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Preface

Experiments to evaluate potential fish guidance efficiency modifications for
Bonneville First Powerhouse were performed for U.S. Army Engineer District,
Portland (NPD). U.S. Army Engineer Research and Development Center
(ERDC), formerly U.S. Army Engineer Waterways Experiment Station,
Vicksburg, MS, received initial funding for this study September 7, 1995.

This study was conducted in the Coastal and Hydraulics Laboratory (CHL)
ERDC, during the time frame January to June 1999 under the direction of Mr.
Thomas W. Richardson, Acting Director, CHL; and Dr. P.G. Combs, Chief,
Rivers and Structures Division, CHL.

Model velocity information as obtained and plotted by Mr. Robert A.
Davidson, Mrs. Danea Polk, Messrs. Rudy Warnock, Tony Wooley, and Marshall
Thomas under the direct supervision of Mr. Davidson. Analysis of the velocity
information and final presentation of the information was accomplished by Mr.
Davidson under the supervision of Mr. J.F. George, Chief, Fisheries and
Structural Hydrodynamic Branch. This report was written by Mr. Davidson.

During the course of the model study, Messrs. Randy Lee and Mark Smith,
NWP, and Messrs. Steve Rainy and Gary Fredricks, National Marine Fisheries
Service, visited ERDC to observe model operation, review experiments results,
and participate in experiment planning.

At the time of publication of this report, Director of ERDC was Dr. James R.
Houston, and Commander and Executive Director was COL John W. Morris III,
EN.

The contents of this report are not to be used for advertising, publication
or promotional purposes. Citation of trade names does not constitute an
aofficial endorsement or approval of the use of such commercial products.



1 Model Study for Bonneville
First Powerhouse Fish
Guidance Efficiency
System

Project Description

Bonneville dam is located on the Columbia River at river mile 146.1,
approximately 40 miles east of Portland, OR (Figure 1). It is a multipurpose
project that consists of the first and second powerhouses, the old and new
navigation locks, and a 1,600,000-cfs capacity spillway. Construction of the first
powerhouse, the old navigation lock, and spillway began in 1933. President
Franklin D. Roosevelt dedicated the lock and dam on September 28, 1937. The
construction of the First Powerhouse was completed in 1943. The First
Powerhouse has a flow capacity of approximately 128,000 cfs and a rated power
output of 526,700 kw. Construction of the second powerhouse began in 1974
and was completed in 1981. The second powerhouse has a flow capacity of
approximately 160,000 cfs and a rated power output of 558,200 kw.

Background

The existing juvenile bypass system at the Bonneville First Powerhouse
(BFP) is performing far below desired levels. To meet regional goals of
providing survival of juvenile salmon at or above 80 percent, through nonturbine
passage routes, it will be necessary to modify the existing bypass system. A 1-
25-scale model was constructed at the U.S. Army Engineer Research and
Development Center (ERDC), Vicksburg, MS, to investigate these potential
modifications. Items that were investigated in this model were: extended
submerged bar screens (ESBS), streamlined trashracks (SLTR), alternate
trashrack locations, and pier extensions.

Chapter 1 Model Study for Bonneville First Powerhouse Fish Guidance Efficiency System
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Figure 1. Project location

Purpose

The main purpose of this study is to identify modifications to the BFP Fish
Guidance System that will improve survival of juvenile salmon passing
Bonneville Dam.

Similitude

Complete similitude in a laboratory model is attained when geometric,
kinematic, and dynamic similitude is satisfied. Physical models of hydraulic
structures with both internal flow (pressure flow) and external flow (free surface)
typically are scaled using kinematic (Froudian) similitude at a large enough scale
so that the viscous effects in the scaled model can be neglected. Velocities
scaled using kinamatic similitude (model Froude number equal to prototype
Froude number) in a 1:25-scale model have maximum Reynolds numbers at the
peak discharge on the order of 10°, yet the corresponding prototype values are on
the order of 10’.

Because the friction factor decreases with increasing Reynold's Number, the
model is hydraulically too rough. The scaled friction losses in the model will be
larger than those experienced by the prototype structure. This is standard
practice.

Chapter 1 Model Study for Bonneville First Powerhouse Fish Guidance Efficiency System




Assumptions for model design

The following assumptions were made for designing the model.

a.

The model would be operated between the upper limit of the 1-percent
peak efficiency zone and the maximum turline output, which corresponds
to a discharge of 11,300 and 14,700 cfs.

Experimental forebays would be within 71.5 and 76.5 ft.

The topography for the model would be designed by taking the average of
the center-line topographies of units 1 to 6.

There is no need to actually have an operating turbine in the model to
have representative flow lines through the intake.

