
REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-01-0188

P^DQ^OVRE^^ "* "" """^ * *« "° P~B ^ »
1. REPORT DATE (DD-MM-YYYY)

03-2001
4. TITLE AND SUBTITLE

2. REPORT TYPE

Professional Paper

On the Role of Randomization in Software Engineering

6. AUTHORS

Rubin, S. H. (1)
Trajkovic, L. (2)
Boerke, J. (1)
Rush, R. J., Jr. (1)

3. DATES COVERED (From- To)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

1) Space and Naval Warfare Systems Center 2) Simon Fräser University
53560 Hull Street Vancouver, BC Canada
San Diego, CA 92152-5001

5d. PROJECT NUMBER

ZA01
5e. TASK NUMBER

5f. WORK UNIT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION
REPORT NUMBER

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

13. SUPPLEMENTARY NOTES 20011217 279
14. ABSTRACT " "

Randomization is defined to mean the removal of redundancy from information. In this sense, it is synonymous with
mformaüon compression; although, randomization may extend beyond syntactic representation to toffiS
semantic dements as well. Tins paper serves to make clear the ubiquitous role assumed by randomization mtects ofSoftware
engmeenng - from programming language design to program design to testing. It goes on to show SZT^S^S^
knowledge >n what« termed an expert compiler is critical to «he degree of automation that can be attamed ETä^pe
centric networks allow software developers an economy of scale in support of software reuse. M0™er, knouledge-

Published in Proceedings of the 28"' Conference ICC&IE 5-7 March 2001
C CUD IC^TTcnm^ ~ — ■ 15. SUBJECT TERMS
expert compilers reuse
expert systems software engineering
randomization

16. SECURITY CLASSIFICATION OF:
a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON
Dr. Stuart Rubin, D73C

19B. TELEPHONE NUMBER (Include area code)

(619)553-3554
Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

On the Role of Randomization in Software Engineering

Stuart H. Rubin, Ljiljana Trajkovic, James Boerke, and Robert J. Rush Jr.

Keywords - expert compilers, expert systems, randomization, reuse, software engineering

Introduction

J3ÄÄ AT* represe,"a"on defmes ,he abs™da,a ,ypes and —" «™*« °">°*
On Minimizing Entropy

On the Algorithm

■l^SSÄ' "" """' *' SPaCe an° NaVa' Warfare Syi,em5 C»'» S«" D"8». 53560 H„H
Tel. (619) 553-3554; Fax (619) 553-1130
E-mail srubin@spawar.navv mil; rushr@spawar.nnw mii: jboerke@spawar.naw mil
L. Trajkov.c is with Simon Fräser University, Vancouver, BC Canada
Tel. (604) 291-3998; Fax (604) 291-4951; E-mail ljilja@cs.sfu ca

principled of r.r.ö^^JZ^^l^1^^^^^^ ^ °r ™ in *e absence of first
may also sound foreign to the average ^T^^S^Tl 7*. ^ t0 recaI1 that re,ativistic effec*
experiences. ° P t0 the reIatIve'y h'gh velocity of light with respect to their daily

On Problem ReHnrfiYm

IZ^^s^ ty^^ctSTLr^nv6 "Tt ^^ «*'* *° ™* ^ **
However, if two neural system's aTcc^S"d cS^S ACT "7 ° fUndamemal "^^
knife to a normal position and the second then Sem^ctn Ü "' t0 r°tate a" ob->ect such as a

fundamental memories needed to m^^^t^rS-™*^ *" 0bjeCt' the" the total "™ber of
triangle inequality). The challen JlTscalesuch „T H ! T™ si8nificantly less than c (i.e., the
mind mode? will serve to fac 1 t°a e a alys For examo" ^e \ " "^-^ M °bJect-°rien^ society of
companion network is trained say on w ha TovoL CoSl^ X " f*™*/8 t"lined 0" What a Car is and a

of the system decreased, but the Lability^ «££££* ^^S^2> ^ "" ^ * ^ "^

Software Reuse and Refripvai

code. For example, compare the reusabilfrv „f » „™ f . • ' e h'sher ,he ,cvel- ,he more ™s*le me
level language. Clearly ^hi?°hele el of he °f " "" 'r^ ^ "* ,hal ™'"" '" »™ »igher-
* way of „Todif.cati The^ ,1^^™; ImZ'""^ ""' "V™™'™ * '» ™
certain GUI application components, software »«3^^ te c„SmLbl ' * "'" ""P"™ beCaUSe ^"8

ffiS:^ I:!;^"-er„i:r r,r r !,simiiar ,o a ~*-—-*-«■ <--
software needs ,„ he mod.aole h, ÄSÄ^ Sprain AT "" ""

^St^r^lÄ^ÄÄ"bcins isorphic ,o ,hat of ^ *•— > ***■
this puzzle is something „f a frac ,n„ toeach me °'af a neCeSsanly

1
vafe ^P'»» of the piece. Moreover,

primitive level is attained. BetrievaTimphe inspXn f t" ArT' * "^»f •"<" S*-P^ »"til some
-software realm. snch inspection L .^T^^TTp^^ Ä^ ^

*ASJ£JR. [ANTECEDENT!

