
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

ANALYZING THREADS AND PROCESSES IN WINDOWS
CE

by

Titus R. Burns

September 2001

 Thesis Advisor: Cynthia E. Irvine
 Second Reader: Paul Clark

Approved for public release; distribution is unlimited

Report Documentation Page

Report Date
30 Sep 2001

Report Type
N/A

Dates Covered (from... to)
-

Title and Subtitle
Analyzing Threads and Processes in Windows CE

Contract Number

Grant Number

Program Element Number

Author(s)
Titus R. Burns

Project Number

Task Number

Work Unit Number

Performing Organization Name(s) and Address(es)
Research Office Naval Postgraduate School Monterey,
Ca 93943-5138

Performing Organization Report Number

Sponsoring/Monitoring Agency Name(s) and
Address(es)

Sponsor/Monitor’s Acronym(s)

Sponsor/Monitor’s Report Number(s)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes

Abstract

Subject Terms

Report Classification
unclassified

Classification of this page
unclassified

Classification of Abstract
unclassified

Limitation of Abstract
UU

Number of Pages
102

 NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-
0188

Public reporting burden for this collection of information is estimated to average 1 hour per response,
including the time for reviewing instruction, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden, to Washington headquarters Services, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management
and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave
blank)

2. REPORT
DATE
September 2001

3. REPORT TYPE AND DATES COVERED

Master’s Thesis
4. TITLE AND SUBTITLE: Title (Mix case letters)

Analyzing Threads and Processes in Windows CE
6. AUTHOR(S) Titus R. Burns

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING /
MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Windows CE 3.0, also known as Pocket PC for palm-sized devices, is becoming
increasingly popular among professionals and corporate enterprises. It is estimated that
by 2004 Windows CE will have a share of 40% of the marketplace for palm-sized
devices. The documented vulnerabilities against a major competitor of WinCE, Palm,
and the proliferation of palm-sized devices highlight the need for security for these
small-scale systems. This thesis is part of a larger project to enhance the security in
WinCE.

This thesis analyzed the threads and processes in WinCE, and discusses
authentication, public key infrastructure (PKI) and future technologies as each relates to
WinCE. The research discovered that Talisker, the next generation of WinCE, supports
Kerberos an authentication protocol, and it also supports PKI (a key management
system) components. Results of this thesis show that security can be enhanced in
WinCE without requiring a change to its code base.

15. NUMBER OF
PAGES

102

14. SUBJECT TERMS Operating System, Personal Digital Assistant, Security, Threads,
Processes, Authentication, Windows CE, Public Key Infrastructure

16. PRICE CODE
17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

 i

THIS PAGE INTENTIONALLY LEFT BLANK

 ii

Approved for public release; distribution is unlimited

ANALYZING THREADS AND PROCESSES IN WINDOWS CE

Titus R. Bums
Captain, United States Marine Corps

B.S., Prairie View A&M University, 1995

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2001

Author: S~~Y j£lA, ^. *Axsu*t<L
Titus R. Burns

Approved by: J/f*^^^ ^z/^t>%^-^
^Cynthia E. Irvine, Thesis Advisor

Paul Clark, Second Reader '

Information Systems Academic Group

111

THIS PAGE INTENTIONALLY LEFT BLANK

 iv

ABSTRACT

Windows CE 3.0, also known as Pocket PC for palm-sized devices, is becoming

increasingly popular among professionals and corporate enterprises. It is estimated that

by 2004 Windows CE will have a share of 40% of the marketplace for palm-sized

devices. The documented vulnerabilities against a major competitor of WinCE, Palm,

and the proliferation of palm-sized devices highlight the need for security for these small-

scale systems. This thesis is part of a larger project to enhance the security in WinCE.

This thesis analyzed the threads and processes in WinCE, and discussed

authentication, public key infrastructure (PKI) and future technologies as each relates to

WinCE. The research discovered that Talisker, the next generation of WinCE, supports

Kerberos an authentication protocol, and it also supports PKI (a key management system)

components. Results of this thesis show that security can be enhanced in WinCE without

requiring a change to its code base.

 v

THIS PAGE INTENTIONALLY LEFT BLANK

 vi

TABLE OF CONTENTS

I. PERSONAL DIGITAL ASSISTANT ..1
A. INTRODUCTION..1
B. PDA VULNERABILITIES...2
C. PDA SECURITY..2

1. Chapter II (Windows NT/UNIX)..3
2. Chapter III (WinCE) ...3
3. Chapter IV (Authentication)...3
4. Chapter V (Emerging Technology) ..4
5. Chapter VI (Conclusion and Recommendations)4

D. CONCLUSION ..4

II. OVERVIEW OF OPERATING SYSTEMS, PROCESSES AND THREADS5
A. INTRODUCTION..5
B. OPERATING SYSTEM BACKGROUND..8
C. PROCESSES ..9

1. Process Data Structure ..10
2. Process Life Cycle ..13
3. Process Switching and Process Context...15

D. THREADS ..17
E. SECURITY...18
F. WINDOWS NT AUTHENTICATION MECHANISM21

1. Windows NT-based Process and Thread Creation.........................22
2. Windows NT Thread Data Structure...24

G. CONCLUSION ..29

III. WINDOWS CE PROCESSES AND THREADS..31
A. INTRODUCTION..31
B. WINDOWS CE ..31
C. WINDOWS CE PROCESS...33

1. Creating a Process..34
2. Terminating a Process ...40

D. WINDOWS CE THREADS..41
1. Creating a Thread..42
2. Terminating a Thread ...44

E. CONCLUSION ..45

IV. AUTHENTICATION ..47
A. AUTHENTICATION BACKGROUND..47
B. KERBEROS ...48
C. SMART CARDS ..51
D. DOD PUBLIC KEY INFRUSTRUCTURE (PKI)......................................54
E. CONCLUSION ..55

 vii

V. EMERGING TECHNOLOGIES ...57
A. MOORE’S LAW..57

1. Computing at the Speed of Light (Optical or Photonic
Computing)...57

2. Computing on the Atomic Scale (Quantum Computing)...............58
B. TOMORROW (THE FUTURE) ..58
C. TODAY (.NET) ..59
D. DETAILED OVERVIEW OF .NET ..61

1. Web Services...62
2. Frameworks and Libraries ...64
3. Interchange Standards/Development Environment65
4. Component Model..65
5. Object Model ..66
6. Common Language Runtime..67

E. CONCLUSION ..71

VI. CONCLUSION AND RECOMMENDATIONS...73
A. CONCLUSION ..73
B. RECOMMENDATIONS FOR FUTURE RESEARCH.............................74

LIST OF REFERENCES..77
A. BOOKS AND ARTICLES ..77
B. OTHER ...78

1. Newsgroups and Mailing Lists [NGS1]...78
2. Microsoft MSDN Websites [MWS2] ...79
3. Other Websites [OWS3] ...82

INITIAL DISTRIBUTION LIST ...85

 viii

LIST OF FIGURES

Figure 2.1 WINNT EPROCESS Block (After: [SOL98]) ..11
Figure 2.2 Unix Process Data Structure (From: [BAC86])...12
Figure 2.3 Process Life Cycle (From: [BAC86]) ..13
Figure 2.4 Process Creation (From: [SOL00])..22
Figure 2.5 Create Thread...24
Figure 2.6 ETHREAD Block (After: [SOL98])..25
Figure 3.1 CreateProcess Function (From: [GAR99]) ..34
Figure 4.1 Kerberos Protocol Process (After: [STA99])...50
Figure 4.2 Windows CE-based Smart Card System Architecture (From: [MWS2w])53
Figure 5.1 .NET Structure (From: [MEY01]) ...62
Figure 5.2 Web Service Infrastructure (After: [MWS2o])..63

 ix

THIS PAGE INTENTIONALLY LEFT BLANK

 x

LIST OF TABLES

Table 2.1 Kernel Priority Levels (From: [SOL98]) ...26
Table 3.1 Creation Flags for CE CreateProcess (From: [MWS2e])37
Table 3.2 Mapping of Process Requirements to EPROCESS ...39
Table 3.3 Mapping of CreateProcess Function Parameters to EPROCESS39
Table 3.4 Control Flags for Creating a Thread (From: [MSW2i])43
Table 4.1 Windows CE Smart Card Interfaces (From: [MWS2w])52

 xi

THIS PAGE INTENTIONALLY LEFT BLANK

 xii

ACKNOWLEDGMENTS

The author wants to thank his LORD and SAVIOR, JESUS CHRIST, for his

mercy, kindness, and love, to whom all honor, praise and glory belongs forever.

The author wants to thank his wife, Renee Burns, for her love and support.

The author wants to thank Professor Cynthia E. Irvine for her patience, guidance

and support during this work.

The author wants to thank Mr. Paul Clark for his guidance and support during this

work

The author wants to acknowledge the financial support of the Microsoft

Corporation during this work.

 xiii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiv

I. PERSONAL DIGITAL ASSISTANT

A. INTRODUCTION

Familiarity and functionality are factors that influence many consumers’

purchasing decisions with regard to computers and software. An often-overlooked factor

is the information assurance (IA) capabilities of these. These IA factors can assist in

creating, for individuals familiar with information assurance issues, a perceived security

picture of a system or device. This thesis will discuss the Windows CE (WinCE)

operating system, known as the Pocket PC operating system (OS).

Pocket PC is the third generation of the WinCE operating system. Pocket PC

executes on Compaq’s iPAQ, HP’s Jornada, Casio, and Symbol [OWS3j]. Merlin is the

next operating system release scheduled for Pocket PCs; Merlin is based on WinCE 3.0.

[NGS1b] Personal Digital Assistants (PDAs) that execute WinCE offer the Windows

familiar look and feel, which may account for the device’s popularity among

professionals [OWS3l]. Pocket PCs offer many familiar Windows applications, such as:

Word, Excel, File Explorer, etc. For individuals who are used to the Windows

environment, Pocket PC will appear to be a miniature version of their desktop or laptop.

Windows CE may also appeal to people who like to stay current with new

technology and maximum functionality. Windows CE is the only operating system

executing on a PDA that will integrate with Microsoft’s .NET initiative, which will be

discussed in Chapter V [MWS2l]. In comparison with the Palm operating system (the

leading OS in the palm-size device market [OWS3l]), WinCE can multitask, provide a

robust multimedia capability and supports software emulators for the Nintendo

Entertainment System (NES) and Game Boy, Commodore 64, Sega, and others.

Windows CE’s handwriting recognition system has enhanced handwriting recognition

accuracy on the PDA. [OWS3j] This Windows CE functionality may also help account

for its popularity in the professional and corporate marketplace.

1

No matter how popular a device, operating system, or technology in general,

becomes in the marketplace, for the security conscious, it is the information assurance

capabilities of the device that may be most appealing. For many, information assurance

may not mean anything, but when IA is equated to privacy and protection of information,

its necessity becomes clear [OWS3m]. There have been numerous exploits against

PDAs, specifically the Palm OS [KIN01]. Before discussing some of the exploits, it is

important to note that in this work, the assumption is made that these exploits have been

targeted against the Palm OS because it is the most common PDA operating system.

However, a lack of exploits should not lead to a false sense of security with regard to

WinCE.

B. PDA VULNERABILITIES

In August of 2000, the first Palm Pilot Trojan Horse, which attacks Palm

operating systems, was identified. The importance of the event was not the Trojan Horse

itself, but the possibilities and realization that malicious code could be written that would

be harmful to Palms. The implication of this is serious. It now means that the move to

wireless and developing Internet appliances that interact with everything from cars to

refrigerators are susceptible to viruses and Trojan Horses. [OWS3m]

Personal Digital Assistants software vulnerabilities (exploits) are not only limited

to the PDA’s. In February 2001, an exploit against passwords on the Palm Desktop

Version 4 was published [NGS1a]. This exploit is mentioned so that the reader can

understand that information assurance must provide protection of the information on the

local system (PDA), in the synchronization protocols, and at the desktop. Even if PDA

operating systems are enhanced to provide security, the host system that it is partnered

with for synchronization of databases must provide adequate security to ensure that the

information is protected. However, the scope of this thesis is on the WinCE operating

system rather than the desktop services provided for the PDA.

C. PDA SECURITY

Developers of the Palm OS and Pocket PC OS have installed a password

protection option [OWS3d]. However, security must be implemented at every level of

the device, i.e. for the applications and the operating system, if the device is ever to be
2

recognized as a secure system. The goal of this work is to enhance the security of the

WinCE operating system. This work is part of an incremental approach to enhancing

WinCE security to make it a viable option for use in various environments within the

military as well as the corporate workplace. Chapters II through V describe this work.

Each chapter is summarized below.

1. Chapter II (Windows NT/UNIX)

Chapter II discusses the two most popular desktop operating systems in use today,

Windows NT and UNIX (LINUX is a flavor of UNIX). This chapter provides the reader

with an understanding of the threads and processes in WINNT and UNIX. It also

provides an overview of the WINNT authentication mechanism. Windows NT, which

can be configured to achieve a satisfactory security posture (see Chapter II, Section F),

provides a useful example [SOL98]. This background is provided to give the reader an

understanding of the thread and process model (WINNT) used for the WinCE thread and

process data structures.

2. Chapter III (WinCE)

Chapter III discusses Windows CE processes and threads. This chapter details the

creation and termination of WinCE processes and threads. In particular, the reader

should take note of security attributes inherit to both the process and thread data

structures. Talisker, the next generation of the WinCE operating system, is discussed

along with some of its improvements. Talisker’s improvements include new modules

that can be used to enhance security of an operating system image on a device.

3. Chapter IV (Authentication)

This chapter introduces authentication. Authentication is defined as a way to

confirm the identity of the client or server in the communication process. Several

authentication protocols are discussed in this chapter including: Kerberos and the

Department of Defense’s Public Key Infrastructure (DoD PKI). An overview of both

protocols is provided.

3

4. Chapter V (Emerging Technology)

This chapter discusses the research and development of new technology.

Specifically discussed are processor research and development and the impact it may

have on the future of technology. The primary focus of this chapter is on Microsoft’s

.NET initiative. The objective is to help the reader understand the significance of WinCE

as it relates the .NET initiative and palm-sized devices.

5. Chapter VI (Conclusion and Recommendations)

This chapter concludes the thesis. This chapter also analyzes the information

presented in the first five chapters and lists recommendations for further research. This

chapter summarizes the thesis and lists follow-on questions that may require additional

research.

D. CONCLUSION

This thesis provides the reader with a basic understanding of why security is

important in operating systems. It also reveals similarities between the WINNT and

WinCE process and thread data structures and attributes. This background information

gives context to providing security enhancements, such as authentication, to WinCE.

However, before delving into security, a brief overview of operating systems is discussed

in the next chapter.

4

II. OVERVIEW OF OPERATING SYSTEMS, PROCESSES AND

THREADS

A. INTRODUCTION

Computers have become an integral part of everyday life for many people. They

are pervasive in government, the military, in many industries and in many institutions

ranging from educational to religious. More and more people are acquiring personal

computers for personal and business use. They continue to enhance areas of our lives as

never before – so much so that superficial and real dependencies have developed.

Computers are widespread and unavoidable; they are a part of our lives whether we know

it or not.

Computers are applied to so many aspects of our lives today that our recent past –

before our daily exposure to computers – seems like ancient history. For example,

consider how we banked twenty-five years ago. To have some money (cash) for the

weekend, the customer had to go to the bank on Friday before the bank closed and

interact with a teller to access his or her money. Consider banking today: money is

accessed from the nearest automated teller machine (provided there are adequate funds

available). But even more recently, consider how five years ago how we kept track of

important events that we either needed to attend or plan. We used bulky planners with

calendars and memos. Today, many people use Personal Digital Assistants (PDAs).

In the April 2001 issue of PC World magazine [OWS3b], one consumer

acknowledges using his PDA for work, leisure, and dating. The article goes on to

describe how the consumer uses his IPaq (a palm-sized device made by Compaq running

the Windows CE operating system) to take notes during company meetings, to catch up

on his email messages while lying in bed, and to plug in his headphones to listen to MP3s

at the gym. In the same article another consumer expressed his appreciation for this

Handspring Visor Deluxe, a PDA based on the Palm operating system. With more and
5

more professionals and consumers using PDAs, the Gartner Group estimates sales in the

United States over the next four years to hit 28 million, an increase of 300% [OWS3b].