The combination of 600 ft of approach with a good baffling will provide
smooth flow into the intake structure.

Model would be designed without a lateral inflow component.

Chapter 1 Model Study for Bonneville First Powerhouse Fish Guidance Efficiency System




2 Model Description

A 1:25-scale model of one unit of the Bonneville First Powerhouse was
constructed in 1995 (Figure 2 and 3). The model reproduced 700 ft of approach
flume, all three bays of the intake structure, the scroll case, stays vanes, wicket
gates, submerged traveling screens (STS) (Figure 4), vertical barrier screens
(VBS) (Figure 5), and a portion of the ice and trash sluiceway. The model
structure and approach flume were constructed from acrylic. The trashracks,
STS, VBS, wicket gates, and stay vanes were constructed of brass. The
U.S. Army Engineer District, Portland (NWP), supplied as built drawings of the
Bonneville first structure and screens. Pertinent information needed for model
design and construction were taken from these drawings and transferred into a
Computer Aided Drafting program

Model Operation

Model conditions are set by introducing a desired discharge into the model
and using a valve downstream of the wicket gates to establish the correct upper
pool elevation. the wicket gates were set at full open for all experiments.

Model Calibration

Water is supplied to the model by three pumps. Each pump is capable of
supplying 9,375 cfs (prototype). This provides a total inflow capacity of
approximately 28,125 cfs (prototype) which far exceeds the discharge expected
at the upper limit of the 1-percent peak efficiency zone or the maximum turbine
output. A data industrial flow meter was placed in each inflow supply line to
measure the inflow rate. Each flow meter was calibrated in the Volumetric
Calibration Flume of the Coastal and Hydraulics Lab prior to installation. This is
accomplished by introducing a desired flow into the calibration flume and timing
the amount of time needed to fill a known volume. The flow rate is calculated
by dividing the flume volume by the time required to fill the flume. This is
repeated and the two values are averaged. This is the actual flow rate. During
the above procedure the flow is measured by a data industrial flow meter. This
procedure is repeated for several different inflows. Once this is completed, all
actual flow rates are plotted against the data industrial measured values and a
correction is applied to the data industrial flow meter to give the correct
discharge value (Figures 6 through 8).

Chapter 2 Mode! Description
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Figure 2. View of model intake structure
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Figure 3. View of model looking upstream
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Figure 6. Flow calibration curve

LDV Calibration

All velocity information is obtained in the model with a Laser Doppler
Velocity Meter (LDV). Calibration of this instrument is not required because it
relies on the laws of physics. Known and exactly controlled frequencies of light
are used in the measurement of the water velocity. These frequencies of light do
not significantly change with temperature (water or air) or with the aging of the
equipment. The accuracy of this instrument is better than 0.15 percent, which
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would yield an accuracy of plus or minus 0.01 ft/sec (prototype) at the upper
velocity range expected for these experiments. This LDV system is also
nonflow intrusive, which allows for measurement of the flow field without
disturbance caused by the velocity meter. All measurements inside the intake
structure will be obtained with this system.
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Comparisons of Inflow calibrated Meter with LDV
Data

The first experiment performed in this model was a base test without screens
installed. Velocities were measured in all three bays of the intake structure
(Plates 1 through 3). Calculations of discharge through each bay was performed
by assigning a control area for each measured velocity, calculating the flow in
this area, and summing all measured velocities in a measured plane. The amount
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of flow in bays A, B, and C was calculated to be 3,557 cfs, 3,785 cfs, and
4,060 cfs. Summing up the three bay discharges yields a total discharge of
11,402 cfs. The metered discharge was 11,650 cfs. This is a difference of
2.1 percent. This shows a close relationship between the inflow meter values
and the LDV measured velocities.

12 Chapter 2 Model Description




3 Interpretation of
Experimental Results

The accepted equations of hydraulic similitude, based on the Froudian
relations, were used to express mathematical relations between the dimensions
and hydraulic quantities of the model and the prototype. General relations for the
transfer of model data to prototype equivalents, or vise versa, are presented in the
following tabulation:

Dimension Ratio Model:Prototype Scale Relations
Length Lr=L 1:25
Area Ar=Lr2 1:625
Velocity Vr=L"\5 1:5
Time Tr=Lt"5 1:5
Discharge Qr=Lr"2.5 1:3125

Original Fish Guidance Efficiency (FGE)
Configuration

The existing FGE system (Figure 9) at the Bonnevillle consists of an STS
installed in each of the three bays of the intake structure. These STSs are 20 ft
long and are angled upstream at a 55-deg angle. Fish pass through the trashracks
and are guided into a bulkhead slot, by the STS. Once in the gate slot, they are
kept from passing back into the intake structure by the VBS. The VBS also
keeps the juvenile fish in the vicinity of the orifice until they are able to find the
orifice and pass into the bypass channel. The fish would then be transported
downstream via a channel and released into the tailrace.

