
AFRL-IF-WP-TR-2001-1536

CHAMPION: A SOFTWARE DESIGN
ENVIRONMENT FOR ADAPTIVE
COMPUTING SYSTEMS AND
APPLICATION SPECIFIC INTEGRATED
CURCUITS (ASICs)

DR. DON BOULDIN

UNIVERSITY OF TENNESSEE
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING
1508 MIDDLE DRIVE
KNOXVILLE, TX 37996-2100

JULY 2001

FINAL REPORT FOR PERIOD 29 SEPTEMBER 1997 - 30 APRIL 2001

I Approved for public release; distribution unlimited

INFORMATION DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334

20020114 166

NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA INCLUDED IN
THIS DOCUMENT FOR ANY PURPOSE OTHER THAN GOVERNMENT PROCUREMENT
DOES NOT IN ANY WAY OBLIGATE THE US GOVERNMENT. THE FACT THAT THE
GOVERNMENT FORMULATED OR SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR
OTHER DATA DOES NOT LICENSE THE HOLDER OR ANY OTHER PERSON OR
CORPORATION; OR CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE,
OR SELL ANY PATENTED INVENTION THAT MAY RELATE TO THEM.

THIS REPORT IS RELEASABLE TO THE NATIONAL TECHNICAL INFORMATION SERVICE
(NTIS). AT NTIS, IT WILL BE AVAILABLE TO THE GENERAL PUBLIC, INCLUDING
FOREIGN NATIONS.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION.

AL SCARPELLI *
Project Engineer/Team Leader
Embedded Info Sys Engineering Branch
Information Technology Division

5H-
1ES S. WILLIAMSON, Chief

Embedded Info Sys Engineering Branch
Information Technology Division
Information Directorate

Do not return copies of this report unless contractual obligations or notice on a specific document requires its return.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
David Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (leave blank) 2. REPORT DATE
Jul 2001

3. REPORT TYPE AND DATES COVERED
Final 29 September 1997 - 30 April 2001

4. TITLE AND SUBTITLE
CHAMPION: A Software Design Environment for Adaptive Computing Systems and Application
Specific Integrated Circuits (ASICs)

5. FUNDING NUMBERS

C: F33615-97-C-1124

PE: 69199
PR: ARPA
TA: AS
WU: 08

6. AUTHOR(S)

Dr. Don Bouldin

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Tennessee, Department of Electrical and Computer Engineering
1508 Middle Drive
KnoxvilleTN 37996-2100

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Information Directorate
Air Force Research Laboratory
Air Force Materiel Command
Wright-Patterson AFB OH 45433-7334
POC: Al Scarpelli, AFRL/IFTA, 937-255-6548 Ext. 3603

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-WP-TR-2001-1536

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
Adaptive Computing Systems (ACSs) can serve as flexible hardware accelerators for applications in domains such as image and signal
processing. However, the mapping of applications onto ACSs using traditional methods can take months to develop and debug. To
enable application designers to map their applications automatically, CHAMPION was developed to permit high-level design entry using
the Khoros Cantata graphical programming environment and hide low-level details of the hardware architecture. The key idea
underlying CHAMPION is its ability to reuse precompiled hardware modules written in VHDL. These modules produce identical results
to fixed-point C modules installed in Cantata which the user interconnects graphically and simulates on a general purpose UNIX
workstation. The resulting net-list is converted into a directed graph and manipulated by CHAMPION so that data widths and clock
delays are matched. If the graph is too large for a single FPGA, then it is partitioned automatically. An automatic target recognition
application was automatically mapped to a WildForce ACS containing five FPGAs, achieving a productivity gain of over 2000. Other
moderately complex applications were mapped to multiple ACS platforms, as well as to single-chip ASICs. CHAMPION enables faster
application development, ACSs to be utilized by a wider audience, and quick mapping onto multiple ACS platforms and ASICs, thereby
exploiting rapid advances being made in hardware.
14. SUBJECT TERMS
adaptive computing systems; programmable logic; VHDL reuse;
designer productivity improvement

15. NUMBER OF PAGES

34

16. PRICE CODE

1 17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
SAR

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Z39-18

298-102

THIS PAGE INTENTIONALLY LEFT BLANK

IX

Table Of Contents

Section Page

List of Figures iv

List of Tables v

Executive Summary vi

1 Introduction 1

2 Technical Discussion 3

2.1 System Overview 3
2.2 Library Cell Development and Verification '. 4
2.3 Converting CANTATA Workspace to Net-list 6
2.4 Data Width Matching 6
2.5 Data Synchronization 7
2.6 Generating the Signal Flow Graph 9
2.7 Forming the Buffer Minimization Problem 10
2.8 Solving the Minimization Problem 13
2.9 Partitioning 13

3 Results 15

4 Conclusions 19

5 Recommendations 21

6 References 22

7 List of Acronyms 24

in

List of Figures

Figure Page

1. A KHOROS/CANTATA Workspace Describing the Design Flow of an Application 2

2. An Adaptive Computing System (ACS) Containing Multiple FPGAs 2

3. Overview of the CHAMPION Design Flow 3

4. Steps for Developing a New Module 5

5. New Module Development Using A|RT Tools 5

6. A Positively Mismatched Data Path 6

7. Insertion of a "Truncating" Module 6

8. A Negatively Mismatched Data Path 7

9. Insertion of a "Padding" Module 7

10. An Unsynchronized Digital System 8

11. Synchronization Using the Straightforward Approach 9

12. An Optimum Synchronization of Figure 11 9

13. The SFG Representation of the Digital System Shown in Figure 10 10

14. Different Representations of an Hyper-Arc 11

15. Delays of the Hyper-Arc 11

16. Mapping onto Multiple ACSs 14

17. Input and Output Images for the High-Pass Filter Application 16

18. An Internally Developed Automatic Target Recognition (ATR) Algorithm 16

19. Input and Output Images for the Army Night Vision Lab Algorithm 17

20. An Overview of the Face Detection Algorithm 18

21. Graphical Views of the ASIC Layouts 19

22. Design Time Productivity Improvement Provided by CHAMPION 20

23. Impact of CHAMPION on Development Time 21

IV

List of Tables

Table Page

1. Synthesis/PAR (Placement And Routing) Times and Chip Area for the ASICs.

Executive Summary
Adaptive Computing Systems (ACSs) can serve as flexible hardware accelerators for applications in
domains such as image and digital signal processing. However, the mapping of applications onto
ACSs using the traditional methods can take months for a hardware engineer to develop and debug.
To enable application designers to map their applications automatically onto ACSs, a software design
environment called CHAMPION was developed at the University of Tennessee. This environment
permits high-level design entry using the KHOROS/CANTATA graphical programming environment
from KRI and hides from the user the low-level details of the hardware architecture.

