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BLIND TIME-FREQUENCY ANALYSIS FOR SOURCE 
DISCRIMINATION IN MULTISENSOR ARRAY PROCESSING 

1. EXECUTIVE SUMMARY 

This report presents a comprehensive summary of the research work performed under the 
ONR funding, grant number N00014-98-1-0176 over the period of November 15th, 1997 to 
September 30th, 2001. The research team over periods of the grant consists of Prof. Moeness 
Amin (PI), Dr. Adel Belouchrani (Postdoctoral Fellow), Dr. Yimin Zhang (Postdoctoral Fellow), 
and Mr. Weifeng Mu (Graduate Student). 

The results obtained in this project have been disseminated over the past four years in 
nineteen journal articles and over twenty-five peer reviewed conference papers. Section 2 lists, 
with complete citations, all publications acknowledging the ONR support. This list is also used to 
point the reader of the executive summary to the pertinent papers of each sub-section. As most of 
the research has already been documented in three annual reports (October 1998, October 1999, 
October 2000), we include in section 4 of this final report detailed descriptions of the main 
contributions over the past four years highlighted in nine key journal publications. Section 3 
includes an introduction to the theory underlying the thrust of our approach to solving array 
signal processing problems using time-frequency distributions. 

In addition to the research team at Villanova University, we have collaborated with 
scientists from Canada, Turkey, Spain, and Australia on several important aspects and objectives 
of the ONR project. 

1.1 Main Contributions 

The research fund from the ONR over the past four years has been effectively used for 
advancing the theory of time-varying spectrum analysis and its applications to the important area 
of sensor array processing. We pioneered the development of multi-sensor receivers based on 
quadratic time-frequency and joint-variable distributions. We have provided the theoretical 
framework for solving direction finding and blind source separation problems using bilinear 
transforms, and established the fundamental role of time-frequency distributions for the rejection 
of nonstationary interferers in direct sequence spread spectrum communication systems. We were 
the first to utilize the time-frequency signatures of signal arrivals for improved detection, angle- 
of-arrival estimation, and blind signal recovery. We were also the first to use the signal power 
distributions in the time-frequency domain for optimum excision of smart jammers and a large 
class of undesired waveforms through time-varying filtering, least-square synthesis methods, and 
subspace projection techniques. The research team working on ONR funding at Villanova 
University have introduced the original concepts of spatial time-frequency distributions, and more 
generally spatial joint-variable distributions, and provided the comprehensive analysis of their 
role in high resolution angle-of-arrival estimation and equalization of the communication channel. 
In doing so, we have elevated bilinear transformations from a purely temporal processing tool to a 
more powerful spatio-temporal processing technique. In this respect, we opened the door for 
time-frequency distributions to join cyclostationary, second- and higher-order statistics methods 
in utilizing the spatial dimension for enhanced receiver performance. Our work has shown that 
time-frequency distributions represent the natural mechanism to process narrowband signals in 
broadband communication platforms, stationary signals in a dominating nonstationary 
environment, and spread spectrum communication signals contaminated by powerful jammers. 



1.2 Fast Computational Time-Frequency Distribution Kernels 

Time-frequency distributions (TFDs) are a powerful tool for nonstationary signal analysis in 
a wide variety of applications. However, the computational burden limits the applicability of the 
TFD in practice. Hence, design of fast implementation methods are important to utilize TFDs for 
applications that require on-line processing such as radar systems and nonstationary jammer excision 
in spread spectrum communications. The TFD is often computed using the following procedure. 
First, the bilinear data products are computed which form the instantaneous autocorrelation function 
(IAF). Next, the IAF is smoothed along each time-lag using a time-frequency (t-f) kernel to produce 
the local autocorrelation function (LAF). Finally, the LAF is Fourier transformed along the time-lag 
variable to yield the required TFD. Recognizing the fact that the computations required to compute 
the DFT are much smaller than those needed to compute the LAF, it becomes logical to target the 
calculation of the LAF, for significant computational savings. 

We have introduced a new recursive structure for efficient computations of the local 
autocorrelation function. This recursion is achieved by decomposing the t-f kernel along each 
time-lag into a finite number of cosinusoidal terms. Each term generates one recursive equation to 
update the LAF. This technique is named the trigonometric decomposition of time-frequency 
kernels, and can be viewed as a frequency sampling design technique of t-f kernels. This 
proposed class of Trigonometric kernels (also referred to as the frequency sampling (FS) kernels), 
while providing considerable reduction in the computation of the LAF, retain the Hermition 
property of the LAF which simplifies the DFT operations. Further, trigonometric decomposition 
is amenable to data -dependent kernel design and does not compromise the time-frequency 
desirable properties. 

Publications[36,38,40] 

1.3 Blind Source Separation in the Ambiguity Domain 

Time-frequency distributions are proposed for applications to array signal processing 
problems. For this purpose, spatial time-frequency distributions (STFDs) have been introduced 
and represented in a matrix form. The elements of a spatial time-frequency distribution matrix are 
the time-frequency distributions and the cross-time frequency distributions of the data received at 
the multi-sensor array. It has been shown that the relationship between the spatial time-frequency 
distributions of the sensor data and the time-frequency distributions of the sources is identical to 
that of the sensor data covariance matrix and the sources' correlation matrix. This key property 
permits direction finding and blind source separations to be performed using the sources' time- 
frequency localization properties. 

Blind source separation consists of recovering a set of signals of which only 
instantaneous linear mixtures are observed. This problem has been typically solved using 
statistical information available on source signals, including second or higher order statistics. 
Our primary contribution in this area is to show that the spatial time-frequency distributions is an 
effective alternative to separating sources whose signatures are different in the t-f domain. 
Successful applications of STFDs to source separation require computing STFD at different time- 
frequency (t-f) points. The results are then incorporated into a joint-diagnalization technique to 
estimate the mixing, or the array manifold matrix. This matrix transfers the source signals into 
sensor data - a process that we must undo by blind separation, often up to a multiplicative 
complex scalar and the order of the sources. 



Next, we have improved source signal estimation by performing the blind source 
separation using ambiguity functions rather than time-frequency distributions. Unlike the spatial 
time-frequency distributions, where the separation is performed using various time-frequency 
bins, the proposed approach is based on information from the ambiguity domain. The procedure 
is similar to that adopted in spatial TFD-based blind source separation. The main difference, 
however, lies in the domain in which the mixing matrix is estimated. In the proposed technique, 
the mixing matrix is obtained by joint diagonalization of the spatial ambiguity (SAF) matrices 
rather than the spatial time-frequency distribution matrices. These SAF matrices are formed from 
the auto- and cross- ambiguity functions of the data received by the different array sensors. It is 
shown that at each time-lag and frequency-lag point in the ambiguity domain, the sensors' SAF 
matrix is related to the sources' ambiguity function matrix in the same fashion as the sensors' and 
sources' TFDs. Performing blind source separation in the ambiguity-domain, rather than the t-f 
domain, provides a greater ability to formulate the problem using the signal auto-terms. Avoiding 
cross-terms both simplifies and improves the performance of joint-diagonalization, and 
subsequently enhances source estimation. 

Publications[18,21,26,29,33,37,39,42] 

1.4 Spatial Averaging of Time-Frequency Distribution for Source Separation 

Symmetric spatial averaging of spatial time-frequency distributions has been introduced. 
The spatial averaging of the spatial time-frequency distributions of the data across an antenna 
array removes the undesired effect of crossterms between the impinging signals. These terms 
reside along the off-diagonal entries of the source time-frequency distribution matrix, and 
consequently impede the source separation performance, which is based on pre-assumed diagonal 
matrix structure. Spatial averaging amounts to forming a spatial Hermitian Toeplitze matrix using 
the auto- and cross-time-frequency distributions of the data over one half of the array. This matrix 
is then added to the spatial matrix corresponding to the other half of the array. The desired effect 
of this averaging is reallocating the interaction between the source signals in the time-frequency 
domain from the off diagonal to the diagonal elements of the source TFD matrix. In this respect, 
cross-terms, due to their potential high values, are regarded as useful components that could be 
employed for improved performance. Without spatial-averaging, array performance is very 
sensitive to whether only auto-term or cross-term points or their mix are incorporated in the 
source separation procedure. With spatial averaging, this is no longer a concern, and as such, a 
major burden is using bilinear time-frequency distributions has been alleviated. 

Publications [13,31] 

1.5 Bilinear Signal Synthesis in Antenna Arrays 

We have introduced a new approach for signal synthesis in antenna arrays using the 
spatial separation of the sources as well as the sources' localization properties in the time- 
frequency domain. In effect, source separation, or signal recovery, is performed based on the 
difference in both the time-frequency and spatial signatures of the signal arrivals. In the proposed 
approach, we permit the source spatial signatures to play a fundamental role in enhancing the true 
signal t-f power concentration, leading to improved synthesis performance. This is achieved by 
averaging of the time-frequency distributions of the sensor data across the array prior to 
proceeding with commonly used least squares bilinear syntheses methods. The signals impinging 



on the receiver are assumed to be localizable in the time-frequency domain, e.g., FM and 
polynomial phase signals. 

Unlike the existing source separation techniques based on time-frequency signal 
representations, the devised approach does not require whitening or retrieval of the source 
directional matrix, thereby, simplifies the signal recovery process. Further, as a result of the 
averaging process across the array, a weighting function in the time-frequency domain is 
constructed which decreases the noise levels, reduces the interactions of the source signals, and 
mitigates the cross-terms. These desirable effects are obtained independent of the temporal 
characteristics of the source signals and without causing any smearing of the signal auto-terms. 

Publications^, 6,7,14] 

1.6 Time-Frequency MUSIC for Direction Finding 

Our first contribution to direction finding is the introduction the Time-frequency MUSIC 
as a new array signal processing method based on time-frequency signal representations. As 
discussed above, spatial time-frequency distributions have successfully been used to solve the 
problem of blind source separations for nonstationary signals. We have used the same underlying 
structure of STFDs to solve the direction finding problem, i.e., angles of arrival (AOA) 
estimation. A new method for the estimation of the signal subspace and the noise subspace based 
on time-frequency signal representations has been introduced. The proposed approach consists of 
the joint block-diagonalization (JBD) of a set of spatial time-frequency distribution matrices. 
Once the signal and the noise subspaces are estimated, any subspace based approach can be 
applied for AOA estimation. We propose to use the MUSIC algorithm. The effects of spreading 
the noise power while localizing the source energy in the time-frequency domain amounts to 
increasing the robustness of the eigen structure superresolution method with respect to noise, and 
hence improves spatial resolution. Performance of the proposed Time-Frequency MUSIC (TF- 
MUSIC) for different time-frequency kernels was evaluated numerically. 

Publications[12,24,28,32,35,43J 

1.7 Time-Frequency Maximum Likelihood Methods for Direction Finding 

We have introduced a novel time-frequency maximum likelihood (t-f ML) method for 
direction-of-arrival (DOA) estimation for non-stationary signals impinging on a multi-sensor 
array receiver. We have shown the superiority of this method over conventional maximum 
likelihood DOA estimation techniques. Time-frequency distributions localize the signal power in 
the time-frequency domain, and as such enhance the effective SNR, leading to improved DOA 
estimation. The localization of signals with different time-frequency signatures permits the 
division of the time-frequency domain into smaller regions; each contains smaller number of 
signals than those incident on the array. The reduction of the number of signals within different 
time-frequency regions not only reduces the required number of sensors, but also decreases the 
computational load in multi-dimensional optimizations. Compared to the recently proposed time- 
frequency MUSIC (t-f MUSIC), the proposed t-f ML method can be applied in coherent 
environments, without the need to perform any type of preprocessing that is subject to both array 
geometry and array aperture. 

Publications[l 7,2 7] 



1.8 A Wideband Perspective to Spatial Time-Frequency Distributions 

All previous work on this project has relied on the assumption of narrowband arrays. 
That is, the spatial signature of a nonstatinoary signal, e.g., a chirp signal, is assumed constant 
over the source bandwidth. This may be true for cases in which the signal bandwidth is negligible 
compared to the carrier frequency. Although simplifies the analysis and simulations, the 
narrowband assumption may not always hold true, specifically, in military signal processing 
applications. 

We have successfully relaxed the narrowband array constraint, imposed in past algorithm 
developments, and extended the narrowband spatial time-frequency distributions (STFDs) to the 
wideband case. A new STFD-based wideband root-MUSIC estimator is proposed. This technique 
employs an extended coherent signal-subspace (CSS) principle involving coherent averaging over 
a pre-selected set of time-frequency points rather than the conventional frequency-only averaging 
procedure. For FM signals, it is demonstrated that the proposed method outperforms both the 
conventional, commonly used, CSS algorithm for wideband sources and is also superior to the 
iterative root-MUSIC technique recently appeared in the literature. 

