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LONG-TERM GOALS 

The long-term goal of this project was to develop the theory and computational simulation capabilities 
related to fundamental problems in several canonical regimes of oceanic currents. The three regimes are 
wind-driven gyres and the associated mesoscale eddies in bounded, mid-latitude basins; coastal currents 
near irregular coastlines and topography and the small-scale eddies they engender; and marine planetary 
boundary layers, in both the lower atmosphere and upper ocean, with plumes, vortices, surface gravity 
waves, and Langmuir circulations. The organizing focus of the research is on the coherent spatial 
patterns that spontaneously emerge in the turbulent flows typical of these different regimes and that 
subsequently dominate both the flow evolution and the associated transport of material by the currents. 

OBJECTIVES 

The objectives of this project were (1) to develop the fundamental mathematical theory, where advances 
seem feasible that are relevant to the regimes above, and (2) to develop algorithms and obtain accurate 
computational solutions of paradigmatic examples of these regimes; to educe the dominant coherent 
structures; to analyze their space-time behavior and their governing dynamical processes; and to 
integrate parcel trajectories in the velocity fields they provide to determine their mechanisms of material 
transport. 

APPROACH 

The scientific methodology was theory and computation. This body of research was done as part of a 
mature research program, wherein the computational models and solutions from other projects were 
extended to meet the objectives above and personnel from these other projects participated here on a 
part-time basis. Furthermore, the work was done partly in collaboration with other 
oceanographers—and communicated through interdisciplinary seminars and workshops—to increase 
the cross-fertilization between mathematics, computational science, and oceanography. The products of 
the project are primarily the scientific publications listed below, about half of which are on topics not in 
the direct line of work on the other grants. 
Support at UCLA was provided by this grant for Annalisa Bracco and Paul Graves (graduate students); 
Pavel Berloff, Jeroen Molemaker, and Alexander Shchepetkin (postdoctoral researchers); and Irad 
Yavneh and Jim McWilliams (visiting and resident faculty). The research helped us sustain substantial 
collaborations with Sonya Legg (WHOI), Peter Sullivan (NCAR), Juan Restrepo (University of 
Arizona), and Jeffrey Weiss (University of Colorado). 

WORK COMPLETED 

The work completed under this project is reported in the publications listed below (cited here as 
numbers in brackets). 
New mathematical theories were developed for the following problems: (1) the limits of integrability 
for rotating, stratified currents that satisfy the constraint of gradient-wind momentum balance, as do 
most large-scale and mesoscale currents [2, 9, 25]; (2) high-order, parametrically randomized Markov 
trajectory models for transport by geostrophic currents [24, 26]; (3) asymptotic (i.e., wave-averaged), 