The key idea underlying CHAMPION is its ability to reuse precompiled hardware modules written in
VHDL. These modules produce identical results to fixed-point C modules installed in CANTATA
which the user interconnects graphically and simulates on a general purpose UNIX workstation. The
resulting net-list is converted into a directed graph and manipulated by CHAMPION so that data
widths and clock delays are matched. If the graph is too large for a single FPGA, then it is partitioned
automatically.

To benchmark CHAMPION, an automatic target recognition application containing 93 modules
interconnected by 226 nets was captured using CANTATA. Mapping the net-list onto an Annapolis
Micro Systems Wildforce ACS containing 5 FPGAs required 6 staff-weeks to map manually while
CHAMPION was able to perform the mapping in less than 6 minutes. Thus, a productivity gain of
over 2000 was demonstrated.

Additional validation of CHAMPION was performed using three other moderately complex
applications. These were mapped to the Wildforce as well as the Wildcard and the USC-ISI SLAAC-
IV ACS platforms. All of these applications were also mapped into single-chip Application Specific
Integrated Circuits (ASICs) (0.5-micron CMOS).

Thus, CHAMPION enables application development to be accomplished in less time and ACSs to be
utilized by a wider audience. Furthermore, CHAMPION provides the means to map onto multiple
ACS platforms and ASICs, thereby exploiting rapid advances being made in hardware.

ACKNOWLEDGEMENT
The authors gratefully acknowledge the support of DARPA and the Air Force Research Laboratory
under contract F33615-97-C-1124.

VI

1. Introduction

Graphical programming environments such as KHOROS/CANTATA [1-2] from KRI, LabVIEW from
National Instruments and Simulink from Math Works, allow applications to be graphically represented
as a set of functional blocks connected by signal paths as shown in Figure 1. By insulating the
application programmer from low-level programming details, these environments allow faster and
easier development of complex applications but the execution times on conventional CPUs are often
long due to large input data or computationally intensive operators in the applications. For many types
of commercial and military applications, which require high throughput, these long execution times are
simply unacceptable.

With rapid advances in hardware, these complex applications can now be implemented in an Adaptive
Computing System (ACS) composed of multiple Field-Programmable Gate Arrays (FPGAs) serving as
general purpose processing elements as well as interfacing devices as depicted in Figure 2. Since
FPGA-based computing systems can be tailored to the particular computational needs of a given
application, they have been shown to have considerable performance advantages over conventional
processor-based systems for certain types of applications [3-6].

Traditionally, the task of developing applications for an ACS requires considerable knowledge in
digital hardware design and entails a long and tedious process, often requiring months to generate the
Hardware Description Language (HDL) representation and then to synchronize, partition, and
synthesize the digital circuit. Significant effort is also required to resolve the issue of the intricate
interactions between the hardware (ACS) and the software (host machine). The lack of supportive
design environments results in an unacceptably long turn-around time for leveraging the benefits of this
type of hardware. Therefore, it is necessary to develop an end-to-end mapping tool that allows the
designers to reduce the time required to move from specification to hardware implementation.

This objective has been achieved by the CHAMPION software design environment which provides
automatic mapping of applications in the CANTATA graphical programming environment to ACSs.
CHAMPION is a complete design environment that provides the tools needed to capture, simulate,
and implement software applications on multiple ACSs. In this document, we present the design flow
of this end-to-end design environment. The strength of this ACS-dedicated design flow includes its
capability of yielding digital systems with high clock rates in low mapping time. It also allows
CANTATA applications to be mapped onto multiple ACS hardware architectures such as the
Wildforce board and Wildcard developed by AMS [3], and the SLAAC board [6] developed by the
University of Southern California. Another advantage is that the design flow allows graphical
programming environments other than CANTATA to be easily adapted as the design entry for
CHAMPION.

The approach taken by CHAMPION is similar to that of several other research programs at Colorado
State University and Northwestern University [7-8]. However, in our case, we perform synthesis and
place/route on our library cells in advance. Thus, we have accurate information on the size and delay
of each cell and only have to re-synthesize small netlists that represent the collection of cells that fit in
each FPGA. The competing approaches merge the VHDL code into a single, large file that must be

folly re-synthesized and then partitioned at a finer grain than our approach. Hence, CHAMPION is
presented with a netlist that is 10-100 times smaller and can be expected to execute in 100-1000 times
less time while producing performance results within a few percent of the others.

Imj-jt k< (II'/

-i i«—
it» Hyil "VM"!

LH'\

J=^
r I :r

ft ?4i/*<U*4*V.

T:
Sa>l

ir'-J ar.

ll.fil SUM

lll<ll »"•!

-EJ~£
J§^

«»■»Ml Ih'l

I — ir

f«Ji lll*il SUM

) lu^ii HJ^M

U;-cH™

£l-£k
»ii IUFM r.uii :

JFaJ
lUfrt tUcM I |J|—LJ J[~-I *

u-
CfilMJ.ni «-a»» 11« 101).

? J^llEMIU fH7l

fH3 m«i uuii

Figure 1. A KHOROS/CANTATA Workspace Describing the Design Flow of an Application

""" ... " ir* •' % '-"■'-" .-J

'"^J^
>?§

^i

Figure 2. An Adaptive Computing System Containing Multiple FPGAs

This document describes the entire compilation path of CHAMPION. In Section 2, an overview of the
flow is presented along with the process of incorporating a new function or module in CHAMPION.

The results obtained from implementing several applications using CHAMPION are then presented in
Section 3. Sections 4 and 5 conclude and discuss possible extensions for this research work.

2. Technical Discussion

2.1 System Overview

The design flow of CHAMPION is shown in Figure 3. CANTATA is used as a function-oriented
programming environment where all the application programs are developed using predefined
functions called modules. Currently, a set of library modules has been developed in the CHAMPION
project. A set of tools has been developed to automate the process of developing, verifying and
installing the new modules in the CHAMPION library.