Although PDAs may not equal or exceed the number of desktop computers in the

market place for some years to come, the two main electronic organizer operating

systems (Palm OS and Windows CE OS) are quickly heading for a showdown [OWS3c].

This fierce competition is resulting in consumers reaping many benefits. Benefits from

the Pocket PCs are: bright 240x320 screens, fast StrongARM processors, and familiar

Windows-like interfaces; while Palm PDAs are delivering better streamlined operations

and longer battery life (Palm has a different battery model than Pocket PC) [OWS3c]. As

these two products continue to compete, consumers will soon realize the strengths of both

products in one PDA, and analysts estimate this will bring near equilibrium to the

marketplace by 2004 with Windows CE taking 40% of the market share while Palm takes

45% [OWS3c]. PDAs have become so popular that users can even purchase insurance

for them [OWS3d].

Insurance on a PDA may provide the owner of the PDA with some comfort in

situations involving the loss of the PDA due to theft or in some cases even negligence on

the part of the owner (loss of PDA in the airport), but it cannot provide the owner with

any guarantee of data recovery. With insurance, the owner has a reasonably high

probability that the PDA will be replaced; however, the owner has no possibility of

recovering or replacing the data, provided the data was not backed-up elsewhere. Also

data can be lost without the loss of the PDA. Malicious software, worms, and viruses

can corrupt or contaminate data beyond repair. Insurance can do little for lost data. One

of the best ways to try to mitigate such threats is to harden or secure the critical data

management software and the operating system.

The WinCE-based architecture includes data management components such as:

object store (file system), drivers, shells, etc., all of which either manipulate data directly

or indirectly, or manipulate objects that in turn manipulate data. WinCE-based

applications are layered on top of the architecture. The software components within the

architecture actually provide the information necessary to run the application, store the

data from the applications, or provide data to the applications, it is important to secure

6

these objects (components). If the architecture is insecure, but the applications are

secure, there is no reliable mechanism beneath the application level to insure the

protection of the information; therefore, the system is not secure.

Any components that have access to data or a dependency relationship with

another component or application that has access to data must be secured to begin to

achieve system security. However, system security does not end with securing the

components. The components, data, applications, etc. are managed by the operating

system. Thus it is most critical to secure the operating system so that application

developers can be protected against certain security threats.

The goal of this chapter is to review the basic definition of an operating system

and its function, and to familiarize the reader with the concepts, data structure and life

cycle of OS support for processes and threads. Of course, there are many more parts to

an OS, but this work will focus on processes, threads, and authentication. Keep in mind

that part of our goal is to analyze the processes and threads in the context of the

Microsoft CE OS and determine how, if possible, to enhance CE to make it a more self-

protecting OS. The process and thread modules encompass the life cycle of the processes

and threads from their creation to their termination and their access to critical

components and protected domains. Thus the focus of this chapter will be an overview of

operating systems, with particular emphasis on processes and threads.

 There are four general types of operating systems: real-time OSs (RTOS); single-

user, single task OSs; single-user, multi-tasking OSs; and multi-user OSs [OWSa]. A

brief description of OSs will be presented. A general comparison of a process’s data

structures and life cycle within the two most popular (personal) commercial OS platforms

on the market today, the Microsoft Windows NT-based OS (proprietary code) and the

Linux OS (open source code based on UNIX), will also be presented. Although

processes and threads will be reviewed for both the Unix platform and Windows

platform, the Windows platform will be the basis for exploration into the Windows CE

process and thread modules (Chapter III).

7

B. OPERATING SYSTEM BACKGROUND

It is crucial to understand the operating system mechanism in order to fully

comprehend and appreciate the role of processes and threads. Typically, OSs share a

common goal of supporting the following types of system components [SIL94]:

• Process management,

• Main-memory management,

• Secondary-storage management,

• I/O system management,

• File management,

• Protection system,

• Networking, and

• Command-interpreter system

Operating systems are not limited to only supporting or managing the above listed

components. However, to provide a basis for what components define an OS, the above

list is sufficient for this paper. For a more in-depth understanding of the supported

components of an OS, refer to any introductory book on operating systems, for example:

[SIL98], [STA98], or [TAN97]. Also, understanding what components define an OS

enables us to intuitively appreciate the purpose of an operating system.

 An operating system is a mechanism or program that simplifies the management

of resources (components) to execute application programs. The OS’s role in managing

resources is what makes securing it difficult. The OS must be robust and flexible enough

to support new components as they are introduced into the market. If security on the OS

makes it too inflexible, it may not appeal to enough people to survive its competition.

The OS also acts as an intermediary between the user of a computer and the

computer hardware. Stallings [STA98] defines an OS as a mechanism that

exploits the hardware resources of one or more processors to provide a set
of services to system users.

8

 Operating systems vary in purpose and design as our use of technology and

resources varies, as illustrated by our migration from multi-user, multi-tasking systems to

single-user, multi-tasking systems. We have defined the OS at a high level of

abstraction. This level of abstraction is both sufficient and convenient for the purpose of

discussing processes and threads.

 Processes and threads may vary slightly in meaning depending on the particular

OS (platform) implementation; however, their roles remain consistent irrespective of the

OS. The following sections will discuss processes and threads in general terms and as

they each relate to the Unix and Windows OS platforms. If processes and threads differ

in definition or roles between the two systems, those differences will be discussed. This

approach will provide a greater understanding of processes and threads from a broad

perspective while allowing for a detailed analysis of their roles and meanings within,

arguably, the two dominant platforms used today.

C. PROCESSES

Processes and threads are necessary to the OS, in part, because the OS utilizes

both as a means of executing programs. Threads will be covered later in Section D of

this chapter. This section will focus on processes. The term process has been given

many different definitions. Generically, many operating system books will define a

process as a program in execution, or an entity that can be assigned to and executed on a

processor. One book defines it as the “animated spirit” of a program [STA98]. In the

Windows NT OS (WINNT), a process is defined as a set of resources reserved for the

threads to execute a program [SOL98]. The Unix OS defines a process as an instance of

a program in execution [BAC86].

The myriad of definitions may seem to add ambiguity to the term process, but the

definitions are not in conflict with one another. Just the opposite is true; the definitions

support and enhance one another. A process is an entity that can be assigned to and

executed on a processor. Moreover, a process is also an entity that reserves resources so

that it can use those resources to execute a program. And lastly, a process is an instance

of a program (this definition will prove to be useful in the discussion of swapping and the

9

“context of a process”). As can be seen, the role of a process is given in its definition –

an entity that reserves system resources for the execution of a program.

A process is not a program (application). A program is a static sequence of

instructions (text). Programs and processes are synergistic. The program needs the

process in order to execute; the process needs the program in order to have purpose. It is

sometimes easy to confuse the two because of their dependency. We further distinguish

the two by defining a program as a passive entity and a process as an active entity. A

process generally includes the current activity (program counter), contents of the

processor’s registers, process stack, data section containing global variables, and the text

(the program) [SIL94]. The aforementioned description of a process is known as its data

structure.

1. Process Data Structure

In general a process will have at a minimum a program or set of programs to

execute, a set of data locations for local and global variables and all defined constants, a

stack that is used to keep track of procedure calls and parameter passing between

procedures, and a number of attributes that allow the OS to control the process [STA98].

The physical manifestation of a process or its data structure will depend on the platform.

First consider WINNT; the process in WINNT is known as the executive process

(EPROCESS) [SOL98]. The EPROCESS block, Figure 2.1, contains attributes about the

process as well as pointers to other data structures.

Two key data structures in the EPROCESS are the kernel process (KPROCESS)

and the process environment block (PEB). The KPROCESS block is sometimes referred

to as the process control block (PCB). The PCB contains information that the kernel

needs to schedule threads. In WINNT the EPROCESS and KPROCESS both reside in

system address space and the PEB resides in user address space. Access to system space,

also known as kernel space, requires privilege. User space is accessible by non-

privileged entities. The PEB contains the information needed to load the image loader,

the heap manager and all Win32 DLLs that need to be modified from user mode.

10

Figure 2.1 WINNT EPROCESS Block (After: [SOL98])

The image loader, heap manager and Win32 DLLs are user-level entities that the

operating system uses to create and manage processes. During CreateProcess, a function

call, the image loader determines the type of file associated with the request to run. Once

the file type has been determined, the image loader loads the appropriate image for that

file (notifies the appropriate subsystem of the new process); for example, appropriate

images for Win32 processes are Posix.exe for POSIX file types and Ntvdm.exe for MS-

DOS, .exe, .com, and .pif file types [SOL00]. If the file does not have an appropriate

image, CreateProcess fails [SOL00]. The heap manager is a set of functions that controls

the amount of memory allocated and deallocated [SOL00]. The Win32 DLLs are a set of

callable subroutines in a binary file that are linked together and can be dynamically

loaded by applications that use the subroutines [SOL00].

11

The UNIX process structure is now described. Figure 2.2 shows a Unix-based

process’s data structure. The kernel process table -- depicted in the figure as process

table -- has an entry for each process. The “u area” contains the process’s private data

that can only be manipulated by the kernel and only when the specific process is

executing. The process table contains pointers to the per process region table. The

entries in the per process region table point to entries in the region table. A region is

defined as a contiguous area of a process’s address space. The region table entries

describes the attributes of the region, such as whether it contains text or data, whether it is

shared or private, and where the “data” of the region is located in memory [BAC86].

Figure 2.2 Unix Process Data Structure (From: [BAC86])

The data structure of a process, although it may be platform dependent in terms of

its physical implementation, must meet the minimum requirements mentioned above: a

program to execute, location of local and global variables, etc. This paper will not map

the minimum requirements to each of the data structures; however, the reader should note

that each data structure does implement and support the requirements. Each process

managed by the OS has its own data structure independent of any other process managed

by the OS. However, processes may share certain information and at times memory. This

will be discussed further in Section F Subsection 1 of this chapter. Processes operate

independently of one another and usually do not share memory, which is useful when the

tasks to be performed are unrelated [SIL94].

12

2. Process Life Cycle

Another important aspect of a process is its life cycle. Processes make it possible

for multi-tasking OSs running on a single processor to multi-task and make the computer

appear to process multiple applications simultaneously. Processes primarily accomplish

this through life cycle transitions and time allocation from the OS. There are several

stages in the life cycle of a process. A complete process state transition diagram is

depicted in Figure 2.3.

Figure 2.3 Process Life Cycle (From: [BAC86])

Figure 2.3 shows the transition state diagram for processes in a Unix-based OS.

However, every process, regardless of the OS that supports it, can be represented in part

or in full by the figure. Not every OS’s supported processes will have the full array of

transition states as shown in Figure 2.3. As a general rule, a process will always have one

of the following states: new/created, running, waiting, ready, or terminated. Each

transition state is defined as follows [BAC86, STA98]:
13

User running: the process is executing in user mode.

Kernel running: the process is executing in kernel mode.

Ready to run in memory: the process is not executing but is ready to run as

soon as the kernel schedules it.

Asleep in memory: the process is sleeping and resides in main memory.

Ready to run, swapped: the process is ready to run, but the swapper (process 0)

must swap the process into main memory before the kernel can schedule it to

execute (although some [BAC86, STA98] refer to process 0 as a swapper, it may

be more precise to think of it as a transitional mechanism that transitions a process

from the User running state to Ready to run in memory, the process remains in

main memory throughout the transition).

Sleep, swapped: the process is sleeping, and the swapper (swapper here refers to

a mechanism that actually moves the process from main memory to secondary

memory) has swapped the process to secondary storage to make room for other

processes in main memory.

Preempted: the process is returning from kernel to user mode, but the kernel

preempts it and does a context switch to schedule another process. The

distinction between this state and the state “ready to run in memory” is based on

the process. In this state a process running in kernel mode can be preempted only

when it is about to return to user mode. Otherwise, the preempted state is the

same as “ready to run in memory.”

Fork: the process is newly created and is in the transition state; the process

exists, but it is not ready to run, nor is it sleeping. This state is the start state for

all processes except process 0.

Zombie: the process executed the exit system call and is in the zombie state. The

process no longer exists, but it leaves a record containing an exit code and some

timing statistics for its parent process to collect. The zombie state is the final state

of the process.

14

There are several triggers that cause a process to transition from one state to

another. One of the major triggers is central processing unit (CPU) time. How much

CPU time the OS allocates to a process is important to the process. The time that is

allocated to a process is known as a quantum. In a single-user, single task OS, processes

execute sequentially, and once the process begins, it runs until it ends. In the single-user,

single task system, the process has complete control of the CPU and resources until it has

accomplished its task – the current process monopolizes the CPU until it completes its

task. The user cannot move between various programs or open multiple windows.

In a single-user, multi-tasking operating system (common in most desktop

operating systems today), processes must share the processor(s) and resources in

accordance with a scheduling algorithm. Once a process is scheduled, it is given a

quantum, in which it has exclusive use of the CPU and any unlocked resources. After the

process’s quantum expires, the OS, in accordance with its scheduling algorithm, gives the

CPU and access to all unlocked resources to another process.

A multi-user, multi-tasking operating system, such as UNIX System V, sets up a

computing environment for a user’s process [STA98]. The multi-user OS must separate

one user’s resources from another’s. Each user process has exclusive use of the CPU for

a specified period of time, much like a quantum [STA98]. This method allows the OS to

appear to execute application programs simultaneously, while the quantum and

scheduling algorithm prevents processes from monopolizing the CPU, thereby preventing

starvation or other detrimental situations for the OS.

3. Process Switching and Process Context

The method that allows the CPU in multi-tasking operating systems to move from

one process to another in accordance with a scheduling algorithm is known as process

swapping and sometimes it is referred to as process switching. A process must be in

main memory to be executed. As mentioned earlier, to avoid starvation because one

process controls or monopolizes the CPU, each process is given a quantum of time to

have exclusive use of the CPU. Once the process’s quantum expires, the process is

removed from execution and another process is scheduled for execution.

15

 Depending on the design of the operating system, there may be additional

events, besides the expiration of the process’s quantum that could cause processes to

transition from the running state. Some of the more general events that are usually

common to most OSs are preemption, which can be caused by process priority (one

process having a higher priority than another), I/O operations, and traps (traps are for

mode switching, not process switching, but a snap shot of the state of the machine

(process or thread context) must be maintained during a trap [SOL98]). A process with a

higher priority may preempt a lower priority process; note that many operating systems

have a mechanism in place to ensure that low priority processes are not starved. I/O

operations could cause a process to wait. In such cases, to optimize CPU usage, the

process that is waiting on the I/O operation might transition from the running state.

A trap is a term that is used to explain a processor’s mechanism for capturing an

executing process or thread when an exception or an interrupt occurs which requires a

snapshot of the process’s context [SOL98]; the process’s context is its registers, stack

information, and other pertinent information, which needs to be preserved when the

system mode is switching from user mode to kernel mode. The cause of a trap is usually

associated with the execution of the current instruction [STA98]. Usually a trap is used

to handle an error or an exceptional condition [STA98].

During process transitions the operating system must save the state and pertinent

information of the currently executing process. The state and pertinent information of a

process is the process context. In general (expanding the definition of the process

context), it usually consists of the program counter, other process registers, and stack

information from both user and kernel space (remember that a process has data, text, and

a stack – the earlier definition of a process being an instance of a program corresponds

with the “text” portion of the process). By freezing the process and capturing a snapshot

of it as it exists in its halted or frozen state, the OS is able to move it from executing

memory to storage and is later able to move it back into executing memory with its

precise settings when it was frozen or halted. The OS prevents arbitrary process

swapping and transitions thereby maintaining consistency.

16

In Unix-based operating systems, all processes except process 0 are spawned from

other processes through the fork system call. Process 0 is created when the operating

system boots up. Process 0 spawns process 1, which is known as init. The init process is

the ancestor of every other process in the Unix system. A parent process is any process

that spawns another process through the fork system call. The spawned process is known

as the child process. Process 0 becomes the transitional mechanism. Both Unix-based

OSs and NT-based OSs use a scheduling algorithm that schedules processes. However,

WinCE, which is an NT-based OS, schedules threads. Threads will be discussed in the

next section.

Each application (program) executing is assigned only one process by the

operating system, the parent process. If other processes are required to assist the parent

process in reserving resources to enable the program to execute, the additional processes

are spawned by the parent process and not the operating system; however, each process is

considered a separate execution sequence [SIL94]. For example, several users may be

running copies of a mail program [SIL94]; in this example each user is assigned a parent

process that works on their behalf and each mail program is a child process to a unique

parent process, a one-to-one correspondence. In a similar example, a single user may

invoke many copies of an editor program [SIL94]. In this example, each copy of the

editor program is a child process to the same parent process, a one-to-many

correspondence. A process can spawn one or more processes (children/child processes)

or threads to assist in executing a program.

