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ABSTRACT

The generation of secondary missiles by blast waves was investigated in Operation Plumb-
bob for three nuclear detonations with estimated yields of 11, 38, and 44.5 kt. A trapping tech-
nique was used to determine the impact velocities for 17,524 missiles (stones, glass fragments,
spheres, and military debris or steel fragments) which occurred in open areas, houses, and an
underground shelter with an open entryway. The equivalent ideal-wave peak overpressures
computed from measured blast data for the open-area stations varied from 3.8 to 21 psi. Two
houses and an underground shelter were located where the overpressures were 3.8 and 65 psi,
respectively. The effect of hill-and-dale terrain on the production of missiles was investigated
on one of the shots. Precursor effects were noted on two of the shots at stations near Ground
Zero (GZ).

Missile velocities measured at all stations except the underground shelter were compared
with those computed by use of a model based on an ideal blast wave. An analytical procedure
was presented by which translational velocities of man can be estimated using the measured ve-
locities of spheres and stones.

Total distances of displacement were measured for 145 stones that weighed up to 20 kg and
for 1528 fragments from a concrete-block wall.
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LIST OF SYMBOLS

Symbol

A
a,b,c
Abs
Al

o
a

CB
Co
d

Egm

Egy

Elm
Elv

(Elv)%

FPG

FWG
G

Gl

Gr
Gs

Definition

Impact area
Regression coefficients

Absorber

Aluminum sphere (fraction following type of
sphere indicates diameter)

Acceleration coefficient

Acceleration coefficient for missiles of
average mass M

Croquet ball

Speed of sound in undisturbed air

Distance traveled by missile

Minimum distance

Maximum distance

Average distance

Distance traveled by missile parallel to
direction of propagation of blast wave
(downwind)

Geometric mean of d,

Distance traveled by missile perpendicular
to direction of propagation of blast wave
(crosswind)

Average spatial density of missiles in trap

(V = Vps50)/ Viso

Geometric standard error of estimate in
mass = antilog E;,

Geometric standard error of estimate in
velocity = antilog Ej,

Standard error of estimate of log mass

Standard error of estimate of log velocity

Standard error of estimate of log velocity

Plate glass, flat upon arrival at trap

Window glass, flat upon arrival at trap

Galileo

Glass sphere, large (average mass =
72.6 mg)

Gravel

Glass sphere, small (average mass =
36.0 mg) :

Unit of measurement

Sq in.

Sq ft/1b
Sq ft/1b

Ft/sec

o e B R e

a3

Missiles/sq ft

Log units

Log units

% of velocity
units
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B

A

Siq,
Slm
Slv
Sm
Sv
St

Definition

Glass sphere, extra large (average mass =
242.4 mg)
Ground Zero, the point on the surface
vertically below the center of the burst
Height above ground at which spheres were
placed

Average impact height above ground

Overpressure impulse

Constant, added to depth of penetration for
velocity calibration

Kiloton (kt), energy of nuclear (or atomic)
explosion which is equivalent to that pro-
duced by the explosion of 1 kt (1000 tons)
of TNT

Mass of missile

Minimum m
Maximum m
Mean or average mass
Geometric mean mass

Military debris

Number of missiles

Natural stones

Nylon sphere (fraction following type of
sphere indicates diameter)

Priscilla

Overpressure or pressure in excess of p,

Pressure of undisturbed air or ambient
pressure

Maximum overpressure or shock over-
pressure

Plate glass

Dynamic pressure

Range, distance of station from GZ

Smoky

Depth of penetration of missile in absorber

Minimum s

Maximum s

Standard deviation of d,

Standard geometric deviation of mass =
antilog S,

Standard geometric deviation of velocity =
antilog Siv

Standard deviation of log dx

Standard deviation of log mass

Standard deviation of log velocity

Standard deviation of m

Standard deviation of v

Steel sphere (fraction following type of
sphere indicates diameter)

Unit of measurement

In.

In.
Psi-sec
In.

Mg, unless otherwise
specified

Mg, unless otherwise
specified

Mg, unless otherwise
specified

Mg, unless otherwise
specified

Mg, unless otherwise
specified

In.

Psi
Psi
Psi

Psi

In.

Log units
Log units
Log units

In.



Symbol

t
+
tP

v
v_
V.
v
Vso
Viso

(VpSO)Gr
(Vps0)r
WG
WGH

Definition

Time after arrival of blast wave

Duration of positive pressure phase of
blast wave

Velocity

Minimum v

Maximum v

Mean or average velocity

Geometric mean velocity

Predicted velocity for missiles of mass M;
(if M;, not listed, M)

V50 for gravel

V,50 assuming reflected pressure

Window glass

Window glass inside concrete house

Unit of measurement

Sec
Sec

Ft/sec
Ft/sec
Ft/sec
Ft/sec
Ft/sec
Ft/sec

Roman numerals designate type of absorber identified in Table 2.1, page 30.
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Chapter 1

INTRODUCTION

1.1 BACKGROUND

Experience with large-scale explosions, e.g., those of Hiroshima, Nagasakl and Texas
City,?*® has demonstrated that missiles resulting from blast effects are a significant cause of
biological damage. These casualty-producing missiles were mostly fragments of glass from
broken window panes, but they could have been any object not securely anchored which could be
translated by the high winds accompanying a blast wave. Indeed, in many instances people
themselves became missiles by virtue of their involuntary translation by the blast winds.

A systematic study4 of the translational velocities of window-glass fragments and stones
was made during the 1955 weapons tests in Nevada (Operation Teapot). During the following
Nevada test series in 1957 (Operation Plumbbob), translational effects were investigated by
five separate pro;ects (1) Project 4.1, which used window-glass fragments as missiles and
swine as targets;® (2) Project 33.1, wh1ch used dogs in shelters as translational objects;®
(3) Project 33.3, which used anthropomorphlc dummies in open areas as translational objects;’
(4) Project 33. 4, which used v indow-glass fragments, gravel, and concrete blocks as missiles
and dogs as targets;® and (5) Project 33.2 whose studies are reported herein.

In addition to the field investigations noted above, a few laboratory type studies have been
made which are pertinent to the evaluation of translational effects of blast waves. One study®
was aimed at establishing the penetrating potential of glass-fragment missiles into the abdom -
inal cavity of dogs as a function of fragment mass and velocity at impact. Another study was
concerned with the biological effects of direct impact of experimental sub]ects (mice, rats,
guinea pigs, and rabbits) with a smooth hard surface, a situation similar to that which could
oceur as a result of translation by blast winds. A third study involved the use of a shock tube
to accelerate goats and dummies;11 these goats and dummies were then allowed to decelerate
by tumbling over a flat grassy surface. It was concluded that the principal source of damage
to the goats was the decelerative tumbling.

Two other studies of an analytical nature should be mentioned since they were motivated
by the voluminous field data contained in this report. The first study resulted in a mathemati-
cal model!? that allowed numerical computations of the velocity, displacement, and accelera-
tion histories of arbitrary objects when exposed to classical blast waves such as those result-
ing from nuclear detonations. Before such a model could be used, it was necessary to determme
certain aerodynamic parameters of the translated objects. Thus drop-test exper1ments were
performed to permit the determination of acceleration coefficients for the experimental objects
that were used in the present study (glass fragments, stones, etc.) as well as for mice, rats,
guinea pigs, and rabbits. These efforts made it possible to present predicted velocities in this
report for comparison with the ones determined experimentally.
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1.2 CATEGORIES OF BIOLOGICAL EFFECTS OF BLAST

For purposes of orientation, the categories into which the biological effects of blast are
usually divided are mentioned here briefly.!*~'" These effects can be thought of as being of four
distinct types: (1) primary; (2) secondary; (3) tertiary; and (4) miscellaneous.

The primary effects are those due to variations in environmental pressure caused by ex-
plosive events. As a general rule critical pathology is most marked in the air-containing or-
gans (the lungs, gastrointestinal tract, ear, and paranasal sinuses) and at those locations where
there is the greatest variation in tissue density.%!8~23

Secondary blast effects are those due to missiles that are energized by the blast overpres-
sures and winds or by ground shock and gravity.

Missiles may consist of fragments of window glass, stones, pieces of building debris, or
any object other than man which is set in motion by the blast wave. Injury may result from
penetration of the surface wall or organs of the body or from nonpenetrating impact of the mis-
sile.

If the biologic target is translated by the blast wave, ground shock, or gravity, the effect is
called fertiary. Injury can occur during the accelerative phase of displacement; however, sig-
nificant damage is more likely to occur during decelerative tumbling or upon impact with a sta-
tionary object.

The fourth category of blast damage consists of miscellaneous effects such as those due to
blast-induced dust and fires as well as to gases, dust, or debris that have been heated aerody-

namically or by direct thermal radiation.

1.3 OBJECTIVES

The purpose of the field tests reported herein was to produce information on blast-produced
missiles which would be of value in assessing the secondary type blast injury described in the
previous section. It will be apparent later that the results are also applicable to some extent
to the evaluation of biological effects in the tertiary category.

Specifically, it was planned to determine individual translational velocities for various
types of small objects (window-glass fragments, stones, spheres, etc.) by means of a trapping .
technique that was used first for this purpose during Operation Teapot.4 The technique used,
described in Chap. 2, permitted the evaluation of velocities and masses for large samples of
missiles that occurred near the location of the trap.

It was planned to obtain velocities, masses, and spatial distributions (where applicable)
for the following types of missiles in the environments noted:

1. Window - and plate-glass fragments inside houses and in open areas where the windows
were mounted without “benefit” of a house.

2. Natural (or native) stones in flat and hill-and-dale terrain.

3. Gravel that had been marked for identification and placed at various distances in front
of traps in open areas.

4. Small metallic, nylon, and wooden spheres placed in front of traps in flat and hill-and-
dale terrain and in a shelter with an open entryway.

5. “Military” debris (fragments of steel) placed in front of traps in flat and hill-and-dale
terrain.

Since the size of objects that could be accommodated by a missile trap is limited, other
studies were planned in which only the total displacement was to be determined. This included
the displacement of large stones (up to about 20 kg) and of concrete blocks from a wall exposed
to a blast wave.

The final and perhaps most significant objective was to compare missile velocities that
were empirically determined with velocities that were computed* through use of the analytical
work mentioned in the last paragraph of Sec. 1.1. From these comparisons it was hoped that

* . . . S
The blast parameters used in these computations were determined from overpressure
measurements made at each missile station by Ballistic Research Laboratories, Aberdeen, Md.
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some degree of confidence could be established in the computational methods used. These
methods could then be used to predict secondary-missile hazards for range —yield combina-
tions different from those used in the test series.
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Chapter 2

MISSILE-ABSORBING TECHNIQUES
AND METHODS OF ANALYSIS

2.1 INTRODUCTION

It was possible to obtain impact velocities for large numbers of secondary missiles (ob-
jects translated by the blast wave) by techniques that required quite simple instrumentation.
The field operation consisted of placing a suitable absorbing material downwind from the
source of secondary missiles. Following the detonation the absorbing material was taken to
the laboratory where each missile was extracted, and the depth of penetration and missile
mass were measured. Impact velocity could then be determined by use of a calibration equa-
tion applicable to the type of absorber used and the type of missile caught.

This chapter will be concerned first with a description of the missile absorbers used and
the methods of placing them in the field. Next will follow an account of the laboratory and ana-
lytical procedures used to arrive at calibration equations for each absorber and missile type
combination. Finally, some of the statistical methods used to organize the large quantities of
missile data obtained from the field tests will be reviewed.

2.2 MISSILE ABSORBERS

The missile-absorbing technique used in blast studies is characterized by the translated
object’s being accelerated by weak pressures applied over long distances in air and then
being decelerated by stronger pressures over shorter distances in the absorber. This arrange-
ment of pressure strengths is necessary so that the absorber will not be crushed by the dy-
namic pressure accelerating the missile as well as by the usually greater static pressure (or
overpressure), especially if the latter is reflected at the surface of the absorber. Thus an ab-
sorber should be strong enough to withstand the pressures accompanying the blast wave yet
weak enough to be penetrated by the missiles generated by the same wave. It should be noted
that the blast wave does not decay appreciably between the time the missiles are generated and

the time the wave reaches the absorbing material.
Mechanical properties other than compressive yield strength, described above, need to be

considered in the choice of an absorber. It is important, for instance, that the shear strength
be low so that each deformation be localized, i.e., the depth of penetration for each missile
should not be influenced by the penetration of other missiles in the vicinity. Furthermore, it
was found that the more nonresilient the material, the more reliably it could be calibrated. It
is apparent that a material that would even partially return to its original shape after impact
would be of little value in the measurement of impact velocities. In addition, obviously the ma-
terial should be structurally uniform so that a velocity calibration obtained from using a sam-
ple of the absorber would apply to other material of the same type used in the field operation.
Another important consideration in the choice of an absorbing material is its resistance
to heat. Even a temporary change in the mechanical properties of the absorber due to heating,
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especially in the outer layer which is exposed to thermal radiation in most instances and to hot
blast winds, could change the depth to which a missile would penetrate. Since the outer layer
is most susceptible to thermal effects,* the errors introduced in the evaluation of missile ve-
locities would be most significant for the objects with small depths of penetration.

The materials that were found to be suitable (with reservations) for the present study are
listed in Table 2.1. Absorber types I, II, III, and IV are expanded polystyrenes.t Types V and
VI are balsa wood, selected on the basis of density.

TABLE 2.1— ABSORBERS USED TO TRAP MISSILES*

Compressive Maximum temp.
Density, yield strength, Shear strength, for continuous
Type Description Ib/cu ft psi psi use, °F
I Special order 1.54
11 Styrofoam 22 1.6 to 2.0 16 to 32 27 to 36 175
111 Q-103.15 2.8 to0 3.2 50 to 80 53 to 62 175
v Q-103.21 4.3to 4.7 120 to 140 80 to 95 175
A% Balsa wood 7.85
VI Balsa wood 10.78

* All absorbers except balsa wood were manufactured by Dow Chemical Co., Midland, Mich., using
expanded polystyrene. Specifications for types II, III, and IV absorbers were supplied by the manu-
facturer. Balsa wood was used end-grain only.

Type I absorber was prepared on a special order, { but types II, III, and IV are stock items.
These materials were tested in a shock tube for compressive yield strength under dynamic
conditions. Samples that were 2 in. thick and 1 ft square were cemented to the closed end of
the tube. For types II, III, and IV, it was found that the compressive yield strengths determined
in the dynamic tests were approximately the same as those specified by the manufacturer for
static loading (see the fourth column of Table 2.1). Thus these data served as a guide in the
selection of the type of absorber to be used at various field installations.

The mechanical properties of the expanded polystyrene were found to be reasonably good.
The principal difficulty encountered with the balsa wood was its nonuniformity. Homogeneity
was improved by dividing pieces of wood into two groups according to density and making cali-
brations for each group separately. It was found that when the wood was used end-grain the
deformations were localized to the areas of impact.

Since all types of absorbing material used were susceptible to modification by heat, it was
necessary to provide thermal protection without appreciably changing the missile-catching
properties of the absorber. In shot Priscilla this consisted in placing two 0.0007-in. -thickelay-
ers of aluminum foil over the exposed side of the absorber. This proved to be insufficient pro-
tection in some instances; therefore additional protection was arranged for some of the instal-

lations in later shots (see Sec. 2.3 and Fig. 2.2).

2.3 CONSTRUCTION OF TRAP HOUSING AND ANCHORS AND WINDOW
MOUNTS

Construction details for the trap housing that was used at most installations are illustrated
in Fig. 2.1. The housing was designed to hold absorbing material 36 in. wide, 12 in. high, and
11 in. deep. Types II, III, and IV absorbing material were placed in the housing in 1- and 2-in.

*The reasons for this are that (1) the times of exposure to thermal effects are relatively
short and (2) the absorbing materials with the required mechanical properties are usually good
thermal insulators (low conductance) with low heat capacities.

T Manufactured by Dow Chemical Co.
1 This is the same material that was used by Project 33.4 during Operation Teapot.*
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layers by removing the back, which was secured with wood screws (see the ¥;-in. plywood
member shown in Section B of Fig. 2.1). The %-in. plywood lid was easily removed and was
convenient for the protection of the absorber during shipment and during and after installation
in the field. Except for the front and back, the housing was assembled with glue, screws, and
bolts, countersunk where necessary.

The housing, illustrated in Fig. 2.1, was also used with balsa absorbers (types V and VI).
Small blocks of balsa wood measuring about 4 in. along the grain were cemented end-grain to a
sheet of ¥,-in. plywood that was 36 in. long and 12 in. wide. This assembly was then placed in
the trap with the balsa surface against the flange that held the trap lid. The extra space be-
tween the balsa assembly and the back of the trap was filled with suitable structures made of
1Y,-in. plywood.

Type I absorber was procured in sheets about 2 ft wide, 2 ft high, and 1 in. thick. The
housing used for this material accommodated an approximate 2-ft cube of absorber. A more
complete description of this type housing as well as its anchor can be found in Ref. 1,

Another type trap was constructed in the field by cementing a 2-in. layer of absorber
(type 1I, 111, or IV) to the walls of a structure with ordinary linoleum cement (see Secs. 4.13,
6.3, and 6.4).

A typical trap installation using the housing illustrated in Fig. 2.1 is shown in Fig. 2.2.
The trap was secured to the 4.5-ft-wide by 3.5-ft-long by 3-ft-deep concrete base by three
6-in. I-beams in the rear and four 1-in. rods holding a 12-in. channel on top of the trap. A
wooden frame mounted about 1 ft in front of the trap held one layer of 0.0015-in, -thick alumi-
num foil. This foil protected the trap from the thermal pulse that occurred before the arrival
of the blast wave. The blast wave then ruptured the foil before the arrival of secondary mis-
siles. In some instances the wooden frame itself was blown away by the blast wave.

Figure 2.3 is a sketch of a window mount and a double-trap installation, one stacked above
the other. The dashed lines on the drawing represent structures below ground level: two con-
crete slabs whose upper surfaces were at ground level and part of the timber framework hold-
ing the steel window. The only parts of the above-ground structures, other than the glass, which
showed any permanent deformation due to the blast waves were the steel window frames, which
were usually slightly bent in the direction away from GZ.

The steel frames (Fig. 2.3) were fitted with ordinary double-strength window glass* that
had a nominal thickness of % in. The frames were always oriented so that the putty holding the
panes in place was toward GZ. At a few of the installations, a single piece of plate glass{

(1/4 in. nominal thickness) was mounted using the timber structure illustrated but without the
steel frame. The stronger side of the support was oriented away from GZ.