Precompiled Library

New Glyph

Development

/GUI/

Cantata

ACS

Host
Program

Generation

Glyph

Installation

Workspace

toNetlist

Data Width

Matching

Data

Synchronization

Synthesis and

Place & Route

Netlist to
Structural

VHDL

I
Partitioning

Figure 3. Overview of the CHAMPION Design Flow

Once the application is developed using CANTATA, the CANTATA program is translated into a more
graph-oriented database, preserving the original modules and their interconnections. Then, each
interconnection is checked to verify that the bit-widths of the connecting ports are the same.

Due to the difference in the processing time of each module, data traveling over different concurrent
paths may arrive at the inputs of a multi-input module at different times. To ensure that each module
generates the correct time-sequenced output, data synchronization is then performed. In CHAMPION,
data synchronization is achieved by introducing delay buffers into the system. The synchronization
software determines the lengths and locations of the delay buffers necessary to balance the various data

paths. An optimization algorithm is employed to calculate a set of buffer lengths and insertion points
that maximizes the amount of buffer sharing, and therefore minimizes the total number of delay buffers.

Partitioning is then performed at the module-level, where each module element is represented by one
node. This yields very low netlist complexity (hundreds versus tens of thousands). Therefore, the
partitioning process has a very short runtime (seconds versus hours). Another advantage is that the
functional flow information is preserved. Thus, debugging and simulation of the system are facilitated
even after the partitioning.

After partitioning, the internal data structure or format is translated into a structural VHDL
representation. The required I/O ports for each of the subnetlists are then added to the VHDL files.
The VHDL files can then be synthesized and merged with the precompiled VHDL components
corresponding to the CANTATA modules. Each subnctlist is then placed and routed. The resulting
configuration files arc downloaded to the corresponding programmable logic component on the ACS
board.

In the next few sections, detailed descriptions of each component of the design flow are presented.

2.2 Library Cell Development and Verification

Application programs can be constructed by interconnecting CHAMPION modules using CANTATA.
If certain modules needed for the application cannot be found in the precompiled CHAMPION library,
these modules can be created and added. First, the designer must develop the fixed-point C or C++
program for the module. The reason for using fixed-point arithmetic is to allow the C/C++ program to
mimic hardware operations. For complex functions, the C/C++ program can be formed as a macro of
lower-level functions.

Next, VHDL code corresponding to each of the C/C++ programs must be generated. The functionality
of the VHDL code must be identical to that of the C/C++ program. Identical test vectors are applied to
both the C/C++ program and the VHDL code. The simulation results are compared to verify that bit-
wise identical behavior is achieved. The steps for developing the new module are shown in Figure 4.

To accelerate the module development process, the commercial software, A/'RTLibrary and Builder
[9] from Frontier Design were integrated into the CHAMPION design flow. The AI RT Library and
Builder provide the ability to generate the VHDL description of the hardware directly from a C-code
specification of the application. The user no longer has to do this manually. The new steps for
developing the module using AI RT Library and Builder are shown in Figure 5.

Once the functionalities are verified, the C/C++ program will be converted to a CANTATA module
and installed in CANTATA using the tools from K.RI. The corresponding VHDL description will be
synthesized and converted to multiple technology-dependent netlist files (XNF and EDIF files) for
multiple ACS boards. Also generated is a module information file (with extension INF) that stores
different sizes, latencies and I/O data bit-widths of the module for multiple ACS architectures. The
netlist and information files are then installed in the CHAMPION library as the hardware counterpart
of the CANTATA module.

Application

Develop Fixed
Point C/C++ code

Functionality
Verification

Installation of glyph
in Khoros/C antata

K horos
Glyph

Test
Vectors

D evelop
VHDL code

Functionality
Verification

Installation of glyph
in CHAMPION

H ardware
Glyph

Khoros Glyph + Hardware Glyph = C H AM PIO N Glyph

Figure 4. Steps for Developing a New Module

Applications

Develop Fixed
Point C/C++ code

Functionality
Verification

Installation of glyph
in Khoros

Khoros
Glyph

A|RT Library

and

A|RT Builder

from

Frontier Design
Installation of glyph

in CHAMPION

Hardware
Glyph

Figure 5. New Module Development Using A|RT tools

2.3 Converting CANTATA Workspace to Netlist

Using CANTATA, the designer can develop the application by interconnecting CHAMPION modules
to form the CANTATA workspace. Simulation, data analysis and visualization can then be performed
in CANTATA. Once the desired functionality of the application is achieved, the CANTATA
workspace is translated into a directed hyper-graph where each module is represented as a node, and
the interconnections between modules are represented as directed hyper-arcs. Based on the
information from the INF file, weights are assigned to the nodes and hypcr-arcs of the directed graph.
This netlist format simplifies the use of graph theory and network optimization theory during the data
synchronization and partitioning process.

2.4 Data Width Matching

In a hardware application, some functions may produce results that require fewer bits for their outputs
than for their inputs. Consequently, cascaded modules may progressively require different data bit-
widths. When one path of operations is connected to a parallel path, a mismatch in the number of bits
for these inputs may occur. This mismatch is labeled positive since the bit-width of the net carrying the
data is larger than the bit-width of the net receiving the data. An example of a positively mismatched
data path is shown in Figure 6. A software tool within CHAMPION was developed to analyze each
data path and to truncate the additional bits when appropriate. The truncating process (shown in
Figure 7) is performed by inserting a "truncating" module at the mismatch data path. The
"truncating" module will remove the additional data bits from the signal.

y*
8 add_8

9 8

--► -/*■ ' w ' i

and_8
8

ncgatc_8
8, 1 —►
/

Figure 6. A Positively Mismatched Data Path

add 8
9

truncate_9_8

-f+ ncgate_8 -y-

and 8

Figure 7. Insertion of a "Truncating" Module.

Similarly, some hardware functions may produce results that require more bits for their outputs than
for their inputs, especially to avoid round-off errors. Consequently, a negatively mismatched data path
such as the one shown in Figure 8 may occur. In this case, a "padding" module (shown in Figure 9) has
to be inserted at the mismatched data path. The "padding" module will append O's to the incoming
signal.

