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ABSTRACT 
 

Windows CE 3.0, also known as Pocket PC for palm-sized devices, is becoming 

increasingly popular among professionals and corporate enterprises.  It is estimated that 

by 2004 Windows CE will have a share of 40% of the marketplace for palm-sized 

devices.  The documented vulnerabilities against a major competitor of WinCE, Palm, 

and the proliferation of palm-sized devices highlight the need for security for these small-

scale systems.  This thesis is part of a larger project to enhance the security in WinCE. 

This thesis analyzed the threads and processes in WinCE, and discussed 

authentication, public key infrastructure (PKI) and future technologies as each relates to 

WinCE.  The research discovered that Talisker, the next generation of WinCE, supports 

Kerberos an authentication protocol, and it also supports PKI (a key management system) 

components.  Results of this thesis show that security can be enhanced in WinCE without 

requiring a change to its code base. 
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I. PERSONAL DIGITAL ASSISTANT 
 

 

 

A. INTRODUCTION  

Familiarity and functionality are factors that influence many consumers’ 

purchasing decisions with regard to computers and software.  An often-overlooked factor 

is the information assurance (IA) capabilities of these.  These IA factors can assist in 

creating, for individuals familiar with information assurance issues, a perceived security 

picture of a system or device.  This thesis will discuss the Windows CE (WinCE) 

operating system, known as the Pocket PC operating system (OS). 

Pocket PC is the third generation of the WinCE operating system.  Pocket PC 

executes on Compaq’s iPAQ, HP’s Jornada, Casio, and Symbol [OWS3j].  Merlin is the 

next operating system release scheduled for Pocket PCs; Merlin is based on WinCE 3.0. 

[NGS1b]  Personal Digital Assistants (PDAs) that execute WinCE offer the Windows 

familiar look and feel, which may account for the device’s popularity among 

professionals [OWS3l].  Pocket PCs offer many familiar Windows applications, such as:  

Word, Excel, File Explorer, etc.  For individuals who are used to the Windows 

environment, Pocket PC will appear to be a miniature version of their desktop or laptop. 

Windows CE may also appeal to people who like to stay current with new 

technology and maximum functionality.  Windows CE is the only operating system 

executing on a PDA that will integrate with Microsoft’s .NET initiative, which will be 

discussed in Chapter V [MWS2l].  In comparison with the Palm operating system (the 

leading OS in the palm-size device market [OWS3l]), WinCE can multitask, provide a 

robust multimedia capability and supports software emulators for the Nintendo 

Entertainment System (NES) and Game Boy, Commodore 64, Sega, and others.  

Windows CE’s handwriting recognition system has enhanced handwriting recognition 

accuracy on the PDA. [OWS3j]  This Windows CE functionality may also help account 

for its popularity in the professional and corporate marketplace. 
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No matter how popular a device, operating system, or technology in general, 

becomes in the marketplace, for the security conscious, it is the information assurance 

capabilities of the device that may be most appealing.  For many, information assurance 

may not mean anything, but when IA is equated to privacy and protection of information, 

its necessity becomes clear [OWS3m].  There have been numerous exploits against 

PDAs, specifically the Palm OS [KIN01].  Before discussing some of the exploits, it is 

important to note that in this work, the assumption is made that these exploits have been 

targeted against the Palm OS because it is the most common PDA operating system.  

However, a lack of exploits should not lead to a false sense of security with regard to 

WinCE. 

B. PDA VULNERABILITIES 

In August of 2000, the first Palm Pilot Trojan Horse, which attacks Palm 

operating systems, was identified.  The importance of the event was not the Trojan Horse 

itself, but the possibilities and realization that malicious code could be written that would 

be harmful to Palms.  The implication of this is serious.  It now means that the move to 

wireless and developing Internet appliances that interact with everything from cars to 

refrigerators are susceptible to viruses and Trojan Horses. [OWS3m] 

Personal Digital Assistants software vulnerabilities (exploits) are not only limited 

to the PDA’s.  In February 2001, an exploit against passwords on the Palm Desktop 

Version 4 was published [NGS1a].  This exploit is mentioned so that the reader can 

understand that information assurance must provide protection of the information on the 

local system (PDA), in the synchronization protocols, and at the desktop.  Even if PDA 

operating systems are enhanced to provide security, the host system that it is partnered 

with for synchronization of databases must provide adequate security to ensure that the 

information is protected.  However, the scope of this thesis is on the WinCE operating 

system rather than the desktop services provided for the PDA. 

C. PDA SECURITY 

Developers of the Palm OS and Pocket PC OS have installed a password 

protection option [OWS3d].  However, security must be implemented at every level of 

the device, i.e. for the applications and the operating system, if the device is ever to be 
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recognized as a secure system.  The goal of this work is to enhance the security of the 

WinCE operating system.  This work is part of an incremental approach to enhancing 

WinCE security to make it a viable option for use in various environments within the 

military as well as the corporate workplace.  Chapters II through V describe this work. 

Each chapter is summarized below. 

1. Chapter II (Windows NT/UNIX) 

Chapter II discusses the two most popular desktop operating systems in use today, 

Windows NT and UNIX (LINUX is a flavor of UNIX).  This chapter provides the reader 

with an understanding of the threads and processes in WINNT and UNIX.  It also 

provides an overview of the WINNT authentication mechanism.  Windows NT, which 

can be configured to achieve a satisfactory security posture (see Chapter II, Section F), 

provides a useful example [SOL98].  This background is provided to give the reader an 

understanding of the thread and process model (WINNT) used for the WinCE thread and 

process data structures. 

2. Chapter III (WinCE) 

Chapter III discusses Windows CE processes and threads.  This chapter details the 

creation and termination of WinCE processes and threads.  In particular, the reader 

should take note of security attributes inherit to both the process and thread data 

structures.  Talisker, the next generation of the WinCE operating system, is discussed 

along with some of its improvements.  Talisker’s improvements include new modules 

that can be used to enhance security of an operating system image on a device. 

3. Chapter IV (Authentication) 

This chapter introduces authentication.  Authentication is defined as a way to 

confirm the identity of the client or server in the communication process.  Several 

authentication protocols are discussed in this chapter including: Kerberos and the 

Department of Defense’s Public Key Infrastructure (DoD PKI).  An overview of both 

protocols is provided. 
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4. Chapter V (Emerging Technology) 

This chapter discusses the research and development of new technology.  

Specifically discussed are processor research and development and the impact it may 

have on the future of technology.  The primary focus of this chapter is on Microsoft’s 

.NET initiative.  The objective is to help the reader understand the significance of WinCE 

as it relates the .NET initiative and palm-sized devices. 

5. Chapter VI (Conclusion and Recommendations) 

This chapter concludes the thesis.  This chapter also analyzes the information 

presented in the first five chapters and lists recommendations for further research.  This 

chapter summarizes the thesis and lists follow-on questions that may require additional 

research.   

D. CONCLUSION 

This thesis provides the reader with a basic understanding of why security is 

important in operating systems.  It also reveals similarities between the WINNT and 

WinCE process and thread data structures and attributes.  This background information 

gives context to providing security enhancements, such as authentication, to WinCE.  

However, before delving into security, a brief overview of operating systems is discussed 

in the next chapter. 
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II. OVERVIEW OF OPERATING SYSTEMS, PROCESSES AND 

THREADS 

 

 

 

A. INTRODUCTION 

Computers have become an integral part of everyday life for many people.  They 

are pervasive in government, the military, in many industries and in many institutions 

ranging from educational to religious.  More and more people are acquiring personal 

computers for personal and business use.  They continue to enhance areas of our lives as 

never before – so much so that superficial and real dependencies have developed.  

Computers are widespread and unavoidable; they are a part of our lives whether we know 

it or not. 

Computers are applied to so many aspects of our lives today that our recent past – 

before our daily exposure to computers – seems like ancient history.  For example, 

consider how we banked twenty-five years ago.  To have some money (cash) for the 

weekend, the customer had to go to the bank on Friday before the bank closed and 

interact with a teller to access his or her money.  Consider banking today: money is 

accessed from the nearest automated teller machine (provided there are adequate funds 

available).  But even more recently, consider how five years ago how we kept track of 

important events that we either needed to attend or plan.  We used bulky planners with 

calendars and memos.  Today, many people use Personal Digital Assistants (PDAs). 

In the April 2001 issue of PC World magazine [OWS3b], one consumer 

acknowledges using his PDA for work, leisure, and dating.  The article goes on to 

describe how the consumer uses his IPaq (a palm-sized device made by Compaq running 

the Windows CE operating system) to take notes during company meetings, to catch up 

on his email messages while lying in bed, and to plug in his headphones to listen to MP3s 

at the gym.  In the same article another consumer expressed his appreciation for this 

Handspring Visor Deluxe, a PDA based on the Palm operating system.  With more and 
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more professionals and consumers using PDAs, the Gartner Group estimates sales in the 

United States over the next four years to hit 28 million, an increase of 300% [OWS3b]. 

Although PDAs may not equal or exceed the number of desktop computers in the 

market place for some years to come, the two main electronic organizer operating 

systems (Palm OS and Windows CE OS) are quickly heading for a showdown [OWS3c].  

This fierce competition is resulting in consumers reaping many benefits.  Benefits from 

the Pocket PCs are: bright 240x320 screens, fast StrongARM processors, and familiar 

Windows-like interfaces; while Palm PDAs are delivering better streamlined operations 

and longer battery life (Palm has a different battery model than Pocket PC) [OWS3c].  As 

these two products continue to compete, consumers will soon realize the strengths of both 

products in one PDA, and analysts estimate this will bring near equilibrium to the 

marketplace by 2004 with Windows CE taking 40% of the market share while Palm takes 

45% [OWS3c].  PDAs have become so popular that users can even purchase insurance 

for them [OWS3d]. 

Insurance on a PDA may provide the owner of the PDA with some comfort in 

situations involving the loss of the PDA due to theft or in some cases even negligence on 

the part of the owner (loss of PDA in the airport), but it cannot provide the owner with 

any guarantee of data recovery.  With insurance, the owner has a reasonably high 

probability that the PDA will be replaced; however, the owner has no possibility of 

recovering or replacing the data, provided the data was not backed-up elsewhere.  Also 

data can be lost without the loss of the PDA.   Malicious software, worms, and viruses 

can corrupt or contaminate data beyond repair.  Insurance can do little for lost data.  One 

of the best ways to try to mitigate such threats is to harden or secure the critical data 

management software and the operating system. 

The WinCE-based architecture includes data management components such as: 

object store (file system), drivers, shells, etc., all of which either manipulate data directly 

or indirectly, or manipulate objects that in turn manipulate data.  WinCE-based 

applications are layered on top of the architecture.  The software components within the 

architecture actually provide the information necessary to run the application, store the 

data from the applications, or provide data to the applications, it is important to secure 
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these objects (components).  If the architecture is insecure, but the applications are 

secure, there is no reliable mechanism beneath the application level to insure the 

protection of the information; therefore, the system is not secure. 

Any components that have access to data or a dependency relationship with 

another component or application that has access to data must be secured to begin to 

achieve system security.  However, system security does not end with securing the 

components.  The components, data, applications, etc. are managed by the operating 

system.  Thus it is most critical to secure the operating system so that application 

developers can be protected against certain security threats. 

The goal of this chapter is to review the basic definition of an operating system 

and its function, and to familiarize the reader with the concepts, data structure and life 

cycle of OS support for processes and threads.  Of course, there are many more parts to 

an OS, but this work will focus on processes, threads, and authentication.  Keep in mind 

that part of our goal is to analyze the processes and threads in the context of the 

Microsoft CE OS and determine how, if possible, to enhance CE to make it a more self-

protecting OS.  The process and thread modules encompass the life cycle of the processes 

and threads from their creation to their termination and their access to critical 

components and protected domains.  Thus the focus of this chapter will be an overview of 

operating systems, with particular emphasis on processes and threads. 

 There are four general types of operating systems: real-time OSs (RTOS); single-

user, single task OSs; single-user, multi-tasking OSs; and multi-user OSs [OWSa].  A 

brief description of OSs will be presented.  A general comparison of a process’s data 

structures and life cycle within the two most popular (personal) commercial OS platforms 

on the market today, the Microsoft Windows NT-based OS (proprietary code) and the 

Linux OS (open source code based on UNIX), will also be presented.  Although 

processes and threads will be reviewed for both the Unix platform and Windows 

platform, the Windows platform will be the basis for exploration into the Windows CE 

process and thread modules (Chapter III). 
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B. OPERATING SYSTEM BACKGROUND 

It is crucial to understand the operating system mechanism in order to fully 

comprehend and appreciate the role of processes and threads.  Typically, OSs share a 

common goal of supporting the following types of system components [SIL94]: 

• Process management, 

• Main-memory management, 

• Secondary-storage management, 

• I/O system management, 

• File management, 

• Protection system, 

• Networking, and 

• Command-interpreter system 

Operating systems are not limited to only supporting or managing the above listed 

components.  However, to provide a basis for what components define an OS, the above 

list is sufficient for this paper.  For a more in-depth understanding of the supported 

components of an OS, refer to any introductory book on operating systems, for example: 

[SIL98], [STA98], or [TAN97].  Also, understanding what components define an OS 

enables us to intuitively appreciate the purpose of an operating system. 

