 

r(i/k>¥)-   3f(l/k + h,y)   C(l/k + h,V) 
h2 2 

(10) 

h2 2 

Following the same procedure for Eqs. (2), (3) and (8) we finally take 

niXi+n2X2+n3X3+n4X4+noXo=°> (H) 
m,f, + m2f2 + m3f3 + m4f4 + m0f0 = -h2C,0, (12) 
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d,0, +d202 +d303 +d404 + do0o =0, (13) 

where the n„ m and di (i = 0,1, 2, 3,4) are coefficients of the unknowns x, f, and 0. 
The system of equations (9) and (11) to (13) is solved numerically by employing the under 
relaxation method at all internal points of the annular region l/k<r<l, 0 < y < n: subject to 
boundary conditions that are either known a priori (Eqs (4) - (6)) or are calculated by Eqs 
(10). 

5. RESULTS AND DISCUSSION 

The results obtained by the analytic approximation are valid when Re <150 and Gr <10. 
This is based on the comparison with analogous results of ours calculated numerically. In all 

R2 

Figures the Grashoff number is constant and the Froude number Fr = —- varies. 

In the numerical approximation, results have been obtained with the radius ratio being equal 
to k = 2 and for the Prandtl number Pr =1. The Reynolds number and the Grashoff number 

can vary in the range KRe<5000 and KGr<106 respectively. In fact, convergence 

could be obtained for Re < 5000 whereas no problem was related with the value of the 

Grashoff number. 
In Figures 2a to 2c the streamline pattern, based form henceforth on the numerical solution, is 
presented for Gr =1000 and for various Froude numbers when k = 2 and the outer sphere is 
stationary, so that the relative effect of the centrifugal force on the buoyancy force is 
demonstrated. In Figures 3a to 3c the streamline pattern is presented for k = 2 when the inner 
sphere is stationary and in Figures 4a to 4c and 5a to 5c we show the azimouthal isovelocity 
curves for the previously mentioned cases. 

Figure 2. Stream function pattern for Q, = Q.0, Cl2 = 0 and k = 2. 

((a) Fr =10, (b) Fr =40, (c) Fr =1000, Gr =1000). 
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Figure 3. Stream function pattern for ft, =0, ft2 = ft0 and k = 2. 

((a) Fr=10,(b)Fr=40,(c)Fr=1000, Gr =1000). 

(a)l—-^ (b)L-^ (c) 
Figure 4. Isovelocity curves pattern for ft, = Q0, ft2 

= 0 and k = 2. 

((a)Fr=10,(b)Fr=40,(c) Fr=1000, Gr=1000). 

(a) MW (b) W&r (c) 
Figure 5. Isovelocity curves pattern for ft, =0, ft2 = ft0 and k = 2. 

((a) Fr =10, (b) Fr =40, (c) Fr =1000, Gr =1000). 

r)0 
In Figure 6 we show the variation of the Nusselt number N   = — along a meridian line on 

3r 
the outer boundary for various Froude numbers when k = 2 and ft2 =0. When the Froude 
number is large, the heat loss is great owing to the development of large centrifugal forces. 
Finally in Figure 7 we have plotted the variation of the Nusselt number along a meridional 
line on the outer shell when ft, = 0 and ft2 = ft0. 
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Figure 6. Nusselt number for Q, = Q0, 

Q2=0 andk = 2.((a)Fr=10,(b) Fr=40, 
(c) Fr =100, (d) Fr =1000, Gr =1000). 

Figure 7. Nusselt number for£2, = 0, 
Q2 =Q0 and k = 2. ((a) Fr =10, (b) 

Fr =40, (c) Fr =1000, Gr =1000). 

6. CONCLUSION 

In this work we study the effect of natural convection on the motion of a fluid contained 
between two concentric rotating and heated spheres. Our results refer mainly to the specific 
configurations in which the annular distance is equal to the radius of the inner sphere (k = 2). 
We show that the secondary flow is strongly affected by the relative rotation of the spherical 
shells as well as by the magnitude of the Froude number. Finally, we deduce that the 
temperature distribution within the fluid and the rate of heat loss along a meridional line on 
the outer boundary follows the form of the azimuthal isovelocity curves. 
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1. SUMMARY 

The present experimental work is aimed at enhancing the 2-D characteristics of the coherent 
flow in the wake of a cylinder. It has been observed that two factors have significant role in 
that issue: the flow Reynolds number based on the cylinder's diameter, RD and the its surface 
roughness. The criteria selected for evaluation of the two-dimensionality of the flow were the 

2 9 
velocity power spectral density distribution and the coherent kinetic energy term qc (= uc + 

\l, where uc and vc are the coherent contributions to the streamwise and vertical velocity 
components). With RD near the value of 2000 and with roughness on the cylinder's surface, 
the velocity psd displayed a scaling region with slope close to -3, the theoretical result for 

pure 2-D flow. Furthermore, at the same conditions, q* was found significantly increased. 

2. INTRODUCTION 

Real turbulent flows are essentially 3-D. Under certain circumstances, they might develop 
some 2-D characteristics, in which case they are referred to as quasi 2-D. Typical examples 
are the large-scale flows in the atmosphere and in the oceans where velocity fluctuations are 
significant only in planes parallel to the earth's surface. It has been observed that the velocity 
power spectral density (psd) distribution of these quasi 2-D flows contains a scaling region 
which follows a power law with exponent different from -5/3, the value for isotropic, 3-D 
turbulence. Their value is closer to -3, the classical theoretical result for 2-D turbulence [1]. 
Hence, it may be deduced that a successful experimental simulation of a quasi 2-D flow 
should have as a prerequisite the existence of the scaling region with exponent close to -3. 
A flow with particular interest, due to its widely spread applications, is that in the wake of a 
cylinder. Although this flow is 3-D, it has an inherent 2-D character, associated with the 
periodically appearing large-scale structures, the von Karman street of vortices [2], [3]. A 
cylinder in cross-flow configuration may be regarded as a continuous source of coherent 
spanwise vortices travelling downstream. From that point of view, enhancing the 2-D 
characteristics of the flow would result in stronger, more coherent vortices, capable of 
surviving over longer distances in the streamwise direction. 
Based on the above, the present work had two main targets: first, the production in a wind 
tunnel of a flow behind a cylinder with a velocity psd displaying a distinct scaling region with 
slope near -3 and then, the isolation of the periodic, coherent flow and the examination for 
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increased values of the coherent kinetic energy term qc = u? + v^ (uc and vc are the coherent 

flow streamwise and normal velocity components). 

3. EXPERIMENTAL PROCEDURE 

The experimental part of the present work was performed in an open-return, suction type 
wind tunnel with test section dimensions 0.5 x 0.5 x 2 m3 and free-stream turbulence level 
about 0.4%. A circular cylinder with length equal to the width of the test section was placed 
normal to the flow. Using hot wire anemometry with an X-type, double wire probe/the 
streamwise and vertical velocity components were measured simultaneously across the wake 
of the cylinder. The cylinder's diameter D and the velocity defect Ud (defined in Fig. 1) were 
used for normalization. Measurements were taken at two values of the Reynolds number 
based on D (RD = 2000, 4000) at the locations: x/D= 5, 20,40 and 60. 

Uo 

Uo 
Ud 

Figure 1. Definition of the reference axes and the velocity defect Ud in the wake. 

4. RESULTS 

Velocity power spectral density distributions. 
A series of preliminary measurements with the same experimental set up indicated that the 
velocity psd can have a scaling region with slope near the value -3 under two conditions: the 
cylinder has rough surface (using a high-grade sandpaper glued on its surface) and the 
Reynolds number is close to 2000. Fig. 2 shows a group of present velocity psd's, all 
produced at RD=2000 and y/D=l. Each diagram displays three curves: the actual velocity psd 
(denoted by n=0) and two others, which have been derived by multiplication of the ordinates 
of the original velocity psd curve by fn (f denotes the corresponding values of frequency and 
n, the anticipated slope of the scaling region). This transformation forces the part of the 
spectrum with slope -n to appear horizontal. It is evident from the data presented in Fig. 2 
that at all measurement stations, except the last, the effect of roughness is the formation in the 
scaling region of a section with slope close to -3. On average, the bandwidth of that section is 
about 500Hz. Also shown in Fig. 2 are distinct peaks at the Strouhal frequency of the flow, 
thus designating the presence of von Karman vortices. The fact that these peaks reduce in 
height with streamwise distance implies that the strength of the coherent vortices decays 
likewise. Furthermore, comparison at the same x/D location of peaks from the two cases 
considered, i.e. with and without roughness, indicates that with roughness, the presence of the 
coherent structures is stronger. This is more apparent at x/D=40. 
Similarly, Fig. 3 shows velocity psd distributions at RD=4000. Here, the effect of roughness 
appears to be negligible, since in all cases shown, no significant parts of the scaling region 
with slope other than -5/3 can be distinguished. In addition, the peaks at the Strouhal 
frequency of the flow at each x/D location, appear to have almost the same length, 
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irrespectively of the presence or not of roughness. It is thus implied that in both cases, with 
and without roughness, coherent vortices of similar strength are present in the flow, having 
similar decaying rates. 

Coherent kinetic energy. 
The coherent flow in the wake of the cylinder, having a strong periodic nature, was isolated 
from the overall flow using a phase-averaging method, similar to that described in [4]. Its 
application implies that any time-dependent flow quantity S(t) consists of an overall time- 
mean value S, a periodic fluctuation component sc, associated with the coherent flow, and a 
random fluctuation component sr. Phase-averaged results obtained from the S(t)-S time 
series refer to the periodic component sc, since the random component sr disappears by 
definition. 
Applying this methodology to both streamwise and normal velocity components in the wake 
U(t) and V(t), the distribution of the coherent components uc and vc over one shedding period 
were obtained. Then, each of the quantities uc

2 and vc
2 was averaged again over one shedding 

period and the results were added together to evaluate the coherent flow kinetic energy 

parameter q2 = u? + \l  (an overbar denotes averaging over one shedding period). 

Distributions of q2 across the wake, at x/D = 5, 10, 20, 40 normalized by the velocity defect 
Ud, are shown in Fig. 4. It is evident that at RD=2000 the effect of roughness is a substantial 

increase of qjUJi, especially close to the cylinder. On the contrary, at RD=4000, the 

distribution of qjUd at every x/D location is almost identical with and without roughness. It 

is noted here that at the last measurement station, at x/D=60, the values of q\jUd in all cases 

considered are negligible. 

5. CONCLUSIONS 

The main conclusions of the present work are the following: 
i)    It is possible to augment the quasi 2-D nature of the large-scale coherent structures in the 

wake of a cylinder by adding roughness on its surface, 
ii)   The effectiveness of the roughness is very sensitive to the Reynolds number. In the 

present work, it was significant only within a narrow range of RD values near 2000. 
iii) With RD=2000 and roughness on the cylinder's surface, the coherent structures in the 

wake displayed increased kinetic energy content and a lower decay rate. 
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1. SUMMARY 

In this paper a number of measurements and the analysis of them are presented, concerning 
the forces exercised on inclined discs from jet flows. A number of empirical equations are 
presented giving the forces and their dependence on the initial momentum flux, the distance 
and the disc geometry. It is believed that the results are useful for design purposes. 

2. INTRODUCTION 

An interesting technical problem is concerning the determination of the forces on smooth 
symmetrical bodies which are placed on the axis of a steady jet flow, issuing from a pipe exit 
into an initially quiescent ambient consisting from the same fluid. 

In this work a number of experimental measurements and the analysis of them are presented, 
concerning the axial force, exercised on an inclined smooth plan circular disc from the flow of 
a round turbulent fluid jet. The practical purpose of this research is to contribute to the 
determination of the above force on deflectors, or to the design of discs placed in the sea 
against the jets issuing from the ports of a diffuser - in order to maximize the dilution of 
pollutants. 

Figure 1 shows the flow geometry. The angle of the inclination of the thin disc to the jet axis 
is <p, the pipe exit has a diameter d0, and the smooth disc has a diameter D and is placed at a 
distance x from the pipe exit. The axial force, which is due to pressures and shear stresses on 
the disc, is F while the density of both fluids is p0, the kinematic viscosity is v0, and the exit 
jet velocity is V0. The exit discharge is Q0=V0(n.d0

2)/4, the corresponding momentum flux is 
M0=p0.Qo, and the exit Reynolds number is Re0=Vo.do/v0. When the Reynolds number is large 
enough the jet flow and momentum diffusion are turbulent. 
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In the case of undisturbed jet flow, i.e. without the disc, the jet has an initial conical region 
near the exit, the core, with a length around 8d0, within which the flow velocities are constant 
in each cross section. Further down the jet flow has in each cross section a maximum 
centerline velocity, um, which is quickly reducing when x distances are increasing. The 
discharge on each cross section is greater than Q0> because of fluid entrainment from the 
ambient. From a large number of previous measurements it has been found that beyond the 
core, 

Un/V^Ctx/do)"1, (1) 

where C=6.2. 

.do 

Figure 1. Flow geometry 

If a symmetrical body such as a disc is placed on the flow axis, then the jet behavior is 
disturbed around the body. This means that the jet behavior is not dramatically changed far 
from the body, and eq.(l) is still holding there. 

N. Ackermann and R. Undan had measured in 1970 the forces on discs without an inclination, 
(p=0, [1], while T. Papathanassiadis and J. Demetriou also presented in 1984 some 
measurements with horizontal discs, [2]. In both papers the results were in good agreement 
among them, showing that the force F is decreasing when x is increasing-no matter the fluid 
medium. 

In the paper by Papathanassiadis et al is was proved that 

F/M0~(2C7mO-(7iDz/4) (2) 

and their results were worked out in double logarithmic scales, F/M0 (vertical axis) versus 
(CW2).(D/x)=4.384.(D/x)-on the horizontal axis. The same method A=[(2C2/7ix2).(7iD2/4)]1/2 
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of data presentation and analysis is followed in the present paper, separately for each angle (p, 
while it appears reasonable that F=0 when (p=90°. 

An interesting distinction between the discs at any angle (p, is that of "small" and "large" 
discs. When D is relatively large and x is small-but always further from the core (x>8d0), then 
D/x is large and the disc is considered as large. For (p=0 the jet is symmetrically deflected, and 
a simple application of one dimensional analysis for a weightless and ideal fluid shows that 
for large discs F/M0=l. For other angles cp the same result could hold if the deflected flow had 
the same thickness around the disc perimeter. This is not true because the flow thickness is 
not constant throughout, Fig.l-dashed line. Thus F/M0 takes various limiting values K for 
various angles (p. K actually consists a measure of the fluid thickness variation along the disc 
periphery and comprises also a shear stress contribution on the disc. 

When D is relatively small and x is large then D/x is small and the body is considered as 
small. This fact does not arise another limiting value for F/M0 in terms of A, simply because 
the flow overcomes the disc and creates a wake field behind it. 

3. EXPERIMENTS AND DATA ANALYSIS 

In this experimental work air jets were vertically issuing from a round exit into the 
atmospheric air of the laboratory, with relatively small velocities, Vo<60 m/sec. The exit 
velocities were measured through a Pitot tube, the discs were made from various smooth 
materials and were placed at various x distances from the exit. With the aid of a balance 
placed over each disc, its weight was measured with and without a flow, and the difference of 
the two values corresponded to the force F exercised on each disc. It is estimated that the 
percentage errors of all measurements were less than ± 3%. 

Four groups of runs were organized with (p=0° - 30° - 45° - 60°. For each angle cp the disc 
diameters were D=36-30-25-22.7-20-15-14.5-10-5-2cm, and the exit diameters were d0=6.45- 
2.5-lcm, in various combinations among them. More than 800 force measurements were 
performed, although they are not all used in the present work. The Reynolds numbers varied 
between 134,200 and 27,000, while x/D varied between 7.3 and 0.55 and x/d0 varied between 
60 and 8. 

Figure 2 shows the F results in dimensionless terms of A and F/M0 for each angle (p. Each 
group of experimental points is well represented by a curve which tends, for large A values, to 
a limiting value of F/M0, F/M0=K. In Figure 3 the corresponding K values are examined 
versus the angles cp, and the 
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Figure 2. Force measurements 

simple empirical equation 

K=l-0.014cp0-91 

is determined. 

Moreover, for each curve of Fig.2 another empirical equation of the form 

(3) 

60- 

40- 

2<t 

A 

K=1-0.O14<i>a 

>      ' i i i_ 

&4        0.6        0.8       tO 

Figure 3. K versus cp 
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F/M0=K-a-Ab 

may be assumed, where a and b are functions of the angle (p. 

SO1 

• a 

20 Y 
JL 

(4) 

ß*0.35-a00Pfy 

OD 

Figure 4. a and b functions 

Figure 4 shows a and b values versus the angle (p, and two simple equations are deduced 

a=0.35-0.00417.cp 

b=-0.33.cpu,"> - 0.77 

(5) 

(6) 

The final expression for F/M0 comes after the combination of eq. (3), (4), (5) and (6) for 
angles (p with 0°<cpo<60°, 

F/Mo = (l-0.014.(p0'91)- 

-(0.35-0.00417(p)- [4.384-D/x]-(a33 <p"2'+077) 

4.   CONCLUSIONS 

(7) 

In this paper a number of measurements and the analysis of them are presented, concerning 
the forces exercised on inclined smooth discs from pipe jet flows. The results are 
dimensionlessly presented in Fig. 2, and equations (3), (4), (5), (6), or (7), are concluded. The 
forces are depending on the initial exit velocity, on the disc and pipe diameters, on disc 
distances and inclination angles, and on the fluids' density. It is believed that the results are 
useful for design purposes. 
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1. SUMMARY 

This paper presents a number of experimental measurements in rectangular open channel 
flows, concerning the relation among the Manning resistance coefficient and the geometry of 
the flow and roughness elements. The case of rough walls and nearly smooth bottom is 
investigated, and a number of pertinent equations are given. The results may be useful to the 
hydraulic engineer when designing open channels. 

2. INTRODUCTION 

The design of one-dimensional open channels is mainly based upon information provided by 
experimental measurements in the hydraulics laboratory. In practice, it is usual for the 
hydraulic engineer to deal with open channels lined with different materials, e.g. a smooth 
concrete or asphalt bottom and two lateral symmetric walls from stone, brick, plaques or 
other rough materials 

If the roughness of a channel is everywhere (bottom, lateral walls) the same, then the 
Manning resistance coefficient n is usually considered as of unique value and constant 
throughout, n = const. Thus, the well established empirical Manning equation for the 
uniform flows is used in the form of 

Q = EV = E(l/n)R2/3 J0
I/2, 

where E= liquid cross section (m2), R = E/P = hydraulic radius (m), P= wetted perimeter (m), 
J0 = channel slope along the flow- which usually is very small, and Q = discharge (m3 / sec). 
The constancy of n means that this parameter is independent of the flow depth and is only 
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related to the nature of the roughness elements on the entire internal area of the channel 
boundaries. 

In case of different roughnesses because of different lining materials, it is common in the 
hydraulic calculations to determine a constant "hydraulic mean" or "equivalent" resistance 
coefficient, nE = const., on the entire wetted perimeter. 

Although, the above practice does not reveal some interesting resistance details, mainly about 
the dependence of n (for a flow depth y) on other flow parameters. 

In two previous papers by the first author with or without other writers, in 1999, [1], and in 
2000, [2], it was experimentally concluded that in the case of a rough bottom and two 
symmetrical smooth walls in a rectangular open channel, n depends upon the parameters of 
the channel when flowing full (reference values yf, nf), the width of the channel (b), and the 
relative bottom roughness. In those papers a number of equations were given based on the 
experimental roughness which was realized with the use of transverse - uniformly distributed 
rubber strips on the entire bottom, with constant heights h = k or h= 2k ( k = 4mm) and at 
constant distances X, where the relative roughness X/h was varying between 6,25 and 100. 
The method of transverse artificial strips was explained in 1959 by V.T.Chow in his book, 
[3], and was used by D.Knight and A.McDonald in 1979, [4], by D.Knight et al in 1988, [5], 
and others. The above conclusions were also confirmed from the reanalysis of a number of 
data taken from the papers by previous investigators and worked out in the papers [1] and[2]. 

In this investigation the bottom is considered as nearly smooth and the walls as rough. Fig. 1 
shows the geometry of the uniform flow in the rectangular channel. The flow depth is y (with 
corresponding resistance coefficient n), the maximum channel flow depth is yf (with 
corresponding resistance coefficient nf), b is the channel width, while the roughness elements 
are constructed from hard rubber strips, with cross sections kxk, and glued at various 
distances X (axis to axis): In each experiment X was kept constant in the entire length of the 
walls, but the relative roughness X/K was changing from one experiment to the next 
experiment. 

The area of any liquid cross section is considered as E = b.y, while P = b+2y, R =E/P, Re = 
V.4.R/V, V = Q/E= average cross section velocity, v = kinematic viscosity, Fr = V.(g.y)" . 
All flows have Re » Recrit.(entirely turbulent flows), and Fr<l(subcritical flows). 

Figure 1. Flow geometry 
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Based on dimensionless reasoning it can be shown that in general 

n/nf = s(y/yf,yf/b, X/k, Re, Fr) 

where s means function. The above qualitative equation is reduced to 
n/nf = s(y/yf, yf/b,X/k) 

because of the nature of the flow, which is always here turbulent and subcritical. 

(1) 

In the previously mentioned papers [1] and [2] eq. (1) was determined in a quantitative 
form, concerning the flows in a rectangular channel with a rough bottom and two lateral and 
symmetrical vertical smooth walls. 

As it will be shown in the present paper, when the walls are rough and the bottom is smooth, 
the qualitative form of eq. (1) is similar, although its quantitative form is somewhat different. 

3.   EXPERIMENTAL MEASUREMENTS AND DATA ANALYSIS 

The details of the experimental channel can be found in the two previous papers [1] and [2]. 
The discharges were accurately and systematically measured with the aid of a differential 
manometer, the flow depths with a number of level gauges, while the uniform flow was 
realized through the use of an end sluice gate. The measurements concerned the water 
temperature (and thus v), the discharges Q and Qf and the depths y and yf, for various X/K 

ratios. E,P,R and V(= Q/E) were calculated, while from the Manning equation the resistance 
coefficients n and nf were deduced. It is estimated that the mean percentage error of all 
measurements did not exceed ± 3%. 

A large number of runs were organized with K= 4mm, X/K= 12.5-25-50- 100-°o(smooth case), 
41,200 <Re<193,300, 0.250 <Fr< 0.660, 3cm <y<36cm, 41/sec <Q<52 1/sec, 34cm/sec 
<V< 59 cm/sec, 0.40 <yf/b< 1.46, 0.143 <y/ yf < 1.0. In each run, in order to determine the 
uniform flow depth (for a particular set of Q and X/K values), 5 depths were measured along 
the channel and then, if those depths did not differ more than 1 mm, i.e. if it was secure that 
the flow was practically uniform, the average depth was calculated and considered as the final 
uniform flow depth for this particular values of Q, X/K (and n). 
Fig 2 shows an example from the initial measurements with k= 4mm, X = 100mm, and 
various y depths. 
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Figure 2. Initial measurements 

In order to analyze the experimental data the following empirical equation was used, 

n/nf=A(y/yf)
B[l-(y/yf)]c+(y/yf) (2) 

where , A,B.C are functions of the flow parameters, and n / nf = 1 when y/ yf =1 A,B,C, may 
be determined if the ratios yf / b and X/K are related to them for all measurements. 

From preliminary tests it was concluded that A and B are mainly related to yf / b, while C is 
rather related to X/K. This result, which is holding here for K=4mm (small roughness 
elements), is also confirmed from more recent laboratory measurements with K=8mm (high 
roughness elements) which are not presented here. 

Figure 3,4 and 5 present the relations between A and B versus yf / b, and C versus A/K. 
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Figure 3 . Relation between A and yf / b. 
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Figure 5. Relation between C and X/K. 

From the above diagrams the following empirical expressions are determined 

A = 1.923( yf/ b)2 + 5.5712(yf/ b)-1.5274 , 

B = 1.558( yf/ b.)3 + 12.89(yf/b)2-l 1.211 (yf/b)+3.5561 , 

C = -9941 (X/K)"
3
 + 784.5' ( X/K)

-2
 - 5.4 ( X/K)'

1
 + 1.3 , 

and are combined with eq. (2). 

The above expressions are somewhat different from corresponding expressions in [1] and [2]. 

(3) 

(4) 

(5) 
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Diagramms of experimental - theoretical rations y/yf and n/nf for A/K = 12.5 
and several yf 
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Figure 6. Relations between n/nf, y/yf and X/K 

Finally, Fig. 6 presents an example of the application of the above equations, showing that 
the determined curves are satisfactorily presenting the experimental results. 
Unfortunately the present results cannot be compared with other results, because of the lack 
of previous experimental results from earlier investigators. 

4. CONCLUSIONS 

This paper presents a number of experimental measurements in rectangular open channel 
flows with rough walls and nearly smooth bottoms, concerning the dependence of Manning n 
coefficient upon the geometries of flows and roughnesses. The empirical eq. (2) gives the 
relation among all pertinent parameters, accompanied by eqs (3),(4),(5). It is believed that 
the results are useful to the hydraulic engineer when designing open channels. 
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1. SUMMARY 

The object of the present study is to access and optimise the performance of an airlift pump 
under predetermined operating conditions, and especially to estimate the effect of the pipe 
diameter and injection depth to the airlift pump efficiency. In the numerical modelling, the gas- 
liquid-solid three-phase flow in an airlift pump is described by a system of differential equations, 
which derives from the fundamental conservation equations of continuity and momentum. The 
effect of the shape and size of particles derives from the different relationships used for the drag 
coefficient calculation. The numerical simulation results clearly show a very good agreement 
with experimental and computational data of other researchers. This approach leads to a more 
general mathematical model, which is applicable to a wide range of installations, from small to 
very large systems, suitable for deep-sea mining. 

2. INTRODUCTION 

The airlift method has been known since the end of the 18th century. It has since been used for 
the lifting of water, wastewater and aggressive fluids, for the transportation of solids and more 
recently of radioactive fluids in nuclear fuel recycling plants. It is based on the principle of 
injecting a compressed gas, usually air, into the conveying pipe causing thus the gradual lifting 
of the liquids or the solid-liquids mixture. 

There have been numerous publications suggesting calculation procedures for the design and the 
satisfactory operation of an airlift pump. Chaziteodorou [1] presented a systematic review 
concerning the applications and developments of the airlift pump. Weber [2,3,4] and Dedegil 
[2,5] presented a calculation model for an airlift pump and the principles of airlift techniques. 
The technology of artificial lift methods has been presented by Brown [6]. Yet all the above 
studies depend either on experimental data or empirical correlation factors leading to results 
without general validity. 

A general calculation method for the three-phase flow and a design model for an airlift pump 
installation presented by Margaris and Papanikas [7]. This method can be used in simulation of 
an airlift system for pumping liquids or solid-liquid mixtures. The object of the present paper is 
to access and optimise the behaviour of an airlift pump, and especially to estimate the effect of 
the geometry and flow conditions to the airlift pump efficiency, for deep-sea mining. 
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3. PHYSICAL MODELLING AND DESIGN OF AN AIR-LIFT PUMP 

The airlift pump consists of two vertical pipes. One for pumping liquid or a mixture of liquid 
and solid particles and a parallel one for the injection of the gas phase. The main pipe is divided 
into three parts, the suction part Ls, the raising part or injection depth Lt and the third one and 
so-called discharge part LD, (figure 1). Considering the pressure at the free surface of the feed 
tank to be p0 and in the storage tank to be pn, the pressure balance can be written as 

Po + PLg(Ls + Li) = pn+ApTot (1) 
where Aprot are the total pressure losses along the three parts of the pipe, due to the frictional, 
accelerational and gravitational component of the pressure gradient, and pL is the liquid phase 
density. 

■£feü 

1. Feedtank tee surface 

2. Storage lank 

3. Compressor 

4. Injection point 

5. Sold bed 

1,0 

0,6 

0,0 
0,3 

- 

L   » 250 m     d   ■ 5mm 

Ls = 250 m     ps - 2500 kg/m* 

L   = 10 m      m = 30 kg/s 

-Powerconsumed, MW 
•Efficiency * 100 
-Volume flow rate of gas, m^/s 

0,4 0,5 

Pipe diameter, m 

Figure 1.   Airlift pump installation Figure 2. Optimisation of the pipe diameter of an 
airlift pump installation 

In the suction part, pressure losses are calculated as an integral whole, and in the other two 
sections, the pressure losses should be calculated step-by-step because of the expansion of the 
gas phase, using the following equation: 

LS dp k ( Ap 
Ax 

Ax Li+Lp 
Ax 

(2) APs=J:rdx=APAxLs,     ApI>D=x 
o dx 1  , 

A very important quantity is the pump or lifting efficiency, which is defined as the ratio of the 
gained power NG over the consumed power Nc, that is T|=NG/NC> given by the equations 

Nc = J —dp = MGRTln(-^)     No = CMsg 
Po PG PO 

(LS + LI) 
PLJ 

+ LD + (1-C)g  LDML(3) 
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with pG the density and MG the mass flow rate of the gas phase. The gained power is defined as 
the increase of the potential energy of the liquid or the solid phase, with C=0 for pumping 
liquids and C=l for pumping solids, ps, pL the density and Ms, ML the mass flow rate of solid 
and liquid phase respectively. 

4. MATHEMATICAL MODELLING FOR SEPARATED THREE PHASE FLOW 

To make the problem one-dimensional, which is approximately the case in practice, the 
following assumptions are made for the mathematical formulation of the airlift mechanism. The 
planes of equal velocity and equal pressure should be normal to the pipe axis. The transport of 
the solid particles occurs primarily through water. No particular shape of bubbles or solid 
particles is assumed, due to the generalised relationship used for the calculation of the drag 
coefficients. Finally an isothermal change of state is assumed for air. This assumption is justified 
only if the three phases flow very slowly through the pipe. 

For a separated three-phase flow model, one should consider the balance equations for flow 
through the vertical pipe element of length dx and cross-sectional area A, divided into the 
subareas with cross section As, AG, AL, for solid, gas and liquid phase, respectively. Due to the 
gas-phase expansion, we have to transform the system of equations to a system of differential 
equations and to treat a step-by-step calculation procedure, using a suitable numerical method. 
The governing equations are the momentum and the continuity equations for the individual 
phases, (i=l,2,3), in differential form: 

dx   t 
, duj , 

Piaig+ piaiUi-— + 
dx 

dpi 
dx )?S.,\ 

. da; 
UiPida,+UiaiM + p    d"i = o   with    ^1 = ^1 = 0   and    £^ = 0 

dx dx dx dx     dx i=i dx 

(4) 

(5) 

The absolute velocity of the solid and gas phase, with i=l,2, and the relative velocity of particles 
in differential form, are 

dui _ dU3  ,, 1Ni dUj,r 

dx dx dx 
dui 

dx 
4 dig 

3Cni 

\\ 2 
-1 

P3 // 

1   da3 

2a | 
(6) 

For the rising velocity of bubbles, we have to consider in addition the change of the bubble 
diameter due to the expansion of the gas-phase. For an isothermal expansion of gas, with d2>o the 
initial bubble diameter at the injection point where the pressure is p() and the compressibility 
factor is ZQ, the rising velocity of bubbles in differential form is 

du0 

dx 

4 d2,oga3 
1 

Eo.iL 
p z0 

p3+2p2 

6(2p3-p2)2 

dZ 
dp -P dx 

P3-P2 

4p 

^2 da 

3a3 
^    (7) 
dx 

According to the airlift principle, the gas phase is supplied at the injection point under pressure 
pi and it is expanded to the nominal pressure pn of the storage tank. Differentiating equation of 
state and assuming an isothermal expansion, for the calculation of the compressibility factor Z as 
a function of pressure, (Schlichting [8], Chaziteodorou [ 1 ]), we get 
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dZ 
dx 

dp   p dp2 

dx   p2 dx 
Z(p) = 1-5.8198 1(T 

rv^ 
IP-  ) 

+ 2.809 10' 
\2 

IP"   ) 
(8) 

The calculation of the drag coefficient, CDi, of solid particles or the bubbles is based on a 
generalised form, similar to that proposed by Margaris and Papanikas [9], 

3        J-¥ 
CD,i = EBjRei Re; 

P3| Uj - U3 |dj 

^3 

! i = 1,2 (9) 

where the slip velocity between the corresponding two phases, uru3> is used in the Reynolds 
number and Bj are constants, given in Table 1, depending upon the shape of the particles and the 
values of the Reynolds number Re; (Molerus [10], Muschelknautz [11], Clift et al. [12]). 

Table 1.  Constants Bj for the calculation of the drag coefficient of particles or bubbles. 

Constants 
Bi        B2 B, 

Reynolds range Characteristic 
dimension 

Shape of 
particle 

Reference 

24 0 0 Rei<0.1 diameter sphere Stokes 
24 4 0.4 Rei < 104 diameter sphere Molerus 
21.5 6.5 0.23 0.5<Rei<10J diameter sphere Muschelknautz 
24 6 0.35 0.5 < R^ < 800 1.5 x a 

a= largest dimen. 
polyhedron Muschelknautz 

23 6 0.5 0.5 < Rq < 600 1.08 xdz 
dz=diam. of base 

cylinder 
l/dz=l 

Muschelknautz 

27 4.5 0.65 0.5 < R^ < 400 1.24 x a, a = edge cube Muschelknautz 

In the framework of the present paper a Runge-Kutta 4th order method was used in order to 
solve the above system of differential equations for the gas-liquid-solid flow. The variables, 
which must be defined, for the solution of the gas-liquid-solid flow, are the physical properties 
of the phases, the geometry of the pipe and the desired mass flow rate of solids. For these 
conditions, the computational algorithm calculates the necessary mass flow rate of gas. 

5. RESULTS AND DISCUSSION 

For validation purposes of our analysis, a large number of results were compared against both 
experimental and computed data by other researchers [2,3,4,7]. The average deviation of our 
results is 5% for the solid flow rate and 0.3% for the liquid flow rate, while the corresponding 
values of other researchers are 10% and 15%, respectively. The difference is due to the fact that 
their analysis is based on empirical or mechanistic model, while our analysis is based on the 
fundamental equations of fluid mechanics. 

An operation curve of an airlift pump shows mass flow rate of solids and pump efficiency as a 
function of gas flow rate delivered by the compressor (figure 3). The most significant geometric 
parameter is the pipe diameter, its magnitude has a great effect in the airlift efficiency and it is 
obvious that an optimisation of the system is very important (figure 2). It should also be noted 
that for different mass flow rates of solids different optimum diameters would result. The 
optimum design of an airlift system should aim to obtain not always the maximum efficiency but 
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a high enough efficiency for a wide range of applications, which means a wide range of mass 
flow rates of particles. 

Generally the increase in the gas injection depth Li, results in an increase of the amount of solids 
that can be pumped followed by a parallel decrease of the maximum pump efficiency, as related 
to the power consumed (figure 4). On the other hand, by increasing the injection depth L,, for 
pumping a certain quantity of solids, we can also increase the total submerged length, L,+Ls. But 
as the injection depth increases the suction part decreases, eventually reaching the limit where 
the gas injection point is at the same level with the solid bed. This phenomenon is of great 
importance to large-scale installations, such as deep-sea mining. The purpose of the airlift 
designer is to combine all the above geometric and functional parameters in order to achieve at 
first the maximum efficiency, while the solids flow rate is large enough, and on the other hand to 
maintain a satisfactory efficiency over a large range of gas flow rates. 

6. CONCLUSIONS 

An applied Air Lift Model Analysis for air-water-solid flow has been developed. Based on a 
system of differential equations, derived from the fundamental equations of continuity and 
momentum conservation, this model has a very good performance and a more general 
mathematical form, compared to other models. This model has been combined in an easily used 
computer code, named ALMA, which is a very useful tool for the optimum design of airlift 
pump installations. 

The optimisation of the installation is the more important feature of the code. This means that 
the code can calculate the optimum value for the pipe diameter, injection depth, shape and size 
of particles and bubbles, and the other parameters in order to minimise the energy consumption. 
The results of the present analysis are in good agreement with the existing data in the literature, 
but in order to approximate the phenomenon better an extended modelling is in progress now. 
Taking into account the flow regimes that may exist in the pipeline, as well as the influence of 
the solid particles to the development of the flow regimes, this extended modelling is expected 
to contribute more to the optimum design of the airlift pump installations. 
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Figure 3. Influence of the pipe diameter 
on the airlift pump efficiency 

Figure 4. Influence of the injection depth 
on the airlift pump efficiency 
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1. SUMMARY 

The present work deals with the investigation, presentation and analysis of experimental 
results, concerning the boundary shear stress distribution and the friction factor determination 
in a uniform flow within a smooth open channel with compound cross section, comprising a 
rectangular main channel and a non-symmetrical rectangular flood plain. 

2. nEPIAHTH 

STTIV rcapoüca epyaaia epeuvrovrai, jcapoumd^ovxai Kai avaXtiovrou nEipa\i(n\xd. 
OOTOTsXio-uata ue oK07tö TOV jtpoo8opia|iö vr\q Kaxavo\n\q SuxTuriTuabv Tdcecav optou KCU TOV 
VKoXoyia\iö iov crnvxekearq xpißf|q uioa as Xeio avoiraö ayooyö OTJV0ETT|<; ]ix\ ounueTpucfn; 
5iaTO(if|i;, cOTOT£Ä,oi3u£vr|c, aitö TT|V op8oycovucf|<; (lopcpfji; Kupiax; Kokri Kai |iia 87ricrriq 
opGoycovucf) 7tlrm^upucri KOiTn. 

3. INTRODUCTION 

The distribution of boundary shear stresses from flows in complex cross sections is still 
poorly understood. As a result, knowledge concerning the momentum transfer within the 
cross section is limited, despite the practical interest involved. In the case of compound 
channel, the lateral momentum transfer between regions of different depth considerably 
modifies the primary flow field. Consequently it is important to accurately specify this 
interaction between the pertinent flow fields. 

One of the pioneering works in the flow within compound non-symmetrical channels was 
that of Rajaratnam-Ahmadi [1], who performed a large number of experiments to investigate 
the interaction between main channel and flood plain in a wide channel. Stephenson- 
Kolovopoulos [2] presented a method of separating the flow of the compound channel by 
using an interface, while Tominaga-Nezu [3] studied in detail the turbulent characteristics of 
a compound non-symmetrical channel. Naot-Nezu-Nakawaga ([4] and [5]) attempted in their 
two works to explain the hydrodynamic behavior of flow in compound non-symmetric 
channels. More recently Pang [6] analyzed energy losses in such flows while Sofialides- 
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Prinos [7] simulated numerically the flow and studied the impact of roughness in the 
problem. In this study the works of Knight-Demetriou [8], Knight-Hamed [9] and Myers- 
Brennan [10] on compound symmetrical channels have been used for comparison reasons. 

A first presentation of the present work, concerning the structure of the velocity field, the 
proportion of the total flow that occurs in the various sub-areas of the cross-section and an 
estimation of Manning' n coefficient, momentum ß and kinetic energy a correction factor, 
has been recently presented by the authors [11]. In the present investigation experimental 
results by HR Wallingford [12] have also been used. 

4. THE EXPERIMENTS 

Experimental Apparatus 

i. B 
z 

i 

(i) H 

(ii) 
(iii) 

iy) (v) 

Table 1 
B+b 381 mm 

Jo 9.66 10"4 

h 76 mm 
2b 152 mm 

B-b 229 mm 
H 84-188 mm 

-+K- 
Figure 1: Typical cross section of a non-symmetrical channel with one flood plain 

The experiments were performed in a 15 m flume, 610 mm wide, with a constant bed slope of 
9.6610"4. A non-symmetrical cross section was used with a main channel 152 mm wide and a 
flood plain 229 mm wide. The typical cross section of the channel and geometrical symbols 
are presented in Figure 1. The dimensions are shown in Table 1. Both the main channel and 
the flood plain were constructed from smooth perspex and their roughness elements are 
considered as identically distributed. 

Uniform flow was achieved for any given discharge, by adequately adjusting a tailgate at the 
downstream end of the flume. Discharge was measured by a Venturi meter with two 
differential manometers, one for high and one for low discharge flows. Velocities were 
recorded using a Novar streamflow miniature electronic current meter with a propeller 
diameter of approximately 13 mm. Shear tractive stresses T0 (local values) were measured 
with the Preston technique in conjunction with the velocity readings near the wetted 
perimeter. 

Experimental Procedure 
During the present work the ratio B/b was constant, B/b=4.013, the height H varied between 
84 and 188 mm, while h was constant -equal to 76 mm. Measurements were organized in 7' 
experimental runs, each one with different height H. The most important geometrical non- 
dimensional parameter of the flow was considered to be ([11]) the ratio H* of the depth (H-h) 
of the flood plain to the depth H of the main channel: 

„*    H-h H =—ff- 0) 
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Important non-dimensional parameters are the Reynolds number, Re=(Vmean*4R)/v and the 
Froude number, Fr=VmmJ(g%)m, where Vmean= mean velocity, R= hydraulic radius, v= 
kinematic viscosity of water, g= gravitational acceleration, ^= mean hydraulic depth. In the 
present work Re and Fr numbers varied as follows: 

3.47-104 <Re< 1.4610s 

0.550 <Fr< 0.459 
i.e. the flows were fully turbulent and subcritical. 

After calculating the shear stress values on the wetted perimeter, the total shear force and the 
mean experimental boundary shear stress have been computed. The latter was compared with 
the mean shear stress T0ll=g*p*R*JE, obtained from the energy gradient JE and the 
experimental shear stress values were adequately corrected. 

5. DISCHARGE RESULTS 

For the examined cross-sections the discharges of the main channel and the flood plain are 
related to the total discharge as shown in the two plots of Figure 2. More details may be 
found in reference [11]. In the present plot a comparison is made with other works ([7], [12]) 
in compound non-symmetrical cross-sections. The indexes mc and fp refer to the main 
channel and flood plain correspondingly. 

1.0 
- present work-Bfa=4,0 
- Sofialidis-Prinos-Bfo=3,0 
- Wallingford-B/b=2,60 

X symbols =main channel  ^^B 

open symbols =flood plain ^% 

100.0 

Qmc/Qf, 

10.0 

1.0 

= 0.4777x-"u' 

R2 = 0.9973 

0.9984 

■ present work 

A Sofialidis-Prinos 

• Wallingford 

0.0 

Figure 2: 

0.5   Qmc/Q,Qrp/Q      1.0 0.0 0.1 1.0 

Non-dimensional discharges CWQ, Qfp/Q and CWQfp as a function of H* 

6. BOUNDARY SHEAR STRESS RESULTS 

The experimental shear stress distributions on each sub-element of the wetted perimeter were 
numerically integrated to give the mean boundary shear stress and shear force value. For 
convenience, the wetted perimeter was divided in five parts according to the flow direction 
(Figure 1): (i) The main channel left wall (ii) The main channel bed (iii) The main channel 
right wall (iv) The flood plain bed and (v) The flood plain (right) wall. For each run local 
shear stresses x0 were calculated and plotted in dimensionless form: 
> (y/(B+b), To/Top)    for the channel and flood plain beds and 
> (TO/TQ^, Z/H) for the channel and flood plain walls 
where y is the horizontal coordinate for points on the channel bed and z is the vertical 
coordinate for points on the walls. 

In Figure 3 the shear stress distribution on the channel and flood plain beds is presented, 
while in Figures 4, 5 the shear stress distribution on the left wall of the main channel and the 
right walls of the main channel and flood plain are shown correspondingly. 
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Figure 6 represents the percentage of the shear force of each sub-element to the total force of 
the cross-section as a function of parameter H*. These results are qualitatively the same, as 
those found by other works for compound, both symmetrical and non-symmetrical cross- 
sections ([3], [4]). 
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0.1 
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'■'■  ■                                                                                                                         i         
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Figure 3:    Boundary shear stress distribution on the main channel and flood plain beds (sub- 
elements ii and iv) 

z/H 

full symbols =right main channel wall 
open symbols =right flood plain wall 

Figure 4:    Boundary shear stress distribution on the main channel left wall (sub-element i) 
Figure 5:    Boundary shear stress distribution on the main channel and flood plain left walls 

(sub-elements iii, iv) 
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Figure 6: Percentage of the shear force of each sub-elements to the total force of the 
compound channel (a) for the main channel and (b) the flood plain, as a function 
of parameter H* 
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In Figure 7 the ratio of the shear forces on the main channel and on the flood plain is plotted 
as a function of the ratio (i) of the corresponding Reynolds numbers and (ii) of the 
discharges, also of the main channel to the flood plain. It can be seen a good linear 
relationship between them exists and the numerical values of the mean experimental shear 
forces of the main channel and of the flood plain may easily be computed. By taking into 
account the equations of Figures 2 and 7, an easy to use relationship is deduced: 

5F%- =0.133 (H *Y,Jm + 0.7871   or 
SF%<„ 

(2) 

SF%„      0.133-{H*)-'5064 +0.7871 

SF%  ~ 0.133 ■ (H *)~
UO64

 +1.7871 
and 

SF%, 

SF%     0.133- (H *)'L5064 +1.7871 
(3) 

6.0 

4.0 

■J 2.0 

0.0 

- 
y = 0.3685x + 0.7636 
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Figure 7: Ratio of the shear forces on the main channel to the flood plain as a function of 
the ratio of the Reynolds numbers and of the discharges of the main channel to 
the flood plain 

7. FRICTION FACTOR CALCULATION 

A very interesting aspect of the problem is the calculation of the friction factor f of the total 
cross-section and its behavior for the various parameters of the problem. The friction factor 
may be calculated by combining Darcy-Weisbach equation, with the calculation of mean 
shear stress obtained from the energy gradient. Experimental results from other researchers 
for compound non-symmetrical cross-sections are also plotted on the same graph. The 
relation between the friction factor f and Reynolds number is presented in the log-log 
diagram of Figure 8. The well-known Prandtl equation for a smooth rectangular channel is 
plotted on the same graph. As can be seen from Fig. 8, the behavior of friction factor f for 
compound channels, with larger values of Reynolds number, conforms very well to the 
Prandtl equation. For smaller values of Re, the behavior is the same with that, which was 
found by other researchers [3], [4], [5], [9]. Although this is not theoretically explained, it 
seems that the reason for this behavior change in channels with small height H, is the way 
with which the hydraulic radius R is defined and calculated. For smaller water depths, the 
flood plain is physically almost not influencing the behavior of the main channel, because it 
shows some independent-non-compound characteristics. However the hydraulic radius takes 
into account the whole cross-section and this may explain the prediction of a smaller f, from 
that computed by Prandtl equation. 
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Figure 8:    Friction factor f for compound non-symmetrical channels 

8. CONCLUSIONS 

In the present work experimental velocity and shear stress results in a channel with 
compound non-symmetrical cross-section have been elaborated. The results were 
qualitatively similar to those predicted by other works both for symmetrical and non- 
symmetrical cross-sections. An easy-to-use analytical relation is given, which permits the 
calculation of the mean shear stress of the main channel and of the flood plain as a function 
of the mean shear stress of the compound cross-section. More work is necessary, especially in 
the direction of modeling and numerical prediction of the flow behavior. 
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1. SUMMARY 

In the present work the height density function is introduced as a means to analyze the 
measuring volume properties for Laser Doppler Anemometry (LDA) and Phase Doppler 
Anemometry (PDA) systems in order to provide unbiased estimators for the reduction of flow 
data as well as error estimation. To illustrate the capabilities of the methodology the height 
density function of an ellipsoid is derived and used to estimate the cross sectional area of the 
measuring volume of a LDA system as a function of velocity direction. 

2. INTRODUCTION 

Laser Doppler Anemometry (LDA) [1] is a non-intrusive, optical technique for local, time 
evolving measurements of velocities in fluids. Two parallel Laser beams are focused on a 
control volume. Light scattered on seeding particles is collected on a photo-detector. 
Interference due to scattering from two beams with different propagating unit vectors results 
to a signal with frequency proportional to the local velocity of the flow. Phase Doppler 
Anemometry (PDA) [2] is an extension of LDA technique measuring the size and velocity of 
small spherical particles, in dispersed two phase flows. The velocity measurement is 
accomplished as in LDA, but collecting the scattered field in different directions using at 
least two photodetectors PDA is capable to provide size information based on the phase 
difference of the signals. 

LDA and PDA signal processing systems are capable to evaluate the properties of a particle 
crossing the measuring volume depending on the particle trajectory and velocity magnitude. 
For this reason the sensitivity of these systems is different for different directions, introducing 
a bias to the measurements. Since in most processing systems a particle is evaluated only 
once during its passage through the measuring volume the important parameter is the 
effective cross sectional area in each direction [3,4,5]. In this work the height density 
function is introduced and is used for the estimation of the effective cross sectional area of 
LDA measuring volumes as a function of the velocity magnitude and direction. 
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3. DEFINITION OF THE HEIGHT DENSITY FUNCTION 

Let us consider two surfaces Si(x, y, z) and S2(x, y, z) single valued for (x, z) in an area A, on 
the xz plane. The height between the surfaces in direction y is 

H{x,z) = \ySi{x,z)-yS2(x,z)\ 0) 

We define a characteristic function 
k(L,x,zhl       if    H(x,z)<L    1        for   0^L<oo 

lc(L,x,z) = 0     if   H(x,z)>L 

The integral 

A{L) = jjk(L,x,z)dxdz (3) 
A 

defines the part of A, which corresponds to height less than L and is a positive, increasing 
function. 

We define the cumulative height distribution function, G(L), as 

G(L) = 4ß (4) 
For the segments where G(L) is continuous, we define the height density function, g(L), as 

dG     \   dA ,„ 

^)=^ = T^ () 

If G(L) has a discontinuity at Lrf with increase AG(Ld) (indicating that a part of S2, 
corresponding to a projection area A,-AG(L</), is the same as a corresponding part of Si 
displaced by ±Ld in direction y) then we define the height density function, g(L) at Ld as 

g(L<1)=AG{LJ)-8{L-Ld) = -~AA{Lliy8{L-LlJ) (6) 

where 5 is the Dirac delta. 

If in place of L we use / = ULC, where Lc is a characteristic length then we are able to define 
the corresponding normalized (nondimensional) height distribution and density functions. In 
the following we will work exclusively with the normalized version of these functions. 

Some properties of the height distribution and density functions are given in the following: 
g(l)>0 (7) 

]g(l)dl=\ (8) 
0 

G{l0) = )gd)dl (9) 
0 

llH(x,z)dxdz = AlLc]lg(l)d! = V (10) 
A, 0 

where V is the volume bounded by Si, S2 and the surface produced by the extrusion of the 
boundary of A, in y direction. 

Moreover if /„,„ is the maximum normalized height in A, 

g(/)=0       for/>/mOTand      j g(I)dl =1 O1) 
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Figure 1. Derivation of the height distribution function for an 
ellipsoid 

4. THE HEIGHT DENSITY FUNCTION OF AN ELLIPSOID 

Let us now determine the height distribution, G, and density, g, functions in the direction of 
axis y for an ellipsoid (see figure 1) given by the equation 

*i y- fi , 
a2+b2+c2 

(12) 

The height corresponding to a point (x, z) within its projection on the xz plane is L = 2lyl, and 
the maximum Lmax = 2b is reached for x = z = 0. Using Lc = L^ to normalize the height 
/ = LILmax, it is straightforward to prove that the projection area corresponding to height less 
than / is 

A(l) = mc-n((njl-l2\cjl-l2)=7aicl2 (13) 

Confining At in the domain of the ellipsoid's projection area, Atot, The height distribution can 
readily be determined 

G(l): • = z2 (14) 

and differentiating 

n\ - dG - dl* - 1/ 
5 dl      dl 

(15) 

It can be proved that theses equations give the height distribution, G„, and density, g„, 

ellipsoid                       i 

Sn 1 
o ^^^ 

'                i 
0 1/0 1      / 

Figure 2. The height distribution, G„, and height density, ga, functions for an ellipsoid 
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functions for an ellipsoid in any direction, n, given that L„iraM is the maximum height in 
direction n and Anw, is the area of the ellipsoid's projection on a plane normal to n (figure 2). 

5. LASER DOPPLER ANEMOMETRY 

A typical Laser Doppler Anemometry (LDA) system is shown in figure 3. A laser beam is 
split in two equal beams, which are focused at the measuring location. The measuring volume 
is the part of the intersection of the beams seen by the photodetector. If the receiving optics 
are in the forward or backward direction and the beam angle is not very small (in which case 
the beam intersection would be very long) the optics usually see the whole beam intersection 
and it is customarilly assumed [1,2] that the measuring volume is an ellipsoid (figure 4) of 
dimesions 

Ax=     d,1,_s,    Ay = d„,    Az=  .  ,?,., (16) 
cosi (0/2)' sin(6/2) 

where dm is the beam waist diameter at the focal point. A convenient way to outline the 
principle of operation, sufficient for the purpose of the present study, is based on the fringe 
pattern "created" at the beam intersection due to the interference of the two beams. The fringe 
planes are parallel to each other at a constant spacing, df, which is a function of the beam 
wavelength, A, and the beam angle, 0. They are normal to the plane of the beams and parallel 
to the beam bisector. Small seeding particles in the flow with properties securing that they 
follow precisely the fluid flow, pass through the control volume, that is through the fringe 
pattern. A photodetector focused on the control volume selects light scattered by every 
particle. The signal thus produced is confined in a Gaussian envelope (due to the Gaussian 
distribution of the intensity in the beam, the Doppler burst in figure 3) and its frequency,/D, is 
equal to the inverse of the time that the particle takes to pass through two successive fringe 
planes. Based on the evaluation of the signal frequency, LDA measures the flow velocity 
component in direction nf, normal to the fringe planes (x axis in figure 4), as 

07) 
2 sin (0/2) 

To distinguish flow direction a frequency difference of the beams is introduced with a 
frequency shifter making the fringes to move normal to their planes with a constant velocity. 
Thus the velocity - frequency relationship is shifted and stationary particles in the control 
volume produce a signal with frequency equal to the shift frequency, ff.s., whereas particles 
moving in the same direction or against the fringe movement produce lower or higher 
frequencies respectively. 
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Evaluation of Doppler signals 
Let us suppose that at a particular point in a flow the probability density function of the x 
component of the velocity, ux, is B(ux). The corresponding probability density function of the 
ux velocity measurements is 

Em{ux)  
BM = B(ux) 

[j(ux)Em(ux)dux 

(18) 

where Em(ux) is the efficiency of the system to measure ux which may introduce a bias to the 
measurements. Using a LDA system Em(ux) may be evaluated as proportional to the data rate 
achieved for each velocity ux. 
Let us now suppose a measuring volume in a flow uniformly seeded with small monosized 
particles (much smaller than the measuring volume dimensions) with concentration of c 
particles per volume, securing that only one particle will be in the measuring volume at any 
time. The data rate for a LDA system measuring a velocity u in direction n dominating the 
measuring volume for a fraction of time will be 

R(u) = c\u\Aneff (19) 

Correspondingly in an isotropic turbulent flow with probability density functions B(ux), B(uy), 
B(uz), for the three velocity components the corresponding efficiency of the system to 
measure a specific magnitude ux is 

R(ux) = c[^[j(uy)B(uz)^u2
x+u2

y+ul An>£# duy duz (20) 

and the corresponding probability density function of the ux velocity measurements is 

B(ux) = B{ux) 
cLLB(uy)B(u^^lu' +u* +u*  *** duy du* 

£B(«X)C££ä(B,)ä(II1)>/«*+MJ+II1
2
 AnieJf duy duz dux 

(21) 

Processing systems are able to evaluate the Doppler frequency if the photodetector's signal 
has a sufficient number of signal periods, that is if a particle has crossed a sufficient number 
of fringes. For a system with no frequency shift a particle following a certain trajectory will 
cross the same number of fringe plane regardless of its velocity. If Nmin is the minimum 
number of fringes for a valid measurement then the minimum length of a particle trajectory 
moving in direction n within the measuring volume, normalized with the maximum height of 

the measuring volume ellipsoid in this direction should be 

/(n)r-L'*(nl 
'rain v"/ 

Nmi„df N^df Lmin(n/) (22) 
Lmax(n)    |sin(Zn,n/)JLmax(n)    |siny/| Lmax(n)    |sinyr| Lraax(n) 

Assuming that every particle which crosses the measuring volume is evaluated if its 
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trajectory length is larger than corresponding /min(n) then the effective cross sectional area is 
A,,# = K.,o, ~ A, (U (n)) = ABJ0, (1 - G„ (Zm, (n))) (23) 

It can be analytically derived that for the optical setup described in the preceding section the 
maximum height of the ellipsoid in direction n given by the angles «p, l// is 

LmM(n(<P>Y)) = 2&xAyAz (l-tan2«p)(l-tanV) 
Ax2Ay  - Ax2Az2 + Az2 (1 - tan2 <p)(Ax - Ay2 tan21//) 

and the corresponding projection area is: 

\,,„<(<P'¥) = n 
Ax2Ay2-Ax2Az2+Az2(l-tan2(p)(Ax2-Ay2Un2y/) 

(l-tan2<p)(l-tan2 v) 

(24) 

(25) 

Based on these derivations the normalized effective cross sectional area, for various ratios of 
the minimum length to be travelled by a particle in x direction to the measuring volume 
maximum height in the same direction, is plotted in figure 5. The graphs are referring to a 
conventional LDA forward scatter optical setup with beam displacement 50mm, transmitting 
optics focal length 110mm and beam waist diameter 88um. These graphs show that A^eff is 
varying significantly with flow direction, especially for large Lm,n(n/)/Lm„(n/) ratios, 
indicating that bias may be introduced in LDA measurements. In fact the problem is not so 
grave as figure 5 indicates since usually the velocity direction fluctuates in a rather small 
solid angle. Besides the use of frequency shifting is capable in most cases to alleviate the 
problems associated with large Lm,„fn/)/LmOT(n/) ratios. These effects have to be studied 
further. 

6. CONCLUSIONS 

The height distribution and density functions have been introduced and their forms for an 
ellipsoid have been derived. These derivations have been used to estimate the cross sectional 
area of the measuring volume of a LDA system as a function of velocity direction. The 
results indicate significant bias of the measurements in flows with velocity direction changes 
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in the absence of frequency shifting. Further studies are needed for the correct estimation of 
the error and the development of data reduction estimators that may alleviate the bias. 
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1. SUMMARY 

Homogenized constitutive equations, damage evolution equations and some related 
experimental results for viscoelastic composite materials with constant or growing damage 
are described. Behavior of both fiber and particle-reinforced composites is discussed. The 
essential assumptions in the models are that there is one dominant creep function, the 
reinforcement phase is very stiff relative to the matrix, and the composite is linearly 
viscoelastic when the damage is constant. We also discuss a study in which acoustic 
emissions have been used to obtain evidence on damage growth in a fiber composite and how 
they are affected by different loading histories; this work includes a comparison of theory and 
experiment on load history effects. 

Space does not allow for an extended bibliography. However, it is hoped that publications 
cited in this paper will assist the interested reader in becoming familiar with the broader 
relevant literature. Similarly, figures that illustrate the comparison of theory and experiment 
and other aspects of the discussion are not included here, but they are in the cited literature 
and will be used in the lecture. 

2. INTRODUCTION 

Many technically important composites consist of one or more polymeric viscoelastic phases 
which are reinforced with relatively high modulus particles and/or fibers. These composites 
often exhibit a considerable amount of distributed damage in the form of microcracks prior to 
global failure. When there is a high volume fraction of particle reinforcement (as in asphalt 
concrete or solid propellant) or fiber reinforcement (as in many structural composites) 
microcracks may develop at low loads, but are arrested and do not necessarily lead to failure 
until high loads or very long times are reached. 

Here we are concerned with models for damage evolution and the effect of distributed 
damage on homogenized constitutive equations for viscoelastic composites. Broad-spectrum 
viscoelastic behavior is allowed for in order to develop realistic models of polymer 
composites. Linear behavior, apart from damage growth effects, is assumed. Multiple creep 
functions, nonlinear viscoelasticity and viscoplasticity with damage growth are taken into 
account in [1], 

Models for void formation in constrained rubber and particle-filled rubber date back to the 
pioneering work of Gent and Lindley [2] and Farris [3], respectively.   This early work 
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neglected viscoelastic effects. More recent theoretical and experimental studies by Schapery 
et al. [4 -7] have accounted for broad-spectrum viscoelastic behavior of filled rubber and 
asphalt concrete. 

Models and some experimental studies for viscoelastic behavior of fiber-reinforced plastics 
with growing damage have been addressed by Bocchieri [8], Schapery and Sicking [9] and 
Weitsman et al. [10, 11]. 

3. COMPOSITES WITH STRAINS PROPORTIONAL TO ONE CREEP FUNCTION 

Constant Damage: Let us consider first a linear constitutive equation having constant 
damage, with £ and a as the strain and stress tensors, respectively, 

e = {Sda}+ET (1) 

where S is a fully symmetric, fourth order creep compliance tensor and er is the strain tensor 
due to temperature and moisture (and other absorbed substances which may affect the 
strains). The braces are abbreviated notation for a linear hereditary integral. Although the 
most general form could be used, allowing for general aging effects, we shall use the familiar 
form for thermorheologically simple materials because the composite discussed later in this 
section exhibits this behavior with constant or growing damage: 

{fdg} = lt0_M^')ftdt'=fo_f^-^A' (2) 

where it is assumed /=g = o for t <o and 
^/•dt"/aT[T(t")],       %'=W) (3) 

Also, aT(T) is the temperature-dependent shift factor. If the temperature is constant in time 
then ^-%' = {t-t')laT Physical aging [12] may be taken into account by introducing 
explicit time-dependence in aT; i.e. use aT = aT(T,t") in Eq.(3). The effect of plasticizers, 
such as moisture, may also be included in aT. When Eq.(2) is used with Eq.(l), /and g are 
components of the creep compliance and stress tensors, respectively. 

In certain important cases, the creep compliance components are proportional to one function 
of time, 

S=kD (4) 

where A: is a constant, dimensionless tensor and D =D(£) is a creep compliance (taken here to 
be that obtained under a uniaxial stress state). Isotropie materials with a constant Poisson's 
ratio satisfy Eq.(4). If such a material has mechanically rigid reinforcements and/or holes (of 
any shape), it is easily shown by dimensional analysis that its homogenized constitutive 
equation satisfies Eq.(4); in this case the stress and strain tensors in Eq.(l) should be 
interpreted as volume-averaged quantities. The Poisson's ratio for polymers at temperatures 
which are not close to their glass-transition temperature, Tg, is nearly constant; except at time 

or rate extremes, above T Poisson's ratio is essentially one-half, while below Tg it is 

commonly in the range 0.35-0.40 [13]. 
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Equations (1) and (4) give 

£={Dd(ko)} + £T (5) 

The inverse is 

a=kl{Ede}-k,{EdeT} (6) 

where kx = k~ and E = E(\) is the uniaxial relaxation modulus which, for 
t > 0, satisfies {DdE} = {EdD} = 1. 

In relating solutions of elastic and viscoelastic boundary value problems, and for later use 
with growing damage, it is helpful to introduce the dimensionless quantities 

eK = -^[Ede},   ER
T=jr{EdeT),   uR =-^{Edu) (7) 

tR bR ER 

where ER is an arbitrary constant with dimensions of modulus, called the reference modulus; 
also e" ande* are so-called pseudo strains and uR is the pseudo displacement. Equation (6) 
becomes 

a = Ce"-CzR (8) 

where C = ERk, is like an elastic modulus tensor; its elements are called pseudo moduli. 
Equation (8) reduces to that for an elastic material by taking E=ER\ it reduces to the 
constitutive equation for a viscous material if E is proportional to a Dirac delta function of \. 
The inverse of Eq.(8) gives the pseudo strain e   in terms of stress, 

eK = So+4 (9) 

where S = C~ =klER. The physical strain is given in Eq.(5). 

Growing Damage: The correspondence principle (CPU in [14, 15]), which relates elastic 
and viscoelastic solutions, shows that Eqs.(l)-(9) remain valid, under assumption Eq.(4), with 
damage growth when the damage consists of cracks whose faces are either unloaded or have 
loading that is proportional to the external loads; this is true even with general aging effects. 
With growing damage k, C and S are time-dependent because they are functions of one or 
more damage measures; the strain eT may also depend on damage. The fourth-order tensor k 
must remain inside the convolution integral in Eq.(5), just as shown. This position is required 
by the correspondence principle. The elastic-like Eqs.(8) and (9) come from Eq.(5), and thus 
have the appropriate form with growing damage. However, with healing of cracks, pseudo 
stresses replace pseudo strains because k must appear outside the convolution integral in (5) 
[14, 15]. 

The damage evolution equations are based on viscoelastic crack growth equations and, in a 
more general  context,  on  nonequilibrium thermodynamic equations.     Specifically,  let 
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WR and W£ denote pseudo strain energy density and pseudo complementary strain energy 

density, respectively, 

W*=-C(eR-e*)(eÄ-e*)-F,      W« =±Soa + eR
To + F        (10) 

2 ^ 
so that 

WR = -WR + creR (11) 
and 

a=awR/3eR,   eR = 3Wc
R/3o (12) 

The function F is a function of damage and physical variables that cause residual stresses 
such as temperature and moisture. 

Let us assume here that the damage is fully defined by a set of scalar internal state variables 
(ISVs), S (p = 1,2, ...P) instead of tensor ISVs. Thermodynamic forces, which are like 

energy release rates, are introduced, 

/, = -dW" I dSp = dW*/dSp (13) 

where the equality of these derivatives follows directly from the total differential of Eq.(l 1). 

Although more general forms could be used, the evolution equations for Sp = dSp/d£, are 

commonly assumed in the form Sp = Sp( Sq,fp) in which Sp may depend on one or more Sq 

(q = 1, ...P), but on only one force / . The entropy production rate due to damage is non- 

negative if  }  fpSp > 0, thus satisfying the Second Law of thermodynamics. It is assumed 

p 

that when l/pl is less than some threshold value (which may be zero) then Sp =0. 

