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Resource Kernels: A Resource-Centric Approach to 
Real-Time and Multimedia Systems 

Raj Rajkumar, Kanaka Juwa, Anastasio Molano and Shuichi Oikawa 
Real-Time and Multimedia Laboratory1 

Department of Computer Science 
Carnegie Mellon University 

Pittsburgh, PA 15213 
{raj+, kjuvva, amolano, shui}@cs.cmu.edu 

Abstract 

We consider the problem of OS resource management for 
real-time and multimedia systems where multiple activities 
with different timing constraints must be scheduled concur- 
rently. Time on a particular resource is shared among its 
users and must be globally managed in real-time and mul- 
timedia systems. A resource kernel is meant for use in such 
systems and is defined to be one which provides timely, 
guaranteed and protected access to system resources. The 
resource kernel allows applications to specify only their 
resource demands leaving the kernel to satisfy those 
demands using hidden resource management schemes. 
This separation of resource specification from resource 
management allows OS-subsystem-specific customization 
by extending, optimizing or even replacing resource 
management schemes. As a result, this resource-centric 
approach can be implemented with any of several different 
resource management schemes. 

We identify the specific goals of a resource kernel: applica- 
tions must be able to explicitly state their timeliness re- 
quirements; the kernel must enforce maximum resource 
usage by applications; the kernel must support high utiliza- 
tion of system resources; and an application must be able 
to access different system resources simultaneously. Since 
the same application consumes a different amount of time 
on different platforms, the resource kernel must allow such 
resource consumption times to be portable across plat- 
forms, and to be automatically calibrated Our resource 
management scheme is based on resource reservation 
125] and satisfies these goals. The scheme is not only 

simple but captures a wide range of solutions developed by 
the real-time systems community over several years. 

One potentially serious problem that any resource manage- 
ment scheme must address is that of allowing access to 
multiple resources simultaneously and in timely fashion, a 
problem which is known to be NP-complete [5]. We show 
that this problem of simultaneous access to multiple resour- 
ces can be practically addressed by resource decoupling 
and resolving critical resource dependencies immediately. 
Finally, we demonstrate our resource kernel's functionality 
and flexibility in the context of multimedia applications 
which need processor cycles and/or disk bandwidth. 

1. Motivation for Resource Kernels 
Example real-time systems include aircraft fighters such as 
F-22 and the Joint Strike fighter [19], beverage bottling 
plants, autonomous vehicles, live monitoring systems, etc. 
These systems are typically built using timeline based ap- 
proaches, production/consumption rates [9] or priority- 
based schemes, where the resource demands are mapped to 
specific time slots or priority levels, often in ad hoc fashion. 
This mapping of resources to currently available scheduling 
mechanisms introduces many problems. Assumptions go 
undocumented, and violations go undetected with the end 
result that the system can become fragile and fail in un- 
expected ways. We argue for a resource-centric approach 
where the scheduling policies are completed subsumed by 
the kernel, and applications need only specify their resource 
and timing requirements. The kernel will then make inter- 
nal scheduling decisions such that these requirements are 
guaranteed to be satisfied. 

Various timing constraints also arise in desktop and net- 
worked multimedia systems. Multi-party video conferenc- 
ing, mute but live news windows, recording of live 
video/audio feeds, playback of local audio/video streams to 
remote participants etc. can go on concurrently with normal 
computing activities such as compilation, editing and 
browsing. A range of implicit timeliness constraints need 
to be satisfied in this scenario. For example, audio has 
stringent jitter requirements, and video has high bandwidth 
requirements [8]. Disk accesses for compilation should 
take lower precedence over disk accesses for recording a 
live telecast 

Two points argue in favor of resource-centric kernels we 
call "resource kernels": 

• Firsdy, operating system kernels (including microker- 
nels) are intended to manage resources such that applica- 
tion programs can assume in practice that system resour- 
ces are made available to them as they need them. In 
real-time systems, system resources such as the disk, the 
network, communication buffers, the protocol stack and 
most obviously the processor are shared. If one applica- 
tion is using a large portion of the system resources, then 
it implies that other applications get a less portion of the 
system resources and consequentiy can take longer to 

'This research was supported by the Defense Advanced Research Projects Agency in part under agreement E30602-97-2-0287 and in part under 
agreement F30602-96-1-0160. Mr. Molano was funded by a research grant from the Community of Madrid and by the National R&D Program of Spain 
under contracts TIC96-0982 and T1C97-0438. 



execute. In other words, their timing behavior is ad- 
versely affected. Letting kernels take explicit control 
over resource usage is therefore a logical thing to do to 
prevent such unexpected side effects. 

• Secondly, our resource model captures the essential re- 
quirements of many resource management policies in a 
simple, efficient yet general form. The implementation 
of the model can actually be done using any one of many 
popular resource management schemes (both classical 
and recent) without exposing the actual underlying 
resource management scheme chosen. User-level 
schemes can be used to dynamically downgrade 
(upgrade) application quality when new (current) 
resource demands arrive (leave). This feature of the 
resource model leads to minimal changes from existing 
infrastructure while retaining flexibility and offering 
many benefits. 

Other alternatives to resource kernels include user-centric 
and application-centric kernels: 

• A user-centric kernel can emphasize multi-user 
capabilities, and also track and facilitate the needs of 
specific users. Unix in general and Unix filesystems in 
particular can be viewed as providing such support. At 
the same time, Unix attempted to present and manipulate 
all system entities as files. In resource kernels, we adopt 
a similar approach and attempt to present all system 
resources using a uniform model for guaranteed access. 
Our implementation of the resource kernel is orthogonal 
to user-centricity, but tighter integration between the two 
may be possible. Currently, specific user-level require- 
ments must be translated by intermediate layers into 
resource demands at the resource kernel interface. 

• Application-centric kernels are typically custom execu- 
tives with built-in support for the applications they are 
intended to serve. As an example, kernels used in tele- 
communication switches are application-centric and deal 
explicitly with the high-performance, upgrading, 
availability, billing and auditing requirements of tele- 
communication paths. Conceptually, the notions of 
resource kernels to guarantee timely access to resources 
can be applied to such kernels as well. For example, 
consider a postscript printer. It has an executive running 
a postscript interpreter and control of the physical print- 
ing operations. Precisely timed control and concurrency 
management of downloading new print tasks in such ex- 
ecutives can also benefit from the support available in 
resource kernels. 

1.1. Comparison with Related Work 
A wealth of resource management schemes and scheduling 
algorithms exist from which one can draw. Our resource 
management work builds on and significantly extends es- 
tablished real-time scheduling theory and derived processor 
reservation work reported in [25]. The work in [25] did not 
deal with the management of multiple resource types, con- 
current accesses to different resources, explicit timeliness 
control, feedback about resource usage, behavioral control 
on resource overruns, management of interactions between 
resource users, and considerations of portability, com- 

patibility and automation. In brief, our resource manage- 
ment scheme supports the abstractions behind real-time 
priority-based scheduling for periodic activities, and service 
schemes for aperiodics in that framework. 

Some of our goals (such as resource centricity and por- 
tability) are similar to those of Microsoft Research's Rialto 
kernel among others. The reservation model also has its 
counterparts in network reservation protocols as used in 
ATM and RSVP. However, the operating system problem 
seems more complex in one sense since inherently different 
resource types must be dealt with, while networks essen- 
tially deal with one type (namely network packets). In 
another sense, network reservations must be homogeneous, 
scalable and efficient, making its realization harder in a 
different sense. 

Despite its origins in real-time scheduling theory, we expect 
our resource management model to be compatible with 
resource management schemes with their origins in net- 
works such as proportional fair-sharing schemes such as 
PGPS, WF2Q, virtual clocks and lottery scheduling. The 
notion of fairness has for long been deemed to be anti-thetic 
to real-time systems and the management of timeliness 
[38]. Weighted allocation schemes such as proportional 

fair-sharing, however, can still be applied to the real-time 
model. This can be done by dynamically recomputing the 
weights so as not to be proportional or fair, but instead to 
obtain a fixed share of a resource when new requests arrive 
or current requests complete. Our scheme employs a dif- 
ferent period for each real-time activity, and guarantees a 
"share" of that period to the activity. As a result, the 
dynamic recomputing of weights in a proportional fair- 
share scheme can be viewed as a special case of our model 
as having a single (small) fixed period for all resource al- 
locations. The primary difference that we see is that our 
work advances system capabilities to include non- 
traditional resources such as disk bandwidth that can be 
used in conjunction with processor scheduling. 

Finally, Blazewicz et al. [5] have shown that the problem of 
scheduling activities which need multiple resources simul- 
taneously and have timeliness constraints is NP-complete. 
In our work, we therefore strive for practical and acceptable 
alternatives which can guarantee access to different 
resource types. 

12. Organization of the Paper 
The rest of this paper is organized as follows. In Section 2, 
we present the goals to be satisfied in designing a resource 
kernel, and based on well-established principles of real- 
time resource management, defines a resource reservation 
model and its parameters. In Section 3, we describe the 
implementation of our resource reservation model in the 
context of processor scheduling, and evaluate it. In Section 
4, we detail the implementation of the resource reservation 
model in the context of disk scheduling, and evaluate those 
schemes. In Section 5, we address other issues that arise in 
the context of using the resource kernel in practice includ- 
ing calibrating an application's resource demands automati- 
cally and in portable ways. Finally, in Section 6, we con- 



elude with some remarks outlining our research contribu- 
tions and future work. 

2. Designing a Resource Kernel 
The challenges for a resource kernel are many. We charac- 
terize these challenges below as a set of goals that resource- 
centric kernels should aim to satisfy. 

2.1. Design Goals of a Resource Kernel 
Gl. Timeliness of resource usage. An application using 
the resource kernel must be able to request specific resource 
demands from the kernel. If granted, the requested amount 
of resources must be guaranteed to be available in timely 
fashion to the application. An application with existing 
resource grants must also be able to dynamically upgrade or 
downgrade its resource usage (for adaptation and graceful 
degradation purposes). This implies that the kernel must 
support an admission control policy for resource demands. 
Conventional real-time operating systems do not provide 
any such admission control mechanisms, even though an 
equivalent feature (without enforcement capabilities) could 
be built at user level. 

G2. Efficient resource utilization. The resource kernel 
must utilize system resources efficiently. For example, a 
trivial and unacceptable way to satisfy Gl would be to deny 
all requests for guaranteed resource access. In other words, 
if sufficient system resources are available, the kernel must 
allocate those resources to a requesting application. This 
goal implies that the admission control policy used by the 
resource kernel have provably good properties. Such proof 
may be analytical or empirical but our version of the 
resource kernel provides analytically proven properties. It 
must be noted that this goal is subordinated to Gl, in that 
guaranteed resource access is the primary goal, and efforts 
to improve efficiency and throughput cannot happen at the 
expense of the guarantees.2 Traditional real-time operating 
systems leaves the matter completely open to the 
developers, each of whom must use their own schemes to 
obtain better utilization for their applications. 

G3. Enforcement and protection. The resource kernel 
must enforce the usage of resources such that abuse of 
resources (intended or not) by one application does not hurt 
the guaranteed usage of resources granted by the kernel to 
other applications. Traditional real-time operating systems 
such as those compliant with the POSK Real-Time Exten- 
sions [30] do not satisfy this goal. 

2This emphasis on guarantees and timeliness may understandably seem 
to bias the resource kernel away from multimedia systems. (In real-time 
systems, missed deadlines may potentially lead to system failure, and 
possible loss of life and/or property). However, we believe that as 
multimedia applications on desktops and internet appliances mature, users 
will come to expect smooth video frame changes, jitterless audio, and 
synchronized audio and video. It is to be noted that VCR/TV/satellite 
technologies have been delivering such guaranteed timing behavior for 
years. It seems rather illogical to expect anything less from computers at 
least when a user is willing to pay for it, particularly if virtual reality 
environments must seem real, or for applications such as tele-medicine and 
tele-surgery. 

G4. Access to multiple resource types. The resource ker- 
nel must provide access to multiple resource types such as 
processor cycles, disk bandwidth, network bandwidth, com- 
munication buffers and virtual memory. The communica- 
tion protocol stack on the system may potentially be viewed 
as a resource type as well, but in most systems, they use the 
processor and hence can be managed by appropriate 
scheduling and allocation of processor cycles. For ex- 
ample, see [23]. Traditional real-time operating systems 
provide mechanisms that can only be used to guarantee ac- 
cess to processor cycles. 

G5. Portability and Automation. The absolute resource 
demands needed for a given amount of work can unfor- 
tunately vary from platform to platform due to differences 
in machine speed. For example, a signal processing algo- 
rithm can take 10ms on a 200MHz Pentium but take 20ms 
on a 100MHz Pentium. Ideally, applications must have the 
ability to specify their resource demands in a portable way 
such that the same resource specification can be used on 
different platforms. In addition, there must exist means for 
the resource demands of an application to be automatically 
calibrated. 

G6. Upward compatibility with fielded operating 
systems. A large host of commercial and proprietary real- 
time operating systems and real-time systems exist. Many 
of these systems employ a fixed priority scheduling policy 
[12] to support provide real-time behavior, and the rate- 

monotonic [18] or deadline-monotonic [17] priority assign- 
ment algorithm is frequently used to assign fixed priorities 
to tasks. Basic priority inheritance [33] is used on 
synchronization primitives such as mutexes and 
semaphores to avoid the unbounded priority inversion 
problem when tasks share logical resources. For example, 
Solaris [11], OS/2, Windows, Windows NT, ATX, HP/UX 
all support the fixed priority scheduling policy. The Java 
virtual machine specification also does. Priority inheritance 
on semaphores is supported in all these OSs (except Win- 
dows NT). POSK real-time extensions, Unix-derived real- 
time operating systems such as QNX and LynxOS, and 
other proprietary real-time operating systems such as pSOS, 
VxWorks, VRTX, OS/9000, and iRMX support priority in- 
heritance and fixed priority scheduling. To be accepted, the 
resource kernel must be upward compatible with these 
schemes. The priority inheritance scheme is also used or 
being considered for use in multimedia-oriented systems 
[28,40]. 

Goals G1-G4 are integral to resource kernels, while goals 
GS and G6 are for practicality and convenience. Goals Gl, 
G2, G5 and G6 can be satisfied by appropriate extensions to 
traditional real-time operating systems which support fixed 
priority CPU scheduling. For example, a user-level server 
can perform admission control using a resource specifica- 
tion model similar to ours, and assign fixed priorities based 
on the resource parameters used by our model. However, 
in order to satisfy goals G3 and G4, the internals of these 
operating systems need to be modified in ways similar to 
our resource kernel design and implementation. 



2.2. An Historical Perspective of our Real-Time 
Resource Management Model 

Many deployed real-time systems have been built and 
analyzed using the fixed priority periodic task model first 
proposed by Liu and Lay land [18]. This model employs 
two parameters, a maximum computation time C needed 
every periodic interval T for each activity that needs to be 
guaranteed.     The  rate-monotonic  scheduling  algorithm 
[18] assigns fixed priorities3 based only on T and is an 

optimal fixed priority scheduling algorithm. Instead of 
using priorities, if the {C, T) model is directly used in a 
real-time system, the assumptions underlying the Liu and 
Layland model can be monitored and enforced at run-time. 
Following  this  strategy,  the  "aperiodic  server"  model 
[13, 37] uses artificially introduced Cand 7 values for new 
"server tasks" which can then service aperiodic tasks within 
a periodic setting. This bounded periodic usage was 
adopted by the processor reservation work carried out in 
[25]. 

We build on this proven trend by identifying, designing, 
implementing and evaluating significant kernel extensions 
to the Liu and Layland work along multiple dimensions: 

• using arbitrary deadlines [16, 17] to obtain fine-grained 
control timeliness of concurrent activities, 

• applying the priority inheritance solutions explicitly to 
the unbounded priority inversion problem when ac- 
tivities share resources [2, 31, 34], 

• dealing with new resource types such as disk scheduling, 
a problem which has not been studied in depth in the Liu 
and Layland model, and 

• combining the scheduling of multiple resources into a 
single common framework observing that the problem of 
scheduling multiple resources with deadlines is known to 
be an NP-complete problem [5]. 

2.3. The Resource Reservation Model 
The resource kernel gets its name from its resource- 
centricity and its ability of the kernel to 

• apply a uniform resource model for dynamic sharing of 
different resource types, 

• take resource usage specifications from applications, 

• guarantee resource allocations at admission time, 

• schedule contending activities on a resource based on a 
well-defined scheme, and 

• ensure timeliness by dynamically monitoring and enforc- 
ing actual resource usage, 

The resource kernel attains these capabilities by reserving 
resources for applications requesting them, and tracking 
outstanding reservation allocations. Based on the timeli- 
ness requirements of reservations, the resource kernel 
prioritizes them, and executes a higher priority reservation 
before a lower priority reservation if both are eligible to 
execute. 

3A lower T yields a higher priority. 

2.4. Explicit Resource Parameters 
Our resource reservation model employs the following 
parameters: computation time C every T time-units for 
managing the net utilization of a resource, a deadline D for 
meeting timeliness requirements, a starting time S of the 
resource allocation, and L, the life-time of the resource al- 
location. We refer to these parameters, [C, T, D, S and L] 
as explicit parameters of our reservation model. The 
semantics are simple and are as follows. Each reservation 
will be allocated C units of usage time every T units of 
absolute time. These C units of usage time will be 
guaranteed to be available for consumption before D units 
of time after the begining of every periodic interval. The 
guarantees start at time S and terminate at time S + L. 

2.5. Implicit Resource Parameter 
If various reservations were strictly independent and have 
no interactions, then the explicit resource parameters would 
suffice. However, shared resources like buffers, critical 
sections, windowing systems, filesystems, protocol stacks, 
etc. are unavoidable in practical systems. When reser- 
vations interact, the possibility of "priority inversion" 
arises. A complete family of priority inheritance protocols 
[31] is known to address this problem. All these protocols 

share a common parameter B referred to as the blocking 
factor. It represents the maximum (desirably bounded) time 
that a reservation instance must wait for lower priority 
reservations while executing. If its B is unbounded, a reser- 
vation cannot meet its deadline. The resource kernel, there- 
fore, implicitly derives, tracks and enforces the implicit B 
parameter for each reservation in the system. Priority (or 
reservation) inheritance is applied when a reservation 
blocks, waiting for a lower priority reservation to release 
(say) a lock. As we shall see in Section 4.5, this implicit 
parameter B can also be used to deliberately introduce 
priority inversion in a controlled fashion to achieve other 
optimizations. 

2.6. Reservation Type 
When a reservation uses up its allocation of C within an 
interval of T, it is said to be depleted. A reservation which 
is not depleted is said to be an undepleted reservation. At 
the end of the current interval T, the reservation will obtain 
a new quota of C and is said to be replenished. In our 
reservation model, the behavior of a reservation between 
depletion and replenishment can take one of three forms: 

• Hard reservations: a hard reservation, on depletion, can- 
not be scheduled until it is replenished. While appearing 
constrained and very wasteful, we believe that this type 
of reservation can act as a powerful building block 
model for implementing "virtual" resources, automated 
calibration, etc. 

• Firm reservations: a firm reservation, on depletion, can 
be scheduled for execution only if no other undepleted 
reservation or unreserved threads are ready to run. 

• Soft reservations: a soft reservation, on depletion, can be 
scheduled for execution along with other unreserved 
threads and depleted reservations. 



2.7. System Call Interface to Reservations 

System Call 

Create 

Description 

Owe i reservation port 

Request Request resource on reservation port 

Hodify Modify current reservation parameters 

Notify Set up notification ports for resource 
expiry messages. 

Set 
Attribute 

Set attributes of reservation (hard, firm 
or soft reservation) 

Bind Bind a thread to a reservation. 

GetUsage Get the usage on a reservation (accu- 
mulated or current). 

Table 2-1: A subset of the reservation system call interface 
for each resource type. 

Our resource reservations are first-class entities in the 
resource kernel. Hence, operations on the reservations 
must be invoked using system calls. A select subset of the 
system call interface for the resource reservation model is 
given in Table 2-1. A reservation modification call allows 
an existing reservation to be upgraded or downgraded. If 
the modification fails, the previous reservation parameters 
will be restored. In other words, if an application cannot 
obtain higher resources because of system load, it will at 
least retain its previous allocation. A notification registra- 
tion interface allows the application to register a port to 
which a message will be sent by the resource kernel each 
time the reservation is depleted. A binding interface allows 
a thread to be bound to a reservation. More than one thread 
can be bound to a reservation. Query interfaces allow an 
application to obtain the current list of reservations in the 
system, the recent usage history of those reservations (up- 
dated at their respective T boundaries), and the usage of a 
reservation so far in its current T interval. 

3. Processor Resource Management 
In this section, we shall discuss and evaluate our implemen- 
tation of the resource reservation model for the processor 
resource. 

3.1. Admission Control 

Description 
Overhead 

(US) 

Processor admission control with 1 reservation 25 

Processor admission control with 10 reservations 120 

Processor admission control with 20 reservations 195 

Processor reservation creation 
(excluding admission control) 

150 

Figure 3-1: Processor Admission Control Policy 
Overhead w/ Exact Schedulability Conditions 

Our processor reservation scheme employs a fixed priority 
scheme due to its widespread popularity (as mentioned in 
the description of goal G6 in Section 2.1). In other words, 
each reservation is assigned a fixed priority, which is equal 
to its period T or deadline D, depending upon whether a 

rate-monotonic or a deadline-monotonic scheme is used 
respectively. Our admission control policy does not 
employ (oft-used) static utilization bounds (e.g as given in 
[18]) since they can be very pessimistic in nature [14]. In- 

stead, we use an exact schedulability condition which 
provides the best admission control for a given set of real- 
time threads. This algorithm is described in detail in the 
Appendix (Section 2). The algorithm, being a complex 
non-linear function of the thread periods, their relationships 
and their computation times, does not have a standard de- 
gree of complexity. However, it is easily coded and can be 
computed efficiently. The computational cost of the 
scheme for a wide range of thread counts is shown in 
Figure 3-1. As can be seen, the overhead is acceptable. It 
is also incurred only when a thread requests a new reser- 
vation (or upgrades an existing reservation). 

3.2. Tracking Implicit Parameter B 
When a lower priority reservation blocks a higher priority 
reservation4, the former inherits the reservation (and there- 
fore its priority). When the higher priority reservation 
finally unblocks, the inheritance is revoked. However, the 
duration for which the inheritance was in place is priority 
inversion. The resource kernel tracks and accumulates the 
duration of priority inversion during a reservation's T. If it 
exceeds the maximum B that can be tolerated by that reser- 
vation, a message is sent to the reservation's notification 
port. 

3.3. Performance Evaluation 

Tjf 
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a 
(ms) 

Ti 
(ms) 

Di 
(ms) 

Ctf 
Ti 

c, 
(ms) 

Ti 
(ms) ms) 

c/r, c. 
(ms) (m>) ms) 

cyr, 

Hard 8 80 60 0.1 12 80 60 0.1S 4 80 60 0.03 

Firm IS 80 70 0.19 19 80 70 024 11 80 70 0.14 

Soft 20 80 80 0.23 24 80 80 0.3 20 80 80 0.23 

Table 3-1: The processor reservation parameters used 
for Figures 3-2,3-3 and 3-4 

We now evaluate the processor reservation scheme by run- 
ning different workloads with and without the use of reser- 
vations. All our experiments use a PC using a 120MHz 
Pentium processor with a 256KB cache and 16MB of 
RAM. We illustrate two basic points in these experiments: 

1. the nature of the three types of reservations, and 

2. the flexibility to upgrade and downgrade different 
reservations, dynamically. 

In the experiments of Figures 3-2 and 3-3, three threads 
running simultaneously in infinite loops are bound to the 
three reservations listed in Table 3-1. In the experiment of 
Figure 3-2, only these three threads are running. In con- 
trast, in the experiment of Figure 3-3, many other un- 
reserved threads in infinite loops are also running in the 
background and competing for the processor. The behavior 

4This terminology means that a thread bound to a lower priority reser- 
vation is blocking a thread bound to a higher priority reservation. 
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Figure 3-2: Behavior of reserved infinite loop 
threads without unreserved competition 

Figure 3-3: Behavior of reserved infinite loop 
threads with unreserved competition 



CPU Utilization with unreserved threads 

Figure 3-4: Behavior of unreserved infinite loop 
threads with unreserved competition 

of the three types of reservations is illustrated between 
these two figures. 
• The first reserved thread is bound to a hard reservation 

and should not consume more than its granted utilization 
which is initially 10%, explicitly raised to 15% at time 
10, and then explicitly dropped to 5% at time 20. As can 
be seen in (a), this thread, despite running in an infinite 
loop and the presence of many competing threads, ob- 
tains exactly this specified usage in both Figures 3-2 and 
3-3. 

• The second reserved thread is bound to a firm reser- 
vation, and is allocated 19% of the CPU initially, 
upgraded to 24% at time 10, and then downgraded to 
14% at time 20. In Figure 3-2-(b), when there is no 
unreserved competition, this thread obtains a minimum 
of its granted utilization. In addition, it obtains "spare" 
idle cycles from the processor since there are no un- 
reserved competing threads. However, in Figure 3-3-(b), 
when there is always unreserved competition, this thread 
obtains only its granted utilization. Thus, as intended, a 
firm reservation behaves like a hard reservation when the 
processor is not idle, and like a soft reservation when 
idle processor cycles are indeed available. 

• The third reserved thread is bound to a soft reservation, 
which is allocated 25% initially, upgraded to 30% at 
time 10, and then downgraded to 25% at time 20. A soft 
reservation can compete for cycles left behind by any 
threads with currently undepleted reserves. As a result, 
this thread obtains more cycles than its granted utiliza- 
tion in both Figures 3-2-(c) and 3-3-(c). It must be noted 
that the thread obtains a minimum of its granted utiliza- 
tion during all its instances. It can also be seen that this 
thread obtains more processor cycles in Figure 3-2 since 
it competes only with one thread bound to a firm reser- 
vation. 

It must be recalled that the three threads of Figures 3-2 and 

3-3 are running simultaneously. The completion times of 
this same set of threads (with the background competition 
of Figure 3-3) when run without using any reservations are 
plotted in Figure 3-4. The same threads which behave ex- 
tremely predictably in Figure 3-3 now exhibit an enormous 
amount of seemingly random and practically unacceptable 
unpredictability. This demonstrates that our resource 
management scheme works as expected; without the 
scheme, resource usage is not predictable. 

(ms) 
T, 

(ms) (ms) 
Uj^q/T,) 

5 20 10 25% 

10 40 30 25% 

10 60 45 16.66% 

Table 3-2: The processor reservation parameters used 
for die experiment of Figures 3-5 and 3-6 
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Figure 3-5: Completion times of reserved threads 
in the presence of competing threads 

We now run another experiment where each thread imposes 
only finite demands, but the completion times of these 
demands can be predictable only with explicit resource 
management. The reservation parameters used for this ex- 
periment are listed in Figure 3-2. Note that the deadlines 
are substantially smaller than the reservation periods giving 
finer grained control over timeliness. One thread for each 
of the three reservations is created with the same period and 
(slightly less) computation time as its corresponding reser- 
vation. When using reservations in our resource kernel, the 
completion times for each of these threads as they execute 
with their different periods was time-stamped. The cor- 
responding results are plotted in Figure 3-5. As can be 
seen, all the three threads complete their executions well 
ahead of their deadlines. Thread 2 also has a constant 
completion time despite its lower priority because of its 
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Figure 3-6: Completion times of unreserved threads 
with competing threads 

harmonicity with thread 1. The behavior of the completion 
times when no reservations are used is depicted in Figure 
3-6. As can be seen, the same threads have widely varying 
completion times and also miss their deadlines rather fre- 
quently. 

To summarize, the resource kernel provides a guaranteed 
slice of processor resources to applications independent of 
the behavior of other applications (including execution in 
infinite loops). Processor cycles that are idle can also be 
selectively allocated to running tasks. 

4. Disk Bandwidth Resource Management 
Traditional real-time systems have largely avoided the use 
of disks. This is in part because they may be relatively 
slow for some real-time applications. However, many real- 
time applications can benefit from the use of disks to store 
and access real-time data (such as real-time database ap- 
plications). Unfortunately, the use of a disk can (a) intro- 
duce unpredictable latencies, and even worse (b) the disk 
access requests must now be managed in conjunction with 
the processor scheduling. On the processor side, fixed 
priority algorithms allow a mix of tasks with different 
periodicity, and hence the disk subsystem must do too. 
This problem has not been studied extensively partly be- 
cause the multiple resource problem with deadlines is 
known to be NP-complete [5]. Some exceptions can be 
found in [1,20,21] but their resource specification models 
and metrics are very different from the ones we study. The 
closest scheduling model to ours is found in [6] but its ap- 
proach is one of using fixed priority scheduling, minimizing 
blocking through the use of "chunking" and using a static 
task set. Also, only simulation studies were carried out. In 
contrast, we use dynamic priority scheduling, exploit block- 
ing instead of minimizing it and evaluate an implemen- 
tation within our resource framework. In addition, we deal 
with processor needs that must be dealt with concurrently . 

Desktop multimedia systems also need to read from (or 
write to) disk storage relatively large volumes of video and 
audio data. In addition, these streams represent continuous 
media streams, and must therefore be processed by the disk 
subsystem in real-time. In other words, it would be prac- 
tically very useful in practice if disk bandwidth can also be 
guaranteed in addition to managing processor cycles. 

In this section, we present a simplistic disk scheduling algo- 
rithm based on earliest deadline scheduling. We then im- 
prove the algorithm by exploiting "slack" in the reser- 
vations to obtain a hybrid of earliest deadline scheduling 
and a traditional scan algorithm. Our evaluations of these 
schemes that guaranteed disk bandwidth reservation can be 
obtained at only a small loss of system throughput. 

4.1. Filesystem Bandwidth Specification 
Our resource specification model for disk bandwidth is 
identical to that of processor cycles. In other words, a disk 
bandwidth reservation must specify a start time S, a 
processing time C to be obtained in every interval T before 
a deadline of D. The processing time C can be specified as 
# of disk blocks (as a portable specification) or in absolute 
disk bandwidth time in native-platform specification. 

4.2. Admission Control 
Our simplest disk head scheduling scheme employs the ear- 
liest deadline scheduling algorithm [18]. The earliest dead- 
line scheduling algorithm is an optimal scheduling algo- 
rithm for our scheduling model and can guarantee 100% 
resource utilization under ideal conditions. In other words, 
a higher priority reservation must be able to preempt a 
lower priority preemption preemptively, and Di =TV 

However, instantaneous preemptions are not possible in 
disk scheduling. An ongoing disk block access must com- 
plete before the next highest priority disk block access re- 
quest can be issued. This introduces a blocking (priority 
inversion) factor of a single filesystem block access (as per 
[35]). Also, when Di < Tt, the required earlier completion 

time (of Tj - Dv must be added to the blocking factor. A 
detailed discussion of this admission .control policy is 
beyond the scope of this paper and can be found in [27]. 

43. Scheduling Policy 
Instances of a disk bandwidth reservation become eligible 
to execute every 7} units (at times 54, S{ + Tv St + 27}, Si + 
27}, • • ■ )• Consider an instance which arrives at time Si + 
nTj. This instance has a deadline of S{ + nTj + D-v 

Similarly, all instances of all outstanding disk bandwidth 
reservations have corresponding deadlines. After each disk 
block access is completed, the disk scheduler makes 
another scheduling decision. It picks the next ready reser- 
vation instance with the earliest deadline and issues a disk 
access command corresponding to that instance's next disk 
access request. If there are no pending requests, the disk 
remains idle. 
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4.4. The Architecture of the Reserved Filesystem 
The architecture of the reserved filesystem follows a tradi- 
tional scheme. A Real-Time File Server running on top of 
our resource kernel (based on the RT-Mach microkernel) 
manages the reserved real-time filesystem. RT-FS has mul- 
tiple worker threads which receive and process filesystem 
access requests from real-time clients. Each worker thread 
stores the incoming request it is processing into a common 
io-request queue. The worker thread responsible for issuing 
the current disk block access waits for its completion. It 
then awakens, and determines the next request based on the 
scheduling policy above. If the next request corresponds to 
another worker thread, that thread is signaled. Else, the 
worker thread continues to service its remaining disk access 
requests, if any. 

4.5. Exploiting 'B': Just-In-Time Disk Scheduling 
The earliest deadline disk scheduling described above 
blindly picks the next block with the earliest deadline ir- 
respective of the current position of the disk head. Since 
the physical movement of the disk head and the disk's rota- 
tional latencies constitute significant durations of time, such 
dynamic scheduling can result in significant disk subsystem 
throughput reductions particularly under heavy disk traffic. 
The reductions can be directly attributed to the time wasted 
by the disk head moving from one end to another and the 
disk's rotational time. In summary, the deadines are 
preferred over a block's physical location. 

Traditional scan algorithms, in contrast, re-order the disk 
request queue such that the block closest to the current head 
position (in the direction of movement) is accessed next. 
As a result, a disk request which just arrived can be ser- 
viced before another disk request which has been waiting 
for a long time just because the latter is farther away from 
the head position. To summarize, the physical block loca- 
tion is favored over timeliness. 

The earliest deadline scheduling algorithm and the scan al- 
gorithm are therefore at odds with one another. For- 
tunately, a hybrid scheme which can obtain all the benefits 
of the earliest deadline scheduling algorithm and at least 
part of the benefits of the scan algorithm is possible. In 
priority-driven scheduling, higher priority activities 
preempt lower priority activities. Since both lower and 
higher priority activities must be schedulable in an 
admission-controlled system, higher priority activities typi- 
cally complete well ahead of their deadlines. In other 
words, such higher priority activities have a good amount 
of "slack" in their completion times. Based on this obser- 
vation, we present a new algorithm we call "Just-in-time" 
disk scheduling. This algorithm exploits the slack available 
to higher priority tasks to schedule accesses of other disk 
blocks which are closer to the current head position.5 

A brief description of the just-in-time disk scheduling algo- 

rithm is as follows. The maximum "slack" available to 
each disk reservation is computed whenever a new request 
is admitted (or an existing reservation is deleted). At run- 
time, if the current slack of higher priority reservations is 
non-zero, another unreserved (or lower priority reserved) 
request can be scheduled if closer to the disk head. If slack 
is stolen, the slack of higher priority reservations is reduced 
by one. This process is then repeated. If the slack of a high 
priority reservation goes to zero, it will be serviced inde- 
pendent of its location. The detailed description of the 
just-in-time algorithm can be found in [27]. 

4.6. Performance Evaluation 
The capability of the disk bandwidth reservation scheme in 
our resource kernel to satisfy demands on disk bandwidth is 
illustrated in Figure 4-1. One disk bandwidth reservation of 
12 disk blocks every 250 ms was requested in the presence 
of other unreserved accesses to the disk. As can be seen 
from the plot, this demand is satisfied by both the earliest 
deadline scheme and the just-in-time scheme; in fact, both 
lines are flat and coincide almost completely in the plot. 
However, the scan algorithm attempts to optimize disk 
throughput and pays for it by not delivering the needed 
throughput of 12 blocks every 250 ms. As a matter of fact, 
the bandwidth consumption varies widely.6 

Disk Bandwidth Consumption 
• of disk blocks accessed each period 

(•MO MI) 

Figure 4-1: Disk Bandwidth consumed (# of disk blocks 
read) by reserved thread. Earliest deadline and 
Just-In-Time reservation schemes are flat and 

coincide almost completely. 

We also imposed heavy disk traffic conditions and 
measured the throughput obtained under the scan and ear- 
liest deadline algorithms. This is shown in Table 4-1. As 

5Such "slack-stealing" has been done in the context of processor schedul- 
ing theory in order to provide better response to aperiodic activities [IS]. 
The optimization, cost functions and implementation tradeoffs seem to be 
different for the processor and the disk, however. 

'The pattern is more dramatic in a zoomed out view with the x-axis 
ranging upto 400 periods, but the lines/points are not clearly legible in a 
relatively small black-and-white graph. 



Throughput 
Requested Throughput for Earliest Throughput 
throughput with Scan Deadline Degradation 

(KB/s) (KB/s) Scheduling 
(KB/s) 

<%) 

1158.6 856.36 764.88 10.68% 

Table 4-1: Scan and EDF real-time filesystem 
throughput comparison 

can be seen, the earliest deadline algorithm obtains only 
about 10% less throughput than the scan algorithm. This is 
the price to be paid for the predictable and guaranteed disk 
bandwidth obtained by the earliest deadline algorithm (as 
shown in Figure 4-1). 

4.6.1. Synthetic Workload Behavior with both CPU and 
Disk Requirements 

We next imposed a synthetic workload to determine the 
completion times of disk access requests, and to study the 
drop in disk throughput when the Scan policy is replaced 
with a policy which attempts to satisfy timing constraints in 
preference to enhancing disk throughput. 

As illustrated in Figure 4-2, the real-time workload tested 
consists of two threads, Thread 1 and Thread lb. Thread 1 
reads periodically from disk and copies all the data into 
buffer A, while Thread lb processes data previously stored 
in buffer B. At the end of the period, there is a buffer switch 
and the role of both buffers is interchanged. Buffers A and 
B have the same size. We bound disk bandwidth and CPU 
reserves to Thread 1, and a CPU reserve to Thread lb, and 
traced the execution in terms of completion times, deadline 
misses and disk utilization. Thread 1 makes use of rela- 
tively little cpu time and it sleeps till the beginning of the 
next period to invoke a new read operation. Thread lb 
processes the data previously stored in the buffer. Both 
Thread 1 and Thread lb have a period of 250 ms. Also, 
Thread 1 reads 44 KBytes during each of its instances, and 
has a deadline of 162 ms for completing its reads. Note that 
this deadline is shorter than its period of 250 ms, forcing a 
stringent test for the filesystem. Thread lb is offset from 
Thread 1 by 162 ms and has a deadline of 88 ms. 

Tl          , T, 
Cdtok   , Ccpul 

■ thread_l 
1 

_. l^H _. 

thread_lb 

Tl       .  . T, 

L===!           jCcpu2i 

Figure 4-2: Execution patterns of 
Thread 1 and Threadlb 

Six periodic threads each with a different period (varying 
from 300 ms to 640 ms) and a different read-access load on 
the disk (varying from 8 KBytes to 200 KBytes per periodic 
instance of the thread) were introduced as competing 
threads without any reserved capacity on either the CPU or 

the disk bandwidth. We ran this workload for a duration of 
100 seconds and measured the completion times of each 
periodic instance, and the total disk bandwidth consumed. 
The completion times are illustrated in Figure 4-3. 
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Figure 4-3: Thread 1 Completion Times 

If we use EDF/EDF+JIT without reserving the CPU there 
are some deadlines misses (2 out of 400: periods 88 and 
258). In these cases the task finished after 162 ms (but 
never after the period of 250 ms). These two deadline 
misses are due to the fact that our filesystem (extension of 
the Berkeley Fast FileSystem) does not allocate blocks con- 
tiguously on disk. So relatively high interblock seek times 
out of the cylinder group may happen from time to time 
even with requests for successive blocks within a file from 
the same thread. This can happen for each 1 MB of filesys- 
tem data according to the Berkeley FFS allocation algo- 
rithm and can lead to potential deadline misses. Account- 
ing for the worst-case interblock seek times in the admis- 
sion control test would avoid this problem, but can lead to 
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extremely low guaranteed disk throughput. Thus, not 
withstanding our admission control test, some deadlines can 
be missed. However, as can be seen from our experiments, 
the deadline misses are rather infrequent. Conversely, in 
the Scan case there is no time to run the needed 400 disk 
accesses and only 248 accesses are completed within the 
experiment duration. The completion times are nearly al- 
ways greater than the period itself (> 250 ms) and some- 
times much greater. This shows that EDF w/ CPU reserves 
consistently meets the timeliness constraints of the real- 
time application accessing the disk. 

Disk Throughput: The total disk bandwidth consumed in 
the above experiment was 16,464 KBytes with the EDF and 
CPU reserve policy, and 17,750 KBytes with the Scan 
policy. This represents only a performance throughput loss 
of 7.25%. In return, however, the timing constraints and 
periodic bandwidth requirements are satisfied with the 
EDF/CPU reserves policy, while they are dramatically un- 
satisfied with the Scan policy. 

5. Practical Issues 

5.1. Using Different Reservations Together 
Consider a video display application which reads a video 
movie from the local disk and displays it on the screen. 
The movie is long enough that it does not fit into memory. 
As a result, subsequent video frames must be read from the 
disk while frames already read into a double buffer are 
being played on the screen. In this case, the video display 
algorithm must not only be scheduled on the CPU (where it 
can also do decompression or special signal processing) but 
also obtain guaranteed disk bandwidth to display the movie 
and its audio track without user-perceptible jitter. 

The most straightforward way of approaching this problem 
is as follows: the application consists of a single thread 
which binds itself to a processor reservation and a disk 
bandwidth reservation with the same period, start time and 
appropriate computation times to satisfy the application's 
needs. There can be other threads in the system which use 
other combinations of resources (such as the processor and 
network bandwidth). Each of these reservations need to 
satisfy their associated deadlines given by the parameter D. 
However, it is known that the problem of scheduling con- 
current tasks on multiple resources with timeliness con- 
straints is NP-complete [5]. As a result, one faces the 
dilemma of finding a practical acceptable solution, since 
finding an optimal solution to the problem is very imprac- 
tical. We address this problem next. 

5.2. Resource Decoupling 
Since simultaneous access to multiple resources is the 
problem we face, a natural solution to the practical dilemma 
one faces is to try to decouple the use of different resources, 
which can be used independent of one another. An end-to- 
end timing constraint problem is normally intractable as a 
single big problem, and is hence solved as a series of small 
problems where each problem only spans a single resource. 
For example, in an audio-conferencing application [23], the 
first pipeline stage occurs in the sound card which transfers 

data to the processor using periodically self-initiated DMA 
or multi-master bus transactions. A 2nd pipeline stage oc- 
curs on the processor to transmit the data and the next stage 
occurs in the network. The end-to-end delay for audio is 
the sum of the delays encountered in each of the audio 
pipeline stages. We refer to this strategy where each of the 
resources involved are scheduled independent of one 
another as resource decoupling. When resources are 
decoupled, for example, the completion time test of Section 
2 can be applied to each resource independently. 

In the audio-conferencing application, the only coupling be- 
tween the pipeline stages lies actually at the interface be- 
tween stage 2 and the network (or the network and stage 
4).7 When the processor is ready to send out packets, the 
network must be able to transmit them. Memory buffers on 
the network interface card provide some decoupling by 
storing packets that the processor is ready to transmit, but 
the network is not ready to accept yet. We address this 
problem next. 

5.3. Processor Co-Dependency 
A phenomenon that we name processor co-dependency 
provides a hint to the solution. Complete resource decou- 
pling seems possible between any two resources if neither 
of them is the processor. Since the processor is the brain of 
the system, communications between the network and the 
disk, for example, must go through the processor. The 
processor must obtain the network packets and then send 
them to the disk. In other words, a coupling problem which 
at first sight is between the disk and the network gets trans- 
lated into two independent couplings between the disk and 
the processor, and between the processor and the network. 
The net result is that as soon as the disk (or the network) 
demand attention from the processor, the processor must be 
able to provide it. 

5.4. "Immediate" or "System" Reservations 
In our resource reservation model, we define the concept of 
a "system reservation" which is a highest priority reser- 
vation which does not get depleted. As a result, any thread 
or threads bound to a system reservation will be able to 
execute at the highest priority as soon as possible (subject 
only to other threads using a system reservation). We also 
sometimes refer to the system reservation as an "immediate 
reservation" because of the immediacy of its service. 
Clearly, the use of "system reserves" must be confined to 
trusted services only (to satisfy goal G3 of resource ker- 
nels), which must be trusted to use them only sparingly for 
relatively quick transfers of data. The worker threads in the 
reserved filesystem of Section 4.4 also fall into the category 
of system reservation users. It must be remembered that the 
usage of the system reservation will adversely affect new 
resource requests and must be accounted for in admission 
tests. 

7If the network interface card hardware can be configured to be in 
auto-initiation mode as on the sound card, this coupling problem would 
disappear as well. This argues for better and more sophisticated support in 
interface cards and controllers. The trend towards MMX support and 
"software modems" is unfortunately in the opposite direction! 
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We measured the time consumed by components of a disk 
I/O to complete a filesystem block fetch of 4KB: time spent 
in core filesystem code = 532 us, time spent in filesystem 
overhead (block map queries, etc.) = 171 us, time spent in 
data copies = 131 \is, time spent in disk reserve overheads 
(scheduling, updating slack, etc.) = 230 x>s, time spent in 
I/O = 2550 us leading to a total elapsed time of 3082 vs. 
The CPU usage for the worker thread in the filesystem is 
therefore 532 us out of 3082 \is = 17.26%. Since one 
worker thread can access the disk at any given time, this 
represents the worst-case processor requirement imposed 
by the real-time filesystem. However, due to the fact that 
disk seeks will not be issued continuously in a general sys- 
tem, this number will be lower in practice. Otherwise, for a 
disk-intensive context, this overhead is likely acceptable. 

5.5. Calibrating an Application's Requirements 
The computation time C needed for a reservation must be 
known in order to reserve processor time before it can be 
requested. It is, however, unknown practically before its 
actual execution since it heavily depends on a machine plat- 
form on which an application program runs. Even on 
machines with the same CPU and the same clock rate, the 
execution time may be affected by the presence of cache, 
the amount of memory, memory and system bus interface 
chip sets, and other I/O interface cards. Thus, we need to 
obtain C for the current platform by actually running an 
application on it. Obtaining C requires the kernel to sup- 
port precise measurement of the processor time consumed 
by a certain thread. We now discuss how this can be ob- 
tained using only our resource kernel capabilities. 

Our resource kernel supports hard reservations and also 
provides current and accumulated usage on a reservation by 
a program. The hard reservation ensures that any threads 
bound to it can only run upto its specified C. The execution 
time of the application program to be calibrated is then 
measured as follows. A new hard reservation, named (say) 
"calibration", is created, and the given application program 
is bound to it just for the purpose of measuring its execution 
time. The reservation will get depleted by the running of 
the application program, get replenished by the resource 
kernel, and the process will repeat until the application 
program completes execution. The accumulated usage on 
the hard reservation "calibration" now yields the execution 
time of the application program. An advantage of this 
method is that it is certain that a program can obtain its C 
even when the system is busy since it is guaranteed to 
receive a certain amount of processor time for its execution. 

5.6. Portability Of Resource Specifications 
As mentioned above, the absolute execution time of a 
program changes from platform to platform depending 
upon processor speed, etc. As a result, the specification of 
C in absolute time-units can become inherently not port- 
able. Fortunately, portable time-units are available in the 
form of the number of clock ticks and the number of in- 
structions executed for a given program segment on the 
processor. Of these two, the number of clock ticks is per- 
haps more portable since today's microprocessors contain 

on-chip clock counters which can not only provide high- 
accuracy resolution as well be inherently scalable across 
chips with lower or higher clock speeds. Similarly, Ct for 
disk bandwidth reservation can specify the number of disk 
blocks to be read, or better, the number of bytes to be read. 
The latter units will also be portable across platforms using 
different disk block sizes. Implementations of resource ker- 
nels must therefore provide convenience functions to trans- 
late "portable time-units" on a resource to native absolute 
time-units. 

5.7. Adaptive QoS Management 
User-level resource managers can be built on top of a 
resource kernel to react (or adapt to) to changes in applica- 
tion, system resources and the environment. In distributed 
real-time applications, such as video conferencing, the 
change in quality at one end-point typically implies that the 
other end-point must also adapt its quality correspondingly. 
Such distributed adaptations must clearly happen at a larger 
time-scale than single-node resource allocation changes. 
Similarly, we take the position that user-level application 
changes happen at a larger time-scale than the decisions 
made in the resource kernel to dynamically schedule ac- 
tivities on system resources. Such user-level resource 
managers can also potentially implement more complex 
resource management policies than the ones used by our 
resource model. 

6. Concluding Remarks 
We have presented a resource-centric approach to building 
real-time kernels, and we call the resulting kernel a 
resource kernel. The resource kernel provides timely, 
guaranteed and protected access to resources. We now 
compare our approach with two related approaches, and 
summarize our research contributions. 

6.1. Resource Kernels and Related Approaches 
We now compare the resource kernel notions with the ap- 
proaches used by operating systems such as Nemesis 
[29] and Exokernel [7]. Nemesis and our resource kernel 

approach adopt a similar model of resource specification 
and allocation, based on the so-called {C, T] model 
originally proposed by Liu and Layland [18]. Nemesis im- 
plicitly assumes a deadline of T before which the C units of 
time must be available. Our resource kernel also supports a 
deadline shorter than 7*. The Nemesis approach to dealing 
with the problem of priority inversion, a potentially sig- 
nificant stumbling block of multi-tasking real-time systems, 
is rather unclear. In our resource kernel approach, bound- 
ing priority inversion is a key principle of managing inter- 
actions between concurent real-time activities. Priority in- 
version, where a higher priority request is blocked by a 
lower priority activity, is unavoidable in the general case 
(such as critical sections, non-preemptible bus transactions 
and finite size ATM cells). However, it is imperative that 
unbounded priority inversion be eliminated, as in the use of 
semaphores in a priority-driven system [31,35].    Such 

*A deadline longer than T is also possible. 
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durations of priority inversion must be bounded and if pos- 
sible minimized. Priority inheritance protocols have also 
been extended to dynamic priority algorithms [3,9]. In 
resource kernels, we use priority inheritance in the form of 
reserve propagation [26] where a blocking thread inherits 
the scheduling priority of a higher priority reserved thread 
for the duration of the blocking. 

Nemesis advocates the minimization of servers to enable 
correct "charging" of resource usage to applications. The 
Nemesis approch is to put 'server code' into client libraries, 
which would then use critical sections to enforce consis- 
tency requirements across multiple clients as necessary. 
Our resource kernel notions take a neutral stance on the 
topic of servers in that we (must) support configurations 
with and without servers. We do so for two fundamental 
reasons: 

1. Time and space are distinct. Servers and critical sec- 
tions executing in client space providing the given ser- 
vice are strictly analogous in a timing predictability 
sense, and differ only in a spatial organization sense. 
More precisely, the blocking (or priority version) factor 
is (almost) the same whether a service is implemented 
as a client library or within a server thread. Any dif- 
ference arises only due to spatial overhead factors 
(primarily due to less context-switching in the case of 
client   library   implementations,   for   example   see 
[24,23]). This is hardly a fundamental question of 

functionality or capability. Consider a service S (such 
as a draw-in-window operation) executing in a real- 
time server like X. The server obtains requests from 
multiple clients. In a real-time system, the requests 
will be queued up in priority order and with support for 
priority inheritance to avoid unbounded priority inver- 
sion problems. If implemented as a client library, the 
critical section used within the library will use a mutex, 
which in turn will use a priority queue for waiting 
threads and support priority inheritance.9 

2. Sharing and interactions are in general unavoidable: 
Concurrendy running applications interact not only be- 
cause they eventually share the same underlying physi- 
cal resources, but also because of logical requirements 
above the physical layer. Shared display, shared files, 
concurrent access to bank accounts, shared data such as 
movies and databases are only some examples of these 
shared logical resources. As a result, critical sections 
which manage these shared logical resources are un- 
avoidable in the context of multi-tasking and multi- 
threaded systems. Whether these critical sections are 
organized in client space or in a dedicated server is 
only a question of convenience and flexibility with the 
time/space distintions coming into play. Anyhow, 
critical sections can be shortened or optimized but in 

general cannot be eliminated.10 

Memory implications of using a client library (with a criti- 
cal section) and a server also need to be considered. When 
a service is implemented as a server, it is relatively easy 
(for example) to wire down that server memory for predict- 
able real-time performance. However, if clients used their 
own libraries (with critical sections), other relatively more 
complex issues must be addressed. In one case, each client 
can have its own copy of the library leading to higher 
memory usage. In contrast, if shared (dynamically linked) 
libraries are used, memory usage is the same as a server, 
but one must now be able to ensure that a shared library is 
wireable. In other words, a finer granularity of memory 
control becomes necessary. 

The Exo-kernel approach advocates that all policy decisions 
except for access protection reside in user-level programs. 
However, for real-time systems, the CPU scheduling policy 
must be centrally managed (at the "root") to ensure that an 
application group can satisfy its own timing constraints. 
This global scheduling policy cannot be delegated to in- 
dividual applications. On the other hand, if the CPU 
resource management policy is deemed to be a temporal 
protection mechanism that resides in the exo-kernel, the 
resource kernel notion is actually compatible with the exo- 
kernel approach as well. Each application can then build its 
own local scheduler to use its allocated time in a way that it 
sees fit. However, in practice, we do not expect local 
schedulers in user space to provide significant added value. 
Instead, we propose a Quality of Service (QoS) manager 
running in user space (as a server) on top of the resource 
kernel [22, 32]. This QoS manager can arbitrate among 
competing requests when the maximal requests of all ap- 
plications cannot be satisfied with the available resources. 

6.2. Contributions 
We have presented the notion of a resource kernel, which 
provides timely and protected access to machine resources. 
In this approach geared towards real-time and multimedia 
operating systems, guaranteed and protected access 
• Uniformity: a single resource specification scheme can 

be applied to different time-shared resource types with 
timeliness control. The scheme can be locally optimized 
and applied for each resource type. 

• Resource management transparency: the use of the 
exact resource management scheme is hidden from the 
application programs and changed transparently across 
different implementations. The implementation of the 
resource management scheme can use, among other 
things, fixed priority schemes such as rate-monotonic 
scheduling [18] and deadline-monotonic scheduling [17], 
dynamic priority schemes such as earliest-deadline-first 
[18], or processor sharing schemes such as PGPS, vir- 

tual clocks or WF^Q [4]. We demonstrate two very dif- 
ferent schemes for CPU and disk bandwidth manage- 

*ln the general case of this discussion, one should replace the notion of 
priority with the notion of 'scheduling attribute' which may be priorities or 
reserves with the basic concept remaining the same. 

,0Lock-free protocols exist but seem to be useful only under limited 
conditions. 
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ment even though each uses the same resource specifica- 
tion model. 

• Resource composability: We show that multiple 
resource types can be guaranteed at the same time with 
acceptable performance levels. In specific, reservations 
of different resource types can be independently created 
and then composed. We use the technique of resource 
decoupling [36] and management of processor co- 
dependency using higher priority system reserves to 
provide simultaneous access to CPU resource and 
another resource type simultaneously. We are unaware 
of other OS work where simultaneous access to two or 
more resources is addressed. 

• Hard resource reservation: In this resource allocation 
scheme, the usage of a resource cannot exceed the al- 
located amount of the resource even if the resource is 
idle. While this may sound draconian and wasteful, we 
expect that this will be a powerful building block for 
constructing virtual resources, which allow untrusted ap- 
plications to be built and run in their own resource space 
with a pre-determined finite effect on other applications 
at all times. 

• Interactions and Disk bandwidth management: The 
resource kernel is able to monitor and control priority 
inversion arising from the interactions between real-time 
tasks due to the use of common shared services. By 
deliberately introducing priority inversion in a controlled 
fashion, we demonstrate that there is no significant loss 
of disk subsystem throughput for acceptably substantial 
ranges of disk traffic while guaranteeing timely access to 
disk bandwidth for real-time and multimedia applica- 
tions. This is achieved using a novel just-in-time disk 
scheduling scheme. Guaranteed access to disk 
bandwidth is obtained at the expense of a relatively 
small loss in throughput. 

• Flexibility of resource kernels: Our resource kernel 
abstractions allow resource usage to be automatically 
calibrated, and to be portable across different hardware 
platforms. 

6.3. Future Work 
Our future work will include exploring network bandwidth 
reservation in conjunction with processor and disk reser- 
vation. Network bandwidth management has many im- 
plications in the context of a resource kernel: protocol 
stack overhead dominates on the CPU. As a result, network 
bandwidth management translates to both network reser- 
vation and CPU management. The times during which both 
network bandwidth and CPU cycles need to be available 
seem to be fairly limited, but remain to be verified. 