D. THREADS

For systems that support threads, the OS is designed to schedule threads instead of

processes for a quantum. This is the case in Windows NT. A thread is an entity spawned

from a process that executes a program [SOL98]. More simply stated, a thread is a

precisely measurable controlled unit of work (a basic unit of CPU utilization) [STA98].

Threads enable resources (although threads do not reserve resources) to be shared and

accessed concurrently within the same process, which is useful for related jobs. A thread

can be spawned from a process or another thread. A thread can only spawn another

thread -- a child thread. Threads allow a more granular definition of the dependencies

17

between processes and programs by completing the synergism that exists between the

process and program. Many modern operating systems use processes and threads. This

research will focus on Windows CE, which is a processed-based, single-user OS that

schedules threads instead of processes.

Threads are very similar to processes. However, threads are used to enhance the

capability of a process’ multi-tasking ability. Threads allow resources to be shared and

accessed concurrently within the same process by executing in the same address space

(domain) [SIL94]. Threads are sometimes called lightweight processes [SIL94]. Threads

generally consist of a program counter, a register set, and a stack space [SIL94]. A

thread, like a process, is assigned to run in user space or system space depending on its

privilege.

Threads operate similarly to processes in many regards in terms of their life cycle

and context. Threads will generally have one of several states similar to processes:

new/create, ready, blocked, running or terminated. Threads, unlike processes, are not

independent of one another because they have to work together to share a pool of

resources reserved for the process, whereas processes aren’t required to work together in

the same manner because each process has its own pool of reserved resources and the

underlying OS provides the management.

Threads can be managed either at the application level or within the OS. Threads

within a process execute sequentially and each thread has its own stack and program

counter. Since Windows CE’s scheduling algorithm schedules threads, threads will be

covered in more detail in Chapter III. The Windows NT thread data structure will be

discussed in detail in Section F Subsection 2 of this chapter. In addition to having a

general understanding of threads and processes, enhancement of an OSs self-protection

capability requires an understanding of security.

E. SECURITY

Security, which is usually thought of as privacy and protection, is often used in

connection with information-storing systems. Security describes techniques that control

access to use of or modification of a computer or the information contained in it. It is

often useful to categorize security violations in three categories: unauthorized
18

information release, unauthorized information modification and unauthorized use

[SAL75]. Chapter IV will take a closer look at security and how it can be applied to

Windows CE, specifically in the case of authentication.

Security is based on three notions [MUL93]: authentication, access control and

auditing. Authentication requires that for every request for an operation, the name of the

requestor must be known reliably. The source of the request is called a principal. Access

control requires that for every resource and every operation on that resource, it is possible

to specify the names of the principles allowed to perform that operation on that resource.

Every request for an operation is checked to ensure that the principal is allowed to

perform that operation. Auditing permits every access to a resource to be logged if

desired, and can be evidence used to authenticate every request. If a troubling situation

occurs, there is a record of exactly what happened.

There are two ways to approach security. One approach involves constructing a

formal specification for the desired security properties (and other properties) of a system

then designing and implementing the OS. The other way is to find, catalog and repair

security flaws in existing systems. This project will encompass both approaches.

Security has its own terminology and it is broad. Scoping the security discussion and

understanding the terminology make identifying and cataloging security flaws in the

Windows CE authentication mechanism easier.

The scope of the security discussion for this paper is the authentication

mechanism, modes of operation, and mechanisms that are common to processes.

Windows CE operates in one of two modes: user mode or kernel mode. A mechanism is

common to two processes if it uses some set of data items whose value one process can

influence and the other can notice. Common mechanisms carry a built-in risk – they

make it possible for the process of one user to exert unauthorized influence over the

process or data of another. Malicious users can exploit flaws in common mechanisms to

work their will.

According to Michael Schroeder [SCH75], the operating systems of shared

general-purpose computers have a well-known tendency to be extraordinarily large and

complex. This size and complexity interacts badly with the negative nature of security

19

requirements. It generates many possible ways to perform unauthorized actions, some of

which will go unnoticed by system designers. This increases the probability of

exploitable errors in the implementation of the provided protection mechanisms.

Examining the thread and process module of Windows NT will provide a basic

understanding of the OS. Although the WINNT OS is substantially larger, with respect

to lines of code than the Windows CE OS, WINNT affords some insight into the

Windows-based platform. Windows CE, on the other hand, is a smaller system, and

lacks many of the security features of Windows NT. Because WinCE lacks many of the

security features found in WINNT, WinCE is more vulnerable. However, WinCE’s lack

of security features and increased modularity gives it the advantage of being less complex

than WINNT, which naturally adheres to the design principle of economy of mechanism

[SAL75].

Many systems try to reduce the probability of exploitable errors through good

software engineering by utilizing well-established design principles to construct the

internal mechanisms. These principles, when properly used, help to reduce design and

implementation flaws, which might otherwise exist and provide paths by which the

protection mechanisms in the system could be circumvented. Good engineering also

utilizes established concepts such as the security kernel and reference monitor [AND72].

A security kernel is a minimal, protected core of software whose correct operation is

sufficient to guarantee enforcement of the claimed constraints on access and is the

structural basis for organizing a secure system [SCH75].

Although the goal is not to make Windows CE a high assurance secure system, it

is prudent to maximize usage of the ideas and principles that govern secure systems. For

example, while studying the design of a system, it is noticed that a mechanism in a more

protected level of the OS depends on a function from a less protected or higher level of

abstraction for the correctness of its operation. This is considered an upward dependency

and a serious flaw in the system’s design [GOL79]. It is also crucial to look at ways to

implement security once a security policy has been established for the system.

Our goal in enhancing the Windows CE security is to balance security with

performance. Since security by its very definition is an increase in system functionality,

20

i.e., the system’s ability to a certain degree to protect itself and its information,

performance will be adversely affected. Since Windows CE is a smaller OS on a small

platform, it will have very limited space in which to implement security. Because

WinCE has a more limited space to implement security than larger operating systems, the

choice of which security features to implement is vital. If security is to work properly,

care must be given when deciding what security features are required and what security

mechanisms will be used to achieve the requirement. Security should be meticulously

designed and carefully implemented.

For a particular mechanism or functionality, there may be a number of

satisfactory implementations. Security implementations are described in terms of

security concepts and mechanisms, such as: reference monitor, security kernel, capability

lists (capabilities), access control lists (ACLs), discretionary access control (DAC),

mandatory access control (MAC), domains, rings, and a host of additional concepts and

mechanisms, too numerous to list. Not only do these concepts and mechanisms describe

the type of security implemented, they also define the granularity of the security; for

example, security can control authorized access at various levels such as: the entire

system, directories, files, data within a files, compartments, etc. Another important

aspect of security is knowing “who or what” has gained or is trying to gain access to the

data, which is accomplished through the operating system [SAL75]. For authorized users

of a system, this is normally accomplished through authentication. How Windows NT

implements authentication is discussed in the next section.

F. WINDOWS NT AUTHENTICATION MECHANISM

This section will focus on the Windows NT authentication mechanism. However,

since processes and threads are an integral part of the Windows NT OS and

authentication mechanism, this section will discuss how processes and threads are created

and how they communicate. Fibers will also be mentioned. These are a type of thread.

In the discussion of the creation of processes and threads certain acronyms will be used.

Such acronyms are standard in the OS literature and as much as possible this paper will

try to minimize the use of unusual acronyms.

21

 1. Windows NT-based Process and Thread Creation

Users as well as the OS manipulate processes through application programming

interface (API) functions, but a process must first exist. A new process is created

whenever an application calls the Win32 CreateProcess function. The creation of a

Win32 process consists of several stages and involve three different parts of the OS: the

Win32 client-side library KERNEL32.DLL, the Windows NT executive, and the Win32

subsystem process (CSRSS). Figure 2.4 summarizes the Win32 create process.

Figure 2.4 Process Creation (From: [SOL00])

22

A process’s creation is complete as evidenced by the process environment having

been determined, resources for its threads to use having been allocated, the process

having a thread, and the Win32 subsystem having record of the new process. The new

thread begins life running the kernel mode startup routine KiThreadStartup [SOL98].

KiThreadStartup performs thread-specific initialization, and then the actual thread routine

specified by the caller of CreateThread is invoked [SOL98]. However, at this point, the

thread has already been created, so the call to CreateThread is to notify the Win32

subsystem about the new thread so that the subsystem can perform some setup work for

the new thread.

The initial thread’s creation is initialized and completed during the Win32

CreateProcess call. In the CreateProcess, the call to create a thread filters down to the

Windows NT executive, where the process manager allocates space for the thread object

and calls the kernel to initialize the kernel thread block. At this point the Win32

CreateThread is called. The CreateThread creates a user-mode stack for the thread in the

process’s address space. CreateThread then initializes the thread’s hardware context (this

is CPU-architecture specific). The NtCreateThread is called to create the executive

thread object in the suspended state. At this point, the CreateThread notifies the Win32

subsystem as mentioned earlier. The thread handle and ID are returned to the caller and

unless the thread was created with the CREATE_SUSPENDED flag set, the thread is

resumed so it can be scheduled for execution. Figure 2.5 summarizes the steps involved

in thread creation.

23

Figure 2.5 Create Thread

2. Windows NT Thread Data Structure

The executive thread (ETHREAD) block represents the Windows NT OS thread.

The ETHREAD block contains two other thread data structures, the kernel thread

(KTHREAD), which contains the information that the Windows NT kernel needs to

access to perform thread scheduling and synchronization on behalf of running threads and

the thread environment block (TEB), which stores context information for the image

loader and various Win32 DLLs. The ETHREAD block and the structures it contains

and points to exist in system space with the exception of the TEB, which exists in the

process address space as shown in Figure 2.6.

24

Figure 2.6 ETHREAD Block (After: [SOL98])

Although fibers are not a part of our research, it is important to understand fibers

and their role in the Windows NT-based OS. Fibers are a subset of threads and are

contained in the thread object. They are sometime referred to as “lightweight” threads.

Fibers differ from threads in how they are scheduled. Threads are allocated CPU time by

the OS. Fibers are not allocated CPU time by the OS; instead a programmer must

manually schedule fibers to run. Fibers will not run unless the thread they are contained

in is scheduled to run. Fiber scheduling is very simple: once the thread containing the

fiber is scheduled to run, the fiber will run until it finishes or until it instructs the OS to

run another fiber. Fiber functions were added to the Win32 API set primarily to support

porting server applications from UNIX that were designed to schedule their own threads

rather than relying on a priority system [SOL98].

The Windows NT priority system consists of 32 priority levels for threads ranging

from 0 through 31. The range is divided into three groups. The groupings are real-time

levels, which range from 16 through 31; variable levels, which range from 1 through 15;

25

and system level, which is 0. Threads are assigned a priority level from two different

perspectives: the Win32 API and Windows NT kernel. The Windows NT kernel assigns

the thread priority based on one of the 32 levels already mentioned. The Win32 API

assignment involves the process’s assignment. The Win32 API assigns each thread a

priority based on a combination of the thread’s process priority class and the thread’s

relative priority. The Win32 API process priority classes are “real-time,” “high,”

“normal,” and “idle.” The Win32 thread’s relative priorities are “time-critical,”

“highest,” “above-normal,” “normal,” “below-normal,” “lowest,” and “idle.” Table 2.1 is

a mapping of the kernel thread priorities to the Win32 API priorities.

Every thread starts out with its priority equal to that of the process or thread that

spawned it. Each thread has two priority values, its base priority, which is the priority

that it starts with and its current priority, which is the priority at which the thread is

currently running. A thread whose current priority is within the range 1 through 15 often

has a lower base priority; however, a thread whose current priority is in the range 16

through 31 never has its priority adjusted by the OS, so the base priority is always equal

to the current priority.

Table 2.1 Kernel Priority Levels (From: [SOL98])

Threads and processes are such an intricate part of the OS that they impact a

system’s ability to provide security for itself. Of specific interest is the WINNT

26

authentication mechanism. The authentication mechanism is initiated and driven by a

process, the logon process (WinLogon). WINNT can be configured to F-C2/E3, which

indicates more security than just an authentication mechanism, in accordance with the

UK Information Technology Security Evaluation and Certification (ITSEC) board

[SOL98]. (Note that ITSEC has been replaced in some countries by the international

standard - The Common Criteria [CCI99].) Also, the U.S. Department of Defense

Trusted Computer System Evaluation Criteria (TCSEC) formally evaluated WINNT 3.51

at the C2 level [SOL98]. However, this research focuses on one of the first steps in

creating a security-enhanced CE OS, which is providing a small, reliable authentication

mechanism.

WINNT provides four basic security services [SOL98]: a secure logon facility,

discretionary access control, security auditing, and memory protection. The secure logon

facility requires users to identify and authenticate themselves by entering a unique logon

identifier and password before they are allowed access to the system. There are several

components that makes this secure logon possible: local security authority (LSA) server,

security reference monitor (SRM), LSA policy database, security accounts manager

(SAM) server, SAM database, default authentication package, and WinLogon. Each one

is described below [SOL98].

Local security authority (LSA) server: A user-mode process running the image

LSASS.EXE that is responsible for the local system security policy (such as which users

are allowed to log on to the machine, password policies, the list of privileges granted to

users and groups, and the system security auditing settings), user authentication, and

sending security audit messages to the Event Log.

Security reference monitor (SRM): A component in the Windows NT executive

(NTOSKRNL.EXE) that is responsible for performing security access checks on objects,

manipulating privileges (user rights), and generating any resulting security audit

messages.

LSA policy database: A database that contains the system security policy

settings. This database is stored in the registry under

HKEY_LOCAL_MACHINE\Security. It includes such information as what domains are

27

trusted to authenticate logon attempts, who has permission to access the system and how

(interactive, network, and service logons), who is assigned which privileges, and what

kind of security auditing is to be performed.

Security accounts manager (SAM) server: A set of subroutines responsible for

managing the database that contains the usernames and groups defined on the local

machine or for a domain (if the system is a domain controller). The SAM runs in the

context of the LSASS process.

SAM database: A database that contains the defined users and groups, along

with their passwords and other attributes. This database is stored in the registry under

HKEY_LOCAL_MACHINE\SAM.

Default authentication package: A dynamic-link library (DLL) named

MSV1_0.DLL that runs in the context of the LSASS process that implements Windows

NT authentication. This DLL is responsible for checking whether a given username and

password match what is specified in the SAM database, and if they do, returning the

information about that user.

Logon process: A user-mode process running WINLOGON.EXE that is

responsible for capturing the username and password, sending them to the LSA for

verification, and creating the initial process in the user’s session.

These components work together to provide logon authentication. The security

reference monitor (SRM) is the only component located in kernel space. The LSA,

which is in user space, is responsible for communicating with the SRM. They

communicate using local procedure calls (LPC). The SRM creates a port

(SeRmCommandPort), during system initialization. The LSA connects to that port. The

LSA creates an LPC port (SeLsaCommandPort) when the LSA process starts. The SRM

connects to SeLsaCommandPort. During system initialization, once the respective

processes have connected to the other’s created port, the result is a private

communication port and neither process listens on their respective connect port any

longer. Since the processes no longer listen to their respective port and the ports are

unnamed, a subsequent user process cannot successfully connect to either port (if the

28

entry points still exist after the initialization phase, they may be exploitable; however,

this is difficult to determine without inspection of the SRM code).

The WinLogon process is the only process that can intercept logon requests from

the keyboard. During system initialization, WinLogon is given control of the workstation

once the system is ready for user interaction [SOL00]. WinLogon creates three desktops,

an application desktop, a WinLogon desktop, and a screen saver desktop [SOL00]. Only

WinLogon can access the WinLogon desktop making the WinLogon process a trusted

process.

If a user wants to access the system (legitimately), the user must go through the

WinLogon desktop. The WinLogon desktop will authenticate the user. It communicates

with the LSA, using an LPC, to authenticate the user. Once the user has been

authenticated, the user is given access to the application desktop and the screen saver

desktop. A concern with this logon model is its lack of simplicity; its GUI code required

to logon is enormous in contrast to the XTS 300 logon interface, which is not ideal for

users but simple. The UI for the XTS300 is not user friendly nor is it an intuitive “point

and click” interface. It requires the user to understand the various sessions levels for

logon and what privileges the user will have at the various levels. It is simple because the

code to present this interface can be minimized.

