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The Influence of Combustion Noise on Acoustic Instabilities 
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California Institute of Technology, Pasadena, California 91125 

Abstract 

Although flows in combustors contain considerable noise, arising 

from several kinds of sources, there is a sound basis for treating or- 

ganized oscillations as distinct motions. That has been an essential 

assumption incorporated in virtually all treatments of combustion 

instabilities. However, certain characteristics of the organized or de- 

terministic motions seem to have the nature of stochastic processes. 

For example, the amplitudes in limit cycles always exhibit a random 

character and even the occurrence of instabilities seems occasionally 

to possess some statistical features. Analysis of nonlinear coherent 

motions in the presence of stochastic sources is therefore an impor- 

tant part of the theory. We report here a few results for organized 

oscillations in the presence of noise. The most significant deficiency 

of this work is that, owing to the low level of current understanding, 

the stochastic sources of noise are modeled in ad hoc fashion and 
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are not founded on a solid physical basis appropriate to combustion 

chambers. 
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Superscripts 
NL 

Nomenclature 

speed of sound 
nonlinear functional arising from the boundary conditions 
forcing function of the nth acoustic mode 
nonlinear functional arising from the conservation equations 
wavenumber of the nth acoustic mode 
unit outward normal vector 
pressure 
magnitude of time-dependent amplitude t]n(t), Eq. (20) 
entropy 
velocity 
linear growth rate of the nth acoustic mode 
time-dependent amplitude of the nth acoustic mode 
parametric stochastic excitation associated with pressure 
parametric stochastic excitation associated with velocity 
external stochastic excitation 
density 
noise intensity 
correlation time 
linear frequency shift of the nth acoustic mode 
phase of the time-dependent amplitude r]n(t), Eq. (20) 
mode-shape of the nth acoustic mode 
frequency of the nth acoustic mode 
vorticity 

acoustic waves 
entropy waves 
vorticity waves 

nonlinear 
mean quantity 
fluctuating quantity 
time derivative 



1    Introduction 

Combustion chambers are inherently noisy environments. This is apparent from in- 

spection of the power spectra of pressure records from test firings, as well as from 

simply listening to the tests. When an organized oscillation, i.e., a combustion in- 

stability, is present, the power spectrum exhibits well-defined peaks in addition to 

background noise over the entire range of frequencies. Substantial noise sources in 

rocket motors include flow separation, turbulence, and combustion processes. It is 

expected that the presence of noise will affect in some way the amplitudes and pos- 

sibly the qualitative behavior of coherent oscillations. Nonetheless, there is a sound 

basis for treating instabilities as distinct motions, and much progress has been made 

using this assumption. 

There are two general types of coherent oscillations which commonly occur in com- 

bustion chambers: spontaneous oscillations and pulsed oscillations. A spontaneous 

oscillation occurs when the system is linearly unstable. As a result, any perturbation 

of the system grows exponentially in time. Under the influence of nonlinear effects, 

the pressure field may reach a periodic motion, or limit cycle. This type of instability 

is also known as an intrinsic instability or a soft excitation. In the field of dynamical 

systems, the change of behavior from a linearly stable steady state to a stable path 

of periodic solutions is called a supercritical bifurcation. 

A pulsed oscillation, on the other hand, is a true nonlinear instability of a lin- 

early stable system. Small perturbations in the pressure field decay exponentially 

to zero, while larger perturbations may lead to stable or unstable periodic motions. 



Common terminology used to describe this type of oscillation includes triggered in- 

stability, hard excitation, and subcritical bifurcation. Previous works, e.g., Yang et 

al.,1 Paparizos and Culick,2 and Jahnke and Culick,3 have convincingly shown that 

nonlinear gasdynamics alone does not contain the possibility of pulsed oscillations. 

Part of the purpose of the present investigation is to determine if noise processes 

could be responsible for the occurrence of pulsed oscillations. 