The issue of CPU co-dependency needs to be addressed at 
greater length. Additional buffer space between different 
resource types with hardware buffers can also alleviate the 
problem; this is typical of today's hardware systems with 
self-triggered DMA on sound cards (such as the 
SoundBlaster 16), and bus-mastering on multi-master back- 
planes such as the PCI bus. Finally, distributed resource 
reservation in networked systems will open up another 
frontier of work. 

Appendix: Admission Control Schemes 

1. Resource Specification Notation 
Let the set of n reservations requiring processor reservation 
be denoted as T,, x2, • • •, T„. Each reservation x{ needs to 
obtain C- units of time every Tt units of time. In addition, 
the Cj units of resource time must be available at or before 
Di in each periodic interval separated by T-v 

2. Admission Control Using Fixed Priority Policies 
The reservations are ordered in descending order of their 
fixed priorities such that for / = 1 to n-1, priority^) < tj+,. 

In mathematical form, a necessary and sufficient condition 
for the schedulability of a set of periodic tasks using fixed 
priority scheduling is as follows [14]: 

Vt T*/-«.    0<TSO,   (g^])* 1 

In algorithmic form, the completion time CTi of a reser- 
vation Tj with a resource allocation can be computed as 
follows using a recurrence relation [10, 39]. 

l.Letwf:=Cj. 
.w*. 

2. Compute *f+I r=I£! <}(["-£.). 

3. If nf+1 > Dv CT; := «>. Skip to Step 6. 

4. If wjc+1 = wf, CTj := w^. Skip to Step 6. 

5.k:=k+ 1. Go to Step 2. 

6. If CTj < D4, Tj meets its deadline. 

The completion time test is repeated for all reservations 
which need to be guaranteed. Even if one reservation will 
miss its deadline, the admission test will deny the newest 
incoming request. 

3. Admission Control Based on Rate-Monotonic 
Priority Assignment 

The rate-monotonic priority assignment algorithm is an op- 
timal fixed priority algorithm when Di = Tx [18]. The reser- 
vations are ordered in descending order based on their rate- 
monotonic priorities (i.e., Tx < TM). The admission control 
test use the scheme described in Section 2. 

4. Admission Control Based on 
Deadline-Monotonic Priority Assignment 

The deadline-monotonic priority assignment algorithm is an 
optimal fixed priority algorithm when Dj < Tj [17]. The 
reservations are ordered in descending order based on their 
deadline-monotonic priorities (i.e. Di < Di+i). The admis- 
sion control test uses the same scheme described in Section 
2. 
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Abstract 

Traditional real-time systems have largely avoided the use 
of disks due to their relative slow speeds and their un- 
predictability. However, many real-time applications in- 
cluding multimedia systems and real-time database ap- 
plications benefit significantly from the use of disks to store 
and access real-time data. In this paper, we investigate the 
problem of obtaining guaranteed timely access to files on a 
disk in a real-time system. Our study focuses on several 
aspects of this problem of providing a real-time filesystem. 
First, we consider the use of two real-time disk scheduling 
algorithms: earliest deadline scheduling and just-in-time 
scheduling, a variation of aperiodic servers for the disk. 
The latter algorithm is designed to improve disk throughput 
that can be hurt when a real-time scheduling algorithm 
such as EDF is applied directly. Admission control policies 
with practically acceptable properties of performance and 
usability are provided. Next, we design and implement a 
real-time filesystem on the RT-Mach microkernel-based 
system running a real-time shell. The new interface we 
develop is based on RT-Mach's resource reservation 
paradigm and provides guaranteed and timely access for 
multiple concurrent applications requiring disk bandwidth 
with different timing and volume requirements. Finally, we 
perform a detailed performance evaluation of the real-time 
filesystem including its raw performance. We show the 
following positive but rather surprising result: our real- 
time scheduling filesystem not only provides guaranteed 
and timely access but also does so at relatively high levels 
of throughput. Traditional disk scheduling algorithms offer 
completely unacceptable file access latencies for real-time 
applications and do so only at slightly higher throughput. 

1. Introduction 
Real-time and embedded systems are used in many applica- 
tion domains including feedback control systems, 
(manufacturing) process control, robotics, air traffic con- 
trol, avionics, target-tracking, real-time object recognition, 
discrete assembly and vehicle navigation. Many of these 
systems such as air traffic control tend to be distributed in 
nature and also need to satisfy end-to-end timing require- 
ments which span processor boundaries.   While real-time 

applications are many, traditional real-time systems have 
largely avoided the use of disks. This is in part because 
they may be relatively slow for some real-time applications. 
However, many real-time applications can benefit from the 
use of disks to store and access real-time data (such as 
real-time database applications). Unfortunately, 

• disk accesses can introduce unpredictable latencies, and 

• disk access requests must also be managed in conjunc- 
tion with processor scheduling. 

An emerging set of commercially and strategically impor- 
tant real-time applications demand real-time disk accesses. 
These applications include real-time databases, C3I sys- 
tems, multimedia applications, on-demand services and in- 
tranet servers for in-house training and continuing educa- 
tion. 

On the processor side, fixed priority algorithms allow a mix 
of tasks with different periodicity, and hence the disk sub- 
system must do too. The disk scheduling problem has not 
been studied extensively in the general context. We focus 
on a general computing platform (including desktops) 
where multiple applications with and without a range of 
timing constraints and file I/O constraints can be running 
concurrently. Finally, we extend the processor reservation 
model in RT-Mach to include guaranteed and timely access 
to disk bandwidth. In other words, an application can re- 
quest a portion of the disk bandwidth with pre-specified 
timing constraints and if the request is accepted by the ad- 
mission control policy, the application is guaranteed to ob- 
tain its requested share of the disk bandwidth on a timely 
basis. 

1.1. Comparison with Related Work 
A wealth of resource management schemes and scheduling 
algorithms exists from which one can draw. Some of our 
goals (such as resource centricity) are similar to those of 
Microsoft Research's Rialto kernel among others. The 
reservation model also has its counterparts in network 
reservation protocols as used in ATM and RSVP. 
However, the operating system problem seems more com- 
plex in one sense since inherently different resource types 
must be dealt with, while networks essentially deal with 

'This research was supported by the Defense Advanced Research Projects Agency in part under contract number E30602-97-2-0287 and in part under 
contract number F30602-96-1-0160. Mr. Molano was funded by a research grant from the Community of Madrid and by the National R&D Program of 
Spain under contracts TIC96-0982 and TIC97-0438. 
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one type (namely network packets). Work described in 
[1,2, 7, 8] study various aspects of real-time disks and 

filesystems. The approach used in [1] is a variation of the 
Scan algorithm in which the SCAN direction changes 
towards the Earliest Deadline First request only if the dead- 
line is considered to be met. At any scheduling point the 
request with the Earliest Feasible deadline is chosen for 
service and the disk head scans towards it. Chen et al. 
[7] propose two algorithms which combine deadline infor- 

mation and disk service time information. They show that 
these algorithms minimize transaction loss ratio in real-time 
database applications. Bothfl] and [7] are proposed and 
studied under soft deadline schemes. A scheduling model 
close to ours is found in [2] but its approach is one of using 
fixed priority scheduling, minimizing blocking through the 
use of "chunking" and using a static task set. Also, only 
simulation studies were carried out. In contrast, we use 
dynamic priority scheduling, exploit blocking instead of 
minimizing it and evaluate an implementation within our 
resource framework. 

A multimedia storage server design and implementation is 
reported in [15]. In this scheme, the disk request queue is 
divided into two different queues, one for real-time threads 
and another for non-real-time threads. Both queues were 
scheduled following C-Scan with the real-time queue taking 
precedence over the non-real-time queue. The scheme is 
called a constant-rate access server (CRAS) and accurately 
reflects the attempt to only support a single rate of service 
at the disk. However, in a general real-time or multimedia 
application, many different applications would need to ac- 
cess the disk at different rates. Our scheme employs a 
different period for each real-time activity, and guarantees a 
"share" of that period to the activity. We show that the 
processor scheduling paradigm can indeed be adapted to be 
useful in the context of disk bandwidth scheduling. Our 
scheme can be used in conjunction with processor schedul- 
ing. 

RT-Mach previously offered only traditional non-real-time 
support for real-time disk scheduling. In other words, disk 
requests were not served based on priorities or deadlines. 
As a result, a real-time application such as a video player 
was forced to read the file completely from disk, store it in 
memory and then play it back. The playing was treated as 
the real-time aspect and since strong processor scheduling 
support was available, many real-time and multimedia ap- 
plications with concurrent audio and video streams could 
co-exist and meet their deadlines. The disk access portions, 
however, continued to be done in non-real-time. In this 
paper, we add real-time filesystem support to RT-Mach in a 
way that is completely compatible with its resource reser- 
vation model. Our detailed set of experiments presented 
later in this paper show that guaranteed timely access to 
files on disk is possible, and that this can be achieved at 
relatively low cost in terms of disk throughput. 

1.2. A Brief Overview of RT-Mach 
The primary goal behind the RT-Mach effort [9]2 is to 

2URL: "http7/www.cs.cmu.edu/-rtmach" 

design, develop, demonstrate and distribute an integrated 
framework that encompasses task scheduling, virtual 
memory management, synchronization mechanisms, inter- 
process communications, real-time disk scheduling, net- 
work protocol processing and distributed coordination. The 
framework is intended to ease and facilitate the develop- 
ment of predictable real-time applications. RT-Mach 
adopts the resource reservation model [10, 12], which al- 
lows applications to specify their resource demands inde- 
pendent of the scheduling algorithm actually used in the 
kernel. A real-time socket library provides predictable and 
efficient protocol processing for networked applications. A 
schedulability analysis tool and a distributed monitoring 
facility provide support for the analysis and debugging of 
distributed real-time applications. Extensive support is 
available for multimedia devices including full-duplex 
audio, real-time video capture, mobile networking with net- 
working support. 

1.2.1. Resource Kernels 
A resource kernel [12] is defined to be one which provides 
timely, guaranteed and protected access to system resour- 
ces. The resource kernel allows applications to specify 
only their resource demands leaving the kernel to satisfy 
those demands using hidden resource management 
schemes. This separation of resource specification from 
resource management allows OS-subsystem-specific cus- 
tomization by extending, optimizing or even replacing 
resource management schemes. As a result, this resource- 
centric approach can be implemented with any of several 
different resource management schemes. 

The resource kernel gets its name from its resource- 
centricity and its ability to 
• apply a uniform resource model for dynamic sharing of 

different resource types, 

• take resource usage specifications from applications, 

• guarantee resource allocations at admission time, 

• schedule contending activities on a resource based on a 
well-defined scheme, and 

• ensure timeliness by dynamically monitoring and enforc- 
ing actual resource usage. 

1.2.2. RT-Mach as a Resource Kernel 
RT-Mach is a resource .kernel, and attains its capabilities by 
reserving resources for applications requesting them, and 
tracking outstanding reservation allocations. Based on the 
timeliness requirements of reservations, the resource kernel 
prioritize them, and executes a higher priority reservation 
before a lower priority reservation if both are eligible to 
execute. 

Explicit Resource Parameters: The RT-Mach resource 
reservation model employs the following parameters: com- 
putation time C every T time-units for managing the net 
utilization of a resource, a deadline D for meeting timeli- 
ness requirements, a starting time S of the resource alloca- 
tion, and L, the life-time of the resource allocation. We 
refer to these parameters, {C, T, D, S and L) as explicit 
parameters of our reservation model.   The semantics are 
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simple, well-known in the real-time community and are as 
follows. Each reservation will be allocated C units of usage 
time every T units of absolute time. These C units of usage 
time will be guaranteed to be available for consumption 
before D units of time after the beginning of every periodic 
interval. The guarantees start at time S and terminate at 
time S + L. 

Implicit Resource Parameter: The resource kernel im- 
plicitly derives, tracks and enforces the implicit B 
parameter for each reservation in the system. B represents 
the maximum (desirably bounded) time that a reservation 
instance must wait for lower priority reservations while ex- 
ecuting. If its B is unbounded, a reservation cannot meet its 
deadline. Priority (or reservation) inheritance is applied 
when a reservation blocks, waiting for a lower priority 
reservation to release (say) a lock. As we shall see in 
Section 2.6, this implicit parameter B can also be used to 
deliberately introduce priority inversion in a controlled 
fashion to achieve other optimizations. 

1.3. Organization of the Paper 
The rest of this paper is organized as follows. In Section 2, 
we motivate and describe in detail the disk scheduling al- 
gorithms we adopt. We present an aperiodic server-like 
disk scheduling algorithm called "Just-in-Time" disk 
scheduling. In Section 3, we present the design and im- 
plementation of a real-time filesystem in the RT-Mach 
operating system environment. In Section 4, we perform a 
set of detailed experiments to evaluate the timeliness and 
throughput properties of our real-time filesystem, and com- 
pare it with the traditional Scan disk scheduling algorithm. 
Finally, in Section 5, we conclude with some remarks. 

2. Disk Bandwidth Resource Management 
Many real-time applications like real-time databases and 
C3I systems can benefit from having access to disks. 
Desktop multimedia systems also need to read from (or 
write to) disk storage relatively large volumes of video and 
audio data. In addition, these streams represent continuous 
media streams, and must therefore be processed by the disk 
subsystem in real-time. In other words, it would be very 
useful in practice if disk bandwidth can also be guaranteed 
in addition to managing processor cycles. 

In this section, we present a simplistic disk scheduling algo- 
rithm based on earliest deadline scheduling. We then im- 
prove the algorithm by exploiting "slack" in the reser- 
vations to obtain a hybrid of earliest deadline scheduling 
and a traditional scan algorithm. Our evaluations of these 
schemes in Section 4 show that guaranteed disk bandwidth 
reservation can be obtained at only a small loss of system 
throughput. 

2.1. Important Considerations 
We now outline some important considerations which need 
to influence the design of a real-time filesystem: 

• Preemptibility issues: Once a request is issued to the disk 
drive, it will not be preempted until it has finished, even 
if there are higher priority disk requests waiting for ser- 
vice. The time that a higher priority disk request may 
wait until being serviced is bounded by the longest disk 

request, which can still be rather long. The duration of 
the non-preemption window must ideally be small and 
perhaps even dynamically adjustable depending on the 
workload. 

• With Preemption: by implementing fine-grained accesses 
to the disk, a higher priority disk request can preempt a 
lower priority disk request midway through the process- 
ing of its larger request. Rather than sending the whole 
disk request in one SCSI command (for example), one 
can send smaller disk requests successively with several 
SCSI commands, so that they can be preempted at 
smaller intervals. We shall study the impact of the disk 
block sizes on the disk throughput in Section 4. 

• Heterogeneity of the workload: Consider very 
heterogeneous workloads where there are many small 
requests with deadlines, but they are prevented from ex- 

- ecution due to larger low priority disk requests. Ex- 
amples of such systems are heterogeneous C3I real-time 
databases. 

Consider homogeneous workloads such as multimedia 
storage servers, where all the requests are periodic ones. 
SCAN-based schemes are the most effective under these 
considerations since they avoid expensive" disk head 
movements (seeks). 

2.2. Filesystem Bandwidth Specification 
Our resource specification model for disk bandwidth is 
identical to that of processor reservation in RT-Mach. In 
other words, a disk bandwidth reservation must specify a 
start time S, a processing time C to be obtained in every 
interval T before a deadline of D. The processing time C 
can be specified as # of disk blocks (as a portable specifica- 
tion) or in absolute disk bandwidth time in native-platform 
specification. 

In the rest of this paper, we shall use the terms "filesystem 
reservation", "fs reserves", "filesystem bandwidth reser- 
vation" and "disk bandwidth reservation" interchangeably, 

23. Resource Specification Notation 
Let the set of n reservations requiring resource reservation 
be denoted as x,, x2, • • ■, xn. Each reservation T; needs to 
obtain Ct units of time every Tx units of time. In addition, 
the C units of resource time must be available at or before 
Dx in each periodic interval separated by T{. 

2.4. Scheduling Policy 
Instances of a disk bandwidth reservation become eligible 
to execute every Tx units (at times Sf Si + T{, S{ + 27";, S{ + 
37}, ■ ■■). Consider an instance which arrives at time Si + 
nTj. This instance has a deadline of Si + nfj + D{. 
Similarly, all instances of all outstanding disk bandwidth 
reservations have corresponding deadlines. After each disk 
block access is completed, the disk scheduler makes 
another scheduling decision. It picks the next ready reser- 
vation instance with the earliest deadline and issues a disk 
access command corresponding to that instance's next disk 
access request. If there are no pending requests, the disk 
remains idle. 
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2.5. Admission Control 
Our simplest disk head scheduling scheme employs the ear- 
liest deadline scheduling algorithm (EDF) [6]. Since EDF 
is a preemptive scheduling algorithm, a higher priority 
reservation must be able to preempt a lower priority reser- 
vation. However, instantaneous preemptions are not pos- 
sible in disk scheduling. An ongoing disk block access 
must complete before the next highest priority disk block 
access request can be issued. This introduces a blocking 
(priority inversion) factor of a single filesystem block ac- 
cess when Dj = T-x (as per [13]). When Di < Tt, the required 
earlier completion time (7} — D;) is added to the blocking 
factor. 

For the rate-monotonic [6] and the deadline-monotonic 
[5] fixed priority schemes, the completion time CT{ of a 

reservation x4 with a resource allocation can be computed 
using a recurrence relation [3, 16]. If this completion time 
is less than the deadline for all reservations including the 
incoming one, a reservation request can be admitted. Else, 
it will be rejected. 

For the earliest deadline first policy, the reservations re- 
quiring disk bandwidth are ordered according to rate- 
monotonic priorities, (i.e. T-x < TM). The number of disk 
blocks to be read by an instance of %t is denoted as L;. The 
admission control test for our disk bandwidth reservation 
scheme is given by 

«U+SLi u, < 1.0 

where, Ut is the utilization of task x-t given by 

£/, = ■ 

rFSB is the time to read (or write) one single file system 
block given by 

_ size of FSB in bytes 
*FSB ~ tfs-overhead + disk BW in bytes/sec 

where, 

'seek *s *e maximum seek time of the disk head, 
rrot is the maximum rotational latency for the disk, 
'iPC-in1S me overhead for invoking a read operation, 
'iPC-out *s me overhead" for the result of the read op, and 
ffe-oveihead ^ *e overhead incurred in the filesystem itself. 

Climax is the maximum utilization of the priority inversion 
encountered by all guaranteed reservations, given by 

and Bi is the priority inversion duration encountered by 
reservation Tj given by 
Bi = hsB + Ti-Di 

It must be noted that we add tSeek + tRot only twice to each 
periodic instance of a disk bandwidth reserve, one for 

switching the request stream and switching it out once. 
This seems logical particularly since this is how context- 
switching on the processor is handled. If all the disk blocks 
that an application needs are sequentially numbered, this 
situation is analogous to the processor case. Unfortunately, 
this may not be sufficient to guarantee disk access deadlines 
for all applications at all times. Many applications will 
create files or read file blocks not in sequence but poten- 
tially in some (pseudo-)random order. For such applica- 
tions, this "context-switching factor" is not sufficient in the 
worst case. However, given that both the maximum seek 
time and the rotational latency can be fairly large, including 
them would typically mean that only a small portion of disk 
requests would be able to pass the admission control 
scheme. In Section 4, we show that under non-contiguous 
layout such an assumption does lead to deadlines being 
missed, but the number of deadlines missed is very small, 

- that it perhaps will not be a concern for many applications. 
If an application cannot tolerate any deadline miss, then it 
has to include the context-switching for potentially each 
disk block it accesses, or use contiguously allocated files. 
There are three mitigating factors: 
• A real-time filesystem can (as ours does) allocate disk 

blocks as contiguously as possible. 

• Utilities (such as tunefs on Unix systems, filesystem op- 
timizers) can be used to choose the block allocation 
policy within a filesystem and/or relocate file blocks so 
that they are contiguous. 

• With contiguous layout, our current admission control 
test guarantees the requested bandwidth if the test suc- 
ceeds. The test will succeed for relatively high 
bandwidths if the periods of the requests are large com- 
pared to the seek/latency factor used in the test. For 
example, suppose one wants to guarantee (say) 200 
KBytes per second. Using parameters of the disk we 
used, one will consume 100% of utilized bandwidth 
(with overhead) by reserving 20 KBytes from disk every 
100 ms. If instead, we transform the periods and reserve 
200 KBytes per 1 second, the utilization is just 32.5%. 
With scaled up periods, more bandwidth can be 
guaranteed for contiguous files, or guarantees can be 
provided for non-contiguous files by including additional 
seek and rotational latencies for each non-contiguous 
block access. On the other hand, bigger application buf- 
fers will be necessary and longer end-to-end delays will 
be incurred. 

2.6. Exploiting 'B': Just-In-Time Disk Scheduling 
The earliest deadline disk scheduling blindly picks the next 
block with the earliest deadline irrespective of the current 
position of the disk head. Since the physical movement of 
the disk head and the disk's rotational latencies constitute 
significant durations of time, such dynamic scheduling can 
result in significant disk subsystem throughput reductions 
particularly under heavy disk traffic. The reductions can be 
directly attributed to the time wasted by the disk head 
moving from one end to another and the disk's rotational 
time. In summary, the deadlines are preferred over a 
block's physical location. 
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Traditional scan algorithms, in contrast, re-order the disk 
request queue such that the block closest to the current head 
position (in the direction of movement) is accessed next. 
As a result, a disk request which just arrived can be ser- 
viced before another disk request which has been waiting 
for a long time just because the latter is farther away from 
the head position. To summarize, the physical block loca- 
tion is favored over timeliness. 

The earliest deadline scheduling algorithm and the scan al- 
gorithm are therefore at odds with one another. For- 
tunately, a hybrid scheme which can obtain all the benefits 
of the earliest deadline scheduling algorithm and at least 
part of the benefits of the scan algorithm is possible. Using 
the notion of slack-stealing inherent in all aperiodic servers 
[14], a scheduling algorithm can exploit the slack available 

to higher priority tasks to schedule accesses of other disk 
blocks which are closer to the current head position.3 

A brief description of the just-in-time disk scheduling algo- 
rithm is as follows. The maximum "slack" available to 
each disk reservation is computed whenever a new request 
is admitted (or an existing reservation is deleted). At run- 
time, if the current slack of higher priority reservations is 
non-zero, another unreserved (or lower priority reserved) 
request can be scheduled if closer to the disk head. If slack 
is stolen, the slack of higher priority reservations is reduced 
by one. This process is then repeated. If the slack of a high 
priority reservation goes to zero, it will be serviced inde- 
pendent of its location. 

2.7. "Just-in-Time" Slack-Stealing Algorithm for 
Disk Bandwidth 

Let Jfj(t) denote the maximum "slack" in units of time avail- 
able for each reserved disk data stream, and let Kj denote 
the maximum slack available in units of disk blocks. We 
have, 

*,<*) = Di-T^lUp 

'FSB 

where U- and /FSB are as defined earlier. 

2.8. The JIT Replenishment Algorithm 
Data Structures: The maximum slack ATj of each reser- 
vation Xj is determined at admission control time. At run- 
time, the current slack Jfcs of each instance of Xj is also main- 
tained. The current slack jfcj of each new instance of x; is 
initialized to K^. At any given time, let the set of un- 
depleted reservations be {xvaljd „serves J* and let the set of 

indices corresponding to the reservations in {x^y „sery^} 
be{J). 

Usage by an unreserved activity: An unreserved activity 
can "steal" early access to a disk block from a reservation if 
V/,7 6 {J},Jfc>0. When such stealing happens, the cur- 
rent slack factors are updated as V/,7 e {/}, k- <- (kj-1). 

3Such "slack-stealing" has been done in the context of processor schedul- 
ing theory in order to provide better response to aperiodic activities [4]. 
The optimization, cost functions and implementation tradeoffs seem to be 
different for the processor and the disk, however. 

Stealing by a depleted reservation: A depleted reservation 
X waiting for resource replenishment can steal early access 
to a disk block from a reserved reservation if 
Y/,7 e {J}, k > 0. When such stealing is allowed to occur, 
the current slack factors are updated as 
V/.ye {J},kj<-(krl). 

Stealing by an undepleted reservation: An undepleted 
reservation Xj can also steal early access to disk blocks from 
a higher priority undepleted reservation if 
Y/'.O' e {/})A(/ ^ (i-l)),*y>0. When such stealing is 
allowed to occur, Vj,(j e {J}) A (/' < O'-l)), *,•<- (kj-1). 

3. Disk Bandwidth Reservation in Real-Time 
Mach 

In this section, we describe the design and implementation 
of the real-time filesystem supporting disk bandwidth reser- 
vation in Real-Time Mach. 
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Figure 3-1: Real-Time File System Service Layers 

3.1. The Architecture of the Reserved Filesystem 
The architecture of our bandwidth-reserved filesystem fol- 
lows a "traditional" scheme. A Real-Time File Server run- 
ning on top of our resource kernel (based on the RT-Mach 
microkernel) manages the reserved real-time filesystem. 
RT-FS has multiple worker threads which receive and 
process filesystem access requests from real-time clients. 
Each worker thread stores the incoming request it is 
processing into a common I/O request queue. The worker 
thread responsible for issuing the current disk block access 
waits for its completion. It then awakens, and determines 
the next request based on the scheduling policy above. If 
the next request corresponds to another worker thread, that 
thread is signaled. Else, the worker thread continues to ser- 
vice its remaining disk access requests, if any. Priority in- 
heritance is applied where necessary across the threads to 
avoid priority inversion problems. 

Disk bandwidth reserves have been implemented within 
RTS (Real-Time server), which runs on top of the RTMach 
microkernel. RTS supports a process manager, a file sys- 
tem, a device manager, and a simple command interpreter. 
The most salient feature of RTS is the use of RT-IPC, a 
realtime interprocess communication mechanism to avoid 
priority inversion at the server side that includes priority 
based message queue ordering, establishment of the mes- 
sage buffer size, and control of the handoff policy [11]. 

The file system runs in the context of realtime worker 
threads which execute concurrently and attend user requests 
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sent by means of RT-IPC messages (see Figure 3-1. The 
file system invokes I/O operations using the RT-Mach 
device driver interface (ds_routines()) implemented as EPC 
messages to the kernel. The disk driver executes in kernel 
context, and performs I/O to the disk controller for the ac- 
tual transfer to the disk. This I/O interface is synchronous 
in that we wait for the completion of the request before 
issuing the next one to the disk. The file system has been 
modified and extended to support the file system reserves 
mechanism. A new module has been added that maintains 
file system reserves and implements the interface for creat- 
ing, terminating and starting them. Additionally it manages 
the replenishment of file system reserves by means of a 
replenishment thread handler as it is described below. MIG 
is the Mach Interface Generator, an Intermediate Data Lan- 
guage for inter-process communications with Mach and 
RT-Mach. 

The file system reserve scheduling mechanism manages all 
the invoking disk I/O requests, scheduling reserved disk 
requests under EDF/JTT, and unreserved ones or depleted 
requests under SCAN. The requests are depleted when they 
have consumed all their allocated budget (measured in 
number of disk accesses). The file system accounts for the 
current resources consumed for each of the pending re- 
quests updating their disk usage counter each time they 
have issued a request to the disk. Within the file system 
itself, new I/O operation primitives have been added to in- 
clude the file system reserve control mechanism. The 
reserved file system maintains two queues of requests, one 
for reserved requests in reserved mode (with budget dif- 
ferent from zero), and other for both unreserved requests 
and depleted requests (reserved ones which budget have 
reached zero). The requests queue is protected against con- 
current access by means of a mutex and a condition vari- 
able that allow the synchronization between all the worker 
threads executing within the file system concurrently. 

The scheduler within the RT filesystem has been im- 
plemented as a cooperative scheduler, in the sense that it is 
executed by the current active thread, which will give con- 
trol to the next one following the chosen scheduling policy. 
Worker threads invoking a I/O operation sleep in a con- 
dition variable till being signalled as the next request by the 
active thread currently executing the scheduling algorithm. 

The file system is executed in a loop, sending a command 
to the disk controller each iteration to read/write a file sys- 
tem block. After finishing the I/O operation, the current 
active thread executes the scheduling algorithm to find out 
which one should be at this time the next request to ex- 
ecute. It updates its own disk bandwidth reserve budget by 
decreasing in one unit the number of remaining disk acces- 
ses. It checks the queue of unreserved requests to see if 
some depleted request has been replenished. In this case it 
removes the depleted request from the queue of unreserved 
requests and store it in the queue of reserved requests. 

It executes the scheduling algorithm (EDF, EDF/JIT, 
SCAN) choosing the next request based on the current 
scheme. File system block numbers are used as a reference 
of physical placement on disk. If the next request is not the 

Replenishment 
Period 

t      t 
Disk BW Reserve Disk BW Reserve 
Replenished        Depleted 
(disk usage (disk usage 
counter > 0) counter = 0) 

□ Reserved Disk (EDF/JIT) 

Unreserved Disk (SCAN) 
Accesses 

Figure 3-2: Disk BW Reserves Replenishment Scheme 

current request then the thread executing the current request 
signals the thread that will execute the next one, and it is 
put to sleep after that. The system detects that some reser- 
vation has to be depleted when its disk usage counter rea- 
ches zero, and it detects when it has to be replenished by 
obtaining updates from a replenishment handler. A peri- 
odic timer and a replenishment timer are allocated to each 
of the active disk bandwidth reserves. 

3.2. The API 
A synopsis of the application programming interface we 
use is presented in Figure 3-3. 

/* Real-Time File System Services for * 
* disk bandwidth reservation        */ 

disk_bw_reserve_create(*disk_bw_reserve) ; 
disk_bw_reserve_request(disk_bw_reserve, 

period, start, deadline, bytes_reserved); 
disk_bw_reserve_terminate(disk_bw_reserve) ; 
disk_bw_reserve_set_name(disk_bw_reserve, name); 
di sk_bw_reserve_set_attribute(disk_bw_reserve, 

flavor, new_attr, new_attr_count); 
disk_bw_reserve_get_attribute(disk_bw_reserve, 

flavor, olcLattr, *old_attr_count); 

Figure 3-3: Core Application Programming Interface 
for the Real-Time Filesystem 

4. Performance Evaluation 
We conducted a series of experiments to study the ef- 
ficiency of the disk scheduling algorithms and their impact 
on applications. We start with a performance study of the 
raw disk and its sensitivity to the size of the data blocks 
read from the disk. We then summarize our results both 
quantitatively and qualitatively using two workloads, one 
synthetic and one real. In the synthetic workload, a single 
real-time thread uses both the CPU and the disk and there- 
fore needs timeliness guarantees on both. Competing back- 
ground priority threads accessing the disk continuously at- 
tempt to disrupt the timing behavior of this real-time ap- 
plication. Next, we test the real-time filesystem on a video 
playback application using a QuickTime movie player, 
which reads a movie file from a disk, processes it and dis- 
plays the frames on the screen. Heavy competition from 
non-real-time threads continues in this experiment. 

4.1. Disk Parameters 
The disk we used for our performance evaluation was a 1 
GB drive with a max. seek latency of 24 ms, and a max- 
imum rotational latency of 14 ms. The disk blocks were 
512-bytes in size while the filesystem used 4 KB blocks. 

21 



The time to access a disk block is on the order of 3 - 6 ms. 
The RT-Mach microkernel, Version RK97a, was used on 
Pentium 120 MHz workstations. The RTS environment 
described in the earlier section was used to support the 
filesystem utilizing the disk bandwidth reserves. The 
period of the real-time timer was set up to be 1 ms, a resolu- 
tion that we found to be sufficient for our experiments. 

Disk Throughput as a function of Read Size 
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Figure 4-1: The Raw Throughput Obtained from the 
Disk as a function of data bytes read (in KB) 

4.2. Overhead Components of Raw Disk Access 
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Figure 4-2: Overhead Components of Raw Disk Read - (is 

We implemented and tested a Raw and Synchronous inter- 
face to the disk under RT-Mach to understand and measure 
the disk's behavior in terms of the size of the data blocks 
read from disk and the overhead encountered in various 
levels of the software. In specific, the interface we built 
bypassed the file system and accessed blocks on the disk in 
sequence. Each request must be satisfied before the next 
one can be submitted. The synchronous interface was then 
used by the real-time filesystem server to issue disk read 
requests one block at a time. 

We simulated accesses with different granularity and with 
different layout (contiguous and non-contiguous accesses). 
The raw throughput obtained from the disk for various 

granularities of the data block is plotted in Figure 4-1. 
■Higher the size of the data blocks read, higher is the ef- 
ficiency obtained by the underlying disk controller. That is, 
disk throughput increases with the size of an issued read 
request to the disk. The disk throughput obtained for read- 
ing a 64 KB data block was 934 KB/second. The disk 
throughput obtained for other data block sizes are normal- 
ized to this value. As can be seen, the throughput drops off 
precipitously as the block size drops to 8 KB or below. 

The performance overheads in the various software layers 
in the filesystem and the kernel are listed in Figure 4-2 for 
the same data block sizes. As can be seen, the invocation 
of the disk driver (ds_invoke) and its return (ds_return) 
have constant values as is the processing time for an inter- 
rupt service routine (ISR). As can be expected, the transfer 
time between the disk and the processor is proportional to 
the size of the data block transferred. Similarly, the filesys- 
tem code which receives the data spends time proportional 
to the block size read. 

4.3. Experiment #1 

Figure 4-3: Thread execution pattern in Experiment #1 

In this experiment, one periodic thread reads from the disk 
in several configurations: with and without disk bandwidth 
reserves, with and without cpu reserves, but all in the 
presence of competition.  We ran the experiment in a win- 
dow time-span of 100 seconds measuring the following 
parameters:   completion time, disk utilization per period, 
and total disk utilization. The execution of the real-time 
thread is as shown in Figure 4-3, where T, is the thread 
period (= 250 ms), Cdisk is the time (= 162 ms, time to read 
48KB) to read disk blocks during each of its periodic inter- 
vals and Dßjfc is the deadline for disk access completion (= 
162 ms also).   Ddisk was deliberately made the same as 
Cdisk forcing the admission control test to reach 100% of 
the utilization factor, thereby forcing a stringent test for the 
real-time filesystem.   C     (= 44 ms) is the maximum al- 
located execution time each period of the thread that uses 
data read using the disk bandwidth reserve.   Six periodic 
threads (with no disk bandwidth reserves) having periods 
340 ms, 380 ms, 400 ms, 420 ms, 450 ms, 630 ms were 
competing for disk accesses attempting to read 60KB, 
50KB, 200KB, 100KB, 120KB, 150KB during each of their 
periodic instances.   In addition, an unreserved aperiodic 
thread was in an infinite loop accessing 4KB for each loop 
iteration.   However all the unreserved threads behave ex- 
actly the same as soon as they miss a deadline - they ex- 
ecute as soon as the disk is available as the period has been 
overrun. 

We measured the completion times of the reserved thread 
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Figure 4-4: Experiment #1: Completion Times 

each period (it should be smaller than Ddisk). Our measure- 
ments were conducted with and without CPU reserves for 
the CPU portion of the real-time thread. The results in 
either case are qualitatively similar with the CPU reser- 
vation case being moderately better. This is because the 
competing threads had very limited CPU processing needs. 
Due to paper length limitations, we plot in Figure 4-4 only 
the results when a CPU reserve is used for the real-time 
thread. When we use EDF/EDF+JTT, the deadline of 162 
ms is missed two times out of 400: the 88th and 258th in- 
stances complete in about 185 ms, which is still less than 
the period boundary of 250 ms. These misses happen be- 
cause of two reasons. First, as mentioned in Section 2.5, 
this is because the file being read was not contiguously laid 
out on the disk, violating an assumption of the admission 
control policy. We verified this by reading a file as con- 
tiguous blocks in which case, all deadlines are indeed 
satisfied. Secondly, files which are longer than 48KB have 
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Figure 4-5: Expt. #1: Disk Usage Per Period 

block maps (meta-data) which must also be fetched from 
the disk. This is not accounted for in our current admission 
control scheme. 

In the SCAN case, there is no time to run the needed 400 
disk accesses and only 248 access are actually completed 
during the duration of the experiment. The completion 
times are nearly always greater than the period itself (> 250 
ms) and sometimes much greater. Note that the y-axis 
scales are very different between the EDF and Scan graphs. 
This shows that EDF w/ CPU reserves meets the timeliness 
constraints of the real-time application accessing the disk. 

The number of disk blocks read by the real-time thread 
during each of its periods under the various algorithms are 
plotted in Figure 4-5. As can be seen, under the EDF 
schemes, the number of disk blocks read during each period 
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Table 4-1: Expt. #1: Total Disk Usage of each Thread 

is exactly 12 (* 4KB/disk block = 48KB), the requested 
value. In contrast, the Scan algorithm sometimes reads 0 
blocks, sometimes 12 and sometimes 24, depending upon 
the competing stream of requests at any given point in time. 
However, since it does not and cannot maintain an average 
of 12 blocks read for the real-time thread, it falls behind for 
the real-time application. 

However, it must be noted that the Scan algorithm was 
specifically designed to optimize disk throughput. Hence, 
the question of the relative disk throughput obtained by the 
Scan and EDF algorithms must be addressed. The disk 
throughput obtained by each thread under the various 
schemes is listed in Table 4-1. We obtained the somewhat 
surprising result that EDF actually performs within 3.5% of 
the throughput obtained by the Scan algorithm, while satis- 
fying the timing constraints of the application. We shall 
address the question of whether this throughput difference 
is always small in Experiment #2. 

4.3.1. Experiment #2 
Experiment 1 involved synthetic workloads, and therefore 
its results may or may not correspond to real applications. 
In addition, that workload assumed a constant load for the 
real-time task accessing the disk. In practice, a task may 
also exhibit some stochastic behavior in accessing the disk. 
We address both of these issues in this experiment. We use 
a QuickTime movie player and run it within the real-time 
filesystem context. The player reads blocks from the movie 
file periodically, processes the data and displays the frames 
read. The QuickTime decompression algorithm only re- 
quires a new frame every 3 or 4 playback periods (it 
depends on the sequence). 

Figure 4-6: Disk accessing pattern of QTPlay_rts 

The execution pattern of our QuickTime player application 
is as shown in Figure 4-6. The video playback thread is a 
periodic thread that reads from the disk to retrieve the video 
frames and process them to display the image on the screen. 
The period Tj shown is the inverse of the frame rate, Cdjsk 

is the time to access the disk each period, and C is the 
execution time need to process a frame each period and 
display it on the screen. 
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Figure 4-7: Expt. #2: QT-Play Completion Times 

We ran the experiment under several configurations: 
with/out disk bandwidth reserves, with/out cpu reserves and 
under competition in all cases. We ran the experiment in a 
window time-span of 100 seconds measuring the following 
parameters: completion time, disk utilization per period, 
and total disk utilization. When used, the disk bandwidth 
reserve was for 40KB every 150 ms, with video frame sizes 
ranging from 19-32 KB. The deadline of the reserve was 
also 150 ms. The unreserved competition consisted of (a) 
two periodic threads with periods 180 ms and 380 ms and 
read 20KB and 100KB respectively during each of their 
instances, and (b) an aperiodic thread in an infinite loop 
reading 8KB in every iteration. The video display thread 
had a period of 50 ms (frame rate = 20). As before, all the 
unreserved threads execute as soon as the disk is available 
when they miss an end-of-period deadline. The competi- 
tion is started after 180 periodic instances of video process- 
ing leading to an initial quiescent state. 
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Figure 4-8: Expt. #2: QT-Play Disk Utilization per Period 
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1 14951 12521 16.25% 
2 13468 11029 18.1% 

3 13704 9797 28.5% 
4 14879 12601 15.31% 

5 15115 13827 8.52% 

Table 4-2: Total Throughput Comparison Over Multiple 
QuickTime Files with Different Disk Locations 

We measured the completion times of the video thread for 
each of its instances. These are plotted in Figure 4-7. As 
can be seen, under EDF/JTT scheduling, all but a very small 
number of disk accesses meet their deadline of 150 ms (for 
the same previous reason of reading a non-contiguous file). 

Even those that miss the deadlines miss it by a very small 
amount. In contrast, under SCAN scheduling, deadlines are 
consistently missed with some deadlines missed by huge 
margins (taking up to 850 ms). 

The # of disk blocks read by the QTPlay thread under both 
EDF and Scan is plotted in Figure 4-8. It can be im- 
mediately seen from the EDF plot that the QuickTime 
player does not access the disk every time it runs4. The 
average number of disk blocks read is centered around 9, 
and is generally above 5. It is also sometimes 0 because it 
may happen in the sequence that no new block is required 
in three consecutive periods (each period is 50 ms, and the 
points are plotted in intervals of 150 ms). In contrast, the 
Scan algorithm has an average of 6 disk blocks read every 
instance of the Video thread, with but 0 reads during an 
unacceptably high number of intervals. This implies that a 
real-time thread under Scan can fall farther and farther be- 
hind since it is using available disk throughput to satisfy the 
disk requests from other competing unreserved (non-real- 
time) threads. 

43.2. Sensitivity of File Location to Disk Throughput 
For the above experiment, we found that the total disk 
throughput under the Scan and EDF/JIT algorithms was 
15111 and 10280 disk blocks respectively. In other words, 
EDF/JTT performs 32% worse than the Scan algorithm in 
this case. However, Experiment #1 had indicated that 
EDF/JIT can perform relatively close to Scan in terms of 
filesystem throughput while the QuickTime player showed 
that it could be higher. In order to understand the sen- 
sitivity, we re-ran Experiment #2 with many movie files at 
different locations on the disk. These runs are summarized 
in Table 4-2. We found that depending on the layout of the 
file in the disk relative to the files accessed by the non-real- 
time applications, the loss of system throughput could range 
from 8.5% to 32%. It must be noted that under all these 
conditions, the EDF/JTT algorithm continues to satisfy disk 
access deadlines. 

The normal optimization strategy of improving filesystem 
throughput is to pack the disk periodically such that (a) the 
disk blocks corresponding to a file are close to one another 
and (b) the blocks are also laid out consecutively. Both of 
these optimizations will lead to narrower throughput dif- 
ferences between EDF/JTT algorithms and traditional al- 
gorithms like Scan. However, EDF/JTT will yield predict- 
able and timely disk accesses for real-time applications, 
while traditional algorithms do not. 

5. Concluding Remarks 
Disk storage has been traditionally avoided in real-time sys- 
tems because of their lack of resistance to vibrations, dirt, 
size, power, etc., but also because of their slow speeds and 
unpredictable behavior. However, with today's large disks 
and advances in packaging technology, the use of disks 
would be very useful. Desktop and other multimedia sys- 
tems must necessarily use disks to read and store real-time 

4The QuickTime movie format yields variable data sizes for each frame 
played back with the variability depending on the actual movie sequence. 
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audio and video data.   In all these cases, for disks to be 
usable in a real-time context, disk accesses must be com- 
pleted on a timely basis.  Unfortunately, since disk speeds 
are limited by physical movements of a disk head, disk 
throughput is normally enhanced by trying to minimize 
head movements. This is in general anti-thetic to the real- 
time requirement, where a late arrival may have the earliest 
deadline and therefore must be serviced immediately inde- 
pendent of its disk block position.  In this paper, we have 
considered real-time scheduling algorithms that can be used 
in a general context of concurrent but different types of disk 
accesses.   We presented a "just-in-time" disk scheduling 
algorithm that attempts to meet timing deadlines while try- 
ing to keep system throughput   We have designed and 
implemented a real-time filesystem in RT-Mach using its 
resource reservation model.   Our performance evaluation 
on real and synthetic workloads show that our real-time 
algorithms, and their design and implementation in a prac- 
tical system yield significant benefits. First, the timing con- 
straints  of  real-time   disk   accesses   can   be   satisfied. 
Secondly, contrary to what one might expect, disk through- 
put does not drop significantly compared to traditional al- 
gorithms.    The traditional Scan algorithm, for example, 
yields unacceptable latencies for disk accesses, but exhibits 
better throughput ranging from 3% to 30% depending on 
file layouts on the disk. 

Our future work on this topic will involve many fronts. If 
non-contiguous files are used, the admission control 
scheme can be very pessimistic and lead to extremely low 
values at which disk bandwidth can be guaranteed. Con- 
tiguous files are therefore necessary to obtain more accept- 
able and predictable disk bandwidth. Hence, we are explor- 
ing the performance aspects of contiguous files, and the 
need for disk space reservation in order to create contiguous 
files. Finally, we are also studying the problem of co- 
scheduling processor and disk bandwidth access more ex- 
tensively. 
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Abstract 
Quality of service (QoS) has been receiving wide attention 
in recent years in many research communities including 
networking, multimedia systems, real-time systems and 
distributed systems. In large distributed systems such as 
those used in defense systems, on-demand service and 
inter-networked systems, applications contending for sys- 
tem resources must satisfy timing, reliability and security 
constraints as well as application-specific quality require- 
ments. Allocating sufficient resources to different appli- 
cations in order to satisfy various requirements is a fun- 
damental problem in these situations. A basic yet flexi- 
ble model for performance-driven resource allocations can 
therefore be useful in making appropriate tradeoffs. 

In this paper, we present an analytical model for QoS 
management in systems which must satisfy application 
needs along multiple dimensions such as timeliness, re- 
liable delivery schemes, cryptographic security and data 
quality. We refer to this model as Q-RAM (QoS-based 
Resource Allocation Model). The model assumes a sys- 
tem with multiple concurrent applications, each of which 
can operate at different levels of quality based on the sys- 
tem resources available to it. The goal of the model is to 
be able to allocate resources to the various applications 
such that the overall system utility is maximized under 
the constraint that each application can meet its mini- 
mum needs. We identify resource profiles of applications 
which allow such decisions to be made efficiently and in 
real-time. We also identify application utility functions 
along different dimensions which are composable to form 
unique application requirement profiles. We use a video- 
conferencing system to illustrate the model. 

1    Introduction 
1.1    Motivation 
Many applications can provide better performance and 
quality of service given a larger share of system resources. 
For example, feedback control systems can provide better 
control with higher rates of sampling and control actua- 
tion. Multimedia systems using audio and video streams 

"This work was supported in part by the Defense Advanced Research 
Projects Agency under agreements E30602-97-2-0287 and N66001-97- 
C-8527, and in part by the Office of Naval Research under agreement 
N00014-92-J-1524. 

can provide better audio/video quality at higher resolu- 
tion and very low latencies. Tracking applications can 
track objects at higher precision and accuracy if radar 
tracks are generated and processed at higher frequencies 
or if better, but more computationally intensive, algo- 
rithms are used. Real-time decision-making systems can 
receive, process and analyze larger amounts of data if 
more resources are made available. Interactive systems 
can provide excellent response times to users if more pro- 
cessing and I/O resources are made available. 

Applications can therefore seek to improve the qual- 
ity of delivered services if sufficient resources are avail- 
able. For example, if encoding/decoding times were not 
significant, all transmitted data can be encrypted for 
security/privacy reasons. If spare resources were avail- 
able, modules can be replicated to assure high availability 
of critical functionality. Conversely, when resources are 
tight, applications can still provide lower but acceptable 
behavior. For instance, a 30 frames/second video rate 
would be ideal for human viewing, but a smooth 12 fps 
video rate suffices under many conditions. 

Given that applications can operate at high levels of 
quality or acceptably lower levels of quality based on 
the resources allocated to them, the following question 
arises: "How does one allocate resources to those appli- 
cations when they run concurrently and contend for the 
same resource types?" This question of resource alloca- 
tion is traditional in the sense that many papers in the 
domains of networking, real-time systems and distributed 
systems have attempted to answer it (e.g. [3]) in their 
own context. However, we are unaware of any significant 
work which allows requirements such as timeliness, secu- 
rity and reliable data delivery to be addressed and traded 
off against each other within the same context. Similarly, 
much of the QoS work focuses on allocating a single time- 
shared resource such as network bandwidth. In real-time 
systems, applications may need to have simultaneous ac- 
cess to multiple resources such as processing cycles, mem- 
ory, network bandwidth and disk bandwidth, in order to 
satisfy their needs. 

In this paper, we propose the QoS-based Resource Al- 
location Model (Q-RAM) as an initial step in addressing 
both of these problems: 
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• satisfying simultaneous requirements along multiple 
QoS dimensions such as timeliness, cryptography, 
data quality and reliable packet delivery, and 

• having access to multiple resources simultaneously. 

We present resource allocation schemes to solve only the 
first problem dealing with multiple QoS dimensions. Re- 
source allocation schemes in the presence of multiple re- 
sources are the subject of ongoing work and are beyond 
the scope of this paper. 

1.2    Related Work 
A significant amount of work has been carried out for 
making resource allocations to satisfy specific application- 
level requirements. Such work can be classified into var- 
ious categories. The problem of allocating appropriate 
resource capacity to achieve a specific level of QoS for an 
application has been studied in various contexts. For ex- 
ample, [3] studies the problem of how to allocate network 
packet processing capacity assuming bursty traffic and fi- 
nite buffers. In [2], the problem of the establishment of 
real-time communication channels is studied as an admis- 
sion control problem. The Spring Kernel [15] uses on-line 
admission control to guarantee essential tasks upon ar- 
rival. 

Various system-wide schemes have been studied to ar- 
bitrate resource allocation among contending applica- 
tions. In [16], a distributed pool of processors is used to 
guarantee timeliness for real-time applications using ad- 
mission control and load-sharing techniques. The Rialto 
operating system [5] presents a modular OS approach, 
the goal of which is to maximize the user's perceived util- 
ity of the system, instead of maximizing the performance 
of any particular application. No theoretical basis is pro- 
vided to maximize system utility. A QoS manager is used 
in the RT-Mach operating system to allocate resources to 
application, each of which can operate at any resource al- 
location point within minimum and maximum thresholds 
[7]. Applications are ranked according to their semantic 
importance, and different adjustment policies are used to 
obtain or negotiate a particular resource allocation. 

Once a resource allocation decision has been made, var- 
ious scheduling schemes are available to ensure that the 
allocation decisions can be carried out. A CPU resource 
reservation scheme [11] is used in RT-Mach to guaran- 
tee and enforce access to an allocated resource once a re- 
source allocation decision has been made. A large portion 
of real-time scheduling theory deals with this problem and 
uses fixed priority schemes [9, 8, 13, 6], dynamic priority 
schemes [1,4] or heuristic schemes [17]. The basic require- 
ments of a QoS model in high assurance applications are 
presented in [18]. It proposes that the QoS attributes of 
timeliness, precision and accuracy can be used for system 
specification, instrumentation and evaluation. 

The Q-RAM model we propose can be considered to be 
a generalization of at least two models previously stud- 
ied in the literature.   First, the imprecise computation 

model proposed by Liu et al. [10] considered the prob- 
lem of optimally allocating CPU cycles to applications 
which must satisfy minimum CPU requirements, but can 
produce better results with additional CPU cycles. The 
frequency of each application remains constant, while the 
computation time per instance of an application can be 
varied. The results were generally assumed to improve 
linearly with additional resources. Secondly, Seto et al. 
[14] have studied the problem of allocating CPU cycles 
optimally to feedback control applications whose control 
quality improves in concave fashion with higher frequen- 
cies of operation. The computation time per instance of 
an application remains constant. 

Our proposed model can be viewed as a combination 
and broad generalization of these models. First, we allow 
either the computation time or the frequency of an appli- 
cation to vary. Secondly, and more importantly, we seek 
to generalize the resource allocation model to support 
multiple dimensions of quality (timeliness, data quality, 
reliable packet delivery, security achieved through cryp- 
tography, etc.) for each application to support the si- 
multaneous allocation of multiple resource types (CPU 
and disk bandwidth, for example) for each application. 
The model in its general form only assumes that an ap- 
plication's quality will not decrease with any increase in 
resource allocation. We only deal with cryptographic se- 
curity in this paper and the term 'security' will be used 
only in that sense. 

The rest of this paper is organized as follows. In Section 
2, we present our QoS-based Resource Allocation Model 
(Q-RAM) and illustrate the concepts behind the model 
using an actual video-conferencing system.   In Section 
3, we determine optimal resource allocation schemes for 
single variable QoS constraints. In Section 4, we identify 
the main considerations of multi-dimensional QoS prob- 
lems and present optimal and greedy resource allocation 
for different cases. We also apply Q-RAM to the video- 
conferencing system and consider schedulability issues. In 
Section 5, we present our concluding remarks and discuss 
problems that remain unsolved. 

2     Q-RAM: The QoS-based Resource Al- 
location Model 

Q-RAM is based on a dynamic and adaptive application 
framework with the following characteristics: 

• An application may need to satisfy many require- 
ments: timeliness, security, data quality, depend- 
ability, etc. 

• An application may require access to multiple re- 
source types such as CPU, disk bandwidth, network 
bandwidth, memory, etc. 

• An application requires a certain minimum resource 
allocation to perform acceptably. It may also im- 
prove its performance with larger resource alloca- 
tions. This improvement in performance is mea- 
sured by a utility function. 
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Q-RAM is a model in which resources can be allocated 
to individual applications with the goal of maximizing a 
global objective. The model is intended for use with static 
(off-line) allocation schemes, dynamic (on-line) allocation 
with admission control schemes, and 'timed' allocations 
where each resource allocation has a duration of validity 
associated with it. 

2.1 Quality of Service Dimensions 
Consider an application which obtains and transmits au- 
dio data. The application can use a reliable encoding 
scheme to tolerate and recover from bit errors during 
transmission. The data can be made secure by encrypt- 
ing the transmitted packets. The application may process 
and transmit the audio data in smaller chunks to meet 
real-time constraints. The application may also choose 
to improve audio quality by increasing the size of each 
audio sample or by increasing its sampling rate. The ap- 
plication may also want to perform one or more these 
simultaneously but each option requires the use of addi- 
tional resources. We refer to these quality aspects such 
as timeliness, reliability, security and data quality as QoS 
dimensions. 

In Q-RAM, we consider a system in which multiple 
applications, each with its own set of requirements along 
multiple QoS dimensions, are contending for resources. 

• Each application may have a minimum and/or a 
maximum need along each dimension. 

• Each resource allocation adds some utility to the 
application and the system, with utility monotoni- 
cally increasing with resource allocation. 

• System resources are limited so that the maximal 
demands of all applications often cannot be satisfied 
simultaneously. 

With the Q-RAM specifications, a resource allocation de- 
cision will be made for each application such that an over- 
all system-level objective (called utility) is maximized. 

2.2 The Definition of Q-RAM 
Q-RAM is defined as follows. The system consists of n 
applications {T\, T2, •••, T„}, n > 1, and m resources 
{Ri, R2, • • •, Rm}, m > 1. Each resource Rjhas a finite 
capacity and can be shared, either temporally or spa- 
tially. CPU and network bandwidth, for example, would 
be time-shared resources, while memory would be a spa- 
tially shared resource. 

Let the portion of resource Rj allocated to application 
Ti be denoted by Rij. We enforce $DT=i Rij < Rj. Two 
issues need to be noted in the context of real-time systems 
in particular: 

• Utilization: The resource allocation to an appli- 
cation will be in terms of the utilization of a re- 
source. Once a certain utilization has been allo- 
cated, an application may either choose its own exe- 
cution time and period to achieve that utilization or 
use an appropriate processor-sharing scheme such 
as weighted fair-sharing. 

• Schedulability. The constraint £3"=1 Rij < Rj im- 
plies that a resource can be "fully" consumed. As is 
well known, this is not always true for fixed-priority 
scheduling algorithms [9] but is true for the earli- 
est deadline scheduling algorithm under ideal con- 
ditions. A different maximal resource constraint be- 
yond the scope of this paper must be used to sup- 
port fixed-priority schemes. For example, see [14]. 

We now introduce the following definitions: 

• The application utility, Ui, of an application T,- is 
defined to be the value that is accrued by the system 
when Ti is allocated R' = (Riti,Rij,---,Ri>m). In 
other words, U, = t/j(R'). Ui is referred to as the 
utility function of r,. This utility function defines 
a surface along which the application can operate 
based on the resources allocated to it. 

• Each application T, has a relative importance spec- 
ified by a weight tu,-, 1 < » < n. 

