
Carnegie Mellon 
Software Engineering Institute 

Documenting Software 
Architectures: 
Organization of 
Documentation Package 
CMU/SEI-2001-TN-010 

Felix Bachmann 

Len Bass 

Paul Clements 

David Garlan 

James Ivers 

Reed Little 

Robert Nord 

Judy Stafford 

August 2001 

Product Line Practice Initiative 

Unlimited distribution subject to the copyright 

DISTRIBUTION STATEMENT A 
Approved for Public Release 

Distribution Unlimited 

20011113 067 



Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administra- 
tion of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of 
the Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders. 

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed, 
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the 
Carnegie Mellon Human Relations Commission, the Department of Defense policy of "Don't ask, don't tell, don't pursue" excludes openly gay, lesbian 
and bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are 
available to all students. 

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 
15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone 
(412)268-2056. 

Obtain general information about Carnegie Mellon University by calling (412) 268-2000. 



Carnegie Mellon 
Software Engineering Institute 
Pittsburgh, PA 15213-3890 

Documenting Software 
Architectures: 
Organization of 
Documentation Package 
CMU/SEI-2001-TN-010 

Felix Bachmann 

Len Bass 

Paul Clements 

David Garlan 

James Ivers 

Reed Little 

Robert Nord 

Judy Stafford 

August 2001 

Product Line Practice Initiative 

Unlimited distribution subject to the copyright. 



This report was prepared for the 

SEI Joint Program Office 
HQ ESC/AXS 
5 Eglin Street 
Hanscom AFB, MA 01731-2116 

The ideas and findings in this report should not be construed as an official DoD position. It is published in 
the interest of scientific and technical information exchange. 

FOR THE COMMANDER 

Norton L. Compton, Lt Col., USAF 
SEI Joint Program Office 

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a 
federally funded research and development center sponsored by the U.S. Department of Defense. 

Copyright © 2001 by Carnegie Mellon University. 

Requests for permission to reproduce this document or to prepare derivative works of this document 
should be addressed to the SEI Licensing Agent. 

NO WARRANTY 

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE 
MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES 
NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER 
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR 
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE 
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY 
KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT 
INFRINGEMENT. 

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally 
funded research and development center. The Government of the United States has a royalty-free 
government-purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, 
and to have or permit others to do so, for government purposes pursuant to the copyright license under the 
clause at 252.227-7013. 

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark 
holder. 

For information about purchasing paper copies of SEI reports, please visit the publications portion of our 
Web site (http://www.sei.cmu.edu/publications/pubweb.html). 

last printed October 15, 2001 8:19 am / v2.0 / bw4Ie 



Table of Contents 

Abstract v 

1 Introduction 1 

2 Software Architectures and Documentation 2 

3 Architectural Views 4 

4 Chunking Information: View Packets, 
Refinement, and Descriptive Completeness 10 
4.1.     View Packets 10 
4.2 Refinement 12 
4.3 Descriptive Completeness 13 

5 Trans-view Information 18 

6 Epilogue 19 

7 References 20 

CMU/SEI-2001-TN-010 



CMU/SEI-2001-TN-010 



List of Figures 

Figure 1: Entity-Relation Diagram of Software 
Architecture Documentation 5 

Figure 2: View Is Documented By a Primary 
Presentation and Supporting 
Documentation 7 

Figure 3: Suite of Supporting Documentation 7 

Figure 4: Contents of a Catalog 8 

Figure 5: View Template 9 

Figure 6: A View Consists of One or More 
View Packets 10 

Figure 7: View with Whole-View Supporting 
Documentation 11 

Figure 8a: Three Element System 13 

Figure 8b: A Four Element System Connected 
to the Outside 13 

Figure 9: Redrawn Three Element System 14 

Figure 10: Three Element System Showing 
Alternative Relationship 15 

Figure 11: A Supplement to the Cartoon of 
Figure 9, Showing an Additional 
Component 16 

CMU/SEI-2001-TN-010 



jv CMU/SEI-2001-TN-010 



Abstract 

This report represents a milestone of a work in progress. That work is a comprehensive hand- 
book on how to produce high-quality documentation for software architectures. The hand- 
book, tentatively entitled Documenting Software Architectures,1 will be published in early 
2002 by Addison Wesley Longman as part of the SEI Series on Software Engineering. Since 
this report is a snapshot of current work, the material described here may change before the 

handbook is published. 