G. CONCLUSION

Processes are essential to computer usage, from system initialization, user

authentication, to system shutdown. Understanding the process’s requirements for

system resources for program execution and how operating systems manage those

resources gives us a better understanding of the importance of local (single desktop)

computer security within a large network of computers. As mentioned at the beginning

of the chapter, computers are playing an increasingly larger role in our everyday lives. In

networks, a compromised process (compromised program that a process is executing) on

a single computer could affect other computers in that network as well. Understanding

processes and their roles in OSs is important to the design of the OS as well as security.

Now that a better appreciation and understanding of operating systems (specifically

29

Windows NT), threads, processes and security has been gained, Chapter III can focus on

Windows CE threads and processes.

30

III. WINDOWS CE PROCESSES AND THREADS

A. INTRODUCTION

Processes are a vital part of program execution as discussed in Chapter II.

Chapter II also described an operating system as a program. Therefore, process

management is a vital role of the operating system. This chapter will focus on the

processes and threads in the WinCE operating system.

Windows CE is a multithreaded WIN32 system, with the same process and thread

model and file formats as Windows NT (WINNT) [MUR98]. In both cases, the kernel

supports multitasking; it has preemptive, priority-based scheduling [MUR98]. Windows

CE has characteristics in common with WINNT. Some of the complexities of the

WINNT process model have been removed from Windows CE, but the “animated spirit”

(model) has been left in tact.

This chapter describes Windows CE’s “animated spirit,” processes, in more

detail. Processes and threads in the WINNT-based OS have been defined. Their data

structures have been discussed, and their life cycle has been examined. However,

because Windows CE is a smaller OS that operates in a smaller memory space, there are

some differences between its processes and threads as compared to those of WINNT.

B. WINDOWS CE

 What is Windows CE and why is it important? A white paper [MWS2a] from the

Microsoft Corporation provides answers to the question. It states:

Microsoft Windows CE is an open, scalable, 32-bit operating system that
is designed to meet the needs of a broad range of intelligent devices, from
enterprise tools such as industrial controllers, communications hubs, and
point-of-sale terminals to consumer products such as cameras, telephones,
and home entertainment devices. A typical Windows CE-based embedded
system targets a specific use, runs disconnected from other computers, and

31

requires an operating system that has a small footprint and a built-in
deterministic response to interrupts.

Windows CE consists of a set of discrete modules and sub modules, or
components, each of which provides full or partial support for major
features of the operating system. By selecting a minimum set of modules
and components, a device manufacturer can design an operating system
tailored to requirements of a particular device. By controlling the size
(“footprint”) of the operating system, original equipment manufacturers
(OEMs) can design for speed and efficiency, while still providing the
performance of 32-bit, preemptive multitasking, multithreaded system and
the richest possible set of APIs for developing applications. [MWS2a]

 Microsoft designed CE to compete in the embedded systems market [MUR98].

Microsoft had a specific class of embedded devices in mind for CE. Instead of being

stand-alone devices, these devices are intended to be mobile companion devices that

supplement the desktop and synchronize information with the desktop personal computer

(PC) [MUR98]. Approaching the design of the CE operating system with the idea that it

supports a companion device may explain why Windows CE’s processes and threads

maintain the look and feel of the WINNT’s processes and threads.

 Unlike Windows NT, Windows CE can only support up to 32 simultaneous

processes [MIC98]. When WinCE initializes, it creates a single 4GB virtual address

space; it divides that 4GB address space in half creating (2) 2GB spaces, and it further

divides 1 of the 2GB address spaces into 33 equal slots ranging from 0 – 32. When a

process is initialized, WinCE selects an open slot in 1 of the allocated 33 slots [MIC98].

Slot 0 is always reserved for the currently running process [MIC98].

 Windows CE does not assign processor time to processes, as does WINNT,

instead Windows CE assigns processor time to threads. In WinCE, threads are the unit of

execution instead of processes, and are assigned execution quanta by the scheduler

[MIC99]. This means that a process is terminated if its primary thread is terminated.

Although it is the threads that are assigned quanta, it is the processes that reserve the

resources necessary to enable users to open and work in several applications at the same

time [MIC99].

32

C. WINDOWS CE PROCESS

Only 32 processes can execute simultaneously in WinCE, and, not all 32 slots are

available to the user [MWS2b]. A minimum of four, and more typically seven or eight,

processes are created when the system starts up. These are system processes not directly

accessible to users [MWS2c]. WinCE will usually utilize process slots for the following

processes at system start up (system processes): kernel (nk.exe), device drivers

(device.exe), installable file systems (filesys.exe), and graphical user interface, GUI,

(gwes.exe) [MWS2b]. WinCE process’s address space, 32MB, which accounts for the

limited number of processes that WinCE can simultaneously execute, is 64 times smaller

than the address space for processes in the desktop version of Windows, usually 2048MB

[MWS2b].

The WinCE process data structure has the following fields: a virtual address

space, executable code, data, object handles, environment variables, base priority, and

minimum and maximum working set sizes [MWS2d]. Processes are created by

applications, or by the shell when a program is invoked by the user (such as double

clicking a program icon) [GAR99]. Creating a process is done by calling

CreateProcess() [GAR99]. CreateProcess() creates a new process and its primary

thread; it is a function used to run a new program [MWS2e]. Figure 3.1 demonstrates

how process creation is invoked.

33

Figure 3.1 CreateProcess Function (From: [GAR99])

1. Creating a Process

Once the CreateProcess() function is executed, the new process executes the

specified executable file [MWS2e]. The following parameters (which are not part of the

Process_Information structure) are a part of the CreateProcess() function call [MWS2e]:

 lpszImageName

The lpszImageName parameter is a pointer to a null-terminated string that

specifies the module to execute. The string can specify the full path and filename of the

module to execute or it can specify a partial path and filename if the program is in the

current working directory. The lpszImageName parameter must be non-NULL and must

include the module name.

lpszCmdLine

The lpszCmdLine parameter is a pointer to a null-terminated string that specifies

the command line to execute. The lpszCmdLine parameter can be NULL. In that case,

the function uses the string pointed to by lpszImageName as the command line.

34

If both lpszImageName and lpszCmdLine are non-NULL, * lpszImageName

specifies the module to execute, and * lpszCmdLine specifies the command line, (note

that * indicates pointer). C language runtime processes can use the argc and argv

arguments. If the filename does not contain an extension, .EXE is assumed. If the

filename ends in a period (.) with no extension, or the filename contains a path, .EXE is

not appended. Windows CE versions 2.10 and later search the directories indicated by

the lpszImageName parameter, if the path of the file being looked for is not explicitly

specified, in the following order:

The windows (\windows) directory

The root (\) directory of the device

An OEM-dependent directory

The OEM-defined shell (\ceshell) directory — this is available to Platform

Builder users only

lpsaProcess

Not supported; set to NULL.

This is a security attribute that determines how the new process will be shared. It

controls what another process may do if the other process opens a duplicate handle.

lpsaThread

Not supported; set to NULL.

This is a security attribute that determines how the new thread will be shared. It

controls what another thread may do if the other thread has a duplicate handle.

fInheritHandles

Not supported; set to NULL.

This is a Boolean value that determines whether or not the new process will

inherit other handles.

35

fdwCreate

The creation flags in the fdwCreate parameter govern the type and priority of the

new process. The following creation flags can be specified in any combination, except as

noted in Table 3.1:

Value Description

CREATE_DEFAULT_ERROR_MODE Not supported.

CREATE_NEW_CONSOLE

The new process has a new

console, instead of inheriting

the parent’s console. This flag

cannot be used with the

DETACHED_PROCESS flag.

The console is a component of

the command processor shell.

On the IPaqs, the component

used is explorer, a Handheld

PC style shell.

CREATE_NEW_PROCESS _GROUP Not supported.

CREATE_SEPARATE_WOW_VDM Not supported.

CREATE_SHARED_WOW_VDM Not supported.

CREATE_SUSPENDED

The primary thread of the

new process is created in a

suspended state, and does not

run until the ResumeThread

function is called.

CREATE_UNICODE_ENVIRONMENT Not supported.

DEBUG_PROCESS
If this flag is set, the calling

process is treated as a

36

debugger, and the new process

is a process being debugged.

Child processes of the new

process are also debugged. The

system notifies the debugger of

all debug events that occur in

the process being debugged.

DEBUG_PROCESS

If you create a process with

this flag set, only the calling

thread (the thread that called

CreateProcess) can call the

WaitForDebugEvent

function.

DEBUG_ONLY_THIS_ PROCESS

If this flag is set, the calling

process is treated as a

debugger, and the new process

is a process being debugged.

No child processes of the new

process are debugged. The

system notifies the debugger of

all debug events that occur in

the process being debugged.

DETACHED_ PROCESS Not supported.

Table 3.1 Creation Flags for CE CreateProcess (From: [MWS2e])

Windows CE does not support the concept of priority classes for processes. The

priority of a thread is the only parameter that determines a thread's scheduling priority.

37

lpvEnvironment

Not supported; set to NULL.

Environment variable, generally used to help customize programs and usually

kept where they (variables) are always available.

lpszCurDir

Not supported; set to NULL.

Current directory setting

lpsiStartInfo

Not supported; set to NULL.

This is a structure that the parent process must fill out before calling

CreateProcess.

lppiProcInfo

The lppiProcInfo parameter is a pointer to a PROCESS_INFORMATION

structure that receives identification information about the new process.

This section, Section C, began by introducing the WinCE process, specifically the

process’s requirements – virtual address space, executable code, data, object handles,

environment variables, base priority, and minimum and maximum working set size. This

section also discussed the CreateProcess function, which detailed the necessary

parameters for creating a process. However, this section did not define the WinCE data

structure, but, with the given information and knowing that the WinCE process and

thread model is the same as for WINNT, it is conceivable that the data structures are

similar. By mapping the WinCE process requirements and WinCE CreateProcess

function into the WINNT EPROCESS block (Figure 2.1), an approximation of the

WinCE data structure is obtained, which is equivalent to Figure 2.1. Table 3.2 and 3.3

map the CE process requirements and CreateProcess function parameters to the WINNT

EPROCESS block.

38

WinCE process requirements WINNT EPROCESS block

Virtual address space Memory management info

Executable code Process environment block

Data Process environment block

Object handles Handle table

Environmental variables ????

Base priority Kernel process block

Min & max working set size Memory

Table 3.2 Mapping of Process Requirements to EPROCESS

CreateProcess function parameters WINNT EPROCESS block

LpszImageName ImageFileName

LpszCmdLine ????

fdwCreate Process priority class not supported in CE

lppiProcInfo ????

Table 3.3 Mapping of CreateProcess Function Parameters to EPROCESS

Windows CE operates in one of two modes (as mentioned earlier), user mode or

kernel mode, and for the sake of performance, usually user mode is not invoked (so

everything runs in kernel mode); so the areas that the CE data structure occupies may be

different than that of the WINNT process data structure. For instance, in the WINNT

data structure, the KPROCESS and EPROCESS are both in kernel space. It makes sense

to separate the various parts of the process data structure for the WINNT process because

some of its information and manipulations requires protection or privileged access. Since

39

OEMs develop their software and applications to run in privileged mode, and since there

is no separation of the address space within CE, there is no benefit for the various parts of

the process to occupy different space based on their need for privileged access. Indeed,

the limited address space may not support such a design. Remember each process is

initially allocated 32MB of memory. All other memory comes from a common pool that

is shared by all processes, 2GB.

Although the process’s data structure in CE is similar if not the same as that of

WINNT, it does not support all the same functionality as the WINNT process. This in

itself is no great revelation given the smaller OS, but it does raise the question of

extensibility. Does this process data structure support the ability to be extended for

future needs? The answer to the question is beyond the scope of this thesis, but it is one

that needs to be considered. The process data structure of CE appears to have been

designed with the ability to handle applications that can run on the larger NT-based

operating systems, but each application is subject to the memory constraints of CE.

2. Terminating a Process

Process termination is a subject usually overlooked or deemed insignificant in

larger operating systems because the effect of one process not terminating properly,

especially if it is not a critical process, can be relatively insignificant. The process may

hang or terminate in some non-desirable fashion, i.e. the user may see an exception

message or a page fault message. With the exception of a message, the termination of a

process may not affect system performance (in larger operating systems) to any

noticeable degree and usually will not affect the number of processes that a user can

execute, at least from the average user’s perspective. However, terminating a process in

CE is important because, given only 32 slots available for processes, its direct effect on

the number of processes that can be executed will be more noticeable to the user.

Unlike the larger operating systems, CE cannot afford to have a process hang. In

CE, the impact of a hanging process on performance will be immediately apparent to the

user. Not only does a hanging process’s affect the number of processes that can run, and

possibly the memory, but it also puts a drain on precious battery power. Processes

whether in larger NT-based operating systems or in CE have similar terminating

40

functions [MWS2f]. In WINNT a process can exist if its primary thread is terminated;

however, in WinCE if a process’s primary thread is terminated, the process is

automatically terminated.

D. WINDOWS CE THREADS

If the process of the Windows CE operating systems is equated with the “spirit”

of the OS, the thread is the heart and soul of the OS. It is the thread that gives life to the

process. Each process is started with a single thread, the primary thread, and the process

can create additional threads from any of its threads [MWS2d]. The number of threads

that can be created in a process is limited only by the amount of RAM available

[MWS2h]. Each thread belonging to a particular process runs in the context of that

process. Also, all the threads of a process share its virtual address space [MWS2d]. A

thread can execute any part of the process code to which it belongs, including parts

currently being executed by another thread; and it is the thread that is allocated processor

time (quantum) [MWS2g].

Windows CE version 3.0 and higher offers 256 priority levels for threads

[MWS2c]. The highest priority level is 0 and the lowest is 255. Applications use levels

255 through 248, which maps to the 8 priority levels available in earlier versions of

Windows CE. Real-time applications, drivers, and system processes use levels 247

through 0. Windows CE does not support process priority classes, which means

theoretically that a process could hold a thread with the very highest level and a thread

with the very lowest level [MWS2b/c]. A system scheduler determines which threads

should run and when they should run. A process starts when the scheduler gives

execution control to one of its threads [MWS2c]. Threads with higher priorities run

before threads with lower priorities, and threads that have the same priority run in a

round-robin fashion. The threads’ quantum has a default value of 25 milliseconds, which

the OEM can set to a different value.

Priority inversion, which occurs when a high priority thread is blocked from

running because a lower priority thread owns a kernel object, is handled differently in

WinCE than in other Windows operating systems [MWS2c]. Other Windows operating

systems will raise all the low priority threads in the chain all at once, whereas CE will

41

raise each thread in the chain one at a time as necessary until the lower priority thread

relinquishes the resource that the high priority thread needs. WinCE guarantees the

handling of priority inversion only to a depth of one level; for example, if thread 1 (a high

priority thread) blocks waiting on a critical section held by thread 2 (a lower priority

thread), thread 2 is raised to the same priority as thread 1. However, if thread 3 is also in

that chain, it will remain at its current priority level. In other Windows operating

systems, thread 3’s priority would also be raised.

Threads in WinCE have a much greater role than those in other Windows

operating systems. The WinCE OS functionality is driven by threads and not processes.

This does not necessarily mean that the data structure of the thread in WinCE needs to be

different than that of WINNT. But, it does change how the operating system functions.

Thread creation is the same for both NT-based operating systems and WinCE. Both

operating systems use the CreateThread function.

1. Creating a Thread

The CreateThread function requires six parameters. Two of the parameters are

set to NULL, lpThreadAttributes and dwStackSize. The parameter lpThreadAttribute is

not supported by WinCe. The parameter dwStackSize is automatically set. The number

of threads that can be created depends on the default stack size [MSW2i]. The default

stack size for committed and reserve memory is specified in the executable file header

[MWS2t]. A returned handle to a new thread indicates success and a NULL value

indicates failure. The CreateThread function is described below [MSW2i]:

HANDLE CreateThread(

LPSECURITY_ATTRIBUTES lpThreadAttributes,

DWORD dwStackSize,

LPTHREAD_START_ROUTINE lpStartAddress,

LPVOID lpParameter,

DWORD dwCreationFlags,

LPDWORD lpThreadId);

42

lpThreadAttributes

Ignored. Must be NULL.