Experiments and Results

The second experiment conducted in this model was a base experiment to
document flow conditions in the intake structure with the existing fish bypass
configuration. Velocity information was obtained between the trashracks and
STS, downstream of the STS, and along the VBS with the closure gate in place.
Velocity information from this experiment can be seen in Plate 4. Flow
intercepted by the STS was calculated from velocity data to be 22.3 percent.

Chapter 3 Interpretation of Experimental Results
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4 Extended Submerged Bar
Screen Experiments

ESBS Base Experiments

Experiments were conducted with an ESBS in place for turbine loading of
14,700 cfs with the original trashracks in place. The closure gate was removed
for this experiment. The length of the ESBS was set at 40 ft based on
information from other projects on the Columbia and Snake rivers that presently
have operating 40-ft-long ESBSs. These data from this experiment are shown in
Plate 5. The disturbances caused by the horizontal members of the trashrack are
clearly shown in this plate. This experiment served as a base test for the ESBS
design experiments.

ESBS Porosity Experiments

Experiments were performed to determine the optimum porosity of the
ESBS. The porosity plate is attached to the downstream side of the ESBS and
controls the amount of flow that passes through the screen as well as the amount
of flow that is intercepted by the bypass system. The greater the amount of flow
intercepted by the screening device, the greater the potential for guiding fish.
However, the greater the quantity of flow passing through the ESBS the higher
the velocity is along the screen face. Based on experiments conducted in a
1:25-scale McNary model and prototype biological experiments, the acceptable
maximum (perpendicular component) velocity at the screen face is 2.75 fi/sec.
These are the criteria that were used for the ESBS design experiments.

Velocity information was obtained along the ESBS screen face and between
the ESBS and trashracks slot for turbine loadings of 14,700 and 11,200 cfs.
These discharges represented the high discharge that could occur at the project
and the high discharge side of the 1-percent efficiency zone, respectively. Since
the existing trashracks cause disturbances that extend to the screen surface, they
should be redesigned. It was assumed that the redesigned trashracks would be
nearly invisible to the flow field at the screen face and due to a tight prototype
construction were removed from the model for all porosity plate experiments.
The redesign of the trashrack will be addressed later in this report. Porosity
plates of 48, 40, and 30 percent were used for the turbine loading of 14,700 cfs,

Chapter 4 Extended Submerged Bar Screen Experiments
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16

and porosity plates of 48 and 30 percent were used for the lower discharge of
11,000 cfs. Velocity information from these experiments can be seen in Plates 6
through 23. Graphs comparing the porosity of the screen to intercepted flow,
perpendicular flow through the ESBS as well as the parallel component of flow
along the screen, are provided in Plates 24 through 26. At the high discharge of
14,700 cfs, the 48-percent porosity plate arrangement intercepted the most flow
(51 percent), and the perpendicular velocity component is 2.6 ft/sec which is
below the 2.75 ft/sec value. For this reason, the 48-percent porosity plate was
chosen as the recommended porosity and all future ESBS experiments were
performed with this plate in place.

ESBS Elevation Experiments

Previous ESBS experiments were conducted with the screen pivot point
elevation (el) set at elevation 37.5 ft.! Experiments were conducted with the
screen in two different lowered positions at a turbine loading of 14,700 cfs. In
the first experiment, the screen was lowered 1 ft (el 36.5 ft) and velocity
information was obtained between the trashrack and ESBS and in the bulkhead
slots (Plates 27 and 28). The percent flow intercept was calculated as
50.6 percent which is nearly the same as with the ESBS in it's normal elevation.
The gate slot discharge was calculated from measured velocity information and
was 375 cfs. The gate slot discharge for the ESBS for the screen in its normal
position was calculated to be 362 cfs.

The second screen lowering experiment was conducted with the screen
lowered 2 ft (el 35.5 ft). Velocity information (Plates 29 and 30) was obtained
upstream of the ESBS and in the bullhead slots. The percent flow intercepted by
the screen was calculated as 52.7 cfs and the gate discharge was 406 cfs. This
shows a benefit both in gate slot flow and the amount of flow intercepted over
both the normal and 1-ft lower screen positions.

' All elevations (el) cited herein are in meters referenced to the National Geodetic
Vertical Datum.