The theme of the report is that documenting an architecture entails documenting the set of rel- 
evant views of that architecture, and then completing the picture by documenting information 
that transcends any single view. The audience for Documenting Software Architectures is the 
community of practicing architects, apprentice architects, and developers who receive archi- 

tectural documentation. 

1.    A previous working title was Software Architecture Documentation in Practice. 

CMU/SEI-2001-TN-010 



CMU/SEI-2001-TN-010 



Introduction 

This report represents a milestone of a work in progress. That work is a comprehensive hand- 
book on how to produce high-quality documentation for software architectures. The hand- 
book, tentatively entitled Documenting Software Architectures,! will be published in early 
2002 by Addison Wesley Longman as part of the SEI Series on Software Engineering. Since 
this report is a snapshot of current work, the material described here may change before the 
handbook is published. 

Why are we writing one more book on software architecture? After all, there is no shortage of 
material on the importance of architecture. There is less, but still lots of material on tools for 
crafting an architecture using styles and patterns. And there is an over-abundance of material 
on using particular design notations such as the Unified Modeling Language (UML). Yet there 
is a lack of language-independent guidance about how to capture an architecture in a written 
form; one that can provide a unified design vision to all the stakeholders on a development 
project. The current technical note helps to address this need. 

The theme of the note is that documenting an architecture entails two essential steps: 1) docu- 
menting the set of relevant views of that architecture and then completing the picture by 2) 
documenting information that transcends any single view. The audience for Documenting Sofi- 
ware Architectures is the community of practicing architects, apprentice architects, and devel- 
opers who receive architectural documentation. 

A previous report [Bachmann 00] laid out our approach and organization for the complete 
book and provided full guidance for one of the most commonly used architectural views: the 
layer diagram. 

1.    A previous working title was Software Architecture Documentation in Practice. 

CMU/SEI-2001-TN-010 



Software Architectures and Documentation 

Software architecture has emerged as an important sub-discipline of software engineering, 
particularly in the realm of large system development. Architecture gives us intellectual con- 
trol over a complex system by allowing us to focus on the essential components and their 
interactions, rather than on extraneous details. Carefully partitioning a whole into parts (with 
specific relations among the parts) allows groups of people—often groups of groups of people 
separated by organizational, geographical, and even temporal boundaries—to cooperate pro- 
ductively to solve a much larger problem than they could individually. It's "divide and con- 

quer," followed by "mind your own business," followed by "how do these things work 
together?" Each part can be built knowing very little about the other parts except that, in the 
end, these parts must work together to solve the larger problem. A single system is almost 
inevitably partitioned simultaneously in a number of ways, e.g., different sets of parts or dif- 

ferent relations among the parts. 

The properties that the system exhibits as it executes are among the most important issues to 
consider when designing, understanding, or implementing a system's architecture. What the 
system computes is, of course, one of these issues. But nearly as important are properties (i.e., 
quality attributes) such as performance, reliability, security, or modifiability. The architecture 

must be documented to communicate how it achieves those properties. 

Before we discuss the forms of architecture documentation, we will discuss the uses of archi- 
tecture documentation since its uses will determine its forms. Fundamentally, architecture doc- 

umentation can serve three different functions: 

1. A means of education. Typically, this means introducing people to the system. The people 
may be new members of the team, external analysts, or even a new architect. 

2. A vehicle for communication among stakeholders. A stakeholder is someone who has a 
vested interest in the architecture. The documentation's use as a communication vehicle 
will vary according to which stakeholders are communicating, as the following examples 

show: 

Downstream designers and implementors use documentation to obtain their "march- 
ing orders." The documentation establishes inviolable constraints (plus exploitable 

freedoms) on downstream development activities. 

-     Testers and integrators rely on documentation to specify the correct black-box behav- 

ior of the pieces that must fit together. 

CMU/SEI-2001-TN-010 



- Managers use documentation to help them assemble teams by work assignments, 
organizational structure, planning requirements, project resources, and milestones. 

Designers of other systems use the documentation to define the set of operations pro- 
vided and required, and the protocols necessary for technical compatibility. 

- The architect and requirements engineers representing the customer(s) use documen- 
tation as a forum for negotiating and making tradeoffs among competing require- 

ments. 

The architect and component designers also use it to arbitrate resource contention and 
to establish performance and other kinds of run-time resource consumption budgets. 

Product line managers rely on it to determine whether a potential new member of a 

product family is in or out of scope; and if out, by how much. 