Window -glass missiles were also investigated in two houses on shot Galileo. The struc-
tural details of these experiments are described in Secs. 6.2.4 and 6.2.5.

2.4 CALIBRATION OF MISSILE ABSORBERS

2.4.1 Experimental Procedure

The air gun and the velocity-measuring device used in the calibration of absorbers are
described in Ref. 1. Three sizes of gun barrels were used; the gun barrels were about 8 ft
long and were 1, 2, and 3 in. in inside diameter. Sabots were made of various types of ex-
panded polystyrene (see Table 2.1). The sabots consisted of cylindrical plugs with diameters
somewhat smaller than, and lengths at least as large as, the diameter of the gun barrel to be

used.
For the larger sized gun barrels it was not feasible to use a choke to stop the sabot, as

described in Ref. 1. Instead, the following procedure was used: A hole about one-half as long
as the sabot was drilled in one of its flat surfacés. The missile to be shot was placed at the

" pottom of the hole.i The rim of the cup-like sabot, which contacted the target first, served to

* Libby Owens Ford, B quality.

t Franklin Glass Corp.
1 The fragment missiles could be given an impact orientation by lightly imbedding an edge
of the fragment in the sabot.
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decelerate the sabot before the impact of the missile. The advantage of this procedure was
that the light beams that controlled the electronic timer were interrupted by a sabot of regular
shape instead of by a missile of irregular shape followed by a sabot.

To serve as a check on the velocity determinations that were made with the gun, as well
as to produce additional calibration data, free-fall experiments were performed in an elevator
shaft where the usable free-fall distance was about 48 ft (with corresponding impact velocities
up to approximately 55 ft/sec). In these experiments the absorbing material was placed at the
bottom of the shaft, and the missiles (7/16— to 15/16—in.-diameter steel spheres) were dropped
from a measured distance. Results obtained from another study? were used to evaluate impact
velocity. The penetration data obtained in this way were found to be comparable to those re-

sulting from the air-gun experiments.

2.4.2 Glass Fragments with Random Orientations

Experimentation with the calibration of type II absorber with glass fragments showed that
the depth of penetration was almost independent of impact orientation of the fragment provided
the angle made by the flat side of the missile and the absorber was greater than about 15°, It
was also found that the thickness of the glass from which the fragment was made was not sig-
nificant in determining its depth of penetration. Two significant parameters, however, were
missile mass and impact velocity. It was empirically determined that, for fragments of a given
mass, the calibration data would fit an equation of the form

logv=A+Blogs (2.1)

where A and B are constants if the missile masses are constant, v is the impact velocity, and
s is the depth of penetration.
Further investigation showed that A and B could be represented within wide ranges of

mass by
A=a+clogm B=Db+d log m (2.2)

where a, ¢, b, and d are constants and m is missile mass. Thus, when Eqgs. 2.1 and 2.2 are
combined, the resulting calibration equation is

logv=a+clogm+(b+dlogm)logs (2.3)

The experimental data for randomly oriented glass fragments in type II absorber consisted
of values of impact velocity, mass, and depth of penetration for 258 shots. As an aid to the
analysis of the data, the missiles were grouped according to mass; the range of masses within
each group was +2.5 per cent of the average. The average masses of seven groups of frag-
ments thus formed were from 0.0274 to 11.406 g.

It was necessary to determine two fits with Eq. 2.3: one for missiles of small mass and
the other for missiles of large mass. The resulting equations, along with appropriate plots,
are presented in Fig. 2.4. :

An enlarged version of the chart in Fig. 2.4 was used to evaluate velocities* for glass
fragments that were caught in the field operation by the type II absorber. The velocity vs.
mass analysis for each sample of missiles caught (described and illustrated later in the re-
port) demonstrated that log velocity was an approximately linear function of log mass. Thus
for analytical purposes it was decided to group the field data into constant log-mass and log-
velocity intervals. The log intervals used (based on common logarithms, log;,) were 0.1 for
mass and 0.05 for velocity. These intervals, labeled a through v for velocity and A through Z
and AA through KK for mass, are plotted in Fig. 2.4. The appropriate group identifier was de-
termined for each missile by means of simultaneous mass and depth-of-penetration entries on

the chart.

* At the time this work was done an electronic computer was not available.
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The standard error of estimate in log velocity obtained for the 258 data points using the
least-squares analysis described above was 0.0485 log unit, or about 11 per cent. It is of in-
terest to note that this value (0.0485) is only slightly smaller than the log-velocity intervals
(0.05) plotted in Fig. 2.4. Also noteworthy is the observation that at high velocities the depth of
penetration, percentagewise, is much less dependent on missile mass than at low velocities;
e.g., at 398 ft/sec a fragment that weighs 10 g penetrates about three times as deep as one that
weighs 0.1 g, whereas at 39.8 ft/sec the ratio between depths of penetration is approximately
30 for missiles of the same masses.

2.4.3 Glass Fragments With Flat Orientations

A few of the absorbers that were placed behind windows (especially those containing plate
glass) received impressions that indicated that fragments had struck with a flat surface for-
ward and that no appreciable change in orientation occurred during deceleration. In most cases
the larger fragments impacting in this manner did not remain in the absorber but fell to the
ground. However, the missile could be described even though it was not retrieved, since the
thickness and density of the glass were known and the area of the fragment could be estimated
from the impression in the absorber.

Calibration experiments were designed for the flat type impact with the assumption that
the missile could be described by two parameters: (1) mass per unit impact area or area den-
sity (m/A) and (2) impact area (A). Average values of m/A corresponding to double-strength
window glass and plate glass used in the field tests were 4.957 and 9.498 g/sq in. It was not
feasible to shoot actual plates from the air gun; therefore plates were simulated by cementing
0.064- to 0.130-in.-thick Plexiglass disks to the end of balsa cylinders, and the total mass was
adjusted to achieve the desired values of area density. These missiles, which were made to fit
three sizes of gun barrels, had impact areas of 0.7466, 3.032, and 6.998 sq in. Three missiles
were made with each of the above areas, but with different area densities, making a total of
nine test objects.

Each of the nine test missiles was shot 10 times into type II absorber at velocities ranging
from about 59 to 220 ft/sec; the depth of penetration was from 0.026 to 1.96 in. Data for each
missile were fitted by the least-squares method to the following form, area density and impact
area being constant:

log v=C + 0.5 log (s + k) (2.4)
where v is the impact velocity, C and k are the regression coefficients, and s is the depth of
penetration.

Further analysis showed that k was a function of area alone and could be represented by

log k = —0.7099 + 0.3502 log A (2.5)

where A is in square inches and k, to be added to s, is in inches.
By use of data for missiles of the same area density, C in Eq. 2.4 could be represented by

C=cytecylog A (2.6)

where ¢, and ¢, are regression coefficients but can be defined in terms of area density as
5 m m\?
Cy = d1 + dz 'K + d3 K) (2.7)

and

co =€y ey <%) + e <%1>2 (2.8)
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When Egs. 2.4, 2.6, 2.7, and 2.8 are combined and values for the regression coefficients
are substituted, the following calibration equation results:

2
log v = 2.3472 + 0.00045 (%‘) —0.002244 (%)

2
+[—0.01756 +0.00009 (%) ~0.000439 (%) ] log A+0.5log (s +k) (2.9)

where k is defined in Eq. 2.5 as a function of A, and the units are: for v, feet per second; m,
grams; A, square inches; and s, inches. When only the data for test missiles with area densi-
ties that corresponded to double-strength window glass and plate glass were used, the standard
error of estimate in log velocity was found to be 0.0122 log unit, or about 3 per cent.

An enlarged version of the nomogram in Fig. 2.5 was used to solve Eq. 2.9 for the purpose
of evaluating velocities for the appropriate missiles caught in the field operation. Equation 2.5,
which defines k in terms of impact area, was solved by a simple graph (which is not shown).
Use of the nomogram is illustrated in the lower left portion of Fig. 2.5; the illustration in-
volves one step where values of A and m/A are entered and another where (s + k) is entered

and velocity is read.

2,4.4 Gravel and Natural Stones

Calibration data for gravel and natural stones were not significantly different from each
other and were therefore combined for analysis. The experimental and analytical procedures
followed were essentially the same as those described in Sec. 2.4.2 for glass fragments with
random orientations. In some instances it was necessary to divide the data into two or more
parts, according to missile mass, and to apply a regression equation of the form of Eq. 2.3 to
each part separately. Calibration data for the balsa absorbers showed much more variability
than did those for the more structurally uniform plastic absorbers. Detailed information in
regard to the resulting calibration equations as well as their limits of applicability will be pre-
sented in Sec. 2.4.6 and Table 2.2.

2.4.5 Spheres and Military Debris

With the exception of the soda-glass spheres, the mass for each type and diameter of
sphere could be considered constant. Thus, for spheres of constant mass, the following simpler
type of calibration equation was used:

logv=a+Dblog (s +k) (2.10)

where v is impact velocity, a and b are regression coefficients, s is depth of penetration, and

k is a correction term added to the total depth of penetration to yield the depth of a cylindrical
deformation of the same diameter and volume as the one observed but with a flat bottom instead
of the rounded one made by a sphere.

The correction k, defined above, was used only in instances where its application would
reduce the standard error of estimate in log velocity. In some cases depths of penetration less
than the sphere radius were of interest. For these shallow deformations the actual depth was
used to compute an equivalent depth —the equivalent depth is defined as the depth of a flat-
bottom cylindrical hole with the same diameter as the sphere and same volume as the actual

deformation.
Soda-glass-sphere data for penetration in the plastic absorbers were analyzed in a manner

similar to that used for glass fragments (Sec. 2.4.2). However, for the type V balsa absorber,
the calibration equation used was similar to Eq. 2.10 with k = 0; the results are applicable to
spheres with masses within specified limits.

Detailed information regarding the individual calibration equations is given in Table 2.2.

The military debris used in this study consisted mostly of steel fragments that were pro-
duced by the deformation of small steel-encased charges of high explosives.

The depths of pengtration for steel fragments of constant mass and velocity were averaged
for a number of randognly oriented impacts. It was found that steel spheres of the same mass
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and impact velocity would penetrate to a depth not significantly different from that for the
average value for the fragments. Thus the steel-sphere penetration data were used to estimate
the impact velocities of military debris, using the calibration for the sphere whose mass was.
nearest the steel fragment of interest. The steel spheres varied from Y to 1% in. in diameter
and from 0.1308 to 54.95 g in mass (see Table 2.2).

2.4.6 Summary of Calibration Results

The results obtained from the calibration procedures discussed in the previous sections
are listed in Table 2.2. The equations presented in tabular form are those which were used to
determine impact velocity for missiles trapped in the various absorbers employed in the field
operation. Other quantities are specified which make it possible to assess the limits of appdi-
cability of the calibration equations.

The numbers listed under a, b, ¢, and d are regression coefficients for the general cali-
bration equation stated at the top of the table. The values given under k are corrections to be
added to the depth of penetration, s. In some instances a different form of regression equation
was used, in which case the appropriate equation is presented as a footnote to the table.

Maximum and minimum values of the following parameters used in the calibration proce-
dures are designated by the subscripts + and —, respectively: M for missile mass, grams;

s for depth of penetration, inches; and V for impact velocity, feet per second.

The numbers listed under n in the table designate the number of missile penetrations used
to determine the calibration equations, E,, is the standard error of estimate in log-velocity
units and (E,,) % is the same quantity expressed in per-cent-of-velocity units.

2.5 THRESHOLD VELOCITIES

Threshold velocity, as used in this report, is the lowest velocity of impact that can be
evaluated for a given missile —absorber combination. The importance of the concept in the de-
sign of secondary-missile experiments was implied in Sec. 2.2, The use of threshold veloc-
ities in the interpretation of field data will be discussed in the latter part of this section.

With the exception of glass fragments that impacted flat, the criterion for computing
threshold velocity was that the depth of penetration be just sufficient for the missile to be re-
tained in the absorber. In the case of spheres, the “sufficient” depth was assumed to be equal
to the radius of the sphere. For stones the critical, or threshold, depth was taken to be the
radius of a sphere with the same mass and density as that of the stone. A similar assumption
was made for randomly oriented glass fragments, * except that both the radius and dianveter
of the “equivalent” sphere were used. This resulted in a band of threskold velocities, as ilus-
trated in Fig. 2.6; the upper limit is for a penetration depth of one Bimmeter of the equivaleunt
sphere, and lower limit, one radius. The reason for the greater umeertainty of the thr esivedtt
velocities for glass fragments is that retention is more dependent on orientation of impaet for
plate-like missiles than for objects that are usually more spherical, sach as stones.

Since it was not necessary to recover the impacting glass fragment if its broad surface
had the same orientation as the surface of the absorber (see Sec. 2.4.3), the requirement for
velocity determination was simply that the impression made in the absorber be detectable.
Figure 2.7 is a plot of threshold velocity as a function of missile mass for window and plate
glass with flat orientations at impact. The data in this figure were computed on the assumption
that a 0.05-in. deformation is detectable and measurable.

Threshold velocities for natural stone and gravel are shown in Fig. 2.8 as a function of
missile mass for absorber types II, 1II, IV, V, and VI. A density of 2.72 g/cm3 was used for
both natural stones and gravel to make the necessary computations.

Figure 2.9 displays threshold velocities for -in.-diameter nylon spheres in absorber
types 11, III, and IV, and seven %- to !%4-in. -diameter aluminum spheres impacting in ab-

*The average density of window and plate glass was 2.42 g/cm®,

35




TABLE 2,2—RESULTS OF ALL CALIBRATIONS
(See List of Symbols)

where v ia [n feet per second; m, grams; and n, inches; and a, b, . and d are conatants

logv=a+clogm+(b+dlogm log(s+k

Missile  Absorber . b e ] x M. M, . s, V.o, n o BV (EWEY
type
waG; PG 1 21790 0.5 001955 © 0 00164 4990 02385 7.230 123 344 96 0.045  10.5
o {z.zau 0.5641 01525 0.1608 0 00274 0.3814 0065 1.913 120 :m} 258 0.0485 112
22124 05389 2704 01409 0 1443 11406 0445 4450 690 262
FWG; FPG It . Sec footnote 3 0,026 1.96 590 220 90 00122 28
NS; Gr 1 See footnote 4
2.2865 06126 -0.1477 0.1763 0 0035 0145 0143 0939 105 287
21756 0.6126 —0.2800 01763 O 0.14s 0402 0.46 1367 100 251
L0287 B
u 22310 06,6126 -0.139% 01763 0 0.402 oes0 0302 1438  esa 2| 00 89
22125 05517 —0.2414 -0.1607 0 0.660 2160 0322 2156 807 205
m 2.5050 0.5429 «0.1648 0.0233 0 0.011 0.0433 0.048 1.093 151 795 47 0.0548 l2.5}
See footnote § 00433 2972 0118 1288 116 346 190 0032 7.2
w 2.4%06 0.5790 ~0.2273 0.0259 0 0.0311 3.291 0,080 7.765 145 1015 243 0.0348 8.0
v 2,7538  0.5264 —0.2306 -=0.0624 ] 0.251 10.010 0.072  4.950 108 869 81 0.0801 209
vi {2.8530 0.6142 01442 0.1089 o 0.030 0.233 0.042 1,844 151 1015 65 0.103% 24.2
2.8134 0.8037 —0.2384 0.0535 o 0.233 7.950 0.080  3.100 93.4 1015 B5 0.0982 22.3
Ny ‘/. 1 2.5389 0.1950 o ¢ -0.021 0.0197) 0.070 0.636 188 309 10 0.0206 48
m 2.7475  0.4057 ° ° 0.01978 0.280 0.631 328 455 10 00096 2.2
w 2.8476  0.3930 0 ] «0.021 0.01973 90.102  0.512 262 534 9 o0.0107 2.5
Al ‘/. n 24119 03794 o o 0 0.04734 0.159  0.802 128 233 9 0.0083 1.9
u 2.,5628  0.4272 o o 0 0.04734 0.139  0.868 150 342 14 00123 2.8
v 2.6697 0.3934 o o ~0.021 0.04734 0.133 0435 201 338 10 0.0073 1.7
v 3.0298  0.5945 o o o 0.04734 0.036 0.539 149 807 17 0,0526 121
ALY, ] 23453 04112 0 3 0 0.1537 0242 2098 123 311 10 00155 36
m 24732 04350 o o o 0.1537 0.143  0.94B 126 284 10 0.,0105 2.4
w 2.6008 04254 ] o ~0.031 0.1537 0.330  0.500 143 286 10 00091 2.1
v 28873 05117 0 0 0 0.1537 0072 0992 152 182 12 0.0525 121
Al '/‘ n 2.2688 04326 o o 0 0.3787 0.282  1.963 102 248 10 0.0120 2.8
m 2.3962 04888 o o o 0.3767 0.231  1.321 123 291 10 0.0056 13
v 2,5408  0.4472 0 o —0.042 ©.3767 0.192 0.760 151 299 9 0.0092 2.2
v 2.8098  0.5814 o ] o 0.3767 0.084 1,993 145 907 11 0.028% 6.8
A% u 2583 05019 0 0 o 1.2662 0303 1741 769 192 10 00026 0.6
m 23082 05342 0 ° 0 1.2662 0.215 1208 865 227 10 00092 21
w 24623 04951 0 3 —0.062 1.2662 0.353 0,993 153 276 10 00092 2.2
Al '/, n 2.0707  0.5115 o o o 2.9441 0416 1574 75,6 150 10 0.0090 2.1
1 2.2515 06288 0 ° [ 2.8441 0237 1452 707 224 10 00077 18
Al ’/' n 1.8305  0.6109 o o o 10,172 0.2393 1,735 47.8 17 10 0.0264 6.1
m 2.1347  0.8567 19 o 0 10.172 0.367 1,195 62.3 153 10 0.0038 0.9
ALY i 1.8827 0.6125 0 [ ° 19.828 0.677 1.900 538 110 10 00126 2.9
m 2.1116  0.6985 0 0 0 19.828 0.265 1.283 46.8 138 10 0.0066 15
8, 1 22178 0344 0 [} -0.021 0.1308 0.091 0852 €27 157 s 00153 32
m 2.3687 0.4530 ¢ 0 0 0.1308 0134 0.544 95.8 181 10 0.0112 2.6
v 24839 o421 O ) —0.021 0.1308 0094 0362 967 190 10 0.0071 L7
v 26971 0.5195 9 o 0 0.1308 0.042  0.995 90.8 505 17 0.0514 10.7
8 Y I 2.0408 04317 0 0 ~0.042 1.0434 0172 1281 481 121 10 00028 0.7
m 22075 05219 0 0 0 1.0434 0252 0839 183 146 10 00072 16
w 2.3592 0.4703 0 0 —0.042 1.0434 0.183  0.622 91.6 179 10 0.0079 2.0
v 2.5231 05036 0 o o 1.0434 0198 2257 114 439 21 00562 118
8ty v 2.2686 0.5225 0 0 [ 35211 0387 4,580 109 412 11 0.0060 1.4
8t Y e 19471 04Tl O ° m 5.5971 0175 0427  29.6 533 24 00063  1d
o 2,0610 05991 0 ° 0 5.5971 0104 1515  29.8 145 32 0.0061 14
w 2.2208 0.5021 0 o 0 55971 0419 4.658 108 360 12 0.0039 0.9
3 e 18639 03896 0 ) o 8.353 0.180 0522 297 515 24 00037 0.9
m 20414 05188 0O 0 ® 8.353 0192 1855 357 138 10 00032 0.7
v 21784 0.5351 0 o 0 8.353 043 4232 101 324 12 00071 1.6
v 24118 0.5095 0 0 [ 8.353 0178 2975 943 444 21 00590 13.6
8t %, o’ 18577 05367 0 [ (] 11.874 0.1%4 05732 257 538 24 00058 14
1 20192 0515 0 ° a0 11874 0.245 1747 392 137 10 00032 0.7
I 2134 08516 0O 0 [ 11.874 0516 4412 937 306 12 0.0067 15
8% v 2.0862 05510 0 ) 0 28.110 0767 5201 103 298 15 00160 3.7
sy, w 2.0256 0.5447 0 0 [ 54.95 0.971 4311 994 246 12 00125 2.9
v 2.2048 04842 0O 3 0 54.95 0.4z 2.375 704 326 8 00355 82
Os, Gl Gx n 2.1878 0.5235 -0.1661 0.0870 UV 0.030 0300 0.181 2.048 18 294 43 00145 34
m 2,317t 0.5635 —0.1842 00950 0 00378 0248 0110 1455 114 381 60 00185 4.3
v 24540 05398 01834 0720 0 00378 0248 0.051 1.141 13 429 58 00109 25
ax v 2.9987 08019 0 0 o 0.0416 00438 0060 0577 159 765 10 0.0442 102
6] v 29280 05191 0 0 0 00691 00727 0.040 1.002 153 807 10 00365 8.4
cB ™ 1.8915 0.A4ME 0 [ ) 355.0 3875 0124 0427 200 482 16 0.0361 8.9