■7^

add_8
9
/

and_9
---*■ 8

negate_8 -f+—/- -

Figure 8. A Negatively Mismatched Data Path

■^M
add_8

9

negate_8 -f- pad_8_9

and_9

Figure 9. Insertion of a "Padding" Module

2.5 Data Synchronization
In a graphical programming environment such as CANTATA, executions of the programs are data
driven. That is, each CANTATA module will begin execution only when all its input data is available.
However, hardware systems are clock driven. At each clock cycle, each hardware module will process
whatever data is presented at its inputs.

Due to the difference in the processing time of each hardware module, data traveling over different
concurrent paths may arrive at the inputs of a multi-input module at different times. To ensure that
each module generates the correct time-sequenced output, it is necessary that each module receive all
its input data precisely at the same time.

Figure 10 illustrates this data synchronization problem. In this system, there are two primary input
modules, two primary output modules and five processing modules labeled Pi through P5. The
processing time for each processing module is labeled Tu. Note from the figure that the primary input
and output modules have zero processing time. This is due to the fact that these modules are storage
devices for the input and output data. No data processing will be performed in these modules. We
assume that all the input data are readily available in the input modules. Therefore all input modules are
time synchronized. We also require that all the outputs are made available at the same time. This is
because if another digital system is connected to this system, these output modules will become the
input modules for the new digital system. In addition, this requirement also allows us to break a large
digital system into smaller subsystems for synchronization.

Examining this system, it is clear that the two input signals entering P4 are not synchronized; the lower
signal arrives one time unit sooner than the upper signal. Also, the primary output, O2, becomes
available two unit times earlier than Oi.

To synchronize this system, delay buffers can be introduced into the digital system. These delay buffers
are inserted at various locations to delay the signal on the data path which has lower processing time,
and therefore match it with the data path with higher processing time. For this synchronization
approach, the pipelined time is zero. That is, the input signal can be presented to the system
continuously without having to hold each new input signal, as in the case of the traditional
synchronization approach using edge-triggered registers. This feature is essential in many designs
which require high throughput rates.

T =2 T =0 T =1
U

lo P,

1, P2 ^

T =3

T =0
U

o.

T =0 T =2 T =2 u u

Figure 10. An Unsynchronized Digital System

T =0

Synchronizing the system requires one to determine the lengths and locations of the delay buffers
necessary to balance the various data paths. Straightforward methods for performing this task arc not
difficult to develop. For example, each multi-input processing module might be examined to check if
all the inputs have the same delay from the primary input modules. If all the inputs do not have the
same delay, the input with the largest delay is identified. For those inputs with delays which are less
than this maximum value, delay buffers must be inserted into each of these "early" input lines in order
for all the inputs to the module to have equal processing delay from the primary input modules.

Applying this method to Figure 10, we find that two delay buffers with a total of three unit time delays
are required to synchronize the system (as shown in Figure 11). One buffer with a unit time delay has
to be inserted in the path between P2 and P4. Another buffer with a two-unit time delay has to be
placed between P5 and Oi.

This straightforward method, however, does not necessarily provide the optimum solution in the sense
that the total number of delay buffer units used is not necessarily a minimum. The delay buffers can
always be moved forward or backward along the data path in order to achieve a maximal amount of
delay buffer sharing. This can be seen in Figure 10 where inserting the delay buffer between Ii and P2

allows both the I1-P4 and the I1-O2 paths to share the delay. Therefore, a total of two unit time delays
are required, compared to the three unit time delays in Figure 11.

An optimization algorithm can be used to calculate a set of buffer lengths and insertion points that
maximizes the amount of buffer sharing and therefore minimizing total length of the delay buffers
required. In the CHAMPION environment, the algorithm developed by Hu [10] was adopted and is
described next.

Tu=0 Tu=l Tu=2 Tu=0

lo P,
■ *•

 >■ P3 U, Tu=3

P4 h» H-1

 *- '. P2 P5
k I A — 0 i u2

T..=0 T =2 T.=2 T =0

Figure 11. Synchronization Using the Straightforward Approach

T =0 T =2 T =2

Tu=0 Tu=l T =2
-|

T =0
u

lo p,
 *-

 >-
P,

_* o. Tu=3

P4

 >- '.
H-1 P,

T) *-'d=l - U2
Q 1 M

T =0

Figure 12. An Optimum Synchronization of Figure 11

2.6 Generating the Signal Flow Graph
To solve the buffer minimization problem using the algorithm proposed in [10], the system has to be
represented using a signal flow graph (SFG) in which each processing module is represented as a node
and each data path between the modules is represented as a directed edge. The weight of the edge
directed from node u (corresponding to processing module Pu) to node v (corresponding to processing
module Pv) is an unknown delay variable. This delay variable dm corresponds to the delay buffer which
has to be inserted between Pu and Pv for synchronization. It will be determined during the
synchronization process (solving of the delay buffer minimization problem). The value of duv computed
during the synchronization process equals the size of the delay buffer required to be inserted between
node u and node v.

Besides the nodes and edges that represent the modules of a system, two virtual nodes are introduced.
One is termed the primary input node, while the other is called the primary output node. All of the
input modules of the digital system will be combined and represented using the primary input node.
Similarly, all the output modules of the digital system will be combined and represented using the
primary output node. Therefore, in the SFG, all input signals to the system originate at the primary
input node, and all outputs from the system terminate at the primary output node. Both of these special
nodes are assumed to consume zero processing time.

Based on the rules stated above, a SFG representation can be constructed for any given digital system.
For instance, for the digital system shown in Figure 10, the corresponding SFG is shown in Figure 13.

T =2

T =2 T =2

Figure 13. The SFG Representation of the Digital System Shown in Figure 10

The synchronizing problem is then reduced to assigning optimal values to the delay variables in the
SFG.

An output connected to more than one input is called a hyper-arc (shown in Figure 14a). If hyper-arcs
exist in the digital system, special representations of these nets need to be considered. One easy
solution is to treat the hyper-arc as having multiple ordinary outputs and construct the SFG as shown
in Figure 14b. The second representation can be obtained by inserting a virtual node, VI, with zero
processing time as in Figure 14c. Another representation, which is proposed in [10], is shown in Figure
14d. This representation uses a binary tree structure which systematically introduces virtual nodes to
the SFG.