Technical mangers use documentation for conformance checking and for assuring that 
implementations have, in fact, been faithful to architectural prescriptions. 

System maintainers use documentation architecture as the starting point for mainte- 

nance and, eventually, upgrading activities. 

3. A basis for system analysis. To support analysis, the documentation must provide the 
appropriate information for the particular activity being performed. For example, 

For performance engineers, the documentation must provide the formal model that 
drives analytical tools such as rate-monotonic real-time schedulability analysis, simu- 
lations and simulation generators, theorem provers, and model checking verifiers. 
These tools require information about resource consumption, scheduling policies, 

dependencies, and so forth. 

For those interested in the design's ability to meet system quality objectives, the docu- 
mentation serves as the input for architectural evaluation methods. It must contain the 
information necessary to evaluate attributes such as security, performance, usability, 

availability, and modifiability. 

Architecture documentation must balance these varied purposes. It should be sufficiently 
abstract that it is quickly understood by new employees. It should be sufficiently detailed so 
that it serves as a blueprint for construction. At the same time, it should have enough informa- 

tion so that it can serve as a basis for analysis. 

Furthermore, architecture documentation is both prescriptive and descriptive. That is, it pre- 
scribes what should be true by placing constraints on decisions that are about to be made, and 
it describes what is true by recounting decisions that already have been made. However, the 
best architectural documentation for performance analysis may well differ from the best docu- 
mentation for system integrators. Both of these will differ from the documentation that a new- 
hire receives. The documentation planning and review process must support all relevant needs. 

CMU/SEI-2001-TN-010 



Architectural Views 

Perhaps the most important concept associated with software architecture documentation is 
the view. A software architecture is a complex entity that cannot be described in a simple one- 
dimensional fashion. The analogy with a building architecture, if not taken too far, proves illu- 
minating. There is no single rendition of a building architecture. Instead, there are room lay- 
outs, elevations, electrical diagrams, plumbing diagrams, HVAC system diagrams, traffic 
patterns, sunlight and passive solar views, security system plans, and many others. Which of 
these views is the architecture? None of them. Which views convey the architecture? All of 

them. 

A view, then, represents a set of system elements and their relationships. A view documents a 
particular aspect of the system's architecture while intentionally suppressing others. Different 
views will highlight different system elements and/or relationships. 

Several authors have prescribed specific views that practitioners should employ to document 
their software architectures. In particular, Philippe Krachten of the Rational Corporation wrote 
a very influential paper describing four main views of software architecture that can be used to 
great advantage in system-building, plus a distinguished fifth view that ties the other four 
together—the so-called "4+1" approach to architecture [Kruchten 95]: 

• The logical view primarily supports behavioral requirements—the services the system 
should provide to end users. Designers decompose the system into a set of key abstrac- 
tions taken mainly from the problem domain. These abstractions are objects or object 
classes that exploit the principles of abstraction, encapsulation, and inheritance. In addi- 
tion to aiding functional analysis, decomposition identifies mechanisms and design ele- 

ments that are common across the system. 

• The process view addresses concurrency and distribution, system integrity, and fault toler- 
ance. It also specifies which thread of control executes each operation of each class identi- 
fied in the logical view. The process view can be seen as a set of independently executing 
logical networks of communicating programs ("processes") that are distributed across a 
set of hardware resources, which in turn are connected by a bus, local area network 

(LAN), or wide area network (WAN). 

• The development view focuses on the organization of the modules in the software develop- 
ment environment. The units of this view are small chunks of software, usually program 
libraries or subsystems. The development view supports allocating requirements and work 

CMU/SEI-2001-TN-010 



to teams. It also supports cost evaluation, planning, monitoring project progress, and rea- 

soning about software reuse, portability, and security. 

•     The physical view presents the system's requirements such as availability, reliability (fault- 

tolerance), performance (throughput), and scalability. This view maps the various ele- 
ments identified in the logical, process, and development views—networks, processes, 

tasks, and objects—onto the processing nodes. 

Finally, Krachten prescribes using a small subset of important scenarios—instances of use 

cases—to show that the elements of the four views work together seamlessly. This is the "plus 
one" view, redundant with the others but serving a distinct purpose. 4+1 has since been 
embraced as a foundation piece of the Rational Unified Process [Krachten 98]. 

