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Executive Summary 
Adaptive Computing Systems (ACSs) can serve as flexible hardware accelerators for applications in 
domains such as image and digital signal processing. However, the mapping of applications onto 
ACSs using the traditional methods can take months for a hardware engineer to develop and debug. 
To enable application designers to map their applications automatically onto ACSs, a software design 
environment called CHAMPION was developed at the University of Tennessee. This environment 
permits high-level design entry using the KHOROS/CANTATA graphical programming environment 
from KRI and hides from the user the low-level details of the hardware architecture. 

The key idea underlying CHAMPION is its ability to reuse precompiled hardware modules written in 
VHDL. These modules produce identical results to fixed-point C modules installed in CANTATA 
which the user interconnects graphically and simulates on a general purpose UNIX workstation. The 
resulting net-list is converted into a directed graph and manipulated by CHAMPION so that data 
widths and clock delays are matched. If the graph is too large for a single FPGA, then it is partitioned 
automatically. 

To benchmark CHAMPION, an automatic target recognition application containing 93 modules 
interconnected by 226 nets was captured using CANTATA. Mapping the net-list onto an Annapolis 
Micro Systems Wildforce ACS containing 5 FPGAs required 6 staff-weeks to map manually while 
CHAMPION was able to perform the mapping in less than 6 minutes. Thus, a productivity gain of 
over 2000 was demonstrated. 

Additional validation of CHAMPION was performed using three other moderately complex 
applications. These were mapped to the Wildforce as well as the Wildcard and the USC-ISI SLAAC- 
IV ACS platforms. All of these applications were also mapped into single-chip Application Specific 
Integrated Circuits (ASICs) (0.5-micron CMOS). 

Thus, CHAMPION enables application development to be accomplished in less time and ACSs to be 
utilized by a wider audience. Furthermore, CHAMPION provides the means to map onto multiple 
ACS platforms and ASICs, thereby exploiting rapid advances being made in hardware. 

ACKNOWLEDGEMENT 
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1. Introduction 

Graphical programming environments such as KHOROS/CANTATA [1-2] from KRI, LabVIEW from 
National Instruments and Simulink from Math Works, allow applications to be graphically represented 
as a set of functional blocks connected by signal paths as shown in Figure 1. By insulating the 
application programmer from low-level programming details, these environments allow faster and 
easier development of complex applications but the execution times on conventional CPUs are often 
long due to large input data or computationally intensive operators in the applications. For many types 
of commercial and military applications, which require high throughput, these long execution times are 
simply unacceptable. 

With rapid advances in hardware, these complex applications can now be implemented in an Adaptive 
Computing System (ACS) composed of multiple Field-Programmable Gate Arrays (FPGAs) serving as 
general purpose processing elements as well as interfacing devices as depicted in Figure 2. Since 
FPGA-based computing systems can be tailored to the particular computational needs of a given 
application, they have been shown to have considerable performance advantages over conventional 
processor-based systems for certain types of applications [3-6]. 

Traditionally, the task of developing applications for an ACS requires considerable knowledge in 
digital hardware design and entails a long and tedious process, often requiring months to generate the 
Hardware Description Language (HDL) representation and then to synchronize, partition, and 
synthesize the digital circuit. Significant effort is also required to resolve the issue of the intricate 
interactions between the hardware (ACS) and the software (host machine). The lack of supportive 
design environments results in an unacceptably long turn-around time for leveraging the benefits of this 
type of hardware. Therefore, it is necessary to develop an end-to-end mapping tool that allows the 
designers to reduce the time required to move from specification to hardware implementation. 

This objective has been achieved by the CHAMPION software design environment which provides 
automatic mapping of applications in the CANTATA graphical programming environment to ACSs. 
CHAMPION is a complete design environment that provides the tools needed to capture, simulate, 
and implement software applications on multiple ACSs. In this document, we present the design flow 
of this end-to-end design environment. The strength of this ACS-dedicated design flow includes its 
capability of yielding digital systems with high clock rates in low mapping time. It also allows 
CANTATA applications to be mapped onto multiple ACS hardware architectures such as the 
Wildforce board and Wildcard developed by AMS [3], and the SLAAC board [6] developed by the 
University of Southern California. Another advantage is that the design flow allows graphical 
programming environments other than CANTATA to be easily adapted as the design entry for 
CHAMPION. 

