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Abstract 

Second-order nonlinear models have been increasingly used in recent years to model 

nonlinear processes in offshore engineering. We apply such models to study the global 

responses of a spar floating platform. Traditional linear models of wave loads on 

offshore structures tend to be inaccurate in the response predictions. Second-order 

nonlinear models although computationally more expensive provide an opportunity 

to better predict these loads. 
Recent tests conducted on a spar floating platform offer wave tank data for extreme 

conditions in both the Gulf of Mexico and the North Sea. We model the tested spar 

floating platform as a linear rigid-body with 6 degrees of freedom. The incident wave 

loads are modeled as a second-order phenomenon. Of interest is the global response of 

the spar, which here is the total horizontal displacement near the spar deck. Although 

the apparent transient response and the few measured response cycles pose difficulties 

in calibrating the model, we find the model to offer reasonable predictions when 

compared to the measured results in wave tanks. 
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Chapter 1 

Introduction 

In this study, we will investigate the global response behavior of a large-volume float- 

ing structure (here, a spar platform) and compare model predictions to measurements 

in wave tank tests on this structure. Given good agreement to data, the model can 

then be used as a tool in designing various structural components of the spar. 

Large-volume floating structures are being increasingly used for deep-water drilling 

and production of oil and natural gas. Examples of such structures include tension- 

leg platforms (TLP), semi-submersibles and spar floating platforms. For a TLP the 

deck is placed on a hull made up of three to five columns, with the columns extending 

into the water and connected to each other by pontoons. The floating hull is held 

down to the sea bottom by vertical mooring lines in tension. A semi-submersible is 

a similar structure, but it is held down by slack mooring lines. On the other hand, a 

spar floating platform is a large vertical cylinder, held down to the sea floor by slack 

or taut mooring lines. The cylinder provides buoyancy to keep the spar afloat and 

can also be used to store oil. The spar considered here has a center well that encloses 

the production risers. This provides for additional protection and easier maintenance 
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of the production risers. 

The mooring lines are typically designed so that the resonance periods of these 

large-volume structures are outside the dominant wave energy periods. For example, 

resonance periods in the horizontal direction of the spar can be of the order of 5 

minutes, far above the wave periods that may be around 5 to 15 seconds. In this 

study, we will analyze these long-period responses in the wave direction, often referred 

to as slow-drift responses, for a spar platform and compare model predictions to wave 

tank measurements. Similar models have been applied before to TLPs [18] and will be 

extended here for the spar platform. The large slow-drift motions seem to be critical 

in various design aspects of the spar and the model can, generally, be extended to 

analyze other motions of the spar as well. 

The spar platform is a relatively new concept (compared to TLPs, for example) 

and the few studies done before [11,12,15,21] do not seem to systematically compare 

model predictions to wave tank data in random seas. In this study, we strive to apply 

different hydrodynamic models and systematically compare time domain predictions 

(using measured waves) to the measured response time histories in random seas. The 

response here refers to the horizontal displacement measured near the spar deck in 

irregular random waves. 

Note that this study is part of the doctoral studies of the author and this report 

has largely been adapted from the author's thesis [4]. The published paper [5] on this 

work is attached in Appendix C for reference. 

i 



Chapter 2 

Spar Model for Slow-drift 

Response 

2.1    Experimental Data 

The floating structure chosen for this study, shown in Fig. 2.1, is a catenary-moored 

spar buoy, intended for deep-water production and storage. The important properties 

required in modeling the spar are summarized in Table 2.1. A 1:55 model scale of 

the spar was tested in the OTRC wave tank [14] under various wave conditions. We 

will look here at the random sea simulations of waves and resulting displacements in 

the horizontal along-wave direction. To investigate these motions, we will need to 

look at surge and heave displacements, pitch rotations and airgap measurements (see 

Fig. 2.2) in the wave tank. If the MWL is the origin, surge is defined to be horizontal 

displacement along the wave direction at the MWL. Pitch rotation is the rotation of 

the spar measured at the MWL in the plane of wave direction. Finally, heave is the 

vertical motion of the spar. 
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MWL 

•Hard Tanks 

Production Riser 
Buoyancy Cans 

Drilling Risers 
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Mooring Lines 

ft Tanks 

40.5 m 

Figure 2.1: Elevation view of Spar platform 

Table 2.1: Details of the spar configuration (in prototype scale) 

Description 
Diameter 
Draft from Mean Water Level (MWL) 
Mass with entrapped water 
MWL to Center of Gravity 
MWL to Center of Buoyancy 
MWL to mooring connection 
Radius of gyration wrt MWL 
Mooring stiffness in horizontal direction 
Measurement gauge location above MWL 
Water Depth  

Notation 
D 
H 
m 

ZCG 

ZCB 

Zf 
KT 

k 
Zm 

d 

Value 
40.5 m 
198.2 m 
2.59xlO8 kg 
105.8 m 
99.1 m 
105.6 m 
122.8 m 
191 kN/m 
54.8 m 
922 m 
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Wave 
Direction DOF5. 

MWL 
6—*-► 

OCG 

Heave 

DOF1 

Roll Surge (DOF1) 

Spar 
(a rigid cylinder) 

Figure 2.2: Degrees of freedom for spar 

In the wave tank, the spar was tested for the following wave conditions: 

• 12 different regular waves 

• 14 different combinations of bi-chromatic waves 

• 4 different random wave seastates 

• various tests for combinations of random waves, currents and variable winds 

The random wave measurements are for durations of one hour each with a sampling 

frequency of 0.37 seconds, and simulate the following storms: 

• operational and installation seastates, both long-crested and short-crested 

• a 10-year Gulf of Mexico storm 

a 100-year Gulf of Mexico storm 
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• a North Sea storm 

• a West Africa storm 

Of these, we focus on the two most severe storms: (1) the 100-year Gulf of Mexico, and 

(2) the North Sea storm. The experiments include two different hourly realizations 

of the same Gulf of Mexico storm and one hourly realization of the North Sea storm. 

The remaining smaller storms are not considered in this study. A summary of the 

wave tank measurements in the two storm is: 

• two realizations (1 hour each) of a seastate described by a JONSWAP spectrum 

with significant wave height Hs = 13.1m, Tp = Us, and a peakedness factor j = 

2.0. These seastates are intended to represent roughly 100-year Hs conditions 

in Gulf of Mexico sites and we will refer to these tests as GOM1 and GOM2 

• one realization (of 1 hour) reflecting a second seastate characterized by Hs = 

Urn, Tp = 16.3s, and 7 = 2.0. This seastate roughly represents 100-year Hs 

conditions in the North Sea and we will refer to this test as NS. 

In these experimental tests, the surge and heave responses are recorded by a video 

camera tracking a light source placed 54.8 meters above MWL along the cylinder 

vertical axis. The pitch rotations were recorded by an inclinometer mounted on the 

deck of the model. The airgap measurements were recorded by a probe attached to 

the spar deck facing the waves, while another probe measuring the wave surface was 

placed 125 meters (prototype scale) away from the spar, in a direction perpendicular 

to the propagating waves. This probe placed away from the spar is intended to 

measure the undisturbed waves, or what is typically referred to as the "reference" 

waves. The airgap probe measures the "disturbed" waves, which refers to the waves 

in the presence of a structure. 
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Table 2.2: Reference wave summary statistics for the OTRC wave tank tests used for 
slow-drift response analysis of the spar 

Test GOM1 GOM2 NS 
Npts 9702 9702 9702 
Nominal Hs (m) 
Nominal Tp (m) 

13.1 
14 

13.1 
14 

14 
16.3 

Observed Hs (m) 
Observed Tv (sec) 

14.15 
14.1 

13.98 
14.1 

14.78 
16.1 

Calculated Tz (sec) 
Mean, y, (m) 
Sigma, av (m) 
Skewness, a% 
Kurtosis, on 

10.83 
.063 

3.537 
0.307 
3.057 

10.74 
.076 

3.495 
0.309 
3.242 

12.0 
-.040 
3.699 
0.173 
3.277 

Minimum (m) 
Maximum (m) 

-9.054 
12.74 

-9.711 
16.21 

-11.12 
17.52 

A summary of the reference wave statistics, as found from the measurements, is 

reported in Table 2.2. The observed Hs is defined to be four times the wave an, while 

the observed Tp has been found from an averaged spectrum from the measured wave 

histories. Tz = ^0/% is found from second (A2) and zeroth (A0) moments of wave 

spectrum S(f) with no smoothing, where A„ = / fnS{f) df. Note the presence of 

nonlinearities in the waves (a3 > 0 and a4 > 3), and the differences in the target 

(nominal) and observed Hs values. 

In the response measurement we focus here on the surge displacement of the 

spar. These slow-drift responses in the surge direction are usually large and can 

govern the design of many structural elements, for example the mooring lines, of the 

spar. The heave response for a spar platform is comparatively small and will not 

be investigated in this study. We anticipate no significant roll, sway or yaw motions 

to occur in unidirectional seas for this axi-symmetric structure and will not study 
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these motions either. For the spar considered here, the horizontal displacement is 

measured at an elevation of 54.8 m above the MWL. Since this measurement point is 

away from the center of rotation, the horizontal displacement will be contributed by 

the surge displacement and the pitch rotation (about the center of rotation). Note 

that the center of rotation is close to the center of gravity of the spar. If we define the 

rigid-body degrees of freedom (DOF) at the MWL (see Fig. 2.2), then a unit radian 

pitch rotation will cause a 46 meter (= 54.8x sin(l)) displacement in the horizontal 

direction at the measurement point. We will refer to surge-induced displacement as 

"DOF1 displacement", and the pitch-induced displacement at the measurement point 

as "DOF5 displacement". 

To understand these surge- and pitch-induced displacements, we will look at one of 

the measured horizontal displacements. Figure 2.3 shows the power spectrum of the 

measured horizontal displacements for GOM1. This spectrum shows three prominent 

peaks which in sequence left to right are: the surge-induced, the pitch-induced and 

the wave-frequency components. Note how small the wave-frequency contribution 

(around f=0.07 seconds « 1/Tp) is compared to the other to components. The surge 

and pitch components appear to contribute more to the total horizontal displacement. 

The peaks in the spectrum indicate natural periods in surge (DOF1) and pitch 

(DOF5) to be about 330 and 70 seconds, respectively. Independent free decay tests 

of this spar also indicate the natural periods in surge and pitch to be about 330 and 

67 seconds [14]. To study the three components separately, we introduce frequency 

cutoffs at 0.006 Hz and 0.03 Hz to filter the contributions from the three components. 