While those are indeed useful views in general, they are not useful for every system, and do 
not constitute a closed set. The point is that a view is a powerful mechanism for separating 
concerns and communicating the architecture to a variety of stakeholders. This leads to a fun- 
damental principle of software architecture documentation: 

Documenting an architecture is a matter of documenting 
the relevant views and their relationships, and adding 

documentation that applies to more than one view. 

This principle is illustrated in Figure 1: 

Software Architecture 
Documentation 

1 Consists of1 ■* View 

1 
 Consists o1 

1 
Trans-view 
Information 

Figure 1:    Entity-Relation Diagram of Software Architecture Documentation1 

In this report, we use entity-relation diagrams like the one above to show how concepts fit togeth- 
er. The relations are presented as labels on lines that connect boxes or entities. The diagrams 
are read top to bottom or left to right. Numbers mark each end of the line and indicate the entities 
of the relation. An integer followed by "..*" means at least the value of that integer, whereas a 
solitary "*" means a zero or more. For example, Figure 1 should be read as, "Software architec- 
ture documentation consists of one or more views and one trans-view information set." 

CMU/SEI-2001-TN-010 



Which are the relevant views? It depends on your goals. Architecture documentation can serve 
many purposes: a mission statement for implementors, a basis for analysis, the specification 
for automatic code generation, the starting point for system understanding and asset recovery, 
or the blueprint for project planning. Different views support different goals and uses, and so 
another tenet of documentation is that what you write down depends on what you expect to do. 
This is fundamentally why we do not advocate a particular view or collection of views. 

Sometimes, for example, it is convenient and useful to show information that is native to more 
than one view. In this case, you may opt for a hybrid view. It contains elements and relation- 
ships that come from two or more views. For example, a deployment view is such a hybrid. It 
shows how processes (normally shown in a process view) are deployed onto the hardware 
(normally shown in a physical view). Deployment views are invaluable for reasoning about 
performance. The point is, carefully chosen hybrid views often provide the most insight of all 

architectural information. At the same time, "accidental" hybrids, views that unintentionally 

conflate unrelated information, can be one of the greatest sources of architectural confusion. 

Since all views describe system elements and the relationships among them, an architect can 
employ a common organizational scheme to document them. That common organizational 

scheme should contain the following: 

• A primary presentation that shows elements and relationships. The primary presentation is 
usually graphical. If so, this presentation must be accompanied by a key that explains or 
points to an explanation of the notation used in the presentation. If the primary presenta- 
tion is textual instead of graphical, it still carries the obligation to present a terse summary 
of the most important information in the view. If that text is presented according to certain 
stylistic rules, the rules should be stated as the analog to the graphical notation key. 

• A suite of supporting documentation that explains and elaborates the information in the 

primary presentation. 

Every view, then, consists of a primary presentation, usually graphical, and supporting docu- 
mentation that explains and elaborates the pictures. To underscore this point, we call the 
graphical portion of the view an architectural cartoon. We use the definition from the world of 
fine art, where a cartoon is a preliminary sketch of the final work. It reminds us that the pic- 
ture, while getting most of the attention, is not the complete view description but only a sketch 
of it. In fact, it is merely an introduction to, or a quick summary of, the view that is completely 

described by the supporting documentation. 

The primary presentation should contain the information you wish to convey about the system 
(in the vocabulary ofthat view) first. It should certainly include the primary elements and rela- 
tions of the view, but under some circumstances it might not include all of them. For example, 
you may wish to show the elements and relations that come into play during normal operation, 

CMU/SEI-2001-TN-010 



but relegate error-handling or exceptional processing to the supporting documentation. What 
information you include in the primary presentation may also depend upon what notation you 
use, and how conveniently it conveys various kinds of information. A richer notation will tend 

to enable richer primary presentations. Figure 2 summarizes: 

View 

'1       1N 

Includes 

Primary 
Presentation 

Inclu des      Includes 

\* 

Cartoon with 
Notation Key 

Textual 
Primary 

Presentation 

Includes 

.1 

Supporting 
Documentation 

Figure 2:    View Is Documented By a Primary Presentation and Supporting 
Documentation 

As shown in Figure 3 the supporting information documents the view in depth. 

Supporting 
Documentation 

Includes   /Includes 

Context 
Diagram 

Variation 
Point 
Guide 

Analyses Rationale Glossary Manage- 
ment Info. 