The approach taken by CHAMPION is similar to that of several other research programs at Colorado 
State University and Northwestern University [7-8]. However, in our case, we perform synthesis and 
place/route on our library cells in advance. Thus, we have accurate information on the size and delay 
of each cell and only have to re-synthesize small netlists that represent the collection of cells that fit in 
each FPGA. The competing approaches merge the VHDL code into a single, large file that must be 



folly re-synthesized and then partitioned at a finer grain than our approach. Hence, CHAMPION is 
presented with a netlist that is 10-100 times smaller and can be expected to execute in 100-1000 times 
less time while producing performance results within a few percent of the others. 

Imj-jt k< (II'/ 

-i i«— 
it» Hyil "VM"! 

LH'\ 

J=^ 
r I    :r 

ft ?4i/*<U*4*V. 

T: 
Sa>l 

ir'-J ar. 

ll.fil SUM 

lll<ll »"•! 

-EJ~£ 
J§^ 

«»■»Ml Ih'l 

I       — ir 

f«Ji lll*il SUM 

)     lu^ii HJ^M 

U;-cH™ 

£l-£k 
»ii       IUFM r.uii   : 

JFaJ 
lUfrt tUcM    I     |J|—LJ J[~-I      * 

u- 
CfilMJ.ni «-a»» 11« 101). 

?     J^llEMIU fH7l 

fH3      m«i uuii 

Figure 1. A KHOROS/CANTATA Workspace Describing the Design Flow of an Application 
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Figure 2. An Adaptive Computing System Containing Multiple FPGAs 

This document describes the entire compilation path of CHAMPION. In Section 2, an overview of the 
flow is presented along with the process of incorporating a new function or module in CHAMPION. 



The results obtained from implementing several applications using CHAMPION are then presented in 
Section 3. Sections 4 and 5 conclude and discuss possible extensions for this research work. 

2. Technical Discussion 

2.1 System Overview 

The design flow of CHAMPION is shown in Figure 3. CANTATA is used as a function-oriented 
programming environment where all the application programs are developed using predefined 
functions called modules. Currently, a set of library modules has been developed in the CHAMPION 
project. A set of tools has been developed to automate the process of developing, verifying and 
installing the new modules in the CHAMPION library. 
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Figure 3. Overview of the CHAMPION Design Flow 

Once the application is developed using CANTATA, the CANTATA program is translated into a more 
graph-oriented database, preserving the original modules and their interconnections. Then, each 
interconnection is checked to verify that the bit-widths of the connecting ports are the same. 

Due to the difference in the processing time of each module, data traveling over different concurrent 
paths may arrive at the inputs of a multi-input module at different times. To ensure that each module 
generates the correct time-sequenced output, data synchronization is then performed. In CHAMPION, 
data synchronization is achieved by introducing delay buffers into the system. The synchronization 
software determines the lengths and locations of the delay buffers necessary to balance the various data 



paths. An optimization algorithm is employed to calculate a set of buffer lengths and insertion points 
that maximizes the amount of buffer sharing, and therefore minimizes the total number of delay buffers. 

Partitioning is then performed at the module-level, where each module element is represented by one 
node. This yields very low netlist complexity (hundreds versus tens of thousands). Therefore, the 
partitioning process has a very short runtime (seconds versus hours). Another advantage is that the 
functional flow information is preserved. Thus, debugging and simulation of the system are facilitated 
even after the partitioning. 

After partitioning, the internal data structure or format is translated into a structural VHDL 
representation. The required I/O ports for each of the subnetlists are then added to the VHDL files. 
The VHDL files can then be synthesized and merged with the precompiled VHDL components 
corresponding to the CANTATA modules. Each subnctlist is then placed and routed. The resulting 
configuration files arc downloaded to the corresponding programmable logic component on the ACS 
board. 

In the next few sections, detailed descriptions of each component of the design flow are presented. 

2.2 Library Cell Development and Verification 

Application programs can be constructed by interconnecting CHAMPION modules using CANTATA. 
If certain modules needed for the application cannot be found in the precompiled CHAMPION library, 
these modules can be created and added. First, the designer must develop the fixed-point C or C++ 
program for the module. The reason for using fixed-point arithmetic is to allow the C/C++ program to 
mimic hardware operations. For complex functions, the C/C++ program can be formed as a macro of 
lower-level functions. 

Next, VHDL code corresponding to each of the C/C++ programs must be generated. The functionality 
of the VHDL code must be identical to that of the C/C++ program. Identical test vectors are applied to 
both the C/C++ program and the VHDL code. The simulation results are compared to verify that bit- 
wise identical behavior is achieved. The steps for developing the new module are shown in Figure 4. 