The example in Figure 15 illustrates the effects of using the three different types of SFG
representations in Figure 13. In the example, a total of 12 units of delay buffers are required to
synchronize the hyper-arc if the SFG representation shown in Figure 14b is used. With the insertion of
a virtual node, the total number of delay buffers can be reduced to six as shown in Figure 15b. If the
binary structure is used, the total number of delay buffers can be reduced to five as shown in Figure
15c. This example demonstrates that some of the delay buffers can be shared along the hyper-arc
through the insertion of the virtual node. The use of a binary tree structure in representing the hyper-
arc can greatly exploit the buffer sharing property. To exploit the buffer sharing property fully, an
algorithm must be used to arrange the processing nodes in the hyper-arc [10]. Different arrangements
of the processing nodes driven by a hyper-arc may vary the total number of buffers along the hyper-arc
because each arrangement may cause a different length delay buffer to be shared among the nodes
driven by the hyper-arc.

2.7 Forming the Buffer Minimization Problem

To synchronize a system, all input signals to any given module must arrive at the same time. In other
words, the accumulated delays along all the distinct paths from the primary input node, /, to a
particular SFG node should be equal. The accumulated delay along a particular data path is simply the
sum of all the weights of the edges and the processing time, T, of all the processing modules on the
path from / to u in the SFG.

P 0 1 ^- P 1

 *- P 2

 Jn
(a)

*- P I

»*■ P 2

"H P~3

(b)

(c)

(d)

Figure 14. Different Representations of a Hyper-Arc

(a)

Figure 15. Delays of the Hyper-Arc

11

Denoting they'-th path between node / and u as P/u) and the total delay along P/u) as D/u), it follows
that Dj(u) equals the sum of the delays associated with all of the edges along P/u), i.e., it can be
expressed as:

where (x,y) represents an edge from node x to node y.

The synchronization problem can now be defined as assigning a value to each delay variable, dxv, such
that the values ofD/u) fory" = \,2,...k„ are identical for each and every u. Here, k,, denotes the number
of distinct paths from the primary input to processing modules P„.

Thus, the task of synchronizing a SFG may be seen to be equivalent to assigning values of D„ to all
graph nodes and values dnv to all graph edges such that

Dv-Du=(Tu+duv) (2)

holds for each and every pair of nodes, u and v, that are connected by an edge.

The synchronization-minimization problem can then be expressed as an ILP (integer linear
programming) problem:

Mininmize^d uv (3)
(«.>■)

Subject to: -Du+Dv-dar=Tu (4)

(5)
ue V,ve F,(w,v)e E

Du integer; dur > 0, integer

where E and V represent the sets of all edges and nodes in the SFG, respectively, (u,v) denotes a
directed edge from node u to node v. The variables to be determined here are the D„ and duv values.
The Tu's are known processing time delays of each node. Equations (3) through (5) form a standard
description of an ILP:

Minimize : dn, +d„. + d,-. +d,, +</,. + </,, + rf, . +</., +dcr Ul 02 13 13 24 25 34 46 5(i

Subject to :

Wrf01=°
(6)

w -do\" = 0
D0 + D2 -dQ2 = 0

W -rf,3 = = 1

D2 + D4 -^24 = 2

D2 + D5- -'25 = 2

D3 + D4-
"rf34

= 2

D4 + D6 -rf46 = 3

D5 + /V ̂56 = 2

12

2.8 Solving the Minimization Problem
In [10], it is shown that the constraint matrix of the ILP problem in equations (3) through (5) satisfies
the definition of unimodularity. Therefore the ILP problem can be reduced to an LP problem [11]. The
buffer synclironization-minimization problems can then be solved using a linear programming
algorithm such as the Simplex method. Integer solutions are always guaranteed.

2.9 Partitioning
One of the main problems in partitioning is complexity. The research in partitioning theory has seen
many algorithms with good results even with today's design complexity. The main disadvantage of
these approaches is that they are based on gate-level netlists, thus requiring hours to execute.

In CHAMPION, we drastically reduced the complexity by keeping the structural information and
configuring the programmable logic components and their interconnects in the ACS board into a linear
array. With this topology, the partitioning operates on a module-level netlist and its order proceeds in a
forward-only direction. Thus, partitioning is performed with netlists containing hundreds of nodes
instead of tens of thousands.

For our design flow, the partitioning problem is based on the following constraints: capacity per
partition, number of I/O pins per partition, RAM access, and temporal partitioning. The first two
constraints are used to meet the limitations of the programmable logic components. The third
constraint deals with the memory access for each programmable logic component. The architectures of
some of the ACSs require that a fixed number of local RAMs are available to each FPGA for data
writing and data reading. Therefore, a partition can contain only a certain number of RAM access
modules. The fourth constraint deals with temporal partitioning of the ACS board. If the entire
application cannot fit in one board configuration, then multiple configurations of the board are
necessary and storage of intermediate results between board configurations is needed. In this case, one
pair of RAM-access modules must be added to each configuration.

To solve the partitioning problem, three different approaches were investigated in our research. In the
first and second approaches, we implemented two existing algorithms: a hierarchical partitioning (HP)
method based on topological ordering [12] and a recursive partitioning (RP) algorithm based on the
Fiduccia and Mattheyses bipartitioning heuristic [13]. Some modifications have been made on these
algorithms to take advantage of the acyclic nature of our netlist, and to handle the RAM access
constraint and the temporal partitioning constraint. A new recursive partitioning method based on
topological ordering and levelization (RPL) [14] was also introduced. In addition to handling the
partitioning constraints, the new approach efficiently addresses the problem of minimizing the number
of FPGAs used and the amount of computation, thereby overcoming the weaknesses of the HP and RP
algorithms.

After partitioning, the graph-based netlist for each partition is translated into structural VHDL. The
VHDL files describing the ACS I/O ports and the precompiled VHDL components corresponding to
the CANTATA modules are then merged with the structural VHDL. The resulting files are then
synthesized, and then placed and routed separately.

13

The final step in the CHAMPION design flow is the generation of the host program which downloads
each configuration file to the corresponding programmable logic component on the ACS. The host
program also initializes the ACS board and reads the input data from the host workstation, sends the
data to the ACS and writes output back to the host workstation.