• The total system utility U(R1,--,Rn) is defined 
to be the sum of the weighted application util- 
ity of the applications,  i.e.     U(R1,--,Rn)   = 
£?=1™,tf,(R«). 

• Each application r, needs to satisfy requirements 
along d QoS dimensions {Qi, Q2, ■ • -, Qd], d>\. 

• The dimensional resource utility Uitk = {/,-,* (R') of 
an application T\ is defined to be the value that is 
accrued by the system when r,- is allocated R' for 
use on QoS dimension Qk, 1 < k < d. 

• *An application, r,-, has minimal resource re- 
quirements on QoS dimension Qk- These min- 
imal requirements are denoted by jRj"m* = 

{Ä#^Ä$BV".*Tm*} where RTjnk > 0,0 < 
j < m. 

• An application, rt-, is said to be feasible if it is al- 
located a minimum set of resources on every QoS 
dimension. We denote the total minimum require- 

ments by R7"'n ={fl#n,Ä$"."-.*£m} where 

In this paper, we assume that m = 1, i.e. only a single 
resource is being allocated. 

2.3    Assumptions 
We make the following assumptions: 

Al. The applications are independent of one another. 

A2. The available system resources are sufficient to meet 
the minimal resource requirements of each applica- 
tion on all QoS dimensions, RJ",n, 1 < i < n. 

A3. The utility functions £/,- and Ui,k are nondecreasing 
in each of their arguments. In some cases we will 
assume that these functions are concave and have 
two continuous derivatives. 

'This aspect of the model is a simplification to be relaxed in fu- 
ture work. In general, multiple resource-tuples can yield a given QoS 
operating point. 
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A4. Each application, r,-, has a weight tu,- denoting its 
relative importance. 

We make the following observations concerning these 
assumptions. First, if assumption Al does not hold, then 
the resource allocation methods still apply; however, the 
schedulability analysis needed to ensure that application 
timing requirements are met is more complicated. It must 
take into account phenomena such as the priority inver- 
sion that can occur with synchronization protocols. 

Second, if assumption A2 does not hold, then the min- 
imal resource requirements cannot be met. If these re- 
quirements are not met, then some of the applications 
must be dropped. One can use a variety of techniques to 
determine which of the applications should be dropped, 
or one could even allow some applications to have less 
than their minimal resource allocations. Although this 
is a very important issue, it is beyond the scope of this 
paper. 

Third, in view of A4, we can now define a weighted 
utility function for an application as W{ * £/, and then 
solve the resource allocation problem for those weighted 
utility functions. Thus, one can remove the weights from 
the allocation problem. In our subsequent analysis, we 
use these weighted utilities and drop the weight function. 

Note that [/,• is not necessarily equal to ]T)jLi f«'j- m 

other words, the utility obtained by an application r, from 
a resource Rj may not be additive with respect to its util- 
ity from another resource. This is because the application 
may need two or more resources simultaneously to achieve 
a certain utility. For example, an audio-conferencing ap- 
plication may need the CPU resource and the networking 
bandwidth resource in order to satisfy even a minimal 
QoS requirement. 

2.4 The Objective 
The objective of Q-RAM is to make resource allocations 
to each application such that the total system utility is 
maximized under the constraint that every application 
is feasible with respect to each QoS dimension. Stated 
formally, we need to determine 

{Rij,l < i < n,l < 3 < m} such that Rtj > 
]T)fc=i R™jnk anc^ ^ *s maximal among all such possible 
allocations. 

2.5 QoS Considerations in Video-Conferencing 
We shall use a video-conferencing system named RT- 

Phone [7] presented in Figure 1 as an example to illus- 
trate Q-RAM. We shall focus primarily on managing re- 
source allocations for the audio stream on a single node. 
The end-to-end delay encountered by an audio stream 
as a function of the CPU processing rate and the audio 
sampling rate is plotted in Figure 2-a. The variable on 
the x-axis is the periodic interval at which buffered au- 
dio packets are obtained from the sound hardware, pro- 
cessed and transmitted over the network. Each plotted 
line corresponds to a different sampling rate. For shorter 
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Figure 1: The Architecture of RT-Phone. 

periods, the end-to-end delay is shorter and vice-versa. 
This plot also illustrates that with relatively little addi- 
tional resources, the sampling rate can be increased and 
improved audio data quality can be obtained. The load 
imposed on the processor for the data points from Figure 
2-a is plotted in Figure 2-b. The y-axis is now the CPU 
load; as can be seen, for shorter processing periods, the 
CPU load is high due to higher network packet process- 
ing costs (larger number of smaller packets) and higher 
context switching costs. 

The QoS dimensions in this system (as described) are 
end-to-end delay representing timeliness and audio sam- 
pling rate representing data quality. The processing rate 
and the audio sampling rate can be changed indepen- 
dently of one another, and an increase in either leads to 
increases in utility of the video-conferencing system. Im- 
provements in end-to-end delay from 200 ms to 50 ms 
generally tend to be perceived as much higher than im- 
provements from 50 ms to 12.5 ms, i.e. the return on 
utility diminishes as more and more resources are added. 
The same applies to the sampling rate. The shapes of the 
utility functions2 corresponding to these QoS dimensions 
are presented in Figure 2-c. 

3    Resource Allocation in Q-RAM 
In this section, we derive some basic properties of Q-RAM 
defined in the previous section. 

We start with the simple case of making allocation de- 
cisions where there is only a single resource type and a 
single QoS dimension. We then extend this model to sup- 
port multiple QoS dimensions. In each case, we state a 
property that needs to be satisfied for maximizing the to- 
tal system utility, and/or present an algorithm which can 
find the optimal (or near-optimal) allocation. 

3.1     A Single Resource and A Single QoS Dimen- 
sion (m = 1 and d = 1) 

Since there is a single resource and quality dimension, we 
can drop the subscripts associated with them.   In this 

aThe utility assigned to an operating point for an application can be 
objective or subjective. In feedback control applications, control quality 
improves with sampling rates, and utility values can often be defined 
objectively. In multimedia applications, human perceptions saturate 
beyond a point, and utility values may be subjective. Relative utility 
values across applications would be based on system and application 
semantics, and will be, optionally, modifiable by the end-users. 
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Figure 2: (a) End-to-end audio delay curves as a func- 
tion of CPU processing rates and audio sampling rates, 
(b) The CPU load for audio processing as a function of 
CPU processing rates and audio sampling rates, (c) Au- 
dio utility functions for Timeliness and Data quality. 

case, we have E/,- = Ui(R),l < i < n, where R is the 
amount of resource allocated to r,-. The minimum re- 
source allocation needed to satisfy 7j is iZJ""1. 

To illustrate our approach, we make the further as- 
sumption that the utility functions [/,• = U(R) are twice 
continuously differentiable and concave, that is -j^f — 
U"  <  0 for R >  Rpin.    By convention, we assume 
tf,-(ß) = 0for0<Ä<Ä?*in. 

It is very convenient to transform the resource allo- 
cation problem. Since we assume that all minimal ap- 
plication resource requests can be met, we can focus on 
the allocation of the excess resources available. Conse- 
quently, we can, without loss of generality, assume that 
pmin _ Q^ yj- = i to n and reduce the quantity of available 
resources by that amount. In our subsequent analysis, we 
assume that this transformation has been made and re- 
quire only that A; > 0 and J2?=i & — ^> wnere R 1S tne 

remaining quantity of resources left to allocate. 

Figure 3: A linear utility function with min and max 
requirements. 

The goal is to determine the values of Ri, R2, ■ ■ ■, R„ 
such that the total system utility, YH=I ^«'(^«')> *s max- 
imized subject to the constraint 5Z"=1 Ri < R- The fol- 
lowing theorem provides a necessary condition for an al- 
location to be optimal. 

Theorem 1 A necessary condition for a resource allo- 
cation to be optimal is Vi, 1 < i < n, Ri = 0 or for any 
{i,j} with Ri>0 and Rj > 0, U<(Ri) = Uj(Rj). 

Proof: The result is a standard conclusion of the Kuhn 
Tucker theorem (see [12], chapter 5). To understand the 
intuition behind the results, suppose that for some i ^ j, 
let Ri > 0, Rj > 0 and U!{Ri) > Uj(Rj). 

Since Rj > 0, an infinitesimal amount of R can be 
subtracted from application Tj and added to application 
rj. Since U((Ri) > U'j{Rj), the total system utility will 
increase. This contradicts the assumption that the allo- 
cation was optimal.O 

Remark: It should be noted that it is possible that 
all applications except one can receive zero resource 
allocations3, and this one application consumes all the 
available resource quantity since the slope of its utility 
function is the highest. 

Remark: If the utility functions were not smooth, then 
this result requires some modification. To see this, sup- 
pose U\ consists of two line segments with slope sj on 
[0,L], then «2 on [L, 00)]. Now suppose that U2 is linear 
with slope s3 with Si > s3 > S2, while all other util- 
ity functions have slopes which are less than S2- If the 
amount of resources available exceeds L, then the opti- 
mal allocation will be to give L to the first application, 
all the rest to the second application and none to any 
others. This results in a situation of unequal slopes. If, 
on the other hand, the utility functions are smooth, this 
cannot happen. 

3.1.1    A Special Case of Linear Utility Functions 
As a special case, consider the utility curve of Figure 

3. The utility curve is linear from R?1"1 to a maximum 
resource requirement Amox beyond which it becomes flat. 
This utility curve is practical in the sense that many non- 
critical systems such as desktop multimedia applications 
can gain from its simplicity and resulting efficiencies. We 
refer to this special class of utility functions as min-linear- 
max functions. The following corollary provides a neces- 
sary condition for a resource allocation to be optimal for 

'Recall that the resource allocations are normalized and that each 
application has already been allocated sufficient resources to satisfy its 
minimum requirement. 

31 



min-linear-max utility functions. 

Corollary 1 A necessary condition for a resource alloca- 
tion to be optimal for min-linear-max utility functions is 
Va, l<i<n,Ri = 0, or Ri = R^ax, or for any {i,j} with 
0<Ri< Rfax and 0 < Rj < Rfax, U{(Ri) = uf{Rj). 

Proof: The corollary follows from the conditions of The- 
orem 1, and from the fact that no utility is gained by 
allocating even an infinitesimal resource to an applica- 
tion r, beyond R?iax.a 

Remark: It is possible that there exists only one appli- 
cation TJ which has 0 < R,; < R™ax, i.e. i,j can refer to 
the same application in the statement of Corollary 1. 

3.1.2 An Algorithm to Determine Umax 

An algorithm to determine the optimal resource alloca- 
tion R{ for each application to obtain Umax is given be- 
low. We assume that each application has already been 
allocated its minimum resource requirement. By assump- 
tion A3, sufficient resources should be available for this 
allocation. Consequently, we determine the optimal ad- 
ditional allocation to each application, Ri > 0,1 <i < n, 
subject to J2i-i Ri < R- 

1. Let the current normalized allocation of the re- 
source to TV be Ri, 1 < i < n. Let the unallocated 
quantity of the available resource be Rf. Compute 
(UiiRi),...,^^)). 

2. Identify (a) the subcollection of applications with 
largest value of U-(Ri), (b) the number of appli- 
cations in that subcollection (denoted by k), and 
(c) the application (denoted by j) with the second 
largest value of this quantity if any such applica- 
tion exists. If the largest value of UI(Ri) is 0, then 
stop. No further allocation will increase system util- 
ity and spare resources are available. 

3. Increase Ri for each of the members of the sub- 
collection so that their values of U{(Ri) decrease 
but continue to be equal until either (i) this value 
becomes equal to the second largest value or (ii) 
the additional resources added to this subcollection 
equal R?. In case (ii), stop as all resources have 
been optimally allocated. 

4. In case (i), one or more new applications should be 
added to the subcollection. Return to step 1. 

4    A Single Resource and Multiple QoS 
Dimensions (m = 1 and d > 1) 

An application can have multiple QoS dimensions (i.e. 
d > 1). For example, the RT-Phone example has two QoS 
dimensions, audio data quality (which increases with au- 
dio sampling rate) and end-to-end delay (which decreases 
with increases in processing rate). The resource alloca- 
tion for systems with multiple quality dimensions depends 
upon the nature of the relationship between the dimen- 
sions themselves. In this section, we classify the relation- 
ships between QoS dimensions, discuss their effects and 

study the resource allocation problem under various con- 
ditions. We provide optimal allocations when possible, 
and provide a greedy algorithm in another case. 

4.1    Relationships between QoS Dimensions 
The inter-relationship between QoS dimensions directly 
impacts the nature of the utility functions. We study two 
kinds of relationships among QoS dimensions: 

Independent dimensions: Two QoS dimensions, Qa 

and Qb, are said to be independent of one another if a 
quality increase along Qa (Qb) does not increase the re- 
source demands to achieve the quality level previously 
achieved along Qb (Qa)- An example is using different 
compression schemes on an audio stream but each scheme 
generates the exact same amount of data. As a result, 
the processing resources needed to encrypt the data re- 
main the same. If the encryption scheme is changed to 
consume more resources, the audio compression demands 
would remain the same. Therefore, security and audio 
data quality can be considered to be independent QoS 
dimensions in this system. 

Dependent dimensions: A QoS dimension, Qa, is 
said to be dependent on another dimension, Qb, if a 
change along the dimension Qb will increase the resource 
demands to achieve the quality level previously achieved 
along Qa- In the RT-Phone system, if the audio sampling 
rate is increased, the data volume increases and the CPU 
time needed to process the data increases4. 

Remark: Two QoS dimensions Qa and Qb can both 
be dependent on a third dimension Qc. For example, if 
video quality is improved by increasing the size of the 
image, both processing capacity and network bandwidth 
demands would increase. As a result, both timeliness and 
packet loss QoS dimensions would be affected. 

4.2    Dealing with Independent QoS Dimensions 
Suppose that the d QoS dimensions are independent of 
one another. In this case, each QoS dimension offers its 
own utility to the system and can be varied indepen- 
dent of the other dimensions. In this case, the dimen- 
sional utilities of the applications are additive. That is, 
U{ = XIfc=i Ui,k- The resource allocation problem then is 
equivalent to the single QoS dimension problem of Sec- 
tion 3.1 with n*d applications {r[, Tj, • ••, T^d}, where 
{T[, T'2, ■■■, Tj} correspond to the d dimensions of n, 
iTd+i> Td+2> " ' > r2d) correspond to the d dimensions of 
T2 and so on. The optimal resource allocations can now 
be determined using the algorithm described in Section 
3.1.2. 

4.3 Dependent QoS Dimensions with Continu- 
ous Values 

Suppose that one or more QoS dimensions are inde- 
pendent, but the quality on each dimension can be any 
value within an interval. We now illustrate the general 
approach using the special case d = 2, but the approach 

■"This increase in CPU load is not linear, however, as can be inferred 
from Figure 2-b. 
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(a) Resource 

Figure 4: (a) The Resource Consumption Surface for Two 
QoS dimensions, (b) The Utility Surface as a function of 
two Qos Dimensions, (c) The final (univariate) utility 
function for two QoS dimensions and a single resource. 

remains the same for d > 2. The resource demand for ev- 
ery point p along the QoS dimension Qi and every point 
q along the QoS dimension Qi is plotted first. This de- 
fines a resource consumption surface along Qi and Q2, 
an example of which is provided in Figure 4-a. The util- 
ity to the system for any pair {p, q} of points along QoS 
dimensions Q\ and Q2 respectively is plotted next. This 
yields a utility surface, an example of which is illustrated 
in Figure 4-b. The contours of R = k from the resource 
consumption surface are then projected to the utility sur- 
face. The maximum utility values for each R= k contour 
projection finally yield a single (maximal) utility func- 
tion as a function of R. For example, the utility function 
from the surfaces of Figures 4-a and 4-b yield the shape 
shown in Figure 4-c. The net result is that the multi- 
dimensional resource allocation problem gets reduced to 
the single-QoS dimension problem. 

If the resulting univariate utility function is twice con- 
tinuously differentiable and concave (or min-linear-max), 
the algorithm of Section 3.1.2 can be applied to obtain 
the optimal resource allocation. 

4.4    Dependent QoS Dimensions With Discrete 
Options 

We now consider special cases, where one of the QoS di- 
mensions is not only dependent on another (base) QoS 

Figure 5: Three sets of Ur, Ue and an aggregate Ua for a 
dependent binary QoS Dimension. 

dimension, but is also discrete in nature. For the sake 
of illustration, we shall assume that d = 2, yielding one 
independent (base) QoS dimension and one QoS dimen- 
sion dependent on the former. We shall first consider the 
binary case where the quality of the dependent dimen- 
sion is either available or not available. We then consider 
the case where the quality along the dependent dimension 
can be any one of multiple discrete values. 

4.4.1     Using Dependent Binary QoS Dimensions 
Consider again the application sampling microphone in- 
put and transmitting an audio stream. In the following, 
we use the suffixes a, r and e to represent audio, raw 
audio and encrypted audio respectively. Increasing the 
audio sampling rate increases the audio quality and the 
amount of data to be processed. Let Rr be the CPU 
resource allocated to the processing of this raw data. 
We have Rr = g(SamplingRate). Assuming that g() 
is monotonic, Ur = f[Rr) has the same shape as Figure 
4-c. 

Suppose that the audio data will also be encrypted. 
Now, additional processing per block of audio data (and 
correspondingly the CPU resource) will be needed. This 
additional resource consumption scales linearly with the 
sampling rate. It is reasonable to assume that a constant 
utility gain A is added to the system with encryption. 
However, since Rr is needed for processing the audio data 
without encryption, a larger value Ä,, would need to be 
allocated for encrypting and processing the same amount 
of audio data. We therefore have Re = Te*Rr, where Te 

is a constant > 1.0. 
The utility function Ue therefore has the form /(jr*-) + 

A. Therefore, the origin of Ue is offset both vertically 
and horizontally from Ur. The vertical offset is A, and 
the horizontal offset is (re - 1) * Rr

nin. Since Te > 1, 
the slope of Ue is always smaller than that of Ur. If 
Ur is continuous and concave, Ue is also continuous and 
concave. 

The aggregate utility function for the audio application 
is given by Ua = max(f/r, Ue). Three examples are pro- 
vided in Figure 5; UT is the thin line starting lower and 
more to the left, Ue is the other thin line, and Ua is the 
bold line. It must be noted that encryption is not possible 
for resource allocations less than (ÄJ7"n * Te). For larger 
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allocations, encryption is possible but it may or may not 
yield higher utility. For example, the aggregated applica- 
tion utility function of Figure 5-c yields a higher utility 
without encryption initially, then with encryption, and 
then without encryption again. Also, in the general case, 
Ua will only be piecewise continuous and concave. 

4.4.2    Using Dependent 'n-ary' QoS Dimensions 

^— 

Figure 6: Example of using an n-ary QoS Dimension. 
In Section 4.4.1, we assume that a second QoS dimen- 

sion (namely encryption) is applied as a binary function: 
it is either available or not available. Such a binary 
scheme is applicable when only a single scheme (such 
as encrypting always using a 48-bit public key) is used. 
However, suppose that more than one scheme is avail- 
able along this QoS dimension (such as encrypting using 
a 64-bit key, a 128-bits key, etc. or using a different cryp- 
tographic scheme). For convenience, we introduce the 
following notation. 

Notation: Let the QoS dimension Qk be dependent on 
another and have s + 1 discrete schemes. By conven- 
tion, we adopt scheme 0 to represent the absence of the 
dimension. The utility gain constant provided by sup- 
porting scheme p, 0 < p < s is denoted by AfciP. The 
resource scaling factor (with respect to the base dimen- 
sion) for supporting scheme p, 0 < p < s is denoted by 
r*,p > 1-0. The overhead factor of scheme p, 0 < p < s 
is denoted by 7fciP = (1.0 — Tk,P) > 0.0. By convention, 
We have Afci0 = 0, rfc,o = 1.0, 7fc,o = 0.0. 

Each scheme p, 0 < p < s, provides a correspondingly 
different increase in utility, A*|P, while also consuming 
a different amount of the CPU resource with a different 
rfciP. The result is a family of utility curves, and the 
aggregated application utility function is the maximum of 
these curves. An example family of utility functions for a 
3-ary dependent dimension and the resulting aggregated 
utility function are illustrated in Figure 6. 

4.4.3    Linear Dimensional Utility Functions  in 
the Dependent 'n-ary' Case 

When min-linear-max dimensional utility functions are 
used for the independent QoS dimensions, the aggregated 
application utility function is piecewise linear when one 
of the QoS dimensions is 'n'-ary in nature. A sample 
set of the individual dimensional utility functions for two 
QoS dimensions, one independent and another depen- 
dent, and their aggregated application utility function are 
illustrated in Figure 7. Let the independent (base) dimen- 
sion be Qi and the dependent dimension be Q2. We have 
Rmin = 0.1, Rmax = 0.2 for Qi (same as scheme 0 for 

Dependent 'n'-ary QoS dimension 
Utility 
220.00 Aggregate 

Sclienie"ö~*6äs'e* 
Scheme'I 
Scfieme~2~ 

100.00 200.00 300.00 
Resource x 10"^ 

Figure 7: One 3-ary QoS dimension w/ min-linear-max. 

Q2). The corresponding utilities are given as 0 and 100 
respectively. For Scheme 1 of the dependent dimension 
Q2, we assume A2,i = 75, Ti = 1.5 yielding 71 = 0.5. 
Correspondingly, Rmin = 0.15, Rmax = 0.3, and the util- 
ities are given by (0+75=75) and (100+75=175). For 
Scheme 2, assume A2,2 = HO, r2,2 = 1-7» 72,2 = 0.7. 
We therefore have Rmin = 0.17, Rmax = 0.34, Umin — 
0 + 110 = 110 and Umax = 100 + 110 = 210. The aggre- 
gate utility function for the application is the maximum 
of the previous three functions. 

It is useful to note that this piecewise-linear application 
utility function has 3 kinds of discontinuities: intersecting 
discontinuities where dimensional utility lines intersect 
(point A in Figure 6), vertical discontinuities where the 
maximal dimensional utility line at a point starts above 
the other lines (at R = 0.15 and 0.17 in Figure 7), and sat- 
uration discontinuities where the maximum QoS point for 
a dimensional utility line beyond which the utility does 
not increase (at R = 0.34 in Figure 7). We now present 
a greedy algorithm which determines a near-optimal re- 
source allocation under these conditions. 

A greedy algorithm to obtain a good resource alloca- 
tion Ri for each application in a system with all linear 
dimensional utility functions is as follows: 

1. Assign to each application TJ its minimum resource 
requirement ÜJ7"". By assumption A3, sufficient 
resources should be available for this allocation. 

2. Normalize the utility function of each application 
(by left-shifting and down-shifting the utility curve 
such that it starts at the origin). Let the total quan- 
tity of available resource remaining be R. 

3. Let the current normalized allocation of the re- 
source to 7} be R{. Let the unallocated quantity 
of the available resource be Rl. 

4. For each application r,-,l < i < n, compute the 
slopes on the application utility curve at Ri, and 
between the current allocation Ri and any and ev- 
ery discontinuity5 in the region Ri < R < R1. Let 

5When there is a vertical discontinuity, pick the higher point. 
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this set of slopes for r,- be represented by {s,}. The 
size of this set of slopes is at least one. 

5. Let the index of the application with the highest 
value of the element in {s,}, 1 < i < n, be p. If 
there are two or more such applications, pick one 
at random. Let this largest slope element of TP 

be s™ax. Let the additional resource amount that 
needs to be allocated to TP to reach the discontinu- 
ity point corresponding to s™"1 be r. 

6. If si""* = 0, stop. The unallocated resources will 
not increase system utility any further. 

7. Allocate an additional (r) to TP increasing Rp by 
that amount. Reduce Rl by this same amount. 

8. If R' = 0, stop. Else, go to step 4. (a) 
jooo 40.00 I/Delay 

Utility 
UMIUy As • FBdta of IMqr 

Utility Functions of Two Applications 
UtUlly 

Figure 8:   A counter-example of non-optimality of the 
greedy algorithm of Section 4.4.3). 

Remark: We note that the above algorithm, while ex- 
pected to do well in practice, does not always lead to an 
optimal resource allocation6. We now provide a counter- 
example illustrated in Figure 8 to show that this in indeed 
the case. Suppose that there are only two applications T\ 
and T2- Let the total amount of resource to be allocated 
be 0.5. U\(ti) has a linear slope of 10, but a vertical dis- 
continuity occurs at R\ = 0.4 with Ui(0A) = 10. The 
slope at J7i(0.4) continues to be 10. But, the slope of 
U\ (0) from 0 to the higher point of the vertical discon- 
tinuity, which is at 10, is 25. ^(O) has a linear slope 
of 30 and U2 has a saturation discontinuity at R2 = 0.2 
(with U2(0.2) = 6). The above greedy algorithm will first 
allocate 0.2 units of the resource to r2 (since its slope is 
the highest at a value of 30). The remaining 0.3 units 
will then be allocated to rj yielding Ui(0.3) = 3. The 
total system utility achieved is therefore (6+3)=9. How- 
ever, an optimal algorithm would allocate Ri = 0.4 and 
i?2 = 0.1 yielding a total system utility of (10+3) = 13, 
which is higher than the utility achieved by the greedy 
algorithm.  

6 We are currently developing an algorithm that will find an optimal 
allocation and replace this greedy (sub-optimal) algorithm. 
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Figure 9: (a) The resource consumption function for RT- 
Phone. (b) Utility as a function of Timeliness (with a 
linear model of the value of timeliness). 

4.5    Using Q-RAM in the RT-Phone Example 
In this section, we apply Q-RAM to the RT-Phone sys- 
tem for the sake of illustration and also show how the 
real-time constraints can be satisfied. We first generate 
the resource consumption surface for the QoS dimensions 
end-to-end delay (represented as 1/delay) and audio qual- 
ity (represented as sampling rate). From Figures 2-a and 
2-b, we obtain the surface in Figure 9.a. We now assume 
that the utility of the timeliness QoS dimension is given 
by (1/delay). Let us now suppose that the audio quality 
dimension offers a constant utility gain at each sampling 
rate. 

Using Ug(-) to represent the utility gain from a par- 
ticular sampling rate, let us assume that Ug(8KRz) = 0, 
Ug{12KEz) = 100, Ug(16KHz) = 200, /7g(20KHz) = 240, 
!7s(24KHz) = 260 (yielding a tapering-off effect). The to- 
tal utility at a given sampling rate is given by Udeiay+Ug. 
The variation of total utility with end-to-end delay is plot- 
ted in Figure 9.b. From the curves of Figure 9, we obtain 
the (univariate) utility function of Figure 10. 

4.5.1    Resource Allocation and Schedulability 
Suppose the CPU resource has to be allocated among 10 
applications with utility curves similar to those of Figure 
10. First, all 10 applications will be allocated their min- 
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Figure 10: The RT-Phone utility function recommends 
the use of a 24KHz sampling rate for audio. 

imum resource requirements. Next, additional resource 
allocations will be made only to the application with the 
highest utility slope. If any CPU cycles remain after that 
application reaches its maximum requirement, only then 
would they be allocated to the application with the next 
higher slope. This is repeated until no more CPU cycles 
are available. Let the final CPU allocation to application 
i be Ri. Its corresponding CPU load and processing rate 
from Figures 2-a and 2-b yield the (computation time, 
period) pair. These pairs can then be scheduled using 
the earliest deadline scheduling algorithm. 

5    Concluding Remarks 
We have presented a QoS-based Resource Allocation 
Model (Q-RAM) that allows the utility derived from a 
system to be maximized by making resource allocations 
such that the different needs of concurrently running ap- 
plications are satisfied. Each application has a minimal 
resource requirement, but can adapt its behavior if given 
more resources and provide additional utility. Each ap- 
plication also needs to satisfy QoS metrics along mul- 
tiple dimensions such as timeliness, cryptographic secu- 
rity, reliable packet delivery and data quality. Finally, 
each application may need to obtain access to multiple 
resource types in order to meet its QoS constraints. We 
have provided optimal (or near-optimal) resource allo- 
cation schemes for applications which need a single re- 
source, but need to satisfy one or more QoS dimensions. 
A video-conferencing system with timeliness, audio qual- 
ity and encryption constraints is used as an example to 
motivate and apply Q-RAM. 

We are pursuing several avenues as future work. First, 
optimal schemes are needed for applications with multiple 
QoS dimensions (see Section 4.4.3) and for allocation of 
multiple resources. Second, the underlying OS/kernel for 
Q-RAM must not only support flexible resource manage- 
ment schemes but also provide feedback to the Q-RAM 

manager about available resources and resource consump- 
tion by various application threads. The run-time over- 
head for these actions are also yet to be studied in de- 
tail. Finally, Q-RAM is based on single-node systems 
and needs to be extended to distributed systems. 

Acknowledgments 
The authors would like to thank other Amaranth project members 
at Carnegie Mellon University, including Carol Hoover, Pradeep 
Khosla, Phil Koopman and Lui Sha. The Amaranth project is 
defining a comprehensive framework for QoS management along 
multiple quality dimensions, and its goals include the construction 
of system prototypes and applications. The authors would also 
like to thank John Wilkes of Hewlett Packard and Tom Lawrence 
of Rome Air Force Laboratories for insightful discussions on QoS- 
based resource allocation. 

References 
[1]- T. Baker. Stack-based scheduling of realtime processes. Journal 

of Real-Time Systems, 3(1):67-100, March 1991. 
[2] K. G. Shin D. D. Kandlur and D. Ferrari. Real-time communica- 

tion in multi-hop networks. IEEE Transactions on Parallel and 
Distributed Systems, pages 1044-1056, Oct 1994. 

[3] R. Guerin, H. Ahmadi, and M. Naghshineh. Equivalent capacity 
and its application to bandwidth allocation in high-speed networks. 
IEEE Journal on Selected Areas in Communications, September 
1991. 

[4] K. Jeffay. Scheduling sporadic tasks with shared resources in hard 
real-time systems. Technical report, TR90-038, Department of 
Computer Science, University of North Carolina at Chapel Hill, 
November 1989. 

[5] M. B. Jones and P. J. Leach. Modular real-time resource manage- 
ment in the rialto operating system. Technical Report MSR-TR- 
95-16, Microsoft Research, Advanced Technology Division, May 
1995. 

[6] M. H. Klein, T. Ralya, B. Pollak, R. Obenza, and M. G. Harbour. 
A Practitioner's Handbook for Real-Time Analysis: Guide to 
Rate-Monotonic Analysis for Real-Time Systems. Kluwer Aca- 
demic Publishers, 1993. ISBN 0-7923-9361-9. 

[7] C. Lee, R. Rajkumar, and C. Mercer. Experiences with processor 
reservation and dynamic qos in real-time mach. In the proceedings 
of Multimedia Japan 96, April 1996. 

[8] J. P. Lehoczky, L. Sha, and J. K. Strosnider. Enhancing aperiodic 
responsiveness in a hard real-time environment. IEEE Real-Time 
System Symposium, 1987. 

[9] C. L. Liu and Layland J. W. Scheduling algorithms for multipro- 
gramming in a hard real time environment. JACM, 20 (1):46 — 61, 
1973. 

[10] J. W. S. Liu, K-J Lin, R. Bettati, D. Hull, and A. Yu. Use of 
Imprecise Computation to Enhance Dependability of Real-Time 
Systems. Kluwer Academic Publishers, 1994. 

[11] C. W. Mercer, S. Savage, and H. Tokuda. Processor Capacity 
Reserves for Multimedia Operating Systems. In Proceedings of 
the IEEE International Conference on Multimedia Computing 
and Systems, May 1994. 

[12] A. L. Peressini, R. E. Sullivan, and Jr. J. J. Uhl. Convex Pro- 
gramming and the Karish-Kuhn-Tucker conditions, chapter 5. 
Springer-Verlag, 1980. 

[13] R. Rajkumar. Synchronization in Real-Time Systems: A Priority 
Inheritance Approach. Kluwer Academic Publishers, 1991. ISBN 
0-7923-9211-6. 

[14] D. Seto, J. P. Lehoczky, L. Sha, and K.G. Shin. On task schedu- 
lability in real-time control systems. IEEE Real-Time System 
Symposium, December 1996. 

[15] J. A. Stankovic and K. Ramamritham. The design of the spring 
kernel. In Proceedings of the Real-Time Systems Symposium, Dec 
1987. 

[16] E. M. Atkins T. F. Abdelzaher and Kang Shin. Qos negotiation 
in real-time systems and its application to automated flight con- 
trol. In The Proceedings of the IEEE Real-time Technology and 
Applications Symposium, June 1997. 

[17] W. Zhao, K. Ramamritham, and J. Stankovic. Preemptive schedul- 
ing under time and resource constraints. IEEE Transactions on 
Computers, Aug. 1987. 

[18] T. F. Lawrence. The Quality of Service Model and High Assurance. 
Workshop on High Assurance Systems, July 1997. 

36 



Predictable Communication Protocol Processing 
in Real-Time Mach 

Chen Lee, Katsuhiko Yoshida*, Cliff Mercer and Ragunathan Rajkumar 
Department of Computer Science 

Carnegie Mellon University 
Pittsburgh, PA 15213 

{clee,ky2d,cwm,raj+} @cs.cmu.edu 

'Visiting Scientist, Nippon Steel Corporation 

Abstract 

Scheduling of many different kinds of activities takes place 
in distributed real-time and multimedia systems. It includes 
scheduling of computations, window services, filesystem 
management, I/O services and communication protocol 
processing. In this paper, we investigate the problem of 
scheduling communication protocol processing in real-time 
systems. Communication protocol processing takes a rela- 
tively substantial amount of time and if not structured cor- 
rectly, unpredictable priority inversion and undesirable 
timing behavior can result to applications communicating 
with other processors but are otherwise scheduled correctly. 
We describe the protocol processing architecture in the RT- 
Mach operating system, which allows the timing of 
protocol processing to be under strict application control. 
An added benefit is also obtained in the form of higher 
performance. This scheduling architecture is consistent 
with the other RT-Mach scheduling mechanisms including 
fixed priority scheduling and processor reservation. The 
benefits of this protocol architecture are demonstrated both 
under synthetic workloads and in a realistic distributed 
videoconferencing system we have implemented in RT- 
Mach. End-to-end delays for both audio and video are as 
predicted even with other threads competing for the CPU 
and the network.1 

1. Introduction 
Distributed real-time and multimedia applications must 
communicate and coordinate across machine boundaries. 
Such communications may use a wide range of network 
communication protocols including UDP/TP, TCP/IP and 
XTP. Despite the advent of high-bandwidth networks like 
ATM, Fast Ethernet, Ethernet switching etc., network 
bandwidth is often considered to be the most serious bot- 
tleneck for such network communications. This is certainly 
true when a large number of nodes use the same network 
link(s) and each node has to have a chunk of the com- 
munication bandwidth. On the other hand, protocol stacks 
such as UDP/EP and XTP/IP also consume a considerable 
amount of CPU processing time. When multiple real-time 

'This work was supported in part by the Office of Naval Research, 
Naval Research and Development Center, Northrop-Gnimman, Philips 
Labs and Nippon Steel Corporation. 

tasks need to use the network from the same node, as is 
often the case in distributed real-time and multimedia con- 
texts, the question of how these protocol stacks are struc- 
tured and processed becomes a critical question for main- 
taining predictable timing behavior. Some specific ques- 
tions that arise are: 

• Sender-Related Questions: If two or more real-time 
tasks try to send out network packets, what is the level 
of resource-sharing involved? In general, how are send- 
ing of packets by different tasks scheduled? 

• Receiver-Related Questions: If one or more real-time 
tasks receive packets from the network, are they 
processed in FIFO or priority order? In general, how are 
their protocol processing activities scheduled on net- 
work packet reception? 

• Network-Related Questions: How is network bandwidth 
allocated and managed? 

Most, if not all, commercial protocol stack implementations 
use a FIFO queueing mechanism. This is clearly detrimen- 
tal to real-time behavior particularly when extensive sup- 
port has been added and used to schedule the real-time 
computations on the CPU. In addition, protocol stacks are 
often implemented in the kernel, leading to large critical 
sections when networks packets arrive or depart. Finally, 
packet arrivals are processed with high (kernel) priority 
even if the packets are intended for low priority tasks to 
ensure that as few packets as possible are lost. 

In this paper, we address the sender-related and receiver- 
related questions by defining the requirements of a real- 
time protocol processing architecture that is "aware" of 
real-time requirements of tasks sending and receiving net- 
work packets. An implementation of an architecture that 
meets these requirements has been carried out on RT-Mach. 
We discuss this implementation and evaluate its real-time 
characteristics under synthetic workloads as well as in the 
context of a video-conferencing system built on Real-Time 
Mach. 

1.1. An Overview of Real-Time Mach 
We now provide a brief overview of the capabilities of 
Real-Time Mach so as to provide some insight into how the 
various components of the operating environment fit 
together with the protocol processing architecture. 
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The RT-Mach microkernel supports a wide range of CPU 
scheduling policies including a fixed priority scheduling 
policy, earliest deadline first policy and a round-robin 
policy. One of these policies can be chosen dynamically. 
RT-Mach also supports a novel scheduling scheme based 
on processor reservation which serves as a temporal protec- 
tion barrier between real-time tasks analogous to address 
space protection between processes [9]. Each processor 
reserve comprises of a requested rate of usage, currently 
specified as C units of computation time every T units of 
time. Transparent to user applications, a reserve is assigned 
by the kernel a rate-monotonic priority based upon this re- 
quested usage, and the processor is still scheduled on the 
basis of fixed priorities2. The reservation scheme includes 
an admission control policy to prevent overload and a 
mechanism to accurately measure computation time con- 
sumed by programs. In addition to measuring computation 
time usage, the reservation mechanism enforces computa- 
tion time limits reserved by an application thread. Hence, a 
program which attempts to use more computation time than 
its processor allocation cannot interfere with the timing be- 
havior of other programs. This is in contrast to pure 
priority-driven scheduling policies where overruns by 
higher priority processes can hurt lower priority processes. 

In addition to its flexible and novel scheduling policies, 
RT-Mach supports a real-time inter-process communication 
mechanism based on priority inheritance (for priority- 
driven scheduling policies) and reservation propagation (for 
the reservation-driven scheduling policy). Virtual memory 
pages (including code, data and/or future allocation) of real- 
time tasks can be wired down to obtain predictable memory 
accesses. High-resolution clocks and timers with a resolu- 
tion of up to 250 ns are supported. An Xll-server which 
supports reserve propagation and shared memory com- 
munication is also available. Simpler applications can use a 
display screen library to access the display frame buffers. 
A real-time shell (RTS) along with a network protocol serv- 
er (NPS) provide a compact run-time environment for con- 
structing distributed real-time systems. Video and audio 
capabilities are also supported to aid in the development of 
distributed multimedia applications. A complete 4.3 BSD- 
based environment is available for program development. 
In additoin, a 4.4 BSD-Lites server has been ported to the 
RT-Mach microkernel by the Helsinki University of Tech- 
nology. 

In this paper, we use both the fixed priority scheduling 
policy (due to its popular use and support by current stan- 
dards such as POSK and Ada95) and the RT-Mach proces- 
sor reservation policy (due to its better enforcement and 
abstraction properties) in conjunction with the protocol 
processing structure. 

^This can be easily extended to dynamic priority models such as earliest 
deadline scheduling due to the transparent nature of the reserve interface 
seen by applications. 

1.2. Organization of the Paper 
The rest of this paper is organized as follows. Section 2 
discusses some choices for different protocol processing 
software structures and how they impact the timing be- 
havior of applications. In Section 3, we give a more 
detailed description of the scheduling structure that we have 
implemented in RT-Mach, focusing on the features of this 
mechanism that enable application-level timing control 
over packet scheduling. In Section 4, we present perfor- 
mance numbers from synthetic workloads which 
demonstrate the predictable behavior we can achieve. This 
evaluation focuses on the use of the RT-Mach processor 
reservation scheme with the real-time protocol processing 
architecture. In Section 5, we describe a practical 2-way 
video-conferencing system which transmits duplex audio 
and video streams. This application has both heavy CPU 
processing, stringent protocol processing and end-to-end 
delay requirements, and is an ideal testbed for testing the 
protocol processing structure described in Sections 2 and 3. 
The evaluation of this section focuses on fixed-priority 
scheduling alone. In Section 6, we present our concluding 
remarks. 

2. Real-Time Processing of Communication 
Protocols 

In this section, we look at several different approaches to 
protocol processing software design, and we identify and 
discuss the advantages and disadvantages of these ap- 
proaches. 

Most implementations of protocol stacks use a FIFO queue- 
ing scheme to process network packets. Hence, even if the 
processes and threads are scheduled according to real-time 
scheduling principles, priority inversion exists in the 
protocol stack. Preemptability is typically very limited as 
well since many protocol stack implementations are in the 
kernel and therefore execute at kernel priorities. By apply- 
ing the known principles of real-time scheduling, protocol 
processing can be structured in various ways: 

1. Prioritized Processing: This represents a deceptively 
simple change and requires only changing the queues 
from FIFO into priority-based ones. However, this can 
cause problems on both the sending side and the 
receiving side. The software structure used for 
protocol processing in the operating system determines 
the degree of priority inversion and thus the level of 
predictability. At one extreme, the 4.3 BSD operating 
system uses "software interrupt" processing for ex- 
ecuting protocols for incoming network packets [6]. 
This gives protocol processing higher priority than any 
schedulable activity in the system, higher than any sys- 
tem or user processes. Thus, packet protocol process- 
ing acts as a kernelized monitor. For fast response to 
network packets and for high throughput, this is a good 
design choice, but the problem is that a deluge of low 
priority data packets can effectively take over the 
processor for an extended period of time, regardless of 
the importance of any or the schedulable activities. 
The system is thus vulnerable to unbounded priority 
inversion. Sending of large packets by lower priority 
threads will be processed at kernel priorities causing 
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problems but to a lesser degree since the maximum 
number of lower priority sends (and hence blocking) 
will be limited to a single send. 

2. Shared Communication Protocol Server: One 
reasonable alternative is to bring the protocol stack 
into a separate server (particularly in a microkernel 
architecture). We can then treat the protocol stack as a 
shared resource, and then apply the priority inheritance 
protocol or priority ceiling protocol to it. Problems 
similar as in approach (1) are possible but to a lesser 
degree since the priority of the server is under applica- 
tion control. 

3. Processing Using Prioritized Threads: To prevent 
the kind of priority inversion from approach (1), it is 
necessary to associate priorities with packets so that 
they can be queued and serviced in priority order. 
This enables preemption of the processing of one low 
priority packet in favor of a higher priority packet, 
especially if the computation time required for 
protocol processing is significantly more than that re- 
quired for a (thread) context switch. One approach, 
used in the ARTS real-time kernel, has preemptible 
threads to shepherd packets through the protocol 
software [14]. Each thread handles a different packet 
priority class, and the priority of the thread matched 
the priority of the packets it handles. For predictable 
performance, the protocol processing software should 
be sensitive to packet priority as well as the priority of 
other activities running on the processor. This ap- 
proach provides fast response to nigh priority packets 
and prevents low priority network activities from inter- 
fering with high priority work on the processor. This 
is similar to the method used in the jr-kemel [2], but 
unlike the x-kernel threads, ARTS protocol processing 
threads are preemptive. 

4. Application-Level Protocol Processing: A fourth al- 
ternative that we actually chose for use in RT-Mach is 
to make the protocol stack into a library that resides in 
application space (in each process). In such a design, 
individual threads can still preempt one another based 
on their priorities. As a result, communication 
protocol processing becomes a local extension of the 
communicating threads and can be treated as fully 
preemptive blocks of computation across processes. In 
a microkernel setting as in RT-Mach, the protocol 
stack actually can move from the Unix server (which 
runs as a privileged process on top of the microkernel) 
to the application level, and additional performance 
benefits can be accrued since the path is now {kernel 
to application process} instead of {kernel to Unix to 
application process}. 

2.1. Application-Level Protocol Processing 
Coordination between processor scheduling and network 
packet handling is very important for end-to-end predic- 
tability in distributed multimedia systems. Many systems 
use the notion of priority to support predictability, and one 
major issue is how priority inversions affect the perfor- 
mance of more important activities. Priority inversion oc- 
curs when a higher priority activity is forced to wait for a 
lower priority activity to execute [13,11]. For example, a 
priority inversion occurs when a high priority packet goes 
into a FIFO queue behind a low priority packet. Priority 
inversion can be a major cause of unpredictable behavior in 
real-time communication systems [15]. 

Several principles guide the design of predictable protocol 
processing software [8]: 

1. use packet priority for queueing, 
2. schedule protocol processing against other system ac- 

tivities using packet priority, 
3. use a preemptive control structure to reduce inter- 

ference and priority inversion, 
4. partition resources such as protocol data structures to 

reduce interference among priority classes, and 
5. limit the context switching overhead of the preemptive 

control structure. 

The multi-threaded protocol software mentioned above en- 
hances the predictability of protocol processing, but at the 
expense of additional context switching. A protocol 
processing mechanism implemented for the Mach operating 
system [7] is amenable to the application of these prin- 
ciples. This user-level library implementation of TCP/IP 
and UDP/IP was originally done to speed up the fast path in 
the Mach networking code by reducing the number of IPC's 
and context switches required to send and receive packets. 
This design also happens to satisfy our principles for pre- 
dictable network communication, and with the resource 
management functionality provided by our reservation 
mechanism, we achieve predictable end-to-end perfor- 
mance. 

3. A Protocol Software Structure for 
Predictable Real-Time Scheduling 

3.1. OS Enforcement and Predictability 
To support a predictable communications service, the 
operating system must cooperate with the network in 
scheduling networking activities. Two common approaches 
to building predictable systems are (1) relatively static real- 
time scheduling for guaranteed service and (2) statistical 
multiplexing techniques for (mosdy) good service and high 
utilization. Static real-time scheduling approaches typically 
use priority-driven policies with off-line priority assign- 
ments and analyses. They are often based on careful 
measurement and control of the execution times of each 
software component in the system. Such approaches are 
less appropriate for the dynamic, flexible, easy-to-use en- 
vironment that can be used for both real-time and mul- 
timedia environments. Statistical multiplexing, on the other 
hand, is flexible and better suited to a dynamic environ- 
ment, but this method requires a fairly large number of 
activities to realize the benefits of statistical sharing. Many 
modern operating systems are designed to run only a few 
concurrent programs on a single microprocessor. On per- 
sonal workstations, only a few concurrent programs are ac- 
tive at a single time, and on multiprocessors, it is common 
to think more in terms of allocating processors to applica- 
tions rather than multiplexing applications on single proces- 
sors. With so few activities being scheduled, statistical 
multiplexing does not offer the predictability it might when 
the numbers are larger. 

Our approach is to strike a compromise between static real- 
time systems and statistical multiplexing.  Since resources 
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are to be shared among only a few activities, we cannot 
depend on statistical assurances that the resources will be 
available when they are needed. In RT-Mach, one can use 
a resource reservation mechanism to ensure resource 
availability. The reservation mechanism does not preclude 
resources from being multiplexed among several activities, 
as long as the resource can be scheduled in such a way that 
it is available to the reservation holder during the interval of 
time it is reserved. Some resources are difficult to schedule 
in this way. Physical pages, for example, cannot easily be 
multiplexed since the "context switch" to copy out data 
from a page and copy in new data is quite time-consuming. 
This argues for physical pages being allocated directly 
rather than being multiplexed, and reservation in this case 
means that the physical resources are tied up when reserved 
and cannot be used by other activities. We call this type of 
reservation a dedicated reservation. Processors, however, 
can be multiplexed fairly easily; the context switch time is 
not as large. So reservation for processors means that the 
processor resource, measured in terms of computation time, 
must be available at the time the reservation holder needs it, 
and this type of reservation does not preclude the resource 
being used by other activities, including background ac- 
tivities. We can think of this as a reservation of capacity 
rather than a reservation of a discrete resource, and we call 
it a scheduled reservation. 

Since reserving discrete resources is a relatively straightfor- 
ward proposition, we have focused more on how a reser- 
vation mechanism for the processor would work. The 
processor reservation mechanism has four parts: an inter- 
face to specify reservation requests, an admission control 
policy, a scheduling algorithm, and a mechanism to enforce 
reservations. A more complete description of the design 
and implementation of this reservation system can be found 
elsewhere [10]. 

Suppose instead of processor reservation, a fixed priority 
scheduling policy is used. In this case, the protocol 
processing structure can be identical to that with processor 
reservation, except that priorities must be assigned ap- 
propriately by the application(s). In addition, each applica- 
tion must not exceed its specified execution times (for 
timing guarantees given to lower priority tasks to hold 
true). In other words, enforcement is absent or is up to the 
application. With the processor reservation model, if 
shorter period tasks (and hence higher fixed priority tasks 
using rate-monotonic priority assignment) execute longer 
than their specified times, the kernel can suspend them or 
lower their priorities until the current reservation period 
expires. 

3.2. Mach 3.0 Networking 
Networking in the context of the Mach 3.0 UX server [1] is 
accomplished by calling the 4.3 BSD networking primitives 
which are handled by the UX server. The UX server inter- 
acts directly with the network device drivers to send and 
receive packets.   As shown in Figure 3-1, this makes the 

UX server a single point of contention for all activities that 
are using the network. Unfortunately, the networking code 
inside the UX server does not support priorities nor does it 
have well-defined real-time properties. In sum, this 
software does not satisfy our requirements for prioritization 
and preemptibility in predictable protocol processing 
software. .. 

N. 
Real-Time Mach 

Figure 3-1: Networking with the Unix Server on RT-Mach 

Another problem with networking under the UX server of 
Mach 3.0 is that the interprocess communication (TPC) re- 
quired between the application and the UX server and be- 
tween the UX server and the network device drivers adds 
overhead to network communication. This decreases 
throughput and increases latency. To alleviate these 
problems, Maeda and Bershad created a library implemen- 
tation of TCP/IP and UDP/IP sockets [7]. Their library 
handles the protocol processing for sending and receiving 
packets and interacts with the network packet filter [17] and 
network device drivers directly. The library can be linked 
in with applications that use the networking calls, so each 
application can do its own protocol processing in its own 
scheduling domain (i.e. within its own threads). The library 
only interacts with the UX server to create and destroy 
connections and for a few other control operations. The 
fast path for sending and receiving packets is confined to 
the library itself (and the device drivers). Figure 3-2 il- 
lustrates this networking software structure. 

The socket library implementation has multiple threads, in- 
ternal to the library. Specifically, the threads involved in 
the protocol processing structure are 

1. All socket send operations use the caller's 
application  thread. 

2. A network_thread receives from the kernel network 
interface all network packets destined to this applica- 
tion process. All socket receive operations by the ap- 
plication obtain packets received by the 
network_thread. 

3. A network_proxy_thread receives messages sent 
by Unix (for use by system calls such as "select" which 
peek at both socket and file descriptors maintained by 
the Unix server). 

4. A timeout thread is used for timeouts. 
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Figure 3-2: Networking with the Socket Library 

5. A pc_sample thread is used for sampling the PC at 
roughly periodic intervals for profiling purposes. 

The socket library libsockets of Maeda and Bershad 
yields much better performance in terms of throughput and 
delay than the TJX server sockets implementation [7]. 
Coincidentally, this implementation also satisfies our re- 
quirements for effective scheduling of protocol processing. 
By including the code in a user library, the computation is 
done by the user thread for sending packets and by the 
network_thread for receiving packets from the network. 
It is also preemptible since it runs in user mode and shares 
nothing with other threads in other applications. 

3.3. A Real-Time Socket Library with Processor 
Reservation 

We have modified the socket library of Maeda and Bershad 
to conform to the real-time scheduling model of RT-Mach 
and to obtain the predictability properties described earlier 
in this section. Since libsockets enables the protocol 
processing computation to be scheduled as an application- 
level activity, which can be made preemptible, we can also 
effectively apply the processor capacity reservation system 
to programs which do socket-based communication. Com- 
pared with a UX server socket implementation, the library 
partitions the data structures and control paths of all of the 
networking activities and places them in independent ad- 
dress spaces where they do not interfere with each other. In 
the UX server, these different activities are forced to share 
the same queues without the benefit of a priority ordering 
scheme. In addition, when UX is also used for protocol 
processing, other UX activities such as file I/O, 
asynchronous signals, etc. also handled by UX can also 
interfere with protocol processing. As a result, packets can 
be delayed as a result of other operating system activities 
that are not even related to networking. 

In our real-time version of the socket library named 
libsockets-rt, these components cannot interfere with 
each other, and the reservation (or other real-time schedul- 

ing) mechanism is free to make decisions about which ap- 
plications should receive how much computation time and 
when. The control exercised by the reservation (or real- 
time) scheduler is not impeded by additional constraints 
brought on by the sharing of data structures and threads of 
control. 

Conceptually, this socket library structure is not unlike the 
independently derived design of the real-time 
publisher/subscriber (RT/PS) inter-process communication 
model described in [12]. During initialization, both struc- 
tures talk to a common server (UX for libsockets and 
the ipc-server for the RT/PS model). The steady-state 
operations of sending in the socket libary are analogous to 
steady-state publishing in the RT/PS BPC model. The 
network_thread receiving network packets is slightly 
different from (but arguably conceptually similar to) the 
delivery_manager in the RT/PS model.3 

The following changes are necessary to convert the 
libsockets structure to have controllable and predictable 
real-time properties in libsockets-rt under the RT- 
Mach reservation policy. 

• All threads within libsockets must become real-time 
threads4 so that their scheduling attributes can be ap- 
propriately controlled. 

• For all socket send operations, the calling application 
thread's processor reservation applies by default under 
the reservation scheduling policy and no changes are 
required. 

• The network_thread must be assigned a processor 
reservation based on the burstiness and frequency of 
packets expected from the network. A simple option is 
to inherit the reservation of the parent thread which in- 
itializes libsockets-rt. A more complex implemen- 
tation allows the application to specify a different 
reserve for use by this thread alone. 

• The other threads must be assigned an appropriately 
small reservation (relatively small computation times 
with relatively long periods in general). 

3The differences between the structures of the socket library and the 
RT/PS model seem to arise from the fact that the "socket library'' only 
manages local sends and receptions (between the network interface and an 
application thread), while the RT/PS model deals with transparent com- 
munications between processes split across machines. In the latter, mul- 
tiple copies delivered to the same machine are optimized by sending only 
one copy to a delivery_manager which is then locally sent to all 
the local recipients. Due to this distributed communications model, in 
RT/PS, the various ipc- servers also need to coordinate with one 
another. The other major difference in timing semantics is that the RT/PS 
model has a notification thread which is real-time in nature, 
while the network_proxy_thread which is more limited in 
semantic scope and not real-time in nature. 

4In RT-Mach, real-time and non-real-time threads can co-exist, with the 
real-time threads always having higher priority than the non-real-time 
threads. 
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3.4. libsockets-rt with Fixed-Priority Processing 
RT-Mach also supports the traditional fixed-priority 
scheduling scheme and it is desirable that libsockets-rt 
support this policy too. The changes to libsockets that 
are required are identical to the changes to support proces- 
sor reservation except that instead of binding reserves to 
threads, fixed priorities are assigned to them by the applica- 
tion. 

4. Performance Evaluation with Processor 
Reserves and libsockets-rt 

In this section, we evaluate the use of libsockets-rt in 
the context of the processor capacity reserves supported by 
RT-Mach. The tests in this section use four different con- 
figurations of the RT Mach 3.0 system running on Gateway 
2000 i486-66MHz machines. We show the behavior of 
several task sets using both sockets implemented in the 
Unix server running on RT-Mach and libsockets-rt un- 
der both time-sharing and reservation scheduling policies. 

In each of the system configurations, we run several task 
sets. In the first, we have a single thread which is periodi- 
cally transmitting several UDP packets (10 packets every 
40 ms); this is the activity that is intended to be predictable. 
This thread has no (substantial) competition from other ap- 
plication programs (other than those normally running un- 
der Mach 3.0/UX). We measure the processor usage of this 
thread which correlates with the number of packets sent, 
and that is the information that appears in the graphs. In the 
subsequent task sets, we measure the usage of the same 
packet transmitting thread, but we introduce competition in 
the form of several additional non-real-time threads which 
are doing various kinds of operations. In the second task 
set, the competition is comprised of 5 compute-bound 
threads. In the third, the 5 competing threads are making 
standard I/O calls (stdio) - each stdio call causes IPC mes- 
sages to be sent back and forth between the application and 
the UX server. Finally, in the fourth task set, there is a 
competing low-priority thread sending 10 UDP packets 
every 40 ms. In the fifth task set, all of these competitive 
elements are combined. 