coupled evolution equations for currents and surface-gravity waves in the upper ocean [35, 41]; and (4) 
coherent vortex adjustment and recovery in response to small-scale perturbations that evolve as vortex 
Rossby waves [27]. 
Computational solutions were obtained and analyzed for the following oceanic regimes: wind gyres at 
large Reynolds number [10, 11, 17]; transport of material in wind gyres [22, 24, 26]; Stokes-Ekman 
currents and sea-level bias in altimetry analysis due to surface gravity waves [41,44]; geostrophic 
turbulence [2, 7, 12, 15] and isolated mesoscale eddy dynamics [1, 5, 14, 23]; linear instabilities of 
gradient-wind balanced currents to unbalanced, small-scale motions [3, 6, 18, 21, 25]; material 
transport by mesoscale eddies [7, 8, 13, 14, 16, 20]; convective plumes and their interaction with 
mesoscale eddies [4, 13, 16, 19, 40]; statistical equilibrium dynamics of eastern-boundary (upwelling) 
currents in subtropical gyres [29, 30, 32, 33]; buoyancy- and stress-driven marine planetary boundary 
layers [19, 37, 38, 39, 40]; Langmuir turbulence in the oceanic boundary layer [36, 43, 44]; and surface 
gravity wave influences in the atmospheric boundary layer [42, 44, 45]. 
New computational algorithms were developed for the following numerical models and their 
components: an iterative, multi-grid method for the time integration of the gradient-wind balance 
equations within the limits of their integrability [2]; an accurate, shape-preserving, weakly dissipative 
advection algorithm for incompressible flows [28]; and methods for stable, open-domain boundary 
conditions for long-time integrations of regional models, for accurate pressure-gradient force in 
terrain-following coordinates, and for stable time integration with a free upper surface using a large 
time-step size [30, 31, 34]. The latter are important elements in the Regional Oceanic Modeling System 
(ROMS), in which we are playing a lead developmental role. 
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Figure 1: Wind-driven oceanic gyres. Left: Instantaneous horizontal distribution of potential vorticity 
in the upper ocean, showing the two large-scale gyres, the western boundary current and its separated 
meandering interior extension, and many coherent mesoscale vortices [17]. L is the basin dimension. 
Right: Horizontal distributions of an ensemble of particles released at random times in the southern- 
gyre western-boundary current: left column, after 100 days; right column, after 1000 days; top row, 
fluid-dynamical simulation; bottom row, 3rd-order Markov stochastic trajectory model [24]. 



RESULTS 

Here we present a few results as highlights from the work done. 

Wind Gyres and Mesoscale Eddies 
We idealize the problem of wind-driven, mid-latitude circulation as the statistical equilibrium state of a 
rotating, stably stratified fluid in a bounded domain in response to a steady, spatially varying surface 
stress. This solution exhibits a sequence of bifurcations towards a kind of fully developed turbulence as 
the Reynolds number Re is increased. By obtaining computational solutions for unprecedentedly large 
Re and intergration times, we have been able to demonstrate two important phenomena. One is that 
increasing circulation variance with Re develops at large-scales and low-frequencies (i.e., thousands of 
km and years), in addition to the primary instabilities of the gyre circulation at the mesoscale [10]. 
Insofar as this variability influences the surface temperature and thus the atmosphere—yet to be 
assessed—this is thus a source of interannual natural variability in climate. The second phenomenon is 
the increasing emergence with Re of coherent vortices as the dominant structural form of the mesoscale 
eddies, embedded within the basin-filling gyre circulations in Fig. 1-Left [17]. 
We have analyzed how these distinctive fluctuating current patterns transport material on the scale of 
the gyres, i.e., on a scale relevant to equilibrating and changing the general circulation. Also, we have 
developed a hierarchy of spatially inhomogeneous and anisotropic, stochastic trajectory models, using 
the formalism of Markov processes of order n, to mimic these large-scale transport rates with 
mathematically much smaller and simpler calculations than with fluid dynamics. This is done by fitting 
the stochastic model parameters to statistics calculated from the fluid dynamical simulations. We have 
found that using orders n = 2 and n = 3 greatly improves the transport mimicry, compared to the more 
traditional orders of n = 0 {i.e., random walk or eddy diffusion) and n = 1 (Langevin), because they 
admit anomalous dispersion behavior at times intermediate between the mesoscale and gyre scale [24, 
26]. An illustration of the transport pattern and stochastic simulation skill is in Fig. 1-Right, at two 
times relevant to how quickly material spreads to fill the southern gyre (t - 100 days after particle 
release) and how slowly it subsequently spreads into the northern gyre (t = 1000 days). 

Figure 2: Instantaneous sea-surface temperature [° C] along the U.S. West Coast showing coastal up- 
welling and coherent squirts, jets, and hammerhead vortices transporting the cold water into the interior 
[33]. 