The frequency range below 0.006 Hz indicates the surge component, and the range 

above 0.03 Hz indicates the wave-frequency component. Finally, the pitch-component 

range is assumed to be between 0.006 Hz and 0.03 Hz. 
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Figure 2.3: Spectrum of measured surge displacements at 54.8m elevation above MWL 
for GOM1 seastate 

Table 2.3 summarizes the statistical moments of the horizontal displacement his- 

tories, and the moments of its filtered components is presented in Table 2.4. A 

comparison of standard deviations a of filtered components in the three measure- 

ments, confirms that compared to the wave-frequency component, the low-frequency 

or slow-drift components (DOF1 and DOF5) dominate the total horizontal displace- 

ment. Thus a force model capturing only the wave-frequency components is likely 

to severely underpredict the horizontal displacements. Such a force model is usually 

referred to as a linear or a first-order model. For example, in Fig. 2.3 a linear force 
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Table 2.3: Statistical moments of the measured horizontal displacements for the seast- 
ates. Note that the maximum and minimum values contain //. 

Seastate /i (m) ff(m) «3 <*4 Min.(m) Max.(m) 

GOM1 4.942 5.788 0.078 2.677 -12.32 22.76 
GOM2 5.130 6.176 0.052 2.965 -14.95 . 25.99 

NS 3.396 7.949 0.144 3.163 -21.87 29.35 

Table 2.4: Statistical moments of the filtered components (with zero mean) of mea- 
sured horizontal displacements 

Component a(m) «3 Q!4 Min.(m) Max.(m) 
GOM1 

Wave-frequency 2.473 -0.023 2.697 -7.882 7.158 
Surge component 3.375 0.091 2.196 -6.378 7.229 
Pitch component 3.997 -0.005 2.177 -9.733 9.520 

Surge+Pitch Comp. 5.233 0.044 2.443 -8.466 18.52 

GOM2 
Wave-frequency 2.508 -0.032 2.843 -7.933 7.604 

Surge component 3.937 0.185 2.959 -8.818 10.24 
Pitch component 4.040 -0.002 2.357 -9.516 9.854 

Surge+Pitch Comp. 5.643 0.026 2.968 -11.94 20.77 

NS 
Wave-frequency 3.159 0.028 3.006 -10.36 11.32 

Surge component 4.373 -0.113 2.051 -8.938 7.897 
Pitch component 5.906 -0.077 2.625 -18.57 15.38 

Surge+Pitch Comp. 7.356 0.048 3.094 -17.05 26.12 

model would attempt to predict only the wave-frequency component, and it would 

fail to predict the DOF1 and DOF5 components. Another force model that, instead, 

attempts to predict the force components away from the wave-frequency region is 

often referred to as a second-order model. In general, a second-order model includes 

forces that are at the sums and differences of the wave frequencies. In modeling the 
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high-frequency heave response of a TLP, for example, interest focuses on the sum- 

frequency component, while in this study where the slow-drift response is of interest, 

a difference-frequency model would be more appropriate. Recall that in modeling the 

wave elevations [3], we needed both the sum- and difference-components. 

We will next look at the component time histories in Fig. 2.4. The vertical axis 

label in each plot indicates the component being displayed. For the total horizontal 

displacement (shown in the topmost plot in Fig. 2.4), note the distinct transition 

in response characteristics around 1500 seconds. The displacement prior to 1500 

seconds seems to be due to dominant pitch motions, while after 1500 seconds the 

surge-induced (low) frequency response seems more dominant. This is also evident 

in the time history components shown, where the surge amplitudes are larger in 

the second half hour than in the first. Such a transition shows the difficulty in 

modeling a seemingly non-stationary behavior of the spar. The very limited number 

of surge response cycles seen in the hourly measurement additionally contribute to the 

difficulty in calibrating a model to this data. In this study, we investigate four such 

model forms that attempt to capture the nonlinear forces and the resulting responses 

of the spar. The model predictions will be compared to the wave tank measurements. 

Note that in these models, while the forces can be nonlinear, the structure is still 

assumed to respond linearly to the incident forces. 

2.2    Structural Model 

As mentioned earlier, the surge displacement, measured at an elevation of 54.8 m 

above the MWL, is contributed by the surge and pitch DOFs defined at the MWL. In 

order to capture this dual-contribution to the total horizontal displacement, we model 
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Figure 2.4: Total measured horizontal displacement and its filtered surge, pitch and 
wave-frequency components for GOM1 seastate 
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the spar as a rigid cylinder with two DOFs (surge and pitch) defined at the MWL, 

see Fig. 2.2. To define the DOFs we choose the MWL as the origin because the first- 

and second-order waves forces have been defined with the MWL as the origin. Note 

that the spar is modeled as a rigid body, and the surge and pitch DOFs or modes 

refer to the rigid body motions of the spar close to the surge and pitch resonance 

frequencies. 

From geometry considerations, we find that the structural mass matrix Mstr, from 

properties summarized in Table 2.1, for the 2-DOF model is 

Mctr = 
mil   "Ms 

msi     77*55 

m -mZcG 

-mZcG   I(=mK?) 

2.59 x 108kg       -2.74 x 1010kg.m 

-2.74 x 1010kg.m    3.91 x 1012kg.m2 

(2.1) 

The added mass matrix Madd, reflecting the effects of waves radiated by the oscillating 

spar, is assumed to be constant for the low-frequency modes, and is found from 

diffraction analysis [8] to be 

Madd = 
2.71 x 108kg       -2.60 x 1010kg.m 

-2.60 x 1010kg.m    3.20 x 1012kg.m2 
(2.2) 

Note that Madd is of the same order of magnitude as Mstr for this large-diameter 

structure. The stiffness matrix, again from geometry considerations, is found to be 

K = 
k —kZf 

-kZf   kZj + kh 

(2.3) 

where kh is the hydrostatic stiffness encountered by the spar when rotated in the 
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pitch direction, and is given for small rotations as [12] 

7T 
kh = 7rR2Hpg(ZCG ~ ZCB) - jpgR4 (2.4) 

where p is the water density, g is the acceleration due to gravity and R = D/2 is the 

spar radius. On substituting these, we find 

K = 
1.91 x 105N/m   -2.02 x 107N 

-2.02 x 107N    1.6 x 1010N.m 
(2.5) 

An eigenvalue analysis of the 2-DOF spar is solved for the shapes $ and squared 

frequencies A using 

K§ = M$A (2.6) 

in which M = Mstr + Madd and A is a diagonal matrix of the squared frequencies and 

results in the natural surge and pitch periods of 331 seconds and 69.9, respectively. 

This is very close to the natural periods observed for the GOM1 seastate (see Fig. 2.3) 

and also close to the natural periods found from the free decay tests. This confirms 

the modeling of the mass and stiffness properties.  The eigenmodes, scaled to unit 

values in the DOFS, 

1 100.6 

6.8 x 10-5       1 

indicate the first mode of the cylinder to be surge dominated, while second mode 

shows a 100.6 meter horizontal displacement for every unit radian rotation in pitch. 

Note that this system shows strong "geometric-coupling" induced by the distance 

from measurement point to the center of rotation. 

$ = (2.7) 
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2.3    Hydrodynamic Model Forms 

The base case model considered here for the spar is a linear, 2-DOF (DOF1 and 

DOF5) rigid cylinder with incident wave forces estimated from diffraction analysis 

of the structure [8]. The diffraction analysis for any structure is commonly done 

by applying sinusoidal waves of different frequencies uk chosen from the wave power 

spectrum. Irregular waves can be written as r)(t) = ReYlCkexp(iuJkt) where Ck 

are complex Fourier amplitudes. The first-order forces A(t) are then found at these 

incident wave frequencies as 

fx (t) = Re £ C*#i M exp(iu>kt) (2.8) 

where Hi is the first-order transfer function, while the second-order forces are found 

as the forces at pairs of wave frequencies as 

f2(t) = Re Y, £ CmCnH; (wm, w„) exp[i(a;m - un)t) (2.9) 

where H^ is referred to as the difference-frequency transfer function. 

Note that in finding these transfer functions through second-order diffraction anal- 

ysis, the spar was allowed to float freely [8,9]. A linear diffraction analysis was used to 

estimate the frequency-dependent added mass and damping for the spar. Note that 

the second-order diffraction analysis is computationally intensive and limited to a few 

wave frequency pairs (here 8x8 frequency grid ranging from 0.2 to 1.18 rad/sec). We 

adopt a surface spline fitting scheme FITQTF [7] to interpolate the sparse QTF to a 

fine mesh for use in predictions using TFPOP [17]. See Appendix B for some studies 

on the sensitivity of the predicted results to different interpolation schemes. 
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What remains to be modeled are the damping ratios, f i and £5, of the system in 

the two DOFs that can be used to construct the damping matrix C of the system as 

Q^M-'C® = 
2&W1       0 

0      2&W5 

(2.10) 

where u>\ and u>5 are the resonance periods in surge and pitch DOFs. 

The damping ratios f 1 and £5 for the 2-DOF system are calibrated using measured 

data. An approach for such a calibration could be to tune & and £5 such that the 

predicted a matches measured a in each mode. This approach, however, may mask 

potential errors in the force levels. For example, if the force levels from diffraction 

analysis are overestimated, then the system will end up being tuned to an overly 

large £ values to compensate the large forces. Alternatively, we can tune £'s from the 

measured spectral bandwidth 5 [1] in each DOF. Other methods include half-power 

bandwidth, or random decrement method [19]. In this study, we will use the spectral 

moments An to estimate the bandwidths 8. 

S = y/l- A?/(A0A2) ;    \n = ffnS(f)df (2.11) 

where £>(/) is the measured spectrum. Note that S1 the bandwidth of the surge com- 

ponent is found from S(f) for / < 0.006 Hz. Similarly, pitch component bandwidth 

S5 is from the spectral moments for 0.006Hz < / < 0.03Hz. We resort to an itera- 

tive identification of the damping ratios, so that the predicted response bandwidth 

matches the measured bandwidth simultaneously in both DOFs. 

We may additionally recognize wave-drift damping [2,18] as another damping 

mechanism in the system. This damping is due to the spar (slow) drifting in the waves. 
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The resulting force is proportional to the spar velocity and to the wave amplitude- 

squared [2]. A consequence of this extra damping force is that it "clips" the peaks of 

the surge response, and as such is a "beneficial" nonlinearity that we will include in 

our second model. Wave-drift damping, similar to nonlinear force, is a second-order 

effect and is to be defined across pairs of wave frequencies (as in the QTF definition). 