Publications]19,20] 

1.9 Subspace Analysis of Spatial Time-Frequency Distribution Matrices 

Subspace analysis of spatial time-frequency distribution (STFD) matrices have 
been developed. It has been shown that for signals with clearly defined time-frequency 
signatures, such as FM signals, smaller estimation errors in the signal and noise 
subspaces can be achieved by using spatial time-frequency matrices over the subspace 
estimates obtained from using the data covariance matrix approach. This improvement in 
subspace estimation is the result of incorporating the time-frequency points along the 
instantaneous frequencies of the impinging signals on the array into the subspace 
estimation procedure. These points belong to autoterm regions of high power 
concentrations, and as such, when used in constructing STFDs, they provide high SNR 
matrices with improved eigen-decompositions. The advantages of STFD-based direction 
finding Over traditional direction finding methods using data covariance matrices were 
demonstrated using the MUSIC algorithm. It was shown that the time-frequency MUSIC 
outperforms conventional MUSIC in the two situations of low SNR and closely spaced 
sources. Unlike conventional array processing techniques, which are nondiscriminatory, 
and must therefore spatially localize all signals incident on the array, the STFD-based 
array processing provides the flexibility of dealing with all signal arrivals, or a subset of 
them. In this respect, it does not suffer from the drawback of requiring higher number of 
sensors than sources. The ability to select fewer sources depends on the distinction of 
their time-frequency signatures from those of other source signals. The eigenstructure of 
the STFD matrix constructed from the time-frequency points that belong to the autoterm 
regions of a number of sources will only yield the signal subspace of these sources. It was 
shown that the maximum improvement in subspace estimation using STFD over data 
covariance matrices is achieved when constructing the STFD from only one source 
signal. 

Publications[9] 



1.10 Chirp Beamforming 

The problem of direction finding in sensor arrays in the presence of constant modulus 
signals is addressed. A new deterministic maximum likelihood (ML) direction of arrival (DOA) 
estimator is introduced and the exact Cramer-Rao bound (CRB) is derived for the general case of 
multiple constant-amplitude polynomial-phase sources. Since the proposed exact ML estimator is 
computationally intensive, an approximate solution is proposed, originating from the analysis of 
the ML function in the single chirp signal case. As a result, a new form of spatio-temporal 
matched filter, referred to as the chirp beamformer, is derived, which is applicable to "well 
separated'" sources that have distinct time-frequency or/and spatial signatures. This beamforming 
approach requires solving a 3D optimization problem and, therefore, enjoys essentially simpler 
implementation than that entailed by the exact ML. Simulation results have validated our 
theoretical CRB analysis and shown the offerings and performance advantages of the proposed 
estimators. The relationship between the chirp beamformer and well-known conventional 
narrowband beamforming techniques is delineated. 

Publications [2,11,16] 

1.11 Blind Source Separation via Joint Anti-Diagonalization 

The blind source separation methods can be based on maximum likelihood separation by 
decorrelation and rotation, neural networks, or on TFDs, which is the focus of this research. The 
latter has only considered autoterms of the signal TFDs, and exploited the diagonal structure of 
the source TFDs evaluated at autoterm TF points. We have been able to perform blind source 
sparation by including, in addition to the autoterms, the crossterms of the source TFDs. This is 
achieved by exploiting the anti-diagonal structure of the source TFD matrix evaluated at the 
cross-term TF points. A Jacobi-like algorithm has been derived for the maximization of the Joint- 
Diagonalization/Joit Anti-Diagonalization (JD/JAD) criterion. The success of the JD or JAD 
methods depends strongly on the correct selection of the autoterm and crossterm points. 
Therefore, it is crucial to have a selection procedure that is able to distinguish between autoterm 
and crossterm points based only on the TFD matrices of the observation. We have proposed an 
automatic selection procedure to decide, with no a priori knowledge about the sources, whether a 
considered TF point corresponds to an autoterm or a crossterm. The proposed technique is robust 
to noise and TF point selection errors and improves the quality of source separation. 

Publications[8] 

1.12 Spatial evolutionary Spectrum for DOA Estimation and Blind Source 
Separation 

The evolutionary spectrum (ES) was introduced in the sixties by Priestly. This spectrum is 
based on the modeling of nonstationary signal as a collection of uncorrelated sinusoids with 
random time-varying amplitudes. The work in this area has lead to the generalization, estimation, 
and the linkage of ES to TFDs. For processes with restricted time-frequency correlation, referred 
to as underspread nonstationary random processes, it has already been shown that major 
definitions of time-varying spectra, such as the generalized Wigner-Ville spectrum and 
generalized evolutionary spectrum, yield effectively equivalent results. We have successfully 
combined the concepts of the evolutionary spectrum and array processing. The nonstationary 
signals received by each sensor of the array will be modeled as a sum of complex sinusoids with 
time-varying amplitudes. These amplitudes carry information about the direction of arrival. The 



time-varying amplitudes using linear estimators based on mean-squared error minimization are 
first estimated. These estimates are then used to generate the time-varying cross-power 
distributions between the data across the array. Proceeding similar to spatial joint-variable 
distributions, the time-varying cross-power estimates computed at high SNR time-frequency 
points are used for angle estimation. Further, we have shown that the spatial evolutionary 
spectrum can be directly used for blind source separation. Due to their attractive cross-terms 
properties, the spatial evolutionary spectrum performance for direction finding and signal 
recovery compares and potentially exceeds that of TFDs. The same argument applies to positive 
time-frequency distributions. Next year, we aim to develop positive spatial joint-distributions and 
examine the offering of positive spectra in angle estimation. 

Publications[23] 

1.13 Nonstationary Interference Using Subspace Projection Techniques 

Combined spatial and time-frequency signatures of signal arrivals at a multi-sensor array 
are used for nonstationary interference suppression in broadband communication platforms. We 
have focused on direct-sequence spread-spectrum (DS/SS) communications and shown that with 
random PN spreading code and deterministic nonstationary interferers, the use of antenna arrays 
offers increased DS/SS signal dimensionality relative to the interferers. Interference mitigation 
through spatio-temporal subspace projection technique leads to reduced DS/SS signal distortion 
and improved performance over the case of a single antenna receiver. The angular separation 
between the interference and desired signals has been shown to play a fundamental role in trading 
off the contributions of the spatial and t-f signatures to the interference mitigation process. 

The main purpose of our work under this topic is to integrate spatial and temporal 
processing for suppression of nonstationary interferers in DS/SS systems. Specifically, we have 
successfully extended the projection-based interference mitigation methods to multi-sensor array 
receivers. Receiving nonstationary interferers at different points in space provides interference 
suppression techniques with the capability to suppress the interferers using individual or 
combined time, frequency, and space variables. The proposed multi-sensor interference excision 
technique builds on the offerings of quadratic TFDs for estimation of 1) the time-frequency 
subspace and time-frequency signature of nonstationary signals, and 2) the spatial signature of 
nonstationary sources using direction finding and blind source separations. With the knowledge 
of the time-frequency and spatial signatures, the objective is to effectively suppress strong 
nonstationary interferers with few array sensors. The proposed technique does not require the 
knowledge of the array response or channel estimation of the DS/SS signal, but it utilizes the 
distinction in both of its spatial- and time-frequency signatures from those of the interferers that 
impinge on the array. With the combined spatial-time frequency signatures, the projection of the 
data vector onto the subspace orthogonal to that of the interferers leads to improved receiver 
performance over that obtained using the subspace projection in the single-sensor case. 

Publications! 1,22,34] 

1.14 Blind Spatial Processing For Frequency Diversity Spread Spectrum 
Communications: Partial Jamming Suppression 

Frequency diversity spread spectrum (FD-SS) has been recently shown to be a powerful 
tool for digital detection as well as an effective alternative to the traditional spread spectrum 
techniques, namely direct sequence (DS-SS) and frequency hopping (FH-SS). In a general 



context, diversity is conceived by the existence of several replicas (either in code, time space, or 
frequency). When diversity is available to the receiver either by the structure of the transmitted 
signal or the architecture of the receiver, optimum spatial signal processing, which is blind to the 
temporal signal characteristics, can be derived. 

We have devised a novel technique to obtain optimum blind spatial processing for 
frequency diversity spread spectrum (FD-SS) communication systems. The sufficient statistics for 
a linear combiner, which prove ineffective due to the interferer's spectral location, are modified 
to yield improved detection under partial jamming in the spectral domain. Robustness to partial 
time jamming is achieved by extending the notion of replicas over the frequency axis to repetition 
over the time variable. Analysis and simulations are provided showing the advantages of using 
FD-SS with spatial diversity to combat interference which is confined to a narrow frequency or 
time support relative to the desired signal extent in either domain. 

Publications [25,30] 

1.15 Adaptive Array Processing for Multipath Fading Mitigation Via Exploitation 
of Filter Banks 

The spatial-temporal equalization can be achieved by space-time adaptive processing 
(STAP) to effectively mitigate inter-symbol interference (ISI) and co-channel interference (CCI). 
Such a scheme consists of an integrated adaptive array and a temporal equalizer to perform 
jointly optimum spatial and temporal signal processing. However, solving both the CCI and ISI 
problems simultaneously by conventional STAP methods is difficult. The recent STAP methods 
require either large scale matrix inversion, recursive calculation or cascaded CCI and ISI 
cancellers. 

We have proposed an efficient subband adaptive array processing method that utilizes 
filter banks to mitigate both the CCI and ISI effects in land mobile communications. A subband 
adaptive array has, in effect, the same function as an STAP system, while the implementation is 
much easier. The subband adaptive array provides sub-optimal performance in the context of 
frequency-spatial signal processing, which enhances the signal correlation between multipath rays 
prior to processing. In subband adaptive arrays, the frequency band of the received signal is 
divided into smaller bands through the use of filter banks. Analysis filters yield a significant 
increase in the signal correlation between the multipath rays within each subband. Such an 
increase is blind in the sense that it does not require a priori knowledge of the arriving signals. As 
a result of increased correlation, the multipath fading associated with both the desired and the 
interference signals is reduced, thus yielding faster convergence of the adaptive weight vector as 
well as fewer degrees-of-freedom (DOFs) required for adequate equalization. The importance to 
properly choose the analysis and synthesis filters to obtain good equalization performance by 
subband signal processing is emphasized. The signal correlation enhancements of multipath 
signals using different filter banks are compared and several simulation examples are provided to 
confirm the effectiveness of the proposed method. 

Publications [3,15,41,44] 
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3. FUNDAMENTAL OFFERINGS OF TIME-FREQUENCY 
IN ARRAY PROCESSING 

Time-frequency distributions have been shown to be a powerful tool in nonstationary 
signal analysis. So far, most of the work on this subject has focused on temporal signal 
processing without much attention given to the spatial variable. 

To introduce the spatial time-frequency distribution, we first recall that Cohen's class of 
time-frequency distribution (TFD) of a signal x(t) is given by 

D (t,f) = f r <b(t - u, T)X(U+ T/2)X*(U- T/2)e'm'dudr (1) 

where t and / represent the time index and the frequency index, respectively. The kernel 0(?,T) 

is a function of the time and lag variables. The cross-TFD of two signals xx (t) and x2 (t) is 

n    (tj) = f r <fi(t - u, T)X](U + T/2)X2*(U - T/2)e~i2mdudT (2) 

Expressions (1) and (2) are now used to define the following data spatial time-frequency 
distribution (STFD). Replacing x(t) in (1) by the data vector x(f) yields 

D  (?,/)= f f ^t-u,z)x(u+r/2)xH(u-t/2)e'mrdudt (3) 

where [Dxx(r,/)],y = DXXj(t,f), for i,j = \,2,....,n, and the superscript UH" denotes the 

complex conjugate transpose of a matrix or a vector. The following narrowband model 

x(f) = As(0 + n(r) = y(0 + n(0 (4) 

is assumed, where y(t) is the signal component of x(f) and the m x n spatial matrix A is the 
mixing matrix. The elements of the m x 1 vector x(t), which represents the measured or sensor 
data, are multicomponent signals, while the elements of the n x 1 vector s(t) are often 
monocomponent signals. n(r) is an additive noise vector whose elements are temporally and 
spatially white, zero mean Gaussian distributed process with variance G . Due to the linear data 
model, the STFD takes the following structure 

»Jt,f) = D„(t,f) + Dr(t,f) + Dmft,f) + Dm(t,f). -       (5) 

Under the uncorrelated signal and noise assumption and the zero-mean noise property, 
E[Dyn(r, f)] = E[Dny(t, f)] = 0, and it follows 

D*x(t,f) = E[Dxs(t,f)] = Dyy(t,f) + Dm(t,f) = ADss(f,/)A
H +<72I    (6) 

13 



where D%x(t,f) is the spatial time-frequency spectrum and Dss(t,f) is the TFD of s(t). We note 

that Dxx(/,/) is a matrix of dimension m x m, whereas Dss(?,/) is of dimension n x n. For 

narrowband array signal processing applications, A holds the spatial information and maps the 
auto- and cross-TFDs of the source signals into auto- and cross-TFDs of the data. 

Expression (6) is similar to that which has been commonly used in blind source 
separation and direction of arrival {DOA) estimation problems, relating the signal correlation 
matrix to the data spatial correlation matrix. Here, these correlation matrices are replaced by 
spatial time-frequency distribution matrices. This means that we can solve these problems in 
various applications using a new formulation which is more tuned to nonstationary signal 
environments. 

The two subspaces spanned by the principle eigenvectors of DXx( t,f ) and the columns 

of A are, therefore, identical. Since the off-diagonal elements are cross-terms of Dss( t, f ), then 

this matrix is diagonal for all (t-f) points which correspond only to the signal autoterms. In 
practice, to simplify the selection of such points of true high power localization, we apply the 
smoothing kernel (j)(t,T) that may significantly decrease the contribution of the cross-terms in 

the t-f plane. 