Culick et al.4 studied the influence of noise on combustion instabilities, but only for 

a very simple case: two acoustic modes with noise present only in the first mode. In 

addition, the formulation was flawed, and the form of the resulting noise terms is not 

quite correct. Clavin et al.5 studied the influence of turbulence on instabilities in liquid 

rocket motors. Using only one mode in the analysis and third-order nonlinearities, it 

was reported that the inclusion of noise can lead to the possibility of triggering. It 

is a well-known result that a single third-order equation may produce a subcritical 

bifurcation. When more acoustic modes are considered, this may not be the case, as 

demonstrated by Yang et al.1 for third-order gasdynamics. Therefore, the results of 

Clavin et al. may not be applicable in general. 

The present analysis is an extension of the previous work by Culick et al.4 The 

approximate analysis used here has been covered in many other works, so only a brief 

overview of the method is presented; for more details, see, e.g., the review by Culick.6 

Then, we will decompose the flow field into acoustic and non-acoustic parts based 

on the approach followed by Chu and Koväsznay.7 That tactic produces a formal 

representation of the noise terms in the governing equations. Finally, we will simplify 

the equations in order to study more conveniently the possible influences of noise on 



combustion instabilities. 

2    Development of the Approximate Analysis 

In order to keep the analysis as general as possible, the formulation begins with the 

conservation equations for two-phase flow. These equations are then rewritten in an 

equivalent form for a single medium having the mass-averaged properties of the two 

phases. Subsequently, a wave equation for the pressure is developed, along with the 

corresponding boundary condition. 

n-Vp' = -/ (2) 

The functions h and / are linear and nonlinear functions of the pressure and velocity 

perturbations. As an approximation, these perturbations are expanded as a synthesis 

of classical acoustic modes with time-varying amplitudes, 

p'(r,t)=pJ2rjn(t)^n(r) (3) 
n=l 

«>.*) = E%^V^(r) (4) 
n=l    lKn 

where ij)n is the mode shape and 7}n(t) is the time-dependent amplitude of the nth 

classical acoustic mode. After substituting Eq. (3) in Eq. (1), the equations are 

spatially averaged, resulting in a system of ordinary differential equations describing 



the amplitudes of the acoustic modes. 

-^T + unr)n = Fn (5) 

where un = akn and 

— 1 

Fn = -jg {j^nhdV + fonfds} (6) 

Thus, the problem is reduced to solving for the amplitudes, rjn{t). This approach 

is very general and can accommodate all damping and amplification mechanisms. 

The most difficult part of the problem is in the identification and modeling of the 

important physical processes. 

3    Splitting  the  Unsteady  Flow  Field  Into  Acoustic,   Vortical,   and 

Entropie Modes of Propagation 

Fluctuations in a compressible fluid can be decomposed into three types of waves: 

acoustic waves, vorticity waves, and entropy waves. A thorough discussion of this 

idea is presented by Chu and Koväsznay.7 In the limit of small amplitudes, the three 

types of waves propagate independently in a uniform mean flow, but are coupled 

when the mean flow is non-uniform.8 For example, the pressure in an acoustic wave 

is changed slightly by the presence of a vorticity or entropy wave if the mean flow is 

not uniform. Coupling between the types of waves may also occur at the boundaries 

of the chamber. 



Although noise is detected as pressure waves, the sources of noise are associated 

with the presence of vorticity fluctuations (e.g., turbulence, flow separation, etc.) and 

entropy or non-isentropic temperature fluctuations. Therefore, decomposing the un- 

steady flow field into the three types of waves allows both noise and acoustic insta- 

bilities to be handled in the same analytical framework discussed in Sec. 1. The 

contributions from vorticity and entropy waves appear as additional force terms on 

the right-hand side of the acoustic equation. 

Following the analysis of Chu and Koväsznay,7 the thermodynamic and kinematic 

variables can be written as sums of fluctuations in the three waves as follows. 