In this study, the diagonal values for wave-drift damping definition were found using 

SWIM [10] and the off-diagonal terms estimated using Newmann's approximation [13]. 

The effect of this approximation should be small for this slow-drift problem, as the 

interesting frequency pairs lie very close to the diagonal. 

As will be demonstrated in the comparisons to follow, we see that both of these 

models appear to underestimate the value of the most basic indicator of nonlinearity: 

the net mean applied force and hence the observed mean horizontal displacement. 

This mean underprediction may be due to the absence of viscous forces in the models. 

An asymmetry in the viscous forces, due to the effect of integrating to the time- 

varying surface, causes a net mean offset of the structure in the wave direction. A 

third model is thus considered that additionally includes viscous force effects. The 

viscous forces are found as Morison's drag force integrated from the spar bottom 

(keel) to the free surface. The drag force is based on absolute fluid velocity with an 

assumed coefficient of drag CD - 0.6 to reflect large viscous effects in a wave tank. 

A Wheeler stretching [22] of the water particle kinematics is used above the mean 

water level. 

It may be argued that the disturbed waves, instead of the reference waves (as 

used in the third model) better represent the wave surface close to the cylinder and 

as a result will capture the viscous forces effects more appropriately. Recall that the 

disturbed waves have been measured in the wave tank by a wave probe attached to 
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Table 2.5: Nomenclature for the four proposed model forms 

Description 
Base-case model with diffraction forces 
Model with diffraction forces and wave- 
drift damping 
Model with diffraction forces, wave-drift 
damping and viscous forces from reference 
(undisturbed) waves 
Model with diffraction forces, wave-drift 
damping and viscous forces from disturbed 
waves   

Model 
DF 
DF/WDD 

DF/WDD/VF(u) 

DF/WDD/VF(d) 

the deck of the spar. Inclusion of viscous forces from disturbed waves leads to the 

formulation of a fourth model. We will compare predictions from these four models 

in the following sections. Reference will be made to the models by names as given in 

Table 2.5. 

2.4    Input Wave Histories for Models 

To consistently use the LTFs and QTFs from the diffraction analysis, which assumes 

the input waves to be Gaussian, we seek to infer consistent first-order wave compo- 

nents from the measured reference waves. We will apply these first-order waves to 

estimate the diffraction forces on the spar. We use WAVEMAKER [6] to identify 

the first-order components of the reference waves for each of the three seas: GOM1, 

GOM2, and NS. The methodology to identify the underlying first-order waves is to 

seek the implied first-order wave history that, when run through the second-order 

wave predictor, yields an incident wave that agrees with the target observed history 

at each time point. This identification is performed using a Newton-Raphson scheme 
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to achieve simultaneous convergence at each complex Fourier component. Details of 

this identification scheme can be found in Appendix A. Figure 2.5a shows a com- 

parison of the reference wave spectrum for GOM1 seastate being studied here and 

the identified underlying first-order wave spectrum. Note that, as observed in Refer- 

ence [3], the spectral density of the second-order component is significantly smaller 

(even at twice the peak spectral frequencies) than that of the first-order component, 

however, phase locking of the first- and the second-order component (see Fig. 2.5b) 

leads to larger crests and flatter troughs. 

In the DF/WDD/VF(u) model, while diffraction forces are still based on the 

underlying first-order waves, viscous forces are based on the observed reference waves. 

In the DF/WDD/VF(d) model, viscous forces are based on the disturbed waves as 

measured by the airgap probe attached to the spar. Note that the airgap probe, 

measuring the free surface elevation above the still water level, includes the heave 

(vertical) motions of the spar. We compensate the airgap measurements for these 

heave motions to get the time-varying free surface. This inferred wave time history 

is referred to as disturbed waves. 

2.5    Calibrated Damping Values 

As proposed, we iteratively identify the damping ratios fx and £5 in surge and pitch 

DOFs, so that the predicted spectral bandwidths in each frequency component si- 

multaneously match measured results. Since GOM1 and GOM2 are two realizations 

of the same seastate, we find common damping ratios across the seastates for each 

mode. We do this by tuning f x and £5 so the bandwidths Sx and S5 of the predicted 

spectrum that has been averaged across the two seastates, match simultaneously the 
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Table 2.6: Calibrated damping ratios (%), f, for the models in surge (DOF1) and 
pitch (DOF5) components 

Model 
GOM1 k 2 NS 

Surge Pitch Surge Pitch 

DF 
DF/WDD 
DF/WDD/VF(u) 
DF/WDD/VF(d) 

4.5 
3.3 
4.0 
6.5 

1.6 
0.6 
0.5 
.001 

1.7 
.001 
2.5 
0.1 

.001 

.001 

.001 

.001 

bandwidths of the observed spectrum which also has been similarly averaged across 

the two seastates. Table 2.6 summarizes the calibrated f's for the four models. 

Note that if we sought to estimate damping ratios by matching the rms of the 

response we would expect the damping ratios from the DF/WDD models to be smaller 

than those of the DF models. We would similarly expect the damping ratios from 

the VF models to be larger than the WDD model. This is not guaranteed since 

we are matching the spectral shape (bandwidth); it is comforting, however, to still 

see this comparison in the damping ratios. For the NS case, we find that even with 

£5 « 0 we are still not able to match the observed bandwidth exactly and the observed 

bandwidth is still narrower than predicted. This may be due to limited pitch data in 

the 1-hour measurements or there may be some effects that the model is not able to 

predict in the pitch motions. This may the cause for inability of the model to match 

the noisy bandwidth estimates. 
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2.6    Estimation of Initial Conditions 

Finally, we observe the need to include measured initial conditions in our prediction 

results. Note that a 1-hour measurement includes only about 10 («3600/331) re- 

sponse cycles in DOF1. Note also the time variation of the relative contributions of 

the surge and pitch components in the different parts of the time history in Fig. 2.4. 

In the experiments, the measurements were recorded after about 15 minutes (proto- 

type scale) when the wave tank conditions were deemed to have achieved steady-state 

conditions and hence the spar is not initially at rest. In order to include transient 

effects and to model these few cycles appropriately, we include measured initial con- 

ditions in the predictions. If, instead, the structure were assumed in the prediction 

to be start from at-rest conditions, these incorrect initial conditions would corrupt 

the predictions, more so in DOF1 response (where we see only a few cycles) than in 

DOF5 (where we see about 50«3600/69.9 cycles). 

In order to estimate the initial conditions in the surge and pitch DOFs in each 

seastate, we need to use the measured horizontal displacements and the measured 

pitch rotations. The measured horizontal displacement is filtered to obtain the zero- 

mean surge and zero-mean pitch components. The mean offset is directly found from 

the measured history prior to imposing any filters. This mean contains the mean 

offset due to both surge and pitch components. A separate measurement of the pitch 

rotations is used to find the mean pitch rotation which then is converted to a mean 

offset due to pitch rotation. Given this pitch mean, we subtract it off from the total 

horizontal mean offset to get the mean offset due to surge. We add the mean surge 

and mean pitch offsets back into the filtered zero-mean surge and pitch histories. The 

initial displacement and velocity in surge DOF is then found from the first two time 

points of this mean-corrected surge history. Similarly, we find the initial displacement 
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Table 2.7: Estimated initial conditions in surge and pitch DOFs for the three seastates 

Sea Surge DOF Pitch DOF 
Displ. (m) Vel. (m/s) Displ. (rad.) Vel. (rad/s) 

GOMl 
GOM2 

NS 

6.09 
4.46 
-9.22 

0.0135 
-0.00951 
-0.0706 

0.188 
-0.0362 
-0.254 

0.00152 
-0.000694 
-0.00171 

and velocity for the pitch DOF from the first two time points of the mean-corrected 

pitch history. Table 2.7 gives these estimated initial conditions at the MWL for the 

three seastates. Note how different they are from at rest initial conditions (zero 

displacements and zero velocities). 

Note that the first-order response is estimated separately and does not depend on 

the second-order response calculation. So we, instead, efficiently predict the first-order 

response in the frequency domain. No initial conditions are forced on the first-order 

response calculation. Initial conditions will only affect the first few cycles, and will 

have little impact of the time histories that have hundreds of cycles. 
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Chapter 3 

Results 

To investigate the model accuracy, we will compare predicted response moments of the 

three frequency components: wave-frequency, surge (DOF1) component, and pitch 

(DOF5) component. This will give an insight into model behavior at the component 

level. We then will look at the combined (total) surge response to see how well the 

pieces fit together to yield the combined predictions, i.e., the total predicted horizontal 

displacement. 

3.1    Wave-frequency (first-order) Response 

Figure 3.1 compares the statistics of the predicted to observed first-order response. 

These statistics include standard deviation <Ti, the absolute maximum response nor- 

malized by <7i, and the absolute maximum response. The first-order response, being 

primarily inertia dominated, is almost the same for all the four models. The vis- 

cous effects are accounted for in the second-order response estimation. Stiffness and 

damping terms contribute little to the first-order response because the natural pe- 

riods are far away from the wave-frequency range (see Fig. 2.3). We see reasonable 

25 
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agreement of measured and predicted au suggesting that the mass properties, and the 

LTFs have been modeled adequately. The normalized absolute maximum first-order 

displacements from predictions also agree with observations. Note the slight over- 

prediction for the GOM seastates in ax and the normalized maximum displacements. 

These overpredictions combine to cause an overprediction of the absolute maximum 

values for the GOM seastates, as seen in Fig. 3.1. The NS first-order prediction seems 

to agree with observations for all three statistics. 

Figure 3.2 shows time histories of the first-order response and shows good agree- 

ment in the amplitudes and phases of measurements and predictions. Note the change 

in the y-axis captions, when viewing Fig. 3.2. Here the 500-second windows have been 

shown for clarity; the rest shows similar comparison. The time window is selected 

to include the absolute maximum values for the observed histories. An agreement 

in the time histories confirms the LTF formulation from diffraction analysis and also 

confirms the identification of the first-order input wave components from the mea- 

sured undisturbed waves. Since all the four models predict almost the same first-order 

response, only one predicted history is shown each of the seastates. 
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3.2    Surge (DOF1) and Pitch (DOF5) Component 

Responses 

Figure 3.3 compares the predicted statistical moments to the corresponding observed 

values. For each moment, the observed value for each seastate appears on the X-axis, 

and the predicted values are shown on the Y-axis. Note that we use three symbols 

on the X-axis to indicate the observed values in the three seastates. See Tables 2.3 

and 2.4 for numerical values of these moments. For each symbol on the X-axis, we 

have four model predictions each shown using a different symbol. Consequently, in 

one plot we should see four symbols aligned vertically, for every symbol on the X- 

axis, indicating four model predictions for every observed value. Each of the model 

predictions is shown using the same symbol across the three tests, in order to gauge 

the model predictions across tests. Perfect prediction is shown as a 45 degree dotted 

line on each plot. 