Chapter 4 Extended Submerged Bar Screen Experiments




5 Inlet Flow Vane
Experiments

Flow separation occurs as flow passes through the screen throat area and
enters the screen slot. This flow separation causes unstable flow to be
concentrated along the face of the VBS. This is a potential problem for fish to
pass safely in the vicinity of the VBS. Also this flow separation reduces the
efficiency of the throat area and reduces the amount of flow that passes into the
screen slot. This flow is important for attracting juvenile salmon. A flow vane is
a device that would be placed in the throat area of the screen slot. Its purpose is
to streamline flow into the screen slot, eliminate the flow separation that occurs
at this point, and to distribute the flow more evenly across the width of the slot.

Detailed velocity information was obtained in the throat area of the screen
slot and upstream of the ESBS tip with the ESBS at three different elevations for
a turbine loading of 14,700 cfs. These three experiments served as a base for
design of the flow vanes. Velocity information from these three experiments is
provided in Plates 28, 29, and 31.

Experiments were conducted on two flow vanes. Schematics for these two
flow vanes can be seen in Figures 10 and 11. The major difference in these two
designs is the radius of the lower portion of the flow vanes. These experiments
consisted of obtaining data in the screen slot throat area and between the ESBS
and the trashrack slot.

Velocity information was obtained upstream of the ESBS and in the throat
area of the screen slot with the ESBS in a 2-ft lowered position. Vane 1 was
positioned above the top of the ESBS. Velocity information obtained for this
experiment can be seen in Plates 32 and 33. The flow intercepted by the ESBS
was calculated as 51.4 percent, which is closely related to the same model setup
without Vane 1 in place (52.7 percent). The flow up the screen slot was
calculated to 526 cfs. This is a significant increase in gate slot flow when
compared to the same model setup without Vane 1 in place (406 cfs).

Vane 1 was removed and replaced with Vane 2. The experiment was
repeated and the amount of flow intercepted by the screening device was
calculated to be 52 percent and the amount of flow directed up the screen slot
was 571 cfs. This screen slot discharge was greater than the screen slot discharge
with Vane 1 in place (526 cfs), but the amount of flow intercepted by the

Chapter 5 Inlet Flow Vane Experiments 17
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screening device was nearly the same (51.4 percent). Data for this experiment
are provided in Plates 34 and 35.

The ESBS was raised to a 1-ft lowered position. Vane 2 was kept in the
same relative position to the ESBS as the above experiments. Velocity
information was obtained in the same locations as the above experiments and can
be seen in Plates 36 and 37. The amount of flow intercepted by the ESBS was
calculated to be 51.1 percent, which is comparable with vane 2 and the ESBS in a
2-ft lowered position. The screen slot discharge was 547 cfs, which is less than
with the ESBS and Vane 2 in a 2-ft lowered position (571 cfs).

Vane 2 was removed and replaced with Vane 1. Velocity information as
obtained upstream of the ESBS and in the screen slot (Plates 38 and 39) with the
ESBS in a 1-ft lowered position. Flow up the screen slot was calculated to be
503 cfs, and the amount of flow intercepted by the ESBS was 49.2 percent.
These values are lower than the same ESBS position with Vane 2 in place.

Inlet Flow Vane Position Experiments

Two experiments were conducted with the relative position of the vane to the
ESBS pivot point changed by 0.5 ft. Vane 2 was used for these experiments
because it performed better than Vane 1.

The ESBS was lowered 1 ft when Vane 2 raised 0.5 ft. Velocity information
was obtained in the throat area of the screen slot and upstream of the tip of the
ESBS. The flow up the screen slot was calculated to be 543 cfs, and the flow
intercepted by the ESBS was 50.9 percent This is an increase in gate-well flow
of 40 cfs and an increase in intercepted flow of 1.7 percent when compared to the
same ESBS elevation with Vane 2 in its original position. Velocity information
from this experiment can be seen in Plates 40 and 41.

The ESBS was lowered an additional 1 ft, and Vane 2 was kept at the same
relative position to the ESBS as the previous above experiment. Velocity
information was obtained in the throat area of the screen slot and upstream of the
ESBS (Plates 42 and 43). Flow directed up the screen slot was 610 cfs, and the
amount of flow intercepted by the ESBS was calculated to be 52.2 percent. This
is an increase in gatewell flow of 39 cfs and approximately the same of
intercepted flow when compared to the similar experiment with the ESBS
lowered 2 ft with Vane 2 in its original position. This configuration has the
greatest potential for improving conditions in the screen slot and along the VBS
and would be the recommended configuration to be installed at the prototype
structure.

Streamlined Trashrack Experiments

The existing trashracks (Figures 12 and 13) cause a disruption in the flow
immediately downstream of the trashracks (Plate 44). This disruption extends to
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Figure 12. Model trashrack section
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the face of the ESBS and has a potential for adversely affecting the efficiency of
the bypass system. Fish may sense this disruption and thus influence the
elevation that the fish enter the intake. Also, the disruptions at the screen face
have the potential for confusing the fish, thereby causing them to swim down
rather than up the screen face to the screen slot. For these reasons, it is necessary
to redesign with streamlined members.