To our knowledge, there are five key advantages of array processing using time- 
frequency distributions which have not yet been properly presented and fully utilized. In order to 
clearly explain these advantages, we use the pictorial diagram in Fig.l. Two sources A and B are 
incident on a multisensor array: Source A occupies the time-frequency region Ra, whereas source 
B occupies the time-frequency region Rb. The time-frequency signatures of the two sources 

overlap, but each source still has a time-frequency region that is not intruded over by the other 
source. We will assume that the background noise is white. 

1) Equation (6) can be easily derived for any arbitrary joint-variables. Time and frequency are 
indeed the two most commonly used and physically understood parameters. However, by 
replacing the spatial time-frequency distributions by spatial arbitrary joint-variable distributions, 
one can relate the sensor joint-variable distributions to the source joint-variable distributions 
through the same mixing matrix A. As shown below, there are situations where it is preferable to 
consider other domains such as the ambiguity domain, where the locations of the signals and their 
cross-terms are guided by properties and mechanisms different than those associated with the 
time-frequency domain. 

2) Equation (6) is valid for all time-frequency points. The inability to perform ensemble 
averaging gives rise to the question of whether one time-frequency point suffices for adequate 
direction finding and source separation, and how sensitive the performance is to a random choice 
of a t-f point? Further, if several t-f points are used, then how to choose and combine these points 
for improved performance, and whether the method of combining should differ depending on the 
task in hand? Direction finding techniques require Dss(f,/)to be full rank, preferably diagonal. 

Some blind source separation techniques demand the diagonal structure of the same matrix 
without degenerate eigenvalues. These properties along with high SNR requirements may be 
difficult to achieve using a single time-frequency point. We have identified two different 
methods to integrate several t-f points into equation (6). One method is based on a simple 
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averaging performed over parts or the entire time-frequency regions of the signals of interest. 
The second method incorporates desirable time-frequency points into joint diagonalization or 
joint block diagonalization schemes. Both methods aim to fully utilize the points of maximum 
power concentration and avoid the time-frequency region of significant noise contamination. 

3) The time-frequency distribution of the white noise is distributed all over the time-frequency 
domain, whereas the TFDs of the source and jammer waveforms are likely to be confined to 
much smaller regions. Referring to Fig.l, the noise is spread over both Ra and Rh as well as the 
complement region Rc. If the time-frequency points (/, /) used in either the averaging or joint 
diagonalization approaches belong the noise only region Rc, then no information of the incident 
waveforms is used and, as such, no reasonable source localization and signal separation outcomes 
can be obtained. Accordingly, the performance in this case is expected to be worse than 
conventional approaches. On the other hand, if all points (t, f) in Fig.l are used, and the 
employed TFD satisfies the marginal constraints such as the Wigner distribution, then it is easily 
shown that only the average power is considered. As a result, the problem simplifies to the second 
order covariance based matrix approach, traditionally used in high resolution direction of arrival 
estimation. This is an important property, as it casts the conventional techniques as special cases 
of the proposed framework based on time-frequency analysis. Finally, if we confine the (r, /) 
points to Ra and Rh, then only the noise part in these regions is included. The result of leaving 

out the points (t,f) which are not part of the time-frequency signatures of the signal arrivals is, in 
essence, enhancing the SNR of the input to be utilized by the source localization and signal 
separation techniques. 

4) By only selecting (t,f) points which belong to the t-f signature of one source, then this source 
will be the only one considered by equation (6). This is, in essence, equivalent to implicitly 
performing spatial filtering to remove other sources from consideration. It is important to note 
that such removal does not come at the expense of reduction of the number of degrees of 
freedom, as it is the case in beamspace processing, but the problem remains a sensor space 
processing with the original number of degrees of freedom is kept intact. This represents a key 
contribution of TFDs to the direction finding and angle estimation area. An antenna array can, 
indeed, be used to localize a number of sources equal or even greater than its number of sensors. 
The fundamental condition is that there must be time-frequency regions over which the respective 
time-frequency signatures of the sources do not overlap. In principle, the lower limit on the size 
of such regions is a single time-frequency point. Referring to Fig.l and considering the case of 
two sensors, if all t-f points incorporated in direction finding belong to region Ra and not Rh, 

then the signal subspace defined by equation (6) is one-dimensional. In effect, by excluding 
source B, a one-dimensional noise subspace is established, which allows us to proceed with 
noise-subspace based high resolution techniques for localization of source A. Within the 
proposed framework, one can localize one source at a time or a set of selected sources, depending 
on the array size, overlapping and distinct time-frequency regions, and the dimension of the noise 
subspace necessary to achieve the required resolution performance. The same concepts and 
advantages of t-f point selection discussed above for direction finding can be applied to blind 
source separations. 

5) The a priori knowledge of some temporal characteristics or the nature of time-varying 
frequency contents of the sources may permit direct selection of the t-f regions used in equation 
(6). In general, if we choose a joint-variable domain, where a class of signals is confined to a 
specific known joint-variable region, then one can perform direction finding and source 
separation for only this specific class. For instance, it is known that in the ambiguity domain all 
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fixed frequency sinusoids map to the vertical axis, independent of their amplitudes, frequencies, 
and phases are. By only incorporating the points on the vertical axis, which represents the time- 
lag variable, we focus on separating and localizing narrowband components in the presence of 
broadband signals. 

Fig. 1   Signals with different time-frequency signature 
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I. Introduction 

There are several methods that have been proposed for interference suppression in direct- 

sequence spread-spectrum (DS/SS) communications, most have been related to one do- 

main of operation [1], [2]. These methods include the narrowband interference waveform 

estimation [3], [4], frequency domain interference excision [5], zero-forcing techniques [6], 

adaptive subspace-based techniques [7], [8], and minimum-mean-square error (MMSE) 

interference mitigation techniques [9]. 

Nonstationary interferers, which have model parameters that change with time, are 

particularly troublesome due to the inability of a single domain mitigation algorithm to 

adequately remove their effects. The recent development of the quadratic time-frequency 

distributions (TFDs) for improved signal power localization in the time-frequency plane 

has motivated several new approaches for excision of interference with rapidly time-varying 

frequency characteristics in the DS/SS communication systems. Comprehensive summary 

of TFD-based interference excision is given in reference [10]. The two basic methods for 

time-frequency excision are based on notch filtering and subspace projections. Utilization 

of the interference instantaneous frequency (IF), as obtained via TFDs, to design an open 

loop adaptive notch filter in the temporal domain, has been thoroughly discussed in [11], 

[12]. Subspace projection methods, commonly used for mitigating narrowband interference 

[13], [14], have been recently introduced for suppression of frequency modulated (FM) 

interference and shown to properly handle multi-component interference, reduce the self- 

noise, and improve the receiver performance beyond that offered by other time-frequency 

based techniques [15], [16], [17]. 

The main purpose of this paper is to integrate spatial and temporal processing for 

suppression of nonstationary interferers in DS/SS communication systems. Specifically, 

we extend the projection-based interference mitigation techniques in [15], [16], [17] to 

multi-sensor array receivers.   The proposed multi-sensor interference excision technique 
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builds on the offerings of quadratic time-frequency distributions for estimation of 1) the 

time-frequency subspace and time-frequency signature of nonstationary signals, and 2) 

the spatial signature of nonstationary sources using direction finding and blind source 

separations. With the knowledge of the time-frequency and spatial signatures, the ob- 

jective is to effectively suppress strong nonstationary interferers with few array sensors. 

The proposed technique does not require the knowledge of the array response or channel 

estimation of the DS/SS signal, but it utilizes the distinction in both of its spatial- and 

time-frequency signatures from those of the interferers that impinge on the array. With 

the combined spatial-time-frequency signatures, the projection of the data vector onto the 

subspace orthogonal to that of the interferers leads to improved receiver performance over 

that obtained using the subspace projection in the single-sensor case. 

The rest of the paper is organized as follows. In Section II, the signal model is described. 

Section III briefly reviews the subspace projection technique. We present in Section IV 

blind beamforming based on subspace projection and derive the receiver output signal- 

to-interference-plus-noise ratio (SINR). Several numerical results are given in Section V. 

Section VI concludes this paper. 

II. Signal Model 

In DS/SS communications, each symbol is spread into L = T/Tc chips, where T and 

Tc are, respectively, the symbol duration and chip duration. We use discrete-time form, 

where all signal arrivals are sampled at the chip-rate of the DS/SS signal. The symbol-rate 

source signal is denoted as s(n), and the aperiodic binary spreading sequence of the nth 

symbol period is represented by c(n, I) G ±1,1 = 0,1, • • ■, L - 1. The chip-rate sequence 

of the DS/SS signal can be expressed as 

d(k) = s(n)c(n,l)       with    k = nL + l. (1) 

For notation simplicity, we use c(l) instead of c(n, I) for the spreading sequence. 
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We consider an antenna array of N sensors. The propagation delay between antenna 

elements is assumed to be small relative to the inverse of the transmission bandwidth, so 

that the received signal at the N sensors are identical to within complex constants. The 

received signal vector of the DS/SS signal at the array is expressed by the product of the 

chip-rate sequence d(k) and its spatial signature h, 

xs(k) = d(k)h. (2) 

The channel is restricted to flat-fading, and is assumed fixed over the symbol length, and 

as such h in the above equation is not a function of k. 

The array vector associated with a total of U interference signals is given by 

u 
*u(k) = J2^iUi(k) (3) 

i=l 

where a.t is the array response to the zth interferer, Ui(k). Without loss of generality, we 

set ||h|||. = N and ||aj|||. = N, i = 1,2, ■ ■ •, U, where || • ||^ is the Frobenius norm of a 

vector. The input data vector is the sum of three components, 

u 
x(Jfc) = xs(k)+xu(k)+b(k) = d{k)h + Y,^i(k)+Hk) (4) 

i=i 

where b(k) is the additive noise vector.  In regards to the above equation, we make the 

following assumptions. 

Al) The information symbols s(n) is a wide-sense stationary process with E[s(n)s*(n)} = 

1, where E[-] is the statistical expectation operator, and the superscript * denotes complex 

conjugation. The spreading sequence c(k) is a binary random sequence with E[c(k)c(k + 

/)] = 5(1), where 5(1) is the delta function.1 

A2) The noise vector b(A;) is zero-mean, temporally and spatially white with 

E[b(k)bT(k + l)} = 0   for all/, 

1This assumption is most suitable for military applications and P-code GPS. 
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and 

E[b(k)bH{k + l)]=crö(l)IN, 

where a is the noise power, the superscripts T and H denote transpose and conjugate 

transpose, respectively, and Ijv is the N x N identity matrix. 

A3) The signal and noise are statistically uncorrelated. 

III. Subspace Projection 

The aim of subspace projection techniques is to remove the interference components 

before despreading by projecting the input data on the subspace orthogonal to the inter- 

ference subspace, as illustrated in Fig. 1. The receiver block diagram is shown in Fig. 2. 

A nonstationary interference, such as an FM signal, often shares the same bandwidth 

with the DS/SS signal and noise. As such, for a chirp signal or a signal with high-order fre- 

quency laws, the signal spectrum may span the entire frequency band, and the sample data 

matrix loses its complex exponential structure responsible for its singularity. Therefore, 

the interference subspace can no longer be obtained from the eigendecomposition of the 

sample data matrix [13], [15] or the data covariance matrix [14], as it is typically the case 

in stationary environments. The nonstationary interference subspace, however, may be 

constructed using the interference time-frequency signature. Methods for estimating the 

instantaneous frequency, instantaneous bandwidth, and more generally, a time-frequency 

subspace, based on the signal time-frequency localization properties are, respectively, dis- 

cussed in references [15], [18], [19]. 

For the general class of FM signals, and providing that interference suppression is 

performed separately over the different data symbols, the interference subspace is one- 

dimensional in an L-dimensional space. We note that since an FM interference has a 

constant amplitude, its respective data vector can be determined from the IF up to a 

complex multiplication factor. The unit norm normalization of this vector represents the 

one-dimensional interference subspace basis vector. Among candidate methods of IF es- 
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timation is the one based on the time-frequency distributions. For example, the discrete 

form of Cohen's class of TFD of a signal x(t) is given by [20] 

OO 00 

Dxx(t,f)=   E      E   Hrn,T)x(t + m + T)x*(t + m-T)e-jA*fT, (5) 
m=—oo T=—oo 

where (f>(m,T) is a time-frequency kernel that could be signal-dependent. The TFD con- 

centrates the interference signal power around the IF and makes it visible in the noise and 

pseudo-random (PN) sequence background [18], [21]. It has been shown that, for linear 

FM signals, Radon-Wigner transform provides improved IF estimates over the TFD [22]. 

Parametric methods using autoregressive model have also been proposed [23]. 

Other nonstationary interference with instantaneous bandwidth or spread in the time- 

frequency domain are captured in a higher-dimension subspace. In this case, the inter- 

ference subspace can be constructed from the interference localization region Q, in the 

time-frequency domain (see, for example, [15]). The subspace of interest becomes that 

which fills out the interference time-frequency region Q energetically, but has little or no 

energy outside Q,. 

Interference-free DS/SS signals are obtained by projecting the received data vector (in 

the temporal domain processing, the vector consists of data samples at different snapshots) 

on the subspace orthogonal to the interference subspace. 