P'=P'a+Pn+P's (7) 

n' = n'a + n'n + n's (8) 

s' = s'a + s'a + s's (9) 

u' = u'a + u'u + u's (10) 

In general, all of the fluctuations will be nonzero, but not all terms are of the same 

order. If we restrict the analysis to small amplitude motions, the three waves have 

the following characteristics:7 

( )a acoustic waves: pressure and velocity fluctuations, no entropy change 

( )n vorticity waves: velocity fluctuations, no pressure or entropy changes 

(    )s    entropy waves: entropy and velocity fluctuations, no pressure change 



Thus, to zeroth-order, the fluctuations in the three waves are given by 

p'=Pa (11) 

O' = tfß (12) 

(13) 

u' = u'a + u'n + u's (14) 

An equation for the density fluctuation is obtained by expanding the formula for the 

entropy of a perfect gas. 

P- = I£ - iS' (15) 
P      IP      cP 

As an approximation to the acoustic pressure and velocity perturbations, we will 

once again use a superposition of the classical acoustic modes so that 

00 00     A    ff\ 

Pa = P E Ut)Ur)       < = E %ir V^n(r) 
n=l n=l   T^n 

Substitution of Eq. (11) in the left-hand side of the nonlinear wave equation (1), 

followed by application of Galerkin's method, leads to a set of coupled nonlinear 

oscillator equations. 

iJn + ulrin = Fn (16) 



where8 

- ^zf-Fn = ph + z^h + Ph + rj£ 4 
a" <r a 

_dv/ 
dt 

+ Jfi*L.ndS-J 1 dV ,      „_, ' 
ä2 dt 

dV   (17) 

and 

Ix = f(ü • Vu' + u' • Vü) • VipndV        I2 = — [{jp'V • ü + üV • p')ipndV 

I3 = I L' • Vu' + 4^] • VipndV       h = jt |(VV •«' + «'• Vp'tyndV 

In the original development of the approximate analysis, the zeroth-order approxi- 

mations for the pressure and velocity were used to evaluate Fn. The same idea will 

be applied here, although additional contributions to the velocity fluctuation from 

coupling to vorticity and entropy waves will be included. Once these quantities are 

substituted in the right-hand side, the set of forced oscillator equations eventually 

takes the general form (see Burnley9 for details): 

fjn + ulrjn = 2anr)n + 2un9nr)n - £ £ [AmjViVj + BnijViVj] 
»=i j=i 

oo 

+ TOS« + £ ICA + ZniVi] + ^n     (18) 

This system of equations is very complex with many free parameters. For in- 

stance, if we truncate the system to N modes, there are 2iV linear parameters and an 

additional 2N2 + N unknown functions. In order to simplify the equations somewhat, 

9 



we will therefore neglect cross-coupling terms in £^ and £ni, i.e., terms with n ^ i. 

These terms may turn out to be important, but neglecting them will allow for easier 

initial computation of results and will suffice for the purposes here. The simplified 

set of equations is 

00     00 

Vn + ulr)n = 2anr]n + 2ujn6nT]n -J2Y1 [AmjViVj + BnijViVj] 
i=l j=l 

+ (^nffier + &(t)fln + &(*)% + £„(*)     (19) 

4    Modeling of the Stochastic Sources 

The problem has now been reduced to solving Eq. (19) for the time-dependent am- 

plitudes rjn(t) which are subjected to additive and multiplicative noise. The source 

terms ££(£), £n(*)i and En(t) represent stochastic processes of some sort and are re- 

sponsible, in this formulation, for the background noise found in the power spectra 

of test firings. The problem of modeling these processes, however, remains. This 

requires specification of both the spatial and temporal distribution of the velocity 

and the entropy. At the present time, no models exist for these fluctuations. 