To accelerate the module development process, the commercial software, A/'RTLibrary and Builder 
[9] from Frontier Design were integrated into the CHAMPION design flow. The AI RT Library and 
Builder provide the ability to generate the VHDL description of the hardware directly from a C-code 
specification of the application. The user no longer has to do this manually. The new steps for 
developing the module using AI RT Library and Builder are shown in Figure 5. 

Once the functionalities are verified, the C/C++ program will be converted to a CANTATA module 
and installed in CANTATA using the tools from K.RI. The corresponding VHDL description will be 
synthesized and converted to multiple technology-dependent netlist files (XNF and EDIF files) for 
multiple ACS boards. Also generated is a module information file (with extension INF) that stores 
different sizes, latencies and I/O data bit-widths of the module for multiple ACS architectures. The 
netlist and information files are then installed in the CHAMPION library as the hardware counterpart 
of the CANTATA module. 
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2.3 Converting CANTATA Workspace to Netlist 

Using CANTATA, the designer can develop the application by interconnecting CHAMPION modules 
to form the CANTATA workspace. Simulation, data analysis and visualization can then be performed 
in CANTATA. Once the desired functionality of the application is achieved, the CANTATA 
workspace is translated into a directed hyper-graph where each module is represented as a node, and 
the interconnections between modules are represented as directed hyper-arcs. Based on the 
information from the INF file, weights are assigned to the nodes and hypcr-arcs of the directed graph. 
This netlist format simplifies the use of graph theory and network optimization theory during the data 
synchronization and partitioning process. 

2.4 Data Width Matching 

In a hardware application, some functions may produce results that require fewer bits for their outputs 
than for their inputs. Consequently, cascaded modules may progressively require different data bit- 
widths. When one path of operations is connected to a parallel path, a mismatch in the number of bits 
for these inputs may occur. This mismatch is labeled positive since the bit-width of the net carrying the 
data is larger than the bit-width of the net receiving the data. An example of a positively mismatched 
data path is shown in Figure 6. A software tool within CHAMPION was developed to analyze each 
data path and to truncate the additional bits when appropriate. The truncating process (shown in 
Figure 7) is performed by inserting a "truncating" module at the mismatch data path. The 
"truncating" module will remove the additional data bits from the signal. 
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Figure 6. A Positively Mismatched Data Path 
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Figure 7. Insertion of a "Truncating" Module. 

Similarly, some hardware functions may produce results that require more bits for their outputs than 
for their inputs, especially to avoid round-off errors. Consequently, a negatively mismatched data path 
such as the one shown in Figure 8 may occur. In this case, a "padding" module (shown in Figure 9) has 
to be inserted at the mismatched data path. The "padding" module will append O's to the incoming 
signal. 
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Figure 9. Insertion of a "Padding" Module 

2.5 Data Synchronization 
In a graphical programming environment such as CANTATA, executions of the programs are data 
driven. That is, each CANTATA module will begin execution only when all its input data is available. 
However, hardware systems are clock driven. At each clock cycle, each hardware module will process 
whatever data is presented at its inputs. 

Due to the difference in the processing time of each hardware module, data traveling over different 
concurrent paths may arrive at the inputs of a multi-input module at different times. To ensure that 
each module generates the correct time-sequenced output, it is necessary that each module receive all 
its input data precisely at the same time. 

Figure 10 illustrates this data synchronization problem. In this system, there are two primary input 
modules, two primary output modules and five processing modules labeled Pi through P5. The 
processing time for each processing module is labeled Tu. Note from the figure that the primary input 
and output modules have zero processing time. This is due to the fact that these modules are storage 
devices for the input and output data. No data processing will be performed in these modules. We 
assume that all the input data are readily available in the input modules. Therefore all input modules are 
time synchronized. We also require that all the outputs are made available at the same time. This is 
because if another digital system is connected to this system, these output modules will become the 
input modules for the new digital system. In addition, this requirement also allows us to break a large 
digital system into smaller subsystems for synchronization. 

Examining this system, it is clear that the two input signals entering P4 are not synchronized; the lower 
signal arrives one time unit sooner than the upper signal. Also, the primary output, O2, becomes 
available two unit times earlier than Oi. 



To synchronize this system, delay buffers can be introduced into the digital system. These delay buffers 
are inserted at various locations to delay the signal on the data path which has lower processing time, 
and therefore match it with the data path with higher processing time. For this synchronization 
approach, the pipelined time is zero. That is, the input signal can be presented to the system 
continuously without having to hold each new input signal, as in the case of the traditional 
synchronization approach using edge-triggered registers. This feature is essential in many designs 
which require high throughput rates. 
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Figure 10. An Unsynchronized Digital System 
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Synchronizing the system requires one to determine the lengths and locations of the delay buffers 
necessary to balance the various data paths. Straightforward methods for performing this task arc not 
difficult to develop. For example, each multi-input processing module might be examined to check if 
all the inputs have the same delay from the primary input modules. If all the inputs do not have the 
same delay, the input with the largest delay is identified. For those inputs with delays which are less 
than this maximum value, delay buffers must be inserted into each of these "early" input lines in order 
for all the inputs to the module to have equal processing delay from the primary input modules. 