A.  Temporal Processing 

In the single-sensor receiver, the input data is expressed as 

u 
x(k) = x8(k) + xu{k) + b{k) = d{k) + E Ui{k) + b{k). (6) 

i=i 

Using L sequential chip-rate samples of one symbol of the received signals at time index 
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k, we obtain the following input vector 

[x(k)  x{k-l)   •■•   x{k-L + l)}T 

= [xs{k)  xs(k-l)   ■■■   xs{k-L + l)]T 

(7) 
+ [xu{k)  xu(k - 1)   • • • xu(k -L + 1)}T 

+ [b(k)  b{k-l)   ■■■ b(k-L + 1)]T 

or simply 

X(k) = Xs(k)+Xu(k) + B(k). (8) 

We drop the variable k for simplicity, with the understanding that processing is per- 

formed over the nth symbol that starts at the kth. chip. Then, equation (8) becomes 

X = XS+XU + B. (9) 

Below, we relax the FM condition used in [13], [16] that translates to a single dimension 

interference. The general case of an interference occupying higher dimension subspace is 

considered. We assume that the zth interferer spans Mi dimensional subspace, defined by 

the orthonormal basis vectors, V^i, Vh2, ■ ■ •, V^M*) and the different interference subspaces 

are disjoint. Define 

Vi = [Vi,l Via ■■■ VlMi) (10) 

and let M = Y,f=i Mi as the number of total dimensions of the interferers. With L > M, 

the L x M matrix 

V = [V1V2 ■■■ Vu],    Vi{\Vj = *   fori^j (11) 

is full rank and its columns span the combined interference subspace J.  The respective 

projection matrix is 

P = vil^VyW11. (12) 

The projection matrix associated with the interference orthogonal subspace, G, is then 

given by 

P = IL-V(VHV)-1VH. (13) 
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When applied to X, matrix P projects the input data vector onto G, and results in 

XL = PX = PXS + PB, (14) 

which no longer includes any interference component. 

The single-sensor receiver implementing subspace projection for excision of a single 

instantaneously narrowband FM interferer (i.e., U = 1, Mi = 1) in DS/SS communications 

is derived in [24]. The receiver SINR is shown to be 

SINR = A      2N-1)'       n =     L-21       ■ <15> 

For typical values of L, (L — 2)/(L — 1) « 1, and equation (15) can be simplified as 

SINR«   L~)r. (16) 
(j + l/L v    y 

Compared to the interference-free environment, where the receiver SINR is L/a, nonsta- 

tionary interference suppression in (16) is achieved by reducing the processing gain by 1 

and increasing the noise power by the self-noise factor of 1/L. 

IV. Subspace Projection in Multi-Sensor Receiver 

In this section, we consider nonstationary interference excision in multi-sensor receivers 

using subspace projections. We note that if the subspace projection method discussed in 

Section III is extended to an iV-element array by suppressing the interference indepen- 

dently in each sensor data and then combining the results by maximum ratio combining 

(see Fig. 3), then it is straightforward to show that the receiver SINR is given by 

SINR*^i>. (17) 
a + N/L v    ' 

The above extension, although clearly improves over (16), does not utilize the potential 

difference in the spatial signatures of signal arrivals, and, therefore, is inferior to the 

receiver proposed in this Section. 
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A. Spatio-Temporal Signal Subspace Estimation 

To construct the spatio-temporal signal subspace of the interference signals, it is impor- 

tant to estimate both the time-frequency signature (or subspace) and the spatial signature 

of each interferer. The IF estimation of an FM interference signal based on time-frequency 

distribution is addressed in Section III. It is noteworthy that when multiple antennas are 

available, the TFD may be computed at each sensor data separately and then averaged 

over the array. This method has been shown in [25] to improve the IF estimation, as it 

reduces noise and crossterms that often obscure the source true power localization in the 

time-frequency domain. 

On the other hand, the estimation of source spatial signature can be achieved, for ex- 

ample, by using direction finding and source separation techniques. When the interference 

signals have clear bearings, methods like MUSIC [26] and maximum likelihood (ML) [27] 

can be used to estimate the steering matrix of the interference signals. These methods 

can be revised to incorporate the TFD of the signal arrivals for improved performance 

[28], [29], [30]. On the other hand, in fading channels where the steering vector loses its 

known structure due to multipath, blind source separation methods should be used [31], 

[32], [33]. Since the interferers in DS/SS communications often have relatively high power, 

good spatial signature estimation is expected. 

More conveniently, the spatial signatures can be simply estimated by using matched 

filtering once the time-frequency signatures are provided. The maximum likelihood esti- 

mator for the vector a, is obtained as 

where üi(k) is the estimated waveform of the ith. interferer. It is noted that the possible 

phase ambiguity in the waveform estimation of üi(k) does not affect the estimation of the 

spatial signature. For slowly varying channels, the above average can also be performed 

over multiple symbols to improve the estimation accuracy. 

26 



In the analysis presented herein, we assume knowledge of the interference subspace and 

its spatial signature to derive the receiver SINR. 

B. Proposed Technique 

The subspace projection problem for nonstationary interference suppression in DS/SS 

communications is now considered within the context of multi-sensor array using N array 

elements. We use one symbol DS/SS signal duration (i.e., L chip-rate temporal snapshots), 

and stack L discrete observations to construct an NL x 1 vector of the received signal 

sequence in the joint spatio-temporal domain. In this case, the received signal vector in 

(4) becomes 

or simply 

[xT(k)  xT(fc-l)   ••• xr(A:-L + l) 

= ~g(k)  g(k-l) ■■■   g(k-L + lj\ 

+ [xM tf(*-l) -gik-L + l)] 
+ [hT{k)  bT(k - 1) • • • bT(A; -L + l)] 

T 

T 

T 

T 

(19) 

X = XS + XU + B, (20) 

where again the variable k is dropped for simplicity. 

In (19), the interference vector in the single-sensor problem, given by (7), is extended 

to a higher dimension. With the inclusion of both temporal and spatial samples, the rath 

basis of the zth interference becomes 

Vi;m = Vitm ® & (21) 

and 

V^^V.,2 ••• ViiMi], (22) 

where <g> denotes the Kronecker product. The columns of the LN x M matrix 

v = ry1v2 ■•■ Vu] (23) 

spans the overall interference signal subspace. 
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For independent spatial signatures, the matrix rank is M.  The orthogonal projection 

matrix is given by 

P = ILiV-V(v"v)_1V". (24) 

The projection of the signal vector on the orthogonal subspace of the interferers' yields 

X± = PX = PXS + PB. (25) 

The block diagram of the proposed method is presented in Fig. 4. As shown in the 

next section, effective interference suppression can be achieved solely based on the spatial 

signatures or the time-frequency signatures, or it may require both information. 

C. Performance Analysis 

Below we consider the performance of the multi-sensor receiver system implementing 

subspace projections. Recall that 

Vi!mvi,n = 0    for any    i, m ^ j, n. (26) 

and 

V"V = NIM, (27) 

the projection matrix P becomes 

P = ILN- ^VV"- (28) 

The signal vector Xs can be rewritten as 

Xs =[g(k) g(k-l) ••• g(k-L + l)]T 

= [d(k)hT d{k-l)hT ■■■ d{k-L+l)h 

= s(n) [c{L - 1) c(L - 2)   • • • c(0)]T ® h 

A s(n)q, 

where the LN x 1 vector 

q = [c(L - 1) c(L - 2)   ••• c(0)]T®h Ac®h (30) 
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defines the spatio-temporal signature of the desired DS/SS signal,  q is the extension of 

the DS/SS code by replicating it with weights defined by the signal spatial signature. 

By performing despreading and beamforming, the symbol-rate decision variable is given 

by 

y(n) = qHX±(k) = s(n)q"Pq + qHPB(fc) A yi{n) + y2{n), (31) 

where yx (n) is the contribution of the desired DS/SS signal to the decision variable, and 

y2(n) is the respective contribution from the noise. 

The SINR of the array output becomes (see Appendix A) 

u \2 

QTMR -   E  ^   -  V i=l '  (39) 

where & is defined in (A.9), and $ is the spatial correlation coefficient between the spatial 

signatures h and a,, % = 1,2, • • •, U, and is given by 

A = ^h"a,. (33) 

Note that when the noise power is small, i.e., a << 1, the variance of yx becomes dominant, 

and the output SINR reaches the following upper bound 

U-J2MM2) 
SINRhigh SNR * -77T *T3 T ■ (34) 

E^iÄi2) -2E^lÄ-l4 

This result is affected by the factors L, M», |/%|, and &, i = 1, • • •, U. On the other hand, 

when the noise level is very high, i.e., a » 1, the noise variance plays a key role in 

determining var[y(k)}, and the output SINR becomes 

(L-EM|AI
2
) U 

SINRlow SNR - -V^S J-T = 7 [L ~ E MM2) ■ (35) 
£(*-|>«IAIa)    aK     -        J 
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Unlike the high input SNR case, the output SINR in (35) also depends on both N and a. 

Comparing (34) and (35), it is clear that the improvement in the receiver SINR becomes 

more significant when the spatial signatures produce small spatial correlation coefficients 

and under high SNR. 

Next, we consider some specific important cases. When /?,; = 0, i — 1, • • •, U, var[yi(n)] = 

0, the receiver SINR in (32) becomes SINR = LN/a. This is to say, the output SINR 

is improved by a factor of LN over the input signal-to-noise ratio (SNR) (not the input 

SINR!). This implies that the interferers are suppressed by spatial selectivity of the array 

and their suppression does not cause any distortion of the temporal characteristics of the 

DS/SS signal. The DS/SS signal in this case enjoys the array gain that contributes the 

factor N to the SINR. 

For a single FM interferer (U = 1, Mx = 1), equation (32) becomes 

SINR = K—i !—^ . (36) 
(i-f)iAr + £(i-iAi') 

It is easy to show that SINR in (36) monotonously decreases as \ßy\ increases, and the 

lower bound of the SINR is reached for \ßy\ = 1, which is the case of the desired DS/SS 

signal and the interference signal arriving from the same direction. With a unit value of 

IA i, 

SINR-,       ff"1/ *^Ü (37) 
(l-|)+^-l)      ° + W 

This result is the same as that of the single-sensor case developed in [16], except for the 

appearance of the array gain, N, for the desired DS/SS signal over the noise. This equa- 

tion also coincides with (17). That is, the independent multi-sensor subspace projection, 

illustrated in Fig. 3, results in the same output SINR with the proposed multi-sensor 

subspace projection method when \ßi\ = 1. 

On the other hand, the maximum value in (36) corresponds to ß = 0, and is equal to 

SINR = LN/a, as discussed above. For the illustration of the SINR behavior, we plot in 
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Fig. 5 the SINR in (36) versus \ßi\ for a two-sensor array, where L = 64, and one FM 

jammer is considered with M = 7. The input SNR is OdB. 

Given the temporal and spatial signatures, the proposed technique simplifies to two 

consecutive tasks. The first is to estimate the spatio-temporal signature. When using 

multiple antenna receivers, a basis vector of the orthogonal projection matrix is obtained 

by the Kronecker product of a jammer's temporal signature and its spatial signature, that 

results in the LN x LN orthogonal project matrix instead of L x L in the single antenna 

case. The second task is jammer suppression via subspace projection. This involves the 

multiplication of an LN x LN matrix and an LN x 1 vector. 

Note such increase in computations is natural due to increase of dimensionality. It 

is noteworthy that array processing expands overall space dimensionality but maintains 

the jammer subspace dimension. As a result, it yields improved SINR performance over 

temporal processing or spatial processing only methods. 

V. Numerical Results 

A two-element array is considered with half-wavelength spacing. The DS/SS signal uses 

random spreading sequence with L — 64. The AOA of the DS/SS signal is 0 degree from 

broadside (6D = 0°). 

We consider two interference signals. Each interference signal is assumed to be made up 

of uncorrelated FM component with M{ = 7, % = 1,2. The overall interference subspace is 

M=14. The AOAs of the two interferers are 6j = [40°, 60°]. The respective spatial correla- 

tions in this example are \ßi\ = 0.53 and \ßz\ = 0.21. Note that, in the subspace projection 

method, the output SINR is independent of the input jammer-to-signal ratio (JSR), since 

the interferers are entirely suppressed, regardless of their input power. Fig. 6 shows the 

receiver SINR versus the input SNR. The upper bounds correspond to interference-free 

data. For high input SNR, the receiver SINR is decided by the induced signal distortion, 

described by the variance given in (A.10). It is evident from Fig. 6 that the two-antenna 

31 



receiver outperforms the single-antenna receiver case by a factor much larger than the 

array gain. Since the output SINR in the two-antenna receiver highly depends on the spa- 

tial correlation coefficients, the curves corresponding to a two-sensor array in Fig. 6 will 

assume different values upon changing ßi, or/and ß2. The best performance is achieved 

at Ä = ß2 = 0. 

Fig. 7 shows the receiver SINR versus the number of chips per symbol (L). We let L 

vary from 8 to 4096, whereas the input SNR is fixed at 0 dB. The two interference signals 

are incident on the array with angles 9j = [40°, 60°]. They are assumed to maintain their 

time-frequency spread with increased value of L. As such, the respective dimensions of 

their subspaces grow proportional to the number of chips per symbol. In this example, the 

dimension of each interference signal is assumed to be 10 percent of L (round to the nearest 

integer). The output SINR improvement by performing array processing at different L is 

evident from this figure. It is seen that, unlike the case of the instantaneously narrowband 

FM interference, where the output SINR increases rapidly as L increases, the output SINR 

in the underlying scenario ceases to increase as L assumes large values. This is because 

the rank of the interference signal subspace increases with L. 