Efe_£dit_ Äcfen^flptior^ ^^k^nuj^lecto List Conjunct List - Debug

*_CiaH|X%©|«o ^~

HARDWARE
HUMAN FACTORS
SOFTWARE

| ADD p Brrmtl !'■ IDII • : MD«lp

ASSEMBLY CODE
COMPONENT-BASED
MACHINE CODE
.QSEC^'-öWENTED'''
THIRD-GENERATION

LEVEL 2: OBJECT-ORIENTED ~ i

Java
Lisp
Visual C++

DEnrfz

Fig. 1 A Hierarchical Sequence of Object Menus for Software Retrieval

SÄiSÄiJ^f t0 ^ hUman,y "*"****. We use a hierarchy sequence of object menus for

((DEFUN MYSORT (S)
(COND ((NULL S) NIL)

CT (CONS (MYMIN S (CAR S)) (MYSORT (REMOVE (MYMIN S (CAR S)) S)))))))
10

((((1 3 2)) (1 2 3)) (((3 2 1)) (1 2 3)) (((1 2 3)) (1 2 3)))
? (pprint (setq frepos '((CRISPY'

(DEFUN MYSORT (S)
(COND
(FUZZY
((NULL S) NIL)
((ATOM (FUZZY S ((FUZZY CAR CDR) S))) NIL))

(T (CONS (MYMIN S (CAR S))
(MYSORT (REMOVE (MYMIN S (CAR S)) S))))))))))

((CRISPY '(DEFUN MYSORT (S)

(COND (FUZZY ((NULL S) NIL) ((ATOM (FUZZY S ((FUZZY CAR CDR^ sw NTT »
(T (CONS (MYMINS (CAR S)) (MYSORT (REMOVEöSäÄ)

; Note that (ATOM S) was automatically programmed using the large fuzzy function space.

? (pprint (auto frepos io))

((DEFUN MYSORT (S)
(COND ((ATOM S) NIL)

(T (CONS (MYMIN S (CAR S)) (MYSORT (REMOVE (MYMIN S (CAR S)) S)))))))

! foncti^:^ mn may Create SyntaCtical]y different> b* semantically equivalent

? (pprint (auto frepos io))

((DEFUN MYSORT (S)
(COND ((NULL S) NIL)

(T (CONS (MYMIN S (CAR S)) (MYSORT (REMOVE (MYMIN S (CAR S)) S)))))))

Fig. 2 A Sample Fuzzy Program in an Extended Lisp

Software Debugging

-. - b« »a, can >e d„„e ,P,o « i, „ Ä1£^™ £££ »« £

^ÄÄ ^^trimaI C°Verage 3nd ™* Wh3t ***»* *~ - empl0y to

P^-^ —■* in nUmber so as to render the testing

3 2 1)... because the test vectors are Z 1 y"1 r XL IZ^Z^T ^ ^ ^ &- " <* 2 " (4

(e.g., akin to the basis of a matrix). For example- 0) (f 3)n PT ^ oT™ °f 3 ^
developed a fuzzy programme language that accent, I »™ , ? (} V Furthermore' Rubm [5] [6] has
sequence of test casesto i„sta^IteT^r£^^SL f post'ble wZ^ ^^T' USeS an orthog-a<
program is no better nor worse than the supplied S^nL Th c •% r Inte"*ting here ,s that the induced
critical role played by test case selection indete 2,noT f'"8 '" r£VerSe a"d Serves t0 underscore the
could argue that the afo^^^tS^l for ZSÖ 7"* °f ^^f "8 ^^ pr°dUCed- °"e

programming? How does one map test cases Z ZZ r! programming, but what about say for visual
requires testfng as ck^JX^^h«^«^ a"SWer l* *" ViSUa' Pr0gramming (e.g., creating GUIs)

determines Jsuccess or ^Ätt^oLTTth" ^elsTf^nZ^ * "^ ^^ *"
generation of a minimal set of test ra«.«- if J£ • Tu prOCes?.ot randomization is pervasive: It exists in the

representation of a pro" ^Tpace t^ o eTns'tac alSw^f f00"^ 2 ^ Pr°gram (ix- 3 minimal

expert systems for GUI desigSj^^^^KTSa^ft § Pr°gramS); * ^ ™ the ^ °f

here. Fig. 2 ,s . depiction of a^fuzzy ^JT^J^ ^cTOÄS S* ^

its having been tested^i mut al^ ranlom't^ZZ^^T™- "" ^ ** "^ ™ Pr°P°rti°n t0

be used. For example, consider the develoom^
sections of possibly erroneou code all thetZldhe,an ^T^ *"*** ^transferring to different
of their semantic,^ greater number tf «Aserve""6 ,nStCad f"^ t0 a Poetized randomization
with the result that the overall quaSy of the nroInTT, """"f !* T^ °f tetS mde °f the Subroutine

argument extends to the use of ob ecfs l^S3l TT™ ^ ^ "* °f subroutin^ The same
programming practices" results! Jm^«^^ ^ ^ ** that What ^ be termed' "-domized