The use of tensor ISVs is discussed and compared with scalar ISVs by Schapery [1]. The 
form of the equations in this section is equally valid for tensor and scalar ISVs. 

Application to Filled Rubber: Damage Growth in particle-reinforced rubber has been 
characterized using a power law when^, > 0, 

S ,=(/„)"' (14) 

where ap is a positive constant, and Sp = dS/d% . (For the composite in [6, 7] two ISVs, 

with oci = 4.5 and oc2 = 6, were used.) A coefficient depending on Sp may be included in 
Eq.(14); but it does not really generalize the equation because a simple change of the variable 
Sp may be used to eliminate the coefficient. 

This composite is usually isotropic in the undamaged state. However, except for pure 
hydrostatic tension or compression, it becomes anisotropic as a result of stress-induced 
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damage. The experimental method used in [6] to characterize the composite consisted of 
testing rectangular bars at several values of constant tensile strain rate while under several 
levels of confining pressure and at several temperatures. This type of loading caused the 
material to be transversely isotropic with damage, in which the axis of isotropy is coincident 
with direction of tensile straining. In [7] these results were used to develop three- 
dimensional constitutive and damage evolution equations, while retaining the transverse 
isotropy assumption. These equations were then used in a finite element code (ABAQUS) to 
predict the nonuniform mechanical state of rectangular plates with and without holes and 
macro-cracks. Local, transverse isotropy was assumed, with the isotropy axis oriented in the 
direction of the local maximum principle stress (considering the full history of loading). 

4. GENERALIZATION FOR FIBER COMPOSITES 

In many uses of fiber composites the fiber deformations cannot be neglected. Even if the 
fibers are elastic and much stiffer than the matrix, the constitutive and damage evolution 
equations in Section 3 do not necessarily apply. The primary theoretical issue is that the 
correspondence principle with growing damage, as discussed in Section 3, is not rigorously 
applicable. However, in unidirectional composites the primary effect of fiber deformation 
(for relatively stiff fibers) may be taken into account by modifying the normal stress acting in 
the fiber direction a,. This leads to a correspondence principle with growing damage like 
that discussed in Section 3 [9]. The modified constitutive equations take the form of Eq.(6), 
but with Gi replaced by a, - £je,, where a,, Ex and e, are the stress, axial modulus and 
strain, respectively, in the fiber direction. This modified constitutive equation may then be 
used in applications involving multidirectional laminates and in damage evolution equations. 
Acoustic emission (AE) monitoring and waveform analysis have been used to study 
experimentally the effect of loading history on microcracking in a carbon/epoxy fiber 
composite [8]. Theoretical predictions of microcracking, based on a viscoelastic crack 
growth model, were confirmed by the AE data. 

5. CONCLUSIONS 

Continuum damage models (but not micromechanical models) of varying degrees of 
complexity exist for viscoelastic composites. However, the only substantial experimental 
support for these models is for initially isotropic particle-filled rubber. Even here, though, 
more experimental work is needed, especially in multiaxial stress states, including studies in 
which there is significant rotation of the principal stress directions. Experimental studies in 
support of damage model validation for viscoelastic fiber composites is practically 
nonexistent. Durability analysis of fiber composites is still quite limited because of the lack 
of established viscoelastic damage models. 
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1. SUMMARY 

A major challenge in composite design is to calculate the intensities of the damage 
mechanisms at any point of a composite structure subjected to complex loading and at any 
time until final fracture subsequent to strain and damage localization. One approach for 
laminated composites is based on what we call a damage mesomodel, for which the 
characteristic length is the thickness of the elementary ply; macrocracks are simulated as 
completely damaged zones. At the present time, micromechanics approaches for the 
prediction of final fracture and localization are far from complete. 
After having presented the basic aspects of the meso- and micromodels, we will attempt to 
connect the micromechanics and the mesomechanics of laminated composites in order to get 
a better understanding and prediction of localization and final fracture. 
In the end, the main questions which remain open will be discussed. 

Keywords: laminate, localization, fracture, mesomechanics, micromechanics. 
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2. INTRODUCTION 

A preliminary step, which has been done in previous studies, is to define what we call a 
mesomodel of a laminate. On the mesoscale, characterized by the thickness of a ply, the 
laminate's structure is described, as in Ladeveze [1], as a stacking sequence of homogeneous 
layers throughout the thickness and the interlaminar interfaces. The main damage 
mechanisms are described as: fiber breakage, matrix microcracking and debonding of 
adjacent layers (see Figure 1). 

Brittle fibre rupture 
Fibre-matrix interface debonding 

|,)    Matrix micro-cracking 

Adjacent layer debonding 
(Delamination) 

Figure 1: Damage and failure mechanisms 

The single-layer model includes both damage and (visco)plasticity [2]. The interlaminar 
interface is represented by a two-dimensional mechanical model which ensures the transfer of 
traction and displacement from one ply to the next. Its mechanical behavior depends on the 
angle between the fibers of two adjacent layers [3] [4]. The state-of-the-art of models based 
on damage mechanics can be found in [5]. 

Figure 2: Mesomodeling of a laminate 

It is well-known that the simulation of fracture using a continuum damage model leads to 
severe theoretical and numerical difficulties [6] [7]. A second step, which has also been 
completed, is to overcome these difficulties. For laminates and, more generally, for 
composites, we proposed the concept of "mesomodel" in which the state of damage is 
considered uniform within each mesoconstituent. For laminates, damage is uniform 
throughout the thickness of each layer. In addition, we introduce continuum damage models 
with delay effects combined with dynamic analysis [8]. Various comparisons with 
experimental results have been made [9] [10] [11] [12] [13] [14]. 

The example concerns a composite plate made of carbon fiber (T300) and epoxy resin [914] 
(Allix [30]). The in-plane dimensions of the plate are 125 mm & 75 mm and the stacking 
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sequence is [452) O2, -452,,902]s. The impact is achieved by a mass of 2.9 kg at a velocity 
of 2.2 m/s, which corresponds to an energy of 7J. 
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Figure 3: Transverse macrocracks in the plies after a low-velocity impact 

Another approach is to use micromechanics models, which are closely connected to 
microobservations of the different microcracking mechanisms [15] [16] [17] [18] [19] [20] 
[21] [22] [23] [24] [25] [26] [27]. The first scenario takes into account matrix microcracking, 
which is parallel to the fibers of the central layer. The second scenario involves a diffuse 
delamination, whereas the third one takes into account microdeteriorations at the fiber-matrix 
interfaces only, but not through the ply's thickness. 
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Figure 4: Different scenarios on the microscale for a damaged interior layer 

However, today, this approach is far from being complete for the prediction of final fracture 
and localization. 
In [28] [29], an attempt to completely connect the micromechanics and mesomechanics of 
laminated composites was made in order to get a better understanding and prediction of 
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fracture. The central and crucial point of discussion is the main homogenization 
assumption which leads to the mesomodel: for any stacking sequence and for any loading, 
the laminate can be described in terms of two elementary constituents: the single layer and 
the interface. Numerous finite element calculations were performed to simulate the behavior 
of various stacking sequences and various load configurations, including thermal stresses. 
Approximate quantities and relations for the ply's material were introduced using the 
mesomodel as a guide. These quantities and relations are approximately independent of the 
characteristics of the adjacent parts, i.e. they depend (approximately) only on the 
characteristics of the cracked ply considered. The error is generally a few percentage points, 
10 being the maximum. Consequently, the mesomodel, after minor modifications, appears to 
be completely compatible with classical micromechanics models and related to basic material 
characteristics. Figure 5 shows the material's mesodamage curve for a single-layer T300- 
914. This curve relates the transverse mesodamage variable d' to the associated damage 
force; it depends partially on the thickness. 
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Figure 5: Mesodamage evolution law d'ovY' for T300-914 material 

In conclusion, several open questions will be discussed. 
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1. SUMMARY 

An overview of the research concerning the theoretical approach to the loss of stability of a 
cylindrical shell subjected to the external radial pressure is presented. Previously the authors 
derived a certain general formula for such a case showing that the procedure can be applied to 
various boundary conditions (symmetrical, both fixed or simply supported ends, as well as 
the nonsymmetrical, one fixed and the other simply supported end). The generality of the 
derived expression consists in the fact that different known formulae for the described 
boundary conditions appear to be just its particular cases. After that it was shown that the 
Lateral Stability Function must be taken into account in the calculations of the critical 
pressure. Different forms and types of the deflection functions were investigated as well as 
their influences on the form of the expression for the critical pressure. The deflection function 
was assumed in the form of the potential series, then in the form of the sinusoidal function 
and finally as an exponential function. For all cases the expressions for the critical pressure 
are derived and shown. 

2. INTRODUCTION 

An interesting and important practical engineering problem, studied by several authors is the 
problem of the loss of stability of a cylindrical shell subjected to the external radial pressure. 
Several expressions for the critical load were proposed by different authors (Mises formula 
for simply supported ends [1], [2], [3], W. Nash and V. A. Nagaev formulae for fixed ends 
[2]). The two last mentioned formulae applied to the same shell give different critical 
pressures. The authors of this paper tried and derived [4], [5], [6] a more general, may be 
more correct, expression valid for different end supports, and giving the previously 
mentioned formulae just as its particular cases. 

The starting point are partial differential equations for the considered shell problem [1], [2] 
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D„4 1 d20      qRd2w 
— V   w =  
h Rdx2       h  dy2 

V44> = 
■Ed2w 

Rdx 2  ' 
(1) 

w(x,y)- deflection function, x and y - circumferential and longitudinal coordinates, 
0(x,y)- stress function, h, R, L, and D - shell thickness, radius, length and bending stiffness, 
E -Young's modulus. The deflection function is assumed in the form [4], [5] 

w=w(^,y) = *?(%) sinay . (2) 

!; = x/ L - dimensionless longitudinal coordinate, n - number of waves in the circumferential 
direction, a = n/R - reduced number of waves, W(t;) is introduced [4], [5] as 

WZ) = fa($h8(0)]-\g($) ~ 8(l)f- (3) 

It can, in general case, satisfy even mixed boundary conditions, and the function g(t; ) must 
satisfy some functional equations. If the integrals of the form 

J dq 
(4) 

are introduced the Lateral Stability Function (LSF) [4], [5] can be defined as 

1     * -[e^lM^-atä-e-^lMUfö] e(q-,a)-- 
4aLd% 

(5) 

The application of the Bubnov-Galerkin method leads to the relation connecting the external 
radial pressure q in its dimensionless form q   to the LSF. 

q =- 
Kh, 

_  K. 
i _ 

D2-2D,n2 +D0n" + ]8(^,n)W (E,)dZ, (6) 

The critical number of waves is determined from the integral equation 

dÖ(4,n) 
2D2-2D0n

4=\Y(i;) 

£>    = 
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Cr =jy(gr   1,     <*£    (r = 0,1,2) 

o dq 

K   -R- K   -k 

(7) 

(8) 

(9) 

(10) 
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Dr are the new proposed [4] generalized dimensionless shell stiffness coefficients depending 
on the shell geometry through the coefficients Kl,(i = l,2.), on the assumed deflection 

function defined by (2) and (3) through the generalized constants Cr,(r -0,1,2.) and on 

material constants E and v. For K, K2 ' = 1 the coefficients Dr reduce to the bending 

stiffness D = Eh3 /12(1 -v2) depending only on ft, E and v , and the constants Cr reduce 

in the same case to Eh3. The critical number of waves nCR introduced into the equation 

connecting the external load and the LSF, gives the general expression for the critical 
pressure in the form [4], [5], [6] 

lot = 
VCR 

,R* K, 
c 
^OnCR 

D0nCR
4 2D1nCR

2+D2+je(^nCR)
tF(^)d^ (11) 

The generality of the expression (11) for the critical pressure was explained in [5] and [6] and 
it will be mentioned here only in the condensed way. 

2.1. Shell with built in ends. The formula proposed by V. A. Nagaev is obtained if the 
function !Ff£) defined by (3) is introduced in the form [4], [5] 

and the LSF [4], [5] as its consequence is 

24 ea,a) = 
(aLf 

The formula proposed by W. Nash is obtained if f(%) is assumed in the form [4], [5] 

Y(£) = sin2n£ 

giving as its consequence the LSF [4], [5] as 

8n" cos2nt; 
ett.a)-. 

\aL? +4n2J 

(12) 

(13) 

(14) 

(15) 

2.2. Shell with simply supported ends. The expression known as the Mises formula [1], [2], 
[3] will be obtained from the function ¥(%) assumed in the form [4], [6] 

Y(Z) = sin7g 

giving the LSF in the form [4], [6] 

K4 sinnE, 
Ott.a): 

\aL)2+n2] 

(16) 

(17) 



149 

3. INFLUENCE OF THE LATERAL STABILITY FUNCTION ON THE FORM OF 
THE CRITICAL PRESSURE 

The influence of the form of the LSF on the critical pressure can be estimated from the 
integral equation (7) for the determination of the critical number of waves. If the LSF can not 
be eliminated from the considerations, as it is the fact because of its coupling with the 
functions f(|), its influence on the results can be examined and analyzed in the way that 
follows. The expression for the pressure defined by (6) will be decomposed into two parts ?, 

and q  where only the part q2 depends on the LSF 

4,otal=4l+42 (18) 

= -*J-\p2-2D,n2+D0n
4] (19) 4i ~ r   2 C0n 

K, 
42 = 7 

C0n
2 

j0(|,n/F(S;d| (20) 

If the LSF is not taken into the consideration it is easy to obtain the critical number of waves 
n2CR from (19) and in that case the critical pressure becomes 

<^-2-^<4m^>-6CiKiK\(l_vl)(^-c,>) <m 

The influence of the LSF can now be estimated from the relative difference 

M „    n x_(42)cR-(4totalkR (22) 
A( 42 • 4wtai) = Jl—; y   ' 

I 4total >CR 

This expression was calculated for the shell with fixed ends, with K2 = 1 (a short shell) and 
for K, = 100,,200,...700. and the formulae proposed by Nagaev and by Nash were applied. 
For the considered shell the relative difference (22) was in the first case (Nagaev) between 
0.62 and 0.84 and in the second case (Nash) between 0.99 and 1.00 and it became obvious 
that the LSF must be taken into account even if it is causing the difficulties during the 
calculations. 

4. INFLUENCE OF THE FORM OF THE DEFLECTION FUNCTION ON THE 
CRITICAL PRESSURE 

Following the previous conclusions about the influence of the LSF different forms of the 
Deflection Function (DF) were taken into account and their consequences on the critical 
pressure were examined. A shell with fixed ends will be here considered. 

4.1.Deflection function in the form of the potential series. The deflection function in the 
form 
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k=0 

1 \m+k 

1*7 
(23) 

after being introduced into (9) will have as its consequence 
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where the coefficients A, B, C, D and Rk are 

A=(m-2)(m-3);B=(-2m)(m-])(m-2) 
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It must be underlined that the coefficients (28) are always integers. The LSF and the critical 
pressure are now defined by (29) and (30) where <5,, a,, and S are coefficients defined by 
some cumbersome expressions. The derived expressions will be shown for m = 2 and m = 3 
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4.1.1. Case m = 2. The equation for the pressure is 
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representing the Nagaev's formula but in much simpler form than it is usually shown. 

4.1.2. Case m = 3. The equation for the pressure becomes 
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4.2.Deflection function in the sinusoidal form. The deflection function in the form 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

where m must be the natural number greater than 1 in order to permit the boundary conditions 
to be satisfied, after the development of the sine function and its introduction in (9) gives 
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After the calculation of the integrals A defined by (4) the LSF is obtained for even and odd 
values of m and the integral from (11) depending on the LSF becomes respectively 
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The lateral pressure is then defined by (39) for even and by (40) for odd values of m. 
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The derived expressions are here calculated and shown for the coefficients m=2 and m=3. 

4.2.1. Case m =2. Only the LSF and the lateral pressure equation will be shown 
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representing the Nash formula in the form that is modified and simpler than the common one. 

4.2.2. Case m =3. 

0($,n) = 

K, 
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4.3.Deflection function in the exponential form. After that a very logical step was to try to 
find out some other classes of functions that will give the acceptable equations for the lateral 
pressure. It was concluded from (4) that an exponential function of the first order could be 
used for that purpose and using the appropriate assumptions the function g(%), the DF, 
Cj,,(i = 0,1,2), the LSF and the lateral pressure equation were obtained in the forms 

(45) 

(46) 
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C0 = —(-13e8 +32e6 +432e4 +352e2 + 37 ) = 31.8013, 
'°    12 

-4 '-(e8 +4e6 -72e4 +52e2 -1) = 371.11673, (47) 
'      3 

C, =— (e8 -14e6 +72e4 +38e2 -1) = 16,467.262 . 
2     3 

ö(Z,n)=*X\e« +e4<'S>}-^-[e2 + l)(e2^ +e*«>] (48) 
T2 Tj 

Tj=\nK2f-4^ (49) 

q=Aj-\n4D„-2n2D,+D,-r ^-^r + -r ^ J\ (50) 
C0n

2 
\n4D0 -2n'D,+D2 — j f + -r f—y 

~2] \nK2f-4\     \nK2f-16\ 

Hj=—(e2+l)(e6-3e4-21e2-l) = 7,469; 

H, =—(e8 -8e6 +24e4 +8e2 -1) = 23,936 (51) 
2     3 

It is necessary to underline that (51) according to the authors' knowledge represents a new 
equation for the pressure. 

5. CONCLUSION 

It can be concluded that a certain general formula for the critical external radial pressure 
around a cylindrical shell is derived. The explained procedure can be applied to shells with 
different types and combinations of boundary conditions, and the Lateral Stability Function 
must be taken into account during the calculations of the critical pressure. A new proposed 
form of the deflection function is giving as its consequence a new formula for the critical 
pressure and experimental results will show which one between existing and new proposed 
expressions is approaching the real situation. 
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1. SUMMARY 

This paper provides my view of damage mechanics objective, accomplishes and the relation 
with other models of solid mechanics, thermodynamics and statistical physics. The fact that 
the estimates of damage are has a value only as the overture for specimen failure is still 
accepted by many authors. Finally, the introduction of the meso-scale texture and coupling 
between macro and meso scales is necessary for development of better models. 

2. INTRODUCTION 

Damage mechanics, born in Russia where Lazar Kachanov's [1] study was published, grown, 
in my personal judgement, more in quantity of papers than in new ideas that were not pilfered 
from plasticity. This is not to say that the Cachan School in France was not successful in the 
promotion of damage mechanics in industry. This success was, for some reasons, not 
duplicated on the other shore of Atlantic Ocean. Even if some wanted to use one of many 
models of damage mechanics, which are not related to a class of materials and process, it 
would be very difficult to select the proper model. Too many damage parameters and a 
damage entity, defined by tensors of all orders, would make no sense even if they were 
identified and measurable. Some of these models are not objective, assumptions are 
carelessly elevated to rank of principles and the model limitations not mentioned. 

In my opinion a damage mechanics model must provide a useful estimate of the effect of 
nucleation, propagation and clustering of microcracks on deformation, residual strength and 
failure mode and onset of the considered damage or aged material and structure. A crack is a 
microcrack if its size is similar to the material micro-texture size (such as grain boundary 
length in polycrystalline materials). Since the material morphology in which microcrack is 
embedded disordered crack geometry cannot be defined by few parameters. Hence, damage 
must measured indirectly from their effect on the macro-scale deformation. This truism is 
crucial for the model development since the input is statistical while the output is either 
deterministic or statistical depending on the damage density. 
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Serious models of damage mechanics must be based on the principles (if not the models) 
fracture mechanics, physics of disorder materials and thermodynamics of dissipative 
processes that can be either "close" or "far" from the equilibrium. Finally, the process of 
renormalization from statistical micro and meso models must be related to the continuum 
models which still the war-horse of the industry and engineering design. 

3.  MACRO-SCALE MODELS 

In the course of a structure design, which is subjected to given applied external internal loads 
and/or displacements as a function of time, is typically discretized into many finite elements 
(FE). The stress-strain relation, assuming that the strains are moderate and strain infinite 
small, is 

E=S(D):C (1) 

where S:jnm is the effective compliance tensor which depend on the microcrack density 

D and the bar over the symbol stands for the macro-scale value. Assumed, that the strain <L 

is at minimum C1 continuos the strain rate is from (1) 

£=S{D):& + S{D):ö (2) 

Assuming that the flow rule exists the infinitesimal increment of the effective compliance of 
the material is 

^Ä=»*|M) (3) 
01 ijäl DIR öl ijmn 

where X is the proportionality constant (i.e. rate of some monotonically increasing scalar 
parameter selected as an appropriate measure accumulated at current instant, Q a potential 
and T the temperature. The thermodynamic force T is conjugate to the selected measure of 
the accumulated damage 5ym„ since entropy production inequality is 

It = \sijmn^n,n ~ VS = r^A™ -US>0 (4) 

(Krajcinovic 1997). In (4), dot above symbol stands for the rate, Tthe absolute temperature, 
U" the energy of internal surfaces (of cracks), and thermodynamic force that drives damage 

^ijmn=-^iPmn (5) 

from (3). Selection of the effective compliance tensor Sijmn(D) as repository of accumulated 

history H is consistent to the proposed goals since the compliance can be measured in situ 
and laboratory (Audoin and Baste [2]). 

In general, the stresses, strain, stress and compliance tensor must be decomposed 
(Krajcinovic [3]) since the closed microcracks do not effect the deformation. In a short 
review it suffices mention the decomposition and state its necessity at the price of cumbrous 
model. However, the number of assumptions required to develop above deterministic 
continuum model and simultaneously shrink its range of applications is many. The more 
important assumptions that limit model's application are: 
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• Deformation of the specimen and evolution of damage are driven by the volume 
average of stresses, strains and free surface energy Us (that resists microcrack 
propagation). 

• The representative volume element (RVE) exists. 
• Flow potential Q. in (6) and (7) and damage surface actually exists. 
• The deformation process is "close" to equilibrium and its attractor state minimizes 

the energy of the elastic strain. 

These assumptions are satisfied only when the specimen is statistically homogeneous, i.e. 
when the deformation depends on average of all fields and precise locations of stress 
fluctuations and resistance to crack propagation fields [3]. Since the thermodynamic state 
does not depend on the spatial distribution of fields each state is equilibrated and defined by 
the manifold <£,S,T\ when the stress is controlled or Ip.S.Tj when the strain is controlled. 
According to the statistical physics and thermodynamics (see Carrod [4]) a state is in 
equilibrium when can be defined by a minimum of macroscopic parameters, which are in this 
case, macroscopic stresses, effective macroscopic compliance (as a measure of dissipated 
energy used to form internal surface within the material) and temperature. The dissipative 
thermodynamical process is in this case can be viewed as the temporal sequence of 
equilibrated states and the above model belongs to the class of thermodynamic with internal 
variable(s) (see Krajcinovic [3] and Lemaitre and Chaboche [5]). 

A mechanician in trade will, therefore, start with the thermodynamics as a basis of the model, 
select a damage parameter, assume that the flow potential exists, and introduce as many of 
fitting "material parameters" to duplicate a set of macroscopic stress-strain curves. However, 
this continuum model, often used and not always understand, will be predictive in general 
only when the parameters fits the physics of the process on finer scales. 

4.   MEAN-FIELD MESO-SCALE MODELS 

When the mean-field models of statistical physics a quarter century ago burst into solid 
mechanics research many hoped for a new class of models which will solve all unsolved 
problems of solid mechanics. Mesomechanical fracture mechanics inquire into the relation 
between the material parameters and microcracks density should help in the selection of the 
physically reasonable damage parameter. 

A model belongs to class of mean-field models if variables are approximate by their average 
values deduce self-consistently (Chaikin and Lubensky [6]). A typical meso-scale damage 
mechanics sees a damage material as an ensemble of microcracks embedded within a 
homogeneous, elastic, continuum matrix. The external surfaces of this volume are subjected 
to the homogeneous tractions or deformation related to the macroscopic stresses and strains. 
Assuming that volume is statistically homogeneous the position of individual microcracks is 
irrelevant and the problem of many cracks is reduced to the superposition of many individual 
cracks within the effective material. In other words, the effect of all cracks on a given crack 
is reduced to their effect on the parameters of the continuum matrix. 

The objective of this model is to deduce the effective (macroscopic) parameters of this 
volume and related this parameters to the density of the microcracks. This volume and its 
parameters are then mapped on the "point" of the continuum to define the parameters in the 
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damaged state. This mapping is objective only if the parameters of the volume do not depend 
on the volume size, i.e. if the volume is equal or larger that the representative volume element 
(RVE) defined above. Assumption of translation invariance of these models (i.e. positions of 
cracks) ignores cooperative processes and local fluctuations of stresses, strains and free 
surface energy of the material. It severely limits of their application to the insignificantly 
modest level of microcrack densities. However, these models provide the link between 
thermodynamics, fracture mechanics and basic 'statistics of the problems and provide a very 
useful test for elimination of rogue models. 

To deduce the essential form of damage mechanics models it is necessary to consider a 
problem for which the analytical solution is possible. Assuming that all cracks are penny- 
shaped and the distribution of crack radii and orientations are not correlated the statistics of 
damage is reduced to the distributions of microcrack orientation u^/0,0) (rosette) and their 

radii w(a). Damage tensors can be derived from empirical function w(p(0,0), deduced from 

measurements, by expanding it into a Fourier-type series of the certain families of Laplace 
harmonics (see [3]). 

The next task is to derive the effective compliance and stiffness tensors of a damage RVE. 
Using the recipe of fracture mechanics (Budiansky and Connell 1976) the effective 
compliance tensor SiJmn of the RVE attributed to the presence of damage can, in this case, be 

derived by adding the contributions of microcracks in all planes in the form 
2K(K/2) 

S ,-,,„., = SL„ + 
8(l-v) a>j  JF!jmn(Ji,v;<p,e)cos^d(t>de: 

*2"^      o-nn 

= ^m+-^fj=coeijnm(ß,v;<p,e)=s;;,m + s;„m (6) 

where superscript "*" stands for the contribution of damage and while the superscript "o" 
stands for the initial (pristine) state. The expression (6), derived using the tools of the linear 
elastic fracture mechanics, ignore microcracks interaction [3] and effect of damage on the 
isotropy of the matrix. The components of the distribution of density in directions defined by 
angles 0 and 6 fourth order tensor eiJmn(p,v;<t>,6), defined as the product S*jmnWy{<p,6), 

are determined by solving the double integral in (6). Finally, the scalar parameter 

co = N(a3\ = 4np (7) 

known as Budiansky-O'Connell parameter, is defined as a product of the number of 
microcracks per volume N and the volume average of the cube of microcrack radii. The 
accuracy of three mesomechanical scalar models based on the scalar, second and fourth 
orders tensors of damage distribution were evaluated by Krajcinovic and Mastilovic [8]. 
Expression (7) summarize the most dangerous deficiency of mean-field models by stating 
that very many small microcrack have the same effect as smaller large microcracks that is 
true only at very small microcracks and their density and strongly damage tolerant materials. 

To complete the micromechanical model, developed above, it is necessary to relate the rate of 
effective parameters of the RVE to the nucleation and propagation of microcracks. The flow 
potential (6) can be derived using the assumption of the local dependence (Rice [8] and [9]) 
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from free complementary energy ^(a.D) of the considered volume V, attributed to the 
irreversible changes of the material texture 

dcV =[v(ö,D+dD )-V(c,D Jl^fJÖ.D )d% (8) 
a=\ 

In (8) /„ are thermodynamic forces conjugate to the set of internal variables ^a. In the case 
of damage, attributed to N randomly scattered microcracks within the volume V, the 
expression (29) in [8]) is 

]T/„(<7,D)^ = \[{G-2y)dl\dL (9) 
a=l 

where G is the elastic energy release rate familiar from the fracture mechanics, /the surface 
free energy, L locus of all points on the crack front and d£ local advance of the crack front 
(or tip in two-dimensional problems). Assuming- that the integrand is a weak function of L, 
i.e. if the shape of the crack does not change, from (9) 

fa«{G-2Y)a      and     t,a~k*a (10) 

where A* is the microcrack surface area and A* the rate of crack propagation. The 
thermodynamic force (affinity) conjugate to the increase of a given microcrack is therefore 
defined 

A = G-2y (11) 

The corresponding rate of the effective compliance of the volume V that is attributed to the 
microcrack propagation is 

32G(CT,/7) 

■i\ dSiJmn    " '' 3ä„3ä(„ 
V 

L 

dL (12) 

A microcrack will propagate in a stable fashion when 

A = 0 and A < 1 

and unstable when (13) 

T4 = 0 and A>\ 

When the thermodynamic affinity is negative, A < 0, the crack will not propagate at all. 

Assume that the microscopic relation between the thermodynamic force fa and rate of 

increase the surface area of microcrack a ^ is %a =0(/a,7*,^) the macroscopic 
(continuum) flow potential reads 

Q(a,T,Z) = ljta(lT.Z)dfa (14) 
o 

where f stands for all N thermodynamic forces fa, (l < a < N), collectively. According to 
expression (14) the macroscopic flow potential is a superposition of all microscopic flow 
potentials 4,. The rate of effective compliance attributed to microcracks is 
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-.  _ao(rx|) 

where T is the thermodynamic force defined in (5). 

Assuming that all assumptions are justified the relations between stresses and strains is 

£// = Sijmn{H)öim+e);    and    tv = Sijmn(H)&mn + Sljmn(H)amn +tl!       (16) 

where £.(■  is the plastic strain, at first glance conveniently similar to the traditional equations 

of plasticity. However, this model is justified only when the volume is statistically 
homogeneous and damage evolves by microcrack nucleation typical only when the damage 
density is modest and not of important in engineering. 

5.   STATISTICAL MESO-SCALE MODELS 

The onset, rate and direction microcrack propagation depends on the local, rather than 
average, stress and material cohesive strength is an obvious truism. Since the material texture 
is on mesoscopic scale not homogenous the process of damage evolution must be based on 
the random variable G[o(x)]/R(x) where the numerator is the local release energy and the 
denominator the local cohesive energy of material. The distribution bandwidth of the random 
variable R(X;D) is the measure of the damage tolerance that controls the level of material 
brittleness. 

The onset of microcrack propagation, its direction and retardation depends on the micro- 
features of the material. Assuming that the cohesive strength grain boundary of the material 
is inferior to those of the grains most microcracks will be of inter-granular type. Grain faces 
of the polycrystal form a Delaunay division of Simplexes is the topological inverse or dual to 
the Voronoi froth (division) [10]. Since the number of facets per grain is a random variable 
the Voronoi and Delaunay lattices of most engineering material are random graphs. Finally, 
the bonding along grain boundaries depend on imperfections, relative disclination of 
anisotropy of planes of elastic symmetries of joined grains, impurities, pores at triple junction 
and atomic defects. Thus, the length and cohesive strength of grain boundaries of most 
engineering materials are also random variables. 

The simplest model of damage in this class of damage-tolerant material on the micro-scale is 
a Delaunay lattice (or graph) of particles, in which the grain mass is lumped, connected by 
links that are perpendicular to grain boundaries depicted dual by the edges of Voronoi cell. 
Hence, a broken link represents the microcrack perpendicular to the link. Quenched material 
disorder, that can be topological, geometrical and structural, is introduced by the distribution 
of link type, lengths, strengths and effect of defects smaller than the residual (or link) length 
is introduced through links strengths. Finally, the parameters of lattice are derived such that 
the elastic deformation of the lattice and the actual material are equal. 

Damage evolution simulation on a lattice, which is based on the Hamiltonian mechanics, in 
the general case of elongation control, is not as simple as it likes. Damage evolution during 
which microcracks nucleate, propagate and join into clusters is a primer for those who want 
to understand thermodynamics of internal variables. As demonstrate in Krajcinovic [11] this 
dissipative, non-stationary, non-linear and non-equilibrium process is actually a temporal 
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sequence of equilibrated states (of stationary damage) connected by non-equilibrium, 
dissipative and non-stationary process during which the energy released by broken link 
propagate in the form of stress wave through the lattice. A state is equilibrated when its 
manifold p,D,T}, at a given value of controlled macro-strain e, is defined by the 
minimum of macro-parameters. This criterion is satisfied when the thermodynamic affinity 
is negative, i.e. when A < 0 or D = const.. Distributions of link force in an equilibrated state 
must satisfy the principle of minimum energy. Thus, the process is driven by averages of 
stresses, damage and temperature and has both this potential (3) and attractor state of 
minimum entropy. 

In contrast, non-stationary parts of the process damage evolution, during which D > 0 and 
s = const., can depend on the stress wave which magnitude decrease with the distance from 
the source since G(x,t) where t is time. In this case damage evolution depends also on the 
dynamic parameters and the material-damping rate on the micro-scale. Moreover, the 
phenomenon of avalanche becomes important at larger damage density. Avalanche is 
defined as the number of links that are broken links at the constant applied elongation 
e = const. In other words, avalanche of «-order will occur when max(Aj) = l take place n 

times at constant elongation of lattice. Avalanches of small order, where the order is equal to 
the number of links broken at same applied elongation, is not necessary a sign of the 
imminent failure. Hence, the process will be dependent on the macro-parameters until the 
damage clusters are small. Nevertheless, the dynamic distribution of released energy and 
avalanches favor clustering of damage and large damage densities. As the clusters grow the 
models of cooperative phenomena, which introduce the correlation length defined as the 
distance at which the fluctuations are correlated, must replace the mean-field theory. The 
dependence of the lattice performance on the lattice size is one of the sign of this transition. 

Finally, in the softening phase of the lattice deformation is the sign that the size of the largest 
cluster (macroscopic crack in tension and fault in compression) is comparable to the 
specimen size L, i.e. that the correlation length t, ~ L. Having in mind the primary 
dependence of the mechanics of the lattice on the on a fractal object, such as large cluster of 
microcracks, it is obvious that the deformation process in the softening phase is statistical. 
Moreover, the thermodynamics process is far-from equilibrium, potential and attractor state 
do not exist. 

6.   RENORMALIZATION 

Lattice models have several advantages in the process of bridging from meso- to macro-scale. 
Its application is not confined to small damage density, their tractability dependent on the 
simplest geometry of microcracks and assumption of homogeneous, elastic, isotropic matrix. 
Thus the lattice is the only renormalization road, already tested and found trustworthy in 
many fields of physics, which can be used to bridge the gap between micro-, meso- and 
macro-scale. 

Consider, as an example, a finite square plate made of damage-tolerant elastic material 
subjected along all boundaries to non-homogeneous displacements ux and uy which are 

quasi-statically increased until the plate failure. The plate is divided into a large number of 
square sub-elements such that the macroscopic elongation applied to its boundaries can be 
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considered to be homogeneous. The sub-element has to contain a large enough number of 
grains and provide for the resolution length comparable to the grain facet radius. Thus, each 
sub-element is subjected to uniform, but different, elongations in x and y directions. 

The object of simulation is not only to produce several stress-strain curves that look great as 
transparent on a meeting but also to define universal exponents of the scaling functions and 
crossovers in the process. For example, the hardening phase of damage-elongation of lattice 
is at modest damage scales as D{L,U)^ U^ and D(L)°C L" at the peak of the stress-strain 

curve. Using Family and Vicsek [12] scaling function is D(L,K)°C L"/(;<). The universal 

exponent a is derived by plotting curves log( D /Zf )vs.log(u/Lz) such that curves for all 

lattice sizes collapse on a one curve. The crossover elongation is defined as uc <= U where 
the dynamic exponent z is a = zß ■ Dynamic scaling requires a very precise simulation, very 
precise of the interplay between different mechanical mechanisms and very good software. 

7. CONCLUSIONS 

These short strolls through damage mechanics, in my opinion, shows some defects of current 
development, interesting future and further growth of this baby of solid mechanics. This 
development will be based on the statistical models needed to reach the finite goal of 
bridging of scales, which is tailored for the damage mechanics. 
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ABSTRACT 

A short overview upon the phenomenon of fatigue is presented. An historical background 
shows that the studies on fatigue started only in the middle of the 19th Century with A. 
Wölher as a pioneer. The different physical and experimental effects are reviewed in a second 
part: discrepancy, scale, surface effects, initial conditions, mean stress, history of stress, 
temperature... In a third part, a two scale model, based on elasto-plasticity coupled to 
damage, is formulated to fulfill most of the effects mentioned. 

1. HISTORICAL BACKGROUND 

The recognition of the phenomenon of fracture of materials is as old as human activities but 
fracture under repetition of loads has been identified only in the 19th century. It seems that the 
first tests under repeated tensions up to 100 000 cycles where made on mine chains by Albert 
in Germany around 1830. It seems also that the word "fatigue" was mentioned for the first 
time by Poncelet during a conference given to engineers at Metz (France) in 1839. Rankine, 
working in England on railways, used also the word "Fatigue" in 1843. But this is A. Wöhler 
(1819-1914) who really gave the starting point on research upon fatigue by his idea to plot his 
many test results on steels, obtained at the railway factory of Hannover, as the stress 
amplitude to fracture in tension, function of the number of stress cycles applied. The 
Woehler curve was born around 1860 [1] (figure 1). 

This was fatigue under uniaxial periodic loading in tension-compression at a mean stress 
equal to zero and at room temperature. It took about a century to be able to deal with 
multiaxial variable or random loading at high temperature ! The reason is that so many 
effects involved did oppose for a long time a clear view on quantitative theories. 
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Fig. 1 : Woehler curve of XC10 Steel (Doc. CETIM) 

Soon after Wöhler, Fairbain in England (1864), Baushinger in Germany (1886) has to 
work on fatigue in bending for bridges and railways and it was difficult to relate properly 
the fatigue strength in bending to the fatigue strength in tension. 

Around 1900 Ewing and his coworkers in England showed by microscopic observations 
that fatigue on iron is related to plastic slip bands, but at a macro or mesoscopic scale no 
measurement can give an indication on the progression of fatigue : nothing between 
virginity and fracture ! 

Many attempts were made to relate fatigue to an increase of the internal damping of 
metals (Lechatelier 1909, Boudouard 1910, in France) but the effect is so small that it is 
practically useless. 

The first book devoted to fatigue was published by H.G. Cough only in 1926 [2]. It is 
about at that time that the local character of fatigue was identified in relation with the 
large stress concentrations at sharp notches. This helped very much to design better 
structures against fatigue by smooth variations of geometry in the drawing of mechanical 
components [3]. 

Soon, the studies on fatigue were stimulated by the need of light structures in aeronautics 
and safer design in general. The necessity of coordination, rules and standards was taken 
over by national organizations such as : Bureau of Aeronautics (1941), American Society 
for Testing Materials (1949), American Society of Metals (1953) in USA ; Institution of 
Metallurgists (1955), Institution of Mechanical Engineers (1956) in England ; Societe 
Francaise de Metallurgie (1956) in France. All those Societies published important 
documents at the indicated dates. 

A nice synthesis of all possible aspects of fatigue of metals is in the book "La fatigue des 
metaux" published by R. Cazaud in 1937 and reedited in 1943, in 1948, and rewritten by 
G. Pomey, P. Rabbe and Ch. Janssen in 1969 [4]. 
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During the last three decades, most of the studies were devoted to the fatigue limit and to 
fatigue criteria: 

. Does it exist a stress below which the number of cycles may reach infinity ? Recent 
works at number of cycles as large as 1012 or 1013 seems to show that the answer could 
be no [5]. Nevertheless for practical purposes the fatigue limit is taken as the stress 
which corresponds to 106 or 107 cycles. 

. Which scalar function, called criterion, of the stress components of a multiaxial state 
of stress is equivalent to a case of uniaxial stress of tension-compression ? Among 
many criteria proposed those of Sines (1959), Crossland (1956), Dang Van [6] use the 
amplitude of the shear stress, octaedral An or maximum and the hydrostatic stress oH 

by its mean or maximum value. 

"     2 
~ V ijMAX      & ij min IV WAX      ^ijmin) 

°H --0-« 
1 

—-I 

3 
with the stress tensor au decomposed in ov = o» +0H8U 

- More modern researches use micromechanics in modeling the evolution of the fatigue 
damage from an initial undamaged state to a mesocrack initiation. An example is given in 
section 3. 

2. SO MANY EFFECTS INVOLVED IN FATIGUE ! 

2.1. Effect of micro-defects in the material 
Fatigue as nucleation and growth of micro-cracks is always localized at a very small scale 
where micro-defects such as inclusions or precipitates or grain boundaries play an important 
role. Their statistic distribution in size and location induces a large incertainty in the fatigue 
initiation which cause a very large discrepancy in tests results. For the same history of stress 
on different specimens made similarly from the same material, the number of cycles to 
fracture may vary from a factor 10 : (results with a relative error of 1000 %!). This is the 
signification of the many points in figure 1. The consequence is that to speak of fatigue, 
obliges to speak of probabilities. An other consequence due to the presence of micro-defects 
is the scale effect : the probability to find a bigger defect in a large piece of metal is larger 
than in a small piece. The Weibull theory is a good model to take into consideration this scale 
effect [7]. 

2.2. Effect of the quality of surfaces 
It is recognized by physicists that fatigue is related to plasticity by means of slip bands. As 
the slips occur more easily in surface crystals than inside, because they are not constrained in 
one direction by other crystals, the fatigue meso-cracks always initiate in surface if the 
stress field is uniform. Then, the quality of surfaces plays an important role, a rough surface 
may induce a number of cycles to fracture 10 times less than a smooth surface for the same 
history of stress. This is a reason to increase the strength to fatigue by a good polishing, by a 
superficial hardening of shot peening and to avoid corrosion as much as possible. 
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2.3. Effect of initial conditions 
Most of the time in engineering, due to metal forming, machining, or assembly, the material 
of mechanical components is not in its "natural state". Fields of strain hardening, damage and 
residual stresses may exist. They, of course, influence the fatigue strength. For example an 
overstress may increase the fatigue strength if it is not too large in comparison to the fatigue 
limit because it hardens the material, but it may decrease the fatigue strength for larger values 
because it damages the material ! Beside, a cyclic understress below the fatigue limit may 
increase this fatigue limit because cyclic microplasticity decreases the residual stresses. 

2.4. Effect of stress intensity 
The main causual variable of fatigue is the amplitude of stress Ao=aMAX —omtn but in 

tension-compression the mean value of the loading  CT =— (oMAX +<T„„„ )  plays also an 

important role. It is usually represented by the Goodman's diagram : the amplitude of stress 
giving a certain value of the number of cycles to fracture decreases as the mean value 
increases [8]. 
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Fig. 2 : Goodman's diagram of a 35NCD 16 steel for 106 cycles (Doc. CETIM) 

The intensity of the maximum stress induces : 
no plasticity at mesoscale for numbers of cycles to fracture NR > 105 ; this is the range of 
high cycle fatigue generally related to stresses. 
Plasticity at mesoscale for numbers of cycles to fracture NK < 104 ; this is the range of 
low cycle fatigue generally related to the amplitude of plastic strain like the Law of 
Manson-Coffin [9], [10]. 
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N* = 
'A*/ 

M 

Where M and c are two material parameters 

2.5.     Effect of the history of loading 
So far, we spoke about results obtained for periodic loading which is often not the case in 
practical applications. Due to the fact that the state of plasticity at time t depends upon the 
whole history of the loading for r<t, the accumulation of fatigue damage due to different 
sequences of loading depends upon the order of appearance of the sequences. This is called 
the non linear accumulation of damage. A sequence of large stress is more damageable at 
the beginning of a fatigue process than at the end. Nevertheless, due to the complexity in 
modeling this phenomenon, the linear accumulation rule of Palmgreen-Miner is often used 

Where  ni is the number of cycles of a stress al(t) 

NRi is the number of cycles to fracture which would exist for the same stress ot(t) 

periodic up to fracture. 

When the loading is considered as random a difficulty arises to define what is a cycle and 
how to accumulate the damage due to "small" and "large" cycles of realizations of the 
stochastic process. The best solution is to forgive about cycles and to consider a damage 
function of time. To obtain statistics upon the probability to fracture, the only way to solve 
non linear differential equations modeling damage with random input is the Monte-Carlo 
method. 

2.6. Effect of multiaxial state of stress 
This is still an open problem due to the lack of tests results. There has been millions of tests 
in tension-compression, in rotating bending but only a few in tension-torsion or in biaxial 
tension because the machines did not exist up to about 1970, and even now, not so many are 
in operation. Furthemore fatigue tests take much time : 107 cycles at 5 Hertz takes 23 days ! 
An actual important problem is fatigue under non proportional loading when the principal 
directions of stress vary. It seems that, like in plasticity, there is a micro-cross-hardening 
which increases the fatigue strength. Considering multiaxial stress, the notion of cycle is also 
difficult to define which is an other reason to forgive it! 

2.7. Effect of temperature 
At room temperature, for almost all materials, the frequency of loading does not give any 
effect. This is not any more the case at elevated temperature when creep occurs in place of 
plasticity. There is an interaction, a non linear interaction, between the "pure" fatigue 
damage intragranular in metals and the "pure" creep damage intergranular during holding 
periods of constant stress for example. 

2.8. Fatigue crack growth 
When a mesocrack has initiated by fatigue (a size of = 0.2 to 1mm in metals) it may grow 
under the same variable loading, this is the field of application of fracture mechanics. The 
most common law for crack propagation is Paris law which gives the crack length a in plane 
stress condition as a function of the stress intensity factor amplitude AK [11]. 
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da 

~d~N 
CAK^ 

K = o„ 4na for an "infinite sheet" loaded in mode I by a stress <7„ normal to the crack line 
C and r\ are material parameters. 

3. CONSTITUTIVE EQUATIONS FOR FATIGUE DAMAGE 

- The fatigue damage is localized at micro-scale much smaller than the mesoscale of the 
Representative Volume Element. Then, a geometrical model is a micro-inclusion 
embeded in a meso RVE (figure 3). 

- The high cycle fatigue occurs with plasticity at micro scale but not at mesoscale. It is 
considered that the model has a fatigue limit of for a Number of cycles reaching 

inifinity. Then, the inclusion has the same elasto-plastic and damage properties than the 
RVE except it is weak by its yield limit taken as the fatigue limit of (figure 3). 

A 0" 

Fig. 3 : The two scale damage model [12] 

If the meso-stress in the RVE is below the yield stress ay this is the high cycle fatigue 

regime, if the meso-stress is larger than ay this is the low cycle fatigue regime. If the 

micro-stress in the inclusion is below its yield stress af there is no fatigue. 

Knowing the stress at mesoscale ov. the stress in the inclusion of is calculated by use of 
Kroner's law of localization. 

o»=ov-aE(E»-£>)  with a(v)= 0.4 
Where E is the Young's modulus of elasticity 

The damage law activated in the inclusion is governed by the total elastic energy (shear + 
hydrostatic) somewhat similar to some fatigue criteria and by the plastic strain as 
observed. It has a strong thermodynamical support [13]: 

D, 
fyf ^ 

if P" > PD 

. Dij is the Damage second rank tensor. The norm D of the Damage vector Drn   is 

the measure of the microcrack surface density in the plane of normal n :0< D< 1. 
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There is a mesocrack initiation when D reaches a critical value Dc, a material 
parameter. 
. V is the effective strain energy 
. \ew\   are the absolute values of the principal values of the plastic strain rate 

I \ij 

(3 \,/2 

. p" is the accumulated plastic strain : pß =\ -£,f £,f 

pn is the Damage threshold, a material parameter 
. S and s are two material parameters. 

The complete set of constitutive equations to be solved as a post processor to find the 
condition of a crack inititation D = Dc are : 

Total strain     £,^=e,f+ef 

Elasticity e£ JJ2L3*-^8,, 

Plasticity £?f=f^^ f =(SiX^)^-of 

2 
Linear kinematic hardening    Xjf = — Cef 

Damage D„ = 
fyK^ 

3 

H.. ifpß>pD Hi 

Localization    a? = <?„- aE( ef - ep? ) 

. Sf. is the effective stress : a£= a? /(1 - D) for isotropic damage 

. The material parameters are 
E and v for elasticity 
of and C for plasticity 

S,s,PD,Dc for damage 

The integration of these constitutive equations in one material point (RVE) where the stress 
ar is known as a function of time is made by the classical elasto-plastic scheme of Newton- 

Raphson with elastic predictor and plastic corrector. It is an integration, step by step in time, 
for each cycle. A "jump in cycles" procedure save computer time in avoiding to calculate all 
the (105, 106, 107 !) cycles. It is not as simple as a magic formula ! but this is the price to pay 
in order to model most of the properties mentioned in the section 2 : 

- The statistical effect of microdefects may be taken into account by considering the fatigue 
limit, yield stress at microlevel, as a random variable but it needs an identification which 
can come from the discrepancy of a Woehler curve [14]. The scale effect is not obtained. 

- The surface effect may be obtained by considering the inclusion at a boundary of the 
RVE, the only change is in the law of localization [15]. 
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- Non trivial initial conditions may be introduced by initial values of the Damage D and 

of the plastic strain p0. The effect of an overstress is obtained but not the effect of 
understressing. 

- The effect of mean stress in tension is contained in the plastic properties of the model 
and considering a kinematic lardening gives no effect of mean stress in shear which is in 
accordance with experiments. High cycle fatigue is when the matrix is elastic and low 
cycle fatigue when it is elasto-plastic. 

The non linear accumulation is also a consequence of the irreversibility character of 
plasticity and damage. It is mainly due to the existence of a damage threshold. 

- The model is formulated in three dimensions. It gives the effects of triaxiality and also the 
better strength in compression than in tension by introduction of an effective stress acting 
on principal values differently when they are positive or negative. 

- The non linear creep-fatigue interaction is obtained by changing the plastic constitutive 
equation into visco-plasticity depending upon temperature [16]. 

Let us conclude that the main difficulty, like often in mechanics of materials, is in the 
identification of material parameters for each material and temperature considered. 
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1. SUMMARY 

The Analog Equation Method (AEM) is employed to analyze the Bemoulli-Euler beam with 
variable stiffness undergoing large deflections. In this case the transverse deflections 
influence the axial force and the resulting governing differential equations are coupled and 
nonlinear with variable coefficients. The pertinent differential equations are derived by 
considering the equilibrium of the deformed beam element. The resulting boundary value 
problem is solved using the AEM. According to this method the two coupled nonlinear 
differential equations are replaced by two uncoupled linear ones pertaining to the axial and 
transverse deformation of a substitute beam with unit axial and bending stiffness, 
respectively, under fictitious load distributions. Beams with constant and varying stiffness are 
analyzed under various boundary conditions and loadings to illustrate the merits of the 
method as well as its applicability, efficiency and accuracy. Useful results are drawn 
concerning the simplified equation derived from the equilibrium in the deformed 
configuration. 

2. INTRODUCTION 

The load deflection response of beams undergoing large deformations involves the solving of 
coupled nonlinear differential equations, which become more complicated when the stiffness 
of the beam is variable. Closed form solutions cannot be obtained when general boundary 
conditions are considered unless these are simplified on the basis of certain mathematical 
adjustments. Therefore recourse to numerical solutions is inevitable. The FEM has been 
successfully employed to the solution of beam with constant cross-section. However, beams 
with non-uniform cross-section are often approximated by a large number of small uniform 
elements replacing the continuous variation with a step law. In this way it is always possible 
to obtain acceptable results and the error can be reduced as much as desired by refining the 
mesh. Nevertheless, the computational effort can become excessive and the nonlinear 
solution procedure may fails to converge. 
In this paper, an accurate direct solution to the governing coupled nonlinear differential 
equations is presented, which permits the application of nonlinear boundary conditions. The 
solution procedure developed is based on the concept of the analog equation applied to 
nonlinear problems [1,2]. Several beams are analyzed under various boundary conditions and 
load distributions, which illustrate the method and demonstrate its efficiency and accuracy. 
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Moreover, the validity of certain simplifications, which are adopted in the literature to reduce 
the nonlinearity of the equations, is also investigated. 

3. GOVERNING EQUATIONS 

Consider an initially straight beam of length / having variable cross-section A{x) and 
consisting of a linearly elastic material. The axis x coincides with the neutral axis of the 
beam, which is bent in its plane of symmetry xz by the combined action of the distributed 
load px = px (x) and pz = pz (x) in the axial and transverse directions as well as by the 
distributed moment m = m{x). Moderate large deflections result from the nonlinear 
kinematic relation, which retains the square of the slope of the deflection, while the strain 
component remains still small compared with the unity. Namely, 

ex=u,x+±w,2x+zK ' (1) 

where u = u{x) and w = w(x) are the axial and transverse displacement, respectively, and K 
is the curvature of the deflected axis. The governing equations are derived by considering the 
equilibrium of the deformed element. 

M+dM N,+dN, 
N + dN 
e+de 

Fig. 1: Forces and moments acting on the deformed element 

Thus, referring to Fig. 1 and taking into account that 

p*x = pxdxlds , p*z = pzdx/ds, m*=mdxlds, ds = ^J(l + u,x)
2 + w2dx (2a,b,c,d) 

we obtain the equilibrium equations as 

Nx>x = -Px> Nz'x = -Pz> M,x = Q + m (3a,b,c) 

Moderate large deflections result by assuming u,x ,w,2xD 1, which implies 

ds = dx,   cosd ■ l + u, 

V(1 + M>J 2 + w,l 
Dl,   sin0 = 

w>x 

J(l + u,x)
2 + w,l 

■D^DÖ   (4a,b,c) 

Moreover, the axial elongation £ and the curvature K are given as 

e = u,x+\w2, 
dQ 

K = — D 0,rD w,„ j 'X 'XX ds 
(5a,b) 
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Therefore, the stress resultants, that is the the axial force and the beding moment are given as 

N = EA (u,x +{w,2x),       M = -EIw,xx (6a,b) 

From Fig. 1, we have 

Nx = NcosG-Qsin6UN-Qw,x,       Nz=Ns\n9 + QcosQU Nw,x+Q (7a,b) 

Substituting eqns (7) into eqns (3a,b) and using eqn (3c) to eliminate g yields 

N,x-{M,xw,x),x+(mw,x),x = -px,      M,xx + (Nw,x),x = -pz+m,x (8a,b) 

The governing equations in terms of the displacements are obtained by introducing eqns (6) 
into eqns (8). Thus we have 

[EA(u,x+±w,l)\,x+(EIw,xxxw,x),x + {nm>,x),x = -px (9a) 

{Erw,xx),xx-[EA(u,x+\W,2x)w,x'],x = pz+m,x (%) 

The pertinent boundary conditions are 

alu(0) + a2Nx(0) = a3 älu(L) + ä2Nx(L) = ä3 (10a,b) 

ßlW(P) + ß2Nz(0) = ß3 ßlw(L) + ß2Nz(L) = ßi (lla,b) 

yiw,x(0) + y2M(0) = y3 y]W,x(L) + y2M(L) = y3 (llc.d) 

where ak,ük,ßk...,yk are specified constants. The above boundary conditions describe the 

most general boundary conditions including elastic supports. 
Solution of the boundary value problem (9), (10) and (11) is not available in the literature due 
to the difficulty arising from the presence of the term EIw,xxx w,x = Qw,x, which expresses 

the influence of the shear force Q on Nx. Existing solutions approaches circumvent this 

difficulty by neglecting this nonlinear term. This assumption yields Nx D N and it is 
equivalent to deriving the equilibrium equations by referencing to the undeformed element. 
This is rather obvious in a beam column loaded only by axial forces. However, the validity of 
this assumption should be investigated in the presence of the transverse load pz. 
In this paper a direct solution of the coupled strongly nonlinear differential equations (9) 
subjected to the nonlinear boundary conditions (10)-(11) is developed. The solution 
procedure is based on the concept of the analog equation [2] as applied in the next section. 
This computational tool, besides its capability to solve accurately the problem at hand, 
enables the investigation of the influence of term Qw,x on N validating, thus, the 

assumption made by earlier ivestigators. 

4. THE AEM SOLUTION 

The AEM is applied to the problem at hand as follows. Let u = u(x) and w=w(x) be the 
sought solution of eqns (9), which are two and four times differentiable, respectively, in 
[0,/]. Noting that eqn (9a) is of the second order with respect to u and of fourth order with 

respect to w we obtain by differentiating 

«,„ = ^W, vv,xra = fc2« <12a'b> 
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Equations (12) indicate that the solution of eqns (9) can be established by solving eqns (12) 
under the boundary conditions (10)-(11), provided that the fictitious load distributions &,, b2 

are first determined. This is achieved by writing the solution of eqns (12) as 

u = c}x + c2+^G](x^)bl(^)d^ (13a) 

w = c3x
3 +cix

2 +c5x + c6 + j G2(x,%)b2(Z)d% (13b) 

where c,- (/ = 1,2,...6) are coefficients to be determined from the boundary conditions and 

Gj(x,^) ((=1,2) are the free space Green's functions of eqns (13) obtained as particular 
solutions of 

GVxx = 8(x-0,        G2,xxxx = 8(x-Z)                 . (14a,b) 

with 8(x-%) being the Dirac function. After integration of eqns (14) we obtain [3] 

G,=l|*-S|,            G2=^\x-^\{x-^f (15a,b) 

The derivatives of u and w are obtained by direct differentiation of eqns (14). Namely 

u,x = cl+j()Gl,x(x,^bl(^)d^,   u,xx = bl(x) (16a,b) 

w,x = 3c3x
2 + 2ciX + c5 +^G2,x(x£)b2(Od% (17a) 

w,xx = 6c3x + 2c4 + j^G2,xx (x,S)b2(l;)d£, (17b) 

w,xxx = 6c3+joG2,xxx(x4)b2(^)d^,     w,xxxx = b2(x) (17c,d) 

Subsequently, the interval [0,/] is divided into N equal constant elements, having length 
U N , on which the N nodal points placed at the middle of the elements. Equations (16) and 
(17) are descritized and applied to the N nodal points. This yields 

u = qX] +c2+G1b1,   u,x = C] +G1,xb1,   u>xx = b! (18a,b,c) 

w = c3x3 + c4x2 + c5X] +c6+G2b2,   w,x = 3c3X2+2c4X]+c5+G2,xb2 (19a,b) 
w»xx = 6c3xi+2c4+G2,xxb2,   w)xxx = 603+62,^^,   w)xxxx = b2 (19c,d,e) 

where Glt G1)x,... G2)xxx are NxiV known matrices, originating from the integration of 
the kernels G,(x,^), G2(x,£) and their derivatives on the elements; u, u,x,...w>xxxx are 
vectors including the values of u , w and their derivatives at the nodal points; bj ,b2 are also 
vectors containing the values of the fictitious loads at the nodal points and 
xl={xl,x2,...xN}T, x2 =[x2,x2,...x

2j}T, \3={Xi,xl,...xi
N}

T are vectors containing the 
abscissas of the nodal points and their first and second powers. Finally, collocating eqns (9) 
at the N nodal points and substituting the derivatives from eqns (18) and (19) yields 2N 
nonlinear algebraic equations 

F,(bi,b2,c)=px, F2(bi,b2,c) = pz (20a,b) 

in which c = {cl,c2,...c6}
T. After the substitution of the relevant derivatives in the boundary 

conditions, we obtain six additional equations 
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f,(b„b2,c) = 0 ; = i,2,...6 (21) 

Eqns (20) and (21) constitute a set of /V + 6 nonlinear algebraic equations which are solved 
numerically to yield bj,b2 and c. 

5. NUMERICAL EXAMPLES 

On the base of the procedure described in previous section a FORTRAN program has been 
written and several beams have been analyzed. The nonlinear equations have been solved by 
minimization of the function 

5(bI,b2,c) = £ü^(bi,b2)c)-K]2+[F;'(bI,b2,c)-^]2} + £/;.(b1,b2,c)2    (22) 
<=1 

The numerical results for beams with rectangular cross-section bxh are presented using the 
non-dimensional quantities 

r.2       - ü = u/h,w=w/h,   ö = al'IEhi,   p = pr/Eh3 (23) 

in which / denotes the length of the beam and a the bending or the axial stress. 
A clamped-clamped beam with length / = 1.0m, subjected to a uniform load, has been 

analyzed (N = 21). The employed data are: £ = 2.1xl08faV Iin2, b = 0.0lm, /7„=0.03m and 

px =0, m = 0. Two cases of thickness variation have been studied (i) h = h0(\/2 + x/l) and 

(ii) h = h{). In both cases the volume V of the material has been kept unchanged, that is 

V=bhQl. The results for h = h0 have been obtained also by neglecting the nonlinear term 

Qw,x (undeformed 

I    '    I    '    1    '    I    '    I 
0    2000   4000   6000   8000  10000  12000 

Fig. 2: Central deflection versus load 
J , L 

Fig. 3: Profile of the deflection for p. =12758 
_. I I I I I L. 

)    2000   4000   6000   8000  10000  12000 

p,= p,a'/Eho 

Fig. 4: Qw,x/N versus load Fig. 5: Profile of Qw,x for p. =12758 
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Fig. 6: Profile of the deflection Fig. 7: Profile of the axial displacement 
J i I i I i L 

Fig. 8: Profile of the axial stresses Fig. 9: Profile of the bending stresses 

element) and are presented in Fig. 2 and Fig. 3 as compared with those obtained by the FEM 
using the NASTRAN code. From Fig. 4 and Fig. 5 an important conclusion is drawn 
concerning the dropping of the term Qw,x. Namely, though the quantities Q and w,x are not 

individually negligible their product Qw,x is negligible as compared with N. The results for 

both cases of thickness variation, under the uniform load pz =5103, are shown in Fig. 6 
through Fig. 9. 
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1. SUMMARY 

In this paper a model for predicting crushing properties of a ship's structure during collision 
with bridge piers is presented. The model is mainly oriented for the analysis of vessels on 
inland waterways. The theoretical predictions are compared with the results of experimental 
investigation performed in Germany. At the final part of the paper an influence of some 
parameters on impact forces during ship collision with bridge piers is investigated. 

2. INTRODUCTION 

Vessel collisions with bridges represent great threat to public safety. An excellent review of 
various phenomena related to ship impact in bridge piers is given in reference [2]. However, 
most of these investigations are devoted do sea going ships. Considerably different vessel 
sizes and structures make these results not applicable for the collision problems on rivers and 
canals. The crushing properties of ships structure represent the principle factor influencing 
impact actions during collision. In this paper a method that the authors used for the predicting 
of crushing force - deformation (indentation) response of a river ship during head-on-bow 
impact is explained. 

3. MECHANICAL MODEL 

The analytical model we developed is based on the Darmstadt experimental investigations of 
a typical Rhine river ship [1]. The results of the research of 1 : 6.5 size model show that the 
crushing force on the contact between bridge pier and a ship's bow is dominated by properties 
of deck and bottom structures. In order to model the process of folding observed in [1], deck 
and bottom structures are discretized in to the finite number of folding sections (Fig. 1) Each 
folding section k is modelled with two transverse elements (/ and II) and a compressed 
longitudinal element (a-b-c) which buckles elasto-plastically out of deck's (bottom's) plane. 
The reaction of each folding section due to controlled deformation (defined by a single 
parameter uF) has the following characteristic components: 
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R (*) ■ R (t)+Ä*UÄit) 

The first and the second component in Eqn.(l) denote reaction forces from transverse 
elements / and // respectively. The last component is from the longitudinal element. 

JV4_4 

c            S2             b            Si -g X o * £ 
4_Jü—\—b—i 

Figure 1. Model of a ship's structure 

The longitudinal element is modelled with two bars having infinitely large flexural stiffness. 
The total flexural deformation is modelled by using a rotational spring lumped in the middle 
of the element (node b). In elastic regime rotational stiffness coefficient crot is calculated 
according to: 

n2EI 

4L 
(2) 

It is assumed that only moderate rotations of bars take place, i.e: cos\)/ ~l-\^\ The 
relationship between element force Rw and element deformation uF may be expressed in the 
form: 

2 , X7 1 

EA     LVI   °' 
TV 

1- 
R„, 

(3) 

where Rcr denotes Euler's buckling load. In Eqn. 3 w0 denotes initial imperfection 
(displacement along z axis). In order to study a plastic response of the element the following 
yield condition is utilized in the middle of the each element: 

M, /M, 
■ N/ 

'N, = 1 (4) 
■ p    /     P 

where Np and Mp are the axial plastic force and the full plastic bending moment respectively, 
while N=RW and M= Rw w. The deformation - force relationship in the post-critical 
(softening) regime is given with: 



180 

2 
lF Nr 

(N, 
(5) 

The schematic view of a transverse element may be seen from the figure 2. It is important to 
realize that in order to obtain an upper bound of restitutional force, displacements of supports 
due to deformation of ships structure are neglected. 

Figure 2. Transverse element and its response 

At early stages of deformation transverse elements are mainly subjected to bending. 
However, during further deformation process of deformation transverse elements behave like 
ties. This implies that the total reaction of a transverse element due to deformation can be 
evaluated according to: 

Rsj ~ R a] + R uj (6) 

The first component in the Eqn. (6) results from bending of  transverse elements in plastic 
regime. It is calculated from: 

Rm=j-WaJ+MhJ) (7) 

In the above relation we have: 

uj=0     MaJ=M*j        and       u^u)    Maj=Q (8) 

where   A/*-   denotes full plastic moment in the case of pure bending. The deformation u* 

relates to the deformation associated with total plastic axial force. A liner variation of   Raj 

between the values u • and   u* is assumed in order to estimate interaction between bending 

moments and axial forces. The same expression is used at beam ends. 

The component R ■ results from axial stressing. It is evaluated from the element relative 

stretch (dilatation): 

/: 
■=.   1+- 

4«| 
-1 (9) 
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and appropriate stress-strain constitutive law. In our study steel yield stress 400MPa, 
hardening modulus 0.5GPa and rupture strain 20% are used. A characteristic form of force- 
deformation function for transverse element is given in the figure 2. 