In Fig. 8 we investigate the receiver SINR performance versus the number of array 

sensors. In this figure, L is set at 64, and the input SNR is 0 dB. Two interference sig- 

nals composed of uncorrelated FM components are considered, and Mi = 7, i = 1,2, are 

assumed. Two examples are used to examine the effect of different AOAs. In the first ex- 

ample, 0j = [40°, 60°]. The output SINR improves sharply as the number of array sensors 

increases from one to three, beyond which the improvement becomes insignificant. The 

differences in the above AOAs of the desired DS/SS signal and the interference signals 

are relatively large, and a small number of array sensors leads to negligible spatial cor- 

relation coefficients. We also show a case with closely spaced interference signals where 

Qj = [5°, 15°]. In this case, the output SINR slowly improves as the number of array 

sensors increases. 
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It is noted that, when we consider a specific case, the output SINR does not increase 

monotonously with the number of array sensors. This is because the relationship between 

the spatial correlation coefficient and the AOAs is by itself not monotonous. Nevertheless, 

when we consider the general case with different AOA combinations, high number of array 

sensors often reduce the spatial correlation coefficients. 

VI. Conclusions 

In this paper, subspace projection techniques were employed to suppress nonstationary 

interferers in direct-sequence spread-spectrum (DS/SS) communication systems. Interfer- 

ence suppression is based on the knowledge of both the interference time-frequency and 

spatial signatures. While the former is based on instantaneous frequency information that 

can be gained using several methods, including time-frequency distributions, the later can 

be provided from applying higher resolution methods or blind source separation techniques 

to the signal arrivals. 

The differences between the DS/SS signal and interference signatures both in the time- 

frequency and spatial domains equip the projection techniques with the ability to remove 

the interference with a minimum distortion of the desired signal. 

The receiver performance based on subspace projections was analyzed. It was shown 

that the lower performance bound is obtained when the sources have the same angular 

position. In this case, the problem becomes equivalent to a single-antenna receiver with 

only the presence of the array gain. On the other hand, the upper bound on performance is 

reached in the interference-free environment and also corresponds to the case in which the 

spatial signatures of the interference signals are orthogonal to that of the DS/SS signal. 

Numerical results were presented to illustrate the receiver SINR dependency on spatial 

correlation coefficient, input SNR, and the PN sequence length. 
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Appendix A 

To derive the output SINR expression, we use s(n) = +1 (the output SINR is indepen 

dent of s(n) and same result follows when s(n) = — 1). Then, 

E[yi(n)]    = E[qHPq] 

= tf[q"(I--ivV")q 

±E [q"VV"q] E qHq 
N 

= LN~~E q" £ Vfl E V?q 
»1=1 «2 = 1 

(A.l) 

U      Mi U      Mi 

Q       Z-^     L~l     *»li"U   2s     ILJ     *»2,"J2
(1 

il = lmi=l 22 = 17712 = 1 

It is straightforward to show that (the definition of ßi is given in (33)) 

= LN-jfE 

q"V,,m = (c ® h)" (yt„ ® a,) = {cTV{„) ® (h"a,) = JV/3, f) Vum{l)c{l). (A.2) 
L-l 

E 
'=0 

Using the orthogonal property of the spreading sequence Al), (A.l) becomes 
u Mh   L-\ u Mh  L-l 

Eßii E E^WWoE/% E T,K,mMc(h) 
11=1 7711=1 ')=0 »2 = 1 7712 = 1 h=0 

U M,   L-l 

Liv-ivi:iAl2EEl^(OI2c2(/) 

E[yi{n))    =LN-NE 

i=l 771=1  Z = 0 

NU-j^Mm2) 
(A.3) 

Due to the zero-mean property of noise (assumption A2), E[y2(n)} = 0. Accordingly, 

E[y(n)} = E[yi(n)] = N [L - £ Mtfi (A.4) 
i=l 

It is clear from (A.4) that the increase in the space dimensionality from L to NL does not 

simply translate into a corresponding increase in the desired mean value, or subsequently 

in the processing gain. Also, from assumption A3), the cross-correlation between yi(n) 

and y2(n) is zero, i.e., 

E[yl(n)y2(n)} = E[yi(n)y*2(n)} = 0. (A.5) 
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Therefore, the mean square value of the decision variable is made up of only two terms, 

E y(n)|2]=J5[|yi(n)|2]+E[|ite(n)|2]. (A.6) 

The first term is the mean square value of y\{n). From (26), we have 

E[Mn)f E qHpqqHpHq 

= £[q"(iw-ivV)qq»(itK-ILvv»)q 

= E [qHqqHq] - ^E [q^qq^VV^q] + -^-E [qffWHqqffWHq 
N 
u 

= (LN)2-2LN2Y,Mi\ßi\2 

i=i 

"  U Mh   L-l U MH   L-\ 

+N
2
E Y,fa E EiW'iMJi)XX E E^U(W2) 

ii=l        mi=lii=0 12=1 7712=1(2=0 

U Mi3   L-\ U Mi4   L-\ 

xEAs E EU(W«E^ E EK,m4(h)c(h) 
t3=l m3=l ;3=0 14=1 7714=1 (4=0 

= (LiV)2-2LiV2^Mi|A|2 

i=l 

+iV2£     2   Äi^     E       E   Viumi(h)Vlm2(l2)c(h)c(k) 
ii=i2=l mi=m2=l!1=(2=0 

U Mi3 L-\ 

X      E     Ä.0U        E E     ^»W^^^M's)^) 
i3=i4=l m3=m4=l (3=i4=0 

11=14=1 mi=m4 = l ;1=;4=o 

U Mi3 L-\ 

X     E     ßisßl       E E     ^3,-3(^)^)m2(/2)C(/3)c(/2) 
13 =»2 = 1 1713=7712 = 1 l3=l2=0 

[/ MU       Mi3 L-l 

+N*E   £ ft,A3 E E   E v^Mv^McihWh) 
l1=Z3 = l mi=l 7713 = 1 li=l3=0 

U Mh    M;4      L_i 

x E /%/% E E  E ^,m2^)^:,m4(/4)c(/2)c(/4) 
12=14 = 1 7712 = 1 »714 = 1 i2=/4=0 

-2iV2£        £       ft^A^ E 
11=12=23=14=1 mi =7712=7713=7714=1 

X E ^1,m1(^l)^)m2(^)^3!77l3(/3)Vi:im4(/4)c(/1)c(/2)c(Z3)C(/4) 
'l='2='3='4=0 
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= (LN)2- 2ZJV2]TMi|/3J| 
i=i 

+N*\2(YtMl\ßA   + 
i=l 

U 

1=1 
21       I    7 

where 

and 

M,      M,    L-l 

7>= E E Evw(OW) 
mi = l m2 = l /=1 

(A.7) 

(A.8) 

(A.9) 
A/,-   L-l 

&=EEItW0l4- 
m=l f=l 

In practice, 7* takes negligible values, and equation (A.7) can be simplified to 

E[\y1(n)\2}=(LN)2-2LN2J:Mm2 + N2(2(J2MM2]   -2£&|A|4).  (A-10) 
i=l W=l i=l 

The value of £, depends on the type of interference signals. Specifically, when the ith 

interference signal is made up of a single FM or a number of uncorrelated FM signal 

components, then the basis vectors are of constant modulus, and 

6 

The second term of (A.6) is the mean-square value of 2/2(ft), 

(A.11) 

E I2/2W 

= oN[L-YtMi\ßi 
V       i=i 

= E [qHPB(k)BH(k)PHq 

= oE [qHPP"q] = oE [q"Pq 

The variance of y(n) is given by 

var[y(n)}    = E[\y(n)\2} - E2[y(n)} 

= E[\yi(n)\2} + E[\y2(n)\2} - E2[yi(n)} 

= (LN)2 - 2LN2 EM.IAI2 + iV2 (2 (J2 MM2)   - \ E M|ft 

+aN U -J2MM2) - N2 (L -Y,Mz\ßA 

= W(X>,-|Ä|2)   -2Eei|A|4]+^^-EMl|A|2)- 

Equation (32) follows by using the results of (A.4) and (A.13). 

(A.12) 

(A.13) 
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Fig. 1      Jammer suppression by subspace projection. 
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Fig. 2      Block diagram of single-sensor subspace projection. 
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Fig. 3      Block diagram of independent multi-sensor subspace projection. 
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Fig. 4      Block diagram of proposed multi-sensor subspace projection. 
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Fig. 5      Output SINR versus |ft| (input SNR=0dB, L=64, U=l, M=7). 
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Fig. 6      Output SINR versus input SNR 

(L=64, U=2, MX=M2 = 7, 6D = 0°, 9j = [40°, 60°]). 
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Fig. 7      Output SINR versus the number of chips per symbol (L) 

(input SNR=0dB, [7=2, Mx = M2 = 7,9D = 0°, 6j = [40°, 60°]). 
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(input SNR=0dB, L=64, U=2, Mx = M2 = 7). 
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Abstract 

In this paper, we consider the problem of estimating the parameters of multiple wideband polynomial- 

phase signal (PPS) sources in sensor arrays. A new maximum likelihood (ML) direction of arrival (DOA) 

estimator is introduced and the exact Cramer-Rao bound (CRB) is derived for the general case of multiple 

constant-amplitude polynomial-phase sources. Since the proposed exact ML estimator is computationally 

intensive, an approximate solution is proposed, originating from the analysis of the log-likelihood (LL) 

function in the single chirp signal case. As a result, a new form of spatio-temporal matched filter (referred 

to as the chirp beamformer) is derived, which is applicable to "well-separated" sources that have distinct 

time-frequency or/and spatial signatures. This beamforming approach requires solving a 3D optimiza- 

tion problem and, therefore, enjoys essentially simpler implementation than that entailed by the exact 

ML. Simulation results are presented, illustrating the performance of the estimators and validating our 

theoretical CRB analysis. 
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I. Introduction 

Estimating the parameters of polynomial-phase signals (PPS's) is an important prob- 

lem because linear and nonlinear frequency-modulated (FM) signals are encountered in 

several practical applications. For example, in synthetic aperture radar (SAR), synthetic 

aperture sonar (SAS), inverse SAR and SAS (ISAR and ISAS), and in Doppler radar and 

sonar imaging, the returns are FM signals [l]-[4]. Furthermore, FM signal waveforms can 

be intentionally transmitted in multi-sensor systems. For example, chirp signal waveforms 

are widely used for pulse-compression in radar and sonar [1]. Both cases of constant- 

amplitude and time-varying amplitude FM signals have attracted much attention in the 

literature [3]-[8]. Recently, there has been a growing interest in estimating the parameters 

of multiple PPS sources impinging on a multi-sensor array [9]-[14]. Several authors have 

solved this problem using narrowband assumptions, where the signal spatial signatures 

are assumed to remain invariant over the observation period. In particular, a new spa- 

tial time-frequency distribution (STFD) concept has been developed and employed for 

direction finding of narrowband FM sources using subspace techniques [10]-[11]. Several 

exact and approximate ML algorithms for this estimation problem have been proposed [9]. 

Promising extensions of the above-mentioned narrowband approaches to the case of wide- 

band FM signals have been recently reported [12]-[15]. However, these wideband methods 

suffer from a high computational cost and restrictive assumptions. In particular, the ap- 

plication of the wideband STFD approach [13]-[14] is severely restricted by short sliding 

data window lengths, whereas the consideration in [12] is limited by the assumption of 

linear FM signals with the central frequency which is known and identical for each source. 

The iterative approach reported in [15] may lead to strongly biased DOA estimates [13], 

and its convergence is not guaranteed. 

It is also important to stress that the conventional wideband techniques (such as coherent- 

subspace MUSIC [16]-[17] and wideband ML [18]) have only a limited application to the 
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PPS case because they do not take any advantage of the specific PPS structure. Also, 

the wideband coherent-subspace-based techniques require preliminary information about 

the source localization angular sectors or initial DOA estimates to compute focussing ma- 

trices. The focussing operation itself can be done only approximately and this may lead 

to a strong bias in the resulting DOA estimates. Furthermore, in the PPS case these 

subspace-based techniques are severely restricted by the window length (this restriction is 

similar to that of the wideband STFD approach [13]) and their performance may be very 

critical to the choice of several free parameters, such as the focussing frequency, the width 

of array interpolation sectors, etc. 

In this paper, we derive a new form of the ML estimator of the parameters of multiple 

wideband constant-amplitude PPS sources received by a sensor array. Our technique is 

free of the above-mentioned restrictions on the signal waveform parameters and the length 

of the observation interval. Novel explicit expressions for the corresponding CRB on the 

accuracy of estimating the model parameters are derived. 

Although the presented ML estimator concentrates the problem at hand with respect 

to the signal nuisance parameters (initial amplitudes), its computational cost may be 

still very high, since it involves a nonlinear optimization over the parameter space of a 

high dimension. Since the proposed exact ML estimator is computationally intensive, an 

approximate solution is considered, originating from the analysis of the LL function in 

the single linear FM source case. Using this approximation, we derive a new form of 

spatio-temporal matched filter (referred to as the chirp beamformer), which is applicable 

to the wide class of scenarios with "well-separated" (either in DOA or in any of frequency 

parameters) sources. The developed chirp beamforming approach entails solving a 3D 

optimization problem and, therefore, enjoys essentially simpler implementation than the 

exact ML technique. 