There are several other paths that can be followed at this point which include 

obtaining approximate representations for the velocity and entropy fluctuations based 

on experimental data or numerical simulations. The approach that will be taken 

here is to assume forms for the source terms which are based on observations of 

experiments. By inspection of the pressure traces of test firings, it is apparent that 

the stochastic processes in real systems are broadband with very small correlation 

10 



times*, TC. The limit rc -»• 0 represents a delta correlated process, i.e., a process 

which is totally uncorrelated with itself. It is thus interesting to study this limiting 

case and assume that the stochastic terms are represented by white noise. 

The definition of a white noise process is a process whose spectral density is flat, 

i.e., all frequencies are present at the same amplitude. Although such a process cannot 

occur in a real system, white noise can be a very useful tool for studying real processes 

which have very small correlation times compared to the macroscopic times of the 

system. This is true of the random processes and systems of interest.4 Therefore, we 

will approximate £, £„, and E„ by mutually independent white noise processes with 

zero mean values and intensities denoted by erf, o£, and a~. 

An example of a simulation with white noise excitations is presented in Fig. 1. 

A sample trace of the pressure at the head end of the combustion chamber is shown 

along with the corresponding normalized spectrum. Inspection of the spectrum shows 

peaks at distinct frequencies which are associated with an acoustic instability, along 

with broadband background noise. This is characteristic of actual test data of a case 

when an instability is present. For the simulation shown in Fig. 1, as well as all 

other results presented here, the values given in Table 1 will be used for the linear 

parameters of the system. 

"The correlation time is the time above which the autocorrelation function is zero.  This is a 
measure of the dependence of the process on its past. 

11 



5    Results 

n 1 2 3 4 

an(sec_1) free -324.8 -583.6 -889.4 
0n(rad/sec) 12.9 46.8 -29.3 -131.0 

Table 1: Linear growth rates and frequency shifts 

Since we are interested in nondeterministic systems, it is natural to use the probability 

density functions of the amplitudes of acoustic modes to investigate the dynamics of 

the system. In particular, we will use the amplitude rn which is defined in the following 

equation. 

Vn{t) = rn(t) cos(unt + <t>n(t)) (20) 

Using rn instead of T]n, any quantitative changes which occur in the solution will be 

more apparent since rn is a measure of the magnitude of the oscillation. Note that 

this change of variables from (rjn, r}n) to (rn, <j>n) will cause a shift in the expected 

value. This is obvious from the definition of rn, which is defined as Jrfo + f]2/u>% 

A Monte-Carlo method will be used to obtain an approximation to the probability 

density functions of the acoustic amplitudes. In this method, a series of numerical "ex- 

periments" is conducted, usually in the same manner that one would conduct actual 

experiments. After the flow field has become well-developed (say after 1000 periods 

of the fundamental mode or so), the amplitudes of the acoustic modes are sampled. 

The results are then used to construct histograms which, after normalization, approx- 

12 



imate the instantaneous probability density functions of the modal amplitudes. The 

approximation becomes better as the number of experiments is increased. 

In the current study, each Monte-Carlo simulation will consist of 10000 numerical 

experiments. The linear parameters will be fixed throughout a series of experiments, 

while the initial conditions for the simulations will be varied systematically. In par- 

ticular, a square initial pulse which is nonzero from 0 < x/L < .25 will be used. The 

size of the pressure pulse p'/p will be varied from 0 to .2 linearly so as to include most 

likely values. 

For the initial results, we will use the simplest possible set of equations. The 

system will be truncated to two modes with noise included explicitly only in the 

fundamental mode. We will also assume initially that the only nonlinear contributions 

are associated with gasdynamics. These simplifications were used by Culick et al.4 

and will allow the effects of each type of stochastic excitation to be determined. We 

will relax these simplifications later in this section when nonlinear contributions from 

combustion are also included. 

5.1    The Effects of an External Excitation 

The term Ei is an external excitation, i.e., it does not depend on the current state of 

the system. As a result, this type of excitation does not change the qualitative behav- 

ior of the system from that of the original deterministic system,10 i.e., no matter how 

large the intensity, the addition of an external excitation does not affect the locations 

or types of attractors in the system. Instead, an external excitation provides only a 

random perturbation from these states; the dynamics of the system are constantly 

13 



acting to bring a stable system back to a state of equilibrium. 