Step by step procedure is used to evaluate the total response. Note that for active folding 
section (denoted with k) the increments of deformation which define the response of 
transverse elements calculated from rigid body "kinematics have the following form: 

A« / = 0.25 AM (*) 

Au)]' -0.75 A« (*) 
(10) 

In the case when condition L=Lmin (maximum possible folding of a longitudinal element) is 
satisfied the next folding section k+l becomes active. The angle between longitudinal bars 
of the element k does not change during the further process of deformation, so we have: 

A«?W» ; = /,// (11) 

The force-indentation relationships for deck and bottom structures are obtained by the 
summation over all active sections. 
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Figure 3. Crushing force - indentation function 

The total crushing force is obtained according to: 

RX=RX   + Rx (12) 

where superscripts B and D refer to bottom and deck respectively. In Fig. 3. total force- 
deformation function for BS6 class Rhine river ship is compared with the results of 
experimental investigations from reference [1]. The simplified force-deformation function 
(published for the first time in [3]) which is used in dynamic analysis is also presented. 
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4. IMPACT FORCE - TIME FUNCTIONS 

In most cases deformation of a pier during a collision is relatively small in comparison to 
deformation of a vessel and impact actions may be evaluated by treating impacted structures 
as infinitely stiff. The impact force-time functions presented in figure 4. are obtained by using 
this assumption and the simplified force deformation relationship from figure 3. The ship 
mass and impact velocities are varied as the parameters. However, note that in the cases of 
piers with considerable flexibility, coupled problem of ship-bridge interaction during 
collision have to be treated. 

15km/h 

-i *i r r 1 r- 
0.00   0.06  0.12   0.18   0.24   0.30   0.36   0.42   0.48   0.54   0.60 

time (s) 

15km/h 

0.00   0.15   0.30   0.45   0.60   0.75   0.90   1.05   1.20   1.35   1.50 

time (s) 

Figure 4. Impact force-time functions for a ship with total mass of 500t (above) and 2400t 
(bellow) for impact velocities 5, 10 and 15km/h 

5. FINAL REMARKS 

In the case of head-on-bow vessel impact on bridge piers crushing properties of ship's 
structures have dominant influence on impact actions. However, in the case of sideway 
(skew) impact, dynamics of a vessel during the impact is more complicated. Due to rotation 
and lateral motion of a vessel the influence of surrounding water becomes important. It is 
particularly characteristic in shallow waters. In [4,5] this problem is solved by introducing 
added (hydrodynamic) mass in the analysis and the problem of skew impact is presented in 
details. 
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1. SUMMARY 

A boundary element formulation for the solution of the time-dependent inelastic problems 
arising in creeping metallic plates at high temperatures is presented in this paper. The 
formulation allows the use of theories of inelastic deformation using state variables for 
characterizing the time-dependent behaviour of metals and alloys under thermal loading 
conditions . The deformation of the plate is simulated using a viscoplastic model developed 
by Hart to describe the material behaviour. The accuracy and efficiency of the proposed 
method is demonstrated by obtaining stress and strain distribution for certain selected sample 
problems of thick walled cylinders under radial temperature gradients. Simulation portrayed 
by the present formulation is further compared with other numerical and analytical solutions 
obtained for different thermal stressing rates. 

2. INTRODUCTION 

Remarkable progress has been made in the technological applications of metal and alloys at 
elevated temperatures and a great amount of research has been prompted in the area of their 
high temperature inelastic behaviour. This high temperature inelastic behaviour of metals is 
well known that is a time dependent and highly nonlinear phenomenon. Classical creep 
theories[l, 2] are incapable of explaining phenomena that are exhibited by metals and alloys 
at elevated temperatures, such as history-dependence, time-dependent strain recovery, 
softening upon unloading, and creep-plasticity interactions. These theories are therefore 
inadequate for accurate high-temperature design applications[3-5]. 

A new generation of constitutive models has been proposed during the past decade to 
overcome the shortcomings of the models defined previously[6-ll]. The new mathematical 
feature of these theories is that the nonelastic strain rates are expressed as functions of the 
current values of stress, temperature and certain well defined state variables. Hart's is one of 
several state variable constitutive theory models of inelastic deformations that have been 
proposed recently. Hart's model[6, 7] has been extensively tested for uniaxial time varying 
loading on various metals and alloys and the correlation between theory and experiment has 
generally been found to be very good and shown to faithfully represent experimentally 
observed material behaviour in a variety of applications. 
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Mukherjee and his co-workers presented a boundary element method (BEM) formulation for 
the solution of boundary value problems with material behaviour governed by the Hart's 
constitutive model. They used a rate formulation of the governing differential equation of the 
problem. The spatial integration of the relevant was then carried out by using the finite 
element or boundary element method [12-16]. The applications of these works were limited 
to two-dimensional isothermal inelastic deformation problems. In Morjaria and 
Mukherjee[17] was presented a finite element (FEM) solution of inelastic boundary value 
problems in the presence of transient thermal stresses with material behaviour governed by 
the state variable constitutive model due to Hart. In this analysis, the temperature field was 
obtained by solving the unsteady diffusion equation subjected to a prescribed temperature or 
heat flux boundary conditions. 

In Providakis[18-19] and Morjaria et al [16] demonstrated that the BEM is a very powerful 
method with several potential advantages over the FEM for solving nonlinear time-dependent 
inelastic deformation problems. One of the main advantages is that the number of unknowns 
in the final algebraic system of equations is proportional to the number of boundary elements 
in BEM as opposed to the total number of nodes in FEM. However, one of the most difficult 
problem in BEM-related problems was the numerical simulation of domain-based effects (e.g. 
inertial and interior loading effects, nonelastic and thermal strain effects). This is caused by 
the existence of domain integrals in the formulation which can only seldom be directly 
transferred into boundary integrals forms. In high temperature and time-dependent creeping 
problems, domain integrals arise due to thermal and inelastic term effects. Several approaches 
have been developed to deal with domain integrals, including internal cells and dual 
reciprocity methods. From the users point of view dual reciprocity method, are attractive 
since they do not require an internal mesh. Several successful applications based on the dual 
reciprocity boundary element method (DRBEM) exist for thermoelastic and heat transfer 
problems. Nevertheless, computations on general time dependent, high temperature, inelastic 
deformation problems is still far more successful with the use of internal discretization. Even 
though discretization of the domain must be carried out in this kind of nonlinear problems, 
this is necessary only for the evaluation of certain integrals with known integrants. 

The present paper presents a direct formulation of the boundary element method for the 
solution of time-dependent nonlinear inelastic deformations of metallic structural components 
including both plasticity and creep and subjected to arbitrary thermal loading histories at high 
temperatures. A rate formulation of the governing differential equations has been used by 
combining the Hart's constitutive state variable model. The boundary element method 
generates the time rates of change of displacements and stresses at any time step. The time 
histories of the quantities of interest are then obtained by using a march forward time 
integration scheme with automatic time-step control. The boundary element formulation uses 
a spatially linear description of the relevant variables over each boundary element and is 
capable of solving any planar problem. Numerical examples are presented here for plane 
strain deformation problems for cylinders subjected to radial temperature gradient loads. 

3. BOUNDARY ELEMENT FORMULATION 

The Navier equation for the displacement rates for plane stress, in the presence of non-elastic 
strain are 
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where Fj is the prescribed body force per unit volume G, v and a are the shear modulus, 
Poisson's ratio and coefficient of linear thermal expansion, respectively, uj is the 
displacement vector. Suitable traction and displacement rate boundary conditions must be 
prescribed. For the plane strain case (E„=0) the integral representation of the solution of a 
point P on the boundary of the body (with F, =0) has the form 

(<5, -C,X(^)= Jhfcß)*,(ßK(P,ß)ij(ß)K + 
r (2) 

+ j[XJ„(P,Q)E"Jt(q)+XJkl8Jtc<f(Q)Vn, 
n 

where 80 is the Kronecker delta, P,Q are boundary points, q is interior point, T and D. are the 

boundary and the surface of the body, respectively. The kernels U..,T..,    Xjti and Xjti are 

known singular solutions due to a point load in an infinite elastic solid in plane strain[20]. 
The traction and displacement rates are denoted by f and it, respectively. The coefficients of 
C. are known functions of the included angle at the boundary corner at P, the angle between 
the bisector of the corner angle and the x-axis. Equation (2) is a system of integral equations 
for the unknown traction and displacements rates in terms of their prescribed values on the 
boundary, and the non-elastic strain rates. The unknown quantities only appear on the 
boundary of the body and the volume integral are known at any time through the constitutive 
equations. 

The stress rates can be obtained by direct differentiation of equation (2) resulting in 

°u GO=IK (J>- ßK (ßK* (p. öK (ß)K - 
r 

-2Ge;(p)-3Ko^(p)8lj + l[XmXp,q]e^q)+^ijU(p,q)8k,c^(q)mq 

(3) 

where G and K are the shear and bulk modulus, respectively, and Xijkl and Xljlcl are inelastic 

and temperature effect kernel functions which are defined in Ref. 20. 

For the purposes of this paper the temperature on the surface of the body is assumed to 
change slowly in time and thermal steady state conditions are assumed to exist throughout the 
surface of the body at each time step. Thus, the temperature field is assumed to be given by 
the solution of the appropriate steady state diffusion equation subject to slowly varying 
surface temperatures. 

After applying a boundary nodal point collocation procedure to equation (2) one can obtain 
for any point £ on the boundary the following system of equations in matrix form 

[Alu}= [B]{i}+$+{l?) (4) 

where the coefficients of matrices [A] and [B] contain integrals of the type 
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JV(p«,ß>ö,,Jt//(/»w,öK (5) 
AS„ 

and the vectors {b\ and pr} involves X'Jki and X*u integrals terms for the nonelastic strain 

and temperature rates. However, the vector \b\ is known at any time through the constitutive 

equations of Hart's viscoplastic model [6-8] while the vector <pT\ through the assumed 
solution of the appropriate steady state diffusion equation subject to slowly varying surface 
temperatures and half of the total number of components of {zi} and {f} are prescribed 
through the boundary condition. The other half are unknowns. 

The initial distribution of the state variables have to be prescribed while the initial value of 
the nonelastic strain is set to zero. Thus, the only existed strains at time step t=0 are elastic 
and thermal and the initial stresses and displacements can be obtained from the solution of 
the corresponding thermoelastic problem. Thus, the initial rates of all the relevant variables 
are now known and their values at a new time At can be obtained by integrating forward in 
time. The rates are then obtained at time At and so on, and finally the time histories of all the 
variables can be computed. 

4. NUMERICAL RESULTS 

A computer program has been written to automate the solution procedure described in the last 
section of this paper. It is capable of solving a variety of planar bodies subjected to high 
temperature loading. Numerical results are presented here for a long thick-walled cylinder of 
internal and external radii a and b under plain strain deformation conditions and subjected to 
internal and external thermal loading increasing at a constant rate. The temperature rate field 
at a point with a distance r from the centre of the cylinder is assumed to be given by the 
equation 

T=--^—{TMrla) + tMblr)) (6) 
ln(b/a) 

which actually is the solution of steady state diffusion equation subject to slowly varying 
internal and external surface temperatures Ta(t) and Tb(t), respectively. The material of the 
plate is the 304 stainless steel at 400 °C. Symmetry of the spatial cylindrical geometry was 
taken into account and thus only one quarter of the cylinder was discretized. The thermal 
loading at the internal and external surfaces has a magnitude of Ta(t=0) and Tb(t=0), 
respectively at zero time step and increases at some constant temperature rate. 

The numerical example analysed here is a uniform long thick-walled cylinder of radius ratio 
1.5 in plane strain. The initial temperature throughout the cylinder is 100 °C. The inside 
curved surface of the cylinder is heated at a constant temperature rate fa(t = 0) = 6 "Clhr 

while the outside surface is kept at a fixed temperature of 100 °C. 

Figure 1 depicts the redistribution of thermoviscoplastic circumferential stress along the 
radial dimension as obtained by the present method and the analytical solution presented in 
Kumar and Mukherjee[21] for the circumferential stress distribution. Good agreement 



between the present boundary element results and the analytical ones confirms correct 
boundary element implementation for this kind of problems. In addition to the above remark 
one can see from the stress profiles as shown in Figure 1 that both of the viscoplastic 
solutions are qualitatively the same with those obtained in classical plasticity theory and show 
two yield fronts, the first starting at the inside and the second at the outside of the cylinder. 
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Figure 1:        Redistribution of circumferential stress along the radial dimension of the thick 
walled cylinder in plane strain. 

5. CONCLUSIONS 

In this paper we have presented a direct formulation of the boundary element method for the 
analysis of creeping metallic structures subjected to pure thermal loading with time dependent 
temperature gradient. An analytical solution of the problem is also presented in order to 
validate the results of the present boundary element method. The details for the integration 
and solution strategies to solve the initial-boundary value problems have been provided. 

On the basis of the good agreement between the analytical and boundary element results the 
proposed BEM is proved to be a powerful tool for the solution of these complicated non- 
linear problems of practical importance. The BEM program is quite general and can solve 
very common problems as in heat-exchanger metallic tubes and pressure vessels. 
Several such analyses involving complex geometries and extended to severe loadings which 
combine the pure thermal loading present case with time dependent mechanical loading are 
underway. 

Acknowledgements: The authors is grateful to Professors D.E Beskos for encouragement and 
helpful discussions during the course of this work. 
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1. SUMMARY 

A set of parallel rock discontinuities intersecting a circular opening in elastic and homoge- 
nous material at 45 degrees is modeled in 2D space using the finite element method. Two 
cases are discussed; in the first case discontinuities are modeled as very thin material layers 
with elastoplastic behavior (i.e. infill material), while in the second case the discontinuities 
are modeled as open joints (no infill material), by using contact elements, i.e. elements that 
allow for shearing when in compression, but which exhibit negligible tensile strength when in 
tension. Results are compared and critically evaluated. 

2. INTRODUCTION 

Rock masses in nature contain numerous discontinuities in the form of cracks, joints, faults, 
bedding, etc. These discontinuities play a dominant role in the behavior of the rock masses 
and the structures that are constructed in them [1]. To assess the stability of these structures is 
a very complex task since the overall properties of the rock mass and the discontinuities must 
be known and modeled correctly. In order to select the modeling method for a jointed rock 
mass containing a structure, the difference in scale between the joint size and that of structure 
to be analyzed should be evaluated, as well as whether an implicit continuum solution or an 
explicit description of the discontinuum is appropriate [2]. 

When the implicit method is utilized, the discontinuous rock mass is considered as an equiva- 
lent continuum medium and appropriate constitutive relationships are applied. Then the 
model can be solved as an anisotropic or multilaminated material utilizing all available tech- 
niques to describe these states. When the explicit method is implemented, the behavior of the 
jointed rock mass is directly addressed. The mathematical model that describes the material 
incorporates procedures and elements to address the discontinuous nature of the rock. The 
numerical simulation of the explicit method may include contact elements, joint stiffness 
elements, constraint elements, distinct elements, etc. [2] 
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3. MODEL FORMULATION 

In this study, both implicit and explicit modeling methods for discontinuous rock masses are 
applied for assessing the stability of a circular opening in a discontinuous medium. The 
models were created and solved using the MARC-MENTAT suite of programs for linear and 
non-linear finite element analysis of structures [3]. The only assumption that is introduced for 
the implicit method is that the differences between the intact rock and the joints are reflected 
by the material properties. Thus, the rock mass is modeled as an anisotropic continuous 
material. In the case of the explicit method, a discrete finite element analysis is applied using 
contact-friction elements to specify the discontinuities in the intact rock. 

For the first case, two constitutive material models are used. The first is the perfectly elastic 
material that can be described using Young's modulus (E), and Poisson's ratio (v). The sec- 
ond is the elastic-perfectly plastic model, where, if the stress is below the yield stress of the 
material, it behaves elastically and stress is proportional to strain. After the stress becomes 
greater than the yield stress, the material no longer exhibits elastic behavior and the stress- 
strain relationship becomes nonlinear [3]. The yield stress is the point that separates the elas- 
tic from the plastic behavior. Due to the fact that the material that describes the discontinui- 
ties is subjected to a multiaxial state of stress, yield conditions are defined instead of a yield 
point. Although, there can be many forms of yield conditions, in this analysis the generalized 
linear Mohr-Coulomb failure criterion is utilized. This criterion describes elastic-plastic be- 
havior, based on a yield surface that exhibits hydrostatic stress dependence. Such behavior is 
observed in a wide class of soils and rock-like materials [3]. 

In the second case, contact-friction elements are used to model the discontinuities of the rock 
mass. The analysis of contact behavior is complex because of the requirement to accurately 
track the motion of multiple geometric bodies as well as the motion due to the interaction of 
these bodies after contact occurs. The numerical objective is to detect the motion of the bod- 
ies, apply a constraint to avoid penetration and apply appropriate boundary conditions to 
simulate the frictional behavior [3]. A discrete finite element analysis incorporates the ability 
to solve contact problems [1], while at the same time includes large deformation effects and 
repeated contact and separation between the bodies at the interface. The basic conditions of 
contact along the interface of the bodies are that penetration cannot occur, and, as a result, 
contact forces are developed and act along that region. These forces are equal and opposite 
and the normal tractions can only exert compressive action, (while no tensile state can occur) 
and the tangential tractions satisfy Coulomb's law of friction [4]. 

4. MODEL GEOMETRY 

As a comparison of the implicit and explicit formulations for modeling discontinuities in a 
"continuous rock" medium, the following geometry is considered: In the center of a square 
rock mass of size 40x40 m, a circular opening with radius (r = 5m) is formed. The opening is 
intersected by a parallel set of joints, which dip 45° from the horizontal. These joints inter- 
sect both the rock mass and the opening where appropriate (Figure 1). Thus, an implicit and 
an explicit model were created based on this geometry. 

In the implicit formulation, each joint is described by a very thin layer (about 5-10mm), 
whose elements are modeled, with different material properties from that of the intact rock. 

In the explicit formulation, contact elements are used to model the discontinuities. The same 
material properties are assigned to the rock mass, however, in place of the joints, an interface 
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between the two rock faces is generated using contact-friction elements. 

5.   MATERIAL MODEL ASSUMPTIONS AND BOUNDARY CONDITIONS 

As already mentioned, required properties for the elastic materials are the modulus of 
elasticity and Poisson's ratio. In the case of the elastic-perfectly plastic material, the gener- 
alized linear Mohr-Coulomb criterion is applied as defined by the angle of friction (q>) and 
cohesion (c). For the contact analysis (model 2) the program requires the distance tolerance 
for contact between nodes to occur, the friction coefficient of the interface, and the relative 
velocity of the slip surface. The latter is used for overcoming numerical difficulties of the 
friction model. Table 1 summarizes the range of the material properties for each model. 

Table 1. Material properties and discretization for models 1 & 2 
Model 1 Total 

Elements 
Total 
Nodes 

E (GPa) Poisson's 
Ratio 

Frict. an- 
gle (deg) 

Cohesion 
(kN/m2) 

Material 1 1986 2058 40 0.25 - - 
Material 2 10 0.25 35 10 
Model 2 Friction 

coef. 
Dist. 
Tolerance 
(m) 

Slid, velo- 
city (m/s) 

Material 1 2170 2460 40 0.25 0.5 0.004 0.01 
Material 2 10 0.25 0.5 0.004 0.01 

All the values of the material and model properties are representative for the respective mate- 
rials (rock and infill material) [5]. Each model is descretized using four node isoperimetric 
quadrilateral elements. It should be noted that in the second model, contact properties were 
also assigned to the elastic elements surrounding (for a depth of a few cm) the friction inter- 
face. For both models plain strain conditions were assumed. 

(-40,40)T 1111 

-MB 

-* 

r HB no 

Figure 1. Model Geometry 
T (40,-40) 

Each model is 
subjected to a vertical 
edge load of lOOOkPa 
and a horizontal edge 
load of 300kPa. These 
values were based on 
the depth from the 
surface of the opening 
and the presumed 
specific gravity of the 
rock mass. 

Boundary conditions 
were for both models as 
follows: rolling nodes 
on the horizontal (x) 
direction at the base of 
the model and rolling 
nodes on the vertical 
(y) direction (left side 
of the model) as shown 
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Figure 2. Comparison of the tangential stress for both numerical and the analytical solution at 
the circumference of the opening 

in Figure 1. The bottom left node is fixed in terms of displacement. 

6.   RESULTS 

The distribution of stresses and displacements are plotted for models 1 and 2 (a) along the cir- 
cumference of the opening (section 1-1, Figure 1) and (b) perpendicular to the discontinuity 
plane in a distance of 2 diameters for the center of the openings (section 2-2, Figure 1). 

Figure 2 presents the distribution of the tangential stresses (for both models) in the upper half 
circular portion of the opening, from left to right (0-180°) as well as the closed form solutions 
obtained by Kirsh's equations. Results for the contact model show very high values of tan- 
gential stress in the circumference of the opening, between 10-90°. The stress values of the 
infill model are lower than the values of closed form solution for the same arc length. At 
about   100°   all 
solutions 
very   close 

are 
and 

both thereafter, 
numerical 
solutions        are 
very much alike 
and higher than 
the      analytical. 
Figure 3 presents 
vertical 
displacements 

■ for    the    same 
section (1-1), for 
both models. Re- 
sults       indicate 
that although the 
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Figure 3. Comparison of the vertical displacement at section 
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stresses        are 
much higher in 
the contact 
model, the 
displacement 
regime is 
exactly the 
opposite. In the 
infill model the 
displacements 
are much higher 
than the contact 
model.     Large 
differences     in 
displacements 
are    associated 
with material changes from "hard" to "softer". On the other hand the displacements of the 
contact model appear to be much smaller along that profile. This means that although the 
stress field is high, if there is competent rock mass between the discontinuities then the 
opening may be stable without support measures. Similar results are obtained for the 
horizontal displacements. 

Figures 4 and 5 present the distribution of the horizontal and vertical stresses for both models 
for section 2-2, thus highlighting the effects of the two types of discontinuities on the stress 
distribution. Results show that the two models differ substantially only in the proximity of the 
discontinuities. In this region it is evident that in the contact model, high stresses are devel- 
oped contrary to the infill model where the stress field is much smoother. This can be attrib- 
uted to the elastic-plastic behavior of the fill material due to its yielding. The stress field that 
results after yielding and the plastic deformation of the fill material is much lower than that in 
the contact model. In regions far from the discontinuities both models respond in the same 
manner. 

7.   CONCLUSIONS 

An 
underground 
opening      is 
modeled in a 
discontinuous 
medium 
using       two 
types of dis- 
continuity 
models.      In 
the        finite 
element 
implementati 
on,  a set of 
parallel   rock 
discontinuitie 
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Figure 5. Comparison of vertical stresses at section 2-2 (detailed view shown) 
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s   inclined   at 
45       degrees 
from the hori- 
zontal,     were 
created in 2D 
space, 
intersecting 
the      circular 
opening       as 
well    as    the 
surrounding 
material. Two 
cases are 
discussed; in 
the first case 
discontinuities 
are     modeled 
as very thin material layers with elastoplastic behavior (i.e. infill material), while in the 
second case the discontinuities are modeled as open joints (no infill material), by using 
contact elements. 

The two models show significant differences between them. The contact model exhibits high 
stress values in the region of the discontinuities (both at edge of the opening and away from 
the opening). This is probably due to the large distinct bodies that are formed between the 
discontinuities, in accordance with the small (0.5) friction coefficient, and the 45 degrees in- 
cline. The material in the contact model is assumed elastic, so high values of stress can be 
present although they seem high for real rock masses. If the material is assumed elasto- 
plastic, or governed by a yielding criterion suitable for rocks, then probably the stresses 
would not reach very high values. 

In the infill model, the stress field is lower than that of the contact model. This is probably 
due to the yielding of the fill material and its subsequence plastic deformation. For this 
reason the displacements were higher in the infill model, especially at the interface of ele- 
ments with different material properties. 

This study is a first step for the evaluation of applicable methods for modeling underground 
openings in discontinuous rock masses without utilizing homogenized properties for the rock 
mass. Much has to be done in this direction for such models to yield realistic and accurate 
results. Further analysis will study the effects of dilatancy of the infill material during 
yielding, appropriate rock yielding criteria and different friction parameters for rock 
discontinuities. 
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ON THE NUMERICAL PERFORMANCE OF A SIMPLIFIED METHOD OF 
ANALYSIS FOR CREEPING STRUCTURES LOADED CYCLICALLY 

K.V. Spiliopoulos 
Institute of Structural Analysis & Seismic Research 

National Technical University of Athens 
Zografou Campus, 157-73, Athens, Greece 

1.   SUMMARY 

In the present work the numerical performance of a new simplified method of analysis to 
structures that creep under cyclic loading is investigated. This method may be applied to find 
the steady state stress distribution in any structure. This stress may be split into an easy to 
find cyclic elastic stress in response to the applied load and an unknown residual stress 
distribution. This residual stress is decomposed into Fourier series and an iterative way is set 
up to find the unknown Fourier coefficients. This is accomplished by evaluating the time 
derivatives of the residual stresses at discrete time points inside the cycle. An iterate of the 
coefficients is then performed by integrating over a cycle period. For convergence to take 
place, an indirect update of the coefficients is performed based on a special acceleration 
numerical scheme whose convergence characteristics are discussed in the paper. The whole 
procedure is formulated using the finite element method and an example of application to a 
plane stress concentration problem is included. 

2.   INTRODUCTION 

In order to predict the complete behaviour of structures subjected to cyclic loading and are 
made of a material that exhibits non-linear creep, laborious and time consuming time 
stepping calculations must be performed. Very often these methods are also numerically 
unstable. 

If one is interested in the long term inelastic behaviour of the structure that occurs after the 
stress becomes cyclic, simplified methods may be used instead. Ponter [1] has developed a 
simplified method for cyclic loads that have a very short cycle period. For such loads it is 
natural to assume that there is no time for any stress redistribution inside the cycle and the 
residual stress may be considered constant. Then an iterative method may be established that 
seeks to find this constant in-time residual stress distribution by integrating the creep strains 
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over a complete cycle and updating the residual stress at the end of the cycle (Ponter & 
Brown [2]). 

The present work discusses the numerical implementation of a new simplified method that 
has been recently suggested by Spiliopoulos [3] and can be applied to any cyclic loading of 
any period for creeping structures. This method is based on the decomposition into Fourier 
series with respect to time of the cyclic residual stress. The unknown terms of this series are 
approximated in ari iterative way with the aid of the time derivative of the residual stress at 
some time points inside the cycle. The satisfaction of equilibrium and compatibility at these 
time points provides a means to estimate these derivatives. The finite element method is used 
as a framework to combine these two conditions of statics and kinematics. An update of the 
Fourier coefficients then occurs by integrating over the whole cycle period. The update 
occurs in an indirect way using a special procedure with an acceleration parameter that is 
necessary for the procedure to converge. The values of this parameter used for a smooth 
convergence of the process as applied to a plate with a hole loaded in its own plane are also 
discussed as a numerical example. 

3.   CYCLIC RESIDUAL STRESS 

Frederick and Armstrong [4] proved a theorem that for a cyclic mechanical loading, i.e. 

P(t) = P(t+T) 0) 

and for a structure made of a stable material, such as one that exhibits nonlinear creep with a 
convex creep surface (j), like the n-power creep law: 

e«-=_L_^£ (2) 
n + 1 do 

a cyclic state of stress will be reached after many applications of loading cycles. (The entities 
in bold letters denote vectors evaluated at the Gauss points of a structure which has been 
discretized using the finite element method. Matrices are also denoted by bold letters). 

The stress in the structure may be decomposed into two parts: an elastic one, assuming 
completely elastic behaviour, which is in equilibrium with the external loading and is 
therefore cyclic and a second part being a residual stress which is self-equilibrating and is 
due to the inelastic material behaviour. 

Using the above theorem, it is obvious that the long term residual stress is itself cyclic, i.e. 

p(t)->p(t + T) (3) 

Since any periodic function may be decomposed into its Fourier series, the residual stress, as 
a function of time, may be expressed as: 

P(t) = -r+JJ("kc°s—+1>ksin—-) (4) 
1     k=l l 
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where aQ,ak,bk are the Fourier coefficients of the expansion and if they are known the 

distribution of the residual stress is also known. The numerical procedure of the next section 
will show how these coefficients may be calculated in an iterative way. 

4.   NUMERICAL PROCEDURE 

The three stress components at the Gauss points ae are evaluated by performing a linear 

elastic finite element analysis. Thus the elastic stresses oel(t) are evaluated at discrete time 

points inside the cycle. Denoting by (/J.) the current iteration, the discrete form of the 

Fourier coefficients a(
0 ' ,a\ ],b[ } ,k = 1,2,..,, are given initial vales, normally zero. 

1. Evaluate residual stresses, using (4): 

(u),   i    ao x->,   (u)       2k7tt    ,(u)   ■   2kM , 
/>(^Vi=4-+lf< ß>cos—- + b[ V'sin-—) (5) 

1        k=l T ' 

2. Calculate creep strain rates using a form of creep law (4): 

(ec
r
r(t))<»>=f(cel(t) + p<>1>(t)) (6) 

3. Calculate residual displacement rates, with K,R,B, D being the stiffness matrix, time 
rate of the nodal load vector, compatibility and elasticity matrix respectively. 

Kr<»)(t) = R(t)+JB'D(i:c
r
r(t jJfW (7) 

v 

4. Calculate derivatives of the residual stresses: 

p{ii)(t) = DBr^)(t)-öel(t)-D{tc
r
r(t)){il] (8) 

5. Calculate the following expressions: 

*r=-Apr^^Är kn0 

U<H=   ±)[p(ß>(t)]cos^dt 
k b-TT   J        ^ T kn0 

(9) 

(10) 

(/>=^)-Jjg^
)
+Jja

(
k^ + j[p'^(t)ldt (11) 

2 *=; *=/ o 
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6.   Update the Fourier coefficients using the following formulae (Isaacson & Keller [5]): 

,(H+D 
Jß) 

,(P) 
= ßs{

0»'+(!-&)- 
2 '    2 

7.   Is the following Euclidean error norm satisfied? If not go back to 2 

<£, 
p(»+!)(T) 

2 
p<">(T) 

2 
II (u V ¥l)( T) 

2 

(12) 

(13) 

(14) 

(15) 

5.  NUMERICAL EXAMPLE - Plate with a hole 

The cyclic residual stress of a square plate of dimensions 10x10cm having a circular hole of 
radius of 1 cm has been found using the numerical procedure that was described above. The 
plate is loaded symmetrically by a uniform loading along one of its edges. Due to the 
symmetry only one quarter of the structure needs to be analyzed (Fig.l). 98 eight-noded 
isoparametric elements with 3x3 Gauss integration points for each of them are used to 
discretize the structure. 

L 

aggp 
t   p^H^n    T    I—I—I—» 

P(t) 

Figure 1: Finite element discretization and typical 8-noded element with 3x3 integr. points 

The loading is assumed to vary according to: 

P(t)=P0sin2( — ) (16) 
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The loading variation with time over four cycles is shown in Fig. 2 

Po 

Figure 2: Load variation with time 

The material constants that have been used are K=.636XI0'W (SI units), n=3.0, E=2100 
dN/mm2, where K is the constant in the uniaxial equivalent creep law. The material was 
assumed incompressible with Poisson's ratio equal to ji =0.4999. P„ was taken equal to 100 
dN/mm2. 

The elastic stress at the Gauss point 1 of the element 7 shown in Fig.l turns out to be 2.5 
times the value of the external load which is applied at the far end vertical edge. This value is 
quite near the theoretical one which, for an infinite plate, at the bottom left node of this 
element (on the circular edge) should be 3-times the value of the external load. 

The error tolerance of Es = .99xl0~5 was used as a stopping criteria. Twenty terms of the 
Fourier series, together with fifty time points inside the cycle were used. As for the values of 
the convergence parameter #, it was found that smooth convergence towards the final cyclic 
state occurred for values less than or equal to 0.1. Good convergence behaviour can be seen 
in Fig.3 for the value of ß = 0.1. The variation of the cyclic residual state of stress x-x with 
time at the Gauss point 1 of element 7 is shown in Fig.4. 
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Figure 3: Convergence of iterations for $ = 0.1 
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Figure 4: Cyclic residual stress variation (in dN/mm2) inside a 100 hrs cycle 

For values of # around 0.01 convergence towards the cyclic state of stress occurred in about 
500 iterations. On the other hand virtually no convergence occurred for values of i? above 
0.1. For a direct update {ß-1), divergence occurred almost after four iterations. 

6.   CONCLUSIONS 

The numerical implementation of a simplified method of analysis to find the long term cyclic 
stress for creeping structures was demonstrated. After its decomposition in Fourier series, the 
cyclic residual stress was found by estimating the coefficients of the series in an iterative way 
using a special acceleration scheme. The convergence parameter plays a key role in the fast 
or even no convergence of the procedure. The process, thus, alleviates the problem of having 
to follow extremely consuming and often numerically unstable time stepping procedures. 
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1. SUMMARY 

A boundary-only method is presented for the static and dynamic analysis of shell panels, 
based on the Analog Equation Method (AEM). The three displacement components are 
established by solving two membrane and one plate bending problems subjected to fictitious 
loads under the same boundary conditions. The fictitious loads are established using the 
BEM. Numerical results are presented which illustrate the efficiency and the accuracy of the 
proposed method. 

2. INTRODUCTION 

There are several investigations involved in the application of BEM to solve shell problems, 
mainly using the D/BEM method [1]. In general the shell problems are formulated in terms of 
the displacement components. The proposed method is based on the concept of the Analog 
Equation. This method has been employed to a variety of engineering problems [2,3]. In this 
paper it is illustrated for the cylindrical shells. 

3. GOVERNING EQUATIONS 

The Flügge type differential equations are used, which for a typical thin-walled cylindrical 
shell of uniform thickness h, made of an isotropic, linearly elastic material, are written as 

1-v 1 + v v h2 1 1-v     w,      u, 
2      "      2      "    R    x    12 Rl   *"      2 R      R2 

1-v2 

Eh 
{qx-phu) 

1-V 1+V ,wx      h
2   1 r3(l-v) (3-V)„ 

w     R, 1-v2 

-R'AW:,+-gT + -tv)] = —^-{q,-phv) 

(la) 

(lb) 
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V*W+^H—)   +—--U    +tZ(^L) -lzl(L)    +(^v) R2     V'i( V    RU"a+   2   ( R '"      2   V'«*+V V)'" 

with  V  =7-7 + 2-T-T+-7  and M, V, W being the axial, circumferential and radial 

displacements; R is the radius of curvature of the cross-section of the shell; p is the mass 
density and qx, qs, qz are the components of the body force in the axial, circumferential and 
radial directions, respectively. 
In the present analysis we consider cylindrical shell panels with rectangular plan form under 
the following boundary conditions. 
a. On curved edges 

Nx=0,    v = 0,   w = 0,    Slw,x+S2Mx=0 (2a) 

b. On straight edges 

M 
cclu+a2Nsx=a3,    j8,v+ &(#,---^) = j33 (3a,b) 

A 

7iw+72ß%. =73.   ^w,s+52Ms=83  . (3c,d) 

where at(p), ß.(p), yt(p), 8t(p) peC (i = 1,2,3) are functions specified on the 

boundary and Nx, W,, W„, Mx, Ms, Mxs, Msx, Qs, ß^ are the stress resultants given 

as 

Eh   r ,       vi>     A2 1 

(1-V2)     * '    R     12 R 

■en    . ; w.     n    i 
^ = ,i   . 2JU>*+V(v's+-)-—-w,„] (4a) 

W„ = [K,. +V,, + (w,„ +—)] (4c) 
■"    2(1+v)     s     *   127?     xs    R K   ' 

v 1 w     R 
Mx =-D{w,„+v[w,„-(-)„]--«„}, M, =-D(w,M+—+-Jtv+vw,„)(4d,e) 

M,=-^)(2^-^ + ^) (4f) 

w \ R 
Q, = -D[w,sss +w,ro +(—)„ -(1 -v)-v,„ +(-^f-v)„ ],  ß% = ß + MBJt      (4g,i) 

D = I^V) (5) 

For the dynamic problem the displacements and the velocities must satisfy the given initial 
conditions. 
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4. THE ANALOG EQUATION METHOD AS A BOUNDARY-ONLY METHOD 

According to the concept of the analog equation [4], eqns (1) are replaced by two Poisson and 
one biharmonic equation 

V2«, =&,■(*, s,0      i = l,2,    V4w = b3(x,s,t) (6a,b) 

where bt(x,s,t) 0 = 1,2) and b3(x,s,t) are the fictitious sources, which are approximated 

as[5] 
M 

b,=Y<x?fj ' = 1.2.3 (7) 

where /. is a set of approximation functions and a*1', af}, af 3M unknown time 

dependent coefficients. We look for a solution of the form KJ+K/' and w+wp, where iii 

(K, =U,U2 = V) and vv are the homogeneous and «/'and w'' the particular solutions. The 

particular solutions are obtained as 

uf^afÜj     / = 1,2,     w"=Jjafwj (8a,b) 

where u-, w} are particular solutions of the equations 

V2«,.=/,. i = l,2,       V4
H>;. = /,. .    (9a,b) 

The homogeneous solutions are obtained from the three boundary value problems 

V2«=0   infi,    aI«+a2^ = 0-(a1£a<%+a2£a<,)--'-)    on r   (10a,b) 
on H H        on 

M 

V2v=0    inQ,    v=0-Y,af)Vj      on T (lla.b) 
H 
M 

V4w = 0   inQ,    w = 0-£afvv;     on T (12a,b) 
H 

<5i^+52V2^ = 0-(5iyaf)^+52X«fV2vvJ.)    on r (12c) 
on H on ;=| 

Thus, writing the solutions of the homogeneous equations (10a), (11a), (12a) in integral form, 
the solutions of eqns (6) are given as 

cut =-\(u%n-üiU;„ )ds + Yjafuj    1=1,2 (13) 

M 

cw = -\(Aiw + A2w„1+AiV
1w + A4V

2w,n)ds + Yjaf
)wj (14) 

c >=> 

where the kernels u , A,. = A,.(r), / = 1,...4, r = \Q- P\, are given as 
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1 COS<p lnr + 1 
M  =_— lnr,   A,(r) = — ,   A2(r) = — , 

2rc 27rr In 

A3(/") = r(21n r + l)cos<p 
oTT- 

A4(r) = -^——,     r = |ß-P|,     cp = angle(r,n) (15a,b,c,d,f,g) 
öTZ 

with r = \Q - P\ = [(£ - A:)
2
 + (77 - s)2 f1 the distance between any two points P(x, s)eßuC, 

Q{£,,77) eQuC and c = lifPeQ, c = a/2n: if P e C; a is the interior angle between the 
tangents to the boundary at point P. We note that for points where the boundary is smooth 
c = l/2. 
The first, second and third derivatives of the displacements for points inside D. (c = 1) are 
obtained by direct differentiation of eqns (13) and (14) (c = l). For example, the first 
derivatives are obtained as 

m , 

"M=-J(".X--"/«4)*+Zay')fiM ,, = 1-2    *=1'2 (16) 

c J=l 

M 

w,k=-\(Al,kw + A2,kw,n+A3,kV
2w + A4,kV

2w,n)ds + Jjaf)wJ,k   *=1,2   (17) 
c l=l 

Using the BEM with N constant elements, discretizing eqns (13) and (14) and applying them 
to the N boundary nodal points yield 

ifi,=Hü/-Gü„(I+Üa(0    1 = 1,2 (18) 

1 w = -(AlW + A2w,„ +A3V2w + A4V2w,„) + Wa(3) (19) 

where, H, G, A1, A2, A3, A4 are NxN known matrices; Ü and W are known 

NxM matrices, and a(P, (i=l,2), a(
;
3) are the vectors of the unknown coefficients. 

Moreover, applying the boundary conditions to the N boundary nodal points after 

elimination of 5,-, u(>, w, w,„, V2w, V2w,„ we obtain 

u,.=U,.a(/),    u;,t = U,.„a(,),    u,.,H = U,.,wa
(i)     i = l,2   k,l = 1,2 (20a,b) 

w = Wa(3),    w„ = W„a(3),    w,w = W,Ha
(3),   w,Wm = W,Hma

(3)    k,l,m = l,2(2U,b) 

where U;,... W,k are known matrices. 
Differentiation of (20a), (21a) with respect to time yields 

ü;.=U,.ä(0      i = l,2, w = Wä3 (22,23) 

Finally, writing eqns (1) in matrix form and substituting eqns (20), (21), (22), (23), we obtain 
the equation of motion 

Mä + Cd + Ka = g (24) 

where M, C, K are generalized mass, damping, and stiffness matrices; g is a vector 
including the IM values of the external force and a is the vector of the IM coefficients to 
be determined. 
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Note that in the absence of inertia and damping forces M = C = 0 and eqn (24) becomes 
Ka = g which represents the static problem. For free, undamped vibrations it is g = C = 0 

and setting a(t) = Ae""' in eqn (24) we obtain (K-(U2M)A = 0, from which the 
eigenfrequencies and mode shapes are established by solving a typical eigenvalue problem of 
linear algebra. 

5. NUMERICAL RESULTS 

The employed appproximation functions /■ are the multiquadrics [6], which are defined as 

fj=Jr2+c2       r = J(x-Xj)2 + (s-Sj)
2 (y = l,2,...M) (25a,b) 

where c is an arbitrary constant and x., Sj the collocation points. The particular solutions of 

eqns (9a), (9b) are 
„3 

■ln(cVr2+c2 +c2) + -(r2 + Ac2)4r2+c2 

v, =-—ln(cVr2+c2+c2)c3(r2+c2) +—c5 \n(cjr2+c2+c2) 
'       12 60 

--c5 +-cV -J-c"4^cI + — {r2 +c2f2 +^c2(r2+c2f2 

12        12 60 225 45 

(26) 

(27) 

Static analysis of a circular cylindrical simply supported shell (barrel vault problem) 
A circular cylindrical shell (barrel vault problem) with all edges simply supported and 
subjected to uniform normal pressure has been analyzed. The numerical results have been 
obtained with N = 84, M =12. The radial deflections at the mid-shell have been calculated 
and compared with a FEM solution. The results from both solutions are shown in graphical 
form in Fig.l and are found in very good agreement with the FEM results. The employed data 

->7VXT/„2  A = 0.20. are £ = 2.1x10'KN/nf 'm, R = 10.00m, / = 24.54m, v=0.25, <p = 70.30°. 

Free, undamped vibrations of a simply supported shell 
The free, undamped vibrations of the simply supported circular cylindrical shell of the 
example 1 have been studied. The computed first 6 eigenfrequencies are presented in Table 1 
as compared with results obtained with a FEM solution. The results are in very good 
agreement. 

Table 1. Eigenfrequencies Cl = R(0*j{\-v2)pl E of theshell of the example 1 

n Present FEM 
1 0.251 0.251 
2 0.333 0.327 
3 0.391 0.391 
4 0.413 0.422 
5 0.516 0.494 
6 0.558 0.553 
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Fig. 1: Radial deflection (veXlO m) of a simply supported shell under normal uniform 
pressure. 

6. CONCLUSIONS 

The basic conclusions that can be drawn from this investigation are the following: 
The shell analysis problem is converted to the solution of two Poisson's problems and one 
biharmonic, which can be solved with the BEM using the well-known static fundamental 
solutions. 
The proposed formulation has been converted to a boundary-only BEM by using the 
multiquadrics functions. 
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1. SUMMARY 

A finite element methodology is developed for the prediction of the response of typical pull- 
out experimental tests of anchors and rebars in normal and fiber reinforced concrete 
specimens under full bonding conditions, assuming static and dynamic loading including the 
strain rate effect. The inelastic material behaviour is simulated with the aid of the continuum 
damage theory. The theoretical part of the developed models and their application to the 
prediction of the experimental response are presented. The model predicted behaviour is 
found in good agreement with the experimental one. 

2. INTRODUCTION 

Anchors and rebars embedded in concrete are used as load transfer mechanisms in the 
construction industry. The knowledge of the failure mode of anchors and rebars embedded in 
concrete and being under tension is very important for the establishment of rational design 
rules. In most cases of daily practice both anchors and rebars are emdedded in concrete 
without connection with the main concrete reinforcement. In these cases, the typical failure 
mode is a pulled out concrete cone under the application of a tensile load in the anchor or the 
rebar. In order to delay this failure mechanism, as the applied load increases, several types of 
anchors have been developed associated with the way they are inserted in concrete as well as 
with the type of steel-concrete contact established. Among them, the most widely used in 
practice are the full bonded anchors and rebars, with or without headed stud, as well as the 
chemical anchors with a chemical epoxy resin acting in the interface between concrete and 
anchor in order to improve the bond strength. Usually, the full bonding conditions are found 
in the case of cast in place (CLP.) anchors or rebars. The post intalled (P.I.) anchors or rebars 
are characterized by lower bond strength, unless they are equipped by special expansion 
mechanisms. 
In order to characterize the bond behaviour, experimental studies, widely known as pull-out 
tests, were performed in the background of a recent research project [1]. The tests were 
performed using normal and high performance concrete with steel fibers. A wide variety of 
concrete types were used in the experimental part of this research. Two types of rebars and 
three different industrial types of anchors were used in pull-out tests. 
For the numerical simulation of the concrete behaviour during the pull-out tests, two finite 
element models have been developed by the present authors in the framework of the above 
project [2]. Both models incorporate simple damage theories according to which the decrease 
of the strength of a material is governed by a continuous damage function, the value of which 
ranges between zero (undamaged stress state) and unity (completely loss of material 
coherence). The basic parameter in these damage theories is a stress or strain measure, which 
is usually expressed in terms of principal stresses or strains for each material. The developed 
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finite elements have been introduced to the open library of a global 3-D FEM code, 
developed by the authors. 

3. CONCRETE MODEL DEVELOPMENT 

From the plethora of existing theories for modelling the mechanical behavior of plain 
concrete (elastoplastic, viscoplastic, microplane, damage), one is interested in a theory simple 
enough for efficient computations, yet capable of simulating all the basic characteristics of 
concrete behavior (different strengths in tension and compression, softening branch, 
localization of deformation, stain-rate effects). Thus, the continuum damage theory was 
selected as the basis of the concrete model development. More specifically, two damage 
models are used in this work: a) The simple isotropic elastic-damage model of Orlate (1997) 
[3], which is very simple but restricted to predominantly tensile states of stress, and b) A 
more complicated anisotropic damage model, which can be thought of as a combination of 
the elastic-damage part of the elastoplastic-damage model of Faria and Oliver (1993) [4] with 
two damage indices (one for compression and one for tension) and the damage theory of 
Mazars (1986) [5], which unifies appropriately these two indices into one index. This is the 
FOM (Faria-Oliver-Mazars) model. A brief description of these two models follows below. 

The Onate model 
For this model, the total stress tensor a is defined as a function of the undamaged (elastic) 
stress tensor a according to the following relation 

o = (l-d)ö = (l-d)De (1) 

where D is the elasticity matrix and d is the damage index given by an evolution law. 
The damage evolution law is a function of a scalar norm r, which corresponds to an 
equivalent stress measure. Its exponential form, suitable for the prediction of the triaxial 
damage surface of fig. 1(a), is given by 

d=l--^exp A 1-— (2) 
r 

In (2), r0 is a threshold value for the onset of damage, and term A depends on material 
properties, such as the modululus of elasticity E, the fracture energy G/, the tensile strength/, 
and the characteristic element length / of the concrete. 
The scalar norm r, which corresponds to an equivalent stress, is given by the relation 

A 1- 
r 

^ r°)\ 

r = ö+i^ [öTDö]n (3) 

where 6 is a function of the effective (undamaged) principal stresses. 
The limit damage surface and uniaxial stress-strain curve for this model under 2-D conditions 
are shown in fig. 1(a). More details about the numerical implementation of eq. (l)-(3) can be 
found in references [3]. 

The Faria-Oliver-Mazars (FOM) model 
In this model the damage evolution law d of eq. (1) is defined as a linear combination of two 
damage indices d+ and d for tension and compression, respectively, i.e., 

d = a+d+ + ad- (4) 
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d+=l--^- 
l— 

d"=l-^-(l-A")-A"e 
x 

(5) 

where a+, a are scalar norms as functions of principal strains, A+, A' are parameters similar 
to A in the Onate model, r0

+, r0 are threshold values for the onset of damage and r„+, T„ are 
scalar norms, which correspond to equivalent stress measures, similar to the scalar norm r of 
the Onate model. 
Figure 1(b) shows the limit damage surface and the uniaxial stress-strain curve for the FOM 
model under 2-D conditions. More details about the numerical implementation of eq. (4)-(5) 
can be found in references [4],[5]. 

Figure 1: Limit damage surface under 2-D conditions and uniaxial stress-strain curve for: 
(a) Onate model, (b) Faria-Oliver-Mazars (FOM) model. 

By looking at fig. 1(a) and 1(b) of the two models one can easily observe that the Oiiate 
model cannot take into account the biaxiality effect (increase of strength in compression- 
compression), while the FOM model can take that into account. However, the Oiiate model 
coincides with the FOM model for uniaxial tension and is very close to it for tension 
dominated states of stress. Since pull-out tests of rebars and anchorages are tension 
dominated, both models have been validated and used in subsequent computations. 

Strain-rate effects 
Concrete exhibits a rate dependent behavior when submitted to high speed straining for 
which visible effects are the significant increase of dynamic strengths and the decrease of 
nonlinearity on the stress-strain response curves, when compared to what is observed on 
static tests. Observational experience shows that rate sensitivity is mainly due to the fact, that 
growth of internal microcracking (for a particular level of strain) is retarded at high strain 
rates. Being known, that the concrete (and other geomaterials) damage is essentially due to 
the nucleation and growth of microvoids and microcracks, it is comprehensible, that a 
diminishing of microcracking with increasing strain-rate will induce a reduction in 
macroscopic nonlinear behavior and an increase of dynamic strengths. 
The strain-rate concrete behavior simulation under dynamic loading can be obtained from a 
suitable modification of the Oiiate and FOM damage models. This modification requires the 
computation of equivalent tensile and compressive strain-rate at every time step. 

V   eq )N+I \   cq }N cq 

At 
£eq  = 

\   eq //v+| V   eq )N 
Ae; 

At 
(6) 

where ec * are scalar norms of principal strains of the form 
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fil =  [max(£l,£2,£3)U<£;>2        e„ =  \min(£l,e2,e3)^>£:<2 (?) 

From the above equivalent strain-rates, the dynamic to static strength ratios are computed for 
compressive and tensile states. These ratios arise from experimental tests. In the proposed 
methodology, the experimental results of Suaris & Shah (1985) [6] have been adopted. 
Polynomial regression of these results gives 

i^- = R,= 2.2989 + 0.5302[log10(£;)]+ 0.0855[log10(£;J + 0.0056[log,0(£e
+J (8) 

J c,cfyn 

Jc,st 

= RC = i.4090+o.i708[iog JejJ+o^sfiogJe;)]2 + 0.001 lllogje;,)]3      (9) 

An appropriate introduction of ratios R, and Rc in the static damage models, gives them a 
strain-rate dependency. For more details one can see reference [7]. 

Effect of fibers in concrete 
Experimental evidence shows that steel fibers in concrete improve its mechanical behavior 
and lead to a high performance concrete. In general, fibers increase the strength and 
especially the ductility of plain concrete. The latter is manifested in a stress-strain diagram 
for tension by a shifting of the peak stress to higher strains and especially by increased values 
of stress in the softening branch. 
The main parameters defining the effect of the steel fibers in concrete are the volume fraction 
of fibers Vf, the length of fibers //, the diameter of fibers df and the length efficiency factor of 
fibers r\L. The introduce of the effect of fibers in the two plain concrete models is made in a 
rather empirical way by simply replacing the plain concrete strength/, and the fracture energy 
Gf by their corresponding counterparts/,/ and Gfj respectively. In particular, the G//is given 
in the form 

Gf,f = Gf i+QnLvf-f- (10) 

On the basis of experiments, one can find the coefficient Q to be equal to 25. 
Equation (10) gives values for G// which can be from 4 to 20 times the corresponding value 
Gf of plain concrete. 

4. NUMERICAL AND EXPERIMENTAL RESULTS 

The two developed finite element models were used to simulate the experimental response of 
rebar and anchor pull-out tests in the background of a research program [1]. The following 
figures show the experimental vs the analytical stress or load - displacement curve for each 
test. Two failure modes were noticed for the cylindrical rebar specimens which correspond to 
the boundary conditions of the specimens. The cylinder bond failure mode corresponds to 
confined specimens. In this case a pulled out concrete cone was noticed. The cylinder 
splitting failure mode corresponds to a full splitting of the unconfined concrete specimens. 
Due to symmetry, only one fourth of the specimens was modelled by 20-noded solid finite 
elements. The boundary conditions were those of the experimental setup. Analogous 
considerations were taken into account for the analysis of the prismatic concrete blocks for 
the anchor pull-out tests. 
Figure 2 shows the predicted response versus the experimental one for rebar pull-out tests for 
the same type of normal concrete under static load conditions and for two different failure 
modes and bond lengths. Figure 3 shows rebar pull-out tests for two different types of high 
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performance (fiber reinforced) concrete and for cylinder splittind failure mode. Figure 4 
shows anchor pull-out tests under static loading for normal and high performance concrete 
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Figure 2. Rebar pull-out tests for normal concrete C25/30 (a) Cylinder Splitting, Bond length 
50 (b) Cylinder Bond, Bond Length 100. 
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Figure 3. Rebar pull-out tests for fiber reinforced concrete, cylinder splitting failure mode, 
bond length 50 (a) C100/120, (b) C200/240. 
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Figure 4. Anchor pull-out tests, (a) normal concrete C25/30, anchor type A, diameter Ml6 
mm, (b) fiber reinforced concrete C100/120, anchor type B, diameter M12 mm. 

for two types of industrial anchors with different geometric shape and diameters for the 
mechanical interlocking with the concrete. 
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The extremely law bond-slip behaviour was neglected because of the full bonding conditions 
of the specimens. Since the nature of the pull-out tests is tension dominated, both models, 
Onate and FOM, give the same numerical results. It must be noted that the Onate damage 
model is a subcase of the FOM model in the case where the term a of eq. (4) equals to zero. 
Finally, the predicted model behaviour is found in good agreement with the experimental 
one. 

7. CONCLUSIONS 

In the present work the description of two concrete models and their application to the 
prediction of the experimental results of pull-out tests were presented. The inelastic 
behaviour was successfully simulated by the continuum damage theory for brittle materials. 
The proposed models are stable and accurate since they are based on simple continuous 
functions of the damage evolution law, a fact that elliminates any numerical errors due to 
classical integration of the stresses over the finite element volume. 
The model predicted behaviour was found to be from good to excellent agreement with that 
of the experimental pull-out tests. The two damage based concrete models of Onate and FOM 
were implemented into 2-D and 3-D finite element method (FEM) codes capable of analysing 
static and dynamic problems. 
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1. SUMMARY 

In this paper we present a general two-degrees-of-freedom theory that describes the plane 
flexural motion of shear deformable elastic beams. For a specific form of the shape function 
involved in the theory, we derive the frequency equations and the associated beam 
characteristic functions and we briefly present some new numerical results for a couple of 
different boundary conditions applied on the beam ends. 

2. INTRODUCTION 

This study deals with the construction of the frequency equations and the characteristic 
functions of a general two-degrees-of-freedom theory that describes the plane flexural motion 
of shear deformable beams made of homogeneous or layered orthotropic material, the latter 
being arranged in the form of a symmetric lay-up. The governing equations of the theory 
involve a general shape function of the transverse beam co-ordinate parameter, the a- 
posteriori choice of which specifies the distribution of the transverse shear strain or stress 
along the beam thickness. Different choices of this shape function produce, as particular 
cases, the corresponding governing equations of different beam theories. These include the 
differential equations of the classical, Euler-Bernoulli beam theory [1,2] as well as the 
corresponding equations of the shear deformable theories due to Timoshenko [3,4] and 
Bickford [5]. Since corresponding developments of the Timoshenko beam theory are already 
available in the literature [6], the example application considered in this study deals with the 
Bickford beam theory [5]. 

The Euler-Bernoulli and the Timoshenko beam models are quoted by employing a constant 
(zero) or a linear form, respectively, of the shape function involved in the present general 
beam theory and are both described by a fourth-order ordinary differential equation. In 
contrast, the parabolic form of the shape function employed in the Bickford beam theory 
yields a differential equation of the sixth order. The frequency equations, the characteristic 
functions and the orthogonality conditions of this theory have been constructed analytically 
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and may be found in [7], for the complete set of classical end boundary conditions. Here, 
some new numerical results are presented and discussed for a couple of these sets of end 
boundary conditions. 

3. BASIC THEORY 

We consider a homogeneous orthotropic or symmetrically laminated elastic beam of length L 
and thickness h and we assume that its middle-axis coincides with the Ox axis of a Cartesian 
co-ordinate system Oxyz. We assume that the cross-section of the beam has a rectangular 
shape with unit width. We also assume that the beam is deformed in the Oxz plane only, so 
that the formulation begins with the following displacement approximation: 

U(x,y,z,t) = -zwx+<t>(z)u^(x,t),     W(x,y,z,t) = w(x,t). (1) 

For the purpose of this study, the shape function <p(z) is defined as follows [5]: 

0(z) = z 
3/i2 

(2) 

It can be shown that, by using either a variational approach or the generalised vectorial 
approach presented in [8], the beam equations of motion take the form [7], 

A>,xm + On«!.«« = (Po*- P2W.« + Pn"u)„. (3) 

~DnWrXXX +D™ulxx - A5>, = (p,,*, + pa2ux)tt, 

where the appearing inertia and rigidity coefficients are defined as follows: 

(A1
c

1,D1
ei.Z>.pß.T)= j^ Q!?kz2,z<Kz),4>2(z)}k, 

Here, p's and ß's are the material density and the reduced elastic stiffnesses in the fcth layer 
of the beam [9], respectively, whereas a prime represents ordinary differentiation. 

Since we deal with free flexural vibrations only, we substitute 

wlL = w{£, )cos(fflf),   «,=«(! )cos(ft»),        (0 < | = x IL < l) (4) 

into equations (3) to obtain, 
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where the appearing non-dimensional frequency parameter is defined as follows: 

,2 P0L* — 2 
0)     =ft>' 

D'n 

Equations (5) can be uncoupled to give, 

(5) 

(6) 
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on  P<P      DM   PO^      PO^ J 
1)   +- 

D,r, 

</4v 

fA';5L
2   p2     D,7V

2 

P()2 

PoL2 

PlPf, 

Pi 

— 4 d2v 

PoL2 

-4       /4"L-2 
-ft) Ö) 

D' 
ii 

v = 0, 

(7) 

where v stands for both w and u. 

4. FREQUENCY EQUATIONS AND CHARACTERISTIC FUNCTIONS 

In addition to the equations of motion (3), a variational approach (Hamilton's principle) 
yields all possible sets of variationally consistent boundary conditions that can be applied on 
the beam ends (£=0, 1). Using the non-dimensional variables w and u, these sets of 
boundary conditions are expressed as follows: 

1. Clamped end: w = w,$ = u = 0; 

2. Simply supported: w= wjg =«,4 =0; 

3.   Free: w&s -—u^+O) -w,t Pi.   7. 
[PoL PQL     j 

= w& =M,| = 0; and 

- D" -        — 
4.   Guided: w,^ -—7-«,« =w,s = u = 0 . 
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The number (three) in each set of end conditions matches the order (six) of the differential 
equation (7) that only even derivatives of the dependent variable. Hence, the corresponding 
auxiliary equation has three double roots, A2, A2 and A2 say, the long expressions of which 

are given in [7]. It turns out that A2 < 0 and A2, > 0, whereas A2 > 0 if 0 < co < r\B or A2 < 0 

if (0>T]B, with r\B =12 
'z^2 

Ho«, 
i7 a, 

. In the lower of these frequency regimes (0 < co < t]B) 

the general solution of (7) is therefore as follows: 

v = fi, cos(A,£)+ B2 sin(A,£)+ B, cosh(A2£)+ B, sinh(A2£)+ B5 cosh(A3£)+ B6 sinh(A3^), 

and has a corresponding, slightly modified expression in the upper frequency regime [7]. 
Relations between the arbitrary constants of integration that appear in the solutions thus 
obtained for w and M are found by using equations (5). 

Frequency equations as well as corresponding characteristic functions are then constructed 
analytically, by employing these solutions obtained for w and ü in conjunction with 
different combinations of end conditions. Complete lists of such analytical results can be 
found in [7] for ten different sets of end boundary conditions. The orthogonality condition 
that the characteristic functions obey are also presented in [7] together with some preliminary 
numerical results. Here some new numerical results are next discussed for beams having both 
their ends free (FF beams) or one end clamped and the other free (CF beams). 

5. NUMERICAL RESULTS 

Table 1. The first six frequency parameters CO of a CF beam for several values of the stiffness and aspect ratios. 

h/L ßll/055 I II III IV V VI 

80 2.6250279 9.4292057 18.910568 28.553320 39.571558 51.585809 

50 2.8653592 10.959488 22.470757 33.900672 46.475457 59.743468 

0.15 10 3.3369055 16.675002 37.879085 60.722211 84.434930 108.22758 

2 3.4657253 20.101854 51.025224 89.470617 132.50910 178.15489 

80 3.0139958 12.225438 25.497783 38.732913 52.920712 67.894098 

50 3.1721366 13.978696 30.001223 46.259414 63.252238 80.782576 

0.1 10 3.4321417 19.038147 46.277355 78.060185 112.09764 147.04620 

2 3.4932695 21.100603 56.059184 102.83773 158.22841 219.58113 

80 3.3647301 17.294999 39.779883 64.301466 89.736856 115.54189 

50 3.4182172 18.639695 44.626388 74.310674 105.66079 137.62181 

0.05 10 3.4942763 21.139364 56.233688 103.19741 158.63708 219.70026 

2 3.5102613 21.787320 60.093911 115.31600 185.81074 269.56019 

80 3.4901289 20.979159 55.327305 100.51922 152.99359 209.93951 

50 3.4996397 21.350727 57.429011 106.71642 165.99096 232.27034 

0.02 10 3.5124916 21.882212 60.697133 117.35908 190.76914 279.37532 

2 3.5150907 21.994213 61.429621 119.93913 197.34107 293.12088 

80 3.5094605 21.753608 59.874558 114.54603 183.85643 265.49483 

50 3.5118849 21.856304 60.529249 116.77462 189.30131 276.35499 

0.01 10 3.5151319 21.996012 61.441423 119.98071 197.44667 293.34029 

2 3.5157839 22.024390 61.629856 120.65833 199.21816 297.16044 

EBBT 3.5160150 22.034492 61.697214 120.90192 199.85953 298.55553 
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In this section we present the first six natural frequency parameters of a CF (clamped-free) 
and a FF (free-free) Bickford beam. These are tabulated in Tables 1 and 2, respectively, for 
several realistic values of hlL and Qu IQ55 ratios. The bottom row of both Tables presents 
the corresponding frequency parameters obtained on the basis of the Euler-Bernoulli beam 
theory (EBBT). 

Both tables show that, for the thinnest {hiL = 0.01) and less reinforced, essentially isotropic 
beam {Q„IQi5=2), there is a good agreement between the corresponding frequency 
parameters based on the Euler-Bernoulli theory and the Bickford theory. The frequency 
parameters of Bickford's theory decrease however continuously with increasing the beam 
thickness or the beam reinforcement. For example, when hiL = 0.15 and Qu IQ5S =80 in 
the CF beam case (Table 1) the first frequency of Bickford beam becomes as low as 25% 
whereas its fifth and sixth frequencies are as low as 20% and 17% of the corresponding 
Euler-Bernoulli theory counterparts, respectively. Similar conclusions can be observed in the 
FF beam case (Table 2). 

In the previous section we have seen that the solution of equation (7) can take one of two 
general forms depending on whether 0 < co < rjH (lower regime) or co > r\R (upper regime). 

Table 2. The first six frequency parameters ft) of a FF beam for several values of the stiffness and aspect ratios. The results 
indicated with a star fall into the upper frequency regime. 

h/L ßll/Ö55 I II III IV V VI 

80 12.610913 20.998286 31.551959 41.146692 69.977940* 82.706760* 
50 14.477683 25.182181 37.509483 48.904518 63.394368 67.999224 

0.15 10 19.259512 41.904709 66.168860 89.942635 113.86000 135.51384 
2 20.920207 52.328031 92.051140 136.14766 182.51301 229.71054 

80 15.868259 28.843467 42.871736 56.589368 72.048600 87.520185 
50 17.498927 33.969952 51.117339 67.874193 85.774950 103.79654 

0.1 10 20.775917 49.862528 83.937740 119.37050 155.14640 190.86964 
2 21.680730 56.834269 104.63551 161.21032 223.78574 290.36337 

80 19.983588 44.408736 70.620153 96.693860 122.93801 149.42580 
50 20.751641 48.911381 80.884937 113.49187 146.21851 179.00605 

0.05 10 21.930929 57.863840 106.88770 164.73890 228.22262 295.08498 
2 22.192064 60.320650 115.96687 187.07262 271.64470 367.69598 

80 21.928964 57.496770 105.22556 160.45503 219.94571 281.64413 
50 22.085760 58.924444 110.24447 172.07201 241.08635 314.70712 

0.02 10 22.300238 61.005459 118.23862 192.53203 282.38678 386.14279 
2 22.343900 61.448801 120.05983 197.58941 293.56459 407.40309 

80 22.259507 60.541640 116.31171 187.25483 271.02802 365.26499 
50 22.300254 60.948341 117.93790 191.61397 280.26421 382.01677 

0.01 10 22.354939 61.503532 120.21804 197.93943 294.22266 408.50978 
2 22.365925 61.616529 120.69039 199.28264 297.27750 414.51329 

EBBT 22.373285 61.672823 120.90339 199.85945 298.55554 416.99079 
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Hence, two different frequency equations are obtained for each set of boundary conditions (a 
complete list can be found in [7]). Numerical calculations show that in the case of FF 
Bickford beam, when hlL = 0.15 and Qu/Qss =2 the first eight frequencies fall into the 

lower frequency regime, while if h IL = 0.15 and g,, / Q5S = 80 only the first four fall into the 
lower regime. In Table 2 the frequencies marked with a "*" fall into the upper frequency 
regime. 
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1. SUMMARY 

In this paper a realistic estimation of the effective breadth of a stiffened plate is presented. 
For the estimation of the effective breadth the adopted model contrary to the models used 
previously takes into account the resulting inplane forces and deformations of the plate as 
well as the axial forces and deformations of the beam, due to combined response of the 
system. After the solution of the plate - beams system is achieved, the distribution of the 
axial stresses across the plate, resulting from both the bending and the inplane action of the 
plate, is obtained. Integrating this distribution across the plate the values of the effective 
breadth are obtained. The influence of these values from the beam stiffness and their 
variation along the longitudinal direction of the plate are shown as compared with those 
obtained from various codes through numerical examples with great practical interest. 