As noted previously, we find here that the DF and DF/WDD models underesti- 

mate the total mean offset in surge (see Fig. 3.3). However, as also was anticipated, 

inclusion of viscous forces considerably improves the agreement in the predicted mean 

offsets. Use of disturbed waves in the VF(d) models yields, in all three tests, a slightly 

larger mean offset than the VF(u) model. Note that in the plot the observed mean 

offsets for each of the three seastates (see Table 2.3) have been marked on the X- 

axis (observed axis) by three different symbols. A difference in the observed values 

for GOM1 and GOM2 indicates the level of observed scatter to be expected when 

comparing model predictions to measurements. 

In Fig. 3 3, a comparison of aDOFi and CTDOFS, 
the standard deviations in the surge 

and pitch frequency components, shows that on average the DF model underpredicts 
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the rms of the response. The largest DF underprediction in CTDOFI, which in the case 

of the NS, is about 40% of the observed value. This is also the case for GOM2. 

aDOF5 seems only slightly underpredicted by the DF model for GOM1 and GOM2; 

however, aDOF5 appears to be overpredicted by the DF model for the NS case. This 

may be due to the noisy estimate of the pitch damping ratio &• Recall that in the NS 

seastate, & is close to zero, but still the predicted spectral bandwidth was broader 

than observation. 

In general, the underprediction in the standard deviations becomes slightly more 

severe on inclusion of wave-drift damping (DF/WDD model). Inclusion of viscous 

forces from either the disturbed or the reference waves leads to better agreement 

in the ff's. From the plots, it may be argued that the VF(d) models gives better 

agreement in a's than the VF(u) model when compared across the three seastates. 

Note how close the VF(d) prediction is in all the three tests for both CTDOFI and aDOF5, 

except for <TDOFI in GOM2. This discrepancy for GOM2 still appears to be within 

the observed scatter in the rms response (difference in the rms value for GOM1 and 

GOM2). 

Instead of comparing the predicted skewness and kurtosis values, we will directly 

look at the maximum response in each frequency component. We will first look at 

maximum displacement normalized by the rms response for each component. Note 

that the filtered components have zero mean in all comparisons to follow. A nor- 

malized maximum comparison will give a sense of the tail prediction by the models 

independent of the rms comparisons. Finally, we will look at the absolute values of 

hourly maximum displacements. In Fig. 3.4, the top figures compare the normal- 

ized maximum values for the two frequency components. In both the components, 

all predictions, in general, show good agreement with observations for GOM1 and 
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G0M2. In the NS case, however, surge (normalized) maximum seems to be overpre- 

dicted by almost 35% for all models. We will investigate this issue when comparing 

the response time histories of the surge component. Results for the absolute maxi- 

mum displacements for each component can be anticipated from comparisons of the 

standard deviations and the normalized maximum displacements. For the maximum 

surge, we may anticipate that the maximum value comparisons will be similar to 

the rms comparison, since the normalized maximum value is well predicted in this 

case. The bottom-left plot in Fig. 3.4 confirms this. As may also be anticipated, 

the maximum response comparison in the NS case shows a large scatter in across 

model predictions. The underpredicted rms seems to compensate the overpredicted 

normalized maximum displacement in the VF(u) model so that it is closest to the 

observed maximum response in the NS case, while other models either underpredicted 

or overpredict severely the observed NS maximum surge displacement. 

The bottom-right plot in Fig. 3.4, shows similar results for pitch frequency com- 

ponent. Here, we find the VF(d) model to yield the closet agreement to observation. 

The other prediction models, also yield good agreement (largest discrepancy of 12%) 

for the GOM seas, while they underpredict the maximum pitch response in the NS 

case by about 30%. 

Figure 3.5 compares the measured and predicted time histories filtered to include 

only the DOF1 frequency range. The filtered DOF1 results for all three tests (see 

the Y-axis caption) along with the corresponding predictions from the DF and the 

DF/WDD/VF(d) models. Note how few surge (DOF1) cycles are observed in the 

1-hour duration, and consequently, as noted earlier, the potential difficulty in using 

these few cycles to tune the prediction models. Reasonably good agreement is seen 

between the measured and predicted time histories for all three tests, except in the 
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case of the VF(d) model for NS. Note how close the predicted surge is in the GOM1 

case over almost the entire duration. For GOM2 the observed surge shows a general 

decay in amplitude until about 1500 seconds following which we see large surge cy- 

cles. This general trend seems to be shown by both the prediction models as well. 

For the NS, however, the DF model prediction seems to underpredict the surge re- 

sponse at almost all time points and the VF(d) model seems to give better agreement 

with observed results. In the last two cycles, however, the VF(d) model appears to 

overpredict the surge amplitudes. Note that the predicted surge from either models 

is in phase with the observed surge, more so in the VF(d) case than in the DF case. 

A comparison of the pitch (DOF5) time histories from measurement, the DF 

model and the DF/WDD/VF(d) model is shown in Figs. 3.6, 3.7, and 3.8. We will 

first focus on the GOM1 pitch histories in Fig. 3.6, where for convenience, the first 

half hour is shown on the top plot and the second half hour is shown in the bottom 

plot. A comparison of amplitudes and phases across the entire histories shows that 

the predicted pitch from both the models tends to generally follow the observed 

amplitudes, and occasionally disagrees in phase. For example, the DF model agrees 

with observed phase until about 1000 seconds and gradually goes out of phase around 

1600 seconds and comes back in phase around 2000 seconds. The VF(d) prediction 

follows a similar in-out phase agreement, however, the disagreement seems less severe 

than the DF model. See, for example around 3000 seconds, while the DF model is 

completely out of phase, the VF(d) is still in phase with observation. Also, notice 

around 500 seconds, the VF(d) agrees with observed amplitudes much better than 

the DF model. 

Similar, observations can also be made for the GOM2 and NS tests. It, generally, 

appears that the VF(d) predicted amplitudes and phases agree with observed results 
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better than the DF model. 

Recall that we incorporate measured initial conditions for each of surge and pitch 

components, when predicting response. The input initial conditions for each DOF 

at the mean water level result in a net initial condition at the measurement point 

(54.8 m above the MWL). We show in Fig. 3.9, that indeed the prediction model 

preserves the net input initial conditions. Here we show the initial portions of the 

net horizontal displacement due to the surge and pitch components from observation 

and from prediction models: DF and DF/WDD/VF(d). Recall that the first-order 

or wave-frequency component is found from frequency domain analysis with no input 

initial conditions. Fig. 3.9 shows that we identically reproduce the net initial condi- 

tions in all the three tests and in the two prediction models. This is also true for the 

other two predictions not shown in this figure. 
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Figure 3.3: Comparison of statistical moments for surge and pitch components in the 
three seastates: Predictions from the four models vs. measurements. The moments 
include total mean, and standard deviations in surge and pitch frequency components 
(see titles in the figure). 
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Figure 3.6: Zero-mean pitch (DOF5) time histories for GOM1: prediction vs. mea- 
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Figure 3.7: Zero-mean pitch (DOF5) time histories for GOM2: prediction vs. mea- 
surement 
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3.3    Total Predicted Horizontal Displacement 

Finally, we add all the predicted components together to get the total predicted 

horizontal displacement and compare to measurements. We add the three predicted 

components (wave-frequency, surge and pitch) time point by point to get a time 

history of the total horizontal displacement or what we may refer to as the total or 

combined response. Since the surge and pitch contributions to total surge response 

is significantly (as seen in Table 2.4) more than the first-order response, we may 

anticipate similar comparisons at the total response level as we did in each of surge and 

pitch component comparisons in Sec. 3.2. Note that the variance of the total response 

a2 is simply the sum of the variance of each of the three components (=<7DOF1+aDOF5+ 

o\). Fig. 3.10 compares predicted and observed ou where the VF(d) model appears to 

give the closest prediction of all, with a slight disagreement (underprediction of about 

12%) on the GOM2 case where it still seems within the observed scatter in GOM1 

and GOM2. The normalized maximum displacement (bottom-left figure in Fig. 3.10) 

shows a similar result as seen for the surge component case (in Fig. 3.4).   This is 

because the other two contributing components (pitch, and wave-frequency) generally 

show good agreement in the normalized maximum displacement comparisons (see 

Figs. 3.1 and 3.4). Finally, the bottom-right plot in Fig. 3.10 reports the maximum 

horizontal displacement of the total response.   We find that the DF/WDD model 

predicts smaller maximum response levels than the DF model, and inclusion of viscous 

effects makes the agreement better. 

A qualitative comparison of the predicted and measured combined time histories 

is shown in Figs. 3.11, 3.12, and 3.13 for the three seastates, respectively. We will first 

look at the GOM1 test in Fig. 3.11. As noted previously (in Fig. 2.4), the measured 

displacement shows a transition in the response around 1500 seconds (from visual 
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inspection). The prediction models also show a similar transition: the DF and VF(u) 

models around 1800 seconds, and the VF(d) also around 1500 seconds. Also around 

500 seconds, the general nature of the prediction differs among the three models. Here 

again, the VF(d) model seems to better compare with the measurements. Similarly, 

for the GOM2 test in Fig. 3.12, the predicted amplitudes and phases generally follow 

the measured results in the top plot. The prediction models appear to have differ- 

ent frequency-component contribution around 2500 seconds, and of these the VF(d) 

model seems to be closest to measurements. Finally, for the NS case in Fig. 3.13, 

the prediction models predict similar displacements after about 2500 seconds. From 

about 1000 to 2500 seconds, we find absence of the low-cycle or surge frequency com- 

ponents when compared to the measured result. This was also seen in Fig. 3.5 where 

the predicted surge component is very small compared to the observed component. 

For the VF(u) model, it seems that in the same time range (100 to 2500 seconds) 

even the pitch component is underpredicted, and the total predicted displacement is 

predominantly first-order. 

The prediction models, in general, seem to predict the GOM1 and GOM2 test 

results better than in the NS case. Recall the difficulty in calibrating pitch damping 

ratios for the NS case (that turned out to be almost zero). 
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Figure 3.11: Combined (total) surge response time history for GOM1: prediction vs. 
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Chapter 4 

Conclusion and Future Work 

4.1    Conclusion 

In order to predict the global response of a spar platform, we used different hydro- 

dynamic force models and applied it to a linear rigid-body model of the spar. Such 

models have been applied earlier to other large-volume floating structures. Exist- 

ing studies on the spar, however, do not appear to systematically compare model 

predictions in the case of random sea measurements. 