Applying this method to Figure 10, we find that two delay buffers with a total of three unit time delays 
are required to synchronize the system (as shown in Figure 11). One buffer with a unit time delay has 
to be inserted in the path between P2 and P4. Another buffer with a two-unit time delay has to be 
placed between P5 and Oi. 

This straightforward method, however, does not necessarily provide the optimum solution in the sense 
that the total number of delay buffer units used is not necessarily a minimum. The delay buffers can 
always be moved forward or backward along the data path in order to achieve a maximal amount of 
delay buffer sharing. This can be seen in Figure 10 where inserting the delay buffer between Ii and P2 

allows both the I1-P4 and the I1-O2 paths to share the delay. Therefore, a total of two unit time delays 
are required, compared to the three unit time delays in Figure 11. 

An optimization algorithm can be used to calculate a set of buffer lengths and insertion points that 
maximizes the amount of buffer sharing and therefore minimizing total length of the delay buffers 
required. In the CHAMPION environment, the algorithm developed by Hu [10] was adopted and is 
described next. 
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Figure 11. Synchronization Using the Straightforward Approach 

T =0 T =2 T =2 

Tu=0 Tu=l T =2 
-| 

T =0 
u 

lo p, 
 *- 

 >- 
P, 

_* o. Tu=3 

P4 

 >- '. 
H-1 P, 

T) *-'d=l - U2 
Q    1 M 

T =0 

Figure 12. An Optimum Synchronization of Figure 11 

2.6 Generating the Signal Flow Graph 
To solve the buffer minimization problem using the algorithm proposed in [10], the system has to be 
represented using a signal flow graph (SFG) in which each processing module is represented as a node 
and each data path between the modules is represented as a directed edge. The weight of the edge 
directed from node u (corresponding to processing module Pu) to node v (corresponding to processing 
module Pv) is an unknown delay variable. This delay variable dm corresponds to the delay buffer which 
has to be inserted between Pu and Pv for synchronization. It will be determined during the 
synchronization process (solving of the delay buffer minimization problem). The value of duv computed 
during the synchronization process equals the size of the delay buffer required to be inserted between 
node u and node v. 

Besides the nodes and edges that represent the modules of a system, two virtual nodes are introduced. 
One is termed the primary input node, while the other is called the primary output node. All of the 
input modules of the digital system will be combined and represented using the primary input node. 
Similarly, all the output modules of the digital system will be combined and represented using the 
primary output node. Therefore, in the SFG, all input signals to the system originate at the primary 
input node, and all outputs from the system terminate at the primary output node. Both of these special 
nodes are assumed to consume zero processing time. 

Based on the rules stated above, a SFG representation can be constructed for any given digital system. 
For instance, for the digital system shown in Figure 10, the corresponding SFG is shown in Figure 13. 
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Figure 13. The SFG Representation of the Digital System Shown in Figure 10 

The synchronizing problem is then reduced to assigning optimal values to the delay variables in the 
SFG. 

An output connected to more than one input is called a hyper-arc (shown in Figure 14a). If hyper-arcs 
exist in the digital system, special representations of these nets need to be considered. One easy 
solution is to treat the hyper-arc as having multiple ordinary outputs and construct the SFG as shown 
in Figure 14b. The second representation can be obtained by inserting a virtual node, VI, with zero 
processing time as in Figure 14c. Another representation, which is proposed in [10], is shown in Figure 
14d. This representation uses a binary tree structure which systematically introduces virtual nodes to 
the SFG. 

The example in Figure 15 illustrates the effects of using the three different types of SFG 
representations in Figure 13. In the example, a total of 12 units of delay buffers are required to 
synchronize the hyper-arc if the SFG representation shown in Figure 14b is used. With the insertion of 
a virtual node, the total number of delay buffers can be reduced to six as shown in Figure 15b. If the 
binary structure is used, the total number of delay buffers can be reduced to five as shown in Figure 
15c. This example demonstrates that some of the delay buffers can be shared along the hyper-arc 
through the insertion of the virtual node. The use of a binary tree structure in representing the hyper- 
arc can greatly exploit the buffer sharing property. To exploit the buffer sharing property fully, an 
algorithm must be used to arrange the processing nodes in the hyper-arc [10]. Different arrangements 
of the processing nodes driven by a hyper-arc may vary the total number of buffers along the hyper-arc 
because each arrangement may cause a different length delay buffer to be shared among the nodes 
driven by the hyper-arc. 