 An operating system is a mechanism or program that simplifies the management 

of resources (components) to execute application programs.  The OS’s role in managing 

resources is what makes securing it difficult.  The OS must be robust and flexible enough 

to support new components as they are introduced into the market.  If security on the OS 

makes it too inflexible, it may not appeal to enough people to survive its competition.   

The OS also acts as an intermediary between the user of a computer and the 

computer hardware.  Stallings [STA98] defines an OS as a mechanism that 

exploits the hardware resources of one or more processors to provide a set 
of services to system users. 
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  Operating systems vary in purpose and design as our use of technology and 

resources varies, as illustrated by our migration from multi-user, multi-tasking systems to 

single-user, multi-tasking systems.  We have defined the OS at a high level of 

abstraction.  This level of abstraction is both sufficient and convenient for the purpose of 

discussing processes and threads. 

 Processes and threads may vary slightly in meaning depending on the particular 

OS (platform) implementation; however, their roles remain consistent irrespective of the 

OS.  The following sections will discuss processes and threads in general terms and as 

they each relate to the Unix and Windows OS platforms.  If processes and threads differ 

in definition or roles between the two systems, those differences will be discussed.  This 

approach will provide a greater understanding of processes and threads from a broad 

perspective while allowing for a detailed analysis of their roles and meanings within, 

arguably, the two dominant platforms used today. 

C. PROCESSES 

Processes and threads are necessary to the OS, in part, because the OS utilizes 

both as a means of executing programs.  Threads will be covered later in Section D of 

this chapter.  This section will focus on processes.  The term process has been given 

many different definitions.  Generically, many operating system books will define a 

process as a program in execution, or an entity that can be assigned to and executed on a 

processor.  One book defines it as the “animated spirit” of a program [STA98].  In the 

Windows NT OS (WINNT), a process is defined as a set of resources reserved for the 

threads to execute a program [SOL98].  The Unix OS defines a process as an instance of 

a program in execution [BAC86]. 

The myriad of definitions may seem to add ambiguity to the term process, but the 

definitions are not in conflict with one another.  Just the opposite is true; the definitions 

support and enhance one another.  A process is an entity that can be assigned to and 

executed on a processor.  Moreover, a process is also an entity that reserves resources so 

that it can use those resources to execute a program.  And lastly, a process is an instance 

of a program (this definition will prove to be useful in the discussion of swapping and the 
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“context of a process”).  As can be seen, the role of a process is given in its definition – 

an entity that reserves system resources for the execution of a program.   

A process is not a program (application).  A program is a static sequence of 

instructions (text).  Programs and processes are synergistic.  The program needs the 

process in order to execute; the process needs the program in order to have purpose.  It is 

sometimes easy to confuse the two because of their dependency.  We further distinguish 

the two by defining a program as a passive entity and a process as an active entity.  A 

process generally includes the current activity (program counter), contents of the 

processor’s registers, process stack, data section containing global variables, and the text 

(the program) [SIL94].  The aforementioned description of a process is known as its data 

structure.   

1. Process Data Structure 

In general a process will have at a minimum a program or set of programs to 

execute, a set of data locations for local and global variables and all defined constants, a 

stack that is used to keep track of procedure calls and parameter passing between 

procedures, and a number of attributes that allow the OS to control the process [STA98].  

The physical manifestation of a process or its data structure will depend on the platform.   

First consider WINNT; the process in WINNT is known as the executive process 

(EPROCESS) [SOL98].  The EPROCESS block, Figure 2.1, contains attributes about the 

process as well as pointers to other data structures.  

Two key data structures in the EPROCESS are the kernel process (KPROCESS) 

and the process environment block (PEB).  The KPROCESS block is sometimes referred 

to as the process control block (PCB).  The PCB contains information that the kernel 

needs to schedule threads.  In WINNT the EPROCESS and KPROCESS both reside in 

system address space and the PEB resides in user address space.  Access to system space, 

also known as kernel space, requires privilege.  User space is accessible by non-

privileged entities.  The PEB contains the information needed to load the image loader, 

the heap manager and all Win32 DLLs that need to be modified from user mode.   
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Figure 2.1 WINNT EPROCESS Block (After: [SOL98]) 

The image loader, heap manager and Win32 DLLs are user-level entities that the 

operating system uses to create and manage processes.  During CreateProcess, a function 

call, the image loader determines the type of file associated with the request to run.  Once 

the file type has been determined, the image loader loads the appropriate image for that 

file (notifies the appropriate subsystem of the new process); for example, appropriate 

images for Win32 processes are Posix.exe for POSIX file types and Ntvdm.exe for MS-

DOS, .exe, .com, and .pif file types [SOL00].  If the file does not have an appropriate 

image, CreateProcess fails [SOL00].  The heap manager is a set of functions that controls 

the amount of memory allocated and deallocated [SOL00].  The Win32 DLLs are a set of 

callable subroutines in a binary file that are linked together and can be dynamically 

loaded by applications that use the subroutines [SOL00]. 
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The UNIX process structure is now described.  Figure 2.2 shows a Unix-based 

process’s data structure.  The kernel process table -- depicted in the figure as process 

table -- has an entry for each process.  The “u area” contains the process’s private data 

that can only be manipulated by the kernel and only when the specific process is 



executing.  The process table contains pointers to the per process region table.  The 

entries in the per process region table point to entries in the region table.  A region is 

defined as a contiguous area of a process’s address space.  The region table entries 

describes the attributes of the region, such as whether it contains text or data, whether it is 

shared or private, and where the “data” of the region is located in memory [BAC86].   

 
Figure 2.2 Unix Process Data Structure (From: [BAC86]) 

The data structure of a process, although it may be platform dependent in terms of 

its physical implementation, must meet the minimum requirements mentioned above: a 

program to execute, location of local and global variables, etc.  This paper will not map 

the minimum requirements to each of the data structures; however, the reader should note 

that each data structure does implement and support the requirements.  Each process 

managed by the OS has its own data structure independent of any other process managed 

by the OS.  However, processes may share certain information and at times memory. This 

will be discussed further in Section F Subsection 1 of this chapter.  Processes operate 

independently of one another and usually do not share memory, which is useful when the 

tasks to be performed are unrelated [SIL94].   
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2. Process Life Cycle 

Another important aspect of a process is its life cycle.  Processes make it possible 

for multi-tasking OSs running on a single processor to multi-task and make the computer 

appear to process multiple applications simultaneously.  Processes primarily accomplish 

this through life cycle transitions and time allocation from the OS.  There are several 

stages in the life cycle of a process.  A complete process state transition diagram is 

depicted in Figure 2.3. 

 
Figure 2.3 Process Life Cycle (From: [BAC86]) 

Figure 2.3 shows the transition state diagram for processes in a Unix-based OS.  

However, every process, regardless of the OS that supports it, can be represented in part 

or in full by the figure.  Not every OS’s supported processes will have the full array of 

transition states as shown in Figure 2.3.  As a general rule, a process will always have one 

of the following states:  new/created, running, waiting, ready, or terminated.  Each 

transition state is defined as follows [BAC86, STA98]: 
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User running:  the process is executing in user mode. 

Kernel running:  the process is executing in kernel mode. 

Ready to run in memory:  the process is not executing but is ready to run as 

soon as the kernel schedules it. 

Asleep in memory:  the process is sleeping and resides in main memory. 

Ready to run, swapped:  the process is ready to run, but the swapper (process 0) 

must swap the process into main memory before the kernel can schedule it to 

execute (although some [BAC86, STA98] refer to process 0 as a swapper, it may 

be more precise to think of it as a transitional mechanism that transitions a process 

from the User running state to Ready to run in memory, the process remains in 

main memory throughout the transition). 

Sleep, swapped:  the process is sleeping, and the swapper (swapper here refers to 

a mechanism that actually moves the process from main memory to secondary 

memory) has swapped the process to secondary storage to make room for other 

processes in main memory. 

Preempted:  the process is returning from kernel to user mode, but the kernel 

preempts it and does a context switch to schedule another process.  The 

distinction between this state and the state “ready to run in memory” is based on 

the process.  In this state a process running in kernel mode can be preempted only 

when it is about to return to user mode.  Otherwise, the preempted state is the 

same as “ready to run in memory.” 

Fork:  the process is newly created and is in the transition state; the process 

exists, but it is not ready to run, nor is it sleeping.  This state is the start state for 

all processes except process 0. 

Zombie:  the process executed the exit system call and is in the zombie state.  The 

process no longer exists, but it leaves a record containing an exit code and some 

timing statistics for its parent process to collect.  The zombie state is the final state 

of the process.   
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There are several triggers that cause a process to transition from one state to 

another.  One of the major triggers is central processing unit (CPU) time.  How much 

CPU time the OS allocates to a process is important to the process.  The time that is 

allocated to a process is known as a quantum.  In a single-user, single task OS, processes 

execute sequentially, and once the process begins, it runs until it ends.  In the single-user, 

single task system, the process has complete control of the CPU and resources until it has 

accomplished its task – the current process monopolizes the CPU until it completes its 

task.  The user cannot move between various programs or open multiple windows.   

In a single-user, multi-tasking operating system (common in most desktop 

operating systems today), processes must share the processor(s) and resources in 

accordance with a scheduling algorithm.  Once a process is scheduled, it is given a 

quantum, in which it has exclusive use of the CPU and any unlocked resources.  After the 

process’s quantum expires, the OS, in accordance with its scheduling algorithm, gives the 

CPU and access to all unlocked resources to another process.   

A multi-user, multi-tasking operating system, such as UNIX System V, sets up a 

computing environment for a user’s process [STA98].  The multi-user OS must separate 

one user’s resources from another’s.  Each user process has exclusive use of the CPU for 

a specified period of time, much like a quantum [STA98]. This method allows the OS to 

appear to execute application programs simultaneously, while the quantum and 

scheduling algorithm prevents processes from monopolizing the CPU, thereby preventing 

starvation or other detrimental situations for the OS. 

3. Process Switching and Process Context 

The method that allows the CPU in multi-tasking operating systems to move from 

one process to another in accordance with a scheduling algorithm is known as process 

swapping and sometimes it is referred to as process switching.  A process must be in 

main memory to be executed.  As mentioned earlier, to avoid starvation because one 

process controls or monopolizes the CPU, each process is given a quantum of time to 

have exclusive use of the CPU.  Once the process’s quantum expires, the process is 

removed from execution and another process is scheduled for execution.   
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  Depending on the design of the operating system, there may be additional 

events, besides the expiration of the process’s quantum that could cause processes to 

transition from the running state.  Some of the more general events that are usually 

common to most OSs are preemption, which can be caused by process priority (one 

process having a higher priority than another), I/O operations, and traps (traps are for 

mode switching, not process switching, but a snap shot of the state of the machine 

(process or thread context) must be maintained during a trap [SOL98]).  A process with a 

higher priority may preempt a lower priority process; note that many operating systems 

have a mechanism in place to ensure that low priority processes are not starved.  I/O 

operations could cause a process to wait.  In such cases, to optimize CPU usage, the 

process that is waiting on the I/O operation might transition from the running state.   

A trap is a term that is used to explain a processor’s mechanism for capturing an 

executing process or thread when an exception or an interrupt occurs which requires a 

snapshot of the process’s context [SOL98]; the process’s context is its registers, stack 

information, and other pertinent information, which needs to be preserved when the 

system mode is switching from user mode to kernel mode.  The cause of a trap is usually 

associated with the execution of the current instruction [STA98].  Usually a trap is used 

to handle an error or an exceptional condition [STA98]. 

During process transitions the operating system must save the state and pertinent 

information of the currently executing process.  The state and pertinent information of a 

process is the process context.  In general (expanding the definition of the process 

context), it usually consists of the program counter, other process registers, and stack 

information from both user and kernel space (remember that a process has data, text, and 

a stack – the earlier definition of a process being an instance of a program corresponds 

with the “text” portion of the process).  By freezing the process and capturing a snapshot 

of it as it exists in its halted or frozen state, the OS is able to move it from executing 

memory to storage and is later able to move it back into executing memory with its 

precise settings when it was frozen or halted.  The OS prevents arbitrary process 

swapping and transitions thereby maintaining consistency. 
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In Unix-based operating systems, all processes except process 0 are spawned from 

other processes through the fork system call.  Process 0 is created when the operating 

system boots up.  Process 0 spawns process 1, which is known as init.  The init process is 

the ancestor of every other process in the Unix system.  A parent process is any process 

that spawns another process through the fork system call.  The spawned process is known 

as the child process.  Process 0 becomes the transitional mechanism.  Both Unix-based 

OSs and NT-based OSs use a scheduling algorithm that schedules processes.  However, 

WinCE, which is an NT-based OS, schedules threads.  Threads will be discussed in the 

next section.  

Each application (program) executing is assigned only one process by the 

operating system, the parent process.  If other processes are required to assist the parent 

process in reserving resources to enable the program to execute, the additional processes 

are spawned by the parent process and not the operating system; however, each process is 

considered a separate execution sequence [SIL94].  For example, several users may be 

running copies of a mail program [SIL94]; in this example each user is assigned a parent 

process that works on their behalf and each mail program is a child process to a unique 

parent process, a one-to-one correspondence.   In a similar example, a single user may 

invoke many copies of an editor program [SIL94].  In this example, each copy of the 

editor program is a child process to the same parent process, a one-to-many 

correspondence.  A process can spawn one or more processes (children/child processes) 

or threads to assist in executing a program. 