1. Predictable transmitter with no competition. 
2. Predictable  transmitter with  arithmetic  competition 

(compute-bound). 
3. Predictable transmitter with input/output(stdio) com- 

petition. 
4. Predictable transmitter with background networking 

competition. 
5. Predictable transmitter with all of the above competi- 

tion. 

We refer to the predictable transmitter as the Net App. We 
find that the behavior of Net App is affectead in different 
ways, depending on the competition, the CPU scheduling 
policy and the protocol processing architecture and policies 
used. 

4.1. RT Mach/UX server under time-sharing 
In this experiment, we use RT Mach 3.0 with the Unix 
server providing the networking service to applications. 
The scheduling policy is Mach time-sharing. 

Figure 4-1: Measured Behavior under RT-Mach with 
Unix sockets, Mach Time-Sharing Policy 

In Figure 4-1(a) we see the usage (fraction of the processor 
capacity) of the Net App in isolation. Part (b) of the figure 
shows the effect of interference from the compute-bound 
threads. The time-sharing scheduling policy allocates long 
durations of time to the competition. In Part (c), we see 
that the stdio competition looks much the same. Part (d) 
shows that the UDP competition is not very strenuous in 
terms of computation time, and so the behavior of the Net 
App is fairly predictable, but when we combine all of the 
types of competition in Part (e), we see that the resulting 
interference makes the Net App's behavior unpredictable. 
The interference is substantial; there are periods of up to 1 
second where the computation time the Net App receives is 
virtually nil. This is caused by the fact that the Mach time- 
sharing scheduling algorithm tends to give large durations 
of computation time to compute-bound programs. Also, the 
Net App's message processing is done by the UX server 
which has to do I/O processing for the Stdio Apps and 
additional message processing for the Bg network applica- 
tion as well. 

4.2. RT Mach/libsockets-rt under Time-Sharing 
The tasks in this experiment use libsockets-rt and the 
scheduling policy 

used is Mach time-sharing. 

Figure 4-2(a) shows the Net App in isolation.  In parts (b) 
and (c), we can see that the Net App is sensitive to inter- 

42 



KUlll 

IMI   

1 

!    « 

(d) 

(e) 

Figure 4-2: Measured Behavior under RT-Mach with 
libsockets-rt and Mach Time-Sharing 

ference from the arithmetic and stdio competition, but it 
suffers only a little interference from the Bg Net App in 
part (d). For part (e) where the competition is a mixture of 
all three types of activity, the interference is severe. Much 
of this interference comes from the time-sharing scheduling 
policy sometimes giving preference to the compute-bound 
threads and sometimes to the I/O-bound threads. 

4.3. RT Mach/UX server with Reserves 
The tasks in this experiment use the Unix server for net- 
work services and the RT-Mach reservation scheduling 
policy. The point is to demonstrate that simply using reser- 
vation scheduling does not solve the problem; the protocol 
processing architecture plays an important role in achieving 
predictable behavior. 

Figure 4-3(a) shows the Net App in isolation, and the be- 
havior is very regular and predictable. The behavior is also 
(fairly) predictable with arithmetic competition (b), stdio 
competition (c), and background network competition (d). 
The combination of these types of competition in Figure 
4-3(e), however, reveals the effect of the interaction be- 
tween the main Net App, the Stdio Apps, and the Bg Net 
App which all share the UX server. Since UX services all 
of these applications and since it does not have priorities 
internally, these clients interfere with each other. We can 
see this reflected in the performance of the Net App which 
is very erratic. This experiment shows that reservation 
scheduling is not enough to ensure predictability when 
resources such as the UX server are being shared. 
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Figure 4-3: Measured Behavior under RT-Mach with 
UX sockets, RT-Mach Reservations 

4.4. RT Mach 3.0/libsockets-rt with reservation 
scheduling 

This final task set uses RT-Mach reservation scheduling 
and uses libsockets-rt. Thus, it has all the desirable 
features we discussed in Sections 2 and 3. 
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Figure 4-4: Measured Behavior under RT-Mach with 
libsockets-rt, RT-Mach Reservations 

In Figure 4-4(a), we see the Net App in isolation. Parts (b), 
(c), and (d) show that the Net App suffers little or no inter- 
ference from arithmetic competition alone, from stdio com- 
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petition alone, or background network competition alone. 
And in Figure 4-4(e), we see that even in the case where all 
of the various types of competition are combined, this sys- 
tem configuration provides very predictable behavior for 
the real-time Net App. Although the usage varies a little in 
this case, the variations are not nearly as damaging as the 
variations in the previous experiments. These slight varia- 
tions are due to the unavoidable sharing of low-level system 
resources such as network interrupt handlers. 

5. A Video-Conferencing System with Fixed 
Priority Scheduling and iibsockets-rt 

We have extended RT-Phone [5], an audio-conferencing 
system built on RT-Mach, to support real-time duplex 
transfer of video as well, yielding a video-conferencing sys- 
tem. The parties involved in the video conference run on 
two Intel Pentium 120-MHz PCs with two Pro-Audio 
Spectrum 16 sound cards for full duplex audio capabilities, 
and a Matrox Meteor video frame-grabber each. A high- 
resolution timer card on each machine yields timestamps 
and time information up to a resolution of 1 ^second. In 
this paper, we focus on the protocol processing on the 
CPUs running RT-Mach and the actual network delays are 
considered to be small. The two nodes are connected using 
a dedicated 10Mbps ethernet. The focus of our experiments 
is protocol processing and how it affects the end-to-end 
delay of different real-time streams (audio and video). 
Hence, we explicitly do not consider synchronization of 
audio and video streams in the following discussions. For 
an interesting discussion of audio/video synchronization in 
an uncontrolled network context, the reader is referred to 
the work by Jeffay et al. [4]. They have studied the 
problem of audio/video synchronization in an uncontrolled 
network. 

To nctwodc    From network To network    From network 

RT-Phone 

0=*- 

\p- 

Audio device driver Video device driver I 
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Figure 5-1: RT-Phone Video-Conferencing Support 

The configuration of the RT-Phone video-conferencing sys- 
tem is illustrated in Figure 5-1.  It is in many ways similar 

to traditional teleconferencing applications (for example, 
PictureTel, "CU/see-me" on the Mac, [3,16]) but it is also 
quite different in many other ways. For example, a distinct 
user-level audio server process hides the details of the 
system's sound card by providing a higher level interface 
similar to the AudioFile utility. Processor reserves or fixed 
priority scheduling is used to provide guaranteed timing 
behavior. 

5.1. The Audio End-To-End Delay 
The processing pipeline of the audio data from one side to 
the other side is presented in Figure 5-2. As indicated, let 
the period Taudjo represent the time it takes for the sound 
card to fill its internal buffer and interrupt the CPU. The 
size of this internal buffer, referred to as an "audio frame" 
in [4], is application-selectable. Successive interrupts with 
new blocks of audio data arrive every raudio time-units 
apart. We assume that the processing and sending of the 
audio data need to be completed by the arrival of the next 
block of audio data. In other words, the deadline for 
processing and sending is T^^. Similarly, on the receiv- 
ing side, we assume that the audio data after reception must 
be passed to the audio card for output to the speaker within 
a duration of Taaäio time-units. 

CtZ3--r~Sap='     I    Sl«*e2    f 
Stage 3 

■»I    Stage4    |   Stages' ^ 

'audio audio 
Network 
Delay 

Stage 1: Audio buffering delay specified for hardware 
Sage 2: Audio data block processing and sending. 
Stage 3: Network contention and propagation. 
Stage 4: Audio data reception and processing. 
Stage 5: Output played back on speaker. 

Figure 5-2: The Audio Processing Pipeline 

Consider an audio sample obtained by the hardware at the 
beginning of stage 1. This sample will be played back at 
the receiver's speaker at the beginning of Stage 5. Hence, 
the worst-case end-to-end delay for audio is given by 

audio       network_audio' where d. network_audio is the worst- 
case network delay encountered by the audio stream. The 
deadlines for Stage 2 (the sender) and Stage 4 (the receiver) 
can be shortened (if need be) to yield correspondingly 
smaller end-to-end delays constrained by schedulability 
considerations. 

5.2. The Video End-To-End Delay 
The pipeline of the video data is presented in Figure 5-3. 
The audio capture takes r^j units of time to capture 
■^audio umts °^ SOUI,d- I"1 contrast, the time to capture a 
single video frame is smaller than the period at which the 
frames are displayed. Hence, on the sender side, we cap- 
ture, process and transmit the video frames every Tyideo 

time-units. On the receiver side, we require that the video 
receiver receiver, process and update the display every 
rvideo time-units. 
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Figure 5-3: The Video Processing Pipeline 

Hence, the worst-case end-to-end delay for each video 
stream is given by 2TvUteo + dnelworkvideo, where 
^network video *s ^e worst-case network delay encountered 
by the video stream. The deadlines for both the sender and 
the receiver can be shortened to yield a smaller end-to-end 
delay. 

The video sender, video receiver, audio sender and audio 
receiver on each machine use libsockets-rt and there- 
fore their protocol processing is under control of RT-Mach 
scheduling policies. 

53. Performance Measurements 
We conducted several experiments using RT-Phone with 
the following objectives: 

• Check how well libsockets-rt prioritizes the 
protocol processing delays of different real-time ac- 
tivities within RT-Mach. 

• Measure the jitter that is visible at the receiving ends of 
video and audio. If jitter is excessive, period enforce- 
ment would become necessary. 

For the audio streams, we used a value of 16 ms for 7*audio 

with audio sampling rates of 8 KHz, 16 KHz and 24 KHz 
respectively at a sample size of 8 bits per sample. For the 
video streams, we used 250 ms, 125 ms and 83.3 ms for 
^video (corresponding to 4, 8 and 12 frames per second). 
The frame size is 80x80 pixels at 8 bits/pixel. At this frame 
rate and resolution, each video stream consumes up to 614 
Kbps, and each audio stream consumes up to 192 Kbps (for 
a net aggregate network bandwidth of up to 1.4 Mbps). 

Audio 
Sampling 

Rite 

Video 
Frame 

RaK(fpS) 

Nolibso 

Nocorapeti- 
tkm(ms) 

ckete-rt 

W/Compe- 
tition (ms) 

With libsi 

No Compe- 
tition (ms) 

»ckets-rt 

W/Compe- 
tition (ms) 

8 KHz 4fps 34 83 26 26 

8fps 41 87 26 30 

12fps 38 us 
71 

26 26 

16 KHz 4fps 41 23 23 

8fps 38 83 26 26 

12fps 41 105 26 26 

23 24KHz 4fps 41 60 26 

8fps 49 86 26 23 

12fps 45 113 26 26 

The end-to-end delay variation of the audio stream is listed 
in Table 5-1 with and without libsockets-rt is used and 
with and without competition from a low priority network 
application and a medium priority arithmetic application. 
As can be seen, the worst-case end-to-end delay for the 
audio stream is much below the worst-case end-to-end 
delay of 3Tmdio when libsockets is used independent of 
the presence of lower priority competition. This is due to 
the fact that we assign rate-monotonic priorities to these 
streams, there are no higher priority streams and 
libsockets-rt provides a near-ideal environment. The fact 
that libsockets-rt completely insulates a real-time net- 
working application from other the needs of other network- 
ing applications also indicates that almost all of the net- 
working overhead is in the protocol stack and not in the raw 
device interface (which is still in a common non- 
preemptive shared kernel in RT-Mach). In contrast, if 
libsockets-rt is not used, and there is no competition, 
the end-to-end delay is comparable but slightly larger than 
that with libsockets. But in the presence of competition, 
the end-to-end delay significantly increases the audio end- 
to-end delay by a factor of greater than 4. This confirms 
that priority inversion arising from FIFO queueing in the 
TJX server takes a serious toll on end-to-end delays. 

Audio 
Sampling 

Rate 

Video Frame 
Rateinfps 

(period) 

No libsc 

No competi- 
tion (ms) 

ckets-rt 

W/Compe- 
tition (ms) 

With libsockets-rt 

No Compe-    W/ Compe- 
tition (ms)      u'tion (ms) 

8 KHz 4(250 ms) 21 30 24 26 

8 (125 ms) 24 40 24 27 

12 (83.3 ms) 26 50 23 26 

16 KHz 4 (250 ms) 26 32 26 26 

8 (125 ms) 25 40 26 25 

12 (83.3 ms) 25 50 26 25 

24KHZ 4 (250 ms) 26 30 25 25 

8 (125 ms) 23 40 25 27 

12 (83.3 ms) 25 51 23 25 

Table 5-2: The Video End-To-End Delay with varying 
video frame rates and audio'sampling rates. 

The end-to-end delay variation of the video stream is 
plotted in Table 5-2. Almost identical results as obtained 
for audio are obtained in this case in that the video end-to- 
end delay is much better than its worst-case latency5 and is 
not affected by the presence of lower priority competition. 
With libsockets-rt, the video streams experience some 
jitter with a standard deviation of around 6 ms. Without 
libsockets-rt, the jitter has a standard deviation ranging 
from 14 ms to 25 ms due to the unpredictability of conflicts. 

Table 5-1: The Audio End-To-End Delay with 
varying frame rate and audio sampling rates. 

sThe measured video end-to-end latency did not include display time 
and the actual delay should be correspondingly longer. 
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6. Conclusion 
The two major system components essential for ensuring 
end-to-end predictability in distributed real-time and mul- 
timedia applications are the protocol processing software 
structure and network bandwidth management. The 
protocol processing software structure must exhibit the fea- 
tures necessary for good real-time performance: prioritized 
scheduling and preemptibility. We have implemented a 
protocol processing structure in RT-Mach that satisfies 
these requirements. The structure can be used equally well 
with a fixed priority policy or RT-Mach's processor reser- 
vation scheduling policy. Under the fixed priority schedul- 
ing policy, it is up to the application to ensure that higher 
priority tasks do not overuse the CPU. Under the processor 
reservation model, the kernel can monitor and enforce the 
maximum usage of all threads including the threads inter- 
acting with the network interface. These schemes address 
the need for the CPU scheduling policies to coordinate with 
scheduable protocol structures to obtain predictable end-to- 
end delays. 

While the performance figures we obtain for both synthetic 
workloads and realistic multimedia applications look very 
promising, we continue to evaluate the performance of the 
network protocol processing structure under different kinds 
of network load scenarios, scheduling policies and other 
protocol implementations. For completeness, the protocol 
processing structures must also be integrated with the 
schemes used for allocating and using network bandwidth. 
Future work will also address this issue. 
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Abstract 

The RT-Mach microkernel supports a processor reserve 
abstraction which permits threads to specify their CPU 
resource requirements. If admitted by the kernel, it 
guarantees that the requested CPU demand is available to 
the requestor. We designed this kernel-supported 
mechanism to be relatively simple based on the microkernel 
notion that user-level policies can use this simple 
mechanism to build more complex and powerful schemes. 
In this paper, we focus on the needs of such user-level 
policies in the form of a dynamic Quality of Service server. 

We seek three goals: (a) explore the necessity, sufficiency, 
power and flexibility of the kernel-supported reserve 
mechanism (b) dynamic management of application quality 
in real-time and multimedia applications, and (c) inves- 
tigate our ability to predict and achieve end-to-end applica- 
tion delays in realistic distributed real-time and multimedia 
applications. We use a two-pronged approach to ac- 
complish our goals. First, we apply the processor reserve 
abstraction in a user-level dynamic quality of service serv- 
er. A QOS server can allow applications to dynamically 
adapt in real-time based on system load, user input or ap- 
plication requirements. Second, we apply the dynamic 
QOS control capabilities to a distributed multimedia ap- 
plication whose threads have to interact and coordinate with 
each other within and across processor boundaries. A new 
notion called continuous thread of control is introduced to 
assist in bundling processor reserves. Our experiments 
show that we can indeed predict and achieve end-to-end 
delays in a distributed multimedia application: A summary 
of lessons learned and additional functionality needed is 
also provided. 

Keywords: Real-Time Mach, processor reservation, audio 
conferencing, reserve bundling, end-to-end latencies. 

1. Introduction 
The need for real-time resource management is a key ele- 
ment which explicitly distinguishes multimedia applications 
from other traditional applications. The Real-Time Mach 
kernel [19] supports many primitives for constructing pre- 
dictable and dynamic real-time applications. These primi- 
tives include a wide choice of real-time scheduling policies 
(including   fixed   priority    scheduling,    rate-monotonic 

scheduling and earliest deadline scheduling), periodic and 
aperiodic real-time threads with the notion of deadlines and 
handlers for deadline misses, real-time synchronization 
primitives [12] and real-time inter-process communication 
primitives which support priority inheritance [15], virtual 
memory wiring, a real-time shell and a network protocol 
server, a processor reserve abstraction, an integrated toolset 
for schedulability analysis and real-time monitoring of 
scheduling decisions [2], and real-time XI1 windowing ser- 
vices [10]. In this paper, we build upon the processor 
reserve abstraction to provide dynamic quality of service 
support, and to predict and achieve end-to-end delays in 
distributed multimedia applications. 

1.1. Processor Reserves in Real-Time Mach 
The Real-Time Mach microkernel supports an abstraction 
called processor capacity reserves [9] which allows ap- 
plication threads to specify their CPU requirements in terms 
of their timing constraints: 
• The kernel performs admission control using a specifica- 

tion that consists of required CPU usage per specified 
interval (such as 10 ms every 50 ms, or 20 ms every 60 
ms). 

• The kernel scheduler schedules application threads such 
that these timing constraints are satisfied. 

• The kernel allows multiple threads (possibly from dif- 
ferent tasks) to be bound to the same reserve. 

• The kernel enforces that application threads bound to a 
reserve specification cannot disrupt the timing behavior 
of other applications. This is achieved by ensuring that 
only the reserve specification is guaranteed by the ker- 
nel, and beyond the stated usage level, the kernel can 
suspend or execute the demanding application threads at 
low priority. Such kernel enforcement of each reserve 
provides a temporal protection barrier between applica- 
tions, a temporal domain analogue to the address space 
protection of processes in the spatial domain [9]. 

• Real-time applications with reserves and non-real-time 
applications which do not need guarantees reserves can 
co-exist comfortably. Applications without reserves are 
implicitly bound by the kernel to a default reserve, 
which is scheduled only where there are no other threads 
bound to reserves ready to run. 
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• System calls are available to provide feedback to ap- 
plications about the recent usage and guaranteed infor- 
mation of various reserves. Since the kernel must 
monitor the execution time of threads to enforce 
reserves, it provides a built-in framework for measuring 
the amount of time spent by threads, overhead and CPU 
idleness. The CPU idleness is charged to a kernel- 
defined idle reserve. 

• Reserve parameters can be dynamically adjusted subject 
to the admission control policy. The timing behavior of 
reserved applications can therefore be changed dynami- 
cally. 

These features of the processor reserve abstraction were 
intended to provide a simple yet powerful set of 
mechanisms for use by real-time and multimedia applica- 
tions in a context where non-real-time applications may 
also co-exist. This abstraction has been tested previously in 
stand-alone applications such as a video viewer which reads 
a file into memory in non-real-time (background) mode and 
then displays frames in real-time mode. 

1.2. Related Work 
Software developers have written many multimedia ap- 
plications that run acceptably on general purpose operating 
systems as long as no other programs compete for system 
resources [1, 5, 14, 18]. With additional real-time operating 
system support to carefully manage operating system 
resources, these applications could run even with competi- 
tion. 

Many researchers in the distributed real-time multimedia 
community have turned their attention to end-to-end perfor- 
mance guarantees which ultimately include network com- 
munication and end-system resource management (includ- 
ing, but not limited to, CPU, network protocol stack, 
memory, file system or server). Much research has been 
done on the networking issues, [4], [7] [22] to name a few, 
in which specific assumptions are made about the end- 
points of the distributed computation. As that work ma- 
tures, attention is turning to issues of end-system control as 
well [21]. 

Jeffay et al. [6] employ hard real-time scheduling theory in 
a specialized micro-kernel to address timing issues related 
to different stages, of live video and audio processing. 
Robin et al. [16] designed a system based on Chorus 
[3] micro-kernel that addresses both the network and end 

host QOS control. The system uses an earliest-deadline- 
first scheduling policy and a time-line-based admission test 
for "guaranteed class" threads. 

Nahrstedt and Smith [11] used ADC for their telerobotic ap- 
plication and showed that the ADC real-time priorities are 
not enough to control protocol task behavior when used for 
implementation of rate-monotonic or deadline-based 
scheduling, unless severe restrictions are made which in- 
cludes only one user allowed, one multimedia application 

running on the RS/6000, application/transport protocols im- 
plemented in a single user process with real-time priority 
etc. "Only with these restrictions satisfied can we map 
rate-monotonic scheduling onto the real-time priority 
scheme of ADC to provide (approximate) predictability for 
guaranteed services" [11]. 

1.3. Organization of the Paper 
The rest of this paper is organized as follows. In Section 2, 
we outline the objectives of a dynamic QOS server on top 
of RT-Mach and describe its architecture. In Section 3, we 
describe a real distributed multimedia application called 
RT-Phone. In Section 4, we apply the reserve and QOS 
abstractions to RT-Phone. We also derive the predicted 
end-to-end delay that must be guaranteed by the use of 
reserves. A new concept named continuous thread of con- 
trol is introduced to bundle many threads to a single 
reserve, and a multi-phase protocol to coordinate two QOS 
servers is presented. We also provide performance num- 
bers from RT-Phone to demonstrate that we do satisfy the 
predicted end-to-end application delay. Finally, Section 5 
presents a summary of the lessons that we learned based on 
RT-Phone and our experiments. 

2. Dynamic Quality of Service Control 
The relatively simple mechanisms associated with the 
reserve mechanism are designed to be basic building blocks 
that can be used to construct more powerful user-level 
schemes. Real-time and multimedia applications on RT- 
Mach cannot be assumed to be static in nature. Thus, we 
must allow a dynamic mix of concurrent real-time and mul- 
timedia applications whose timing requirements not only 
vary widely but can also change during run-time. Instead 
of each application designing its own scheme(s) to use the 
kernel reserve support, a consistent framework that lays out 
the ground rules for cooperation and coordination between 
various applications is highly desirable. Based on this 
motivation, we propose a dynamic user-level QOS server 
with two specific requirements. First, it must be able to 
meet the timing requirements of each application independ- 
ent of the behavior of other applications. Second, it must be 
able to let an application dynamically adapt its own be- 
havior based on its own internal requirements, user input 
and/or the total load on the system. 

2.1. Quality Management and its Implications to 
Systems Support 

We summarize our approach to quality management as fol- 
lows. The "quality" of an application can ultimately be 
defined only by the application in concern. For example, 
one recording application may emphasize the reception of 
all incoming audio packets, another interactive application 
may emphasize lower jitter and yet another may emphasize 
very low end-to-end delay. An application-independent 
kernel can therefore cannot institute direct support for all 
possible notions of quality. However, application quality 
requirements can and in practice are eventually translated to 
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the demands that they place on system resources. From a 
kernel's perspective, therefore, we strive to support flexible 
and powerful mechanisms which can support variations in 
the resource requirements of various applications, and also 
dynamic quality changes that may be required of individual 
applications. 

The key theme behind our resource management approach 
is not unlike that behind the reserve abstraction. We aim to 
provide a 2-way mechanism between the application and 
the system layer wherein the application can flexibly 
specify its requirements to the system layer, and in turn, the 
system layer can provide accurate and dynamic feedback on 
the state of the application's resources individually and 
with respect to the other applications that are co-resident. 
The QOS server we describe next is based on this primary 
theme. 

2.2. The QOS Server 
The architecture of the QOS server is presented in Figure 
2-1. Our implementation currently assumes that applica- 
tions are cooperative rather than malicious in nature1. 

Client 

Proem« 
Reservation 

Real-Time Mach 

Figure 2-1: The Architecture of the Dynamic QOS Server. 

The QOS server is based on the following complementary 
aspects: 
• QOS attributes are used by application threads to 

specify their acceptable quality levels to the QOS server. 

• An application can choose from one of many quality 
adjustment policies that the QOS server can use on it if 
the quality guarantee given to the application has to be 

'This assumption can be eliminated by forcing the QOS server to be the 
sole interface to the kernel's reservation mechanisms, similar to the 
user-level UX server on Mach. 

upgraded or downgraded. In other words, this deter- 
mines how an application wants to be treated when its 
current resource allocation has to be altered. Included in 
this policy choice is an application quality adjustment 
priority which determines the order by which the QOS 
server selects the beneficiary (victim) of a server deci- 
sion to upgrade (downgrade) the quality of one or more 
applications. 

• One of many admission control adjustment policies is 
used by the QOS server to admit as many new applica- 
tion requests as possible without violating the needs of 
currently registered applications. 

• One of many overrun control policies is used by the 
QOS to satisfy the needs of registered applications 
whose current CPU demand exceeds their actual alloca- 
tion. This is done by the QOS server exploiting the 
slack that may be available from applications not using 
their current resource allocation. 

These components of the QOS server are described in 
greater detail next. 

23. QOS Attributes 
Application threads can submit requests to the QOS server 
for resource allocation specifying QOS attributes. The ker- 
nel reservation mechanism requires a fixed (worst-case) 
computation time and a fixed period, but the QOS server 
relaxes this constraint to be more flexible and dynamic. 
QOS attributes include the minimum, maximum and most- 
desired levels of the computation time as well as the min- 
imum, maximum and most-desired levels of the period. In 
other words, if an application chooses a range of acceptable 
computation times (or periods), the QOS server is free to 
pick a legal value in this range. The QOS server tries to 
provide to each application the maximum quality value in 
this range, but will not go below the minimum requested 
value (once an application is admitted). 

2.4. Quality Adjustment 
A quality adjustment policy for each request indicates how 
the QOS server should pick from the possibly wide range of 
possibilities for the 2-tuple {computation time, period} 
specified in an application's QOS attribute: 
• An Adjust-Computation-Time-First policy adjusts the 

computation time first keeping the period constant (later 
adjusting the period if needed). A 
Keep-Period-Constant policy is obtained by specifying 
the minimum, maximum and desired values of the 
period to be the same. This option can be utilized by 
applications which can pick from different algorithms to 
process their data (e.g. choose a simple but less accurate 
algorithm versus a complex but more accurate algo- 
rithm), or pick different paths of the same algorithm 
based on the available time (e.g. choose not to decode 
some blocks in JPEG decoding of a video frame). 

• An Adjust-Period-First policy adjusts the period first 
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keeping the computation time constant (later adjusting 
the      computation      time      if      needed). A 
Keep-Computation-Time-Constant policy is obtained by 
the application by specifying the minimum, maximum 
and desired values of the computation time to be the 
same. This policy can be useful for applications which 
can tolerate changes to their rate of execution but not 
their computation time per instance (e.g., capture a video 
frame and compress it using JPEG but the rate of cap- 
ture can be varied). 

• A Keep-Reservation-Constant policy is obtained by 
specifying the minimum, maximum and desired values 
of the computation time to be the same, and similarly for 
the period. 

• A Step-wise Adjustment policy is available for the com- 
putation time (period) in which the computation time 
(period) will be adjusted only in discrete steps, the size 
of which is specified by the application. 

• A Negotiation Policy tells the QOS server to notify the 
client when an adjustment needs to be made (along with 
information about the maximum available reservation at 
the time) and the client can negotiate the computation 
time and reservation parameters of the new adjustment. 
This policy leaves the actual choice of resource alloca- 
tion parameters to the application and can therefore be 
used by those applications which cannot be satisfied by 
any of the other policies. This policy is particularly 
useful for real-time applications such as feedback con- 
trol, where controllers may only be defined in the ap- 
plication for some specific values of the period2. 

The chosen quality adjustment policy for an application is 
applied when the QOS server decides to alter its resource 
allocation. Such decisions are made when the server ex- 
ercises its admission control policy and dynamic quality 
control policy. These are discussed in subsequent sections. 

In addition to the above quality adjustment policies, a 
quality adjustment priority associated with each reserve 
specifies the global priority at which the application's 
quality will be adjusted. This means that if adjustments to 
reservations allocated to applications were to be made by 
the QOS server, an application with a lower adjustment 
priority would be upgraded after (and downgraded before) 
an application with a higher adjustment priority. 

An application with reserves can submit a dynamic on-line 
request to change its prior status, requesting a higher alloca- 
tion and/or changing its quality adjustment policy. The 
request is not guaranteed to be honored, however. This 
allows a QOS client to change its behavior dynamically 
based on user input (or changing internal application re- 
quirements). 

2A feedback control application, for example, can use a PD controller at 
some pre-defined high frequencies, a PID controller at some pre-defined 
medium frequencies, and a fuzzy/adaptive controller at relatively low 
frequencies. 

2.5. Admission Control Policies 
The QOS server tries to provide the maximum reservation 
available in the system based on the application require- 
ment and the system load at the time of request. The reser- 
vation parameters of existing QOS clients may be modified 
if necessary to admit a new client. An admission control 
policy allows the QOS server to decide whether to accept a 
new request and at what level of quality. Six different 
admission control policies are available: 

• New-Minimum, Existing-Minimum: Both incoming and 
current applications can be pushed down to their min- 
imum acceptable quality levels. 

• New-Minimum, Existing-Desired: The incoming applica- 
tion can be pushed down to its minimum quality level 
but current applications must not be pushed farther 
below their desired levels. 

• New-Minimum, Existing-Actual: The incoming applica- 
tion can be pushed down to its minimum quality level 
but current applications must not be pushed farther 
below their current allocation levels. 

• The remaining 3 policies, New-Desired / 
Existing-Minimum, New-Desired / Existing-Desired and 
New-Desired / Existing-Actual, are counterparts to the 
above 3 but the incoming request must be accepted at its 
desired quality level. 

2.6. Dynamic Quality Control Policies 
The QOS server polls the kernel at periodic intervals (cur- 
rently every 5 seconds) to determine how much of each 
guarateed reservation is being under-used (signaling an 
under-run), and how many threads have their usage exceed- 
ing their reservations (signaling an over-run which is ex- 
ecuted in background mode and charged to a default 
reserve in the current version of RT-Mach). Based on this 
information, the QOS server may decide and notify clients 
that their reservations are being reduced or increased so that 
they can adapt their behavior. One of four different 
overrun control policies can be chosen. These policies are 
similar in nature to the admission control policies discussed 
above. 

2.7. The QOS Server Threads 
As illustrated in Figure 2-1, the QOS server implementation 
consists of 3 threads. The admission control thread deter- 
mines if new QOS requests can be granted. The dynamic 
quality control thread is the one which periodically checks 
the kernel for status information regarding the reserve 
usage of various registered applications. The display 
thread is an X-client which graphically depicts the granted 
reservations to QOS clients, the actual usage of reser- 
vations, the quality adjustment policy for each QOS client, 
and the admission and overrun policies of the QOS server 
itself. 
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2.8. The Client Interface to the<20S Server 
QOS clients access the QOS server using library calls to 
register/unregister their presence, as well as to request and 
alter their quality attributes. The QOS server notifies each 
QOS client of any changes in resource allocation using a 
communication port registered specified by the application 
at the time of registration. 

3. The RT-Phone Teleconferencing Application 
In order to study the necessity, sufficiency, power and per- 
formance of the reservation and QOS mechanisms, we im- 
plemented a distributed teleconferencing application across 
the network. We describe this application named RT-Phone 
below followed by a description of the application architec- 
ture. Our QOS experiments with the application will be 
described in the next section. 

jBlck   .Mute    iQe»    jCFrm jHelp    Quit 

Figure 3-1: The RT-Phone user interface on starting up. 

3.1. RT-Phone 
RT-Phone presents a telephone-pad-like Motif-based 
graphical interface running on top of RT-Mach. The initial 
state when RT-Phone starts is presented in Figure 3-1. A 
"caller" initiates communication with a remote workstation 
running RT-Phone by first clicking on the "handset" as il- 
lustrated in Figure 3-2. The "dialer", corresponding to 
"Hostname" and other "speed-dial buttons", becomes en- 
abled when the handset is "off the hook". The caller then 
specifies a destination host (using a speed button or by 
specifying a specific remote hostname in a dialog box), and 
a connection request is sent to the remote machine. This 
connection request is displayed on a "caller-id" window as 
shown on the top right window in Figure 3-3. The callee 
completes establishment of the two-way connection by 
clicking on his/her "handset" button. At this point, a 2-way 
audio conversation can take place on the network. A 2-way 
real-time video stream can also be transmitted when the 

Figure 3-2: The RT-Phone user interface in the 
"off-the-hook/ready-to-dial" state. 

Figure 3-3: The RT-Phone user interface after a network 
phone connection is established. 

connection gets established, but in this paper we shall con- 
fine our discussion to the duplex audio streams only. 

Controls are available for the user to set the volume level of 
the speaker and/or the microphone, to block incoming con- 
nection requests from specific hosts, mute microphone in- 
put, to clear the "caller-id" field, and to modify the quality 
of the audio streams transmitted (this will be discussed in 
more detail in Section 4.5). These features are generally 
only a subset of more sophisticated tools such as the Ether- 
Phone system [20], and were custom-designed only to ex- 
ercise relevant portions of our QOS and reservation 
mechanisms. 
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3.2. The Architecture of the RT-Phone Application 
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Figure 3-4: The Architecture of RT-Phone at 
each end-point. 

The architecture of RT-Phone at each node is presented in 
Figure 3-4. It is in many ways similar to traditional 
teleconferencing applications (for example, PictureTel, 
"cu/c-me" on the Mac, [6, 20]) but it is also quite different 
in many other ways. For example, a distinct user-level 
audio server process hides the details of the system's sound 
card by providing a higher level interface3. Processor 
reserves provide a mutual temporal barrier between 
RT-Phone and other applications. In addition, the same 
processor reserve is applied across task boundaries. 
Finally, we allow the quality of the audio streams to be 
modified dynamically. 

This application runs on Real-Time Mach on two 66Mhz 
486DX processors networked using Ethernet. The dark 
directional arrows of Figure 3-4 represent the data flow in 
the application. A User-Level Audio Server (ULAS) 
[13] provides a high-level programming interface to audio 

cards, by hiding the details and device driver calls for the 
specific sound card in use. For example, in RT-Phone, we 
use SoundBlaster-compatible Pro-Audio Spectrum 16 
(PAS) audio cards. This ULAS interface allows the choice 
of an audio sampling rate, the choice between 8-bit samples 
and 16-bit samples and the choice of a buffer size, which is 
used to store audio samples until ready for input and output. 
Three threads in the audio-server deal with control of these 
configuration parameters, audio data input from the 
microphone, and audio data output to the speaker respec- 
tively. 

Although the PAS card supports bi-directional audio (cap- 

ture and output), it cannot do both simultaneously (in 
duplex mode). Hence, the user-level audio-servers can only 
do either audio input or output at any given time. We 
therefore use two PAS cards and two audio servers, one for 
continuous audio sampling and another for continuous 
audio output respectively. A periodic interrupt based on the 
sampling rate and buffer size triggers the input audio server 
to copy the buffer into its requesting client, an audio-send 
thread within RT-Phone. A shared memory buffer is used 
between the audio server and the RT-Phone thread. The 
audio-send thread then transmits the data to the remote 
callee across the network. An audio-receive thread receives 
the audio data and outputs it to its speaker through the use 
of the output audio-server4. A mirror image of the same 
streams transmits audio from the callee to the caller. 

4. Reserves, QOS and End-to-End Delays in 
RT-Phone 

In this section, we derive our predicted end-to-end delay of 
the RT-Phone application described in the previous section. 
We also describe the application of the reserve and dynamic 
quality schemes to RT-Phone. Finally, we provide perfor- 
mance measurements of RT-Phone which show that we 
indeed satisfy the predicted end-to-end delays. 

4.1. The Quality Parameters of RT-Phone 
There are five quality parameters associated with 
RT-Phone: end-tc-end delay, jitter, audio sampling rate, 
audio sample size, and audio drop rate. In this paper, we 
focus on making the audio drop rate being 0 by allocating 
and guaranteeing necessary resources, and satisfying an ac- 
ceptable end-to-end delay requirement for different values 
of audio sampling rate, sample size and the value of T in the 
pipeline stage. Based on requirements used in the 
telephony domain, we require that all end-to-end delays be 
less than 100 ms. 

4.2. The Guaranteed End-To-End Delay 
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Figure 4-1: The Audio Stream Pipeline Stages in 
the End-To-End Delay 

The pipeline stages involved in the audio transmit path of 
Figure 3-4 are illustrated in Figure 4-1. It consists of 5 
stages: 

• Stage 1 represents the filling of its DMA buffer by the 

3The AudioFile utility supports a similar server as well. 

4Jitter control is a critical issue to be dealt with in this context, but is 
beyond the scope of this paper. 
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(PAS) sound card. This delay is determined by the 
parameters chosen for the sampling rate, sample size and 
buffer size on the sound card. 

• Stage 2 represents the "processing" of the data (receive 
audio data from server and protocol processing for trans- 
mit). 

• Stage 3 represents the network propagation delay. 

• Stage 4 represents the processing on the receiver side 
(protocol processing for receive and send to PAS card 
through the audio server). 

• Finally, stage 5 is the actual playing back of the audio 
samples by the hardware. 

If T represents the hardware buffering delay for stage 1 
(and the same for stage 5), we let stages 2 and 4 have the 
worst-case timing constraint of T. This is done by assign- 
ing reserves to these processor with the reserve period T 
such that the kernel can guarantee that the processing in 
these two stages is completed within T units. The end-to- 
end delay for an audio sample is therefore given by 

worst-case end—to—end delay = 37+ network 
propagation delay 

It must be noted that the delay component 3T is not 47. 
Consider an audio sample which is sampled by the 
hardware in Stage 1. This sample at offset t from the begin- 
ning of the stage will be played at the same offset t in stage 
5. The number of T stages inbetween these two points is 3 
and not 4. 

Since network communications is not a focus of this paper, 
we use a dedicated network which results in negligible 
propogation delay - e.g. a typical 256 bytes output every 16 
ms at 16KHz sampling with 1 byte/sample takes 0.2 ms at 
10 Mbps to transmit but take 16 ms to collect 

4.3. Bundling of Threads to a Reserve 
The audio-send thread is normally blocked waiting for data 
arrival from the audio-server. Consider the flow of control 
from the arrival of the hardware "buffer full" interrupt 
through the user-level audio-server to the audio-send 
thread. Logically, a single consecutive action takes place 
from the audio server which makes data available to the 
audio-send thread, which then processes it and transmits it 
across the network. The timing constraint is that this recep- 
tion from hardware and succeeding transmission must com- 
plete by the interval T. 

We define the notion of a continuous thread of control as 
comprising those segments of code where (a) the flow of 
control is sequential and (b) a strict precedence constraint 
exists between the segments. The former means that no 
two segments can run concurrently. The latter means that a 
segment can start only after, and soon after, its previous 
segment (if any) has completed. These segments of code 
can transcend task boundaries but not resource boundaries 
such as a CPU. Under this definition, a normal OS thread 

is always a continuous thread of control since the flow of 
control is sequential - multiple portions of the thread cannot 
be active at the same time. 

This notion of a continuous thread of control is rather use- 
ful in the context of a processor reserve which can be bound' 
to multiple threads simultaneously, as stated in Section 1. 
All OS threads (or segments) comprising a continuous 
thread of control typically have a single timing constraint 
from the first segment to its last segment. A single proces- 
sor reserve may then be usefully bound to all OS threads 
comprising the continuous thread of control, and the reserve 
can be used to satisfy the timing constraint of that con- 
tinuous thread of control. 

Based on this notion, the input thread in the audio-server 
and the audio-send thread are bound to the same reserve 
with a period of T. Recall that T is determined by the sound 
card configuration parameters sampling rate, sample size 
and buffer size. Similarly, the audio-receive thread and the 
output thread in the audio-server can be bound to another 
reserve with a period of T. Our reserve admission control 
in RT-Mach uses results from real-time scheduling theory 
[8] which can guarantee the timing constraints of tasks 

with different periods and computation times. Hence, the 
reserve period for one direction need not be the same as the 
reserve period for the opposite direction. In other words, 
the quality of the two output streams at the two speaker 
devices can be completely independent of one another. 

4.4. Performance Measurements 
We measured the end-to-end delays actually encountered in 
RT-Phone to validate that the predicted delays are indeed 
achievable by the application of reserves and the dynamic 
QOS server. The measurement scheme and the actual 
measurements are provided below. 

RT-Mach PC 
Measuring 
End-to-Eod Delay 

RT-Mach PC 

Network 

Figure 4-2: Measurement of Audio End-to-End Delay 

RT-Phone was run between two machines on a network as 
illustrated in Figure 4-2. The end-to-end delay measure- 
ments were made using a third machine. The measuring 
machine generated a sharp sound pulse on one machine 
running RT-Phone and then recorded the source pulse and 
the transmitted output from the destination machine running 
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RT-Phone. By measuring the timestamp of the generated 
sound and the timestamp at which the transmitted pulse is 
heard, the end-to-end delay from the users's true reception 
is determined to a very high degree of accuracy (within a 
few ms). Note that the audio stream in the direction op- 
posite to the direction being measured is active while the 
measurement is being done but this is not illustrated in the 
figure. 

Figures 4-3 and 4-4 present measured performance numbers 
from RT-Phone running on Real-Time Mach. Figure 4-3 
presents the variation of the end-to-end delays between the 
two conversation endpoints as the reservation period used 
for processing the audio samples is varied. This is repeated 
for various audio sampling rates. Figure 4-4 presents the 
change in the CPU load (on i486DX 66MHz PCs) as the 
reservation period and the sampling frequencies are varied. 
As can be expected, when the reservation period increases, 
the end-to-end delay increases proportionally. It can also 
be seen that the worst-case end-to-end delay bound of 
3*(Reservation Period) is satisfied. In fact, the plotted 
numbers represent the best-case end-to-end delay given by 
the sum of 

• The delay to fill up the DMA buffer at the audio source, 

• The processing time of the audio data buffer by the input 
audio server and the audio send thread, 

• The network propagation time, 

• The processing time of the received audio data by the 
audio receive thread and the output audio receiver, and 
in addition, 

• any preemption time from the audio stream for the op- 
posite direction. 
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Figure 4-3: The End-To-End Delay w/ varying reservation 
periods and audio sampling rates. 

As the audio sampling rate increases, the processing times 
increase slightly resulting in a corresponding increase in the 
end-to-end delay. However, the most significant overhead 
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Figure 4-4: The CPU Load with different reservation 
periods and audio sampling rates. 

for threads with small periods is packet sending and receiv- 
ing overhead. In addition, for small reservation periods, 
timers are set and reset frequently resulting in higher over- 
head. Finally, context-switching overhead increases with 
sampling rate. 

One can draw the following conclusions from the perfor- 
mance numbers. First, for a given reservation period in use, 
the audio sampling rate has very little impact on both the 
end-to-end delay and the CPU load. For example, when the 
reservation period used is 24 ms, the end-to-end delay is 38 
ms and 43 ms for 8 KHz sampling and 24 KHz sampling 
respectively, and the total CPU load increases from 24% to 
28%. This testifies to the fact that data processing delays 
(including communication packet processing) dominate 
data sizes. Secondly, the CPU load increases non-linearly 
with shorter reservation periods as seen in Figure 4-4, in- 
dicating that the much shorter end-to-end delays (below the 
knee of the curve around 25 ms) are obtained at a dis- 
proportionately higher cost. One would like to be towards 
the left-end of Figure 4-3 and the right-end of Figure 4-4. 
A reasonable compromise for the current hardware con- 
figuration lies around a reservation period of 24 ms. 

4.5. QOS Interface for Changing Quality 
Parameters Dynamically 

RT-Phone also has a user-interface to change the quality of 
the received audio stream (from the remote participant) and 
is illustrated in Figure 4-5. When such a quality change is 
requested, the QOS manager of both the local and remote 
nodes are contacted to modify the reservations they need 
for the new quality setting. If granted, the audio-server is 
requested to change to the new settings. The sender must 
upgrade quality only after the receiver upgrades its reser- 
vation (and be ready for the added incoming traffic).  The 
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Figure 4-5: The interface to set system quality parameters. 
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Figure 4-6: The Multi-Phase Protocol to dynamically 
adjust QOS during teleconferencing 

actual quality change must be effected by a multi-phase 
protocol illustrated in Figure 4-6. Similarly, if the sender 
degrades quality, the receiver must downgrade its reser- 
vation only after the sender does. 

Many subtleties underlie such dynamic transitions of net- 
work traffic and processing requirements. For example, it 
is possible that the old resource allocation and the new 
allocation are completely schedulable (i.e. all their timing 
constraints can be satisfied with these resources) indepen- 
dently, but timing constraints can be violated during the 
transition [17]. While this may not be a major concern in 
non-critical multimedia applications, this loss of 
schedulability must not lead to all subsequent deadlines to 
be missed or synchronicity to be last (say between indepen- 
dently arriving audio and video streams). Of critical impor- 
tance are the times at which changes to reservation come 
into effect, the times at which changes to audio card set- 

tings   come   into   effect  and   the   need   for  continued 
synchronization between the sender and receiver. 

5. Lessons Learned and Future Work 
We have learnt a number of lessons based on our ex- 
periences with the RT-Phone application in the context of 
support for processor reservation and dynamic QOS control 
in RT-Mach. The current processor reserve mechanism 
seems to provide a sufficiently general meanss that can sup- 
port both dynamic real-time and multimedia applications. 

-However, the programming abstraction may have to be 
- raised with "middleware libraries" which map application- 
level QOS parameters (such as sampling rate) to kernel- 
level/QOS-server-level parameters (such as computation 
time and period). The reserve enforcement already yields a 
built-in framework for measuring computation time (which 
is dependent on the actual hardware being used). The 
period must be determined based on the end-to-end delays 
of the application. More precise control over when a reser- 
vation change will be effected would be very desirable. In 
addition, mechanisms to synchronize the "start times" of 
reserves which are active in different processors may be 
critical for networked applications particularly when net- 
work load can be variant. 

Our future work includes extending the reserve abstraction 
to address the above requirements and to other resources 
such as filesystems. A more general set of protocols is 
needed to coordinate changes in reserves across processors 
for networked applications. We are currently looking at an 
audio-mixing server to combine multiple incoming audio 
streams to a single output device, and its complexity in 
terms of reservation requirements is much higher compared 
to an audio-server with a single client. In addition, we are 
yet to test our QOS framework with multiple clients each 
with a different kind of dynamic quality change require- 
ments. 
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Abstract 

Increases in processor speeds and the availability of audio and video devices for per- 
sonal computers have encouraged the development of interactive multimedia applications 
for teleconferencing and digital audio/video presentation among others. These applications 
have stringent timing constraints, and traditional operating systems are not well suited to 
satisfying such constraints. On the other hand, hard real-time systems that can meet these 
constraints are typically static and inflexible. 

This dissertation presents an enforced operating system resource reservation model for 
the design and implementation of predictable real-time programs. Applications can reserve 
resources based on their timing constraints, and an enforcement mechanism ensures that 
they do not overrun their reservations. Thus, reserves isolate real-time applications from the 
temporal properties of other real-time (and non-real-time) applications just as virtual mem- 
ory systems isolate applications from memory accesses by other applications. In addition, 
reserves are first class objects that are separated from control abstractions such as processes 
or threads. Therefore reserves can be passed between applications, and this model extends 
naturally to distributed systems. 

Reserves support the development of hard real-time and soft real-time programs, and 
programming techniques based on reserves illustrate how to use them effectively. An imple- 
mentation of processor reserves in Real-Time Mach shows that reserved multimedia appli- 
cations can achieve predictable real-time performance. 
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Chapter 1 

Introduction 

This dissertation presents the design, implementation, and experimental analysis of a 
model for operating system resource reservation. The reservation system supports predict- 
able performance in real-time and multimedia applications, enabling them to meet their tim- 
ing requirements, and facilitating adaptive resource management. This approach is suitable 
for real-time programming problems that arise in personal computers and workstations 
where users may want to run real-time multimedia applications or other real-time programs. 
The approach is also applicable to embedded system design where better resource reserva- 
tion abstractions at the system level aid in the design, debugging, and maintenance of such 
systems. 

1.1 Motivation 
Recent increases in processor speed and network bandwidth combined with the wide 

availability of digital audio and video devices have enabled a plethora of multimedia appli- 
cations and services. Examples of these include audio/video presentation and playback, 
audio/video phone and conferencing, persistent multimedia data storage services, telephone 
answering and call management, speech processing, and virtual reality applications. 

Stringent timing constraints and large volumes of data characterize these applications. 
Existing operating systems are not designed to support such applications, especially when 
real-time multimedia applications execute alongside a non-real-time workload. A key 
requirement of systems for multimedia applications is predictability, and this means that 
possible contention for resources must be identified and managed to ensure the timeliness of 
multimedia data processing and delivery. Although it is possible to manage contention for 
system resources in an ad hoc manner based on the specific requirements of a particular 
class of applications, this dissertation describes a more structured approach to managing 
contention based on: 

•    A reservation model that provides an abstraction for resource capacity 
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reservation and a system-level mechanism for scheduling resources. 

• A higher-level layer for implementing resource management policy using 
the system-level mechanism. 

• Programming techniques for structuring applications in a way that can 
take full advantage of the resource reservation model. 

The reservation mechanism and allocation policy provide abstractions that relieve the 
system designer from relying on complicated high-level application information to make 
low-level scheduling decisions. And the programming techniques facilitate the program- 
ming of real-time applications that meet their timing constraints. 

1.2 Background 
Real-time system designers must take timing constraints into account when developing 

real-time applications and the systems to support them. The programming techniques and 
resource management policies that have been developed for real-time systems typically 
apply ad hoc solutions for each application area. Several issues and problems arise which 
can be addressed with appropriate system abstractions. 

1.2.1 Programming real-time applications 

In applications with timing requirements, the software must be designed to satisfy the 
timing constraints. The user-level servers and system services used by such applications 
must be designed with timing constraints in mind. The resource management policies under- 
lying those system services must also be designed to support applications with timing con- 
straints. 

Traditionally in real-time system design, application programmers use small, simple 
operating systems that provide fixed priority processor scheduling, priority queueing for 
various system resources such as semaphores and mailboxes, and perhaps priority inherit- 
ance protocols. The application programmers must then build many of their own real-time 
system services such as database management systems, file systems, and network communi- 
cation. These programmers must carefully schedule the various applications running on the 
system and manage contention for the processor and other system resources. In doing the 
design and scheduling, the computational requirements of applications must be carefully 
measured and characterized, and resource sharing must be carefully planned. Applications 
are therefore very sensitive to the misbehavior of other applications. For example, if a high- 
priority real-time application has a bug that sends it into an infinite loop, the effect on other 
applications and the system as a whole would be devastating. The errant application would 
take over the processor and would not relinquish it, forcing a system crash. 

This extreme sensitivity among applications is the result of a lack of suitable system 
abstractions for effectively managing shared resources in real-time systems. Many abstrac- 
tions exist in real-time scheduling theories, but typically the assumptions of the theoretical 
results are implicitly embedded in real systems. An example of an assumption that many 
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theories require is that the worst-case execution times (WCET) for computations in real- 
time applications are known at system design time. Most systems designed using analysis 
techniques that have this assumption do not explicitly check or enforce worst-case execution 
times for computations. Appropriate system abstractions would explicitly bring the assump- 
tions into the actual system where they could be checked and. in the best case, even 
enforced. 

1.2.2 Resource management problems 

Suitable system abstractions could effectively address several problems that arise in 
real-time system. These problems fall into three broad areas: resource management policies 
that can satisfy timing constraints, mechanisms to support the policies, and analysis tech- 
niques based on the available mechanisms. 

Many systems do not provide scheduling policies that directly support real-time 
resource management. For processor scheduling, most systems provide either fixed priority 
or deadline scheduling policies. Both of these policies lack complete information about real- 
time requirements and therefore do not address important problems such as how priority 
should be assigned or how to prevent overload. The following issues arise in the design of 
resource management policies: 

• Priority assignment problem: Simple priority schedulers are hard to 
use, especially if there are many activities with timing constraints. If 
there is no global repository of knowledge about the timing constraints of 
different activities in different applications, there is no basis for deciding 
what the priority ordering of the activities should be. 

• Overload problem: To prevent overload, the scheduling policy requires 
information about real-time constraints such as the computational 
requirements and frequency of execution. Even if the designer can 
express the resource and timing requirements for real-time applications, a 
system with no_ admission control policy cannot protect itself from over- 
load. 

• Flexibility requirement: The timing constraints and resource require- 
ments for dynamic real-time applications may change dynamically dur- 
ing execution. The scheduling algorithm must support efficient 
adjustment of requirements. 

To effectively schedule real-time applications such that applications cannot monopolize 
system resources requires some usage measurement and enforcement mechanisms. Informa- 
tion gleaned through these mechanisms can be used in the scheduling policy to make deci- 
sions about how priorities or deadlines should be dynamically adjusted to reflect the 
requirements and usage patterns of applications. The problems that motivate the use of these 
mechanisms are described briefly below: 

• Enforcement problem: An application that specifies resource and tim- 
ing requirements may accidentally or deliberately attempt to exceed its 
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stated requirements. This may interfere with the satisfaction of timing 
constraints for other reserved activities, and it may cause starvation 
among unreserved activities. 

• Measurement problem: Enforcement of resource requirements means 
that resource usage of each application must be accurately measured and 
compared to the allocation that has been made on its behalf. If the activ- 
ity uses external modules, servers, and system services, the measurement 
must include that usage as well. 

• Coordination problem: Many time-constrained activities are composed 
of multiple sub-activities implemented by other modules, user-level serv- 
ers, or system services. Allocating resources for a single activity that 
spans multiple modules, possibly in different memory protection 
domains, is complicated. It is necessary, however, to be able to place tim- 
ing requirements on the overall activity and to track the resource usage 
for the overall activity. 

Other problems deal with higher level issues of how to analyze system behavior given 
more sophisticated abstractions and mechanisms for scheduling and resource management. 
The following issues arise in this context: 

• Distributed real-time scheduling problem: An activity that uses exter- 
nal modules and services may require the use of multiple resources 
within certain time constraints. Coordinating usage across multiple 
resources to meet timing constraints is a hard problem. 

• QOS management problem: Real-time applications may dynamically 
change their quality of service (QOS) requirements. In a system with 
many such applications, a high-level resource manager (sometimes called 
a QOS manager) is needed to resolve conflicts and negotiate between 
applications. 

In traditional real-time systems design, many of these problems are avoided in the 
design phase by careful measurement and analysis of simple computations and their 
resource requirements and by ad hoc scheduling techniques. This approach results in inflex- 
ible systems that are difficult to maintain [43,68]. In particular, supporting dynamic real- 
time activities with timing constraints and resource requirements that may change freely at 
run-time stretches the traditional approach beyond its limits. 

Recent work in real-time systems addresses some of these problems. Several systems 
(e.g. [3,53,113,124,125]) allow specification of timing requirements instead of forcing the 
programmer to determine an appropriate priority assignment. A few systems have on-line 
admission control policies [3,78,113], but many others use off-line analysis [53,124,125]. 
Still others have no admission control at all [19,21,90]. Some limited flexibility require- 
ments for hard real-time have been addressed recently [122]. This work focuses on mode 
changes, which are radical but infrequent changes in the task sets of a real-time system. For 
example, the real-time system in an airplane might experience a mode change after takeoff 
as it switches from the ground-based task set to the air-based task set. 
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Very few software systems address the measurement and enforcement problems with 
respect to resource usage although most systems can detect and react to missed deadlines 
[43,125]. In networks, the notion of enforcement or policing is much more common 
[33,98,128]. The work on priority inheritance protocols [8,16,51,86,97,108] addresses some 
aspects of the coordination problem. 