This is a pointer to a structure that specifies a security descriptor for the new

thread and determines whether child processes can inherit the returned handle.

dwStackSize

Ignored. The default stack size for a thread is determined by the linker setting

/STACK.

Specifies the initial commit size of the stack, in bytes.

lpStartAddress

Long pointer to the application-defined function of type

LPTHREAD_START_ROUTINE to be executed by the thread and represents the starting

address of the thread, points to the start of the thread routine.

lpParameter

Long pointer to a single 32-bit parameter value passed to the thread.

Specifies an application-defined value that is passed to the thread routine.

dwCreationFlags

Specifies flags that control the creation of the thread are shown in Table 3.4.

Value Description

CREATE_SUSPENDED The thread is created in a suspended state, and

will not run until the ResumeThread function is

called.

0 The thread runs immediately after creation.

Table 3.4 Control Flags for Creating a Thread (From: [MSW2i])

43

lpThreadId

This parameter is a long pointer to a 32-bit variable that receives the thread

identifier. If this parameter is NULL, the thread identifier is not returned.

The CreateThread function describes the creation of a thread, but it should not be

confused with the data structure of a thread. Just as with the processes in WinCE, there is

no evidence to indicate that the thread in WinCE has a different data structure than the

threads in WINNT. There are parameters, as shown in the function above, in the

CreateThread function in WinCE that are not supported. But, the non-supportability of

those parameters does not impact the data structure. The non-supportability impacts the

user’s ability to control specific fields in the data structure. Reference Figure 2.6 to recall

the thread’s data structure in WINNT.

2. Terminating a Thread

Terminating a thread is as important as creating a thread. As previously

discussed, the proper functioning of the WinCE OS is linked to the proper functioning of

its threads, not its processes. Therefore, it is vital that the OS not only knows which

thread to terminate, but also which thread termination function to use. Terminating the

wrong thread, for example the primary thread, prematurely could have undesirable

consequences, such as terminating the process and any other threads associated with that

process. This would not only be an annoyance to the user, but it would render the OS

unsuitable because the OS might randomly shut down programs thereby creating

instability. Some of these instabilities will be discussed below.

The operating system must know which thread termination function to use when

terminating a thread. There are several functions that can be used when terminating a

thread in WinCE [MWS2j]. If possible, the TerminateThread() function should be

avoided; but if used, it must be used very carefully because it has dangerous side effects

[MWS2j]. The side effects are as follows [MWS2j]:

If the thread targeted for termination owns a critical section, the critical
section will not be released.

44

If the thread targeted for termination is executing certain kernel32 calls
when it is terminated, the kernel 32 state for the thread’s process could be
inconsistent.

If the targeted thread is manipulating the global state of a shared DLL, the
state of the DLL could be destroyed, affecting other users of the DLL.
[MWS2j]

The side effects from the TerminateThread() function could possibly lead to an

unstable operating system. Therefore, programmers and designers must take special care

when writing applications that run on WinCE, not only with normal user applications, but

also with system applications.

One such system application of concern is the authentication protocol. An

authentication protocol represents the first step in developing a security enhanced WinCE

OS. Talisker, which is the current version of WinCE in development, uses Kerberos as

an authentication protocol.

E. CONCLUSION

Whether or not Kerberos is the best protocol to use in WinCE is a question this

research will attempt to answer. Chapter IV will discuss various authentication protocols.

The authentication protocol must be able to work with Microsoft’s “.Net” (pronounced

dot net) project, for obvious reasons. Most importantly, the protocol must be small,

correct and efficient. As each protocol is discussed in Chapter IV, several questions must

be asked:

Will this protocol work well with threads?

How many process slots does this protocol need to execute, including supporting

processes?

Once these questions have been answered, enhancing the security in WinCE will

still be a challenge. However, knowing how the operating system manages processes and

threads, in particular how many process slots are available and that the threads are

allocated process time instead of the processes is imperative to understand the system

sufficiently to provide any successful security enhancement.

45

THIS PAGE INTENTIONALLY LEFT BLANK

46

IV. AUTHENTICATION

A. AUTHENTICATION BACKGROUND

Authentication provides evidence to one party (Bob) that another party (Alice) is

who she says she is. People are constantly authenticating in their day-to-day interaction

with their surroundings. People use a variety of means to authenticate one another as

well as other objects. People can be viewed as complex mechanisms that use a complex

set of authentication protocols (senses) and rules to authenticate animate and inanimate

objects. This complex set of protocols and rules is not yet available to computers. But,

as technology continues to advance, computers may one day be able to use a similar set

of complex protocols to authenticate various types of objects as well. Until then,

developers must use the most appropriate and most robust authentication protocol

available.

Examples of how different authentication protocols work best for different

situations and environments can be observed in people’s daily authentication processes.

In this example, Alice uses the most appropriate “sense” (authentication protocol) to

verify whether or not Bob is who he claims to be. If Alice is walking down the street and

thinks she hears Bob’s voice calling her from a short distance saying, “Hey Alice it’s me

Bob,” she might turn in the direction where the voice originated. Upon turning, Alice

immediately shifts to another protocol to verify whether or not it truly is Bob she hears

calling her. At this point, although Alice’s sense of hearing initially picked up on an

object that sounded like Bob, her sense of hearing was not the most appropriate protocol

in the given environment to authenticate Bob; Alice instead used her sense of sight to

confirm whether or not the object was Bob.

In a different environment, the protocol might change as well. For example, if

Bob calls Alice on the telephone, upon picking up the receiver and acknowledging a

successful transmission connection, Alice immediately listens to the tone and inflection

47

of the voice emanating from the receiver. Once Bob identifies himself, Alice uses her

sense of hearing to decide whether or not she believes the person on the other end of the

connection really is Bob. Alice’s sense of hearing is no more reliable in this situation

than in the previous situation, but it is more appropriate. There may be times when Alice

will use multiple protocols to authenticate an object; and there may be times when Alice

is not equipped with the proper set of protocols to authenticate a given object. However,

in most situations, Alice can feel reasonably sure she can authenticate most objects in

most environments; computers are not so lucky.

Not every computer’s operating system will support every authentication

protocol. When multiple authentication protocols are supported by an OS (as is the case

with Windows 2000 Server [BOS00]), the protocol to be used will be determined by both

the client and server (based on protocols common to both) [SOL00]. Furthermore, it is

assumed that having multiple authentication protocols not only adds complexity to the

system, but it also requires more memory from the system. Complexity and increased

memory requirements are contrary to maintaining the smallest possible footprint for

WinCE. This chapter will discuss several authentication protocols supported in Talisker,

and the Department of Defense’s Public Key Infrastructure (PKI).

Talisker, the next generation WinCE operating system, presumably should

provide more functionality than its predecessor. One function that Talisker provides that

its predecessor does not is support for Kerberos. Kerberos is an authentication protocol

used for mutual authentication between a client and server. [OWS3n] Kerberos is also

supported by Windows 2000 [MWS2v].

B. KERBEROS

Conceptually, Kerberos is an authentication protocol based on tickets and session

keys. In a network scheme, in order for Alice to prove her identity to Bob, she first has to

obtain a ticket from a centralized authority to present to Bob. The centralized authority is

known as the Key Distribution Center (KDC). Domain controllers in Windows 2000

implement the KDC. [MWS2v] Windows 2000 is mentioned and used to keep the

example simple.

48

Each domain contains a Kerberos authority, which a user (client) of that domain

must contact to receive a ticket from the KDC. If Alice and Bob are in the same domain,

they share the same Kerberos authority. In the case where Alice shares the same domain

as Bob, Alice can go directly to her local KDC and get a ticket for Bob. To get a ticket

for Bob, Alice must prove her identity to the KDC by proving knowledge of her

password or private key (in the case of smart card logon). [MWS2v]

The ticket that Alice gets contains a lot of information, which includes Alice’s

name, and a randomly generated encryption key (session key). The KDC locks this

information in the ticket by encrypting it with a master key generated from Bob’s

password that only Bob and the KDC share. Once Alice presents the ticket to Bob, Bob

can verify that the contents really came from the KDC by successfully decrypting the

ticket. In this scheme the idea is that Bob will decrypt the ticket, look at the client’s

name, and realize that whoever sent the ticket to him must really be Alice because the

KDC validated her identity before giving her the ticket. [MWS2v]

The reader should note in the previous example, Bob really has no idea who sent

him the ticket. Although understanding the ticket process in Kerberos is fairly straight

forward, there is another step included in the process to ensure that a bad guy is not

simply replaying a recorded version of the ticket and masquerading as Alice. This

additional step requires Alice to send the ticket and prove that she is the owner of the

ticket. This is accomplished through the use of the session key. [MWS2v]

Alice must prove to Bob that she knows the session key that the KDC gave to

both Bob and her. Alice proves to Bob she knows the session key by sending him a little

package called an authenticator along with the ticket. The authenticator is Alice’s name

plus the time on her clock, encrypted with the session key. If Bob can decrypt this

authenticator, the name inside matches the client’s name inside the ticket, and the

timestamp is recent and not in his replay cache, Bob accepts this as proof of Alice’s

identity. [MWS2v]

49

Figure 4.1 Kerberos Protocol Process (After: [STA99])

Figure 4.1 depicts Alice’s request to talk to Bob. In this example Alice and Bob

belongs to the same realm (domain). When Alice logs onto her workstation and requests

to talk to Bob the following process occurs: [KAU95, STA99]

1. Alice logs on to her workstation and requests a ticket-granting

ticket.

2. Authentication server verifies Alice’s access right in the

database, creates a ticket-granting ticket and session key. The

results are encrypted using Alice’s password and sent back to

Alice.

3. Alice sends the KDC (depicted as Kerberos in Figure 1) the

ticket she received, Bob’s name, and an authenticator, which

consists of the time of day encrypted with the session key.

4. The ticket-granting server decrypts the ticket and authenticator,

verifies the request, then if the request is valid, the KDC constructs

a new key, for use in communication between Bob and Alice, and

50

the KDC also constructs a new ticket, which consists of the newly

generated key, Alice’s name, and an expiration time. The new

ticket is encrypted with Bob’s master key. The newly encrypted

ticket, Bob’s name, and the session key are encrypted with Alice’s

master key and sent back to Alice.

5. Alice decrypts the information and sends a request to Bob. The

request consists of the ticket, which Alice received that is

encrypted with Bob’s master key (session key and Alice’s name)

and an authenticator (time and session key).

6. Bob decrypts the session key and discovers Alice’s name and a

session key. Bob decrypts the authenticator and sees that the party

to which he will communicate does indeed know the session key;

he also checks the time in the authenticator to ensure it is close to

the current time (a step taken to mitigate replay attacks). Bob

sends messages to Alice.

For more information on Kerberos, the reader can reference [MWS2v] as a

starting point. As mentioned earlier, the Kerberos protocol requires the client to present a

valid and correct password or private key to the server in order to receive a ticket. Most

readers are familiar with passwords, but they may not be as familiar with private keys.

Private keys are often associated with a PKI, which will be discussed in Section D.

Talisker does not provide any documentation stating that it supports a PKI, but it does

support a component that PKIs can support as well: smart cards [OWS3n].

C. SMART CARDS

Smart cards are credit card size devices with a crypto-capable microprocessor

[OWS3o]. A layer of security can be added to WinCE by using smart cards as a

mechanism to store authentication information or to enable digital signing. The WinCE

smart card subsystem supports CrytoAPI through smart card service providers (SCSPs),

which are dlls (defined in Chapter V, Section D, subsection 6) that enable access to

specific services. The subsystem provides an interface between the smart card reader

hardware and the applications. Windows CE does not provide SCSPs as part of the

51

operating system code that is shipped to the OEMs. Smart card vendors must provide the

appropriate SCSPs. Windows CE does provide the interfaces shown in Table 4.1.

Subsystem component File Description

Resource manager Scard.dll Uses the Win32 APIs to manage
access to multiple readers and
smart cards

Resource manager helper library Winscard.dll Exposes PC/SC services for using
smart cards and smart card readers.

Smart card reader helper library Smclib.lib Provides common smart card
driver support routines and
additional T=01 and T=1 protocol
support to specific drivers as
needed

Sample smart card reader drivers Pscr.dll

bulltlp3.dll

stcusb.dll

SwapSmart PC reader driver.

Serial reader driver.

Universal serial bus (USB) reader
driver.

Table 4.1 Windows CE Smart Card Interfaces (From: [MWS2w])

Typically, a smart card system consists of applications, a subsystem that handles

communication between smart card readers and the applications, readers (hardware not

included with WinCE subsystem), and the smart card. Figure 4.1 illustrates this

relationship and process flow: [MWS2w]

1 T=x is a type of data manipulation language table, see [MWS2y].

52

Figure 4.2 Windows CE-based Smart Card System Architecture (From: [MWS2w])

In this section, the WinCE smart card subsystem was briefly discussed but also of

note is a Microsoft press release in June 2000. This press release allows the reader to

understand that smart cards and smart card technology has begun its proliferation in both

the business and government communities as indicated by the following quote from the

article. [OWS3p]

 The General Services Administration (GSA) is an example of a forward-
looking organization working to deploy smart cards to the federal
government. GSA recently awarded a 10-year contract estimated at $1.5
billion to five industry partners….Microsoft is the subcontractor of each of
these prime awardees.

Smart cards used as a component in the PKI architecture are used as mechanisms

that store a user’s private key. The smart card allows the user to access the network

and/or possibly services on the network. The smart card provides a means of identifying

53

the user to the network and authenticating the user. The Department of Defense (DoD)

plans to use smart cards as part of their PKI [DOD01].

D. DOD PUBLIC KEY INFRUSTRUCTURE (PKI)

The Department of Defense’s PKI is an asymmetric cryptography key system,

which means it uses two different keys to encrypt and decrypt information [DOD01].

The reader should note this key system is different from Kerberos, mentioned earlier,

which uses a symmetric key system for its session key service. In PKI, the keys are

complementary [DOD01]. Public Key Infrastructure has in addition to the asymmetric

key other components that enable it to provide the following IA services.

• Authentication: ensures senders are who they claim to be

• Confidentiality: ensures data remains private

• Integrity: ensures data has not been modified

• Non-repudiation: ensures person sending cannot deny participation

The components that the PKI is built upon to provide the services mentioned

above are as follows: [DOD01]

• Certificate Policy: this is a policy that establishes the common security rules

for a given assurance class under which certificates are generated and

managed to maintain trust within a PKI.

• Public Key Certificates: this is the cornerstone of the PKI technology; it is

the ability to distribute public keys to large populations while maintaining the

trust that each certificate is associated with the identity, public and private

keys of the claimed subscriber.

• Token: this is a mechanism used to hold certificates and private keys.

• Subscriber: the customers of the products and services provided by a PKI.

• Registration: the process that subscribers use to identify themselves to the

PKI and request certificates.

54

• Certificate Management: this is the generation, production, distribution,

control, tracking, revocation, and destruction of public/private keys and

associated certificates.

To understand exactly how PKI works, the reader can reference [DOD01]. This

work will provide a very brief overview to give the reader a basic understanding. In a

PKI a subscriber can log onto a PK-enabled computer with his or her private key, which

could be stored on a smart card or 3.5” floppy disk or some other medium. The

subscriber will have access to the computer and any services provided by the PKI in

accordance with his or her authorizations. The subscriber’s authorization is based on his

or her private key, which identifies the person.

During the system’s authentication process, the subscriber’s identity is verified

along with the services that the subscriber can access. Along with providing the system

with the subscriber’s private key, the subscriber should be required to enter a password or

fingerprint or some other type of identifying information, to mitigate the possible loss or

theft of the subscriber’s private key. This analysis will not discuss the underlying

mechanisms that make a PKI work. Here it is sufficient to describe how some of the PKI

components can be supported by WinCE.

As mentioned earlier, WinCE, Talisker, has a certificate database. Talisker also

has various certificates preloaded as with most Microsoft browsers to support companies

such as Verisign and others. Talisker supports smart cards through its CAC subsystem.

The aforementioned functionality in Talisker may make it possible to modify WinCE to

support PKI without overhauling the code.