To understand better the effects of an external excitation, it is useful to treat the 

deterministic case as the limit of of -¥ 0. For a deterministic system with nonlinear 

contributions from gasdynamics only, the stationary probability density functions will 

be delta functions in terms of rn. For example, the probability density functions of a 

linearly stable system without random perturbations will be delta functions at rn = 0 

for all n. When an external excitation is introduced, the effect is to shift the mean 

value of the amplitude rn to a nonzero value (due to the change of variables) and 

increase the variance of the oscillation such that a broader range of values is likely. 

This broadening effect can be seen in Figs. 2 and 3 for linearly stable and linearly 

unstable systems, respectively. 

To demonstrate the effect of noise intensity on the probability density, the value 

used in Fig. 3 was doubled, and the result is plotted in Fig. 4. As the intensity of the 

noise increases, the variance of the probability density function increases so that a 

larger range of modal amplitudes is likely. The mean value of the amplitude, however, 

remains unchanged. 

Another interesting aspect of an external excitation can be seen if we look at 

a sample pressure history and spectral density for a linearly stable system with an 

external excitation. At first inspection of Fig. 5, it might appear that the system is 

linearly unstable due to the very low amplitude oscillation. The data shown in Fig. 5 

is, however, for a stable system. It happens that an external excitation, though ran- 

dom, will excite the natural acoustic modes of the chamber such that a low amplitude 

fluctuation is present. The energy provided by the external excitation El is most eas- 

14 



ily transferred into the fundamental acoustic mode because this excitation appears 

in the equation for the fundamental mode. Therefore, the system oscillates at the 

fundamental frequency of the chamber. However, in terms of dynamical systems the- 

ory, the system is still linearly stable, and the dynamics of the system always act to 

bring the chamber back to a state of rest. Recently, in analyzing data similar to this, 

Malhotra and Flandro11 suggested that the system was linearly unstable due to the 

presence of a very low amplitude oscillation. We believe that the system being ana- 

lyzed by Flandro was actually linearly stable and that the low amplitude oscillation 

was actually caused by the noise processes which are always present in real systems. 

5.2    The Effects of a Noisy Linear Growth Rate 

Unlike the external excitations covered in the previous section, the parametric ex- 

citations t$f)i and fi77i depend upon the current state of the system. In a more 

illuminating form, the system (19) can be rewritten as 

771 + wfo = 2 (ai + -er) Vi + 2ui (Oi + -^£1) Vi + (Fi)NL + Si(*) 

% + C^Tfe = 2a2f}2 + 2cj2e2r]2 + (F2)
Nh (21) 

By inspection of the above system, it is easy to see that g is a random perturbation 

of the linear growth rate of the first acoustic mode. Similarly, & is a random per- 

turbation of the linear frequency shift. In this section, we will study the effects of a 

noisy linear growth rate on the dynamics of the system, while the effects of a noisy 

linear frequency shift will be handled in the next section. 

15 



There are two main effects caused by the noisy linear growth rate fj\ The first is 

a result of approximating a real noise process by white noise. Since no real process is 

truly white, the system will have a small but finite memory, i.e., there will be some 

correlation between the noise and the system. This correlation is taken into account 

by the Stratonovich representation through its definition of the stochastic integral.10 

As a result, the linear growth rate is increased to an apparent value given by 

(ai)apparent = 0X + f ^- j (22) 

Thus, one effect of a noisy linear growth rate is to shift the bifurcation diagram by 

an amount proportional to the square of the intensity of the noise. This is known as 

noise-induced drift.10 The second effect of the noisy linear growth rate is similar to 

the effect of an external excitation. It is basically a disorganizing effect which tends 

to spread the peak of the probability density functions about the mean value. 