D. THREADS 

For systems that support threads, the OS is designed to schedule threads instead of 

processes for a quantum.  This is the case in Windows NT.  A thread is an entity spawned 

from a process that executes a program [SOL98].  More simply stated, a thread is a 

precisely measurable controlled unit of work (a basic unit of CPU utilization) [STA98].  

Threads enable resources (although threads do not reserve resources) to be shared and 

accessed concurrently within the same process, which is useful for related jobs.  A thread 

can be spawned from a process or another thread.  A thread can only spawn another 

thread -- a child thread.   Threads allow a more granular definition of the dependencies 
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between processes and programs by completing the synergism that exists between the 

process and program.  Many modern operating systems use processes and threads.  This 

research will focus on Windows CE, which is a processed-based, single-user OS that 

schedules threads instead of processes.   

Threads are very similar to processes.  However, threads are used to enhance the 

capability of a process’ multi-tasking ability.  Threads allow resources to be shared and 

accessed concurrently within the same process by executing in the same address space 

(domain) [SIL94].  Threads are sometimes called lightweight processes [SIL94].  Threads 

generally consist of a program counter, a register set, and a stack space [SIL94].  A 

thread, like a process, is assigned to run in user space or system space depending on its 

privilege. 

Threads operate similarly to processes in many regards in terms of their life cycle 

and context.  Threads will generally have one of several states similar to processes:  

new/create, ready, blocked, running or terminated.  Threads, unlike processes, are not 

independent of one another because they have to work together to share a pool of 

resources reserved for the process, whereas processes aren’t required to work together in 

the same manner because each process has its own pool of reserved resources and the 

underlying OS provides the management.   

Threads can be managed either at the application level or within the OS.  Threads 

within a process execute sequentially and each thread has its own stack and program 

counter.  Since Windows CE’s scheduling algorithm schedules threads, threads will be 

covered in more detail in Chapter III.   The Windows NT thread data structure will be 

discussed in detail in Section F Subsection 2 of this chapter.  In addition to having a 

general understanding of threads and processes, enhancement of an OSs self-protection 

capability requires an understanding of security. 

E. SECURITY 

Security, which is usually thought of as privacy and protection, is often used in 

connection with information-storing systems.  Security describes techniques that control 

access to use of or modification of a computer or the information contained in it.  It is 

often useful to categorize security violations in three categories:  unauthorized 
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information release, unauthorized information modification and unauthorized use 

[SAL75].  Chapter IV will take a closer look at security and how it can be applied to 

Windows CE, specifically in the case of authentication. 

Security is based on three notions [MUL93]:  authentication, access control and 

auditing.  Authentication requires that for every request for an operation, the name of the 

requestor must be known reliably.  The source of the request is called a principal.  Access 

control requires that for every resource and every operation on that resource, it is possible 

to specify the names of the principles allowed to perform that operation on that resource.  

Every request for an operation is checked to ensure that the principal is allowed to 

perform that operation.  Auditing permits every access to a resource to be logged if 

desired, and can be evidence used to authenticate every request.  If a troubling situation 

occurs, there is a record of exactly what happened. 

There are two ways to approach security.  One approach involves constructing a 

formal specification for the desired security properties (and other properties) of a system 

then designing and implementing the OS.  The other way is to find, catalog and repair 

security flaws in existing systems.  This project will encompass both approaches.  

Security has its own terminology and it is broad.  Scoping the security discussion and 

understanding the terminology make identifying and cataloging security flaws in the 

Windows CE authentication mechanism easier. 

The scope of the security discussion for this paper is the authentication 

mechanism, modes of operation, and mechanisms that are common to processes.  

Windows CE operates in one of two modes: user mode or kernel mode.  A mechanism is 

common to two processes if it uses some set of data items whose value one process can 

influence and the other can notice.  Common mechanisms carry a built-in risk – they 

make it possible for the process of one user to exert unauthorized influence over the 

process or data of another.  Malicious users can exploit flaws in common mechanisms to 

work their will. 

According to Michael Schroeder [SCH75], the operating systems of shared 

general-purpose computers have a well-known tendency to be extraordinarily large and 

complex.  This size and complexity interacts badly with the negative nature of security 
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requirements.  It generates many possible ways to perform unauthorized actions, some of 

which will go unnoticed by system designers.  This increases the probability of 

exploitable errors in the implementation of the provided protection mechanisms.  

Examining the thread and process module of Windows NT will provide a basic 

understanding of the OS.  Although the WINNT OS is substantially larger, with respect 

to lines of code than the Windows CE OS, WINNT affords some insight into the 

Windows-based platform.  Windows CE, on the other hand, is a smaller system, and 

lacks many of the security features of Windows NT.  Because WinCE lacks many of the 

security features found in WINNT, WinCE is more vulnerable.  However, WinCE’s lack 

of security features and increased modularity gives it the advantage of being less complex 

than WINNT, which naturally adheres to the design principle of economy of mechanism 

[SAL75]. 

Many systems try to reduce the probability of exploitable errors through good 

software engineering by utilizing well-established design principles to construct the 

internal mechanisms.  These principles, when properly used, help to reduce design and 

implementation flaws, which might otherwise exist and provide paths by which the 

protection mechanisms in the system could be circumvented.  Good engineering also 

utilizes established concepts such as the security kernel and reference monitor [AND72].  

A security kernel is a minimal, protected core of software whose correct operation is 

sufficient to guarantee enforcement of the claimed constraints on access and is the 

structural basis for organizing a secure system [SCH75]. 

Although the goal is not to make Windows CE a high assurance secure system, it 

is prudent to maximize usage of the ideas and principles that govern secure systems.  For 

example, while studying the design of a system, it is noticed that a mechanism in a more 

protected level of the OS depends on a function from a less protected or higher level of 

abstraction for the correctness of its operation.  This is considered an upward dependency 

and a serious flaw in the system’s design [GOL79].  It is also crucial to look at ways to 

implement security once a security policy has been established for the system.   

Our goal in enhancing the Windows CE security is to balance security with 

performance.  Since security by its very definition is an increase in system functionality, 
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i.e., the system’s ability to a certain degree to protect itself and its information, 

performance will be adversely affected.  Since Windows CE is a smaller OS on a small 

platform, it will have very limited space in which to implement security.  Because 

WinCE has a more limited space to implement security than larger operating systems, the 

choice of which security features to implement is vital.  If security is to work properly, 

care must be given when deciding what security features are required and what security 

mechanisms will be used to achieve the requirement.  Security should be meticulously 

designed and carefully implemented. 

For a particular mechanism or functionality, there may be a number of 

satisfactory implementations.  Security implementations are described in terms of 

security concepts and mechanisms, such as: reference monitor, security kernel, capability 

lists (capabilities), access control lists (ACLs), discretionary access control (DAC), 

mandatory access control (MAC), domains, rings, and a host of additional concepts and 

mechanisms, too numerous to list.  Not only do these concepts and mechanisms describe 

the type of security implemented, they also define the granularity of the security; for 

example, security can control authorized access at various levels such as: the entire 

system, directories, files, data within a files, compartments, etc.  Another important 

aspect of security is knowing “who or what” has gained or is trying to gain access to the 

data, which is accomplished through the operating system [SAL75].  For authorized users 

of a system, this is normally accomplished through authentication.  How Windows NT 

implements authentication is discussed in the next section. 

F. WINDOWS NT AUTHENTICATION MECHANISM 

This section will focus on the Windows NT authentication mechanism.  However, 

since processes and threads are an integral part of the Windows NT OS and 

authentication mechanism, this section will discuss how processes and threads are created 

and how they communicate.  Fibers will also be mentioned.  These are a type of thread.  

In the discussion of the creation of processes and threads certain acronyms will be used. 

Such acronyms are standard in the OS literature and as much as possible this paper will 

try to minimize the use of unusual acronyms.   
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 1. Windows NT-based Process and Thread Creation 

Users as well as the OS manipulate processes through application programming 

interface (API) functions, but a process must first exist.  A new process is created 

whenever an application calls the Win32 CreateProcess function.  The creation of a 

Win32 process consists of several stages and involve three different parts of the OS:  the 

Win32 client-side library KERNEL32.DLL, the Windows NT executive, and the Win32 

subsystem process (CSRSS).  Figure 2.4 summarizes the Win32 create process. 

 
Figure 2.4 Process Creation (From: [SOL00]) 
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A process’s creation is complete as evidenced by the process environment having 

been determined, resources for its threads to use having been allocated, the process 

having a thread, and the Win32 subsystem having record of the new process.  The new 

thread begins life running the kernel mode startup routine KiThreadStartup [SOL98].  



KiThreadStartup performs thread-specific initialization, and then the actual thread routine 

specified by the caller of CreateThread is invoked [SOL98].  However, at this point, the 

thread has already been created, so the call to CreateThread is to notify the Win32 

subsystem about the new thread so that the subsystem can perform some setup work for 

the new thread. 

The initial thread’s creation is initialized and completed during the Win32 

CreateProcess call.  In the CreateProcess, the call to create a thread filters down to the 

Windows NT executive, where the process manager allocates space for the thread object 

and calls the kernel to initialize the kernel thread block.  At this point the Win32 

CreateThread is called.  The CreateThread creates a user-mode stack for the thread in the 

process’s address space.  CreateThread then initializes the thread’s hardware context (this 

is CPU-architecture specific).  The NtCreateThread is called to create the executive 

thread object in the suspended state.  At this point, the CreateThread notifies the Win32 

subsystem as mentioned earlier.  The thread handle and ID are returned to the caller and 

unless the thread was created with the CREATE_SUSPENDED flag set, the thread is 

resumed so it can be scheduled for execution.  Figure 2.5 summarizes the steps involved 

in thread creation. 
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Figure 2.5 Create Thread 

2. Windows NT Thread Data Structure 

The executive thread (ETHREAD) block represents the Windows NT OS thread.  

The ETHREAD block contains two other thread data structures, the kernel thread 

(KTHREAD), which contains the information that the Windows NT kernel needs to 

access to perform thread scheduling and synchronization on behalf of running threads and 

the thread environment block (TEB), which stores context information for the image 

loader and various Win32 DLLs.  The ETHREAD block and the structures it contains 

and points to exist in system space with the exception of the TEB, which exists in the 

process address space as shown in Figure 2.6.  
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Figure 2.6 ETHREAD Block (After: [SOL98]) 

Although fibers are not a part of our research, it is important to understand fibers 

and their role in the Windows NT-based OS.  Fibers are a subset of threads and are 

contained in the thread object.  They are sometime referred to as “lightweight” threads.  

Fibers differ from threads in how they are scheduled.  Threads are allocated CPU time by 

the OS.  Fibers are not allocated CPU time by the OS; instead a programmer must 

manually schedule fibers to run.   Fibers will not run unless the thread they are contained 

in is scheduled to run.  Fiber scheduling is very simple: once the thread containing the 

fiber is scheduled to run, the fiber will run until it finishes or until it instructs the OS to 

run another fiber.  Fiber functions were added to the Win32 API set primarily to support 

porting server applications from UNIX that were designed to schedule their own threads 

rather than relying on a priority system [SOL98]. 

The Windows NT priority system consists of 32 priority levels for threads ranging 

from 0 through 31.  The range is divided into three groups.  The groupings are real-time 

levels, which range from 16 through 31; variable levels, which range from 1 through 15; 
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and system level, which is 0.  Threads are assigned a priority level from two different 

perspectives: the Win32 API and Windows NT kernel.  The Windows NT kernel assigns 

the thread priority based on one of the 32 levels already mentioned.  The Win32 API 

assignment involves the process’s assignment.  The Win32 API assigns each thread a 

priority based on a combination of the thread’s process priority class and the thread’s 

relative priority.  The Win32 API process priority classes are “real-time,” “high,” 

“normal,” and “idle.”   The Win32 thread’s relative priorities are “time-critical,” 

“highest,” “above-normal,” “normal,” “below-normal,” “lowest,” and “idle.”  Table 2.1 is 

a mapping of the kernel thread priorities to the Win32 API priorities.  

Every thread starts out with its priority equal to that of the process or thread that 

spawned it.  Each thread has two priority values, its base priority, which is the priority 

that it starts with and its current priority, which is the priority at which the thread is 

currently running.  A thread whose current priority is within the range 1 through 15 often 

has a lower base priority; however, a thread whose current priority is in the range 16 

through 31 never has its priority adjusted by the OS, so the base priority is always equal 

to the current priority. 

 
Table 2.1 Kernel Priority Levels (From: [SOL98]) 

Threads and processes are such an intricate part of the OS that they impact a 

system’s ability to provide security for itself.  Of specific interest is the WINNT 
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authentication mechanism.  The authentication mechanism is initiated and driven by a 

process, the logon process (WinLogon).  WINNT can be configured to F-C2/E3, which 

indicates more security than just an authentication mechanism, in accordance with the 

UK Information Technology Security Evaluation and Certification (ITSEC) board 

[SOL98].  (Note that ITSEC has been replaced in some countries by the international 

standard - The Common Criteria [CCI99].)  Also, the U.S. Department of Defense 

Trusted Computer System Evaluation Criteria (TCSEC) formally evaluated WINNT 3.51 

at the C2 level [SOL98].  However, this research focuses on one of the first steps in 

creating a security-enhanced CE OS, which is providing a small, reliable authentication 

mechanism.  