E. CONCLUSION

Authentication is one facet of system security. Thus, it enhances the security of

the operating system. In deciding which authentication protocol to use, developers must

chose one robust enough to allow maximum participation with current and future

technologies (as well as can be anticipated). Talisker provides a robust authentication

protocol (Kerberos), and it also supports two key components of a DoD’s PKI:

certificates and smart cards. Talisker may prove to be a bridging device between current

technology and future technology.
55

THIS PAGE INTENTIONALLY LEFT BLANK

56

V. EMERGING TECHNOLOGIES

A. MOORE’S LAW

In 1965, Gordon Moore, eventual cofounder of the Intel Corp., predicted that the

density of transistors in an integrated circuit would double every year. Moore’s

prediction was later changed to reflect an 18-month cycle. His prediction became known

as Moore’s law. [OWS3e] Not only has his law proven to be accurate over the years, but

it has also described the trends of microprocessor performance [OWS3e]. Today, in

some areas, technology is advancing at an even faster rate than Moore’s law

hypothesized. For example, according to Lt. Gen. Michael Hayden, director of the

National Security Agency (NSA), NSA is losing the race to keep up with technology; the

development cycle of the global industry (telecommunications) is moving at the “speed

of light” [OWS3f].

1. Computing at the Speed of Light (Optical or Photonic Computing)

Technology may not evolve literally at the speed of light (186,171 miles per

second), but the analogy puts in perspective the pace at which technology is changing.

One such change that is being researched, although real world uses may be years away, is

the slowing down of light [OWS3g]. A Danish physicist, Lene Vestergaard, has

developed a way to slow light down to 38 miles per hour [OWS3g]. Controlling the

speed of light presents many possibilities.

One such possibility is the development of extremely fast computers based
on optical switches that would open and close under the control of very
weak laser beams. Computer systems could then use optically switched
logic gates instead of today’s electronic logic gates. [OWS3g]

If this innovation can be realized, the power of the desktop could conceivably be

in the palm of our hands.

57

2. Computing on the Atomic Scale (Quantum Computing)

Another processing technology that, if realized, will revolutionize computing is

quantum computing. Quantum computing is based on the quantum theory, which arose

at the beginning of the 20th century to explain certain phenomena that could not be

modeled using classical mechanics. Quantum computing is based on the idea of using

quantum bits, called qubits, that can represent ones, zeros, or both at the same time

(superposition), which is different from electronic circuits in today’s computer that can

represent only ones and zeros [OWS3h]. The increased number of data states in quantum

computing will increase the computation power of computers, and the superposition of

qubits will enable computers to apply the same operation to many numbers in parallel in

one step [OWS3h]. Quantum computing would allow computer scientist to overcome

computational complexity hurdles and would permit a variety of here-to-fore

“impossible” computations.

B. TOMORROW (THE FUTURE)

It is difficult to estimate what will emerge, but much of the research in the areas

of computing power seems to indicate that palm-sized devices will have a role in

ushering in our future (whether PDAs are transitional hardware or “the future” remains to

be seen). From DNA computing to chaotic computing and everything in between

(photonic computing, and quantum computing), the focus is on making computers

smaller, faster, and more powerful. Conceptually, computers will be a part of everything

from our appliances to our transportation. In a PC Magazine Online article (Fast-

Forward to 2010) written by Carol Levin in January 1999, she interviewed two IBM

visionaries, Paul Horn – director of IBM research, and Phil Hester – chief technology

officer of IBM Personal Systems Group [OWS3i]. They envision a possible future as

follows:

Your refrigerator will know when you’re running low on milk and remind
your hand-held device so you can pick up a quart on the way home. At
the grocery store, you’ll pick up a few items, toss them in a bag, and leave;
radio-frequency tags on the items will charge your account automatically.
Your car dealer will detect car problems remotely and correct them by
downloading software repairs directly to your car over an Internet
connection. A portable, miniaturized storage device will store all the

58

information in the Library of Congress. They went on to say that within
the next 20 years, a holographic cube will offer storage for $1 per
terabyte…and digital assistants (PDAs) will give you thoughtful advice.
[OWS3i]

To the observant reader, the future may appear more near than far. As mentioned

in Chapter II, PDAs are becoming more popular among professionals and consumers.

The Pocket PCs (Casio, IPaqs and Jornada) are continually evolving to provide improved

functionality, such as improved synching capabilities, multitasking, and processing power

[OWS3j]. Pocket PCs also provides new software and expansion possibilities, which can

be used for everything from memory cards to modems. With smart appliances entering

the market place and the proliferation of Internet connectivity for PDAs, the future may

be as soon as tomorrow.

Tomorrow is our future, but today’s technology is our bridge to that future. If we

believe the future will be similar to that of IBM’s visionaries, PDAs will have a

significant role in that future. Today PDAs don’t give us thoughtful advice, but they do

provide scheduled reminders. Our refrigerators are not notifying our PDAs to remind us

to pick up milk, but our PDAs can remind us of our shopping list. PDAs have a useful

role in some people’s lives today, and it is a role that is not far removed from their

predicted future role. To achieve the envisioned future, there must be other technologies

introduced to bridge the gap from where we are today to where we will be tomorrow.

One of these is the Microsoft .NET effort.

C. TODAY (.NET)

Microsoft’s .NET (pronounced “dot net”) initiative has been described as an

ambitious plan to build an operating system on the Internet itself [LEV01]. The .Net

initiative is of interest because it may be a technology that will enable our automobile

mechanics to detect problems with our cars, remotely, and notify us via email on our

PDAs – a possible interim step to achieving the futuristic goal of having the mechanic

repair certain problems by downloading software.

By describing .Net as an operating system on the Internet, the reader should

understand that each device that connects to the operating system (Internet) is treated as a

potential process – review Chapter II. (Also each device will have its own local

59

operating system such as Win20002, WinCE, WINNT, etc. The Internet operating

system mentioned is for the reader to understand the illusion created by .Net

applications.) Just as an operating system has to create a process, .Net has to “create a

process” as well. Once a person who is a subscriber to .Net logs onto a computer

connected to the Internet, a process begins on that person’s behalf – consistent with the

operations of an operating system. A NewsWeek article states,

Microsoft will (after the .Net initiative) transform its business model to
focus on subscription-based services. [LEV01]

 Conceivably, through this subscription process to .Net, consumers will interact

with business applications as well as other Microsoft services.

Each device that connects to the Internet and executes assemblies (a .NET

component that will be explained later) is described as a potential process. As explained

in Chapter II, processes reserve resources to execute programs. When a person logs onto

a device, goes out to the Internet, and executes an assembly, the device becomes a

process working on that user’s behalf. The device reserves the resources needed for the

program (assembly) to execute. In the .NET framework all the resources needed to

execute an assembly may not be contained in the assembly or on the local machine

[MWS2k]. Therefore proper execution of the assembly may require additional resources,

which may have to be retrieved within the .NET framework. This may be transparent to

the user, so, from the user’s perspective, .NET may appear to be an operating system.

.NET is also described as a development platform. One article describes .NET as

an open language platform for enterprise and Web development [MEY01]. Although

.NET may provide numerous benefits for both users and developers, it is the developers

who will notice and benefit from the ASP.NET component of .NET [MEY01].

ASP.NET maintains session state without storing client information on the server, and

developers no longer have to use URL encoding or cookies [MEY01]. However, there

are security implications (which will not be discussed) that developers must consider

when deciding whether or not to use this capability.

2 Windows 2000, Windows NT 4.0, Windows 95, Windows Me, Windows 98, Windows 98 SE and

Windows CE are trademarks of the Microsoft Corporation.

60

There may be differences of opinion over whether or not .NET is an operating

system on the Internet or strictly a development technology, but that is more a matter of

perspective than functionality. Its functionality has characteristics of an operating system

and of a development platform. Microsoft characterizes .NET as

a new platform for building integrated, service-oriented applications to
meet the needs of today’s Internet business; applications that gather
information from, and interact with, a wide variety of sources, regardless
of the platforms or languages in use. [MWS2l]

Microsoft’s description of .NET as “a new platform for building…” confirms that

.NET is a development platform. However, in the very same description, Microsoft

describes .NET’s applications in terms of processes…“applications gather… a wide

variety of sources.” Chapter II described a process as an entity that reserved resources to

enable a program to execute; in a similar sense, application must gather or reserve

sources or resources to ensure proper execution. As .NET is described in more detail

(detailed overview), the application’s (assembly’s) comparison to a process should

become more obvious.

D. DETAILED OVERVIEW OF .NET

The .NET structure, to include its internals and components, is more concrete.

The .NET framework is much too vast to discuss in detail in one chapter, but an overview

of the technology can be adequately explained. At the heart of .NET is a desire to

standardize and integrate proprietary information [MWS2l]. To fulfill the requirement of

standardization, .NET has embraced the Extensible Markup Language (XML) standard

for describing data [MWS2l].

XML is a language for describing data elements. It describes the
attributes of the data and identifies its intended meaning and use.
[MUR01]

In addition to using a common standard, developers also need to use a common

protocol; .NET will use Simple Object Access Protocol (SOAP) [MWS2m].

Overall, .NET has six layers of structure [MEY01]. Figure 5.1 shows the six

layers. The top layer in the .NET structure is the Web Services layer. The layer below

Web Services is the Framework and Libraries layer followed by the Interchange and

Development Environment layer, which has two separate components: interchange
61

standards and development environment. The next layer down is the Component Model

layer followed by the Object Model layer. The final or bottom layer is the Common

Language Runtime layer [MEY01].

Figure 5.1 .NET Structure (From: [MEY01])

1. Web Services

Web Services is designed to provide .NET users, persons and companies, with

services for e-commerce and business-to-business applications [MEY01]. Microsoft’s

.NET user interface promises to fulfill Berners-Lee’s (inventor of the Web) vision of the

Web being a collaborative (i.e., multi-user read/write) environment [MWS2m]. A Web

Service is a URL–addressable resource that programmatically returns information to

clients [MWS2n]. Clients can use Web Services without worrying about the

implementation details of those services [MWS2n].

The web services infrastructure is designed as follows: a discovery mechanism to

locate Web Services, a service description for defining how to use those services, and

standard wire formats with which to communicate [MWS2o]. Figure 5.2 details the Web

Services infrastructure. The role of the Web Services directories, discovery, description

and wire formats are as follows [MWS2o]:

62

Figure 5.2 Web Service Infrastructure (After: [MWS2o])

Web Services Directories provide a central location to locate Web

Services provided by other organizations. Web Services directories such

as a Universal Description, Discovery and Integration (UDDI) registry

fulfills this role [MWS2o]. The XML schemas associated with UDDI

define four types of information that would enable a developer to use a

published Web Service: business information, service information,

binding information, and information about specifications for services

[MWS2p]. The Remoting Security3, a security mechanism in .NET, will

provide the integrity checking service; for more on the remoting security

mechanism see [MWS2k].

3 A Microsoft Corporation term – this service provides support for remote objects invocation that can

span AppDomains, processes, or machines [MWS2k].

63

Web Services Discovery is the process of locating, or discovering one or

more related documents that describe a particular Web Service using the

Web Service Description Language (WSDL) [MWS2o].

A published .disco file, which is an XML document that contains links to
other resources that describe the Web Service, enables programmatic
discovery of a Web Services. [MWS2q]

A Web Service client may bypass the discovery process if the location of

the service description is known [MWS2o]. When a Web Service is

created for private use, there will not be a public means of finding it

[MWS2q].

Web Service Clients must understand how to interact with a particular

Web Service before they can use it [MWS2o]. Therefore it is necessary to

provide a service description that defines what interactions the Web

Service supports [MWS2o]. The service description is an XML document

written in WSDL that defines the format of messages the Web Services

understands [MWS2r].

Web Services Wire Formats enable universal communication by using

open wire formats, which are protocols understandable by any system

capable of supporting the most common Web standards. SOAP, a simple

lightweight XML–based protocol, is key for providing Web Service

communication. [MWS2o]

2. Frameworks and Libraries

Microsoft’s .NET framework and libraries define a set of guidelines as a way to

help class library designers more fully understand the trade-offs between different

solutions [MWS2s]. This layer is intended to provide a well-defined managed class

library with the following characteristics [MWS2s]:

Consistent: Similar design patterns are implemented across libraries.

Predictable: Functionality is easily discoverable. There is typically only

one way to perform a specific task.

64
Web Centric: Callable from semi-trusted code.

Multilanguage: Functionality is accessible to many different programming

languages.

.Net contains thousands of reusable components [MEY01]. Some of the most

immediately attractive aspects for developers are ASP.NET, active server pages for

developing smart Web sites and services; ADO.NET, an XML-based improvement to

ActiveX Data Objects, for databases and object-relational processing; and Windows

Forms for graphics [MEY01].

3. Interchange Standards/Development Environment

The third layer from the top has two different components. The interchange

standard component is an XML-based standard that serves as a platform-independent

means of exchanging objects [MEY01]. The most important are SOAP, an increasingly

popular way to encode objects, and WSDL [MEY01]. The development environment

provides a common software development environment offering facilities for

development, compilation, browsing, and debugging shared by many languages

[MEY01].

4. Component Model

The fourth layer from the top of the platform’s structure is the component model.

The component model for .NET is based on object-oriented ideas [MEY01]. In .NET,

developers build assemblies, which consist of numerous classes with well-defined

interfaces [MEY01]. Assemblies are Portable Executable (PE) files [MSW2l].

Assemblies (managed PE files) are not x86 machine code or machine code targeted to

any specific CPU platforms; assemblies are MicroSoft Intermediate Language (MSIL)

code generated by language compilers that support .NET [MSW2l]. Each assembly

contains metadata [MSW2l].

Metadata is used to permit communication about the data to take place
between programs that do not otherwise know about each other. [MUR01]

The components of an assembly are described in a manifest. [MWS2l]

A manifest is a block of data that enumerates the assembly's files, and
controls what types and resources are exposed outside of the assembly.
The manifest also governs how references to these types and resources are
mapped onto the files that contain their declarations and implementations,

65

and enumerates other assemblies on which this one is dependent. The
existence of a manifest provides a level of indirection between consumers
of the assembly and the implementation details of the assembly and makes
assemblies self-describing. [MWS2l]

For the component model layer, this paper only mentions assemblies, manifests,

and metadata. The reader can find out more about the components of this layer by

visiting the Microsoft development web site [MWS2x].

5. Object Model

This level provides the conceptual basis on which everything else rests, especially

the object-oriented type system [MEY01].

The formal specification of the type system implemented by the common
language runtime is called the Common Type System (CTS). The CTS
specifies how object classes (called types) are defined. [MWS2l]

The following is the list of possible members that a class type can contain

[MWS2l]:

Field: A data variable that is part of the object’s state. Fields are

identified by their name and type [MWS2l].

Method: A function that performs an operation on the object, usually

changing the object’s state. Methods have a name, signature, and

modifiers. The signature specifies the calling convention, number

of parameters (and their sequence), the types of the parameters,

and the type of value returned by the method. The modifiers can

include custom attributes, whether the method is public, private,

static, and so on [MWS2l].

Property: To the caller, this member looks like a field. But to the class

implementor, this member looks like a method. Properties allow

an implementor to calculate a value only when necessary and allow

a class user to have simplified syntax. Properties also allow you to

create read-only or write-only “fields” [MWS2l].

66

Event: Events provide a notification mechanism between an object and

other interested object. For example, a button could offer an event

that notifies other objects when the button is clicked [MWS2l].

The common language specification defines restrictions ensuring language

operability [MEY01].

6. Common Language Runtime

The common language runtime provides the basic set of mechanisms for
executing .NET programs regardless of their language of origin:
translation to machine code (judiciously incremental translation, or
jitting), more commonly known as “just in time”, loading security
mechanisms, memory management (including garbage collection), version
control, and interfacing with non-.NET code. [MEY01]

The .NET framework represents a new way of developing software by providing

technologies (via the .NET common language runtime engine) that support rapid software

development [MWS2l]. Some of the features provided by the .NET common language

runtime engine are listed below [MWS2l]:

Consistent programming model: All application services are offered via

a common object-oriented programming model, unlike today where some

OS facilities are accessed via DLL functions and other facilities are

accessed via COM objects.

Simplified programming model: .NET seeks to greatly simplify the

plumbing and arcane constructs required by Win32 and COM.

Specifically, developers no longer need to gain an understanding of the

registry, GUIDs, IUnknown, AddRef, Release, HRESULTS, and so on. It

is important to note that .NET doesn't just abstract these concepts away

from the developer; in the new .NET platform, these concepts simply do

not exist at all.