Coastal Currents 
We have been developing the Regional Oceanic Circulation Model (ROMS) and using it to investigate 
the current structure and transport in the upwelling region off the U.S. West Coast. Our essential 
conception of this regime is that it is a statistical equilibrium, regional response to the mean-seasonally 
varying winds, in particular the equatorward/alongshore wind that is strongest in spring and summer 
[33]. Simulated sea-surface temperature patterns (Fig. 2) are morphologically similar to satellite images 
of temperature and color (i.e., biological abundance). These patterns are controlled by the mesoscale 
and sub-mesoscale (~ 10 km) eddies that arise from instabilities of the mean along-shore currents, with 
strong alongshore modulation by the coastline irregularities (e.g., offshore squirts more often near 
capes). There is progressive movement of mean-seasonal currents and eddy energy offshore and 
downwards into the oceanic interior in an annually recurrent cycle, as well as in response to interannual 
events such as El Nino. Since this oceanic region is one of atypically high sediment stirring, biological 
productivity, and biogeochemical cycling, the transports by these distinctive eddy currents are important 
to further diagnose and understand, and we now have a simulation capability that can be exploited for 
this. 
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Figure 3: Instantaneous horizontal distribution of buoyant particles at the sea surface at a time 15 minutes 
after being released randomly. The evident pattern of convergence lines is due to Langmuir circulations 
in an oceanic planetary boundary layer with wind stress and surface gravity waves' Stokes drift [36]. h 
is the boundary layer depth. 

Marine Planetary Boundary Layers 
Oceanic surface gravity waves have a mean Lagrangian motion, the Stokes drift. The dynamics of 
wind-driven oceanic currents in the presence of Stokes drift are modified by the addition of so-called 
vortex forces and wave-induced material advection, as well by wave-averaged effects in the surface 
boundary conditions for the dynamic pressure, sea level, and vertical velocity, for which we have 
derived a formal asymptotic theory based on the separation of time scales between waves and currents 
[35, 41]. These effects are significant on the basin scale, where they imply modifications of the 
traditional oceanographic prescriptions for the Ekman and Sverdrup transports and for the use of 
satellite altimeters to infer surface dynamic pressure. They are also significant on the much smaller 
scale of planetary boundary-layer turbulence in the upper ocean. For typical wind and wave conditions, 
the vortex forces give rise to Langmuir circulations (i.e., strong roll cells aligned with the wind 



direction), which substantially increase the vertical mixing efficiency across the boundary layer, 
compared to shear boundary layers without wave influences [36, 43]. Langmuir circulations are familiar 
to mariners for their gathering of surfactants into convergence lines, and our computational simulations 
based on the wave-averaged theory manifest such lines with varying degrees of pattern irregularity 
depending upon the degree of wave influence (Fig. 3). 

IMPACT/APPLICATIONS 

The primary impacts are through the scientific discoveries and insights reported in publications, but the 
accompanying developments for the Large-Eddy Simulation code (at NCAR) and the Regional Oceanic 
Systems Model (at UCLA) benefit other users and their applications. 

TRANSITIONS 

At present there is no evident, continuous path for doing the type of research that this grant has 
provided a foundation for. The serendipitous conjunction of oceanography and geophysical fluid 
dynamics with computational and applied mathematics is, in my now extensive experience, a very 
fruitful arena for making advances in fundamental theory and concepts, but it is not an approach that is 
regularly supported by public agencies. Opportunities for continuation will be sought, partly by 
occasional inquiries to ONR programs. 

RELATED PROJECTS 

This research was done partially overlapping in time and contents with two other ONR programs that 
had the following grants: 
Intermittency and Coherent Structures near the Air-Sea Interface in the Planetary Boundary Layers, 
N00014-92-F-0117, 1992-1998, PI C.-H. Moeng, Co-PI J. McWilliams & Surface Gravity Waves and 
Coupled Marine Boundary Layers, N00014-00-C-0180 and -10249,1999 to 2006, PI C.-H. Moeng, 
Co-PI J. McWilliams. 
Deep Convection in the Ocean, N00014-95-0316 and 1-0889, 1995-1998, PI J. McWilliams. 
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