Geometry considerations led to the development of the rigid-body structural model 

and the incident forces were modeled as second-order diffraction forces. We incremen- 

tally added other hydrodynamic effects, for example: the wave drift damping, and 

viscous forces on the spar (from disturbed or undisturbed waves) in order to better 

match model predictions to data. For the damping characteristics (over and above 

the added/diffraction damping and wave drift damping) of the spar, we calibrated 

the damping ratios in each of the two contributing modes (surge and pitch) so that 

the predicted spectral bandwidth matched observed results. 
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The limited number of response cycles (in surge) and the apparent "mode-swapping" 

in the measured horizontal displacements posed practical difficulties in calibrating the 

prediction models to the measured results. We applied measured initial conditions in 

an effort to better predict such transient characteristics. 

The prediction models generally appear to give good agreement with the measured 

results. The comparisons were based on the moments (mean, standard deviation 

and maximum displacement) of the predicted and measured time histories, as well 

as on direct comparison of the time histories itself. Such comparisons were made 

for the total displacement histories and its filtered components (surge, pitch, and 

wave-frequency) across the three random sea measurements (reflecting severe storm 

conditions) in the wave tank. 

We surveyed four prediction models: (1) nonlinear diffraction forces only, (2) 

diffraction force plus wave drift damping effect, (3) model 2 plus additional viscous 

forces due to undisturbed waves, and (4) model 2 plus viscous forces from disturbed 

waves. The diffraction force model seemed to underpredict the observed mean offset, 

inclusion of viscous effects then better predicted the mean offset. The four models 

generally give good agreement with observed results and even appear to predict the 

apparent mode-swapping seen in the observations. 

4.2    Future Work 

The first proposal is to perform additional investigations in an effort to further im- 

prove the agreement between the predicted and measured results. We could, for 

example, investigate half-hour measurements instead of the hourly measurement in 
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an attempt to identify effects of nonstationarity on predicted response. Another in- 

teresting study would be to quantify the mode-swapping effects seen in the measured 

histories using a moving window. We could study a ratio of the rms surge to pitch 

response across these windows and develop a strategy for identify the occurrence of 

mode-swapping ranges in the time history. We could similar scheme to the predicted 

history as well and the compare it to measured results. 

In the model formulations, we suggest investigating other schemes to calibrate 

the damping ratios in the four prediction models. For example, we could tune the 

damping estimates to match the rms of the measured response, instead of the spec- 

tral bandwidth as used in this study. The model accuracy can then be gauged by 

comparing the predicted and measured spectral bandwidths. The methods studied in 

this dissertation can be extended to other responses, for example, the heave response 

of the spar in random waves to design the airgap of the spar. 

Given successful comparison of predicted results to measurement, the model can 

be applied, for example, to perform a fatigue or ultimate strength analysis of the 

spar. We could use these to develop load and resistance design factors for the limit 

states considered. 
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Appendix A 

Methodology of First-order Wave 

Identification 

The details of this methodology and some application of this can also be found in 

Reference [3]. 

The idea here is to identify the implied first-order history ^(t) (of an observed 

history r)ohs{t)) which, when run through the second-order predictor, yields an inci- 

dent wave that agrees with r)ohs(t). The reader is referred to [3,6] for details on the 

algorithm and the wave identification studies. 

In the first-order wave process T]x(t) written as a Fourier sum of N frequencies, 

N/2 N 

m. (t) = X>* C0SM + ö*) = £ Xk^kt (A-X) 

fc=l *=1 

we need to identify only the lower half Xk components, since the upper half values 

are complex conjugates of the lower half. Let us denote Xk = Uk+iVk, where Uk, Vk 

are the real and imaginary parts of the complex Fourier component Xk, respectively. 
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The predicted second-order wave process as evaluated from the QTFs is 

N/2 N/2 

Aifc(t) = 2Re E E XmXnH+J«**+** + X^^-J^'^ (A.2) 
m=l n=l 

This may be rewritten in the form of a Fourier sum as 

Ai»(t) = E ne*-*' (A.3) 

where Yk = yfc
+ + IV are the combined sum and difference frequency components. 

Here again, Yk possesses conjugate symmetry so that only the lower half contains 

unique information. Yk
+ can be shown to be 

n+ =  E *m*Ä 
m+n,k 

=     E  [(UmUn-VmVn) + i(VmUn + UmVn)}H+n (A.4) 
m+n,k 

where the summation symbol indicates a double summation 

N/2 N/2 

E    =  E  E       SUch that Urn + Un = "k (A-5) 
m+n,fc       m=l n=l 

and 

^t     =     E  XmX*Hmn 

=       E    [(ümün + ^m^ + tCKnün-ü-m^lÄ^ (A.6) 
771—71,fc 

where 
TV/2 7V/2 

53 = J2 E   such that \Um -un\ = u}k (A.7) 
n-n,fe       m=l n=l 
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The combined predicted wave process is 

VPUt)=Vi(t) + &r)2(t) (A.8) 

The identification scheme strives to simultaneously match r}pTed(t) to the observed 

wave history rjohs(t) at every value of t. Alternatively, we can perform the identi- 

fication in the frequency domain and strive to simultaneously match the predicted 

Fourier components to the observed Fourier components at all frequencies. 

rjobs(t) can be represented in the frequency domain as 

ita»(t) = E^e*** (A-9) 

where Zks also possess conjugate symmetry. If the first-order components are iden- 

tified exactly, from Eqn.s A.l, A.3 and A.9 we will have 

Zk = Xk + Yk   ;   forallA: = l...JV/2 (A.10) 

Note that the upper half values can be obtained from conjugate symmetry of the 

lower half values. In the Newton-Raphson identification scheme we will try to simul- 

taneously minimize Xk + Yk - Zk; for k = 1... N/2 to achieve convergence. Now, this 

scheme requires a Jacobian of Xk + Yk - Zk with respect to the unknowns X*-such a 

complex differentiation will lead to numerical discontinuities so we will minimize an 

equivalent real function y/Ei fk/N instead, where for fc = 1... N/2 

fk   =   Re(Xk+Yk-Zk) 

A-HV/2   =   lm(Xk+ Yk-Zk) (A.ll) 
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The identification of the lower half Xk values requires a simultaneous solution of 

the nonlinear equations in A.ll such that /* -> 0 for all A: = 1 N, or alternately 

Jill fk/N ~* °- We wil1 f°rmulate the Newton-Raphson scheme in vector form as 

f = 
" ReX ' 

+ 
' ReY " 

— 
ReZ 

ImX ImY ImZ 
(A.12) 

where bold face letters denote vectors, and vectors X,Y,Z contain the complex 

ReX 
ImX is a vector Fourier components Xk, Yk,Zk,k = l... N/2, respectively. Here, [■ 

containing the real part of X in the upper half and the imaginary part of X in the 

lower half. 

Let us denote 

A = 

B = 

C   = 

" ReX ' 
ImX 

' ReY ' 

= 
U 
V 

ImY 
ReZ 

(A.13) 

ImZ 

Note that the vector A, of length N, is constructed such that lower half values 

are the real parts of Xk; k = 1...N/2 and the upper half is the imaginary part 

of Xk; k = 1...N/2. Similarly, B and C, each of length N, contain real and 

imaginary parts of the lower half of the second-order correction and the observed 

Fourier components, respectively. The elements of A and B are denoted by <n and 

bk, respectively, where I, k = 1... N. The objective function in vector notation now 

is 

f(A) = A + B-C (A.14) 



59 

A first-order Taylor approximation of f (A) about a given A(0) is 

f(A)=f(A(°)) + [J](A-A<°)) (A.15) 

where [J] is a NxN Jacobian matrix denoting the derivatives of the elements fk in 

vector f (A) with respect to each of the unknowns at in A where kJ = l...N. The 

Newton-Raphson scheme at iteration p + 1 is then formulated as 

A(p+D=AW+h (A-16) 

where h, a vector of length N, is found from a Cholesky decomposition followed by 

a back-substitution scheme from 

[J]h = -f (A«) (A.17) 

It can be easily shown from Eqn. A. 14 that the entries Jkyl of the matrix [J] are 

'«-!£-*<+& <A18) 

where dbk/dcn indicates the partial derivative of bk with respect to ah and 

1   iik = l (A.19) 
0   otherwise 

iki 

To find dbk/dai, recall from notation in A.13 

bk = ReYfe     and     bk+N/2 = lmYk    for k = l...N/2 



60 APPENDIX A. FIRST-ORDER WAVE IDENTIFICATION 

at = ImXi = Ui     and     al+N/2 = ImX, = Vt    for I = 1... JV/2 

so that from Eqn.s A.4 and A.6 we have 

dReYk 

dUi 

dReYk 

dVi 

dlmYk 

dUi 

dlmYk 
dVt 

=     E  {Un6ml + UmSra)H+n+  E  (Un5ml + UmSnl)H; 
m+n,k m—n,k 

=    £  - (VnSml + VmSnl) tf+n +  E (VnSna + VmSnl) H-n (A.20) 
m+n,fc m-n,fc 

=   E Mi + VnW^+ E W-W^ 
m+n,k m—n,k 

E    Wntf + tfm<W#mn +    E    (UJml ~ Um6nl) H; 
m+n,k m-n,k 

Schematically, 

[J] = [I] + 

dReYk 

dU, 
äimVk 

dUi 

dV, -&£ 
dV, 

(A.21) 

where [7] is the identity matrix. 



Appendix B 

FITQTF: QTF Surface Spline 

Interpolation-A Pre-processor to 

TFPOP 

B.l    Introduction 

A need to have better interpolation schemes for QTFs in second-order analysis using 

TFPOP [17] motivated the development of this tool. The analysis required to obtain 

QTF values is usually an expensive process, as a result the values are estimated only 

for a sparse number of frequency pairs. TFPOP provides options for a few interpola- 

tion schemes (see [17]), that are based on weighted linear interpolation of QTF values 

within a specified radius. This tool supplements the available interpolation schemes 

in TFPOP and provides for a flexible means of interpolating a sparse QTF data set 

into a fine mesh for direct input to TFPOP. The salient features of this tool are: 
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• The input QTF data is in WAMIT [20] format, this is also the format in which 

TFPOP reads in the QTFs. The output interpolated QTF is also in a format 

that TFPOP can read directly. 