Streamlined Base Experiments

Velocity information was obtained upstream of the intake structure and
downstream of the trashrack slot, with the ESBS in a 2-ft lowered position, for
turbine discharges of 11,300 and 14,700 cfs. This information served as a base
condition to determine the initial angles of the horizontal members of the
streamlined trashracks. Velocity information obtained for these two conditions is
provided in Plates 45 and 46.

Model Streamlined Trashrack Experiments

The design of the model streamlined trashracks (Figures 14) allowed for
changing the angle of the streamlined members between 0 and 45 deg. The
initial streamlined trashrack alignments were based on information obtained from
the model with no trashracks present. The angle of the horizontal members was
set to match the inflow angle at the trashracks. The angles of the internal
members varied from 42 deg at the top to 15 deg at the bottom of the fifth
trashrack. The angle is measured from a line perpendicular to the pier race. The
bottom trashrack was not streamlined but was an existing trashrack. Some minor
flow disruptions occurred at the trashrack members.

Numerous streamlined arrangements were investigated and Table 1 shows
these streamlined arrangements. Velocity information obtained for these
arrangements can be seen in Plates 47 through 55. Configuration 13 is the
arrangement that allowed for the best flow conditions through the trashrack
region. The angles of the internal members varied from 42 deg at the top of the
first trashrack to 9 deg at the bottom of the fifth trashrack. The bottom trashrack
was an existing trashrack section. Velocity information from the model with
configuration 13 is provided in Plate 53.

Unit 8 Experiments

All previous streamlined trashracks were performed with topography
representing units 1 through 5. The initial prototype experiments will be
performed in unit 7 or 8. The topography in front of these units differs from the
topography in front of units 1 through 5. Two experiments were conducted to
ensure that the configuration 13 streamlined trashrack arrangement would work
well with the unit 8 topography. Data from these two experiments can be seen in
Plates 56 and 57. Streamlined trashrack configuration 13 works well with the
unit 7/8 topography.
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6 Pier Extension
Experiments

The upstream tip of the ESBS is only 5.5 ft downstream of the trashracks.
Other projects on the Columbia and Snake Rivers that have FGE systems with
ESBSs have comparable distances of greater than 18 ft. These guidance systems
perform well. In contrast, Bonneville Second Powerhouse has STSs with a tip of
screen to trashrack distance of 8 ft. This FGE system does not perform well. It
may be possible for fish to feel the effects of the screen upstream of the trash-
racks. It would make sense to maximize the distance between the trashracks and
the ESBS screen face to decrease the potential for fish to sound deeper outside of
the trashracks because of the close proximity of the screen and trashracks.

Numerous experiments were conducted to investigate the relationship of the
distance between the tip of the ESBS and the trashracks location. These
experiments involved moving the trashrack to the upstream end of the existing
pier nose, installing 10-, 15-, and 20-ft pier extensions.

Trashracks Moved to Pier Nose

Relocating the trashrack at the upstream end of the pier nose would increase
the distance from the trashrack to the tip of the screen from 5.5 to 12.5 ft. An
acrylic frame was constructed and installed in the model at the upstream end of
the existing pier nose. This frame consisted of plastic vertical runners with brass
strips attached as a support for the trashracks. Velocity information was
obtained upstream and downstream of the new trashrack location with the ESBS
in a 2-ft lowered position for a turbine loading of 14,700 cfs (Plate 58). These
data were used to determine the streamlined trashrack arrangement for initial
experiments.

Several experiments were conducted to identify the optimum streamlined
trashrack arrangement with the trashracks located at the upstream end of the
existing pier nose. The optimum arrangement would be the arrangement that had
the least effect on the flow passing through its internal members. Velocity
information obtained for these experiments is provided in Plates 59 through 62.
The streamlined arrangements for these experiments are provided in Table 2.
The optimum arrangement was configuration 5. The internal members of the
streamlined trashracks varied from 13 deg at the top to 9 deg at the sixth
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trashrack. The bottom trashracks were an existing trashrack panel. The angle of
the trashrack members is measured from a perpendicular line to the alignment of
the face of the dam. The steepest internal member was angled at 16 deg. These
angles are flatter than the angles required to give undisturbed flow with the
streamlined trashracks in their original position. This is an improvement because
the downward flow component is smaller at the pier nose trashrack, which should
be a benefit in fish guidance.