(1, s the standard error of estimate In log-velocity units, and (Er)% 18 the atandard error of estimate In per.cent-of-velocity units.
{3IF1qure 2.4 1 & plot of these oquations.
Mog v = 2.3472 + 0.00045 (m/A) ~ 0.002244 (/AN + [~ 0.01756 + 0.00009 (m/A} ~ 0000439 (m/A)!] log A + 0.5 log (s + k}, where log k = ~0.7099 +
0.3502 Tog A; A, square inches; m, grams; and 4.958 = {m/A) S 9.802 (see Fig. 2.5).
4, G, Bowen, A. P. Strehlor, and M. B. Wetherbe, Distribution and Denaity of Misstles from Nuclear Explosions, Operation Teapot Report, WT-1168,
December 1956, p. 21.

BNog v = log [1000/(2.8968 log m + 4.4704)] + (0.5505 + 0.0388 log m + 0.00862 (log m}| log ».

(Ocalibration data obtained by drop method.

(MFor » = 0.219, k = ~0.073; for & < 0.218, (s + k) = 8.950 a¥ (0,657 - a).

(NCombined data from air-gun and drop method,

®lpor 3 £ 0.250, k = —0.083; for 8 < 0.250, (s + k) = 5.333 #* (0.750 — u}.
(00For & = 0.281, k = ~0.0%4; for # < 0.281, {8 + k) = 4.222 #* (0.843 - ),

€10,02513 gmy~ "1,
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sorber types II, III, IV, and V. Note that the nylon spheres, because of their lesser density,
require considerably higher velocities to penetrate the depth of one radius than do aluminum
spheres of the same size.

Threshold velocities shown in Fig. 2.10 are for steel spheres with diameters from Y to
¥ in. for absorber types II and III and from 1/ to 1%, in. for absorber types IV and V. It is
interesting to note that, for the more dense absorbers (types IV and V), the threshold veloci-
ties are about the same for the small as for the large spheres. For the two less-dense ab-
sorbers (types II and III), however, threshold velocities decrease with sphere diameter up to
about %, in. The data for the ¥ ¢-in.-diameter sphere suggest that larger spheres would have
higher threshold velocities.

TABLE 2.3— THRESHOLD VELOCITIES FOR SPHERES IN TYPES II,
III, IV, AND V ABSORBERS

Velocity, ft/sec

Mass,
Spheres Type IT Type III Type IV TypeV mg
Ny % 186 181 202 19.7
ALY, 90 112 134 206 47.3
Al Y, 83.5 105 123 199 154
AlY, 75.5 90.1 114 193 377
INEA 62.3 83.1 104 1,266
AlY, 58.1 74.7 2,944
AlY, 46.1 70.5 10,172
Al ¥, 48.0 76.2 19,828
st 54.3 66.6 78.§ 118 131
stV 37.3 54.5 77.9 117 1,043
st % 774 3,532
st Yy 35.3 46.3 77.4 5,597
st Y, 36.4 43.5 71.8 127 8,353
St ¥, 41.0 44.1 67.7 11,870
st ¥, 71.0 28,161
st 1% 70.2 134 54,950
Gs 117 113 150 40.0
Gs 182 42.7
Gl 102 103 139 72.6
Gl 222 70.9
Gx 80 89 125 242.4

Threshold velocities for soda-glass beads with an average density of 2.55 g/cm? are
plotted in Fig. 2.11. Consistent with the calibration equations (see Table 2.2), threshold ve-
locities are shown as functions of sphere mass for the plastic absorbers (types II, III, and IV)
and for two sphere-mass values for the balsa absorber (type V) (see points labeled “Small
Spheres” and “Large Spheres” in Fig. 2.11).

For the convenience of the reader, the sphere threshold velocities that are presented
graphically in Figs. 2.9 to 2.11 are listed in Table 2.3. The nomenclature used in the first
column to describe the spheres is given in the List of Symbols, pages T7to9.

Although the assumptions made in computing threshold velocities were somewhat arbitrary,
the results showed a reasonable agreement with the field data. Very few missile velocities
were evaluated which were below the computed threshold; however, this does not mean that
every missile that struck the trap with above-threshold velocities was retained in the ab-
sorber. (Also, some of the missiles that were not firmly imbedded in the absorber were dis-
lodged during transport of the traps from the field to the laboratory.) Actually, a definite
threshold velocity cannot be established for any missile. A more realistic concept is that of
a band, or range, of threshold velocities as a function of missile mass, such as is portrayed
for glass fragments in Fig. 2.6.
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In spite of the limitations noted above, the computed threshold velocities proved to be quite
useful in the interpretation of the field data. For example, if the mean of measured velocities
was near the threshold, it could be assumed that the sample was tiuncated at the lower end,
and therefore the computed mean was too high. Other discrepancies may result when the actual
missile velocities are lower than the threshold value or values. This situation could result in
a few missiles being caught because of their shapes and orientations at impact, e.g., a sliver
of glass impacting on a sharp point. This again would result in the mean of the measured ve-
locities being too high since the calibration equations were obtained for missiles of random
shapes and orientations at impact. Also to be considered is the circumstance where the veloc-
ities measured for a sample of uniform missiles are above the threshold value but the expected
velocity (based on blast-wave parameters) is below the threshold. This, along with collaborat-
ing evidence, would lead one to suspect that the absorber had been softened by thermal radia-
tion before the time of impact or that the missile itself was hot.

2.6 STATISTICAL ANALYSIS OF FIELD DATA

In the computation of statistical parameters describing the velocities and masses of non-
spherical missiles from a given sample (trap or group of traps), it was assumed that the dis-
tributions were log normal. A graphical verification is presented in Sec. 6.2.6 of the normalcy
of distributions of log mass and log velocity by making use of data for 2523 glass fragments
that were trapped in two houses.

Another type of test was developed (see the Appendix) by establishing the following theo-
retical relation between the ordinary mean of a log-normal distribution and its geometric mean

and standard geometric deviation:
i

g (In.Sg)?
x—so—exp[——é— (2.11)
where X=(Zx)/n (ordinary mean of variable x)
x50 = antilog [(Z log x)/n] (geometric mean)

S« = antilog V[Z(log x — log x;50)%]/(n — 1) (standard geometric deviation)
n = number of x values in the sample

The relation between X/x;, and Sgx, expressed by Eq. 2.11, is plotted as a solid line in Fig.
2.12. Note that, as the dispersion of the distribution (indicated by Sg) increases, the magni-
tude of the mean also increases relative to the geometric mean. *

The points plotted on the chart in Fig. 2.12 represent velocity and mass parameters that
were obtained from 111 missile samples (presented in detail later in the report). Note that the
missile-velocity points (in the lower-left portion of the chart) are uniformly scattered about
the theoretical line, indicating general agreement with the log-normal assumption. The
missile-mass points, however, have a slight tendency to fall more to the right than to the
left of the theoretical line. This means that, in general, the samples contained too few small
missiles to satisfy the log-normal assumption. The scarcity of missiles of low masses could
have been due to one or more of the following:

1. Some of the smaller missiles, because of their size, may have been overlooked in the
absorber at the time the missiles were extracted.

2. Limitations in the calibration procedure prohibited use of missiles that were extremely
small. t

*The geometric mean and the median are identical for a log-normal distribution.

TMasses of the missiles used for the calibrations are listed in Table 2.2, Actually, the
calibration equations were used to evaluate velocities for missiles somewhat smaller than
those used in the calibrations; e.g., the smallest missiles used to calibrate type II absorber
for glass fragments weighed 0.0274 g, but velocities were evaluated for fragments as small as
0.010 g.
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3. The gravel used had been screened to remove both the small and the large stones, and
this screening had resulted in truncated samples.

It is appropriate to discuss briefly the significance of the statistical parameters that were
defined in Eq. 2.11. Consider, for example, the distribution of missiles according to mass,
where M is the mean, M;; is the geometric mean, and Sgm is the standard geometric deviation.
It can be shown that 84.13 per cent of the missiles from a given log-normal sample have ve-
locities less than My X Sgm and that 15,87 per cent have velocities less than M;o/Sgm. Thus
68.26 per cent of the missiles have masses greater than M50/ng and less than Mgy X Sy In
some instances it is of interest to know the total mass of a sample of n missiles where only
the geometric mean and the geometric standard deviation are known. An estimate of the total
mass can be obtained by using Eq. 2.11 to obtain the mean mass and then multiplying this quan-
tity by n.

In general, the impact velocities measured for missiles of a given sample were not inde-
pendent of their masses. It was found that the following relation satisfactorily expressed the
dependence of impact velocity on missile mass:

logv=a+blogm (2.12)

where v is impact velocity, m is missile mass, and a and b are regression coefficients.

Note that the log-normal distributions discussed above are recognized in Eq. 2,12 by the
use of log v and log m as variables instead of v and m. The coefficients a and b were deter-
mined by the least-squares method for each missile sample with the substitution y = log v and
% = log m. The geometric standard error of estimate, E,,, was also determined for each sam-
ple, considering log v to be the dependent variable. The significance of Eg, is the same as that
of Sg, except that the reference for Eg, is the “geometric mean” velocity as a function of
mass found from Eq. 2.12 instead of simply the geometric mean of the sample. Thus, if the
regression velocity is given by antilog (a + b log m), then 84.13 per cent of the missiles from
a log-normal distribution would have velocities less than [antilog (a + b log m)] E gv» 15.87 per
cent would have velocities less than [antilog (a + b log m)]/E gvy and 68.26 per cent would have
velocities between the two limits. In general, E, for a given missile sample is less than S,,.
However, if missile velocities are independent of their masses, then E,, has approximately the
same value as S, and Eq. 2.12 expresses the geometric mean velocity (Vs,) for all values of
mass.

The equation used to compute E, is

E,, = antilog ‘/D:}T‘l (a + b log m; —log v;)%/(n — 2)

where m; and v; are paired values of mass and velocity and a and b are regression coeffi-
cients.
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Fig. 2.2-——Photograph showing trap anchors, aluminum foil for thermal protection, and added thermal
shield 1 ft in front of the trap.
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Chapter 3

PREDICTION OF TRANSLATIONAL VELOCITIES BY USE OF
MEASURED BLAST-WAVE AND MISSILE PARAMETERS

3.1 GENERAL

One of the more important objectives (see Sec. 1.3) of the secondary-missile study was to
compare the velocities measured for various secondary missiles with those which could be
computed (or predicted) by use of appropriate values of the blast-wave and missile parameters.
Two auxiliary studies had to be carried out before this objective could be reached. They are
reported elsewhere.!*? The first of these involved the solution of a mathematical model de~
signed to simulate the salient phenomena of missile production by ideal or classical blast
waves. The second was concerned with the measurement of appropriate aerodynamic param-
eters for irregular objects such as those used in the field operation. Through use of the blast-
wave data measured by the Ballistics Research Laboratories,3 the computations were made
specific for field situations.

This chapter describes briefly the work previously reported and discusses its application
to the present study.

3.2 PREDICTION OF MISSILE VELOCITIES

For the sake of simplicity, it was assumed that the only force acting on the missile was
due to the difference in the missile and wind velocities. The field experience indicated that ob-
jects being translated by blast winds tend to be lofted; thus the effects of surface (or ground)
friction are minimized. The lofting effect, however, would be dependent on the strength and
nature of the blast winds as well as on the physical characteristics of the displaced object.

The blast wave was assumed to be the ideal, or classical, type, unaffected by precursor
or hill-and-dale effects. Winds and dynamic pressures associated with the ideal wave of given
shock strength and duration were evaluated by use of the relations derived from numerical
studies made by H. L. Brode of Rand Corporation.

No allowance was made in the secondary-missile model for the decay of the blast wave
during the time (or distance) required for the missile to reach maximum velocity. This simpli-
fication would be justified at large ranges from GZ where both distance of missile travel and
the decay rate of blast wave are small. At the smaller ranges, however, the blast wave expe-
riences more significant attenuation over the distance required to accelerate a missile to
maximum velocity. This effect could not be evaluated from the field experience since the blast
waves at the shorter ranges were significantly modified by precursor effects.

The analytical procedure used in the missile model identified a missile by one parameter —
the acceleration coefficient (@), defined as the product of the area presented to the wind and the
drag coefficient divided by the mass (a = ACp/m) and assumed to be constant for a given mis-
sile. Two objects of vastly different shapes, sizes, and weights could have the same accelera-
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tion coefficient and thus experience similar velocity vs. time histories when exposed to any
particular blast wave. Use was made of this concept to investigate the displacement velocities
for man by trapping objects smaller than man but possessing approximately equivalent accel-
eration coefficients, namely, 7/16-, Y,-, and %G—in. -diameter steel spheres (see Ref. 1),

3.3 DETERMINATION OF THE IDEAL BLAST WAVE FROM THE FIELD DATA

Overpressure and dynamic pressure were measured as functions of time at most of the
missile stations by Ballistic Research Laboratories (BRL) mechanical type gauges.® Since the
velocity-prediction model was solved for the ideal blast wave, it was desirable to determine
the equivalent ideal wave for each of the measured blast waves. This was done in the case of
the overpressure pulse by finding the ideal wave with the same impulse and duration as those
measured by the gauges. The overpressures of the ideal wave as a function of time were then
evaluated* and plotted for comparison on the graph showing the measured values of overpres-
sure as a function of time.

Dynamic pressure as a function of time was determined for the ideal wave by making use
of the maximum overpressure of the ideal wave and the measured duration of the positive over-
pressure. The relation between the ratio of durations of the positive dynamic pressure and the
positive overpressure as a function of maximum overpressure is set forth in Sec. 2.3.4 of
Ref. 1,

Section 2.3.2 of Ref. 1 describes the expression used for dynamic pressure vs. time for
blast waves specified by maximum overpressure and duration.

3.4 ACCELERATION COEFFICIENTS FOR SMALL NONSPHERICAL MISSILES

Acceleration coefficients, defined in Sec. 3.2, could be determined for spheres of known
presented area and mass by use of a drag coefficient of 0.47.7 Acceleration coefficients for
irregular objects such as stones and glass fragments were not so readily determined. Experi-
ments were performed in which the test objects were dropped a known distance (about 48 ft) in
a measured time. Acceleration coefficients could then be determined by comparing the meas-
ured drop times with the time required for the object to fall the same distance without air
drag.2 It should be pointed out that in these experiments the velocities encountered were rela-
tively low and the compressibility effects of the air were small.

3.5 GLASS-FRAGMENT STUDIES

The drop-test studies reported in Ref. 2 indicated that orientation of the missile with re-
spect to the wind was not important in determining acceleration coefficients for double-strength
window fragments with masses less than 0.220 g and for plate-glass fragments with masses
less than 0.860 g. As the fragment masses increased from these lower limits, their orienta-
tion became more important; e.g., 2-g window-glass fragments have acceleration coefficients
for the edgewise orientation which are about 40 per cent lower than those obtained when the
maximum areas are presented to the wind. The scatter in the velocity data obtained for a typi-
cal window-glass sample was too large to be explained by the orientation effect (see Fig. 6.19).

Velocities predicted for glass fragments on the basis of a free-field blast wave ignored
any possible modification of the wave by the window installations in open areas or by the struc-
ture containing the window in the case of the house installations. In some instances, particu-
larly for the houses, the modification noted (as signified by missile velocities) was great
enough to suggest that velocities also be computed for a blast wave with a duration the same
as that for the free-field wave and with a maximum overpressure equal to the reflected over-
pressure assuming normal incidence of the free-field blast wave. Although this procedure

* The techniques used are described in Sec. 2.3.3 of Ref. 1.
T This drag coefficient for spheres is valid within large ranges of Reynolds numbers if the
flow can be considered to be incompressible.
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cannot be rigorously defended by theory, its usefulness as an empirical guide in the prediction
of missile velocities is apparent, provided, of course, that it conforms with the experimental

evidence available.

3.6 NATURAL-STONE, GRAVEL, MILITARY-DEBRIS, AND SPHERE STUDIES

The point of origin and the distance of travel of the natural (or native) stones that were
caught in the traps were unknown. Predicted velocities were computed by making the assump-
tion that the displacement of the missile before striking the trap was that distance required by
each missile to reach maximum velocity. Thus natural stones displaced distances other than
the optimum would have velocities lower than the predicted values.

