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Fig. 1 A Hierarchical Sequence of Object Menus for Software Retrieval 



SÄiSÄiJ^f t0 ^ hUman,y "*"****. We use a hierarchy sequence of object menus for 

((DEFUN MYSORT (S) 
(COND ((NULL S) NIL) 

CT (CONS (MYMIN S (CAR S)) (MYSORT (REMOVE (MYMIN S (CAR S)) S))))))) 
10 

((((1 3 2)) (1 2 3)) (((3 2 1)) (1 2 3)) (((1 2 3)) (1 2 3))) 
? (pprint (setq frepos '((CRISPY' 

(DEFUN MYSORT (S) 
(COND 
(FUZZY 
((NULL S) NIL) 
((ATOM (FUZZY S ((FUZZY CAR CDR) S))) NIL)) 

(T (CONS (MYMIN S (CAR S)) 
(MYSORT (REMOVE (MYMIN S (CAR S)) S)))))))))) 

((CRISPY '(DEFUN MYSORT (S) 

(COND (FUZZY ((NULL S) NIL) ((ATOM (FUZZY S ((FUZZY CAR CDR^ sw NTT » 
(T (CONS (MYMINS (CAR S)) (MYSORT (REMOVEöSäÄ) 

; Note that (ATOM S) was automatically programmed using the large fuzzy function space. 

? (pprint (auto frepos io)) 

((DEFUN MYSORT (S) 
(COND ((ATOM S) NIL) 

(T (CONS (MYMIN S (CAR S)) (MYSORT (REMOVE (MYMIN S (CAR S)) S))))))) 

! foncti^:^ mn may Create SyntaCtical]y different> b* semantically equivalent 

? (pprint (auto frepos io)) 

((DEFUN MYSORT (S) 
(COND ((NULL S) NIL) 

(T (CONS (MYMIN S (CAR S)) (MYSORT (REMOVE (MYMIN S (CAR S)) S))))))) 

Fig. 2 A Sample Fuzzy Program in an Extended Lisp 

Software Debugging 
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Third Generation: 

Repeat 
Read x, y; 

Until 
y<>0; 

ratio = x/y; 
If ratio > 0 then 
Print ratio 

Else 
Print -ratio; 

Expert Specification: 

Read x, y; 
ratio = x/y; 
Print ratio; 

Expert Rules: 

If "/" Then denom <> 0 
If "/"Then ratio + 

Fig. 3 The Power of an Expert Compiler 

An expert compiler can optimize code and thereby offers the better of two approaches. On the one hand it frees the 
user to express a program in relatively simple and cognitively straightforward terms. On the other hand the resulting 
sub-optimal program can then be automatically transformed into a more efficient form. For example, the typical 

computer scientist will find it far easier to write an 0{n2) Bubble or Insertion sort than he/she will to write an 

O(nlogn) Quicksort. They all may have the same test suite and the expert compiler can incrementally transform 

one into the other given an economy of scale. Note that the details pertaining how to accomplish this could occupy 
an entire volume. Thus, we necessarily concern ourselves with the concept for now. 

A simple expert compiler can become more complex by way of fusing a network of domain-specific knowledge 
bases. Notice that as more and more domain-knowledge can be brought to bear on the compilation, the level of the 
effectively transformed language can increase. All this may be succinctly stated to be a consequence of 
randomization. Moreover, the language in which the rule predicates are represented in each rule base can also be 
subject to expert compilation. We call this a knowledge-based bootstrap. Observe that it too is recognizable as being 
a higher-level randomization. Informally, we call this a capability for the dynamic domain-specific representation of 
knowledge. 

Any network of expert compilers can grow to be exceedingly complex. After all, given that there will be errors how 

S?^ne trfC a reSUltant err°r back t0 itS S0Urce? This Problem can be accentuated through the use of asynchronous 
MIMD architectures. The solution is to keep the human in the loop. Moreover, it is key to note that the more 
reusable the representation of knowledge (and software), the greater will be the propagation of repairs. This follows 
because highly reusable components are invoked by many other components. Correcting one error then serves to 
correct many errors. Think of this as being the inverse of testing, where the higher the degree of reusability the more 
likely the program will be valid. 

What emerges from the previous discussion is the notion that higher-level software is going to be more structured in 
all its salient aspects. Instead of being hand-crafted, it will be assembled - not by humans, but by machines that were 
programmed for its assembly. The central thesis of this section is that higher structures necessarily go beyond the lax 
bounds imposed by domain-independent representation. While such representations account for objects and 
components, they place the entire burden of assembly upon the user. Here, the knowledge source is a sole source- 
namely, the human. To climb above the third-generation plateau, one needs to capture domain-specific knowledge 
for reuse. Such is accomplished by an expert compiler, which effects in theoretical terms, semantic randomization 
Note that fourth-generation languages may appear to get around this problem without resorting to expert 
compilation, but this is a convenient illusion. The reason for the illusion is that such languages are not universal In a 
practical sense, this means that they are not flexible or conveniently extensible. Also, fifth generation languages 
(e.g., Lisp, Prolog, etal.) provide tools for the construction of expert compilers, but are not expert compiled pe°r se° 

Conclusions 
Insight on whether or not the brain relies primarily upon a neural representation, a symbolic one, neither or both 
will enable the construction of ever-more intelligent systems. Moreover, this paper suggests that a new view of 
software reuse will evolve in the form of a taxonomy: 



• Level 5: Reuse requires a dynamic domain-specific representation of knowledge. 
• Level 4: Reuse requires the application of knowledge bases (e.g., expert compilers). 
• Level 3: Reuse occurs in the form of objects and components. 
• Level 2: Reuse occurs at the code level and allows for parametization. 
• Level 1: Reuse occurs at the level of immutable code. 

If the brain is to follow this taxonomic description, then level 1 corresponds to declarative memory, level 2 to 
procedural memory, level 3 to physical creativity (e.g., substituting a barstool for a chair), level 4'to abstract 
creativity (e.g., substituting a table for a chair), and level 5 to creative creativity (e.g., who needs to sit anyway?). 

The reader may be curious as to why the fusion of brain science with software engineering in this paper. After all 
this is like comparing the proverbial apples and oranges. The connection again lies in the information-theoretic term 
"randomization". Practically speaking, what software lacks in structure in the sense made clear by this paper, the 
human brain must supply in the form of knowledge. Now, randomization theory holds that the human should supply 
novel knowledge exactly once (i.e., random input) and the machine extend that knowledge by way of capitalizing on 
domain symmetries (i.e., expert compilation). This means that in the future, programming will become more 
creative and less detailed and thus the cost per line of code will rapidly decrease. We have learned from various 
sources that the White House has chosen Lisp for programming some server-based applications. It is claimed that 
they experienced a 500 percent improvement in productivity as a result of the extensible features imbued in this 
language. Again, this success story does not begin to touch on the possibilities offered by networked expert 
compilers of scale. According to Bob Manning [7], 

Processing knowledge is abstract and dynamic. As future knowledge management applications attempt to mimic 
the human decision-making process, a language is needed which can provide developers with the tools to achieve 
these goals. Lisp enables programmers to provide a level of intelligence to knowledge management applications, 
thus enabling ongoing learning and adaptation similar to the actual thought patterns of the human mind. 

In conclusion, the solution to the software bottleneck will be cracking the knowledge acquisition bottleneck in 
expert systems (compilers). We need to study knowledge representation and learning, rule-based compilers, and 
associated architectures. For example, it is possible that knowledge-based segments can be retrieved on demand'over 
the Internet, which can provide the necessary economy of scale required for the successful implementation of 
networked expert compilers [10]. 
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