One additional experiment was conducted to determine if the streamlined
trashracks could be designed with one internal member alignment. An
arrangement with the internal members set at 13.7 deg was investigated. It gave
satisfactory results. However, it would be recommended to install configuration
5 at the prototype structure if the trashracks are moved to the upstream tip of the
pier noses. This configuration matches the flow lines into the intake structure
with the least disturbance. Velocity information from this experiment is
provided in Plate 62.

Roof Extensions with Trashrack at Pier Nose

There was a concern that fish may hold in the area between the top trashrack
and the closed sluiceway gates. A series of experiments were conducted to

‘investigate the potential for adding a roof extension that would exclude fish from

this area. This roof extension consisted of a flat plate that extended upstream
from the el 68.0 shelf to the top of the second trashrack. Experiments were also
conducted with this arrangement and a plate extending from the top of the second
trashrack to the water surface along the same slope as the pier.

Numerous experiments were conducted to find the best roof extension and
streamlined trashrack arrangement. Velocity information for these experiments
is provided in Plates 63 through 71. The arrangements that provided the best
roof alignment and streamlined trashrack arrangement was configurations 7 and
9. Configuration 7 consisted of a roof extension that extended from the el 68.0
shelf to the top of the second trashrack. The streamlined internal angle arrange-
ment varied from 10 deg at top of the second trashrack to 9 deg at the bottom of
the sixth trashrack. The steepest angled member was 14 deg. Configuration 9
had the same roof extension arrangement except a plate extended from the top of
the second trashrack to the water surface along the pier slope. The streamlined
internal arrangement varied from 31.8 deg at the top of the second trashrack to
9 deg at the bottom of the sixth trashrack. Velocity information obtained for
these two experiments is provided in Plates 65 and 69. The internal streamlined
trashrack arrangement is provided in Table 2. Configuration 9 would be the
recommended arrangement because it allows for total exclusion of fish above the
trashracks and between the trashracks and the sluice gates. Additional design
work must be undertaken to use the sluiceway for trash removal.
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Unit 8 Topography with Trashracks at Pier Nose

Two experiments were conducted with the unit 8 topography installed in the
model. The first experiment involved obtaining data with existing trashracks
installed in the top and bottom positions. The internal five trashracks were
streamlined with all members set at a constant 12-deg angle. Velocity
information for this experiment is provided in Plate 73. This arrangement
provided acceptable flow conditions through the trashrack area with minimal
disruption of flow downstream of the trashrack. A better arrangement could be
obtained through further investigations. The second experiment involved using a
reverse configuration 13 arrangement that was obtained during the streamlined
trashrack investigation with these trashracks in their original positions. This
experiment was conducted to determine if the streamlined trashracks that were
constructed for prototype experiments with trashracks located in their original
positions could be used for prototype experiments with the streamlined trashracks
located at the pier nose. The top and bottom trashracks were of the original
trashrack design. The internal trashracks were a reverse configuration 13. That
is the top trashrack was used as the bottom and the bottom as the top, the second
from the top was used as the second from the bottom and vice versus. The actual
configuration is provided in Table 2 and velocity information obtained for this
experiment is provided in Plate 74. This configuration did not give a satisfactory
flow condition through the trashrack region. The effect of the internal members
of the streamlined trashracks on flow immediately upstream of the streamlined
trashrack members can be seen in Plate 74. This implies that new streamlined
trashracks must be fabricated if the trashracks were relocated to the upstream end
of the pier nose.

10-ft Pier Extensions

Pier extensions in the length of 10 ft were added to each of the existing piers.
These pier extensions had a rounded pier nose that was identical to the existing
pier nose shape. With this extension in place, the distance between the tip of the
ESBS and the trashrack was increased to 15.3 ft. Velocity information was
collected upstream and downstream of the new trashrack location for three
experiments. The conditions for the 10-ft pier extension are provided in Table 3.

The first experiment involved documenting the velocity profiles with the
10-ft extension in place but without trashracks. The ESBS was in a 2-ft lowered
position, and the turbine loading was 11,300 cfs. This experiment was conducted
as a basis for the initial streamlined trashrack experiment. Velocity information
for this experiment is provided in Plate 75.

The other two experiments were conducted with two different streamlined
trashrack arrangements in place for a turbine loading of 11,300 cfs. The ESBS
was in 2-ft lowered position. One experiment was conducted with the angle of
the streamlined trashracks set at 13.7 deg and the other with the angles set at
15.7-deg. The arrangement with the 13.7-deg setting provided a slightly better
flow condition through the trashrack area than with the 15.7-deg setting. This
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can be seen by comparing velocities in the vicinity of trashrack locations in
Plates 76 and 77.