At the missile stations in open areas on shots Priscilla and Galileo, screened gravel,
which had been dipped in paint for identification, was placed in front of traps at two or three
distances. The greatest distance used at each station* was estimated to be that which would be
necessary for a typical stone (about 0.1 g) to attain 98 per cent of its maximum velocity. The
shorter distances were about 39 and about 15 per cent of the greatest distance. This procedure
allowed a comparison of predicted and measured velocities for various known distances of
travel.

Military debris was marked with paint and placed in the same manner as the gravel (see
Chaps. 4 and 5). Spheres of various sizes, some marked with paint or dye, were also placed at
the distances used for gravel. The sphere samples were placed at ground level and at various
distances above the ground on appropriately designed supports.
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Chapter 4

SHOT PRISCILLA, EXPERIMENTAL PROCEDURE AND RESULTS

4.1 PROSPECTUS

Before the detonation of shot Priscilla (estimated yield, 38 kt) in Frenchman Flat, plans
were made to investigate the production of secondary missiles at 19 locations (see area map,
Fig. 4.1). Eleven of the stations were in open areas at ranges of 6120 to 2030 it, seven were in
closed shelters at ranges of 1360 to 860 ft, and one was in a shelter with open entryway at a
range of 900 ft.

The number appearing in the designators for the stations in the open areas indicates the
expected value of maximum overpressure; e.g., at 10P, 10 psi was the anticipated maximum
overpressure. The letter “P” in the designators represents shot Priscilla, and “PP” repre-
sents the trap installations associated with a study1 of biological damage caused by glass
fragments using swine as targets.*

At stations 4P, 5P, 6P, and 8P, experiments were designed to study the translation of (1)
fragments from windows mounted in open areas; (2) marked gravel and military debris; 3)
marked spheres of various types; (4) natural stones; and (5) large stones, blocks, and bricks
marked for identification. Similar experiments were conducted at stations 10P, 15P, and 20P
except that the glass-fragment studies were omitted. Velocities were obtained for all missile
types except the large marked stones, blocks, and bricks; the total distance of translation was
measured for these missiles.

The experiment inside the open shelter, OPS, was concerned with the translational veloci-
ties of “human-equivalent” spheres.{ Incidental to this experiment, velocity data were obtained
for a number of small stones of unknown source.

The experiments inside the closed shelters were designed to measure the velocity of
particles that might spall from the walls of the shelter owing to earth shock. Postshot exami-
nations showed no evidence of significant spalling.

The material in this chapter is presented by station, starting with the one most remote
from GZ. The only exception to this procedure was made for the large-stone study; the dis-
placement data for this study (obtained at seven stations) are discussed in Sec. 4.15. Most of
the results, because of their voluminous nature, are presented graphically along with pertinent
statistical parameters. For purposes of comparison, predicted or computed missile veloci-
ties are shown on the data graphs. Two summary tables—one for the blast-wave parameters
(Table 4.5) and the other for statistical parameters (Table 4.6)— describe missile data.

*Glass-fragment data were also collected at stations 4P, 5P, 6P, and 8P for the swine study
(Project 4.1) and for Project 33.4 which conducted a similar study? but used dogs as targets.

tSpheres of such a size and weight that they acquire approximately the same velocity as
would a human being under the same circumstances.

iThe closed shelters were tested by Projects 3.1 and 3.2. Details relevant to the per-
formance of these shelters may be found in Refs. 3 and 4.
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4,2 STATION 4P, 6120-FT RANGE

4.2.1 Experimental Plan

The experimental plan* for station 4P is illustrated in Fig. 4.2, Three of the five window
installations provided for the exposure of animals to glass-fragment missiles. Dogs were used
for the study? made by Project 33.4 and pigs were used for the study® made by Project 4.1.

Military debris, mostly steel fragments resulting from explosions, was painted for identi-
fication and was placed in front of installations 4P4 and 4P5 at 4.5, 10.9, and 28 ft,T a dif-
ferent color being used at each location. About 275 pieces of debris varying in mass from 1 to
2220 g were used at each distance.

Gravel was also painted for identification and placed in front of installations 4P4, 4P5,
and 4P6 at the same distances as the military debris (see Fig. 4.2). (Note that an area in
front of installations 4P6 and 4P7 was stabilized with asphalt to provide a more ideal surface
over which gravel and spheres were to be translated.)

Painted spheres were placed in front of installation 4P7 at the same three distances used
for military debris and gravel. The smaller spheres were packaged in tissue-paper con-
tainers, some placed on the asphalt surface and others suspended above the ground by wire
frames (see Fig. 4.12). The heights above ground level, in inches, at which the spheres were
placed are recorded in Table 4.6 for the spheres that were caught in traps. The larger steel
spheres (1/2 and ¥ in. in diameter) were hung on wire frames and held in aluminum-foil con-
tainers that were constructed and mounted in such a way that the blast winds would rip them
open and release the spheres.

The sphere samples, described in the following paragraphs, for this station were also
used at stations 5P, 6P, 8P, 10P, 15P, and 20P. The distances of placement from the traps
varied from station to station, but the samples exposed consisted of the same amounts.

At the shortest distance 10 steel spheres Y¢ in. in diameter were placed on the asphalt
surface and 10 steel spheres ¥ in. in diameter were hung from the wire frame.

At the intermediate distance, 10 steel spheres Y. in. in diameter were suspended from the
wire frame, but none were placed at ground level.

For each of the three distances, 2110 small spheres were placed at ground level and 1055
were suspended from the wire frame. All samples contained the spheres listed below in the
indicated proportions:

Y-in.-diameter nylon (Ny A 5.2%
Y -in.~diameter aluminum (Al ) 10.4%
%,¢-in.~diameter aluminum (Al %) 5.2%
Y,-in.~diameter aluminum (Al A 0.7%
3~in.~diameter aluminum (Al A 0.1%
Vi-in.~diameter steel (St A 10.4%
U,-in.-diameter steel (St ) 1.4%
36.0 mg (av.) soda glass (Gs) 53.5%
72.6 mg (av.) soda glass (Gl) 13.1%

A summary of the results at station 4P for window glass, plate glass, natural stones,

gravel, and spheres appears in Table 4.6.
Displacement data obtained for the large stones, building blocks, and bricks are pre-

sented in Sec. 4.15 and Table 4.4.

4,2,2 Blast Parameters
A method was discussed in Sec. 3.3 for obtaining the peak overpressure of an ideal blast
wave whose overpressure impulse and duration are the same as those measured in the field.

This procedure was found to be necessary in order to arrive at predicted velocities for vari-
ous missiles by use of a mathematical model® based on the ideal blast wave. The computed as

*Missile traps, trap anchors, and window mounts are described in Chap. 2.
$The method used to determine the distance that missiles were placed in front of the traps
is discussed in Chap. 3.
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well as the measured blast parameters obtained for the various stations are summarized in
Table 4.5. Unfortunately, gauge failure prohibited the measurement of overpressure vs. time
at stations 4P and 5P. Therefore values of overpressure were determined for these stations
by means of a regression equation based on the computed overpressures at five stations where
records were obtained. (Refer to footnote ** in Table 4.5.) A similar procedure was followed to
estimate the duration of the blast wave. Thus the overpressure and duration used to make ve-
locity predictions at station 4P were 4.54 psi and 1.027 sec, respectively. These values were
used to compute the dynamic pressure vs. time curve for an ideal wave which is shown in Fig.
4.3 as a dashed line. Illustrated as a solid line in the same chart is the dynamic pressure (q)
measured by the BRL gauge. The measured q record appears erratic and indicates pressures
generally lower than those computed for the ideal wave.

4.2.3 Window-glass Installation 4P1

Installation 4P1 consisted of two traps: 4Plb stacked above 4Pla. This installation was
placed 7.8 ft behind a window of Y-in.-thick double-strength glass. Figure 4.4 is a postshot
view of the two traps. Note that the aluminum foil used for thermal protection was ruptured by
the glass fragments and torn in some places by blast winds.

The velocity and mass of individual fragments are plotted in Fig. 4.5 for trap 4P1la and in
Fig. 4.6 for trap 4P1b. The numbers appearing with some of the points indicate the number of
missiles in the velocity and mass intervals represented by those points. The points without
numbers represent only one missile. (For a summary of results see Table 4.6.)

Note that for both traps most of the missiles had velocities that were greater than those
predicted on the basis of the incident maximum overpressure (lower line of predicted veloci-
ties). The prediction line appearing in the upper part of each chart was made for the assump-
tion that the blast wave had a maximum overpressure equal to the reflected (normal) value for
the incident wave,* i.e., 10.34 psi instead of the incident maximum overpressure of 4,54 psi.

The slopes of the regression equations describing the data in Figs. 4.5 and 4.6 are —0.0924
and —0.0838, respectively, whereas the average slopes of the prediction lines are much closer
to zero. A partial explaaation of this discrepancy is that small fragments require higher im-
pact velocities in order to be retained by the absorber (type II) than do large fragments. This
is illustrated by the threshold-velocity chart, Fig. 2.6.

4.2.4 Window-glass Trap 4P2b (Above Dog Trap 4P2A)

Installation 4P2 was located 12.8 ft behind a window. It consisted of a single missile trap,
4P2b, placed above a dog trap,2 4P2A, which was 31.5 in. high. Figure 4.7 is a postshot view of
the installation taken after the dog had been removed.

The glass in each outside window installation extended from ground level to a height of 64
in. (see Fig. 2.3). The upper edge of the absorber in the trap at this location was 55 in. above
ground level and the lower edge was 33 in. above ground level. Thus the upper edge of the ab-
sorber was only 9 in. lower than the top of the window. Unless a lofting effect compensated for
the effect of gravity, the spatial density of missiles would be expected to decrease with increas-
ing height above the ground. A comparison of the total missiles caught in trap 4P2b with those
caught by other traps at this station is difficult because similar window installations were
placed at different distances from the traps. For installation 4P1, placed nearer the window
(7.8 ft compared with 12.8 ft for installation 4P2), the ground-level trap caught 68 missiles and
the one placed 15 in. above the ground caught 58 missiles. Although the number of missiles (68
and 58) caught by installation 4P1 traps was greater than that (48) caught by trap 4P2b, their
average masses were smaller. It is interesting to note that the trap placed highest above the
ground (4P2b, 31.5 in. above the ground) caught the largest total masst of glass, 148.8 g com-

*This concept is discussed in more detail in Chap. 3.
TThe total mass of missiles caught can be obtained by multiplying the average mass, M,
by the number of missiles, n (both obtained from Table 4.6).
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pared with 144.0 g for trap 4Pla and 64.7 g for trap 4P1b. Figure 4.8 and Table 4.6 present
data for missiles recovered from trap 4P2b.

4.2.5 Plate-glass Trap 4P3b (Above Dog Trap 4P3A)

The experiment at installation 4P3 was the same as the one at 4P2, except that the window
mount in front of 4P3 contained one large piece of plate glass that was 1/4 in. thick, 64 in. high,
and 60 in. wide. Figure 4.9 is a preshot view of this installation looking toward GZ. Segments
of the plate glass were painted different colors for purposes of identification.

Only one fragment was recovered from trap 4P3b. This fragment had a mass of 60.3 g and
an impact velocity of 47 ft/sec. Evidence obtained from the dog trap (4P3A) indicates that the
spatial density of missiles at the lower height was considerably greater.2 From this it may be
concluded that the effect of gravity on the missiles was greater than that of lofting.

4.2.6 Military-debris and Gravel Installations 4P4 and 4P5

The placement of military debris and gravel at installations 4P4 and 4P5 was described in
the second paragraph of Sec. 4.2.1 and illustrated in Fig. 4.2. Figure 4.10 is a preshot view of
installation 4P4 (similar to installation 4P5); piles of gravel and debris are shown.

The postshot condition of both installations is illustrated in Fig. 4.11. The slightly dark
areas on the surface of the absorber are thermal effects.

No military debris was caught in any of the four traps. A total of 17 pieces of gravel was
recovered: 0 from trap 4P4b, 9 from trap 4P5a, and 4 from trap 4P5b. All gravel caught origi-
nated from the 10.9- and 28.0-ft distances (none from 4.5 ft). Two to six natural stones (total
14) were caught in each of the four traps. Because the sample sizes were small, the data for
both natural stones and gravel were combined with similar data obtained at other traps at sta-
tion 4P. Analysis of the gravel data is discussed in the next section and that for the natural
stones is discussed in Sec. 4.2.10 (see also Table 4.6).

4.2.7 Gravel and Sphere Installations 4P6 and 4P7

(a) General. One-third cubic foot of painted gravel was placed at each of three distances
(4.5, 10.9, and 28 ft) in front of installation 4P6 (see Fig. 4.2). Spheres were placed at the same
distances in front of installation 4P7. (For description of spheres, see Sec. 4.2.1.) Figure 4.12
is a preshot view of the asphalt area; both the gravel and the spheres are shown. Note that the
protective covers for the traps were in place when the photograph was taken.

(b) Traps 4P6a and 4P6b. At installation 4P6, 8 pieces of gravel were recovered from the
lower trap and 10 from the upper trap. Only one gravel missile was caught which originated
from the pile at the 4.5-ft distance. For purposes of analysis, the data for these missiles were
combined with those obtained from installations 4P4 and 4P5. Velocity vs. mass is plotted in
Fig. 4.13 for 14 gravel missiles whose translation distance was 10.9 ft. Similar data are shown
in Fig. 4.14 for 20 missiles that traveled 28.0 ft before impact. Both plots indicate that the in-
dividual velocities were generally higher than those predicted. Other missiles undoubtedly im-
pacted with the absorber but were not caught because of insufficient velocity or disadvantageous
orientation at impact (see Sec. 2.5).

Two natural-stone missiles were caught in trap 4P6b. The data for these missiles were
combined for analysis with those for natural stones caught in other station 4P traps (see Sec.
4.2.10 and Table 4.6).

(¢) Traps 4P7a and 4P7b. Results obtained for 15 spheres caught by these traps are pre-
sented in Table 4.6. The largest sample obtained consisted of 11 small glass spheres whose av-
erage velocity was 135 ft/sec —39.2 per cent higher than the predicted velocity of 97 ft/sec.
Deviations from the predicted velocity for the smaller samples were as much as 76.4 per cent
higher. These discrepancies probably reflect the inaccuracies inherent in the trapping tech-
nique when the depths of penetration are small; i.e., impact velocities were near the threshold
for retention of the missile in the trap.

Data for two natural stones caught at this installation, combined with others at this station,
are presented in Sec. 4.2.10 and Table 4.6. '
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4.2.8 Window-glass Installation 4P8

This installation was similar to installation 4P1 (Sec. 4.2.3) except that the window was
placed 17.8 ft from installation 4P8 traps (compared with a 7.8-ft separation for installation
4P1). Figure 4.15 is a postshot view of installation 4P8; fragments of glass imbedded in the
absorber are shown.

Velocity vs. mass is plotted in Fig. 4.16 for 41 missiles recovered from trap 4P8a, and a
similar analysis is portrayed in Fig. 4.17 for 54 missiles from trap 4P8b (upper trap). Only a
small difference is observed between the data obtained at this installation (see Table 4.6) and
those obtained from installation 4P1 where the window was considerably nearer the trap. In the
instance of the greater translational distance, 25 per cent fewer missiles were caught and their
masses were somewhat smaller, but the fragment velocities measured under the two conditions
were not significantly different.

4.2.9 Window-glass Trap 4P9 (Above Pig Trap 4P9A)

At this installation a pig1 was exposed in a box somewhat smaller than that used for dogs
(see Fig. 4.18). The missile trap, 4P9b, placed above the pig installation, was 27 in. above
ground level.

Data obtained for 62 fragments are plotted in Fig. 4.19. There appears to be little differ-
ence between these data and those obtained from other window installations at this station (see
Table 4.6) even though the translational distances and the trap heights were different. As in the
previous cases, a large portion of the fragments had velocities that were higher than those pre-
dicted on the basis of the incident peak overpressure but lower than those predicted for the “re-
flected” condition (see Sec. 3.5).

4.2.10 Natural-stone Data from Station 4P Traps

Velocity and mass data obtained for 18 natural stones caught in six traps* are plotted in
Fig. 4.20, and the results are given in Table 4.6. Similar to the gravel trapped at station 4P, the
velocities tend to be higher than predicted —particularly for the missiles of low mass (see Sec.

2.5).

4.3 STATION 4PP (PIG STUDY), 6120-FT RANGE

This station consisted of a double-trap installation inside an enclosure containing 70 pigs.
The primary aim of the pig study1 (Project 4.1) was to determine damaging effects of glass-
fragment missiles. The 80-ft-long 13-ft-wide enclosure was orientated so that a long side
faced GZ. The pen was made of 5- by 5-in.-mesh hog wire, except for the side toward the ap-
proaching blast wave; this side consisted of a 4.2-ft-high wall of double-strength glass.t Panes
of glass 32 in. wide and 20 in. high were mounted in a 2- by 4-in.-lumber framework. The trap
installation was placed 8.8 ft behind the central section of the glass wall. The pigs were re-
strained, preshot, in smaller pens made of electric fences. These enclosures were located at
the same average distance from the glass wall as the traps. Thus shielding of the traps by the
pigs was prevented.

Analyses for 81 missiles caught in the lower trap, 4PPa, and 68 caught in the upper trap,
4PPb, are presented graphically in Figs. 4.21 and 4.22, respectively, and are also given in
Table 4.6 with station 4P window-glass data. A few more missiles were caught in these traps
than at window-glass installations at station 4P; however, their masses and velocities were
about the same. [Note that stations 4P and 4PP had the same range from GZ although they were
at different locations (see Fig. 4.1).]

*Note that none of the six traps listed in Fig. 4.20 were behind windows.

TTo prevent the pigs from escaping after the arrival of the blast wave, hog wire was also
placed 18 in. in front of the glass wall.
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4.4 STATION 5P, 5320-FT RANGE

4.4.1 Experimental Plan and Blast Parameters

The experimental plan for this station, illustrated in Fig. 4.23, was almost identical to that
described in Sec. 4.2.1 for station 4P. A notable difference was that at station 5P the gravel
and sphere installations were placed on opposite edges of an area that was stabilized with con-
crete; this area was used by another project studying the displacement of anthropomorphic dum-
mies® (see Fig. 4.23). The window installations were the same type as those at station 4P, but
the gravel, military-debris, and sphere studies differed in that the placement distances were
somewhat greater at station 5P.