Figure 3:    Suite of Supporting Documentation 

CMU/SEI-2001-TN-010 



The suite of supporting information includes a catalog that defines the elements and relation- 
ships of the view, including at a minimum those shown in the primary presentation, and 
perhaps others (see the discussion of descriptive completeness in Section 4). For instance, if a 
diagram shows elements A, B, and C, then there had better be documentation that explains in 

sufficient detail what A, B, and C are, and their purposes or roles they play, rendered in the 
vocabulary of the view. This explanation should include the interface(s) of the elements and 
might additionally include a list of properties, and/or a behavioral description. In addition, if 
there are elements or relations relevant to the view that were omitted from the primary presen- 
tation, the catalog can present them. Figure 4 illustrates the contents of a view's catalog: 

Figure 4:    Contents of a Catalog 

The catalog presents information that defines the elements and relations of the view. In addi- 

tion to the catalog, the supporting documentation should include 

• a context diagram that delineates the boundary between the entity whose architecture is 
being documented in that particular view and its environment 

• a guide showing how to exercise any variation points that are a part of the architecture 

shown in this view 

• results of analyses that have been conducted, such the results of performance or security 

analysis, or a list of changes required by a particular modification 

• rationale for why the design decisions reflected in the view were made along with a list of 

rejected alternatives and why they were rejected 

• glossary of terms used 

CMU/SEI-2001-TN-010 



project management related information. The precise contents of this section will vary 
according to the standard practices of each organization, but this is the place where infor- 
mation such as authorship, configuration control data, and change histories are recorded. 

a view template. This template lets an architect convey a view to the relevant stakeholders 

in a standard way. Figure 5 captures this. 

Represents 

Is documented according to 
1 

Supporting 
! Documentation 

Figure 5:     View Template 

Every view is documented according to a view template, so that stakeholders can understand 
the documentation's rules and organization. More than one view might be documented accord- 
ing to the same view template, in which case it should be incorporated into a view's supporting 

documentation by reference. 

CMU/SEI-2001-TN-010 



Chunking Information: View Packets, Refinement, 
and Descriptive Completeness 

4.1      View Packets 
Views of large software systems can contain hundreds or even thousands of elements. Show- 
ing these in a single presentation along with their relations can result in a blizzard of informa- 
tion that (a) is indecipherable and (b) contains far too much data for those stakeholders who 
are only concerned with a certain part of the system. We need a way to present a view's infor- 

mation in digestible "chunks." We call these chunks view packets. 

Each view packet shows a fragment of the system. Think of it as the smallest bundle of docu- 
mentation that you would give to a development team, subcontractor, or other stakeholder. 
Figure 6 shows that the documentation for a view comprises a set of view packets. 

View 
1  *       Hepre sents          i  * 

System 

1    ■■•   \ 
Includes 

1..* \ 

View 
Packet 

Includes 

Primary 
Presentation 

'1       1N 

Includes 

|    Supporting 
Documentation 

Is documented according to 

\      1 
Includes 1 View 

Template 

Figure 6:    A View Consists of One or More View Packets 

Each view packet, in turn, contains a primary presentation and its supporting documentation. 
However, some information in the supporting documentation applies to all view packets. The 

10 CMU/SEI-2001-TN-010 



glossary, for instance, will apply to the entire view, and the view template certainly does. By 
contrast, the catalog and variation guide are more likely to apply to specific view packets. 

Some kinds of information might apply to both the entire view and a particular view packet. 
For example, some rationale might apply to the portion of a design captured by a view packet 
as well as to the entire view. We also would expect management information (such as configu- 
ration control and authorship information) to be included with each view packet, as well as 

with the entire view. 

We update Figure 3 to show that each view (in addition to consisting of a collection of view 
packets) has a supporting documentation package containing information that applies to the 

entire view. 

At the same time, each view packet also has a supporting documentation package. The archi- 
tect has broad latitude about organizing information to best serve stakeholders. If there is a 
piece of rationale that applies to the portion of a design shown in a view packet, then perhaps it 
should be documented alongside that view packet. On the other hand, perhaps the architect 
chooses to record all rationale in one place. In this case, the piece of rationale is most conve- 
niently recorded in the supporting documentation for the entire view. Remember that a view 
packet is a bundle of cohesive documentation that you would give to a stakeholder. Use this to 
determine what supporting documentation the stakeholder(s) who "own" a view packet will 

want. See Figure 7. 