2. INTRODUCTION 

In this paper a realistic estimation of the effective breadth of a stiffened plate is presented. 
Various definitions of the effective breadth have been given from various researchers 
depending on the intensity of the approximating constant stress (theoretical stress at the beam 
edge or at the axis of the stiffening beam) and the inclusion or not of the beam width [1-4]. 
For the estimation of the effective breadth or the effective width of stiffened plates, 
approximate methods such as the finite strip method [2], energy methods or the FEM have 
been employed. In all the aforementioned methods the adopted model for the analysis of the 
plate - beams system neglects the shear forces at the interfaces and the resulting inplane 
forces and deformations of the plate as well as the axial forces and deformations of the beam. 
This assumption results in discrepancies from the actual response of the stiffened plate. 

In this paper the analysis of the stiffened structure is achieved by adopting a model in which 
the stiffening beams are isolated from the plate by sections parallel to the lower outer surface 
of the plate. The forces at the interface, which produce lateral deflection and inplane 
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deformation to the plate and lateral deflection and axial deformation to the beam, are 
established using continuity conditions at the interface. The solution of the arising plate and 
beam problems, which are nonlinearly coupled, is achieved using the Analog Equation 
Method (A.E.M.) [5]. After the solution of the plate - beams system is achieved, the 
distribution of the axial stresses across the plate, resulting from both the bending and the 
inplane (arising from the shear forces at the interfaces) action of the plate, is obtained. 
Integrating this distribution across the plate and following the aforementioned definition of 
the effective breadth we obtain its values in the longitudinal direction of the plate. The 
influence of these values from the beam stiffness and their variation along the longitudinal 
direction of the plate are shown as compared with those obtained from various codes through 
numerical examples with great practical interest. 

3. STATEMENT OF THE PROBLEM 

Consider a thin elastic plate having constant thickness hp, occupying the domain Ü of the 

x, y plane and stiffened by a set of parallel beams. The plate may have J holes while its 

boundary r = uj^Tj may be piecewise smooth (Fig.l). For the sake of convenience the M„ 

axis is taken parallel to the beams. The plate is subjected to the lateral load, x :{x,y} and is 
supported on its boundary, whereas the beams may have point supports. 

For the solution of the problem at hand and the evaluation of the distribution of the axial 
stresses across the plate the method presented by Sapountzakis and Katsikadelis in [5] is 
adopted here. According to this method the stiffening beams are isolated from the plate by 
sections in the lower outer surface of the plate, while tractions at the fictitious interfaces are 
taken into account. These tractions result in the loading of the beam as well as the additional 
loading of the plate. Their distribution is unknown and is established by imposing 
displacement continuity conditions at the interfaces. 

The integration of the tractions along 
the width of the beam result in line forces 
per unit length which are denoted by qx, 

qy and qz. Taking into account that the 

torsional stiffness of the beam is small, the 
traction component qy, in the direction 

normal to the beam axis is ignored. The 
other two components qx and qz produce 
the following loadings along the trace of 

Fig.l. Two dimensional plate region Q. each beam. 

a. In the plate 
(i) A lateral line load - qz at the interface. 
(ii)A lateral line load - dMp/dx due to the eccentricity of the component qx from the 

middle surface of the plate. Mp = qxhp /2 is the bending moment, 

(iii) An inplane line body force qx at the middle surface of the plate. 

angle k  ■ 
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7^ W angle 2 
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b. In each beam 
(i) A transverse load qz. 

(ii) A transverse load dMh/dx due to the eccentricity of qx from the neutral axis of the 
beam cross section, 

(iii) An inplane axial force qx. 

The structural models of the plate and the beams are shown in Fig.2. 

On the base of the above considerations 
the response of the plate and of the 
beams may be described by the 
following boundary value problems. 

a. For the plate. 
The plate undergoes transverse 
deflection and inplane deformation. 
Thus, for the transverse deflection we 
have 

Fig.2. Structural model of the plate and the beams. 

DVV, 
d2w„ d2w 

Nr ^- + 2N " 
dx' 

a,wp+a2Vn=a3 

+ N.. 
dxdy y 

Hi 
dy2 

dwp 

dn 

K 

-1 Jk) 
dM (k) \ 

dx 
+ —p— 5(y-yk) inß     (1) 

+ ß2Mn=ß3 on/" (2a,b) 

3 2 
where w = w (x) is the transverse deflection of the plate; D = Ephp /12( 1-v ) is its 

flexural rigidity with Ep being the elastic modulus and v the Poisson ratio; Nx = NJx), 

Ny = Ny(x), Nxy = N^,(x) are the membrane forces per unit length of the plate cross 

section and at, /?,- (/ = 1,2,3) are functions specified on the boundary T. 

Since linear plate bending theory is considered, the components of the membrane forces Nx, 

Ny, A^ do not depend on the deflection w . They are given as 

NX=C 
du. dVr 

-+v- 
dx dy 

Ny=C 
(  dup    dvp^ 
v—— + —- 

dx      dy 
N„=C 

1-v dup     dvp 

dy       dx 
(3a,b,c) 

where C = Ep /\I^v2)\ up =up(x) and vp =vp(x) are the displacement components of 

the middle surface of the plate and are established by solving the plane stress problem, which 
is described by the following boundary value problem (Navier's equations of equilibrium) 

„2 1+v d V u„ + p    J-vdx 

dup     dvp 

dx       dy 
+ J-qx8{y-yk)=0 VV + 7 + v d 

1-v dy 

dup     dvp 
= 0 

dx       dy 

in Q     (4a,b) 
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Y,un + y2Nn = y3 Sju, + 82Nt = 83 on r (5a,b) 

in which Gp = Ep/2( 1 + v) is the shear modulus of the plate; Nn, N, and un, ut are the 

boundary membrane forces and displacements in the normal and tangential directions to the 
boundary, respectively; yi, St (i = 1,2,3) are functions specified on T. 

b. For each beam. 
Each beam undergoes transverse deflection and axial deformation. Thus, for the transverse 
deflection we have 

d4wb d'wb _        <?M 

dx4 dx1 dx 
Ebh-TT-"b-rt = 1i—^r in lk,k = l,2,...,K (6) 

dwt. 
ajwh + a2V = a3 bj —- + b2M = b3   at the beam ends x = 0,l (7a,b) 

dx 

where wh = wh( x) is the transverse deflection of the beam; EhIb is its flexural rigidity; 

Nh = Nh( x) is the axial force at the neutral axis; V, M are the reaction and the bending 

moment at the beam ends, respectively and at, bt (i = 1,2,3) are coefficients specified at the 
boundary of the beam. 

Since linear beam bending theory is considered, the axial force of the beam does not depend 
on the deflection wb. The axial deformation of the beam is described by solving 
independently the boundary value problem i.e. 

d_ub 

dx2 

Cjub + c2N = c3 at the beam ends x = 0,l (9) 

EhAh^ = -qx in Lk,k = l,2,...,K (8) 

where TV is the axial reaction at the beam ends. 

Eqns. (1), (4a), (4b), (6), (8) constitute a set of five coupled partial differential equations 
including seven unknowns, namely wp,up,vp,wb,ub,qx,qz. Two additional equations are 

required, which result from the continuity conditions of the displacements in the direction of 
the z and x axes at the interfaces between the plate and the beams. These conditions can be 
expressed as 

hn dw hu dwh 

"'-füf^füf <10a'b) 

It must be noted that the coupling of eqns (1) and (4a,b), as well as of eqns (6) and (8) is 
nonlinear due to the terms including the unknown membrane and axial forces, respectively. 

After the solution of the aforementioned nonlinear system of equations and the evaluation of 
the unknown plate wp and beam wb deflection, the displacement components up,vp of the 

middle surface of the plate, the axial deformation of the beam ub and the interface forces 
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qx, qz , the distribution of the axial stresses across the plate is obtained. These stresses result 
from superposition of the bending and the inplane action of the plate and are given as 

or = — 
l-vl dx2 

d2wn - + V- 
dy2 

+ C(ul,+wp) (11) 

Fig.3. Timoshenko and Goodier [3] 
effective breadth definition. 

4.   NUMERICAL SOLUTION 

Integrating across the plate the evaluated 
distribution of the axial stresses given from 
eqn.(ll) the effective breadth is estimated 
according to Timoshenko and Goodier [3] 
following Fig.3 and applying the following 
relation 

beff = 

_ JQxdy 
(12) 

-2.0        0.0        2.0 
Longitudinal axis (m) 

Fig.4. Effective breadth according to the definition of Timoshenko 
and Goodier [3] of the stiffened plate for various heights of 
the stiffening beam. 

The numerical 
solution of the 
aforementioned plate 
and beam problems is 
accomplished by 
developing the 
Analog Equation 
Method (AEM) as 
this is presented in 
Sapountzakis and 
Katsikadelis [5]. 

5.   NUMERICAL EXAMPLE 

A rectangular plate with dimensions axb = 18.0x9.0m subjected to a uniform load 

g - WkN/m2 and stiffened by a beam with width 1.0 m through the centerline of the plate 
has been studied. The plate is simply supported along its small edges, while the other two 
edges are free. 
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Fig.5.  Effective breadth for   hb = 1.25 m 
recommendations of various codes. 

compared with the 

The estimated values of 
the effective breadth 
according to 
Timoshenko and 
Goodier [3] for different 
heights of the stiffening 
beam are presented in 
Fig.4. Moreover in Fig.5 
the estimated values of 
the effective breadth for 
the beam height 
hb = 1.25 m according to 
Timoshenko and 
Goodier [3] are 
presented as compared 
with those obtained 
from various codes. The 
discrepancy between the 
estimated values and the 
code proposed ones is 
remarkable. 

6.   CONCLUDING REMARKS 

a. 

b. 

The values of the effective breadth are not constant along the stiffening beam increasing 
from the supported edges to the center of the stiffened structure. Also, the variation of the 
effective breadth is significantly reduced as the beam height is increased. 
The discrepancy between the estimated values of the effective breadth using the presented 
procedure and the code proposed ones is remarkable. It is worth here noting that the code 
proposed values are independent from the height of the stiffening beam. 
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1. SUMMARY 

The objective of this paper is the study of tie plates in pin connections. Because of the 
fundamental concept of the behaviour of pin connections, there is a significant clearance 
between the tie plate hole and the pin. The stress-state of the assemblage has been determined 
by the use of the finite element method. The results of the analysis have been compared with 
both the specifications of Eurocode 3 and with some experimental data. 

2. INTRODUCTION 

Connections are essential elements of a structure and extensive research is done in recent 
years on their behaviour. Pin connections are widely used in steel structures. Tie plates are 
used not only in pin connections but also as components of lifting modules and bridge 
restrainers [1]. In certain cases, as e.g. in bracings and in bridge restrainers, tie plates are not 
supposed to carry any load under normal loading conditions. They must respond to loading 
only under seismic or other horizontal excitation. The particular behaviour of tie plates in 
such cases has not been studied very well. 

Pin connections are often used in steel structures. Among the reasons for their wide use are 
their limited construction demands and their predictable behavior, since they do not carry 
moments. Furthermore, the boundary conditions of the nodes can be easily simulated, during 
the analysis of the structure. In spite of their advantages, the theoretical and experimental 
study of the behavior of pin connections is not as extensive as it would be expected. A similar 
study, but in a different context can be found in [2]. A typical example of their application is 
given in Figure 1. 

For the study of the response to loading of tie plates in pin connections, the finite element 
method has been used. The linear response of the connected plates, under static loads, has 
been examined keeping under consideration the dimensions of the plates proposed by 
Eurocode 3 (EC3) [3]. Between the diameter of the hole d0 and the diameter of the pin d, 

relation d0 > d is always valid (Figure 2). Because of this, the contact between the pin and 
the connected plates is unilateral and not obstructed, the system can be freely rotated around 
the longitudinal axis of the pin and, finally, shear is the critical form of failure. 
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CONNECTION 

?<= b ■><- 
->',<-\. 

Figure 1: Typical use of pin connection    Figure 2: Thickness t and length b of tie plate 

3. ANALYSIS 

The problem has been studied by the use of two-dimensional analysis. The simulation has 
been carried out in the SAP2000 finite element program [4]. For the analysis of the model, 
shell elements have been used. The z-axis has been assigned to the thickness t of the tie plate 
under consideration. The basic shape of the tie plate model has been designed using AutoCad 
R14 and imported in the finite element program. After that, the messing of the elements has 
been realized, especially of the area near and around the hole, where a 7,5° step has been used 
[7]. To each of the nodes of the contour in the radial direction spring supports have been 
assigned and equivalent uniform tension loads were enforced at the down part of the plate. 
The tension or compression of the spring supports determined whether there is contact or not 
respectively. As it has been shown by the analysis, the contact area is divided symmetrically 
by the Y-axis, forming an angle of 150°. 

The unilateral contact between the pin and the plates and the loading of the plates have been 
taken into account by the application of appropriate assumptions in order to simulate real 
conditions. Two basic simplifications have been taken into account for the determination of 
the geometry of the contact area: a) Friction has been ignored. Thus, only radial interaction 
between pin and plate was considered, b) Because of the crucial role of the above load 
condition to the response of the connection, the study has been carried out by using different 
values of the tension load in the Y direction. It must be noted that the nonlinearities 
introduced by this unilateral contact phenomena have as a result that the contact areas 
between the pin and the boundary of the hole are not a priori known. For the solution of the 
Linear Complementarity Problem that is formulated in each solution step [5], a Quadratic 
Programming algorithm has been used [6]. 

Figure 3: Geometric conditions for tie plates in pin connections [3] 
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The forces that correspond to each of the elements of the connection are transmitted from the 
pin to the plates and vice versa (depending on which plate is examined) through the contact 
area. For the study of the plates, the load has been applied to the shells included in the contact 
area in the form of an equivalent uniform load. The direction of the load vector coincides 
with the one of the local axis 2. By rotating the local axis of each shell at the radial direction, 
compatibility of the adopted load enforcement with the hypothesis of radial interaction 
between the pin and the plates has been obtained. 

4. NUMERICAL STUDY 

For the numerical study, the behavior of several cases of pin connections has been examined 
with the geometric characteristics of the plates and the different qualities of the materials as 
changing factors. The geometric characteristics of the plates have been defined according to 
the relevant clauses of EC3 [3], where in Table 6.5.6 the following relations are given for pin 
connections (Figure 3): 

Type A: Constant thickness t 

a ^ F
sd7Mp | 2d0     _ ^ FstlyMp | d0 

2tfy 3    ' 2tfy        3 

Type B: Constant geometry 

t>0.ll^p^:d0<2.5t. (2) 

Obviously, the above relations are satisfied for many values of the parameters used (a, c, d, t, 
Fsd). In order to give an overall qualitative view, the critical cases will be examined next. This 
has been done in accordance with the following steps: 
• The values of diameters d and d0, that will be studied, have been specified. 

• For each diameter d0, the minimum value of the thickness t has been determined, 
according to the second of relations (2). 

• The limit load  Fcr, which corresponds to a tie plate of given thickness t, has been 
determined in each case from the first of relations (2). 

• Cases where the pin moment Msd {f(f, Fsd)) is greater than the design resistance Mrd 

have been rejected. 
• For the above values of d0 and t and for Fsd = Fcr the limit values of lengths a and c 

have been calculated from relations (1). 
• For the plates, steel S235, S275 and S355 have been used. The material of the pin has 

been taken as 8.8 and 10.9. 

In all cases, the comparison of the yield stress fy to the maximum Von Mises stresses has 
been used as a failure criterion. First, the above have been solved for the loads proposed by 
EC3 (Fec3). Next, the limit load (Fres) that every plate can resist, depending to its geometric 
characteristics, has been calculated. In the cases where Frcs<FeC3, the modifications imposed 
to the geometry of the plates have been defined by the shape of the failure mode. 
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(a) (b) (C) 

Figure 4: Stress conditions: S235, dQ = 30mm, t = 22 mm 

Under the given loads, the shape of the hole becomes oval and the maximum stresses appear 
at the 0° and 180° areas, tension failure of the plate occurs [8, 9]. The values of the stresses at 
these areas are defined by length c. In the case of failure, length c is modified in such a way 
that the plate is able to withstand the load proposed by EC3. In Figure 4 the stress conditions 
of the deformed shape for a typical case are presented: (a) for the loads and geometric 
characteristics given by EC3, (b) for the failure load according to the simulation and the 
geometric characteristics given by EC3 and (c) for the loading according to EC3 and for the 
length c modified in such a way that the plate does not fail. 

From the combination of the second of relations (1) with the first of relations (2), relation (3) 
is obtained 

■ t + - (3) 

d0 k 
14 1,20 
18 1,50 
22 1,75 
24 1,75 
26 1,75 
30 2,00 
33 2,00 
39 2,00 

Figure 5: Values of the proposed factor k 
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The results derived from the study which is presented here, show that the above relation for c 
is not valid in some critical cases. For this reason, a modification of the relation is proposed. 
It must be noted that the criterion for the modification is the diameter of the hole. In the cases 
where EC3 is valid, the above modification contributes to the improvement of the safety of 
the structure. This modification takes the form of a factor k with the values given in the table 
of Figure 5. This factor would multiply the second part of relation (3) that takes the form 

c = k t + - (4) 

The above modification is valid for both the 8.8 and 10.9 material qualities of the pin, with 
the only difference that, because of the smaller strength of the pin material, some of the cases 
are excluded for the first one. 
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Some indicative results of the procedure developed in order to achieve the aims of this paper 
are presented above, in diagrams of the implicated parameters. 

5. CONCLUSIONS 

A change has been proposed in a formula which is extensively used in steel structures. This 
change has been based upon the two-dimensional finite element analysis of the problem. The 
reliable study of the problem under consideration was feasible in the two-dimensional space 
due to the geometry and the loading conditions of the connections. The low value of the ratio 
thickness t over length b and the symmetry of the plates contributed to the simplification of 
the problem. The correctness of the assumptions that have been used for the study of the 
problem, has been verified by applying the basic concepts of the suggested simulation to a 
similar problem for which both computational and experimental data exist [10]. 
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1. SUMMARY 

An analytical treatment of the dynamic response of steel highway bridges is developed, under 
the action of moving vehicles, emphasizing on the effect of deck roughness and vehicle 
characteristics. Employing a saw-tooth surface roughness simulation an a single axle, two- 
mass vehicle model, it is found that low-width roughness combined with increasing vehicle 
speed dramatically increase the flexural deflections, a finding of immense importance for 
structural design purposes. 

2. INTRODUCTION 

Highway bridges traversed by moving vehicles are subjected to time-dependent forces, which 
are affected by numerous parameters of the structure and vehicles. One of these parameters is 
the road surface (deck) roughness, dealt with excessively in the recent literature. Most of the 
relevant studies adopt the Power Spectral Density (PSD) functions for roughness as modified 
by Wang and Huang [7] or the simpler harmonically varying surface irregularity presented in 
Cheng et al [2]. Among these one must quote the significant contributions by Fafard et al [3], 
Cheng and Lee [2], Huang and Wang [4], Kou and DeWolf [5] as well as by Yang et al [6]. 
Their findings have shown that the foregoing parameter is one of the most important factors 
affecting elastic dynamic response, especially applicable to steel highway bridges. The most 
common vehicle simulations used in the aforementioned citations are either the simple one- 
axle two degrees of freedom (DOFs) model or the sophisticated HS20-44 truck design model 
specified by AASHTO, with 11 independent DOFs. 

In the present study, via the former vehicle model and a saw-tooth roughness simulation, a 
fully analytical treatment of the vibration of steel highway bridges under vehicular loading is 
presented, leading to significant findings of great importance for structural design purposes. 
A more detailed parametric study of the whole scientific subject would undoubtedly lead to 
even more useful results, which could be directly incorporated into Code Specifications, 
concerning asphalt deck quality and allowable vehicle speed when crossing a steel highway 
bridge, which performs elastically in the majority of cases. 
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3. MATHEMATICAL FORMULATION 

Modeling of deck roughness and moving vehicle 
In order to perform a fully analytical, yet comprehensive, treatment of the forced vibration of 
bridges with rough decks under vehicular loading, we simulate the roughness by a saw-tooth 
model shown in Fig.la. This approach - though quite simplifying compared with the PSD 
functions often used in the relevant literature - is realistic and representative for the majority 
of asphalt surfaces in use through the last decade. Furthermore, the well known two-axle 
sprung-unsprung two-mass {M, mo), spring-damper (kv, cv) model of Fig.2b is chosen for the 
simulation of the moving vehicle, which is considered crossing the bridge with constant 
velocity v. 

perfect 
y////////////////////////////////. 

real 

saw-tooth model 

2d 

10 

(a) (b) 
Figure 1 : Saw-tooth model for the simulation of deck roughness (a) and single axle moving 

vehicle model (b). 

ms=m0, ij 

Figure 2 : Impact forces between rough deck and vehicle wheel. 

In as much as, the main problem in dealing with the models adopted is to evaluate the forces 
developing on the bridge due to the impact of the tires on the rough deck as well as to 
establish the behavior of the bridge interacting with the vehicle simulation. In doing the 
former, one must resort to the principles of rotational impact theory, one of which clearly 
dictates that when two rigid bodies, with angular velocities and moments of inertia »//and /,■, 
i=l,2 respectively collide against each other, after their impact the new angular velocity of 
the first body is given by the relation 

mi,a- 
{I, - El2Ky + (1 + e)J2(Q2,f 

I, + h 
(1) 

where 8 is the percentage of the remaining energy after the impact, varying usually between 
0.70 and 0.90. Furthermore, when a vehicle travels on an asphalt road surface, there always 
exists a flat part in full contact with the deck of with <5, as shown in Fig.3. For the tire-deck 
impact it is evident that 

J2 =oo , co2f =0 , a>] =v/R , 11 =m0R/42 (2) 

Substituting the latter into eq.(2) we may find that the impact force on the deck is equal to 
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em0v 5 

4   R (3) 

Forced vibration analysis 
Let us consider the elastic undamped forced vibration of a simply supported bridge of length 
£ with constant cross-section, mass per unit length m and flexural rigidity El, acted upon by 
the vehicle model adopted, moving across its rough deck (according to the aforementioned 
simulation) with constant velocity v, as depicted in Fig.3. 

Mrtj- 

4iJ 
^3 

>v(o) 
— a—i 

Figure 3 : Geometry and sign convention of a simply supported bridge acted upon by the 
chosen vehicle model. 

The governing equation of motion is thus given by the following expression 

Elw""(x,t) + mw(x,t) = (Pv + Pt    )5(x-a)    ,    a = vt (4) 

where 

Pv = Mg-Mz + m()g-m0\v 
    s (5) 

are the dynamic forces due to the vehicle and roughness respectively, with 

tj =ti_j+2d/v 

Mi = K[w(a) - z]+c[w(a) - z] (6) 

For a bridge initially at rest, the solution of (4) is the sum of its particular solutions due to Pv 

and Pimp to be evaluated. In doing this, it is well known that the modal expression of the 
flexural deflection of a beam as in Fig.3. under the action of a constant force P= (M + m0 )g 
crossing its span with constant velocity v is given by: 

Wnfx.O^Y.XJxJP^t)  where  X„(x) = sin mix 

PJt)- 
2(M + m0)g 

mt co2„-Q2„ 

n 
sin Qnt -sin cont 

(0„ 
• nn 

nm 
(7) 

Considering at first the effect of the moving vehicle, and introducing the latter expression as a 
first approximation, combination of eqs.(4), (6) and (7) yields 
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(M + m0)g-Mi-m0YJXn(a)Pn(t) 
i 

Mz + cz + Kz = cJjXn(a)Pn(t) + KYjXn(a)P„(t) 
n n 

Seeking solutions of the form 

v(x,t) = YdXn(x)Tn(t)   ,   z(t) = ^nn(t) 
n n 

and equalizing the same modes we get: 

ö(x-a) 

where 

n„(t)+2ßrin(t)+7
2n„(t)=<Pn(t) 

0n(t) = 2ßXn(vt)Pn(t) + y2Xn(vt)Pn(t) 

ß = c/2M , 7 = 4K7M J 

which according to Duhamel's formula possesses the following solution 

nn(t) = -tj'oe-M'-*>0n(T)smC(t - x)dx 

(8) 

(9) 

(10) 

(11) 

(12) 

c^VT^ 
(13) 

Introducing the above into relations (10) and the total result into eq.(8), after some 
elaboration, we obtain 

fn(t) + w2
nTn(t) = Qn(t) => Tn(t) = —\'en(x)sincon(t-r)dr (14) 

where 

&„(t) = 
ml 

(M + m0 )g sinQnt - M sinQnt^n n-m0 sinQni^sinQntP^t) (15) 

Furthermore, for a random irregularity located at x = ar = vtr, we may evidently write that 

EIw"" + mw = AvrS(x-ar)S(t-tr) ' (16) 

and introducing a series solution 

Mx,t) = Y,Xn(x)Bn(t) (17) 
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we finally find that 

2A      r 
B„(t) = —^-\Xn(vx)sinw„(t-x)ö(x-t,.) 

muni    J mt(or 

-X„(vt)sinco„(t-x) for t>t,. 

(18) 

Thus, for r irregularities due to a rough deck as in the simulation adopted, the solution takes 
the following final form: 

2A r 

w(xJ) = —-^YiXn(x)'YsinQ„trsmco,l(t-tr) 
mlw„ n , 

(19) 

with r being the integer part of the quantity 
vt 
2d' 

In the sequel, the total solution of the equation of motion given in (4) is equal to the sum of 
the by-products of the foregoing analytical procedure prescribed in eqs.(10), (14) and (19). 

4. NUMERICAL EXAMPLE 

Although a full parametric study is now in order, the length limitations of the manuscript 
allows us to present results regarding the effect of the deck roughness in conjunction with the 
vehicle speed on the dynamic response of the bridge, keeping all the other characteristics 
constant, but within realistic values. Consequently the exemplary bridge, impact and vehicle 
parameters are chosen as follows: 

I = 100 m , m -* 40 kN/m , I = 1.50 m4, m0 -> 500 N, M -H> 2.5 kN, 8 = 10 cm, e = 0.80, 
kv = 60000 N/m , cv = 1000 Nsec/m , R = 35 cm. 
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Figure 4 : Midspan deflection versus vehicle passage time t for the exemplary bridge-vehicle 
configuration for v =50 and (b) v = 65 km/h and three values of the roughness parameter d. 

Applying the preceding analysis  and  after performing cumbersome  symbolic  integral 
computations, the midspan flexural deflection of the bridge is computed, for the time required 
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for the vehicle to cross its span, for two vehicle velocities (50 and 65 km/h) and three values 
of the roughness parameter d=\.5, 4.5 and 7.5mm. It is found that the decrease of roughness 
width d (implying increase of tire impacts) has a devastating effect on the dynamic response 
of the bridge, since the corresponding dynamic amplification factor may as well reach the 
value of 5. This effect is more pronounced with increasing vehicle speed, due to the impact 
forces are directly proportional to it. These findings, on which a more accurate structural 
design of bridges with rough decks may be based, can be comprehensively perceived 
throughout Fig.4, depicting time-midspan deflection plots for the d,v cases considered. 

5. CONCLUSIONS 

The main conclusions of the present study are: 
a) Through a single axle, two-mass, spring-damper vehicle model and a saw tooth deck 
roughness simulation, a fully analytical modal-based treatment of the forced vibration of a 
bridge is evidently presented, based on the impact forces between deck and vehicle tire and 
the bridge-vehicle interaction. 
b) Varying the deck roughness parameter and vehicle velocity, the effect of the combination 
of these parameters is established. The decrease of roughness width d when accompanied 
with increasing vehicle velocity v drastically amplifies the flexural deformations of the 
bridge, a finding of great importance for structural design purposes. 
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1. SUMMARY 

Classical linear-quadratic-regulators (LQR), provide the basis of well-known active 
optimal problems in mechanical engineering. They concern control of linear dynamical 
systems with a quadratic cost function. Their efficiency deteriorates as the uncertaincy of 
the loading and/or of the structural system becomes higher. Robust control theories (e.g., 
the H~ control) have been developed recently to solve this problem. It is obvious that in 
civil engineering, and especially in aseismic design, uncertainty is higher than in other 
engineering applications. The present numerical comparison between two representatives 
of the above classes of control theories demonstrates their common points and their 
differencies, and continues a number of recent research efforts to introduce innovative 
control concepts in structural dynamics for civil engineering [11,2,4,5,6]. 

2. LQR AND R°° CONTROL DESIGNS 

Throughout this work, our interest is focused on linear time-invariant finite dimensional 
dynamical systems having the standard state space form 

x(t) = Ax(t) + BC(t) + Dq(t) (1) 
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ym(t) = Cx(t) + Nx(t)    ,    yc(t)=Ex(t) + Jx(t) (2) 

where, x(t)e R " is the state vector, £(t) eR m is the input or control vector, q(t) eRd is 

the external loading vector, w(t)e R" is the external disturbance vector, ym(t) efi Pl is the 

vector of measurement (observed) outputs, yc(t)eR P2 is the controlled output vector, 
and where all the matrices have real entries and appropriate dimensions. A linear state 
feedback control law is studied, of the form: 

C(t) = Fx(t). (3) 

In LQR, the control is determined such that the following quadratic performance index be 
minimized: 

J = ij(xT(t)Qx(t) + £T(t)R£(t))it (4) 
2 o 

with Q = QT > 0 and R = RT > 0. The case of robust and H°°-controllers is more delicate. 
Let us consider the closed-loop system in frequency domain, 

Yc(s) = E(sI„ -A-BF)-1DQ(s) = Hqyc(s)Q(s) (5) 

where Hqy (s) = E(sIn -A-BF)~'D denotes the transfer function between the external 

disturbances and the controlled outputs, and   Yc(s)   and  Q(s)   denote the Laplace 
transforms of yc(t) and q(t), respectively. 

The H°° - norm of Hqy (s) is defined by the following chain of relations 

IH^ (S)||   = sup|Hqye (s)Q(s)| : Q(s) e H 2, |Q(s)|2 = l}= supf Yc (s)|2: Q(s) € H 2, |Q(s)|2 = l} 

= supamaxlH(iyc(jco)J (6) 
(0 

where, in general, ||F(s)|   denotes the 2-norm of a signal f(t) in the frequency domain, i.e.: 

r i - YA 

|F(s)|2 = — jF*(jco)F(jco)dco (7) 

Here, F(jo)) is the frequency domain signal, co is the angular frequency and (•)* refers to 
the complex conjugate transpose. Moreover, in (6), H 2 is the Hardy space referring to the 
class of functions, which are analytic and bounded in the open right half plane, i.e. 

H 2 =-{F:F(S) is analytic in Re(s)>0 and |F||2 <<*>] 

and omax(») denotes to the largest singular value of a matrix. 

Relation (6) actually means that ||Hqyi_ (s)||   is the maximum energy of the output yc(t) 

for every disturbance q(t) with unit energy, i.e. |Q(s)||2 =1. 

The continuous-time state feedback H°°-disturbance attenuation problem (also called the 
continuous-time minimum H°°-norm regulation problem), can then be stated as follows: 
Given a constant ye R +, find, a suitable control of the form (3) such that, simultaneously, 

(i)        the closed-loop system is internally stable. 
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(ii)       the H"-norm of Hqv (s) satisfies the bound  Hqv (s) < y. 

For technological reasons we consider the case where J = 0, and we study the behaviour 

for a small fixed 6 , such that: J = 9,1   ,  6>0  ,  0^0   ,  jT[j   E]=[I   O]. 

3. LQR VERSUS H°° CONTROL FOR A SEISMICALLY EXCITED SHEAR-TYPE 
FRAME 

In this example, continuous-time state feedback LQ regulation is compared to the 
continuous-time state feedback H°° control technique. To this end, consider the six-story 
full-scale shear-beam-type building with identical floors reported in [3]. In this structure, 
there are two actuators, one on the first floor and another on the third floor, both x-shaped 
active brancing systems. The mass of each floor, and the stiffness and damping 
coefficients of each story unit are: m, = 345.61, K{ = 3.404 xlO5 kN and c, =2937 kNs/m. 
According to [3], a state-space model of the form (1), (2), can be easily obtained after 
straightforward manipulations of the dynamical model: 

Mii(t)+ Cu(t) + Ku(t)= M0iig +B0^(t) (8) 

where Me B "* is the mass matrix, CER" is the damping matrix, Ke R kxk is the 
stiffness  matrix,   ii  e R 8   is  the  ground  earthquake  acceleration  vector (the  load), 

u(t)e R k is the nodal displacement vector, u(t)e R k is the velocity vector and ü(t)e R k 

is the acceleration vector. Moreover, M0eRkXE and B()eRkxm, are the loading and 
control forces arrangement matrices, respectively. For the six-story shear-type frame k=6, 
g=l. Details can be found in Section 7 of [6]. Considering as controlled system outputs 
the interstory drifts, and by using the earthquake ground motion of Figure 1, 
representative results of the two control systems are outlined here. More detailed 
investigation is included in [6]. 

Our purpose is to design LQ and H°° regulators, in order to attenuate the effect of the 
earthquake ground motion to the interstory drifts. 
We begin our analysis by first designing an LQ optimal regulator with weight matrices 
QeR6xf' and ReR2x2 as Q = diag{l08}and R = I2. In this case, we obtain 

F = 104x 
-0.0147 3.8123 -2.2004 -0.0096 -1.1796 -1.2987 

-0.0096 3.0357 -2.1866  0.0147  -4.0439  1.4209 
(9) 

-0.9498 0.0585 -0.0462 -0.0222 -0.0379 -0.0281 

0.0215     0.0613   -0.0006     0.8792     -0.0327     0.0133 

In Figures 2a and 2b, the first and fourth interstory drifts of both the uncontrolled and the 
controlled system are depicted, when the disturbance signal of Figure 1, excites the 
structure. Similar results can be obtained for the remaining interstory drifts. Clearly, the 
effect of the disturbance on the system outputs is attenuated in the controlled structure. 
We are now able to proceed with the design of state feedback H°° regulators for the 
structure. To this end, observe first that, in the present case, for the open-loop system, we 
have 
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Figure 1. Earthquake ground motion considered. 

E(SI-A)'D    =0.147.The  above  numerical  value  gives  us  the  amount  of the 
II l!°o 

detrimental effect of the seismic load to the interstory drifts. In Figure 3a, the largest 
singular value of E(sl- ä)~'D is depicted as function of the frequency co. 

Figure 2a. First interstory drifts of the 
uncontrolled (dashed line) and the 

controlled system (solid line) with the 
controller (9). 

Figure 2b. Fourth interstory drifts of the 
uncontrolled (dashed line) and the 

controlled system (solid line) with the 
controller (9). 

Figure 3a. The largest singular value of 
the transfer function of the uncontrolled 

system. 

Figure 3b. The largest singular value of 
the closed-loop transfer function. 
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For Y=0.075 and 0=10"'° we obtain: 

-1.4412   0.1218    0.0864    0.0299 
0.0323    0.0405   -0.0091   1.4390 

-0.6326   -0.4984   -0.3846   -0.2823 

F = 104x 
-0.0416 -0.0523 
-0.1016 -0.0650 

-0.1860 -0.0925' 
0.2826      0.2886      0.3028      0.3296      0.2106 0.1027 

(10) 

In Figure 3b, the largest singular value of Hqy (s) = E(sI-A-BF) "D is depicted as 

function of co. The desired disturbance attenuation level is satisfied. Moreover, in Figures 
4a and 4b, the first and fourth interstory drifts of both controlled and uncontrolled 
systems are compared. 

/ -BF)'D|- 

Figure 4a. First interstory drifts of the 
uncontrolled (dashed line) and the 

controlled system (solid line) with the 
H~-controller(10). 

Figure 4b. Fourth interstory drifts of the 
uncontrolled (dashed line) and the 

controlled system (solid line) with the 
H~-controller(10). 

Note that, if the restrictions are contradictory no solution can be found. For example, the 
minimum achievable disturbance attenuation level is y=0.011 (for 9 = 10"'3), since below 
this level, the Riccati equation associated with the H°°-control problem admitts no 
positive semi-definite solutions. 

4. DISCUSSION 

From the results obtained from the application of the H°° control technique, we arrive at 
the conclusion that, in the design of H°° controllers, similarly to that of LQ regulators, the 
less the effect of the disturbance on the system output we want to achieve, the largest 
must be the value of the control law. 
It is also clear from a simple comparison of the results obtained from the application of a 
state feedback LQ regulator and a state feedback H°° controller, that an H°° controller 
attenuates system disturbances better than an LQ regulator, at the expense of almost the 
same (if not lower in some cases) control effort 
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1. SUMMARY 

In this paper a robust and efficient methodology is presented for treating large-scale 
reliability-based, structural optimization problems. The optimization part is performed with 
evolution strategies, while the reliability analysis is carried out with the Monte Carlo 
simulation (MCS) method incorporating the importance sampling technique for the reduction 
of the sample size. The elasto-plastic analysis phase, required by the MCS, is replaced by a 
neural network predictor in order to predict the necessary data for the MCS procedure. The 
use of neural networks is motivated by the approximate concepts inherent in reliability 
analysis and the time consuming repeated analyses required by MCS. A training algorithm is 
implemented for training the NN utilizing available information generated from selected 
elasto-plastic analyses. 

2. INTRODUCTION 

Reliability analysis methods have developed significantly over the last decades and have 
stimulated the interest for the probabilistic optimum design of structures (Schueller) [1]. 
Despite the theoretical advancements in the field of reliability analysis serious computational 
obstacles arise when treating realistic problems. In particular, the reliability-based 
optimization (RBO) of large-scale structural systems is an extremely computationally 
intensive task, as shown by Tsompanakis and Papadrakakis [2]. Despite the improvement on 
the efficiency of the computational aspects of the reliability analysis techniques, they still 
require disproportionate computational effort for treating practical reliability problems. This 
is the reason why very few successful numerical investigations are known in the field of RBO 
and are mainly restricted to 2-D frames and trusses. 

In the present study the reliability-based sizing optimization of large-scale multi-storey 3-D 
frames is investigated. The objective function is the weight of the structure while the 
constraints are both deterministic (stress and displacement limitations) and probabilistic (the 
overall probability of failure of the structure). Randomness of loads, material properties, and 
member geometry are taken into consideration in reliability analysis using Monte Carlo 
simulation. The probability of failure of the frame structures is determined via a limit elasto- 
plastic analysis. 

The optimization part is solved using evolution strategies (ES), which in most cases are more 
robust and present a better global  behaviour than mathematical programming methods 
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(Papadrakakis et. al.) [3]. The limit elasto-plastic analyses required during the MCS are 
replaced by NN predictions. The use of NN is motivated by the approximate concepts 
inherent in reliability analysis and the time consuming repeated analyses required for MCS. 
An NN is trained first utilizing available information generated from selected conventional 
elasto-plastic analyses. The limit state analysis data is processed to obtain input and output 
pairs, which are used to produce a trained NN. The trained NN is then used to predict the 
critical load factor due to different sets of basic random variables. It appears that the use of a 
properly selected and trained NN can eliminate any limitation on the sample size used for 
MCS and on the dimensionality of the problem, due to the drastic reduction of the computing 
time required for the repeated limit elasto-plastic analyses. 

3. STUCTURAL RELIABILITY ANALYSIS 

The reliability of a structure or its probability of failure is an important factor in the design 
procedure since it quantifies the probability under which a structure will fulfil its design 
requirements. Structural reliability analysis is a tool that assists the design engineer to take 
into account all possible uncertainties during the design, construction phases and lifetime of a 
structure in order to calculate its probability of failure pf. A time invariant reliability analysis 
produces the following relationship 

pf =p[R<S]= JFR(t)fs(t)dt = l- JFs(t)fR(t)dt (1) 

in which R denotes the structure bearing capacity and S the external loads. The randomness 
of R and S can be described by known probability density functions fR(t) and fs(t), with 
FR(t)=p[R<t], Fs(t)=p[S<t] being the cumulative probability density functions of R and S, 
respectively. 

Most often a limit state function is defined as G(R,S)=S-R and the probability of structural 
failure is given by 

pf=p[G(R,S)>0]=  JfR(R)fs(S)dRdS (2) 

G>0 
It is practically impossible to evaluate R analytically for complex and/or large-scale 
structures. In such cases the integral of Eq. (2) can be calculated only approximately using 
either simulation methods, such as the Monte Carlo simulation method, or by using 
approximation methods. First and second order approximation methods (FORM and SORM) 
lead to formulations that require prior knowledge of the means and variances of the random 
variables and the definition of a differentiable failure function. On the other hand, MCS 
methods require that the probability density functions of all random variables must be known 
prior to the reliability analysis. For small-scale problems FORM and SORM implementations 
have been proved very efficient, but when the number of random variables increases and the 
problems become more complex MCS based methods have been proven more reliable. 

4. BASIC STUCTURAL RELIABILITY ANALYSIS 

The aim of the present study is to train a neural network to provide computationally 
inexpensive estimates of analysis outputs required during the MCS process. A trained neural 
network presents some distinct advantages over the numerical computing paradigm. It 
provides a rapid mapping of a given input into the desired output quantities, thereby 
enhancing the efficiency of the structural analysis process. This major advantage of a trained 
NN over the conventional procedure, under the provision that the predicted results fall within 
acceptable tolerances, leads to results that can be produced in a few clock cycles, representing 
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orders of magnitude less computational effort than the conventional computational process. 
The learning algorithm, which was employed for the training, is the well-known Back 
Propagation (BP) algorithm [4]. 

In the present implementation the objective is to investigate the ability of the NN to predict 
the collapse load for different values of the basic random variables. The calculation of the 
collapse load is used by the MCS method for reliability analysis. The results of the reliability 
analyses are used to verify the feasibility or not of the design with respect to the probabilistic 
constraint functions. This is achieved with a proper training of the NN. The NN training 
comprises the following tasks: (i) select the proper training set, (ii) find a suitable network 
architecture and (iii) determine the appropriate values of characteristic parameters such as the 
learning rate and momentum term. 

The learning rate coefficient and the momentum term are two user defined BP parameters 
that effect the learning procedure of NN. The training is sensitive to the choice of these 
parameters. The learning rate coefficient, employed during the adjustment of weights, is used 
to speed-up or slow-down the learning process. A bigger learning coefficient increases the 
weight changes; hence large steps are taken toward the global minimum of error level, while 
smaller learning coefficients increase the number of steps taken to reach the desired error 
level. If an error curve shows a downward trend but with poor convergence rate the learning 
rate coefficient is likely to be too high. Although these learning rate coefficients are usually 
taken to be constant for the whole net, local learning rate coefficients for each individual 
layer or unit may be applied as well. 

The basic NN configuration employed in this study is selected to have one hidden layer. An 
important factor governing the success of the learning procedure of NN architecture is the 
selection of the training set. A sufficient number of input data properly distributed in the 
design space together with the output data resulting from complete structural analyses are 
needed for the BP algorithm in order to provide satisfactory results. Overloading the network 
with unnecessary similar information results to over training without increasing the accuracy 
of the predictions. A few tens of limit elasto-plastic analyses have been found sufficient for 
the example considered to produce a satisfactory training of the NN. 

In this work a fully connected network is used. The number of conventional step-by-step 
limit analysis calculations performed in order to built up the proper data for the training set is 
in the range of thirty [5]. This selection is based on the requirement that the full range of 
possible results should be represented in the training procedure. For the application of the NN 
simulation and for the selection of the suitable training pairs, the sample space for each 
random variable is divided into equally spaced distances. The central points within the 
intervals are used as inputs for the limit state analyses. 

5. RELIABILITY-BASED STUCTURAL OPTIMIZATION 

During the last ten years various methodologies have evolved which deal with the reliability- 
based optimum design of structures. These attempts are restricted to relatively moderate size 
truss and frame structural problems using FORM and SORM reliability analysis methods [6]. 
In the present study the reliability-based sizing optimization of large-scale multi-storey 3-D 
frames is investigated. 

In sizing optimization problems the aim is to minimize the weight of the structure under 
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certain deterministic behavioral constraints usually on stresses and displacements. In 
reliability-based optimal design additional probabilistic constraints are imposed in order to 
take into account various random parameters and to ensure that the probability of failure of 
the structure is within acceptable limits. The probabilistic constraints enforce the condition 
that the probability of a local or the system failure.is smaller than a certain value (i.e. 10"3). In 
this work the overall probability of failure of the structure, as a result of a limit elasto-plastic 
analysis, is taken as the global reliability constraint. 

The probabilistic design variables are chosen to be the cross-sectional dimensions of the 
structural members and the material properties (E, ay). Due to engineering practice demands 
the members are divided into groups having the same design variables. This linking of 
elements results in a trade-off between the use of more material and the need of symmetry 
and uniformity of structures due to practical considerations. Furthermore, it has to be taken 
into account that due to manufacturing limitations the design variables are not continuous but 
discrete since cross-sections belong to a certain set. 

A discrete RBO problem can be formulated in the following form 
min F(s) 

subjectto    gj(s)<0 j = l,...,m 

SieRd,   i = l,...,n 

Pf ^Pa 
F(s) is the objective function (i.e. the structural weight), s is the vector of geometric design 
variables, which can take values only from the given discrete set Rd, gj(s) are the 
deterministic constraints and pf is the probability of failure of the design. Most frequently the 
deterministic constraints of the structure are the member stresses and nodal displacements or 
inter-storey drifts. For rigid frames with I-shape cross sections, the stress constraints, under 
allowable stress design requirements specified by Eurocode3 [7], are expressed by the non- 
dimensional ratio q of the following formulas 

f      fy     fz f 
q=-^- + -^ + -^-<1.0 if ^< 0.15 (4) 

F      Fy     Fz F 1 a        rb rb x a 

and 
f           C fy               r fz f 

a=h- + Tülib + TüiiL <i.o        if-^->0.15 (5) 
q    Fa    (l-fa/Fe')Fb    (l-fa/Fe')Fb Fa 

w 

where fa is the computed compressive axial stress, fb
y,fb

z are the computed bending stresses 

for y and z axis, respectively. Fa is the allowable compressive axial stress, Fb is the allowable 
bending stresses, Fe' is the Euler stress divided by a safety factor, Cm is a coefficient 

depending upon element's curvature caused by the applied moments, Fa=0.60xoy is the 
allowable axial stress, Fb=0.66xay is the allowable bending stress and ay is the yield stress. 
The allowable inter-storey drift is limited to 1.5% of the height of each storey. 

The proposed reliability-based sizing optimization methodology proceeds with the following 
steps: 
1    At the outset of the optimization procedure the member geometry, the boundaries and the 

loads of the structure under investigation have to be defined. 
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2 The mean values of the design variables are properly selected and the constraints are also 
defined in order to formulate the optimization problem as in Eq. (3). 

3 The optimization phase is carried out with ES where feasible designs are produced at each 
cycle (generation). The feasibility of the designs is checked for each design vector with 
respect to deterministic and probabilistic constraints of the problem. 

4 The satisfaction of the deterministic constraints is monitored through a finite elements 
analysis of the structure. 

5 The satisfaction of the probabilistic constraints is realized with the reliability analysis of 
the structure and the MCS technique in order to evaluate the probability of failure of the 
structure. 

6 If the convergence criteria for the optimisation algorithm are satisfied then the optimum 
solution has been found and the process is terminated, else the whole process is repeated 
from step 3 with the new set of design variables. 

Reliability-based structural optimization using MCS, ES and NN 
In reliability analysis of elasto-plastic structures using MCS the computed critical load factors 
are compared to the corresponding external loading leading to the computation of the 
probability of structural failure. The probabilistic constraints enforce the condition that the 
probability of a local failure of the system or the global system failure is smaller than a 
certain value (i.e. 10"5-10"3). In this work the overall probability of failure of the structure, as 
a result of limit elasto-plastic analyses, is taken as the global reliability constraint. The 
probabilistic design variables are chosen to be the cross-sectional dimensions of the structural 
members and the material properties (E, cry). 

At each ES cycle (generation) a number of MCS are carried out. In order to replace the time 
consuming limit elasto-plastic analyses needed by MCS for each design, a training procedure 
is performed based on the data collected from M conventional limit elasto-plastic analyses. 
After the selection of the suitable NN architecture the training procedure is performed with 
M=30 data sets, in order to obtain the I/O pairs needed for the NN training. After the training 
phase is concluded the trained NN replaces the conventional limit elasto-plastic analyses, for 
the current design. 

The Algorithm 
1. Selection step : selection of Sj (i = l,2,...,u) parent vectors of the design variables. 
2. Deterministic constraint check : all parent vectors become feasible. 
3. Monte Carlo Simulation step : for each parent vectors 

3a. Selection of the NN training set 
3b. NN training 
3c. Perform Monte Carlo Simulations 

4. Probabilistic constraint check : all parent vectors become feasible. 
5. Offspring generation : generate Sj, (j=\,2,...,X) offspring vectors of the design variables. 
6. Deterministic constraint check : all parent vectors become feasible. 
7. Monte Carlo Simulation step : for each offspring vectors 

7a. Selection of the NN training set 
7b. NN training 
7c. Perform Monte Carlo Simulations 

8. Probabilistic constraint check : if satisfied continue, else change Sj and go to step 6. 
9. Selection step : selection of the next generation parents according to (u+^.) or (u,>.) 

selection schemes. 
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10. Convergence check : If satisfied stop, else go to step 5. 

The aim of the present study is to train a neural network to provide computationally 
inexpensive estimates of analysis outputs required during the MCS process. A trained neural 
network presents some distinct advantages 

6. TEST EXAMPLE 

A realistic test example has been investigated in the present study in order to illustrate the 
efficiency of the proposed methodology for reliability-based sizing optimization problems. 
The cross section of each member of the space frame considered is assumed to be an I-shape 
and for each member one design variable is allocated. The objective function of the problem 
is the weight of the structure. The deterministic constraints are imposed on the inter-storey 
drifts and for each group of structural members on the maximum non-dimensional ratio q of 
Eqs. (8) and (9) which combines axial forces and bending moments. The values of allowable 
axial and bending stresses are Fa=150 MPa and Fb=165 MPa, respectively, whereas the 
allowable inter-storey drift is limited to 1.5% of the height of each storey. 

The probabilistic constraint is imposed on the probability of structural collapse due to 
successive formation of plastic nodes and is set to pa=0.001. The probability of failure caused 
by uncertainties related to material properties, member geometry and loads of the structures is 
estimated using MCS with the Importance Sampling technique. External loads, yield stresses, 
elastic moduli and the dimensions of the cross-sections of the structural members are 
considered to be random variables. The loads follow a log-normal probability density 
function, while random variables associated with material properties and cross-section 
dimensions follow a normal probability density function. The required importance sampling 
function gx(x) for the loads is assumed to follow a normal distribution. The mean value of 
gx(x) corresponds to the failure load when all other random values are kept fixed to their 
mean values. 

A Six-storey space frame 
This example consists of 63 elements with 180 degrees of freedom as shown in Figure 1. The 
length of the beams and the columns of the frame is Li=7.32 m and L2=3.66 m, respectively. 
The structure is loaded with a 19.16 kPa gravity load on all floor levels and a lateral load of 
110 kN applied at each node in the front elevation along the z direction. The members of the 
structure are divided into five groups, as shown in Figure 1, each one having one design 
variable. The deterministic constraints are eleven, two for the stresses of each element group 
and one for the inter-storey drift. The type of probability density functions, mean values, and 
variances of the random parameters are presented in Table 1. For each geometric variable 
(i.e. the cross-sectional dimensions b, h) the mean value is taken as the current value of the 
corresponding design variable Sj. 
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Figure 1: Description of the six-storey frame 

Random variable Probability density 
function (pdf) 

Mean value Standard 
deviation (a) 

E N 200 20 
av N 25.0 2.5 

B,h N Si 0.1 si 
Loads Log-N 640 20 

Table 1 : Characteristics of the random variables for the six-storey frame 

Optimization procedure ES cycles Pf Optimum 
weight (tn) 

Time (s) 

DBO 41 0.166 67.5 177 
RBO 79 0.001 77.8 54,126 

RBO-NN 81 0.001 77.8 9,471 

Table 2 : Performance of the methods for the six-storey frame 

For this test case the (u+X.)-ES approach is used with u=/^=5, while a sample size of 500 
simulations is taken for the MCS combined with the Important Sampling technique. As it can 
be observed from Table 2 the optimum weight achieved by the RBO is 15% more than the 
deterministic one. On the other hand, the probability of failure for the deterministic optimum 
is inapplicable since it exceeds the accepted value 10"3. The proposed RBO-NN combination 
manages to achieve the optimum weight in one sixth of the CPU time required by the 
conventional RBO procedure. 
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7. CONCLUSIONS 

The solution of realistic RBO problems in structural mechanics is an extremely 
computationally intensive task. In the test example considered the conventional RBO 
procedure was found over forty times more expensive than the corresponding deterministic 
optimization procedure. The aim of the proposed RBO procedure is to increase the safety 
margins of the optimized structures under various model uncertainties, while at the same time 
minimizing the weight of the structure as well as the additional computational cost. This goal 
was achieved using NN predictions to perform the structural analyses involved in MCS. 
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1. SUMMARY 

This paper describes numerically, in form of correlation coefficients, the 
interdependency between several seismic acceleration parameters and the overall 
behaviour of reinforced concrete frame structures expressed in form of structural 
damage indices. After the numerical evaluation of the seismic parameters, a nonlinear 
dynamic analysis is carried out to provide the total damage status of a structure. The 
aim is to select among the parameters those, which have drastic influence on the 
structural destruction. Furthermore, the design philosophy of aseismic codes can be 
verified. The attention is focused on earthquake accelerogrammes of worldwide well- 
known sites with strong seismic activity. 

2. INTRODUCTION 

The earthquake accelerograms have inherent information which can be extracted either 
directly, like the peak ground acceleration (PGA) and the total duration, or indirectly 
using a computer supported analysis. The results of such an analysis can be classified: 

-a)       in  peak  parameters,  e.g.  PGA,  peak  ground  velocity  (PGV),  peak  ground 
displacement (PGD), 

-b)       in spectral parameters, e.g. response-, and/or energy-spectra, and 
-c)       in energy parameters, e.g. ARIAS intensity, strong motion duration (SMD) after 

Trifunac/Brady, power P() 9, root mean square (RMS). 

The definitions of these parameters have been presented in the literature [1-7]. Post- 
earthquake observation of building damages, as well as the numerical elaboration of 
structural systems exhibit a more or less interdependency between the above mentioned 
parameters and the structural response [8-10]. 

This   paper  provides   a  methodology  to  quantify  the  interrelationship  between  the 
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seismic parameters and the structural damage. First, a computer supported 
elaboration of the accelerograms provides several peak, spectral and energy seismic 
parameters. After that, a nonlinear dynamic analysis is carried out to provide the 
structural response for the given seismic excitations. Among the several structural 
response characteristics, the overall structure damage index (OSDI) is selected to 
represent the structural response. Finally, correlation coefficients are evaluated to 
express the grade of interrelation between seismic acceleration parameters and the 
structural damage. So the presented methodology is applied to a reinforced concrete 
frame building, for several seismic acceleration records, and some results useful for 
the structural engineering praxis are presented. 

2. SEISMIC PARAMETERS 

According to the first step of the methodology presented in the introduction section, 
here the following seismic parameters are evaluated: PGA, PGV, PGD, spectral 
pseudo-acceleration (SA), central period (CP), absolute seismic input energy Ejnp, 
ARIAS intensity, SMD after Trifunac/Brady, power P0.9, the term amax/vmax and RMS. 
The definition of these parameters is presented in the aforementioned literature and 
will not be repeated here due to space restrictions (see [1-7] for details and [8,9] for a 
brief description). 

Earthquake Country Date Station Component 
Ancona Italy 14.6.72 Rocca EW 
Friuli Italy 6.5.76 Tolmezzo EW 
Rumania Rumania 4.3.77 Bucharest NO 
Montenegro Yugoslavia 15.4.79 Petrovac NS 
Argostoli Greece 17.1.83 Argostoli NS 
Mexico Mexico 19.9.85 Mexico City N90W 
Kalamata Greece 13.9.86 Kalamata EW 
Spitak U.S.S.R. 7.12.88 Gukasyan EW 
Loma Prieta U.S.A. 17.10.89 Corralitos ODEG 
Griva Greece 21.12.90 Edessa NS 
Pyrgos Greece 26.3.93 Pyrgos T 
Northridge U.S.A. 17.1.94 Jensen Filtration Plant 292 
Kobe Japan 17.1.95 Kobe NS 

Table 1: Input ground motions 

Table 1 (above) shows several event data of the seismic acceleration time histories 
which have been selected to be used in the present analysis. The events have been 
chosen from worldwide well known sites with strong seismic activity. 

Table 2 (below) shows the PGA amax, PGV vmax, PGD dmax, SA, CP To, seismic input 
energy Einp, ARIAS intensity, SMD T0.9, power P0.9, amax/vmax and RMS of the 
examined seismic excitations. The spectral values SA, and Einp are given for the period 
of 1.18 s, which is identical with the first eigenperiod of the examined frame structure. 
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Earthquake 
PGA 
^ mux 

(m/s2) 

PGV 
Vnuix 

(m/s) 

PGD 
dmax 

(m) 

SA 

(m/s2) 

CP 
T„ 
(s) 

Ei„p 

(m2/s2) 

ARIAS 
Intensity 
(mV) 

SMD 
To.go 
(s) 

Power 
Po.9 

(m2/s4) 

3max'Vmax 

(g/m/s) 

RMS 

(m/s2) 
Ancona 4.447 0.097 0.210 0.238 0.086 0.006 2.700 3.035 0.802 4.585 0.383 
Friuli 3.209 1.454 2.271 6.280 0.833 1.874 15.685 5.430 2.587 0.221 0.504 

Rumania 2.017 0.736 0.250 6.102 0.593 0.821 4.907 7.460 0.594 0.274 0.562 
Montenegro 4.503 0.433 0.757 2.658 0.267 0.973 27.864 10.600 2.375 1.040 1.026 
Argostoli 1.621 0.068 0.097 0.272 0.175 0.010 1.948 10.900 0.161 2.384 0.214 

Mexico 1.679 0.619 2.206 2.684 1.569 0.496 14.655 38.840 0.340 0.271 2.911 
Kalamata 2.680 0.241 0.060 2.321 0.333 0.275 4.585 6.370 0.652 1.112 0.395 
Spitak 1.875 0.166 0.262 1.755 0.239 0.107 2.001 8.960 0.201 1.130 0.369 
Loma Prieta 6.177 0.555 0.120 2.436 0.315 0.544 19.547 6.860 2.612 1.113 0.730 
Griva 0.997 0.111 0.015 0.626 0.325 0.023 1.304 7.800 0.151 0.898 0.218 
Pyrgos 4.455 0.193 0.018 0.633 0.185 0.034 2.100 4.155 0.455 2.308 0.292 
Northridge 6.210 0.967 0.513 13.154 0.459 11.94 31.575 6.280 4.542 0.642 1.071 
Kobe 8.206 0.924 0.469 8.729 0.302 3.713 50.735 8.320 5.556 0.888 1.120 

Table 2: Strong motion parameters 

3. DYNAMIC ANALYSIS OF A FRAME STRUCTURE 

The 8-storey reinforced concrete frame structure shown in Figure 1 (below) has been 
designed according to the rules of the recent Eurocodes for structural concrete and 
aseismic structures, EC2 and EC8. Storey-heights are 4.5 m for the first storey and 3.5 
m for the other seven ones. The cross sections of the beams are considered as T-beams 
with 40 cm width, 20 cm plate thickness, 60 cm total beam height and 1.45 m effective 
plate width. Materials-quality is C20/25 for concrete and S400 for steel. The column- 
sections are 60/60 (in cm) for the first three lower storeys, 50/50 for the next three and 
40/40 for the last two upper ones. The distance between each frame of the structure has 
been chosen to be 6 m. According to the EC8 Eurocode the structure has been 
considered as of importance class III, ductility class M-structure. Furthermore, the 
subsoil was of type B and the region seismicity of category 3 (in Greece) after the EC8 
Eurocode. In this procedure except the self weight and seismic loads, also the snow, 
the wind and the live loads have been taken into account according to the codes 
demand. The first eigenperiod of the frame was 1.18 s. 

After the design procedure of the reinforced concrete frame structure, a nonlinear 
dynamic analysis has been carried out for the evaluation of the structural seismic 
response. For this purpose the computer program IDARC 4.0 [11] has been used. 

Among the several response parameters, the focus is on the overall structural damage 
index (OSDI). This is due to the fact, that this parameter summarises statistically all 
the existing damages on columns and beams in a single value, which can be easily 
correlated to single value seismic parameters. The program IDARC 4.0 uses the 
modified damage index after Park and Ang [11]. As seismic input for the nonlinear 
dynamic analysis has been used the accelerograms of all the seismic excitations 
presented in Table 1. 
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Figure 1: Reinforced concrete frame system 

4. RESULTS 

After a dynamic nonlinear analysis of the structure for all the examined accelerograms 
had been carried out, the final OSDI has been calculated for each seismic excitation. 

Earthquake OSDI 
Ancona 0.000 
Friuli 0.312 
Rumania 0.164 
Montenegro 0.198 
Argostoli 0.000 
Mexico 0.123 
Kalamata 0.092 
Spitak 0.070 
Loma Prieta 0.133 
Griva 0.000 
Pyrgos 0.070 
Northridge 0.586 
Kobe 0.533 

Table 3: Overall structural damage index 
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Table 3 presents the final overall structural damage index of the examined frame 
structure for each used seismic excitation. An OSDI equal 0.0 denotes that the structure 
remains in the elastic region during the excitation. To emphasize the grade of 
interrelation between seismic acceleration parameters and the OSDI, the correlation 
coefficient after Pearson [12] and the rank correlation coefficient after Spearman [12] 
have been calculated. The first correlation coefficient shows how near are the 
examined data to a linear relationship, while the second shows how near are the 
examined data to monotone ranking. 

Seismic parameter 

Pearson 
Correlation 
coefficient 

Spearman 
Rank 

correlation 
coefficient 

PGA 0.697 0.621 
PGV 0.783 0.934 
PGD 0.274 0.681 
SA 0.953 0.972 
CP 0.153 0.593 
.Djnp 0.849 1.000 
ARIAS intensity 0.867 0.890 
SMD 0.077 0.027 
Power Po.9 0.922 0.753 
ämax' Vmax -0.459 -0.758 
RMS 0.298 0.805 

Table 4: Correlation coefficients between seismic parameters and OSDI 

Table 4 presents the correlation coefficient and rank correlation coefficient between all 
the seismic parameters presented in the Table 2 and the OSDI in Table 3. Through the 
Pearson correlation coefficient it can be seen that the PGD, CP, the term amax/vmax and 
RMS have poor correlation (0.153 to 0.459) with the OSDI. Next, PGA and PGV show 
medium (0.697 to 0.783), while the Einp and ARIAS intensity show good correlation 
(0.849 to 0.867) with the OSDI. Finally, the power P().9 and the spectral parameter SA 
show very good correlation (0.922 to 0.953) with the OSDI. It must be pointed out that 
the SMD as defined by Trifunac and Brady, has very poor correlation (0.077) with the 
OSDI. This is due to the fact that its definition does not take into account the seismic 
energy content. Nevertheless, by using the SMD to define the power P0.9 from the 
ARIAS intensity results into improved correlation coefficient from 0.867 to 0.922. 

By examination of the Spearman's rank correlation coefficient (Table 4), we recognize 
that SMD has very poor correlation (0.027) with the OSDI. Furthermore, the PGA, 
PGD, CP, power P().9 and the term am;ix/vmax have medium correlation (0.593 to 0.758) 
with the OSDI. Moreover, the PGV, SA, ARIAS intensity and RMS have very good 
correlation (0.805 to 0.972) with the OSDI. It must be noticed that the input seismic 
energy is monotone with the OSDI, which is expressed by the rank correlation 
coefficient equal to 1. 
Finally, it must be pointed out that the design criteria of the EC2 and EC8 Eurocodes 
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lead to satisfactory structural behaviour for European seismic excitations, even 
structural damage can not be completely avoided. 

5. CONCLUSIONS 

In this paper a methodology for the value estimation of the interrelation between 
seismic acceleration parameters and the structural damage has been presented. As 
seismic acceleration parameters, peak, spectral and energy parameters have been used. 
The structural damage has been quantified as the modified Park/Ang overall structural 
damage index (OSDI). The degree of the interrelationship has been expressed by the 
linear and second order nonlinear Pearson's correlation coefficient and by the 
Spearman rank correlation coefficient. As the numerical results have shown, the 
spectral and energy parameters provide good correlation to the OSDI. On the opposite, 
the central period, the strong motion duration after Trifunac/Brady and the term 
amax/vmax delivered poor correlation with the OSDI. Due to this reason, spectral and 
energy related parameters are better qualified to be used for the characterisation of the 
seismic damage potential. 
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1. SUMMARY 

The design of structures subjected to loads due to explosions is often treated by means of 
elastic-plastic response spectra. Such spectra that are currently available in the literature were 
computed on the basis of triangular shape of blast pressure with respect to time, and by 
neglecting the unloading stages of the structural response. In the present paper, response 
spectra based on a more accurate exponential distribution of blast pressure, and accounting 
for all stages and cycles of response, are proposed. 