This type of parametric excitation was studied by Horsthemke and Lefever10 on 

a first-order nonlinear equation. In that study, the Verhulst model with a noisy 

growth rate was shown to have two transition points at which the probability density 

function changes qualitatively. Thus, three ranges of linear growth rate which produce 

three different types of probability density function were found. Three qualitatively 

different types of probability density functions are also found in our system. However, 

it is difficult to predict the exact location of the transitions due to the highly nonlinear 

nature of the system of equations. 

For highly stable systems, i.e., ai < 0 sec"1, the attractor at r» = 0 is so strong 
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that the solution will always be drawn back to this steady state. Once this state 

is reached, the parametric excitation no longer affects the system. As a result, the 

stationary probability density functions for highly stable systems will be delta func- 

tions at rn = 0 for all n. For mildly stable and/or unstable systems, a second type of 

probability density function occurs. While the most probable value is still zero, the 

mean value is not. This type of probability density function was shown previously 

the study by Culick et al.4 An example is shown here in Fig. 6 for ax = -8 

The final type of probability density occurs in systems which are highly unstable. 

In that case, the linear growth rate Ql is so large that it is unlikely that the noise 

will be strong enough for a sufficient amount of time to drive the solution back to 

the trivial state. Therefore, both the mean value and the most probable value are 

nonzero. Figure 7 shows an example of such a probability density function for ax = 25 

sec"1. Note that the mean value is shifted slightly from the deterministic value of 

0.07. This is an example of noise-induced drift. 

For the deterministic system with nonlinear contributions from gasdynamics only, 

two qualitatively different regions are found: one region of stable steady states and 

one region of stable limit cycles. When noise of a parametric nature is added, three 

distinct regions arise because rn = 0 is a stationary point of the system for all values of 

ax and a?.10 However, if an external excitation is also included in the system, rn = 0 

is no longer a stationary state (although it is still an attractor), and only two different 

regions are found. 

17 



5.3    The Effects of a Noisy Linear Frequency Shift 

The effects of a noisy linear frequency shift are very similar to the effects of #, so only 

a brief discussion is necessary. Since 6 is also a parametric excitation, a stationary 

state occurs once again for rn = 0, and three regions of distinct types of probability 

density functions are produced. The three types are qualitatively similar to those in 

the previous section, although the transition points may occur at different values of 

ax. A sample probability density function for a linearly unstable system with a noisy 

linear frequency shift is plotted in Fig. 8. 

5.4    The Effects of Noise and Nonlinear Combustion 

In the previous sections involving nonlinear contributions from gasdynamics only, no 

cases were found which are consistent with the qualitatively different behaviour of 

triggering, i.e., nonlinear instabilities in a linearly stable system. As no examples of 

triggering were found for the case of noise and nonlinear gasdynamics, a model of 

nonlinear combustion which has previously been shown12 to provide the possibility of 

triggering will be included in the analysis in order to determine the effects of noise on 

a deterministic system which has multiple stable stationary states for the same value 

of a\. 

The threshold velocity model is an ad hoc model which is based on the idea of 

velocity coupling with a threshold value below which the effects of nonlinear combus- 

tion are not felt. Threshold effects have been observed in experimental investigations 

of velocity coupling. Ma et al.13 found a threshold acoustic velocity above which the 

18 



mean mass flux increased linearly with the Reynold's number of the acoustic fluctu- 

ations. Below the threshold value, the mean mass flow was approximately constant. 

It was determined that the increased mass flux is a result of increased heat transfer 

to the surface after transition to turbulent flow had occurred. 

The form of the threshold velocity model is given by 

rh' = mi?vcF(u') (23) 

where the function F(u') is shown in Fig. 9. This function introduces a dead zone in 

which the nonlinear contributions from combustion do not affect the system. When 

the amplitudes of oscillations become larger than the chosen threshold value ut, the 

nonlinear effects are then felt. The threshold velocity model can be included in the 

analysis using the term (Fn)^er; the details of this are given in Burnley.9 

When nonlinear combustion is added to the stochastic system (19), the resulting 

probability density functions can be quite different, as one might expect. In a previous 

investigation, we have shown that the threshold velocity model can produce regions of 

possible triggering in which two stable solutions exist simultaneously. In a stochastic 

system, this corresponds to a bimodal probability density function such that there is 

a high probability of low and high amplitudes and a low probability of intermediate 

values. 