Includes 

Primary 
Presentation 

Includes 

Whole-view 
Supporting 

Documentation 

Supporting 
Documentation 

Is documented 
according to 

Includes 

1\ 
View 

Template 

Figure 7:     View with Whole-View Supporting Documentation 

CMU/SEI-2001-TN-010 11 



View packets that constitute a view are related to each other in either of the following ways: 

• The view packets are siblings of each other, meaning that they document different parts of 
the same system. Think of these view packets as forming a mosaic of the whole view, as if 
each was a photograph taken by a camera that panned and tilted across the entire view. 

• Some view packets are children of another, meaning that they document the same part of 
the system but in greater detail. Think of these view packets as coming into focus when 

our hypothetical camera zooms in on a part of the system. 

View packets allow the architect to document a view (and a reader to understand a view) in 

• depth-first order (that is, choosing an element, documenting its sub-structure, choosing a 

sub-element, documenting its sub-structure, etc.) 

• breadth-first order (for all elements, document their sub-structures then for all of those ele- 

ments, document their sub-structures, etc.) 

some combination of the two based on what the architect knows at the time 

View packets give the architect the flexibility to let a view be used by different stakeholders 
with different concerns. If an overview of the system needs to be conveyed, then view packets 
showing coarse-grained information can be used, and can do the job in a small number of 
pages. On the other hand, if the goal is reasoning about the achievement of a particular quality 
such as performance, then details of the elements and relations will need to be conveyed. In 
this case, view packets that show finer-grained information should be used. 

4.2      Refinement 
We say that the view packets that represent a zoom-in operation are refinements of their parent. 
Architects use refinement, the gradual disclosure of information across a series of descriptions, 

to represent the information in a view. 

A decomposition refinement (or simply decomposition) elaborates a single element to reveal 
its internal structure, and then recursively refines each member of that internal structure. The 
text-based analogy of this is the outline, where Roman-numeral sections are de-composed into 
capital-letter sections which are de-composed into Arabic-numeral sections, which are de- 
composed into small-letter sections, and so forth. Figure 8a is a cartoon showing three ele- 
ments. Figure 8b shows that element B consists of four elements. In this cartoon, element Bl 
has the responsibility of handling element B's interactions with other elements. 

12 CMU/SEI-2001-TN-010 



Figure 8a:   Three Element System Figure 8b:  A Four Element System 
Connected to the 
Outside 

Using decomposition refinements carries an obligation to maintain consistency with respect to 
the relation(s) native to that view. For example, suppose the relation shown in Figure 8a is 
"sends data to." Since element B is shown as receiving as well as sending data, then the refine- 
ment of B in Figure 8b must show where data can enter and leave B—in this case, via Bl. 

Another kind of refinement is an implementation refinement. This shows the same system (or 
portion of the system) in which many or all of the elements and relations are replaced by new 
(typically more implementation-specific) ones. For example, imagine two views of a publish- 
subscribe system. In one view, components are connected by a single event bus. In the refined 
view, the bus is replaced by a dispatcher that receives calls from the components and makes 
event announcements. Note that replacing the connector forces us to change the interfaces of 
the components—hence we have an implementation refinement. If an implementation refine- 
ment introduces vocabulary from a view that did not appear in the original view packet, then 
this is a special case of trans-view documentation—where learning about a system takes a 

reader from one view to another. 

4.3      Descriptive Completeness 
Related to refinement is the concept of descriptive completeness, which tells how view packets 

are related to each other. 

CMU/SEI-2001-TN-010 13 



Figure 9 shows an architectural cartoon for some imaginary system. It tells us that element A 
is related to element B in some way (the cartoon does not disclose how), B is related to C, and 

C is related to B. 

Figure 9:    Redrawn Three Element System 

What can we conclude about whether or not A and C are related? 

There are two possible answers. The first one is straightforward: "A and C are not related, 
because the diagram shows no arrow between A and C." The second a bit more complicated: 
"This diagram reveals no relationship between A and C, but it is possible that this information 
was considered too detailed or tangential for the view packet in which this cartoon appears. 
Therefore, we cannot answer the question at this time. Another view packet may subsequently 

reveal that A and C share this relation." 

Either answer is acceptable, as each represents a different strategy for documentation. The first 
strategy says that the view packets are written with descriptive completeness. This strategy 
tends to be used for packets that convey instructions or constraints to downstream designers or 
implementors. For instance, one common architectural view (the layered view) shows imple- 
mentors what other elements they are allowed to use (and, by extension, what elements they 
are prohibited from using) when coding their work assignments. If we gave the coder of 

element A the cartoon in Figure 9, we would want him or her to interpret the absence of an 
arrow between A and C as carrying meaning—namely, a prohibition from using element C. 