2.7 Forming the Buffer Minimization Problem 

To synchronize a system, all input signals to any given module must arrive at the same time. In other 
words, the accumulated delays along all the distinct paths from the primary input node, /, to a 
particular SFG node should be equal. The accumulated delay along a particular data path is simply the 
sum of all the weights of the edges and the processing time, T, of all the processing modules on the 
path from / to u in the SFG. 
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Denoting they'-th path between node / and u as P/u) and the total delay along P/u) as D/u), it follows 
that Dj(u) equals the sum of the delays associated with all of the edges along P/u), i.e., it can be 
expressed as: 

where (x,y) represents an edge from node x to node y. 

The synchronization problem can now be defined as assigning a value to each delay variable, dxv, such 
that the values ofD/u) fory" = \,2,...k„ are identical for each and every u. Here, k,, denotes the number 
of distinct paths from the primary input to processing modules P„. 

Thus, the task of synchronizing a SFG may be seen to be equivalent to assigning values of D„ to all 
graph nodes and values dnv to all graph edges such that 

Dv-Du=(Tu+duv) (2) 

holds for each and every pair of nodes, u and v, that are connected by an edge. 

The synchronization-minimization problem can then be expressed as an ILP (integer linear 
programming) problem: 

Mininmize^d uv (3) 
(«.>■) 

Subject to: -Du+Dv-dar=Tu (4) 

(5) 
ue V,ve F,(w,v)e E 

Du integer; dur > 0, integer 

where E and V represent the sets of all edges and nodes in the SFG, respectively, (u,v) denotes a 
directed edge from node u to node v. The variables to be determined here are the D„ and duv values. 
The Tu's are known processing time delays of each node. Equations (3) through (5) form a standard 
description of an ILP: 

Minimize : dn, +d„. + d,-. +d,, +</,. + </,, + rf, . +</., +dcr Ul       02       13       13       24       25       34       46       5(i 

Subject to : 

Wrf01=° 
(6) 

w -do\" = 0 
D0 + D2 -dQ2 = 0 

W -rf,3 = = 1 

D2 + D4 -^24 = 2 

D2 + D5- -'25 = 2 

D3 + D4- 
"rf34 

= 2 

D4 + D6 -rf46 = 3 

D5 + /V ̂56 = 2 
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2.8 Solving the Minimization Problem 
In [10], it is shown that the constraint matrix of the ILP problem in equations (3) through (5) satisfies 
the definition of unimodularity. Therefore the ILP problem can be reduced to an LP problem [11]. The 
buffer synclironization-minimization problems can then be solved using a linear programming 
algorithm such as the Simplex method. Integer solutions are always guaranteed. 

2.9 Partitioning 
One of the main problems in partitioning is complexity. The research in partitioning theory has seen 
many algorithms with good results even with today's design complexity. The main disadvantage of 
these approaches is that they are based on gate-level netlists, thus requiring hours to execute. 

In CHAMPION, we drastically reduced the complexity by keeping the structural information and 
configuring the programmable logic components and their interconnects in the ACS board into a linear 
array. With this topology, the partitioning operates on a module-level netlist and its order proceeds in a 
forward-only direction. Thus, partitioning is performed with netlists containing hundreds of nodes 
instead of tens of thousands. 

For our design flow, the partitioning problem is based on the following constraints: capacity per 
partition, number of I/O pins per partition, RAM access, and temporal partitioning. The first two 
constraints are used to meet the limitations of the programmable logic components. The third 
constraint deals with the memory access for each programmable logic component. The architectures of 
some of the ACSs require that a fixed number of local RAMs are available to each FPGA for data 
writing and data reading. Therefore, a partition can contain only a certain number of RAM access 
modules. The fourth constraint deals with temporal partitioning of the ACS board. If the entire 
application cannot fit in one board configuration, then multiple configurations of the board are 
necessary and storage of intermediate results between board configurations is needed. In this case, one 
pair of RAM-access modules must be added to each configuration. 