The distributed real-time scheduling problem is an active area of research [38]. The 
QOS problem is another active area of research. Some operating system research in this area 
focuses on best effort approaches [21] although other research emphasizes guarantees 
[46,53,78,81,126]. 

1.3 Resource reserves 
This dissertation defines a resource reservation model that provides an operating system 

abstraction called a reserve. Reserves explicitly represent reservations on resources such as 
processors, memory pages, disks, and network devices. In particular, reserves support 

• specification of reservation parameters, 

• admission control, 

• scheduling based on timing constraints and usage requirements, 

• reservation enforcement, 

• reserve propagation in the RFC mechanism, 

• flexible binding of threads to reserves. 

Reserves prevent applications from over-running their allowed resource usage and inter- 
fering with other reserved activities or starving unreserved activities. Applications reserve 
capacity on the resources they need to carry out their computations. For example, an appli- 
cation can reserve 10 ms of computation time on a processor for every 100 ms of real-time. 
The application then binds to the reserve, and the processor scheduler uses the information 
associated with the reserve to control the scheduling of the application. The system also per- 
forms an admission control test before granting the reservation to make sure that the 
resource can support the reservation being requested. The enforcement mechanism ensures 
that an application does not use more than its reserved time if doing so would interfere with 
other reserved activities. 

The reservation parameters associated with an application's reserves are not necessarily 
fixed for the lifetime of the application. A dynamic real-time application must be prepared 
to change its behavior and timing requirements based on changing requirements of users and 
possibly the changing availability of resources. A user may want to change the frame rate on 
a video player or change the resolution, and the application must be ready to adjust its 
resource reservation levels appropriately. Likewise, reserves must support an operation that 
modifies the reservation parameters, subject to the admission control policy. 

Reserves are first class objects in the operating system; a reserve is associated with a 
particular thread (or process) by explicitly binding the thread to the reserve. This allows ;m 
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application to reserve all of the resources it will need for its computation, including 
resources that will be needed by various modules, servers, and system services it intends to 
invoke. The application can then pass references for its resource reserves to modules or 
servers along with the operation invocation. The module or server can bind its thread to this 
reserve when performing the operation, and it can then take advantage of the resources that 
have been reserved by the client. Having modules and servers charge a caller's reserve for 
work done on behalf of the caller also maintains a consistent view of the resource usage that 
is being consumed on behalf of that client. 

The reserve model presented in this dissertation addresses the problems identified in the 
previous section. The scheduling policies embedded in the reserve model address the prior- 
ity assignment problem and the overload problem while remaining flexible in terms of 
accommodating dynamic changes in application resource requirements as discussed below. 

• Priority assignment problem: Reserves avoid the priority assignment 
problem by accepting reservation specifications that include the timing 
constraints and usage requirements. 

• Overload problem: The admission control policy of the reservation 
mechanism prevents overload. This is possible since the scheduling pol- 
icy has information about both the computational resource requirements 
and the timing constraints (such as period of invocation) for each applica- 
tion. 

• Flexibility requirement: Changes in reservation parameters can be 
made at any time, subject to the admission control policy. 

The reserve model makes use of several system mechanisms that support the abstrac- 
tion. These mechanisms provide information about resource usage and that coordinate the 
consumption of resources for an activity that crosses memory protection boundaries as fol- 
lows: 

• Enforcement problem: Reservation enforcement isolates reserved 
activities from undue interference from other reserved activities. 

• Measurement problem: The flexibility in binding reserves makes it 
possible to accumulate resource usage charges for an activity even when 
work is done by external modules, servers, or system services. 

Coordination problem: The reserve model supports reserve propagation 
which includes a "priority" inheritance mechanism and which takes 
advantage of the flexibility in binding reserves to threads. 

The reserve model provides an abstraction that can be used for distributed real-time 
scheduling and QOS management. The approaches to these problems are described briefly 
below: 

• Distributed real-time scheduling problem: The reserve model supports 
reservations for remote resources, and pipeline-style software architec- 
tures are supported. This is not optimal, but future work on this problem 
could take advantage of the reserve model as a base. 
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QOS management problem: A high-level QOS management layer can 
use reserves to carry out resource allocation policy decisions. The QOS 
managers can carry out their allocation decisions by manipulating reser- 
vation parameters for the applications being managed. 

1.4 Contributions 
This dissertation describes and analyzes a resource reservation solution to the problem 

of supporting predictable execution of real-time and multimedia applications with specific 
quality of service parameters. It shows that: 

Resource reserves, an enforced operating system resource reserva- 
tion abstraction, effectively supports real-time and multimedia 
applications. Reserves allow the software designer to specify timing 
requirements on resources required, thus providing a method for 
guaranteeing deadlines in real-time applications. The reservation 
abstraction accommodates non-real-time applications as well as 
real-time applications. 

This dissertation defines an enforced resource reservation model called reserves and 
then describes programming techniques for developing applications using reserves. It pre- 
sents an implementation of one type of resource reserves, processor reserves, in Real-Time 
Mach along with several real-time applications that use reserves to satisfy their timing con- 
straints. These applications included a suite of synthetic benchmark programs, a QuickTime 
video player, an MPEG player, and a version of the X server. Experiments with these appli- 
cations showed that reserves can indeed provide predictable behavior for real-time applica- 
tions even with competition from other real-time and non-real-time applications. 

Reserves are a tool that real-time system designers can use to raise the level of abstrac- 
tion for resource scheduling in real systems. This allows applications' timing requirements 
to be defined and guaranteed in isolation with the system providing high-level guarantees 
that resources will be available when needed by each real-time application. 

1.5 Overview of the dissertation 
Chapter 2 describes the background and motivation for the dissertation in more detail. 

Chapter 3 describes the reserve model, and Chapter 4 discusses techniques for structuring 
programs to best take advantage of reserves. 

Chapter 5 describes the implementation of processor reserves in Real-Time Mach, a 
quality of service (QOS) manager, and several reserved applications and servers. Chapter 6 
presents an experimental evaluation that explores the predictability achieved by using 
reserves and the overhead involved in providing that predictability. 

Chapter 7 discusses related work, and Chapter 8 summarizes the contributions of the 
dissertation and presents the conclusions and future directions. 
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Chapter 2 

Background and Motivation 

This chapter discusses the requirements of real-time and multimedia applications and 
describes some of the problems system designers encounter in attempting to support such 
applications. The case is made for an operating system resource reservation approach to the 
problem. 

2.1 Real-time and multimedia application requirements 
Real-time applications require not only that computations result in logically correct 

answers, but that the answers are available within certain timing constraints. A logically cor- 
rect answer that arrives late is considered incorrect in a real-time system [114]. Many multi- 
media applications have this property that late computations are useless. For example, if a 
video frame or audio sample arrives after the time at which it was to be displayed or played. 
it is no longer useful. 

This section gives an overview of different kinds of timing constraints and criticaliiy 
characteristics of real-time and multimedia applications. The models described here repre- 
sent a compendium of the models that researchers have addressed in the literature. 

2.1.1 Timing characteristics 

In general, a task in a real-time system has timing constraints that specify when the com- 
putation may begin, how long it executes, and the deadline for the completion. Figure 2-1 
illustrates a computation schematically. This generic model is common in the operations 
research literature [20]. The computation has a ready time, r, at which the computation 
becomes available for scheduling. At some point after the ready time, the computation will 
be scheduled and start processing for a total duration of C. The duration between the ready 
time and the start of processing is enclosed in a white box. This indicates that the task is 
available for scheduling but has not started yet. The black box represents the computation 
that completes at time E. A deadline, d, may be associated with the computation as well, and 
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the goal is to complete the computation before the deadline. In Figure 2-1, a thick vertical 
line represents the deadline. 

Ready (r)    Scheduled        Completed (E)   Deadline (d) 

I I I I 
time 

Figure 2-1: Schematic of a Time Constrained Computation 

The ready time of a computation may arise from a clock event, an external interrupt, or a 
software event generated by some other computation. The ready event may be an instance of 
a periodic computation where the same computation is activated periodically. The ready 
event may be aperiodic but predictable, or it may be unpredictable. The computation time 
may be fixed or it may be variable or unpredictable. The computation itself may be preempt- 
ible, or it may form a non-preemptible critical region. The deadline is usually some fixed 
duration after the ready time, but the implications of missing a deadline may vary. Hard 
real-time computations take the deadline to be a hard deadline where the computation must 
be complete by the deadline time. Alternatively, the deadline may just be a recommendation 
or preference for completion of the computation, a soft deadline. 

Since a computation may be periodic, we must sometimes distinguish between the over- 
all activity and the periodically occurring computations. We call the overall activity a task, 
and we refer to an instantiation or individually scheduled computation of the task as a job; 
thus a task is a stream of jobs. The jobs of a particular task are considered to be identical for 
the purposes of scheduling although variations can be indicated by a variable or stochastic 
computation time. We will use the word task to mean both the stream of instantiations and 
an individual instantiation when such usage is clear from the context. ■*o" 

A periodic task has ready times for the task instantiations separated by a fixed period. 
Periodic tasks are the main focus of the original rate monotonic scheduling work |67J and 
the many extensions that have followed [63,108]. Figure 2-2 shows a periodic task. The fig- 
ure shows four instantiations, each with an associated ready time, r(.. The ready times are 
separated by the period /. The computation time is represented by the black box, and the 
preceding white box represents the time when the task is ready by has not yet been sched- 
uled to execute. In this example, the computation time is constant across task instantiations, 
and the deadline is at the end of the period. 
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Figure 2-2: Periodic Task 

Aperiodic tasks are more difficult to specify. Some aperiodic tasks are predictable to a 
certain extent; it may be possible to predict the arrival of instantiations of an aperiodic task 
within some scheduling horizon of h time units. Figure 2-3 shows an aperiodic task with a 
scheduling horizon of duration h from the current time. This kind of timing requirement is 
used in computer music, for example [5,25]. Within this window of h time units, the ready 
times of instantiations of the task are known, but beyond the horizon, nothing is known of 
the behavior. The computation time is assumed to be constant across instantiations in the 
single task, and the deadlines are left unspecified. 

Current 

time 

|   ßSgäSääöisl                            I   \^:<xj?sä^A   ISi^^s:.^ 

1                                                 1                        1                      -   _fc 
time 

Figure 2-3: Aperiodic, Predictable Task 

Another class of aperiodic tasks is almost completely unpredictable. It is common, how- 
ever, to associate a minimum interarrival time for the instantiations of these unpredictable 
aperiodic tasks. Much work has been done on scheduling aperiodic tasks with soft deadlines 
[120] and on aperiodic tasks with hard deadlines, which are known as sporadic tasks 
[52,111]. Figure 2-4 illustrates an aperiodic task where the arrivals are unpredictable. 
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time 

Figure 2-4: Aperiodic, Unpredictable Task 

The computation time is another dimension along which tasks may vary. The computa- 
tion time may be fixed or merely bounded in duration. The computation could also be 
described by a statistical distribution, but that case is much harder to analyze. 
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Figure 2-5: Preemptible Task 

Another characteristic of the computation is its preemptibility. It may be completely pre- 
emptible (that is preemptible at any point) or it may be non-preemptible. Or it may be pre- 
emptible but with one or more non-preemptible critical regions during which scheduling 
events are not allowed (possibly during system calls for example). Different assumptions 
are made to achieve different results [67,72,82], and in particular, much work has been done 
on handling non-preemptible critical regions [8,16,51,97,108]. Figure 2-5 shows an exam- 
ple of a preemptible task, P, and its interaction with another task, Q. For this example, we 
assume that P is preemptible and has a lower priority than Q. P becomes ready at time /-,, and 
begins to execute immediately. At time rQ, Q becomes ready, and since Q has priority over 
P, Q preempts the ongoing execution of P. After Q completes, the execution of P resumes. 
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Figure 2-6: Non-preemptible Task 

Figure 2-6 illustrates a similar case where the computation of P is non-preemptible and 
where Q has priority over P. P becomes ready at time rp and begins to execute. Q becomes 
ready at time rQ, but even though Q has priority over P, P cannot be preempted, and Q must 
wait until the execution of P completes. After P is finished, Q can begin execution. 

2.1.2 Criticality 

Deadlines may be classified as hard or soft. We can describe various types of deadlines 
by means of a value function. Value functions have been used for scheduling [15,55], but 
here they are used for purposes of exposition. A value function is a function of time that 
indicates the value that completion of the task would contribute to the overall value of the 
system. For example, Figure 2-7 shows the value function of a task that has a hard deadline: 
the value drops off to negative infinity at / = d. The task becomes ready at time r, and its 
deadline is d. If the task is completed at time t where r<t<d, then the system receives some 
value, V. On the other hand, if the task completes after d, the value is negative infinity, a cat- 
astrophic failure. 

> 

V 

0 

1 

1 

D 
time 

Figure 2-7: Hard (Catastrophic) Deadline Value Function 
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The result of missing a hard deadline may not be catastrophic. Figure 2-8 shows a case 
where completion of a task would have some value until the deadline d when the value of 
completion of the task goes to zero. This indicates that the system will receive no benefit 
from completing the computation after d, and so the task should be aborted, freeing any 
resources it holds. In contrast to the previous case, the system can continue to operate, 
achieving a positive value even if this particular task is aborted and makes no contribution to 
that value. 

V 
3 

> 

V   - 

0 - 

R D 
time 

Figure 2-8: Hard Deadline Value Function 

Other variations on the idea of hard deadline might include a value function that ramps 
up to the deadline as illustrated in Figure 2-9. And depending on where the ramp starts, this 
type of value function can specify tasks that must be executed within very narrow intervals 
of time. 
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Figure 2-9: Ramped Hard Deadline Value Function 
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The concept of a soft deadline is illustrated in Figure 2-10 where the value function goes 
gradually to zero after the deadline. In this case, there is some value to the system in com- 
pleting the task after the deadline, and the task should not be aborted right away as in the 
case of the hard deadline. 

CO > 

V  - 

0 - 

Figure 2-10: Soft Deadline Value Function 

A non-real-time task might be described by the value function shown in Figure 2-11. In 
this case, completion of the task always has a positive value associated with it. This indi- 
cates no explicit timing constraint, although in practice, few of us are willing to wait indefi- 
nitely for a computation to complete. 

> 

V   - 

0 - 

R 
time. 

Figure 2-11: Non-real-time Value Function 
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2.2 Applications timing requirements 
Many multimedia applications have real-time constraints. Even simple playback appli- 

cations have real-time constraints that must be satisfied. For example, an audio player appli- 
cation might repeatedly read audio data from a file on disk and then enqueue the data for the 
audio device. Figure 2-12 illustrates the periodic computational requirements of such a play- 
back application. The activity of the player is illustrated on the line labeled "P". and the 
activity of the device is represented on the line labeled "D". In each period, the applications 
reads, processes, and enqueues the data to a device. At the end of each period, the device 
reads the data out of its buffer, performs D/A conversion, and the analog signals goes to a 
speaker. 

D 
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time 

Figure 2-12: Periodic Playback Computations 

A potential problem is that the computation of the audio player may be delayed so much 
that the device buffer empties and there are no samples for the device to convert to an analog 
signal. For a playback application, one solution is to introduce a large buffer and allow the 
playback application to execute for many periods to build up a large buffer of data ready to 
be played by the device. 

Figure 2-13 shows a player with execution history shown on the line labeled "P". The 
player buffers a number of data blocks for a device; the size of the data is indicated in the 
area labeled "B" between P and D. The device consumes data from the buffer, and the activ- 
ity of the device is indicated on the line labeled "D". Even if the audio player is delayed for 
a period or two, there will still be plenty of data in the buffer and the device will not run out 
of data blocks. The player can catch up with the processing that was delayed. 

Another potential problem is that if some other activity on the machine is very active 
and manages to deprive the audio player of the resources (like processor time) for a very 
long time, then audio playback will be noticeably disturbed. This kind of intense competing 
activity can be avoided, and with large buffers audio playback will be quite smooth. 
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Figure 2-13: Playback Application Computing Ahead 

Interactive applications cannot afford to use large buffers to smooth variations in sched- 
uling delay. The delay introduced by large buffers is often too great to satisfy stringent end- 
to-end delay bounds in interactive applications like video teleconferencing. Instead, the sys- 
tems must support applications that can ensure that bounds on the scheduling delay are 
observed. Thus the variations can be reduced and less buffering is required. 
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Figure 2-14: Interactive Application with Limited Workahead 

Figure 2-14 shows the case where an interactive application can buffer the data gener- 
ated in one period, but since there is a delay constraint, the application cannot afford to com- 
pute ahead several periods as in the previous case. The buffer must remain small. In order to 
make sure that the buffer is never empty when the device goes to get the next block of data, 
the application must make sure that the computations to enqueue the next block of data are 
done in time. This means it must also make sure that resources it will need from the system 
are available in time as well. 
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Other multimedia applications have timing constraints that differ from the periodic tim- 
ing of the stream-oriented applications described thus far. For example, computer music 
applications involve performing computations to generate musical notes and other musical 
events. The number of notes that need to be generated at any point in time may vary widely 
depending on what the music calls for, so there is little periodic structure to describe the 
computations to be executed. 

Silence-suppressed audio presents a similar problem. For audio conversations, it is not 
always necessary to transmit data for the silent portions of the audio streams in a two-way 
conversation. Again, the computational requirements become aperiodic when the amount 
and timing of data depend on speech patterns. 

There are other applications, such as compressed video players, where a periodic execu- 
tion pattern exists but where the computation time required within the periods varies. Com- 
pressed video data contains frames whose size varies according to the compression 
algorithm and the characteristics of the scene and how fast scenes are changing in the video 
source. 

2.3 Quality of service management 
Many multimedia applications have timing requirements and other quality of service 

(QOS) parameters that represent the user's desires and expectations for the performance of 
the applications. The complexity of providing for these timing requirements at the system 
level is exacerbated by the fact that the user may change those timing requirements al any 
time during the execution of the applications; and of course the user may create and termi- 
nate multimedia applications at any time. 

2.3.1 QOS background 

In recent years, researchers in the computer networking and in the telecommunications 
communities have been working on ways to express the QOS requirements for multimedia 
applications. Some of this work dealt with human perception requirements for various 
media [30,117], and other work focused especially on parameters and QOS architectures 
that are important in the context of scheduling traffic on a network [14,88]. This work can 
be considered an extension of the earlier work done in the telephone companies to character- 
ize quality of service for telephone customers [100]. 

As researchers gained more experience with the idea of building networks that could 
provide quality of service levels suitable for different types of multimedia traffic, the ques- 
tion of how to ensure quality of service levels for end-to-end applications arose. Achieving 
that goal means QOS requirements must be supported in the operating system as well as the 
network. This observation was an initial motivation for the work described in this disserta- 
tion [76], and other system designers have started to focus on this aspect as well 
[3,21,46,53,83,102,126]. 
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2.3.2 Mapping QOS parameters 

In dealing with QOS management it is important to realize that there are different types 
of QOS parameters for different levels of the system. Applications must interact with the 
user in terms of user-level QOS parameters. For video, these user-level parameters might 
include frame resolution (width and height of each frame), number of bits/pixel, frames per 
second, maximum delay, and maximum jitter. For audio the user-level parameters might 
include sample rate, sample size, maximum delay, and maximum jitter. These are the types 
of parameters that might be meaningful to the user of a multimedia application. Or it might 
be preferable to offer QOS levels with names like: "worst", "fair", "good", "better", and 
"best" to simplify the interface. It would then be up to the application to translate these 
abstract QOS specifications to frame rates and sample rates. 

Once the user-level QOS parameters are determined, they have to be mapped into sys- 
tem-level QOS parameters that would be meaningful for system-level resource management 
mechanisms. These system-level QOS parameters would describe how much time is needed 
on various resources. They depend on the user-level QOS parameters and on detailed com- 
putations that the application performs on data elements in the media stream. 

Simple User-level 
QOS Specification Interface 

Sophisticated User-level 
QOS Specification Interface 

System-level 
QOS Specification 

Figure 2-15: Levels of QOS Specification 

Figure 2-15 summarizes these levels of QOS specification. The arrows in the figure 
indicate that there are mappings from one level to the next lower level and also that there are 
inverse mappings that come into play as well. 

To allow the user to specify the QOS parameters desired at the highest level, the applica- 
tion must be able to map from user-level QOS parameters to system-level QOS parameters. 
The system-level parameters are required for the application to be able to ask for the 
resources it will need to execute. If the resources are unavailable, the system-level resource 
management mechanism should be able to communicate the fact that those parameters can- 
not be guaranteed. It should then initiate a negotiation to arrive at a set of system-level 
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parameters that can be supported by the system. The inverse mapping to user-level QOS 
parameters should yield a QOS specification that can be tolerated by the user. Thus, the 
inverse mapping from system-level to user-level QOS parameters is just as important as the 
forward mapping. 

2.3.3 QOS negotiation 

The user's QOS requirements may sometimes conflict with resource usage limitations, 
and therefore the QOS layer may need to negotiate user requirements to resolve such con- 
flicts. This negotiation process may be needed throughout the lifetime of certain applica- 
tions since user-level QOS requirements may change over the course of execution. 

The approach advocated in this dissertation for handling the complexity of a dynamic 
execution environment (where programs may have changing real-time requirements) is to 
divide the problem into two parts. One part is the dynamic negotiation of resource alloca- 
tion. The second part is the resource reservation and scheduling based on the allocation. 
These two parts can be addressed with a layering of functionality in the system where a sys- 
tem-level QOS management layer handles the resource allocation policy decisions and a 
low-level operating system resource reservation mechanism handles the details of dynamic 
scheduling and usage enforcement. 

Application A Application B 

User-level 
QOS Specification 

User-level 
QOS Specification 
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System-level 
QOS Specification 

System-level 
QOS Specification 

System-level 
QOS Manager 

I 
Resource Reservation 

Mechanism 

Figure 2-16: QOS Levels with QOS Manager 
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An illustration of the basic outline of the QOS management system appears in Figure 2- 
16. Each application has user-level QOS specifications. The applications map the user-level 
QOS parameters in to system-level QOS parameters and then negotiate with the system- 
level QOS manager to determine a mutually acceptable set of system-level parameters. The 
operating system contains a resource reservation mechanism which is used by the system- 
level QOS manager to actually allocate the resource capacity, schedule appropriately, and 
enforce the resource reservations. 

The QOS management layer makes policy decisions about where resource capacity in 
the system should be allocated. To do this, it will depend on input from applications as they 
make their system-level QOS parameters known. The QOS manager may take input from 
user preferences expressed in the form of rules about which applications are more important 
than other applications, and it may take input from user interface tools designed to help the 
user manage resource allocation in the system. The QOS manager may also coordinate with 
other QOS managers on remote hosts for setting up distributed multimedia applications that 
require resources on several different hosts. 

2.4 System design approaches 
Several approaches have been used in the past to support interactive and playback types 

of multimedia applications. These range from hoping for the best, to dedicating expensive 
resources, to system support for real-time programming. 

2.4.1 Specialized hardware 

One approach to supporting real-time multimedia applications is to dedicate hardware to 
the tasks that must be performed in real-time. This relieves any contention for resources. As 
an example, Pandora's Box [44] was an early attempt to support multimedia applications in 
the context of a desktop workstation. The box contained six transputers, each one dedicated 
to a particular activity or class of activity including audio processing, storage/disk manage- 
ment, video processing, decompression, network communication, and bus management. 
This box was connected to a Sun workstation, to a network, and to a monitor. It coordinated 
graphical display from the workstation and video streams from the network or other devices, 
combining them and displaying the result on the monitor. The system allowed researchers to 
learn much about programming multimedia applications, what kinds of applications where 
useful, and user interface issues. However, the cost of the box was very high, and the com- 
plexity of programming the box itself was also great. 

2.4.2 Time-sharing systems 

A number of multimedia applications are available for personal computers and desktop 
workstations that run more sophisticated operating systems like UNIX and Windows NT. 
These systems use time-sharing scheduling policies that are not particularly well suited for 
meeting the timing constraints of multimedia applications. 
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Time-sharing schedulers are tuned to provide fair allocation of resources among users 
which are considered equally important. These schedulers also look at whether a processes 
is compute-bound or not, and they depress the priority of compute-bound processes in favor 
of interactive (or I/O-bound) applications which can benefit from better response times. 

This kind of scheduling behavior works well in mainframe systems, but may work 
against multimedia applications. For example, a video application that performs a filtering 
computation on video frames may look compute-bound to a time-sharing scheduler and may 
therefore get a low priority compared to network and I/O activity on the machine. This may 
occur even if the video application is the most important activity to the user. 

Consider a teleconferencing application that display several video streams on the screen 
at the same time. A fair time-sharing scheduling algorithm would give each of these streams 
an equal share of the processor, resulting in the same frame rate for all of the video displays. 
This might not be appropriate for the particular application. The user might want more con- 
trol over where resources are focused, perhaps to show a higher frame rate for the person in 
the conference who has the floor. 

In many operating systems such as UNIX [62], VMS [80] and Windows NT [24], the 
time-sharing scheduling policy is augmented with a fixed priority extension. The extension 
is usually in the form of a range of fixed "real-time" priorities. With fixed priorities, it is 
possible to exercise more control over how the processor is scheduled, but there are other 
problems. Many of these issues arise in the context of real-time operating systems as well, 
where fixed priority scheduling is commonly used. The next section addresses some of the 
difficulties of real-time programming with fixed priority schedulers. 

2.4.3 Real-time operating systems 

Much work in recent years focuses on how to apply real-time systems techniques to 
multimedia systems and applications. This includes work directed at methods for using 
technology available in commercial real-time operating systems as well as efforts to build 
research prototype operating systems. 

2.4.3.1 Commercial real-time systems 

Most commercial real-time operating systems support fixed priority (FP) scheduling of 
processes [99,104]. FP schedulers while useful for real-time scheduling, cannot by them- 
selves support multimedia applications. 

For example, fixed priority schedulers have no mechanism for dealing with overflow sit- 
uations. In general, real-time operating systems do not have the mechanisms for deciding 
whether enough resources are available in a system to run a new application; they do not 
have support in the system for admission control. Furthermore, there are no mechanisms for 
detecting and dealing with overload situations when too many applications are allowed to 
run. These issues of load management are typically addressed in an ad hoc manner by sub- 
systems specific to particular applications. 
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Even if a system user could determine that a particular collection of applications couid 
run successfully on a system, the problem of determining what priority assignment should 
be used remains unsolved. An application designer may use multiple threads or processes in 
the implementation of the program, and that designer will undoubtedly know enough about 
the processes' computational requirements, timing constraints, and precedence relationships 
to assign priorities in a reasonable way. However, when running several such applications 
developed by different people on the same system, the question arises: How should priori- 
ties be assigned to processes in different applications in a way that will result in correct tim- 
ing behavior? Without global knowledge of all processes and their timing constraints, 
assigning priorities appropriately is exceedingly difficult. 

In practice, commercial operating systems are used mainly in embedded applications 
where designers carefully measure the resource requirements and coordinate scheduling 
based on a scheduling analysis of the specific task set designed for the application [68]. The 
system designers have global knowledge about resource requirements, and they use that 
information in the scheduling analysis to generate a priority assignment. This makes the sys- 
tems rigid and difficult to maintain. Much more flexibility would be desirable. 

2.4.3.2 Research prototype real-time systems 

Several research prototype operating systems have applied results from real-time sched- 
uling theory to multimedia applications [3,53,126]. The DASH kernel [3] used an admission 
control algorithm based on a timeline and then used earliest deadline scheduling to actually 
sequence the tasks. Other systems used analyses from real-time scheduling theory to guar- 
antee timing constraints for applications. For example, YARTOS [53] uses algorithms for 
scheduling sporadic tasks [52] to guarantee timing constraints. In order to guarantee perfor- 
mance, the computational requirements of the applications must be measured and analyzed 
along with the timing constraints such as delay bounds. Then the application can be run with 
the expectation that timing constraints will be satisfied. 

In RT-Mach [125], much of the work on support for multimedia applications (other than 
the work described in this dissertation) used the traditional rate monotonic scheduling algo- 
rithm. As with YARTOS, the computational requirements of applications were measured in 
advance and analyzed to ensure that timing constraints would be met. The applications 
could then run successfully on the system. Much of the work on RT-Mach centered on high- 
performance real-time threads packages [92] and QOS managers [127]. 

These systems took a careful approach to analyzing and guaranteeing timing require- 
ments for multimedia applications based on real-time scheduling analyses. They also incor- 
porated advanced real-time system features such as priority inheritance protocols [108] and 
inheritance protocols for deadline scheduling [16]. These features are essential for support- 
ing strong real-time guarantees among programs that share data and interact in other ways. 

2.4.4 Soft real-time system support 

Several multimedia systems have used scheduling algorithms like earliest deadline first 
to make the system more sensitive to timing without necessarily guaranteeing that timing 
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constraints will be met. For example, a system based on Chorus [103] proposed using dead- 
line scheduling with no admission control [21]. Other algorithms such as lottery scheduling 
[133] attempt to support multimedia applications using proportional sharing of resources 
without real-time delay guarantees. A deterministic version of the approach called stride 
scheduling [134] was proposed to better support multimedia applications. 

These types of systems are able to be more sensitive than time-sharing systems to the 
timing constraints of multimedia applications, but without effective admission control, over- 
load cannot be prevented. 

2.5 Reserve abstraction 
The reserve abstraction described in this dissertation addresses several of the key prob- 

lems raised above. The abstraction provides a framework for reasoning about resource res- 
ervation in an operating system. Other research efforts have focused on reservation of 
different resources in isolation. A framework to unify various reservation algorithms is 
needed. 

The reserve abstraction gives resource reservation first-class status in the operating sys- 
tem. Reserves can be allocated independent of any particular process, and references to 
reserves can be passed around and bound to different processes as appropriate. For example, 
a real-time client might pass information about its timing constraints to a server to ensure 
expedited service. This is in contrast to the approach where timing constraints and resource 
usage requirements are associated directly with processes which makes it difficult or impos- 
sible to have one process temporarily take on the timing constraints of another process. 

The key feature of the reserve abstraction is the enforcement mechanism. This prevents 
applications from overrunning their reservations if that would interfere with the timing 
requirements of other reserved activities. 

The reservation framework and first-class status of reserves provide the power and flex- 
ibility to deal with the problems that arise in real-time system design and practical resource 
management. And the enforcement mechanism guaranteed proper resource scheduling. In 
combination, these aspects of the reserve abstraction offer an effective solution to the gen- 
eral real-time programming problem. 
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Chapter 3 

Reserve Model 

This chapter gives a definition of reserves on resources, which form the basis of the res- 
ervation model. Reserves provide a framework for integrating admission control, schedul- 
ing, and usage enforcement. Issues in reserve management are also addressed. 

3.1 Reserve abstraction 
The reservation model defines the concept of a reserve against a particular operating 

system resource. A reserve is a first class object that represents a part of the capacity or a 
quantity of the resource that is set aside for a computation which presents that reserve along 
with a request to use the resource. The word "capacity" is used in a broad sense here: reserv- 
ing a portion of the capacity of a resource means that a thread will have access 10 the 
resource subject to some detailed reservation parameters, and the parameters are specific to 
the resource and the reservation system implementation. As an example, a reserve miiilii 
specify that 30 ms of computation time on the processor are reserved out of every 100 ins of 
real time. 

Reserving resource capacity implies that the resource can be multiplexed among several 
computations, and the model focuses on multiplexed resources such as processors and net- 
work bandwidth. Other types of resources such as physical memory pages and buffers are 
not amenable to extremely fine-grained multiplexing, and these are referred to as discrete 
resources. In this model, discrete resources are reserved on a per unit basis and the reserva- 
tion dedicates the resources units indefinitely rather than implying a multiplexed usage of 
capacity over time. 

3.1.1 Reservation guarantee 

A key requirement in offering a resource reserve abstraction in a system is that the 
reserved resource capacity be available, subject to the reservation parameters, to a computa- 
tion which presents the reserve and requests the resource. If the system cannot guarantee 
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that the resource capacity will be available as promised, the usefulness of the system is lim- 
ited. Therefore, the enforcement of resource reservations is of critical importance. Enforce- 
ment is important not only to protect against malicious users, which may present a problem 
in systems where resources are shared by many, but also to relieve individual applications 
from the burden of ensuring that their own performance is strictly predictable and con- 
trolled. The system should tolerate applications which may try to use more than their reser- 
vation allows, isolating unrelated applications from this kind of behavior. This kind of 
temporal isolation is similar in concept to the isolation provided by a virtual memory sys- 
tem, which allows a process to try to access memory locations as it wishes, intervening only 
when a memory access is not allowed. In no case should a virtual memory system allow a 
process to access the memory of another process's protected memory, and likewise in no 
case should a reservation system allow a thread to impinge on the reserved resource capacity 
of another thread. 

Thus, the system guarantees that resource capacity, given by the reservation parameters, 
will be available to the thread that has a reserve. However, it is up to the application pro- 
grammer to make sure that the thread is in a position to take advantage of the resource 
capacity when it is made available. The reservation system itself makes no claims that a par- 
ticular application will meet its timing constraints. For example, if an application blocks 
indefinitely waiting for a message, it may not be in a position to take advantage of resource 
capacity when it is available. For an application to have predictable real-time performance, 
it must have the proper resource reserves, and it must be able to use those resource reserves 
in a way that satisfies the timing constraints of the application. 

3.1.2 Scheduling frameworks 

The reserve abstraction can accommodate different frameworks for admission control, 
scheduling, and enforcement. Most of the features of reserves, specifically the operations 
available in the reserve abstraction, remain the same even if the scheduling framework 
changes. The primary differences in the interface to a different framework are the specifica- 
tion of the reservation request parameters for admission control and the resource usage sta- 
tistics available from the enforcement mechanism. 

3.1.3 Styles of programming with reserves 

Reserves can be used in two different styles of real-time programming. Reserves support 
strict hard real-time applications and can equally well support more flexible soft real-time 
applications. The primary distinction between hard and soft real-time programming in the 
discussion of the reservation model is: 

• whether resource usage requirements are carefully measured and specified in exact 
detail guaranteeing performance before the program is actually deployed (hard 
real-time), or 

• whether resource usage requirements and resource capacity reservations are 
dynamically adjusted based on run-time usage measurements instead of being 
matched exactly during the design phase. 
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In either case, the resource reserves guarantee the requests that are admitted to the sys- 
tem, and whether or not those reserves are used for hard real-time programming or soft real- 
time programming depends on how the applications themselves use the reserves. 

Another distinction in real-time programming using reserves is whether resources are 
reserved locally for each thread or whether they are reserved globally for an activity' that 
may span multiple threads in different protection domains and even on different machines. 
In the activity-based model of using reserves, the originator of an activity acquires resource 
reserves for the activity and then passes those reserves along with any requests made to var- 
ious servers. Using this model, accounting for resource usage across clients and servers is 
simplified, and the negotiation of quality of service parameters can be simplified as well. 
The reserves for each request come in with the request, and the server charges resource 
usage to those reserves when servicing the corresponding request. The responsibility of get- 
ting the appropriate resource reserves falls to the original client. 

To summarize, several features of reserves are useful for both hard and soft real-time 
programming: 

1. Take care of global admission control decisions, relieving the designer of doing 
global scheduling analysis. 

2. Schedule threads on resources according to their reserves. 

3. Accumulate usage information that could be useful during development, especially 
for adaptation in soft real-time applications. 

4. Prevent interference from other real-time applications and non-real-time applica- 
tions and activities that may be competing for the same resources. 

5. And finally, reserves can serve either to separate the resource allocation and man- 
agement of modules from each other or to integrate the resource allocation and 
management of modules, allowing reservations to span multiple threads and pro- 
tection domains of a single activity. 

3.2 Basic reserves 
The basic reserve provides an abstraction for capacity on a particular resource. Note that 

this statement about basic reserves does not guarantee that applications will meet their tim- 
ing requirements. The only guarantee is that capacity will be reserved and available to be 
used. We will explore the issue of what guarantees can be made at a higher level about the 
behavior of applications that use reserves. 

The reserve itself is an operating system abstraction that is orthogonal to control struc- 
tures like threads. A thread may bind to a resource reserve in which case the scheduler will 
use the information in the reserve when making scheduling decisions about the thread. Mul- 
tiple threads may be bound to a single reserve, but typically a reserve will have only one 
thread bound to it at a time. The scheduler will always find an associated reserve, although 
sometimes that reserve will be a default reserve which has no actual reservation and just 
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serves to accumulate the resource usage of all threads that make unreserved use of the 
resource. 

The specification of the reservation depends on the type of resource. Multiplexed 
resource reservations include information about the amount of work to be done per period o\ 
real time. They may also include a delay requirement. This parameter would specify the 
maximum amount of time after the beginning of each period the thread will have to wait 
before getting its reserved time on the resource. Discrete resources reservations just specify 
a count of the units of discrete resource required; they include no notion of time. 

Despite the differences between multiplexed and discrete resource reservations, they 
share the same basic structure. They both require: 

1. a reservation specification interface, 

2. an admission control policy, 

3. a scheduling policy, and 

4. an enforcement mechanism. 

For discrete reserves like memory pages and network buffers, the reservation specifica- 
tion gives a number of units of resource being requested. The admission control policy for 
discrete resources would just check the availability of the requested number of units of 
resource. Since discrete reserves are by definition not multiplexed, they require no .schedul- 
ing. 

It is important to note that the basic reserve abstraction is independent of the admission 
control and scheduling policies used. For multiplexed resources, reserves provide a frame- 
work to request resource capacity reservations, do admission control, schedule computa- 
tions, and enforce capacity reservations. The choice of admission control and scheduling 
policies will impact the way reservation requests are specified and the way the enforcement 
mechanism tracks their behavior, but the framework is general enough to accommodate dif- 
ferent policies. The following sections illustrate the reserve model in terms of a periodic 
scheduling framework. 

3.2.1 Reservation specification 

The reservation system must provide a way for applications to specify the resource 
capacity they would like to reserve. The form of the specification differs from resource to 
resource, and different admission control and scheduling policies may require different res- 
ervation specification parameters. In the most general sense, reservations specify a duration 
of usage with some time constraints be available, used, and replenished by some specific 
regimen. 

As an example of the kind of parameters that might appear in a specification, a resource 
reservation may specify an amount of time to be spent on the resource per period of real 
time, and it may specify a start time for the periods as well. For example, a reservation 
request might specify 30 ms every 100 ms starting at 1:00pm. 
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Figure 3-1 illustrates how the reserved time might be consumed in a simple computation 
time per period of real time framework for reserves. The reserved computation time is avail- 
able to be used during each reservation period. The computation time is guaranteed to be 
available at some point during the period; it is not guaranteed to be in any particular place 
such as the front of the period or the end of the period. 

Reserved 
computation 

time 
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\^ H time 
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Figure 3-1: Periodic Scheduling Framework 

There are many different scheduling policies and scheduling analysis techniques that 
could be used to provide a reserve abstraction, each of which would require a corresponding 
admission control test, scheduling policy, and enforcement mechanism. 

3.2.2 Admission Control 

An admission control policy associated with each resource decides which reservation 
requests for that resource can be admitted and which must be denied. It makes this decision 
based on the parameters provided in the reservation request and information about the other 
reservations that have already been granted for that resource. The admission control policy 
necessarily depends on the scheduling policy in order to do an admission control analysis. 

3.2.3 Scheduling 

The scheduling algorithm for a resource makes decisions about the order in which 
threads receive time on a resource. The scheduler looks at the reserve owned by each thread 
that is ready to run, and uses information in the reserve to determine which thread will get 
access to the resource. The algorithm supports the decision made by the admission control 
policy. 

The scheduler must also coordinate with the enforcement mechanism to make sure that 
it does not try to schedule threads associated with a reserve that has already used its reserved 
resource time for a particular reservation period. Thus a reserve which still has time left on 
its reservation is in "reserved mode" and one that has run out of time is temporarily in "unre- 
served mode." This represents a significant departure from other real-time scheduling algo- 
rithms, which generally assume that the resource usage requirements of application are 
accurately characterized and need not be enforced [67]. 
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3.2.4 Enforcement 

The reservation system must ensure that processes do not use more than their reserved 
capacity or reserved units of a resource. Enforcing reservations on discrete resources is 
straightforward; the system ensures that a resource dedicated to one process is not re-allo- 
cated to another process. Enforcing multiplexed reservations requires the system to keep 
accurate usage numbers that describe how much capacity has been consumed against each 
reservation. If a thread attempts to use some capacity beyond its reservation, the system 
must recognize this and actively prevent the process from consuming any additional capac- 
ity in reserved mode (consuming additional capacity in an unreserved mode may be 
allowed.) 

If for some reason the reserved time on a resource is not used by the owner of a reserve 
in a given reservation period, that allocation of time is lost to the owner. The owner may not 
be in a position to use the resource if it is blocked waiting for some other resource to become 
available or for synchronization or communication with another computation. The resource 
will not necessarily be idle for that amount of time since the scheduling policy is free to 
allow an unreserved computation to use the resource (as long as the unreserved computation 
can be preempted to allow the reserve owner to use the resource). This implies that a com- 
putation may not save up reserved time (by not using it) and then use it all at once in a burst. 
The allocation of resource time is available during each period, but cannot be carried over 
past the end of the period. 

On the other hand, if the thread that owns a reserve consumes the entire reserved alloca- 
tion for a reservation period and attempts to continue executing, the thread will compete 
with the other unreserved computations for the resource under whatever policy the resource 
scheduler uses for unreserved computations. Thus a reserve may be in reserved mode where 
it still has some resource usage allocation left for the current reservation period, or it may 
temporarily be in unreserved mode where the allocation for the current reservation period is 
depleted (until the next reservation period). 
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Figure 3-2: Enforcement Illustration 
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Figure 3-2 shows the reserved time made available on a particular resource for a single 
reservation. At the beginning of each reservation period, the allocation of reserved time is 
replenished, and the thread that has this reservation uses the resource in "reserved mode." 
After the reserved time allocated for that period is depleted, the enforcement mechanism 
generates a scheduler event to indicate that the reserved time has been consumed for that 
period. The scheduler is responsible for using that information in making scheduling deci- 
sions. In the figure, the thread continues to use the resource in "unreserved mode," consum- 
ing more time on the resource at the discretion of the scheduler. The execution history 
shown in the figure is based on the assumption that no other threads compete for the 
resource and that the policy lets it run in timing-sharing mode after its reservation has 
expired, and so the thread can get time in unreserved mode. At the beginning of the next res- 
ervation period, the reserve is replenished and the thread can run in reserved mode again. 
The main point of this figure is that the enforcement mechanism tracks resource usage and 
raises this "reserve depleted" event for the scheduler. The scheduler can then use this infor- 
mation in making future scheduling decisions. For example, it can give other reserved aciiv- 
ities preference or allow unreserved time-sharing activities to use the resource. 

Three important issues arise in the design of the enforcement mechanism: 

1. how to accurately accumulate resource usage, 

2. how to notice that a thread has depleted its reserve for a resource, 

3. how to know when to replenish the allocation of a reserve. 

To accurately accumulate the resource usage for each reserve, the system records the 
time during each reserve switch. A reserve switch occurs in two cases: when a thread con- 
text switch is performed or when a thread is changing the reserve against which it will 
charge its computation time. In the case of a thread context switch, the reserve switch 
records the current time, cancels the overrun timer (which signals the reserve depletion 
event as described below), computes the time the old thread ran, and adds that time to the 
accumulated usage of the old thread. The reserve switch mechanism then saves the current 
time for use later in computing the computation time of the new thread and sets the overrun 
timer. A reserve switch triggered by a thread changing the reserve to which it wants to 
charge its computation time works the same way, the only difference is how the reserve 
switch is triggered. Figure 3-3 illustrates how timers are used in enforcement. In the execu- 
tion history on the timeline, it shows the reserved activity of interest in a solid pattern and 
some other activity (associated with other reserves) in a striped. The reserve switches (also 
context switches in this example) between these activities occur where the striped boxes and 
the stippled boxes meet. 
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Figure 3-3: Enforcement Timers 

The overrun timer is set during the reserve switch to expire at the end of the new 
thread's remaining reserved computation time or at the end of its reservation period, which- 
ever is earlier. If the new thread is preempted before its reserved computation time is com- 
pleted, the overrun timer will be cancelled. If the new thread consumes all of its reserved 
time, the overrun timer expires, and the scheduler is called to take some action based on that 
event. Figure 3-3 shows where the overrun timer is set for the reserve of interest; the over- 
run timer may also be set for the other activity if it is reserved, but that is not shown in the 
figure. The overrun timer in the figure does not actually expire until the last time it is set. 

The handle replenishment, each reserve has a replenishment timer which is started at the 
reserve start time and which expires periodically at each reservation period. The replenish- 
ment timer records the usage accumulated on the corresponding reserve at the time of the 
reservation period and records that along with the current time as a "usage checkpoint." 
Then the timer handler changes the state of the reserve to reflect a new allocation of 
resource usage and resets the periodic replenishment timer. This replenishment model corre- 
sponds to a deferrable server [120] replenishment scheme; other replenishment methods are 
described and analyzed by Sprunt [111,112]. Figure 3-3 illustrates where the replenishment 
timer is set relative to the reservation period. 
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3.3 Reserve propagation 

One important feature of the reserve model is that reserves can be passed from clients to 
servers, enabling the server to take advantage of the resources the client reserves for its 
entire computation. Passing reserves also enables the server to charge the resource usage it 
consumes to the appropriate client, preserving system-wide consistent usage accounting. 
This is called reserve propagation. 
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Figure 3-4: Reserve Propagation 

Figure 3-4 illustrates a client/server interaction with reserve propagation. Assume that 
the client acquires resource reservations sufficient for the computation that it will perform 
locally as well as the computations to be done by servers on the client's behalf. In the figure, 
these reserves appear in the clients as two small rectangles. The interaction is a straightfor- 
ward remote procedure call from the client to the server. For simplicity, assume that the cli- 
ent sends an RPC request to the server and waits for the reply. The server processes the 
request and sends an RPC reply, and then the client receives the reply. 

When the client send the service request, it also sends references to the reserves that it 
has allocated. These reserves are to be used by the server as it processes the client's request. 
Thus, the server must start charging its resource usage to the client's reserves when it starts 
processing that request, and it must stop charging to those reserves when it finishes with the 
request and sends back the response. 

Ideally, a server would schedule service requests to execute in the same order thai the 
computations would execute if the clients could do them instead of the server. For example. 
the processor scheduler orders ready threads based on the processor reserve parameters 
This ordering can be seen as a sort of "priority" ordering among those activities. If a thread 
makes a request of a server, the server should take the "priority" in the scheduler's ordering 
while it is servicing that request. Then the fact that a client relies on a server for some com- 
putation does not affect the progress of its computation with respect to other threads. 

To help the server achieve this ideal, the RPC mechanism should propagate the reserve 
"priority", as represented by the reserve and its reservation parameters, of the client to the 
server. The queue of service requests for the server must be maintained in reserve "priority" 
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order, and a kind of "priority inheritance" must be used to prevent priority inversion in the 
access to the server. 

On the receipt of a new service request, his "reserve priority inheritance" mechanism 
enqueues the request in the priority queue, and then it checks to see if the thread that will 
service the requests is waiting for new requests or servicing a previous request. If the thread 
is busy and the "priority" of the new request is greater than the "priority" of the currently 
processing request, the RPC mechanism sets the priority of the thread so the priority of the 
new request. It does not, however, change the reserve that the thread is charging against. 
When the server thread finishes the previous request and receives the new request, it keeps 
the priority of that new request (which it inherited before) and also begins charging to the 
reserves associated with the new request. When the request is finished, the server thread 
stops charging against the client's reserves. 

The "priority" inheritance mechanism described here, which is referred to as "reserve 
propagation", differs from traditional priority inheritance in two ways: 

1. reserve propagation specifies how a server should change the reserves it charges to 
based on the client it is servicing whereas traditional priority inheritance has no 
notion of charging to a reserve or account, 

2. the "priority" of the server may change during the course of the request processing 
if the reserved resources are depleted during that time whereas with traditional pri- 
ority inheritance, the priority is fixed. 

The fact that a server's "priority" may drop during request processing complicates 
reserve management and reserve "priority" inheritance. When a reserve is depleted, the 
scheduler must determine whether the thread charging against the reservation inherited the 
reserve "priority" or not. If not, the thread's order in the ready queue may change. If so. the 
scheduler must determine from the threads pending request queue what the appropriate 
reserve "priority" for the thread should be, given the change in the state of the reserve that 
was depleted. 

Reserve propagation from client to server is not mandatory. The next chapter discusses 
different programming models where this is useful and where it is not. Briefly, reserve prop- 
agation is useful when the system is organized such that an application allocates the 
resource reserves it will need for all of its activities and passes those reserves around to the 
servers it invokes to do work on its behalf. In this model, applications need not negotiate 
quality of service parameters explicitly with these servers. The scenario where reserve prop- 
agation is not that useful is where the system is organized such that applications negotiate 
quality of service explicitly with all of its servers. 

3.4 Example scheduling frameworks 
Many different admission control and scheduling policies could be used to support the 

reserve abstraction. For example, reserves based on rate monotonic scheduling [67] would 
be able to guarantee the availability of a certain amount of time on a resource per period of 
real time. For pure rate monotonic scheduling, the delay associated with receiving the com- 
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putation time in each period would be the length of the period itself. For deadline monotonic 
scheduling [64], the delay bound could be shortened. The following sections discuss these 
frameworks and others in more detail as they apply to the reserve abstraction. 

3.4.1 Rate monotonic 

The rate monotonic (RM) priority assignment of Liu and Layland [67] can guarantee 
that a certain amount of computation time will be available for a reserve for each period of 
real time with a delay bound equal to the length of the period. The discussion of rate mono- 
tonic scheduling uses the word "task" to denote the series of instances of a computation; 
with reserves, it is understood that this computation represents available resource capacity 
and not necessarily a complete program. Under rate monotonic scheduling, higher priority is 
assigned to the higher frequency programs. The rate monotonic scheduling analysis yields a 
basis for a processor reservation admission policy. 

3.4.1.1 Reservation parameters 

Reservation parameters for the simplest form of rate monotonic based reserves include 
computation time and reservation period: A start time is also useful for controlling the phase 
of the periodic reservations. This allows the programmer to synchronize the availability of 
the reserved computation time with a periodic program. 

3.4.1.2 Admission control decision 

Let n be the number of periodic tasks and denote the computation time and period of 
program i by Ct and T-r respectively. Liu and Layland proved that all of the tasks would 
successfully meet their deadlines and compute at their associated rates if 

n 

X^«(21//l-l) 
i=\ 

1 / n 
When n is large, «(2 - 1) = In 2 = 0.69 . This bound is pessimistic: it is possible 

for task sets which do not satisfy the inequality to successfully meet their deadlines, but this 
cannot be determined from the Liu and Layland analysis. 

An admission control policy follows naturally from this analysis. To keep track of the 
current reservations, the system must remember the utilization of the tasks that have 
reserved computation time, and the total reservation is the sum of these individual utiliza- 
tions. A simple admission control policy is to admit a new reservation request if the sum of 
its utilization and the total previous reservations is less than 0.69. Such a policy would leave 
a lot of computation time that could not be reserved. One possibility is to use that time for 
unreserved background computations. Another possibility is to use the exact analysis of 
Lehoczky et dl. [63] to determine whether a specific collection of reservations can be sched- 
uled successfully, although the exact analysis is more expensive than the simple, pessimistic 
analysis above. In their work, Lehoczky et al. also gave an analysis showing that on aver- 
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age, task sets can be scheduled up to 88% utilization. So in most cases, this unreservable 
computation time is only 10-12% rather than 31%. 

It should be noted that the rate monotonic scheduling algorithm was analyzed under sim- 
plifying conditions. Liu and Layland [67] made the following assumptions to enable their 
analysis: 

• arrivals are periodic, and the computation during one period must finish by the end 
of the period (its deadline) to allow the next computation to start. 

• the computation time of each program during each period is constant. 

• computations are preemptive with zero context switch time, and 

• computations are independent; i.e. computations do not synchronize or communi- 
cate with other computations. 

In the context of the reserve abstraction, this means that rate monotonic scheduling can 
be used to guarantee that resource capacity is available to the applications. However, appli- 
cations that have precedence constraints with other applications may not be in a position to 
use the available resources. 

3.4.1.3 Scheduling 

Reserved mode activities get precedence over unreserved. Among reserved mode activi- 
ties, smaller period gets precedence over larger. Among unreserved activities, some time- 
sharing algorithm may be in effect. 

3.4.1.4 Enforcement 

Accumulate usage in each period. Update usage (determined using accurate measure- 
ment techniques) at each context switch. Set a timer for the currently running activity to 
expire at the end of its reserved usage. Set another timer for each reservation period. 

3.4.2 Deadline monotonic 

The deadline monotonic scheduling (DM) algorithm [7,64,66] is closely related to the 
original rate monotonic (RM) algorithm [67]. DM has the same kind of periodic scheduling 
frame as RM; the difference is that with DM, there is an additional parameter called the 
deadline specifies the duration of time by which the computation released at the beginning 
of the period must be completed. For the original version of RM, this deadline is assumed to 
be the end of the period, when the next instantiation of the computation will be released. For 
DM, this deadline is specified explicitly. 
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Figure 3-5: Deadline Monotonie Scheduling Framework 

Figure 3-5 illustrates the periodic scheduling framework of DM along with the addi- 
tional deadline parameters that does not appear in the original RM algorithm. The deadline 
in this case is before the end of the period, but it could also be after the beginning of the next 
period (in which case there would be multiple instantiations of the computation, started in 
different periods, at one time). 

3.4.2.1 Reservation parameters 

The reservation parameters for DM are the same as RM with the addition of the deadline 
parameter. As an example, a reservation request may specify 30 ms on the resource be 
reserved for every 100 ms with the delay constraint that the 30 ms must be available within 
50 ms of the beginning of each 100 ms period. As for rate monotonic scheduling, a start time 
parameter is useful for synchronizing reservations with periodic threads and with other res- 
ervations. 

3.4.2.2 Admission control decision and scheduling 

Schedulability analysis tests for DM are given by Lehoczky [64J and by Audslcy et al. 
[7]. These tests are quite a bit more complicated than the simple schedulability bound test 
for RM, involving systems of equations that have to be checked. Even so. the schedulability 
tests provide suitable admission control decisions for a reservation mechanism based on 
DM. 

Scheduling is based on the deadline monotonic algorithm that assigns fixed priorities to 
tasks based on the deadline value. Shorter deadlines are assigned higher fixed priorities than 
longer deadlines. As with the rate monotonic algorithm, the reservation mechanism distin- 
guishes between reserved mode activities and unreserved mode activities. At the beginning 

107 



of any given reservation period, an activity with a reservation is in reserved mode until it 
consumes all of the reserved time for that period. It is then changed to unreserved mode. The 
scheduler services reserved mode activities first, in order of their deadline values. If there 
are no reserved mode activities, unreserved activities are scheduled. 

3.4.2.3 Enforcement 

The enforcement mechanism accumulates usage in reserved mode until one of the fol- 
lowing occurs: the resource usage reserved for that period is consumed or the deadline time 
has passed. In either case, the activity is changed from reserved mode to unreserved mode 
where it can compete with time-sharing activities for the resource. 

3.5 Basic reserve types 

Operating systems manage many different kinds of resources that system and user pro- 
grams may use to do their work. The most important examples are processors, physical 
memory, buffers, and network bandwidth. 

Processor 
Capacity 
Reserves 

Network 
BW 
Reserves 

Reserve 
Abstraction 

Resource 
Abstraction 

Hardware 
Resources 

Processor 
Capacity 
Resource 

Network 
BW 
Resource 

Figure 3-6: Resources and Basic Reserves 

Many of these resources must be managed in the reservation system, so we define basic 
reserves, which are used to reserve and control the usage of different types of system 
resources. Each basic reserve type is associated with a resource type in the system. Figure 3- 
6 illustrates the relationship between the operating system resources and the basic reserves. 
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3.5.1 Processor 

Processor capacity reserves represent reserved time on a processor. Reserve requests 
specify capacity in terms of time that will be reserved on the processor, rather than in terms 
of instructions that will be executed or any similar measure of processor usage. The requests 
may specify other information, depending on the admission control and scheduling policy in 
effect. The discussion in the following sections assumes a deadline monotonic scheduling 
framework where the reservation request specifies the amount of time to reserve on the pro- 
cessor, a period at which the allocation will be replenished, and a delay bound. These sec- 
tions will cover these topics in more detail and will additionally discuss issues in 
enforcement, blocking time, and usage monitoring. 