Our paper is organized as follows. The array signal model used in the underlying problem 

is presented in Section 2.  Based on this model, the ML estimator is derived in Section 
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3, and the exact CRB on the accuracy of estimating the model parameters is established 

in Section 4. In Section 5, we present the chirp beamformer as a simplified alternative 

for the ML estimator. Simulation results are presented in Section 6. They illustrate the 

performance of the estimators and validate our CRB analysis. 

II. Array Signal Model 

Assume that L wideband constant-amplitude PPS's impinge on a linear array of M 

omnidirectional sensors. Then, the vector array outputs obey the following model 

x(t) = A{t)s(t) + n(t),    t = 0,1,... ,N- 1 (1) 

where A(t) is the M xL time-varying direction matrix, s(t) is the L x 1 vector of wideband 

nonstationary source waveforms, n(t) is the Mxl vector of complex circularly Gaussian 

zero-mean temporally and spatially white sensor noise, and N is the number of snapshots. 

The lih polynomial-phase source waveform can be modeled as 

s,(i) = a^'-0'^1«2/2*"-^'-*-1'*/^ = aig{ojh t) (2) 

where 

g(ui, t) = exp < j Y2 ^l^pi \ (3) 

eti is the initial complex amplitude, u>i^ {I = 1, 2,... , L; k — 0,1,... , K — 1) are the 

unknown discrete-time frequency parameters, and 

K-\ 

ül(t) = J2"i,ktk (4) 

is the discrete-time instantaneous frequency of the Ith. waveform. It is important to stress 

that the discrete- and continuous-time instantaneous signal frequencies are related as 

üt(t) = Atü?{t) (5) 
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where A.t is the sampling interval and £>;
ct(£) is the continuous-time (physical) instantaneous 

frequency of the Ith PPS. The K x 1 vector 

Ui = [(Jifl, (Jiti, ... , uliK-i]T (6) 

contains the unknown discrete-time frequency parameters of the Ith. signal, and K is the 

order of the polynomial-phase model1. 

The direction matrix 

A(0,u(i))   =   [a(9uül(t)),a{02,Ü2(t)),...,a(6L,üL(t))] 

=   [a(9i,u>i,t),a(62,u2,t),... ,a{6L,wL,t)] 

=   A(9,u,t) (7) 

consists of the time-varying steering vectors 

a{0hui,t) ■■ l-ütäj   ■   A J-^W,        •   flV 
'6XP I J ~~Ki    Sm    I '''' 'eXP I J ~At Sm    I (8) 

where 

e ± [9ue2,...,9L}T (9) 

« A [«?-,«!■,...,«aT (io) 

a® 4 [ü1(t),ü2{t),...,üL(t)]T (li) 

6i is the DOA of the Ith. source, and di is the spacing between the first and the (i + l)th 

array sensors. We stress that the relationship (5) is used in (8) to express the steering 

vector as a function of the discrete-time frequency parameters. As follows from (7), the 

direction matrix can be written as a function either of the frequency parameters (10) or 

of instantaneous frequencies (11). Note that in (8) it is assumed that the instantaneous 

signal frequencies üi(t) (t = 1,... , L) do not change during the time necessary for a wave 

'in what follows, the order K is assumed to be known. 
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to travel across the array aperture2. 

Using (2)-(ll), model (1) can be rewritten as 

x(t)   =   A{0,w,t)G(u>,t)a + n(t) 

=   A(0,u,t)a + n{t) (12) 

where 

a   4   [Qu...,aL]T (13) 

G(u,t)   4   diagf^Wi,«),-..,5K,t)} (14) 

Ä(0,w,t)   =   A(0,w,i)G(w,t) (15) 

Note that all nuisance parameters (the initial source amplitudes) are now included in the 

vector a. 

III. Maximum Likelihood Estimator 

In this section, we derive a novel ML estimator of the source DOA's and frequency 

parameters based on the assumption that the initial signal amplitudes are constant (de- 

terministic) values. The negative log-likelihood (LL) function is given by 

N-l 

CN(Q)   =   J]||*(i)-A(0,u;,*)G(u;,i)a||2 

t=o 
N-l 

=   ^||x(<)-A(ö,«,t)a||2 (16) 
4=0 

where the (LK + 2L) x 1 vector of unknown model parameters is defined as 

e±[0T,u;T,aT]T 

2
This assumption means that the signals remain narrowband in each snapshot, i.e. their instantaneous band- 

widths are small compared with the inverse of the wavefront propagation time across the array. However, the 

signals are assumed to be wideband at the full observation interval of JV samples because the propagation time 

across the aperture is usually much smaller than the sampling interval. 
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Rewrite (16) as 

(N-l \ (N-l 

{N-l ~\        N-l 

]T ÄH(9,«, t)x(t)    + Y, xH(t)x(t) (17) 
t=0 ) t=0 

The minimization of CN over a yields 

{N-l ~\ _1   (AT-1 ^ 

Y **{&,«,t)A(0,u,t)\     lYlA"^w>*)*(*) | (18) 

Substituting (18) into (17), we obtain the concentrated negative LL function 

N-l 

CN(0,u>)   =   ]Ta;F(i)a;(*) 
=o 

'N-l "I    (N-l 
t=0 

Y,*B{t)M6,*>,t) \ ^£ä>,UM)ä(0,UM) 
4=0 J    L t=0 

x{ÄH(ö,W,t)*(t)} (19) 

Ignoring the constant terms, the positive concentrated LL function is given by 

{N-l *\    (N-l 

5>F(t)Ä(0>W,i) | | ]£ ÄH(0,u>,t)Ä(0,u,t) 
t=0 J    I t=0 

x I ^ÄV «,*)*(*) I (20) 

The ML estimator is 

[0, w] = arg max CP(0, w) (21) 

The above estimator jointly estimates the source directions and their frequency parameters 

0 and o>, respectively, and generally requires a highly nonlinear optimization of (20) over 

these variables. However, if properly initialized, the optimization of the LL function may 

be implemented by means of simple local optimization algorithms. 
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IV. Cramer-Rao Bound 

In this section, we derive novel explicit expressions for the exact CRB on the accuracy 

of estimating the signal model parameters. 

The observations (12) satisfy the following statistical model: 

x{t) ~NC (Ä(0,üj,t)a,a2l] (22) 

where J\fc denotes the complex multivariate circularly Gaussian probability density func- 

tion, and o1 is the noise variance. 

For mathematical convenience, we redefine the signal frequency parameters in an order 

different from (6) and (10). Let Q denote the matrix 

n± 

Vl,K-l     ^2,K-l     • • •    WL,K-\ 

Using (23), we can alternatively rewrite equation (10) as 

ijj = vec {Q} 

(23) 

(24) 

where vec{-} represents the so-called vectorization operator stacking the columns of a 

matrix to form a column vector. In what follows, we will also use another definition of the 

vector of the signal parameters, 

v vec {rf-} 

where 

=    [VO,---,VK-I]' 

Vk — [^l,fc)W2,Jt, • • • ,k>L,fc] 

(25) 

(26) 

The two alternative definitions (24) and (25) are equivalent, i.e., in principle either one 

can be applied in the underlying problem. However, the use of (25) in lieu of (24) in the 
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definition of the full parameter vector helps simplifying the derivations, as it corresponds to 

a more convenient order of the subblocks of the Fisher Information Matrix (FIM). We note 

that the first definition (24) will be used herein to denote the frequency parameters as the 

arguments of matrices or scalar functions, whereas the second definition (25) will be only 

exploited to provide a proper order of the FIM elements. Using (25), the (LK + 3L + 1) x 1 

vector of unknown real parameters can be defined as 

*   4    [0T,Re{a}r,Im{a}r,i/V2]T 

=    [0\c?y^}T (27) 

where 

a= [Re{a}T,Im{a}Tf (28) 

The elements of the FIM of a complex circularly Gaussian process x(£) ~ Mc (fJ.(t),R) 

are given by [21], [22], 

[Fl.    =   iV trace ^iT1 — A1—- l+2Re^V    a       R   -^r1} 29 l'k I       drpi        di>kj \f^    dipt dip* J 

Applying (29) to the model (22), we obtain 

NMdo* da*      2 D    fed {""!>,",*)} d{Ä{e,»,t)a}\ 

Using (30), the following explicit expressions for the blocks of the FIM are derived (see 
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Appendix A for details), 

(N-\ 

Fgg   — 

Fax,    = 

-Re^^A"£>  {0,w,t)D(O,u,t)A 

2        (^ 
;RelJ2AH£)   (0,",t)Ä(0,u>,t)Q 

I t=o 

FBvk    =   -Re<^A"D>,uM){Tfc(*)©(A(0,u;,*)A)} 
k t=o 

2        f^-1 

i^aä   -   ^Rej]TQ"Ä>,uM)A(0,^)Q 

2        fAr_1 

Fäl/,   =   -Rej^Q"Ä>,uM){Tfc(*)©(Ä(^uM)A)} 

(31) 

(32) 

(33) 

(34) 

(35) 

"fc^m 

^>a2     = 

^Re I E { (*HÄH(9, u, t)) © T»(t)} {Tm(t) © (Ä(ö, W, t) A) } 1(36) 

NM 
en 

■^öo-2   —   -^ao-2 — FVk(T2 — 0 

(37) 

(38) 

where 

A   =   diag{ai,--- ,aL} 

D(0,w,t)   =   D(0,w,t)G(u>,t) 

'da(6i,uut)  da(92,W2,t) 
D{0,u,t)   4 

d0i 89o 

Q = [ijr\ 

Tk{t) ±   Jtk 

k + 1 
E + uc1 

A u   = 
cAt 

[0,di,... ,dM-\f 

c   =   [sin öi, sin Ö2,... , sin#L]J 

8a{9L,uL,t) 
80L 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

E is the M x L matrix containing ones in all positions, and 0 is the vector of zeros. 
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With (31)-(38), the FIM has the following structure: 

0 

0T 
Fa*<T* 

(46) 

where 

oo 

o& 

Fo& 

•L  rvry 

F0u0 av0 

F0u0 

F 

JP JP-* If1-' 
OVK-\ &VK-\ VQVK-I 

0"K- 

OCVK-I 

VOfK-1 

FL 

(47) 

CRB   4   F'1 (48) 

From (47) and the partitioned matrix inversion formula [22], it follows that 

T~l      0 

0T    F~2\ 

Equations (31)-(38), (47), and (48) determine an explicit form of the CRB matrix as a 

function of the unknown source parameters. 

V. Chirp Beamformer 

In the general case, the implementation of the ML estimator (20)-(21) involves a highly- 

nonlinear optimization over the unknown parameter vectors 0 and u>. Therefore, the 

associated computational cost may not be always acceptable. In this section, we simplify 

the ML estimator (20)-(21) by deriving the so-called chirp beamformer which requires a 

simpler 3D search instead of global optimization. Assuming the single source case3, we 

have that the matrix A(0, u,t) simplifies to the vector ä(0, u;,i), and the LL function 

(20) can be written as 

'N-l 

^p(öi,Wi)     =     ^ä^WLtJä^i,«!,*) 
t=0 

N-l 

^2xH(t)ä(euuf1,t) 
t=0 

NM 

N-l 

Yt^WäiOuUut) 
t-o 

(49) 

3This assumption will be relaxed later. 
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where 

ä(01,w1,t)=g{u>1,t)a(6uutut) (50) 

and the obvious property äHä = M is used.   Assuming a linear FM (chirp) signal, we 

have u)\ = [wi ,0,^1,1]   and, hence, there are only three parameters {#1,0^0,^1,1}, which 

correspond to the DOA, initial frequency, and the linear chirp rate, respectively. 

Introducing the simplified (subscript-free) notation 

0 = 0i,        £ = wi,o,        C = wi,i (51) 

and omitting the constant factor 1/M, we can rewrite the right-hand side of (49) as the 

following function: 

iV-l 

mu) = j; 5>"(<)ä(0,£,C,t) (52) 
t=o 

Hereafter, (52) will be referred to as the chirp beamformer1. 

The parameters of interest can be obtained from the main maxima of (52) by means of a 

3D search over the parameters {9, f, £}. It is worth noting that this is a much more feasible 

problem than the global maximization of the LL function over L(K + 1) parameters. The 

chirp beamformer (52) can be easily applied to the multiple source case under the condition 

that the sources are "well-separated" in one or more parameters in (51). This property 

follows from the structure of the function (52), which is linear with respect to the second- 

order moments of x. Therefore, as in the case of the conventional beamformer [23], [25] 

which is widely used in narrowband array processing, the chirp beamformer (52) can be 

straightforwardly extended to the multiple source case. 

Interestingly, the chirp beamformer has quite a different structure as compared to the 
4 We use this term because of the obvious analogy with the narrowband conventional beamformer [23] which can 

be easily derived from the conventional deterministic ML estimator under the single-source assumption [24]. 
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conventional beamformer. The latter function is given by [23] 

/CB(0)   =   aH{6)Ra{9) 
N-l 

= 4£l«"(*)o(ö)l2 (53) 
where 

t=0 

is the sample covariance matrix, and the steering vector does not depend on the temporal 

index t. Comparing (52) and (53), we maintain that the conventional beamformer repre- 

sents the sum of the squared absolute values of vector inner products, whereas the chirp 

beamformer, on the other hand, is determined by the squared absolute value of the sum 

of inner products. This essential difference between (52) and (53) can be explained by 

the fact that in the chirp signal case, the signal temporal characteristics are taken into 

account by means of the parametric time-domain polynomial-phase model. Obviously, 

this corresponds to the so-called coherent matched time-domain processing, whereas in the 

conventional narrowband case the snapshots x(t) are assumed to be independent and, 

therefore, the processing in (53) remains incoherent in time-domain. 