To solve the partitioning problem, three different approaches were investigated in our research. In the 
first and second approaches, we implemented two existing algorithms: a hierarchical partitioning (HP) 
method based on topological ordering [12] and a recursive partitioning (RP) algorithm based on the 
Fiduccia and Mattheyses bipartitioning heuristic [13]. Some modifications have been made on these 
algorithms to take advantage of the acyclic nature of our netlist, and to handle the RAM access 
constraint and the temporal partitioning constraint. A new recursive partitioning method based on 
topological ordering and levelization (RPL) [14] was also introduced. In addition to handling the 
partitioning constraints, the new approach efficiently addresses the problem of minimizing the number 
of FPGAs used and the amount of computation, thereby overcoming the weaknesses of the HP and RP 
algorithms. 

After partitioning, the graph-based netlist for each partition is translated into structural VHDL. The 
VHDL files describing the ACS I/O ports and the precompiled VHDL components corresponding to 
the CANTATA modules are then merged with the structural VHDL. The resulting files are then 
synthesized, and then placed and routed separately. 
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The final step in the CHAMPION design flow is the generation of the host program which downloads 
each configuration file to the corresponding programmable logic component on the ACS. The host 
program also initializes the ACS board and reads the input data from the host workstation, sends the 
data to the ACS and writes output back to the host workstation. 

The CHAMPION design flow allows CANTATA applications to be mapped onto multiple ACS 
hardware. In order to support different hardware architectures, multiple technology-dependent nctlist 
files (XNF and EDIF files) were generated for each module in the CHAMPION library. Bach module 
information file contains three sizes and latencies for the three ACS boards shown in Figure 16. Based 
on the ACS board selected by the designer, CHAMPION will select the corresponding technology- 
dependent netlist file and module information (size and latency). 

The three ACS boards contain different programmable logic components. Therefore, for the 
partitioning problem, the capacity per partition, number of I/O pins per partition, RAM access, and 
temporal constraints are different for each board. Three constraint files were developed to store the 
constraints corresponding to the three ACSs. 

The three ACS platforms also use different communication and control circuits, which are described 
using VHDL files specific for each ACS board. The ACS-specific file is integrated by CHAMPION 
into the structural VHDL files produced by the partitioning step. The resulting files are synthesized and 
then placed and routed. 
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Figure 16. Mapping onto Multiple ACSs 
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It is particularly significant that CHAMPION can retarget to a new ACS board so quickly and easily. 
Given a high-level description of a new board that one may be considering designing or acquiring, a 
single-page data file is composed that lists the number of FPGAs, their size and I/O, the RAMs 
available and their interconnections on the board. The previously captured CANTATA application is 
then resubmitted to CHAMPION, which performs the mapping within an hour. Thus, application 
designers can determine which ACS architecture is the best match to the application and then either 
build or purchase the appropriate one. 

This retargeting capability also permits an application designer to exploit the rapid advances in FPGA 
offerings. For example, as soon as a new ACS board is announced, the board-specific data file could 
be generated and the mapping/partitioning performed by CHAMPION. Upon arrival of the new board, 
the design could be downloaded and executed. The common situation of waiting months from the 
arrival of a new board until the application can be manually retargeted would be avoided. 

3. Results 
Verification of the CHAMPION design flow was conducted using four challenge problems: (1) a high- 
pass filter which detects edges in an input image, (2) an automatic target recognition algorithm (ATR) 
developed by Ben Levine of the University of Tennessee to identify multiple regions of interest in a set 
of images, (3) an automatic target recognition algorithm (Round-0) provided by the Army Night 
Vision Lab which involves template matching for tanks in images, and (4) a neural network based 
algorithm provided by NSA for detecting faces in images. 

The high-pass filter application was captured in KHOROS/CANTATA using 18 modules 
interconnected by a total of 45 nets. It served as a simple test of the CHAMPION flow by moving an 
edge detection template over the entire input image to produce an output image with points 
corresponding to high-contrast edges, as shown in Figure 17. Each image required 14.2 seconds to 
process when executing in the CANTATA environment on a SUN UltraSparc. The same results were 
obtained using the Wildforce ACS platform in only 3.721 seconds. Most of the total hardware 
execution time consisted of transferring the image from the host CPU to the Wildforce board (2.669 
seconds) with 1.049 seconds being required for configuring the FPGAs and only 0.003 seconds needed 
to process the algorithm itself. The entire CHAMPION design flow was executed in just 75 seconds, 
while structural synthesis and placement and routing required 2358 seconds. 

The internally developed ATR algorithm [15-16] consisted of 93 modules interconnected by 226 nets. 
As illustrated in Figure 18, this algorithm takes as input infrared images and uses statistical methods to 
find probable targets such as tanks and armored personnel carriers, if present, and draws a box around 
any that are found. 