2. INTRODUCTION 

Structures may experience blast loads due to military actions, accidental explosions or 
terrorist activities. Such loads may cause severe damage or collapse due to their high 
intensity, dynamic nature, and usually different direction compared to common design loads. 
Collapse of one structural member in the vicinity of the source of explosion, may then create 
critical stress redistributions and lead to collapse of the whole structure. A recent example of 
such a failure was the well-known collapse of the A.P. Murrah Federal Building in Oklahoma 
City, following a terrorist attack (Prendergast [1], Sozen et al. [2]). 
For some structures blast resistant design may be required, if their use is such that there is a 
high risk for such a loading incident to be encountered. Examples include government 
buildings, constructed facilities in petrochemical plants or bunkers in military installations. 
For such structures it is desirable to establish appropriate design procedures and construction 
techniques (Rittenhouse [3], Ettourney et al. [4]). 
This problem can be tackled in several different ways. The approach that more accurately 
describes the dynamic response of structures to explosive loads is via numerical analysis. 
Such analyses can capture the geometry of the structure, the spatial and temporal distribution 
of the applied blast pressure, as well as the effects of material and geometric nonlinearity, in a 
satisfactory manner, and have been performed by several investigators. Examples of this type 
are proposed by Louca et al. [5] and Otani and Krauthammer [6]. 
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However, such analyses require highly specialized software, elaborate calibration of the 
models with experimental (Krauthammer et al. [7]) or other established results, and extensive 
computational effort. Therefore, this approach is used, for the time being, primarily for 
research purposes. Practice oriented design, assessment and protection methods do take 
advantage of advanced numerical analysis, but focus also on engineering detailing, 
connections and conceptual design (ASCE [8], Weidlinger Associates web page [9]). 
An alternative design approach involving several approximations, rather easily applicable in 
routine design, is recommended by the U.S. Department of the Army TM5-1300, [10], and 
has been adopted by other researchers, for example Mays and Smith [11]. It is based upon 
substituting the structural element by a stiffness equivalent, single degree-of-freedom 
structural system, and using elastic-plastic response spectra to predict the maximum response. 
The response spectra accompanying the above methodology in the literature have been 
computed via numerical integration of the equations of motion, assuming triangular loading 
evolution with time, and applying the average acceleration method. Furthermore, these 
spectra do not take into account the fact that the response consists of several stages and 
cycles, and that the equations of motion change in each stage. 
The objective of this paper is to assess the importance of these assumptions for practical 
design, and to provide a more accurate design tool, without sacrificing ease of use for the 
practicing engineer. This is achieved by deriving the equations of motion based on a more 
accurate exponential distribution of blast pressure, and accounting for all stages and cycles of 
response, obtaining analytical expressions of the solutions via symbolic manipulation 
software, and using these solutions to carry out an extensive parametric study, and draw a 
new set of response spectra. 

3. IDEALIZATION OF BLAST LOADING 

Chemical investigation and experimental data have shown that the evolution of blast load 
pressure P with time t can be simulated rather accurately by an exponential distribution with a 
start peak pressure Ps, as shown by the continuous line in Fig. 1 and described by the 
following equation (Baker et al [12], Bangash [13]), where td is the time of reversal of 
direction of pressure, and b is a shape parameter, usually taken equal to 1. 

p(t)=psa--V« (i) 

Triangular distribution 

Exponential distribution 

Figure 1: Exponential and triangular distribution of pressure due to blast load 

The usual simple way to simulate a blast load for structural analysis and design purposes, is 
with a triangular distribution, which has a start peak pressure Ps and decreases linearly with 
time within a time period tj, as illustrated by the dotted line in Fig. 1. 
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4. STATIC AND DYNAMIC ELASTIC-PLASTIC BEHAVIOR OF SDOF SYSTEMS 

An elastic-perfectly plastic SDOF system without damping has the static resistance function 
R, shown in Fig. 2, where resistance is plotted in the vertical axis with respect to the degree- 
of-freedom x, plotted in the horizontal axis. The response of the system is divided in four 
stages, as described for example by Bangash [13] and Chopra [14]: 

Xm        X 

Figure 2: Elastic-perfectly plastic behavior for SDOF system 

(1) Response up to the elastic limit xei, corresponding to a maximum resistance Rm, 
characterized by the elastic stiffness k of the system, defined as the ratio of Rm to xei. 

(2) Plastic response with constant resistance Rm from the elastic limit xe[ up to a maximum 
displacement xm. 

(3) Unloading, where the response starts to decrease with the same absolute stiffness as in 
stage (1) up to a maximum (in absolute terms) negative resistance -Rm. 

(4) Plastic response during unloading, corresponding to a resistance -Rm. 

The analytical expressions describing the response in each stage are: 

R= 

kx , 

m 

R„   -k(Xn 

-R.... 

x), 

0<X< Xel (stage 1) 

Xel<X < Xm (stage 2) 

xm-2 xe| <x<xm (stage 3) 

X< Xm-2 Xel (stage 4) 

(3) 

The response of such a system without damping subjected to dynamic excitation P(t) is 
described by the following equations of motion: 

Stage (1) 

mx(t) + kx(t) = P(t) (4> 

The typical displacement in the first stage can be seen in Figs 3 and 4, corresponding to the 
cases when the system reaches plasticity (stage 2) before or after elastic rebounding, 
respectively. The displacement and the velocity at the end of this stage are the initial 
conditions for the second stage. 

Stage (2) 
In this stage the system has reached plasticity, and the equation that describes its response is: 

mx(t)±Rm=P(t) (5) 

The sign of Rm in equation (6) depends on whether the system comes to plasticity (stage 2) 
before elastic rebounding (Fig. 3), in which case (-) is used, or after elastic rebounding (Fig. 
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4), when (+) is used. The displacement in the second stage can be seen in Figs 3 and 4, 
between the time td, corresponding to the first occurrence of plasticity, and the time tm of 
maximum response, obtained by setting the velocity in the second stage, given by the 
derivative of the solution of equation (6), equal to zero. Then, the maximum response xm can 
be obtained replacing time t with tm in the solution x(t) of equation (5). The new displacement 
xm, and the corresponding velocity vm=0 are the initial conditions for the next stage (3). 

Stages (3) and (4) 
A similar procedure is followed to obtain the response in the next stages (3) and (4). 
Graphically we can see these stages in Fig. 3 for the case when the system reaches plasticity 
(stage 2) before elastic rebounding. When the fourth stage finishes, then the second cycle 
starts and four new stages are possible to occur. The response of the second cycle can be 
treated with the same procedure. In Fig. 3 these four stages of the new cycle can also be seen. 
The absolute maximum displacement may occur either in the second or in the fourth stage of 
each cycle. The number of cycles depends on the ratio of maximum system resistance to 
external load Rm/P. As this ratio increases, the cycles decrease until the ratio becomes equal 
to 2, in which case there is no cycle and the system behaves elastically. 
When plasticity occurs after elastic rebounding, the system usually works elastically after the 
third stage of the first cycle and does not enter the plasticity region again (Fig. 4). As can be 
observed from Fig. 4, where the total response is presented for that case, the maximum 
displacement could correspond either to first plasticity or to the elastic region. 
The solutions of the above dynamic equations of motion of a single-degree-of-freedom 
system subjected to explosive loads have been obtained analytically, using the symbolic 
manipulation software Mathematica, Wolfram [15]. Both cases of exponential and triangular 
evolution of the loading function with time have been considered. 

First cycle Second cycle 

Figure 3: Response when plasticity occurs before elastic rebounding 

Figure 4: Response when plasticity occurs after elastic rebounding 
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5. ELASTIC-PLASTIC RESPONSE SPECTRA 

The elastic-plastic analysis described in section 4, has been performed for a characteristic 
blast loading duration of td=0.1sec, and a wide range of fundamental periods of the SDOF 
system and range of ratios Rm/P. The maximum values of displacement ratios u=xmax/xei 
(xmax=max {xm, Xm2, x'm, x'm2}) have been plotted as response spectra for both triangular and 
exponential blast loading, and are shown in Figs 5 and 6. 
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Figure 5: Response spectra for triangular blast loading and elastic-plastic behaviour 
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Figure 6: Response spectra for exponential blast loading and elastic-plastic behaviour 

Comparing the results for exponential loading with those for triangular one, it is noted that 
differences do occur, which are significant in some cases. When the ratio u=xmax/xei is large, 
ranging between 1 and 2, the response for exponential loading is less compared to the one for 
triangular loading. This can be explained qualitatively considering the shape of loading. The 
exponential loading decreases faster than the triangular one, and this has more influence in 
elastic-plastic situations than in purely elastic ones. 
Some exceptions to this were encountered in case of low Rm/P ratios, for example for 
Rm/P=0.1 and td/T=0.4, where the exponential loading gives higher response than the 
triangular one. This happens in cases when the maximum response is obtained at times larger 
than td, and the exponential loading has changed sign and may be in phase with the system 
motion, while the triangular loading at this time is zero. 
In summary, the commonly used assumption of triangular blast load evolution with time can 
sometimes be slightly unconservative, particularly for flexible structural systems, but can also 
be significantly overconservative for stiffer structures. 
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6. SUMMARY AND CONCLUSIONS 

The response of structures subjected to loads due to explosions has been investigated. The 
preliminary and potentially also the final design of such structures, as well as the assessment 
of the bearing capacity of existing structures, is often treated by means of elastic-plastic 
response spectra. Such spectra that are currently available in the literature are based on 
triangular time evolution of the blast pressure, and neglect the possibility that the maximum 
response may be encountered during the unloading stages. In the present paper, response 
spectra based on a more accurate exponential distribution of blast pressure, and accounting 
for all stages and cycles of response, have been computed. This has been achieved by 
deriving the pertinent equations of motion, and obtaining analytical expressions of their 
solutions via symbolic manipulation software. A comparison of the spectra obtained by the 
proposed approach to the ones for triangular pressure function, led to the conclusion that 
design based on the commonly used assumption of triangular blast load evolution can 
sometimes be slightly unconservative, particularly for flexible structural systems, but can also 
be significantly overconservative for stiffer structures. 
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1. SUMMARY 
In the present study is presented the algorithm that calculate the individual components of the 
totally imposed displacement at the top of wall specimens'. Those specimens are designed 
according EUROCODE 8 and have aspect ratio 1.0 or 1.5. In two of those specimens is 
imposed axial force with a value of 7% of the compressive strength of the wall. Five of the 
specimens have classical type of reinforcement (vertical or horizontal steel bars). Other four 
have besides the minimum classical reinforcement also bidiagonal steel bars. According the 
design methodology of the specimens herein is investigated the influence of the absence of 
axial force into the distribution of the deformations to the mechanisms of strength recovery. 
Those are the flexural, shear and sliding shear mechanisms. As results by the use of 
bidiagonal reinforcement the influence of the absence of axial force is eliminated through the 
limitation of the sliding shear deformations across the length of yielding of the longitudinal 
reinforcement. Specimens reinforced by vertical and horizontal steel bars develop the same 
strength as the specimens reinforced by mixed type of reinforcement (classical and 
bidiagonal) but their inelastic behavior is generally poor due to the existence of high sliding 
shear deformations at the base for medium and higher ductility level. 

2. INTRODUCTION 
In reinforced concrete structures, shear walls are the structural elements which resist to the 
deformation of the building to which they belong during the excitation of its base by an 
eventual earthquake. For this reason the behavior of these structural elements is being 
extensively investigated both experimentally and analytically [1]. During a wall's 
deformation three are the fundamental mechanisms which resist to the imposed deformation. 
These are the flexural, the shear and the sliding shear mechanisms. Although these 
mechanisms are assumed to act independently, during the design of the structure, it has been 
experimentally shown that they intensively affect each other. Especially the flexural and 
sliding shear mechanisms are directly linked mainly after an intense flexural cracking. As it 
was been determined for high ductility levels the activation and function of the sliding shear 
mechanism becomes more evident especially with the progress of flexural cracking and as the 
portion of deformation due to the yield of flexural mechanism increases. The type of flexural 
cracking which best activates the sliding shear mechanism is the horizontal cracking at the 
wall's base. 
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3. THEORY 
In order to estimate the level of ductility at which specimens fail, as yielding displacement 
was used the one which corresponds to the point of section of the horizontal line which 
passes from the higher point of the envelop curve and the inclined line which passes from the 
beginning of the axes and from the point of the envelop curve corresponding to the 75% of 
the maximum strength. It was considered that specimen's failure happens when it's strength 
is decreased till the 75% of its maximum strength. The final value for the displacement 
ductility is the ratio of displacement for strength's decrease up to 75% of the maximum, 
divided by the yield displacement. The ductility versus displacement diagrams for every 
specimen are presented where for each level of ductility the components of the total 
displacement (flexural, shear, sliding shear) has been calculated. It was considered that for 
the achievement of each ductility level at the top, contribute the three aforementioned 
strength recovery mechanisms. By means of deformation observed on these mechanisms the 
imposed displacement on the top of the specimen is achieved. In order to estimate the 
proportion of contribution of every mechanism as well as its importance to the achievement 
of the imposed displacement at the top, for a given geometry of specimen and given 
conditions of support that exist we were based on the work of F. Seible and A. Igarashi [6]. 
These researchers were working at the department of applied mechanics of San Diego 
University in California, based on an earlier work of Safarini and Wilson at Berkeley 1983. 
They expressed the equation which describes the possible deformation modes of a disc in 
matrix form. According to these researchers a plane disc has five possible ways of 
deformation (Fig. 1): i ) Shear deformation ii) Flexural deformation of its vertical sides iii) 
Flexural deformation of its horizontal sides iv) Horizontal axial deformation v) Vertical axial 
deformation 
For a disc of height H and width D plane deformations in matrix form are given by the 
equation (1): 

7 
A6X 

A6y 

Ay 

1/2 H -MID -1/2// -1/2 Z) -1/2// 1/2 £> 1/2// 
MH 0 -MH 0 MH 0 -MH 

0 -MD 0 MD 0 -MD 0 
-1/2 0 -1/2 0 1/2 0 1/2 

0 1/2 0 -1/2 0 -1/2 0 

Mi* 

MID'] Mi,- 

0 U2x 

MD U2y 

0 u„ 
1/2 M3, 

Uix 

Uiy 

(1) 

In case we refer to an angle of a quadrangle disc (Fig. 2), at the base, where u2x=0, u2y=0, 
U3y=0 and if matrix equation (1) is expressed in terms of the deformations of the four sides 
and diagonal lines of the disc, results the following matrix equation (2): 
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(2) 

For the boundary conditions of this problem due to the existence of a rigid beam at the top of 
specimens, £i becomes zero 0. Moreover, assuming that at the specimen's base there is no 
horizontal elongation, C# becomes 0 too. According to these, it is obvious that uix=u4x and 
U2x=U3x=0. By using equation (2) and the above results, Qifafefe can be defined as follows: 

fe=Uly 

£i=U4y 

£s=0.707u4x+0.707u4y 

^=-0.707u]x+0.707uiy+0.707u3x 

Subtracting equation (6) from equation (5) results: 

^-C6=0.707(ulx+u4y+uix-uiy)^-^^=2uix+u4x-uiy=>-^—-^-u4y+uly=2uix 

(3) 

(4) 

(5) 

(6) 

0.707 

^-u4y+uly )/2=uu=>[   ^ 

0.707 

0.707 0.707 
+ (uiy-u4y) ]/2=u!x (7) 

Subtracting from each part of equation (7) the quantity (uiy-U4y) results: 

[ 0.707 

r   C5-; 
0.707 

+  (Uly-U4y)     ]/2  -   (Uly-U4y)=UlX  "  (Uly-U4y)  => 

(Uly-U4y)    ]/2=Ulx-(Uly-U4y) (8) 

The term (uiy-u4y) represents the sum of elongation and shortening of vertical disc sides due 
to bending and therefore the horizontal flexural displacement on top. Subtracting this term 
from the total displacements on the top, the shear deformation of the disc due to the 
horizontal loading on top is given. When there are sliding shear deformations at the 
specimens base those should be subtracted by both parts of equation (8). 

4. SPECIMEN DESIGN 
Specimens subjected to the methodology mentioned above were designed as a part of a Phd 
thesis. This present thesis is mostly focused on the study and investigation of inelastic 
behaviour of R/C walls subjected to high cyclic shear forces. Also this study is focused on the 
effect that has on those specimens behaviour a set of parameters which have not been 
adequately investigated by other researchers such as: 
• aspect ratio of walls: Hw/Lw = 1.5 and Hw/Lw = 1 
• existence of main bidiagonal reinforcement in such walls 
• way of arrangement of that reinforcement (in 45° angle and the steel bunch intersection 
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point in two specimens at the base of the wall and in other two at a distance of 0.51w from 
the base) 

• influence of the absence and existence of low axial force 
• influence of the existence of different percentages of reinforcement at the side columns 

and at the web 
• influence of the existence of cold joint at the base of the wall without concrete roughening 
or additional reinforcement at the distribution of individual deformations (flexural, shear and 
sliding shear) among resistance mechanisms and the study of the phenomenon of sliding 
shear between surfaces along the flexural cracks at the specimens base. Details for the 
specimens are presented to the figure 3. 

5. APPLICATION - RESULTS 
Applying the theory described in chapter 3 to the specimens designed according chapter 4 
and tested at the laboratory [2],[3],[4],[5] result the diagrams presented below (figure 4-5). 
These are diagrams of ductility versus individual wall deformations. From those diagrams for 
each ductility level the percentage of displacement is given at height equal to the wall's 
width, that occur to the deformation of the flexural (8n), shear (5sh) and sliding shear (5s!) 
mechanisms. 

6. CONCLUSIONS 
By observing the diagrams which were drawn useful conclusions are given for the inelastic 
behaviour of walls. Axial force of the order of 7% of the compressive strength of the wall 
leads to a 25% increase of the displacement ductility capacity (specimens MSW3, LSW3). In 
specimens with aspect ratio 1.5 (and probably greater) by means of bidiagonal reinforcement 
which passes through the side columns at the specimens' base, the negative influence of the 
absence of axial loading is totally eliminated and a capacity of ductile deformation is 
provided to the walls. Sliding shear deformations increases substantially for displacement 
ductility over 2.5. For the specimen MSW6 with cold joint at the base and reinforcement 
connected by side by side placement (which is the rule in real structures) the sliding shear 
deformations begun to increase for a displacement ductility level over 1.0. The web shear 
resistance mechanism did not yield in all specimens, so the shear deformations at the web 
were reduced after the walls' strength was decreased. This phenomenon is more evident for 
the MSW set of specimen. 
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Figure 1: Possible deformation modes of flat disc 
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No Specimen 

Height fih nv 
ficc nw fid 

Comments 

hw 

cm % % % % % 

1 LSW1 120 0.565 0.565 1.7 1.7 - - 
2 LSW2 120 0.277 0.277 1.3 1.7 - - 
3 LSW3 120 0.277 0.277 1.3 1.7 - N=0.07Acfc 

4 LSW4 120 0.277 0.277 1.3 1.7 0.416 öd=45° 1„=0 

5 LSW5 120 0.277 0.277 1.3 1.7 0.416 öd=45°ld=0.81w 

6 MSW1 180 0.565 0.565 1.7 1.1 - - 
7 MSW2 180 0.277 0.277 1.3 1.1 - - 
8 MSW3 180 0.277 0.277 1.3 1.1 - N=0.07Aefc 

9 MSW4 180 0.277 0.277 1.3 1.7 0.416 öd=45° ld=0 

10 MSW5 180 0.277 0.277 1.3 1.7 0.416 öd=45°ld=0.81„ 

11 MSW6 180 0.565 0.565 1.7 1.7 - Cold Joint 

Acc=lcxbw=24xl0=240cm2, ph =Ash/(bwxSh), pv =Asv/(bwxSv), pcc =ASC/ACC, 

Pw ~(htir.xA-sstir.y('-cx"wxs) > Pd =AsdA"wx^web>' As(j: Area of total diagonal reinforcement, 
Asc: Long, reinforcement in boundary element. Asn: Horizontal web reinforcement. 
Asv: Vertical web reinforcement  ld: Distance between diagonal bars center axis at specimens base. 

Typical cross sections at base: 

Mlf   lA'l- T^T 
; lc—j LSW2 

t      "     Jl-J°w MSW2 
MSW3 

'                                    W ^K-J 

I lw   

LSW4 
MSW4 

^H 
i—1^- 

bwTig M ■ i ■ i ■ i ■ ^ i rib... ig« 

Figure 3. Main parameters of wall specimens and arrangement of reinforcement 
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Figure 4: Diagrams of the individual components of the total deformations versus ductility for specimens 
MSW1.MSW3, MSW4 
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Figure 5: Diagrams of the individual components of the total deformations versus ductility for specimens 
MSW6, LSW3, LSW5 



COMPETITION AMONG GENETIC ALGORITHMS TO IMPROVE ROBUSTNESS 
IN OPTIMIZATION 

C. Dimou and V. Koumousis 
Institute of Structural Analysis & Aseismic Research 

NTUA, Zografou Campus 157 73 Athens, Greece 

1. SUMMARY 

Competition is introduced among the populations of a number of Genetic Algorithms (GAs). 
The aim is to calibrate tuning parameters of the GAs by gradually reducing the resources of 
the system. The evolution of the different populations is controlled on the level of 
metapopulation, i.e. the union of populations, on the basis of statistics and trends of the 
evolution of every population. The method is applied into two different problems with a 
number of global and near global optima. Numerical results are presented and the robustness 
of the proposed algorithm is discussed. 

2. INTRODUCTION 

Genetic Algorithms are search algorithms based on the concepts of natural selection and 
survival of the fittest. They guide an evolution of a set of randomly selected individuals 
through a number of generations that are subjected to successive reproduction, crossover and 
mutation, based on the statistics of each generation. The efficiency of the process is problem 
dependent and relies heavily on the successful selection of the number of parameters, such as 
population size, probability of crossover and probability of mutation, type of crossover etc. In 
this work a method is proposed that attempts to automate tuning of the evolution of the size 
of populations through an adaptive process. This is based on the competition of populations, 
with different sets of GA parameters, struggling for the available resources of the system. 
Competition among different populations is common in natural systems. Populations evolve 
by adapting themselves to the environment where resources are limited. By coupling GAs 
with a scheme of Competing Populations (CP) a number of populations are produced in every 
generation. They evolve in the space of solutions guided by every GA in an adaptive way by 
altering their population size. By changing the available resources, the system organizes 
better its overall search strategy. It manages to come up with very good near optimal 
solutions faster as compared to the same number of standard GAs. The relative capacity of 
every population to adapt to the artificial habitat is used to calculate the overall fitness at a 
particular generation. Competition arises when the resources are insufficient to sustain the 
entire population. "Predator - Prey" relationships are activated, by assigning conflicts among 
the populations. The "predator" population is trying to survive through the extinction or 
drastic reduction of its "prey". The prize for the "predator" are the resources allocated for the 
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"prey". The proposed method is applied to a number of different multi-modal functions used 
as benchmarks in optimization. Numerical results are presented that illustrate the advantages 
of the proposed method as compared to the standard GA. 

3. GENETIC ALGORITHMS 

A simple GA scheme is employed for every population [3], [5]. No mixing among 
individuals of different populations is allowed to preserve the characteristics of each 
population. Reproduction is based on a ranking scheme, while elitism is adopted allowing the 
best individuals to survive at the next generation. Various crossover techniques such as, 
single crossover, double crossover and single crossover per design variable are implemented. 
For the mutation probability, two decreasing functions are used. The entire system operates in 
two levels, the level of populations and the level of the metapopulation, where all decisions 
about the characteristics of the next series of populations are made. The normalized fitness of 
the i'h individual of the/'1 population, is expressed as: 

n/Ux)l r       ZJ. x"K,i      "--   c,(x)+£c„.rMx) 

(l) 
where, gk(x) is the k"' inequality constraint of the individual, cJk is the penalty factor assigned 
for the k"' constraint for the/'' population and Cj/x) is the objective function. Operator T is 
given as: 

T{x)= rx~E   X>E (2) 
[      0 X<£ 

where, e is the tolerance in violating the constraints. A soft convergence criterion is 
introduced that works as a trade-off between the minimum uniformity of the population, i.e. 
the saturation of a dominant schema per design variable of the problem, and the spatiality of 
the objective of the population. 

4. COMPETITION 

Competition is common in natural systems. Dimitrova and Vitanov 

[1] study the evolution of competing populations through adaptation in a nonlinear dynamical 
system with limited resources. Nee et al. [2], present the important parameters of interaction 
among different populations in a natural environment. Populations of different species share 
the environment in a state of dynamic equilibrium. Competition among different species 
arises when they share the same resources. 
Assuming the necessary computational resources per design constant within a population, the 
amount of resources required to process all the individuals of the metapopulation in a specific 
generation is given as: 

^,=i>,-/v.       w=f>, (3) 
where, /?, are the resources per individual of the i'h population and N,, is the number of 
populations in the system. The amount of available resources at generation t can be 
represented by a step like function with initial resources R: 

R„, =R-Y,n(t-t,)-Mil (4) 

where, m defines the number of changes of the step-like function at particular instances, i.e. 
at generations f, with reduction of resources ARt, and H is the Heaviside function. 
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The fitness of a population can be expressed as the sum of the fitness of its individuals. This 
favors the expansion and survival of larger populations and of populations with many "good" 
individuals. Alternative expressions may be used that consider the fitness of a population as 
the average of the fitness of its individuals. The overall fitness is expressed as: 

?,-&,'-       **—^fel (5) 
M maxj/vj 

where, Nj is the total number of individuals of the/'' population. The main goal at this stage is 
to introduce a more stringent approach, as compared to the GA, that will process the 
emerging data and guide the next steps taking into account the uncertainties of the system. 
Therefore, a diversity measure D, of the chromosome of every population; is evaluated based 
on descriptive statistics of the digits appearing at every position of the chromosome. 
Diversity is used as an estimate of the "age" of populations. "Younger" populations exhibit 
higher diversity as compared to "older" ones. Moreover, "younger" populations are more 
prominent to adapt that "older" ones. 

The amount of resources for each individual appropriately normalized, is given by: 

*,=-Vl (6) 
maxy?, j 

l=l,Wf> 

The overall fitness of the/' population OFj is expressed as the ratio of the product of fitness 
and diversity with the resources of the population as: 

where, a, b and c are parameters, that attenuate or intensify relative variations among the 
populations. In this analysis a = 1.0, b = 2/3 and c = 1.0. Equation (7) is frequently used in 
econometric models. 

5. ENGAGEMENT RULES 

The probability of conflict among different populations i andj, when shortage of resources is 
observed, is given by: 

{OF.-OF, 
i i       AN 

Pr[pop,,popj\=T 
OF, > OF, 

AN 

_ N 

(*„,-0-£k] 

OF, 
0 OF^OF.J,      f[x]= 

0 x<0 

- 0<x<d       (8) 
d 
1 x>d 

E[R,N,] 

where, d is a parameter controlling the transition from a state of no conflict to a state of 
conflict emerging among populations, based on the magnitude of lack of resources. This 
equation assures that no conflict arises if the available resources are adequate. Moreover, 
conflicts arise in proportion of the resource deficit. Stronger populations fight only weaker 
ones. The probability of conflict between two competing populations increases linearly with 
the relative difference of their overall fitness. Only one conflict per generation per set of 
conflicting populations is allowed. Thus, no population is engaged in more that one conflicts 
per generation. Finally, conflicts cease when the available resources are adequate. 

The outcome of a conflict between populations i and j, determines the size of these 
populations in the next generation as follows: 
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N.=N.+T 

N,=N,+T 

OF,-OF, 

OF, 

OF,-OF, 

OF. 

.fW = 

,     AN -> max< e ,2 

AN „ 
- max-! t> ,2 

U   N,' 

-max-U> ,4 

0.5 + / < x 

0.5 < x < 0.5 + / 

0.5 - / < x < 0.5 

*<0.5-/ 

(9) 

where, e,y is equal to: 

= 1 + 
e\rand -0.5) 

05 
(10) 

and, e and/are parameters handling the fuzziness of the outcome. Furthermore, the g factor 
is used to regulate the velocity of variation of the size of population. Populations vanish, if 
their population drops to zero. Typical values of g factor are around unity. 

The main ingredients of the proposed scheme at the level of metapopulation are the 
introduction of diversity in equation (7) obtained from the formal descriptive statistics on the 
different schemata, and the fuzzy outcome of the conflicts of populations. The influence of 
parameters e,/in equations (9) and (10) is of secondary importance. 

6. CASE STUDIES - NUMERICAL RESULTS 

Two multi-modal functions are used as benchmarks for the proposed method. The formal 
expression of the optimization problem for these functions is given respectively, as: 

(11) 

(12) 

min /(*. y)=   £[/ • cos((/ + \)x + i)]- £[/ ■ cos((/ +1)- y + j)\} + C 

-10<A<10   -10<y<10 

min f(x, y, z, vv)= J5.vy ■ exp[-0.5 • (x2 + y2 )]■ cos(2• ?)■ cos(iv)}+ C 

X<0A><<0 -3<{x,y,z,w}<3 

where C is an arbitrary constant value. For the function of equation 11 (problem #1), the 
length of the chromosome per DV is taken equal to 20. The complete enumeration scheme 
has to investigate 1.0995 trillion possible solutions. For the function of equation 12 (problem 
#2), the length of the chromosome per DV is taken equal to 8. The complete enumeration 
scheme has to investigate 4.295 billion possible solutions. In problem #1, 5 optimum 
solutions exist in the design space. In problem #2, 4 optimum solutions and 16 near optimum 
solutions (within 1.0% of the true optimum solution) exist in the design space. In Figure 2, 
the objective function of problem #1 is presented. The proposed algorithm activates 18 
individual populations. Three crossover probabilities (0.6, 0.75 and 0.90 respectively) are 
considered. Three types of crossover (single point crossover, double point crossover and 
single point crossover per DV) are considered. Two mutation schemes (initial probability of 
mutation equal to 0.1 and 0.05, final probability of mutation equal to 0.001 and 0.005 and a 
half-life of 10 generations) are considered. These parameters are combined to create 18 
different populations. The available resources vary according to four different schemes 
shown in Figure 1. These problems were solved starting with initial population sizes of 40 
and 60 individuals respectively [4]. For these problems, 60 simulations with random seeds 
are performed. The proposed algorithm was able to locate the global optimum in all cases 
whereas the standard GA failed to trace the global optimum for problem #1 with an initial 
population size of 40 individuals. The computational time needed the optimization process 
was a small fraction of the time necessary to investigate all possible solutions of the design 
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space of the order of 0.005%o for problem #1 (for the entire set of 60 simulations) and of the 
order of 1 A%o for problem #2. 

Resource Variation Schemes 

vJ—■ I           I                 \ 
1     1             \ "   \ N                      \ 

L —.                                                            * 
 FWS#1 
 RVS#2 
 RVS#3 
--- RVS#4 

^ 

^ 1 ?      T ? 

Figure 1. Evolution of Resource Variation Schemes Figure 2. Objective function of 
problem #1. 

In Figure 3 and Figure 4, the evolution of the size of the individual populations and of the 
objective of the best individual, for problem #1 when the RVS#1 is implemented are 
presented. Four populations become extinct due to strong competition in the beginning of the 
process. Moreover, numerous populations are forced to converge faster due to competition 
among the individuals of the metapopulation. The global optimum is found by population #16 
(crossover probability of 0.9, single point crossover and high rate of mutation) at generation 
#58. 

Evolution of Populations Evolution of the Objective function 

Figure 3. Evolution of the size of the Figure 4. Evolution of the objective function 
population (problem #1). (problem #1). 

In Figure 5 and Figure 6, the evolution of the size of the individual populations and of the 
objective of the best individual, for problem #2, for RVS#1, are presented. Four populations 
become extinct due to strong competition. The optimum is found by population #18 
(crossover probability of 0.9, single point crossover per DV and high rate of mutation) at 
generation #94. The size of population #18 drops rapidly after the true optimum is found due 
to competition with population #2 (crossover probability of 0.6, double point crossover and 
low rate of mutation). This is due to the convergence of population #18 resulting into a 
decrease of its diversity. Thus, its overall fitness drops significantly and it becomes the 
"prey" of the "predator" population #2. 

In Figure 7 and Figure 8, the overall efficiency of the algorithm for the problems 
investigated, for the four different resource schemes, is presented. This is evaluated as the 
ratio of the number of optimum solutions found during the optimization process over the 
necessary computational effort. Considerable improvements are observed for an initial 
population size of 40 individuals. The efficiency of the algorithm drops as the number of 
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initial individuals increases. Still, the overall efficiency obtained, in the latter case, is at worst 
equal to the efficiency of the standard GA. For problem #1, the best results are obtained from 
RVS #3 whereas, for problem #2 RVS #1 delivers the most efficient results. The 
computational time of the proposed algorithm is less than the one needed for the standard 
GA. For RVS#1, timesavings up to 50% are observed. For RVS #2, timesavings up to 60% 
are observed. For RVS #3 a slight increase in time, less than 5%, is observed. For RVS #4, 
the computational time is roughly equal to the time needed by the standard GA. 

Evolution of Populations 

Figure 5. Evolution of the size of the 
population (problem #2). 

Evolution of the Objective function 

Figure 6. Evolution of the objective function 
(problem #2). 
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Figure 7. Comparison of overall efficiency 
(problem #1). 

Figure 8. Comparison of overall efficiency 
(problem #2) 

7. CONCLUSIONS 

From the above analysis and the parametric studies performed it becomes evident that the 
proposed competitive algorithm controls satisfactorily the evolution process favoring the 
expansion of "promising" populations and the contraction of "weak" ones in a statistical 
sense. The descriptive statistics at the metapopulation level together with the rules of conflict 
guide the utilization of resources towards the most competent GAs. The method succeeds in 
finding good "near" optimal solutions in a robust way and in most cases faster than a standard 
GA, for two demanding multi-modal functions used as optimization benchmarks. 
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1. SUMMARY 

This paper describes Yugoslav experimental and theoretical investigations concerning 
behaviour of plate girders subjected to a localized edge load - i.e. patch load. Several aspects 
of this complex problem have been analyzed. In the first part local and overall stability of 
girders with long span is considered. The simple approximate solution for local buckling 
based on assumed collapse mechanism is given. The investigation of overall instability 
presents behaviour of slender plate girders with distortional instability. In the second part 
slender plate girders with short span are considered. Experimental research of the girders 
subjected to centric and eccentric loading is presented. The analysis of the ultimate load 
behaviour of plate girders with longitudinal stiffeners subjected to a patch load is also given. 

2. LOCAL AND LATERAL INSTABILITY OF PLATE GIRDERS WITH LONG 
SPAN 

This paper describes theoretical and experimental research into the behaviour of simply 
supported steel plate girders subjected to a central localised load acting on the top flange. 
When these plate girders are subjected to such load, local and lateral instability may occur. 
So, the analysis of buckling of plate girders is generally concentrated on either plate buckling 
(local buckling) or overall buckling (lateral buckling). 

Local buckling 
Local budding is a complex problem involving both material and geometric nonlinearity. 
During the past forty years a large number of model tests have been performed by many 
researches to provide a better understanding of the collapse mechanism [1] - [3]. Theoretical 
investigations have been concentrated on two main approaches to the problem. First approach 
consists of determination of an elastic critical load of web panel, with assumed idealised 
boundary conditions, subjected to a variety of combined loading. This approach is based on 



283 

unrealistic asumptions because it does not take into account the post buckled reserve of 
strength possessed by restrained thin panel and the interaction between the web and the 
flanges. Recent theoretical approach has been based on assumed collapse mechanism 
obtained from experimental investigation. Solution based on these assumed collapse 
mechanism have been reduced to a simple closed form. It is interesting to notice that tests 
have been performed on short and medium span girders. At present, very little test data is 
available for girders with long span and narrow flange. It is a reason why experimental 
analysis of three girders with long span and narrow flange is presented in this paper. 

Details of loading, dimensions and material properties of the girders are given in Figure 1 and 
Table 1., where aw and <7f are the static yield stresses of the web and flange respectively. 

H- 
Grider tw */ '/ On af 

No. nm nm mm N/mm N/mm 

CJA 1,96 80,0 3,05 171 275 
as 2,99 80,0 6,25 250 301 
as 4,94 99,6 9,97 299 289 

Fbr all girders L=2300 mm and d=380 mm 

Figure 1: Details of loading and dimensions Table 1: Details of dimensions and material 
properties 

?  fkS) 

v.{raisi}'t 

Figure 2: Lateral displacement of the 
vertical centreline of the 
girder C/4 

Figure 3: Vertical displacement of the top 
and bottom flange of the girder 
C/4 

The load, which was applied by a hydraulic jack, was transmitted to the girders via a 
mechanism which prevented lateral displacement and rotation of the top flange. The tests 
were performed using Losenhausen equipment to control the vertical deflection of the jack. 
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The deflection of the jack was increased at a constant rate. The lateral displacements of the 
vertical centerline of the girder were measured by a transducer. Experimental results 
concerning lateral and vertical displacement of the girder C/4 are shown in Figure 2. and 3. 
Similar experimental results are obtained for girder C/5 and C/6. The corresponding collapse 
loads are given in Table 2. 

The test results of plate girders clearly confirm that new plastic collapse mechanism is 
obtained, as it is shown in Figure 4. 

3      ?.      1 EH .j ^J... *--1 

_r I 

Figure 4: Obtained collapse mechanism 

Following the upper bound theorem of plastic collapse and equating the work done by the 
applied loads to the internal dissipation of plastic energy, gives 

'->2^FfrM- + 2M„y 
a 

(i) 

where Pu is ultimate or collapse load and MM, Mf, are the full plastic moments of web and 
flange respectively. According to experimental results, expressions for a, ß, y, £, has been 
found to be 

a 

S- 7 

1,25?, 

r 

->a = 
d-a 2Mfa(\ + j) 

MjgO 

,i_a_\_ 
'taao\0 

0.32—-10^ + 16.8 
7        d 

where t* is a reference thickness taken as 2,0 mm and a is a reference yield stress taken as 
300 N/mm2. Angle 0 can be obtained from the condition that deformation of the flange just 
prior to colapse must be compatible with deformation of the web adjacent to the flange. 

Glider 
No. 

Experiment 
(kN) 

Theory 
UN) 

(Roberts & Rockey) 
(kN) 

C/4 
C/5 
C/6 

32,0 
84,0 

204,0 

30,2 
78,8 
191,0 

22,8 
79,4 
225,0 

Table 2: Predicted and experimental collapse load 
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Comparison with experimental results (Table 2.) confirms that this mechanism solution gives 
good agreement between predicted theoretical collapse load  Pu  and experimental collapse 
load. 
Lateral (distortional) buckling 
The three girders tested are presented in Figure 5. The ends of the girders were constrained 
against rotation. Details of loading, dimensions and material properties of the girders are 
given in Table 3. 

No rotation i P 

/ 1 

T¥F 

Figure 5 

Girder tw */ '/ Cw °f Pex Plat 

mm mm mm N / mm N / mm kN kN 

D2-3 1,96 80,0 3,05 178,0 272,0 13,0 23,0 
D3-6 3,0 80,0 6,25 245,0 298,0 36,0 51,0 
D5-10 4.94 100,0 10,00 292,0 305,0 94,0 172,0 

Table 3 
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Figure 6: Results for girder D5-10 

The load mechanism incorporated a knife edge to permit rotation and a layer of needle 
bearings to permit lateral displacement of top flange. The load P versus vertical displacement 
of the jack w for girder D5-10 and corresponding lateral displacement v of the vertical 
centreline of the girder are shown in Figure 6. The experimental failure load Pex are given in 
Table 3. 

The elastic critical load for lateral buckling Piat is given in Timoshenko and Gere [4]. 
Comparison with experimental failure load (Table 3), shows that this classical elastic 
solution Pi« can not be used to predict real failure load. This is due to distortion of cross 
section, what is not taken into account in classical solution. Geometrically nonlinear finite 
element analysis appears able to predict the actual behaviour of such girders [5]. 
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3. BEHAVIOUR OF THE GIRDERS WITH SHORT SPAN 

Research on this problem was continued through further experimental and theoretical 
analyses carried out at University of Montenegro in Podgorica. There was an experimental 
research organized as an attempt of providing answers to some questions that have not been 
thoroughly investigated yet. The first issue to mention here would be the analysis of the stress 
state in the loaded flange. Then, the question of plastification in the flange, plastic hinges - 
whether they are formed or not, and where? Another question was whether the so-called 
tension field was formed in the flange with respect to the local collapse. A particular attention 
was drawn to the formation of tension fields in the web as well, along the plastification lines. 

During the first part of the experiment, when the loading was centric, two parameters were 
varied. These two parameters are known to play an important role in determination of failure 
load and the buckling form: web thickness and flange thickness (flange stiffness). In the 
second part, the center of attention was the collapse form together with failure load in cases 
of eccentric loading. In order to optimize the investigations, measuring and laboratory 
equipment, as well as for the working team to get accustomed to working together, a 
preliminary investigation was carried out. It was a valuable experience as far as the plan, 
program, strategy and working on the main investigation, was concerned. The complete 
experimental research contains 36 tests (divided into three series) and eight tests in the 
preliminary investigation (Fig. 7). 
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Ty 
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Figure 7: Girder from the experiment with the accepted denotations 

The experiment was performed using a special load distribution block, distributing the load 
uniformly at any loading phase. This was an attempt in overcoming the evident problem of 
discrepancies between the load distribution block stiffness and the stiffness of the loaded 
flange. 

With centric loading in the first and second series, the already known facts were confirmed 
once again: web thickness has the utmost influence on failure load, whereas, the flange 
thickness (stiffness) influences the increase of the critical load, but to a far lesser degree than 
the web thickness. In all cases, critical load is characterized by the occurrence of a buckling 
on the web. This kind of stability loss is of local character and it takes place right below the 
loading. Girder collapse is completely sudden. At the moment of critical load, a buckling 
outlined by two plastification lines occurs in the web. Though it is possible to determine the 
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positions of plastification lines in all cases, it is very difficult to state the extent of yielding 
lines formation until the moment of girder capacity loss (Fig. 8). 

Figure 8: Residual deformations of a girder subjected to centric loading 

The form of buckling depends both on the web thickness and the flange stiffness. The stiffer 
the flange, the closer to the flange the upper yielding line is, whereas, the lower line moves 
deeper downwards. Web thickness also affects the shortening of the upper line arrow. Apart 
from this, even the buckling curve is closer to the loaded flange. For all the girders with web 
thickness of tw = 4, 5 and 8 mm, it can be stated that there are no signs of plastic hinges 
formation in the loaded flange. What is more, even the plastification is not evident, in some 
cases even for the loading greater than 99% Pex . Nevertheless, in cases of web thickness of tw 

= 10 mm, there is plastification in the flange over the edges of load distribution block. Not 
even these cases can be determined by the formation of plastic hinges at the moment of 
reaching the critical load. Bending moments concentrate at a certain distance from the edges 
of load distribution block, but the intensity of these stresses is rather insignificant. Thus, it 
can be concluded that in this experiment, the so-called external plastic hinges on the flange 
do not form at all. 

The third series of tests was primarily carried out with the intention of getting a better insight 
into the behaviour of girders, collapse form and the intensity of failure load with beams not 
subjected to centric loading with respect to the plane of the web, but with the load showing 
certain eccentricity. This investigation is among the first ones to deal with this problem. As 
the loading increases the most evident deformation is the bending of the flange accompanied 
by a slight twisting of the web following the flange deformation (Fig. 9). Collapse form of the 
girders differs considerably from the collapse form of the beams subjected to the centric 
loading. What is evident in cases of beams subjected to centric loading is the problem of 
elasto-plastic buckling and a local stability loss (carrying capacity loss). On the other hand, in 
cases of the eccentric loading, carrying capacity loss occurs due to the elasto-plastic bending 
(but again of local character). The question, which arises here, is about the line between these 
two phenomena and the extent of the eccentricity with the girder loosing its carrying capacity 
in the same manner as it occurs with the beams subjected to the centric loading. 
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Figure 9: Flange warping of the girder subjected to eccentric loading 

Failure load decreases as the eccentricity of the distributed load increases. The most 
significant parameters affecting the failure load are web thickness, the extent of load 
eccentricity (e/bf ratio), the extent to which the flange and the web are built in, as well as the 
flange stiffness. Girder collapse does not occur suddenly, as in cases of centric loading. After 
reaching its maximum the load starts to decrease gradually. The initial deformations do not 
seem to affect either the development of plastification lines or the intensity of ultimate load. 

In spite of a large number of mathematical expressions and models for determination of the 
failure load, it still cannot be claimed that there is a universal procedure which would 
comprise all parameters affecting the failure load, and which would, on the other hand, 
provide an acceptable and realistic description of the phenomenon of carrying capacity loss. 
Having completed the experimental research, and summarizing the experiences with regard to 
stress-deformation image of the girder a new mathematical model which would offer an even 
more realistic description of the stresses and deformations at the moment of carrying capacity 
loss is conceived in a rather different manner from the known ones, and it represents an initial 
idea for further studies and formulation of an improved mathematical model for calculating 
the failure load. 

4.   INFLUENCE OF THE LONGITUDINAL STIFFENERS 

Investigations concerning the behaviour of plate girders with longitudinal stiffeners 
subjected to patch loading have been carried through international cooperation with 
University College Cardiff and T.M Roberts [6] and with Institute of Theoretical and 
Applied mechanics of Chechoslovak Academy of Sciences in Prag and prof M.Skaloud and 
further work is in progress. The influence of the longitudinal stiffeners was investigated in a 
series of tests on plate girders [7] and it was found that the influence of the position of 
longitudinal stiffener is noticeable if it is placed in the vicinity of loaded flange, especially 
between O.ld - 0.4d and the ultimate load can be increased even for about 20%. 

Theoretical work is concentrated on obtaining collapse or ultimate load. A part of the 
theoretical work deals with obtaining the solution using simplified model of failure. 
Procedure using failure model given by Roberts is adjusted to take into account the position 
of longitudinal stiffeners. The distance of the yield lines from the loaded flange is diminished 
compared with unstiffened girders and recommended value is given. Another theoretical 
approach is to use ultimate load solution in closed form i.e. some empirical or semi-empirical 
expression. An assessment of the applicability of a number of the formulae proposed by 
different authors for the prediction of the ultimate load   for the girders without longitudinal 
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stiffeners was made through statistical analysis using data from experimental research. It was 
found that the best agreement with experimental results is obtained with Roberts formula (2). 
This solution includes main parameters that influence behaviour at collapse: square of 
thickness of the web, ratio between the thickness of the flange and the web, length of the 
patch load and material properties but it was needed to include the influence of the position of 
the longitudinal stiffener. As a result of statistical analysis a proposal is made for the 
modification of the existing expressions. It is suggested that the formula given by Roberts 
which is also used in Eurocod 3 should be slightly adjusted when applied to girders with 
longitudinal stiffeners by applying correction coefficient f(s). 

( (    v.5 A 

pus=pM-m=o.5 • ti ■ 4E^ ■ 7^7777 1 + 3^ 
d 

f{s) .    (2) 

A simple form for taking into account the position of the longitudinal stiffeners is suggested: 

/(s)=1.28-0.7-j/d        for  Q.\<sld <0.4 (3) 

Further work is directed towards the determination of the influence of the loaded length when 
longitudinal stiffeners are present. 

5. REFERENCES 

[1]    Granholm, CA., Report 202, Inst. Fur Byggnadstehnik, Gothenberg (1960) 
[2]    Bergfelt.A. and HovikJ., Thin walled deep plate girders under static loading. Proc. 8th 

Congr. IABSE, New York (1968). 
[3]    Roberts, T.M. and Rockey K.C., A mechanism solution for predicting the collapse 

loads of slender plate girders when subjected to inplane patch loading, Proc. Inst. Civ. 
Engrs., Part 2, 67, 155-175 (1970). 

[4]    Timoshenko, S.P. and Gere, J.H., Theory of elastic stability,    McGraw-Hill, N.Y. 
(1961). 

[5]    Coric, B., Transversely reinforced plate girders subjected to patch load. International 
Colloquium on Structural Stability, Beijing (1989). 

[6]    Roberts,T.M. and  Markovic,N., Stocky plate girders subjected to edge loading, Proc. 
Inst. Civil Engrs., London, P2, 75, 539-550 (1983). 

[7]    Markovic,N. and Hajdin, N., A Contribution to the Analysis of the Behaviour of Plate 
Girders Subjected to Patch Loading, J. Construct. Steel Research, 21, 163-73 (1992). 



SYNTHESIS OF NEW PHENOLIC POLYMERS VIA ENZYMATIC 
POLYMERIZATION AND THEIR PROPERTIES 

Shiro Kobayashi 
Department of Materials Chemistry, Graduate School of Engineering 

Kyoto University, Kyoto 606-8501, Japan 

1. SUMMARY 

New "urushiol analogues" were facilely synthesized by lipase-catalyzed regioselective 
acylation of catechol derivatives having a primary alcohol with unsaturated fatty acids 
derived from plant oils. The curing via polymerization of the product catechol derivative 
proceeded under mild reaction conditions to produce the crosslinked film ("artificial urushi", 
a phenolic polymer) with high hardness and gloss surface, which are comparable with those 
of natural urushi coating. Similar urushiol analogues from 4-hydroxyphenetyl alcohol and 
unsaturated fatty acids were oxidatively polymerized by Fe-salen catalyst, yielding soluble 
polyphenols. Cardanol from cashew nut shell liquid, was also polymerized by peroxidase or 
Fe-salen catalyst to give the soluble crosslinkable polyphenol. These two phenolic 
prepolymers were subjected to hardening by thermal treatment or cobalt naphthenate catalyst 
to give a crosslinked film (also "artificial urushi") with good hardness. 

2. INTRODUCTION 

"Urushi" is a typical Japanese traditional coating. It shows excellent toughness and brilliance 
for a long period, and thus, caused much interest for organic chemists. Urushi coating is 
prepared from sap of Japanese lacquer tree (Rhus vernicifera) [1, 2], and Majima's pioneering 
work in the early days of the last century revealed that main important components of urushi 
are "urushiols", whose structure is a catechol derivative with unsaturated hydrocarbon chains 
consisting of a mixture of monoenes, dienes, and trienes at 3- or 4-position of catechol [3, 4]. 
Typical urushiols are shown as follows (Scheme 1). Crosslinking of the urushiol is supposed 
to be accomplished mainly by a laccase-catalyzed oxidative coupling of the phenol moiety of 
the urushiol and a subsequent oxidation of unsaturated alkyl chains in air. 
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R at 3 or 4 position] 
ofcatechol 1 

Scheme 1 

Urushi can be regarded as the only example of practical natural paints utilizing in vitro 
enzymatic catalysis for hardening. The film-forming from the urushiol proceeds under air at 
room temperature without organic solvents, and hence, urushi seems very desirable for 
coating materials from the environmental standpoint. However, modeling study of urushi has 
been limited for only one paper [5]. This is mainly due to the difficulty in preparation of the 
urushiol. 

Polymerizations catalyzed by enzymes ("enzymatic polymerizations") have received much 
attention as new methodology of polymer syntheses [6, 7]. Characteristics of enzyme 
catalysis are expected to provide new polymeric materials, which are difficult to be obtained 
by conventional methods. Peroxidases induced the oxidative polymerization of phenol 
derivatives under mild reaction conditions to produce a new class of functional polyphenols 
in good yields [8]. 

Potential demands for replacing petroleum-derived raw materials with renewable plant-based 
ones in production of polymeric materials become worldwidely significant in the social and 
environmental viewpoints. Using such plant-based raw materials contributes to global 
sustainability without depletion of important resources. These materials are often cheaper 
than petrochemicals. The present lecture is concerned with our recent progress on preparation 
of artificial urushi, new crosslinked polymeric films, from urushiol analogues (phenols 
having an unsaturated group in the side chain) [9, 10]. All the monomers are derived from 
plant oils. In the curing stage, the crosslinked polymeric film can be obtained in the absence 
of organic solvents at an ambient temperature under air. Therefore, our new methodology can 
be regarded as an environmentally benign process of polymer coating, providing an example 
system of green polymer chemistry. 

3. RESULTS AND DISCUSSION 

Laccase-catalyzed hardening of urushiol analogues to artificial urushi 
We designed new urushiol analogues (5~7), in which the unsaturated group is connected with 
the catechol or phenol group through an ester linkage [9]. The analogues were synthesized by 
a lipase-catalyzed esterification of phenols having a primary alcohol (1~3) with unsaturated 
fatty acids of different number of double bonds (4) (Scheme 2). 
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Scheme 2 

Laccase was used for the curing, which belongs to an oxidoreductase having a copper-protein 
moiety as active site [6]. The curing of 5~7 was performed in the presence of acetone powder 
(AP, an acetone-insoluble part of the urushi sap containing mainly polysaccharides and 
glycoproteins) with 80% humidity at 30 °C for 24 h. AP, a third component of the sap in 
addition to an urushiol and laccase, is believed to act as emulsifier of oily urushiol and 
aqueous laccase solution. The sample film was prepared on a glass slide by using applicator 
for 50 )i,m thickness. The crosslinked film was obtained from 6b, 6c, 7b, and 7c, and other 
urushiol analogues were not cured. In the curing without laccase (control experiment), the 
film formation was not observed. 

The curing of 6c was monitored by using a dynamic microhardness tester (Figure 1). At the 
initial stage of the curing, the hardness value was very small and the sudden increase was 
observed after two weeks. Later, the value gradually increased to reach ca. 150 N/mm after 5 
weeks. The gloss value of the film surface was more than 100. The pencil scratch hardness 
reached H after 15 days, which is hard enough for practical uses. The hardness and gloss 
values of the present cured film are comparable to those of natural urushi coating; the curing 
of the urushiol analogues produced the brilliant film ("artificial urushi") with the high gloss 
surface. In the curing of 6b in the presence of AP, on the other hand, the hardness value was 
less than 5 N/mm  after 6 weeks. 
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Figure 1. Time course in hardening of artificial urushi film from 6c by using Fischer 
microhardness tester. 

Recently, starch-urea phosphate (SP), a synthetic material, was reported to be highly effective 
as the third component for in vitro enzymatic curing of urushiols. In the curing of 6b and 6c 
in the presence of SP which is a substitute of AP (the natural sap component), the polymeric 
film was also obtained. However, the film hardness from 6c was much smaller than that using 
AP as the third component. Interestingly, the curing of 6b in the presence of SP produced the 
crosslinked film with relatively good hardness (30 N/mm2 after 10 weeks); only a soft film 
was obtained by curing of 6b in the presence of AP. 

Figure 2 shows storage modulus (E') and dissipation factor (tan 8) of the cured films from 6c 
as a function of temperature. In case of the sample obtained in the presence of AP after 
drying for 5 months, the glass transition temperature (Tg) was observed at 102 °C. The 
increase of E' in the region of high temperature indicates that the unreacted unsaturated 
carbon-carbon double bonds remained in the measured sample. Smooth trace of tan 8 means 
the homogeneous structure of the present cured film, suggesting the good miscibility between 
the urushiol analogue and AP. Similar traces were observed in the sample prepared by using 
SP as the third component. These dynamic elastic behaviors of the artificial urushi were very 
similar to those of natural urushi. 
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Figure 2. Dynamic viscoelasticity of artificial urushi obtained from 6c in the presence of 
AP. 

Preparation of soluble polyphenols from urushiol analogues and their curing 
Urushiol analogue 5 was not cured via laccase catalysis. Thus, we have examined preparation 
of another "artificial urushi" by an oxidative polymerization of 5, followed by curing of the 
resulting soluble crosslinkable polyphenols (Scheme 3). 
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Scheme 3 

Here, iron-N,N'-ethylenebis(salicylideneamine) (Fe-salen) was used as catalyst for the 
oxidative polymerization of 5. We regarded Fe-salen as model complex of peroxidase having 
a heme as catalytic active site. Polymerization of 5a catalyzed by the Fe-salen produced 
soluble polymer 8a with molecular weight of several thousands, whose index was relatively 
small (< 2). On the other hand, molecular weight and its index of polymers 8b and 8c were 
larger than those of 8a; in some cases, the molecular weight was beyond 1x10 . 

The curing of soluble polymers 8 was examined by two methods: oxidation catalyzed by 
cobalt naphthenate (3 weight-% for 8) in air and thermal treatment (150 °C for 2 h). In the 
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case of 8b and 8c, the hardness value of the film with thermal treatment was ca. 100 N/mm 
after 3 days. The hardness of the cured film of 8c gradually increased and reached more than 
140 N/mm2 after 4 weeks, whereas the hardness of the cured film of 8b was almost constant. 
In the curing by cobalt naphthenate catalyst, 8b and 8c were also cured, however, the curing 
proceeded more slowly than the thermal curing. The formation of the cured film from 8a was 
not observed in both curing methods. These data indicate that two or three unsaturated group 
in the side chain was required for the hardening. The surface gloss value of the cured film 
obtained by using cobalt naphthenate catalyst was more than 100, indicating the formation of 
the film with the high gloss surface. 

Preparation of Crosslinked Polymeric Film from Cardanol 
Cardanol (9) can also be taken as an urushiol analogue. 9, a main component obtained by 
thermal treatment of cashew nut shell liquid (CNSL), is a phenol derivative mainly having 
the meta substituent of a C15 unsaturated hydrocarbon chain mainly with 1-3 double bonds. 
Since CNSL is nearly the one third of the total nut weight, much amount of CNSL is formed 
as by-product from mechanical processes for the edible use of the cashew kernel. Only a 
small part of 9 obtained in the production of cashew kernel is used in industrial field, though 
it has various potential industrial utilizations such as resins, friction lining materials, and 
surface coatings. Therefore, development of new applications for 9 is strongly desired. 

Phenolic resins from 9 and formaldehyde are industrially produced as prepolymer of coating 
materials with high gloss surface mainly for indoor use. However, resins containing 
formaldehyde have much concern about toxic nature of formaldehyde in their manufacture 
and use. We have examined synthesis and curing of polymer 10 obtained by a 
peroxidase-catalyzed oxidative polymerization of 9 (Scheme 4) [11, 12]. This curing reaction 
is regarded as a new formaldehyde-free coating system from 9. 

)H Peroxidase or 
^k. Fe-Salen / H202 

Crosslinked Polymer ("Artificial Urushi") 

(3%) 
(34%) 

(22%) 

(41%) 

Scheme 4 

We have reported that horseradish and soybean peroxidases (HRP and SBP, respectively) 
were efficient catalysts for oxidative polymerization of various phenol derivatives [6, 7]. As 
for the polymerization of 9, SBP showed high catalytic activity to give the oily polymer 10 
with molecular weight of several thousands, whereas the polymerization did not occur via 
HRP catalysis. 
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Fe-salen also catalyzed the polymerization of 9 in organic solvents as well as bulk. Using 
1,4-dioxane as solvent gave soluble polymer 10 in good yields and the addition of pyridine 
improved the polymer yield and molecular weight. The polymerization also proceeded 
without organic solvent to produce the polymer 10 with molecular weight 1400-3000. 

In a similar manner to 8, the curing of 10 was examined by two methods: catalysis of cobalt 
naphthenate (3 weight-% for 10) and thermal treatment (150 °C for 30 min). The curing took 
place within 1 h in both methods to give a yellow transparent film, which can also be 
regarded as "artificial urushi" in a broader sence. Such a quick hardening was not observed in 
monomer 9. These data indicate that 10 is a good crosslinkable prepolymer. The hardness of 
the film cured by the cobalt catalyst reached nearly 100 N/mm2 after 7 days. The gloss value 
of the film surface was higher than 100. These values are comparable to those of 
cardanol-formaldehyde coating materials. The resulting crosslinked film exhibited good 
elastic properties and its Tg was relatively high (ca. 100 °C) (Figure 3). The curing of the 
enzymatically obtained poly(cardanol) 10 also proceeded by cobalt naphthenate catalyst to 
gave the crosslinked film with good hardness. FT-IR monitoring of the curing of 10 showed 
that the crosslinking mechanism was similar to that of the oil autoxidation. 
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Figure 3. Dynamic viscoelasticity of crosslinked film of poly(cardanol). 

4. CONCLUSION 

In conclusion, "artificial urushi", a phenolic polymer, has been developed starting from three 
different "urushiol analogues" by using a enzymatic polymerization process. The artificial 
urushi showed high gloss surface and good elastic properties, which are comparable to those 
of natural urushi. The present method provides with an environmentally-benign process of 
polymer coatings. 
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1. SUMMARY 

The presentation deals with the analysis of strain localization in dry and water saturated 
granular soils. In this context a Cosserat formulation is employed to achieve a regularization 
and to avoid spurious mesh dependencies. The modelling of saturated soil is performed by 
the Theory of Porous Media. Space as well as time adaptive methods are applied using an 
hierarchical mesh refinement and an automatic time step adjustment in the discretization of 
the given problem. 
The numerical examples show that reasonable discretizations may be achieved improving the 
efficiency of the solution technique. Localization phenomena are detected and refined 
properly. The resulting limit-loads may be considered as realistic, also in quantity. They were 
compared to the results of classical approximate methods. 

2. INTRODUCTION 

The treatment of zones of strain localization plays an important role in the numerical 
determination of limit-load states in geomechanics [3][4]. In general, shearbands connected 
to the limit-load state of the system are forming suddenly in time and further deformation is 
restricted to distinct narrow zones characterizing the type of failure. The accuracy of the 
finite element solution is, therefore, strongly coupled to a sufficient small mesh size in the 
zone of localization and reasonable time step sizes to capture the formation of the shearband. 
Essential ingredients of a reliable and robust finite element method are a regularization 
technique as well as space and time adaptive solution strategies [7]. 
In this presentation emphasis is given to the computation of problem dependent spatial and 
temporal discretizations. As estimators on a rigorous mathematical basis are difficult to 
obtain when non-associated flow rules are applied, the adaptive strategies are based on a 
combination of four different error indicators. Two of them control the space adaptive part 
and provide a measure for the spatial discretization error by evaluating the residuum of the 
extended equilibrium conditions and the error in the continuity of the fluid flows. On this 
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basis, the Cosserat continuum formulation and the transport subproblem may be taken into 
account in a straightforward manner. The time adaptive part includes two indicators for the 
temporal discretization error as well as for the error in the numerical integration of the 
constitutive equations being restricted to the zone of plastic response. With this adaptive 
strategy the beginning of localized failure can be captured in time and the developing of 
shearbands may be refined properly. 

3.   SPACE-TIME FINITE ELEMENT FORMULATION 

In the following, soil is considered as a a two phase material consisting of an elastic-plastic 
solid skeleton and a viscous pore fluid. Using the Theory of Porous Media [2] a 
homogenization may be achieved by introducing the concept of volume fractions. The local 
equations extended by a Cosserat formulation are then given by 

ipu + pSu\ + pbj=0, 

'I+^^+P^J^O, 
(1) 

defining the balance of momentum, balance of moment of momentum and the conservation 
of mass, respectively. In these equations atj represents the effective stress tensor, p the pore 

water pressure, fiu the Cosserat couple stress tensor, Eijk the permutation tensor and K.tj the 

Darcy permeability. The time dependence is introduced by the third equation which couples 
the fluid flow to the volume change. The numerical solution procedure used here may be 
regarded as a consistent space-time finite element method combining isoparametric elements 
in space with the Time-Discontinous-Galerkin method in the time coordinate. This technique 
was successfully applied to the consolidation analysis by Cramer, Findeiß and Wunderlich 
[1]. The main advantage consists in superior stability properties, however, the discontinuities 
at the discrete time levels may be used to derive an error indicator for the temporal 
discretization error, too. The local Equations (1) are transformed into a variational form 
which directly supports a finite element discretization. All virtual work expressions are 
balanced by 

ji jSüTDladV + jdüTDT
ulpdV-jdüTpbdV-jdüTtdA+ 

/„ I V V V oa 

J 8d)TDl/i dV + l&bTE(rdV + 
V V 

■j '     (2) 

J5plTDu üdV-jdpDT
pK

DarcyDp pdV+ J8pQdA\dt + 

\Sp+
nl

TDjuJdV=0 
v 

in which Du, Da and Dp are the standard gradient operators and [[«„J indicates the jump in 

the displacement field at the discrete time tn. Hence, the jumps are included in a variational 

sense. The unknown field variables are the displacement field u, the field of micro-rotations 
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w and field of the scalar pore water pressure p . For a combined space-time discretization 
shape functions are used in an appropriate product form: 

u(x,t) = Nu(x)N,(t)u, 

a(x,t) = Na(x)Nl(t)&, (3) 

p(x,t) = Np(x)N,(t)p. 

The discretization leads to a non-linear system of equations which has to be rewritten in an 
incremental form in which the rate-independent Prandtl-Reuss plasticity concept is applied: 

(4) 

with «„, wn and pn as the discrete values at the beginning and the end of the time interval. 

The system is solved by a Newton-Raphson iteration where the stiffness matrices Kaß are 

assembled using a consistent tangent operator in order to ensure the stability even when limit- 
load states are reached. 

Km Kua, K A£„ 
I rji it,ext       jnujnt 

K<ö„ Koto 0 A«>„ = 
T?ü),ext        wpO),int 

K 0 H AP„ F" 

exact solution 

(continuous) 

time 

Figure 1.   Illustration of the Time-Discontinuous-Galerkin method 

4.   ERROR INDICATORS 

The coupled analysis of the multiphase problem requires independent error measures for the 
spatial and temporal domain. However, up to now no mathematically rigorous estimators 
have been proposed in the framework of non-associated plasticity. To provide a basis well 
suited for adaptive strategies four different indicators are developed in this section which may 
be used for a hierarchical mesh refinement [8] and an automatic time step control. 

4.1.   ERROR IN THE EQUILIBRIUM CONDITIONS 

Following the approach by Johnson and Hansbo [5] a residual-type error indicator is used to 
capture the error in the equilibrium conditions. It is extended to the Cosserat theory by 
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introducing a second term of analogue structure. Instead of splitting the domain into elastic 
and plastic parts a weighting concept using the L,-norm of the incremental strains and 
curvatures is applied leading to the local indicator: 

<, = H IA(V) 
\\qhiR(ch,ph)\\LAvl) + 

L,(0') 

+ A/c 
M>") 

classical   part 

\f'l-'h,R'0tk,ch^(vl) + 
K L.(0') 

(5) 

Cosserat   part 

in which the different parts of the residuals and the jumps across the element boundaries are 
defined by: 

R(ffh>Pn) = divK + P,J) + P b> 

j( */»•(** + />»/)-*     onOa 
J^'P")-\^n.A(ch + PhI)   onO', 

Rc(fih,ah) = diwflh+Eah, (6) 

\n fih-m     on Op 
JC(M„) = jtt-Afih     .onO' 

(7) 

This indicator is mainly responsible for a detection and refinement of zones of strain 
localization. While the classical part leads to a refinement in the middle of the shearband, the 
Cosserat part preferably refines both edges. 