3.5.1.1 Units of work 

Processor reserves deal with allocating real time on a processor rather allocating a 
sequence of instructions. The reason for this is that reserving instructions would be too diffi- 
cult. It would require knowing the exact sequence of instructions to be used with the reser- 
vation, fixing the exact sequence for accuracy (to avoid cache effects, etc.). allocating a time 
slot on the processor to execute those instructions, etc. 

Several pitfalls complicate the use of this reservation model that is based on time spent 
on the processor. For example, DMA can impact the amount of work that gets done in a cer- 
tain amount of time spent on the processor. Cache effects can introduce variance in the 
amount of work per time on the processor. Processor pipeline flushing at context switches 
decreases the amount of work done during a fixed time on the processor. These are all sec- 
ond order effects, but their impact should be accurately characterized. 

Processor reserves leave it to the individual applications and other higher-level software 
to make an appropriate mapping between the computational requirements of the applica- 
tions to the appropriate reservation specification. For hard real-time applications, accurately 
characterizing processor requirements is very important. For soft real-time applications, an 
adaptive approach is the key to dealing with the fact that reservations are for time on the 
processor rather than work done by the processor. These applications can look at their own 
behavior and make adjustments as necessary. 

3.5.1.2 Admission control and scheduling 

For processor reserves in a rate monotonic scheduling framework, a reservation request 
consists of three parameters: a computation time, a period, and a start time. The admission 
control and scheduling policies described here are based on rate monotonic scheduling [67] 
as described above. 

3.5.1.3 Enforcement 

The enforcement mechanism for processor reserves must keep track of the processor 
usage for each reserve so that a scheduling event can be raised at the point where the 
reserves allocation has been depleted for a given reservation period. The usage measure - 
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ment task is complicated by the fact that a thread charging to a particular reserve may be 
preempted, and so at each thread context switch, the usage numbers must be updated to 
reflect the usage since the last context switch. 

Accurately accumulating resource usage 

To accurately accumulate resource usage in the face of preemptive use of the resource, 
the system must, at each context switch, compute the usage since the last context switch. 
This can be achieved by recording the start time of the computation (at the last context 
switch) and then computing the difference between the time at the current context switch 
and the time of the last context switch. This is the time the last thread was using the proces- 
sor resource, and this time is added into the usage accumulator for that thread's reserve. 
Thus the accumulator keeps an accurate account of the resource usage charged to it. 

Noticing reserve depletion 

The enforcement mechanism must be able to notice when the reserve of the currently 
executing thread becomes depleted. To do this, the system at each context switch computes 
the longest contiguous time the thread is entitled to execute on its reserve, and it sets a timer 
for that time. If a context switch occurs before the timer expires, the accumulators are 
updated and the timer is set for the next thread to execute. If the timer expires while the 
thread is executing, the system updates the accumulators, marks the reserve as "inactive", 
and calls on the scheduler to make some decision based on the new state of that reserve. 

Replenishing a reserve's allocation 

Each reserve must have its allocation replenished at the beginning of each reservation 
period so that the time on the resource is available if it is needed during that period. To do 
this, the system uses a periodic timer for each reserve which is set to expire at the beginning 
of that reserve's reservation period. When the timer expires, the state of the reserve is 
updated to reflect a full allocation of resource usage for the upcoming period. 

3.5.2 Physical memory 

A physical memory reserve represents a collection of physical memory pages. Physical 
pages are discrete resources, so they support simple discrete reservations. The more interest- 
ing question is how the owner of a page reserve uses this collection of physical pages. Basi- 
cally, pages can be locked down or paged in and out, and they can be prefetched or demand 
paged. A small application which could fit into its page reserve would benefit from 
prefetching its image into the page reserve and locking down the pages. A larger application 
might benefit from prefetching and locking down some (more frequently used) pages while 
keeping other physical pages available for less frequently used logical pages to be paged in 
and out. The advantage of using physical page reserves for these larger applications is in the 
increased control reserve give the application over traditional time-sharing demand paging 
replacement policies. With physical page reserves, the owner of a page reserve will at least 
be isolated from competition for pages with other threads in the operating system. 
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3.5.2.1 Admission control and scheduling 

The admission control policy for this discrete resource is as follows: if there are enough 
free physical pages to satisfy a reservation request, then the reserve is granted: otherwise the 
reservation request is denied. The physical page reserve contains the number of pages that 
are reserved, and these pages are completely free and ready to be used by the thread thai 
owns the reserve. The system may want to keep some number of physical pages as '"unrc- 
servable" pages to allow time-sharing threads enough resources to make progress. 

There is no scheduling of the use of pages by the reserve mechanism. 

3.5.2.2 Enforcement 

The enforcement of reservations for this discrete resource is relatively straightforward: a 
thread that has a physical memory reserve can use pages in its own memory pool and can 
also use pages from the time-sharing free page pool. Thus a thread using a physical memory 
reserve is assured of having at least the reserved number of pages available and possibly 
more. At no time will the pool of pages in the reserve fall below the reserved number. 

3.5.3 Network bandwidth 

Reserves for network bandwidth represent reservations for time on the network device. 
The system must include a mechanism for identifying the reserve to be used for incoming 
network packets. These reserves will typically be closely coordinated with processor capac- 
ity reserves and with bandwidth reservation supported by the network. The operating system 
will control the amount of outgoing traffic for each session (or virtual channel), and it will 
ideally coordinate with a network reservation system to limit the amount of incoming traffic 
for each session. 

3.53.1 Units of work 

The unit of work for a* network bandwidth reserve is the transfer of a number of packets 
of a particular size (which will probably be constant, the MTU). Servicing of single packets 
is certainly non-preemptive, and it should also be possible to bundle multiple packets into 
non-preemptive work units. 

3.53.2 Admission control and scheduling 

The reservation specification for net bandwidth reserves includes a reserved time per 
period of real time, and possibly an indication of expected blocking time. 

Timeline or rate monotonic scheduling frameworks among others would be appropriate 
for net bandwidth reserves. Several important issues relate to the non-preemptive nature of 
the work unit. Ideally, the expected blocking time would be used in the admission control 
policy and scheduling algorithm. 
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3.5.3.3 Enforcement 

Accurate measurements of usage time can be computed between requests. This informa- 
tion can then be used in the enforcement mechanism and for input into scheduling policy 
decisions. 

3.6 Reserve management 

3.6.1 Default reserves 

Default reserves exist in the system to simplify the implementation of the reservation 
mechanism by providing "reserves" for non-real-time programs to charge usage against. 
These default reserves do not actually represent reserved resources, but they do accumulate 
usage for all activities that have created their own reserves or had reserves created for them. 

For example, new threads are assigned to run under the default processor capacity 
reserve when they are created. Thus a thread will charge its time to this global reserve until 
it acquires a reserve of its own. 

3.6.2 Composite reserves 

Having many types of reserves allows flexibility in specifying resource requirements to 
the system and in allocating resources, but the job of managing those resource reservations 
at the user level becomes more involved. For example, a multimedia application, such as a 
video player, might reserve resources for several constituent activities. It might reserve 
some processor capacity for the module which reads audio and video data from the disk and 
passes the data to an audio server and a display server. It might also reserve processor 
capacity for a control module which provides fast response to interactive control commands 
from the user. The player part might also reserve physical memory and message queue buff- 
ers at the file system manager. Each of these reservations has an associated reserve, and we 
would like to be able to collect a subset of these reserves under a single name to avoid hav- 
ing to refer to them individually. 

Grouping related reservations together helps alleviate this complexity. The model 
allows reservations for different types of resources, and the situation arises where a program 
has reserves for several different resources. Since it has to present the appropriate reserve 
handle to be able to use a resource, a way of grouping all of the reserves under one handle 
would make it easier for the program to identify its reservations to the system and to the 
servers it invokes. 

A composite reserve groups reserves for different resource types under a single handle. 
A composite reserve has the following properties: 

• it will contain a number of basic reserves, 

• it may contain only basic reserves (no composite reserves), 
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it may contain at most one reserve for each basic resource type 
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Figure 3-7: A Composite Reserve 

Figure 3-7 shows the relationship between a composite reserve and its constituent basic 
reserves. In the video player example above, we might collect all of the reserves to be used 
by the player part (processor, physical memory, and message queue buffers) into a compos- 
ite reserve. Then the system could use this reserve to reference the collection of resources 
reserved for the player. To charge computation time to the player, the system would take 
this reserve and look for the processor reserve under it. 

3.6.3 Reserve inheritance 

When a process creates a child process, the reserve of the parent is passed to the child, 
and the child runs against the resources reserved in the inherited reserve. This feature pro- 
vides a way to allocate resources for non-real-time activities that create large process trees 
(like "make"). Reserve inheritance is appropriate for the automatic propagation of reserves 
for non-real-time programs, but real-time programs should generally configure their 
resources reserves explicitly. Figure 3-8 shows the difference between a process P whose 
children do not inherit its resource reserves and another process Q whose children and other 
descendants do inherit its resource reserves. 
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Figure 3-8: Reserve Inheritance 

3.7 Chapter summary 
This chapter described the basic reserve abstraction including reservation specification, 

admission control, scheduling, and enforcement. The idea of reserve propagation where a 
client hands reserves to a server to which it sends a request for service is shown to be a pow- 
erful mechanism for making reservations on a per-activity basis (rather than a per-thread 
basis). Several different scheduling frameworks which could be used in an operating system 
supporting the reserve abstraction were described, and the chapter discussed several differ- 
ent types of basic reserves for various resources such as: processor time, physical memory, 
and network bandwidth. A section on reserve management described default reserves, com- 
posite reserves, and reserve inheritance which address some practical issues in using 
reserves in a real system. 
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Chapter 4 

Programming with Reserves 

This chapter describes how to write programs that take advantage of resource reserves to 
satisfy their timing constraints. It focuses on three main issues: How should reserves be used 
in an application given that it uses various modules, external servers, and system services in 
the course of its computation? And also: How should the reservation parameters, particu- 
larly the reserved resource usage parameter, be initially chosen? How should they be 
adjusted given that applications must support different platforms and may have computa- 
tional requirements that depend on changing input data? 

4.1 Overview 
This chapter describes the major issues involved in programming with reserves includ- 

ing the design decisions and tradeoffs that a programmer must make. The specific issues 
addressed are: 

• How to structure programs to take advantage of reserves. 

• How to map reserves onto a program's structure. 

• How reservation parameters should be sized. 

• How adaptive programs should adjust reservation levels. 

One can think of a program as a graph of computational nodes, and each computational 
node has a reserve associated with it. Determining exactly what reserves should be allo- 
cated, what their reservation parameters should be, and how reserves should be associated 
with these computations involves design decisions that impact the program structure. 

For example, the programmer must decide whether applications that depend on each 
other will explicitly negotiate timing requirements among themselves for the specific ser- 
vices they provide to each other. The alternative is to allocate resource reserves for their 
combined activity and then pass those reserves along as the abstract "activity" passes from 
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one to the other. In the first case, the partitioning of requirements and the explicit specifica- 
tion of timing requirements for each computation in each application creates a great deal of 
bookkeeping that has to be done. In the latter case, the requirements summarize the entire 
activity without specifying each detail along the way. As long as each phase of the activity 
adheres to a few rules such as not introducing unnecessary delays into the overall activity, 
the same high-level timing requirements can be satisfied without excessive dissection of the 
programs. 

Another design decision addressed here relates to the flexibility of applications that use 
reserves. Hard real-time applications would typically specify fixed reservation parameters. 
Adaptive programs might be able to monitor their resource usage and adjust reservation 
parameters to fit their behavior over time. They might even be able to select different algo- 
rithms with different semantics and different performance characteristics to tune their com- 
putation time. 

Finally, this chapter addresses the issue of programming with multiple resources. This 
requires applications to be broken into sub-computations at points where different resources 
are required. Coordinating resource reservations on multiple resources to satisfy end-to-end 
timing constraints requires careful design. Two approaches using reserves are described. 

4.2 Using reserves in application design 
This section focuses on the structure of applications and how reserves fit into that struc- 

ture. Programs are considered to comprise one or more concurrent activities. Each activity 
might have a thread associated with it, and each activity has ä call graph describing the sub- 
routines that are called by each subroutine. The call graph is extended to include calls to 
external servers or system services made by each subroutine. 

The following sections describe these extended call graphs and address the coordination 
of reserves between reserved modules, reserved clients and servers, and reserved operating 
system services. 

4.2.1 Program structure 

To understand the timing constraints and resource requirements, one must consider the 
structure of application code. This section describes how an application might be divided 
into separate activities. It describes how a periodically executed computation in an activity 
might be broken down into sub-computations by splitting computations at procedure calls, 
remote procedure calls (RPCs), and system traps. The result is like a call graph that includes 
"calls" to servers and to the operating system. 

For the purpose of this analysis, an activity is defined to be an abstract thread of control 
that starts out in a process and moves in and out of user-level servers and the operating sys- 
tem as calls are made to those servers and the system. This is similar to threads traversing 
objects in Clouds [26]. Such an abstract thread model corresponds to a synchronous pro- 
gramming style, which is in contrast to an asynchronous programming style where activities 
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are essentially "forked" by making asynchronous service requests to external servers or ker- 
nel primitives. For example, consider an animation application that synthetically generates 
animation frames in real time. The application consists of two activities: one to generate and 
display animation frames and one to process user interface events such as requests to resize 
the animation window. 

Each of these activities may call modules in the same address space, make RPCs 10 serv- 
ers, or make system calls. By this definition, when a (synchronous) RPC is made 10 a server. 
the activity "moves" to the server for the duration of the server's compulation and then the 
activity returns to the client when the call returns. If the server were to call another server 
synchronously, the activity would move to the second server for the duration of the call. The 
same is true of a system call. When a system call is made, the activity "moves" to the oper- 
ating system and returns when the call returns. 

An activity may be periodic. For example, consider the frame generation activity of the 
animation application. Suppose this activity originates in a subroutine (called 
process_frame) that is invoked periodically every 33 ms to process and display frames. Now 
suppose process_frame calls generate_frame and display_frame, which eventually performs 
an RPC to a window system server that accesses the frame buffer. Figure 4-1 shows an 
example call graph rooted at the function process_frame. 

* process_frame 

generate_frame display_frame 

Client 

DisplayBitmap 

Server ± ServerDisplayBitmap 

Figure 4-1: Call Graph for Frame Generation and Display 
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This call graph includes an RPC from the client to the server. The DisplayBitmap sub- 
routine makes the RPC in the client, and the ServerDisplayBitmap subroutine in the server 
continues the activity. Thus, this graph captures all of the sub-computations of the animation 
activity. 

4.2.2 Reservations for periodic computations 

Given that the process_frame subroutine shown in Figure 4-1 is invoked periodically, 
the thread would "release" the computation periodically by using a while loop with a delay 
primitive or by setting a period attribute in the case of RT-Mach's periodic threads [125]. 
Thus, the activity has an initial release time and a period parameter. To associate a processor 
reserve with this activity requires that a reserve be allocated with a start time and period that 
corresponds to that of the process_frame activity. It is possible to bind a periodic thread that 
attempts to execute its computation every 40 ms to a reserve that has a reservation period of 
50 ms. This is not recommended, however, because the resources would not necessarily be 
available when the activity was released. 

Thread 
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|     | Thread computation 
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Thread 
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|    1 Thread computation 
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Figure 4-2: Thread and Reserve Out-of-Phase 
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Figure 4-2(a) illustrates a case where the thread period is not aligned with the reserve 
period, resulting in undesirable delays. In part (a) of the figure, the reserved computation 
time is not available until near the end of the thread's period. Thus the thread cannot start 
running until the very end of its period, and it misses its deadline at the end of the period. 
The problem is that the availability of the reserved time did not match the availability of the 
thread. Figure 4-2(b) shows the case where the thread period and reservation period are syn- 
chronized. This means that the thread will be ready when the reserved computation time is 
available, and the reserve guarantees that the reserved computation time will be available by 
the end ofthat period, so the thread is assured of being able to complete. 

4.2.3 Localized reserve allocation 

Consider the resources required in each node of the call graph in Figure 4-1. Assume 
that generate_frame requires only the processor. For nodes under display_frame, assume the 
frame buffer is mapped into the window system server's address space and that the proces- 
sor is the only resource required. 

process_frame 

generate_frame display_frame 

Server ^ 
ServerDisplayBitmap 

Figure 4-3: Call Graph with Separate Client and Server Reserves 

With these assumptions, one approach to allocating reserves for the sub-computations 
would be to allocate a processor reserve for all of the nodes in the animation application and 
another processor reserve for the nodes in the window system server. Thus, the server would 
have a reserve allocated for each of the clients holding open connections to it. This approach 
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is necessary in the case where the server resides on a remote machine, but it may be pre- 
ferred even when both utilize the same processor. Figure 4-3 illustrates this approach. 

The RPC from the client to the server implies a switch from the client's reserve to the 
server's reserve. With this approach, the traditional "priority" inheritance mechanism would 
not be useful because the fact that the server has a reserve allocated internally for the anima- 
tion client defines the "priority" for the client's request in the server and the client's "prior- 
ity" does not get propagated. Another mechanism to associate the animation applications 
RPC request with the appropriate reserve inside the server would be very useful. Such a 
mechanism might take the "priority" of the server-allocated reserve to be associated with the 
animation client and apply it to the thread that will handle the client's request. This is a kind 
of "priority" inheritance where the server's thread gets the priority of the reserve it allocated 
for a client instead of getting the priority of the client itself. 

Since the server must allocate the reserve for its computation on behalf of a client, it 
must know what the reservation parameters should be for the reserve. This approach 
requires the client and server to enter into a dialogue to allow the client to explicitly request 
a server-specific QOS level, meaning a certain pattern of server operations to be called with 
certain timing constraints. The server must then map the requested QOS requirements to 
system resource requirements and decide whether it can acquire the reserves to support that 
activity. All of this negotiation must be explicit, and that means a client/server interface for 
negotiating server-specific QOS requirements must exist. Further, the server must have the 
machinery to map those QOS requirements to system resource requirements. 
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Figure 4-4: Switching Reserve from Client to Server 
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Another issue is that the timing parameters of the two reserves must be carefully coordi- 
nated for the call to be executed smoothly. Essentially, the client's call to the server means 
that the computation in the server becomes ready, and its reserve must provide the resources 
for it to execute in a timely fashion after it is ready. The sequence of client computation fol- 
lowed by server computation is illustrated in Figure 4-4(a). 

The server's computation time might be available immediately after the call is made, as 
in the first period of execution history shown in Figure 4-4(b), in which case the deadline for 
the combined activity is met. But as shown in the second period of the execution history in 
Figure 4-4(b), the client's computation time may be available very late in its period. The 
server's computation time may be available earlier in its period but not available so close to 
the end. It is guaranteed to be available sometime in the period, but not at any particular 
time. Thus the activity could miss its deadline. 

Introducing an intermediate deadline for the client's computation could solve this syn- 
chronization problem. Figure 4-5(a) shows the usage pattern of the client and server with an 
intermediate deadline for the client. 
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Figure 4-5: Client Requirement with Intermediate Deadline 

Using reserves with deadline parameters, Figure 4-5(b) shows how the reserves can be 
allocated such that the client reserve has its computation time available at the beginning of 
the client's period with an intermediate deadline halfway through the period. The server's 
start time is at that intermediate deadline, and it has a deadline that corresponds to the end of 
the client's overall period. Thus, both activities are guaranteed to synchronize and complete 
by the overall deadline as desired. 
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All of the explicit handling of QOS requirements and resource requirements and the 
careful synchronization of interactions between reserves makes programming clients and 
servers much more complex. While this may be necessary for designing complex hard real- 
time systems, for soft real-time systems and less complex hard real-time systems, the 
approach where resource requirements for clients and servers are folded into one reserve 
may be better. 

4.2.4 Activity-based reserve allocation 

Another approach would be to allocate a single processor reserve for all of the nodes in 
the entire call graph; Figure 4-6 illustrates this approach. Of course, if the server is running 
on a remote host, this approach may not be feasible since it is not clear how a single proces- 
sor reserve could be made to represent processor time on two different processors. 

process_frame 

generate_frame display_frame 

DisplayBitmap 

ServerDisplayBitmap 

Figure 4-6: Call Graph with One Reserve for All Nodes 

Even if the animation application and the server are on the same host running on the 
same processor, there is a problem that must be addressed in this approach: the server may 
not be ready to service the RPC call at the time it is issued. In fact, there is a potential "'pri- 
ority" inversion problem associated with such an RPC (where "priority" refers to the order- 
ing of reserved activities by the scheduler rather than an integer priority for a thread). If the 
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RPC arrives in the server's queue at a time when the server is servicing another client, the 
server's thread will be bound to the reserve associated with the other client. If that other cli- 
ent is processor-poor, the reserved time may run out during the service, and the server may 
experience some scheduling delay. If the other client has a reserve that happens to get its 
processor time very late in its period, there may be a significant delay until the server, run- 
ning with that other client's reserve, can finish the on-going operation. 

To limit the delay the animation application experiences waiting for the server to handle 
its RPC, a "priority" inheritance protocol [108] must be employed. If the animation client's 
reserve would be sequenced by the reserve scheduler before the other client's reserve, the 
server which is using that other client's reserve would be sequenced as if it were using the 
animation client's reserve. However, for consistency of the usage measurement, it will still 
charge its usage to the other client's reserve. Then when that service is finished, the server 
will bind to the reserve of the animation server and that completes the propagation of the 
animation application's reserve to the server. 

For this reserve passing to work best, the RPC should be synchronous, meaning that the 
client should wait for the result after making the call to the server. With a synchronous RPC. 
either the client or the server will be charging against the client's reserve whereas with an 
asynchronous RPC where the client does not wait for the result from the server, both the cli- 
ent and server may be charging against a single reserve at the same time. This is not cata- 
strophic, but it may result in complicated interactions between the client and server. 

This approach implies that the client application must request reservation parameters 
that include the computation time that will be consumed by the nodes residing in the server. 
This can be done by having the client discover the requirements empirically during runtime, 
by having the server explicitly provide its resource requirements, or by determining the 
requirements at design time (this issue is discussed in detail in the next section). 

The important point here is that the client and server need not explicitly exchange infor- 
mation about resource requirements if the client allocates the reserve and passes it 10 the 
server. In particular, a great deal of complexity can be avoided if the client/server interface 
does not need to be able to support a complex negotiation of requirements. For legacy sys- 
tems, this means that existing interfaces need not be radically modified, the only change 
being the mechanism for passing reserves from client to server. 

4.2.5 Coordinating multiple resources 

This section describes an issue that arises when an application uses multiple different 
kinds of resources in different sub-computations. Consider an audio/video player applica- 
tion that reads data stored on a disk and then outputs an audio stream and displays video 
frames. The player could be structured as three activities: audio playback, video playback, 
and user interface. The video playback activity would be periodic, reading and displaying a 
frame every 30 ms. 
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Figure 4-7: Call Graph for Video Playback 

Figure 4-7 shows a possible call graph for the video playback activity. The graph is 
rooted at a subroutine called process_frame, which calls three more subroutines: 
read_frame, decode_frame, and finally display_frame. In the read_frame routine, calls are 
made until eventually the program makes a system call and traps into the kernel where more 
subroutines are called until finally a device command is issued to read data from the disk. 
This call graph introduces another type of call, referred to as a device command, which is 
used in addition to the original three types of calls (procedure call, RPC, and system call). 
The decode_frame routine converts the video frame data to a form that is suitable for dis- 
play. The last call is to display_frame which is the root for a sequence of calls resulting in an 
RPC to a window system server which makes additional subroutine calls and finally 
accesses the frame buffer. 

The resource requirements for this call graph include disk access as well as processor 
time, so a disk reserve is allocated and bound to the disk read node. The other nodes require 
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only the processor, and one approach is to allocate a single processor reserve for all of those. 
This reserve allocation and binding approach is illustrated in Figure 4-8 
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Figure 4-8: Call Graph for Video Playback with Reserves 

There is a subtle problem, however, that is related to the synchronization problem 
between and client and server with localized reserve allocation. The resource usage pattern 
for the process_frame activity is the following: 

• The processor is needed for all the nodes up to where the read command 
is issued to the disk, 

• the disk is required for that read command node, 

• all the nodes after that require only the processor. 

This resource usage pattern is illustrated in Figure 4-9(a); in every period, the computa- 
tion first has a processor requirement, then a disk requirement, and then another processor 
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requirement. If a processor reserve and a disk reserve are allocated, the execution pattern 
may look like the pattern shown in the first period of Figure 4-9(b). 
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Figure 4-9: Synchronization Problem with Multiple Resources 

However, the only guarantee associated with the processor reserve is that the processor 
time reserved will be available by the end of the period. If that time happens to only be 
available at the very end of the period, the execution pattern might look like the one in the 
second 33 ms period of Figure 4-9(b). In that second period, the leading processor require- 
ment is serviced too late, and by the time the disk activity is finished, there is no more time 
left in the period for the second half of the processor requirement, and the deadline is 
missed. Worse still, if the reserved disk usage is only available at the beginning of the disk 
reservation period, the activity will be delayed into the next reservation period and certainly 
miss a deadline and possibly miss the following deadline as well. 

One way to solve this problem is to introduce intermediate deadlines in different stages 
of the computation to separate sub-computations that use different kinds of resources. For 
example, Figure 4-10(a) illustrates the usage requirements and new intermediate deadlines 
for the video playback activity. 
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Figure 4-10: Multiple Resources Used with Intermediate Deadlines 

A reserve is allocated for each of the three phases of the computation: the leading pro- 
cessor requirements, the disk requirement, and the final processor requirement. Since the 
end-to-end timing requirement or deadline is divided up into intermediate deadlines for per- 
forming the three phases of the overall computation, the reserves that are associated with the 
phases must have deadline parameters. Figure 4-10(b) shows a timeline for each reservation 
and how the usage is timed in the three reserves. 

So with this approach, two processor reserves (labeled Procl and Proc2 in Figure 4-10) 
and one disk reserve are allocated. The call graph with this reserve allocation and binding 
appears in Figure 4-11. 

This example points out two major factors that influence how reserved computations 
should be structured and how reserves should be bound to the sub-computations. One factor 
is the temporal sequence of the resource requirements. Generally speaking, a node in ihe 
graph that requires a resource different from its parent acts as a delimiter for grouping com- 
putations that can use the same reserve. To minimize the number of reserves required, the 
application programmer should minimize the number of times computations must switch 
between required resources. 
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Figure 4-11: Video Playback with Better Reserve/Computation Mapping 

The second factor is the spatial organization of the nodes in the system. When a call 
crosses to another address space or to the operating system, a decision has to be made about 
whether to switch reserves at that point or not. The system designer has more control over 
that choice, as described above. 

4.3 Sizing Reservations 
To use resource reserves, an application must specify appropriate reservation parame- 

ters. For hard real-time applications, the reservation parameters would be determined a pri- 
ori by the system designer. For dynamic real-time applications, external agents such as a 
QOS Manager may suggest or require different reservation parameters during the course of 
the application's execution. In the dynamic framework, it is important for the application to 
be aware of the resources required to do the work it needs to do and to be flexible in terms of 
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its timing requirements (how often or under what delay bounds it does the work). In general, 
two important questions must be addressed: 

• How can the resource usage requirements of an application be deter- 
mined, especially given that the application may be used on different 
machine types and system configurations? 

• How should an application adjust its resource reservations using informa- 
tion about previous performance? 

This section deals with the determination of initial resource reservations and adjustment 
of reservation levels for dynamic periodic activities. 

4.3.1 Determining resources required 

The first problem to be addressed is how to determine which resources will be needed 
during the course of the computation and how to determine the initial reservation levels for 
the various resources required by an activity. 

The resources that are needed during the course of a computation will depend on what 
external services are used by the computation. The list of resources for the computation will 
be the union of all the resource lists for the transitive closure of external services used by the 
computation. It is therefore very important for services to be named so that each service can 
name those services that it uses. And in turn, each service must name those resources that it 
uses. Then it is possible to find the resources used by the transitive closure of services the 
application uses. 

A potential problem is that different functions offered by a service may use different 
resources. If a client uses only one function offered by the service, it should reserve only the 
resources needed for that function rather than the complete list of resources needed by every 
function the service offers. In this case, it may be useful to consider the resource lists 
required for "sub-services" or subsets of operations of the service where the subsets are 
defined to use similar sets of resources. 

In any case, the method for ascertaining required resources should be flexible, efficient, 
and easy to use. Ideally, the system would help to determine the list of resources during an 
initialization phase of each application. Each time the system encountered an application 
that required a particular resource but had no corresponding reserve, it would add a reserve 
of the appropriate type with no reservation parameters to the reserve tree bound to the appli- 
cation. After the initialization phase, the application would have references to the resource 
that were required by its component computations, even those resources used by servers thai 
were called on its behalf. 

Other approaches to determining resources required could be used as well including the 
following. 

• The list of resources could be obtained by sending a query to every server 
to be used in the computation and having the server provide a list of 
resources it requires and a list of services it uses. The transitive closure of 
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required resources collected during this query would be accurate as of the 
server connection time. This method does not require that the system and 
(possibly more static) documentation remain synchronized with respect 
to specification of resources used. Upgrades for various system software 
modules could be made without having to issue new resource list docu- 
mentation. Also, servers would be free to determine which resources. 
among many possibilities, would be best to serve that connection given 
the state of the system and its load at the time the connection was 
requested. Thus an additional degree of freedom is allowed the servers. 

• The list could be found using a database where each server registers the 
list of resources as well as other services it requires. This makes it possi- 
ble to write applications that automatically determine the transitive clo- 
sure of services used and resources required, even if some of those 
services and resource types did not even exist at the time the application 
was developed and compiled. One important requirement to make this 
dynamic method work is that service names and resource types not be 
hard-coded. Instead, a program should be able to handle and manipulate 
new service names and resource names with no recompilation. 

• The list of resources required by various user-provided services and sys- 
tem services could be static, long-lived, and well documented. The pro- 
grammer must manually look up all the services and find the transitive 
closure of services used and then the union of the resource lists of all 
those services. The major problem with this approach is that the slightest 
changes to the software for the services may change the list of services 
used and the resource list, thus making the lists in the manual obsolete 
and making all the programs written to the specification of the manual 
obsolete. 

4.3.2 Determining initial reservation levels 

Once the programmer knows what resources are needed by an activity, she must set up 
the reserves for those resources and request reservations. Requesting reservations requires 
that reservation parameters be provided. In the reserve model, a reservation request has 
parameters for resource time to be reserved and for a reservation period. In many cases, the 
reservation period will be the same as the period of the activity. This will sometimes be 
derived directly from user-level quality of service requirements (such as frame rate), and 
sometimes it will be derived indirectly from user-level requirements. For example, the rate 
for handling audio packets might depend on the audio sampling frequency, the packet size, 
and perhaps the system overhead per packet. The resource usage time is more difficult to 
ascertain. It depends on the platform, the system software, and the data being processed 
among other things. 

One way to get a reasonable estimate as to what the resource usage requirements mighi 
be for a given instantiation of an application involves measuring the actual computation thai 
forms the main focus of the application. With one run through a periodic activity, for exam- 
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pie, the application could get a fairly good estimate of future computation times using the 
reservation mechanism's usage measurement features. Another variation on this approach is 
to use a simple computation to gauge the speed of the machine and/or system architecture, 
and then use a characterization of the real application's computation expressed in terms of 
the simple computation to estimate the appropriate reservation level. For example, if the 
application first ran a SPECint benchmark and knew how much the reserved computation 
needed in terms of SPECint benchmarks, it could derive the estimate directly. 

The following methods could also be used to determine the initial reservation level: 

• An application could store in a persistent preferences database some 
information about reservation levels used in previous instantiations of the 
application. This information would be a good guess as to what reserva- 
tion levels should be procured, and it might be possible to maintain a 
small database to map prior experience with different QOS parameters to 
reservation parameters. This approach might get much more complicated 
as more QOS parameters, reservation parameters, and target system 
architectures are used. 

• The initial reservation level could be set to zero or some other relatively 
small value that is known to be smaller than the actual reservation level, 
though unknown, that will be required. This approach requires the mech- 
anisms for reservation level adaptation to quickly acquire the feedback 
on usage that is necessary to set a reasonable reservation level where 
desired quality of service parameters can be achieved. Initially, the 
desired QOS parameters will not be achieved and they may never be 
achieved. These are the major drawbacks of this no-knowledge approach. 

• An alternative approach to the zero level initial reservation is to take the 
maximum reservation level available on the resources at the time the res- 
ervation is requested. This has the advantage of having the highest 
chance of meeting the desired QOS parameters for the application, but 
the disadvantage is that resource capacity may be unnecessarily tied up 
and unavailable to other applications requesting reservations. This situa- 
tion would persist until the adaptation mechanism had the chance to eval- 
uate the situation and make the proper adjustments to the reservation 
levels. 

4.3.3 Measuring performance 

An adaptive reserved application should keep track of the resource usage required to 
perform its computation at each repetition to decide if it has more resource capacity reserved 
than it needs or if it has too little resource capacity to do its work during each period. It 
should also keep track of the real-time delay incurred during each repetition of the computa- 
tion to determine whether the computation was completed within the period or not. 

The application can easily measure the real-time delay of a computation by taking a 
timestamp at the beginning and at the end of the computation. Measuring the resource 
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capacity usage for a computation, however, is more involved, requiring support from the 
operating system. This support must be more accurate than the traditional logical clock for 
processor time provided to processes in most operating systems. Logical clocks usually take 
usage measurements by sampling at clock interrupts to find which process is running and 
incrementing that process's logical clock as if it had been executing for the entire period. 
Statistical sampling of this kind, which is inherently inaccurate for short-term measure- 
ments, will not provide an application with the clear picture of short-term behavior. Such 
knowledge of short-term behavior is needed to be able to make suitable adjustments to the 
reservation parameters. 

For the kind of accuracy required for measurements of resource capacity usage, the sys- 
tem must accumulate usage associated with reserves at each context switch. In this context, 
reserves act as abstract thread logical clocks rather than process logical clocks. And since 
the reservation system manages capacity usage for resources other than just the processor, 
the system must keep usage accumulators for all types of resources, and these must be 
updated at each context switch on the appropriate resource. 

Reserve usage measurements will indicate how an application's actual behavior is 
related to its reservation. Several possible patterns of behavior are described in the next sec- 
tions. 

4.3.3.1 Balanced applications 

An application is balanced with respect to its reservation if the resource usage in each 
period is fairly constant and the reservation level is at this constant value. (It may be impos- 
sible for resource usage to be completely constant for some interesting resources such as 
processors.) 

units of resource 

reservation 
level 

time 

Figure 4-12: Resource Demand Constant and Reserved 

Figure 4-12 illustrates a computation's demand on a particular resource over time. Time 
is on the x-axis, and it is divided into intervals equal to the reservation period. The y-axis is 
units of resource, e.g. time spent on the processor executing instructions, bytes transmitted, 
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etc. Within each reservation period, the number of units of resource consumed by the com- 
putation is measured, and the height of the bar in that interval is the number of units con- 
sumed. 

In the figure, the number of units of resource required in each reservation period is 
nearly constant, and the reservation level is slightly more than this constant demand. There- 
fore, the demand is satisfied by the reservation, and the computation will have the resources 
to be able to execute completely in each period. 

4.3.3.2 Under-reserved applications 

An application is under-reserved with regard to a particular resource if its resource usage 
requirement is greater than its reservation. Two cases are distinguished: 

1. worst-case (maximum) resource usage requirement for the computation is greater 
than the reservation but the average resource usage requirement is less that the res- 
ervation, and 

2. the average resource usage requirement is greater than the reservation (implying 
that the worst-case resource usage requirement is also greater than the reservation). 

In the first case, the average resource usage requirement is less than the reservation, so 
over the long term, the application will be able to keep up with its work requirement. The 
problem is that since the worst-case resource usage requirement is larger than the reserva- 
tion, the completion of the worst-case computation may be delayed and this may delay or 
otherwise affect the computations in subsequent periods. If the worst-case computation 
occurs very infrequently, its negative affects on the overall performance of the application 
can be minimized or ignored. A human viewer may not even notice an occasional dropped 
frame during video playback. If the worst-case computation occurs frequently, it may be 
more difficult to ignore; many dropped video frames would certainly.be noticed. 
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Figure 4-13: Resource Demand Occasionally Exceeds Reservation 
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Figure 4-13 illustrates this slightly underreserved case. The resource usage requirement 
in most reservation periods is less than the reservation level for this particular resource. In 
these periods, the computation will have the resources available to complete. However, 
there is one period in the illustration (the 4th) in which the resource usage requirement is 
larger than the reservation. Depending on the system's policy for treating this case, the com- 
putation may happen to be completed (using idle time), it may be aborted, or it may extend 
into the next reservation period, interfering with the completion of the computation which 
would normally execute in that period. 
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Figure 4-14: Exceedingly Demanding Computation Aborted 

Figure 4-14 shows how the usage pattern would look if the computation in the 4th reser- 
vation period were aborted. Note that the computations in the subsequent periods are not 
affected by the aborted computation. 
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Figure 4-15: Computation Impinges on Following Computation 
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Figure 4-15 shows the case where the computation in the 4th reservation period extends 
into the next reservation period and prevents the next computation from being initiated. 
Computations following that are left undisturbed. 
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Figure 4-16: Computation Impinges on Subsequent Computations 

In Figure 4-16 the 4th computation overruns its reservation period and consumes part of 
the next period. The computation associated with that period is initiated after the previous 
computation is completed (as opposed to the previous case where this computation was not 
initiated). But since the 5th computation is initiated later than usual, it also overruns its res- 
ervation period and is deferred to the next period. This cascading effect continues until there 
is enough (normally) unused but reserved units of resource to make up for the original over- 
run. 

In cases where the average resource usage requirement is more than the reservation, the' 
activity will never be able to accommodate all of the computations which overrun, and it 
would be necessary to shed some of the load by aborting some computations or by not initi- 
ating some computations. In either case, the attempted overruns would occur frequently and 
have a potentially damaging effect on overall application behavior. In a video player, for 
example, this would mean that many frames get dropped. 

Figure 4-17 illustrates a possible pattern of demand that has the average demand greater 
than the reservation level. The computations in several reservation periods require more 
than the reservation for that period. Many of the computations will have to be aborted if 
there is no idle time available beyond the reserved level. 
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Figure 4-17: Average Demand Exceeds Reservation 

4.3.3.3 Over-reserved applications 

An application is over-reserved if the resource usage in each period is (much) smaller 
than the reservation level. 
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Figure 4-18: Resource Demand Smaller than Reservation 

Figure 4-18 illustrates a case where the usage on a particular resource is much smaller 
than the reservation in all of the reservation periods. Here the computation is never in any 
danger of overrunning into the next period. 

4.3.3.4 Multiple resources 

When there are multiple resources involved in each computation, the measurements of 
usage compared to reservation level for each reserve will be different. One resource may be 
over-reserved while all of the others are under-reserved, or perhaps more commonly, one 
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resource may be under-reserved (representing a bottleneck) while all of the other resources 
are over-reserved for the activity. 

processor time 
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Figure 4-19: Measurements of Multiple Resources 

Figure 4-19 illustrates a case where there are multiple resources involved in a single 
activity. They all have the same reservation period, but the demands placed on various 
resources are different. In this case, the disk I/O is under-reserved while the local processor 
usage, the network bandwidth, and the remote processor usage are all over-reserved. 

Once an application has measurements of usage for the various resources it requires for 
its computation, it can begin to make decisions about how to modify its own behavior or 
modify its own resource reservation levels to achieve better performance or better effi- 
ciency. 

4.3.4 Adapting 

Reservation parameters can be changed dynamically as the user, the application itself, or 
a central quality of service manager determines that new reservation parameters would be 
preferable. Applications adapt based on the influences of various external entities, but once 
a resource reservation is made, the system ensures that the resources are available. 
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Adaptive applications can measure their own performance by mapping measured system 
resource performance metrics to application-specific performance indicators. This applica- 
tion-specific information can then be used along with application-specific performance 
objectives to: 

1. modify the computation being done by the application (to change resource require- 
ments), 

2. modify the reservation level for resources being used by the application, or 

3. do nothing. 

The performance measurement interval could be comparable to the period of the repeti- 
tive computation, but it would be more efficient if the adaptation interval were an order of 
magnitude larger than the activity period (e.g. the adaptation might occur every 500 ms for 
an activity with a 50 ms period). 

4.3.4.1 Modifying an application's computation 

One way that an application might react to the fact that its resource usage is different 
from its reservation is to change its behavior so that its usage more closely matches its reser- 
vation (leaving the reservation unchanged). The actual mechanisms for modifying behavior 
in an application are fairly straightforward. An application which is meant to modify its own 
behavior must have different behaviors available (i.e. different algorithms implemented 
internally). It must be able to tell which algorithm it should use depending on the format of a 
incoming or outgoing data stream, on the resources such as network bandwidth or computa- 
tional power that are available to it, or on the limitations of other software with which it 
must interact. For example, an MPEG video decoder could use different decoding or dither- 
ing algorithms depending on the resources available. If the decoder were taking the MPEG 
data stream from a server in real time, it might be able to negotiate MPEG encoding param- 
eters with the server and have the server place new parameters in the data stream. Thus, 
adaptive applications are constrained by: 

1. the algorithms they have coded, 

2. the data formats they are using, 

3. the data formats and data rates that other components of the pipeline can handle, 
and 

4. the resources that are available to it. 

Typically, the application would contain a collection of algorithms that could be ordered 
based on processor requirements, network bandwidth requirements, etc. Thus, once an adap- 
tive application decided to increase or decrease a reservation on a particular resource, it 
could determine which algorithms could satisfy that constraint. It is important to distinguish 
between two kinds of behavioral adaptations: 

1. local changes in algorithm and 

2. global changes. 
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An example of a local change would be a change in the number of bits actually being 
decoded by the receiver of a bit stream (assuming the bit stream was encoded using a hierar- 
chical encoding scheme). A global change would involve not only the receiver but the 
sender. It would require a way for the receiver to request a change in the format or number 
of bits being sent as well as requiring the receiver to recognize that the format of the bit 
stream changed. 

As an example of what the code structure for an adaptive application would be. consider 
a video player. The basic control structure of the player is a loop that reads some data (from 
a disk, network or some other source), decodes the data, displays the data, and evaluates its 
performance. 

while   (1) 

read data for a frame 

decode data 

display frame 

evaluate resource usage 

It is the evaluation part of this loop which will look at the resources that are being 
expended over time to play the video frames and decide whether the amount of work being 
performed should be increased, decreased, or remain the same. If it decides the work should 
be locally increased or decreased, it may change some state in the player to indicate how the 
data should be decoded (by looking at more or fewer bits of the data). If the evaluation 
phase decides that the work should be globally changed, it may initiate negotiations with the 
source of the data stream to try to increase or decrease the bandwidth of the bitstream. This 
negotiation may or may not change the state of the player itself, but the changes to the char- 
acteristics of the bit stream and the point in the bitstream where the change takes place 
should be clearly identified in the player and should be recognized in decoding the data. 
Thus, if and when a change in the format of the bitstream occurs, the player will be able to 
make the appropriate changes in decoding the stream. 

So the software structure of the adaptive player, with a little more detail filled in. 
becomes: 

while (1) 

read data 

check for control data 

switch based on bitstream format 

switch based on local decoding state 

decode data 

display frame 

evaluate performance 
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The application first reads the data and then checks either for control information 
embedded in the data or for some kind of synchronization point which is known, through 
information communicated via an external channel, to imply a change in data format. Then 
the proper algorithm is chosen to decode the data based on the format of the bitstream and 
on the local decoding state. Once the data is decoded, it is displayed (possibly using differ- 
ent algorithms indicated by the player state), and finally the performance is evaluated. To 
reduce overhead, the performance may not be evaluated during every iteration of the loop. 

This example shows how a player might change its behavior and thus its performance 
characteristics based on decisions about local algorithms and global changes in data 
streams. 

4.3.4.2 Adjusting reservation levels 

Another way an application might react to noticing a difference between its usage and 
reservation is to change the reservation (without modifying its computation). We will exam- 
ine several cases, possible behavior modifications, and their effects on delay, efficiency, and 
total reservation. 

Under-reserved applications 

As indicated in the section on measuring resource usage, an application is under- 
reserved if its resource usage requirements are greater than its reservation level. There are a 
couple of ways to change the reservation parameters to accommodate this situation: 

1. increase only the units of reserved resource usage 

2. increase both the units of reserved resource usage and the reservation period. 

By increasing the reserved resource usage to match the computation's requirements, the 
application can ensure that the resources will be available to the computation, and the com- 
putation can be invoked just as often as before. The delay experienced by each computation 
will be decreased since there will be fewer overrun situations to cause delays, but the overall 
reservation level is increased. This means there is less resource capacity available for other 
applications, or when resource reservations are really tight, it may be impossible to increase 
the reservation level at all. 

If the application increases the units of reserved resource and the reservation period pro- 
portionally, there will be enough reserved resource capacity in each reservation period to 
service the computation. And since the reserved amount and the reservation period are 
increased proportionally, the overall reservation level is not increased. This also implies that 
the computation is requested less often to correspond with the longer reservation period 
since requesting it just as often would not reduce the overall workload (without a load-shed- 
ding mechanism coming into play). 
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Over-reserved applications 

Over-reserved applications are those which have a reservation level that is greater than 
the actual resource demand. This situation is inefficient since the application has more 
resource capacity reserved than it expects to use, and that reserved capacity could be used 10 
ensure predictable performance for other applications that will actually use the resource. 

The simplest action to take in this case is to reduce the units of resource reserved in each 
period to a value that is closer to the actual resource requirement. It is possible to increase 
the reservation period without increasing the period of the computations to decrease the res- 
ervation level, but that would have other undesirable effects on the timing of the program, 
such as increasing the delay for some computations. 

4.4 Chapter summary 
This chapter describes how programs should be structured to take advantage of reserves 

for predictable real-time performance. For hard real-time applications, information about 
the resources used by and timing requirements of each program must be known at design 
time and must be used in planning reserve allocation. So a localized way of using reserves 
might be appropriate. With local reserves, each program allocates its own reserves based on 
its requirements and the requirements of other programs that depend on it. For dynamic soft 
real-time systems, a global method for reserve allocation where an activity allocates the 
resources for all of its constituents including external servers and operating system services 
might be more appropriate. This makes it easier to monitor and control the usage of ihe 
entire activity rather than just localized parts of it. These recommendations are not cast in 
stone; the choice of whether to use localized or global reserve allocation ultimately rests 
with the system designer. 

The discussion also dealt with methods for determining resources required by an appli- 
cation, reservation parameters appropriate for an application, and adaptive methods for 
adjusting reservation parameters or behavior based on performance history. In hard real- 
time systems, many of these questions must be answered at design time, and there is less 
flexibility in adaptation strategies. Soft real-time systems, however, have a great deal of 
flexibility and can take advantage of some of the techniques described in this chapter. 
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Chapter 5 

Implementation 

This chapter describes an implementation of processor reserves done using the Real- 
Time Mach operating system. It discusses applications that were modified to use processor 
reserves, network protocol processing software modified to use reserves, a QOS manager 
for negotiating resource allocation with applications, and tools for reserve monitoring. 

5.1 Overview 
This chapter describes the implementation of processor reserves in RT-Mach as well as 

several other components of the system. It also covers some applications that were modified 
or designed and implemented to use processor reserves. Figure 5-1 shows the various com- 
ponents and gives an indication of their relationship. 

Reserved 
X 

Server 

Reserved 
Video 

Players 

User-Level 
Networking 
Library 

RT-Mach with Reservation Mechanism 

Figure 5-1: System Components 

143 



First there is the implementation of processor reserves in the RT-Mach kernel which is 
the basis for the rest of the implementation work. Reserves were implemented as a new ker- 
nel abstraction with operations for create/terminate, requesting reservation parameters, 
binding threads to reserves, and extracting usage information about reserves. 

Several real applications were modified to use processor reserves including: a Quick- 
Time video player developed at CMU called QTPlay, an MPEG decoder called mpeg_play 
[93], and a version of the X Server [34]. 

A version of the user-level socket library [70] was modified to use reserves as well. This 
socket implementation supports predictable performance for applications that send and 
receive network packets. 

A QOS manager was implemented to allow for more sophisticated negotiation of 
reserve parameters than that provided by the kernel mechanism itself. The QOS manager 
interacts with applications to try to balance resource usage and negotiate with applications 
when conflicts arise in the resource reservation requests. 

Tools were implemented to help manage reserves and to monitor resource allocations 
and measure usage. The rmon application is a reserve monitor that provides a graphical user 
interface for reserves. It displays the reservation levels and usage in recent history, and it 
also allows the user to change the reservation parameters from the graphical interface. 

5.2 Reserves in RT-Mach 
The implementation of processor reserves in RT-Mach involved adding the new reserve 

abstraction, implementing the operations on reserves, creating a new scheduler, and adding 
code for accurate usage measurement. In addition to the new scheduler, the reserve imple- 
mentation also required modifications in the RT-Mach priority inheritance mechanisms to 
support reserve inheritance and reserve propagation. 

The reserve abstraction in RT-Mach is managed much like the other abstractions like 
hosts, processor sets, tasks, threads, etc. that originated in Mach 3.0 [11]. These types of 
resources in Mach are referenced by ports, which are used as capabilities. 

In RT-Mach, processor reserves are allocated from processor sets. In the uniprocessor 
version, there is only one processor set, so all reserves originate from this processor set. 

5.2.1 Attributes and basic operations 

Abstractions like tasks and threads offer basic operations such as create, destroy, gel 
attributes, and set attributes. The basic operations on reserves are as follows: 

reserve_create(out reserve) Creates a new processor reserve and returns it as an 
out parameter. 

reserve_terminate(reserve) Terminates the given reserve, making its reserved 
capacity available for other requests. 
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reserve_set_attribute(reserve, attr_name, attr_value, attr_value_size) Set the 
value of an attribute of the reserve. 

reserve_get_attribute(reserve, attr_name, out attr_value, out attr_value_size) 
Get the value of an attribute of the reserve. 

processor_set_reserves(processor_set, out reserve_Iist)  Returns  the  list  of 
reserves associated with the given processor set. 

The get attribute and set attribute operations give the programmer access to some of the 
attributes of reserves. The externally visible attributes that reserves have appear in the fol- 
lowing list. The data types for the attributes are given in parentheses after the attribute 
names; "int" is an integer, "timespec_t" specifies a time value, "mach_reserve_name_t" is a 
fixed length string, and "boolean_t" is a boolean flag. 

name (mach_reserve_name_t) A symbolic name for the reserve. 

ckpt_total (timespec_t) The cumulative total usage measured at the at last period 
boundary. 

ckpt_time (timespec_t) The absolute time of last period boundary (when the 
ckpt_total value was recorded). 

accum_totaI (timespec_t) Cumulative total usage at the current time (usually 
updated when accessed). 

accum_time (timespec_t) The time that the total usage was last updated. 

used (timespec_t) Usage charged against the reserve so far in current period. 

next_period (timespec_t) The absolute time of the next period boundary (end of 
the current period). 

period (timespec_t) The duration of the reservation period. 

computation (timespec_t) The reserved computation time. 

recent_checkpointlposition (int) The position in the recent_checkpoints array 
for the next item to be written. The array is a circular buffer. 

ncheckpoints (int) The number of how many checkpoint entries currently in the 
array. 

recent_checkpoints[MAX_CHECKPOINT_COUNT] (timespec_t) The usage 
values for the recent checkpoints. 

recent_checkpoint_times[MAX_CHECKPOINT_COUNT] (timespecj) The 
times at which corresponding checkpoint usage values were recorded. 

A "checkpoint" occurs at each period boundary for each reserve. At that time, the accu- 
mulated usage is recorded along with the absolute time of the period boundary. This infor- 
mation can be used later by applications or monitoring tools that need information about 
how much usage was charged against a reserve in a particular reservation period. 
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There are a few other reserve attributes that are only used internally. They form part of 
the scheduling state for a reserve and are not available through the get attribute operation. 
These internal attributes are: 

reserved (boolean_t) The bit that indicates whether the reserve is in "reserved 
mode" or "unreserved mode". 

wait_replenish (boolean_t) An internal flag indicating that the reserve has a res- 
ervation that has been depleted for the current period. The reserve is awaiting 
replenishment. 

start (timespec_t) The absolute time at which the first period for the reserve 
started. 

5.2.2 Reservation requests and admission control 

When initially created, a reserve does not have an associated resource reservation. Get- 
ting a resource reservation for the reserve requires an additional call. The following opera- 
tion allows a programmer to specify reservation parameters and request a reservation. This 
call is used when there is no reservation associated with the reserve, or if the programmer 
wishes to request a reservation with parameters that are different from the reservation asso- 
ciated with the reserve. 

reserve_request(reserve, reservation_parameters) Requests a resource reserva- 
tion to be allocated to the reserve. The caller provides the reservation parameters. 
Reservation parameters include desired reserved time per period, the period itself, 
and start time for reservation to take effect. 

This operation is used to request a reservation with certain parameters. If there was 
previously no reservation associated with the reserve and the reservation request 
succeeds, then the operation returns "success" and the reservation is granted for 
that reserve. If the reservation request fails, the operation returns the error, and the 
reserve is left without a reservation. 

If the reserve already had a reservation at the time the request call was made, the 
behavior is as follows. If the new reservation request is granted, the new reserva- 
tion parameters will be associated with the reserve, and the old reservation will be 
freed in this process. If the new reservation request fails, the old reservation 
parameters remain in effect: that is, the old reservation will not be freed if the new 
reservation request cannot be granted. 

The request operation invokes the admission control policy to determine whether the 
new reservation request can be accommodated given the collection of other reservations that 
have already been accepted for the resource. The RT-Mach implementation uses an admis- 
sion test based on rate monotonic analysis, but the decision is somewhat optimistic in that it 
uses a utilization bound of 90% for testing for schedulability. This is based on the analysis 
of average schedulable bound [63], which says that for a randomly generated task set the 
schedulable bound is 88% on average. 
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5.2.3 Scheduling 

The scheduler in RT-Mach was structured so as to make it easy to develop and incorpo- 
rate scheduling policies. The scheduler uses a well-defined interface for scheduler opera- 
tions, and a function pointer table in the scheduler contains the operations for the scheduling 
policy in effect. The scheduling policy can be changed dynamically by putting the ready 
threads in a policy-independent queue, changing the pointers in the function table to refer to 
the operations for the new scheduling policy, and then transferring the ready threads into a 
policy specific queue. 

Several scheduling policies, including the "Reserves" scheduler, are supported in RT- 
Mach [85]. The scheduling policies in RT-Mach are associated with "processor sets," and in 
the case of a uniprocessor, there is only one processor set in the system. The operations to 
get and set attributes of a processor set are used to query or set a scheduling policy. 

processor_set_get_attribute(processor_set, attr_name, out attr_value) To get 
the scheduling policy for a processor set, PSET_SCHED_POLICY_ATTR is spec- 
ified for "attr_name". The operation sets the "attr_value" to reflect the currently 
active scheduling policy. 

processor_set_set_attribute(processor_set, attr_name, attr_value) To set the 
scheduling policy for a processor set, PSET_SCHED_POLICY_ATTR is speci- 
fied for "attr_name". A value such as SCHED_POLICY_RESERVES is given for 
the "attr_value". 

Several scheduling policies are implemented in RT-Mach. The original Mach time-shar- 
ing policy is available, as are several varieties of fixed priority and rate monotonic policies. 
Earliest deadline scheduling is available, and round robin scheduling is supported for exper- 
imental purposes. Reserve-based scheduling is also a policy option. The policies that are 
available in the MK83j version of RT-Mach are: 

1. Mach Time-sharing - Original time-sharing policy. 

2. Fixed Priority/kR - The fixed priority/round robin policy services threads 
in order of a fixed priority associated with each thread. Within a priority 
class, threads are scheduled round robin with a quantum. 