WINNT provides four basic security services [SOL98]:  a secure logon facility, 

discretionary access control, security auditing, and memory protection.  The secure logon 

facility requires users to identify and authenticate themselves by entering a unique logon 

identifier and password before they are allowed access to the system.  There are several 

components that makes this secure logon possible:  local security authority (LSA) server, 

security reference monitor (SRM), LSA policy database, security accounts manager 

(SAM) server, SAM database, default authentication package, and WinLogon.  Each one 

is described below [SOL98]. 

Local security authority (LSA) server: A user-mode process running the image 

LSASS.EXE that is responsible for the local system security policy (such as which users 

are allowed to log on to the machine, password policies, the list of privileges granted to 

users and groups, and the system security auditing settings), user authentication, and 

sending security audit messages to the Event Log. 

Security reference monitor (SRM): A component in the Windows NT executive 

(NTOSKRNL.EXE) that is responsible for performing security access checks on objects, 

manipulating privileges (user rights), and generating any resulting security audit 

messages. 

LSA policy database: A database that contains the system security policy 

settings. This database is stored in the registry under 

HKEY_LOCAL_MACHINE\Security.  It includes such information as what domains are 
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trusted to authenticate logon attempts, who has permission to access the system and how 

(interactive, network, and service logons), who is assigned which privileges, and what 

kind of security auditing is to be performed. 

Security accounts manager (SAM) server: A set of subroutines responsible for 

managing the database that contains the usernames and groups defined on the local 

machine or for a domain (if the system is a domain controller).  The SAM runs in the 

context of the LSASS process. 

SAM database: A database that contains the defined users and groups, along 

with their passwords and other attributes.  This database is stored in the registry under 

HKEY_LOCAL_MACHINE\SAM. 

Default authentication package: A dynamic-link library (DLL) named 

MSV1_0.DLL that runs in the context of the LSASS process that implements Windows 

NT authentication.  This DLL is responsible for checking whether a given username and 

password match what is specified in the SAM database, and if they do, returning the 

information about that user. 

Logon process: A user-mode process running WINLOGON.EXE that is 

responsible for capturing the username and password, sending them to the LSA for 

verification, and creating the initial process in the user’s session.  

These components work together to provide logon authentication.  The security 

reference monitor (SRM) is the only component located in kernel space.  The LSA, 

which is in user space, is responsible for communicating with the SRM.  They 

communicate using local procedure calls (LPC).  The SRM creates a port 

(SeRmCommandPort), during system initialization.  The LSA connects to that port.  The 

LSA creates an LPC port (SeLsaCommandPort) when the LSA process starts.  The SRM 

connects to SeLsaCommandPort.  During system initialization, once the respective 

processes have connected to the other’s created port, the result is a private 

communication port and neither process listens on their respective connect port any 

longer.  Since the processes no longer listen to their respective port and the ports are 

unnamed, a subsequent user process cannot successfully connect to either port ( if the 

28 



entry points still exist after the initialization phase, they may be exploitable; however, 

this is difficult to determine without inspection of the SRM code). 

The WinLogon process is the only process that can intercept logon requests from 

the keyboard.  During system initialization, WinLogon is given control of the workstation 

once the system is ready for user interaction [SOL00].  WinLogon creates three desktops, 

an application desktop, a WinLogon desktop, and a screen saver desktop [SOL00].  Only 

WinLogon can access the WinLogon desktop making the WinLogon process a trusted 

process.  

If a user wants to access the system (legitimately), the user must go through the 

WinLogon desktop.  The WinLogon desktop will authenticate the user.   It communicates 

with the LSA, using an LPC, to authenticate the user.  Once the user has been 

authenticated, the user is given access to the application desktop and the screen saver 

desktop.  A concern with this logon model is its lack of simplicity; its GUI code required 

to logon is enormous in contrast to the XTS 300 logon interface, which is not ideal for 

users but simple.  The UI for the XTS300 is not user friendly nor is it an intuitive “point 

and click” interface.  It requires the user to understand the various sessions levels for 

logon and what privileges the user will have at the various levels.  It is simple because the 

code to present this interface can be minimized. 

G. CONCLUSION 

Processes are essential to computer usage, from system initialization, user 

authentication, to system shutdown.  Understanding the process’s requirements for 

system resources for program execution and how operating systems manage those 

resources gives us a better understanding of the importance of local (single desktop) 

computer security within a large network of computers.  As mentioned at the beginning 

of the chapter, computers are playing an increasingly larger role in our everyday lives.  In 

networks, a compromised process (compromised program that a process is executing) on 

a single computer could affect other computers in that network as well.  Understanding 

processes and their roles in OSs is important to the design of the OS as well as security.  

Now that a better appreciation and understanding of operating systems (specifically 

29 



Windows NT), threads, processes and security has been gained, Chapter III can focus on 

Windows CE threads and processes. 

 

30 



III. WINDOWS CE PROCESSES AND THREADS 

 

 

 

A. INTRODUCTION 

Processes are a vital part of program execution as discussed in Chapter II.  

Chapter II also described an operating system as a program.  Therefore, process 

management is a vital role of the operating system.  This chapter will focus on the 

processes and threads in the WinCE operating system. 

Windows CE is a multithreaded WIN32 system, with the same process and thread 

model and file formats as Windows NT (WINNT) [MUR98].  In both cases, the kernel 

supports multitasking; it has preemptive, priority-based scheduling [MUR98].  Windows 

CE has characteristics in common with WINNT.  Some of the complexities of the 

WINNT process model have been removed from Windows CE, but the “animated spirit” 

(model) has been left in tact. 

This chapter describes Windows CE’s “animated spirit,” processes, in more 

detail.  Processes and threads in the WINNT-based OS have been defined.  Their data 

structures have been discussed, and their life cycle has been examined.  However, 

because Windows CE is a smaller OS that operates in a smaller memory space, there are 

some differences between its processes and threads as compared to those of WINNT. 

B. WINDOWS CE 

 What is Windows CE and why is it important?  A white paper [MWS2a] from the   

Microsoft Corporation provides answers to the question.  It states: 

Microsoft Windows CE is an open, scalable, 32-bit operating system that 
is designed to meet the needs of a broad range of intelligent devices, from 
enterprise tools such as industrial controllers, communications hubs, and 
point-of-sale terminals to consumer products such as cameras, telephones, 
and home entertainment devices.  A typical Windows CE-based embedded 
system targets a specific use, runs disconnected from other computers, and 
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requires an operating system that has a small footprint and a built-in 
deterministic response to interrupts. 

Windows CE consists of a set of discrete modules and sub modules, or 
components, each of which provides full or partial support for major 
features of the operating system.  By selecting a minimum set of modules 
and components, a device manufacturer can design an operating system 
tailored to requirements of a particular device.  By controlling the size 
(“footprint”) of the operating system, original equipment manufacturers 
(OEMs) can design for speed and efficiency, while still providing the 
performance of 32-bit, preemptive multitasking, multithreaded system and 
the richest possible set of APIs for developing applications. [MWS2a] 

 Microsoft designed CE to compete in the embedded systems market [MUR98].  

Microsoft had a specific class of embedded devices in mind for CE.  Instead of being 

stand-alone devices, these devices are intended to be mobile companion devices that 

supplement the desktop and synchronize information with the desktop personal computer 

(PC) [MUR98].  Approaching the design of the CE operating system with the idea that it 

supports a companion device may explain why Windows CE’s processes and threads 

maintain the look and feel of the WINNT’s processes and threads. 

 Unlike Windows NT, Windows CE can only support up to 32 simultaneous 

processes [MIC98].  When WinCE initializes, it creates a single 4GB virtual address 

space; it divides that 4GB address space in half creating (2) 2GB spaces, and it further 

divides 1 of the 2GB address spaces into 33 equal slots ranging from 0 – 32.   When a 

process is initialized, WinCE selects an open slot in 1 of the allocated 33 slots [MIC98].  

Slot 0 is always reserved for the currently running process [MIC98]. 

 Windows CE does not assign processor time to processes, as does WINNT, 

instead Windows CE assigns processor time to threads.  In WinCE, threads are the unit of 

execution instead of processes, and are assigned execution quanta by the scheduler 

[MIC99].  This means that a process is terminated if its primary thread is terminated.  

Although it is the threads that are assigned quanta, it is the processes that reserve the 

resources necessary to enable users to open and work in several applications at the same 

time [MIC99]. 
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C. WINDOWS CE PROCESS 

Only 32 processes can execute simultaneously in WinCE, and, not all 32 slots are 

available to the user [MWS2b].  A minimum of four, and more typically seven or eight, 

processes are created when the system starts up.  These are system processes not directly 

accessible to users [MWS2c].  WinCE will usually utilize process slots for the following 

processes at system start up (system processes):  kernel (nk.exe), device drivers 

(device.exe), installable file systems (filesys.exe), and graphical user interface, GUI, 

(gwes.exe) [MWS2b].  WinCE process’s address space, 32MB, which accounts for the 

limited number of processes that WinCE can simultaneously execute, is 64 times smaller 

than the address space for processes in the desktop version of Windows, usually 2048MB 

[MWS2b]. 

The WinCE process data structure has the following fields:  a virtual address 

space, executable code, data, object handles, environment variables, base priority, and 

minimum and maximum working set sizes [MWS2d].  Processes are created by 

applications, or by the shell when a program is invoked by the user (such as double 

clicking a program icon) [GAR99].  Creating a process is done by calling 

CreateProcess() [GAR99].  CreateProcess() creates a new process and its primary 

thread; it is a function used to run a new program [MWS2e].  Figure 3.1 demonstrates 

how process creation is invoked. 
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Figure 3.1 CreateProcess Function (From: [GAR99]) 

1. Creating a Process 

Once the CreateProcess( ) function is executed, the new process executes the 

specified executable file [MWS2e].  The following parameters (which are not part of the 

Process_Information structure) are a part of the CreateProcess( ) function call [MWS2e]: 

 lpszImageName 

The lpszImageName parameter is a pointer to a null-terminated string that 

specifies the module to execute.  The string can specify the full path and filename of the 

module to execute or it can specify a partial path and filename if the program is in the 

current working directory.  The lpszImageName parameter must be non-NULL and must 

include the module name.  

lpszCmdLine 

The lpszCmdLine parameter is a pointer to a null-terminated string that specifies 

the command line to execute. The lpszCmdLine parameter can be NULL.  In that case, 

the function uses the string pointed to by lpszImageName as the command line.  
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If both lpszImageName and lpszCmdLine are non-NULL, * lpszImageName 

specifies the module to execute, and * lpszCmdLine specifies the command line, (note 

that * indicates pointer). C language runtime processes can use the argc and argv 

arguments.  If the filename does not contain an extension, .EXE is assumed.  If the 

filename ends in a period (.) with no extension, or the filename contains a path, .EXE is 

not appended.  Windows CE versions 2.10 and later search the directories indicated by 

the lpszImageName parameter, if the path of the file being looked for is not explicitly 

specified, in the following order:  

The windows (\windows) directory  

The root (\) directory of the device  

An OEM-dependent directory  

The OEM-defined shell (\ceshell) directory — this is available to Platform 

Builder users only  

lpsaProcess  

Not supported; set to NULL.  

This is a security attribute that determines how the new process will be shared.  It 

controls what another process may do if the other process opens a duplicate handle. 

lpsaThread  

Not supported; set to NULL.  

This is a security attribute that determines how the new thread will be shared.  It 

controls what another thread may do if the other thread has a duplicate handle. 

fInheritHandles 

Not supported; set to NULL.  

This is a Boolean value that determines whether or not the new process will 

inherit other handles. 
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fdwCreate 

The creation flags in the fdwCreate parameter govern the type and priority of the 

new process. The following creation flags can be specified in any combination, except as 

noted in Table 3.1:  

Value Description 

CREATE_DEFAULT_ERROR_MODE Not supported. 

CREATE_NEW_CONSOLE 

The new process has a new 

console, instead of inheriting 

the parent’s console. This flag 

cannot be used with the 

DETACHED_PROCESS flag.  

The console is a component of 

the command processor shell.  

On the IPaqs, the component 

used is explorer, a Handheld 

PC style shell. 

CREATE_NEW_PROCESS _GROUP Not supported. 

CREATE_SEPARATE_WOW_VDM Not supported. 

CREATE_SHARED_WOW_VDM Not supported. 

CREATE_SUSPENDED 

The primary thread of the 

new process is created in a 

suspended state, and does not 

run until the ResumeThread 

function is called. 

CREATE_UNICODE_ENVIRONMENT Not supported. 

DEBUG_PROCESS 
If this flag is set, the calling 

process is treated as a 
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debugger, and the new process 

is a process being debugged. 

Child processes of the new 

process are also debugged. The 

system notifies the debugger of 

all debug events that occur in 

the process being debugged. 