4.2.   ERROR IN THE CONTINUITY OF THE FLUID FLOWS 

A second spatial error indicator has to be introduced to ensure a sufficient accuracy for the 
fluid flow subproblem. For this purpose a local super convergent patch recovery was 
employed to compute a smooth field of fluid flows Q* which might be regarded as of a 

higher accuracy [9]. Finally, the local indicator is derived from the difference between Q' 
and the finite element solution Qh: 

^,, = J(Ö*-Ö„)(ö*-ß„)^. (8) 
v 

This procedure is based on the fluid flows at the end of the time interval (t = tn+l). They are 
calculated in accordance to the law of Darcy: 

Q^tf^iPj + p'bj) (9) 

As a consequence, a purely spatial indicator is obtained which is independent of the time step 
size. This recovery indicator leads to reasonable results because the conservation of mass 
represents a linear subproblem. Within the hierarchical mesh refinement an element 
subdivision is performed when at least one of the two prescribed tolerances toleq and tolfl is 

exceeded. 

4.3.   TEMPORAL DISCRETIZATION ERROR 

Generally, the accuracy and efficiencyof the numerical analysis of time dependent problems 
like the consolidation process is strongly coupled to an appropriate time discretization. The 
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indicator for the temporal discretization error proposed here is closely related to the jumps 
that arise at the discrete time levels in the framework of the Time-Discontinuous Galerkin 
method. As the size of the jumps vanishes when the step size is reduced successively, the L^ - 
norm of the discontinuities in the three different fields may be directly used as an error 
measure: 

(10) 

7?A,,Hi WILw 
A relative local error is then derived by relating the values to the L2 -norm of the increments. 
Finally, the maximum of the calculated values is taken as a basis for the time step control: 

( 
7jA,=MAX *?*., VA V, Af.p 

IHL'IHL'NL 
(ID 

The advantage of this formulation is the low computational effort to evaluate the error 
indicator as the jumps [[«]], M and [[/?]] are directly associated to the primary unknowns 
of the global system of equations. 

integration-points ot second order 

_o integration-points of third order 

Figure 2.   Gauss-point-integration of higher order over the interval In 

4.4.   ERROR IN THE INTEGRATION OF THE CONSTITUTIVE EQUATIONS 

The determination of the path dependent variables is performed by a numerical integration in 
the context of elastic-plastic constitutive equations. Hence, another error is introduced which 
depends on the integration scheme as well as the time step size. In order to bound this 
accumulative error, the step sizes have to be controlled. The indicator proposed in this section 
is based on the residuum of the Kuhn-Tucker conditions: 

r>o, f(a,H,q)<0, ff((7,fi,q)=0. (12) 

The application of a discontinuous time approximation prevents the use of the standard 
backward Euler rule. Therefore, an integration scheme has been implemented where the 
Kuhn-Tucker conditions are strictly enforced at two Gauss points in time. The indicator for 
the constitutive relations is then given by the integral of \y f\ over the time interval: 
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pi   '   '» ->o 
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(13) 

V   '   /, 

This results in an absolute measure 7]OT which may be evaluated using a higher Gauss point 
scheme. Figure 2 illustrates the whole procedure. Of course, this indicator is restricted to 
zones of plastic response as an elastic stress strain relation may be integrated analytically. 
The time step control is based on these two temporal indicators. Therefore, two additional 
tolerances tolM and tolm have to be prescribed. If one of them is exceeded, the step has to be 
recalculated again using a smaller increment size. In the case of a purely elastic behaviour, 
the step size control is restricted to the evaluation of the temporal discretization error t]^. 

However, when limit-load states are reached the constitutive indicator 7jOT becomes the 

restricting factor. 

4m 

rigid strip footing 

16 m 

40 m 

Material parameters 
E 5000 kN/m2 

V 0.20 

kx<ky lO^m/s 

(p 25 
c 5 kN/m2 

V 5° 
Cosserat parameters: 

«i 1.0 

«2 1.0 

«3 1.0 

Gc 1000 kN/m2 

K 0.04 m 

Figure 3.   Geometrical and material properties of the strip footing 

5.   NUMERICAL EXAMPLE - STRIP FOOTING ON HALF SPACE 

A standard problem in practical geomechanics is the investigation of a strip footing on a half 
space. A theoretical basis of the corresponding failure analysis was developed by Prandtl [6]. 
The numerical simulation was based on the space and time adaptive strategy proposed in this 
paper. The geometry of the system and the material parameters including those for the 
Cosserat extension are shown in Figure 3. The rigid strip footing is loaded in a displacement 
controlled analysis. The limit-load state is typically characterized by narrow shearbands as 
shown in Figure 4 and exhibits the distinct slip lines which are similar to those obtained by 
the analytical solution of Prandtl. The result of the space adaptive part of the computation is 
shown in Figure 4. Especially, the indicator i\eq for the equilibrium conditions is well suited 

to detect and refine the localization zone appropriately. An element length in the same 



304 

dimension as the internal Cosserat length (h = lc) ensures a sufficient accurate approximation 
of the geometry of failure. This was achieved by a hierarchical mesh refinement. However, in 
this case more than 70000 degrees of freedom were necessary in the 8th level of refinement. 
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Figure 4.   Incremental rotations Aco and final mesh 

The evolutions of the time step sizes are shown in Figure 5 where the tolerances for the 
constitutive error were set to tolae-l0'4, 10"5 and 10"6. It becomes obvious that the step sizes 
have to be reduced in times characterized by a rapid increase in the plastic zone. But also 
when the shearband formation is initiated and large domains show an elastic unloading 
smaller step sizes are applied. In time domains which show only small changes in the stress 
states, the increments may be choosen larger by a factor of about 4. Thus, constant small step 
sizes are far from being optimal with respect to an equal error distribution over the entire time 
domain. It becomes obvious that a reduction of the tolerances results in a consequent 
adjustment to smaller time steps ensuring a higher accuracy level. 

0.1 

tolae = 10-4 

tola£ = 10"5 

tolaE = 10"6 

100 200 300 
time [h] 

400 500 600 

Figure 5.   Time adaptivity - evolution of time step sizes 
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6. CONCLUSIONS 

A concept for the space and time adaptive computation of localized failure in water saturated 
soils has been presented. The whole procedure is based on a space-time finite element 
formulation which couples standard finite elements in space and the Time-Discontinuous- 
Galerkin method. The three-field approximation for the consolidation problem includes an 
extension to the Cosserat theory which introduces a strong regularization effect. 
A hierarchical mesh refinement and an automatic time step control are based on four different 
error indicators. This procedure includes an evaluation of the error in the equilibrium 
conditions, the error in the continuity of the fluid flows, the temporal discretization error and 
the error in the integration of the constitutive equations. The combination of space and time 
adaptive strategies lead to a significant improvement in efficiency. Zones of strain 
localization are detected and refined both in space and in time. An unsolved problem consists 
in the high number of step size changes connected to a recalculation of the current step. 
Therefore, the time step control has to be improved by a kind of a priori indicator. 
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MEASUREMENT OF THE MECHANICAL PROPERTIES OF MEMS MATERIALS 
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1. SUMMARY 

Techniques and procedures are described for the tensile testing of very small specimens of 
materials that are used in microelectromechanical systems (MEMS). Narrow (50 microns 
wide) specimens of polysilicon and wide (600 microns) specimens of polysilicon, silicon 
nitride, and silicon carbide are tested; these range in thickness from 0.5 microns to 3.5 
microns. Larger nickel specimens are 200 microns thick and 3 millimeters long. Uniaxial and 
biaxial strain is measured directly on these specimens with interferometry from reflective 
markers. Brief descriptions of the test methods and representative results are presented. 

2. INTRODUCTION 

Surface micromachined MEMS are planar devices with thicknesses on the order of a few 
microns, widths and lengths on the order of tens of microns to millimeters, and minimum 
features in the plane (e.g. radius of curvature) of one micron. They are manufactured using 
processes common in the microelectronics industry and are indeed new materials from a 
mechanical performance viewpoint. It is difficult to measure Young's modulus, Poisson's 
ratio, and fracture strength of specimens that have the same size scale as MEMS, but 
considerable progress in test methods has taken place over the past half-dozen years. 
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Figure 1: Representative stress-strain curves. 
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Polysilicon (polycrystalline silicon) is the predominant thin-film material used in MEMS at 
this point; the structural elements in these planar microdevices are less than 5 microns thick. 
More robust MEMS involving larger forces are made from electroplated nickel that is a few 
hundred microns thick. Figure 1 shows typical stress-strain curves for these two materials 
along with a common steel. These results were obtained in the author's laboratory, and the 
steel and nickel specimens were the same size and shape. The nickel is almost as strong as the 
steel and is much stronger than the bulk form of pure nickel. Polysilicon is a linear brittle 
material, as would be expected for a ceramic, and it is much stronger than either of the 
metals. 

This paper is an overview of the accomplishments of the past several years. Details on the 
wide thin-film specimen tests can be found in [1], on the narrow specimen tests in [2], and on 
the nickel tests in [3]. For a comprehensive review of mechanical testing and properties of 
MEMS materials in general, the reader is referred to [4]. The strain measurement technique, 
used throughout, is described in Section 3. The next three sections describe the test methods 
and present typical (but not comprehensive) results for the three kinds of specimens - wide 
and narrow thin-films and thick-films. Section 7 offers some concluding remarks. 

3. STRAIN MEASUREMENT 

Strain is measured by laser-based interferometry from a set of two gold lines deposited in the 
center of the gage section of the tensile specimen. These lines simply need to be reflective, 
but gold is the last step in this particular manufacturing process. The lines are 0.5 microns 
thick, 20 microns wide, and spaced 200 microns apart. Figure 2 is a schematic that illustrates 
the optical principle and Figure 3 is a SEM photograph of two sets of gold lines on 
polysilicon, which enables biaxial strain measurement. 

Incident Laser Beam 

Specimen ^— Gold Lines 

Figure 2: Schematic of interferometric strain measurement. 

Figure 3: Photograph of gold lines on polysilicon specimen. 
The width of the specimens is 600 microns. 
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The incident laser beam reflects (more accurately diffracts) from the edges of the two gold 
lines to form interference patterns. The position in space of these patterns is dependent upon 
the spacing between the lines, and these fringes move as the specimen is strained. Fringe 
motion is monitored by linear diode arrays, which feed into a computer to permit real-time 
strain measurement. This method is described in Sharpe et al. [1]. 

4. WIDE THIN-FILM SPECIMENS 

A wide specimen is shown in the scanning electron micrograph of Figure 4. Polysilicon is 
patterned onto the die as shown and a rectangular window is etched out of the underlying 
silicon wafer to leave the tensile specimen supported across an opening. The die is then 
placed in a test machine with the large ends glued to the grips and the side support strips cut 
with a diamond saw. This leaves a completely free and unsupported tensile specimen 
mounted in the test machine. The specimen is 3.5 microns thick and 600 microns wide in the 
center of the test section, which has an overall length of 4 millimeters. 

Figure 4: Photograph of a wide specimen. 

Figure 5 is a schematic of the setup for testing wide specimens. The free (after the support 
strips are cut) end of the specimen is glued to the movable portion of a linear air bearing to 
reduce friction in the load train. A 4.45 N load cell measures the force applied to the 
specimen as a piezoelectric actuator elongates it. The arrangement for the strain measurement 
is also shown in the schematic. Specimens can be heated resistively for high temperature 
testing, and those electrical contacts are shown in the schematic. 

Laser 
Diode 
Array 

Wafer 

Diode 
Array 

(      )       Air Bearing 

Load Cell 

Piezoelectric 
Actuator 

Specimen 

Figure 5: Schematic of the wide specimen setup. 
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Figure 6 is a plot of individual wide-specimen tests on three different thin-film materials. 
Polysilicon, which is 3.5 microns thick and is the most extensively tested material, has a 
Young's modulus of 169 ± 6 GPa, Poisson's ratio of 0.22 ± 0.01, and a fracture strength of 
1.20 ± 0.15 GPa [1]. The initial set of test results for 0.5 micron thick silicon nitride produce 
a modulus of 254 ± 3 GPa, Poisson's ratio of 0.23 ± 0.02, and a much higher strength of 6.41 
+ 1.04 GPa (note that the complete result is not plotted in Figure 6). The plot for 0.5 micron 
thick silicon carbide is from one early test of this material; these test methods are still under 
development. 
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Figure 6: Stress-strain plots for three thin-film MEMS materials. 

5. NARROW THIN-FILM SPECIMENS 

Narrow polysilicon specimens have the advantages of providing more samples per die, and 
they have widths on the same scale as MEMS. A different approach is taken here in handling 
and gripping, and Figure 7 shows a typical specimen. One end of the specimen remains 
attached to the silicon substrate, but the rest of the specimen is released by etching away a 2 
|im thick layer of oxide under it. The narrow straight test section (3.5 microns thick, 50 
microns wide) is faired into the ends with a curvature of large radius, and the movable grip 
end is punctuated with holes to allow the etching to occur. Each grip end is supported by four 
anchors, which are broken before testing. 

Figure 7: Photograph of a narrow thin-film specimen. 
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These specimens are gripped by gluing a 125 micron diameter silicon carbide fiber to the free 
end; the other end of the fiber is attached to a 1 N load cell as shown in the schematic of 
Figure 8. A small piezoelectric actuator also elongates these specimens. 

Resistive heater or 
thermoelectric cooler 

Piezoelectric 
Actuator 

Figure 8: Schematic of the narrow specimen test setup. 

Figure 9 presents a typical result for a narrow specimen test — but at 200°C. The specimen 
was heated in a small resistive furnace with a quartz window to allow optical access. The 
silicon fiber provides the connection between the specimen and the load cell outside the 
furnace. The key to these tests is aligning the load cell and fiber so that the specimen is pulled 
straight along its axis. This requires an initial tension, which is why the plot does not start at 
the origin. Alignment is monitored by viewing the laser image reflected perpendicularly from 
the gage section and is also verified by ensuring that the loading and unloading modulus 
values are the same. 
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Figure 9: Stress-strain plot for a narrow polysilicon specimen tested at 200°C. 

The results of modulus measurements on 13 different narrow specimens are shown in Figure 
10 as a function of temperature. Room temperature measurements of Young's modulus of 
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polysilicon show a coefficient of variation of 5%, and the results here show a similar value at 
each temperature. It is clear that the decrease in Young's modulus is at most 15 GPa (less 
than 10% of the original value) over the entire temperature range. The fracture strengths of 
these specimens show no discernible trend over the temperature range. 
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Figure 10: Young's modulus versus temperature. 

6. THICK-FILM SPECIMENS 

Thicker specimens of pure nickel are fabricated by electroplating into polymer molds 
produced by exposure to X-rays; this is the LIGA technique used to make MEMS. Figure 11 
is a SEM photograph of a single specimen on a silicon substrate. These specimens can be 
released by etching away a thin sacrificial layer underneath the specimen, which allows one 
to pick them up and place them in a test machine similar in concept to the schematic of 
Figure 5. Uniaxial strain is measured on these ductile specimens from pyramidal indentations 
placed into the polished surface of the specimen with a Vickers microhardness tester. 
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Figure 11: Nickel microspecimen produced by the LIGA method. The overall 
length is 3.1 millimeter, and the width at the center is 200 microns. 
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Electroplating is a process that can be highly variable, and Figure 12 shows the stress-strain 
curves for pure nickel deposited at different current densities. Strength increases with 
decreasing current, and one should note that this can produce an extremely strong nickel film 
- as strong as polysilicon. 
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Figure 12: Stress-strain curves for nickel electroplated at different current densities. 

7. CONCLUSIONS 

Although not evident from this brief presentation, considerable progress has been made in the 
mechanical testing of these new structural materials used in MEMS. There are other indirect 
methods of measuring mechanical properties at this size scale. Examples are in-plane and 
out-of-plane bending, resonant structures, and membrane bulge tests; these are reviewed in 
[4]. None of those methods provide all three properties (Young's modulus, Poisson's ratio, 
and fracture strength), and all rely on linear behavior of the material. The tension test is the 
accepted standard for measuring usable mechanical properties of materials because of its 
simplicity (in concept) and the uniformity of the stress and strain states. 

Now that test methods for thin and thick films are becoming mature, one can use them on 
various materials and also to explore the effect of environment on the mechanical properties. 
Steps in that direction have been taken with the new results for silicon nitride and silicon 
carbide in Figure 6 and with the temperature effects of Figure 10. Nevertheless, much more 
experimental research needs to be done to further develop test methods and to explore these 
new and interesting materials. 
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1. SUMMARY 

Solid propellants contain high modulus particles and a low modulus matrix made out 
of a mixture of rubbers. In this paper an experimental technique, holographic moire is utilized 
to obtain information about the interaction between reinforcing particles and matrix. An 
integral definition of the quantity adherence is introduced to quantify the interfacial strains. 
A number of samples are studied and an adherence curve is obtained as a statistical trend of 
the experimental data. An independent procedure to measure adherence using the stress strain 
curves of the material is also introduced. Both techniques provide results that show an 
excellent agreement. 

2. INTRODUCTION 
This paper deals with the experimental determination of the interfacial adhesion of particles 
and matrix in a particle reinforced composite. The composite in this study consists of a rubber 
matrix and reinforcing particles that are made up of either potassium perchlorate or metals. 
The size of the particles range from 5 microns for the metallic particles to about 400 microns 
for the crystalline particles. In this type of material the damage process consists of the 
separation of the particle from the matrix as the material is loaded in tension. The 
experimental approach taken in this paper is to directly measure the process of separation. 
With this aim, regions of about 1000 x 1000 microns in a tensile specimen were observed 
with a microscope. 

Figure 1 gives a schematic representation of the utilized set up. A tensile specimen is 
subjected 

connector 

Diode laser and beam divider Figure 1. Testing set up. 
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to creep loading applied in steps and the measurements are carried out at equal intervals of 
time. In this way a constant average speed of loading is obtained. The Holographic moire 
technique is used to measure the displacement fields and the strains. A four beam fiber optics 
interferometer is used to measure the displacements in two orthogonal directions. In this way 
full field information is obtained at each time interval. The Holo-Moire Strain Analyzer 
(HMSA) a fully computerized device developed at the Experimental Mechanics laboratory is 
used to carry out data gathering, processing, and data analysis. The final output of the system 
consists of maps of the principal strains and directions in the region under observation. 

3. ANALYSIS OF EXPERIMENTAL DATA 

In order to evaluate the process of separation between particle and matrix an integral 
definition was introduced. 

\eg{x,y)ds 
*=l-y__. (1) 

i 

The integral in the numerator represents the elongation of a. closed circuit taken about 10 
microns from the boundary of a particle. e6(x, y) is the component of the strain tensor along 
the tangent direction to the closed circuit. The integral in the denominator is the elongation of 
the same circuit computed using the modulus of elasticity and Poisson's ratio of the 
composite under tensile load. If we divide the numerator and denominator by the length {(.) of 
the circuit we obtain the following equation, 

(2) 
-in 

where Eavg is the average strain in the chosen circuit obtained from the actual strain 
distribution and eth is the average strain of the same circuit corresponding to the uniaxial state 
of stresses for the same load. If eavg =0, it means that the matrix sticks to the particle since the 
modulus of elasticity of the particles is three orders of magnitude larger than the matrix, the 
elongation of the contour will be negligible. In this case the adherence will be equal to one. If 
on the contrary EeXp= En, the adherence will be equal to zero. If Cexp is larger than eth the 
adherence becomes negative meaning that the contour deformation is larger than the one 
corresponding to the tensile specimen contour, indicating the complete separation of the 
particle from the matrix and the increased deformation of the region due to the presence of a 
cavity. The definition of adhesion is related to the quantity damage in the following way,' 

D = l-Ad (3) 

when Ad is equal to one the damage will be zero and when Ad = 0 the damage will have the 
maximum value equal to one. 

The previously introduced definition of adherence is based on a contour integral performed 
on the surface of the specimen based on the motion of the continuum. It can be shown 
mathematically that the experimentally determined contour integral provides a measure of the 
detachment of the particle from the matrix. As a result, the surface values can be taken as a 
representative measure of the process not only on the surface but also internally. 
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4. DAMAGE RELATIONSHIP OBTAINED FROM THE STRESS STRAIN CURVE 
OF MATRIX AND COMPOSIITE 

In the literature of composite materials it is usual to measure damage from the change of the 
elastic modulus of the stress strain curve. To apply this definition to the paniculate composite 
presents the following problem. The stress strain curve of the composite has a non linear 
behavior due to the non linearity of the matrix material. Consequently there are two effects 
that produce the non linear behavior. The first effect is the non-linearity of the matrix, and 
the second is the separation between the particles from the matrix. Consequently to measure 
damage or adherence it is necessary to separate these two effects. In order to separate these 
two effects the following definition of adherence is introduced. 

(4) 

where Ec is the measured composite tangent modulus for the corresponding stress level, Em is 
the matrix modulus for the same stress and Ecth is the value of the composite modulus 
assuming that the adherence between the particle and the matrix is perfect. 

We need to know the value of Ec(h, an important clue towards the answer of the problem of 
evaluation of damage is given by Fig.2. Figure 2 shows the ratio of the modulus of elasticity 
of the composite and the matrix for zero stress, Eoc/Eom as a function of the volumetric matrix 
content, 1 indicating pure matrix. 
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Figure 2. Eoc/Eom vs. matrix volumetric content. 

The data come from references [1], [2] and [3]. In [1] and [2] the values were evaluated form 
the stress strain curves of the composite and the matrix material, in [3] these values are 
provided in tabulated form. The trend line of the experimental points is to a high degree of 
accuracy of the form 

-L=V^+XJL (5) 
FEE 

where Vm and Vp represent the volumetric contents of the matrix and the particles 
respectively. In (5) the contribution of the second term is negligible because Ep is a very large 
value, and therefore only the first term counts. Equation (5) provides the traverse modulus of 
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a unidirectional composite and also is a limit form that the Halpin-Tsai equation takes for 
short fiber reinforced composites. If we make the hypothesis that this equation can be applied 
for the tangent modulus of the composite as the matrix deforms, we can obtain the composite 
tangent moduli for the corresponding stresses assuming that there is perfect adherence 
between the matrix and the particles. Actually the whole process can be expressed in 
dimensionless form if we divide the numerator and denominator of (5) by En, and the 
corresponding stress are expressed as the ratio of the actual stresses S divided by the 
composite rupture stress Sr. Equation (4) becomes, 

(V 
s/ 

(6) 
——l 

We have two measures of adherence obtained from two separate procedures, the analysis of 
the experimental data will provide a way to compare the results coming from these two 
different definitions. 

5. EXPERIMENTAL RESULTS 

Measurements were performed on five separate specimens. In each specimen several particles 
were analyzed. The measurements performed need to be interpreted in the statistical sense. 
The adherence changes with the shape, dimensions and orientation of the particles in the 
strain field. Most of the particles that we have analyzed have irregular contour and therefore a 
large number of orientations are represented in the obtained integrals. Since we can measure 
only a limited number of samples of a very large population, the question to be answered is 
whether the obtained sample represents a meaningful trend for the whole population. This is 
not an uncommon situation with these kinds of problems but fortunately we have found and 
independent way to evaluate adherence that reflects the overall behavior of the composite. 
Values of adherence measured in specimens two and three have been used to obtain the trend 
line shown in Fig.3, together with the 95 % level of confidence interval that indicates that 
values within this envelope belong to the population that has the trend line indicated in Figure 
3. The obtained adhesion curve goes practically to one for zero stress and to zero for a stress 
very close to the actual fracture stress of the composite. The trend line can be represented by 
the cubic equation shown in Fig. 3. 

[(Ad) ttr**t-itrain]y = -3.991 Sx3 + 6.6467X2 ■ 2.6455* + 1.005 
R* = 0.9972 

HAd) •xpeflnwnlally = -2.9267X1 + 4.1124x* - 2.1713X * 0.9853 
H' = 05989 

3 0.6 

S/Sr (dimensionless stress) 

Figure 3. Adhesion curves with 95% confidence. 
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To implement equation (6) for our composite material, the tangent modulus of the matrix 
material and the composite were determined and plotted in dimensionless form in Fig. 4. 

-•-Ec/Eoc vs dimensioless stress 

-•■■EnVEom vs dimensionless stress 

0.4 0.6 0.8 

stress S/Sr (dimensionless stress) 

Figure 4. Modular ratios vs. dimensionless stress. 

The agreement between the two trend lines is excellent particularly if we consider that the 
experimental values have been obtained up to S/Sr = 0.67. The agreement between the 
experimentally measured values of adhesion with the values of adhesion obtained from the 
stress-strain curves indicates the soundness of the model that has been used to predict 
adhesion from the stress-strain curves. 

6. CONCLUSIONS AND OBSERVATIONS 

The introduction of the definition of adhesion as a experimentally measurable quantity 
through a contour integral provides a unique tool to understand the behavior of the interface 
between particle and matrix. It can be shown theoretically that the surface measurements 
provide information of the events that take place in 3-D and not only on the surface. The 
sampling of the population of interfaces through this tool has proved to be very fruitful 
because it has been feasible to ascertain from a reduced number of measurements population 
means. These experimentally determined values lend credibility to the model of damage that 
has been introduced in this paper. It has been evident to us for a long time that the changes of 
moduli of the composite with increasing load were not only caused by gradual damage of the 
interfaces as many authors have modeled it but also were greatly influenced by the matrix 
behavior. A link was missing between these two facts and this link was provided by the 
experimentally obtained data that relate volumetric content of matrix of the composite and 
the tangent modulus at zero stress. This relationship became clear when a dimensionless plot 
was introduced, thus removing the dispersion of the same data when the absolute modulus 
was plotted vs. the volumetric content of the matrix. It is very interesting to observe that the 
modulus prediction follows the well-known relationship used in composites to obtain 
transverse moduli of uniaxially fiber reinforced composites and short fiber composites. 

The difference between the predicted modulus, of the composite and the actual modulus can 
be attributed to the process of damage and leads to the adhesion definition given in (4). The 
fact that this definition of damage agrees with the definition of adhesion given in (1) indicates 
two important things. First the integral definition of adhesion is successful in measuring the 
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degree of efficiency of the particle-matrix interface. Second a reduced number of samples 
provides enough information to ascertain the trend of the population. 

The adhesion between particle and matrix is affected by particle size, orientation in the field 
of stresses, geometry of the particle and therefore the observed quantity is statistical in nature. 
The measurement has to be performed by selecting at random a large enough number of 
samples so that a good estimate of the population mean can be obtained. It became clear to 
us, that the faces most unfavorably oriented with respect to the applied tension can separate 
while the other faces subjected to compressive forces can remain adherent to the particle up 
to very high stresses. We can conclude that to understand the evolution of the defined 
quantity adhesion we have two processes to analyze, separation of the matrix in the direction 
of tensile stress components perpendicular to the interface, and gradual sliding where 
compressive stress act perpendicular to the interface. The other component of adhesion, the 
relative sliding of the matrix and particles, seems to be a reversible process since cyclic 
loading after a while settles to a stable condition. The initial drop of the adhesion curve vs. 
stress is very likely due to mostly matrix separation. Though the techniques introduced in this 
paper it is possible to quantify these effects by analyzing the cyclic stress-strain curves. 
Summarizing the damage has a s-shape configuration. The initial part of the s represents the 
separation along faces that are oriented in the direction perpendicular to the applied tension. 
The plateau region correspond to the sliding along the faces whose orientation does not 
facilitate the direct separation. The final part of the s corresponds to the accelerated 
separation of the particles from the matrix when the sliding process has been exhausted. 
Numerical analysis using finite element confirm these conclusions. This analysis reproduces 
the stress-strain curve of the composite under increasing load. In the numerical model only 
the large particles are included. The small particles do not play a role as it could be 
anticipated by applying gradient theories. 
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1. SUMMARY 

Indentation failure is a common problem in sandwich construction arising from localized 
loads, such as point loads, line loads or distributed loads over a small area. Indentation 
results in high local deflections of the loaded face into the core material of the sandwich 
panel causing high local stress concentrations. In the present work an analytical and 
experimental investigation of the indentation failure of a composite sandwich panel was 
conducted. The panel was made of a carbon/epoxy facing and a PVC foam layer. It was 
supported on a rigid base and indented at the center with a cylindrical indentor. The load- 
deflection behavior of the loaded facing was monitored during the test. Strains were also 
measured near the load on both surfaces of the facing using embedded strain gages. A full- 
field stress analysis of the in-plane displacements and stresses in the foam was conducted 
using moire and birefringent coating methods. The problem was modeled as an elastic beam 
resting on a Winkler type elastic-plastic foundation. Initiation of indentation failure occurs 
when the foundation yields, while final failure takes place when the facing fractures. The 
experimental measurements of the critical loads for initiation and catastrophic failure of the 
sandwich panel were in good agreement with the analytical predictions. 

2. INTRODUCTION 

Sandwich structures are sensitive to failure under localized load due to the high stress 
concentrations induced by the indentation of the loaded facing into the core material. The 
indentation response of sandwich panels was first modeled by Meyer-Piening [1] assuming 
linear elastic bending of the loaded facing resting on a Winkler foundation (the core). Soden 
[2] modeled the core as an idealized rigid-perfectly plastic foundation and resulted in a 
simple expression for the indentation failure load corresponding to compression facing 
fracture. Shuaeib and Soden [3] used Zingone's equations [4] for predicting indentation 
failure loads for sandwich beams with glass-fiber-reinforced plastic facings and thermoplastic 
foam cores. The problem was modeled as an elastic beam, representing the facing, resting on 
an elastic-plastic foundation, representing the core. Thomsen and Frostig [5] conducted 
photoelastic experiments on sandwich panels with soft core and used a high-order sandwich 
panel theory to predict the experimental results. Thomsen [6] proposed a two-parameter 
elastic foundation formulation which takes into account the existence of shear interactions 
between the loaded facing and the core. Other works on the indentation problem are listed in 
references 7 and 8. For a brief review of the mechanical behavior and failure mechanisms of 
sandwich structures refer to references 9 and 10. 
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3.   THEORY 

The local deflection of the loaded facing of a sandwich panel into the core is modeled by 
treating the loaded facing as a beam resting on a foundation (Fig. 1) For linear elastic 
behavior, the core is modeled as continuous distributed linear tension/compression 

(a) 
P |P 

(o) 

Jk, 

Fig. 1   Elastic beam on elastic foundation. 

springs.   The stress c at the interface between core and facing is proportional to the local 
deflection w 

a=kw (1) 
where the foundation modulus k is given by [11] 

k = 0.64^ ?P^ (2) 
hf ^bEf 

Ef, Ec =  facing and core moduli, respectively 
b, hf    =  facing width and thickness, respectively 

(a) 

(b) 

P5i 
w(x) = —e     (cosXx + sin Xx) 

d^w    pl-xx = —e     (cosÄ.x-sinÄ,x) 

Fig. 2   Deflection (a) and moment (b) distribution in a beam resting on an elastic foundation 
and subjected to a concentrated load at its center. 

For a long facing the deflection w = w(x) is determined by [11] 

w(x) = —e     (cosXx +sinÄ,x) 

where P is the applied concentrated load, and 

(3) 
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,     1.18 
bhf 

The bending moment M of the facing is 

M: -El 
d2w 

dx' 

PX 

2k 
e   x (cos^x-sinXx) 

(4) 

(5) 

Figure 2 shows a schematic representation of the deflection w and moment distribution along 
the axis of the facing. 

Initiation of failure by indentation occurs when the core under the load yields.  The critical 
load for core yielding is calculated from Eqs. (1) to (4) as 

/E7 Pcv = 1.70 GVS bhf 3—£- 
V Ec 

where ays is the yield stress of the core. 

(6) 

As the load increases beyond the core yield value, plastic deformation propagates through the 
core from the center to the ends of the facing (Fig. 3). Part of the core under the load deforms 
plastically, while the remaining part remains in the elastic region. For elastic-perfectly 
plastic behavior, the foundation in the first part can be modeled as rigid-plastic, while in the 
second part as elastic. Thus, along the plastic part the facing is subjected to a constant load q 
of magnitude 

q = b cys (7) 
while along the elastic part the facing is subjected to a stress proportional to the deflection, 
Eq. (1). 

P/2 

t 
A Mc 

mtmmm; I     in 
9=V 

B 

If 
s =(I72)-s 

(a) (b) 

Fig. 3   Beam on elastic-plastic foundation 
(a) rigid-plastic foundation, (b) linear elastic foundation. 

The plastically deformed length s of the core is given in terms of the applied load P by [4] 
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'   3X   ^ 

^20ySb; • , (8) 

_        2z3 (sinh2 z' + sin2 z') + 3(sinhz'coshz'-sinz'cosz')(2z2 -l)-6z 

z2 (sinh2 z' + sin2 z')+ 2z(sinhz'coshz'-sin z'cosz')-(cosh2 z' + cos2 z') 

where z=Xs, z'=Xs', s' = L/2-s and L is the length of the facing. 
Equation (8) defines the relationship s = s(P). 

The critical load P for compressive failure of the facing is given by [3] 

X 
, .        —+z2+2zA + B 

where 

oysb 

o„ b 
P= -^  (9) 

z + A 

bh? n» U11f Mf =G{ _t 

_ sinhXs'coshes'- sinXs'cosXs' 

~ sinh2 Xs' + sin2 Xs' (10) 

sinh  Xs'— sin  Xs' 
=  T 0  

sinh  Xs' + sin  Xs' 

and (jf is the compressive strength of the facing. By solving Eqs. (8) and (9) the critical load 
P and the corresponding plastic zone length s for compressive failure of the facing are 
obtained. 

When a rigid-perfectly plastic foundation is assumed a simplified expression for the critical 
load for compression facing failure is obtained as [2] 

P = ^bhfA/aysaf (11) 

4.   EXPERIMENTAL 

4.1 Materials and Specimens 

The sandwich panels were fabricated from 8-ply unidirectional carbon/epoxy (AS4/3501-6) 
facings and a PVC closed-cell foam (Divinycell H100) core. The constituent materials were 
fully characterized. The facing material after an initial linear part exhibits a characteristic 
stiffening nonlinearity in tension and a softening nonlinearity in compression. Divinycell 
HI00 has a density of 100 kg/m3 and exhibits almost isotropic behavior. For full details of 
the mechanical properties of both materials refer to reference 9. 

The carbon/epoxy facings were bonded to the Divinycell core with an epoxy adhesive (Hysol 
EA 9430). The assembly was cured at room temperature. The facing had a thickness of 1 
mm. The specimens had a length of 305 mm and a height of 152 mm. 

4.2 Experimental Procedure 

The panels were supported on a rigid base and loaded by a cylindrical roller in an Instron 
servo-hydraulic testing machine. They were instrumented with four strain gages, two bonded 
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on the upper surface of the facing at distances of 7.1 mm and 14.5 mm from the load, and two 
embedded on the lower surface of the facing under the load and at distance of 14.5 mm from 
the loading axis. The strains were measured for progressively increasing the load on the 
roller. 

5. RESULTS AND DISCUSSION 

Figure 4 shows the load-strain curves as they were obtained by the four strain gages placed at 
the inner and outer surfaces of the facing of the sandwich panel. The four curves correspond 
to the location of the gages indicated in the figure. All four curves show an initial linear part 
up to a load of Pc = 890N followed by nonlinear response. This load corresponds to 
initiation of yield in the core and is in good agreement with the 

^%y.<Xi€Wiit<XiX"""l<- 
r,? *.,• * x*v,*t. .i'* K" *,,»»K*x ,* »t*»x* 

^•■•-»•«"•••"•■■•■»fr 
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Fig. 4 Load-strain curves for a sandwich panel loaded by a cylindrical roller. 

value of Pc = 917 N obtained from Eq. (6). Note that the strain at location 2 for linear elastic 
behavior is almost zero. This result is corroborated by the zero value of the deflection 
obtained from Eq. (4) for x = 7.1 mm (Fig. 2). Furthermore, curves 3 and 4 indicating strains 
on the upper and lower surfaces of the facing at a distance x = 14.5 mm from the loading axis 
are almost the same in magnitude but of opposite sign in the linear elastic region. The strain 
values are close to the predictions obtained from the value of bending moment given by Eq. 
(5). Fracture at the top surface of the facing occurred at a load of Pc = 1,950 N. The value of 
the critical load can be predicted from Eqs. (8) and (9). Figure 5 shows a plot of the load 
versus half length of the plastic zone according to these equations. The intersection of the 
two curves defines the critical load and the corresponding half length of the plastic zone. It 
was found that Pc = 1,986 N and sc = 30 mm . The value of the predicted critical load is in 
good agreement with the measured value (deviation of 2%). The value of the critical load 
obtained from the simplified Eq. (11) based on a rigid-perfectly plastic foundation is 
PC = 1590N. This value deviates from the experimental value by 20 percent. Thus, the 
assumption of a rigid-perfectly plastic foundation represents a crude approximation of the 
nonlinear behavior of the core foundation. 
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Fig. 5 Determination of critical load for fracture of the 
compressive facing according to Eqs. (8) and (9). 
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1.  SUMMARY 

We address the problem of nondestructive analysis and testing of concrete. The proposed 
system employs acoustic emission and pattern recognition methods of the corresponding 
waveforms to identify the water to cement and sand to cement ratios of a given concrete 
cube. For waveforms obtained experimentally using standard size concrete cubes, we study 
several classification methods and provide comparative results. 

2.   INTRODUCTION 

The nondestructive testing of concrete constitutes a problem which undoubtedly is of 
significant importance. Our objective is to extract chemical composition characteristics of 
concrete, such as the ratio of water to cement (W/C) and sand to cement (S/C), and finally 
determine the stiffness and the microstructure of a concrete sample. Some techniques of 
nondestructive testing of concrete presented in the literature are based on nuclear methods 
and the dielectric properties of concrete [1]. The relation of the chemical composition (W/C) 
of the concrete using ultrasound has been also addressed [1]. 

The method presented in this paper is a data driven approach since we use experimentally 
collected data (cases of concrete cubes with known geometrical and composition 
characteristics) in order to construct a pattern recognition system capable of predicting the 
composition of unknown concrete cubes. The system is able to determine the W/C and S/C 
ratio of unknown concrete cubes, classifying them into a predefined set of classes. The 
construction of the system is based on a database of waveforms [3] which is obtained from 
experiments carried out using acoustic emission. Several classification methods are employed 
to tackle the problem. More specifically, we considered two neural network techniques, based 
on the multilayer perceptron and the radial basis function network [4]. We applied also a 
classical non-parametric method, the k nearest neighbor as well as a statistical pattern 
recognition method, based on probability density estimation and the Bayes decision rule [4, 
5]. In addition, we provide with comparative results, identify the most promising methods 
and present classification results which are very encouraging. 
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3.   ACOUSTIC EMISSION IN CONCRETE CUBES 

Acoustic emission can be used for nondestructive analysis and testing of objects and aims at 
detecting cracks or other defects of the object. In addition, it provides information concerning 
the response and behavior of a object under pressure, which is associated with the object 
strength and chemical composition. 

In this work, we use a set of waveform features produced by experiments using the acoustic 
emission method [2] in concrete cubes. The complete setup of these experiments is described 
in [3]. A typical waveform and its corresponding features are shown in Fig. 1. 

Counts 

Figure 1: A typical waveform produced by acoustic emission and the corresponding features. 

The terms used in Fig. 1 are explained below: 
• Threshold: A specific signal amplitude used to separate the signal from noise. It is chosen 

such that to be slightly larger than the noise maximum amplitude. 
• Amplitude: The maximum signal amplitude. This feature provides information about the 

intensity and the source distance. 
• Energy: The area between the waveform and the time axis. It provides information about 

the intensity as well as the signal amplitude, the duration of signal and the signal its 
frequencies. 

• Counts: The number of times the signal amplitude overruns the threshold. It depends on 
the signal intensity and frequencies. 

• Duration: The time passed between the first the last overrun of the threshold. It provides 
information about the signal appropriateness in relation with the counts and the contained 
frequencies. 

• Rise time: The time passed between the first threshold overrun and the occurrence of the 
maximum amplitude. It gives information about the intensity and the distance of the 
source. In addition, it can be used for noise detection. 

• Counts to peak: The number of signal hits that overrun the threshold during rise time. It 
contains information, similar to the counts, for the signal part before the peak. 
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Note that the last six of the above terms correspond to features of the waveform and can be 
used by a pattern recognition method. 

4.   THE CLASSIFICATION PROBLEM 

Our goal is to construct a classification system which will take as input concrete cube data 
(waveform features) of known age and provide with the ratio W/C and S/C, classifying the 
concrete cube into a predefined set of classes. The construction of the system is carried out 
using data driven methods (methods that use known data in order to train a system which can 
subsequently be used in unknown cases). The available waveforms have been obtained 
experimentally for cubes of four compositions concerning the ratio W/C and two concerning 
the ratio S/C, respectively (Table 1). In addition, the experiments have been performed on 
every concrete cube in four different ages: 1*, 7th, 28lh and 90th day from production. 

Table 1: The different W/C and S/C compositions of the concrete cubes and their names. 

\w/c 
s/c\ 

0.50 0.55 0.60 0.65 

3/1 A B C D 
4/1 E F G H 

Our classification approach is based on the fact that the total task can be partitioned into two 
subtasks: i) the estimation of the ratio W/C and ii) the estimation of the ratio S/C. 
Consequently, we could resolve the two problems independently. In such a case we can 
consider that the classification system consists of two classifiers which operate independently 
on the same input data in order to estimate W/C and S/C ratio. The estimation of the W/C 
ratio is a four-class problem and according to Table 1, data of compositions {A, E} 
correspond to the first class, {B, F} to the second class, {C, G) to the third class and {A, E} 
to the fourth class. Similarly, the estimation of the S/C ratio is a two-class problem and data 
of compositions {A, B, C, D} are from the first class, while data of compositions {E, F, G, 
H} are from the second class. 

Now, each data point used for the construction of the classifier is essentially a feature vector 
with a label indicating its class. Such a feature vector can be constructed using all the 
waveform features described in Section 3. However, after a feature evaluation analysis 
applied to the total set of features, we found that the most suitable features for classification 
are: Energy, Counts and Duration. 

5.   CLASSIFICATION METHODS 

We studied four classification methods. Two are based on neural networks methods, 
specifically on multilayer perceptron (MLP) and the radial basis function network (RBF). 
The third is the k-NN classifier and the fourth is a statistical pattern recognition technique 
which is based on probability density estimation and the Bayes decision rule. Next, we 
describe briefly the basic concepts of the methods and the way they have been used in our 
case. 
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The Multilayer perceprtron (MLP) 
The multilayer perceptron or backpropagation network [4] constitutes the most widely used 
neural network architecture for classification problems. Given a Ä"-class problem with d- 
dimensional input data the MLP architecture includes d inputs nodes, K outputs nodes and 
usually one or two hidden layers of non linear (sigmoidal) activation functions. For the 
solution of classification problems each class i is required to be encoded with a K- 
dimensional indicator vector which takes zero values everywhere except for the i"1 

component which is one. The MLP network is trained to map each input data vector into its 
indicator vector. The training process is based on the minimization of the mean square error 
function estimated for the set of training data. To classify an unknown input data point, 
network outputs are computed and the class corresponding to the largest output value is 
selected. 

The most common method to train an MLP network is the backpropagation algorithm which 
is based on the gradient descent method. However, in our case where the amount of data is 
small and the number of network weights is not large, it is preferable to use more 
sophisticated optimization techniques such as the Newton methods. In our experiments we 
have used a Quasi-Newton method called BFGS which gave superior results compared to 
gradient descent and other methods. In addition, it is well-known that models which provide 
sufficient representation of data and simultaneously there are not too complex (have few 
free parameters) give good generalization. Thus, in the training process we incorporated the 
concept of regularization (technique for setting constraints to the weights). 

Radial basis function network (RBF) 
Another major class of neural network methods is the radial basis function network [4]. The 
RBFs are feedforward networks with one hidden layer of units. The basic characteristic of the 
RBF is that a hidden activation function is determined by the distance between the input 
vector and a prototype vector. These activation functions are called radial basis functions and 
give local representation of data. The most widely used basis function is the Gaussian 
function. As for the output units of RBFs these are typically linear. 

The typical way for adjusting the weights of a RBF network for a classification problem is 
based on a two-stage procedure. At the first stage unsupervised techniques, such as t he k- 
means algorithm, are used to determine the weights associated with the basis function 
parameters (means and variances if Gaussian functions are used). This is achieved by 
considering all the training input data ignoring their class labels. At the second stage the 
radial basis function parameters are kept fixed and the second layer weights are adjusted 
using supervised learning. Typically, at this stage training is performed based on the 
minimization of the mean square error function with respect to the second layer weights. 

In our experiments we used Gaussian functions at the hidden layer of the RBF and the first 
stage of training was based on probability density estimation (unsupervised technique) using 
Gaussian mixture models [4, 5]. The second training stage can be performed analytically 
(since the outputs values are linear functions of the second layer weights) by solving a linear 
system giving rise to mean square error solution. 

The k nearest neighbor classifier (&-NN) 
The k nearest neighbor classifier is a classical classification method [5]. The idea behind its 
use is simple: data points which are "close" under a distance measure may belong to the same 
class. More specifically, in order for an unknown data point to be classified, its k nearest 
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neighbors are found from the training set (using a distance measure) and then the class with 
the majority over the k neighbors is chosen. In our case we used the Euclidean distance and 
the parameter k takes low values (3 or 5) since a few training examples are available. 

Mixture models and the Bayes decision rule (GMM) 
According to the statistical approach to classification [4, 5] the goal is to find the posterior 
probability that an unknown data point belongs to a specific class. If we denote each class as 
Ck (k = 1 K), the posterior probability of class membership is obtained from Bayes rule 

jj.p{ci)p{x\ciy 

where P{Ck) express the prior probability that class Ck is the true class of the data point x 

and p(x\Ck) is the corresponding class conditional density function. If the prior 
probabilities and the class conditional densities were known, the following Bayes decision 
rule provides optimal results since it minimizes the misclassification error 

Choose Ck:     P(Ck I x) > P(Ci I x)      for each i*k. 

In order to use the above rule for the classification of unknown data points, first the prior 
probabilities and the class conditional densities have to be determined. The prior probabilities 
usually take equal values (P(Ck)=VK) or are easily estimated from the data 

asP(Ck) = Nk/N where Nk is the number of data belonging to class Ck and N is the total 
number of training data. On the other hand, the estimation of the class conditional densities 
using the training examples is non-trivial and techniques of probability density estimation 
must be applied. 

In our study we model the class densities by Gaussian mixture models, which are trained 
using the maximum likelihood method and the EM (Expectation-Maximization) algorithm 
[4]. 

6.   EXPERIMENTAL RESULTS AND CONCLUSIONS 

We applied the classification methods described above separately to the data of each of the 
four ages. Typically we used a training set (common for all methods) to obtain the classifiers 
and then a test set to measure the generalization capability, that is the classification 
performance for unknown data points. The results are illustrated in Fig. 2 for all ages, 
methods and the two classification subtasks. 
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Figure 2: Representation of the generalization success rates of the methods studied for all ages: (a) 
results for the W/C classification problem and (b) results for the S/C classification problem. 

From Fig. 2 it is obvious that some classification methods achieve high discrimination for 
both classification problems. The classification methods with the superior performance is the 
MLP and the GMM with &-NN follows, while the RBF had the worst performance. 
Remarkably, the MLP in the worst case concerning the different ages achieved success rate 
of 0.94 for both W/C and S/C problem. 
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1. SUMMARY 

This experimental work is the continuity, the evolution development and the integration of an 
experimental work that was started 28 years ago by the first of the two authors, in cooperation 
with P.S. Theocaris, to whose memory this work is dedicated. In this paper the variation of 
the properties of a specific type of concrete 28-year old, whose characteristics were known on 
7, 28, 36 and 90 days is controlled, [1, 2]. Beyond the destructive tests (compression, splitting 
tension and bending), this concrete was studied with the non-destructive testing method of 
ultrasounds. Moreover, the relation between the compressive strength of this concrete and the 
ultrasonic longitudinal waves of velocity was determined as well as the dynamic modulus of 
elasticity. 

2. INTRODUCTION 

It is well known that concrete is a composite material, which is composed of aggregates, 
cement and water. With the appropriate proportion and elaboration of these materials, the 
concrete achieves the desired mechanical properties. The quality characterization of concrete 
and concrete constructions, usually are accomplished by the known compressive destructive 
tests using cylindrical or cubic specimens [1-3]. 

The nondestructive testing (NDT) of concrete is of great scientific and practical importance. 
The subject has received growing attention during recent years, especially for the need of 
quality characterization of damaged constructions made of concrete, using the NDT methods. 

The NDT methods used usually for the evaluation of concrete are the following: ultrasounds, 
industrial radiography, acoustic emission, the rebound (Schmidt) hammer test, the penetration 
resistance test and the pull-off test. Among them the most promising seems to be the NDT 
method of ultrasound, because through this method many parameters and mechanical 
properties of concrete, such as its dimensions, the modulus of elasticity E, the shear modulus 
G, the Poisson ratio V and its fracture strength Of, can be determined. 
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The importance is that, for the application of the NDT method of ultrasound, it is not 
necessary to carry out destructive tests on real specimens received from concrete 
constructions, but only to evaluate in-situ the ultrasonic constants of this material. 

Therefore, the application of the NDT methods for the quality control of concrete 
constructions achieve a special interest as they constitute the unique prospect for the direct, 
reliable, quick, safe, inexpensive and harmless method, for the quality control of buildings 
and other concrete constructions damaged by earthquakes, fatigue, conflagration or some 
other reason. 

3. THE NDT METHOD OF ULTRASOUNDS FOR CONCRETE TESTING 

For the ultrasonic NDT of materials, elastic waves are used, whose velocities (longitudinal c, 

and transverse c,) are related to the elastic modulus of elasticity E, shear modulus G, 

Poisson ratio V and the density p of the material, by the following relations [4-7]: 

E=(l+v)(l-2v)    , 
(1-v) 

G = pcf 
(c,/c,)'!-2 

'2[(c(/c,)2-l] 
(1) 

From all NDT methods, the method of ultrasounds is the most important for concrete 
examination. By using this method one can determined not only the defects, cracks and other 
discontinuities of concrete but also many of its mechanical properties from the elastic waves 
velocities, such the moduli of elasticity of concrete E,G,v, and its fracture stress of [8-12]. 

Facaoaru [8] in 1961 estimated the relation between the compressive fracture strength of 
concrete and its ultrasonic longitudinal wave velocity c(, introducing a mathematical relation 
of 2nd order. Experimental work executed by other researchers has also led to similar, linear 
and 2nd order relations [8-10], Figure 1. 
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Figure 1: Compressive fracture strength versus the velocity of ultrasonic longitudinal waves. 

It is not simple to introduce a basic relation connecting the quantities of,ct, as these 

properties are strongly affected by the porosity, the type of aggregates, the type of cement, the 
aggregate/cement and water/cement ratio, the conditions of concrete melding and curing, the 
age, etc. [8-12]. 
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4. SPECIMENS, EXPERIMENTAL PROCEDURE AND RESULTS 

All specimens used in the present experimental work were prepared in 1972 (28 years old) 
and had been preserved until today in a humid chamber with relative humidity of 80% and 
temperature of 20°C. The purpose for constructing these specimens then, was the study of the 
concrete behavior in multiaxial loading and specially the case of loading with axial extension 
and lateral compression, on standard cylindrical specimens. 

The specimens used, in the present work, are cylinders (15x30 cm2), cubes ( 20x20x20 cm3) 
and beams (10x10x50 cm3 ).The composition, the conditions of their construction and curing 
and their mechanical properties at the ages of 7, 14, 28, 36 and 90 days, are included in the 
papers [1, 2]. Then, at the age of 28 days, this concrete had static modulus of elasticity 
Ea =40GPa, Poisson's ratio V =0,26 and fracture strength as in Table 1, [1, 2]. 

Before the execution of any destructive test (compression of cylindrical and cubic specimens 
and bending of beam specimens), the specimens were tested, using the NDT method of 
ultrasounds, for the determination of the elastic wave's velocity, parallel and perpendicular to 
the rodding direction, Table 2. Then, from the compression tests of the cylindrical specimens 
except the fracture stress, the initial tangent modulus of elasticity Ea and the Poisson's ratio V, 
were determined and were found equal to Ea =39,84G/'a (static) and v =0,25, using 
mechanical and electrical strain gauges. Moreover, the fracture strength was also determined 
from splitting tension test. From the compression test of the cubic specimens and the bending 
(three point loading) of beam specimens, it was also possible to determine their fracture 
strength Of. All these results are included in Table 1, together with those taken from the papers 
[1, 2]. Figure 2 shows the variation of fracture compression strength versus the age, from 7 
days to 28-year old concrete. 

Table 1: Concrete specimen's strength in compression, splitting tension and bending tests. 

CONCRI-TF. AGP 

tdays) 

(TMNIIKRS BEAMS CUBS 

( (impression     1         Splitting Test 

{M.V. itt fcp/ctn2)  1      (M.V. in kp/cm2) 

Bending 

iM.V. in kp/cm:) 

Compression 

(M.V. inkp/orr) 

7 192,5 21,5 3 291,2 

28 271,2 27,0 55,1 395,0 

90 330 25,8 64,3 452,0 

10227 377,3 22,2 72,9 506,1 

The velocities of longitudinal ultrasonic waves for frequency of 0,5MHz were evaluated, 
using the Krautkramer equipment USL-33 of our NDT laboratory, Table 2. 

Finally, the dynamic modulus of elasticity was determined, using the first of the equations (1), 
equal to E' =42,99GPa, using the Poisson ratio V =0,25, which was computed from the 
compressive test, of the cylindrical specimens. The density of this concrete was found equal 
to p = 2,45 gr/cm3. The dynamic modulus of elasticity is always greater than the 
corresponding static modulus of elasticity and so the ratio of the dynamic to the static 
modulus of elasticity is always greater than unity. 
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Table 2: Mean values of longitudinal ultrasonic wave's velocities for concrete 
cylindrical and cubic specimens 

Specimen 

Perpendicular 

to the rodding 

direction 

C| (m/sec) 

Parallel to the 

rodding direction 

ct (m/sec) 

Total mean 

value 

C| (m/sec) 

Cylinders 4590 4470 4530 

Cubs 4810 4700 4760 

M.V. 4700 4585 4645 

* JS** 

» J*** 

Cylinders    ■ 
Cubes        • 

2a 
years 
t 

0 1000    2000    3000     4000    MOO     COCO     7000    8000    9000   10000    110O0 

Age o! concrete ►   [days] 

Figure 2: Variation of concrete fracture strength versus age, for different tests (for 28 years). 

5. RELATION BETWEEN COMPRESSIVE STRENGTH AND ULTRASONIC 
PULSE VELOCITY FOR CYLINDRICAL CONCRETE SPECIMENS 

A simulation model is developed to determine the relation between compressive strength and 
the mean value of ultrasonic pulse velocity parallel to the direction of rodding for each 
cylindrical specimen, as shown in Table 3. The method used for the estimation of the model 
parameters is the least squares (Regression Analysis). All calculations and controls were 
carried out by the software program SPSS Release 8.0, [13]. 

After the Regression Analysis, a model, out of the total developed models, was selected for 
the determination of the compression strength for cylindrical specimens using the ultrasonic 
pulse velocity. This model is shown in expression (2) and the variation the of the concrete's 
fracture stress, i.e. the compressive strength, versus the ultrasonic longitudinal waves velocity 
is shown in Figure 3. 

(9.810-1*™) 
Of=e \XE R =0,97 (2) 
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Table 3: Compressive strengths and ultrasonic velocities of longitudinal waves 
for concrete cylindrical specimens. 

u/u 
Compressive 

Strength 
«r (kp/cm2) 

Parallel to the rodding 
direction 

C| (km/svc) 
1 362,41 4,557 
2 448,96 4,716 
3 429,98 4,771 
4 315,5 4,361 
5 286,47 4,269 
6 329,46 4,408 

E 
U 

500 

400 

300 

200 

AS. 4.7 43 AA AS 4.6 

C|-*JKm /sec] 

Figure 3: Variation of concrete compressive fracture stress Of, versus 
the ultrasonic longitudinal wave's velocity c\. 

6. CONCLUSIONS 

From the experimental study conducted on 28-year old concrete, using destructive and the 
ultrasonic NDT method on concrete specimens, the following conclusions arose: 
(a) The compressive fracture strength of concrete increases continuously by 39% for the 
cylindrical and by 28% for the cubic specimens, from the age of 28 days to the age of 28 
years. 
(b) Also, the fracture strength of beams, from three-point loading tests, increases by 32% , 
while from the splitting tests of the cylindrical specimens the fracture strength degreases by 
22%, for the same time period. 
(c) No significant changes were appeared on the static modulus of elasticity (E0 = 40,00GPa 
for 28 days and Ea = 39,84GPa for 28 years). 
(d) A small decrease was observed on Poisson's ratio v, which changed from v = 0.26 at the 
age of 28 days to v = 0.25 at the age of 28 years. 
(e) On the other hand, using the NDT method of ultrasounds the modulus of elasticity for 28- 
year old concrete, was found equal to E'= 43GPa, slightly greater (7.9%) from the 
corresponding, as determined by the destructive tests. 
(f) The correlation of compressive fracture stress Of of the concrete with the ultrasonic 
longitudinal wave's velocity ci, led to the construction of a useful nommogram, which must be 
constructed for any type of concrete at the time of its rodding. Then, at any time, by 
determining the velocity of ultrasonic wave's one can evaluate the fracture strength of this 
concrete. 
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(g) Finally, another important observation related to the mode of fracture of cylindrical and 
cubic concrete specimens in compression, is carried out by the way of fracture of these 
specimens. Figure 4 shows typical photographs of concrete cylindrical and cubic concrete 
specimen fractures, from compressive loading, in which it is clearly seen that the fracture 
surfaces are almost parallel to the direction of the external compression loading. 
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(a) (b) 
Figure 4: Typical photographs of fracture of concrete cylindrical (a) and cubic (b) 

concrete specimens from compressive loading 
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1. SUMMARY 

The stress state in the immediate vicinity of the crack tip as well as the failure mode were 
investigated by experimentally quantifying some crack tip parameters, for cracked specimens 
made from particulate Metal Matrix Composite materials. The experiments were carried out 
using single edge notched specimens with the aid of scanning electron microscopy, permitting 
determination, on a micro-scale level, of the intensively damaged area around the crack tip. It 
was concluded that the void coalescence mechanism is active although void nucleation due to 
the presence of particles appears to be unavoidable. Finally the conditions necessary for the 
HRR analysis to be valid are not violated for a wide range of the crack length to specimen 
width values. 

2. INTRODUCTION 

The principal concept of the technology of composite materials is to combine certain assets of 
their components in order to give to the newly synthesized material unique and useful pro- 
perties. Reinforcement is of either one- (fibrous) or two- (laminar) or even three- dimensional 
shape (particulates). The last class includes composites with more than 20% of the hard rein- 
forcing dispersed phase. The particulate composites are non-homogeneous materials and their 
properties appear to be very sensitive to the constituent properties as well as to the geometric 
shapes of the array. The strength of particulate composites depends on the diameter of the 
particles, the interparticle spacing as well as on the volume fraction of the reinforcement. 

Among particulate composite materials Metal Matrix Composites (MMCs) are advantageous 
as structural materials since they combine metallic with ceramic properties, such as high 
strength, high modulus of elasticity, high toughness, relatively low sensitivity to thermal 
shocks and temperature changes, high surface durability, low sensitivity to surface flaws, high 
thermal and electrical conductivity. Additionally, the ductile metal matrices, such as 
aluminum (used in the present work), titanium or nickel-chromium alloys, undergo energy 
absorbing plastic deformation under impact, which is very important in many dynamic 
structural applications. 



340 

On the other hand, the ductile matrix permits the blunting of cracks and relieves stress con- 
centrations by plastic deformation. It is thus expected that the composite materials should be 
characterized by improved fracture toughness. However, it has been pointed out [1] that the 
presence of cracks strongly deteriorates the fracture strength of MMCs, in comparison to the 
uncracked materials, rendering the use of the matrix material more advantageous in case of 
presence of macrocracks. The present study consists a step towards further understanding of 
the processes responsible for this deterioration. This is achieved by examining, in a 
microscopic level, the failure mechanisms, in case of cracked specimens made from 
particulate MMCs and compare them with the ones activated in case of uncracked materials. 
Finally, the validity of the familiar HRR model for the description of the stress state around 
the crack tip is checked. 

3. THE ELASTIC PLASTIC FRACTURE MECHANICS MODEL 

The quantification of crack tip parameters is an important task in Elastic Plastic Fracture 
Mechanics (EPFM), since the loss of constraint, occurring with large scale yielding, is 
directly related to the deviation of the relationship between the J-Integral and the Crack Tip 
Opening Displacement (CTOD or 5t) from the one proposed by Shih [2], even for a stationary 
crack: 

J=-p (1) 

The above relationship was obtained by Shih [2] using the HRR solution for the stress and 
strain fields. The latter is valid within the framework of the deformation theory of plasticity 
and for a power law idealization of the flow behaviour of the material, generalized as: 

3 f<r_ r's V 
eü = 2a f (2) 

>0J 

where Sy and Sy are the components of the strain- and of the deviatoric stress- tensor, 
respectively, ae is the effective stress, defined as CTe=[3/2(SySy)]I/2, E is the modulus of 
elasticity, a{) a reference value for stress (usually defined as the 0.2% offset yield strength) 
and a, n are experimentally defined constants. Assuming that the above restrictions are 
fulfilled, the stress field components, Oy, are described according to Shih's approach by the 
following equation: 

l/(n+l) 
EJ 

°ii =°o   —2  Oy(n.9) (3) 
aaglnr 

where, r the radial distance from the tip, In a dimensionless constant depending on strain 
harden-ing and g y dimensionless constants depending on strain hardening and angle G from 
the crack plane. Concerning the function dn=dn(n, EO) of Eq.(l), which was given by Shih as a 
nomogramme, Omidvar's et al. [3] approximate solution, can be adopted according to which 
it holds that: 

0    1.05/(n-0.1) 3 

dn(n,e0) = -^- (1 + -) (4) ts n 



341 

The previous analysis is valid as long as each material point experiences proportional loading. 
For cracked bodies, however, this is not the case, since an intense strain region exists, within 
~28t of the tip, that experiences highly non-proportional loading. In this case the analysis is 
only valid if the intense strain region is surrounded by a region in which the HRR model 
assumptions still prevail. This is true as long as 5t is small compared to both the crack size 
and the uncracked ligament length. Otherwise fracture toughness becomes geometry 
dependent [4]. The validity of the above restriction will be checked in the next paragraphs. 

4. EXPERIMENTAL PROCEDURE AND RESULTS 

Series of experiments were carried out using single edge notched specimens for the quantify- 
cation of the intense strain zone and the CTOD for specific ratios, f, of the crack length to 
specimen width. Scanning electron microscopy was employed, since it permits determination, on 
a micro-scale level, of the intensively damaged area around the tip, as well as the evolution of 
the CTOD, and of relevant micro-failure phenomena around the SiC particles, which are used as 
reinforcement in the case of the specific paniculate MMC studied in the present work. 

The material 
The material used in the present study is the BP-2124 Al-Cu paniculate MMC. It is produced 
by a powder metallurgy process, which reinforces aluminum-copper alloys with extremely 
fine SiC particles. It has excellent mechanical properties (high specific stiffness and high 
specific strength). The composite is obtained by adding to the matrix alloy about 20% wt. of 

fine SiC of average diameter 3 urn. 
400 T i | |        xhe material was available in the form 

of either rolled sheets of thickness 1.20 
mm or rolled plates of thickness 12.0 
mm. In these forms it is slightly 
anisotropic. 

300 
03 

OH 

00 

3 

200 

100 

1, Parallel / 
Diagonal 
Perpendicuh 

10000 20000 

Axial Strain [xlOE-06] 

30000 

Figure 1: Axial stress versus axial strain for the 
three characteristic orientations 

The elastic constants of the material 
were determined first by standardized 
tension tests. The specimens were cut 
from the rolled plates along the rolling 
direction, perpendicular to it and at a 
direction inclined 45° with respect to 
the rolling axis. The axial stress - axial 
strain curves for the three types of 
specimens are plotted in Figure 1. It is 
concluded that, the material is chara- 
cterized by a common elastic modulus 
for all directions, equal to 80 GPa. The 
failure strength is reduced, as one 
proceeds from the rolling direction to 
the one perpendicular to it and the re- 
duction is about 22%. On the contrary 

the ductility increases as a function of the inclination of the specimen by an amount of about 15%. 
The constants necessary for the HRR analysis are directly obtained from Figure 1, since it can be 
proved by using any commercial curve-fitting code that the exponential law of Eq.2 fits perfectly 
the stress-strain curve of the material, fulfilling the initial requirements of the HRR model. 
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Specimens and testing procedure 
The miniature specimens used in the main experimental part of the present study were cut out 
from the rolled sheet along the rolling direction and were formed to the familiar dog-bone like 
standardized geometry. Edge cracks of initial length ao were machined on the one side of the 
specimens (Single Edge Notched -SEN- specimens) by means of a rotating slow cutting 
diamond disc of thickness 100 um. The specific cutting procedure was chosen since it creates 
cracks with minimal mechanical damage at their root. The width of the specimens was 6.5 
mm, their thickness 1.2 mm while their gauge length varied between 65 and 70 mm. The 
initial length of the cracks varied between 1 mm and 3 mm, yielding f values in the range from 
about 0.15 to 0.45. 
After the cracks were machined the specimens were subjected to heat treatment according to 
the suggestions of the manufacturer. The procedure included solution treatment for ninety 
minutes at 505 °C immediately followed by cold-water quench. No visible distortion or 
surface cracking of the specimens was observed due to the quenching. Finally, the specimens 
were carefully polished in order to eliminate any scratches and similar irregularities from their 
surface. 