3. Fixed Priority/FIFO - The fixed priority/FIFO scheduler uses fixed prior- 
ities as well, but within a priority class, threads are scheduled using a 
FIFO discipline (with no quantum). 

4. Rate Monotonic - Rate monotonic scheduling based on the periods given 
to periodic threads. 

5. Deadline Monotonic - Deadline monotonic scheduling based on the 
deadlines given to periodic threads. 

6. Earliest Deadline First - Schedules based on the deadline information of 
threads. 

7. Round Robin - Simple round robin scheduling (with a time quantum). 
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8.    Reserves - Scheduling policy for the reservation system. 

The "Reserves" scheduling policy uses one queue for "reserved mode" threads, which 
are listed in order from smallest reservation period to largest. It uses an additional table of 
queues for implementing a multi-level feedback queue for time-sharing or "unreserved 
mode" threads. The reserved mode threads are scheduled first, and when there are no more 
reserved mode threads, the scheduler services the unreserved mode threads. In order to pre- 
vent starvation of unreserved mode threads, the reservation parameters are limited. In the 
implementation, a reservation cannot have a period larger than one second. This ensures that 
no reserved computation time can be greater than 0.9 second, so in the worst case, reserved 
activities can hold the processor continuously for no longer than 1.8 seconds before time- 
sharing programs get a chance to use the processor. 

5.2.4 Usage measurement and enforcement 

The scheduler for the reservation mechanism requires very accurate usage measurement 
so that the system can keep track of how the resource usage of each activity relates to its res- 
ervation (if any). In particular, reserved activities must be prevented from over-running their 
reservations and interfering with other reserved and unreserved activities. 

To accumulate very accurate usage measurements, the system has code in the context 
switch from an old thread to a new thread that does the following: 

1. takes a timestamp from a high-resolution free-running clock. 

2. computes the duration of time the old thread was running and charges 
that usage against the reserve associated with the old thread. 

3. stores the timestamp for doing the same computation later for the new 
thread. 

Those actions mean that threads get charged for the amount of time they spent on the 
processor rather than getting charged an estimate of the time they spent. This timestamp 
method much more accurate than the method used for accumulating usage in many time- 
sharing systems where the process running at the time of a clock tick is charged for the dura- 
tion of the clock tick (whether it was running the whole time or not). 

The reserve abstraction has several operations that provide the programmer with access 
to usage information in the reserve. The usage-related operations are: 

reserve_get_checkpoint(reserve, out checkpoint_total, out checkpoint_time, 
out accum_total, out accum_time) Get reserve's checkpoint information, taken 
from the last reservation period boundary. 

reserve_get_attribute(reserve, attr_name, out attr_value, out attr_value_size) 
The reserve_get_attribute operation can be used with "attr_name" set to 
RESERVE_RECENT_CHECKPOINTS to get an array of the recent checkpoint 
values for the last several period boundaries. 
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In addition to the accurate usage measurement, the enforcement mechanism uses timers 
to keep threads from over-running their reserved computation time and to replenish the 
reserved time for a reserve appropriately. Two kinds of timers are used for doing these 
things: the overrun timer and replenishment timers. 

The overrun timer is set at each context switch, and it is set for the maximum time the 
new thread could run before over-running its reserved computation time for its current reser- 
vation period. If the thread is still running when the timer expires, the system will update the 
reserve to show that the activity used all of its time for that period, and it will change the 
activity to unreserved mode. Then the scheduler will get an opportunity to reevaluate ready 
threads, and it may decide to switch to another thread. 

If the current time is close to the end of the reservation period for the new thread and the 
reserved time is longer than the difference between the current time and the end of the reser- 
vation period, the overrun timer is set to expire at the end of the reservation period. If the 
timer goes off at that point, the reserve will be replenished and the activity will again be eli- 
gible to run. 

The second kind of timer is the replenishment timer. Each reserve has a replenishment 
timer that is initially set at the reserve's start time. The timer is set to expire at the end of the 
reservation period (or the beginning of the new reservation period). When a replenishment 
timer expires, the system changes the state of the reserve to reflect that it has a new alloca- 
tion of its reserved time for the next reservation period. The reserve is set to reserved mode, 
and the replenishment timer is set to expire again at the end of the new reservation period. 

5.2.5 Reserve propagation 

One of the key features of the reserve abstraction is that reserves can be bound to threads 
as appropriate for particular applications. This feature is useful in the situation where an 
application initiates a reserved activity that may invoke services of server processes locally 
or even on remote machines. When invoking a server, an application can make its reserves 
available for the server to use in its computations. The server can then take advantage of 
having the resources available, and the time it takes to perform the computation on behalt of 
the client can be charged to the client's reserves. In this way, reserves provide a method for 
consistently measuring resource usage of entire activities, even if threads in different protec- 
tion domains cooperate on behalf of the broader activity. 

The following operations are related to the binding of reserves to threads: 

thread_set_current_reserve(thread, reserve) Each thread has a current reserve 
and a base reserve. The value of the current reserve may be the result of a reserve 
propagation, but it is not necessarily permanent. It may eventually revert to the 
base reserve. This primitive sets the current reserve of a thread. 

thread_restore_base_reserve(thread) Makes the base reserve the current reserve 
for the given thread. 

thread_set_reserve(thread, reserve) Set the reserve of a thread. 
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thread_get_reserve(thread, out reserve) Get a thread's reserve. 

In addition to the binding operations, the priority inheritance mechanism of RT-Mach 
[59,86] aids in ensuring bounded delay for access to servers and mutexes. In the context of 
reserve scheduling, "priority inheritance" means "reserve inheritance" in the following 
sense. Interpreting "priority" in the broadest sense, one could think of a thread's reserve 
information and time-sharing priority information as combining to yield a total ordering for 
values of these fields. The scheduler schedules threads based on this total ordering from 
highest "priority" to lowest: 

1. threads that have the "reserved" bit set are ordered with smaller reserva- 
tion period having higher "priority" than larger reservation periods. 

2. threads with the "reserved" bit cleared are ordered according to their 
time-sharing priority, which is a field of each thread (not a field of the 
reserve). 

This concept of "priority" comes into play in the priority inheritance mechanism in RT- 
Mach. As an example, consider a single-threaded server with several clients. When a client 
makes a call to the server, the server takes on the "priority" of the client (done in the priority 
inheritance mechanism) and binds its own thread to the client's reserve to charge its time to 
it (using the bind operation). 

If during this service time a second client with a higher "priority" makes a request, the 
IPC mechanism enqueues the new request for the server. It then calls on the priority inherit- 
ance mechanism to change the "priority" of the server to that of the newly enqueued client 
(thus limiting the duration of the "priority" inversion). The server continues to charge time 
to its first client's reserve, however, so that reserve will reflect the true resource usage 
required for the computation. After the service is finished, the server stops charging against 
the first client's reserve, picks up the request from the second client, and starts charging 
against the second client's reserve. The server continues to execute under the "priority" of 
the second client. 

Priority inheritance for reserved activities presents an additional complication beyond 
what fixed priority inheritance mechanisms must face. In particular, with reserves (and with 
other dynamic priority disciplines), the "priority" the server takes may change during the 
service. For example, if the server executes for longer than the reserved time of its client's 
reserve, the reserve will be degraded into unreserved mode, and the "priority" thus changes. 
In the implementation, the priority inheritance mechanism is informed when this happens so 
that it can set the priority of the server to the appropriate value given the list of clients wait- 
ing for that server. For example, if a server uses all the reserved computation time for a par- 
ticular client it would normally have its reserve downgraded and its "priority" decreased. 
However, if another reserved client is waiting for the server, the server will inherit the "pri- 
ority" ofthat client so as to avoid a priority inversion. 
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5.3 Applications 
A number of applications were modified to use reserves to show that real applications 

could actually achieve predictable behavior using the reservation system. A QuickTime 
video player and an MPEG decoder were modified to use reserves, and a version of the X 
Server [34] was modified to cooperate with reserved applications to provide predictable 
window system services. 

5.3.1 QuickTime video player 

A QuickTime video player, called QTPlay, was implemented at CMU. The player can 
display JPEG encoded video as well as raw, unencoded video. The player was modified to 
use reserves to achieve predictable performance. 

QTPlay avoids interactions with system components that have not been modified to sup- 
port predictable performance via reserves, such as the UX server. It loads a short clip of 
video into memory during initialization to avoid interaction with the UX server during play- 
back. For experiments, the player loops over the clip for the duration of the test. Figure 5-2 
summarizes the structure of the reserved QTPlay application. 

load short video clip 
allocate reserve with command-line parameters 
create periodic threads 
bind thread to reserve 

while not done 
save start timestamp 
display a frame 
save end timestamp 

dump timestamps to a file 

Figure 5-2: QTPlay Outline 

At initialization, QTPlay reserves time on the processor and binds the periodic thread 
responsible for frame processing to the reserve. The start time of the periodic thread and the 
start time of the reservation are synchronized so that when the thread becomes ready at the 
beginning of each period, the allocation of processor time will be available as well. The 
other reservation parameters, in particular the reserved computation time and the reservation 
period, are given as command-line arguments. They are typically determined by measure- 
ments made prior to the execution of the player. This particular application does not dynam- 
ically discover the appropriate reservation parameters nor does adjust the reservations after 
execution begins. 

The player uses a version of the X Window System library, Xlib. that was modified to 
cooperate with a reserve-enabled X Server. This library passes a reference to the thread's 
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reserve when the player opens the connection to the X server. The X server then uses the 
reserve for operations requested by the player (such as DisplayBitmap). 

In each period, the thread displays a frame of the video and then saves the start time and 
completion time for the frame in a buffer in memory. Just before the player exits, it dumps 
the contents of this timestamp buffer to a file for subsequent analysis. 

5.3.2 MPEG decoder 

The Berkeley MPEG decoder [93] was modified to use processor reserves in RT-Mach. 
This version of mpeg_play reserves processor capacity during its initialization and periodi- 
cally evaluates its performance and makes adjustments to its processor reservation and tim- 
ing constraints as necessary. 

The original Berkeley MPEG decoder works by repeatedly reading MPEG encoded 
macroblocks from an input stream, transforming them, and displaying the frames. The 
underlying mpeg library has some features for managing the timing of frames, but the sim- 
ple player that is provided to demonstrate the use of the library displays frames as fast as 
possible without attempting to regulate their timing. 

A number of changes and extensions to the MPEG player were required to enable pre- 
dictable performance and to take advantage of the timing features of RT-Mach as well as the 
processor reservation mechanism. Figure 5-3 summarizes the code structure of the modified 
version of mpeg_play. 

load short video clip 
allocate reserve with command-line parameters 
create periodic thread 
bind thread to reserve 

while not done 
save start timestamp 
display a frame 
save end timestamp 
if frame_number mod 3 0 == 0 then 

evaluate usage 
adjust reservation parameters and/or algorithm 

Figure 5-3: mpeg_play Outline 

As with the QTPlay, mpeg_play prefetches a short clip of video into memory to avoid 
interacting with the file system during runtime. The frames are decoded and displayed by a 
periodic thread that has the period desired for video playback, typically 33 ms. 

During the initialization of the modified MPEG player, it requests a processor reserva- 
tion based on an estimate of the computation time and the length of the period. Since the 
computation time may vary on different hardware platforms and different MPEG data 
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streams, it is very difficult to get an accurate estimate before running the application, and 
this player tunes its reservation parameters as it executes. 

For each frame, the player records the time the computation was started, the time it 
ended, and the amount of processor time it used during its execution (taken from the usage 
information in the processor reserve). It periodically computes statistics on these numbers 
for the recent periods to find out how much computation time was required for each frame 
and whether the delay for the computation is excessive. This information is used to decide 
what adjustments need to be made (if any). In its evaluation, mpeg_play distinguishes three 
cases: 

1. reservation level okay, do nothing. 

2. reservation level too low but some capacity is available to be reserved. 
increase reserved computation time while keeping the same period. 

3. reservation level too low and no additional capacity is available to be 
reserved, increase the reserved computation time to the desired amount 
and increase the reservation period proportionally. 

The modified version of mpeg_play incorporates some basic adaptive techniques, but it 
could be extended in a number of directions to improve its flexibility and performance. The 
decoding and display phases of the player should be decoupled to allow the variation in 
decoding time to be masked by buffering with the application. Incremental decoding tech- 
niques would yield several options for how much computation to do for each frame, and 
changing the dithering algorithm dynamically would increase flexibility as well. 

5.3.3 X Server 

Each real-time X client acquires a processor reserve and charges its own execution time 
against that reserve as well as providing the reserve to the X Server so that the Server can 
charge service time done on behalf of that client to the appropriate reserve. We have modi- 
fied a version of the X Server to order service requests according to their timing constraints 
and to charge service time to the client for which the service is performed. Basically, the 
server should mimic as closely as possible the behavior that would be observed if each client 
could do its own graphical display within the context of its own address space and schedul- 
ing domain. Thus the modified X Server has the following properties: 

1. The Server ensures that the activities of real-time clients are isolated 
from unwanted interference from non-real-time X clients by ordering all 
request from real-time clients down through non-real-time clients and 
servicing them in that order. 

2. The Server itself is isolated from unwanted interference from non-real- 
time applications (even applications which are not X clients) by virtue of 
the processor reservation mechanism. The reservation system ensures 
that, while the X Server is running under a client's reservation, the 
resource capacity associated with that reservation is available to the X 
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Server. 

3. Other real-time applications that are not X clients are isolated from 
unwanted interference from the X Server and its clients if they use the 
reservation system. This would not be true if the X Server were just 
assigned a "high priority" or if it over-reserved resources. 

The goal of this work is to achieve predictable performance for real-time applications 
that make use of the graphical display services provided by the X Window System. "Pre- 
dictable performance" means that real-time applications will be scheduled based on their 
timing requirements, and their graphical display requests serviced by the window system 
will be scheduled to meet the timing requirements. Thus, the abstract activity for each real- 
time client, consisting of the computations within each client application and the associated 
computations within the window system, should suffer only bounded delays due to other 
real-time and non-real-time applications sharing the window system. 

The processor capacity reserve mechanism provides this kind of timing isolation for 
independent programs which do not communication or synchronize with each other. How- 
ever, when applications share a single software resource such as the X Server, the same kind 
of timing isolation provided by reserves must be extended into the Server's computations. 
To provide this isolation and bounded delay, the following is required of the server: 

1. Requests from different clients that queue up in the server should be ser- 
viced in the order that the clients would be serviced if they were doing 
the work themselves and being scheduled by the processor reservation 
mechanism. In other words, the server should handle requests in order of 
client "priority" (where client priority refers to an implied ordering 
among clients defined by the reservation system). 

2. Computation performed in the server on behalf of a client should enjoy 
resources, such as processor capacity, that have been reserved for that cli- 
ent. The server should execute at the priority of the client whose request 
it is servicing. Likewise, the resource usage for such a computation 
should be charged to the client's reservation, so that a client is prevented 
from getting more than its reserved time by sending some work to the 
server and then doing other work locally. 

3. Priority inversion should be minimized (and unbounded priority inver- 
sion completely avoided) in servicing the clients' requests. Thus if the X 
Server is occupied with a request from a client when another request 
comes in from a higher priority client, the server should inherit the prior- 
ity of the newly arrived client. 

These requirements have many implications for the coding of the server. The idea that 
the server should mimic the behavior of individual threads performing the same computa- 
tions places some restrictions on how the server can be designed. Also, each of the three 
specific requirements listed above has some additional implications for the coding of the 
server. 
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First we address the desire to have the server behave as the individuals would. This is 
conceptually easy to achieve by thinking of spawning a new thread for each client's request 
as it arrives at the server, binding the thread with the reservation or priority of its client, and 
then allowing the threads to be scheduled by the processor reservation system based on that 
information. Unfortunately, spawning a potentially large number of new threads is expen- 
sive, and while there exists a version of the X Server that is multi-threaded [110], the one on 
which this work is based has only a single thread. With a single-threaded server, we try to 
mimic the desired behavior by satisfying the three requirements listed above as follows: 

1. Client requests are enqueued in the server in priority order. 

2. At the beginning of the computation for each service request, the server 
takes on the resource allocation persona of the client, enjoying the 
resource reservations of the client and charging usage against the client's 
reserve. 

3. The RT-DPC [59] mechanism handles priority inheritance to minimize the 
effects of priority inversion. 

These are the modifications made to the X Server to provide predictable performance. 
However, there are some problems with the X Server that interfere with real-time applica- 
tions and which are very difficult if not impossible to fix. Several of these problems are 
addressed in the development of a window system intended for real-time performance 
[105]. Briefly, the problems are: 

1. The X Protocol supports a "grab server" operation which blocks out all 
other operations for an unbounded period of time. 

2. The X library batches requests for higher throughput. This can increase 
the delay of single operations as multiple operations are combined into 
one. 

Despite these hindrances to 100% guaranteed real-time performance, the modified X 
server can provide good real-time behavior for typical multimedia applications such as 
video players. 

5.4 Reserved network protocol processing 
A predictable network service depends on how the protocol processing for network 

packets is handled as well as how these activities are scheduled. This section examines sev- 
eral different approaches to protocol processing software design and discusses the advan- 
tages and disadvantages of these approaches. 

5.4.1 Software interrupt vs. preemptive threads 

Traditionally, protocol processing software has been designed to take packets from the 
network interface and immediately begin processing them at high priority. For example, 4.3 
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BSD protocol processing is done at a "software interrupt level" which executes at a higher 
priority than any schedulable activities in the system (like processes) but at a lower priority 
than hardware interrupts [62]. Unfortunately, network packets associated with a low priority 
activity may flood the protocol processing software and execute while higher priority pro- 
cesses are delayed. This is an example of priority inversion [48,75]. 

To prevent this kind of priority inversion, it is necessary to associate priorities with 
packets so that they can be queued and serviced in priority order. It may also be helpful to be 
able to preempt the processing of one low priority packet in favor of a higher priority 
packet, especially if the computation time required for protocol processing is significantly 
more than that required for a context switch. One approach, used in the ARTS real-time ker- 
nel, has preemptible threads to shepherd packets through the protocol software [124]. This is 
similar to the method used in the ^-kernel [45], but unlike the x-kernel threads, ARTS proto- 
col processing threads were preemptive. This approach provides fast response to high prior- 
ity packets and prevents low priority network activities from interfering with high priority 
work on the processor. 

5.4.2 Mach 3.0 networking 

Networking in the context of the Mach 3.0 UX server [36] is accomplished by calling 
the 4.3 BSD networking primitives, which are handled by the UX server. The UX server 
interacts directly with the network device drivers to send and receive packets. 

Network driver 

RT Mach 3.CL 

Figure 5-4: Networking with the UX Server 
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As shown in Figure 5-4, this makes the UX server a single point of contention for all 
activities that are using the network. Unfortunately, the networking code inside the UX 
server does not support priority. So this software does not satisfy the requirements for prior- 
ity and preemptibility in predictable protocol processing software. 

Another problem with networking under the UX server of Mach 3.0 is that the interpro- 
cess communication (IPC) required between the application and the UX server and between 
the UX server and the network device drivers adds overhead to network communication. 
This decreases throughput and increases latency. To alleviate these problems, Maeda and 
Bershad created a library implementation of TCP/IP and UDP/IP sockets [70]. Their library 
handles the protocol processing for sending and receiving packets and interacts with the net- 
work packet filter [139] and network device drivers directly. The library can be linked in 
with applications that use the networking calls, so each application can do its own protocol 
processing in its own scheduling domain (i.e. within its own threads). The library only inter- 
acts with the UX server to create and destroy connections and for a few other control opera- 
tions. The fast path for sending and receiving packets is confined to the library itself (and 
the device drivers). Figure 5-5 illustrates their networking software structure. 

Network driver 

RT Mach 3.0. 

Figure 5-5: Networking with the Socket Library 

Maeda and Bershad report that their socket library yields much better performance in 
terms of throughput and delay than the UX server sockets implementation [70]. Coinciden- 
tally, their implementation also satisfies the requirements for effective real-time scheduling 
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of protocol processing. By including the code in a user library, the computation is done by 
the user thread at the user's priority. It is also preemptible since it runs in user mode and 
shares nothing with other threads in other applications. 

5.4.3 Reserved protocol processing 

Since the socket library enables the protocol processing computation to be scheduled 
under the priority of the application and since it is also preemptible, the processor reserva- 
tion system can be applied to programs which do socket-based communication [77]. Com- 
pared with a UX server socket implementation, the library partitions the data structures and 
control paths of all of the networking activities and places them in independent address 
spaces where they do not to interfere with each other. In the UX server, these different activ- 
ities are forced to share the same queues without the benefit of a priority ordering scheme. 
Other activities such as file I/O, asynchronous signals, etc. may interfere with the protocol 
processing, thus delaying packets as a result of other operating system activity that is not 
even related to networking. 

In the socket library, these components do not interfere with each other, so the reserva- 
tion mechanism is free to make decisions about which applications should receive computa- 
tion time and when. The control exercised by the reservation scheduler is not impeded by 
additional constraints brought on by the sharing of data structures and threads of control. 
Applications that use the socket library with the reservation mechanism should therefore 
achieve very predictable networking behavior. 

5.5 QOS manager 
A QOS manager was implemented to provide a central point for resource allocation 

decisions. It exports an interface that allows the application programmer to create and termi- 
nate reserves, to request a reservation at a specific desired level, and to set preferences for 
the minimum reservation level. If the reserved load becomes high and the server has diffi- 
culty granting minimum reservation levels for new requests, the server begins to downgrade 
some of the previously granted reservations to their minimum levels in order to admit the 
new reservation request at its minimum level. 

In general, information about resource allocation requirements may come from a variety 
of sources and may change over time. Resource allocation information can come from 
applications themselves which may request resource and negotiate if the request cannot be 
satisfied immediately. It can come from static user preferences about which applications 
should be more resources under what circumstances. And it can come from various user 
interface elements designed to bring resource management decisions to the console user. 

5.5.1 Information sources 

The QOS manager uses the information it gathers to make policy decisions about how to 
allocate resources to various activities. The information may come from user preferences 
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files, applications themselves, and graphical resource management tools. Figure 5-6 sum- 
marizes the information flow associated with the QOS manager. 

Reserved Apps 

Resource Reservation 
Mechanism 

RT-Mach 

Figure 5-6: Resource Management Schematic 

The static user preferences used by a QOS manager might come from a configuration 
file located in the user's home directory or in a system default directory. Such a file could 
contain arbitrarily sophisticated rules for the QOS manager to use in making allocation pol- 
icy decisions. For example, the file might contain rules to indicate how the user's focus 
should affect resource allocation. It might have rules to determine which applications are 
more important (e.g. specifying that audio/video applications are more important that file 
transfer). There might be rules about how temporal properties indicate which applications 
are more important (e.g. giving recently created applications preference over older applica- 
tions). And there might be rules about how past usage should affect future reservation. 

The dynamic user preferences might come from the applications themselves, from a sep- 
arate tool, or from some mechanism associated with a window manager. In any case, cues 
given by the user, which can be picked up in the user interface, are very important to the pol- 
icy decisions that must be made about where to allocate resource capacity. These cues can 
be explicit, where the user makes certain gestures to change the resource capacity alloca- 
tions of various activities. Or the cues can be implicit, as in the case of a window manager 
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which notices which window has the user's focus (based on the position of the mouse 
pointer) and passes this information along to the QOS manager. 

Information about the recent resource usage of various activities might be used to deter- 
mine what the future resource reservation levels should be for those activities. For example, 
an audio player receiving transmissions over the network might become quiet due to long- 
lasting lull at the sender. When this happens, it may be appropriate to notice the lack of 
resource usage in the associated reserve and temporarily scale down the reservation level in 
order to free up more reservable capacity for other activities. A QOS manager with this fea- 
ture would undoubtedly also provide a mechanism for such dormant applications to come 
back to life at their original reservation level once they become active again. 

5.5.2 Admission control 

The admission control policy of the QOS manager must be coordinated with the admis- 
sion control of the system. The reservation system has an admission control policy that 
allows it to enforce reservations and keep itself internally consistent with respect to resource 
allocation and enforcement. The QOS manager must have a version of the same admission 
control policy so that it can evaluation reservation requests that it gets and look at more 
sophisticated issues such as how different requests it gets can be combined or changed to fit 
together better. 

This design was chosen because it keeps the admission control test of the kernel simple 
and fast while allowing arbitrarily sophisticated admission control decisions and negotia- 
tions to be carried out in user-level QOS managers. It would be possible to combine the two 
policies but there are drawbacks to that approach. If the sophisticated policy with negotia- 
tion were implemented in the kernel, the system would become more complicated, slower, 
and less flexible. If the kernel depended on user-level admission control for its own consis- 
tency, it would be vulnerable to errors in the user-level QOS managers. 

5.5.3 Extensions 

The QOS manager reacts to new reservation requests that strain the available resource 
capacity by trying to free up resource capacity from among previously reserved activities, 
subject to the limitations that those activities allow as expressed by their minimum reserva- 
tion levels. This policy could be extended to accommodate information about which activi- 
ties should be downgraded first, whether new minimums could be negotiated with activities 
to free up even more capacity, or whether the activities requesting reservations should be 
denied to keep the previously reserved activities at their current reservation levels [79]. 
Another extension might upgrade reservations to the old desired values once reservable 
resource capacity became plentiful. 
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5.6 Tools 
Two tools were developed in the course of this dissertation work to do debugging and 

execution monitoring for experiments and to provide a user interface for reserves. One is a 
reserve monitor with a graphical user interface, and the other is a usage monitor that oper- 
ates in batch mode to gather usage statistics for experiments. 

5.6.1 Reserve monitor 

A reserve monitor, called rmon, provides the user at the console with a graphical user 
interface to monitor and control processor reserves. The two important aspects of this tool 
are its presentation of usage information and its support for control of resource reservation. 

5.6.1.1 Usage information 

The primary view of rmon displays basic information about all of the processor reserves 
in the system. This information consists of the name of the reserve, a graphical representa- 
tion of the recent usage information, normalized to the reservation period, and the reserva- 
tion period itself. Figure 5-7 shows a screen dump of this primary view. 
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Figure 5-7: rmon Main View 

161 



As the figure shows, each reserve takes one row in the display. Each row contains the 
following elements: 

• detail button - Pressing the detail button pops up another window which shows 
more detailed information associated with the reserve. 

• reserve name - Each reserve may have a name associated with it for ease of identi- 
fication. 

• graphical usage display - This graphic displays a bar with length corresponding to 
the percent resource usage over the last several reservation periods. The usage is 
normalized to the reservation period, and the graphic includes markings to indicate 
the scale of the usage. 

• reservation period - The reservation period indicates the averaging interval of the 
usage measurement. 

As reserves are created and terminated in the system, corresponding rows are created 
and destroyed in the primary view. The two system reserves (called "default reserve" and 
"idle reserve") always exist. So they always appear in the view. The default reserve is where 
all the usage is charged for applications that do not have their own private reserves. It has no 
actual resource capacity reservation associated with it; it just accumulates the usage of the 
unreserved programs. The idle reserve accumulates the usage of the idle thread; it also lacks 
an actual resource reservation. 

For each reserve that has a resource capacity reservation associated with it, rmon dis- 
plays a vertical bar in the usage graphic to indicate the level of the reservation, in terms of 
normalized capacity. In Figure 5-7, the reserves named "Reserve_A" and "Reserve_B" have 
resource capacity reservations associated with them whereas "Reserve_C" and 
"Reserve_D" do not. The vertical bars in the usage graphics of Reserve_A and Reserve_B 
indicate that the have reservations of 20% and 33%, respectively. The reservation periods 
are 50 ms and 60 ms, respectively. 
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Figure 5-8: rmon Detail Views 
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Pressing the "detail" button at the beginning of a reserve's row pops up another window 
of detailed information about the reserve. This includes a graphical display of the recent his- 
tory of resource usage as well as the parameters of the reserve. Figure 5-8 shows two exam- 
ple detail windows. Part (a) of the figure shows the detail for an activity thai has a 
reservation, and part (b) shows an activity without a reservation. 

As shown in the figure, the recent history occupies the top portion of the detail window. 
It shows the normalized usage of the reserve over the last several reservation periods, and it 
advances in real-time in a manner similar to that of xload [74]. For the reserved activity in 
Figure 5-8(a), which is Reserve_A from the Main View, this usage is fairly constant over 
time. For the unreserved activity in Figure 5-8(b), Reserve_C, this usage is variable from 
period to period. Each window also displays the reserved computation time and the reserva- 
tion period. The unreserved activity has zero reserved computation time but a non-zero res- 
ervation period (the implementation represents an unreserved activity using a reserved 
computation value equal to the reservation period, and this representation happens to be 
exposed in this view). This indicates that usage measurements for this activity will be taken 
based on the reservation period, but that there is no actual resource capacity reservation. 

5.6.1.2 Allocation Control 

The level of the reservation for a reserve, as indicated by the vertical bar in the normal- 
ized usage graphic, can be changed by clicking the mouse in that usage graphic at the level 
desired for the reservation. This action modifies the reserved computation time parameter of 
the reserve without changing the reservation period. 

The upper screen view in Figure 5-9 shows several reserves at various reservation lev- 
els. Notice the position of the mouse pointer in the usage graphic of the reserve called 
ReserveJB, which is reserved at 20% of processor capacity. Clicking the mouse button with 
the pointer at this position changes the reservation level of Reserve_B to that shown in the 
lower screen dump in the figure. The reservation level is now about 40%, and the actual 
usage of the activity reflects the availability of that additional capacity. 

5.6.2 Usage monitor 

A usage monitor based on reserves was developed to aid in debugging and to support 
usage measurements for experiments. This monitor allocates a reserve and requests a reser- 
vation for its own execution. It periodically polls for the usage on specified reserves in the 
system, saving the usage numbers in a large buffer. Then it formats the usage information 
and writes it to a file for processing by a graphing tool. 
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Figure 5-9: Modifying a Reservation 

5.7 Chapter summary 
This chapter describes the implementation several software components in the reserva- 

tion system including: 

• processor reserves in RT-Mach, 

• reserved video players and a version of the X Server that uses reserves, 

• a version of the Mach 3.0 socket library implementation modified to use 
reserves, 

• a QOS manager, 

• a tool for providing a user interface to the reservation system. 
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The description of the implementation of reserves presents operations that are supported 
for manipulating reserves as well as a description of how the scheduling and usage enforce- 
ment is handled. The implementation of two video players that use reservation is described 
along with that of a version of the X Server that was modified to use reserves. The section 
on the socket library implementation discusses issues in the organization of protocol pro- 
cessing software to support real-time packet processing. A description of the QOS manager 
indicates how it works and its relationship with applications and the reservation mechanism. 
Finally, a graphical user interface tool is described; it displays information about reserves 
and provides an interface for controlling reservation parameters. 
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Chapter 6 

Experimental Evaluation 

This chapter presents an experimental evaluation of the implementation of processor 
reserves in RT-Mach. The reservation mechanism was designed to support predictable 
behavior for real-time and multimedia applications, so the evaluation answers the questions: 
Can reserved programs achieve predictable behavior, and what is the price of predictability? 

6.1 Overview 
The experimental evaluation presented in this chapter answers two questions: Can 

reserved programs achieve predictable behavior, and what is the cost for predictability? 
These questions are addressed using synthetic benchmarks, real applications, and measure- 
ments of individual mechanisms. The chapter is divided into two main sections, one to 
address predictability and another to address scheduling costs. 

The section on predictability shows that for a wide variety of task sets, real-time tasks 
exhibit predictable behavior and meet their timing constraints: 

• Independent synthetic workload measurements show that for pure com- 
putations that have no interactions with other tasks, the reservation mech- 
anism successfully guarantees timing constraints. 

• Client/server experiments show that the reserve propagation mechanism 
helps guarantee the client's timing constraints, even when there are mul- 
tiple clients with and without reservations. 

• Results of experiments with the QTPlay QuickTime video player and the 
X Server show how this client/server pair is coordinated to meet the tim- 
ing constraints of the video player, even when there are unreserved X cli- 
ents competing for the attention of the X Server. 

• Experiences with the mpeg_play decoder and the X Server demonstrate 
how an application can start with an inaccurate estimate of required com- 
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putation time and then adjust its reservation parameters to balance its 
usage requirements with the resource availability. 

• Experience with a library-based network protocol software structure 
shows that protocol processing for real-time applications can be guaran- 
teed using processor reserves. 

The other main section of this chapter explores the scheduling costs of the reservation 
system. Two measurement techniques are used: 

• A comparison of the system scheduling costs for periodic real-time pro- 
grams that use reserves vs. periodic programs that do not use reserves 
shows that the cost varies, as expected, depending on the period of the 
program. 

• Measurements of various internal operations such as reserve switch time, 
overrun timer handling, replenishment timer handling, and usage check- 
point operations provide a means of estimating scheduling cost for 
reserved task sets. 

The measurements for most of these experiments were taken using RT-Mach version 
MK83j with UNIX server UX41. The mpeg_play and libsockets experiments used RT- 
Mach version MK83i, which does not different significantly from MK83j in the features 
used in the experiments. The hardware platform for the first three sets of experiments was a 
90MHz Pentium with 16 MB RAM and an Alpha Logic STAT! timer card. The timer card 
has a 48-bit free-running clock with 1 fis resolution, and a 16-bit interrupting timer with 1 
(is resolution. For the remaining experiments, the hardware platform was the same except 
the processor was a 486 DX2 instead of a Pentium. For easy reference, the chart below sum- 
marizes which platforms were used for which experiments. 

Experiment 
RT-Mach 
Version 

UX Version 
i 
I    Processor 

Independent task sets MK83J UX41 Pentium 

Client/server task set MK83J UX41 Pentium 

QTPlay/X Server MK83J UX4I Pentium      j 
| 

mpeg_play/X Server MK83i UX41 486 

libsockets MK83i UX42 486 

Aggregate scheduling costs MK83J UX41       1         486 

Micro measurements MK83J UX41 486 
i 

Table 6-1: Summary of Testbed Platforms 
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In general, the switch from the 486 to the Pentium speeds up the compute-intensive 
applications by about 30%. Since the micro measurements involve kerne! instruction 
streams that access external devices such as the clock/timer card, these measurements are 
not expected to change significantly using a Pentium processor. 

In summarizing the results of many of the experiments, percentiles are used to specify 
dispersion. While running these experiments on a desktop computer connected to the nor- 
mal departmental network, occasional anomalies occurred. 5-percentiles and 95-percentiles 
are used to indicate the range of the strong majority of measurements while ignoring the 
occasional anomaly. As defined in Jain's book [50], the 5-percentile is obtained by sorting a 
set of n observations and taking the [1 + n(.05)]th element in the sorted list (where [.] is used 
to indicate rounding to the nearest integer). The 95-percentile is the [1 + n(.95)]th element in 
the sorted list. 

6.2 Predictability 
What is meant by "predictability?" In the context of this work, a predictable application 

is one whose timing behavior can be determined from the application code, the resource res- 
ervations that it acquires, and its dependence on other programs. In particular, a predictable 
application that is not under-reserved will meet all of its timing constraints. 
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Figure 6-1: Compute-Bound Periodic Task with No Competition 
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As an example, consider a periodic application that computes for a fixed duration of 
time in each period and spends all of its computation time in a tight loop. Such an applica- 
tion should be able to allocate a reservation for its computation time, and it should exhibit 
the same behavior when it is executing concurrently with other activities as when it is exe- 
cuting in isolation. That is, it should be able to consume its reserved computation time in 
each period before the "deadline" at the end of the period. 

Figure 6-1 shows the processor usage over time of a periodic application with a local 
computation and no competition for resources. The x-axis is time measured in seconds: it 
shows several seconds of usage information for the application. The y-axis is the normalized 
processor utilization of the application. Time on the x-axis is divided into intervals that cor- 
respond to the period of the application, and the processor time used during each period is 
measured and the utilization computed for the period. The utilization is plotted at that con- 
stant level for each period. For the duration of the test shown, he periodic application has an 
average utilization of 0.467. The distribution of measurements is very closely packed 
around this average with a 5-percentile of 0.465 and a 95-percentile of 0.473. 
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Figure 6-2: Compute-Bound Periodic Task with Competition 

Figure 6-2 shows a similar graph of the processor usage of a periodic application that 
has a local computation but has competition for the processor from other programs (not 
shown). Even though there is competition, the reservation system ensures that the appropri- 
ate amount of processor time will be available to the application in each period. The applica- 
tion consumed an average of 0.462 of the processor in each period. As in the previous case, 
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most of the measurements were very close to the average; the 5-percentile is 0.460 and the 
95-percentile is 0.470. 

6.2.1 Independent synthetic workloads 

Independent synthetic workloads are used to test whether the reservation system can 
successfully provide access to reserved processor resources. The example above demon- 
strates that the reservation system can ensure predictable behavior for a periodic application 
running with competition from other activities, and one of the experiments described below 
shows that multiple independent reserved applications can achieve predictable behavior, 
even with competing unreserved activities. Two additional experiments show that the reser- 
vation guarantee is independent of the number of competing activities, regardless of 
whether the competitors are reserved or unreserved. 

6.2.1.1 Methodology 

These experiments were run using two software tools developed for performance evalu- 
ation. A configuration manager parses the specification of a task set with timing parameters 
and reservation parameters and then creates programs with the appropriate parameters. Sev- 
eral different kinds of programs that exhibit different kinds of behavior can be specified in 
the task set. Each of these programs takes a start time, a duration to compute, a thread 
period, a computation time to reserve, and a reservation period. Two programs are used in 
these experiments: 

• arith - Creates a periodic thread that executes in a tight loop for some 
duration of time in each period. 

• monitor - Records the usage charged to reserves in the experiment. 
This program has a reservation of its own to enable it to run even when 
there are many reserved programs in the experiment. 

A usage monitor is usually included in the task set to take usage measurements for all of 
the programs created by the configuration manager. The monitor buffers the measurements 
during the course of the experiment and then formats the data and writes them to disk after 
the experiment is completed. The data are then graphed. 

Experiment 1 is designed to show that reserved activities are able to execute their peri- 
odic computations within their time constraints, even with competing unreserved activities. 
Even if the reservation parameters have different computation times and different periods 
the timing constraints of the reserved activities will be satisfied. 

Table 6-2 shows the programs used in Experiment 1 along with the number of instances 
of each program, the timing parameters, and the reservation parameters. In this experiment 
there were 3 arith programs that were reserved with different timing and reservation 
parameters. One had a reservation of 5 ms of every 20 ms, the second had a reservation of 
14 ms every 40 ms, and the third a reservation of 8 ms every 50 ms. The reservation is sot 
slightly higher (1 or 2 ms) than the computation time that would be consumed by the pro- 
gram in isolation. This accommodates variation in the computation time due to cache effects 
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and context switches. In addition to those three, there were 5 arith programs running in 
infinite loops with no reservations; these provide compute-bound competition for the 
reserved activities. And finally, the experiment included a monitor program to collect 
usage numbers throughout the duration of the test. This monitor had 2 ms reserved of every 
20 ms. 

Program # 
Program 

Computation 
Program 
Period 

Reserved 
Computation 

Reservation 
Period 

arith 1 4 ms 20 ms 5 ms 20 ms 

arith 1 12 ms 40 ms 14 ms 40 ms      | 

arith 1 6 ms 50 ms 8 ms 50 ms      j 

arith 5 infinite loop N/A 0 ms 40 ms 

monitor 1 N/A 20 ms 2 ms 20 ms      | 

Table 6-2: Experiment 1 Parameters 

The other two experiments measure the sensitivity of reserved applications to competi- 
tion. Both experiments consist of eight series of tests. Each test has a reserved arith pro- 
gram whose measurements are the focus of the test. The series differ in that the reserved 
arith program increases in reserved utilization in each series. Each series itself consists of 
a sequence of tests with an increasing number of competitors. In each series of Experiment 
2, the one reserved arith program competes with an increasing number of unreserved 
arith programs. For each test, the 5-percentile and 95-percentile for the resource usage 
measured in each reservation period is reported. The parameters for an example task set in 
Series 1 of this experiment appear in Table 6-3. 

Program # 
Program 

Computation 
Program 
Period 

i   

Reserved 
Computation 

Reservation ! 
Period      : 

arith 1 3 ms 40 ms 4 ms 40 ms 
i 

arith 2 infinite loop N/A 0 ms 40 ms 

monitor 1 N/A 20 ms 2 ms 20 ms      j 

Table 6-3: Example Parameters for Experiment 2 

The task set that appears in Table 6-3 has one reserved arith program that computes 3 
ms in every 40 ms and has a reservation of 4 ms for every 40 ms. It also has two unreserved 
arith programs and a monitor program. Other tests in the Series 1 have unreserved 
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competitors ranging in number from 0 to 9 competitors. This task set is designed to show 
that regardless of what the reserved utilization is and regardless of how many competitors 
there are (ranging from 0 to 9 compute-bound, unreserved competitors), a reserved activity 
will always be able to get its reserved allocation. 

Experiment 3 is like Experiment 2 except that the competitors are reserved instead of 
unreserved. For convenience, the competitors all have identical reservations, so the number 
of competitors for a reserved activity is limited to the number of competitors that can be 
accepted by the admission control policy. 

The tests of Experiment 3 are organized into 8 series with 10 tests, just as in Experiment 
2. Again, the series differ in that the reserved arith program that is observed varies in its 
reserved utilization, and within each series, the number of competitors ranges from 0 to the 
highest number that can pass admission control along with the observed program. Variation 
in the usage of the measured reserved program is again characterized by the 5-percentile and 
95-percentile. The parameters for an example test in this experiment appear below. 

Program # 
Program 

Computation 
Program 
Period 

Reserved 
Computation 

Reservation 
Period 

arith 1 3 ms 40 ms 4 ms 40 ms 

arith 2 2 ms 30 ms 3 ms 30 ms 

monitor 1 N/A 20 ms 2 ms 20 ms 

Table 6-4: Example Parameters for Experiment 3 

The task set in Table 6-4 has one arith program with computation duration 3 ms and a 
period of 40 ms. The reservation given to this program is 4 ms every 40 ms. The table lists 
two other reserved arith programs with 2 ms computation time and 30 ms period, and 
these both have reservations of 3 ms every 30 ms. This is a test from Series 1 of Experiment 
3, and other tests in this series have the different numbers of competing reserved programs. 
The number of competitors for Series 1 ranges from zero to seven, but the number of com- 
petitors for Series 8 is zero since no competitors could be admitted once the primary 
reserved program and the reserved monitor pass admission control. The purpose of this task 
set is to demonstrate that regardless of what the reserved utilization of the primary reserved 
program and regardless of the number of competitors, the primary reserved activity will get 
its reserved allocation virtually all of the time. 

6.2.1.2 Results 

The results from Experiment 1 demonstrate that multiple reserved programs meet there 
timing constraints, despite the competition between the reserved activities and conipefitiou 
from unreserved activities. Figure 6-3 shows a graph of the behavior of the three reserved 
programs in Experiment 1, leaving out the usage measurements of the competing unre- 
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served activities. These usage measurements are in the same format as the exampJe case 
described earlier: the x-axis is time in seconds for the test, and the y-axis is processor utili- 
zation. The usage for each reservation period for each reserved program is computed and 
plotted on the graph, yielding three functions of utilization over the duration of the test. 
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Figure 6-3: Experiment 1 Results 

Each of the three reserved programs sustains a fairly constant utilization level through- 
out the entire test, in spite of the competition from reserved and unreserved activities. The 
reserved program with a computation time of 4 ms every 20 ms gets a fairly constant utiliza- 
tion with an average of 0.219 (context switching overheads and cache effects push the mea- 
sured usage higher than what it would be in a quiescent system). The 5-percentile is 0.216 
and the 95-percentile is 0.227, indicating that very few measurements fall far from the aver- 
age. The reserved program computing 12 ms every 40 ms gets an average utilization of 
0.312. It gets a 5-percentile of 0.310 and a 95-percentile of 0.320, so there is clearly very lit- 
tle variation in the utilization across periods. The program computing 6 ms every 50 ms gets 
an average utilization of 0.132 across the periods shown above. The 5-percentile is 0.126 
and the 95-percentile is 0.141. Thus Experiment 1 shows that the reservation system can 
guarantee the timing constraints for multiple reserved programs even when there is competi- 
tion from unreserved activities. 

The results from Experiment 2, illustrated in Figure 6-4, show that the timing behavior 
of a reserved program is not affected by the number of unreserved competitors, regardless of 
the utilization of the reserved program. The graph in Figure 6-4 has the number of competi- 
tors on the x-axis and processor utilization on the y-axis. The data from the eight series are 
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plotted as functions on the graph. For example, the function for Series 1 starts with the aver- 
age utilization for the test that has zero competitors. The function then continues to the aver- 
age utilization for the test in that series that has 1 competitor and so on up to the average 
utilization for the test with nine competitors. At each point where the average utilization is 
plotted, there is also a range that gives the 5-percentile and 95-percentile to indicate the vari- 
ation in the behavior of the reserved program on that test. The rest of the functions are simi- 
lar. This graph shows that for each series, the average processor utilization is nearly 
constant, regardless of the number of competitors. Furthermore, the variation given for each 
measurement is quite small, indicating that for the vast majority of reservation periods, the 
reserved program is able to meet its timing constraints. 
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Figure 6-4: Experiment 2 Results 

The results for Experiment 3 are presented in Figure 6-5. These results show that the 
behavior of a reserved program does not depend on the number of competing reserved activ- 
ities, regardless of the utilization of the reserved program of interest. The graph for Experi- 
ment 3 is much like the graph for Experiment 2. The x-axis is the number of competing 
programs, and the y-axis is processor utilization. There are data from the same kinds of 
series, and the plot of average utilization as a function of number of competitors is the same. 
Each plotted point has a 5-percentile and 95-percentile range to indicate the variation. Since 
each of the competitors must pass the admission control policy, the number of competitors 
becomes more limited as the utilization of the measured reserved activity gets larger. So the 
maximum number of competitors for Series 1 is seven and for Series 8. no competitors can 
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pass admission control after the measured reserved activity and the monitor do. These 
results show that the average processor utilization for each series is nearly constant, i.e. it 
does not depend on number of competitors. The variation in processor utilization is very 
small, indicating that the reservations are available to allow the reserved activity to satisfy 
its timing constraints. This is true regardless of the processor utilization of the measured 
reserved program. 
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Figure 6-5: Experiment 3 Results 

6.2.1.3 Analysis 

These three experiments show that for cases where periodic threads allocate reserves for 
their computations, the reservation system is able to ensure that the reserved time is avail- 
able as promised. The reserved time is available even when there are multiple reserved 
activities and unreserved competitors as in Experiment I. Experiment 2 showed thai a 
reserved activity is assured of being able to use its reserved time regardless of the number of 
unreserved competitors and regardless of whether the reservation is for a small computation 
time or a large computation time. Experiment 3 demonstrated that a reserved activity will 
get its reserved time regardless of the number of reserved competitors it has, and this is also 
true whether the reserved activity has a small amount of time reserved or a large amount of 
time. 

Two issues are highlighted by these experiments. One is that the computation time for - 
the reserved programs was always less than the reserved computation time by 1 to 2 milli- 
seconds. The computations that the programs will execute are based on arithmetic computa- 
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tions that were timed on a quiescent system with only the timing program running. The 
synthetic workload was tuned in this environment. When these workloads are executed with 
other activities, there are additional overheads that are not included in the task set specifica- 
tions. These overheads include: 

• context switch times and cache effects, which are likely to increase as the 
task set size increases, 

• periodic thread overhead associated with periodically releasing and reset- 
ting the computation, 

• and interference from interrupts. 

The reserved computation time is set to be 1 to 2 milliseconds larger than the pure com- 
putation amount to accommodate these overheads. 

The second issue is that in some rare cases, a series of interrupts or a large critical region 
in the kernel may preempt a program and cause it to miss its reserved time and subsequently 
miss its deadline for the period. To mask these rare instances in Experiments 2 and 3, the 5- 
percentile and 95-percentile are given. This shows that for the vast majority of reservation 
periods for these threads, the usage observed is that which is expected based on the reserva- 
tion. 

6.2.2 Client/server synthetic workloads 

Most interesting applications are not independent, so it is important to consider experi- 
ments that characterize the effect of interactions such as client/server relationships in 
reserved applications. The experiments described below show that reserved activities can 
achieve predictable behavior, even when the activities involve coordination between clients 
and servers. 

6.2.2.1 Methodology 

The following experiments use the same kind of software environment as described in 
Section 6.2.1. There is a configuration manager that reads a specification of a task set and 
then creates the programs for the task set. In addition to the arith and monitor programs 
described above, these experiments use the following programs: 

• tsclient - Creates a periodic thread that invokes a server to compute 
for some duration of time specified in the invocation. The invocation is 
performed using the regular Mach IPC mechanism. 

• tsserver - Services requests sent in from instantiations of the 
t s c 1 i en t program. 

• rclient - Creates a periodic thread that invokes a server to compute 
for some duration of time, but unlike the tsclient, the rclient uses 
RT-IPC instead of regular Mach IPC, and the rclient sends a reserve 
to the server so that it can charge the computation time to the client's 
reserve. 
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• rserver - Services requests sent from instantiations of the rclient 
program. Uses RT-IPC and charges the computation requested by a client 
to the client's reserve, which is passed as an argument with the invoca- 
tion. 

Experiment 4 is designed to show the processor usage of a client/server pair that has no 
competition from other programs; this is the base case, showing the desired behavior for the 
client and server. It uses a task set with an instance of the tsclient program using Mach 
IPC to periodically invoke an instance of tsserver to perform a computation. A monitor 
records the usage for later analysis. In this case, the client sends the computation time 
amount (to be consumed in a tight loop) to the server. And the server computes for that 
amount of time and returns a result. The parameters for the programs in this task set are 
given in Table 6-5. The client is periodic and has a reservation associated with it. As long as 
the computation time requested by the client is smaller than the period, the server with no 
competition should be able to finish the computation by the end of the period, yielding a 
fairly constant utilization over time. 

Program # 
Program 

Computation 
Program 
Period 

Reserved 
Computation 

Reservation 
Period 

tsclient 1 10 ms 40 ms 10 ms 40 ms      1 

tsserver 1 infinite loop N/A 0 ms 40 ms 

monitor 1 N/A 20 ms 1 ms 20 ms      ! 
i 

Table 6-5: Experiment 4 Parameters 

In Experiment 5, the task set includes competition from unreserved programs as well as 
the tsclient, tsserver, and monitor. This experiment is meant to show how com- 
petition for the processor from unreserved activity can interfere with the coordinated activ- 
ity of a client and server using a typical IPC mechanism. 

Program 

T 

# 

i  

Program 
Computation 

r ■ 

Program 
Period 

i -    ■■        

Reserved 
Computation 

Reservation 
Period 

rclient 1 8 ms 40 ms 10 ms 40 ms 

rserver 1 N/A N/A 0 ms 40 ms 

arith 5 infinite loop N/A 0 ms 40 ms 

monitor 1 N/A 20 ms 2 ms 20 ms 

Table 6-6: Experiment 6 Parameters 
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Experiment 6 is designed to determine whether a client/server pair, using an IPC mecha- 
nism integrated with the reservation system in terms of queueing and scheduling, can sus- 
tain a predictable, coordinated activity even with competition for the processor. Table 6-6 
shows the task set specification for Experiment 6. The rclient has a processor reservation, 
and the rclient and rserver communicate using RT-IPC. The competition for the pro- 
cessor comes from five arith programs which are unreserved. 

Program # 
Program 

Computation 
Program 
Period 

Reserved 
Computation 

Reservation 
Period 

rclientl 1 8 ms 40 ms 10 ms 40 ms 

rclient2 1 8 ms 50 ms 10 ms 50 ms 

rclient3 1 8 ms 60 ms 10 ms 60 ms 

rserver 1 N/A N/A 0 ms 40 ms 

arith 5 infinite loop N/A 0 ms 40 ms 

monitor 1 N/A 20 ms 2 ms 20 ms 

Table 6-7: Experiment 7 Parameters 

Experiment 7 is intended to show whether several reserved clients can execute in a man- 
ner that satisfies their timing constraints when using the same server and competing with 
unreserved, compute-bound programs. The task set, shown in Table 6-7 shows three 
reserved instances of the rclient program with different reservation parameters. There is 
also an instance of the rserver program. The competition comes from five instances of 
the arith program which are unreserved, and there is a reserved moni tor program. 

Program # 
Program 

Computation 
Program 
Period 

Reserved 
Computation 

Reservation 
Period 

rclient 1 8 ms 40 ms 0 ms 40 ms 

rclient 1 8 ms 50 ms 10 ms 50 ms 

rclient 1 8 ms 60 ms 10 ms 60 ms 

rserver 1 N/A N/A 0 ms 20 ms 
l 

arith 5 infinite loop N/A 0 ms 40 ms      ! 

monitor 1 N/A 20 ms 2 ms 20 ms       1 

Table 6-8: Experiment 8 Parameters 
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Finally, Experiment 8 is designed to determine whether reserved clients can meet their 
timing constraints if there is an unreserved client that is using the same server. As shown in 
Table 6-8, the task set for Experiment 8 contains one rclient program with no reserva- 
tion and two rclient programs with reservations. There is an rserver and five compet- 
ing arith programs which are unreserved. A monitor is also included in the task set. 

6.2.2.2 Results 

The results from Experiment 4, shown in Figure 6-6, illustrate the processor usage pat- 
tern of the periodic client and its server. The x-axis is time over the duration of the test mea- 
sured in seconds, and the y-axis is processor utilization. The usage measurements for both 
the client and the server are taken from the corresponding reserves. The client has a reserve 
that it charges for its own computation, and the server has a reserve that it charges against 
when performing an operation for a client. For each of these reserves, the monitor records 
the computation time used in each reservation period. Those computation times are then 
normalized with respect to the length of the corresponding reservation periods and plotted as 
constant for the duration of each reservation period. 
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Figure 6-6: Experiment 4 Results 

Figure 6-6 shows that the processor utilization charged to the server's reserve is fairly 
constant over the duration of the test. The average is 0.256 with a 5-percentile of 0.255 and 
a 95-percentile of 0.264 for the measurements graphed in the figure. The normalized 
charges to the client reserve average only 0.0210; the 5-percentile is 0.0207 and the 95-per- 
centile is 0.0213. In this setup, the server is doing most of the work while the client does no 
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work other than sending off requests and receiving replies. Since there is no competition and 
the client makes the same request in every period, the utilization is fairly constant over the 
duration of the test. 

Figure 6-7 shows the results of Experiment 5 where the same client/server pair has com- 
petition for the processor from unreserved activities. As before, the x-axis is time measured 
in seconds, and the y-axis is processor utilization. In this case, the client and server do not 
have constant utilization numbers over each reservation period. For the measurements 
shown in the graph, the server has an average utilization of 0.191, which is significantly 
lower than the desired level. The 5-percentile for the server is 0, and the 95-percentile is 
0.262. The client has an average utilization of 0.0117 across the periods shown in the graph; 
its 5-percentile is 0 and its 95-percentile is 0.0158. With the client and the server recording 0 
utilization in a significant number of periods in a row, it is clear that the client/server combi- 
nation is not achieving the desired behavior. 
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Figure 6-7: Experiment 5 Results 

The competition from unreserved programs interferes with the execution of the server, 
and completely locks out the server for up to 100 to 200 ms at a time. During these periods, 
there is no usage recorded by either the server or the client, since the client cannot make 
progress without the server making progress. The usage for both the client and the server 
falls to zero for several reservation periods. This kind of behavior is clearly undesirable 
since many instances of the computation cannot take place, and the deadline is missed each 
time. 
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The results of Experiment 6 (Figure 6-8) show that when a client and server use an IPC 
mechanism that is integrated with the reservation scheduling policy, in this case a version of 
RT-IPC extended to work with the reservation scheduling policy, the combined client/server 
activity is quite predictable. The RT-IPC mechanism propagates the client's reserve to the 
server and supports a server that charges the computation time of each client to the client's 
reserve. So most of the computation in this experiment is being charged to the client (as it 
should be) instead of to the server (as in the previous case). The utilization charged to the 
client's reserve averages 0.223 with a 5-percentile of 0.222 and a 95-percentile of 0.228. 
The server utilization for the graphed intervals is 0.0114 on average; the 5-percentile is 
0.0112 and the 95-percentile is 0.0117. These numbers indicate very predictable perfor- 
mance for these programs over time. 
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Figure 6-8: Experiment 6 Results 

Figure 6-9 shows the results from Experiment 7. These results show that even when sev- 
eral reserved clients are using the same server, they can all meet their periodic timing con- 
straints (subject to the admission control policy). This is true in spite of the presence of 
competition from unreserved arith programs. 