DEBUG_PROCESS 

If you create a process with 

this flag set, only the calling 

thread (the thread that called 

CreateProcess) can call the 

WaitForDebugEvent 

function. 

DEBUG_ONLY_THIS_ PROCESS 

If this flag is set, the calling 

process is treated as a 

debugger, and the new process 

is a process being debugged. 

No child processes of the new 

process are debugged. The 

system notifies the debugger of 

all debug events that occur in 

the process being debugged. 

DETACHED_ PROCESS Not supported. 

 
Table 3.1 Creation Flags for CE CreateProcess (From: [MWS2e]) 

Windows CE does not support the concept of priority classes for processes. The 

priority of a thread is the only parameter that determines a thread's scheduling priority.  
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lpvEnvironment 

Not supported; set to NULL.  

Environment variable, generally used to help customize programs and usually 

kept where they (variables) are always available. 

lpszCurDir 

Not supported; set to NULL.  

Current directory setting 

lpsiStartInfo 

Not supported; set to NULL.  

This is a structure that the parent process must fill out before calling 

CreateProcess. 

lppiProcInfo 

The lppiProcInfo parameter is a pointer to a PROCESS_INFORMATION 

structure that receives identification information about the new process.  

This section, Section C, began by introducing the WinCE process, specifically the 

process’s requirements – virtual address space, executable code, data, object handles, 

environment variables, base priority, and minimum and maximum working set size.  This 

section also discussed the CreateProcess function, which detailed the necessary 

parameters for creating a process.  However, this section did not define the WinCE data 

structure, but, with the given information and knowing that the WinCE process and 

thread model is the same as for WINNT, it is conceivable that the data structures are 

similar.  By mapping the WinCE process requirements and WinCE CreateProcess 

function into the WINNT EPROCESS block (Figure 2.1), an approximation of the 

WinCE data structure is obtained, which is equivalent to Figure 2.1.  Table 3.2 and 3.3 

map the CE process requirements and CreateProcess function parameters to the WINNT 

EPROCESS block. 
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WinCE process requirements WINNT EPROCESS block 

Virtual address space Memory management info 

Executable code Process environment block 

Data Process environment block 

Object handles Handle table 

Environmental variables ???? 

Base priority Kernel process block 

Min & max working set size Memory  

 
Table 3.2 Mapping of Process Requirements to EPROCESS 

 

CreateProcess function parameters WINNT EPROCESS block 

LpszImageName ImageFileName 

LpszCmdLine ???? 

fdwCreate Process priority class not supported in CE

lppiProcInfo ???? 

 
Table 3.3 Mapping of CreateProcess Function Parameters to EPROCESS 

Windows CE operates in one of two modes (as mentioned earlier), user mode or 

kernel mode, and for the sake of performance, usually user mode is not invoked (so 

everything runs in kernel mode); so the areas that the CE data structure occupies may be 

different than that of the WINNT process data structure.  For instance, in the WINNT 

data structure, the KPROCESS and EPROCESS are both in kernel space.  It makes sense 

to separate the various parts of the process data structure for the WINNT process because 

some of its information and manipulations requires protection or privileged access.  Since 
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OEMs develop their software and applications to run in privileged mode, and since there 

is no separation of the address space within CE, there is no benefit for the various parts of 

the process to occupy different space based on their need for privileged access.  Indeed, 

the limited address space may not support such a design.  Remember each process is 

initially allocated 32MB of memory.  All other memory comes from a common pool that 

is shared by all processes, 2GB. 

Although the process’s data structure in CE is similar if not the same as that of 

WINNT, it does not support all the same functionality as the WINNT process.  This in 

itself is no great revelation given the smaller OS, but it does raise the question of 

extensibility.  Does this process data structure support the ability to be extended for 

future needs?  The answer to the question is beyond the scope of this thesis, but it is one 

that needs to be considered.  The process data structure of CE appears to have been 

designed with the ability to handle applications that can run on the larger NT-based 

operating systems, but each application is subject to the memory constraints of CE. 

2. Terminating a Process 

Process termination is a subject usually overlooked or deemed insignificant in 

larger operating systems because the effect of one process not terminating properly, 

especially if it is not a critical process, can be relatively insignificant.  The process may 

hang or terminate in some non-desirable fashion, i.e. the user may see an exception 

message or a page fault message.  With the exception of a message, the termination of a 

process may not affect system performance (in larger operating systems) to any 

noticeable degree and usually will not affect the number of processes that a user can 

execute, at least from the average user’s perspective.  However, terminating a process in 

CE is important because, given only 32 slots available for processes, its direct effect on 

the number of processes that can be executed will be more noticeable to the user.  

Unlike the larger operating systems, CE cannot afford to have a process hang.  In 

CE, the impact of a hanging process on performance will be immediately apparent to the 

user.  Not only does a hanging process’s affect the number of processes that can run, and 

possibly the memory, but it also puts a drain on precious battery power.  Processes 

whether in larger NT-based operating systems or in CE have similar terminating 
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functions [MWS2f].  In WINNT a process can exist if its primary thread is terminated; 

however, in WinCE if a process’s primary thread is terminated, the process is 

automatically terminated.   

D. WINDOWS CE THREADS 

If the process of the Windows CE operating systems is equated with the “spirit” 

of the OS, the thread is the heart and soul of the OS.  It is the thread that gives life to the 

process.  Each process is started with a single thread, the primary thread, and the process 

can create additional threads from any of its threads [MWS2d].  The number of threads 

that can be created in a process is limited only by the amount of RAM available 

[MWS2h].  Each thread belonging to a particular process runs in the context of that 

process.  Also, all the threads of a process share its virtual address space [MWS2d].  A 

thread can execute any part of the process code to which it belongs, including parts 

currently being executed by another thread; and it is the thread that is allocated processor 

time (quantum) [MWS2g].   

Windows CE version 3.0 and higher offers 256 priority levels for threads 

[MWS2c].  The highest priority level is 0 and the lowest is 255.  Applications use levels 

255 through 248, which maps to the 8 priority levels available in earlier versions of 

Windows CE.  Real-time applications, drivers, and system processes use levels 247 

through 0.  Windows CE does not support process priority classes, which means 

theoretically that a process could hold a thread with the very highest level and a thread 

with the very lowest level [MWS2b/c].  A system scheduler determines which threads 

should run and when they should run.  A process starts when the scheduler gives 

execution control to one of its threads [MWS2c].  Threads with higher priorities run 

before threads with lower priorities, and threads that have the same priority run in a 

round-robin fashion.  The threads’ quantum has a default value of 25 milliseconds, which 

the OEM can set to a different value. 

Priority inversion, which occurs when a high priority thread is blocked from 

running because a lower priority thread owns a kernel object, is handled differently in 

WinCE than in other Windows operating systems [MWS2c].  Other Windows operating 

systems will raise all the low priority threads in the chain all at once, whereas CE will 
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raise each thread in the chain one at a time as necessary until the lower priority thread 

relinquishes the resource that the high priority thread needs.  WinCE guarantees the 

handling of priority inversion only to a depth of one level; for example, if thread 1 (a high 

priority thread) blocks waiting on a critical section held by thread 2 (a lower priority 

thread), thread 2 is raised to the same priority as thread 1.  However, if thread 3 is also in 

that chain, it will remain at its current priority level.  In other Windows operating 

systems, thread 3’s priority would also be raised. 

Threads in WinCE have a much greater role than those in other Windows 

operating systems.  The WinCE OS functionality is driven by threads and not processes.  

This does not necessarily mean that the data structure of the thread in WinCE needs to be 

different than that of WINNT.  But, it does change how the operating system functions.  

Thread creation is the same for both NT-based operating systems and WinCE.  Both 

operating systems use the CreateThread function.   

1. Creating a Thread 

The CreateThread function requires six parameters.  Two of the parameters are 

set to NULL, lpThreadAttributes and dwStackSize.   The parameter lpThreadAttribute is 

not supported by WinCe.  The parameter dwStackSize is automatically set.  The number 

of threads that can be created depends on the default stack size [MSW2i].  The default 

stack size for committed and reserve memory is specified in the executable file header 

[MWS2t].  A returned handle to a new thread indicates success and a NULL value 

indicates failure.  The CreateThread function is described below [MSW2i]: 

HANDLE CreateThread( 

LPSECURITY_ATTRIBUTES lpThreadAttributes, 

DWORD    dwStackSize, 

LPTHREAD_START_ROUTINE lpStartAddress, 

LPVOID    lpParameter, 

DWORD    dwCreationFlags, 

LPDWORD    lpThreadId ); 

42 



lpThreadAttributes  

Ignored. Must be NULL.  

This is a pointer to a structure that specifies a security descriptor for the new 

thread and determines whether child processes can inherit the returned handle. 

dwStackSize  

Ignored. The default stack size for a thread is determined by the linker setting 

/STACK.  

Specifies the initial commit size of the stack, in bytes. 

lpStartAddress  

Long pointer to the application-defined function of type 

LPTHREAD_START_ROUTINE to be executed by the thread and represents the starting 

address of the thread, points to the start of the thread routine. 

lpParameter  

Long pointer to a single 32-bit parameter value passed to the thread.  

Specifies an application-defined value that is passed to the thread routine. 

dwCreationFlags  

Specifies flags that control the creation of the thread are shown in Table 3.4.  

Value Description 

CREATE_SUSPENDED The thread is created in a suspended state, and 

will not run until the ResumeThread function is 

called. 

0 The thread runs immediately after creation. 

 
Table 3.4 Control Flags for Creating a Thread (From: [MSW2i]) 
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lpThreadId  

This parameter is a long pointer to a 32-bit variable that receives the thread 

identifier.   If this parameter is NULL, the thread identifier is not returned. 

The CreateThread function describes the creation of a thread, but it should not be 

confused with the data structure of a thread.  Just as with the processes in WinCE, there is 

no evidence to indicate that the thread in WinCE has a different data structure than the 

threads in WINNT.  There are parameters, as shown in the function above, in the 

CreateThread function in WinCE that are not supported.  But, the non-supportability of 

those parameters does not impact the data structure.  The non-supportability impacts the 

user’s ability to control specific fields in the data structure.  Reference Figure 2.6 to recall 

the thread’s data structure in WINNT.   

2. Terminating a Thread 

Terminating a thread is as important as creating a thread.  As previously 

discussed, the proper functioning of the WinCE OS is linked to the proper functioning of 

its threads, not its processes.  Therefore, it is vital that the OS not only knows which 

thread to terminate, but also which thread termination function to use.  Terminating the 

wrong thread, for example the primary thread, prematurely could have undesirable 

consequences, such as terminating the process and any other threads associated with that 

process.  This would not only be an annoyance to the user, but it would render the OS 

unsuitable because the OS might randomly shut down programs thereby creating 

instability.  Some of these instabilities will be discussed below. 

The operating system must know which thread termination function to use when 

terminating a thread.  There are several functions that can be used when terminating a 

thread in WinCE [MWS2j].  If possible, the TerminateThread( ) function should be 

avoided; but if used, it must be used very carefully because it has dangerous side effects 

[MWS2j].  The side effects are as follows [MWS2j]: 

If the thread targeted for termination owns a critical section, the critical 
section will not be released. 
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If the thread targeted for termination is executing certain kernel32 calls 
when it is terminated, the kernel 32 state for the thread’s process could be 
inconsistent. 

If the targeted thread is manipulating the global state of a shared DLL, the 
state of the DLL could be destroyed, affecting other users of the DLL. 
[MWS2j] 

The side effects from the TerminateThread( ) function could possibly lead to an 

unstable operating system.  Therefore, programmers and designers must take special care 

when writing applications that run on WinCE, not only with normal user applications, but 

also with system applications.   

One such system application of concern is the authentication protocol.  An 

authentication protocol represents the first step in developing a security enhanced WinCE 

OS.  Talisker, which is the current version of WinCE in development, uses Kerberos as 

an authentication protocol.   

E. CONCLUSION 

Whether or not Kerberos is the best protocol to use in WinCE is a question this 

research will attempt to answer.  Chapter IV will discuss various authentication protocols.  

The authentication protocol must be able to work with Microsoft’s “.Net” (pronounced 

dot net) project, for obvious reasons.  Most importantly, the protocol must be small, 

correct and efficient.  As each protocol is discussed in Chapter IV, several questions must 

be asked: 

Will this protocol work well with threads? 

How many process slots does this protocol need to execute, including supporting 

processes? 

Once these questions have been answered, enhancing the security in WinCE will 

still be a challenge.  However, knowing how the operating system manages processes and 

threads, in particular how many process slots are available and that the threads are 

allocated process time instead of the processes is imperative to understand the system 

sufficiently to provide any successful security enhancement. 
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IV. AUTHENTICATION 

 

 

 

A. AUTHENTICATION BACKGROUND 

Authentication provides evidence to one party (Bob) that another party (Alice) is 

who she says she is.  People are constantly authenticating in their day-to-day interaction 

with their surroundings.  People use a variety of means to authenticate one another as 

well as other objects.  People can be viewed as complex mechanisms that use a complex 

set of authentication protocols (senses) and rules to authenticate animate and inanimate 

objects.  This complex set of protocols and rules is not yet available to computers.  But, 

as technology continues to advance, computers may one day be able to use a similar set 

of complex protocols to authenticate various types of objects as well.  Until then, 

developers must use the most appropriate and most robust authentication protocol 

available. 