For the parametric values in the threshold velocity model, we will use a nondi- 

mensional threshold velocity of ut/a = 0.03 and Rvc = 7.8. Using these values, the 

bifurcation diagram for the deterministic system is shown in Fig. 10. This diagram 
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will be useful in the discussion of results. In addition, the following values were chosen 

for the intensities of the stochastic sources: of? = 0.005 sec-3/2, a* = 0.025 sec-1/2 

and a~ = 0.0005 sec-3/2, for n = 1,2. The parameter ax will be varied while all other 

parametric values remain fixed. By changing this parameter, we will demonstrate a 

variety of the possible forms of the probability density functions. 

From inspection of Fig. 10, we see that the region of possible triggering begins at 

approximately ctx = -30 sec"1 for the deterministic system. Below this value, the 

deterministic system is stable to any size perturbation. To illustrate the effect of noise 

on such a system, a linear growth rate of -35 sec-1 was chosen. Figure 12a shows 

the resulting probability density function for the first acoustic mode. For this case, 

the attractor of the deterministic system, i.e., the trivial steady state, is so strong 

that the amplitudes never reach large values. Therefore, the parametric excitations, 

i.e., f£ and fn, have a very small effect on the system. Most of the noise contribution 

is a result of the external excitations, En. 

As the linear growth rate is increased to a value above -30 sec-1, we enter the re- 

gion of possible triggering for the deterministic system where an additional attractive 

state is present. Three values of on were chosen in order to show how the probability 

density of the fundamental mode changes throughout this region. As the value of ax 

is varied, the regions of attraction of the stationary states will change. This will have 

a noticeable effect on the probability density functions. 

The first value of ax is very close to the lower boundary of the region of possible 

triggering. For a value of an = -25 sec"1, Fig. 12b shows the probability density 

function of the fundamental mode. The low amplitude attractive state is dominant 
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Figure 1: Sample pressure trace and spectrum for a simulation 
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Figure 2: The influence of an external excitation of the fundamental mode only on a 
linearly stable system; 2 modes, erf = 0.0005 sec-3/2, OL\ = —25 sec-1 
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Figure 3: The influence of an external excitation of the fundamental mode only on a 
linearly unstable system; 2 modes, of = 0.0005 sec-3/2, o>i — 25 sec-1 
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Figure 4: The influence of increasing the intensity of an external excitation of the 
fundamental mode only; 2 modes, of = 0.001 sec-3/2, a.x = 25 sec-1 
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Figure 5:  Sample pressure trace and spectrum for a simulation of a stable system 
with an external excitation; 2modes, of = 0.0005 sec-3/2, a\ = —25 sec-1 
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Figure 6: Probability density function for a system with a noisy linear growth rate in 
the fundamental mode only; 2 modes, of  = 0.01 sec-3/2, cui = -8 sec-1 
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Figure 7: Probability density function for a system with a noisy linear growth rate in 
the fundamental mode only; 2 modes, af = 0.005 sec-3/2, ai = 25 sec-1 
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Figure 8: Probability density function for a system with a noisy linear frequency shift 
in the fundamental mode only; 2 modes, a{ = 0.025 sec-1/2, a\ = 25 sec-1 
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Figure 10: Bifurcation diagram for the deterministic system; threshold velocity model, 
Ut/a = 0.03, Rvc = 7.8, 4 modes 
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Figure 11: Bifurcation diagram for the deterministic system; 2 modes 
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Figure 12: Probability density function of the first acoustic mode for various values 
of a\\ threshold velocity model, ut/a = 0.03, Rvc = 7.8, 4 modes 
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