Expert Compilers

STpÄS1^ ^^S^^T^ [9]- ^'J1 " Well"kn0Wn that ^« Productivity
six-fold jump in prolSi he 70s w" / sTb!! !" " ' P^™ may be ^^ Thu' We saw a

generation language) prograln.SmaLi ^ W3y t0 Fortran <*■*■' 3d

complexity issues Simply put the ne*JouJ,ntT ^ ^ comP°nent-based programming due to

1 vs. expert compiled program.

ÄÄ^" mJÄÄS ,0 Pr0dUM *? ""rd •""*» «*■ T1" "*, h,„e been
debug and be mo,e Sta in »Xh ^ ,s^ * ^ ^'^tion is a, , higher level and thus easier ,o

ESS r £ME5?." r-?- ÄtsfütÄ
Porlra„L0n,i„edeseribe:re^":L^^,rs^r,^^^^ :ion of the

i^ÄÄ^ (-S' ^isp) serves many of the sa-
that the knowledge is embodied in the obTecHn , tITCC^e an extensibIe IanS^ge and expert compilation is
not the case with°an expert compiled^ NofL the s f'J, t^' WhJCh te"dS t0 ddimit itS reusability- S-h is
limit it offers the same advanSs offered T t ^ *** ^^ hS reUSabi,it>' increases until in the
from this argument iTan^^of0ffZ2l eff7 T*^ T**"' °T S° Jt W°U'd seem- What's missing
detail tend to loose efficiency "' 1S' "& ^ ^^ gCt Smaller'the ^°^ms that they

Third Generation:

Repeat
Read x, y;

Until
y<>0;

ratio = x/y;
If ratio > 0 then
Print ratio

Else
Print -ratio;

Expert Specification:

Read x, y;
ratio = x/y;
Print ratio;

Expert Rules:

If "/" Then denom <> 0
If "/"Then ratio +

Fig. 3 The Power of an Expert Compiler

An expert compiler can optimize code and thereby offers the better of two approaches. On the one hand it frees the
user to express a program in relatively simple and cognitively straightforward terms. On the other hand the resulting
sub-optimal program can then be automatically transformed into a more efficient form. For example, the typical

computer scientist will find it far easier to write an 0{n2) Bubble or Insertion sort than he/she will to write an

O(nlogn) Quicksort. They all may have the same test suite and the expert compiler can incrementally transform

one into the other given an economy of scale. Note that the details pertaining how to accomplish this could occupy
an entire volume. Thus, we necessarily concern ourselves with the concept for now.

A simple expert compiler can become more complex by way of fusing a network of domain-specific knowledge
bases. Notice that as more and more domain-knowledge can be brought to bear on the compilation, the level of the
effectively transformed language can increase. All this may be succinctly stated to be a consequence of
randomization. Moreover, the language in which the rule predicates are represented in each rule base can also be
subject to expert compilation. We call this a knowledge-based bootstrap. Observe that it too is recognizable as being
a higher-level randomization. Informally, we call this a capability for the dynamic domain-specific representation of
knowledge.

Any network of expert compilers can grow to be exceedingly complex. After all, given that there will be errors how

S?^ne trfC a reSUltant err°r back t0 itS S0Urce? This Problem can be accentuated through the use of asynchronous
MIMD architectures. The solution is to keep the human in the loop. Moreover, it is key to note that the more
reusable the representation of knowledge (and software), the greater will be the propagation of repairs. This follows
because highly reusable components are invoked by many other components. Correcting one error then serves to
correct many errors. Think of this as being the inverse of testing, where the higher the degree of reusability the more
likely the program will be valid.