1. There is actually a third case. If we happen to know that relation (whatever it might be) is transi- 
tive, then we could deduce that it holds between A and C since it holds between A and B and 
between B and C. That case is not relevant for discussion at hand, however. 

14 CMU/SEI-2001-TN-010 



The second strategy tends to be used for view packets that convey broad understanding. Sup- 
pose we want to picture a system's data flow. In that case, we might not wish to show total data 
flow, but only the data flow in the nominal, usual, or high-frequency cases. We might defer 
data flow to another view packet when the system is doing, say, error detection and recovery. 
Suppose Figure 9 shows that nominal case. Figure 10 might show the error case. A program- 

mer may eventually want to see both diagrams, but not at once. 

Figure 10:  Three Element System Showing Alternative Relationship 

Under this interpretation, Figure 10 does not contradict Figure 9 but augments it, whereas 
under the assumption of completeness, Figure 9 and Figure 10 are contradictory. Both cannot 

document the same system. 

Up to this point, we've discussed these strategies in terms of relationships among elements, 
but we could also ask an element-related question. Suppose Figure 9 purports to show an 
entire system, or a specific portion of it. Can we presume that A, B, and C are the only ele- 
ments in (that portion of) the system? That is, is every piece of software either in A or B or C? 
The same two strategies apply. The first tells us "Yes, you can presume that with impunity. All 
software within the scope of this view packet is shown in this view packet." The second says 
"We don't know yet. Perhaps in a refinement or augmentation of this view, another element 
will be shown." If an error-logging element comes into play during error detection, a diagram 

like the one in Figure 11 might apply. 

CMU/SEI-2001-TN-010 15 



Figure 11:  A Supplement to the Cartoon of Figure 9, Showing an Additional 
Component 

Again, both strategies are correct and have their place. A fundamental principle of graphical 
documentation is to explain your notation. The issue of descriptive completeness is a special 
case ofthat. You simply need to specify which of the two strategies your documents follow. As 
we suggested, some documents may follow one while others may follow the other. That is not 
a problem, as long as the reader is informed. So, for example, if you adopt the completeness 
strategy you might include something like the following in your documentation, perhaps as 

part of the notation key: 

If no relationship is shown between two components, then that relationship {does 
not, is not allowed to} exist between those two components. 

Or this 

The elements shown in this diagram account for all the software in the system. 

If you adopt the non-completeness strategy, then you might have explanations like this as your 

key: 

Subsequent refinements or other renditions of this view (give pointer) may show 
relationships among elements that are not shown here. 

Earlier we dealt with the issue of refinement. The descriptive completeness issue is related. If 
your view packets convey descriptive completeness, then this conveys obligations on 

16 CMU/SEI-2001-TN-010 



refinements. If a view packet shows no relationship (of whatever kind) between, say, elements 
A and C then no refinement of that view packet is allowed to subsequently show that relation- 
ship between A and C. If a view packet shows a set of elements, then no new elements may be 

introduced later. 

Descriptive completeness makes consistency checking among view packets much more 
straightforward, but at the cost of making the cartoons and their explanation more cluttered 
and arguably harder to understand. As in many issues of architecture, this one brings with it an 

inherent tradeoff. 

CMU/SEI-2001-TN-010 17 



Trans-view Information 

Trans-view information, which may be the subject of a future technical note, consists of four 

primary categories: 

1. Mapping between views. Views, like the perceptions of blind men groping the elephant, 
are all quite different from each other. In the end, however, they describe the same entity. 
They are related in ways that are often complex, but which always provide additional 

insights about the architecture as a whole. Providing relationships among the views is an 

important aspect of the complete documentation package. 

2. Rationale. Why an architect made decisions constitutes a crucial but, unfortunately, often 
overlooked aspect of documentation. While rationale certainly applies to "architecturally 
local" decisions (such as those within a single view), there is also a rationale that applies 

across views as well. 

3. Constraints. No architect has a free hand. It is important to document the constraints that 
apply to the architecture. Constraints are often subtle, and always far exceed the rules for 
behavior captured in a requirements specification. They often include real world exigen- 
cies such as the reliability of vendors, and organizational factors such as the availability 
(or non-availability) of qualified staff or other resources. 