Examples of how different authentication protocols work best for different 

situations and environments can be observed in people’s daily authentication processes.  

In this example, Alice uses the most appropriate “sense” (authentication protocol) to 

verify whether or not Bob is who he claims to be.  If Alice is walking down the street and 

thinks she hears Bob’s voice calling her from a short distance saying, “Hey Alice it’s me 

Bob,” she might turn in the direction where the voice originated.  Upon turning, Alice 

immediately shifts to another protocol to verify whether or not it truly is Bob she hears 

calling her.   At this point, although Alice’s sense of hearing initially picked up on an 

object that sounded like Bob, her sense of hearing was not the most appropriate protocol 

in the given environment to authenticate Bob; Alice instead used her sense of sight to 

confirm whether or not the object was Bob.   

In a different environment, the protocol might change as well.  For example, if 

Bob calls Alice on the telephone, upon picking up the receiver and acknowledging a 

successful transmission connection, Alice immediately listens to the tone and inflection 
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of the voice emanating from the receiver.  Once Bob identifies himself, Alice uses her 

sense of hearing to decide whether or not she believes the person on the other end of the 

connection really is Bob.  Alice’s sense of hearing is no more reliable in this situation 

than in the previous situation, but it is more appropriate.  There may be times when Alice 

will use multiple protocols to authenticate an object; and there may be times when Alice 

is not equipped with the proper set of protocols to authenticate a given object.  However, 

in most situations, Alice can feel reasonably sure she can authenticate most objects in 

most environments; computers are not so lucky. 

Not every computer’s operating system will support every authentication 

protocol.  When multiple authentication protocols are supported by an OS (as is the case 

with Windows 2000 Server [BOS00]), the protocol to be used will be determined by both 

the client and server (based on protocols common to both) [SOL00].  Furthermore, it is 

assumed that having multiple authentication protocols not only adds complexity to the 

system, but it also requires more memory from the system.  Complexity and increased 

memory requirements are contrary to maintaining the smallest possible footprint for 

WinCE.  This chapter will discuss several authentication protocols supported in Talisker, 

and the Department of Defense’s Public Key Infrastructure (PKI). 

Talisker, the next generation WinCE operating system, presumably should 

provide more functionality than its predecessor.  One function that Talisker provides that 

its predecessor does not is support for Kerberos.  Kerberos is an authentication protocol 

used for mutual authentication between a client and server. [OWS3n]  Kerberos is also 

supported by Windows 2000 [MWS2v]. 

B. KERBEROS 

Conceptually, Kerberos is an authentication protocol based on tickets and session 

keys.  In a network scheme, in order for Alice to prove her identity to Bob, she first has to 

obtain a ticket from a centralized authority to present to Bob.  The centralized authority is 

known as the Key Distribution Center (KDC).  Domain controllers in Windows 2000 

implement the KDC. [MWS2v]  Windows 2000 is mentioned and used to keep the 

example simple.   
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Each domain contains a Kerberos authority, which a user (client) of that domain 

must contact to receive a ticket from the KDC.  If Alice and Bob are in the same domain, 

they share the same Kerberos authority.  In the case where Alice shares the same domain 

as Bob, Alice can go directly to her local KDC and get a ticket for Bob.  To get a ticket 

for Bob, Alice must prove her identity to the KDC by proving knowledge of her 

password or private key (in the case of smart card logon).  [MWS2v] 

The ticket that Alice gets contains a lot of information, which includes Alice’s 

name, and a randomly generated encryption key (session key).  The KDC locks this 

information in the ticket by encrypting it with a master key generated from Bob’s 

password that only Bob and the KDC share.  Once Alice presents the ticket to Bob, Bob 

can verify that the contents really came from the KDC by successfully decrypting the 

ticket.  In this scheme the idea is that Bob will decrypt the ticket, look at the client’s 

name, and realize that whoever sent the ticket to him must really be Alice because the 

KDC validated her identity before giving her the ticket.  [MWS2v] 

The reader should note in the previous example, Bob really has no idea who sent 

him the ticket.  Although understanding the ticket process in Kerberos is fairly straight 

forward, there is another step included in the process to ensure that a bad guy is not 

simply replaying a recorded version of the ticket and masquerading as Alice.  This 

additional step requires Alice to send the ticket and prove that she is the owner of the 

ticket.  This is accomplished through the use of the session key. [MWS2v] 

Alice must prove to Bob that she knows the session key that the KDC gave to 

both Bob and her.  Alice proves to Bob she knows the session key by sending him a little 

package called an authenticator along with the ticket.  The authenticator is Alice’s name 

plus the time on her clock, encrypted with the session key.  If Bob can decrypt this 

authenticator, the name inside matches the client’s name inside the ticket, and the 

timestamp is recent and not in his replay cache, Bob accepts this as proof of Alice’s 

identity. [MWS2v] 
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Figure 4.1 Kerberos Protocol Process (After: [STA99]) 

Figure 4.1 depicts Alice’s request to talk to Bob.  In this example Alice and Bob 

belongs to the same realm (domain).  When Alice logs onto her workstation and requests 

to talk to Bob the following process occurs: [KAU95, STA99] 

1. Alice logs on to her workstation and requests a ticket-granting 

ticket. 

2. Authentication server verifies Alice’s access right in the 

database, creates a ticket-granting ticket and session key.  The 

results are encrypted using Alice’s password and sent back to 

Alice.   

3. Alice sends the KDC (depicted as Kerberos in Figure 1) the 

ticket she received, Bob’s name, and an authenticator, which 

consists of the time of day encrypted with the session key. 

4. The ticket-granting server decrypts the ticket and authenticator, 

verifies the request, then if the request is valid, the KDC constructs 

a new key, for use in communication between Bob and Alice, and 
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the KDC also constructs a new ticket, which consists of the newly 

generated key, Alice’s name, and an expiration time.  The new 

ticket is encrypted with Bob’s master key.  The newly encrypted 

ticket, Bob’s name, and the session key are encrypted with Alice’s 

master key and sent back to Alice. 

5. Alice decrypts the information and sends a request to Bob.  The 

request consists of the ticket, which Alice received that is 

encrypted with Bob’s master key (session key and Alice’s name) 

and an authenticator (time and session key).   

6. Bob decrypts the session key and discovers Alice’s name and a 

session key.  Bob decrypts the authenticator and sees that the party 

to which he will communicate does indeed know the session key; 

he also checks the time in the authenticator to ensure it is close to 

the current time (a step taken to mitigate replay attacks).  Bob 

sends messages to Alice. 

For more information on Kerberos, the reader can reference [MWS2v] as a 

starting point.  As mentioned earlier, the Kerberos protocol requires the client to present a 

valid and correct password or private key to the server in order to receive a ticket.  Most 

readers are familiar with passwords, but they may not be as familiar with private keys.  

Private keys are often associated with a PKI, which will be discussed in Section D.  

Talisker does not provide any documentation stating that it supports a PKI, but it does 

support a component that PKIs can support as well: smart cards [OWS3n]. 

C. SMART CARDS 

Smart cards are credit card size devices with a crypto-capable microprocessor 

[OWS3o].  A layer of security can be added to WinCE by using smart cards as a 

mechanism to store authentication information or to enable digital signing.  The WinCE 

smart card subsystem supports CrytoAPI through smart card service providers (SCSPs), 

which are dlls (defined in Chapter V, Section D, subsection 6) that enable access to 

specific services.  The subsystem provides an interface between the smart card reader 

hardware and the applications.  Windows CE does not provide SCSPs as part of the 
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operating system code that is shipped to the OEMs.  Smart card vendors must provide the 

appropriate SCSPs.  Windows CE does provide the interfaces shown in Table 4.1. 

Subsystem component File Description 

Resource manager Scard.dll Uses the Win32 APIs to manage 
access to multiple readers and 
smart cards 

Resource manager helper library Winscard.dll Exposes PC/SC services for using 
smart cards and smart card readers. 

Smart card reader helper library Smclib.lib Provides common smart card 
driver support routines and 
additional T=01 and T=1 protocol 
support to specific drivers as 
needed 

Sample smart card reader drivers Pscr.dll 

bulltlp3.dll 

stcusb.dll 

SwapSmart PC reader driver. 

Serial reader driver. 

Universal serial bus (USB) reader 
driver. 

 
Table 4.1 Windows CE Smart Card Interfaces (From: [MWS2w]) 

Typically, a smart card system consists of applications, a subsystem that handles 

communication between smart card readers and the applications, readers (hardware not 

included with WinCE subsystem), and the smart card.  Figure 4.1 illustrates this 

relationship and process flow: [MWS2w] 

                                                 
1 T=x is a type of data manipulation language table, see [MWS2y]. 
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Figure 4.2 Windows CE-based Smart Card System Architecture (From: [MWS2w]) 

In this section, the WinCE smart card subsystem was briefly discussed but also of 

note is a Microsoft press release in June 2000.  This press release allows the reader to 

understand that smart cards and smart card technology has begun its proliferation in both 

the business and government communities as indicated by the following quote from the 

article. [OWS3p] 

 The General Services Administration (GSA) is an example of a forward-
looking organization working to deploy smart cards to the federal 
government.  GSA recently awarded a 10-year contract estimated at $1.5 
billion to five industry partners….Microsoft is the subcontractor of each of 
these prime awardees. 

Smart cards used as a component in the PKI architecture are used as mechanisms 

that store a user’s private key.  The smart card allows the user to access the network 

and/or possibly services on the network.  The smart card provides a means of identifying 
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the user to the network and authenticating the user.  The Department of Defense (DoD) 

plans to use smart cards as part of their PKI [DOD01]. 

D. DOD PUBLIC KEY INFRUSTRUCTURE (PKI) 

The Department of Defense’s PKI is an asymmetric cryptography key system, 

which means it uses two different keys to encrypt and decrypt information [DOD01].  

The reader should note this key system is different from Kerberos, mentioned earlier, 

which uses a symmetric key system for its session key service.  In PKI, the keys are 

complementary [DOD01].  Public Key Infrastructure has in addition to the asymmetric 

key other components that enable it to provide the following IA services.   

• Authentication: ensures senders are who they claim to be 

• Confidentiality: ensures data remains private 

• Integrity: ensures data has not been modified 

• Non-repudiation: ensures person sending cannot deny participation 

The components that the PKI is built upon to provide the services mentioned 

above are as follows: [DOD01] 

• Certificate Policy: this is a policy that establishes the common security rules 

for a given assurance class under which certificates are generated and 

managed to maintain trust within a PKI. 

• Public Key Certificates: this is the cornerstone of the PKI technology; it is 

the ability to distribute public keys to large populations while maintaining the 

trust that each certificate is associated with the identity, public and private 

keys of the claimed subscriber. 

• Token: this is a mechanism used to hold certificates and private keys. 

• Subscriber: the customers of the products and services provided by a PKI. 

• Registration: the process that subscribers use to identify themselves to the 

PKI and request certificates. 
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• Certificate Management: this is the generation, production, distribution, 

control, tracking, revocation, and destruction of public/private keys and 

associated certificates. 

To understand exactly how PKI works, the reader can reference [DOD01].  This 

work will provide a very brief overview to give the reader a basic understanding.  In a 

PKI a subscriber can log onto a PK-enabled computer with his or her private key, which 

could be stored on a smart card or 3.5” floppy disk or some other medium.  The 

subscriber will have access to the computer and any services provided by the PKI in 

accordance with his or her authorizations.  The subscriber’s authorization is based on his 

or her private key, which identifies the person. 

During the system’s authentication process, the subscriber’s identity is verified 

along with the services that the subscriber can access.  Along with providing the system 

with the subscriber’s private key, the subscriber should be required to enter a password or 

fingerprint or some other type of identifying information, to mitigate the possible loss or 

theft of the subscriber’s private key.  This analysis will not discuss the underlying 

mechanisms that make a PKI work. Here it is sufficient to describe how some of the PKI 

components can be supported by WinCE. 

As mentioned earlier, WinCE, Talisker, has a certificate database.  Talisker also 

has various certificates preloaded as with most Microsoft browsers to support companies 

such as Verisign and others.  Talisker supports smart cards through its CAC subsystem.  

The aforementioned functionality in Talisker may make it possible to modify WinCE to 

support PKI without overhauling the code.   

E. CONCLUSION 

Authentication is one facet of system security.  Thus, it enhances the security of 

the operating system.  In deciding which authentication protocol to use, developers must 

chose one robust enough to allow maximum participation with current and future 

technologies (as well as can be anticipated).  Talisker provides a robust authentication 

protocol (Kerberos), and it also supports two key components of a DoD’s PKI: 

certificates and smart cards.  Talisker may prove to be a bridging device between current 

technology and future technology. 
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V. EMERGING TECHNOLOGIES 

 

 

 

A. MOORE’S LAW 

In 1965, Gordon Moore, eventual cofounder of the Intel Corp., predicted that the 

density of transistors in an integrated circuit would double every year.  Moore’s 

prediction was later changed to reflect an 18-month cycle.  His prediction became known 

as Moore’s law. [OWS3e]  Not only has his law proven to be accurate over the years, but 

it has also described the trends of microprocessor performance [OWS3e].   Today, in 

some areas, technology is advancing at an even faster rate than Moore’s law 

hypothesized.  For example, according to Lt. Gen. Michael Hayden, director of the 

National Security Agency (NSA), NSA is losing the race to keep up with technology; the 

development cycle of the global industry (telecommunications) is moving at the “speed 

of light” [OWS3f].  