What emerges from the previous discussion is the notion that higher-level software is going to be more structured in
all its salient aspects. Instead of being hand-crafted, it will be assembled - not by humans, but by machines that were
programmed for its assembly. The central thesis of this section is that higher structures necessarily go beyond the lax
bounds imposed by domain-independent representation. While such representations account for objects and
components, they place the entire burden of assembly upon the user. Here, the knowledge source is a sole source-
namely, the human. To climb above the third-generation plateau, one needs to capture domain-specific knowledge
for reuse. Such is accomplished by an expert compiler, which effects in theoretical terms, semantic randomization
Note that fourth-generation languages may appear to get around this problem without resorting to expert
compilation, but this is a convenient illusion. The reason for the illusion is that such languages are not universal In a
practical sense, this means that they are not flexible or conveniently extensible. Also, fifth generation languages
(e.g., Lisp, Prolog, etal.) provide tools for the construction of expert compilers, but are not expert compiled pe°r se°

Conclusions
Insight on whether or not the brain relies primarily upon a neural representation, a symbolic one, neither or both
will enable the construction of ever-more intelligent systems. Moreover, this paper suggests that a new view of
software reuse will evolve in the form of a taxonomy:

• Level 5: Reuse requires a dynamic domain-specific representation of knowledge.
• Level 4: Reuse requires the application of knowledge bases (e.g., expert compilers).
• Level 3: Reuse occurs in the form of objects and components.
• Level 2: Reuse occurs at the code level and allows for parametization.
• Level 1: Reuse occurs at the level of immutable code.

If the brain is to follow this taxonomic description, then level 1 corresponds to declarative memory, level 2 to
procedural memory, level 3 to physical creativity (e.g., substituting a barstool for a chair), level 4'to abstract
creativity (e.g., substituting a table for a chair), and level 5 to creative creativity (e.g., who needs to sit anyway?).

The reader may be curious as to why the fusion of brain science with software engineering in this paper. After all
this is like comparing the proverbial apples and oranges. The connection again lies in the information-theoretic term
"randomization". Practically speaking, what software lacks in structure in the sense made clear by this paper, the
human brain must supply in the form of knowledge. Now, randomization theory holds that the human should supply
novel knowledge exactly once (i.e., random input) and the machine extend that knowledge by way of capitalizing on
domain symmetries (i.e., expert compilation). This means that in the future, programming will become more
creative and less detailed and thus the cost per line of code will rapidly decrease. We have learned from various
sources that the White House has chosen Lisp for programming some server-based applications. It is claimed that
they experienced a 500 percent improvement in productivity as a result of the extensible features imbued in this
language. Again, this success story does not begin to touch on the possibilities offered by networked expert
compilers of scale. According to Bob Manning [7],

Processing knowledge is abstract and dynamic. As future knowledge management applications attempt to mimic
the human decision-making process, a language is needed which can provide developers with the tools to achieve
these goals. Lisp enables programmers to provide a level of intelligence to knowledge management applications,
thus enabling ongoing learning and adaptation similar to the actual thought patterns of the human mind.

In conclusion, the solution to the software bottleneck will be cracking the knowledge acquisition bottleneck in
expert systems (compilers). We need to study knowledge representation and learning, rule-based compilers, and
associated architectures. For example, it is possible that knowledge-based segments can be retrieved on demand'over
the Internet, which can provide the necessary economy of scale required for the successful implementation of
networked expert compilers [10].

A ckno wledgments
This paper includes the work of U.S. Government employees performed in the course of their employment and is
not subject to copyright. It is approved for public release with an unlimited distribution. This work was supported in
part by the Office of Naval Research, NSERC, and the BC Advanced Systems Institute Fellowship.

References
[1] M. Minsky, The Society of Mind, New York, NY: Simon and Schuster, Inc., 1987.
[2] J-H. Lin and J.S. Vitter, "Complexity Results on Learning by Neural Nets," Machine Learning, vol 6 no 3 DD

211-230,1991. • >vv-

[3] S.H. Rubin, "Computing with Words," IEEE Trans. Syst. Man, Cybern., vol. 29, no. 4, pp. 518-524 1999
[4] E.A. Feigenbaum and P. McCorduck, The Fifth Generation. Reading, MA: Addison-Wesley Publishing Co.,

1983.

[5] S.H. Rubin, "A Fuzzy Approach Towards Inferential Data Mining," Computers and Industrial Engineering
vol. 35, nos. 1-2, pp. 267-270, 1998.

[6] S.H. Rubin, "A Heuristic Logic for Randomization in Fuzzy Mining," J. Control and Intell. Systems, vol 27
no. 1, pp. 26-39, 1999.

[7] B. Manning, "Smarter Knowledge Management Applications: Lisp," PC AI, vol. 14, no. 4, pp. 28-31, 2000.
[8] E. Gat, "Lisp as an Alternative to Java," Intelligence, pp. 21-24, Winter 2000.
[9] J. Hindin, "Intelligent Tools Automate High-Level Language Programming," Computer Design, vol. 25, pp. 45-

56, 1986.

[10]I. Ben-Shaul and G. Kaiser, "Coordinating Distributed Components over the Internet" IEEE Internet
Computing, vol. 2, pp. 83-86, 1998.