Each image required 1054 seconds to process when executing in the CANTATA environment on a 
SUN UltraSparc running at 33 MHz. The same results were obtained using the Wildforce ACS 
platform in only 9.892 seconds. Most of the total hardware execution time consisted of configuring 
the FPGAs (9.147 seconds), with 0.735 seconds being required for transferring the image from the 
host CPU to the Wildforce board. Only 0.010 seconds were needed to process the algorithm itself. 
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Figure 17. Input and Output Images for the High-Pass Filter Application 
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Figure 18. An Internally Developed ATR Algorithm 

The entire CHAMPION design flow was executed in just 323 seconds, while structural synthesis and 
placement and routing required 13,378 seconds. 

The ATR algorithm was implemented to serve as a benchmark for determining the improvement in 
mapping time for the design flow since it had been manually mapped to the Wildforce-XL board. The 
250-hour manual process was performed automatically by CHAMPION in 5 minutes and 23 seconds, 
demonstrating a productivity improvement of over 2,000 times. 
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The ATR algorithm, Round-0, provided by the Army Night Vision Laboratory compares tank 
templates against the pixels of an input infrared image looking for matches. If identified, regions of 
interest are specified at the output. Additional rounds or iterations of the algorithm are required to 
complete the task of cueing an operator in the tank to these regions where his attention should be 
focused. However, Round-0 is the most computing intensive operation. Sample input and output 
images are shown in Figure 19. 
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Figure 19. Input and Output Images for the Army Night Vision Lab ATR Algorithm 

The CANTATA implementation of Round-0 consisted of 45 modules interconnected by 71 nets. Each 
image required 15,676 seconds to process when executing in the CANTATA environment on a SUN 
UltraSparc. The same results were obtained using the Wildforce ACS platform in only 154.076 
seconds. Most of the total hardware execution time consisted of transferring the image from the host 
CPU to the Wildforce board (153 seconds) while it took only 0.807 seconds for configuring the 
FPGAs and only 0.269 seconds to process an image. The entire CHAMPION design flow was 
executed in just 24 seconds, while structural synthesis and placement and routing required 3,404 
seconds. 

NSA provided a neural network based algorithm for face detection that was originally developed at the 
Carnegie-Mellon University [17]. The input image is first processed on the host to locate the regions 
of interest in which faces are likely to be present. Then, the computationally intensive portion of the 
algorithm is executed on the ACS hardware platform. This section involves several neural networks 
which have a variety of predetermined weights. The output from the hardware is then processed by 
the host to merge and select the final result. Figure 20 shows an overview of the algorithm. 

Three different neural networks were required: (1) UMEC, which has two hidden layers and one 
output layer to process a 30 by 30 window using a total of 5,882 connections; (2) Facel7c, which has 
one hidden layer and one output layer to process a 20 by 20 window using a total of 2,905 
connections; and (3) Face 18c, which has one hidden layer and one output layer to process a 20 by 20 
window using a total of 4,357 connections. At the time of this writing, the development of the 
modules required to implement this algorithm using CANTATA was not yet completed. 
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Figure 20. An Overview of the Face Detection Algorithm 

In addition to multiple ACS platforms containing multiple FPGAs, the CHAMPION flow was also 
used to target single-chip ASICs. The structural VHDL netlist produced by CHAMPION could be 
synthesized either on an incremental basis in which the hierarchy of the individual modules is 
preserved, or the hierarchical netlist could be flattened to produce a smaller layout at the expense of 
additional time for the synthesis step. Results were obtained for all of the applications described 
previously and are summarized in Table 1. Graphical views of the layouts are shown for one 
application in Figure 21. Low-cost prototyping of the Hewlett-Packard 3-metal, 0.5-micron CMOS 
process is available via MOSIS. Additional ASIC processes can easily be targeted with the 
appropriate commercial tools and technology files. 

Table 1. Synthesis/PAR (Placement and Routing) Times and Chip Area for the ASICs 

Synthesis/PAR Time (sees) Chip Area (mm2) 

Flattened Hierarchical Flattened Hierarchical 

High-Pass 24015 2958 13.7 14.9 

Round-0 4647 8911 6.0 12.1 

Umec 6728 6562 9.3 14.0 

Face 17c 30818 6027 11.7 14.5 

Face 18c 35448 6674 12.6 15.3 

ATR 121697 51315 94.4 171.1 



Total Synth/PAR Time = 14 min 
Chip Area = 12.05 mm2 

Hierarchical Approach 

Total Synth/PAR Time = 1 hr 17 min 
Chip Area = 6.00 mm2 

Flattened Approach 
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Figure 21. Graphical Views of the ASIC Layouts 

4. Conclusions 
In this document, a design flow for automatic mapping of CANTATA graphical applications onto 
multiple ACSs has been presented. Relative to contemporary technology, this design flow: 

• Demonstrated a productivity improvement of 2,000 times over manual methods, as depicted in 
Figure 25. 