• The input QTF can be a sparse data set on a regular or irregular grid of fre- 

quency (period) pairs. The data set need not be any order. Due to symmetry 

conditions, the input QTF should only be provided on either the upper or the 

lower triangle about the principal diagonal (w* = Wj) of the frequency axis. 

• The interpolation is based on a flexible scheme of surface-fitting. FITQTF 

allows for surface-spline fits of various orders in both frequency directions. 

• The interpolation can be based on the axes being any one of frequency (Hz), 

wave period (seconds), wavelength (meters), or wave number (per meter). 

B.2    Interpolation Options 

The input QTF is interpolated by fitting spline surfaces of different orders, kx and 

ky (specified by the user), in the two directions x and y. FITQTF can fit splines of 

orders ranging from 1 through 5 in each direction . Different orders of splines can 

be chosen in the two directions. The data can also be rotated by 45 degrees in the 

frequency plane and then interpolated. This rotated interpolation offers a benefit 

of fitting along the principal diagonal, for example, without using any information 

from the off-diagonal terms. The user can also specify the x and y coordinate axes 

used in interpolation to be one of: frequency (Hz), wave period (seconds), wavelength 

(meters), or wave number (per meter). 
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Table B.l: Description of error messages from FITQTF 

ler 

ier=0 

ier=-l 

ier=-2 

Description 

Unless the routine detects an error, ier contains a 
non-positive value on exit 
Normal return, the spline returned has a residual 
sum of squares fp such that abs(fp-s)/s < tol with 
tol a relative tolerance set to 0.001 by the program 
Normal return,  the spline returned is an interpo- 
lating spline (fp=0) 
Normal return, the spline returned is the weighted 
least- squares polynomial of degrees kx and ky. in 
this extreme case fp gives the upper bound for the 
smoothing factor s  

FITQTF requires as input a parameter s that governs the level of smoothing 

desired in fitting the surface data. A very large value of s will result in a least- 

squares fit to the surface, while, in theory, a value s = 0 will result in an interpolating 

spline. However, such an interpolating spline may not always be possible owing to 

possible theoretical (refer to the subroutine comments regarding more details on s 

and corresponding error messages). Public domain subroutines (surf it and bispev) 

are used to fit a surface to the QTF data and the resulting spline coefficients are used 

for interpolation. For a specified s value, the program tries to fit a surface and then 

estimates the sum of the residuals squared, and prints these out on standard error. 

Error flags are also printed to convey the success in fitting the data. The details of the 

interpretation of the error messages are in the comments of the subroutine surf it, 

and Table B.l presents a list of "acceptable" error message values ier: 
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Figure B.l: Frequency grid points of the sparse and the finely meshed QTF values 
from SWIM 

B.3    Verification Studies of FITQTF Interpolation 

Some verification studies were done on the accuracy of interpolation from FITQTF 

for surge response analysis of the OTRC spar. For the spar modeled as a 1-DOF 

model in the surge direction, a diffraction analysis was performed on a fine mesh 

of difference frequency QTFs to generate the mean and standard deviation of the 

surge response. We also perform the same diffraction analysis, but now using various 

interpolated QTF schemes starting from a sparse QTF data set. The sparse QTF 

data set contains about 10 times fewer values than the fine mesh QTF as shown in 

Fig. B.l. Both the QTF data sets were generated using SWIM [16]. 

The diffraction analysis involved finding the mean, /x, and standard deviation, 

a, of the surge response from direct statistics, and from an hourly prediction of the 
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response in a seastate characterized by Hs = 14.1m, Tp = 13.8s, 7 = 2.2. Three 

models of the spar were analyzed, assuming the natural periods to be 330 sec, 100 

sec, and 71 sec. Each of the three models were analyzed assuming two damping 

values of 2.4% and 5% in the surge direction. Thus, we have a total of six cases that 

were analyzed for fj, and a. "Exact" moments for these models were generated from 

the 100x100 finely meshed QTF. The moments were also generated using various 

interpolated QTFs starting from the 8x8 QTF and compared to the exact moments. 

The different interpolation schemes adopted in this comparison study are: 

• realimag: Using the TFPOP built-in interpolation on real and imaginary QTF 

values within a specified radius of 0.032 Hz. 

• 11,0: Using FITQTF to interpolate to a fine mesh by fitting linear splines in 

both directions without any rotation of the axes 

• 11,45: Using FITQTF to interpolate to a fine mesh by fitting linear splines in 

both directions after rotating the axes by 45 degrees 

• 33,0: Using FITQTF to interpolate to a fine mesh by fitting cubic splines in 

both directions without any rotation of the axes 

• 33,45: Using FITQTF to interpolate to a fine mesh by fitting cubic splines in 

both directions after rotating axes by 45 degrees 

Figures B.2 and B.3 show \i and a from direct statistics for the various interpolated 

QTFs versus the exact moments from the 100x100 QTF. Each vertical strip on these 

plots corresponds to a natural frequency, and along each vertical strip there are two 

sets of points corresponding to the two damping ratios used for each natural frequency. 

All the structures are analyzed assuming the same QTF, and are analyzed in the same 
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seastate so the mean surge does not depend on the natural period, as a result the 

mean ratio for an interpolation model does not change with natural period. Also, the 

damping ratio does not affect the mean, so we two sets of mean for the two damping 

ratios lie on top of each other for a given natural frequency. It is seen from this plot 

that FITQTF substantially reduces the error in estimating the mean. The realimag 

interpolation yields about 8% smaller mean than the exact answer, and the FITQTF 

interpolations closer predictions. 

Similarly, we see in Fig. B.3 that a bi-linear interpolation without any rotation 

is in error by a maximum of 20%, while the rest of the interpolation schemes give a 

significantly better fit to the exact answer across the three natural periods, and across 

the two damping ratios. The closest fit among the interpolation schemes shown, seems 

to be provided by the bi-cubic interpolation in both ß and a. 

Another set of comparison of the interpolated QTF moments to the exact moments 

are shown in Fig.s B.4 and B.5 for 1-hour prediction in the same seastate. Here again, 

we find similar observations as in the direct statistics comparison. The closest fit to 

the exact answer seems to be offered by the bi-cubic splines. 

In conclusion, we find that FITQTF seems to offer a flexible, convenient and 

reliable means of interpolating the QTFs. 
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Figure B.2: Direct statistics mean for interpolated QTFs from sparse QTF vs. exact 
mean from finely meshed QTF (from diffraction analysis) 
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MOTIONS OF A SPAR BUOY IN RANDOM SEAS: 

COMPARING PREDICTIONS AND MODEL TEST RESULTS 

Alok K. Jha, P. R. de Jong, and Steven R. Winterstein 

Civil Engineering Dept, Stanford University 

ABSTRACT 

This study compares the analytically predicted motions of a floating spar buoy platform with the 
results of wave tank experiments. Results studied include extreme conditions in both the Gulf of 
Mexico and the North Sea. Base-case predictions combine nonlinear diffraction loads and a linear, 
multi-degree-of-freedom model of the spar stiffness and damping characteristics. Refined models 
add the effect of wave-drift damping, and of viscous forces as well. Consistent choices of damping 
and wave input are considered in some detail. These successive model refinements are generally 
found to improve agreement with the model test results. 

KEYWORDS 

Nonlinear wave diffraction; offshore structures; random vibration; spar buoys, structural reliability; 

wave tank experiments. 

INTRODUCTION 

This study describes ongoing research into the statistical response behavior and reliability of a 
particular deep-water floating structure: a spar buoy. Typically, the spar buoy concept involves a 
deep-draft, large-diameter cylindrical floating structure, with slack or taut mooring (e.g., Glanville 
et al 1991) This concept has recently gained increased interest within the offshore community. For 
example Oryx has installed the first production spar (Neptune) in 1996, while Chevron is currently 
designing the first spar (Genesis) for both drilling and production. Concurrently, a particular 
spar buoy has been designated the "theme structure" of the NSF-sponsored Offshore Technology 
Research Center (OTRC), centered at Texas A&M University and at the University of Texas at 

Austin. 

This study compares analytical predictions of spar surge motions with the results of model tests from 
the OTRC wave tank (OTRC, 1995). Comparisons are shown both for summary response statistics 
and for complete time histories. Consistent choices of damping and wave input are considered in 
some detail. Responses are filtered and compared for three distinct frequency ranges: a relatively 
high-frequency contribution due to first-order wave energy, a low-frequency contribution due to 
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Figure 1: Elevation view of spar platform. Figure 2: Degrees of freedom for spar. 

pitch, and a still lower frequency contribution due to surge. Model tests are studied for extreme 
(100-year) conditions in both the Gulf of Mexico and the North Sea. 

Results from analytical models are shown here over a range of increasing modelling detail. The base 
case includes nonlinear diffraction forces and a linear, multi-degree-of-freedom structural model. 
Refinements on this include the addition of wave drift damping, and then of viscous forces as well. 
These successively more detailed models are generally found to yield improved agreement with 
model test results. The analytical predictions also show the ability to capture another notable 
feature of the spar model tests; namely, the apparent "mode-swapping," between the spar response 

in pitch and surge modes, during the hour-long tests. 

Spar Buoy Characteristics 

Figure 1 shows the prototype dimensions of the spar buoy under study. Note its relatively deep 
draft (#=198.2m), particularly with respect to its diameter (£>=40.5m). For prediction purposes 
the spar buoy hull is assumed rigid, and its mooring lines are modelled as a set of massless, linear 
springs To predict the spar's motions in the along-wave direction, we adopt a 2DOF model that 
includes the surge motion Xl(t) and pitch rotation s8(t) at the mean water level* (Figure 2). At an 
elevation z above this level, the corresponding along-wave displacement of the rigid spar is predicted 
simply as n(t) + z ■ xs(t). In particular, we apply this result here with z=54.8m, to compare with 
video-recorded surge motions at this elevation during the wave tests (OTRC, 1995). 

Mode Shapes and Periods 

Assuming small deformations, the 2 x 2 stiffness and mass matrices can be constructed from geomet- 
rical considerations (Jha, 1997). This mass matrix includes added mass terms, reflecting first-order 

*Not.e that we retain the common convention that numbers surge and pitch DOFs as -1» and "5" respectively, 

although no other DOFs are included here. 



wave radiation effects. The resulting mode shapes and natural frequencies are 

A = ±. [Hz],* = [1   Of;       /. = 55 [Hz], * = [100   if (1) 

These modal frequencies agree well with the natural periods, Ti=330s and 7s=67s, estimated from 
free^decay tests of the spar (OTRC, 1995). Note that this lower-frequency mode involves a pure 
translation, while the higher-frequency mode reflects a pure rotation about an axis located at depth 
100m below the MWL. (Equivalently, Eq. 1 implies that a small rotation x5 [rad] is accompanied 
by a translation of Si=100x5 [m] at the MWL.) These modes directly reflect the translational and 
rotational stiffnesses, respectively, of the spar's mooring system. 