Run once, run always: All developers are familiar with “DLL Hell,” but

for those who are not, a dynamic link library (dll) is a collection of

subroutines that can be loaded to support the execution of an application

(application x). When the code in these libraries are updated (new

versions), the new dll (updated version) might no longer support the
67

execution of application x. If a user downloads the new dll to support the

execution of application y, the new dll, if it is an updated version of the

old dll used to support application x, will over-write the old dll and the

user will not be able to execute application x. Since installing components

for a new application can overwrite components of an old application, the

old app can exhibit strange behavior or stop functioning altogether. The

.NET architecture now separates application components so that an app

always loads the components with which it was built and tested. If the

application runs after installation, then the application should always run.

This marks the end of DLL Hell.

Execute on many platforms: Today, there are many different flavors of

Windows: Windows 95, Windows 98, Windows 98 SE, Windows Me,

Windows NT 4.0, Windows 2000 (with various service packs), Windows

CE, and soon a 64-bit version of Windows 2000. Most of these systems

run on x86 CPUs, but Windows CE and 64-bit Windows run on non-x86

CPUs. Once written and built, a managed .NET application (that consists

entirely of managed code) can execute on any platform that supports the

.NET common language runtime. It is even possible that a version of the

common language runtime could be built for platforms other than

Windows in the future. Users will immediately appreciate the value of this

broad execution model when they need to support multiple computing

hardware configurations or operating systems.

Language integration: COM allows different programming languages to

interoperate with one another. .NET allows languages to be integrated

with one another. For example, it is possible to create a class in C++ that

derives from a class implemented in Visual Basic. The .NET platform can

enable this because it defines and provides a type system common to all

.NET languages. The Microsoft Common Language Specification

describes what compiler implementors must do in order for their

languages to integrate well with other languages. Microsoft provides

several compilers that produce code targeting the .NET common language

68

runtime: C++ with managed extensions, C# (pronounced "C sharp"),

Visual Basic (which now subsumes VBScript and Visual Basic for

Applications), and JScript®. In addition, companies other than Microsoft

are producing compilers for languages that also target the .NET common

language runtime.

Code reuse: Using the mechanisms just described, you can create your

own classes that offer services to third-party applications. This, of course,

makes it extremely simple to reuse code and broadens the market for

component vendors.

Automatic resource management: Programming requires skill and

discipline. This is especially true when it comes to managing resources

such as files, memory, screen space, network connections, database

resources, and so on. One of the most common bugs occurs when an

application neglects to free one of these resources, causing that application

or others to perform improperly at some unpredictable time. The .NET

common language runtime automatically tracks resource usage,

guaranteeing that an application never leaks resources (in other words, this

ensures the proper management of resources so that a resource is freed

only after an application has finished using it and not before, it also

ensures the resource is released and made available for other applications

once the original application has finished using it). In fact, there is no way

to explicitly free a resource.

Type safety: The .NET common language runtime can verify that all

code is type safe. Type safety ensures that allocated objects are always

accessed compatibility. Hence, if a method input parameter is declared as

accepting a 4-byte value, the common language runtime will detect and

trap attempts to access the parameter as an 8-byte value. Similarly, if an

object occupies 10 bytes in memory, the application can't coerce this into a

form that will allow more than 10 bytes to be read. Type safety also means

that execution flow will only transfer to well-known locations (namely,

method entry points).

69

Rich debugging support: Because the .NET common language runtime

is used for many languages, it is now much easier to implement portions

of applications using the language that is best suited for it, the application.

The .NET common language runtime fully supports debugging

applications that cross language boundaries. The runtime also provides

built-in stack-walking facilities, making it much easier to locate bugs and

errors.

Consistent error handling: One of the most aggravating aspects of

programming in Windows is the inconsistent ways errors are reported.

Some functions return Win32 error codes, some return HRESULTS

(which is a return value of COM functions and methods [MWS2u]), and

some raise exceptions. In .NET, all errors are reported via exceptions.

Exceptions allow the developer to isolate the error-handling code from the

code required to get the work done. This greatly simplifies writing,

reading, and maintaining code. In addition, exceptions work across

module and language boundaries as well.

Deployment: Today, Windows-based applications can be incredibly

difficult to install and deploy. There are usually several files, registry

settings, and shortcuts that need to be created. In addition, completely

uninstalling an application is nearly impossible. With Windows 2000,

Microsoft introduced a new installation engine that helps with all of these

issues, but it is still possible that a company authoring a Microsoft

Installer Package may fail to do everything correctly. .NET seeks to make

these issues ancient history. .NET components are not referenced in the

registry. In fact, installing most .NET-based applications will require no

more than copying the files to a directory, and uninstalling an application

will be as easy as deleting those files.

Security: Traditional OS security provides isolation and access control

based on user accounts. This has proven to be a useful model, but at its

core it assumes that all code is equally trustworthy. This assumption was

justified when all code was installed from physical media (such as CD-

70

ROM) or trusted corporate servers. But with the increasing reliance on

mobile code such as Web scripts, Internet application downloads, and e-

mail attachments, there is a need for more granular control of application

behavior. The .NET Code Access Security model will deliver the granular

control [MWS2l]. For more on the .NET Code Access Security model see

[MWS2k].

E. CONCLUSION

.NET is more complex then what has been described in this chapter. However,

this chapter gives a fundlemental overview of what .Net is, what it is designed to do, and

how it is designed. The focus of this chapter has been on the .NET structure. For more

on .NET visit the Microsoft development web page [MWS2l]. Although .NET is being

designed to work on any operating system, as of the writing of this paper, it only works

on Windows-based operating systems – Windows CE being one.

71

THIS PAGE INTENTIONALLY LEFT BLANK

72

VI. CONCLUSION AND RECOMMENDATIONS

A. CONCLUSION

Pocket PC, which is the third generation of the WinCE operating system designed

to run on small devices from embedded systems to Personal Digital Assistants (PDAs), is

gaining popularity among professionals and is estimated to own 40% of the market share

for palm-sized devices by 2004 [OWS3c]. Today, many people are using PDAs; and as

PDA prices drop, additional users are anticipated in the near future. The trend among

professionals towards using Pocket PC instead of Palm, which is a competing operating

system, seems to indicate a preference for functionality and familiarity.

The familiarity of WinCE (for PDAs) is based on its applications, which are

similar to those found on desktops executing Windows operating system. The use of

WinCE for embedded devices and PDAs should raise security concerns because of recent

exploits against the Palm operating system [KIN01]. Although the exploits are not

against WinCE, the exploits prove that these small-foot printed operating systems are

vulnerable. This vulnerability puts at risk information stored on PDAs as well as

appliances running WinCE as an embedded OS.

Mitigating these risks require security. Security must be implemented to allow

the operating system to continue to perform at a reasonable level (a subject for further

research) while ensuring privacy of data and protection of the operating system itself to

include the data, code, and mechanisms (dependencies) of the operating system. Any

success in enhancing the security of WinCE requires understanding the operating system

through analysis of its code. That analysis is facilitated through an understanding of the

operating system itself.

This portion of the project examined WinCE’s threads and processes data

structures, creation, and termination. This work also looked at the authentication

mechanism in Talisker, the next generation of the WinCE operating system. Talisker
73

supports Kerberos, an authentication protocol based on tickets, and session keys

(symmetric keys). Talisker also supports components of a PKI, which is a key

management scheme based on asymmetric keys (public keys, private keys and

certificates). Public key infrastructure delivers authentication, integrity, confidentiality,

and non-repudiation.

PKI does not make an operating system more self-protecting. A public key

infrastructure provides a means for identifying an object (authentication), providing

integrity and confidentiality of the data being transferred between objects, and ensuring

that an object/subject cannot deny executing a transaction (non-repudiation). Thus, PKI

is a means for providing security to data. However, authentication, which is used to

identify an object/subject, does provide limited security to the operating system.

Authentication can be used to insure that only authorized individuals gain access

to the PDA. By providing such a mechanism, for example, by requiring a user to provide

a valid smart card with an authorized pass phrase bound to that particular smart card, and

by having a valid certificate in the PDA’s certificate database before the system (PDA)

will initialize, provides initial protection to the device. This work also discussed future

technologies that may affect WinCE. Faster processors may make it possible to enhance

security without degrading performance to unacceptable levels. Personal Digital

Assistants may be required to support new network technologies, such as .NET. To

avoid overlooking security requirements for these future technologies, developers must

decide what support to implement and how to ensure security with the added

functionality.

B. RECOMMENDATIONS FOR FUTURE RESEARCH

There are a few areas for future research. In the WinCE operating system, the file

system, the I/O system, the memory and cache management, etc., should be examined.

Through code analysis it should be determined whether or not WinCE can be modified to

fully support PKI without having to completely rewrite the operating system. By

supporting PKI, conceivably, Pocket PC could be integrated into an “unclassified but

sensitive” network without degrading the network’s integrity. This is theoretically based

on using a combination of technologies currently supported by Talisker, smart cards and

74

the PDA’s unique identification. Further research is required to prove whether or not this

is possible.

In this work, there were certain security attributes in the create process function

that were not used: lpsaProcess and lpsaThread (Chapter III, Section C, Subsection 1).

Several areas of further research that could prove fruitful include determining what these

attributes would provide to the operating system in terms of security; and if these

attributes provide additional security, how they can be supported without significant

modification of the code.

75

THIS PAGE INTENTIONALLY LEFT BLANK

76

LIST OF REFERENCES

A. BOOKS AND ARTICLES

[AND72] Anderson, J.P., “Computer Security Technology Planning Study.”, ESD-
TR-73-51, Vol. 1, Hanscom AFB, MA, DTIC-AD-758206, (1972)

[ATT76] Attanasio, C.R., Markstein, P.W., and Phillips, R.J., “Penetrating an
Operating System: A Study of VM/370 integrity.” IBM System Journal
No. 1 102-116, (1976)

[BAC86] Bach, M. J., The Design of the UNIX Operating System, Prentice-Hall, Inc,
(1986)

[BOS00] Boswell, W., Inside Windows 2000 Server, New Riders Publishing (2000)

[CCI99] Common Criteria for Information Technology Security Evaluation,
Version 2.1, CCIMB-99-031 (Aug 1999)

[DIJ68] Dijkstra, E.W., “The Structure of the “THE”-Multiprogramming System.”
ACM Symposium on Operating Systems Principles, Vol. 11, No. 5 341-345
(May 1968)

[DOD01] Department of Defense, “PKI: Unlocking the Door to eBusiness.”
Department of Defense brochure (2001)

[GAR99] Gareau, J.L., Windows CE From the Ground Up, Annabooks, (1999)

[GOL79] Gold, B.D., Linde, R.R., Peeler, R.J., Schaefer, M., Scheid, J.F., and
Ward, P.D., “A Security Retrofit of VM/370.” National computer
Conference 335-344 (1979)

[KAU95] Kaufman, C., Perlman, R., and Speciner, M., Network Security Private
Communication in a Public World, Prentice-Hall, Inc, (1995)

[KIN01] Kingpin, and Mudge., “Security Analysis of the Palm Operating System
and its Weaknesses Against Malicious Code Threads.” Proceedings of the
10th USENIX Security Symposium (Aug 2001)

[LEV01] Levy, S., “ ‘A Cloud Lifted.’ ” Newsweek 38-39, (July 9, 2001)

[LIN75] Linde, R.R., “Operating System Penetration.” National Computer
Conference 361-368, (1975)

[MEY01] Meyer, B., “.NET is Coming.” Computer Innovative Technology for
Computer Professionals 92-97 (August 2001)

[MIC98] Microsoft Corporation, Microsoft Windows CE Programmer’s Guide,
Microsoft Press, (1998)

[MIC99] Microsoft Corporation, Microsoft Windows CE Programmer’s Guide,
Microsoft Press, (1999)

77

[MUL93] Mullender, S., Distributed Systems, ACM Press New York, (1993)

[MUR98] Murray, J., Inside Microsoft Windows CE, Microsoft Press, (1998)

[MUR01] Murray, W.H., “Security for XML and Other Meta-data Languages.”
(2001)

[SAL73] Saltzer, J.H., “Protection and the Control of Information Sharing in
Multics.” Communications of the ACM, Vol. 17, No. 7 388-402 (Jul 1974)

[SAL75] Saltzer, J.H., and Schroeder, M.D., “The Protection of Information in
Computer Systems.” Proceedings of the IEEE, Vol.63, No. 9 1278-1308,
(Sept 1975)

[SCH75] Schroeder, M.D., “ENGINEERING A SECURITY KERNEL FOR
MULTICS.” Proceedings of The Fifth Symposium on Operating Systems
Principles, 25-31 (Nov 1975)

[SCH77] Schroeder, M.D., Clark, D.D., and Saltzer, J.H., “The Multics Kernel
Design Project.” Proceedings of Sixth ACM Symposium on Operating
Systems Principles, 43-56 (Nov 1977)

[SIL94] Silberschatz, A., and Galvin, P.B., Operating System Concepts, Addison-
Wesley Publishing Company, Inc, (1994)

[SIL98] Silberschatz, A., and Galvin, P.B., Operating System Concepts, Fifth
Edition, John Wiley & Sons, (1998)

[SOL98] Solomon, D.A., Inside Windows NT, Second Edition, Microsoft Press,
(1998)

[SOL00] Solomon, D.A., and Russinovich, M.E., Inside Microsoft Windows 2000,
Third Edition, Microsoft Press, (2000)

[STA98] Stallings, W., Operating Systems Internals and Design Principles, Third
Edition, Prentice-Hall, Inc, (1998)

[STA99] Stallings, W., Cryptography and Network Security Principles and
Practice, Third Edition, Prentice-Hall, Inc, (1999)

[TAN97] Tanenbaum, A.S., and Woodhull, A.S., Operating Systems: Design and
Implementations, Second Edition, Prentice-Hall, Inc, (1997)

B. OTHER

1. Newsgroups and Mailing Lists [NGS1]

a. BUGTRAQ@securityfocus.com

b. microsoft.public.windowsce.talisker.techpreview

78

2. Microsoft MSDN Websites [MWS2]

a. Microsoft Corporation. (2001). Introducing Microsoft Windows CE 3.0. MSDN
library.

http://msdn.microsoft.com/library/techart/introwince.htm (17 Apr 2001)

b. Yao, P. (Nov 2000). Windows CE 3.0: Enhanced real-time features provide
sophisticated thread handling. MSDN magazine.

http://msdn.microsoft.com/library/periodic/period00/RealCE.htm
(21 Jun 2001)

c. Microsoft Corporation. (2000). Microsoft Windows CE 3.0 kernel services:
multiprocessing and thread handling. MSDN library.

http://msdn.microsoft.com/library/techart/threads30.htm (21 Jun 2001)

d. Microsoft Corporation. (2000). About processes and threads. MSDN library.

http://msdn.microsoft.com/library/psdk/winbase/prothred_0n03.htm
(17 Apr 2001)

e. Microsoft Corporation. (2001). CreateProcess. MSDN library.

http://msdn.microsoft.com/library/en-
us/wcesdkr/htm/_wcesdk_win32_createprocess.asp (22 Jun 2001)

f. Microsoft Corporation. (2001). Terminating a process. MSDN library.

http://msdn.microsoft.com/library/psdk/winbase/prothred_9583.htm
(17 Apr 2001)

g. Microsoft Corporation. (2000). Processes and threads. MSDN library.

http://msdn.microsoft.com/library/psdk/winbase/prothred_86sz.htm

(17 Apr 2001)

h. Microsoft Corporation. (2000). Working with processes and threads in Microsoft
Windows CE 2.1. MSDN library.

http://msdn.microsoft.com/library/techart/threads21.htm (17 Apr 2001)

79

http://msdn.microsoft.com/library/techart/introwince.htm
http://msdn.microsoft.com/library/periodic/period00/RealCE.htm
http://msdn.microsoft.com/library/techart/threads30.htm
http://msdn.microsoft.com/library/psdk/winbase/prothred_0n03.htm
http://msdn.microsoft.com/library/en-us/wcesdkr/htm/_wcesdk_win32_createprocess.asp
http://msdn.microsoft.com/library/en-us/wcesdkr/htm/_wcesdk_win32_createprocess.asp
http://msdn.microsoft.com/library/psdk/winbase/prothred_9583.htm
http://msdn.microsoft.com/library/psdk/winbase/prothred_86sz.htm
http://msdn.microsoft.com/library/techart/threads21.htm

i. Microsoft Corporation. (2001). CreateThread. MSDN library.

http://msdn.microsoft.com/library/en-
us/wcesdkr/htm/_wcesdk_win32_createthread.asp (6 Jul 2001)

j. Microsoft Corporation. (2001). TerminateThread. MSDN library.