In the single-sensor case, the function (52) becomes independent of 9 and yields 

N-l 

f(Z,0 = ü 
2 

1     V-^     ,.,   -j(t--J&/2 (55) 
t=0 

Note that (55) is frequently used for single-channel chirp signal analysis and is commonly 

referred to as the chirp/quadratic-phase transform [4], [26]. 

An interesting relationship of the chirp beamformer (52) to traditional estimation tech- 

niques can be obtained for the conventional harmonic signal case (C = 0). In this case, 

ä(0,Z,C,t) = ä{9,Z,t) = ei*ta{0,t) (56) 

where the vector a(0,£) is the conventional steering vector, which is identical to that in 

57 



(53). Hence, the beamforming function (52) can be transformed to 

/(0,O = \xH(Oa(e,o\2 

=   aH(6,Z)X(Z)XH(Z)a{e,t) (57) 

where 

t=0 

is the Mx 1 vector of the Fourier-transformed array outputs. The estimator (57) represents 

a single-snapshot variant of the frequency-domain conventional beamformer [25] 

fcB(0,t) = aH(0,Z)ii(Z)a(e,Z) (59) 

where 

T = 0 

is the sample spectral density matrix, the time index r indicates the location of the 

respective short Fourier transform sliding window5, and P is the total number of sliding 

windows (or, in the other words, the number of frequency-domain snapshots). 

Similarly to the chirp beamformer (52), a polynomial-phase beamformer can be defined 

that corresponds to a more general PPS. In this case, the number of parameters in (52) 

will increase, depending on the polynomial-phase model order. 

VI. Simulation Results 

In all our simulation examples, we assume a uniform linear array (ULA) with omni- 

directional sensors. The sonar case [27] is considered with the sound propagation speed 

c = 1500 m/s, the interelement spacing d = 1.5 m, and the sampling interval At = 0.01 s. 

The additive white noise is modeled to have identical variances in each array sensor. 
5This index is not shown in (57) because it is a particular case where the single window, whose length is equal 

to the whole observation length, is used. 
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In each simulation example, the experimental DOA and frequency parameter estimation 

root-mean-square errors (RMSE's) are computed using 50 independent simulation runs 

and results for both the ML estimator (21) and the chirp beamformer (52) are displayed. 

The Genetic Algorithm (GA) was used to find the global maximum of the LL function 

(20). There was no specific initialization of the parameter values. GA is known to be a 

globally convergent technique and we established the global convergence property through 

our simulations by a proper choice of the GA parameters, so that there are no outliers 

caused by the algorithm itself. 

It is interesting to compare DOA estimation results for the derived estimators and CRB 

with the performance which may be expected in the case when no parametric signal model 

in time is used, i.e. when the signal is modeled as 

x(t) ~ Afc{A(0,ü{t))8(t), a2I) (61) 

where s(t) are arbitrary unknown deterministic waveforms. Note that if both 9 and G) are 

unknown, the problem becomes nonidentifiable and the corresponding CRB does not exist. 

However, assuming that the instantaneous signal frequencies are exactly known during the 

whole observation interval6, we obtain the optimistic deterministic bound corresponding 

to the aforementioned case when no signal parameterization in time is used. Hereafter, 

this bound is referred to as the benchmark deterministic CRB. 

In all subsequent DOA RMSE plots, two CRB's are displayed. The first bound is 

computed using equations (31)-(38) and referred to as the PPS CRB, whereas the second 

bound is the benchmark deterministic CRB introduced above. 

In the following three examples, we assume a ULA which receives two equi-powered 

chirp sources impinging on the array from the directions 6\ = 10° and 92 = 15° relative 

to the broadside and having the initial continuous-time frequencies 420 Hz and 401 Hz, 

respectively, and the continuous-time chirp rates —24 Hz/s and 24 Hz/s, respectively (the 

6This is obviously an idealistic assumption but it is used to obtain an optimistic result for the CRB. 
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latter correspond to the discrete-time chirp rates c^'u = —0.01508 arid a'2.i = 0.01508. 

respectively). 

The Wigner-Yille distribution (WVD) computed for A" = 1.00 samples of the sampled 

source waveforms is shown in Fig. 1. Note that this and the subsequent WVD plots display 

signal waveforms in their baseband representation, which corresponds to downconverted 

waveforms7 with the downconversion frequency 400 Hz. In each simulation run, the initial 

source amplitudes are fixed and equal to a.\ = e--^8 and a2 = e^lA. 

In the first example, we assume that M = 10 and SNR = 0 dB. In Fig. 2, the RMSE's of 

the estimated DOA's are shown along with the two aforementioned CRB's versus the SNR. 

The latter parameter is defined as SNR = —lOloga2. Fig. 3 displays the RMSE's of the 

estimates of the discrete-time initial frequency and chirp rate along with the corresponding 

PPS CRB's versus the SNR. 

From Fig. 2 it follows that in the direction estimation case, the PPS CRB is significantly 

lower than the benchmark deterministic CRB and the performance of the ML estimator 

remains very close to the PPS CRB. The R.MSE of the chirp beamformer visibly exceeds 

the PPS CRB because in the multiple signal case this technique is only an approximate 

solution to the ML estimation problem. At the same time, from Fig. 2 we see that 

the RMSE of the chirp beamformer is essentially lower than the benchmark deterministic 

CRB. This important observation demonstrates the role of the matched polynomial-phase 

processing in time-domain and validates essential improvements in DOA estimates which 

can be achieved if chirp signals are treated in a correct way. In particular, this comparison 

clearly shows that the chirp beamformer is a reasonable approximation of the exact ML 

method. More generally speaking, by exploiting the polynomial-phase temporal signal 

structure, we are able to improve essentially the DOA estimation accuracy as compared 

to the techniques which do not exploit such a structure or use a mismatched signal model. 
7 According to a common convention, all time-frequency distributions are displayed in terms of the discrete-time 

/ rather than u = 2irf. 
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Fig. 3 clearly demonstrates that both the ML estimator and chirp beamformer have ex- 

cellent performances in estimating the frequency parameters. In particular, their RMSE's 

remain close to the corresponding PPS CRB's. Note again that ML outperforms the chirp 

beamformer because in the multiple source case considered, the latter technique is only 

an approximation of the exact ML estimator. 

In the second example, the same parameters as in Example 1 are applied except SNR 

and N. We take N = 100 and the performance is examined versus the SNR. For this 

example, the DOA estimation RMSE's are displayed in Fig. 4, whereas the RMSE's of the 

discrete-time frequency parameter estimates are shown in Fig. 5. In both these figures, the 

corresponding CRB's are shown. Similarly to the previous example, the RMSE's of ML 

in Figs. 4 and 5 are very close to the respective PPS CRB's. However, the performance of 

the chirp beamformer can be hardly improved when increasing the SNR. The theoretical 

reason for this behavior is that the chirp beamformer has a significant bias which does 

not vanish when increasing the SNR. Since the RMSE includes both the variance and 

bias-related terms, it becomes constant at high SNR's. Note that such a behavior is quite 

typical for all conventional (low-resolution) beamforming techniques whose performances 

are mainly determined by the aperture and data lengths. However, it is worth noting that 

despite such an "error floor" effect, the chirp beamformer outperforms the deterministic 

benchmark CRB at low SNR's (Fig. 4). 

In the third example, we assume the same parameters as in the examples above, but fixed 

SNR = 0 dB and N = 100. The performances of the ML estimator and chirp beamformer 

are tested versus the number of sensors M. The DOA and frequency parameter estimation 

RMSE's of both these techniques are plotted in Figs. 6 and 7, respectively, along with the 

corresponding CRB's. From Fig. 6 we see that at low values of M, the DOA RMSE's of 

both the ML estimator and chirp beamformer are very close to the PPS CRB which, in 

turn, is much lower than the benchmark deterministic bound. However, at large sensor 

numbers the RMSE of chirp beamformer may exceed both the PPS and the benchmark 
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deterministic CRB's while these two bounds almost merge. Fig. 7 shows that the ML 

estimates of the frequency parameters keep close to the corresponding PPS CRB's. The 

chirp beamformer estimates of these parameters are, as a rule, noticeably higher, but still 

provide a reasonable quality of the frequency estimates. 

To summarize these three examples, note that the proposed ML estimator has an ex- 

cellent performance which achieves the corresponding PPS CRB's, even'at low SNR's and 

small numbers of sensors/samples. The performance of the chirp beamformer is not as 

high, but still remains better than the benchmark deterministic CRB in several practically 

important scenarios where the SNR is low and the number of sensors is small. Therefore, 

chirp beamformer appears to be a reasonable approximation of the exact ML technique. 

In the fourth example, we assume a ULA of M = 10 sensors and two equi-powered 

chirp sources with the SNR = 0 dB and the DOA's 6X = 92 = 30°. Here, N = 10 and the 

initial continuous-time frequency of each source is equal to 412.73 Hz. The continuous- 

time chirp rates are —127.32 Hz/s and 127.32 Hz/s, respectively, which correspond to the 

discrete-time chirp rates w1;i = —0.08 and u)2,\ = 0.08, respectively. 

The WVD computed for A* = 100 samples of the signals corresponding to this example is 

shown in Fig. 8. From the signal parameter values taken it follows that the two signals are 

modeled to have identical DOA's and initial frequencies - the only difference between them 

is in their chirp rates. Fig. 9 displays the 2D slice of the 3D chirp beamforming function 

evaluated at their true frequency. From this figure, we observe that chirp beamformer is 

able to resolve closely spaced sources (and even sources having the same DOA's and initial 

frequencies), based solely on the diversity of their chirp rates. This fact demonstrates that 

there is an essential advantage in parameterizing PPS's in time, as this enables to make 

the processing coherent and matched in time-domain, and, therefore, to exploit the signal 

time-frequency diversity. 

An important observation is that although the chirp signals used in our simulations may 

be subject to aliasing in time-domain (for example, see Fig. 8), there is no ambiguity in 
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their parameter estimates which are obtained using the ML and chirp beamforming meth- 

ods. To explain this fact, we stress that both these techniques are space-time processing 

methods and there is no aliasing in the spatial domain. Indeed, in all simulation examples 

the instantaneous continuous-time signal frequencies do not exceed 500 Hz. The latter 

frequency corresponds to the case of array sensors spaced half-wavelength apart. There- 

fore, all instantaneous signal frequencies correspond to interelement spacings which always 

satisfy the condition d < A/2 and, hence, there is no spatial aliasing. This explains why 

there is no ambiguity in the resulting DOA and frequency parameter estimates obtained 

using the space-time processing techniques (21) and (52). 

We end up this section with a remark prompted by our additional simulations whose 

results are not detailed in the interest of brevity. These simulations have shown that in 

the large sample size case (iV ~^> 1), the PPS direction estimation CRB is practically 

independent of the initial signal amplitudes. The same is true for the PPS CRB on the 

frequency parameters. 

VII. Conclusions 

The problem of direction finding in sensor arrays in the presence of multiple wideband 

constant-amplitude polynomial-phase signals was addressed. A new form of the maximum 

likelihood estimator of signal parameters was presented. This algorithm concentrates the 

problem at hand with respect to the nuisance initial signal amplitude parameters and is 

based on the optimization of a nonlinear log-likelihood function. 

Furthermore, we derived explicit expressions for the exact Cramer-Rao bound on the 

accuracy of estimating the signal model parameters. The performance of the maximum 

likelihood algorithm was illustrated by numerical examples and compared to the obtained 

Cramer-Rao bound. 

Since the proposed exact maximum likelihood estimator may be computationally in- 

tensive, a simpler approximate technique was presented, originating from the analysis of 
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the log-likelihood function in the single chirp signal case. As a result, a new form of 

spatio-temporal matched filter (referred to as the chirp beamformer or, more generally, 

the polynomial-phase beamformer) was derived, which is applicable to a wide class of mul- 

tiple polynomial-phase signal scenarios. Our chirp beamforming approach requires solving 

a 3D optimization problem and, therefore, enjoys essentially simpler implementation than 

that associated with the exact maximum likelihood technique. Numerical examples were 

presented showing the DOA estimation performance of the chirp beamformer against the 

Cramer-Rao bound for different values of SNR, as well as different numbers of snapshots 

and array sensors. Although the exact ML estimator outperforms the chirp beamformer, 

the latter technique appears to be a reasonable approximation of ML. 
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Appendix A: Derivation of the FIM 

Let us obtain closed-form expressions for all particular subblocks of the FIM. 