QUALITATIVE RESULTS AND CONSISTENT DAMPING ESTIMATES 

We consider here the spar model tests that reflect extreme, roughly 100-year wave conditions. We 
also focus on tests that apply wave loads only, neglecting other tests that include simultaneous 
current and/or wind loads. This leaves us with three model tests, each lasting 1 hour (all time and 
length units here reflect prototype scale). Two of the three are separate realizations of 100-year 
Gulf of Mexico seastates, while the third models 100-year North Sea conditions. We refer here 
to these seastates as "GOM1", "GOM2", and "NS". (In OTRC internal reporting, these tests are 
respectively denoted "aran3", "aran4", and "aran5". To date, only "aran3" has received systematic 
study by OTRC investigators; e.g., Ran et al, 1996, Weggel and Roesset, 1996). 

Wave Measurements and Characteristics 

A reference, "undisturbed" wave deration history has been measured during the OTRC tests by 
a probe located 125m (prototype scale) from the spar, in a direction perpendicular to the wave 
direction. The spectra of these waves are found to be relatively well-fit by JONSWAP spectral 
shapes with 7=2; the significant wave height and peak period values are estimated as #.,=14.1m 
and Tp=14.1s for the Gulf of Mexico seastates, and tf,=14.8m and Tp=16.1s for the North Sea test 
(Jha, 1997). Note however that our response predictions use the observed wave histories from the 
tests', and not the simulated input from a theoretical wave spectral model. 

Response Measurements and Characteristics 

Figure 3 shows the power spectrum of the spar displacement, measured at height z=54.8m above 
MWL, during the GOM1 test. Note its two low-frequency modes, at around ft=l/330 and /5=l/70 
Hz, reflecting motions induced by surge and pitch resonance. As Figure 3 shows, we use bandpass 
filters here to separate the observed surge component (0-.006 Hz), pitch component (.006-03 Hz), 
and remaining wave frequency component (above .03 Hz). This gives rms response contributions 
of a,nr9,=3.4m, api((A=4.0m, and a„.al,R=2.5m. Thus a linear force model, which predicts energy 
only at the wave frequencies, would capture only a small portion of the response rms. It would also 
completely fail to predict the mean response, here found to be 4.9m. The other tests offer similar 
results. This shows the need for models of nonlinear forces—diffraction, drag or both—to explain 
not only the mean offset but also the amplitude of slow-drift oscillations for the spar. The effects 
of both nonlinear diffraction and drag loads are considered below. 

Figure 4 shows the corresponding time history of the response during the GOM1 test. Both the total 
response and its filtered components are shown. Consistent with its power spectrum in Figure 3, 
the response indeed displays three distinct time scales. What Figure 3 fails to reveal, however, is 
that the relative contribution of the different frequency components does not remain constant over 
time. For the GOM1 test, the observed response changes qualitatively at around *=1500s, when 
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the surge component begins to contribute significantly. The other tests show somewhat similar 
shifts between the energy in surge and pitch modes—although this "mode swapping" is observed 
at different times, and for different durations, in different tests. The wave input histories show no 
such episodic nature. This reflects a further modelling challenge: can analytical models predict 
not only the correct average frequency content (e.g., the spectrum in Figure 3), but also time- 
domain behavior consistent with Figure 4? Clearly, this time-domain evolution of surge and pitch 
components depends directly on (1) their initial conditions at the beginning of the test recording 
and (2) the damping values assigned to these modes. We therefore discuss the.se issues, particularly 

damping estimation, in some detail. 

Estimating Initial Conditions 

In the experiments, spar motions were recorded after about 15 minutes (prototype scale), when the 
wave tank conditions were deemed to have achieved steady-state conditions. Thus, the assumption 
of at-rest initial conditions would corrupt our predictions, more so in the surge mode which contains 
relatively few cycles over the hour-long test. To avoid this, our predictions use initial conditions 
consistent with the tests; i.e., for each test we filter the observed motions to estimate surge and 
pitch components (e.g., Figure 4). The initial values/velocities of these components are then used 

to start our slow-drift motion predictions (Jha, 1997). 

Estimating Surge and Pitch Damping 

Because the tests include relatively few cycles of lightly damped motion, it is challenging to form 
precise damping estimates from them. We focus here on frequency-domain damping estimates, using 
response spectra from the various tests (e.g., Figure 3).  One may, for example, select dampings 
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& so that our analytical model predicts the correct area under each of these observed spectral 
modes (i.e., the variances a*urg(. and o£/(A). A danger in this approach is that it may mask a 
force modelling error (e.g., Ude, 1994). For example, if predicted forces are overestimated we 
may overestimate damping in an effort to compensate. Thus, we instead seek damping values 
to preserve the observed spectral shape—the rms values asurgf. and apuch are reserved to test the 
model's adequacy. One such measure of spectral shape is the half-power bandwidth, at which the 
response spectrum decays to half its peak value. By setting this bandwidth to its approximate value 
from theory—/ffp=±Ct/i to either side of the natural frequency /;—one can estimate the damping 
Q from an observed power spectrum. For example, if the spar buoy has damping Ci=-05 at the 
surge frequency Z^l/330, we find ^=1/6600 Hz. Unfortunately, from a T=l-hour history, our 
finest frequency resolution is d/=l/T=l/3600 Hz—too coarse to resolve the half-power bandwidth, 
even if no frequency-averaging is applied to the observed spectrum. 

We are therefore led to consider the average shape of the response spectrum across frequencies, as 
measured by the unitless bandwidth measure 5 (Vanmarcke, 1972): 

<J = Vl-A?/(A0A2);   K = JfnSrXf)df (2) 

Note that in general, any parameter of the form Sn=[l - K/{^2n)]m could be used to reflect 
bandwidth: Sn ->• 0 as the bandwidth narrows. Perhaps the most widely used is S2, e.g, in modelling 
peaks of a Gaussian process. We use S with n=l here, as its lower spectral moments are less sensitive 
to high-frequency spectral content. We apply Eq. 2 twice, over the frequency ranges of surge (0-.006 
Hz) and pitch (.006-.03 Hz) components, to find separate S values that characterize their respective 

modal bandwidths. 

For a 1DOF system under broad-band loads, S can be related directly to the damping level (Van- 
marcke, 1972, Ude and Winterstein, 1996). To form estimates consistent with our 2DOF model, 
however, we select damping ratios £i and £s so that our predicted response shows the same 6 val- 
ues, in both the surge and pitch frequency ranges, as found from the observed responses. This is 
an iterative process, which must be performed for each choice of (1) seastate and (2) predictive 
response model. We differentiate here between 2 seastates (GOM1 and GOM2 versus XS), and 
among 4 predictive models. These models are described below, together with the 2x4 values of 
modal dampings that result. In each case, a corresponding damping matrix C is inferred from the 
mass matrix and the matrix $ of modal shapes: C=M$Q$_I in terms of Q=diag(47rCi/i). 

Predictive Models of Forces and Damping 

Our first, base-case model applies diffraction forces only (the "DF" model). Linear diffraction 
gives first-order transfer functions F[l\u)k) and F^\uk), the (complex) amplitude of surge force 
and pitch moment due to a unit-amplitude wave at frequency uk. A corresponding second-order 
diffraction analysis gives F[2\uk,uij) and Fi2){uk,u3), the surge and pitch excitation amplitudes 
at the difference frequency uk - u}- due to pairs of incident waves at frequencies uk and u3- (Kim 
and Yue, 1989; Kim and Yue, 1991). These subharmonic excitations drive the surge and pitch 
resonant motions, which dominate the spar response (e.g., Figure 3). Note that these diffraction 
forces assume as input not the undisturbed total wave elevation/potential but rather its first-order 
component. Here we use new methods (Winterstein and Jha, 1997) to identify the underlying 
first-order contribution to the observed undisturbed wave. 

For this model, the damping matrix C gives the major source of damping. For example, Table 1 
shows that this DF model requires the damping ratios Ci=4.5% and £=1,6% to match the spectral 
bandwidths estimated from the 2 GOM tests. In this (and other cases) the single XS test suggests 
rather lighter damping; indeed, an effectively zero value of pitch damping is not always able to give 



Model 

DF 
DF/WDD 
DF/WDD/VF(u) 

DF/WDD/VF(d) 

Description 

Base-case model with diffraction forces 
DF model phis wave-drift damping 
DF/WDD model plus viscous forces from 
undisturbed waves   
DF/WDD model plus viscous forces from 
disturbed waves   

GOM 

4.5 
3.3 
4.0 

6.5 

1.6 
0.6 
0.5 

.001 

NS 

1.7 
.001 
2.5 

0.1 

.001 

.001 

.001 

.001 

Table 1: Description of 4 models, and consistent damping ratios Ci and Cs in surge and pitch. 

as narrow a spectral bandwidth as observed. Note, however, that the XS test includes only a single 
hour, making narrow bandwidth* more difficult to estimate than over the combined, two hours of 

GOM tests. 

Our second model (DF/WDD) includes both diffraction forces and wave-drift damping. This 
damping force is proportional both to the structural velocity and to the square of the wave am- 
plitude The resulting nonlinear damping will tend to offset large slow drift forces, and perhaps 
reduce the extreme peaks of the surge response. We may expect that once wave drift damping is 
added, we require lower values of the additional modal damping £ than in the DF model. Table 1 

shows that this is indeed the case. 

Finally we also implement two models that include viscous drag forces as well as diffraction effects. 
These differ only in their choice of wave input: one uses the undisturbed waves, while the other 
uses the disturbed waves near the spar, inferred from its reported heave motions and the air-gap 
(structure-to-wave distance) measurements. Both models use the Morison's drag term with CD=0.6, 
and Wheeler stretching (Wheeler, 1970) to integrate effects from the spar bottom to the free surface 
They also both use the absolute fluid velocity; relative velocity effects are assumed reflected through 

damping terms. 

NUMERICAL RESULTS 

Wave-Frequency Response 

We first compare the wave-frequency portions of the predicted and observed spar responses. These 
observed portions are found by applying a high-pass filter, with a low-frequency cutoff of .03 Hz., 
to the measured displacement histories. Figure 5 shows that these predictions fairly accurately 
predict not only the qualitative response behavior, but also its detailed cycle-by-cycle evolution in 
all three tests This suggests that our models accurately reflect first-order wave forces, and the mass 
properties of the spar. (Because slow-drift forces and damping do not affect this wave-frequency 
response, all four of our models predict roughly the same histories in Figure 5. Thus, for clarity 
Figure 5 shows predictions only for the simplest (DF) model.) 