The CHAMPION design flow allows CANTATA applications to be mapped onto multiple ACS
hardware. In order to support different hardware architectures, multiple technology-dependent nctlist
files (XNF and EDIF files) were generated for each module in the CHAMPION library. Bach module
information file contains three sizes and latencies for the three ACS boards shown in Figure 16. Based
on the ACS board selected by the designer, CHAMPION will select the corresponding technology-
dependent netlist file and module information (size and latency).

The three ACS boards contain different programmable logic components. Therefore, for the
partitioning problem, the capacity per partition, number of I/O pins per partition, RAM access, and
temporal constraints are different for each board. Three constraint files were developed to store the
constraints corresponding to the three ACSs.

The three ACS platforms also use different communication and control circuits, which are described
using VHDL files specific for each ACS board. The ACS-specific file is integrated by CHAMPION
into the structural VHDL files produced by the partitioning step. The resulting files are synthesized and
then placed and routed.

Khoros/Cantata

New Glyph

Development

Face Detection

Netlist Formats

Virtex

► XC4000

Flex-

Front-end

Flow

ACS Back-end

Flow
K'

is-; Wildcard

SLAAC

Figure 16. Mapping onto Multiple ACSs

14

It is particularly significant that CHAMPION can retarget to a new ACS board so quickly and easily.
Given a high-level description of a new board that one may be considering designing or acquiring, a
single-page data file is composed that lists the number of FPGAs, their size and I/O, the RAMs
available and their interconnections on the board. The previously captured CANTATA application is
then resubmitted to CHAMPION, which performs the mapping within an hour. Thus, application
designers can determine which ACS architecture is the best match to the application and then either
build or purchase the appropriate one.

This retargeting capability also permits an application designer to exploit the rapid advances in FPGA
offerings. For example, as soon as a new ACS board is announced, the board-specific data file could
be generated and the mapping/partitioning performed by CHAMPION. Upon arrival of the new board,
the design could be downloaded and executed. The common situation of waiting months from the
arrival of a new board until the application can be manually retargeted would be avoided.

3. Results
Verification of the CHAMPION design flow was conducted using four challenge problems: (1) a high-
pass filter which detects edges in an input image, (2) an automatic target recognition algorithm (ATR)
developed by Ben Levine of the University of Tennessee to identify multiple regions of interest in a set
of images, (3) an automatic target recognition algorithm (Round-0) provided by the Army Night
Vision Lab which involves template matching for tanks in images, and (4) a neural network based
algorithm provided by NSA for detecting faces in images.

The high-pass filter application was captured in KHOROS/CANTATA using 18 modules
interconnected by a total of 45 nets. It served as a simple test of the CHAMPION flow by moving an
edge detection template over the entire input image to produce an output image with points
corresponding to high-contrast edges, as shown in Figure 17. Each image required 14.2 seconds to
process when executing in the CANTATA environment on a SUN UltraSparc. The same results were
obtained using the Wildforce ACS platform in only 3.721 seconds. Most of the total hardware
execution time consisted of transferring the image from the host CPU to the Wildforce board (2.669
seconds) with 1.049 seconds being required for configuring the FPGAs and only 0.003 seconds needed
to process the algorithm itself. The entire CHAMPION design flow was executed in just 75 seconds,
while structural synthesis and placement and routing required 2358 seconds.

The internally developed ATR algorithm [15-16] consisted of 93 modules interconnected by 226 nets.
As illustrated in Figure 18, this algorithm takes as input infrared images and uses statistical methods to
find probable targets such as tanks and armored personnel carriers, if present, and draws a box around
any that are found.

Each image required 1054 seconds to process when executing in the CANTATA environment on a
SUN UltraSparc running at 33 MHz. The same results were obtained using the Wildforce ACS
platform in only 9.892 seconds. Most of the total hardware execution time consisted of configuring
the FPGAs (9.147 seconds), with 0.735 seconds being required for transferring the image from the
host CPU to the Wildforce board. Only 0.010 seconds were needed to process the algorithm itself.

15

Figure 17. Input and Output Images for the High-Pass Filter Application

Target Pixel Frame Map

DD D

Input FLIR

■,.SO;flf

Output Image

Figure 18. An Internally Developed ATR Algorithm

The entire CHAMPION design flow was executed in just 323 seconds, while structural synthesis and
placement and routing required 13,378 seconds.

The ATR algorithm was implemented to serve as a benchmark for determining the improvement in
mapping time for the design flow since it had been manually mapped to the Wildforce-XL board. The
250-hour manual process was performed automatically by CHAMPION in 5 minutes and 23 seconds,
demonstrating a productivity improvement of over 2,000 times.

16

The ATR algorithm, Round-0, provided by the Army Night Vision Laboratory compares tank
templates against the pixels of an input infrared image looking for matches. If identified, regions of
interest are specified at the output. Additional rounds or iterations of the algorithm are required to
complete the task of cueing an operator in the tank to these regions where his attention should be
focused. However, Round-0 is the most computing intensive operation. Sample input and output
images are shown in Figure 19.

Input Image
^.^,_>._:j,;.^.K M>-*.;£:;.;:•■ ?;"-■';. ~ ■

,' i''-.-..*"'.--»%

. . . '-: -

■-■■Mf'i

Output Image

Correctly Detected
3 Tanks But 1 False
Target (Truck)

■■^t ,3: -mu

Figure 19. Input and Output Images for the Army Night Vision Lab ATR Algorithm

The CANTATA implementation of Round-0 consisted of 45 modules interconnected by 71 nets. Each
image required 15,676 seconds to process when executing in the CANTATA environment on a SUN
UltraSparc. The same results were obtained using the Wildforce ACS platform in only 154.076
seconds. Most of the total hardware execution time consisted of transferring the image from the host
CPU to the Wildforce board (153 seconds) while it took only 0.807 seconds for configuring the
FPGAs and only 0.269 seconds to process an image. The entire CHAMPION design flow was
executed in just 24 seconds, while structural synthesis and placement and routing required 3,404
seconds.

NSA provided a neural network based algorithm for face detection that was originally developed at the
Carnegie-Mellon University [17]. The input image is first processed on the host to locate the regions
of interest in which faces are likely to be present. Then, the computationally intensive portion of the
algorithm is executed on the ACS hardware platform. This section involves several neural networks
which have a variety of predetermined weights. The output from the hardware is then processed by
the host to merge and select the final result. Figure 20 shows an overview of the algorithm.