1. Computing at the Speed of Light (Optical or Photonic Computing) 

Technology may not evolve literally at the speed of light (186,171 miles per 

second), but the analogy puts in perspective the pace at which technology is changing.  

One such change that is being researched, although real world uses may be years away, is 

the slowing down of light [OWS3g].  A Danish physicist, Lene Vestergaard, has 

developed a way to slow light down to 38 miles per hour [OWS3g].  Controlling the 

speed of light presents many possibilities.   

One such possibility is the development of extremely fast computers based 
on optical switches that would open and close under the control of very 
weak laser beams.  Computer systems could then use optically switched 
logic gates instead of today’s electronic logic gates. [OWS3g] 

If this innovation can be realized, the power of the desktop could conceivably be 

in the palm of our hands. 
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2. Computing on the Atomic Scale (Quantum Computing) 

Another processing technology that, if realized, will revolutionize computing is 

quantum computing.  Quantum computing is based on the quantum theory, which arose 

at the beginning of the 20th century to explain certain phenomena that could not be 

modeled using classical mechanics.  Quantum computing is based on the idea of using 

quantum bits, called qubits, that can represent ones, zeros, or both at the same time 

(superposition), which is different from electronic circuits in today’s computer that can 

represent only ones and zeros [OWS3h].  The increased number of data states in quantum 

computing will increase the computation power of computers, and the superposition of 

qubits will enable computers to apply the same operation to many numbers in parallel in 

one step [OWS3h].  Quantum computing would allow computer scientist to overcome 

computational complexity hurdles and would permit a variety of here-to-fore 

“impossible” computations. 

B. TOMORROW (THE FUTURE) 

It is difficult to estimate what will emerge, but much of the research in the areas 

of computing power seems to indicate that palm-sized devices will have a role in 

ushering in our future (whether PDAs are transitional hardware or “the future” remains to 

be seen).  From DNA computing to chaotic computing and everything in between 

(photonic computing, and quantum computing), the focus is on making computers 

smaller, faster, and more powerful.  Conceptually, computers will be a part of everything 

from our appliances to our transportation.  In a PC Magazine Online article (Fast-

Forward to 2010) written by Carol Levin in January 1999, she interviewed two IBM 

visionaries, Paul Horn – director of IBM research, and Phil Hester – chief technology 

officer of IBM Personal Systems Group [OWS3i].  They envision a possible future as 

follows: 

Your refrigerator will know when you’re running low on milk and remind 
your hand-held device so you can pick up a quart on the way home.  At 
the grocery store, you’ll pick up a few items, toss them in a bag, and leave; 
radio-frequency tags on the items will charge your account automatically.  
Your car dealer will detect car problems remotely and correct them by 
downloading software repairs directly to your car over an Internet 
connection.  A portable, miniaturized storage device will store all the 
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information in the Library of Congress.  They went on to say that within 
the next 20 years, a holographic cube will offer storage for $1 per 
terabyte…and digital assistants (PDAs) will give you thoughtful advice. 
[OWS3i] 

To the observant reader, the future may appear more near than far.  As mentioned 

in Chapter II, PDAs are becoming more popular among professionals and consumers.  

The Pocket PCs (Casio, IPaqs and Jornada) are continually evolving to provide improved 

functionality, such as improved synching capabilities, multitasking, and processing power 

[OWS3j].  Pocket PCs also provides new software and expansion possibilities, which can 

be used for everything from memory cards to modems.  With smart appliances entering 

the market place and the proliferation of Internet connectivity for PDAs, the future may 

be as soon as tomorrow. 

Tomorrow is our future, but today’s technology is our bridge to that future.  If we 

believe the future will be similar to that of IBM’s visionaries, PDAs will have a 

significant role in that future.  Today PDAs don’t give us thoughtful advice, but they do 

provide scheduled reminders.  Our refrigerators are not notifying our PDAs to remind us 

to pick up milk, but our PDAs can remind us of our shopping list.  PDAs have a useful 

role in some people’s lives today, and it is a role that is not far removed from their 

predicted future role.  To achieve the envisioned future, there must be other technologies 

introduced to bridge the gap from where we are today to where we will be tomorrow.  

One of these is the Microsoft .NET effort. 

C. TODAY (.NET) 

Microsoft’s .NET (pronounced “dot net”) initiative has been described as an 

ambitious plan to build an operating system on the Internet itself [LEV01].  The .Net 

initiative is of interest because it may be a technology that will enable our automobile 

mechanics to detect problems with our cars, remotely, and notify us via email on our 

PDAs – a possible interim step to achieving the futuristic goal of having the mechanic 

repair certain problems by downloading software. 

By describing .Net as an operating system on the Internet, the reader should 

understand that each device that connects to the operating system (Internet) is treated as a 

potential process – review Chapter II.  (Also each device will have its own local 
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operating system such as Win20002, WinCE, WINNT, etc.  The Internet operating 

system mentioned is for the reader to understand the illusion created by .Net 

applications.)  Just as an operating system has to create a process, .Net has to “create a 

process” as well.  Once a person who is a subscriber to .Net logs onto a computer 

connected to the Internet, a process begins on that person’s behalf – consistent with the 

operations of an operating system.  A NewsWeek article states,  

Microsoft will (after the .Net initiative) transform its business model to 
focus on subscription-based services. [LEV01] 

  Conceivably, through this subscription process to .Net, consumers will interact 

with business applications as well as other Microsoft services.  

Each device that connects to the Internet and executes assemblies (a .NET 

component that will be explained later) is described as a potential process.  As explained 

in Chapter II, processes reserve resources to execute programs.  When a person logs onto 

a device, goes out to the Internet, and executes an assembly, the device becomes a 

process working on that user’s behalf.  The device reserves the resources needed for the 

program (assembly) to execute.  In the .NET framework all the resources needed to 

execute an assembly may not be contained in the assembly or on the local machine 

[MWS2k].  Therefore proper execution of the assembly may require additional resources, 

which may have to be retrieved within the .NET framework.  This may be transparent to 

the user, so, from the user’s perspective, .NET may appear to be an operating system. 

.NET is also described as a development platform.  One article describes .NET as 

an open language platform for enterprise and Web development [MEY01].  Although 

.NET may provide numerous benefits for both users and developers, it is the developers 

who will notice and benefit from the ASP.NET component of .NET [MEY01].  

ASP.NET maintains session state without storing client information on the server, and 

developers no longer have to use URL encoding or cookies [MEY01].  However, there 

are security implications (which will not be discussed) that developers must consider 

when deciding whether or not to use this capability.   

                                                 
2 Windows 2000, Windows NT 4.0, Windows 95, Windows Me, Windows 98, Windows 98 SE and 

Windows CE are trademarks of the Microsoft Corporation. 
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There may be differences of opinion over whether or not .NET is an operating 

system on the Internet or strictly a development technology, but that is more a matter of 

perspective than functionality.  Its functionality has characteristics of an operating system 

and of a development platform.  Microsoft characterizes .NET as  

a new platform for building integrated, service-oriented applications to 
meet the needs of today’s Internet business; applications that gather 
information from, and interact with, a wide variety of sources, regardless 
of the platforms or languages in use. [MWS2l]  

Microsoft’s description of .NET as “a new platform for building…” confirms that 

.NET is a development platform.  However, in the very same description, Microsoft 

describes .NET’s applications in terms of processes…“applications gather… a wide 

variety of sources.”  Chapter II described a process as an entity that reserved resources to 

enable a program to execute; in a similar sense, application must gather or reserve 

sources or resources to ensure proper execution.  As .NET is described in more detail 

(detailed overview), the application’s (assembly’s) comparison to a process should 

become more obvious. 

D. DETAILED OVERVIEW OF .NET 

The .NET structure, to include its internals and components, is more concrete.  

The .NET framework is much too vast to discuss in detail in one chapter, but an overview 

of the technology can be adequately explained.  At the heart of .NET is a desire to 

standardize and integrate proprietary information [MWS2l].  To fulfill the requirement of 

standardization, .NET has embraced the Extensible Markup Language (XML) standard 

for describing data [MWS2l].   

XML is a language for describing data elements.  It describes the 
attributes of the data and identifies its intended meaning and use. 
[MUR01] 

In addition to using a common standard, developers also need to use a common 

protocol; .NET will use Simple Object Access Protocol (SOAP) [MWS2m]. 

Overall, .NET has six layers of structure [MEY01].  Figure 5.1 shows the six 

layers.  The top layer in the .NET structure is the Web Services layer.  The layer below 

Web Services is the Framework and Libraries layer followed by the Interchange and 

Development Environment layer, which has two separate components:  interchange 
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standards and development environment.  The next layer down is the Component Model 

layer followed by the Object Model layer.  The final or bottom layer is the Common 

Language Runtime layer [MEY01]. 

 
Figure 5.1 .NET Structure (From: [MEY01]) 

1. Web Services 

Web Services is designed to provide .NET users, persons and companies, with 

services for e-commerce and business-to-business applications [MEY01].  Microsoft’s 

.NET user interface promises to fulfill Berners-Lee’s (inventor of the Web) vision of the 

Web being a collaborative (i.e., multi-user read/write) environment [MWS2m].  A Web 

Service is a URL–addressable resource that programmatically returns information to 

clients [MWS2n].  Clients can use Web Services without worrying about the 

implementation details of those services [MWS2n]. 

The web services infrastructure is designed as follows:  a discovery mechanism to 

locate Web Services, a service description for defining how to use those services, and 

standard wire formats with which to communicate [MWS2o].  Figure 5.2 details the Web 

Services infrastructure.  The role of the Web Services directories, discovery, description 

and wire formats are as follows [MWS2o]: 
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Figure 5.2 Web Service Infrastructure (After: [MWS2o]) 

Web Services Directories provide a central location to locate Web 

Services provided by other organizations.  Web Services directories such 

as a Universal Description, Discovery and Integration (UDDI) registry 

fulfills this role [MWS2o].  The XML schemas associated with UDDI 

define four types of information that would enable a developer to use a 

published Web Service: business information, service information, 

binding information, and information about specifications for services 

[MWS2p].  The Remoting Security3, a security mechanism in .NET, will 

provide the integrity checking service; for more on the remoting security 

mechanism see [MWS2k]. 

                                                 
3 A Microsoft Corporation term – this service provides support for remote objects invocation that can 

span AppDomains, processes, or machines [MWS2k]. 
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Web Services Discovery is the process of locating, or discovering one or 

more related documents that describe a particular Web Service using the 

Web Service Description Language (WSDL) [MWS2o].   

A published .disco file, which is an XML document that contains links to 
other resources that describe the Web Service, enables programmatic 
discovery of a Web Services. [MWS2q] 

A Web Service client may bypass the discovery process if the location of 

the service description is known [MWS2o].  When a Web Service is 

created for private use, there will not be a public means of finding it 

[MWS2q]. 

Web Service Clients must understand how to interact with a particular 

Web Service before they can use it [MWS2o].  Therefore it is necessary to 

provide a service description that defines what interactions the Web 

Service supports [MWS2o].  The service description is an XML document 

written in WSDL that defines the format of messages the Web Services 

understands [MWS2r]. 

Web Services Wire Formats enable universal communication by using 

open wire formats, which are protocols understandable by any system 

capable of supporting the most common Web standards.  SOAP, a simple 

lightweight XML–based protocol, is key for providing Web Service 

communication. [MWS2o] 

2. Frameworks and Libraries 

Microsoft’s .NET framework and libraries define a set of guidelines as a way to 

help class library designers more fully understand the trade-offs between different 

solutions [MWS2s].  This layer is intended to provide a well-defined managed class 

library with the following characteristics [MWS2s]: 

Consistent: Similar design patterns are implemented across libraries. 

Predictable: Functionality is easily discoverable.  There is typically only 

one way to perform a specific task. 
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Multilanguage:  Functionality is accessible to many different programming 

languages. 

.Net contains thousands of reusable components [MEY01].  Some of the most 

immediately attractive aspects for developers are ASP.NET, active server pages for 

developing smart Web sites and services; ADO.NET, an XML-based improvement to 

ActiveX Data Objects, for databases and object-relational processing; and Windows 

Forms for graphics [MEY01]. 

3. Interchange Standards/Development Environment 

The third layer from the top has two different components.  The interchange 

standard component is an XML-based standard that serves as a platform-independent 

means of exchanging objects [MEY01].  The most important are SOAP, an increasingly 

popular way to encode objects, and WSDL [MEY01].  The development environment 

provides a common software development environment offering facilities for 

development, compilation, browsing, and debugging shared by many languages 

[MEY01]. 

4. Component Model 

The fourth layer from the top of the platform’s structure is the component model.  

The component model for .NET is based on object-oriented ideas [MEY01].  In .NET, 

developers build assemblies, which consist of numerous classes with well-defined 

interfaces [MEY01].  Assemblies are Portable Executable (PE) files [MSW2l].  