15-ft Pier Extensions

Pier extensions in the length of 15 ft were added to each of the existing piers.
These pier extensions had a rounded pier nose that was identical to the existing
pier nose shape. With this extension in place, the distance between the tip of the
ESBS and the trashrack was increased to 20.3 ft. Velocity information was
collected upstream and downstream of the new trashrack location for three
experiments. The conditions for the 10-ft pier extension are provided in Table 3.

The first experiment involved documenting the velocity profiles with the
15-ft extension in place but without trashracks. The ESBS was in a 2-ft lowered
position and the turbine loading was 11,300 cfs. This experiment was conducted
as a basis for the initial streamlined trashrack experiment. Velocity information
for this experiment is provided in Plate 78.

The other experiment was conducted with two different streamlined trashrack
arrangements in place for a turbine loading of 11,300 cfs. The ESBS was in a
2-ft lowered position. One angle setting of the streamlined trashracks was at
9 deg, while the other angle setting was at 12 deg. The arrangement with the
12-deg setting provided a slightly better flow condition through the trashrack
area than the arrangement with a 9-deg setting (compare Plate 79 with Plate 80).

20-ft Pier Extensions

Pier extensions in the length of 20 ft were added to each of the existing piers.
These pier extensions had a rounded pier nose that was identical to the existing
pier nose shape. With this extension in place, the distance between the tip of the
ESBS and the trashrack was increased to 25.1 ft. Velocity information was
collected upstream and downstream of the new trashrack location for three
experiments. The conditions for the 20-ft pier extension are provided in Table 3.

The first experiment involved document the velocity profiles with the 20-ft
extension in place but without and trashracks. The ESBS was in a 2-ft lowered
position and the turbine loading was 11,300 cfs. This experiment was conducted
as a basis for the initial streamlined trashrack experiment. Velocity information
for this experiment is provided in Plate 81.

The other experiments were conducted with two different streamlined
trashrack arrangements in place for a turbine loading of 11,300 cfs. The ESBS
was in 2-ft lowered position. One was conducted with the angle of the
streamlined trashracks set at 9 deg and the other with the angles set at 5.1 deg.
The arrangement with the 5.1-deg arrangement provided a slightly better flow
condition through the trashrack area than the 9-deg arrangement (compare Plate
82 with Plate 83).
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20-ft Pier Extensions with Box-Beam Trashracks

Three experiments were conducted with the streamlined trashracks removed
and replaced with trashracks that had box beams as horizontal support members.
Velocity information was obtained upstream and downstream of the trashracks
with the box beam rotated 5.1 deg and in a horizontal position at a turbine
loading of 11,300 cfs. Neither configuration resulted in acceptable flow
conditions in the vicinity of the box-beam trashrack members (Plates 84 through
86). Velocity information was also obtained with the box-beam rotated 5.1 deg
at a turbine loading of 14,700 cfs. This experiment also indicated poor flow
conditions through the trashrack area (Plate 84) Based on these experiments, it
is apparent that, with a 20-ft pier extension, streamlined trashrack are better for
reducing turbulent flow downstream of the trashracks than a box-beam
arrangement,

20-ft Pier Extensions with Roof Extensions

Two experiments were conducted to investigate whether or not roof
extensions would help guide surface flow into the intake structure. Velocity
information was obtained in the vicinity of the top three streamlined trashracks
for two different roof extensions. The first roof extension extended from a point
tangent to the roofline inside of the intake structure to the water surface at the
halfway point between the new trashrack location and the original trashrack
location. The second roof extension extended from a point tangent to the
roofline inside of the intake structure to the water surface at the top of the new
trashrack location. Velocity information obtained from these experiments as
well as the roof extension arrangement is provided in Plates 87 and 88. Either
roof extension would be an improvement. The shorter one would cost less and
showed lower accelerations along the roof, and this one would be the
recommended design. However, more study would be required before a final
decision could be made on what should be added to the prototype structure.
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7 Conclusions and
Recommendations

The present FGE system utilizes a 20-ft-long traveling screen to collect
juvenile salmon entering the intake structure. This screen should be replaced
with a 40-foot-long extended submerged bar screen. This screen should have an
internal 48 percent porosity plate to control the flow through the screen. This
will increase the amount of flow that is intercepted by the FGE system from 23.2
to approximately 52 percent, which should increase the potential for intercepting
greater numbers of fish. This screen should be biologically evaluated at the
prototype structure.