The heat treated specimens were then subjected to in-situ, monotonically increasing tensile 
loading in the Scanning Electrion Microscope (SEM), Cambridge S4-10 type, available at the 
Laboratory of Testing and Materials of the National Technical University of Athens. The 
level of the tensile loading is servo-controlled (patent of the Institute of Physics, London, 
UK). The maximum capacity of the loading device is 2.2 kN. Following the above procedure 
it becomes possible to measure in-situ, with the maximum possible accuracy, the current 
CTOD. How-ever, it is emphasized, that if the exact shape of the crack tip is taken into 
account, the term describing better the quantity measured would be "Notch Root Opening 
Displacement" (NROD). The measurements were carried out by means of a Gruman-type 
visioscopic fringe analyser, equipped with a digital electronic micropositioning system, of 
maximum error ±0.5 urn. Series of photographs were taken directly from the SEM during the 
loading procedure form the early loading steps up to the final failure and all measurements 
were made on these photographs. Finally, a fractographical study of the failure surfaces of the 
specimens was carried out, in order to gain a better insight into the mechanisms activated for 
the failure of the specific MMC. 

Experimental results 
In Figures 2(a,b) characteristic SEM photographs are displayed showing the unloaded tip of a 
crack (Fig.2a) and the same tip immediately before final failure (Fig.2b), for a crack oriented 
perpendicularly to the loading direction (ß=90°), with a crack-length to width ratio f=0.3. On 
the other hand, in Figures 3(a-c) characteristic SEM photographs are displayed showing the 
unloaded tip of a crack (Fig.3a) and the same tip immediately before final failure (Fig.3b), for 
a crack oriented at a direction ß=60° with respect to the loading axis and f=0.3 again. The photo- 
graphs of Figures 2(a,b) and 3(a,b) correspond to a magnification ratio equal to 500. However, 
for the case of the crack with ß=60°, an additional photo is given (Figure 3c) corresponding to 
larger magnification (xlOOO) in order to obtain a better view of the damaged zone around the 
tip. 

From the series of SEM photographs taken during the loading process the CTOD was 
measured, adopting the procedure indicated in Figures 4(a,b). Characteristic results are shown 
in Figure 5, in which the CTOD is plotted versus the externally applied net stress reduced 
over its corresponding maximum value. In this figure filled symbols correspond to specimens 
with ß=90° while empty symbols correspond to specimens with b=60°.  It is seen from this 
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figure that the evolution of CTOD is almost negligible for load levels lower than half the final 
net fra-cture stress and then it increases in an exponential manner until the fracture stress is 
reached. 

Concerning the critical CTOD its average values appear to be independent of f, at least for the 
ratios used in the present study. The absolute value of the critical CTOD varied around 20 urn 
for the case of cracks with ß=90°, while for cracks with ß=60° it was restricted to about half 
the respective value for cracks with ß=90°. The above conclusions support qualitatively the 
respective ones obtained by Kourkoulis [1] using a different technique for the measurement of 
COD, based on a modified 55 technique. In Figure 6 results taken from ref. [1] are shown 
concerning the COD values reduced over the initial width of the crack, for both the MMC and 
the matrix alloy, for a crack with ß=90°, for comparison reasons. Considering the initial width 
of the crack in ref. [1] (ö0=0.2 mm) the absolute COD values reported there are of the order of 
80 urn. Extrapolating these results at the tip of the crack the values of CTOD obtained vary in 
the range between 15 urn and 25 um, in good agreement with the results of the present study. 

The fracture surfaces and the failure mode 
In Figures 7 and 8 microfractographs are shown taken from two different locations of the 
fracture surface of a typical specimen with ß=90° and f=0.3. Indeed, in Figure 9, in which the 
specific specimen is shown, the plane-stress "macromode" of fracture ahead of the crack tip 
(inclinated plane of fracture) can be clearly detected. This failure mode is a combination of a 
shear component (distinguished by the shear lips) and a normal one (normal cone). The shear 
component prevails close to the surface layers whereas the normal one prevails at the mid- 
thickness layers of the specimen. The microfractograph of Figure 7 corresponds to points of 
the shear failure area while the one of Figure 8 to points of the normal failure one. From these 
figures it is safely concluded that the overall failure process is a ductile plane-stress one with 
an additional feature: The "dimple microfailure mode" is active. This is attributed to the 
microvoid coalescence mechanism, on which the ductile macrofracture of metals [6] is based. 

Figures 7(b) and 8(b) were taken with the aid of the signal differentiation processing mode, 
by which contour enhancement or edge sharpening of the dimples is achieved. In this way 
one can better distinguish the differences in the morphologie between the two areas of the 
failure surface (shear lips and normal cone). It can be observed from them that the shear 
prevailing area is characterized by an elongated dimple pattern, in contrast to the normal 
cone area which is characterized by a more or less "quasi-equiaxed" dimple pattern. Such a 
behaviour is attributed to the loss of severity of the triaxiality of the stress state near the 
surface layers of the material. 

5. CONCLUSIONS 

The analysis of the SEM images pointed out that the fracture process is still controlled by the 
void coalescence mechanism despite the presence of the reinforcing SiC particles. On the 
other hand, SEM analysis of the fracture surface of uncracked specimens indicates that the 
micro-cracks are initiated in the matrix rather than at the particle-matrix interface. This 
peculiar, at least for MMCs, phenomenon can be explained by the fineness of the 
reinforcement phase as well as by the process used for the production of the specific MMC 
(powder metallurgy) which is responsible for some porosity. Thus, in case of uncracked 
specimens void nucleation than void coalescence is the critical step for failure. When the 
local plastic relaxation, that relieves stress concentration becomes difficult, as in case of pre- 
cracked specimens, where it is concentrated in the vicinity of the tip of the macroscopic 
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crack, then the final failure occurs at rather low strains. It seems thus that the presence of 
macro-cracks changes the failure mechanism, explaining in this way the deterioration of the 
mechanical properties of cracked MMCs. 

Finally, and considering that the critical CTOD is less than 20 u.m, it is concluded that the 
intensively damaged zone surrounding the tip is restricted to about 2% of a<). Hence the HRR 
model appears to be valid, at least for the range of f values tested, although the failure mode 
detected is a ductile one. It means that Eqs.(l-4) can be safely used for the description of the 
stress field. 
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(a) 0>) 
Figure 2: SEM photographs of a crack with ß=90° (magnification 500x): 

(a) Zero loading step, (b) Final loading step. 
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Figure 3: SEM photographs of a crack  with 
ß=30°. 

(a) Zero loading step (magnification 500x). 
(b) Final loading step (magnification 500x). 
(c) Detailed view of the crack-tip area at the 
final loading step (magnification lOOOx). 
Localized damage at the "corner" of the 
notch root is clearly visible. 
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Initial CTOD= 8,,0 Current CTOD= 8U 

(1 and 2 are selected reference features on the photographs) 

Initial CTOD= 5,,0 

(b)    "       \r 

Current CTOD= 5,,* 

Figure 4: The procedure followed for the measurement of the CTOD from the SEM 
photographs. 

zu - 

/ 

If 
3. 

/, o 
H 
U If 

o<! 
0        0,25       0,5      0,75        1 

Reduced net remote stress 

1,5 

Q 
O 
U 
•a 

OS 

0,5 

1    I 
\ \ 

\1 

/ 
s 

Termir al poin 
\ 

s 

\ 

\ 
1 

0,1      0,2      0,3     0,4     0,5 
Reduced applied stress 

Figure 5: CTOD vs. the net remote stress for cracks Figure 6: COD vs. applied stress for ß=90". Empty 
with ß=90° (filled symbols) and ß=60" (empty symbols represent the 2124 MMC and filled ones the 

symbols). respective alloy. 



347 

«'«•* 

r^',i 

.*:j 

VW/i-W.''Vft 
(a) (b) 

Figure 7: SEM microfractographs (magnification 500x): (a) Elongated shear dimpled surface. 
(b) Signal processed image for the enhancement of elongated pattern. 
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T Figure 8: SEM microfractographs 
magnification 500x): (a) "quasi-equiaxed" 

dimpled surface (b) Signal processed image 
for the enhancement of "quasi-equiaxed" 

pattern. 

Figure 9: SEM photograph of the fractured 
specimen. The arrows indicate the exact points 

at which the photographs of Figure 7 (filled 
arrow) and Figure 8 (empty arrow) were taken. 
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ON SELECTING A COMPATIBLE SUBSTITUTE FOR THE KENHCREAE POROS 
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1. SUMMARY 

Various natural building stones are studied in the present work in an effort to propose the one 
most compatible with the material used by ancient Greeks for the erection of the monuments of 
the Epidaurean Asklepieion. A brief analysis of the criteria that should be fulfilled by a material 
used as a substitute for the restoration of ancient monuments precedes and series of experimental 
results are presented next concerning the mechanical properties and constants of the materials 
proposed so far as possible substitutes of the authentic material. Comparative study of these re- 
sults indicates that only the poros stone of Kenchreae simulates the mechanical behaviour of the 
original material. The three new materials have a substantially different mechanical behaviour 
and their incorporation in the restoration should be treated with caution. 

2. INTRODUCTION 

Obtaining the appropriate stones for the restoration of the Asklepieion at Epidauros has long 
been a prime concern of the scientific committee responsible for its preservation. This paper 
focuses on the mechanical behaviour of the porous oolitic limestone, commonly known as the 
porolithos of Kenchreae, used in the upperstructure of most important buildings in the Askle- 
pieion (Fig.l) as well as three other natural building stones that have been considered as suitable 
substitute for it in the restoration projects. Given the variability of texture and properties of 
the authentic material, the question of choosing one material becomes complex. As none of 
the various, commercially available, alternatives was deemed satisfactory from the aesthetical 
and mechanical point of view, the scientific committee's first choice has been to try and ob- 
tain the required stone from the near proximity of the ancient quarries at Kenchreae. The deci- 
sion followed a first stage comprising a surface reconnaissance, a site investigation compris- 
ing a series of 19 drills and a preliminary laboratory study of samples taken from different 
drill cores and depths [1,2]. Unfortunately, the enterprise had to be abandoned after refusal of 
permission by the local authority and despite given assurances for minimum disturbance and 
a detailed proposal-offer for transforming the area of the ancient quarry into open, well de- 
fined, archaeological site. From the various alternatives three have been selected. A porous mi- 
critic limestone from Crete (alfopetra), a calcareous sandstone from Cyprus and a fine-grained 
limestone from Zakynthos. 



349 

3. PROBLEM DEFINITION - SELECTION CRITERIA 

Under ideal conditions the substitute stone should react in a similar manner to environmental 
influence, mechanical loading and natural wear and weathering. This leads to three groups of 
criteria, mutually interconnected, for evaluating the compatibility between natural building 
stones: 
The first group involves geological description, mineralogical analysis, qualitatively and 
quanti-tatively chemical analysis. The second involves the physical properties such as appar- 
ent and absolute density, porosity, water absorption permeability, and swelling. For the stones 
under study these are summarized in Table 1. It can be seen that the chosen three alternatives 

cover to a large extent the wide range of 
physical properties that are exhibited by the 
porolithos of Kenchreae. However, it must be 
pointed out that in terms of physical charac- 
teristics both alfopetra and Cyprus sandstone 
have a low absolute density, while alfopetra 
stands also apart by its dilation (13 as com- 
pared to 0 for the rest) and its relatively high 
permeability. It is to be noted, however, that 
the high permeability values of the Kenchreae 
stone are due to macropores of the material. 
Finally, the third group of compatibility crite- 
ria involves the mechanical characteristics as 
obtained from commercial tests, summarized 
in Table 2. In terms of strength, alfopetra 
would appear a good compromise to Ken- 
chreae poros stone. 
The above criteria describe the materials con- 
cerning their properties, but a proper evalua- 
tion of these properties in terms of compati- 

bility involves, also, their proposed use and function in the monuments under restoration - 
position, size, structural requirements, weathering resistance, etc. For example for floor slabs 
resistance to mechanical wear is of primary importance, whereas in a lintel's case the flexural 
rigidity becomes the critical decision factor. This may, and must, differentiate between sub- 
stitute stones depending on the specific use. 
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Figure 1: Column drums of the Propylon 
of the Gymnasium at the Asklepieion 

Property—» 

Material 1 

Apparent 
density 

lkgr/m3] 

Absolute 
density 
[kgr/m*] 

Porosity 
% 

Absorp- 
tion 
% 

Permeabil- 
ity 

xlO10 

[m/s] 

Swelling 
xlO"6 

Kenchreae 1.50-1.93 2.70 28.3-44.2 8.6-19.2 1600-28400 0 
Crete 1.73 2.45 29.3 14 1200 13 
Cyprus 2.04 2.54 21.1 4.4 200 0 
Zakynthos 2.25 2.72 17.1 4.8-6.7 6-60 0 

Table 1: Data on physical properties [1] 
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Property —■> 
Material    1 

Compressive 
strength [MPa] 

Flexural 
strength [MPa] 

Los Aneeles Soundness 
(%) 

Kenchreae 7.4-21.9 4.6 - 6.6 ...-61.1 ... -30 
Crete 23.8 10.4 44.6 48 
Cyprus 42.2 8.9 - - 
Zakynthos 51.1-76.2 9.5-12.4 31.1 33 

Table 2: Data on mechanical strength [1] 

4. EXPERIMENTAL PROCEDURE AND RESULTS 

Series of uniaxial compression tests were carried out using a hydraulic loading frame of capacity 
1000 kN. The maximum load recorded did not exceed in any case 250 kN, and thus, the stiff- 
ness of the frame can be considered infinite. This is very important if the post-peak behaviour 
data are to be reliable. The load was applied statically at a rate not exceeding 10"  mm/min. 

Cylindrical specimens were used with an aspect ratio (length, L, over diameter, D) of one. The 
dimensions of the specimens varied from L=70 mm for the ancient material, Kenchreae-, Crete- 
and Cyprus stones to L=100 mm for the Zakynthos one. Special care was taken to ensure that 
the bases of the cylinders were parallel to each other and perpendicular to the load direction. For 
this purpose a special set-up was designed permitting cover of the bases of the specimens with a 
thin layer of steel-putty. A semi-spherical head interposed between the loading plate and the 
moving piston further ensured the coaxiality between load and specimen. 

For the measurement of axial displacements three dial 
gauges of sensitivity equal to 10"6 m were used, 
placed at 120° to each other, in order to check the 
symmetry of the loading. The rotation of the end plat- 
ens detected was negligible. In some of the tests addi- 
tional dial gauges were used for the measurement of 
the transverse displacements for determining Pois- 
son's ratio. Also, in a number of tests a system of four 
straingauge rosettes was used, antidiametrically glued 
on two mutually perpendicular diameters of the 
specimens, for comparison reasons. 

Concerning the interface between endplatens and 
specimens the majority of tests was carried out using 
carefully lubricated surfaces, since Drescher and Var- 
doulakis [3] and Read and Hegemier [4] have pointed 
out that little can be inferred from non-lubricated uni- 
axial compression tests. Minimization of friction was 
achieved by interposing two sheets of Polytetrafluoro- 
ethylene (PTFE), a thick one (thickness 2 mm) and a 

thin one (thickness 0.5 mm), between the base of the specimen and the respective platen. Ad- 
ditionally, the internal surfaces of the two sheets were covered with an amount of stearic acid, 
which has been proved very efficient in reducing friction under high loads [5,6]. However, for 
the present series of tests, the difference between the results for lubricated specimens and 
these for as-received ones was not important. 

Figure 2: Fractured specimen from 
authentic material 
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Authentic material 
The authentic material both ancient and new comes from the Kenchreae quarries. It is a po- 
rous oosparite of "sandstone-like" appearance due to its high porosity (about 35% to 40%). It is 
a more or less homogeneous material, of layered structure, with complex nets of internal pores 
and surface vents, sometimes running through the whole width of the specimens (as it can be 
seen from the photograph of Figure 2), rendering the scattering of the results unavoidable. 
Frequent calcite veins or small calcite accumulations appear within it. The texture ranges 
from massive to very thin-bedded and the colour varies from a whitish-gray to grayish-beige 
(rarely light yellow). The dimensions of the pores and the vents vary between a few millimeters 
and a few centimeters. This kind of structure imposes to the material a rather anisotropic char- 
acter of the transverse type. The material appears to be extremely friable and it is very difficult 
to prepare specimens suitable for accurate Strength of Materials tests. Its mechanical proper- 
ties exhibit strong variation depending on the exact point of sampling and the age of the ma- 
terial [7]. 

Specimens of the ancient material were taken from amorphous blocks with the permission of 
the archaeological authorities. The average values of the elasticity modulus, E, compressive 
strength, cc, failure strain and Poisson's ratio are tabulated in Table 3, together with the re- 
spective values of the materials proposed as possible substitutes. In Figure 3 the complete 
stress -strain diagram of a characteristic test is plotted. It can be seen that after a more or less 
linearly increasing portion the diagram exhibits an abrupt drop. Then the curve rises again, 
sometimes exceeding the initial peak. From this point on, the graph follows a smooth path 
with very small slope before the final destruction of the specimen. The failure mode can be 
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Figure 3: Axial stress vs. axial strain for the 
ancient material of the monuments. 

Figure 4: Axial stress vs. axial strain for 
fresh Kenchreae poros stone. 
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described as a combination of axial cracks with parallel crushing of weak material layers. The 
familiar Mohr's cone was not detected, indicating that the conventional failure theories cannot 
be applied for such type of materials [8,9], The first visible cracks appear at strain levels equal to 
about 0.016. However, the final destruction of the specimens (depending on the lubrication con- 
ditions) takes place at strain levels corresponding to a height reduction of about 5%. 

Detailed investigation has, also, been carried out on Kenchreae stone, either freshly quarried 
or drilled from the wider area of the ancient quarries at Kenchreae. Preliminary experimental 
work [71 pointed out that it simulates qualitatively in a very satisfactory manner the physico- 
mechanical properties of the ancient material and can be, thus, safely recommended for use in 
the restoration works. In Figure 4 the complete axial stress - axial strain diagram has been 
plotted for a number of characteristic tests. It is to be noted, however, that the texture of the 
fresh Kenchreae poros stone strongly depends on the depth of sampling from the various drill 
cores. In Figure 4 the empty symbols correspond to specimens with relatively massive tex- 
ture, while the filled ones correspond to specimens with more porous and layered texture. 
This dependence covers almost all aspects of the stress-strain curve with the exception of 
only Young's modulus, which for the initial portion of the linear part of the graphs (stress 
levels lower than 1 MPa) is practically identical for all specimens, equal to about 2 GPa. 
At this point it could be argued that the results of detailed testing using small size specimens 
are doubtful due to the macroporcs, layering and inhomogeneities of the, material. However, 
the tests so far have shown that this influence is restricted to mechanical parameters such as 
the peak load and the extend of the post-peak deformation. On the other hand, the qualitative 
appearance of the stress-strain curves is very consistent, thus implying that it represents true 
material behaviour irrespectively of size. Moreover, the overall mechanical behaviour is close 
enough to the respective ones of the ancient material. 

Substitution materials 
Unfortunately, for reasons already mentioned in the introductory paragraph, it will not be 
possible to obtain fresh Kenchreae poros stone for the restoration, at least in the immediate 
future. So the three stones, previously mentioned, from Crete (alfopetra). Cyprus and Zakyn- 
thos, respectively, arc considered as possible alternatives, with the last one being the most 
likely due to its better resistance to chemical weathering. Macroscopically all three of them 
appear to be of much more compact structure compared to that of the Kenchreae, as it can be 
concluded, also, from their apparent specific weight (Table 3). 

Property—> 
Material 1 

Failure stress 
|MPaJ 

Young's modulus 
fGPal 

Poisson's ratio 

[-] 

Failure strain 

[-] 

Specific weight 
[kN/m3| 

Ancient 3.5 1.8 0.26 0.050 14.8 

Kenchreae 4.2 2.0 0.26 0.035 15.3 

Crete 34.2 12.5 0.27 0.004 17.8 

Cyprus 33.4 7.2 0.26 0.006 19.3 

Zakynthos 26.5 12.0 0.27 0.003 21.4 

Table 3: Mechanical properties and constants of the ancient, authentic 
and substitute materials 
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Figure 5: The stress - strain curves for Crete-, Cyprus- 
and Zakynthos poros stones 

However, the differences between the 
materials are not limited in the physi- 
cal range. As it can be seen from 
Figure 5, the strength and the stiff- 
ness of the candidate substitute mate- 
rials differ significantly from those of 
the authe-ntic material. The same is 
true for the post-peak portion of the 
stress-strain curve as well as for the 
failure mode. All three materials fail 
in a very brittle (almost explosive) 
manner and the familiar Mohr's cone 
was consistently detected in all tests. 

5. COMPOSITE SPECIMENS 

In order to verify the above conclu- 
sions concerning the compatibility 
of the substitute materials with the 
au-thentic one, two types of com- 
posite cylindrical specimens were 
tested, composed of equal parts of 
Kenchreae poros stone and alfopetra: 
For the first type the adhesion plane 
was parallel to the loading direction (Figure 6), while for the second one the adhesion plane 
was perpendicular to the loading direction. 

For the first type of specimens the failure started from the authentic material in the form of 
crushing a material layer, almost perpendicularly to the loading axis, at an overall stress level 
equal to about 5.5 MPa. Then at a stress level equal to 6.0 MPa axial cracks appeared, again 
in the authentic material, and finally at a stress level equal to 11.2 MPa the failure propagated 
in the substitute material in the form of surface axial cracks. However, if the ratio of the 
elasti-city moduli of the two materials is taken into account (E^fop^JE^c^i^ß.T) then it is 
concluded that the first failure of the authentic material took place at a stress level equal to 
3.2 MPa and the axial cracks appeared at a stress level of 3.5 MPa. On the other hand, the 
failure of the substitute material took place at about 35.0 MPa. It is thus seen that the failure 
of the two materials takes place at their respective failure stresses and the substitute material 
cannot protect the authentic material, at least for the specific configuration. 

On the other hand for the second type of specimens, as it was expected, the authentic material 
failed first at 5.6 MPa. However, it is very important to note that this stress is relatively 
higher compared to the failure stress of the authentic material. The failure of the substitute 
material took place at about 7.7 MPa, considerably lower compared to the failure stress of the 
alfopetra. In means that for the specific configuration (load perpendicular to adhesion plane) 
the substitute material constrained the generation of cracks within the mass of the authentic 
material increasing its apparent strength. However, once the first cracks appeared within the 
mass of the authentic material, they propagated within the mass of the substitute material and 
its strength was reduced to less than one fourth of its true failure stress. 
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It is clear that the above conclusions are valid exclusively for the specific geometry studied, 
i.e. identical parts of authentic and substitute materials. A much more detailed investigation is 
required in order to take into account both the dimensions of the patch in respect to the di- 
mension of the authentic material as well as the orientation of the adhesion plane. 

Figure 6: A tested composite specimen of the first type. The different failure modes 
are clearly visible. 

Concerning the failure mode of the composite specimens it was concluded that for botli types 
the authentic material failed in a combined mode (crushing of a layer almost perpendicular to 
the loading direction and generation of axial cracks immediately afterwards), while the substi- 
tute material failed under the formation of the familiar Mohr's double cone configuration. The 
two failure modes are clearly visible in Figure 6, where a tested specimen of the first type is 
exhibited. 

6. DISCUSSION AND CONCLUSIONS 

Compatibility between natural building stones is based on macroscopic and geological descri- 
ption, physical properties and mechanical strength. These criteria should be applied in rela- 
tion to the function and the position of each particular architectural member in the building. 

Comparison based on standard commercial testing (Tables 1 and 2) needs careful evaluation 
as to the materials concerned and the properties investigated both in terms of physical prop- 
erties and mechanical strength (Table 3). For example, based on a direct comparison of their 
physical properties it may appear that a stone such as alfopetra from Crete could be a reasonable 
substitute for the Kenchreae poros stone. However, when comparing apparent and absolute 
density for the two stones and relating them to porosity and permeability, it becomes clear 
that porosity for the Kenchreae poros stone is at macrostructural level while that for alfopetra 
is at microstructural level. Detailed mechanical testing under static loading conditions reveals 
the differences in character of the materials concerning their maximum strength, modulus of 
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elasticity and mode of failure. Kenchreae poros stone is of low strength and high ductility 
while the other three stones are of medium strength and brittle nature. 

Strain rate is, also, an important parameter for the range of porous limestones examined here. 
Peak strength data obtained from static deformation-controlled tests may change and even re- 
verse the relative picture obtained from fast load-controlled tests (75% decrease in case of 
Kenchreae poros stone, 40% increase in alfopetra from Crete, 25% decrease in Cyprus sand- 
stone and 50% decrease in Zakynthos limestone. On the other hand for all materials studied 
here, external overall measurements (using dial gauges) correspond with strain gauge ones at 
least up to the point of first visible cracks. So use of the latter appears not obligatory. 

Long-term weathering seems to produce in the porous stone of Kenchreae a kind of residual 
behaviour. Specimens cut from ancient Kenchreae poros stone, which has been exposed for 
more that 2000 years yielded a lower boundary of the observed mechanical behaviour of the 
material. 

Concerning the behaviour of composite specimens, at least for the geometries studied, it was 
concluded that in both cases the authentic portion of the specimens failed first, at stress levels 
either identical to the failure strength of the authentic material or slightly higher (in case the 
adhesion plane is perpendicular to the loading axis). Thus, it can be said that the principal re- 
quirement of the restoration process from the substitute material, i.e., to fail first protecting 
the ancient material is violated. 

From the above, it is concluded that the Kenchreae poros stone cannot be really substituted 
by any of the investigated alternatives in the sense of true mechanical compatibility. Their in- 
cor-poration in the restoration alongside the stone of Kenchreae should be considered care- 
fully. 
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1. SUMMARY 

Mechanics for laminated piezoelectric shells including non linear effects due to large 
displacements and rotations are presented, and a non-linear finite element formulation is 
developed. The problem of initial buckling due to mechanical and electric loading is formulated. 
Results quantify the mechanical buckling of cylindrical panels with various electric conditions on 
piezoelectric layers, as well as the case of active piezoelectric buckling. 

2. INTRODUCTION 

The analysis of smart composite laminates with embedded piezoelectric actuators and sensors has 
received substantial research attention. Smart shell structures are among the more challenging to 
study both analytically and experimentally, yet, are commonly used in aeronautical, aerospace, 
automotive and other engineering applications. One issue which has surfaced so far, is that the 
severity and type of electromechanical loading may exceed the range of linear theories, thus 
mandating the development of non linear techniques for correct prediction of the structural 
response. 

Most theoretical and computational models that have been proposed for the static and dynamic 
analysis of piezoelectric composite shells have been limited in the linear region. Analytical 
solutions for electromechanical static and dynamic response have been developed " and 
computational models using various linear theories have been published4"12. Coupled theories for 
laminated piezoelectric shell structures have been also presented13"15. A small number of papers 
has included non-linear effects due to large displacements and rotations for circular plates1 " 

The present paper presents coupled non linear mechanics due to large displacements and rotations 
while the material behaviour is assumed linear. The kinematic assumptions of the mixed field 
laminate theory are used. A finite element formulation based on the non-linear piezolaminate 
mechanics is described. Subsequently, the problem of electromechanical buckling is formulated 
and its solution is presented. Results from various application cases of mechanical and electrical 
buckling are shown. 
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3. PIEZOELECTRIC LAMINATED SHELLS 

An orthogonal curvilinear coordinate system O^nt; is used such that 4,r| axes lie on reference 
surface A0, while C, axis remains straight and perpendicular at each point of A(). 

Governing equations. The material of each ply that compose the piezoelectric laminate is 
assumed to remain within the range of linear piezoelectricity with constitutive equations on the 
curvilinear system, 

Oi- CijSj- e,tEk 
s (') 

Di- eijSj + EnEk 
where i,j = 1,..., 6 and k, 1=1,..3; c,and Sj are the mechanical stresses and engineering strains in 
vectorial notation, Cy is the elastic stiffness tensor, eik is the piezoelectric tensor Ek is the electric 
field tensor, D| is the electric displacement vector and e,.K is the electric permittivity tensor. The 
Green=s strains in the ply level are described below, where the first and second RHS describe 
linear and non-linear components respectively : 
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Kinematic assumptions. The mixed field laminate theory is used'5 that combines a linear 
displacement field with layerwise electric potential field for capturing all state variables through 
the thickness. The discrete-layer theory divides the laminate in N-l sub-laminates. The assumed 
displacements and electric potential take the following form through the thickness: 

v(M,t) = v°rt,r\,t) + Z ßrfZ.ri.t) 

wrt,r\£,t)=w°(S,r\,t) (3) 

N 

m= 1 
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The electric field vector becomes 

E,($,ri,C,t)=   I   Ef(?,,T),tnmtt)     i = l,2 
m = 1 

N 
(4) 

m= 1 
where j?"' are generalized electric field vectors. Substituting eq. (3) into eq. (2) the strains take 

the following general form: 

(5) 

where the S°,k°, are the linear generalized strains (see Ref. 15) and Su are tne generalized non- 
linear strains 
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Generalized Equations of motion. The mechanical and electrical response of the piezoelectric 
material can be represented by the stress equilibrium and the conservation of electic-charge 
respectively: 

P-Üi = Oij.j + fi „. 

Du = 0 i,j = l,-3 
Through the use of the divergence theorem, equilibrium equations can be expressed over the 
volume of the piezoelectric laminated shell in an equivalent variational form as: 

8uv, = - j"5 SaOidV + jöujbjdv + J 5 UjTjdT= 0 
v v r, 

8uy2 = - j5 EjDjdV + jd(pqdT=0 i = !,...( , J=l,-3 
(8) 

where x7 are the surface tractions on the bounding surface rT. bj is the inertial force per unit 
volume, q is the electrical charge applied on the surface r,. and V represents the whole volume 

including both composite and piezoelectric layers. 

Finite element formulation 
A finite element formulation for a composite piezoelectric shell is obtained encompassing the 
previous non linear mechanics. An eight node element with five degrees of freedom of the 
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Serendipity family is used. The state variables are approximated from quadratic interpolation 
functions into the element on the reference surface A<> and take the form: 

M 

M 

ß°(S.Tl,t)=,Zß'j(t)Nl(S,Tl). j=l,...,2 (9) 
;=/ 

M 

^,%t)=Yfi(t)N'(^.r\), m=l,...,N 

where N indicates the number of discrete layers that the laminate is subdivided, and M the 
number of nodes. Substituting eqs. (1-6) and eq. (9) into eq.8, the incremental equilibrium 
equations are obtained in the form of a coupled system: 

where all the sum of matrices in parentheses are tangential structural and piezoelectric matrices 
indicated by overbar. Subscripts uu, ue, ee indicate linear elastic, piezoelectric and permittivity 
matrices respectively; superscripts0, a, L respectively indicate linear, initial stress and nonlinear 
components and 4^, ^2 are differences between internal and external nodal forces and charges. 
Three new matrices are introduced, the initial stress matrix KZ, , the nonlinear stiffness matrix 
Km and the nonlinear piezoelectric matrix KL ■ The terms of initial stress matrix depend on 
initial laminate force N, which includes the effect of external mechanical loads or applied 
electrical voltages, and has the following form: 

,      ■■,       r       -rr^'      Ml      • [Kl]=\AR R> (11) 
. N6    N2_ 

where R is a proper matrix of shape functions, yv, are the in-plane laminate forces described 
below: 

h N   _ 
Ni=\oidt; = AitjS0j + Bitjk0

j-   I   E% Ef       i.j= 1,2,6 (12) 
0 m= 1 

where the first two RHS terms are the average mechanical stress components while the third term 
is the average piezoelectric stress. 

Initial Buckling. Neglecting the non-linear stiffness matrices (indicated by superscript L), eq 
(14) results: 

K°c«Su + K°M = 0 
where X is the critical factor on the applied mechanical load or electrical voltage that will initiate 
buckling. The solution of the buckling problem is based on two incremental steps. In the first 
step, a unit load is subjected to the structure and from static solution, the average stresses are 
calculated at the laminate. The corresponding stress matrix Km 

IS subsequently formulated and 
the eigenvalue problem (13) is solved. 

Numerical results 
Evaluations of the developed models are presented for simply supported plates and cylindrical 
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shells. A [p/Al/p] piezoelectric laminate plate with a 0.5mm thick aluminium layer and two 
0.25mm thick continuous piezoceramic layers of PZT5 attached on the upper and lower surface 
is examined The hoop is L^ =200mm and the width of the panel is Ln=200mm. 

Table 1 Critical mechanical 
[p/Al/ 

buckling loads for piezoelectric laminated cylindrical shell 
D] under a concentrated force at center 

Order 
Critical mechanical load F (Nt) 

8x8 mesh 

Opened circuit Closed circuit 

shell (9=15°) 
1 
2 
3 

275 
329 
615 

214 
246 
466 

shell (9=45°) 
1 
2 
3' 

982 
1180 
2087 

749 
908 
1562 

Mechanical buckling. Two curvatures are considered, 1/R=0.76394 (9=15°) and 1/R=0.25464 
(9=45°). For all cases, a transverse concentrated force is applied at the center of the shell for two 
cases: (a) all electric terminals at piezoelectric layer are grounded, and (b) the inner terminals 
remain closed while the outer ones are open. The predicted critical mechanical loads are provided 
in Table 1, where the influence of piezoelectric conditions is apparent. The first buckling mode 
for the 15° panel is shown in Figure 1. 

Piezoelectric buckling. Buckling can be also induced through the application of electric potential 
on piezoelectric actuators. Table 2 illustrates the critical electric potential when a sinusoidal 
electric potential <5=<I)osin33t^/L^sinri/Ln is applied on the outer terminals of each piezolayer. 
Figure 2 shows the first electric buckling mode for a 15° panel. 

Table 2. Critical electric potential for piezoelectric laminate plate and shell [p/Al/p] 
under sinusoidal electric potential Onsin3jt£/L£sinri/Ln 

Order Critical electric potential <D0 (V) 
8x8 mesh 

plate (9=0°) 
1 
2 
3 

1209 
1477 
2107 

shell (9=15°) 
1 
2 
3 

3422 
3781 
4000 
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shell (6=45°) 
1 11247 
2 11431 
3 12198 

4. CONCLUSION 

Non linear mechanics including non linear effects due to large displacements and rotations for 
laminated piezoelectric shells were presented. Based on them, an eight node finite element was 
developed to predict the initial mechanical and electric buckling of plates and shells. Applications 
have indicated the dependence of mechanical buckling loads on the electric conditions of 
piezolayers. The feasibility of piezoelectric buckling was also illustrated. 
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Figure 1. First critical buckling mode of a cylindrical panel (15°) [p/Al/p], under transverse 
mechanical force at center 
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Figure2. First critical buckling mode of a cylindrical panel (15°) [p/Al/p], under sinusoidal 
potential (I)0sin37i^/L^sinri/Ln 
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1. SUMMARY 
Continuous Fiber Ceramic (Matrix) Composites (CFCCs) have found during the last decade 
numerous industrial applications in a variety of technological areas, where structural 
components are subjected to high temperature combined with significant mechanical loading. 
The present work deals with the application of innovative design methodologies for the 
development of an industrial gas turbine combustor chamber made of oxide/oxide composite 
materials. 
Oxide/oxide composites offer high-temperature structural stability without the need of any 
kind of oxidation protection and thus permit the increase of the working temperature of the 
gas turbines, increasing the efficiency of the system and decreasing the need for cooling air 
and NOx emissions. 
Since, oxide/oxide composites degrade their structural properties as a function of the 
operating temperature (for temperature higher than 1000° C) and the exposure time, an 
incremental approach has been introduced for the solution of the problem and each increment 
represents a thermal exposure stage. The structure has been divided in temperature zones and 
a mean working temperature was considered for each zone. The data set required for the 
application of the present design methodology, was obtained through an extensive material 
characterization program based on the measurement of the anisotropic properties of 
oxide/oxide composites using ultrasonic techniques. 

2. INTRODUCTION 
Gas turbines for both simple and combined cycles had in the last five years a market of 30 
GW/annum and the expectations are for 40 GW/annum, for the running decade. Within this 
market there is a tremendous commercial pressure on gas turbine manufacturers to increase 
plant efficiency and reduce specific costs, whilst continuing to meet the ever more stringent 
emission limits. From several key technology areas, all the gas turbine manufacturers have 
identified CFCCs as the key material to fulfil the imposed targets and consequently CFCCs 
are aggressively pursued with aim of full engine test in the very near future [1]. 
The basic parameter, which supports the use of CFCCs in high temperature engineering 
components, is their improved fracture toughness, compared to monolithic ceramics, due to 
the activation of various stress redistribution mechanisms in the material structure [2]. Thus 
CFCCs have the ability to withstand damage without immediate catastrophic rupture. 
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The present work deals with the application of innovative design methodologies for the 
development of an industrial gas turbine combustor chamber made of oxide/oxide composite 
materials [3]. 
Oxide/oxide composites offer high-temperature structural stability without the need of any 
kind of oxidation protection and thus permit the increase of the working temperature of the 
gas turbines, increasing the efficiency of the system and decreasing the need for cooling air 
and NOx emissions. 
However, in the long run oxide/oxide composites indicate a reduction of their structural 
performance, as a function of the working temperature and the duration of high temperature 
exposure, for temperature higher than 1000° C. 
Among the limitations in applying CFCCs in structural components is the uncertainty in 
using well-documented design methodologies. Up to now, the most of the existing design 
approaches suffer from the presence of a strong metal culture on the final products. In other 
words, some basic design methodologies, based on a database of life and stiffness data, have 
been used together with a strain or time/cycle based life prediction philosophy [3]. Then, after 
conducting  a  thermal   analysis,   a  linear  static  stress  analysis  follows,   using  stiffness 
information for the given composite system. The obtained stresses can be used to find the life 
under a given thermo-mechanical loading. 
The proposed procedure, in the present work design, involves stress redistribution and this is 
achieved through the development of a lamina stiffness evolution law that includes al the 
major  factors   contributing  to  stiffness   reduction   as  a  consequence  of the  developed 
anisotropic damage. This approach, certainly more accurate as it allows for stress transferring 
of the more damaged parts of the structure where stiffness is lower, involves: 
• Completely new design of the combustor chamber which makes use of the material 

capacity and takes into consideration the manufacturing limitations 
• Thermo-mechanical analysis of the component and calculation of the temperature and the 

stress profiles for the given thermo-mechanical loading and boundary conditions. 
At this preliminary phase, an operational life of 1500 h duration is demanded for the 
combustor chamber. 
Since, oxide/oxide composites indicate anisotropic degradation of their structural properties 
[4], an incremental approach has been introduced for the solution of the problem and each 
increment represents a thermal exposure stage. The structure has been divided in temperature 
zones and a mean working temperature was considered for each zone. During each increment 
the material properties were considered constant and they changed through the successive 
increments. 
For the analysis of the problem the commercially available FE code ANSYS was used [5]. 
The data set required the application of the above-described approach was obtained through 
an extensive material characterization program. The material characterization process 
involves typical quasi-static tests and an extensive set of 'stop and go' thermal exposure- 
fatigue experiments of the oxide/oxide composite, at different temperature levels. At each 
stage of the thermal exposure experiments, advanced ultrasonic measurements of the 
composite stiffness matrix were conducted. Then, all the elements of the stiffness matrix of 
oxide/oxide composite were known as functions of the applied temperature and the thermal 
exposure duration, and these properties were transformed to lamina stiffness evolution law. 
The stresses and the displacements results obtained from the combustor chamber made of 
oxide/oxide composites by the application of the proposed design methodology were 
compared against the conventional design of the same component and the results are 
discussed analytically. 
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3. MATERIAL CHARACTERIZATION 
The complete set of the mechanical properties of the single lamina, which are necessary for 
the design of the laminate structure, are not available since unidirectional material is very 
difficult to manufacture and its properties do not represent the actual lamina properties within 
the laminate. 
For the purpose of the present work the following strategy has been adopted: 
• Calculation of the laminate mechanical properties for a given laminate using ultrasonic 

velocity measurements. 
• Inversion of the laminate mechanical properties for the determination of the actual 

lamina properties. 

The determination of the elastic properties of a laminate structure can be achieved by 
calculating the coefficients of the propagation equation of an elastic plane wave, from a set of 
properly chosen velocity measurements along known material directions. These 
measurements are carried out using a special experimental setup that is described below [6]. 
A thin specimen with plan parallel faces is immersed in an acoustically coupling fluid 
(water). The specimen is placed between a transmitter (E) and a receiver (R), which are 
rigidly connected to each other through a supporting arm. Both the specimen and the arm, 
holding the two probes, can rotate as seen in Fig. 1. Using appropriate signal processing 
devices, the phase velocities of each of the propagated waves within the specimen are 
calculated for a number of specimen/probes relative orientations. 
Depending on the angle of incidence, the pulse sent by transmitter E is refracted within the 
material in one, two or three bulk waves (one quasi longitudinal wave QL, one quasi 
transverse wave QT, or two quasi transverse waves QTi, QT2) that propagate in the 
anisotropic solid at different phase velocities and in different directions. 

Rotary 
Motion,'' -x 

W 
::$& 

Micro 
Computer 

Pulse 
Generator 

Digital 
Oscifoscope 

Figure 1: Experimental setup for the ultrasonic velocity measurements 

3 

Figure 2: Typical geometry of the specimen used for ultrasonic velocity measurements 
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The difference in the propagation time of each the waves and the propagation time of the 
emitted signal in the coupling fluid without the specimen, is measured. 
The evaluation procedure is based on the measurement of the time difference of the 
longitudinal and one or both transverse waves, and is only valid when the QL and the QT 
waves are appropriately separated. 
The components of the elasticity tensor are obtained from the propagation velocities through 
a least square regression analysis, which minimizes the residuals of the wave propagation 
equations. 
After the calculation of the components Qj of the elasticity tensor, the engineering constants 
of the laminate structure (orthotropic in general) are determined by the following relations: 

Sn=(C22- C33-C 23)- C S44=C44 
S22=(Cir   C33-C~|3>   C" S55=C55" 
S33=(C22-   Cl1-Cj2)-   C S66=C66 (1) 
Sl2=(Ci3-   C23-Cl2'   C33)-   C 
Sl3=(Ci2'   C23-Ci3'   C22)-   C 
S23=(Cl2'   Ci3-C23'   CM)

-
   C 

where: 
C=C„-   C22-   C33-C,r   C223-C22-   C2,3-C33-   C2,2+2-   C,2-   C23-   C13 
and finally 
El=S] i"1 Gl2=S66~ Vi2=-S|2-   El 
E2=S 
E3=S 

G23=S44 ' 
Gi3=S55 

V23= -S23'   E2 
Vi3= -S|3-   E3 

(2) 

Table 1 shows the conditions under which the ultrasonic tests were performed, while Table 2 
summarizes the calculated laminate properties for the AI2O3/AI2O3 laminate of [0,90]f,s 
configuration. 

Material 
Thickness 

(mm) 
Density 
(kg/m3) 

Water Temperature 
(°C) 

Frequency 
(MHz) 

AI2O3/AI2O3 2.56 2313 23 5 

Table 1: Ultrasonic test conditions and material geometry 

E, 
(GPa) 

E2 

(GPa) 
E3 

(GPa) 
G,2 

(GPa) 
G13 

(GPa) 
G23 

(GPa) V12 Vl3 V23 

75.8 73.2 14 14.2 7.5 7.2 0.08 0.26 0.25 

Table 2: Engineering constants of [0, 90] 6s AI2O3/AI2O3 laminate. 

As it is expected due to the symmetric structure of the laminate, the modulus of elasticity is 
almost identical in the directions 1 and 2, while is much lower in the 3rd direction (normal to 
the plate thickness). In addition these values are very close to the ones measured under quasi- 
static loading. 
This testing procedure was applied to a series of material samples that had been exposed to a 
simulated turbine engine environment inside a specially designed furnace. Different test 
durations were used up to 500 hours, allowing for the measurement of the degradation of the 
elastic properties of the oxide/oxide material, due to the sustained microstructural damage 
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under operating conditions. Table 3 shows the lamina properties of AI2O3/AI2O3 at the 
various steps/time of the thermal exposure as they have been calculated by inverting the 
measured laminate properties to the respective lamina ones for a given laminate structure. 
For the purpose of the present analysis it was assumed that the developed damage does not 
affect the degree of anisotropy. All the thermal exposure experiments were conducted at 
1100° C and the evolution laws of the various stiffness components, with no lack of 
generality, were assumed constant with respect to temperature. Thus, after an initial thermal 
analysis step, where the actual temperature of the component was identified, the combustor 
was divided to temperature zones and the stiffness degradation laws were applied to the 
temperature zones that exceed 1000° C. 

4. MODEL DESCRIPTION 
The outer liner of the combustion chamber was modelled using 4414, 8-node SHELL99 
layered elements [5]. Reduced modelling was used since the component exhibits rotational 
symmetry. Thus, only the 1/16 of the whole chamber was introduced in the model along with 
the appropriate symmetry conditions, in order to reduce run time. The liner is held on its 
supports with 16 screws. This condition was transferred into the numerical model using 
appropriate nodal displacement constrains on the area of contact between the liner and the 
supports. A 15 bar pressure was uniformly applied on the liner. 

i 

£&gS 

Figure 3: View of the geometric 
model using symmetry expansion. 

Figure 4: The finite element mesh. 

Thermal loads were neglected at this stage in order to simplify the analysis and to focus on 
the influence of the anisotropic stiffness degradation on the mechanical response of the 
combustor liner. 
The lay up sequence used for the layered material was (0/±45/90)2s. This results to a 4mm 
thickness for the component. The material properties used were calculated from a series of 
tests conducted on the AI2O3/AI2O3 ceramic material as described in the previous section. 
Ten sets of material properties were used in equal analyses to depict the degradation 
sustained by the material, due to the microstructural damage developed during its exposure to 
the extreme temperature environment of the combustion chamber. 
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Operation Time 
(hours) 

Ei 

(GPa) 
E2=E3 

(GPa) 
Gl2=Gi3 

(GPa) 
G23 

(GPa) ni2=ni3 ri23 

0 118.768 20.959 20.000 8.000 

0.15 0.25 

25 112.660 19.881 19.400 7.760 

50 108.588 19.163 18.800 7.520 

75 104.855 18.504 18.350 7.340 

100 101.801 17.965 18.000 7.200 

150 96.711 17.067 17.500 7.000 

200 93.318 16.468 17.200 6.880 

300 90.773 16.019 16.900 6.760 

400 89.076 15.719 16.800 6.720 

500 88.228 15.570 16.700 6.680 

Table 3: Material properties used in the analysis 

5. NUMERICAL PROCEDURE 
The stiffness degradation of the ceramic material cannot be simulated with standard material 
models. In order to avoid the complicated procedure of developing a new material model, a 
simple procedure was selected for the analysis. The analysis was conducted in ten steps in 
order to simulate the non-linear behaviour of the material in the presence of microstructural 
damage. The overall procedure is based on a Newton-Raphson approach for the solution of 
the non-linear problem, being applied using multiple analysis runs. For each analysis step the 
deformed geometry resulting from the previous step, was used to update the model to the 
current deformation condition. In this way, displacement continuity was achieved. The results 
of the last analysis step show the condition of the liner at the end of the 500-hour operation 
time. 

6. RESULTS 
Displacement and stress data were recorded for each analysis step. The evolution of the 
maximum displacement in the form of radial expansion is presented in Figure 5 against the 
operation time in hours. A second curve that represents the variation of E, stiffness 
component of the single lamina versus the operation time in hours is also given in the same 
Figure. For each stress component, the evolution of the maximum values, with respect to the 
engine operation time, is plotted for the respective critical locations. Figure 6 shows the 
critical nodes for which the stress components will be given in the next. The use of layered 
elements in the analysis allows for the computation of the stress distribution through the 
laminate thickness. 
Figure 7 presents the through thickness variation of the axial stress component at the node 
13027, which is the node were the maximum values for the axial stresses appear. 
Figure 8 plots the variation of the maximum axial stress, which has been monitored at the 
outer layer (0° degree layer) versus the operation time of the gas turbine. 
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Figure 5: Radial expansion and stiffness 
degradation of the liner versus engine operation 
time. 

As it is shown, there is a 10% increase of the maximum axial stress experienced by the 
material at the said point, due to the anisotropic degradation of the lamina properties caused 
by thermally induced damage. 

| «Axial Stress at node 13024   | 

Lamina 

100 200 300 400 500 

Operating Time (hours) 

Figure 7: Axial stress distribution through        Figure 8: Axial stress at node 13024 vs. 
the laminate at node 13024 engine operation time 
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Figure 9: Hoop stress distribution through 
the laminate at node 8332 
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Figure 10: Hoop stress at node 8332 vs. 
engine operation time 
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Figure 9 shows the through thickness variation of the hoop stress component at the node 
8332, which is the node were the maximum hoop stresses appear. 
Figure 10 presents the variation of the maximum hoop stress versus the operation time of the 
gas turbine. In this case, the decrease of the maximum hoop stress appears to be of 3%, as a 
result of the thermally induced damage within the material structure and the increase of the 
axial monitored stress. 
Figure 11 shows the through thickness variation of the shear stress component at the node 
13079, which is the node were the maximum shear stresses appear. 
Figure 12 presents the variation of the maximum shear stress, which has been monitored at 
the outer layer (0° degree layer) versus the operation time of the gas turbine. In this case an 
increase of the maximum shear stress of about 5% appears as a result of the thermally 
induced damage within the material structure. 

Lamina 

Figure 11: In plane shear stress distribution 
through the laminate at node 13079 
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Figure 12: In plane shear stress at node 
13079 vs. engine operation time 

Figure 13 shows the deformable shape of the analysed component and the corresponding 
displacement contours of the outer lamina, while Figure 14 presents the axial stress contours 
that correspond to the outer-critical lamina. Under the given loading conditions the maximum 
monitored displacement is of the level of 0.17 mm. 

Figure 13: Displacement contour Figure 14: Axial stress contour at lamina 16 
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Finally, Figure 15 shows the hoop stress contours monitored at the lamina 4 while the shear 
' stress contours developed at the lamina 15 are given in Figure 16. 
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Figure 15: Hoop stress contour at lamina 4 Figure 16: In plane shear stress contour at 
lamina 15 

7. CONCLUSIONS 
An Oxide/Oxide composite material was used for the design and the manufacturing of the 
combustor liner of an industrial gas turbine system. 
Analytical characterization of the material was conducted at ambient and high temperature. 
Additional characterization of the material at ambient temperature was also made using 
ultrasonic waves. Since the exposure of the Oxide/Oxide composite at high temperature (over 
1000° C) results to the development of anisotropic damage within the material structure, it 
concludes to anisotropic degradation of the composite properties. Using ultrasonic waves, the 
complete characterization of the Oxide/Oxide lamina properties at different high temperature 
exposure time is available. 
For the design of the combustor liner a series of FE analysis was applied using a give, easy to 
manufacture stacking sequence for the laminated structure. Results showed that the 
Oxide/Oxide composite fulfils the design requirements for high temperature structural 
applications and may be considered as a very promising candidate material in future 
application. In addition, for design of high temperature components using CFCCs, innovative 
design methodologies that take into consideration the anisotropic damage, which is developed 
within the material structure under operation conditions, is necessary. 
Future work that has been already planned includes coupled thermo-mechanical analysis and 
the introduction of material models that permit anisotropic damage and properties 
degradation with respect to exposure time and working temperature. 
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1.   SUMMARY 

The aim of this article is to derive the distribution of stress and strain in bonded rubber 
discs subjected to uniaxial compression. The axial stress was analytically computed using a 
neo-Hookean strain energy function. The testing material is Hyperelastic and incompressible 
and the equilibrium equations lead to the solution of two separate ordinary differential 
equations. Their solution yields the radial profile of displacement and the distribution of 
pressure as a function of the axial coordinate within the compressed sample. Using the 
condition that the free surface of the cylindrical samples is stress free, the pressure term was 
explicitly determined. The axial stress was also determined using the equilibrium equations 
of the deformed material and taken its mean value along the radial direction. The theoretical 
predicted axial stress was compared to experimental data for reinforced elastomeric samples 
subjected to compression. 

2.   INTRODUCTION 

The importance to understand the micro-fracture process, reinforcement, adhesive joint 
strength and explosive decompression in rubbers, extensive experimental studies were 
contacted previously by the author using the Acoustic Emission Technique [1]. Various 
theoretical approaches to evaluate the stress and displacement fields within bonded 
elastomeric discs subjected to uniform tension and/or compression were adduced by Blatz 
and kakavas [2]. An effective material property, veff, was derived which is consistent with 

the measured values of the normalized volumetric contraction, y= -u0(a)/ae and the initial 

modulus from the triaxial tests on compression and tension. 

The geometry of the testing samples were bonded circular discs the so-called 'poker chip', 
where their chemical composition was described in previous articles published by the author 
and co-workers [1,2,3]. Analytical expressions for the axial stress in bonded elastomer discs 
subjected to triaxial stress were derived using a neo-Hookean strain energy function and an 
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algebraic equation was developed to correlate the diametrical contraction of the testing 'poker 
chip' samples with the applied strain [4]. A theoretical equation of the nominal stress based 
on the average value of the axial component of stress was also developed and the derived 
numerical values were compared to experimental data [5,6]. 

In the present paper, after the introduction of basic equations of nonlinear rubber elasticity, 
the deformation gradient tensor F, was developed for incompressible bonded circular discs 
subjected to uniaxial compression along the axial direction. The axial components of the 
Piolla stress were derived for 'poker chip' type of samples by assuming that the material is 
incompressible and a neo-Hookean strain energy function was assumed for the derivation of 
the stresses. 

3.   DESCRIPTION OF THE PROBLEM 

The geometry of the testing specimens was a circular cylindrical disc of radius R=A 
and thickness Z = 2H where the ratio a = A/H is called aspect ratio. For a circular 
cylindrical coordinate system in the undeformed state, the coordinates are denoted by 
(R,0,Z) and their corresponding deformed by (r,8, z). Along this analysis the following 
assumptions hold [5,6] (1) In the deformed configuration planes normal to the direction of 
the applied load remain planes (2) The volume change is uniform throughout the body and 
depends upon the Poisson ratio, the aspect ratio and the applied compression. (This 
assumption is more accurate when the aspect ratio is large.) 

By virtue of the first assumption, and the cylindrical symmetry of the problem, the deformed 
coordinates with respect to its undeformed are defined by: 

r = r(R,Z),V=:6,z=C(Z) (la) 

where the function C(Z) on the upper and lower surfaces of the sample satisfies the condition: 

C(±H) = ±h (lb) 

Since, at r(R=0) = 0, holds [5,6]: 

r = Rx(Z) ,*(±//) = l (2) 

It can be proved that the Piolla stress tensor is given by[4]: 

T_ 
X-PX'' 0 pRxx' 

o      x-p/x        o 
Rx'        o     X~

2
-PX

2 

(3) 

Substitution the stress tensor into equilibrium equations yields: 

$L = o=*p*p(e) (4) 
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i.e. the pressure p is independent of the tangential coordinates. 

Also, holds that [4]: 

-£JL + Rl» = 0 andRp^x'-^j-x'p, =0 

1% 
XX  -xx   =0 . Po(z) = -   5 

X 

The solution of the ordinary differential equation (6a) yields the %(Z), i.e. 

cos(mZ) 
r = R- Vm = 0,1,2,3,. 

(5) 

(6) 

(7) 
cos( mH) 

A plot of the normalized profile r/R as a function of the axial coordinate z is shown in Fig. 1. 

r/R 

Nec 

Cor 

-Hookean 

npression 

• ^\   1.5 

1 

mH=0.5 

 1   1   1 1 —•—I   1  

0,0 0,4 0,6 
Z/H 

1,0 

Figure 1: Profile of the normalized radial displacement r/R as a function of the normalized z 
coordinate 

And the pressure term is given by: 

1 cos4(mH)    R2m2cos2(mZ) 
p(R,Z) = p00 + j—r 2 

2 cos (mZ)       zcos (mH) 
(8) 

The component of the radial stress is: 
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T«     cos(mZ)    cos(mH) r 1 cos4 (mH)    R2m2cos2(mZ) , 
H      cos(mH)    cos(mZ) 2 cos (mZ)       2cos (mH) 

where \x defines the shear modulus of the material. 

The outer surface of the 'poker chip' sample is considered stress free, i.e. 

\"1L dZ = 0 

Replacing eqn (9) into eqn (10) and integration yields the value of poo, i.e. 

pm(w,a) ={- 
,2tan(w)    sin(w)    3 3  tan(w)cos (w) 

cos(w) 

3 tan( — + — ) ,      . ,   , 
 cos (w)ln( —^— )+a w2tan(w l/ln  [—^ 

J6 ,n     w ■  '   ' 
tan( ) 

4    2 
1 - sin(w) 

where w = mH 

A plot of the parameter p()o as a function of mH is shown in Fig. 2 
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Fig. 2 Poo vs. mH 

It can also proved that the axial stress is: 
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jLu^^-^^.[Pn-(JLf(mIIfS^.j (12) 
ft      2cos2(mZ)    cos2(mH)    °°     H cos2(mh) 

By taken the mean value of eqn (12) along the axial direction yields: 

Zl\__L+fZl^7--_^_^„/„,u^2/...i_..  Poo     /tisin(2w) 

(13) 

£-) = ^- j^äZ = ^tan(W)cos2(W)--^(l + ^) + 
H I    2H _J

H ft 2(w) 2cos2(w) 2w 

1 r2   (W)2    [3 \2Sin{2w) \ lsin(4w)j 
4     cos"(w)  2        (2w)      2   (4w) 

where w = mH and r = R/H 

The value of the normalized stress upon the bonded surfaces in z-direction are given by: 

u    nA2l\ii/ 

where A denotes the radius of the bonded rubber sample. 

Hence, 

^        1      ■ /i   !        Poo     /i    sin(2w) , — = .sm(2wj i-f—(1 + —■—-) + 
ft    2(2w) 2cos2(w) 2w 

(15) 

1 (aw)2    3      sin(2w)    1 sin(4w) 
8cos"(w)   2 (2w)   + 2   (4w) 

where the function poo(w) is given by eqn (11). 

For incompressible materials (J=l), the function £(Z) is given by: 

C(Z) =—tan(mZ)cos2(mH) (16) 
m 

where C(H) =XH , X being the compression ratio. 

Hence, 

^ _ tan(mH)cos2(mH) = J   c ^c = l  sin(2mH) 
(mH) '   (2mH) 

where e is the applied compression strain. 
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Equation (17) correlates the applied compression on the specimen to the product mH. A plot 
of the theoretically predicted stress in the axial direction 77//, as a function of strain is shown 
in Fig. 3. 

strain % 

0 0.83 2.89       5.83       10.64     15.76      22.38 

Figure 3: Normalized stress T/\i as a function of applied strain on the bonded cylinders. 

As it is clear for Fig. 3 the axial stress distribution in 'poker-chip' samples the experimental 
datafl] were fitted theoretically up to applied strain 25%. The present problem is currently 
under investigation using a new strain energy function for Hyperelastic solids proposed by 
the author[7]. 
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1. SUMMARY 

Prostate cancer is the most prevalent male cancer. The existing testing methods are subjective 
and not quantitative (Digital Rectal Examination) or not sufficiently accurate or expensive 
(ultrasound, biopsy). There is a need for a simple, yet accurate method to detect changes in 
the mechanical properties of the prostate as a replacement of the DRE. We developed a new 
device, which is able for geometric representation and objective measurements of the 
stiffness of the prostate tissue, based on image processing of data taken with a micro camera 
from an inflated balloon inserted in the rectal area and touching the prostate. 

Computer based digital image processing applied consists of: transformation of image data 
(captured by micro camera) to intensity matrix, image enhancement (contrast, brightness), 
block processing and relative distance calculation (shape from shading method), calculation 
of relative stiffness value corresponding to each block and objective data mapping 
(containing geometric representation of the prostate, calculation of prostate area and stiffness 
map). For this purpose a genuine algorithm was developed. 

The research prototype built was successfully applied to models for prostate diseases and 
cadaveric tissues for preliminary assessment. The results encouraged the first clinical 
application in vivo, which has demonstrated that there were no side effects mentioned by the 
doctors or the subjects examined. The reproduction of the stiffness map enables the 
assessment of the changes in mechanical properties of each prostate surface. In all cases, 
results can be compared and are in agreement with the results of conventional methods (DRE, 
ultrasound). Hence the proposed design is feasible and can lead to a diagnostic tool. This 
design will be used to validate in clinical setting the sensitivity and specificity of the device 
developed. 

Contact Person: S.D. Panteliou, Machine Design Lab. Dept. of Mechanical Engineering & Aeronautics, 
University of Patras, Patras, Greece, Phone: 30-61-997206, Fax: 30-61-997207, 
email: panteliu@mech.upatras.gr 
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2. INTRODUCTION 

Physical examination is one of the principle physician's sources of information for patient's 
evaluation in the everyday clinical practice and is based on manual examination of different 
organs and systems. Its importance is based on information on the physical and mechanical 
properties of living tissues, detecting pathological signs of disease, as the mechanical 
properties of biological tissues depend on their morphological structure, circulation 
architecture and neuromuscular status. Physical examination however, relies on physician's 
experience and the tactile properties of the human fingers. Human tactile sensors in the skin 
recognize the characteristics of an object by using the sense of touch and/or tactility in 
coordination with the movements of the hand and/or finger. Human touch provides the 
necessary feedback to identify the object in question and the collected data contain qualitative 
information about their textural patterns, such as shape, hardness or softness. Part of these 
data is qualitative and the reminder is semi quantitative. Such limitations make the 
examination's results subjective and non-reproducible. It is evident that objective quantitative 
and reproducible measurement of even the simple mechanical parameters, such as stiffness, is 
of critical importance for every physician, regardless of his specialty. 

The structures of the urogenital system are of particular importance in that their dysfunction 
constitutes a significant part of male pathology. Specifically the prostate gland (Carter H.B., 
Coffey D.S., 1990) is subject to ultra structural changes due to benign prostate hyperplasia 
(the most common benign disease of the male)(Barry M.J. et al., 1993) and cancer of the 
prostate (the most common cancer of the male) (Wingo P.A., Tong T., Bolden S., 1995). 
Physical examination of the prostate relies on the digital rectal examination of the prostate; 
physicians examine the mechanical properties of the gland by inserting the finger in the 
rectum and palpating the gland. Enlargement of the gland is evidence of benign prostate 
hyperplasia, while detection of areas with increased stiffness is suspicious for prostate cancer. 
It is clear that DRE plays a key role, at least for the decision for further diagnostic testing of 
the organ, although the human finger may not detect minor changes in stiffness -associated 
with early stage disease-, or fibrotic nodules associated with inflammatory disease and not 
cancer (Carvalhal G.F., Smith D.S., Mager D.E., Ramos C, Catalona W.J., 1999), (Catalona 
WJ, Richie JP, Ahmann FR et al., 1994). Human hand sense of hardness for soft tissues 
however depends on: a) the thickness of the tissue (as the thickness of the tissue is reduced, 
the felt hardness increases), b) the contracting area and c) the contract pressure. Such sensory 
performance is inappropriate for medicine, a science dealing with human life (Sarvazyan et 
al. 1998). Over the past few years, there have been numerous studies on tactile sensors for 
object recognition. An artificial tactile sensor therefore, in order to possess human hand-like 
characteristics may imitate these conditions. Unfortunately, conventional tactile sensors, 
consisting of miniature micro switch, strain gauge, resistive sensor and pressure sensitive 
piezoelectric element, do not satisfy the above conditions (Omata S., Terunuma Y., 1992). In 
particular, previous work to develop sensor technology to provide calibrated physical values 
of tissue compliance in a noninvasive manner, were not successful in vivo (Constantinou 
C.E., Omata S., 1996). 

During the last year, we developed a methodology based on image processing techniques [A. 
Bovik, 2000], for a qualitative and quantitative assessment of the prostate. 



383 

3. DESCRIPTION OF THE DEVICE 

An optical method is applied (Fig. 1). In the rectal area 1, an Anoscope Tube with an 
inflatable balloon 3 is used against the prostate gland 2 (with or without tumor). The balloon 
is inflated to a desired pressure by a connection 4 to a regulated air pressure supply source, 
through a tube 5. The same tube conveys light that has been modulated to light the balloon in 
the prostate area. The balloon is sealed with a seal 7 against air leaks. The tube 5 also 
contains a video micro-camera 6 at its distal end, which can transmit pictures of the observed 
balloon surface to an electronic controller, such as a PC computer, through the tube 5 and 
cables 8. Every point on the surface of the prostate is under a certain pressure that is 
approximately equal to the air pressure inside the balloon. 

Figure 1. Optical Prostate Geometric Imaging and Prostate Stiffness Imaging 

The measuring procedure consists of a first step of introducing the balloon 3 with the 
measuring head that consists of tube 5 and the video micro-camera 6, inside the rectal 
cavity 1, inflating the balloon to sufficient pressure P2 so that the balloon contacts the 
prostate over the desired surface, lighting the balloon inside surface, transmitting the image 
of the inner surface of the balloon at the area of contact with the prostate tissue under 
investigation to the computer 8. Then, the air pressure in the balloon is released to PI and the 
new image of the soft tissue or tumor is recorded. From the difference in brightness of these 
two images, the displacement of each point in a direction perpendicular with the surface, due 
to the change in pressure, can be computed. From these data, stiffness per unit of surface area 
can be obtained. The user can get both the 3D representations of intensity images and the 3D 
stiffness map on a PC. The distribution of stiffness values and their percentage are also 
obtainable. The described images can be compared with standard images to yield the 
diagnosis of a malignant prostate tissue if the differences are medically significant. 