Failure of the ground-baffle gauge prohibited the measurement of overpressure vs. time at
this station. The methods used to estimate the peak overpressure and duration of the positive-
pressure phase of the blast wave are discussed in Sec. 4.2.2. For station 5P the estimated
values used to compute predicted missile velocities were 5.51 psi and 0.964 sec, respectively.

The dynamic pressure (q) measured as a function of time is plotted in Fig. 4.24 and, for
comparison, the q values associated with an ideal blast wave (dashed line) are also shown. This
“ideal” curve represents the g values actually used in the mathematical model® to arrive at pre-
dicted values of missile velocity. Lack of consistency in the measured values of dynamic pres-
sure is demonstrated by a comparison of this q record (Fig. 4.24) with the one obtained for sta-
tion 6P (Fig. 4.44). Even though station 6P was 550 ft nearer GZ, the measured dynamic
pressures were generally lower than at station 5P.

Station 5P summary of results for window glass, plate glass, natural stones, gravel, and
spheres is given in Table 4.6, and displacement data for large stones, building blocks, and
bricks are given in Table 4.4 (see also Sec. 4.15).

4.4,2 Window-glass Installation 5P1

Installation 5P1 was located 7.8 ft behind a window of double-strength glass. (See Fig. 4.25
for postshot view of this installation.) Velocity and mass data for 48 fragments recovered from
the lower trap are plotted in Fig. 4.26, and similar data are plotted in Fig. 4.27 for 32 missiles
from the upper trap. It is of interest to note that in each chart the geometric mean velocity is
approximately equal to the average of the predicted velocities (see also Table 4.6).

4.4.3 Window-glass Trap 5P2b (Above Dog Trap 5P2A)

Trap 5P2b, which was anchored above a dog trap (31.5 in. high), was located 12.5 ft behind
a standard window (see Fig. 4.23). A relatively large number (88) of fragments was recovered,
however, the data for trap 5P2b in Fig. 4.28 demonstrate that the velocities measured were
lower in relation to the predicted values than was evident at installation 5P1 (see Table 4.6)
where the missiles were caught at lower heights above ground level.

4.4.4 Plate-glass Trap 5P3b {(Above Dog Trap 5P3A)

Trap 5P3b, which was situated above a dog trap, was located 12.8 ft behind a plate-glass
window. Figure 4.29 is an enlarged postshot view of the absorber surface. Although this photo-
graph presents evidence that several large fragments struck the trap, the geometric mean mass
for the nine missiles that were recovered was only 877 mg. Velocities measured for these
fragments (Fig. 4.30) were generally a little higher than predicted (see also Table 4.6).

4.4.5 Military-debris and Gravel Installations 5P4, 5P5, and 5P6

Gravel mixed with military debris was placed at three distances in front of installations
5P4 and 5P5. These materials were placed directly on the surface of the dry lake bed (French-
man Flat). Installation 5P6, however, was located behind the large concreted area, and two of
the three piles of gravel for this installation were on the concrete (see Figs. 4.23 and 4.31).

Figure 4.32 is a postshot view of installation 5P4. Note that both the upper and lower traps
were slightly damaged by thermal radiation.
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No military debris was trapped at station 5P. The gravel missiles that were caught were
distributed in the following way:

Distance

Trap 4.8 ft 12.5 ft 32.0 ft
5P4a 1 0 1
5P4b 0 1 5
5P5a 0 0 0
5P5b 0 1 3
5P6a 0 6 13
5P6b 0 30 67

Total 1 38 89

It is apparent from the above tabulation that the upper traps (with “pb” suffix) at each installa-
tion generally caught more missiles than the corresponding lower ones and that more gravel was
trapped from the greater than from the lesser distances of placement. The gravel translated
only a short distance before impact probably lacked sufficient velocity to cause the necessary
penetration for trapping the missile. The most interesting thing to be noted, however, is that
ten times as many gravel missiles were caught at station 5P6, which was behind the concrete
area, as were caught at both stations 5P4 and 5P5, even though only twice as much gravel was
placed before station 5P6 as in front of stations 5P4 and 5P5 (see Fig. 4.23).

Figures 4.33 and 4.34 represent analyses of the combined gravel data from these traps for
translational distances of 12.5 and 32.0 ft, respectively. The gravel translated 32.0 {t was
somewhat heavier and had slightly higher velocities than that translated 12.5 ft. Both sets of
data are in good agreement with the predicted results (see Table 4.6).

4.4.6 Sphere Installation 5P7

Installation 5P7 was located on the right side (looking toward GZ) of the concrete area op-
posite installation 5P6 (see Fig. 4.23). Spheres were placed in front of installation 5P7 in the
same manner as described in Sec. 4.2.1 and illustrated in Fig. 4.12.

It is interesting to note that the thermal radiation incident on this installation apparently
increased with height above ground (see Fig. 4.35). This could have been caused by several dif-
ferent effects. However, the most plausible reason that the lower trap received less heating is
that it was partially protected by a layer of dust generated close to the concrete surface in front
of the installation by action of the thermal pulse itself. The formation of such a dust layer was
documented by the motion pictures that were made by Project 33.3 to study the translation of
anthropomorphic dummies due to blast winds.® The differential-heating effect observed at this
installation was present but to a lesser degree at installation 5P6, which was also behind the
concrete slab. At installations 5P4 and 5P5, where there was no stabilization of the native soil,
there was no noticeable difference in the thermal effects on the upper and lower traps (see Fig.
4.32).

Data for 120 spheres caught at installation 5P7 are summarized in Table 4.6. For compari-
son, some of these data were organized in a different fashion and are presented in Table 4.1. It
is noteworthy that, of the spheres caught, those originating from 12.5 ft had higher average
striking heights than those translated 32.0 ft. An explanation of this is that the missiles trans-
lated 12.5 ft had insufficient velocities to penetrate the lower trap (compare in Table 4.1 the
threshold velocities with those predicted) but could penetrate the upper one whose absorber sur-
face had been softened temporarily by heating. Thus the velocities determined for the spheres
translated 12.5 ft were too high —from 21.6 to 53.7 per cent greater than predicted (see Table
4.1). The fact that the spheres translated 32.0 ft had average velocities only 9.5 to 13.7 per
cent greater than predicted may be explained by (1) their average height at impact being lower
(i.e., more of them struck the lower trap, which was relatively undamaged by thermal) and (2)
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they struck the traps after the spheres translated 12.5 ft, allowing the absorber more time to
cool by action of the blast winds, thereby restoring its natural resistance fo missile penetra-
tion. Attention is called to the last column in Table 4.1 which gives the per cent deviation of the
predicted from the threshold velocities. For the spheres translated 12.5 ft, three of the four
samples had predicted velocities that were the same as or less than the threshold. The pre-
dicted velocities for the spheres translated 32.0 ft, on the other hand, were 7.7 to 25.7 per cent
higher than for threshold values.

Data for two natural stones caught in trap 5P7b are recorded in the summary table (Table

4.6).

4.4.7 Window-glass Installation 5P8

Installation 5P8 was located 17.8 ft behind a window (see Fig. 4.36 for postshot view of this
installation). The amount of protection afforded the trap installation from thermal radiation is
apparent by comparing this photograph with the one depicting the sphere traps after the detona-
tion (Fig. 4.35). A factor that enhanced the thermal protection by windows was the color coding
of the glass (see Fig. 4.9).

The glass-fragment data obtained from the 5P8 traps (Figs. 4.37 and 4.38 and Table 4.6)
are not significantly different from the data obtained from similar 5P installations, even though
the distance between trap and window was considerably greater in the present instance.

4.4.8 Window-glass Trap 5P9b (Above Pig Trap 5P9A)

Trap 5P9b was placed above a pig trap in a manner similar to that illustrated in Fig. 4.18
for trap 4P9b. The distance from the traps to the window was also the same as for installation
4P9 (12.8 ft).

A comparison of the data obtained at the two installations (Figs. 4.19 and 4.39 and Table
4.6) indicates that the one nearest to GZ (5P9b) collected 16 per cent fewer fragments whose
geometric mean mass was 28 per cent smaller but whose mean velocity was 8 per cent higher.
In both instances the geometric mean velocities were approximately the same as the predicted
ones,

4.5 STATION 5PP (PIG STUDY),1 5320-FT RANGE

The experiment at this station was the same as that at station 4PP (Sec. 4.3) except that the
distance from the glass wall to the traps was 11.7 ft instead of 8.8 ft and the total length of the
wall was 120 ft instead of 80 ft.

The data from these two traps (Figs. 4.40 and 4.41) are fairly representative of those ob-
tained from the window installations at station 5P, the principal difference being that more frag-
ments were caught at station 5PP and their masses were slightly lower.

Data for three natural stones caught at this station are presented in Table 4.6.

4.6 STATION 6P, 4770-FT RANGE

4.6.1 Experimental Plan and Blast Parameters

The experimental design for this station was essentially the same as at station 4P (Sec.
4,2.1) except in the placement of the dogs2 by Project 33.4. Instead of locating a dog behind the
plate-glass window, one was housed at a separate installation (6P8A) and marked gravel was
placed at three distances in front of the installation. This installation is shown in the layout
chart (Fig. 4.42) on the right side of the stabilized area.

Figure 4.43 contains a plot of overpressure vs. time measured at this station. Shown on
the same chart, as a dashed line, is overpressure vs. time computed for an ideal blast wave
whose overpressure impulse and duration are the same as those measured (see Sec. 3.3). Ex-
cept for small deviations, the measured overpressure curve is in good agreement with the
curve for the ideal wave.
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The measured dynamic pressures, which are plotted in Fig. 4.44 as a function of time, are
somewhat erratic and, in general, are lower than those computed for an ideal wave.

The data for large stones, building blocks, and bricks displaced at station 6P are presented
in Sec. 4.15. Station 6P results for window glass, plate glass, natural stones, gravel, military
debris, and spheres are summarized in Table 4.6.

4.6.2 Window-glass Installation 6P1

Installation 6P1, which consisted of two traps, was located 7.8 ft behind a standard window.
Velocity data for 67 fragments from the lower trap (Fig. 4.45) and 41 fragments from the upper
trap (Fig. 4.46) are evenly distributed about the lines of predicted velocity.

Data for ten natural stones caught in trap 6P1b are plotted in Fig. 4.47. Velocities for two
of the stones were almost identical to the predicted ones. Velocities lower than predicted were
measured for the remaining eight stones. This result is not surprising since the prediction as-
sumed that the distance of translation, which was unknown, was the one necessary to attain
maximum velocity. The natural-stone data are also presented, combined with others at station
6P, in Sec. 4.6.9.

Table 4.6 summarizes results at this installation.

4.6,3 Window-glass Trap 6P2b (Above Dog Trap 6P2A)

Trap 6P2b, which was located above a dog trap (31.5 in. high), was located 12.8 ft behind a
standard window. Results obtained from this trap (Fig. 4.48) are similar to those from the cor-
responding installation at station 5P (refer to Sec. 4.4.3 and Table 4.6); i.e., a relatively large
number of fragments were caught but their velocities were generally lower in relation to those
predicted than at other glass installations at station 6P where the traps were located at a lower
level above ground.

Twenty natural stones whose masses ranged from 0.014 to 1.62 g were recovered from
trap 6P2b (Fig. 4.49). Measured velocities are generally equal to or lower than those pre-
dicted. The natural-stone data are also combined with others at station 6P for analysis in Sec.
4.6.9 and Table 4.6.

4.6.4 Plate-glass Installation 6P3

Installation 6P3 was located 12.8 ft behind a plate-glass window (see Fig. 4.50 for post-
shot view of this installation). (A similar window is depicted preshot in Fig. 4.9.) Note the im-
pressions made by large fragments that impacted flat. There was no evidence of thermal dam-
age to the absorber at this installation or any installation behind a window.

Data were obtaired from trap 6P3b for five large fragments, ranging in mass from 140 to
391 g, which impacted flat (Fig. 4.51). The scatter in velocity was quite low (Sg, = 1.02), and
the geometric mean velocity (120 ft/sec) was only about 8 per cent lower than predicted (130
ft/sec).

Eight fragments with random impact orientations were caught in the two traps. The meas-
ured velocities were about equally distributed about the predicted velocity line (Fig. 4.52).

Data for natural stones recovered from traps 6P3a and 6P3b are plotted in Figs. 4.53 and
4,54, respectively. The upper trap (6P3b) caught more stones (49 vs. 19) whose velocities were
generally higher than the lower one. Natural-stone data from these traps are combined with
others at station 6P for analysis (see Sec. 4.6.9 and Table 4.6).

4.6.5 Military-debris and Gravel Installations 6P4 and 6P5

The military debris that was placed 5.5, 14.0, and 36.0 ft in front of these installations was
similar to that described in Sec. 4.2.1. In addition to the military debris, Y cu ft of marked
gravel was placed at each of the three distances (see layout chart, Fig. 4.42).

Both lower and upper traps at these installations were slightly damaged by thermal radia-
tion (see Fig. 4.55 for postshot view of installation 6P4).
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The 55 missiles that were caught by the traps at installations 6P4 and 6P5 were distributed
in the following way:

Natural Military Gravel
Trap stones debris At 5.5 ft At 14.0 ft At 36.0 ft
6P4a 0 0 0 0 0
6P4b 14 0 1 4 0
6Pba 4 0 0 1 0
6P5b 25 1 0 3 2

The upper traps caught more missiles than the lower ones, a result similar to that at the cor-
responding 5P installations. Note that trap 6P4a caught no missiles. .

The only missile type caught in sufficient numbers to merit plotting was natural stones at
6P4b (Fig. 4.56) and 6P5b (Fig. 4.57). In both cases the measured velocities were about the
same as, or lower than, those predicted.* The data for these natural stones, combined with
others at station 6P, are also discussed in Sec. 4.6.9 (see Table 4.6 for results).

The data for gravel caught from the two larger distances were combined with similar data
from installation 6P7 and are presented in Sec. 4.6.6.

The one piece of military debris caught in trap 6P5b had a mass of 5.53 g and a measured
impact velocity of 74 ft/sec, which is 32 per cent higher than the predicted velocity of 56 ft/sec
(see Table 4.6).

4.6.6 Sphere Installation 6P6 and Gravel Installation 6P7

(a) General. These installations, along with trap 6P8A, were located behind an area that
was stabilized with asphalt. Figure 4.58 is a preshot view of the area looking away from GZ.
The BRL pressure instrumentation can be seen on the right side of the photograph. The packets
held by wire frames, as well as those on the surface below the frames, contained an assort-
ment of spheres (see Sec. 4.2.1 for description). Marked gravel was located at three distances
in front of the other two installations, 6P7 and 6P8A. Note that the protective covers had not
been removed from the missile traps and that the dog trap was empty at the time the photo-
graph was taken.

Figures 4.59 and 4.60 are postshot views of these installations. Although the lower trap at
the sphere installation (Fig. 4,59) appears to have been less affected by thermal radiation than
the upper one, the damage incurred was noticeably greater than that for the lower trap at the
corresponding sphere installation at station 5P (see Fig. 4.35). The photograph of the gravel
traps (Fig. 4.60) shows no apparent difference in the thermal radiation incident on the lower
and upper traps.

(b) Data from Installation 6P6. A total of 251 spheres was caught at installation 6P6 (134
by the lower trap and 117 by the upper trap). Complete data for these spheres are listed in
Table 4.6; however, for purposes of discussion, certain data were abstracted and presented in
Table 4.2 in a form similar to that used for installation 5P spheres (see Table 4.1 and Sec.
4.4.6). Inspection of Table 4.2 reveals that the spheres originating 5.5 ft from the traps had av-
erage measured velocities 43.0 to 51,5 per cent higher than those predicted. The velocities for
the spheres translated 14.0 ft were 1.6 to 19.7 per cent higher than predicted and those for the
spheres translated 36.0 ft ranged from 6.2 per cent lower to 0.6 per cent higher than predicted.
These observations are in general agreement with the hypothesis presented in Sec. 4.4.6 for
installation 5P spheres; viz., the spheres placed at the smaller distances arrived at the trap
while the absorber was still soft due to thermal action, whereas those arriving later from the

*Refer to Sec. 3.6 for a discussion of measured velocities of natural stones in relation to
those predicted.
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greater distances found the absorber restored to its natural hardness due to the cooling action
of the blast winds. It is of interest to note that this effect was absent at the 7G4 sphere instal-
lation (shot Galileo, Chap. 6) where the maximum overpressure was 8.38 psi* but where the
traps were given extra thermal protection (see Fig. 6.84 and Table 6.2).

Since both traps at installation 6P6 were appreciably affected by thermal radiation, the
spheres from the small distance, whose velocities are presumed to have been relatively small,
penetrated both traps. Thus the average striking heights (see column 5 in Table 4.2) for the
spheres translated 5.5 ft were small in comparison with those for corresponding spheres at
station 5P where the lower trap was relatively free of thermal damage.

Information in the last column of Table 4.2 indicates that three of the four types of spheres
that were translated 5.5 ft had predicted velocities lower than the threshold. This would indi-
cate that such sphere types were caught only because the absorber had been modified through

thermal action.
Data for 31 natural stones obtained from trap 6P6a and for 58 from trap 6P6b are plotted

in Figs. 4.61 and 4.62, respectively. Both samples indicate that the smaller stones had high
velocities and the larger ones had low velocities relative to the predicted ones. Table 4.6 gives
the results of the analysis of natural stones at installation 6P6 as well as their data combined
with data for all natural stones at station 6P (see also Sec. 4.6.9).

(¢) Data from Installation 6P7. The lower trap at this installation (6P7a) caught two pieces
of gravel originating from 36.0 ft and one natural stone. The upper trap (6P7b) caught 7 nat-
ural stones, 1 gravel missile from 5.5 ft, 12 from 14.0 ft, and 5 from 36.0 ft. Data for the
natural-stone missiles were combined for analysis with similar data obtained from other
station 6P traps (see Sec. 4.6.9 and Table 4.6). The data for the one gravel missile translated
5.5 ft were combined with similar data for one from trap 6P4b but were not plotted. Data ob-
tained from traps 6P4b, 6P5a, 6P5b, and 6P7b for 20 gravel missiles translated 14.0 ft are
plotted in Fig. 4.63. Data for nine gravel missiles translated 36.0 ft from traps 6P5b, 6P7a,
and 6P7b are plotted in Fig. 4.64. Velocities for the gravel translated 14.0 ft are in good agree-
ment with those predicted, the predicted velocity line being between the regression line and the
upper standard-error-of-estimate line (see Fig. 4.63). Velocities for the larger gravel mis-
siles translated 36.0 ft are considerably lower than those predicted (see Fig. 4.64). Table 4.6
gives a summary of the results of the analysis of the combined data for the gravel at each dis-
tance.