4. View catalog. This piece of documentation is a stakeholder's introduction to the entire 
package. It explains what documentation is available and where it may be found. It serves 

as the overall reader's guide to the entire suite. 

18 CMU/SEI-2001-TN-010 



Epilogue 

Documenting a software architecture means documenting its relevant views and then record- 
ing trans-view information. A view is a representation of a set of system elements and relation- 
ships among them. Views are documented (according to a view template) by a set of view 
packets, which consists of a primary presentation and its supporting documentation. View 
packets allow information to be presented in digestible chunks. In this regard, view packets are 
rather like snapshots of a system taken with a camera that tilts, pans, and zooms in and out. 
Each view includes a view template that outlines the documentation organization and content 
for that view. Trans-view information consists of a mapping between views, rationale, con- 

straints on the architecture, and a view catalog. 

These rules and principles provide a basis for a documentation package that will help a soft- 
ware architecture live up to its potential uses as a vehicle for education, communication, and 

analysis. 

Of course, a practitioner will need more detailed guidance about several aspects of the task 
before such a package can be produced. Future work will include specifics about trans-view 
information, view templates, choosing views, and the properties and uses of a wide variety of 

views. 

CMU/SEI-2001-TN-010 19 



References 

[Bachmann 00] Bachmann, F; Bass, L; Carriere, J; Clements, P; 
Garlan, D; Ivers, J; Little, R.; & Nord, R. Software 
Architecture Documentation in Practice: Documenting 
Architectural Layers (CMU/SEI-2000-SR-004). 
Pittsburgh, PA: Software Engineering Institute, 
Carnegie Mellon University. Available WWW: 
<http://www.sei.cmu.edu/publications/documents/ 
O0.reports/00sr004.html> (2000). 

[Kruchten 95] Kruchten, P. 'The 4+1 View Model of Architecture." 
IEEE Software, Vol 12, No. 6, November 1995. 

[Kruchten 98] Kruchten, P. The Rational Unified Process: 
An Introduction. Reading, MA: Addison-Wesley, 1998. 

20 CMU/SEI-2001-TN-010 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering 
and maTnteinina The data needed and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of 
ToZZ TÄ^suggSons'ofreducing this burden, to Washington Headquarters Services, Directorate.or^formation <£™«on» ™^>"-1215 Jeffe^on Dav,s Highway, Suite 
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.  

AGENCY USE ONLY (leave blank) REPORT DATE 

August 2001 
TITLE AND SUBTITLE 

Documenting Software Architectures: 
Organization of Documentation Package 

REPORT TYPE AND DATES COVERED 

Final 

FUNDING NUMBERS 

F19628-00-C-0003 

6.        AUTHOR(S) 

Felix Bachmann, Len Bass, Paul Clements, David Garlan, James Ivers 
Reed Little, Robert Nord, Judy Stafford 

7.        PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Software Engineering Institute 
Carnegie Mellon University 
Pittsburgh, PA 15213 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

CMU/SEI-2001-TN-010 

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

HQ ESC/XPK 
5 Eglin Street 
Hanscom AFB, MA 01731 -2116   

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11.      SUPPLEMENTARY NOTES 

12.a   DISTRIBUTION/AVAILABILITY STATEMENT 

Unclassified/Unlimited, DTIC, NTIS 

12.D   DISTRIBUTION CODE 

13.    ABSTRACT (maximum 200 words) 

This report represents a milestone of a work in progress. That work is a comprehensive handbook on how to 
produce high-quality documentation for software architectures. The handbook, tentatively entitled 
Documenting Software Architectures, will be published in early 2002 by Addison Wesley Longman as part of 
the SEI Series on Software Engineering. Since this report is a snapshot of current work, the material 
described here may change  before the handbook is published. 

The theme of the report is that documenting an architecture entails documenting the set of relevant views of 
that architecture, and then completing the picture by documenting information that transcends any single 
view. The audience for Documenting Software Architectures is the community of practicing architects, 
apprentice architects, and developers who receive architectural documentation. 

14.      SUBJECT TERMS 

software architecture documentation, documentation views, templates, 
documentation users 

17.      SECURITY CLASSIFICATION 
OF REPORT 

UNCLASSIFIED 

18.      SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19.      SECURITY 
CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

15.      NUMBER OF PAGES 

33 
16.    PRICE CODE 

20.      LIMITATION OF ABSTRACT 

UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. Z39-18 
298-102 