4. IMAGE PROCESSING 

The optical method used is based on digital images of the inner surface of the balloon in 
contact with the prostate surface, captured by the micro-camera, that are processed by means 
of sequential filtering and identification of the prostate volume. This is done through software 
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developed for this purpose capable to compare two pictures corresponding to the different 
pressures PI and P2 (Figure 2). The method called shape-from-shading is one of shape-from- 
X methods, which are well known in image processing environment [Tsai P.S., Shah M., 
1994]. This method is based on representing the height of the point on the surface by the 
pixel value in that point on the image taken by the device. It is assumed that brighter points 
are closer to the camera, hence higher, while darker points are more distant from the camera, 
hence lower. The first step is to transform the image into 2D array, the intensity matrix, 
containing information about intensity value for every pixel of the image. By applying shape- 
from-shading algorithms and image processing techniques, it is possible to obtain the 3D 
representation that is very close to the real shape. The idea of this method is to take the two 
images at pressures PI and P2 (Figure 2), then produce their 3D representations (Figure 3), 
and then, by subtracting the 3D representations, that is subtracting the intensity matrix of the 
second image from the intensity matrix of the first image, to recover changes in shape and to 
obtain the stiffness per unit of surface area from these changes, as it was described previously 
(Figure 4). This procedure will enable the user to identify the prostate boundaries, thus 
producing its geometric representation, as well as areas on the prostate that exhibit stiffness 
values above normal, hence suspicious for cancerous developments. This is done through 
assessment of the intensity of the brightness of each point and is due to the pressure 
addressed on the prostate area through the inflated balloon, thus permitting the user to 
identify stiffer and less stiff areas, which are expected to guide the medical personnel to more 
detailed detection methods (i.e. U/S, biopsy). From then on, elaboration of information of 
such graphs will lead to production of prostate maps distinguishing stiffer than less stiff 
areas. This will be achieved through comparison of the extracted information with controls. 

»WS«y MM« «K ffetmwHj tolfflbfy Mafcw If» P*$ftmiH$ 

Figure 2. Images of the prostate at pressures PI and P2 captured by micro-camera. 
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Figure 3. 3D representations of Images (brighter areas represent higher points). 
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Figure 4. Geometric Representation and Stiffness Calculation and Distribution 

5. CLINICAL APPLICATION 

After the successful experimentation (Panteliou et al 2000, UavteXiov K.<X. 2000, Sunaric et al 
2000) on prostate models used for training of medical students, the next step was the in vivo 
application of the device. More than 60 measurements in vivo were performed on 29 
informed volunteer patients. Frames were taken with the micro-camera in a pressure range of 
16 and 100 mm Hg. A typical set of images and results taken from these tests are showed in 
Fig. 5,6. 
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>.:■.■: 

[1& 

Figure 5. Images Captured with the Micro-camera during in vivo Application. 

Despite the technical difficulties raised during the standardization of the procedure, the 
method was able to identify differences in the stiffness of the points of each prostate, while it 
was in agreement with DRE results in 70% of the cases. 
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Figure 6. Geometric Representation - Stiffness Calculation and Distribution (data in vivo). 

6. CONCLUSIONS 

The design and development of the above mentioned device, based on image processing of 
pictures taken at the inside of an inflated balloon inserted in the rectal area and touching the 
outer surface of the prostate, is expected to lead after evaluation to an accurate method for the 
assessment of the mechanical properties of the prostate gland, through its geometric and 
stiffness representation. 

In comparison with the DRE (Digital Rectal Examination) the proposed device will be: 
a. Objective and establish a permanent record of the examination for future comparisons. 

Present method is subjective and not unambiguously recordable. 
b. More acceptable to both patients and physicians. 
c. Totally non-invasive due to minimal disturbance of the prostate. 
d. Less costly as compared to other imaging techniques, such as ultrasonography. 

Besides this, the device seems to have a variety of other biomedical applications, where the 
characteristics of soft or hard tissue need to be evaluated. 
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1. SUMMARY 

A three - storey building structure from elastic material is modeled using Lexan and its 
behavior under an external static loading is examined. Using the photoelastic method we 
inspect the stresses at shear walls and the experimental results are compared with the 
corresponding results of a computational model by finite element method application which 
was developed to describe the problem. 

2. INTRODUCTION 

The experimental model is a three storey (level) 3D building, having three flat shear walls 
and one of a "IT" - shape, used for the elevator, at every level. The framework plan of the 
typical level of the building is shown in Fig. 1. Point "A" represents the point in witch the 
external loading is applying. Points "B" and "C" at levels 3 and 2, respectively are the exact 
points where the displacement is measured. 
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Figure 1: Framework plan of the typical level 
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Photoelastic analysis is widely used for problems in which stress or strain information is 
required for extended regions of the structure. It provides quantitative evidence of highly 
stressed areas and peak stresses at surface and interior points of the structure. 

3. FINITE ELEMENT ANALYSIS METHOD 

For the finite element analysis of the building we used a four node quadrilateral thin flat shell 
element, which has six degrees of freedom (dof) per node. The sixth dof is obtained by 
combining a membrane element with a normal rotation 9z, the so-called the drilling degree of 
freedom, and a discrete Kirchhof plate element. The drilling dof is introduced via the 
variational formulation. The variational formulation employs enforcement of equality of the 
independent rotation field and skew-symmetric part of the displacement gradient. 

In small displacement models of flat shell elements, the effects of membrane and bending 
strain are not coupled in the energy expression within the elements. Coupling occurs only on 
the interelement boundary. Therefore, we consider a flat shell element as combination of a 
plane stress element and a plate bending element. In the combinded element subject to 
membrane and bending actions, the displacements prescribed for 'in-plane' forces do not 
affect the bending deformations, and vice versa. 

The drilling degree of freedom may be physically interpreted as a true rotation of the vertex 
bisecting the angle between adjacent edges of the finite element. A scematic of the angle 
bisector and associated partial derivatives in element displacements is shown in Fig. 2. 

dli/dy 

Undeformed Plate 

Nodal degree of freedom moved 

Figure 2: Physical interpretation of the drilling degree of freedom 

•-Mr- 2   dx 
(1) 

The drilling degree of freedom is defined as: 

du 

~dy~) 

Flat shell finite elements may be formulated through the use of a variational formulation that 
includes an independent rotation field for the drilling degree of freedom. The variational 
formulation is due to Hughes and Brezzi [1, 2]. It employs the skew-symmetric part of the 
stress tensor as a Lagrange multiplier to enforce the equality of independent rotations with the 
skew-symmetric part of the dispacement gradient. Taylor subsequently combined the 
variational formulation with an Allman-type interpolation for the dispacement field with an 
independent interpolation field of rotation [3]. 

The variational formulation suggested by Hughes and Brezzi [1, 3], can be described as 

n  I«,*  =—J symmlVu \-C■symml'Vu \dCl + — pj /vi skew\ v u -a> dü-j ufdQ.   (2) 
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where u, Q> are trial displacements and rotations of the region Q, f is the external general 
forces, and/) is a penalty. The corresponding variational formulation is: 

0 = Dnp[U,O |«,Ö ]=Jnjymmf VM Ic-jymmf V« }dQ 

■PL skew] V«  -<J> dQ-j u-fdCl skew\ VH  -<1> 

The first term in the variational equations produces the element stiffness matrix, 

W = \n[Bj[Cp]dCl 

(3) 

(4) 

The plate bending component of the shell element corresponds to the 12 dof discrete 
Kirchhoff quadrilateral plate element (DKQ), and is derived in detail using the discrete 
Kirchhoff technique. The DKQ element formulation is based on the discretization of the 
strain energy. The model neglects the transverse shear strain energy. 

4. FINITE ELEMENT ANALYSIS MODEL 

The corresponding model is shown in Fig. 3a. It consists of 3496 nodes and 3346 elements. 
We have tried several mesh sizes and in this paper we present a medium one. The deformed 
shape of the model is shown in Fig. 3b. The model's elastic isotropic material has a Young 
modulus of E = 280000N/cm2, and a Poisson rate of v = 0.36. 

Figure 3a: Finite element analysis model, 3b: Deformed shape of the building 

5. EXPERIMENTAL ARRANGEMENT 

The specimen was made of Lexan of thickness 6 mm. This material is suitable for both 
photoelastic and caustic optical method techniques. According to the photoelastic method the 
specimen is placed between the plates of a circularly polarized field, so that isochromatic 
fringes patterns can be taken. These fringes give the principal stress difference of an existing 
stress field. The experimental model is shown in Fig. 4. 

The external load is applied at point "A". The starting value is zero and gradually reaches 
600N when the joining between the parts of the specimen starts failing. We have also 
measured the displacements at points "B" and "C" shown in Fig. 1. 
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Figure 4: Experimental model 

6. EXPERIMENTAL RESULTS - COMPARISON 

The isocrhromatic pattern is related to the pricipal stresses by the stress - optic law: 

ff,-ff2=2Tm„=|iV (5) 

where 07, 02 are algebraically the maximum and minimum principal stresses, respectively, 
Xmax is the maximum shear stress, C is the stress - optic coefficient and N is the relative 
retardation of rays forming the pattern, also known as isochromatic fringe order. 

In terms of the isochromatic pattern, the isochromatic fringe order, N, at a point is 
specifically defined as the number of fringes that pass through the point during the 
application of the external loads. The isochromatic pattern of this experimental model is 
shown in Fig. 5. 

Figure 5: Isochromatic pattern 

Therefore, in Fig. 6d we count 4 fringes. Taken that the stress - optic coefficient of Lexan is 
16 A2N/cm the principal stresses difference is 109.47 N/cm. We studied both the shear walls 
that belong to the elevator and the flat shear wall at the top of the framework plan of the 
typical level (Fig.l). At the next photographs we present the behavior of the flat shear wall at 
the top of the floor plan, as the value of the external loading is being increased from zero to 
60(W. The direction of the principal stresses as they are obtained by the finite element 
analysis are shown in Fig. 7. 



392 

nil 
IllilillHiilfi IPIllllSlsSil 

Figure 6: Photoclastic pattern for externaly applied load equal to a) ON, b) 200N, c) 400N and d) 600N 

Figure 7: Principal stresses F.E.A. 
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The comparison between the displacements mesured at point B (Level 3), C (Level 2) and 
those from the finite element analysis are presented at Fig. 8b. 

Figure 8a: Experimental principal stresses - F.E.A., 8b: Experimental displacements - F.E.A. 

7. CONCLUSIONS - FUTURE WORK 

The concluding result is that the specific element type can be used to model the experimental 
specimen in a very satisfactory degree, which is not far enough from a real life building 
structure. The main assumption that the building's behavior falls into the elastic area will be 
soon raised as we have already proceeded developing the plastic formulation of the specific 
element and we shall present it soon. 
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1. SUMMARY 

An analytical investigation of the failure behavior of a composite material with a broken fiber 
was undertaken. The problem was modeled as a cylindrical element of matrix with a single 
fiber subjected to uniform axial displacement along the fiber axis. The stress field near the 
fiber break was determined by a finite element code. The results of the stress analysis were 
combined with the strain energy density and the strain energy release rate failure criteria to 
study initiation of failure from the fiber break. Results for crack growth into the matrix or 
along the fiber-matrix interface were presented for various combinations of material 
properties and geometrical dimension of the composite cylindrical model. 

2. INTRODUCTION 

Failure of fiber reinforced composites is generally preceded by an accumulation of different 
types of internal damage. Failure mechanisms on the micromechanical scale include fiber 
breaking, matrix cracking and interface debonding. They vary with type of loading and are 
intimately related to the properties of the constituents, i.e., fiber, matrix and 
interface/interphase. While failure mechanisms are common in most composites, their 
sequence and interaction depend on the type of the loading and the properties of the 
constituents. Study of the progressive degradation of the material as a consequence of growth 
and coalescence of internal damage is of utmost importance for the understanding of failure. 

The problem of stress distribution in a composite consisting of a single fiber embedded in a 
matrix was first studied by Cox [1], for the case where both the fiber and the matrix are linear 
elastic. It was assumed that the fiber is perfectly bonded to the matrix and the Poisson's ratio 
of the fiber and the matrix are equal. Other early studies referred to the problem of stress 
transfer from the matrix to fibers in a composite were presented by Dow [2], Rosen [3] and 
Kelly and Tyson [4]. In the above simplified models only the fiber axial stress and fiber- 
matrix interfacial shear stress are determined. An approximate closed from solution that gives 
the axisymmetric stress distribution in a system consisting of a single broken fiber surrounded 
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by an unbounded matrix was presented by Whitney and Drzal [5]. For a thorough study of the 
various forms of failure mechanisms of fiber reinforced composite refer to [6]. 

In the present work the stress distribution in a cylindrical element of matrix with a single 
fiber subjected to a uniform axial displacement along the fiber axis is analyzed. The results of 
the stress analysis are coupled with the strain energy density and the strain energy release rate 
failure criteria to study crack growth into the matrix or along the fiber-matrix interface in the 
cylindrical model. 

3. CYLINDRICAL MODEL 

Consider a cylindrical element of matrix with a single broken fiber (Fig. 1). Let rf and rm 

represent the radius of the fiber and the outer cylinder respectively, and 2d the distance 
between the two ends of the broken fiber. The element is subjected to a uniform displacement 
of 0.05 cm at its upper surface. Numerical results are presented for d = 0, 0.5 and 2 cm, rf=0.2 
cm and 1 cm and rm=10 cm. A crack of length a (a = 0.05, 0.2 and 0.4 cm) is considered 
along the matrix-fiber interface. 
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Figure 1: Cylindrical element of composite. 

The material of the matrix is an epoxy resin with Young's modulus E=3,400 MPa and 
Poisson's ratio v=0.34. The ratio of the moduli of elasticity Ef/Em of the fiber and matrix takes 
the values of 2, 5 and 10. 

For the finite element analysis, due to symmetry, one quadrant of the element needs to be 
modeled. Axisymmetric quadrilateral eight-mode elements were used. The number of 
elements varied between 2598 and 2958, which the number of nodes varies between 775 and 
875 depending on the geometry of the problem. The finite element code ABAQUS was used. 

4. STRESS ANALYSIS 

From the finite element analysis the stress distribution in the fiber and matrix of the 
cylindrical element were determined. Fig. 2 presents the variation of the normalized normal 
stress ai/amax along the axis of the fiber for rf = 0.2 cm, Ef/Em = 2 and d = 0, 0.6 and 2 cm. 
°max represents the maximum value of Oi that takes place far away from the broken fiber end. 
Note that the normal stress increases from zero at the broken fiber end to amax at a distance of 
approximately 4d!. Figure 3 presents the variation of the normalized shear stress ThmaK along 
the fiber-matrix interface for the same values of rf, Ef/Em and d as in Fig.2. xmax is the 
maximum value of the shear stress at the fiber break. The interfacial stress decreases from a 
maximum value of the broken fiber end to zero at a distance of approximately 4d. Fig. 2 and 
3 establish that the transfer of load between the fiber and matrix takes place by the interfacial 
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shear stress along a critical transfer length. These results are qualitative in agreement with the 
shear lag analyses of [1-4]. 
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Figure 2: Normalized normal stress a,/cw Figure 3: Normalized shear stress T/xmax 
versus distance (y-d)/rf for T(=0.2 cm, versus distance (y-d)/2rf for rf=0.2 cm, 
Ef/Em=2 and d=0, 0.5 and 2 cm. E/Em=2 and d=0,0.5 and 2 cm. 

5. FAILURE ANALYSIS 

For an increasingly applied normal load failure initiation from the fiber break takes place. 
Two cases are considered: crack growth into the matrix or crack growth along the matrix fiber 
interface. They are studied separately in the following sections. 

5.1 Crack Growth into the Matrix 

For the study of crack growth from the fiber break into the matrix the strain energy criterion 
is used [7]. The fundamental quantity is the strain energy density function, dW/dV, which for 
crack problems takes the form 

dW 

dV 

S 
r 

(1) 

where S is the strain energy density factor and r the radial distance measured from the site of 
failure initiation. Crack propagates along the direction of relative minimum strain energy 
density and occurs when dW/dV reaches its critical value (dW/dV)c. For the case of the 
epoxy matrix considered in this work (dW/dV)c=2.66 MPa. 

From the stress analysis coupled with the strain energy density theory the critical load, Pc and 
angle, (pc, for initiation of crack growth from the fiber break into the matrix are obtained. 
Results are shown in Table 1 for d=0 and 2 cm. Note that the crack propagates into the matrix 
at an angle cpc ranging between 41 and 70 degrees. This indicates the mixed-mode loading 
conditions dominate at the crack tip. 

Table 1: Calculated results 
d = 0 d = 2 

E,/Em=2 E,/Em=10 E,/Em=2 E,/Em=10 

r,=0.2 Tf=l TF=0.2 ri=l rF0.2 T(=\ r,=0.2 rf=l 

(N)Pc 130751 124256 39572 46445 485466 309692.9 172637 369549 

(N/cm2) 
(dW/dV)mi„ 

112.9 137.6 1258.3 1478.3 8.2 22 66 220.1 

Tcovia (pt 45 45 43 41 69 52 70 55 
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5.2 Crack Growth Along the Interface 

The study of crack growth along the fiber-matrix interface was conducted by using the strain 
energy release rate criterion. The strain energy release rate, G, was calculated for different 
lengths of the interfacial crack. For details about the calculation of G refer to [8]. Figure 4 
presents the variation of G versus crack length for a fiber volume ratio Vf=0.01, d=0, an 
applied displacement 0.05 cm and Ef/Em=2, 5 and 10. The values of opening-mode, KI; and 
sliding-mode, Ku, stress intensity factors are shown in Figs 5 and 6. Note that G as well as Kt 

and Kn remain almost constant for crack lengths larger than 2 mm (except for Ef/Em=10). 

Figure 4: Variation of strain energy release rate G versus crack length a 
for d=0, V(=l% and E|/Em=2, 5 and 10. Applied displacement 0.05 cm. 

Figure 5: Variation of opening-mode stress 
intensity factor, KI; versus crack length a for 
d=0, V,=l% and Ef/Era=2, 5 and 10. 
Applied displacement 0.05 cm. 

Figure 6: Variation of sliding-mode stress 
intensity factor, Kn, versus crack length a for 
d=0, VF1% and E^Em=2, 5 and 10. 
Applied displacement 0.05 cm. 

5.3 Failure Mode Prevalence 

Crack growth into the matrix of along the interface from the fiber break depends on the 
relative values of the strain energy density factor, S, and the strain energy release rate, G. 
Thus, crack growth along the interface occurs when 

G     G, 
(2) 
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where 
Sm : strain energy density factor for crack growth in the matrix 
Smc: critical strain energy density factor for the matrix 
Gi : strain energy release rate for crack growth along the matrix-fiber interface 
Gic : critical strain energy release rate for matrix-faber interface 

When the inequality of relation (2) is reversed the crack propagates into the matrix. The strain 
energy release rate G is obtained from the function G=G(a) by letting a to tend to zero. The 
critical value Gic of G; is a characteristic of the matrix-fiber system. The critical value Smc of 
Sm is obtained by 

•S„, = r„ 
dW 
dV 

(3) 

where (dW/dV)c is the area under the true stress-strain curve of the matrix material in tension 
and r0 is a material constant given by r0= 2.65x10" cm. 

Results for the prevalent failure mode of crack growth in the matrix or along the matrix-fiber 
interface were obtained as a function of the bimaterial constant a, 

a = =L —- 
Ef+Em 

where for conditions of plane strain E = E/(l - v2). 

(4) 

Figs 7 and 8 present the variation of Sm/Gi versus a for various values of d and Vf. The curves 
of the figures separate the plane of Sm/Gra into two regions, one above and another below the 
curve. For those combinations of Sm/Gj and a that fall above the curve crack growth takes 
place along the matrix-fiber interface; for the others the crack propagates into the matrix. 
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Figure 7: Variation of Sm/Gi versus a for Vf =0.04% and (a) d=0 cm, (b) d=2 cm. Crack growth takes 
place along the interface or in the matrix for combinations of Sm/Gi, a above or below the curve of 
figure, respectively. 
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Figure 8: Variation of S„/Gj versus a for Vf =1% and (a) d=0 cm, (b) d=2 cm. Crack growth takes 
place along the interface or in the matrix for combinations of SJGt, a above or below the curve of 
figure, respectively. 
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1. SUMMARY 

Raman spectroscopy was used to get an insight into the microstructural aspects of the 
mechanical response of carbon fibre composites under various loading conditions (tension, 
compression and fatigue). This is done by an assessment of the stress transfer efficiency in 
single-fibre (continuous or discontinuous) model composites. It was found that in the elastic 
regime no actual difference exists between tensile and compressive behaviour. However, 
compressive failure is quite different, fibre fragments past each other and remain in contact, 
thus they can still bear load. Concerning cycling loading, the results showed that the main 
fatigue damage parameter that affected the stress transfer efficiency at the interface was the 
fibre fracture process itself and not the degradation of the interface. 

2. INTRODUCTION 

Composite materials are anisotropic solids, which exhibit complex mechanical behaviour. In 
general, the tensile behaviour is better defined compared to the compressive and fatigue 
behaviour. Their numerous internal boundaries and interfaces which separate the different 
constituent materials or even building blocks (plies) respond differently to an applied cycling 
load. The propagation of damage in each case and the interaction between dissimilar failure 
modes is still the subject of intense investigation [1]. In addition there is little information as 
to how the failure modes of the constituent materials interact with each other and induce 
areas of stress concentration that may, in turn, affect the integrity of a component [2]. For 
example, fibre fracture and consequent recoiling resulting from fatigue loading may initiate 
interfacial damage, which can propagate either as conical shear crack or as a fibre/matrix 
debond and affect the local stress transfer efficiency of the system. 

Concerning the compressive behaviour of these systems it is well known that the compressive 
strengths are often less than 60% of their tensile strengths [3]. Early investigations associated 
compressive failure with a fibre buckling process in an elastic foundation (matrix) [4], 
however predictions were 3-4 times higher than the measured values. Today, the initial fibre 
waviness and the matrix shear yield strength are believed to be the main factors controlling 
compressive strength [5]. However, there is experimental evidence that highly anisotropic 
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fibres like carbon show themselves a non-linear response in compression and soften at higher 
strains. 

Fatigue life prediction of composite materials has generally not been a major issue in the 
design of composite structures, which has been limited by impact and static notch 
performance. At present the ultimate design strain levels are kept low, in the region of 4000 
fis, where composite materials can withstand large numbers of fatigue cycles without failing, 
thus at this strain level damage growth is not seen as a major problem [6]. To use composite 
structures to their full potential, design strain levels will have to rise and an accurate fatigue 
methodology needs to be established. Key to this is the understanding of the effects of 
various damage mechanisms on fatigue life. On other words we need to establish links 
between observable damage/failure mechanisms and fatigue life [6]. 

The aim of this work is to get an insight into the micromechanical behaviour of carbon/epoxy 
composites by employing a single-fibre model composite. The only available experimental 
technique that can provide information (axial fibre stress/strain) at microscopic level is the 
laser Raman spectroscopy (LRS). The interfacial shear stress distribution (xrx) is evaluated by 
means of a balance of forces argument: 

_    rf 3of 
Xrx~~2~~3x~ (1) 

where rf is the fibre radius, rjf is the fibre axial stress and x the distance along the length of 
the fibre. 

3. EXPERIMENTAL 

3.1 Laser Raman spectroscopy experimental set-up 
A remote laser Raman microprobe, which was built in our laboratory [7], was used in this 
work. The main feature of the probe is the use of flexible fibre for laser delivery and 
collection, which brings about a complete separation of the spectroscopic and the testing 
stages and therefore allows in-situ measurements. More details can be found in ref. [8]. 

3.2 Materials and specimen geometry 
The materials used were an Epikote 828/Ankamine 1618 (Shell) epoxy resin and M40-40B 
carbon fibres (Toray). The resin/hardener mixture was 100/60 parts by weight and after 
mixing the system was cured for one week at room temperature. In the case of specimens 
tested in fatigue a post curing cycle was applied: 24 h at 50 °C followed by 24 h at 70 C and, 
finally 10 hat 90 °C. 

The fibres were surface treated, by the manufacturer, and had a nominal Young's Modulus of 
390 GPa. The Raman wavenumber stress sensitivity of the fibres was a„ =-3.0 cm"1/ GPa and 
the corresponding strain sensitivity was aE= -11.4 cm"1/ % [9]. The fibre diameter was found 
to have an average value of D = 6.6 urn. 

Two different specimen geometries were employed, namely: dogbone geometry used in 
tension and fatigue (tension-tension) experiments and prism geometry for the case of 
compression tests. 
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The fatigue experiments designed here involved the imposition of a tension-tension load 
during cycling to both matrix and fibre. Therefore, in order to avoid the development of 
thermal residual -compressive- stresses in the fibre after curing [9,10] the fibres were pre- 
strained -prior to mould filling- at a level, £#,re, greater than 0.5% but less than the fibre 
fracture strain, e*ßhre, of -1%. The strain cycle varied from 0 % to 0.5 % (Fig. 1) which 
assured loading below the critical fatigue limit of the matrix material and the cyclic frequency 
was 2Hz in order to avoid thermal curing of the epoxy resin due to cyclic loading [11]. Two 
cases were studied, one with fibre strain -after curing and post curing- of 0.3% (Case A) and 
another one with 0.4% (Case B). It is therefore obvious that the fibre in Case A is subjected 
to a cycle from 0.3% - 0.8% while in Case B and more severe one, from 0.4% - 0.9%, close 
to fibre static strength (Fig. 1). 
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Endurance Fatigue Limit 
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Time/sec 

Figure 1: Cyclic loading of the model composites and the subsequent loading cycle of the embedded fibres 

4 RESULTS 

41 Comparative assessment of tensile and compressive behaviour 

The different trends in compression and tension are presented in Fig.2 and, as can be seen, in 
the elastic regime (Fig. 2a) the strain profiles are almost identical in both cases. Upon 
increasing the applied strain (Fig. 2b) a deviation from linearity is observed in the case of 
compression as manifested by the multiple fibre fractures (shear breaks). It is worth noting 
that fibre failure is not observed in tension. In Fig. 3 the associated interfacial shear stresses 
are presented, form the ISS profiles it is clear that the stress is transferred from the fibre ends 
through shear at the interface for both loading conditions. Tensile failure was observed at 
higher applied strain levels (1.25%), whereas interfacial damage occurred at -1.1% applied 
strain (the onset of the tensile nonlinear behaviour occurred at -0.8%). The strain profile of a 
fragmented fibre loaded in compression is in distinct contrast with those observed in tension 
[12]. After fibre failure, fibre fragments remain in contact (sliding past each other, see Fig 4) 
and, therefore, the derivation of interfacial shear stress profiles at these locations by use of 
balance of forces argument can lead to erroneous results. This is why the ISS are not 
calculated in the vicinities of compressive fibre breaks as can be seen in Fig. 3. The cause of 
the nonlinear behaviour is different in compression and in tension. The fairly non-linear 
tensile behaviour observed at high strains (e>0.8%) can be viewed as a result of the 
interfacial damage occurred above this critical strain (for this fibre/matrix combination). A 
degraded interface affects the stress transfer from the matrix to the fibre and the more the 
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interface is damaged the less the load is transferred to the fibre. On the other hand, in 
compression things are quite different since no interfacial damage was observed prior to fibre 
shear breaks (see Fig. 3). 
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Figure 2: Fibre strain measurements (tension - compression). Continuous lines represent the cubic 
spline fit of the experimental data. 
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Figure 3: Corresponding interfacial shear stresses Figure 4: Typical shear break of a high modulus 
of the data presented in Fig. 2. (For the case of carbon fibre embedded in an epoxy matrix under 
applied compressive strain equal to -0.86% ISS compressive loading, 
are calculated only in the fibre end regions) 

4.2 Fatigue behaviour 

4.2.1 Effect of the fatigue history on the fibre 
By design, the fatigue experiment imposes more severe conditions for the embedded fibre of 
case B (0.4% - 0.9%) than that of case A (0.3% - 0.8%). The effects of cyclic loading are 
presented in Fig. 5 as a function of number of observed fibre breaks, with the number of 
cycles within the 2000um observation window. For case A, the fibre had 3 breaks just after 
the first imposition of tensile load up to 0.5% strain of model composite. This number of 
breaks was altered with cyclic loading indicating no actual effects on the fibre properties. 
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On the contrary, for case B a completely different evolution can be observed, where the fibre 
was cycled from an average pre-strain of 0.4.% to a maximum strain level of 0.9%, which is 
just below the tensile strength for the 2000um length of observation. The observed behaviour 
between the number of fibre fractures and the number of cycles expressed by the equation in 
Fig. 5 indicates that, in absolute terms, the rate of fibre fracture decreases with life and a 
tension-tension fatigue degradation of carbon fibres themselves under the effect of an axial 
load. This is important since cyclic work on carbon fibres performed in air by Bunsell and 
Somer [13] has failed to identify a clear fatigue pattern possibly due to the complexities of 
the experimentation involved.  
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Figure 5: Number of observed fibre breaks, within the 
2000um window, as a function of number of cycles 
plotted on a logarithmic scale for both cases of 
specimens. 

0.5% strain 10* cycles / Case B    I 

1   ■   I   '   )   '   I   ■   I   '   I   '   I   ■   I   '   I   '   I   ■   I 

/\AAA 
I     lfJ,ii-\ f 3Jltf. .■■■■ilTHifl     ■■ ^■IHI'7 ■■■■gi f     ■      .  i 

-1200-1000  -800   -£00    -100   -100      0       200     400     600     100    1000   1200 

Figure 6: Normal fibre stress (left) and fibre strain 
(right) along the fibre length after 106 cycles for case 
B. 

4.2.2 Effect of fatigue history on the stress transfer efficiency 
The cyclic experiment presented here was designed in such a way to resemble the stress state 
encountered in a full volume fraction composite. The strain field does not exceed the elastic 
limits of the matrix and this is exactly what is observed in full unidirectional composites 
incorporating similar fibre/ matrix combinations [14]. 

The average maximum stresses (strains) observed from the profiles along the fibre length 
within a window of 2000 urn (Fig. 6) appear to be different in the two cases examined. 
Concerning case A, it starts with 3.5GPa (0.9%) at 0 cycles and decreases to 2.7GPa after 
2*106 cycles and this is attributed to the viscoelastic behaviour of the matrix [15]. On the 
contrary, for case B, the value of 3.5GPa did not change with the number of cycles as long as 
the fibre length remained greater than 1000 urn. 

By using equation (1) the Interfacial Shear Stress (ISS) distributions have been derived (Fig. 
7) and the behaviour of three significant parameters with the cyclic loading have been chosen 
to describe the fatigue effect on the stress transfer efficiency: ISSmax, b and Lt (Fig. 7). 
Therefore, for case A, the change shown in Fig. 8 is attributed to the viscoelastic response of 
the matrix while for case B the fibre fracture process with the number of cycles dominates the 
change of their values. 

To conclude, the results obtained here for the interfacial parameters ISSmax, b and L, indicate 
that for case A the reduction of /5SmflX observed is due to the reduction of resin modulus with 
life. While, for case B, at least up to 5xl05 cycles the effect of fibre fracture upon the 
integrity of the interface is by far greater than the progressive deterioration of the stress 
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transfer efficiency with number of cycles in existing fractures. This reinforces the finding 
that in unidirectional composites under loading parallel to the fibres, the fibre fracture and the 
associated interface weakening, here for an area of about b=90-160 (im, are the major 
damage components. 
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Figure 7: Interfacial Shear Stress (ISS) distribution 
along the fibre length at 10° cycles for case A. 

Figure 8: Maximum ISS, for case A, as a function of a 
number of cycles for one fibre end and at all different 
fatigue levels. The results were recorded at the peak 
of the fatigue cycle at 0.5% applied strain. 
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1. SUMMARY 

The present study examines the dynamic behavior of a marine cable having attached in its 
lower end a free vibrating body. The governing equations of dynamic equilibrium in 2-D 
space are presented for both cable and the attached body. The solution method is based in an 
efficient finite differences numerical scheme. The numerical calculations concern a particular 
cable-body assembly and the numerical predictions are plotted suitably in order to obtain 
important conclusions for the behavior of the dynamic system and to study several aspects of 
the dynamic response. 

2. INTRODUCTION 

Marine cable systems are used in a wide variety of offshore operations. These include the 
deployment and the recovery of instrumentation packages, salvage operations, underwater 
construction, scientific deep ocean coring studies and deep ocean mining activities. These 
systems utilize wire rope, chain or synthetic rope, and are sometimes used in combination 
with slender pipe sections. The cable portions are configured with either single or multiple 
lines depending upon the particular application. 

The present paper is a contribution to the direction of studying the dynamic behavior of a 
cable, hanged from a floating offshore structure having attached in the lower end a free 
vibrating body. The study intends to analyze the surge and heave response behavior 
associated with the lowering and raising of large packages to sea floor in regular seas. The 
dynamic system configuration of this type, may experience cancellation of tension in the 
cable-body attachment point, which is followed by cable's re-tensioning, resulting in sever 
impact load, which is referred to as snap loading. Niedzwecki and Thampi [1], focused their 
attention exclusively in the heave response behavior by describing the cable with a sequence 
of one-degree of freedom oscillators. In the present contribution the cable-body assembly, is 
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treated as a continuous system by introducing the full set of differential equations, which 
govern the dynamic equilibrium of both cable and the hanged body in 2D space. The dynamic 
model is fully described by applying proper boundary conditions at both cable ends. The 
system of differential equations is being solved in time domain by applying an efficient 
implicit finite differences numerical scheme. The method has been already successfully 
applied for the prediction of the dynamic behavior of catenary-type mooring lines 
(Chatjigeorgiou and Mavrakos, [2], [3]), and it is now extended to the case of hanged cables 
with a suspended weight at their lower end. 

3. DYNAMIC EQUILIBRIUM OF THE CABLE IN 2-D SPACE 

The cable is modeled as a slender rod without bending stiffness. Let s denote the unstretched 
Lagragian co-ordinate measured from the lower cable end up to a material point of the 
cable; v («, v) its velocity vector; m the mass per unit unstretched length; T the tension along 
the cable; <j> the angle which is formed between the tangent of the line at any point along it, 
and the horizontal; and e the local strain. Assuming that the tension along the line can be 
expressed in terms of its elastic strain in the form: 

r =/(e) (1) 

the equations of motion of a cable in 2D-space can be expressed along the local tangential, t 
and normal, n, directions of its moving configuration (moving dynamic reference) as 
(Chatjigeorgiou and Mavrakos, [3]; Triantafyllou et al., [4]): 

m 

m 

du      d<p 
dt       dt 

d£ 1 
f(e) —w0sin<j)--pwD0CD,7mr\ur\ (3) 

ds 

dv      d(b}        dvr      ., \3</> 1      _ „      |   I ,,, 
— + «rf +ma-^- = /(e)^-wocos0-- pwD0CDnvr\vr\ (4) 
dt       dt ^ 2" ° 

du    30   _ de 
ds     ds        dt 

dt        "'ds      "      T    V 

(5) 

^3M=i(1 + £)£>i (6) 
ds     ds dt 

ur =u-U cos(j) (7) 

vr =v + Usin<j> (8) 

where ma is the added mass, wo the submerged weight, both defined per unit of unstretched 
cable's length; U is the current velocity having direction parallel to horizontal x-axis of the 
inertial co-ordinate system and finally CD, and CDn are the tangential and normal drag 
coefficients respectively. 

Since a general form of stress-strain relation has been assumed, the governing Eqs. (3)-(6), 
describe the 2D dynamics of both synthetic and steel wire cables. 
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4. DYNAMIC EQUILIBRIUM OF THE HANGED BODY 

Let us denote xi and zi, the horizontal and vertical motions of the cable's point, which is 
attached to the hanged body and pi and qi the respective tangential and normal motions of the 
same point with respect to the Lagragian coordinate system. We further define: 0; the angle 
which is formed between the tangential of the cable in the body-touch point and the 
horizontal, Wi, the weight of the body in the air, Bb the buoyancy force and finally D\,x and Df,z 

the nonlinear drag forces in x and z direction respectively (see Fig. 1). 

Figure 1. Dynamic Equilibrium of the hanged body in 2-D space. 

The equations of motion which govern the dynamic equilibrium of the hanged body in 2-D 
space are: 

(M+M^xy^cos^+D^ 

(M + Maz)z\ = Tx sin0, + Dhz + Bh -Wb 

where 

(9) 

(10) 

Dxh = \pChdAx{U-xx X/(£/-J,)2+z,2 (11) 

Dzh =\pChdAz (- *i "hliU-xrf + z? (12) 

In Eqs. (9)-(12) M, Max and Muz represent the mass and the added masses of the body in x and 
z direction respectively, Ti is the tension of the cable in the attachment point, D^ and Dzh, are 
the drag forces in horizontal and vertical direction respectively, and finally Ax, Az, CM are the 
projected areas in horizontal and vertical direction and the drag coefficient of the body. Eqs. 
(9) and (10) can be matched with the system of differential Eqs. (3)-(6) by expressing 
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■*i,Zi,-*i,z'i in terms of the tangential and normal velocities m and vy and their time 
derivatives. 

5. FINITE DIFFERENCES APPROXIMATION SCHEME 

The solution method used in the present contribution for the treatment of the governing 
differential Eqs. (3)-(6), is the so-called Keller Box finite differences method (Hoffman, [5]). 
This method was first applied in cable dynamics by Ablow and Schechter, [6] and expanded 
by Milinazzo et al., [7], who introduced a number of modifications to improve the efficiency 
and the algorithm's numerical stability characteristics as applied to towed cable systems. The 
application of the Box method is extended in the present contribution to problems associated 
with fully submerged cable-attached bodies vibrating freely due to motions imposed in the 
point of suspension. According to this method, the time t and the Lagrangian coordinate s can 
be discretized using either uniform or non-uniform discretization schemes, the later being 
more suitable when bending effects are incorporated in the governing equations. As in the. 
present contribution bending effects have been neglected, higher-order spatial derivatives are 
not present in the governing equations, and thus it is more convenient to utilize uniform 
discretization for the independent variables of the problem. Assuming that the variation in 
time and space is expressed through the indices i and ;', respectively (see Fig. 2), the 
derivatives of the vector YT(w,v,e,0) that contains the unknowns of the problem can be 
approximated as follows: 

dY 
yl+l       yl 

.     J              J 
dt At 

dY Jk-Vj 
ds As 

(13) 

(14) 

As 

i+2 
i 

r Äs 

i /             V 

i-H 

j       j+1    j+2     j+3 

Figure 2. Stencil of Keller-Box Method 

Next, substituting Eqs. (13) and (14) into Eqs. (3)-(6) and evaluating the equations in the 
middle of [i, i+1] and [j, j+1], i.e., in the point [i+1/2, j+1/2] (Fig. 2), we can derive the 
system of nonlinear algebraic equations (Chatjigeorgiou and Mavrakos, [8]), which delivers 
the unknown dynamic components of the vector YT(w,v,£,0) at each discretization point and 
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time step. The first discretization point coincides with cable-body attachment point; the last 
one with the connection of the line to the floating structure. 

Boundary Conditions 
The boundary conditions are implemented at the upper and lower end points of the cable. The 
connection of the floating structure with the cable is being considered as the location of the 
excitation, in which the following equations must be satisfied: 

«ncos0,1-v„sin0,1 =x lop (15) 

"„sin0„+vncos0„ =z top 
(16) 

where the subscript n denote the line's top-terminal-point. Moreover, xtop and ztop denote 

the imposed external velocities in the horizontal and vertical direction at the cable's upper 
end. On the other hand, the motions of the cable-body attachment point must satisfy Eqs. (13) 
and (14). Thus Eqs. (13) and (14) (after being treated with the finite differences 
approximation scheme described before), consist the two boundary conditions, which must be 
satisfied in the lower end of the cable. 

6. NUMERICAL RESULTS AND DISCUSSION 

In order to express numerically the behavior of the dynamic system, which is examined in the 
present study, and to obtain conclusions in regards to the features of it's dynamic response, 
the mathematical  formulation  outlined  above was  applied  to  a particular cable-mass 
assembly. 
Tables 1 and 2 list the physical and geometrical properties of the cable and the hanged mass 
under consideration, respectively. 

Table 1. Physical and Geometrical Properties of the Cable 
Description Symbol Cable 
Unstreched Diameter D0(m) 0.062 
Suspended Length L(m) 100 
Young's Modulus of Elasticity E (N/m2) 0.7*1010 

Submerged Weight per Unit Length wo (N/m) 169.61 
Mass per Unit Length m (Kg/m) 20.38 
Added Mass per Unit Length mu (Kg/m) 3.090 
Tangential Drag Coefficient CDI 1.2 
Normal Drag Coefficient CDH 0.01 

Description Symbol Hanged Body 

Weight in Air Wfc(N) 44119 

Buoyancy B„(N) 42119 
Mass plus Added Mass in x- Direction M+Max (Kg) 8790 
Mass plus Added Mass in z- Direction M+Maz (Kg) 8790 
Projected Area in x-Direction Ax (m

2) 3.14 
Projected Area in z-Direction Az (m

2) 3.14 

Drag Coefficient Chii 0.8 
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The imposed harmonic motion in the upper cable's end was either horizontal or vertical with 
amplitude equal to 1 m, and with various excitation frequencies. The results of the numerical 
simulations, which were performed for the purposes of the present contribution, are given 
graphically in Figs. 3-8. In time t = 0, the cable is being considered totally vertical and the 
angle which is formed in any point along the cable with the horizontal, is 9(f. The tension 
along the cable is varying linearly from Wh-Bb (the net weight of the hanged mass) in the 
point of attachment, up to Wb-Bh+w0*L (the total submerged weight of the system) at the 
upper cable's end. The initial conditions are zero motions and velocities in all discretization 
points along the cable at time t = 0. 

An important aspect, which is experienced in dynamic systems such the one examined in the 
present, is the cancellation of the tension at the free end. For cables not carrying loads at the 
free end the tension is always zero at any time step. For cables having loads attached in this 
particular point, the cancellation of tension may occurs under certain conditions depending on 
the motions of the hanged load. The feature of the zero tension is apparently shown in Fig. 3. 
The load is severely vibrating due to high frequency vertical motion imposed at the cable's 
top end, allowing the variation of tension in wide range. Due to the fact that the cable is not 
capable to undertake bending effects, the tension equals to zero until the motion of the 
hanged body causes the appearance of positive tension in the load attachment location. This 
feature is accompanied with sudden change in the value of the angle in the attachment point, 
which lasts during all zero tension time intervals, whereas in the other time steps the cable in 
the location of attachment remains vertical, Fig. 4. The body loses balancing and falls down 
because of its own weight, initiating the so-called "snap loading behavior". The same is valid 
for the cable's length, which is close to the cable-mass connection point, as indicated by the 
highly vibrating lines in the lower portions of curves plotted in Fig. 7. These curves represent 
the dynamic configuration of the cable for various time steps during one period of excitation. 

As expected, the horizontal motions of the load are insignificant for vertical excitations 
contrary to the horizontal ones imposed at the top of the cable. For horizontal excitations 
there is a time lag until the hanged load starts moving. This is clearly visible in Fig. 5, in 
which it is shown that the angle at the location of attachment starts to change after 
termination of a certain time interval during which every point along the cable has been 
moved. 

The body motions are considerable only for small frequencies of horizontal excitation, Fig. 8. 
Then, the cable and the body are actually performing a horizontal translation, parallel to the 
direction of the imposed motion. As the frequency of excitation increases, the horizontal 
displacement of the hanged body reduces amplitude, see Fig. 8. For top end fast motions, the 
body remains actually stable (Fig. 8), whereas in the same time there is a significant and 
continuous shift in the direction of motion along the cable. 

Although the most important contribution to the variation of the total tension comes from the 
vertical motions, the effect of horizontal motions to this feature cannot be considered as 
negligible. As indicated in Fig. 6, there is an apparent effect of the horizontal motions to the 
total tension acting at the top of the cable. This effect is more important at the body's 
attachment point because the total tension at this point has the smaller value, and, thus, 
cancellation of tension can be occur. As the frequency of imposed harmonic horizontal 
motion increases, the tension at the cable-mass connection point does not follow the 
sinusoidal mode of the excitation. Although the response maintains periodicity, the nonlinear 
effects become significant and the harmonic feature vanishes. 
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7. CONCLUSIONS 

The paper deals with the dynamic response of a hanged cable having attached a free vibrating 
mass at its lower end. The system of dynamic equilibrium for the cable in 2-D space is 
accompanied with the set of differential equations of dynamic equilibrium for the attached 
body, the later being considered as the boundary conditions, which must be satisfied in the 
lower end of the cable. The dynamic system is fully described by applying appropriate 
boundary conditions in the upper cable's end, which determine the external imposed 
excitation. The dynamic behavior predictions obtained though numerical simulations describe 
explicitly the zero tension feature, which is experienced by dynamic system configurations 
such the one examined in the present contribution. The cancellation of tension, which may be 
experienced in the cable's lower end, is accompanied with a sudden change in the value of 
the angle in the location of attachment. During horizontal excitation there is always a time lag 
until the cable-mass connection point starts moving. The magnitude of the body's motion, 
caused due to cable's upper end imposed horizontal excitation, is significant only for small 
excitation frequencies and seems to vanish for fast top-end movements. Finally, horizontal 
excitations could be an important contributor in the total tension along the cable indicating 
that even with the absence of vertical motions the effect on the variation of tension caused 
due to horizontal top-end displacements should not be considered negligible. 
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1. SUMMARY 

The aim of this paper is to present experiments for the determination of unsaturated hydraulic 
conductivity in porous media. For the determination of unsaturated hydraulic conductivity a 
dosimeter pump, a system of tensiometers with pressure transducers and a y- ray absorption 
instrument were used. This way the determination of experimental values (0j, ¥;) and (0j, K|) 
is possible and the curve K (¥) can be determined. 

2. INTRODUCTION 

In order to simulate the unsaturated water flow it is necessary to know the unsaturated 
hydraulic conductivity as a function of suction or of soil moisture and the soil moisture 
characteristic curve. The hydraulic conductivity is one of the most important hydraulic 
properties and it is determined by direct and indirect methods or using numerical and 
analytical prediction models. The soil moisture characteristic curve is determined usually 
experimentally in the field or in the laboratory, which is time-consuming and expensive. As a 
result, many methods have been developed to estimate unsaturated hydraulic conductivity 
from empirical equations (e.g. Irmay, 1954; Brooks and Corey, 1964; Gardner, 1958; 
Campbell, 1974) or from statistical models (e.g. Childs and Collis - George, 1950; Marshal, 
1958; Millington and Quirk, 1961; Kunze et.al, 1968). Mualem (1976) presented an integral 
form as predictive model and other researchers, substituting in this form a functional 
relationship of OOP), proposed new prediction models (e.g. van Genuchten, 1978; 
Tzimopoulos and Sakellariou - Makrantonaki, 1996). 

This paper presents experiments for the determination of unsaturated hydraulic conductivity 
in porous media, undertaken in the Laboratory of Agricultural Hydraulic in the Department of 
Rural and Surveying Engineering in A.U.Th. (direct method). For the determination of 
unsaturated hydraulic conductivity a dosimeter pump, a system of tensiometers with ceramic 
cups and pressure transducers and a y- ray absorption instrument were used. The dosimeter 
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pump supplied water at the top of an experimental column in small quantities (submultiples 
of the saturated hydraulic conductivity). The soil water content was measured using y- ray 
absorption method and the negative water pressure in the pore media was measured using the 
system of tensiometers with ceramic cups and pressure transducers. This way the 
determination of experimental values (8;, ¥() and (6j, Kj) is possible and the curve K (*P) can 
be determined. 

3. EXPERIMENTAL METHOD 

The experiments were performed in the laboratory using a Plexiglas cylindrical vertical 
column, 60-cm length and 6 cm internal diameter. The column was packed using a soil 
raising method with free-failing soil passing through a sequence of 2-mm sieves. With this 
method, a good homogeneity of soil packing can be achieved. All experiments were 
conducted at a constant temperature of 21 ±1 °C. 

water pipe 

"Am 

device of jet flow 

platform 

dosimete 
pump 

-l-i   watqr 
«TänT 

motor 
control 

1 

gamma counter 
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water pipe 
digital scale 

Figure 1: Schematic diagram of the experimental setting. 

Two sand samples of 30-cm length were used. The experiments were repeated for each 
sample separately. The average dry bulk density for the first sample was 1.377±0.018 gr/cm3 

and for the second sample was 1.44±0.021 gr/cm3. This indicates the good homogeneity of 
the samples. 

The dry bulk densities and the water content were measured by y-ray absorption method, as 
described by Arampatzis (1996). The device of y-ray contained a 300-mCi Americium -241 
source. The Americium -241 source and the photomultiplier detector (including a Nal crystal 
and preamplifier) were positioned on a horizontal platform moved by an electric motor. In 
this way the development of water profile in the column can be followed over time. 

The water pressure was measured at the same time at two different depths in the column 
using tensiometers with ceramic cups and pressure transducers. Each tensiometer was 
connected to its own pressure transducer. Pressure transducers were connected by a 
multichannel data acquisition system to a digital voltmeter and then to a printer. The accuracy 



418 

of the pressure transducers was within 1.5 % and the response time was 1 ms. The position of 
the tensiometers corresponded respectively to depths of 6 and 16 cm from the soil surface. 
The assumption that the tensiometers measure the average pressure at the point of insertion 
was made in order to process the measurements. 

The characteristic curve was obtained by wetting and draining the soil column from the 
bottom by means of a Mariotte burette. This method was followed for two reasons: 
• To prevent the air to be caged into the soil pores. 
• To have a slow flow as the gravity was negative. 

The unsaturated hydraulic conductivity was estimated using a dosimetric pump that fed the 
soil column with distilled water from the top. In order to determine the hydraulic conductivity 
at the appropriate soil moisture, the moisture must be stabilized at the same value at an upper 
and a lower level of each soil layer. This experimental procedure is based on Darcy 's law: 

q(e)=-K(e) 
d¥(e) x 

dz 
(1) 

where q is Darcy 's velocity [L/T], K is the unsaturated hydraulic conductivity [L/T], 0 is the 
soil moisture [L3/L3], *P is the suction [L] and z is the level measured from an arbitrary 
control surface [L]. In equation (1) the vertical axis z has a positive direction downwards. 
Assuming that the soil moisture 0 is constant along the soil column at each layer, then 
d¥/dz=(d47d0)(d0/dz)=O and equation (1) becomes: 

q(9) =  |K(9)|   . (2) 

The saturated hydraulic conductivity was approximated as a fitting parameter using the 
Brooks and Corey 's empirical equation (Touma, 1984; Arampatzis, 2000). 

4. APPLICATION 

The soil moisture as a function of the suction is given by van Genuchten 's equation (1978) 
(figure 2): 

(3) 
es-e,     [i+ta*)"]"1 

where 0 is the soil moisture (L3/L3), 0S is the saturated soil moisture (L3/L3), 0r is the residual 
soil moisture (L3/L3), 4* is the suction (L) and a, n and m = 1-1/n are coefficients. The 
saturated soil moisture was measured by y- ray absorption method as the average value of 0S 

when all positions at the column were in the saturated condition. The residual soil moisture 
was measured by the same way, when the sample was drained and the value of 0r was the 
same in all positions for a few days. The parameters a and n were estimated by fitting the 
experimental values (table 1). 

Also van Genuchten (1978) gives a predictive model for the determination of unsaturated 
hydraulic conductivity as a function of suction: 
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K = K 

l-(ay)11-1 [l+(a¥)n]  m 

[l+(a*)n] 
im/2 

(4) 

In equation (4) K is the unsaturated hydraulic conductivity (L/T), Ks is the saturated hydraulic 
conductivity (L/T). The coefficients a, n and m are using the same values as estimated in the 
equation (3) and the Ks is using the same value as estimated in the equation (5) (table 1 and 
fig. 3). 

Table 1: Coefficients of van Genuchten (1978), Brooks and Corey (1964) and Gardner 
(1958) equations. 

First sample Second Sample 

es 0.43 0.34 

er 0.12 0.02 
Infiltration Drainage Infiltration Drainage 

van Genuchten 's equation &C¥) (1978) 
a 0.48102 0.02585 0.07356 0.055211 

n 1.99825 6.87915 4.59636 6.91369 
van Genuchten 's predictive model KQ¥) (1978) 
Mean square error 8.2 * 10"4 7.2 * 10"1 5.7 * 10"J 1.8*10"' 

Coef. correlation 0.990 0.932 0.995 0.987 
Brooks and Corey 's empirical equation K(0) (1964) 
Ks (cm/min) 0.462 1.72 
B 9.2373 4.98615 
Gardner 's empirical equation K(T) (1958) 
a 1.2317 0.0369 0.1059 0.0713 

b 2.8689 10.44 6.5527 9.9795 

Mean square error 5 * 10° 7 * 10"3 7.2 * 10"4 7.8 * 10"4 

Coef. correlation 0.999 0.999 0.998 0.998         | 

The next point of interest was to fit experimental data (ei; KO using the following 
relationship, given by Brooks and Corey (1964): 

K=K 
e-e  r_ 

9  -9 s      r , 

NB 

(5) 

where B is coefficient. The values of Ks and B were estimated as fitting parameters by 
experimental values (table 1). 

From the above the relationship between hydraulic conductivity Kj and suction »Pj can be 
determined by Gardner 's empirical equation (1958): 
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K 
K = - 

xb' l+(aT)1 

where a and b are coefficients. The results are presented at table 1 and figure 3. 

(6) 
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Figure 2: Characteristic curves of the two soil samples. 
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Figure 3: The hydraulic conductivity as a function of suction. 

5. CONCLUSION 

The above method of determining the unsaturated hydraulic conductivity as a function of 
suction, although is an indirect method, gives satisfactory results in the cases where 
experimental values of (4^, Kj) are not determined. The suction for a specific value of 
unsaturated hydraulic conductivity is difficult to measure accurately and so the determination 
of (Tj, K|) with direct methods is not used. 
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The curve (Tj, Kj) shows very strong hysteresis (figure 3) in contrast to the curve (ft, K;). 

Gardner 's empirical equation fits satisfactorily the experimental values since mean square 
error is between 10"3 and 10"5 and the correlation coefficient is between 0.999 and 0.998. 

Van Genuchten 's predictive model, with m.s.e. between 10"2 and 10"4 and a correlation 
coefficient between 0.932 and 0.995, does not give good results as shown in figure 3. 

6. REFERENCES 

[I] Arampatzis, G., Estimation of hydraulic conductivity in unsaturated condition. 
Experiment Procedure - Prediction Model, M.Sc. Thesis, A.U.Th., Thessaloniki , pp. 
140, (1996). 

[2]   Arampatzis, G., Laboratory research of infiltration and drainage in layered soils. 
Simulation of the natural problem with finite control volume method, Ph.D. Thesis, 
A.U.Th., Thessaloniki, pp.215, (2000) 

[3]   Brooks, R. A. and Corey, A. T., Hydraulic properties of porous media, Colorado State 
University, Hydrology Paper 3,1-27, (1964). 

[4]   Campbell, G., A simple method for determining unsaturated conductivity from moisture 
retention data, Soil Sei., 117(6), 311-314, (1974). 

[5]   Childs, E. C. and Collis - George, N., The permeability of porous materials, Proc. Roy. 
Soc, London, Ser. A 201, 392-405, (1950). 

[6]   Gardner, W. R., Mathematics of isothermal conduction of water in unsaturated soils, 
Highway Res. Board Spec. Rep. 40, 78-87, (1958). 

[7]   Irmay, S., On the hydraulic conductivity of unsaturated sands, Trans. Amer. Geophys. 
Union, 35(3), 463-467, (1954). 

[8]   Kunze, R. J., Uehara, G. and Graham, K., Factors important in the calculation of 
hydraulic conductivity, Soil Sei. Soc. Amer. Proc, 32, 760-765, (1968). 

[9]   Marshall, T. J., A relation between permeability and size distribution of pores, J. Soil 
Sei., 9(1), 1-8, (1958). 

[10] Millington, R. J. and Quirk, J. P., Permeability of porous solids, Trans. Faraday Soc, 
57,1200-1206, (1961). 

[II] Mualem, Y., A new model for predicting the hydraulic conductivity of unsaturated 
porous media, Water Resour. Res., 12(3), 513-522, (1976). 

[12] Tzimopoulos, C. and Sakellariou - Makrantonaki, M., A new analytical model to 
predict the hydraulic conductivity of unsaturated soils, Water Resour. Managm., 10, 1- 
18, (1996). 

[13] Van Genuchten, R., Calculating the unsaturated hydraulic conductivity with a new 
closed form analytical model, Dep. Civ. Eng. Princeton Univ., Princeton, N. J., Water 
Resour. Prog., Res. Rep. 78 - WR - 08, 63, (1978). 

[14] Touma, J., Etude critique de la caracterisation hydrodynamique des sols non satures: 
role de V air, influence de V ecoulement multidimensionel de V eau, These de Docteur 
es - Sciences Physiques, Universite de Grenoble, Grenoble, pp.187, (1984). 



423 

AUTHOR INDEX 

Volume I 

Z. Agioutantis, 191 
P. Anagnostopoulos, 39, 66 
G. Anastassopoulos, 381 
G. Arampatzis, 416 
K. Arvanitis, 240 
V. Assouti, 72 
A. Avdelas, 228 
B. Badalouka, 388 
G. Badaloukas, 388 
R. Barber, 52 
A. Bekos, 381 
D. Beskos, 210 
V. Bontozoglou, 33 
A. Boudouvis, 21 
I. Chatjigeorgiou, 408 
B. Coric, 282 
H. Cramer, 298 
I. Daniel, 320 
J. Demetriou, 102, 108, 121 
Y. Dimakopoulos, 84 
D. Dimitriou, 102 
C. Dimou, 275 
A. Elenas, 254 
R. Findei, 298 
D. Fotiadis, 327 
K. Gagas, 72 
C. Galiotis, 401 
C. Gantes, 261 
E. Gdoutos, 320, 394 
K. Giannakoglou, 72 
P. Giokas, 333 
T. Goudoulas, 27 
S. Goutianos, 401 
M. Hadjinicolaou, 59 
N. Hajdin, 178, 282 
D. Hatzichristou, 381 
G. Hatzigeorgiou, 210 
P. Kakavas, 375 
N. Kalinderis, 381 
A. Kaounis, 72 

D. Karalekas, 394 
E. Kastrinakis, 27, 96 
J. Katsikadelis, 172, 204, 222 
I. Kevrekidis, 21 
S. Kobayashi, 290 
C. Koimtzoglou, 401 
P. Koliopoulos, 254 
E. Koronaki, 21 
V. Kostopoulos, 365 
V. Koumousis, 275 
C. Kouris, 45 
S. Kourkoulis, 339, 348 
S. Kourtakis, 184 
A. Koutras, 66 
D. Krajcinovic, 155 
J. Kratochvil, 14 
V. Kytopoulos, 339 
P. Ladeveze, 140 
N. Lagaros, 246 
J. Lemaitre, 163 
A. Likas, 327 
A. Liolios, 254 
V. Loukopoulos, 90 
D. Lucic, 282 
J. Lytras, 381 
I. Mademlis, 228 
N. Malamataris, 33 
R. Mandic, 178 
D. Margaris, 114 
Lj. Markovic, 146 
N. Markovic, 282 
S. Marnoutsidis, 228 
G. Maugin, 1 
S. Mavrakos, 408 
G. Michaltsos, 234 
V. Moulianitis, 381 
H. Mpimpas, 39 
K. Nanou-Giannarou, 121 
N. Ninis, 348 
S. Nychas, 27, 96 



424 

Th. Panidis, 127 
S. Panteliou, 381 
A. Papachristidis, 388 
M. Papadrakakis, 246 
Y. Pappas, 365 
G. Paschalis, 191 
N. Pelekasis, 78 
N. Pnevmatikos, 261 
C. Pourliotis, 108 
I. Prassianakis, 333 
C. Providakis, 184 
D. Ruzic, 146 
M. Sakellari, 254 
T. Salonikios, 267 
E. Sapountzakis, 222 
P. Sarantos, 108 
D. Saravanos, 357 
R. Schapery, 134 
C. Sciammarella, 314 
F. Sciammarella, 314 
S. Seitanis, 66 
M. Sfakianakis, 210 
W. Sharpe Jr., 306 
G. Sideridis, 96 
D. Smyrnaios, 78 
K. Soldatos, 216 
A. Soldatos, 240 

D. Sophianopoulos, 234 
C. Sophocleous, 216 
K. Spiliopoulos, 198 
G. Stavroulakis, 240 
R. de Stefano, 365 
C. Stiakakis, 191 
M. Sunaric, 381 
D. Theodorakopoulos, 210 
C. Theodoropoulos, 21 
M. Titsias, 327 
J. Tsamopoulos, 45, 78, 84 
G. Tsiatas, 172 
Ch. Tzimopoulos, 416 
P. Vafeas, 59 
K. Valanis, 9 
D. Varelis, 357 
L. Vasiliadis, 254 
M. Vlachogiannis, 33 
D. Vlachos, 365 
N. Volakos, 52 
K.-A. Wang, 320 
W. Wunderlich, 298 
J. Yiotis, 204 
E. Zacharenakis, 240 
D. Zacharopoulos, 394 
T. Zervogiannis, 72 

Volume II 

M. Abellan, 365 
E. Amanatidou, 149 
I. Andreadis, 177 
N. Anifantis, 52 
H. Antes, 28 
N. Aravas, 149 
Y. Bamnios, 342 
C. Baniotopoulos, 70, 78 
A. Bardzokas, 13 
D. Bardzokas, 22 
J. Bergheau, 365 
D. Beskos, 163, 328 
M. Betti, 78 
D. Bollas, 63 
C. Borri, 78 

D. Briassoulis, 57 
A. Carpinteri, 349 
N. Charalambakis, 276 
A. Charalambopoulos, 216 
C. Charitidis, 40 
B. Chiaia, 349 
K. Chong, 391 
P. Cornetti, 349 
C. Dascalu, 233, 239 
G. Dassios, 109 
D. Davis, 391 
R. de Borst, 365 
B. Demakos, 102 
R. Desmorat, 318 
A. Diamantopoulou, 46 



425 

K. Dimitrakopoulou, 301 
R. Dorgan, 309 
E. Douka, 335 
E. Douka, 342 
P. Entchev, 120 
G. Exadaktylos, 140, 155, 189 
M. Filshtinsky, 22 
D. Fotiadis, 216 
G. Foutsitzi, 216 
G. Frantziskonis, 359 
C. Galiotis, 63 
H. Georgiadis, 289, 295 
D. Georgiou, 90 
E. Gerde, 1 
J. Gilarranz, 371 
P. Grammenoudis, 263 
P. Gupta, 33 
Y. Haddad, 245 
E. Hadjigeorgiou, 239 
D. Homentcovschi, 233, 239 
J. Huyghe, 365 
S. Ichtiaroglou, 379 
J. Jaric, 115 
X. Jiang, 170 
N. Kafoussias, 227 
V. Kalpakides, 126, 239 
T. Kalvouridis, 385 
G. Kamvyssas, 222 
T. Karakasidis, 177, 183 
C. Karakostas, 280 
F. Kariotou, 222 
D. Katsareas, 52 
A. Kekatou, 52 
K. Kishimoto, 115 
M. Kontoleon, 70, 78 
V. Koukouloyannis, 379 
S. Kourkoulis, 140 
D. Lagoudas, 120 
S. Logothetidis, 40 
G. Lykotrafitis, 295 
G. Manolis, 280 
M. Marder, 1 
R. Masiani, 257 
C. Massalas, 216 
A. Massih, 7 
G. Maugin, 126 

A. Mavraganis, 301 
E. Meletis, 33 
E. Mistakidis, 84, 90, 96 
X. Nie, 33 
M. Omiya, 115 
M. Pagitsas, 46 
O. Panagouli, 84 
D. Panayotounakos, 189, 196 
S. Papargyri-Beskou,163, 328 
J. Parthenios, 63 
N. Politis, 90 
D. Polyzos, 163, 328 
B. Polyzos, 335 
G. Psarras, 63 
F. Psarros, 385 
0. Rediniotis, 371 
D. Sazou, 46 
E. Schettini, 57 
D. Schick, 269 
V. Sfakiotakis, 52 
V. Singh, 33 
P. Sofronis, 251 
K. Soldatos, 209 
J. Stabouloglou, 133 
G. Stavroulakis, 28 
S. Subramanian, 251 
D. Sumarac, 397 
E. Theotokoglou, 133 
A. Trochidis, 335, 342 
P. Trovalusci, 257 
G. Tsaklidis, 209 
Ch. Tsakmakis, 263, 269 
K. Tsepoura, 163, 328 
E. Tzirtzilakis, 227 
A.Vakakis, 170, 189 
1. Vardoulakis, 140, 289 
A. Varias, 7 
E. Velgaki, 289 
G. Voyiadjis, 309 
T.Wang, 115 
C. Younis, 196 
A. Zobnin, 13 
M. Zygomalas, 70 



426 

Volume III 

E. Aifantis29, 35v67, 73, 102 
H. Ait-Amokhtar, 22 
H. Askes, 1 
K. Chihab, 22 
F. Chmelik, 16 
R. de Borst, 1 
B. Devincre, 47 
H. Dierke, 9 
A. Fernandes, 61 
I. Groma, 35 
S. Gromov, 96 
M. Gutierrez, 1 
S. Ichtiaroglou, 35 
T. Ioannidou, 73 
V. Kazhaev, 96 
F. Klose, 9 
T. Konstantinova, 40 
L. Kubin, 47 
D. Kugiumtzis, 29 

M. Latzel, 53 
S. Lisina, 90 
S. Luding, 53 
G. Maugin, 67 
E. Meletlidou, 67 
H. Neuhauser, 9, 16 
A. Nortmann, 9 
A. Potapov, 85, 90, 96 
J.Fouget, 61,67, 73 
V. Rodyushkin, 85 
G. Stagika, 35 
P. Sutcliffe, 79 
A. Tokiy, 40 
N. Tokiy, 40 
G. Utkin, 90 
V. Varyukhin, 40 
G. Wells, 1 
M. Zaiser, 102 
A. Ziegenbein, 9, 16 