4.6.7 Window-glass Installation 6P9

This installation was located 22.8 ft behind a standard window. Slight scorching of the
wood in the upper trap is indicated by the postshot photograph (Fig. 4.65), although the ab-
sorber was found to be free from thermal damage. Similar scorching did not occur at other
glass installations (see Fig. 4.50) at this station where the windows were placed nearer the
traps.

Glass-fragment missile data obtained from traps 6P9a and 6P9b are plotted in Figs. 4.66
and 4.67, respectively. In both instances only a few missiles had measured velocities exceed-
ing those predicted.

Data for 39 natural stones caught in the upper trap are displayed in Fig. 4.68 and are given
in Table 4.6. Data for five natural stones caught in the lower trap as well as the 39 from the
upper trap were combined with similar data obtained at other station 6P traps (see Sec. 4.6.9
and Table 4.6). The line of predicted maximum velocity satisfactorily explains the higher
velocities measured.

4.6.8 Window-glass Trap 6P10b (Above Pig Trap 6P10A)

Installation 6P10 was located 12.8 ft behind a standard window (see Fig. 4.69 for postshot
view of this installation). There is evidence in this photograph that several large fragments of
glass struck the absorber but were not caught. Data for 32 fragments that were retained by the

*Maximum overpressure at station 6P was 6.38 psi.
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absorber are presented graphically in Fig. 4.70. Only two missiles had velocities above those
predicted.

Data for 10 natural stones caught by this trap are plotted in Fig. 4.71. All velocities meas-
ured were somewhat lower than the predicted maximum velocities. The natural-stone data are
discussed, combined with others at station 6P, in Sec. 4.6.9 (see Table 4.6 also).

4.6.9 Natural-stone Data from all Station 6P* Traps

Results of the analysis of all natural stones caught at stations 6P and 6PP are set forth in
Table 4.6. A total of 305 stones was caught; these stones had a combined mass of 33.55 g. The
predicted maximum velocity for a stone with a mass equal to the geometric mean of the sam-
ple (60 mg) is 188 ft/sec. The geometric mean of measured velocities being 157 ft/sec (16.5
per cent less than the predicted maximum) is a reasonable result since all the stones caught
probably were not translated the proper distance to acquire maximum velocity. {

4.7 STATION 6PP (PIG STUDY),! 4770-FT RANGE

The experiment at this station was similar to the ones at stations 4PP, 5PP, and
6.7PP.1 This station had a 160-ft-long glass wall; the traps were located near its center
and 16.0 ft downwind. Since this station was at the same range as station 6P, the same blast
parameters were used to compute predicted missile velocities (see Table 4.5).

Results obtained at station 6PP are displayed graphically in Figs. 4,72 and 4.73 for the
lower and upper traps, respectively. Data for the lower trap are quite similar to those ob-
tained at installation 6P9 (see Figs. 4.66, 4.67, and 4.72), which was at the same range but was
99.8 ft from a standard window. However, data from the upper trap (6PPb) indicates that a
greater number of fragments were caught and that their masses were smaller and their veloci-
ties higher. It is of interest to note that the total mass§ of the 390 fragments from the upper
trap was 310 g, which is only 5 g greater than the total mass of 170 fragments from the lower
trap.

One natural stone was caught in trap 6PPa and eight were caught in trap 6PPb. Data for
these missiles were combined with similar data from the station 6P traps, which were also at
4770-ft range. Results obtained from the combined data were discussed in Sec. 4.6.9 and are
given in Table 4.6 with station 6P data.

4.8 STATION 6.7PP (PIG STUDY),! 4470-FT RANGE

The experimental plan for this station was the same as for station 6PP (discussed in Sec.
4.7) except that station 6.7PP was 300 ft nearer GZ and the traps for station 6PP were 18.0 ft
behind the glass wall. Since blast-wave measurements for station 6.7PP were not available,
values of peak overpressure and duration of the positive pressure were obtained from regres-
sion equations derived from measurements made at other Priscilla stations. T These quantities,
6.99 psi for peak overpressure and 0.891 sec for duration, were used to compute predicted mis~
sile velocities.

The postshot photograph of station 6.7PP (Fig. 4.74) provides evidence of some scorching
of the exposed wood surfaces of the trap housings. The absorber, however, was found to be un-
damaged by heating effects. This, in contrast to the observation of thermal damage to station
&P absorbers not behind windows, serves to illustrate the thermal protection provided by ordi-

*The analysis includes data for nine natural stones caught at station 6PP, which was at
the same range as station 6P.

tThis topic was discussed in Sec. 3.6.

IStudies at these stations were made in cooperation with Project 4.1 (see Sec. 4.3).
. §Total mass can be obtained by multiplying the number of missiles, n, by the average mass,
M, found in Table 4.6,

1The procedure for computing the regression equations is outlined in Table 4.5.
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nary double-strength window glass. It should be pointed out that the glass used in the pig stud-
ies (stations 4PP, 5PP, 6PP, and 6.7PP) was unpainted, whereas that in the standard windows
(stations 4P, 5P, 6P, and 8P) was painted for the purpose of color coding.

The glass-fragment data obtained by station 6.7PP traps (Figs. 4.75 and 4.76) are related
to the predicted velocities in a manner similar to that observed for station 6PP data. How-
ever, fewer total missiles were recovered at station 6.7PP than at 6PP. This discrepancy is
evidently attributable to the fact that more diligence was exercised in one instance than in the
other in recovery from the absorber of small fragments that were difficult to find.

Four natural stones having an average velocity of 140 ft/sec were recovered from trap
6.7PPa. Additional data for these missiles are listed in Table 4.6.

4.9 STATION 8P, 3930-FT RANGE

4.9.1 Experimental Plan and Blast Parameters

The chart in Fig. 4.77 illustrates the experimental plan for station 8P. The principal dif-
ference between the plan for this station and the one for station 6P is that the gravel, military
debris, and spheres were placed at greater distances from the traps at station 8P since a
somewhat stronger blast wave was expected at this station (see Sec. 3.6). Another notable dif-
ference is that a more rugged absorber (type III) was used in all station 8P traps except those
behind windows for which the windows themselves provided adequate protection against ther-
mal radiation.

Figure 4.78 is an interesting preshot photograph of the 8P station taken at a height of
about 15 it above ground level. Installation 8P1 is in the background and 8P10 is in the fore-
ground. Note the sandbags placed on the lee side of the installations iprepared for the exposure
of animals. Displacement results obtained for the large stones and building blocks, to be seen
in a line in the foreground in Fig. 4.78, are reported in Sec. 4.15.

Overpressure measured as a function of time at this station is shown graphically in Fig.
4.79. The dashed curve on this chart depicts the overpressure vs. time relation for an ideal
blast wave whose impulse and duration are the same as those measured* (2.574 psi-sec and
0.823 sec, respectively). The maximum overpressure of the ideal blast wave that was used in
the prediction of missile velocities was found by computation to be 8.60 psi. This value is
somewhat lower than the gauge maximum of 9.20 psi shown on the chart as a spike. However,
the overall agreement between the measured and computed curves is good.

Dynamic pressure vs. time measured at this station is shown in Fig. 4.80. The dashed
line represents the dynamic pressure computed for the ideal blast wave whose parameters
were discussed in the preceding paragraph. Although there are large fluctuations in the meas-
ured curve, the average values are in reasonable agreement with the computed ones up to
about 0.055 sec. After that time the measured curve is consistently lower than the computed
one.

4.9.2 Window-glass Installation 8P1

Installation 8P1 was located 7.8 ft behind a standard window (see Fig. 4.81 for preshot view
of this installation). The dark appearance of the absorber was due to dust discoloration rather
than thermal effects.

Data for 103 fragments caught in the lower trap (8P1a) and 100 from the upper trap are
plotted in Figs. 4.82 and 4.83, respectively. With a few exceptions the predicted-velocity lines
form upper limits of the measured missile velocities.

Data for six natural stones caught by trap 8Pla are presented in Sec.4.9.9 in combination
with similar data from other station 8P traps.

4.9.3 Window-glass Trap 8P2b (Above Dog Trap 8P2A)

Trap 8P2b, which was placed above a dog trap, was 31.5 in. high. The installation was 12.8
ft behind a standard window.

*See Sec. 3.3.
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Data for 497 fragments recovered from this trap (plotted in Fig. 4.84) indicate that most of
the velocities measured were less than the predicted values. A relatively large number of mis-
siles were recovered from this trap. At least part of the increase may be accounted for by the
abundance of small fragments recovered.

Velocity and mass data for 25 natural stones from trap 8P2b are presented graphically in
Fig. 4.85. The velocities measured were considerably lower than those predicted for stones
that had traveled the optimum distance to maximize velocity.

4.9.4 Plate-glass Installation 8P3

At this location a standard plate-glass installation was placed 12.8 ft from the traps. The
postshot photograph (Fig. 4.86) is remarkable in that it shows large depressed areas in the
absorber caused by fragments of plate glass striking flat. In this photograph the absorber,
which was originally white, appears gray due to the fine dust deposited by action of the blast
wave.

Data for 25 fragments caught in the lower trap are shown in Fig. 4.87. The measured
velocities were significantly lower than those predicted, especially for the larger missiles.
This may have been caused by the fact that the orientations of the larger fragments were not
truly random, as assumed in the calibration procedures for all fragments except those striking
flat. An inspection of the lower trap in Fig. 4.86 indicates that the larger fragments appear to
have struck almost flat, whereas none of them were judged to have struck in this orientation
when the absorber was examined in the laboratory.

The upper trap (8P3b) caught 33 fragments whose orientations at impact were not flat
(Fig. 4.88) and 7 whose orientations were flat (Fig. 4.89). The 33 fragments with non-flat
orientations show velocity vs. mass relations similar to those noted for the lower trap. The
“flat” fragments, however, were much larger and had measured velocities only slightly lower
than those predicted. In agreement with theory, the larger of the flat fragments had somewhat
higher average velocities than the smaller ones.

4.9.5 Military-debris and Gravel Installations 8P4 and 8P5

The chart in Fig. 4.77 illustrates the method of placement of military debris and gravel,
color-coded for each of three distances, in front of installations 8P4 and 8P5. The postshot
photograph (Fig. 4.90) indicates that the surface of the absorber at installation 8P5 was some-
what damaged by thermal radiation (note beaded appearance). The condition of installation 8P4
traps was about the same as that of 8P5 traps (Fig. 4.90).

No military debris was recovered from any of the four traps. The distribution, by trap and
by displacement, of 214 gravel and natural-stone missiles caught is as follows:

Gravel

Natural Total

Trap stones At 6.5 ft At 16.8 ft At 43.0 ft gravel
8P4a 0 5 23 3 31
8P4b 6 5 103 3 111
8P5a 2 8 8 2 18
8P5b 0 20 10 16 46
Total 8 38 144 24 206

Data for the eight natural stones were combined for purposes of analysis with natural-
stone data obtained from other traps at station 8P. The results are presented in Table 4.6,
A similar procedure was followed for the gravel missiles where the sample size was less than
eight.

The results obtained for the larger samples of gravel are plotted by trap and by displace-
ment distance in Figs. 4.91 and 4.97. It is noteworthy that the upper traps caught more missiles
than the lower ones and also that the two largest samples originated from the 16.8-ft distance.
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Although there was little difference in the velocities of missiles caught in the upper and lower
traps, provided the displacement distance was the same, there is to be noted an increase in
velocity with increased distance of displacement. The regression lines describing the meas-
ured median velocities are in good agreement with the predicted velocities for the gravel dis-
placed 16.8 and 43.0 ft (Figs. 4.91, 4.92, 4.95 to 4.97); however, the measured velocities for
the missiles displaced 6.5 ft were appreciably higher than those predicted (Figs. 4.93 and
4.94).

Similar anomalies, probably due to the same causes, were noted in the sphere data at
stations 5P and 6P, and were discussed in Secs. 4.4.6 and 4.6.6.

4.9.6 Sphere Installation 8P6 and Gravel Installation 8P7

A comparison of the layout chart in Fig. 4.77 with that in Fig. 4.42 shows that installations
8P6 and 8PT7 were arranged in a manner very similar to that for installations 6P6 and 6P7 (see
also Sec. 4.6.6). A notable difference between the installations of these stations was that a
more dense absorber (type III) was used at station 8P than at station 6P (type II). As a result,
the thermal damage observed at station 8P was somewhat less than at station 6P, even though
the former was closer to GZ. This fact is made evident by comparing the postshot photograph
(Fig. 4.98) with Figs. 4.59 and 4.60.

A total of 123 spheres was recovered from the two traps at installation 8P6. Complete re-
sults are recorded in Table 4.6; however, for the sake of discussion, certain data for the larger
samples of missiles were extracted and are presented in Table 4,3. The average measured
velocities varied from 118 ft/sec for 1/,;—in.—diameter steel spheres to 204 ft/sec for the glass
spheres whose average mass was 37.9 mg. The deviations of the measured velocities from
those predicted were relatively low (compared with those in Table 4.2), varying from 2.1 per
cent higher to 11.3 per cent lower than predicted. The probable reason for these low devia-
tions is that the measured velocities were considerably higher than those just sufficient for
penetration (threshold). This would tend to minimize the errors in measured velocity due to
softening of a thin layer of the absorber near the exposed surface due to thermal radiation (see -
Secs. 4.4.6 and 4.6.6).

Although the lower trap (8P6a) caught no natural stones, the upper one (8P6a) caught 10
stones whose geometric mean mass and velocity were 40.9 mg and 254 ft/sec, respectively.
The data for these missiles, plotted in Fig. 4.99, show good agreement between measured and
predicted maximum velocities.

Colored gravel was placed at three distances (see Fig. 4.77) in front of installation 8P7.
The distribution of gravel and natural stones found in the traps was as follows:

Gravel Natural
Trap At 6.5 ft At 16.8 ft At 43.0 ft stones
8P7a 0 7 2 2
8P7b 0 60 14 4

No gravel was caught from the 6.5-ft distance, although some was caught from this distance
at installation 8P5 (see Figs. 4.93 and 4.94). Graphical data for the three largest samples
listed above are presented in Figs. 4.100 to 4.102. In each instance the predicted velocities
were only slightly higher than the median represented by the regression line.

Data for the three smaller samples listed above were combined for purposes of analysis
with similar data obtained at station 8P and are presented in Table 4.6.

4.9.7 Window-glass Installation 8P9

This installation, which was located 22.8 ft behind a standard window, was similar to in-
stallation 6P9 (described in Sec. 4.6.7).
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The following data are useful in comparing the results from the two installations:

Geometric Geometric
No. of mean mass, mean velocity,
Trap missiles mg ft/sec
6P9%a 178 419 123
6P9b 161 541 132
8P9%a 180 318 154
8P9b 129 403 161

There is no apparent reason why only 129 fragments were recovered from trap 8P9 in
comparison to 178, 161, and 180 from the other traps. It should be pointed out that the number
of missiles recovered—especially small ones—is dependent to some extent on the diligence of
search by the technician extracting the fragments from the absorber. Other significant pat-
terns, however, may be noted in the above tabulation of results. The data for the higher over-
pressure (8P) indicate smaller missiles and higher velocities than the data for the lower over-
pressure. In contrast, the upper (b) traps in comparison to the lower (a) ones at the same
station yielded both larger missiles and higher velocities.

Glass-fragment missile data for traps 8P9a and 8P9b are plotted in Figs. 4.103 and 4.104,
respectively. Both sets of data show that the predicted maximum velocity defines an upper
limit for the measured velocities.

4.9.8 Window-glass Trap 8P10b (Above Pig Trap 8P10A)

This installation, which was located 12.8 ft behind a standard window, was similar to the
installation at station 6P (described in Sec. 4.6.8). (Figure 4.69 is a postshot view of this in-
stallation.) Results obtained are shown graphically in Fig. 4.105 for trap 8P10b and in Fig.
4.70 for trap 6P10b. The following summarizes the data obtained at the two installations:

Geometric Geometric
No. of mean mass, mean velocity,
Trap missiles mg ft/sec
6P10b 32 1010 110
8P10b 204 302 160

The reason for the large difference in geometric mean mass of the missiles caught in the
two traps is made apparent by examination of the plotted data in Figs. 4.70 and 4.105. At least
as many large missiles were caught in trap 8P10b as in trap 6P10b, but many more smaller
ones were recovered from trap 8P10b. The difference in geometric mean velocity between the
two traps is undoubtedly significant and incdicates that higher missile velocities are produced
at higher overpressures.

Data for 20 natural stones caught in trap 8P10b are plotted in Fig. 4.106. The fact that the
measured velocities are considerably lower than those predicted is not significant —especially
considering the small sample caught—since the points of origin of the natural stones are not
known.

4.9.9 Combined Analysis for Natural Stones and Gravel at Station 8P

In previous sections missile data have been presented for each trap. In this section all
data for natural stones caught in various traps at station 8P have been combined, as well as the
data for gravel missiles translated equal distances. The results of these analysis are recorded
in Table 4.6; however, for purposes of discussion, the following data were extracted:
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Gravel

Natural
stones At6.5ft At 16.8ft At 43.0 ft
Number 85 38 211 41
Geometric mean mass, mg 80.9 175 178 232
Geometric mean velocity,
ft/sec 181 180 183 193
Predicted geometric mean
velocity, ft/sec 246 155 197 214
Deviation of measured from
predicted velocity, % —26 16 ~7.1 -9.8

The predicted velocity of 246 ft/sec for natural stones with a mass of 80.9 mg was com-
puted for the displacement which would maximize velocity for stones of this size. Thus it is
not surprising that the geometric mean of measured velocities is 26 per cent lower than the
predicted velocity, since the source of the stones is unknown. The probable reason that veloci-
ties measured for the gravel displaced 6.5 ft were higher than predicted is discussed in Sec.
4.4.6.

The velocities measured for the gravel placed at 16.8 and 43.0 £t are in reasonable agree-
ment with theory.

4,10 STATION 10P, 2730-FT RANGE

4.10.1 Experimental Plan and Blast Parameters

The experimental plan for station 10P, depicted in Fig. 4.107, is similar to those previ-
ously discussed except that window and plate glass were not used at station 10P. Note that two
of the installations, 10P2 and 10P3, contained only one trap. All installations except 10P1 were
reinforced by sandbags placed on the lee side of the traps. Types III, IV, and V absorbers (see
Chap. 2) were used at this station.