Three different neural networks were required: (1) UMEC, which has two hidden layers and one
output layer to process a 30 by 30 window using a total of 5,882 connections; (2) Facel7c, which has
one hidden layer and one output layer to process a 20 by 20 window using a total of 2,905
connections; and (3) Face 18c, which has one hidden layer and one output layer to process a 20 by 20
window using a total of 4,357 connections. At the time of this writing, the development of the
modules required to implement this algorithm using CANTATA was not yet completed.

17

:t.(->ir ii!-,i;«s ;.■ ;-..;ii .t | -. h.

r* «■-]

ft'. * El
1 ' --

1 .' ^
1 1 ^^

1 I
/

.' A.

•p.,-1- .

fe^s

i-1L'-!|-.- o. ■"•'.' \

^$y i
^t-1 1-. -ir'Jl-

1--|-

i'i.i'- ii i.,' •■■!.

Figure 20. An Overview of the Face Detection Algorithm

In addition to multiple ACS platforms containing multiple FPGAs, the CHAMPION flow was also
used to target single-chip ASICs. The structural VHDL netlist produced by CHAMPION could be
synthesized either on an incremental basis in which the hierarchy of the individual modules is
preserved, or the hierarchical netlist could be flattened to produce a smaller layout at the expense of
additional time for the synthesis step. Results were obtained for all of the applications described
previously and are summarized in Table 1. Graphical views of the layouts are shown for one
application in Figure 21. Low-cost prototyping of the Hewlett-Packard 3-metal, 0.5-micron CMOS
process is available via MOSIS. Additional ASIC processes can easily be targeted with the
appropriate commercial tools and technology files.

Table 1. Synthesis/PAR (Placement and Routing) Times and Chip Area for the ASICs

Synthesis/PAR Time (sees) Chip Area (mm2)

Flattened Hierarchical Flattened Hierarchical

High-Pass 24015 2958 13.7 14.9

Round-0 4647 8911 6.0 12.1

Umec 6728 6562 9.3 14.0

Face 17c 30818 6027 11.7 14.5

Face 18c 35448 6674 12.6 15.3

ATR 121697 51315 94.4 171.1

Total Synth/PAR Time = 14 min
Chip Area = 12.05 mm2

Hierarchical Approach

Total Synth/PAR Time = 1 hr 17 min
Chip Area = 6.00 mm2

Flattened Approach

nvst 3Kfi§* H Was»
mAiv IS ̂̂ ffi^^siSv^fe >n>.'4

?««};

5i£sii;> "l/i'iLil ̂ #ffl^S!ä?^|ii,
mSS^mß-

Figure 21. Graphical Views of the ASIC Layouts

4. Conclusions
In this document, a design flow for automatic mapping of CANTATA graphical applications onto
multiple ACSs has been presented. Relative to contemporary technology, this design flow:

• Demonstrated a productivity improvement of 2,000 times over manual methods, as depicted in
Figure 25.

• Utilized an optimization algorithm to synchronize the design using a minimum of well-placed
delay buffers, and

• Partitioned the applications for multiple ACSs containing multiple FPGAs and provided a
means to target multiple ACS hardware platforms as well as single-chip ASICs.

It is particularly significant that CHAMPION can retarget a new ACS board so quickly and easily.
Given a high-level description of a new board that one may be considering designing or acquiring, a
single-page data file is composed that lists the number of FPGAs, their size and I/O, the RAMs
available and their interconnections on the board. The previously captured CANTATA application is
then resubmitted to CHAMPION which performs the mapping within an hour. Thus, application

19

Input Output

Development: Fast and Easy
Execution: Slow

ENGINEER
6 Weeks

Manual Mapping

2000x

CHAMPION
6 Minutes

Automatic Mapping

HMHIIHl JIMiMIHEIIIIIIin

WWLiS^-fe^ "5j=" P"
■

±
Input Output

Development: Long and Tedious
Execution: Fast

Figure 22. Design Time Productivity Improvement Provided by CHAMPION

designers can determine which ACS architecture is the best match to the application and then either
build or purchase the appropriate one.

This retargeting capability also permits an application designer to exploit the rapid advances in FPGA
offerings. For example, as soon as a new ACS board is announced, the board-specific data file could
be generated and the mapping/partitioning performed by CHAMPION. Upon arrival of the new board,
the design could be downloaded and executed. The common situation of waiting months from the
arrival of a new board until the application can be manually retargeted would be avoided.

As indicated in Figure 23, CHAMPION has indeed been shown to make a significant impact on the
development time for ACS platforms. However, extensive engineering effort is still required to master
the specific hardware interfacing issues that must be fully understood for each ACS platform in order
to get applications downloaded and executed on them. A standard format for expressing this
information might be warranted to improve this situation. Then, each ACS vendor could provide a
means of meeting this specification and thus reducing this portion of the development cycle.

Now that CHAMPION has been developed, an application described using CANTATA can be quickly
mapped onto an ACS hardware platform. Designers can determine performance bottlenecks in data
transfer or FPGA reconfiguration time and then either select a different ACS architecture or modify
the CANTATA netlist. Numerous candidate solutions can be tried without the tedium of developing
new VHDL descriptions. In essence, CHAMPION provides the means to reuse and integrate VHDL
modules. The graphical entry and simulation capabilities provided by CANTATA facilitate this
process.

20

W ITU OUTCIIA M PI ON:

Manual
S/W

Modules

CANTATA
S/W Reuse &
Integration

Manual
H/W

Modules

Manual
H/W Reuse &

Integration
Place &
Route

H/W
Interfacing

H/W
Execution

DEVELOPMENT TIME
CHAMPION
H/W Reuse &
Integration of

Pre-svnthesized Modules

Figure 23. Impact of CHAMPION on Development Time

Four publications [15, 18-20] resulted from this project and were presented at the major conferences in
this field. Also, five theses were written. Ben Levine obtained his M.S. and is now pursuing a Ph.D.
at Carnegie Mellon University in Pittsburgh. Senthil Natarajan completed his M.S. and is now
employed at Motorola Research Labs outside Chicago. Nabil Kerkiz obtained his Ph.D. and is
working with Intel in Santa Clara, while Sze-Wei Ong finished his Ph.D. and has interviewed with Intel
in Portland. Bernadeta Srijanto should complete her M.S. in a few months.