Slow Drift Response 

Figure 6 compares the predicted and observed moments of the slow-drift response. Results are 
shown for the rms values «r, and «75l corresponding to frequency ranges (0-.006 Hz) and (.006-.03 
Hz) and for the total mean offset (which cannot be split directly into surge and pitch contributions). 
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three tests. 

In each case the predicted values from all 4 models are plotted against the observed value from that 
test. Because there are 3 tests, this results in 4 x 3=12 data points per plot. A 45-degree line 

implying perfect agreement, is also shown. 

Focusing first on the diffraction-only (DF) model, we find it underpredicts both the mean and rms 
in all but one of the 9 observed values. (We return below to the anomalous case, which involves the 
pitch rms <75 in the \S test.) Adding wave drift damping (DF/WDD) will not change the mean, 
and only weakly affects the rms predictions (again excluding the XS pitch case). This suggests the 
need for viscous forces, which contribute both an extra mean force (due to the asymmetric effect 
of wave stretching) and a slowly-varying drift force. As Figure 6 shows, the VF(u) and VF(d) 
models—which include viscous forces—generally give better predictions of both the mean and rms 
levels Results with the disturbed wave (VF(d)) generally give slightly higher responses—both in 
mean and rms-than those using the undisturbed wave (VF(u)). Neither the VF(u) nor VF(d) 
model seems systematically closer to the observations; however, both appear superior to models 

that exclude viscous forces altogether. 

Returning to the anamolous pitch response in the XS test, note from Table 1 that our damping 
calibration effectively fails in this case. Although each of the 4 models was assigned only minimal 
pitch damping (Cs=-001), all of these predict wider spectral bandwidths than that observed in the 
XS test Thus the predictive models here are not "damping-tuned" to the tests as in the other 
cases—and the pattern of the 4 model predictions for <r5 in the XS case is somewhat arbitrary. As 
to why the bandwidth mismatch may occur, recall the increased effect of limited data in the XS 
case: here the bandwidth estimation uses only the 1 hour test, as opposed to the 2 pooled hours 
used to form the predictive model for both GOM seastates. 

Total Response Histories 

Finally we compare the observed and predicted 1-hour histories of the total spar displacement. 
Figures' 7-9 show these histories for the 3 1-hour tests. All figures show the observed displacement 
history at the top, while 3 of the 4 corresponding predictions are shown beneath (the DF/WDD 



model is omitted for clarity). Recall that our particular interest lies in predicting not only overall 
response statistics, but also the response evolution and potential mode-swapping (e.g., Figure 4 for 
the GOM1 case). Figure 7 repeats that case, and it is notable that all 3 predicted responses show 
a similar trend, toward greater surge response, in the second half of the GOM1 test. Note also 
that for extreme response events (e.g., observed response above 20m), all of the predictions show 
fairly good agreement. The greatest deviations, between the test and predictions, seem to occur 
over periods of relatively low response amplitude (e.g., times *=0-1000s, 1500-2300s). 

Figure 8 shows similar tendencies for the GOM2 test. Again there is good qualitative agreement: 
both the tests and the predictions show a period of relatively little surge (at around *=700-2000s), 
followed by a marked surge increase through the rest of the hour. Large observed responses tend 
to coincide with high predicted values. The magnitude of these large responses is not as well pre- 
dicted, however; predictions generally underestimate the response in the critical high-surge portion 
(*=2300-3600s). In contrast, the same predictions often overestimate response in the earlier, low- 
surge segment (<=700-2000s). (This potential for mode swapping and compensating errors suggests 
the need here to compare observations and predictions through time history behavior, not merely 
through summary statistics in the time or frequency domain.) 

Finally, Figure 9 shows XS test results. Again there is a transition, near the end of the test, which 
produces the largest amplitude responses (indeed, the largest offsets among the 3 tests). It is caused 
here, however, by an increase in the pitch as well as the surge component. Note that despite the 
potential damping mismatch in this case, the models follow this critical portion of high-amplitude 
pitch fairly well (from about *=2700s on). As in the GOM1 case, greater deviations between models 
and observations occur at earlier portions of the history, involving lower amplitude responses. 

COMPARING RESPONSES TO SIMULATED AND OBSERVED WAVES 

The foregoing results show how well various models can predict the spar response in the OTRC 
teste, based on the corresponding observed wave input. Finally, we study briefly an associated 
question: are the observed response properties, such as mode swapping, also consistent with the 
response of the spar to idealized, Gaussian simulations of (first-order) random waves? If not, these 
observed properties may perhaps reflect special aspects of the wave input in the wave tank; e.g., 

the effect of its finite dimensions. 

As earlier noted, both surge and pitch rms components of the observed spar motions vary notably 
over periods of roughly 20-30 minutes. We quantify this rms variation by (1) splitting the response 
into 20-minute segments; (2) calculating the rms values, <7i...cr„, in each of the n segments; and (3) 
forming the sample mean ä=Ei <n/n and variance 4=Ei(ai - af/{n - 1). We focus here on the 
two GOM tests, yielding 2 hours and hence n=6 20-minute segments with associated rms values 

<7i...<76. The resulting sCT values are found to be 

»„ = 1.22m (surge);   .% = 0.50m (pitch) (3) 

For comparison we simulate! multiple 2-hour spar histories, and process each as we did the 2-hour 
test to find a corresponding sa estimate. These sa estimates from our simulations yield the following 

fThese simulations use the DF/WDD/VF(u) model, and first-order Gaussian waves are simulated from a JON- 
SWAP spectrum with tf,=14m, Tp=14s, and 7=2. The diffraction analysis internally applies second-order corrections 
to the (assumed) first-order wave input; hence the Gaussian model is consistent here. Drag forces for this model 
use the total undisturbed wave; for simplicity we use the Gaussian waves here as well. Alternatively, one may add 
second-order wave contributions to better approximate the total undisturbed wave. 



mean E[sa] and standard deviation D[sa\. 

E[aa] = 1.26m (surge);   E[ar] = 0.95m (pitch) (4) 

D[s„\ = 0.47m (surge);   D\aa\ = 0.45m (pitch) (5) 

Thus, while the observed modal rms values may seem highly variable, our simulations show similar 
or still greater variability (especially in pitch). Note also that the D{.) values here reflect variability 
in s„ estimates from different T=2 hour segments. (If T increases, D{.) should decay like T V2.) 
Because Eq. 3 uses 1 T=2 hour segment, these £>(.) values suggest, the following mean ±l-sigma 
intervals on the test estimates: «„=1.22 ± 0.47 in surge and «„=0.50 ± 0.45 in pitch. As even these 
relatively narrow, 1-sigma confidence intervals include the average simulation results (Eq. 4), it is 
difficult to find statistically significant differences between the tests and the simulations. 

CONCLUSIONS 

Four models have been established to predict the along-wave motions of a spar buoy in random seas. 
These have been implemented and compared with wave tank measurements of the spar displacement, 
at a reference elevation z=54.8m above the mean water level. Results are shown across 3 1-hour 
tests of 100-year extreme wave conditions. Specific methods and results include the following: 

• In all of the tests, the main rms contribution comes from the resonant response in surge and 
pitch modes, at periods of roughly 330s and 70s respectively (e.g., Figure 3). This shows the need 
for models of nonlinear forces—diffraction, drag or both—to explain not only the mean offset but 
also the amplitude of slow-drift oscillations of the spar. 

• The significant low-frequency resonant response also implies the need for accurate estimates of 
damping, in both the surge and pitch modes of the spar. We show how these modal dampings can 
be estimated from response spectral moments. The resulting dampings are "consistent" with the 
other features of the model; for example, the explicit addition of wave drift damping (WDD) is 
accompanied by lower levels of the remaining damping in the model (Table 1). 

• The wave-frequency response has been found to be fairly well predicted across all 3 tests (Fig- 
ure 5). This reflects the modelling adequacy of linear diffraction forces and the spar's mass proper- 
ties. Regarding slow-drift response, models that include only diffraction forces generally underesti- 
mate both the mean and rms response levels (Figure 6). To address this, we introduce additional 
models that include viscous forces, based on either the undisturbed (far-field) wave or the actual 
disturbed wave in the presence of the spar. While it is difficult to conclude which of these is generally 
more accurate, both appear superior to models that exclude viscous forces altogether. 

• The observed responses display considerable "mode-swapping" between surge and pitch modes 
(e.g., Figure 4). Figures 7-9 show that our predictive models, which use the observed wave and 
its underlying first-order components, can produce qualitatively similar behavior. They generally 
follow the observed trend, in all three tests, toward larger amplitude responses near the end of the 
hour. This trend manifests itself in the Gulf of Mexico tests by a late increase in surge-induced 
response (Figures 7-8), and in the North Sea test by enhanced pitch response as well (Figure 9). 

• While the modal rms values in the tests appear rather variable, long simulations with Gaussian 
(first-order) waves show similar or still greater variability (Eqs. 3-5). From the limited 2-hour 
duration of GOM tests, it is difficult to find statistically significant differences between these tests 

and the simulations. 
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Figure 7: Combined (total) surge response time history for GOM1: prediction vs. measurement. 
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Figure 8: Combined (total) surge response time history for GOM2: prediction vs. measurement. 
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Figure 9: Combined (total) surge response time history for XS: prediction vs. measurement. 



REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection 
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports, 
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, 
Paperwork Reduction Project (0704-0188) Washington, DC 20503. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.   

1. REPORT DATE (DD-MM-YYYY) 

fe 

2. REPORT DATE 

*&^ m? 
3. DATES COVERED {From- To) 

4. TITLE AND SUJ3TITLI 

jr^i Spar    fh^Aj    pU+fi 
5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

Noooiii-fi~ /- owj 
5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

ALOK  k, J/?A 5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

r\m-j5 
10. SPONSOR/MONITOR'S ACRONYM(S) 

11. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

12. DISTRIBUTION AVAILABILITY STATEMENT 

AWj&i/eb    pojl    PUBUC    ReieAse 
13. SUPPLEMENTARY NOTES 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 
a. REPORT b. ABSTRACT      c. THIS PAGE 

17. LIMITATION OF 
ABSTRACT 

18. NUMBER 
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON 

19b. TELEPONE NUMBER (Include area code) 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI-Std Z39-18 