http://msdn.microsoft.com/library/en-
us/wcesdkr/htm/_wcesdk_win32_terminatethread.asp (6 Jul 2001)

k. Richter, J. (Oct 2000). Part 2: Microsoft .NET framework delivers the platform
for an integrated, service oriented web. MSDN magazine.

http://msdn.microsoft.com/msdnmag/issues/1000/Framework/print.asp
(2 Aug 2001)

l. Richter, J. (Sep 2000). Microsoft .NET framework delivers the platform for an
integrated, service oriented web. MSDN magazine.

http://msdn.microsoft.com/msdnmag/issues/0900/Framework/print.asp
(2 Aug 2001)

m. Smith, M. (2001). Microsoft .NET: Is this Internet strategy the next big thing?
MSDN library.

http://msdn.microsoft.com/library/en-
us/dnw2kmag00/html/MicrosoftNET.asp (15 Aug 2001)

n. Srinivasan, P. (2001). An introduction to Microsoft .NET remoting framework.
MSDN library.

http://msdn.microsoft.com/library/en-us/dndotnet/html/remoting.asp
(15 Aug 2001)

o. Microsoft Corporation. (2001). Web services infrastructure. .NET Framework
Developer’s Guide.

http://msdn.microsoft.com/library/en-
us/cpguidnf/html/cpconwebservicesinfrastructure.asp (17 Aug 2001)

80

http://msdn.microsoft.com/library/en-us/wcesdkr/htm/_wcesdk_win32_createthread.asp
http://msdn.microsoft.com/library/en-us/wcesdkr/htm/_wcesdk_win32_createthread.asp
http://msdn.microsoft.com/library/en-us/wcesdkr/htm/_wcesdk_win32_terminatethread.asp
http://msdn.microsoft.com/library/en-us/wcesdkr/htm/_wcesdk_win32_terminatethread.asp
http://msdn.microsoft.com/msdnmag/issues/1000/Framework/print.asp
http://msdn.microsoft.com/msdnmag/issues/0900/Framework/print.asp
http://msdn.microsoft.com/library/en-us/dnw2kmag00/html/MicrosoftNET.asp
http://msdn.microsoft.com/library/en-us/dnw2kmag00/html/MicrosoftNET.asp
http://msdn.microsoft.com/library/en-us/dndotnet/html/remoting.asp
http://msdn.microsoft.com/library/en-us/cpguidnf/html/cpconwebservicesinfrastructure.asp
http://msdn.microsoft.com/library/en-us/cpguidnf/html/cpconwebservicesinfrastructure.asp

p. Microsoft Corporation. (2001). Web services directories. .NET Framework
Developer’s Guide.

http://msdn.microsoft.com/library/en-
us/cpguidnf/html/cpconwebservicesdirectories.asp (17 Aug 2001)

q. Microsoft Corporation. (2001). Web services discovery. .NET Framework
Developer’s Guide.

http://msdn.microsoft.com/library/en-
us/cpguidnf/html/cpconwebservicesdiscovery.asp (17 Aug 2001)

r. Microsoft Corporation. (2001). Web services description. .NET Framework
Developer’s Guide.

http://msdn.microsoft.com/library/en-
us/cpguidnf/html/cpconwebservicesdescription.asp (17 Aug 2001)

s. Microsoft Corporation. (2001). Net frameworks design and guidelines .NET
Framework Developer’s Guide.

http://msdn.microsoft.com/library/en-
us/cpapndx/html/_cor_introduction_to_the_netframeworks_design_guidelines
.asp (17 Aug 2001)

t. http://msdn.microsoft.com/library/en-us/dllproc/hh/winbase/prothred_0b81.asp

u. Microsoft Corporation. (2001). HRESULT definitions. MSDN library.

http://msdn.microsoft.com/library/en-us/com/hh/com/error_6xo3.asp
(4 Sep 2001)

v. Brown, K. (2000). Understanding Kerberos Credential Delegation in Windows
2000 Using the TktView Utility. MSDN Security Brief.

http://msdn.microsoft.com/msdnmag/issues/0500/Security/Security0500.asp
(9 Jul 2001)

w. Alforque, M. (2000). Creating a Secure Windows CE Device. Library.

http://msdn.microsoft.com/library/techart/winsecurity.htm (18Apr 2001)

x. http://msdn.microsoft.com

81

http://msdn.microsoft.com/library/en-us/cpguidnf/html/cpconwebservicesdirectories.asp
http://msdn.microsoft.com/library/en-us/cpguidnf/html/cpconwebservicesdirectories.asp
http://msdn.microsoft.com/library/en-us/cpguidnf/html/cpconwebservicesdiscovery.asp
http://msdn.microsoft.com/library/en-us/cpguidnf/html/cpconwebservicesdiscovery.asp
http://msdn.microsoft.com/library/en-us/cpguidnf/html/cpconwebservicesdescription.asp
http://msdn.microsoft.com/library/en-us/cpguidnf/html/cpconwebservicesdescription.asp
http://msdn.microsoft.com/library/en-us/cpapndx/html/_cor_introduction_to_the_netframeworks_design_guidelines.asp
http://msdn.microsoft.com/library/en-us/cpapndx/html/_cor_introduction_to_the_netframeworks_design_guidelines.asp
http://msdn.microsoft.com/library/en-us/cpapndx/html/_cor_introduction_to_the_netframeworks_design_guidelines.asp
http://msdn.microsoft.com/library/en-us/dllproc/hh/winbase/prothred_0b81.asp
http://msdn.microsoft.com/library/en-us/com/hh/com/error_6xo3.asp
http://msdn.microsoft.com/msdnmag/issues/0500/Security/Security0500.asp
http://msdn.microsoft.com/library/techart/winsecurity.htm
http://msdn.microsoft.com/

y. Microsoft Corporation. (2001). Data Manipulation Language. Platform SDK.

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/indexsrv/hh/indexsrv/ixoledb_58dv.asp (21 Sep 2001)

3. Other Websites [OWS3]

a. http://www.howstuffworks.com

b. Thornton, C. (Apr 2001). Palm vs. Pocket PC. PC World magazine.

http://www.pcworld.com/features/article/0,aid,41466,pg,1,00.asp (8 Jun 2001)

c. Thornton, C. (Apr 2001). Pocket PC or Palm: Which will win out? PC World
magazine.

http://www.pcworld.com/features/article/1,aid,41466,pg,11,00.asp
(8 Jun 2001)

d. Crouch, C. (Feb 2001). Tech tips: Keep your PDA data safe. Sci-tech.

http://www.cnn.com/2001/TECH/ptech/02/12/PDA.security.idg/index.html
(8 Jun 2001)

e. Stam, N. (1999). Moore’s law will continue to drive computing. PCMagazine.

http://netscape.zdnet.com/pcmag/features/future/moore01.html (8 Jun 2001)

f. Verton, D. (2001). NSA struggles to keep up with pace of technology.

http://www.computerworld.com/cwi/story/0%2C1199%2CNAV47_STO5833
1%2COO.html (8 Jun 2001)

g. Nash, S. (1999). Light slows down. PCMagazine.

http://netscape.zdnet.com/pcmag/news/trends/t990226a.html (8 Jun 2001)

h. Strohmeyer, R. (2000). Beyond silicon. PCMagazine.

http://netscape.zdnet.com/smartbusinessmag/stories/all/0,6605,2453049,00.ht
ml (8 Jun 2001)

82

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/indexsrv/hh/indexsrv/ixoledb_58dv.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/indexsrv/hh/indexsrv/ixoledb_58dv.asp
http://www.pcworld.com/features/article/0,aid,41466,pg,1,00.asp
http://www.pcworld.com/features/article/1,aid,41466,pg,11,00.asp
http://www.cnn.com/2001/TECH/ptech/02/12/PDA.security.idg/index.html
http://netscape.zdnet.com/pcmag/features/future/moore01.html
http://www.computerworld.com/cwi/story/0%2C1199%2CNAV47_STO58331%2COO.html
http://www.computerworld.com/cwi/story/0%2C1199%2CNAV47_STO58331%2COO.html
http://netscape.zdnet.com/pcmag/news/trends/t990226a.html
http://netscape.zdnet.com/smartbusinessmag/stories/all/0,6605,2453049,00.html
http://netscape.zdnet.com/smartbusinessmag/stories/all/0,6605,2453049,00.html

i. Levin, C. (1999). Fast-forward to 2010. PCMagazine.

http://netscape.zdnet.com/pcmag/news/trends/t990127a.html (8 Jun 2001)

j. DaMommio, A. (????). An introduction to Pocket Rockets.

http://www.palmtops.about.com/gadgets/palmtops/library/weekly/aa05152001
a.htm (8 Jun 2001)

k. Microsoft Windows NT workstation and Windows NT server version 4.0.

http://www.itsec.gov.uk (23 Aug 2001)

l. Shim, R. (Jul 2001). Palm losing sales race to Compaq.

http://netscape.zdnet.com/zdnn/stories/news/0,4586,5092810,00.html
(15 Aug 2001)

m. Creed, A. (Aug 2000). First Palm Pilot Trojan found in the wild.

http://www.info-sec.com/viruses/00/viruses_082900a_j.shtml (15 Aug 2001)

n. Microsoft Corporation. (2001). “Talisker” Beta 2 – What’s new. Microsoft
Windows Embedded.

http://www.microsoft.com/windows/embedded/taliskerpreview/whatsnew/
(4 Sep 2001)

o. Microsoft News. (8 Oct 1999). Microsoft holds smart card ’99 business
development conference to showcase new smart card technology solutions.
PressPass.

http://www.microsoft.com/presspass/press/1999/Oct99/SmartCardPR.asp
(4 Sep 2001)

p. Microsoft News. (29 Jun 2000). Microsoft President and CEO Steve Ballmer
outlines role for smart cards in Microsoft .NET generation software. PressPass.

http://www.microsoft.com/presspass/press/2000/Jun00/SmartCardDayPR.asp
(4 Sep 2001)

83

http://netscape.zdnet.com/pcmag/news/trends/t990127a.html
http://www.palmtops.about.com/gadgets/palmtops/library/weekly/aa05152001a.htm
http://www.palmtops.about.com/gadgets/palmtops/library/weekly/aa05152001a.htm
http://www.itsec.gov.uk/
http://netscape.zdnet.com/zdnn/stories/news/0,4586,5092810,00.html
http://www.info-sec.com/viruses/00/viruses_082900a_j.shtml
http://www.microsoft.com/windows/embedded/taliskerpreview/whatsnew/
http://www.microsoft.com/presspass/press/1999/Oct99/SmartCardPR.asp
http://www.microsoft.com/presspass/press/2000/Jun00/SmartCardDayPR.asp

THIS PAGE INTENTIONALLY LEFT BLANK

84

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, Virginia 22060-6218

2. Dudley Knox Library
Naval Postgraduate School
411 Dyer Rd.
Monterey, California 93943-5101

3. Marine Corps Representative
Naval Postgraduate School
Monterey, California

4. Director, Training and Education
 MCCDC, Code C46

1019 Elliot Rd.
Quantico, Virginia 22134-5027

5. Director, Marine Corps Research Center
 MCCDC, Code C40RC

2040 Broadway Street
Quantico, Virginia 22134-5107

6. Marine Corps Tactical Systems Support Activity (Attn: Operations Officer)

Camp Pendleton, California

7. Carl Siel

Space and Naval Warfare Systems Command
PMW 161

 Building OT-1, Room 1024
4301 Pacific Highway
San Diego, CA 92110-3127

85

mailto:debarber@nps.navy.mil
mailto:debarber@nps.navy.mil
mailto:ramkeyce@tecom.usmc.mil
mailto:strongka@tecom.usmc.mil
mailto:sanftlebenka@tecom.usmc.mil
mailto:doranfv@mctssa.usmc.mil
mailto:palanaj@mctssa.usmc.mil
mailto:sielc@spawar.navy.mil

8. Commander, Naval Security Group Command
Naval Security Group Headquarters
9800 Savage Road

 Suite 6585
Fort Meade, MD 20755-6585
San Diego, CA 92110-3127

9. Ms. Deborah M. Cooper

Deborah M. Cooper Company
P.O. Box 17753

 Arlington, VA 22216

10. Ms. Louise Davidson

N643
Presidential Tower 1

 2511 South Jefferson Davis Highway
Arlington, VA 22202

11. Mr. William Dawson

Community CIO Office
Washington, DC 20505

12. Ms. Deborah Phillips

Community Management Staff
Community CIO Office

 Washington, DC 20505

13. Capt. James Newman

N64
Presidential Tower 1

 2511 South Jefferson Davis Highway
Arlington, VA 22202

14. Major Dan Morris

HQMC
C4IA Branch

 TO: Navy Annex
Washington, DC 20380

86

mailto:d.cooper@computer.org
mailto:Davidson.louise@hq.navy.mil
mailto:williamf@odci.go
mailto:deborlp@odci.gov
mailto:Newman.James@HQ.NAVY.MIL
mailto:MorrisDE@hqmc.usmc.mil

15. Mr. Richard Hale
Defense Information Systems Agency, Suite 400
5600 Columbia Pike

 Falls Church, VA 22041-3230

16. Ms. Barbara Flemming

Defense Information Systems Agency, Suite 400
5600 Columbia Pike

 Falls Church, VA 22041-3230

17. Mr. Michael Green, Director

Public Key Infrastructure Program management Office
National Security Agency

 9800 Savage Road
Ft. Meade, Maryland 20775

18. Dr. Cynthia E. Irvine

Computer Science Department
Code CS/IC

 Naval Postgraduate School
Monterey, CA 93943

19. Mr. Daniel Warren

Computer Science Department
Code CS/Wd

 Naval Postgraduate School
Monterey, CA 93943

20. Titus R. Burns

4725 Aliso Way
Oceanside, CA 92057

87

mailto:haler@ncr.disa.mil
mailto:flemingb@ncr.disa.mil
mailto:rmgree2@missi.ncsc.mil
mailto:irvine@cs.nps.navy.mil
mailto:warren@cs.nps.navy.mil

	PERSONAL DIGITAL ASSISTANT
	A.INTRODUCTION
	B.PDA VULNERABILITIES
	C.PDA SECURITY
	1.Chapter II (Windows NT/UNIX)
	Chapter III (WinCE)
	Chapter IV (Authentication)
	Chapter V (Emerging Technology)
	Chapter VI (Conclusion and Recommendations)

	D.CONCLUSION

	OVERVIEW OF OPERATING SYSTEMS, PROCESSES AND THREADS
	A.INTRODUCTION
	B.OPERATING SYSTEM BACKGROUND
	C.PROCESSES
	1.Process Data Structure
	Process Life Cycle
	Process Switching and Process Context

	D.THREADS
	E.SECURITY
	F.WINDOWS NT AUTHENTICATION MECHANISM
	1.Windows NT-based Process and Thread Creation
	2.Windows NT Thread Data Structure

	G.CONCLUSION

	WINDOWS CE PROCESSES AND THREADS
	A.INTRODUCTION
	B.WINDOWS CE
	C.WINDOWS CE PROCESS
	1.Creating a Process
	2.Terminating a Process

	D.WINDOWS CE THREADS
	1.Creating a Thread
	Terminating a Thread

	E.CONCLUSION

	AUTHENTICATION
	A.AUTHENTICATION BACKGROUND
	KERBEROS
	C.SMART CARDS
	D.DOD PUBLIC KEY INFRUSTRUCTURE (PKI)
	E.CONCLUSION

	EMERGING TECHNOLOGIES
	A.MOORE’S LAW
	1.Computing at the Speed of Light (Optical or Photonic Computing)
	Computing on the Atomic Scale (Quantum Computing)

	B.TOMORROW (THE FUTURE)
	C.TODAY (.NET)
	D.DETAILED OVERVIEW OF .NET
	1.Web Services
	2.Frameworks and Libraries
	Interchange Standards/Development Environment
	Component Model
	Object Model
	Common Language Runtime

	E.CONCLUSION

	CONCLUSION AND RECOMMENDATIONS
	A.CONCLUSION
	B.RECOMMENDATIONS FOR FUTURE RESEARCH

	LIST OF REFERENCES
	A.BOOKS AND ARTICLES
	B.OTHER
	1. Newsgroups and Mailing Lists [NGS1]
	2. Microsoft MSDN Websites [MWS2]
	3. Other Websites [OWS3]

	INITIAL DISTRIBUTION LIST