5. Recommendations
In terms of extending CHAMPION, one possibility is to permit it to accept inputs from other graphical
programming environments such as LabVIEW from National Instruments and/or Simulink from
MathWorks. To include these programming environments, the only component in the design flow that
needs to be modified is the front-end translator that converts the CANTATA workspace into a
CHAMPION netlist. The rest of the steps in the design flow will remain the same.

21

6. REFERENCES

[I] J. Rasure and S. Kubica, The KHOROS Application Development Environment, KHOROS
Research Inc., Albuquerque, NM, http://www.khoral.com.

[2] D. Argiro, S. Kubica, and M. Young, "CANTATA: The Visual Programming Environment for
the KHOROS System" Khoral Research, Inc., Albuquerque, NM, http://www.khoral.com.

[3] Annapolis Micro Systems, Annapolis, MD, http://www.annapmicro.com.

[4] J. Babb, M. Frank, V. Lee, E. Waingold, R. Barua, M. Taylor, J. Kim, S. Devabhaktuni, and A.
Agarwal, "The RAW Benchmark Suite: Computation Structures for General Purpose
Computing," Proc. IEEE Symposium on FPGAsfor Custom Computing Machines, Napa Valley,
CA, April, 1997.

[5] N. Ratha, A. Jain, and D. Rover, "Convolution on Splash 2," Proc. IEEE Symposium on FPGAs
for Custom Computing Machines, Napa Valley, CA, April, 1995.

[6] Systems Level Applications of Adaptive Computing (SLAAC),
http://www.east.isi.edu/projccts/SLAAC.

[7] P. Banerjee, et al., "A MATLAB Compiler for Distributed Heterogeneous Reconfigurable
Computing Systems," Proc. IEEE Symposium on FPGAsfor Custom Computing Machines, Napa
Valley, CA, April, 2000.

[8] J. Hammes, R. Rinker, W. Böhm, W. Najjar, B. Draper, and R. Beveridge, "Cameron: High Level
Language Compilation for Reconfigurable Systems," Conference on Parallel Architectures and
Compilation Techniques, Newport Beach, CA, Oct. 12-16, 1999.

[9] D. Johnson, "Architectural Synthesis from Behavioral C Code to Implementation in a Xilinx
FPGA," Business Development Manager, Frontier Design Inc., http:,'/www.fromicrd.com./

[10] X. Hu, S. C. Bass and R. G. Harber, "Minimizing the number of delay buffers in the
synchronization of pipelined systems," IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 13, No. 12, pp.1441-1449, December 1994.

[II] A. J. Hoffman and J. B. Kruskal, "Integral boundary points of convex polyhedra," Linear
Inequalities and Related Systems, ed. H. W. Kuhn and A. W. Tucker, Princeton, N.J.: Princeton
University Press, pp. 223-46, 1956.

[12] B. Stanley, "Hierarchical Multiway Partitioning Strategy with Hardware Emulator Architecture
Intelligence," Georgia Institute of Technology, Ph.D. Dissertation, 1997.

[13] R. Kuznar and F. Brglez, "PROP: A Recursive Paradigm for Area-Efficient and Performance
Oriented Partitioning of Large FPGA Netlists," International Conference on Computer-Aided
Design, pp. 644-649, November 1995.

22

[14] Kerkiz N., "Development and Experimental Evaluation of Partitioning Algorithms for Adaptive
Computing Systems," University of Tennessee, Ph.D. Dissertation, 2000.

[15] Levine, B., Natarajan, S., Tan, C, Newport, D. and D. Bouldin, "Mapping of an Automated
Target Recognition Application from a Graphical Software Environment to FPGA-based
Reconfigurable Hardware," Proc. IEEE Symposium on FPGAsfor Custom Computing Machines,
Napa Valley, CA, April, 1999.

[16] Levine B., "A System for the Implementation of Image Processing Algorithms on Configurable
Computing Hardware," University of Tennessee, Masters Thesis, 1999.

[17] H. Rowley, S. Baluja and T. Kanade, "Neural Network-Based Face Detection" IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 20, No. 1, pp. 23-38, January
1998.

[18] S. Ong, N. Kerkiz, B. Srijanto, C. Tan, M. Langston, D. Newport, and D. Bouldin, "Automatic
Mapping of Multiple Applications to Multiple Adaptive Computing Systems," Proceedings of
2001 IEEE Symposium on Field-programmable Custom Computing Machines (FCCM), Rohnert,
CA, April 30, 2001.

[19] S. Ong, N. Kerkiz, B. Srijanto, C. Tan, M. Langston, D. Newport, and D. Bouldin, "Design Flow
for Automatic Mapping of Graphical Programming Applications to Adaptive Computing
Systems," Proceedings of the High Performance Embedded Computing Workshop (HPEC),
Boston, MA, Sep. 23, 2000.

[20] S. Natarajan, B. Levine, C. Tan, D. Newport and D. Bouldin, "Automatic Mapping of KHOROS-
based Applications to Adaptive Computing Systems," Proceedings of 1999 Military and
Aerospace Applications of Programmable Devices and Technologies International Conference
(MAPLD), pp. 101-107, Laurel, MD, Sept. 28-30, 1999.

23

7. LIST OF ACRONYMS

ACRONYM DESCRIPTION

ACS

AFRL

AMS

ASICs

ATR

CMOS

DARPA

EDIF

FPGA

HP

ILP

LP

MOSIS

NVL

PAR

RP

RPL

SFG

SLAAC

VHDL

VHSIC

XNF

Adaptive Computing Systems

Air Force Research Laboratory

Annapolis Microsystems Inc.

Application-Specific Integrated Circuits

Automatic Target Recognition

Complementary Metal-Oxide Semiconductor

Defense Advanced Research Projects Agency

Electronic Data Interchange Format

Field-Programmable Gate Array

Hierarchical Partitioning

Integer Linear Programming

Linear Programming

Metal-Oxide Semiconductor Implementation System

Night Vision Laboratory

Placement And Routing

Recursive Partitioning

Recursive Partitioning with Levelization

Signal Flow Graph

Systems Level Applications of Adaptive Computing

VHSIC Hardware Description Language

Very High Scale Integrated Circuit

Xilinx Netlist Format

24