Overpressure vs. time measured at this station is plotted in Fig. 4.108. The deviations of
the measured from the ideal overpressures are quite significant, the measured curve being
characterized by a long rise time and an irregular, but relatively flat, peak. The dynamic pres-
sure record obtained at this station, Fig. 4.109, shows even greater deviations from the ideal
than the overpressure record. It is significant to the interpretation of the missile data obtained
at this station that the dynamic pressure reached relatively high values, but was slow in de-
velopment. Thus translational velocities attained after short displacements could be expected
to be inordinately low compared to those later attained after greater displacements.

The displacement data for large stones, building blocks, and bricks at station 10P are
presented in Sec. 4.15.

4,10.2 Military-debris and Gravel Installation 10P1

Figure 4.110 is a postshot view of installation 10P1. No data were obtained from the up-
per trap, which contained type III absorber, because of excessive erosion. Gravel and natural-
stone data from the lower trap are plotted in Figs. 4.111 to 4.113. Velocities of the gravel
measured after 19.1 ft of travel were low relative to those predicted on the basis of the ideal
blast wave defined in Figs. 4.108 and 4,109 (see discussion in Sec. 4.10.1). The velocities for
the gravel translated 49 ft (Fig. 4.112) were about the same as those predicted, whereas the
velocities of the natural stones (Fig. 4.113) measured at various stages during the displace-
ment cycle ranged up to 400 ft/sec higher than those predicted.

Thirteen pieces of military debris were caught in trap 10P1a. Nine of these originated
from the 49-ft distance and were combined for analysis with similar data obtained from instal-
lation 10P2 (see Sec. 4.10.3). Four of the 13 pieces caught were displaced only 7.4 ft. The
data for these missiles are recorded in Table 4.6. It is sufficient to say here that their masses
ranged from 12 to 271 g and their velocities from 110 to 203 ft/sec.
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4.10.3 Military-debris and Gravel Installation 10P2

Figure 4.114 is a postshot view of installation 10P2. Note the damaged sandbags behind
the installation and dry lake silt deposited in front of the trap.

Data for 31 pieces of gravel translated 19.1 ft before being caught are plotted in Fig. 4.115.
The velocities shown in this figure are significantly higher than those in Fig. 4.111 for a simi-
lar type of experiment. A difference between the two situations, however, was that the trap ab-
sorber yielding the lower missile velocities (10P1a) was Styrofoam (type IV), whereas the
other was balsa wood (type V). The balsa absorber was much less uniform than the Styrofoam
and therefore yielded a less reliable velocity calibration. On the other hand, the balsa ab-
sorber was more resistant to the erosion effects due to the severe exposure conditions at this
location. One circumstance that would tend to discredit the balsa data at installation 10P2 is
that velocities of about the same magnitude were measured for the stones translated 19.1 ft
(Fig. 4.115) as for those translated 49 {t before striking the trap (Fig. 4.116). In the Styro-
foam trap, however, the gravel traveling the greater distance had higher velocities (see Figs.
4.111 and 4.112).

Data for 186 natural stones obtained from installation 10P2 are plotted in Fig. 4.117. The
velocities are generally significantly higher than those to be expected from an ideal or classical
blast wave whose overpressure impulse and duration are the same as those measured (3.329
psi-sec and 0.737 sec, respectively). It is also noteworthy that the velocities of the larger
stones were only slightly lower than those for the smaller stones.

Six pieces of military debris that had traveled 19.1 ft were caught in installation 10P2
(see Table 4.6). These missiles had masses that ranged from 14 to 144 g and velocities that

ranged from 165 to 310 ft/sec.
Data for three military-debris missiles displaced 49 ft were combined for analysis with

similar data from trap 10Pla. Graphical data from both traps are shown in Fig. 4.118. Note
that bne missile penetrated through the balsa absorber to the plywood support to which the
balsa was cemented. Data for this missile were not included in the analysis. The data for
military debris from these two traps seem to be in agreement in contrast to the data for
gravel, as noted above.

4.10.4 Gravel Installation 10P3 and Sphere Installation 10P4

The postshot condition of installation 10P3, depicted in Fig. 4.119, was similar to that of
installation 10P2 (Fig. 4.114) except that installation 10P3 had accumulated a larger pile of
native silt in front of it. Figure 4.120 shows installation 10P3 on the right and installation
10P4 on the left. Note that the dry lake bed, which had been smooth, suffered violent upheavels
due to the shot. Although it is not evident from this photograph, the area in front of these in-
stallations had been paved with asphalt (see Fig. 4.107). The upper trap (10P4b) at the instal-
lation, shown on the left in Fig. 4.120, was found to be unusable for missile evaluation because
of excessive erosion. This trap contained the same absorber (type IV) as the lower trap at in-
stallation 10P1, which did survive the traumatic environment produced by the explosion.

The only gravel caught in installation 10P3 which could be positively identified was that
originating from the sample placed 49 ft from the trap. Velocities for the 78 gravel missiles
caught in this installation (Fig. 4.121) are consistent with data for similar missiles obtained
from installation 10P2 (Fig. 4.116). However, these velocities measured using the balsa ab-
sorber were significantly higher than those determined using type IV Styrofoam (Fig. 4.112).

Gravel missiles whose identification was doubtful were included with the natural-stone
sample (Fig. 4.122). The velocities determined for this mixed sample were generally higher
than those predicted.

Velocities for 66 gravel missiles (Fig. 4.123) and 96 natural stones (Fig. 4.124) caught in
trap 10P4a are in general agreement with similar data from traps with balsa absorbers at
this station.

Although 165 spheres were caught in trap 10P4a, the point of origin generally could not be
determined. The thin coat of paint that the spheres had been given for identification purposes
was destroyed by action of erosion and thermal radiation. However, two Yy-in.-diameter steel
spheres that were caught were identified since those spheres had been placed only at the 19.1-
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ft distance from the trap. The impact velocities determined for these missiles were 197 and
198 ft/sec, 146 per cent higher than the predicted velocity of 81 ft/sec. Complete data for
these two and the other 163 spheres that were caught are recorded in Table 4.6. The column
listing the predicted velocities, Vs, contains two velocities for each type of missile if the
translational distance is unknown—the lower value corresponding to a displacement of 7.4 ft
and the higher value to a displacement of 49 ft. The column in Table 4.6 containing deviations
of measured from predicted velocities, AVY, lists two figures for most types of missiles for
the same reason stated above. Measured velocities were higher than those predicted on the
assumption of a 49-ft displacement —and even for a 7.4-ft displacement.

The velocities ranged from 0.5 to 143 per cent higher than predicted.

4.11 STATION 15P, 2280-FT RANGE

4.11.1 Experimental Plan and Blast Parameters

The experiment at this station (see Fig. 4.125) was similar to the one at station 10P. All
installations at station 15P, however, contained single traps, and the marked missiles were
placed at somewhat greater distances from the traps than at station 10P.

The overpressure measured at station 15P (Fig. 4.126) indicates similar anomalies as
noted at station 10P (Fig. 4.108). At the nearer range, compared with the greater one, the
overpressure duration decreased from 0.737 to 0.661 sec and the overpressure impulse in-
creased from 3.329 to 3.829 psi-sec. Even though the blast waves of these stations were defi-
nitely not of the ideal or classical type, the changes noted above are in the proper direction for
such a wave.

The dynamic pressure measured at station 15P, recorded in Fig. 4.127, indicates even
greater variability in pressure than the corresponding station 10P record (Fig. 4.109).

Section 4.15 includes the displacement data for large stones, building blocks, and bricks
at station 15P.

4.11.2 Military-debris and Gravel Installations 15P1 and 15P2

Figure 4.128 is a preshot photograph of installations 15P1 (left) and 15P2 (right), looking
toward GZ. In the installation 15P1 trap, the blast and thermal effects destroyed the type IV
Styrofoam absorber; however, the trap housing remained intact but eroded along the leading
edges.

The postshot view of installation 15P2 (Fig. 4.129) indicates that this installation stopped
a considerable amount of soil and rocks. However, only 16 stones whose origin could be de-
termined were caught in the trap. The data for these missiles, which were displaced 9.4 ft,
are plotted in Fig. 4.130. These data indicate that relatively high velocities were attained in a
short distance and that there was little dependence of velocity on missile mass.

Ten military-debris missiles were caught in installation 15P2 —two translated 9.4 ft;
three, 24.2 ft; and five, 62.0 ft. Data for these missiles are plotted in Fig. 4.131, with individ-
ual coding for distance of translation. It is interesting that distance of translation made little
difference in the measured impact velocities.

Data for 274 natural stones recovered from installation 15P2 are set forth in Fig. 4.132.
Note that data for two missiles with velocities greater than 800 ft/sec are plotted above the
upper edge of the chart. Data are given in the figure caption for two large stones that pene-
trated the entire thickness of the balsa absorber. The fact that the line indicating predicted
velocities goes through the center of the data does not indicate agreement between measured
and predicted velocities. The velocity predictions were made on the assumption of maximum
velocity resulting from optimum distance of travel; therefore the line of predicted velocities
should describe the higher missile velocities measured which presumedly resulted from opti-
mum displacement.

4.11.3 Gravel Installation 15P3 and Sphere Installation 15P4

Figure 4.133 depicts the arrangement of traps and missiles, “planted” preshot, for in-
stallations 15P3 (right) and 15P4. Figure 4.134 is another preshot view of these installations
(15P3 at the upper left) illustrating the placement of sandbags behind the traps.

73




Figure 4.135 is a postshot view of installation 15P3. Note that the balsa absorber was
completely removed from the trap housing by action of the blast wave and that the housing
itself was left partly filled with native soil.

The postshot view of installation 15P4 (Fig. 4.136) shows that the balsa stayed in place but
was severely eroded. Note that surprisingly little material accumulated in front of the trap.

Data for 20 identifiable gravel missiles caught in installation 15P4 are plotted in Fig.
4.137. These missiles, after traveling 62.0 ft, had velocities remarkably near those predicted
on the assumption of an ideal blast wave. Data for 232 natural-stone missiles caught in this
trap (Fig. 4.138) also conform fairly well to the maximum velocities predicted.

Twenty-eight spheres, none of which could be identified by the color code, were caught in
installation 15P4. Complete data for these missiles are recorded in Table 4.6. Because the
distances of translation were unknown, predicted velocities were computed for the shortest and
the greatest distance. These are recorded in the column marked V,s0- The next column indi-
cates that the average measured velocities varied from 26 per cent lower than predicted to
43.6 per cent higher.

4.12 STATION 20P, 2030-FT RANGE

4.12.1 Experimental Plan and Blast Parameters

The experimental plan for station 20P, similar to that for station 15P, is illustrated by the
layout chart in Fig. 4.139. All four traps at this station had balsa absorbers; however, only one
of them (20P3) was found to be usable for evaluation of missiles.

The overpressure and dynamic pressure records (Figs. 4.140 and 4.141) obtained at this
station are very similar in type to those already discussed for stations 10P and 15P (see Secs.
4.10.1 and 4.11.1).

The displacement data for large stones, building blocks, and bricks at station 20P are

presented in Sec. 4.15.

4.12.2 Military-debris and Gravel Installations 20P1 and 20P2

Figure 4.142 is a preshot view of installations 20P1 (left) and 20P2. The balloon in the
background is at the approximate location of GZ. Figures 4.143 and 4.144 are postshot views
of installations 20P1 and 20P2, respectively. At installation 20P1 the balsa absorber was com-
pletely removed by the blast wave; at installation 20P2 it was only partly removed. That part
which remained, however, yielded no usable missile data.

4.12.3 Gravel Installation 20P3 and Sphere Installation 20P4

Figure 4.145 is a preshot view of installations 20P3 (right) and 20P4. Note the gravel
placed in front of installation 20P3 and the spheres in packets on wire supports in front of in-
stallation 20P4.

Figure 4.146 is a postshot photograph depicting a localized disruption of the dry lake bed
on and near the area stabilized with asphalt (see Fig. 4.139). This upheaval was typical of
others that were observed after the detonation at various spots in the regions close to GZ.

Figure 4.147 is a postshot view of installation 20P3 indicating the poor condition of the
balsa absorber owing to the abrasive action of high-velocity silt and stones. Velocities were
obtained for 88 stones recovered from this trap. Minimal velocities were evaluated for 11 ad-
ditional stones that penetrated the entire thickness of the balsa and were found imbedded in the
plywood support. Data for these 11 missiles are indicated as triangles on the plot in Fig. 4.148.
From the data shown in this figure, it is evident that there were many missiles that had veloci-
ties considerably in excess of those to be expected from an ideal blast wave whose overpres-
sure impulse is the same as that measured at this station (4.211 psi-sec) (see Fig. 4.140),
Although the samples of spheres were placed in front of installation 20P4, one 1/z;—in.-diameter
aluminum sphere, which had a velocity at impact of 357 ft/sec, was retrieved from installation
20P3 (see Table 4.6).

Figure 4.149 is a postshot view of trap 20P4, which was judged to be unsuitable for the
evaluation of missile velocities due to excessive erosion.
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4.13 UNDERGROUND SHELTER WITH OPEN ENTRYWAY, OPS (UK 3.7)

4.13.1 Experimental Plan and Blast Parameters

An underground shelter constructed and tested during Operation Upshot-Knothole was
made available to this project (33.2) for the study of translation effects due to winds associated
with the blast wave. The shelter was located 900 ft from GZ (see station-location chart, Fig.
4.1). The plan view of the OPS shelter (Fig. 4.150) illustrates the construction of the structure
as well as the experimental arrangement used in the present study. Note that the stairway is
orientated toward GZ and that it connects to the shelter itself by means of an open, although
somewhat tortuous, passageway.

The pressure instrumentation placed in the shelter entrance (see Figs. 4.150 and 4.151)
failed to function. However, a pressure gauge placed at ground level near the shelter meas-
ured 65.4 psi maximum overpressure.

To make the experimental results more meaningful, test objects were chosen whose ac-
celeration coefficients closely approximated those of man;5'7 i.e., had people occupied the
shelter, their impact velocities would have been approximately the same as those measured
for the test objects. The devices used were steel spheres with 7/15-, Y,-, and 9/16—in. diameters
similar to those used at the surface stations. In addition, three croquet balls were used whose
masses had been increased with brass plugs so that an acceleration coefficient of 0.035 sq ft/1b
was obtained.

The placement positions of the spheres are indicated on the shelter drawing (Fig. 4.150);
e.g., 20 steel spheres 1/2 in. in diameter were suspended 5.4 ft above the floor and 14.8 ft from
the wall to which the type IV absorbing material was cemented. Figure 4.151 is a photograph
taken near the missile-absorbing wall, looking toward the open entryway. The spheres were
held in aluminum-foil bags so constructed and suspended that the spheres were readily re-
leased by action of the blast winds. The bags were taped to transverse wires of about the same
strength as ordinary clothesline.

4,13.2 Sphere Data

Figure 4.152 is a postshot view of the absorbing wall. Aluminum foil similar to that used
in the above-ground traps for thermal protection for the absorbers was partly blown away.
Before the photograph shown in Fig. 4.152 was taken, the remaining foil had been removed and
the impact points of the sphere were marked with a felt pen. The absorbing material (type IV)
was found to be in good condition; no effects of thermal radiation, abrasion, or overpressure
were shown.*

Impact points labeled 1 through 6(Figs. 4.152 and 4.153) are for Y-in.-diameter steel
spheres that were placed 5.4 ft above the floor and 14.8 ft from the absorber. Three of these
spheres struck the absorber at heights greater than the placement height, the average impact
height being only 0.2 ft lower than that of placement. Thus lofting due to nonhorizontal winds is
indicated. The average velocity of the 1/2—in.—diameter spheres was 129 ft/sec (see Table 4.6).
Velocities ranged from 99.1 to 159 ft/sec, the higher values tending to be associated with mis-
siles striking the upper-right portion of the absorber shown in Fig. 4.153.

Points labeled b and ¢ in Figs. 4.152 and 4.153 mark the impact location of 9/16-in.-
diameter steel spheres that, because of their impact location, probably originated from the
group 9.8 ft from the absorber and 4.4 ft above the floor. Their average impact height was 4.6
ft above the floor. The average impact velocity (52.9 ft/sec) was considerably lower than that
for the 1/2—in. spheres (129 ft/sec), both because of a lower acceleration coefficient and a
shorter distance of translation.

*For testing purposes, a 1-ft-square 2-in.-thick piece of type III absorber was cemented
to an unused portion of the shelter wall near the installation of type IV absorber. The exact
position is indicated in Fig. 4.152 by the black cement visible on the wall on the left side in
the photograph. After the shot and test material was found on the floor of the shelter. Even
though the sample was protected with aluminum foil, there were signs of heat distortion and
compression. This result may have been due in part to the fact that the material was blown
from its original position on the wall.
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The croquet-ball imprint labeled “A” was probably made by the ball originally placed 9.8
ft away and 4.4 ft above the floor (see position marked with a large triangle and letter A in
Fig. 4.153). It is to be noted that the points of impact of all spheres tended to be to the right of
their original positions (see Fig. 4.152). Since croquet-ball A impacted to the left of its origi-
nal position, one might speculate that it may have struck the right wall at a grazing angle be-
fore impacting with the absorber.

Of the 63 spheres used at this installation, only 9 struck the absorber with sufficient ve-
locity to be captured or to make an impression sufficiently deep to allow identification of the
missile and evaluation of velocity. A few impressions were noted which did not meet the above
requirements. With one exception, the missiles that made sufficiently deep impressions did so
in the upper-right quadrant of the absorbing wall (see Figs. 4.152 and 4.153). This would sug-
gest that the blast or pressure wave did not fill the chamber uniformly but had a swirling
motion, both horizontally and vertically, which allowed higher winds to develop on the upper-
right side than on the lower-left side (looking toward the absorbing wall). Another effect that
might account for relatively few spheres striking the absorber is that the ground shock, which
arrived before the blast wave, may have prematurely released some of the spheres from their
aluminum-foil containers.

4,13.3 Molten-metal and Natural-stone Missiles

Sixty-nine missiles that were retrieved from the absorber were apparently formed from
molten metal. They were almost spherical in shape, with masses that varied from 1 to 71 mg,
similar to the beads that are commonly produced by welding operations. No attempt was made
to estimate the impact velocity of these missiles since the holes they made in the Styrofoam
indicated that they were hot at the time of impact; i.e., penetration was enhanced by melting the
Styrofoam.

Data were obtained for 194 stone-like missiles whose origin was unknown. Many of these
objects had the appearance of concrete chips. For want of a better title, they were called
natural-stone missiles. The velocity vs. mass data, plotted in Fig. 4.154, indicate that their
masses were small compared to those of the natural stones caught at the above-ground sta-
tions. Owing to calibration limitations, stones with masses less than 10 mg were omitted from
the analysis. Measured velocities varied from 164 to 755 ft/sec (see Table 4.6), the smaller
stones tending to have slightly higher velocities.