Experiment 7 shows the usage charged to the reserves of the three reserved clients. The 
client with the 8ms/40ms synthetic computation has an average utilization of 0.223 with a 5- 
percentile of 0.221 and a 95-percentile of 0.232. The client with the 8ms/50ms computation 
has an average utilization of 0.178, a 5-percentile of 0.176 and a 95-percentile of 0.184. And 
the client with the 8ms/60ms computation gets an average utilization of 0.150; the 5-percen- 
tile is 0.147 and the 95-percentile is 0.157. These numbers indicate fairly tight distributions 
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around the averages for these applications, even though they are competing for the server 
and even though there are additional unreserved programs competing for the processor as 
well. The servers computation time seems erratic, and there are two reasons: it has a small 
reservation period (which just determines the usage measurement period), and its clients all 
have different periods and request different computations at different rates. 
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Figure 6-9: Experiment 7 Results 

Finally, the results of Experiment 8 appear in Figure 6-10. These results show that in ihc 
case where reserved clients compete with an unreserved client for a single server, ihc 
reserved clients are still able to satisfy their timing constraints. 

The reserved client with the 8ms/50ms computation has an average utilization of 0.181. 
It has a 5-percentile of 0.176 and a 95-percentile of 0.187. The reserved client with the 8ms/ 
60ms computation has an average utilization of 0.151 with a 5-percentile of 0.148 and a 95- 
percentile of 0.158. Thus, these reserved programs are able to get the processor time they 
have reserved. As the graph shows, the unreserved client manages to complete its computa- 
tion during some of its periods, but not in others. So the usage function goes back and forth 
between getting about 0.22 utilization in the periods where the computation is completed 
and getting 0 utilization in the periods where it does not get to complete the computation. 
The average utilization for this unreserved client is 0.131; the 5-percentile is 0.0059 and the 
95-percentile is 0.222. This of course confirms that the dispersion of the utilization measure- 
ments for this unreserved client is large. 
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Figure 6-10: Experiment 8 Results 

6.2.2.3 Analysis 

The experiments with unreserved and reserved client/server pairs demonstrate the 
importance of doing reserve propagation properly between client and server when the server 
is designed to use the client's reserve. Experiment 4 shows the baseline behavior for the cli- 
ent/server pair with a periodic client driving the timing of the activity. 

Experiment 5 demonstrates the problem that can occur when the reserve propagation is 
not handled properly. In this experiment, the client allocates a reserve and passes it to the 
server, which then uses it to charge the client's service time. However, this client/server pair 
does not use the "priority" inheritance mechanism to ensure that the server takes on the "pri- 
ority" of the client as soon as the RPC is enqueued in the servers input queue. With compe- 
tition from unreserved activities, this lack of "priority" inheritance results in many missed 
deadlines for the client/server activity. 

The results of Experiment 6 show that the proper periodic behavior of the client/server 
pair can be restored by using the "priority" inheritance mechanism. Priority inheritance 
makes sure that the competing unreserved activities do not interfere with the server as it 
attempts to read the request from its input queue and switch to the client's reserve. 

The last two experiments demonstrate that the reserve propagation mechanism, which 
includes "priority" inheritance and the server binding to the client's reserve, works properly 
even when there are multiple reserved clients or there are unreserved clients in addition to 
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reserved clients. Experiment 7 demonstrates that with three reserved clients (all with differ- 
ent computation times and timing constraints), the server can service them all in time to 
make their deadlines. This is true even though there is competition from unreserved activi- 
ties, which can exploit any lapses in an incorrectly implemented reserve propagation mech- 
anism and cause delays in the client/server activities. 

Experiment 8 shows that when two reserved clients and one unreserved client share a 
server in an environment with competition from other unreserved activities, the reserved cli- 
ents will always meet their deadlines. In this case the reserved clients meet their deadlines 
even though other unreserved competitors sometimes delay the unreserved client. This 
experiment further tests the integrity of the reserve propagation mechanism by making sure 
that the "priority" of the unreserved client is not propagated to the server at the wrong time, 
causing the server to appear unreserved and resulting in interference from the unreserved 
competitors. 

6.2.3 QTPlay/X Server 

Experiments using task sets with synthetic workloads provide evidence that the reserva- 
tion system can support the predictable execution of real-time programs. However, experi- 
ments with real applications that use the reservation system to meet timing constraints 
provide stronger evidence of the usefulness of the reservation system in real-world situa- 
tions. The experiments described in this section use a video player that has been modified to 
use processor reserves and a version of the X Server that has been modified to support 
reserves. 

6.2.3.1 Methodology 

These experiments use the QuickTime video player, called QTPlay, and the reserved X 
Server, both of which were described in the previous chapter. Since these programs are 
described in detail elsewhere, the description here is brief. 

The QTPlay application prefetches a short video clip into main memory and repeatedly 
displays that clip to avoid interaction with the file system and disk (which are not reserved 
in this system) during the experiments. It allocates a reserve during initialization based on 
command-line arguments and then starts playing the video. For each frame, the player 
records in a buffer the start time and end time for the frame processing, and at the end ol the 
experiment these data are written to a file on the disk for later analysis. 

When QTPlay connects to the X Server, it passes a reference to its reserve for the X 
Server to use when performing frame display operations. The X Server was modified to 
order requests based on reservation information and to charge the computation time for each 
operation to the appropriate client's reserve. 
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Figure 6-11: Software Configuration 

Figure 6-11 shows the basic software structure that is used for all of the experiments in 
this section. There is an instrumented QTPlay application which may or may not have a 
reservation and which records timestamps for each frame at the beginning of the frame dis- 
play computation and then again at the completion of frame display. Other instances of 
QTPlay may compete with this instrumented player. These are unreserved and continu- 
ously display frames as fast as possible (providing the maximum competition). 

QTPlay can display frames at a particular period or in a continuous loop, and in all of 
the experiments below, the frame resolution is 160x120 pixels with 8 bits/pixel. The timing 
is specified by command-line arguments. 

Experiment 9 is designed to illustrate the usage pattern for QTPlay with no competition 
for the processor. The parameters for QTPlay are given in Table 6-9. The period is 33 ms, 
which corresponds to a frame rate of 30 frames/second. 

Program # Mode Period 
Reserved 

Computation 
Reservation 

Period     j 

QTPlay 1 Periodic 33 ms 0 ms 0 ms       | 

Table 6-9: Experiment 9 Parameters 
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Experiment 10 is intended to show what can happen when QTPlay is executed under a 
time-sharing scheduler with a competing instance of the QTPlay program. The parameters 
for this experiment appear in Table 6-10. The QTPlay instance listed in the first row of the 
table is instrumented to provide timing information and the other just competes for the 
resources for displaying frames by continuously displaying frames as fast as possible. 

Program # Mode Period 
Reserved 

Computation 

i 

Reservation | 
Period 

i 

QTPlay 1 Periodic 33 ms 0 ms 0 ms 

QTPlay 1 Continuous N/A 0 ms               0 ms 

Table 6-10: Experiment 10 Parameters 

Experiment 11 is designed to show how well an instance of QTPlay with a reservation 
can coordinate with the reserved X Server to achieve a constant playback rate for frames. 
Table 6-11 gives the parameters for the experiment. The instrumented QTPlay application 
has a reservation and competition from one other unreserved QTPlay instance. 

Program # Mode Period 
Reserved 

Computation 
Reservation 

Period 

QTPlay 1 Periodic 33 ms 14 ms 33 ms 

QTPlay 1 Continuous N/A Oms 0 ms 

Table 6-11: Experiment 11 Parameters 

Experiment 12 is similar to Experiment 10 in that it explores the behavior of an unre- 
served QTPlay with competition from 3 unreserved QTPlay instances rather than just one. 
For completeness, the parameters appear in Table 6-12. 

Program # Mode Period 
Reserved 

Computation 
Reservation 

Period 

QTPlay 1 Periodic 33 ms 0 ms 0 ms 

QTPlay 3 Continuous N/A 0 ms 0 ms 

Table 6-12: Experiment 12 Parameters 
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Experiment 13 is similar to Experiment 11; it looks at the behavior of a reserved 
QTPlay instance with three competing QTPlay instances. The parameters are given in 
Table 6-13. These last two experiments look at the behavior of unreserved and reserved 
QTplay applications under adverse conditions (intense competition from multiple unre- 
served X clients). 

Program # Mode Period 
Reserved 

Computation 
Reservation 

Period 

QTPlay 1 Periodic 33 ms 14 ms 33 ms 

QTPlay 3 Continuous N/A Oms 0 ms 

Table 6-13: Experiment 13 Parameters 

6.2.3.2 Results 

The results for Experiment 9 illustrate the timing behavior of a QTPlay application 
with no competition. Figure 6-12 shows these results. For each frame, the player records the 
starting time and ending time. The x-axis is the frame number, counting frames starting at 
the 200th frame through to the 400th. For each frame value, the difference between the start 
time and end time is computed, and the y-axis is this frame delay measured in milliseconds. 
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Figure 6-12: Experiment 9 Results 
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In the figure, the frame delay averages 12.1 ms with a 5-percentile of 11.8 and a 95-per- 
centile of 12.6. This indicates that the software took an average of about 12 ms to perform 
all the computations necessary to display a frame when there was no competition for 
resources. 
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Figure 6-13: Experiment 10 Results 

The results from Experiment 10 show a slightly different picture in Figure 6-13. Again, 
the x-axis is frame number, and the y-axis is frame delay measured in ms using the same 
method. With time-sharing scheduling and one competing QTPlay, the instrumented 
QTPlay sees quite a bit of interference in its frame delay time. The frame delay is much 
more variable. The average delay is 25.8 ms with a 5-percentile of 11.2 and a 95-percentile 
of 45.0. 

In the results from Experiment 11, the instrumented QTPlay has a reservation, and its 
frame delay is much less variable even with competition from one unreserved QTPlay 
instance. Figure 6-14 shows the timing behavior. As before, the x-axis is frame number: the 
y-axis is frame delay in milliseconds. 

The frame delay still has a bit of variation, but it is much less variable than the case 
where the QTPlay application is unreserved. The average delay is 19.4 ms with a 5-percen- 
tile of 14.7 and a 95-percentile of 24.3. So QTPlay is almost always able to display each 
frame within its 33 ms period. 
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Figure 6-14: Experiment 11 Results 
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Figure 6-15: Experiment 12 Results 
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The results from Experiment 12 show how much the frame delay variation can be tor an 
unreserved QTPlay instance that has three unreserved QTPlay applications competing to 
display frames. Figure 6-15 shows these results. As the figure shows, the variation in frame 
delay is quite large. The 5-percentile for the frame delay is 11.5 ms, and the 95-percentile is 
107 ms with an average frame delay of 40.3 ms. A delay of 150 ms (which does not show up 
in the 95-percentile number but occurs a number of times during the test) or even 100 ms in 
a sequence of video frames is clearly noticeable to the human eye. Frame rates of 15 frame/ 
second or more are required to sustain the illusion of smooth motion. This implies that with 
delays above 66 ms or so, the illusion of smooth motion may be destroyed. 

In contrast, the results of Experiment 13, shown in Figure 6-16, demonstrate how well 
the reservation system can control the variability in frame delay for the reserved QTPlay 
application, even with much competition from unreserved instances of the QTPlay pro- 
gram. The frame delay in the figure is somewhat variable, but the variation is much less than 
in the case of the unreserved QTPlay with three competitors. The 5-percentile is 13.4 ms 
and the 95-percentile is 34.2 ms with an average of 20.7 ms. This is well below the target of 
the 60 ms period necessary for smooth-looking motion. 
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Figure 6-16: Experiment 13 Results 

6.2.3.3 Analysis 

The QTPlay/X Server experiments show that even with real applications like a Quick- 
Time video player and the X server, the reservation system can provide predictable perfor- 
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mance for real-time programs that must meet timing constraints to achieve satisfactory 
performance. 

Experiment 9 shows the baseline behavior that is desired for the video player. This 
experiment has no competing activity, so there is no contention for resources and the behav- 
ior is very regular. Experiment 10 has a competing video player in addition to the instru- 
mented video player, and with time-sharing scheduling, this competitor causes some 
scheduling delay in the instrumented player. In Experiment 12, there are three competitors, 
and the interference to the instrumented player is very bad. The player frequently has frame 
delays of 60 to 100 ms and even as high as 150 ms. These kinds of delays are clearly notice- 
able to a human observer of the video stream. 

In Experiment 11, the instrumented video player is reserved with one competitor, and 
although there is a little fluctuation in the frame delay, it is limited to 24.3 for the 95-percen- 
tile. In Experiment 13, the reserved video player has competition from three unreserved 
video players. The frame delays show a little more variability, but are still limited to a 95- 
percentile of 34.2 ms compared to the 100 and even 150 ms delays experienced with time- 
sharing scheduling. 

The question of why the reserved QTPlay/X Server combination suffered any delay 
arises. The reason is that the X Server was not implemented from scratch to use reserves. 
The extensions to allow it to use reserves did not completely restructure the request input 
queue, in particular. So the server reads requests from its input queue, orders them inter- 
nally, and then performs the operations. If server's client interface code were completely re- 
written to support reserves, the behavior would be comparable to that of the client/server 
synthetic benchmarks where the servers were designed from scratch. 

6.2.4 mpeg_play/X Server 

In addition to the QuickTime video player, a version of the mpeg_play decoder was 
modified to use reserves and coordinate with the reserved X Server. This decoder uses some 
simple usage measurement and adaptation techniques to tune the reservation parameters and 
timing parameters based on changing system conditions. 

6.2.4.1 Methodology 

The mpeg__play modifications were described in detail in the previous chapter, so the 
description here is brief. The player prefetches a video clip into memory to avoid interfer- 
ence in the file system. It requests a processor reservation and passes the reference to its 
reserve to the X Server. While it is executing, the decoder keeps track of its resource usage 
and timing characteristics, and it makes adjustments to the reservation parameters and/or 
period of the program based on usage. 

Experiment 14 is designed to determine whether the mpeg_play decoder can success- 
fully modify its reservation parameters and/or behavior based on existing conditions. The 
decoder starts executing with a reservation that is too small for its computation time. Com- 
petition is then introduced in the form of reserved and unreserved activities. 
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6.2.4.2 Results 

The behavior of the mpeg_play application under the conditions of Experiment 14 is 
illustrated in Figure 6-17. The decoder is able to tune its reservation parameters based on 
run-time information and stabilize its own behavior. 
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Figure 6-17: Experiment 14 Results 

Figure 6-17 shows the processor utilization of the mpeg_play decoder over a period of 
40 seconds. The x-axis is time in seconds, and the y-axis is processor utilization. During the 
first 7 seconds, mpeg_play averages about 40% of the processor, even though its reserva- 
tion is only 30 ms every 100 ms. Since there is no competition, it consumes 40%. At about 7 
seconds into the experiment, a reserved program (shown in the graph) and several unre- 
served programs (not shown) are introduced. The usage of mpeg_play immediately drops 
to its reserved level of 30% of the processor. This is not enough to sustain its previous frame 
rate, so some frames are dropped. 

The reserved activity, which had a usage spike at the time it started, settles down to a 
constant 37%. The spike occurs since the time-sharing algorithm initially allows the new 
program to get more cycles than its reservation. After consuming a large percentage of the 
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processor, however, the reserved activity no longer gets additional cycles from the time- 
sharing algorithm, and the usage flattens. 

After several seconds, mpeg_play realizes its frame rate has fallen and attempts to 
increase its reservation. At about 17 seconds into the experiment, the decoder increases its 
reservation to 41 ms reserved every 100 ms, and its frame rate increases accordingly. Again 
at about 37 seconds into the experiment, the decoder changes its reserved computation time 
to 47 ms and its reservation period to 111 ms to fine-tune the reservation even further. 

6.2.4.3 Analysis 

This experiment demonstrates that an application can adjust its reservation parameters 
and adapt its behavior based on the usage information from the reservation mechanism. In 
this case, the initial reservation of the mpeg_play application did not have to be accurate 
since the application automatically adjusted the reservation levels based on usage measure- 
ments. 

6.2.5 Protocol processing workloads 

The experiments in this section explore the real-time behavior of the socket library 
(called libsockets) protocol processing. The behavior obtained by an application using 
the socket library is compared to the behavior using the UX Server's socket service under 
both time-sharing scheduling and reserves. 

6.2.5.1 Methodology 

The libsockets experiments use the same software environment as the experiments 
with independent tasks and client/server workloads. There is a configuration manager that 
reads the task set specification and creates the specified programs. In addition to the work- 
load programs introduced so far, these experiments use the following programs: 

• stdio - Creates a periodic thread that calls a sequence of file opera- 
tions. 

• udps - Creates a periodic thread that sends some number of packets 
(specified in the program computation field) in each period. This pro- 
gram uses the UX Server to send packets. 

• udpls - Creates a periodic thread that sends some number of packets in 
each period. This program uses libsockets to send the packets rather than 
interacting with the UX Server. 

• udpr - Creates a periodic thread that receives some number of packets in 
each period using the UX Server to receive the packets. 

• udplr - Creates a periodic thread that receives some number of packets 
in each period using libsockets. 

194 



Experiment 15 is designed to show how a packet-sending activity can be disturbed by 
competition from a combination of compute-intensive and I/O-intensive activities, espe- 
cially when all of those activities use system services which interact with each other as they 
do in the UX Server. The task set for this experiment is given in Table 6-14. It shows two 
udp senders (udps) with slightly different workloads. The competition for this experiment 
(as for the next three experiments) consists of five compute-intensive arith programs and 
five I/O-intensive stdio programs. In this experiment, the packets sent by the udps pro- 
grams are received on a remote machine by yet another program that records a timestamp 
when the each packet arrives. This program buffers the timestamps and dumps them out at 
the end. The timestamp data can be used to judge whether the packet senders were able to 
send their packets out as desired or not. 

Program # 
Program 

Computation 
Program 
Period 

Reserved 
Computation 

Reservation 
Period 

udps (A) 1 4pkt 40 ms 0 ms 40 ms 

udps (B) 1 2pkt 40 ms 0 ms 40 ms 

arith 5 various various 0 ms 40 ms 

stdio 5 various various 0 ms 40 ms 

monitor 1 N/A 20 ms I ms 20 ms 

Table 6-14: Experiment 15 Parameters 

Experiment 16 is designed to determine whether the packet-sending applications can 
send their packets on time when using libsockets for their network protocol processing. 
The parameters are given in Table 6-15. This experiment differs from Experiment 15 in that 
the UDP packet senders use libsockets instead of the UX Server and they have reservations 
instead of being scheduled by the time-sharing scheduler. The competition is the same: five 
compute-intensive programs and five I/O-intensive programs. 

Program # 
Program 

Computation 
Program 
Period 

Reserved 
Computation 

Reservation 
Period 

udpIs (A) 1 4pkt 40 ms 10 ms 40 ms 

udpls (B) 1 2pkt 40 ms 6 ms 40 ms      i 

arith 5 various various 0 ms 40 ms 

stdio 5 various various 0 ms 40 ms 

monitor 1 N/A 20 ms 1 ms 20 ms 
i 

Table 6-15: Experiment 16 Parameters 
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The purpose Experiment 17 is to determine whether a UDP packet-receiving program 
that attempts to receive a number of packets periodically can meet that objective. The udpr 
program attempts to receive some number of packets in each period. This program receives 
packets through the UX Server and runs without a reservation. The competing activities are 
identical to the previous two experiments. Table 6-16 presents the parameters for this exper- 
iment. 

Program 
i Program 

Computation 
Program 
Period 

Reserved 
Computation 

Reservation 
Period     ' 

udpr(A) ! 1 4pkt 40 ms 0 ms 40 ms 

udpr (B) I1 3pkt 40 ms 0 ms 40 ms 
• 

arith 5: various various 0 ms 40 ms 

stdio 5i various various 0 ms 40 ms 

monitor 1 i N/A 20 ms 1 ms 20 ms 

Table 6-16: Experiment 17 Parameters 

Experiment 18 is designed to determine whether a reserved packet receiver that uses lib- 
sockets can predictably execute periodically to receive a number of packets. The udplr 
program is a periodic packet receiver that uses libsockets instead of the UX server. 
This experiment includes the same competition from compute-intensive and I/O intensive 
tasks as the other experiments in this section. The parameters are given in Table 6-17. 

Program # 
Program 

Computation 

i— ■ - ■ 

Program 
Period 

i 
Reserved 

Computation 

i 

Reservation 
Period 

udplr (A) 1 4pkt 40 ms 0 ms 40 ms 

udplr (B) 1 3pkt 40 ms 0 ms 40 ms 

arith 5 various various 0 ms 40 ms      i 

stdio 5 various various 0 ms 40 ms 

monitor 1 N/A 20 ms 1 ms 20 ms 

Table 6-17: Experiment 18 Parameters 
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6.2.5.2 Results 

The results of Experiment 15 are shown in Figure 6-18. Part (a) of the figure shows the 
processor utilization over time for the two packet senders, which use the UX Server imple- 
mentation of sockets and run without reservations. The x-axis is time in seconds, and the y- 
axis is processor utilization. The two programs, denoted "Sender A" and "Sender B", show 
a very erratic usage pattern. Frequently, the usage drops to zero for over 1 second. The aver- 
age utilization for Sender A is 0.023 with a 5-percentile of 0 and a 95-percentile of 0.0741. 
The average utilization for Sender B is 0.0193 with a 5-percentile of 0 and a 95-percentile of 
0.0796. The dispersion is clearly substantial for these applications, and that dispersion in 
utilization achieved translates directly into missed deadlines. 

Figure 6-18(b) shows the record of timestamps that were received by a remote receiver 
for both senders. The x-axis in the graph is time in seconds, and there are two horizontal 
lines, one for Sender A and the other for Sender B. A mark on the line corresponding 10 
Sender A at a particular time indicates that a packet arrived at that time and likewise for 
Sender B. This graph shows that the packets were received on the remote host^poradically. 
The pattern of packet receptions corresponds closely with the pattern of usage seen in part 
(a) of the figure. The largest gaps between received packets were 1.28 seconds and 1.22 sec- 
onds for Sender A and 1.93 seconds and 1.40 seconds for Sender B. These senders are 
attempting to send packets every 40 ms, so clearly they are not able to schedule the message 
sending activity as desired. 

The results of Experiment 16 appear in Figure 6-19. In this case, the senders have reser- 
vations and use the libsockets library to avoid depending on the UX Server for net- 
working. The graph shown in part (a) of the figure shows time in seconds on the x-axis and 
processor utilization on the y-axis. The processor utilization for both of the senders is very 
regular, indicating that in each reservation period, the programs were able to send the pack- 
ets they were supposed to send. There are no long intervals of zero usage as in the previous 
case. The average utilization of Sender A is 0.103 with a 5-percentile of 0.101 and a 95-per- 
centile of 0.110 indicating a very tight distribution around the average. Likewise for Sender 
B, the average utilization is 0.0591 and the 5-percentile is 0.0582 with a 95-percentile of 
0.0624. This is also a tight distribution. ■D* 

The graph in Figure 6-19(b) supports the conclusion that the senders in this experiment 
are able to send their packets very regularly in each period. As before, the x-axis is lime in 
seconds and two horizontal lines indicate the timestamps for packets received from the two 
senders. A point on the line corresponding to Sender A represents a packet that was received 
at the associated time. In this experiment, packets are received very regularly from each 
sender. There are no significant gaps in the reception pattern. The maximum gaps for pack- 
ets received from Sender A are 0.0519 seconds and 0.0423 seconds, and the maximum gaps 
for packets received from Sender B are 0.0438 seconds and 0.0435 seconds. So the conclu- 
sion is that the combination of libsockets with reserved resources yields predictable behav- 
ior for packet senders. 
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Figure 6-19: Experiment 16 Results 
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Figure 6-20 shows the results of Experiment 17. In this case, a remote sender periodi- 
cally sends packets to the two receivers described in the task set. In this experiment, the two 
receivers are unreserved and use the UX Server's implementation of sockets. The graph has 
time in seconds on the x-axis and processor utilization on the y-axis. The behavior is very 
erratic. The remote host sends packets periodically, but the receiver is not always able to run 
long enough to receive the packets. Receiver A has an average utilization of 0.0134 with a 
5-percentile of 0 and a 95-percentile of 0.0617. This is not the kind of timely behavior 
desired in the packet receiver. Receiver B has an average utilization of 0.0220 with a 5-per- 
centile of 0 and a 95-percentile of 0.0726. Again, the dispersion is significant. The usage for 
both receivers frequently drops to zero, indicating that the packets are being dropped for sig- 
nificant periods of time. 
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Figure 6-20: Experiment 17 Results 

The results of Experiment 18 are shown in Figure 6-21. Again, a remote sender periodi- 
cally sends packets to two receivers which have reservations and which use the libsock- 
ets implementation of sockets. The graph has time in seconds on the x-axis and processor 
utilization on the y-axis. The usage functions of the two receivers are plotted over the dura- 
tion of the experiment. The average utilization for Receiver A in this case is 0.149 with a 5- 
percentile of 0.139 and a 95-percentile of 0.173. This indicates a fairly tight distribution. 
Receiver B has an average utilization of 0.130 with a 5-percentile of 0.115 and a 95-percen- 
tile of 0.140. Again the utilization achieved is quite consistent across periods for the dura- 
tion of the test. It is clear that the receivers do not drop to very low utilizations for 
significant intervals of time. Their relatively constant usage indicates that they are able to 
process the incoming packets in a predictable manner. 
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Figure 6-21: Experiment 18 Results 

6.2.5.3 Analysis 

The results from the libsockets experiments showed that when packet senders and 
receivers ran in time-sharing mode using the socket implementation provided by the UX 
Server, their behavior was erratic when other programs were competing for the processor 
and access to other services provided by the UX Server. Reserved packet senders and 
receivers that used libsockets for handling network packets had much better behavior. 
They were able to execute periodically and perform each sending or receiving computation 
by the end of the corresponding period. Other experiments (not presented here) showed that 
the behavior of reserved programs that used UX sockets was just as bad as that of unre- 
served programs with UX sockets. Also, unreserved programs that used libsockets 
exhibited unpredictable behavior when executing with competition as well. These experi- 
ments indicate that using a reservation mechanism or a libsockets mechanism alone 
does not ensure predictability in programs; both mechanisms are needed. 

6.3 Scheduling cost 
This section addresses the scheduling costs of predictable programs that can meet their 

timing constraints under the reservation system. It looks at measured aggregate costs for the 
system as well as measurements of scheduling operations that contribute to the costs. Such 
measurements enable cost projections to be made for specific task sets. 

201 



6.3.1 Measured aggregate scheduling cost 

The reservation system ensures that reserved resources will be available to enable real- 
time programs to meet their timing constraints, but this predictability has costs associated 
with it. In particular, the accurate measurements and the timers necessary for enforcement 
take some time. In measuring the aggregate scheduling cost, the intention is to determine 
how much time is consumed by scheduling costs in the case of a reserved periodic thread 
compared to that of an unreserved thread. 

6.3.1.1 Methodology 

Experiment 19 is designed to measure the scheduling cost for a periodic thread as the 
period varies. The task set includes the periodic thread and an "idle" thread that runs in the 
background to consume all processor time not consumed by the periodic thread and the sys- 
tem's housekeeping activities. The system scheduling cost is taken to be the total time of the 
test minus the time consumed by the periodic thread and the idle thread. This scheduling 
cost includes context switch times, associated cache effects, as well as the cost of timers and 
clock operations for the reservation mechanism. 

One series of tests measures the scheduling cost for a reserved periodic thread whose 
reservation period ranges from 20 ms to 200 ms. Most of the cost for the reservation system 
is a fixed cost in each period, so a longer period implies a relatively smaller cost. The other 
series of tests measures scheduling cost for an .unreserved periodic thread with a period that 
varies from 20 ms to 200 ms. 

6.3.1.2 Results 

The results of the scheduling cost measurements are presented in Figure 6-22. The graph 
consists of two functions: the scheduling cost associated with a reserved periodic thread as a 
function of period and the scheduling cost associated with an unreserved periodic thread as a 
function of period. The x-axis is the period in milliseconds, and the y-axis is the percentage 
of the processor that is lost to scheduling costs. 

The scheduling cost for the reserved thread starts out about 3% for a reservation period 
of 20 ms and drops off as the reservation period is increased. For a 100 ms reservation 
period, the scheduling cost is about 0.5% and for a 200 ms reservation period, ii is about 
0.2% For the unreserved thread, the scheduling cost is smaller, starting at about 2.2% for a 
20 ms period. The cost drops off to about 0.5% for a 100 ms period and then to about 0.1 % 
for a 200 ms period. 
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Figure 6-22: Scheduling Cost 

6.3.1.3 Analysis 

The scheduling cost measurements indicate that the cost of threads with very small res- 
ervation periods (smaller than about 30 ms) grows somewhat as the reservation period 
decreases. For reservation periods in the range of 40 to 100 ms, which would be an appropri- 
ate range for many audio and video applications for example, the scheduling cost is accept- 
able. 

The scheduling cost is relatively high for the reservation system because the clock/timer 
card used in the experiments is very sensitive to the timing of loads and stores in its control 
and data registers. The card is used quite often in the reservation system to read a free-run- 
ning clock, set an interrupting timer, or cancel a timer. Since each of these operations 
requirements multiple reads and stores to device registers and since the device driver for the 
card contains many delay loops required to synchronize properly with the card, much time is 
wasted. With clock and timer support from a better card, the scheduling cost should be sig- 
nificantly lower. 

6.3.2 Individual operations 

This section presents measurements of the individual internal operations used by the res- 
ervation mechanism. These measurements can be used to project scheduling costs for task 
sets. 

6.3.2.1 Reserve Switch 

During a context switch, the system must switch the reserve to which it is charging com- 
putation time as it switches the thread that is running on the processor. This involves updat- 

203 



ing usage accumulators in the old reserve and possibly setting the overrun timer for the nexi 
reserve. The four measured cases for the reserve switch are: 

• Neither the old or new activity was reserved - Just update the usage accu- 
mulators. 

• The old activity was reserved - Cancel the overrun timer for the old activ- 
ity and update usage. 

• The new activity is reserved - Set up and arm the overrun timer for the 
new activity and update usage 

• Both activities are reserved - Cancel the old overrun timer, set up the new 
overrun timer, and update usage. 

The following table gives the measurements for these cases. 

Action Duration 

Neither old nor new activity reserved 23 us 

Old activity reserved 100 us 

New activity reserved loo us       ; 
1 

Both activities reserved 180 us          j 
i 

Table 6-18: Reserve Switch 

6.3.2.2 Overrun and Replenishment Timers 

The measured cost for handling an overrun timer includes identifying the timer, setting 
some state in the reserve, and initiating a context switch. It does not include the cost of the 
context switch itself. 

The cost for handling a replenishment timer includes identifying the timer, setting some 
state in the reserve, resetting the timer for the next reservation period boundary, and possi- 
bly resetting the overrun timer. Four different cases for replenishment timer handling were 
measured: 

• A reserve with a reservation whose computation allocation had been 
depleted during the period (the overrun timer had expired for this activ- 
ity), and it was waiting for a new allocation. 

• A reserve with a reservation whose computation allocation had not been 
depleted. 

• A reserve with no reservation whose replenishment timer expired while it 
was running. 

• A reserve with no reservation which was not running at the time the 
replenishment timer expired. 
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The following table shows the measurements for the overrun timer and each of the 
replenishment timer cases. 

Action 
! 

Duration 
1 

Handle overrun timer 130 [is 

Reserved and waiting for new allocation 170 us 

Reserved but not waiting 140 us 

Unreserved and running when timer expired 140 us 

Unreserved and not running when timer expired 140 us 

Table 6-19: Replenishment Timer 

63.23 Usage checkpoints 

This section gives measurements of the system primitives that extract usage information 
from the kernel. The reserve usage data from the reservation system implemented in RT- 
Mach come in two forms: the current accumulated usage of a reserve, and the accumulated 
usage as of the last reservation period boundary. The record of the accumulated usage of a 
reserve taken at a reservation period boundary is called a checkpoint. The reservation sys- 
tem offers two system primitives for retrieving usage data: the first gives the data for a sin- 
gle checkpoint along with the current accumulated usage, and the second give the last 20 
checkpoints from the last 20 reservation period boundaries. The following table gives the 
measured costs for both of these system primitives. 

Action 

Retrieve single checkpoint 

Retrieve 20 recent checkpoints 

Duration 

130 [is 

220 [is 

Table 6-20: Checkpoint Cost 

6.3.2.4 Analysis 

The measurements described in this section can be used to estimate the cost associated 
with running specific task sets on the reservation system. The replenishment timer costs 
occur in every period of every reserved activity, and these numbers can help project the 
impact of having many tasks with small reservation period. The overrun timer costs detail 
the penalty associated with a program whose computation does not closely match its reser- 
vation. The checkpoint costs can be used in estimating the overhead for a monitor and in 
choosing timing properties of a monitor to balance accuracy of information with overhead 
cost. 
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6.4 Chapter summary 
This chapter addressed the questions of whether the reservation system supports predict- 

able application behavior and how much the predictability costs in terms of scheduling over- 
head. To show that the reservation system supports predictable behavior for applications, 
several experiments were done using task sets consisting of independent compute-bound 
synthetic workloads as well as client/server task sets with synthetic workloads. In an experi- 
ment with three reserved programs and five unreserved competitors, the reserved programs 
achieved measured processor utilizations that had 5-percentiles and 95-percentiles within 3- 
7% of their average utilizations, indicating that they were able to get their processor reserva- 
tions with very little variance in their computation times. In the client/server experiments, 
even a case where an unreserved client was competing with two reserved clients for the 
same server (along with other independent unreserved programs competing for the proces- 
sor), the reserved clients were able to achieve their timing constraints. The 5-percentiles and 
95-percentiles for the two reserved clients in this case where within 5% of their average uti- 
lizations. These experiments showed that the reservation system guarantees very tight distri- 
butions of processor utilization even with different types of computation and with different 
combinations of client/server interactions. 

Additional experiments used a reserved QuickTime video player and a modified version 
of the X Server to show that reserved applications can coordinate with shared servers to sat- 
isfy timing constraints on computations such as displaying video frames. In these experi- 
ments, the reserved players (even with interference from competing non-real-time X clients) 
had processor utilization measurements with 5-percentiles and 95-percentiles within 65% of 
their average utilizations. The utilization distributions were not as tight as the synthetic cli- 
ent/servers because the internal structure of the X Server is not ideally suited to reserve 
propagation and charging to clients' reserves. However, the performance of the reserved 
players was still much improved over that of unreserved players which had measurements 
with 5-percentiles and 95-percentiles that were as much as 166% of their average utiliza- 
tions. 

Experiments with libsockets showed that with an appropriate protocol processing struc- 
ture, packet senders and receivers could achieve predictable behavior. The reserved senders 
in the experiments had processor utilization measurements with 5-percentiles and 95-per- 
centiles that were within 7% of the average utilizations, and the reserved receivers had 5- 
and 95-percentiles that were within 16% of the average utilizations. This is compared with 
unreserved senders and receivers that had 5- and 95-percentiles of up to 360% of their aver- 
age utilizations. 

The scheduling costs of the reservation system were measured by running a periodic- 
thread and measuring the idle time left over to find the scheduling cost. The results from 
several experiments with reserved and unreserved periodic threads with different periods 
show that the scheduling cost of reserved threads is typically about twice that of unreserved 
threads. 
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Chapter 7 

Related Work 

The work presented in this dissertation draws on research in several different areas. The 
reserve model depends on theoretical results from real-time scheduling, and the design and 
implementation were influenced by the work in real-time system design as well as the 
requirements for multimedia applications. This chapter presents an overview ol related 
work: most of the related work focuses on systems issues although a section on applications 
discusses work on tools and application adaptation techniques. 

7.1 System Implementation 
The increasing integration of computer and telecommunications technologies has 

focused attention on the real-time issues that arise in processing digital audio and video. 
Handling multimedia data streams requires an understanding of the timing requirements, 
encoding techniques, and data formats of the new media types [ 13,69,94,135,136] as well as 
programming interfaces {60,101] and new application design techniques [35]. 

7.1.1 Multimedia support 

A great deal of recent work has focused on how software systems (including operating 
systems) can be designed to support multimedia applications. Many researchers and practi- 
tioners consider resource reservation desirable if not absolutely necessary for real-time mul- 
timedia operating systems [3,46,53,60,87,102,127]. Herrtwich [42] gives an argument for 
resource reservation and careful scheduling in these systems. Others prefer a best effort 
approach to OS design for multimedia applications [19,21,90]. Recent survey papers 
[116,132] and books [12,115] discuss work in this area. 

One of the simplest ways to do resource allocation for multimedia applications is to ded- 
icate an entire machine to a single multimedia application. Multimedia applications for sin- 
gle-user personal computers typically assume that only a single multimedia activity will 
exist at any one time. Or if several multimedia activities exist, the assumption is that they 
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will be associated with a single application that can do cooperative scheduling of these 
activities. Adobe Premiere [95] is an example of such an application. If this assumption is 
violated, neither the applications nor the system will be in a position to assert anything about 
the behavior of multimedia applications. There is no admission control or any kind of over- 
load protection in such systems. 

Other systems such as OS/2 [60] put limits on the number of high-level activities, such 
as video streams being processed by the system, as a primitive form of admission control. 
This technique does not address the problem of resource allocation or admission control ten- 
arbitrary computations and media processing applications. 

Jeffay et al. implemented an operating system designed for guaranteed real-time sched- 
uling [53]. A video capture and playback application demonstrates that the analytical tech- 
niques can be successfully applied to real applications. In subsequent work, Jeffay has 
focused attention on transport mechanisms to detect and deal with variability in network 
behavior [54]. The reservation system described in this dissertation uses real-time schedul- 
ing analysis as does Jeffay. It focuses on enforcement whereas Jeffay's recent work focuses 
more on flexibility. The reservation system would benefit greatly from the increased flexi- 
bility of having adaptive mechanisms such as Jeffay's at higher levels. 

Anderson et al. [3] argue for introducing more sophisticated timing and scheduling fea- 
tures into operating systems, and their DASH system design supports a reservation model 
based on linear bounded arrival processes (LBAP) [22,23]. They implemented their system 
design and were able to report some preliminary experiences with the system. They use ear- 
liest deadline scheduling for real-time traffic because it is optimal in the sense that if any 
algorithm can schedule a particular collection of tasks, the earliest deadline algorithm can 
do it. Admission control for this system is based on a time-line where new jobs are admitted . 
only if they fit onto the time-line when the job request arrives [129]. The reservation system 
described in this dissertation uses an admission control algorithm based on a periodic sched- 
uling framework with scheduling analysis rather than a timeline approach. One way for 
reserves to accommodate one-shot events would be to use a timeline based admission con- 
trol policy and scheduling algorithm. The reservation system focuses more on enforcement 
of specified computation times. 

Hyden [46] considered the problem of supporting QOS in operating systems in his the- 
sis. He implemented a system that offers a virtual processor interface to applications. A 
video decoder application demonstrates how such an interface can be used by an applica- 
tion. In contrast, the reserve system provides flexibility in reservation binding for a more 
integrated view of resource usage reservation, measurement, and enforcement. 

Coulson et al. [21] present a system design based on Chorus [103]. This system uses ear- 
liest deadline scheduling, but they do not provide any admission control and usage enforce- 
ment. QOS commitments can be revoked, and overload is permitted; commitments are 
degraded as a response to overload. The work focuses primarily on fast context switching 
and reducing protection domain crossings. The reserve system provides guaranteed resource 
reservation using an enforcement mechanism with QOS policy modules layered over the 
reservation abstraction. 
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Jones [56] describes some ideas on system design for multimedia applications which 
depend on value functions as a means of scheduling processes based on timing constraints. 
semantic importance, user preferences, and other information about application-level 
requirements. The reserve system divides the QOS provision problem into a reservation 
mechanism and QOS policy layers. Jones' work focuses more on the QOS policy and could 
benefit from mechanisms for guaranteed resource reservation. 

Many multimedia cards and co-processor boards and boxes are actually embedded sys- 
tems with their own processors and operating systems. These systems must manage 
resources for multiple real-time activities that must be multiplexed. 

Hopper [44] described Pandora's Box which is a transputer system designed to be a mul- 
timedia peripheral for a traditional workstation. The Pandora system employs several trans- 
puters, each of which handles a particular function in the system such as compression, 
decompression, network traffic, and audio. A similar approach is being pursued in the con- 
text of the Desk Area Network [40] and related operating system efforts [9,81]. The reserve 
system addresses the sharing of devices and software resources by appropriate admission 
control policies, scheduling algorithms, and enforcement mechanisms. Multiplexing of 
resources results in more efficient resource utilization. 

The Mwave system [47] consists of a digital signal processor (DSP) card intended for 
use with a PC. The Mwave card handles various audio processing and telephony tasks, 
depending on the host processor for control functions. A programmer can develop applica- 
tions that are divided between the host system and the Mwave processor. There is a pro- 
gramming environment that supports application development, and the operating system 
running on the Mwave processor provides some real-time support for scheduling and 
enforcement. In particular, the Mwave/OS performs enforcement functions, resetting the 
card when any of the real-time activities misses a deadline. The reserve abstraction provides 
more functionality for flexible binding of reserves, and the reserve system also has a more 
flexible policy for handling timing failures. In particular, real-time activities are not affected 
by the timing failure of an independent real-time or non-real-time activity. 

7.1.2 QOS architectures 

The reserve abstraction is designed to support higher-level architectures for managing 
quality of service specification and negotiation. Several QOS architectures have been pro- 
posed assuming that the mechanisms for operating system resource management, such as 
the reserve system, would be developed. 

Nicolaou [89] described a QOS architecture suitable for programming distributed multi- 
media applications. His work describes an architecture that one might use to design and 
implement multimedia applications. While some systems issues like resource management 
and scheduling are identified as being important, the cited work does not address those 
problems. A prototype implementation based on the architecture demonstrates the feasibil- 
ity of this approach, but since the prototype is implemented on UNDC, its performance suf- 
fers from a lack of real-time scheduling techniques in the operating system. The reserve 
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model is designed to provide the kind of operating system support necessary for Nicolaou's 
QOS architecture. 

Wolf et al. [137] defined a QOS architecture for a communication transport system, and 
they have an initial implementation of their system, called the Heidelberg Transport System. 
The reserve system focuses more on admission control, dealing with interaction between 
processes (such as client/server interactions) and usage enforcement. 

The QOS Broker [84] provides an architecture for handling QOS negotiation among 
resource "buyers" and "sellers." Protocols are provided for carrying out the negotiation, and 
a version of the QOS Broker was implemented and used in the context of a telerobotics 
application. The Broker contains hooks for reserving resources in operating systems and 
networks when reservation mechanisms are available. The reserve system described in this 
dissertation provides the mechanism necessary for negotiating guaranteed service. 

7.1.3 Networking 

The idea of bandwidth reservation for network quality of service models has been 
explored by a number of researchers. The thesis work complements the work on networking 
by providing resource reservation in the end hosts as well as in the network. Thus the oper- 
ating system resource reservation work enables predictable end-to-end performance for real- 
time programs. 

Ferrari and Verma [31 ] describe a model for guaranteeing bandwidth in a wide-area net- 
work. Their analytical model provided a basis for subsequent work on network bandwidth 
reservation. In contrast, Clark et al. [18] describe another service model based on the idea of 
predictive service. In related work, L. Zhang et al. [140] gave a basic description of RSVP, 
a protocol for reserving resources across nodes in an internetwork. This thesis provides 
operating system support to implement these types of schemes. Reserves support guaranteed 
service for hard real-time applications as well as supporting predictive service for soft real- 
time applications that dynamically change their requirements on various system resources. 

H. Zhang [141] describes a bandwidth reservation model and an implementation in an 
internetwork protocol. He was able to allocate and control network bandwidth in gateways. 
but did not address the allocation and control of resources like the processor in the more 
general operating system environment. The reserve system would make it possible to 
address resource reservation issues in general end systems, extending H. Zhang's work on 
resource reservation within the network and its routers. 

Anderson et al. [4] describe a Session Reservation Protocol (SRP) which reserves 
resources along the route of a connection to ensure a particular bandwidth and delay for the 
connection. This protocol provides resource reservation at routers for predictable network 
performance. The reserve system would make it possible to reserve resources at end hosts as 
well as in the network routers. 
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7.2 Scheduling theory 
Real-time scheduling theory has been an active area of research for years. Many impor- 

tant theoretical results date back to the 1950's and 1960's [20,49], and work on system 
design dates back to the same time period [71,73,82]. More recently, real-time systems 
research has focused on scheduling algorithms and techniques for building complex, distrib- 
uted real-time systems [1,130,131]. 

The reserve system was designed using several results from real-time scheduling theory 
in its admission control policy, scheduling algorithm, and synchronization and communica- 
tion primitives. The reserve model is based on the original rate monotonic scheduling analy- 
sis [67] as well as recent extensions [63]. The simple two-parameter reservation model is 
suitable for a wide range of applications, but applications that require different reservation 
semantics might need a model that takes advantage of other scheduling algorithms and anal- 
yses. For example, an application might require generalized rate monotonic analysis 
[39,64,107,109], aperiodic servers with different replenishment policies [111,112,120], ear- 
liest deadline first scheduling [27,49,67], sporadic task scheduling [51], or deadline mono- 
tonic scheduling [7]. 

The reservation system also depends of priority inheritance protocols for fixed priority 
scheduling [96,108], and similar inheritance protocols for earliest deadline first [8.16] 
would be required for a reservation model based on that policy. 

The two-parameter periodic scheduling framework of the original rate monotonic sched- 
uling analysis divides the capacity of the processor among multiple tasks. Other scheduling 
techniques such as processor sharing and fair share scheduling aim to provide a similar kind 
of proportional sharing of the processor. The primary difference is that the two-parameter 
periodic scheduling framework specifies a granularity of sharing by specifying a period. 
Processor sharing and fair share scheduling seek to support sharing at a very fine granular- 
ity. 

A processor sharing technique [50] intended to be accurate enough to accommodate the 
timing constraints of arbitrary multimedia applications would require a very small quantum. 
This would imply a high scheduling overhead. Such a system would also require some 
method for controlling the effects of synchronization and communication between pro- 
cesses. 

Fair share schedulers [41,58,138] provide for resource allocation like processor sharing, 
although at a coarser granularity. Such schedulers ensure that users who pay more for com- 
pute time get better service than others who pay less do. They record usage measurements to 
try to match usage with target allocation levels over the long term. 

More recently, work on fair share scheduling and proportional share scheduling has 
addressed the integration of network scheduling and end-system scheduling [ 118.133.134]. 
Instead of focusing on ensuring that a certain amount of computation time will be available 
by a deadline, this work focuses on ensuring that a certain proportion of the processor is 
available to a compute-bound task in any interval. 
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7.3 Applications 
Two classes of applications turn out to be very important to the resource reservation 

work. Adaptive applications are important because dynamic real-time applications must be 
very sensitive to the relationship between their (changing) resource requirements and their 
levels of resource reservations. In addition, design tools, performance monitors, and 
dynamic resource allocation tools are necessary for the design and on-line monitoring and 
tuning of resource reservations for dynamic real-time applications. 

7.3.1 Adaptive applications 

Recently there has been a focus on how systems and applications can adapt their compu- 
tations to the resources they find available to them. For example, video compression algo- 
rithms are designed to allow for tradeoffs in resource requirements in various ways. 
Software techniques are also being developed, primarily in the area of mobile computing, 
for application awareness of resource requirements and adaptation based on system 
resources available. 

The MPEG compression algorithms support several ways to trade off between band- 
width, computational resources, and image quality [17,61]. The MPEG-1 q-factor trades 
image quality for less bandwidth and computational resources, and the MPEG-2 hierarchi- 
cal encoding scheme supports incremental improvements in image quality for additional 
bandwidth and computation time [10,17]. Other methods such as subband encoding [121], 
Hyden's method [46], and other hierarchical encoding schemes [2,17] support this tradeoff 
as well. 

Recent work in mobile computing explores how applications can be sensitive to the 
resources that are available to them in terms of network bandwidth, processor power, and 
screen resolution among others [32,91,106]. These applications discover the resources that 
are available to them and then use this information to guide their own computations. For 
example, a video player residing on a high-end workstation might request from a video 
server a full color (24 bits per pixel), full motion (30 frames per second), relatively high res- 
olution (640x480 pixels) video stream. The same video player on a low-end personal com- 
puter might request only 256 bits of color, 15 frames per second, and a resolution of 
160x120 pixels. Supporting a scenario like this requires that all of the involved system com- 
ponents are aware of the resources they have available, the resources they need to do their 
work, and the level at which all of the other components in the end-to-end activity can per- 
form. 

7.3.2 Tools 

The reserve system provides a mechanism for tools that monitor and control resource 
usage. This section discusses current tools for monitoring functions and for controlling 
resource usage. 
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Different tools intended for monitoring various aspects of system performance work at 
different levels. Some are intended for program design while others are intended for system- 
level debugging and on-line resource monitoring. 

Performance analysis tools such as gprof [29,37] and PCA [28] use PC sampling tech- 
niques to characterize program runtime behavior and object code to determine the static- 
structure. This method gives a great deal of insight into the behavior of individual programs. 
but there is no notion of tuning task sets as a whole. Also, the method of exercising control 
of the programs being analyzed is through the programs themselves, either changing their 
structure or modifying their parameters. The tool does not exercise this control directly. 

System monitoring tools typically separate the functions of capturing performance data, 
analyzing the data, and having an effect on the system that was measured. The Advanced 
Real-Time Monitor (ARM) [123], which was originally designed for the ARTS Kernel 
[124] and more recently updated for RT-Mach [125], takes this approach. ARM uses a ker- 
nel mechanism to capture scheduling events and then sends those events over the network to 
an ARM application running on a different machine. ARM then displays a scheduling his- 
tory based on the events, and this history can be viewed, analyzed, and saved for future use. 

Tools like xload [74] provide a very simple view of the cumulative processor load on a 
workstation. The xload application does this on-line, but it leaves out some interesting infor- 
mation like a breakdown of which processes are consuming what percent of the load. It also 
lacks a control element to help the user have an effect on the load through the tool. 

Tools like the Memory Sizer on the Macintosh [6] offer control over a system resource, 
but the resource information is very simple, and one cannot set the memory size of a pro- 
gram while it is running. The reserve system allows for much more sophisticated control of 
system resource allocation. With the help of a QOS manager, a tool such as rmon can graph- 
ically display resource usage information and interact with the console user to control 
resource allocation. 
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Chapter 8 

Conclusion 

This dissertation has presented a comprehensive model describing resource reserves, the 
operations they support, the scheduling algorithm and enforcement mechanism required, 
and how reservations for various resource types can be encapsulated in a single framework. 
An implementation and experimental evaluation demonstrate that real applications with 
non-trivial client/server interactions can achieve predictable real-time performance using 
resource reserves. The reserves ensure this predictability even when there are multiple real- 
time and non-real-time applications competing for the same resources. 

This work shows that system mechanisms that address entire activities are important for 
real-time resource management. Furthermore, it shows that enforcement is essential, other- 
wise a reservation abstraction has no meaning. Programming techniques such as software 
pipeline architectures with synchronized periods and deadlines are useful for achieving pre- 
dictable behavior. The following sections detail the contributions of this work and directions 
that this work opens for future research. 

8.1 Contributions 
The contributions of this work include the abstraction for operating system resource res- 

ervation, its implementation, real applications which use it, and an experimental evaluation 
of those applications. The following sections discuss these in more detail. 

8.1.1 Resource reservation abstraction 

The resource reserve abstraction provides a model for how real-time scheduling algo- 
rithms and analyses can be incorporated in an operating system design in an integrated man- 
ner. This is in contrast to the specification of scheduling algorithms and analyses in the 
context of a simplified task model where many practical systems issues and programming 
issues are ignored. Two key features of the abstraction are flexible binding of reserves to 
threads and enforcement of reservation parameters. 
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Since reserves are first class objects in the system rather than being tightly and perma- 
nently bound to threads (or processes), the management of resources is much easier. For 
example, reservation parameters can be allocated for a reserve by a thread and then a refer- 
ence to the reserve can be passed to system service providers invoked by the thread. By 
allowing the binding of reserves to threads to be flexible, reserves can be passed around in 
this way, and the resource usage for the abstract activity is tracked and guaranteed through- 
out all of the server calls. 

The enforcement mechanism eases program development and debugging for program- 
mers of hard and soft real-time applications. Programmers of hard real-time applications can 
exploit the usage accumulation mechanism to measure the requirements of their code during 
development. During runtime, the enforcement mechanism and usage measurements can be 
used to isolate timing bugs. Programmers of soft real-time applications can use the enforce- 
ment mechanism to ensure isolation between applications and to provide information on 
resource usage requirements for adaptive applications. This relieves the programmer of 
doing the exhaustive measurements and analysis usually required to achieve real-time pre- 
dictability. 

8.1.2 Implementation 

The implementation of processor reserves in Real-Time Mach and the implementation 
of several real applications that use reserves demonstrate the feasibility of the approach 
described in this document. The implementation shows how to design an enforcement 
mechanism and integrate it with the scheduling policy. It shows how a reserve propagation 
mechanism can be built to ensure consistent resource reservation and account for abstract 
activities that span multiple threads (or processes). It also demonstrates how QOS managers 
can be incorporated into the system to negotiate reservation parameters between reserved 
applications and the operating system, and how resource usage monitor and control can be 
used to promote awareness of resource requirements and dynamic adjustment of resource 
allocation. 

8.1.3 Experimental evaluation 

The experimental evaluation demonstrates that the applications using the reservation 
system can achieve predictable behavior with acceptable overhead costs. Experiments with 
synthetic benchmark applications were able to achieve very consistent real-time perfor- 
mance even in the face of competition from other real-time and non-real-time applications. 
In the experiments, periodic reserved applications ran over a relatively long duration of 
time, and measurements of the processor utilization during each period were recorded. The 
5-percentile and 95-percentile numbers for these measurements were typically within 5-7% 
of the average utilization across all the periods, indicating a very tight distribution of proces- 
sor utilization measurements across periods and a quite consistent pattern of real-time 
behavior. In other experiments with real applications such as a video player and X Server, 
processor utilization measurements yielded 5- and 95-percentiles which differed from the 
average utilization by up to 65%. This is not nearly as tight as the synthetic client/server 
benchmark applications due to the input/output organization of the X Server which is not 
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ideally suited to reserve propagation techniques. In any case, the behavior of reserved X cli- 
ents was much better than that of unreserved X clients, which had 5- and 95-percentiles that 
were as much as 166% of their average utilizations. Experiments with network transmit/ 
receive applications showed processor utilization measurements with 5- and 95-percentiles 
of 7-16% of the average utilizations. When unreserved, these applications had measure- 
ments with 5- and 95-percentiles of up to 360% of their average utilizations. In each case, 
the reserved application showed much more consistent real-time behavior than its unre- 
served counterpart. 

8.2 Future directions 
The work described in this document opens up many avenues for future research. By 

providing a general framework and testbed platform for operating system resource reserva- 
tion, this work provides a concrete context for many research topics such as QOS provision 
and negotiation, resource allocation algorithms, and adaptive application programming 
techniques. 

This work on resource reservation also provides a design point for comparison with 
other system design approaches [65] and for other scheduling paradigms [119]. The idea of 
enforced resource reservation can also be used as a building block for exploring higher-level 
concerns such as the role of user in resource management [57]. 
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