Assemblies (managed PE files) are not x86 machine code or machine code targeted to 

any specific CPU platforms; assemblies are MicroSoft Intermediate Language (MSIL) 

code generated by language compilers that support .NET [MSW2l].  Each assembly 

contains metadata [MSW2l].   

Metadata is used to permit communication about the data to take place 
between programs that do not otherwise know about each other. [MUR01] 

The components of an assembly are described in a manifest. [MWS2l] 

A manifest is a block of data that enumerates the assembly's files, and 
controls what types and resources are exposed outside of the assembly.  
The manifest also governs how references to these types and resources are 
mapped onto the files that contain their declarations and implementations, 
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and enumerates other assemblies on which this one is dependent. The 
existence of a manifest provides a level of indirection between consumers 
of the assembly and the implementation details of the assembly and makes 
assemblies self-describing. [MWS2l] 

For the component model layer, this paper only mentions assemblies, manifests, 

and metadata.  The reader can find out more about the components of this layer by 

visiting the Microsoft development web site [MWS2x].  

5. Object Model 

This level provides the conceptual basis on which everything else rests, especially 

the object-oriented type system [MEY01].   

The formal specification of the type system implemented by the common 
language runtime is called the Common Type System (CTS).  The CTS 
specifies how object classes (called types) are defined. [MWS2l] 

The following is the list of possible members that a class type can contain 

[MWS2l]: 

Field: A data variable that is part of the object’s state.  Fields are 

identified by their name and type [MWS2l]. 

Method: A function that performs an operation on the object, usually 

changing the object’s state.  Methods have a name, signature, and 

modifiers.  The signature specifies the calling convention, number 

of parameters (and their sequence), the types of the parameters, 

and the type of value returned by the method.  The modifiers can 

include custom attributes, whether the method is public, private, 

static, and so on [MWS2l]. 

Property: To the caller, this member looks like a field.  But to the class 

implementor, this member looks like a method.  Properties allow 

an implementor to calculate a value only when necessary and allow 

a class user to have simplified syntax.  Properties also allow you to 

create read-only or write-only “fields” [MWS2l]. 
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Event: Events provide a notification mechanism between an object and 

other interested object.  For example, a button could offer an event 

that notifies other objects when the button is clicked [MWS2l]. 

The common language specification defines restrictions ensuring language 

operability [MEY01]. 

6. Common Language Runtime 

The common language runtime provides the basic set of mechanisms for 
executing .NET programs regardless of their language of origin: 
translation to machine code (judiciously incremental translation, or 
jitting), more commonly known as “just in time”, loading security 
mechanisms, memory management (including garbage collection), version 
control, and interfacing with non-.NET code. [MEY01] 

The .NET framework represents a new way of developing software by providing 

technologies (via the .NET common language runtime engine) that support rapid software 

development [MWS2l].  Some of the features provided by the .NET common language 

runtime engine are listed below [MWS2l]: 

Consistent programming model: All application services are offered via 

a common object-oriented programming model, unlike today where some 

OS facilities are accessed via DLL functions and other facilities are 

accessed via COM objects. 

Simplified programming model:  .NET seeks to greatly simplify the 

plumbing and arcane constructs required by Win32 and COM. 

Specifically, developers no longer need to gain an understanding of the 

registry, GUIDs, IUnknown, AddRef, Release, HRESULTS, and so on. It 

is important to note that .NET doesn't just abstract these concepts away 

from the developer; in the new .NET platform, these concepts simply do 

not exist at all. 

Run once, run always:  All developers are familiar with “DLL Hell,” but 

for those who are not, a dynamic link library (dll) is a collection of 

subroutines that can be loaded to support the execution of an application 

(application x).  When the code in these libraries are updated (new 

versions), the new dll (updated version) might no longer support the 
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execution of application x.  If a user downloads the new dll to support the 

execution of application y, the new dll, if it is an updated version of the 

old dll used to support application x, will over-write the old dll and the 

user will not be able to execute application x.  Since installing components 

for a new application can overwrite components of an old application, the 

old app can exhibit strange behavior or stop functioning altogether. The 

.NET architecture now separates application components so that an app 

always loads the components with which it was built and tested. If the 

application runs after installation, then the application should always run. 

This marks the end of DLL Hell. 

Execute on many platforms:  Today, there are many different flavors of 

Windows: Windows 95, Windows 98, Windows 98 SE, Windows Me, 

Windows NT 4.0, Windows 2000 (with various service packs), Windows 

CE, and soon a 64-bit version of Windows 2000. Most of these systems 

run on x86 CPUs, but Windows CE and 64-bit Windows run on non-x86 

CPUs. Once written and built, a managed .NET application (that consists 

entirely of managed code) can execute on any platform that supports the 

.NET common language runtime. It is even possible that a version of the 

common language runtime could be built for platforms other than 

Windows in the future. Users will immediately appreciate the value of this 

broad execution model when they need to support multiple computing 

hardware configurations or operating systems. 

Language integration:  COM allows different programming languages to 

interoperate with one another. .NET allows languages to be integrated 

with one another. For example, it is possible to create a class in C++ that 

derives from a class implemented in Visual Basic. The .NET platform can 

enable this because it defines and provides a type system common to all 

.NET languages. The Microsoft Common Language Specification 

describes what compiler implementors must do in order for their 

languages to integrate well with other languages. Microsoft provides 

several compilers that produce code targeting the .NET common language 
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runtime: C++ with managed extensions, C# (pronounced "C sharp"), 

Visual Basic (which now subsumes VBScript and Visual Basic for 

Applications), and JScript®. In addition, companies other than Microsoft 

are producing compilers for languages that also target the .NET common 

language runtime.  

Code reuse:  Using the mechanisms just described, you can create your 

own classes that offer services to third-party applications. This, of course, 

makes it extremely simple to reuse code and broadens the market for 

component vendors. 

Automatic resource management:  Programming requires skill and 

discipline. This is especially true when it comes to managing resources 

such as files, memory, screen space, network connections, database 

resources, and so on. One of the most common bugs occurs when an 

application neglects to free one of these resources, causing that application 

or others to perform improperly at some unpredictable time. The .NET 

common language runtime automatically tracks resource usage, 

guaranteeing that an application never leaks resources (in other words, this 

ensures the proper management of resources so that a resource is freed 

only after an application has finished using it and not before, it also 

ensures the resource is released and made available for other applications 

once the original application has finished using it).  In fact, there is no way 

to explicitly free a resource.  

Type safety:  The .NET common language runtime can verify that all 

code is type safe. Type safety ensures that allocated objects are always 

accessed compatibility. Hence, if a method input parameter is declared as 

accepting a 4-byte value, the common language runtime will detect and 

trap attempts to access the parameter as an 8-byte value. Similarly, if an 

object occupies 10 bytes in memory, the application can't coerce this into a 

form that will allow more than 10 bytes to be read. Type safety also means 

that execution flow will only transfer to well-known locations (namely, 

method entry points).  
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Rich debugging support:  Because the .NET common language runtime 

is used for many languages, it is now much easier to implement portions 

of applications using the language that is best suited for it, the application. 

The .NET common language runtime fully supports debugging 

applications that cross language boundaries. The runtime also provides 

built-in stack-walking facilities, making it much easier to locate bugs and 

errors.  

Consistent error handling:  One of the most aggravating aspects of 

programming in Windows is the inconsistent ways errors are reported. 

Some functions return Win32 error codes, some return HRESULTS 

(which is a return value of COM functions and methods [MWS2u]), and 

some raise exceptions. In .NET, all errors are reported via exceptions. 

Exceptions allow the developer to isolate the error-handling code from the 

code required to get the work done. This greatly simplifies writing, 

reading, and maintaining code. In addition, exceptions work across 

module and language boundaries as well. 

Deployment:  Today, Windows-based applications can be incredibly 

difficult to install and deploy. There are usually several files, registry 

settings, and shortcuts that need to be created. In addition, completely 

uninstalling an application is nearly impossible. With Windows 2000, 

Microsoft introduced a new installation engine that helps with all of these 

issues, but it is still possible that a company authoring a Microsoft 

Installer Package may fail to do everything correctly. .NET seeks to make 

these issues ancient history. .NET components are not referenced in the 

registry. In fact, installing most .NET-based applications will require no 

more than copying the files to a directory, and uninstalling an application 

will be as easy as deleting those files. 

Security:  Traditional OS security provides isolation and access control 

based on user accounts. This has proven to be a useful model, but at its 

core it assumes that all code is equally trustworthy. This assumption was 

justified when all code was installed from physical media (such as CD-
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ROM) or trusted corporate servers. But with the increasing reliance on 

mobile code such as Web scripts, Internet application downloads, and e-

mail attachments, there is a need for more granular control of application 

behavior.  The .NET Code Access Security model will deliver the granular 

control [MWS2l].  For more on the .NET Code Access Security model see 

[MWS2k]. 

E. CONCLUSION 

.NET is more complex then what has been described in this chapter.  However, 

this chapter gives a fundlemental overview of what .Net is, what it is designed to do, and 

how it is designed.  The focus of this chapter has been on the .NET structure.  For more 

on .NET visit the Microsoft development web page [MWS2l].  Although .NET is being 

designed to work on any operating system, as of the writing of this paper, it only works 

on Windows-based operating systems – Windows CE being one. 
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VI. CONCLUSION AND RECOMMENDATIONS 

 

 

 

A. CONCLUSION 

Pocket PC, which is the third generation of the WinCE operating system designed 

to run on small devices from embedded systems to Personal Digital Assistants (PDAs), is 

gaining popularity among professionals and is estimated to own 40% of the market share 

for palm-sized devices by 2004 [OWS3c].  Today, many people are using PDAs; and as 

PDA prices drop, additional users are anticipated in the near future.  The trend among 

professionals towards using Pocket PC instead of Palm, which is a competing operating 

system, seems to indicate a preference for functionality and familiarity. 

The familiarity of WinCE (for PDAs) is based on its applications, which are 

similar to those found on desktops executing Windows operating system.  The use of 

WinCE for embedded devices and PDAs should raise security concerns because of recent 

exploits against the Palm operating system [KIN01].  Although the exploits are not 

against WinCE, the exploits prove that these small-foot printed operating systems are 

vulnerable.  This vulnerability puts at risk information stored on PDAs as well as 

appliances running WinCE as an embedded OS. 

Mitigating these risks require security.  Security must be implemented to allow 

the operating system to continue to perform at a reasonable level (a subject for further 

research) while ensuring privacy of data and protection of the operating system itself to 

include the data, code, and mechanisms (dependencies) of the operating system.  Any 

success in enhancing the security of WinCE requires understanding the operating system 

through analysis of its code.  That analysis is facilitated through an understanding of the 

operating system itself. 

This portion of the project examined WinCE’s threads and processes data 

structures, creation, and termination.  This work also looked at the authentication 

mechanism in Talisker, the next generation of the WinCE operating system.  Talisker 
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supports Kerberos, an authentication protocol based on tickets, and session keys 

(symmetric keys).  Talisker also supports components of a PKI, which is a key 

management scheme based on asymmetric keys (public keys, private keys and 

certificates).  Public key infrastructure delivers authentication, integrity, confidentiality, 

and non-repudiation. 

PKI does not make an operating system more self-protecting.  A public key 

infrastructure provides a means for identifying an object (authentication), providing 

integrity and confidentiality of the data being transferred between objects, and ensuring 

that an object/subject cannot deny executing a transaction (non-repudiation).  Thus, PKI 

is a means for providing security to data.  However, authentication, which is used to 

identify an object/subject, does provide limited security to the operating system. 

Authentication can be used to insure that only authorized individuals gain access 

to the PDA.  By providing such a mechanism, for example, by requiring a user to provide 

a valid smart card with an authorized pass phrase bound to that particular smart card, and 

by having a valid certificate in the PDA’s certificate database before the system (PDA) 

will initialize, provides initial protection to the device.  This work also discussed future 

technologies that may affect WinCE.  Faster processors may make it possible to enhance 

security without degrading performance to unacceptable levels.  Personal Digital 

Assistants may be required to support new network technologies, such as .NET.  To 

avoid overlooking security requirements for these future technologies, developers must 

decide what support to implement and how to ensure security with the added 

functionality.  

B. RECOMMENDATIONS FOR FUTURE RESEARCH 

There are a few areas for future research.  In the WinCE operating system, the file 

system, the I/O system, the memory and cache management, etc., should be examined.  

Through code analysis it should be determined whether or not WinCE can be modified to 

fully support PKI without having to completely rewrite the operating system.  By 

supporting PKI, conceivably, Pocket PC could be integrated into an “unclassified but 

sensitive” network without degrading the network’s integrity.  This is theoretically based 

on using a combination of technologies currently supported by Talisker, smart cards and 
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the PDA’s unique identification.  Further research is required to prove whether or not this 

is possible.  

In this work, there were certain security attributes in the create process function 

that were not used: lpsaProcess and lpsaThread (Chapter III, Section C, Subsection 1).  

Several areas of further research that could prove fruitful include determining what these 

attributes would provide to the operating system in terms of security; and if these 

attributes provide additional security, how they can be supported without significant 

modification of the code. 
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