Vane 2 is the recommended vane design to be used in conjunction with the
ESBS in a 1- or 2-ft lowered position. As flow enters, the screen slot flow
separation occurs. This results in inefficient entrance conditions, highly turbulent
flow in the gate well, and high velocities that concentrate along the surface of the
vertical barrier screen. Each of these reduces the potential to intercept fish and to
safely protect them until they pass out of the screen slot area. A vaning device is
needed to reduce the flow separation and slot turbulence. The vaning device also
distributes the flow across the slot, which reduces the high velocities occurring
along the screen face. This screen and vane arrangement should be biologically
evaluated at the prototype structure.

The existing trashrack arrangement cause flow disturbances that propagate to
the surface of the screening device. This potentially will have a negative effect
on FGE. The top five trashracks should be replaced with a streamlined trashrack
arrangement. The configuration 13 provided the best flow conditions through the
trashracks onto the screen face, with the trashracks located in their original
position.

The tip of the ESBS is located only 5.5 ft downstream of the existing
trashrack arrangement. At other projects that have a successful screening system,
this distance exceeds 18 ft. To ensure that the purposed extended bypass screen
has the greatest potential for collecting fish this distance should be increased.
Several alternate locations were investigated. Either 15- or 20-ft pier extensions
would be recommended. These pier extensions move the trashrack to a position
where the downward component of the flow is greatly reduced. Of course, the
longer the pier extensions, the greater the cost. A biological experiment at the
prototype structure should be performed to evaluate pier extensions. Streamlined

Chapter 7 Conclusions and Recommendations




trashracks that were designed for the pier extensions should be used if pier
extensions are chosen to be installed at the prototype structure. The correct
trashrack arrangement should be used for each pier extension.

Roof extension improves entrance conditions with the trashrack moved
upstream to alternate positions. Further investigation is needed before a final
recommendation on roof design can be made.

Unit 8 topography has little effect on the streamlined trashrack arrangement.
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[y 25
VELOCITIES PLOTTED IN FT/S

ELEVATION VIEW

BITEST34.DVWG

BONNEVILLE FIRST POWERHOUSE
1:25 SCALE MODEL
TEST 34
WITH 40 FT ESBS LOWERED 1 FT
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FOREBAY EL = 745
WITHOUT TRASHRACKS

PLATE 27




SCALE, PROTOTYPE FT

FLOW IN GATE SLOT = 375 CFS

12 15 1.0 ] é(‘“‘gﬁg:q
1ii§09 27/3[ T\l"i
e
0s ' 6/6

BONNEVILLE FIRST POWERHOUSE | Js674 7'
1:25 SCALE MODEL 68 J

TEST 34 CSTelSp A/
WITH 40 FT ESBS LOWERED 1 FT °>° 52746

48 PER%ENle%%SICT'__YS PLATE soss3Tisg "/ /
= p) X /
FOREBAY EL = 745 SN
WITHOUT TRASHRACKS

VELOCITIES PLOTTED IN FT/S
ELEVATION VIEW
BTEST34.3WG

PLATE 28




PERCENT FLOW INTERCEPTED BY ESBS = 526

SCALE, PROTOTYPE FT

E] 10 15 20
4] 25
VELDGCITIES PLOTTED IN FT/S
ELEVATION VIEW
BITEST3S.DWG

BONNEVILLE FIRST POWERHOUSE
1:25 SCALE MODEL
TEST 33
WITH ESBS LOWERED 2 FT
48 PERCENT POROSITY PLATE
Q@ = 14,700 CFES
FOREBAY EL = 745
WITHOUT TRASHRACKS

PLATE 29




FLOW IN GATE SLOT = 406 CFS

o<
0.9~

BONNEVILLE FIRST POWERHDUSE
1:25 SCALE MODEL
TEST 35
WITH ESBS LOWERED 2 FT
48 PERCENT POROSITY PLATE
@ = 14,700 CFS
FOREBAY EL = 74.5
WITHOUT TRASHRACKS

VELOCITIES PLOTTED IN FT/S \

ELEVATION VIEW

BTEST35.DWG /
/

PLATE 30




£, PROTOTYPE FT 47" U=
. 0.8~
L 48 .
0 16 6’ ~
j 08
44
, 08
b7
' 07,
0.8
. 08
~
0.8
I 12
17
i 10

18 1513
‘91&11 197

S 1.)20.32

BONNEVILLE FIRST POWERHOUSE
1:25 SCALE MODEL 70-74FF7.0 64 3
TEST 33 S964e8ZeE) 57 A |
WITH 40 FT ESBS 51—

48 PERCENT POROSITY PLATE s

Q = 14,700 CFS 44
FOREBAY EL = 745
WITHOUT TRASHRACKS

%SMTED IN FT/S

BTEST33.IWG

PLATE 31




PERCENT FLOW INTERCEPTED BY ESBS = 514

0

VELOCITIES PLOTTED IN F1/S
ELEVATIDN VIEW
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