• Utilized an optimization algorithm to synchronize the design using a minimum of well-placed 
delay buffers, and 

• Partitioned the applications for multiple ACSs containing multiple FPGAs and provided a 
means to target multiple ACS hardware platforms as well as single-chip ASICs. 

It is particularly significant that CHAMPION can retarget a new ACS board so quickly and easily. 
Given a high-level description of a new board that one may be considering designing or acquiring, a 
single-page data file is composed that lists the number of FPGAs, their size and I/O, the RAMs 
available and their interconnections on the board. The previously captured CANTATA application is 
then resubmitted to CHAMPION which performs the mapping within an hour. Thus, application 
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Figure 22. Design Time Productivity Improvement Provided by CHAMPION 

designers can determine which ACS architecture is the best match to the application and then either 
build or purchase the appropriate one. 

This retargeting capability also permits an application designer to exploit the rapid advances in FPGA 
offerings. For example, as soon as a new ACS board is announced, the board-specific data file could 
be generated and the mapping/partitioning performed by CHAMPION. Upon arrival of the new board, 
the design could be downloaded and executed. The common situation of waiting months from the 
arrival of a new board until the application can be manually retargeted would be avoided. 

As indicated in Figure 23, CHAMPION has indeed been shown to make a significant impact on the 
development time for ACS platforms. However, extensive engineering effort is still required to master 
the specific hardware interfacing issues that must be fully understood for each ACS platform in order 
to get applications downloaded and executed on them. A standard format for expressing this 
information might be warranted to improve this situation. Then, each ACS vendor could provide a 
means of meeting this specification and thus reducing this portion of the development cycle. 

Now that CHAMPION has been developed, an application described using CANTATA can be quickly 
mapped onto an ACS hardware platform. Designers can determine performance bottlenecks in data 
transfer or FPGA reconfiguration time and then either select a different ACS architecture or modify 
the CANTATA netlist. Numerous candidate solutions can be tried without the tedium of developing 
new VHDL descriptions. In essence, CHAMPION provides the means to reuse and integrate VHDL 
modules. The graphical entry and simulation capabilities provided by CANTATA facilitate this 
process. 
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Figure 23. Impact of CHAMPION on Development Time 

Four publications [15, 18-20] resulted from this project and were presented at the major conferences in 
this field. Also, five theses were written. Ben Levine obtained his M.S. and is now pursuing a Ph.D. 
at Carnegie Mellon University in Pittsburgh. Senthil Natarajan completed his M.S. and is now 
employed at Motorola Research Labs outside Chicago. Nabil Kerkiz obtained his Ph.D. and is 
working with Intel in Santa Clara, while Sze-Wei Ong finished his Ph.D. and has interviewed with Intel 
in Portland. Bernadeta Srijanto should complete her M.S. in a few months. 

5. Recommendations 
In terms of extending CHAMPION, one possibility is to permit it to accept inputs from other graphical 
programming environments such as LabVIEW from National Instruments and/or Simulink from 
MathWorks. To include these programming environments, the only component in the design flow that 
needs to be modified is the front-end translator that converts the CANTATA workspace into a 
CHAMPION netlist. The rest of the steps in the design flow will remain the same. 
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7. LIST OF ACRONYMS 

ACRONYM DESCRIPTION 

ACS 

AFRL 

AMS 

ASICs 

ATR 

CMOS 

DARPA 

EDIF 

FPGA 

HP 

ILP 

LP 

MOSIS 

NVL 

PAR 

RP 

RPL 

SFG 

SLAAC 

VHDL 

VHSIC 

XNF 

Adaptive Computing Systems 

Air Force Research Laboratory 

Annapolis Microsystems Inc. 

Application-Specific Integrated Circuits 

Automatic Target Recognition 

Complementary Metal-Oxide Semiconductor 

Defense Advanced Research Projects Agency 

Electronic Data Interchange Format 

Field-Programmable Gate Array 

Hierarchical Partitioning 

Integer Linear Programming 

Linear Programming 

Metal-Oxide Semiconductor Implementation System 

Night Vision Laboratory 

Placement And Routing 

Recursive Partitioning 

Recursive Partitioning with Levelization 

Signal Flow Graph 

Systems Level Applications of Adaptive Computing 

VHSIC Hardware Description Language 

Very High Scale Integrated Circuit 

Xilinx Netlist Format 
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