In order to better understand the production of the natural-stone missiles in this shelter,
spatial-distribution charts were prepared which show as a function of location of impact the
number of missiles per square foot (Fig. 4.155), the average masses (Fig. 4.156), and the av-
erage velocities (Fig. 4.157). The distribution chart in Fig. 4.155 indicates that most of the
missiles impacted on the right side of the trap—a result similar to that obtained for the spheres
evident in Figs. 4.152 and 4.153. The data in Fig. 4.156 indicate that the variation in the mass
averages for various area segments was small (20.9 to 41.4 mg). However, the velocity data
plotted in Fig. 4.157 show a significant tendency for missiles striking in the upper right region
(looking toward the absorber) to have higher velocities than those impacting in the remaining
area. This result is consistent with the velocity data obtained for the 1/z-in.—diameter spheres
shown in Fig. 4.153.

4.14 UNDERGROUND SHELTERS WITH CLOSED ENTRYWAYS

The purpose of this study was to investigate a possible missile hazard within closed shel-
ters due to spalling of concrete from the walls. In the seven shelters investigated, no missiles
were caught, and there was no evidence of appreciable spalling. Pertinent blast parameters
and details of shelter construction may be found in Refs. 3 and 4. The locations of these struc-
tures are indicated on the station-location chart (Fig. 4.1) at ranges from 860 to 1360 ft from
GZ. Four of the shelters were of the arch type construction,® and three were made with 8-ft-
diameter concrete conduits.*

A single trap containing type II absorber was placed, face up, near the center of each of
the arch type shelters. As illustrated in Fig. 4.158, each trap was secured to the floor with
chain and stud bolts. This anchor was not disturbed in any case by ground shock.
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The trap arrangement was somewhat different in the three conduit type shelters. In order
to increase the missile-collecting area, 16 strips of 2- by 6- by 36-in. Styrofoam were ce-
mented to the surface of the shelter (see Fig. 4.159).

4,15 LARGE-STONE, CONCRETE-BLOCK, AND BRICK DISPLACEMENT

4.15.1 General

This phase of the secondary-missile project involved measurement of the total displace-
ment experienced by various test objects due to action of the blast wave. Additional studies
would be required, making use of the experimental data reported here, in order to obtain esti-
mates of the velocities attained By the displaced objects.

Twenty-five stones, two concrete blocks, and two ordinary bricks were placed near each
of the seven above-ground missile stations already described. The placement positions are
marked on the layout charts in Figs. 4.2, 4.23, 4.42, 4.717, 4,107, 4.125, and 4.139 for stations
4P, 5P, 6P, 8P, 10P, 15P, and 20P, respectively. The stones contained in each group, whose
individual masses varied from about 150g to 20 kg, were painted a distinctive color for later
identification.

Figure 4.160 depicts a typical placement of large missiles at station 4P. The postshot
photograph of the same installation (Fig. 4.161) shows that all displacements were relatively
small but that the small stones traveled farther than the large ones. Note also that the con-
crete block or brick which initially presented the greater area to the wind (see Fig. 4.160) was
displaced farther than its mate which presented a smaller area.

4,15.2 Large-stone Data

The relation between mass and distance displaced for the stones is shown graphically in
Figs. 4.162 to 4.168 for each of the seven stations. After trying various types of plots, it was
found that log mass vs. distance made the data as linear as any other and also had certain ad-
vantages; viz., zero distance could be plotted, and the points were separated into approximately
equal mass intervals. In computing regression lines, either log mass or distance could be con-
sidered to be the dependent variable since scatter in the data was undoubtedly due to factors
other than the measurement of mass or distance, e.g., variability in shape of the stones, non-
homogeneous blast wave, etc. It was decided to compute the regression lines by minimizing
the square of the deviations in log mass since this procedure produced much more stable re-
sults (or regression lines) for the data from the precursor region {see Figs. 4.166 to 4.168)
than that which minimized the square of the distance deviations.

Results of the statistical analyses described above are listed in the captions of the figures
presenting the displacement data for the individual stations* (Figs. 4.162 to 4,168). The units
of mass and distance used in the regression equations are the same as those used in plotting
the data, viz., kilograms and feet. The geometric standard error of estimate in mass, E.,, is
a measure of the scatter of the mass points about the regression line. The quantity My, is the
geometric mean mass of the stone sample. The average displacement of the stones at each
station is indicated (in feet) by the quantity d.

The average displacements of stones for the three stations most distant from GZ varied
from 2.29 ft at station 4P (Fig. 4.162) to 1.15 ft at station 6P (Fig. 4.164). It is probably not
significant, in view of the variability of the data, that the stones at the most distant of these
three stations had the highest average displacement. The stones at the station next closest to
GZ (station 8P at 3930-ft range) had a somewhat higher average displacement (7.50 ft) (see
Fig. 4.165).

Station 10P, at the 2730-ft range, was 1200 ft closer to GZ than station 8P. The stones at
station 10P, which had an average displacement of 739 ft, almost spanned this separation in
station locations. Only 16 of the 25 stones placed at station 10P were recovered after the det-
onation. Some of these were smaller than they were originally due to splitting or chipping

*A more complete listing of statistical parameters can be found in Table 4.6.
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during translation. (Similar observations were made for stones placed at stations 15P and
20P.) The data presented in Fig. 4.166 for station 10P show that the distance translated had no
significant dependence on stone mass.

Stone-translation data for stations 15P (2280-ft range) and 20P (2030-ft range) are plotted
in Figs. 4.167 and 4.168, respectively. Only six of the stones at station 15P were recovered,
and these had an average displacement of 1367 ft. The fact that the regression line in Fig.
4.167 suggests a larger displacement for the larger stones may be due to an inadequate sam-
ple. The data for 24 stones recovered from station 20P (Fig. 4.168) do not indicate a depend-
ence of total distance of translation on stone mass (compare with Fig. 4.166 for station 10P).

4.15.3 Concrete-block and Brick Data

Probably owing to breakage, none of the concrete blocks or bricks that had been placed at
the precursor stations (10P, 15P, and 20P) were recovered. Masses and displacements that
were measured for the two concrete blocks and two bricks placed at each of the other stations
are presented at the bottom of Table 4.4. The fact that one of each pair of blocks, or bricks,
usually was displaced significantly farther than the other was due to their initial orientations,
viz., one with maximum area presented to the wind, and one with minimum (see Fig. 4.160).

4.15.4 Summary of Large-stone, Concrete-block, and Brick Data

The mass and measured displacements for each test object that was recovered after the
detonation are listed in Table 4.4. The large-stone data that were tabulated are presented
graphically in Fig. 4.169. In this presentation the range of each station is plotted along the
abscissa as a vertical line. Each stone recovered was located along the appropriate vertical
line according to the logarithm of its mass (in kilograms). The distance of translation for each
stone was represented as a dashed or dotted line for large distances or by points for small
ones. The number appearing to the right of each dot or horizontal line is the measured dis-
placement (in feet). Upon examination of this chart, it is somewhat surprising to note that two
stones originally placed at station 15P came to rest downwind of station 8P, where the stones
had experienced comparatively small displacements. The difference in the translational effects
between the precursor and nonprecursor regions is quite evident.

4.16 SUMMARY AND DISCUSSION, SHOT PRISCILLA

4.16.1 Station Locations and Blast Parameters

The production of secondary missiles was investigated at 19 locations on shot Priscilla in
Frenchman Flat (see Fig. 4.1). Eleven of these locations were in open areas at distances of
2030 to 6120 ft from GZ. A summary of the blast parameters determined for these stations is
listed in Table 4.5. The column labeled (I))m contains the overpressure-impulse values for
each station where records were obtained. Gauge failures at two stations made it necessary
to determine extrapolated values of overpressure impulse. (Other parameters in the table
which are designated with a subscript “r” were also extrapolated.) The extrapolation methods
used are outlined in the footnotes contained in the table. The quantities t'; and p, represent the
duration of the positive overpressure and its maximum value, respectively. The quantity (p, )
is the peak, or shock, overpressure computed for an ideal blast wave using measured or extrap-
olated values of impulse and duration (see Chap. 3).

One secondary missile station was located inside a shelter with an open entryway that was
900 ft from GZ (see Sec. 4.13). The pressure instrumentation inside the shelter failed to func-
tion; however, the maximum overpressure measured at ground level near the shelter was 65.4
psi (see entry at bottom of Table 4.5), Missile traps were placed inside seven shelters with
closed entrywa).ys3'4 at distances of 1360 to 860 ft from GZ.

4.16.2 Tabulated Results

A summary of all results obtained for shot Priscilla is given in Table 4.6. The data in
each of three major divisions of Table 4.6 are listed by trap, or combination of traps at a
particular station, in the order of decreasing range from GZ.
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TABLE 4.5—BLAST PARAMETERS, SHOT PRISCILLA
(See List of Symbols.)

po = 13.83 psi ¢y = 1120 ft/sec (17.0°C) Estimated yield: 38 kt* Terrain, dry lake bed
' (Frenchman Flat)

Range,  Blast (Iphn, T (Ipr, 1 (t;)m,T (t;)r, § Odm T Osdes T (ps)r, **
Station ft line psi-sec psi-sec sec sec psi psi psi
4P 6120 33.2 1.832 1.027 (4.64) 4.54
4PP 6120 Main
5P 5320 33.2 2.035 0.964 (5.59) 5.51
5PP 5320 Main
6P 4770 33.2 2.202 2.208 0.920 0.917 6.6 6.38 ) 6.40
6PP 4770 Main -
6.7PP 4470 Main 0.891 6.99
8P 3930 33.2 2.574 2.553 0.823 0.841 9.2 8.60 8.34
10P 2730 33.2 3.329 3.354 0.737 0.713 9.3 13.0 13.7
15P 2280 33.2 3.829 3.838 0.661 0.658 15.2 17.3 17.5
20P 2030 33.2 4,211 4.187 0.610 0.624 15.2 21.4 20.6
OPS 900 65.4 62.4

*Estimation made by comparing the overpressure-impulse data measured for stations 6P and 8P with
data for a surface burst as described in The Effects of Nuclear Weapons.

TDetermined from BRL mechanical-gauge records. (Gauges failed at stations 4P and 5P.)

}Overpressure impulse computed by regression equation derived from (Ip)m values

log (Ip);=3.0962-0.7487 log R
§Overpressure duration computed by regression equation derived from (t;)m values
log (t}): = —1.6972 + 0.4512 log R

TPeak overpressure computed for a classical blast wave of impulse (Ipm and of duration (t+)m Meas-
ured values of impulse and duration were not obtained at 4P and 5P, therefore regression values, (Ip):

and (tp),, were used.
**Peak overpressure computed by regression equation derived from {p,), values

log (pg); = 5.8300 — 1.3657 log R

A summary of the large-stone displacement data is presented at the bottom of Table 4.6.
The regression coefficients e and f are explained in the table. It should be noted that the sym-
bol d is used here to designate the total distance of translation, whereas in other parts of the
table it represents the distance traveled by the missile before striking the trap. The symbol
d designates the average distance of translation. Minimum and maximum dlstances are repre-
sented by d. and d,, respectively.

4.16.3 Glass-fragment Missiles, Shot Priscilla

Impact velocities were evaluated for 3728 window-glass fragments caught in 32 traps
placed at 6120~ to 3930-ft ranges. At the greater ranges, compared to the smaller ones, fewer
missiles were caught, and their masses were larger and their velocities smaller.

The predicted velocities for the fragments caught in the lower overpressure region (4.5 to
5.5 psi) were generally near the geometric mean of the measured velocities. This is in con-
trast to the predicted velocities applicable to the higher overpressure regions (6.4 to 8.6 psi),
which were generally near the highest values of the measured velocities. At stations 4P and
5P, windows were placed 7.8, 12.8, and 17.8 ft from the traps. At stations 6P and 8P the dis-
tances were 7.8, 12.8, and 22.8 ft from the traps. In no instance was there a significant dif-
ference in missile velocity due to distance of translation. Thus the velocities of window-glass
fragments were found to be (1) less dependent on the blast-wave parameters than specified by
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the model® used to make predicted velocities and (2) independent of the distance of translation
within the limits investigated.

From the above observations it must be assumed that certain phenomena which are not
accounted for in the model have a noticeable influence on the velocity attained by glass frag-
ments under the conditions of the experiments reported. Part of this extraneous influence on
missile velocity may be due to the mechanism of breakage of glass panes. If a pane supported
along its edges is bent, a certain amount of potential and kinetic energy is stored in the pane
before actual breakage occurs. Fragments near the center of the pane possessing the greater
part of this energy would “pop out” at higher velocities than those near the perimeter. It
should be pointed out that the energy thus temporarily stored in each pane is not necessarily
derived from the blast winds but is due principally to the sudden increase in pressure existing
at the leading edge of a classical blast wave. The defractive loading effect described above
would be enhanced by the process of reflection but would be mitigated provided the blast wave
arrived on the lee side of the pane before it shattered. Also, if shattering occurred before ap-
preciable bending had taken place, as might be the case for a relatively strong blast wave,
then the defractive effect would be minimal since the pressure difference between the front
and rear of the pane would quickly vanish when the glass is broken.

The effects postulated in the preceding paragraph would tend to equalize fragment veloci-
ties produced by blast waves of different strengths and also for different distances of transla-
tion. The different distances of translation follow from the assumption that the velocities are
imparted to a fragment by diffractive loading in a very short time during which the missile
travels a short distance.

The dispersion of fragment velocities, which was noted in all the experimental data except
for the fragments striking flatwise, is a reasonable result of the method of mounting the glass
panes. Since the edges of the panes were restrained, fragments arising near the perimeter of
the pane would be expected to have lower velocities (and more tumbling) than those arising
near the center.

Six traps placed behind plate-glass installations caught a total of 88 fragments. Velocities
evaluated for 12 large fragments striking the trap flat were much more uniform than the veloci-
ties for the fragments striking in random orientation. Velocities for the flat missiles were only
slightly lower than those predicted.

4.16.4 Marked-gravel and Natural-stone Missiles, Shot Priscilla

Velocities were determined for 799 gravel missiles with masses between 10 mg and 1.3 g
which had been color coded and placed at measured distances from the traps. For samples
greater than five which were caught at nonprecursor stations (4P, 5P, 6P, and 8P), the geomet-
ric mean velocities were generally in good agreement with the predicted ones. The least
satisfactory agreement was obtained for 14 gravel missiles caught at station 4P after a dis-
placement of 10.9 ft. In this instance the geometric mean of the measured velocities was 112
ft/sec, 20 per cent higher than the predicted value of 93 ft/sec. This deviation may have been
partly due to the lower-velocity missiles’ having insufficient penetration for retention in the
absorber.

The geometric means of measured velocities for gravel placed at stations 10P and 15P in
the precursor region were as much as 39 per cent higher than the values predicted assuming
an ideal blast wave with the same overpressure impulse as that measured.

Velocities were evaluated for a total of 1756 natural-stone missiles, including 194 stone-
like objects caught in the OPS shelter with open entryway. Because predicted velocities were
based on the assumption of optimum distance of travel for maximum velocity, the values tended
to be higher than those measured.

4.16.5 Sphere Data, Shot Priscilia

Of a total of approximately 67,000 spheres placed in front of traps, impact velocities were
obtained for 712. The predicted and measured velocities were generally in agreement. In in-
stances where agreement was not good, the deviations wevre probably due to (1) inaccuracies in
the trapping technique for small depths of penetration and (2) softening of the outer layer of ab-
sorbing material due to action of the thermal pulse.
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4,16.6 Military~debris Data, Shot Priscilla

Velocities were estimated for 32 military-debris missiles whose masses ranged from 4.5
to 289 g. Only one piece of debris was caught at a nonprecursor station, 6P, where the maxi-
mum overpressure was 6.4 psi. Velocities for the military-debris missiles caught in the
precursor region varied from 110 to 373 ft/sec.

4,16.7 Missiles in Shelters

Missile studies were conducted in eight underground shelters that were located 860 to 1360
ft from GZ. Seven of the eight shelters had closed entryways. Missile traps were placed in
these shelters in order to determine the velocity of any particles that might spall from the
concrete walls. There was no evidence of appreciable spallation.

Missile-absorbing material was cemented to a wall of a shelter with open entryway in
such a way that velocities could be determined for experimental spheres. The aerodynamic
properties of the spheres used were such that their impact velocities would be approximately
the same as for man. Velocities evaluated for nine such spheres ranged from 45 to 159 ft/sec
for situations where the distances of translation were 9.8 and 14.8 ft. Velocities (165 to 755
ft/sec) were also obtained for 194 stone-like objects whose masses varied from 10 to 618 mg.

4.16.8 Displacement of Large Stones, Concrete Blocks, and Bricks

Twenty-five stones, two concrete blocks, and two ordinary bricks were placed near each
of the seven above-ground stations 2030 to 6120 ft from GZ. The stones in each group of 25
had masses ranging from about 150 g to 20 kg. The purpose of the experiment was to obtain
only the total displacement since the large sizes of the missiles prohibited measurement of
velocity by the trapping technique. The greatest displacement experienced by any of the ob-
jects placed at the nonprecursor stations (4P, 5P, 6P, and 8P) was 24 ft; some of the experi-
mental objects were not moved. Of the 46 stones recovered, which had been placed at the
precursor stations (10P, 15P, and 20P), the greatest total distance of displacement measured
was 1814 ft and the least was 249 ft. Thus this experiment demonstrated the great difference
in translational capability between the precursor and nonprecursor blast waves.
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Traps 4Pla (bottom) and 4P1b (top), placed 7.8 ft behind window, postshot.

Fig. 4.4
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|

LOVELACE
 FOURDATION

Fig. 4.9— Installation 4P3 looking toward GZ, preshot. Trap was above a dog
trap, 31.5 in. above ground level and 12.8 ft from the plate-glass installation.

Fig. 4.10— Traps 4P4a and b looking toward GZ, preshot. Note piles of military
debris mixed with marked gravel 4.5 and 10.9 ft in front of the traps. Piles on
the right side of the picture were placed in front of traps 4P5a and b.
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Fig. 4.36 — Traps 5P8a and b, postshot.
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Fig. 4.60 —Gravel installation 6P7, behind asphalt area, postshot.
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Sphere installation 8P6, postshot. (Behind asphalt area.)

Fig. 4.98
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Fig. 4.136 —Installation
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Station: 20 P
R: 2030 ft
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F = 21.4 psi
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0.0
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Fig. 4.141—Dynamic pressure vs. time at station 20P.
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