Direct computations yield 

d{aHÄH(0,w,t)} J 

öRe {a} 

d{aHAH{0,u>,t)} 

A  {0,u>,t) 

H, 

dim {a} 
=   -jA  (0,u,t) 

(62) 

(63) 

Introducing the L x 2L matrix 

Q = [IJI\ (64) 

we can rewrite (62) and (63) in a compact form as 

d{a"ÄH{0,u,,t)} 
-J= ö&    = Q  A  (°'w'*) (65) 

Straightforward computations also yield 

d{a*AH(0,u,,t)} 
det 

= aHGH(u,t)elejDH(0,u,t) 

= aHelefGH(u>,t)DH(0,u>,t) 

=   aHe/efDH(6>,w,i) (66) 

where ei is the Zth column of the identity matrix (i.e. vector containing one in the Zth 

position and zeros elsewhere), the diagonal structure of G (w, £) is used, and the following 

notations are introduced: 

Z>(0,w,t)   =   D(0,u,t)G(u,t) 

D{9,u,t)   4 

From (66), we obtain that 

d{a"Ä>,u;,t)} 

da(91,uj1,t)  da(62,u>2,t) da(0L,uL,t) 
80, 36o d6r 

(67) 

(68) 

de 
D (0, u>, t) eieja , £> (0, u:, t) e^e^ou, ... , D (0, u>, i) eLe£a 

i? 

H. 
=   AHD  {0,v,t) (69) 
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where 

A = diag{ai,--• ,aL} 

Let us introduce the following notation 

OüJtjk 

tk+ 

=    j 
k     s=0 s~+T fc + 1 ^    ' s + 1 
V.     s=0 J 

g{w,t)   =   [P(WI,<),5(W2,*)»---.ä(WL,<)]
7 

=   diag{/ifc(wi,<), 

G(w,*) 
tk+1 

,hk{uL,t)} 

3 k + 1 
da{6i,u)t,t) 

°m,k\pi,ui,t)   =   —«  
0^m,k 

=   jtk sin 6iUa{9i,u;i,t)6iim 

U   =   — diagjO,^,... ,dM-i} 

C 

Bk(0,w,t) 

diag {sin 9]_, sin 92,... , sin 9L } 

'da(91,ujut)  da{B2,U2,t) da{9L,u;L,t)' da(fl: 

L &J1>fc 

= jtkuA(e,u>,t)c 

u —    —77 [0,rfi,... ,rfM-i] 
cAi 

c   =   [sin öi, sinÖ2,... ,sin#L]T 

Tk(t)   ±   Jtk (j±-E + ucf) 

(70) 

(71) 

(72) 

(73) 

(74) 

(75) 

(76) 

(77) 

(78) 

(79) 

(80) 

(81) 

(82) 

where E is the matrix containing ones in all positions and 5^m is the Kronecker delta. 
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Using (71)-(79), we obtain that 

d{aHAH(0,u;,t)}    _   gy (u>,t)AHAH(0,u>,t)} 

= ^ia A WM,f)+gV,t)A» »{*'(».»■«)} 

=   ef i*f (u,, t) A* A* (0,«, t) + 9 V, t)AHetefB?{e, u, t)(83) 

From (83), (73), and (78), it follows that 

d(aHl"(0,u;,i)) 
-* ^- ^   =   H»(u,,t)±HAH{0,u,,t) 

+ [BkfaurfdefAgfat), ... , Bk(0,u,t)eLeT
LAg{u>,t)]H 

=   HH
k («, t)A"A"(0,«, t) + G"(u>, t)A" Bf (0,«, t) 

=   -j-j^jGH(u;,t)AHAH(0,u>,t) 

-jtkGH{u,t)AH CAH(0,u,t)U (84) 

Using (80), (81), and exploiting the diagonal structure of the matrices A, C, and U, we 

can write 

GH{u>, t)AH CAH(0, w, t)U = [AH AH(0, W, *)) © (cuT) (85) 

where 0 is the Schur-Hadamard (elementwise) matrix product.  Inserting (85) into (84) 

and using (82) gives 

d\aHÄH(0,u,t)\ 
-± ^ ]-   =   [AHA  (0, «,*))© if (t) (86) 

Using (30), (65), (69), and (86), we obtain the explicit expressions (31)-(38) for the FIM 

subblocks. 
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Fig. 1.   WVD of the source waveforms. Examples 1-3. 
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Fig. 2.   Comparison of the DOA estimation RMSE's of the ML estimator and chirp beamformer with the 

PPS and benchmark deterministic CRB's versus the number of snapshots. First example. 
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Fig. 3.     Comparison of the frequency parameter estimation RMSE's of the ML estimator and chirp 

beamformer with the PPS CRB's versus the number of snapshots. First example. 
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Fig. 4.   Comparison of the DOA estimation RMSE's of the ML estimator and chirp beamformer with the 

PPS and benchmark deterministic CRB's versus the SNR. Second example. 
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Fig. 5.     Comparison of the frequency parameter estimation RMSE's of the ML estimator and chirp 

beamformer with the PPS CRB's versus the SNR. Second example. 
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Fig. 6.   Comparison of the DOA estimation RMSE's of the ML estimator and chirp beamformer with the 

PPS and benchmark deterministic CRB's versus the number of sensors. Third example. 
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Fig. 7.     Comparison of the frequency parameter estimation RMSE's of the ML estimator and chirp 

beamformer with the PPS CRB's versus the number of sensors. Third example. 

Fig. 8.   WVD of the source waveforms. Fourth example. 

73 



-20 -10 0 

Fig. 9.     2D slice of the chirp beamformer.   The true source locations are indicated + signs.   Fourth 

example. 
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Abstract 

Several subband array methods have been proposed as useful means to perform joint spatio-temporal 

equalization in digital mobile communications. These methods can be applied to mitigate problems caused 

by the inter-symbol interference (ISI) and co-channel interference (CCI). The subband array methods 

proposed so far can be classified into two major schemes: (1) a centralized feedback scheme and (2) a 

localized feedback scheme. In this paper, we propose subband arrays with partial feedback scheme, which 

generalize the above two feedback schemes. 

The main contribution of this paper is to derive the steady-state mean square error (MSE) performance 

of subband arrays implementing these three different feedback schemes. Unlike the centralized feedback 

scheme which can be designed to provide the optimum equalization performance, the subband arrays 

with localized and partial feedback schemes are in general suboptimal. The performance of these two 

suboptimal feedback schemes depends on the channel characteristics, the filter banks employed, and the 

number of subbands. 
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I. Introduction 

Mobile communication systems are developing toward higher-speed digital wireless net- 

works. Their applications are rapidly expanding from voice transmission to a wide class 

of multimedia information. In the new wireless networks, the communication channels 

are often frequency-selective, which makes the inter-symbol interference (ISI) to be highly 

pronounced. Another important problem in mobile communication is the co-channel in- 

terference (CCI), which is the result of frequency reuse in cellular systems. 

Adaptive arrays implementing spatial or spatio-temporal equalizations prove useful in 

suppressing both ISI and CCI, leading to improved communication quality and increased 

communication capacity [l]-[4]. Specifically, space-time adaptive processing (STAP) tech- 

niques are power tools to achieve spatio-temporal equalizations. The high complexity and 

slow convergence, however, are key issues in practical implementation of STAP systems. 

Recently, subband adaptive array methods have been proposed as alternative tools for 

spatio-temporal equalization. The authors have proposed in [5] - [8] to use subband 

arrays to realize joint spatio-temporal equalizations. This concept has also been extended 

to subband STAP schemes [9], [10]. Compared with conventional STAP systems, subband 

adaptive arrays offer amenability to parallel implementations [8], rapid convergence [11], 

[12], and a reduction of processing complexity [13], [14]. Subband processing is cast in [15] 

as an elegant and computationally efficient solution to the needs for increased bandwidth 

in array processing applications. 

The subband array methods proposed so far can be classified, in terms of the definition of 

error signals used to control the weight updation, into two major classes: (1) a centralized 

feedback scheme and (2) a localized feedback scheme. A subband array with the localized 

feedback scheme allows parallel subband processing with greatly reduced computations at 

each subband, accompanied with improved convergence. These features are vert attractive 

in STAP implementations, as the system complexity increases sharply when either or all 
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of the data rate, delay profile, and the number of array sensors increase. 

We propose in this paper the partial feedback scheme, which generalizes the above 

two feedback schemes. The proposed partial feedback scheme permits more flexibility in 

trading-off the system complexity, converegence, and the steady-state mean square error 

(MSE) performance. 

Our main contribution in this paper is analysis of the MSE performance of subband 

arrays with the three different feedback schemes. For simplicity of analysis and comparison, 

it is assumed that the reference signal is available. For the centralized feedback schemes, 

reference [16] has shown that frequency domain array processing provides the same steady- 

state MSE performance as that offered by the STAP system, using tapped delay-lines 

(TDL). Reference [17] provides important comparison results between the centralized and 

localized feedback schemes. However, such comparison was limited to the simulation 

results, and analytical support was not presented. 

In this paper, we consider the analytical results of MSE performance of subband arrays 

with the three different feedback schemes. To the best of our knowledge, such results for 

the localized and partial feedback schemes have not yet been produced. It is shown in the 

following discussion that, unlike the centralized feedback subband array, which gives the 

optimum spatio-temporal equalization performance, the MSE performance provided by the 

localized and partial feedback subband arrays are generally suboptimal. The performance 

of these two suboptimal feedback schemes depends on the channel characteristics, the filter 

banks employed, and the number of subbands. 

This paper is organized as follows. In Section 2, we introduce the signal model, and 

the steady-state MSE performance of the STAP systems is described. In Section 3, the 

subband decomposition is introduced, and the steady-state MSE performance of the cen- 

tralized feedback subband array is derived and shown to be equivalent to the optimum 

STAP results. Section 4 analyzes the steady-state MSE performance of localized feedback 

subband arrays. In Section 5, the partial feedback scheme is proposed and its steady-state 
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MSE performance is analyzed. Section 6 provides simulation examples for the covariance 

matrices of the original and the subband signals. The MSE results are compared for 

different feedback schemes. 

II. Signal Model 

We consider a base station that uses an antenna array of N sensors with P users, where 

P < N. The signal of interest is denoted by S\{1), I £ (—00,00), whereas the signals from 

the other users are denoted by sp(l), p = 2, ...,P. Accordingly, the received signal vector 

x(l) at the array, expressed in discrete form, is given by 

p     00 

*(0 = E   E   sp{m)hp(l-m) + b{l) (1) 
p=\ m=—00 

where 

sp(l): information symbol of the pth user, 

hp(l): channel response vector of the pth user, 

b(l): additive noise vector. 

In this paper, we restrict the discussion to T-spaced equalization (i.e., sampled at the 

symbol rate) for simplicity. We make the following assumptions. 

Al) The user signals sp(l),p = 1,2,...,P, are wide-sense stationary and independent 

and identically distributed (i. i. d.) with E[sp(l)Sp(l)] = 1, where the superscript * denotes 

complex conjugate. 

A2) All channels hp(l),p = 1,2,..., P, are linear time-invariant and of a finite duration 

within [0,DP]. That is, hp(l) = 0,p = 1, 2, ...,P, for / > Dp and / < 0. 

A3) The noise vector b(l) is zero-mean, temporally and spatially white with 

E[b{l)br(l)} = 0,   and  E[b{l)bH(l)) = alN, 

where the superscripts T and H denote transpose and conjugate transpose, respectively, a 

is the noise power, and IJV is the N x N identity matrix. 
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Considering M successive snapshots, we have 

where 

x(Z) = £Hpsp(0 + b(Z) 

x(0 = [^(l) ^(l-l) ■■■ xT(l-M + 1)f 

(2) 

(3) 

and 

Up — 

hp(0)     ■■■     hp{Dp)        0 

0       hp(0)       •••       hp(Dp) 

0 

0 

0          0        hp{0)    ■■■   hp(Dp). 

sp(l) = [sp(l) sp(l - 1) • • • sp{l -M-Dp + l)f 

b{l) = [bT{l)    P'il-l)    ■■■   F(l-M + l)f 

(4) 

(5) 

(6) 

Denote w(m) as the weight vector of the STAP system corresponding to x(l — m), and 

define w(Z) = [wT(l), ■■■, wT(l - M + 1)]  . Then, the output of the STAP becomes 

M-\ 

y(l) = wT(Z)x(/) = Y, wT(m)x(l - m). (7) 
m=0 

Using the minimum mean square error (MMSE) criterion, 

minE \y(l) - si(l - v)\2 = minE wTx(Z) - si(l - v) (8) 

where 0 < v < M + Dx — 1 is an appropriate time delay which minimizes the MSE [10], 

then the optimum weight vector is given by the Weiner-Hopf solution 

w, opt R-^r (9) 

where 

R = £[x*(0xr(Z)] (10) 
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is the correlation matrix of x(Z), and 

r = E[x*(l)Sl(l-v)] (11) 

is the cross-correlation vector between x(/) and the training signal, which is assumed to 

be an ideal replica of Si(l). The superscript * denotes complex conjugate. Substituting 

(2) to (11) yields 

r = E EHp8p(I) + b(l)]   Sl(l-v) E[Hls{(l)8l(l-v)]  =Klev+u (12) 

where e„+i = [0 • • • 0 1 0 • • • 0]r is a vector whose elements are zero except that at the 

v + 1 element being 1. It is obvious that r is the (v + l)-th column of HJ\ 

Since R is Hermitian, then the MMSE is given by 

MMSE    = E 

= E 

w^x(0-ai(0 

(13) 

rT(R-yx(l)-Sl(l) 

= TT{R-1)TE[x(l)xH(l)](RT1yr* 

-TT(R-i)TE[x{l)sl(l)] 

+E[8l(l)8l(l)] 

= 1 - r^R-^. 

III. Subband Arrays 

A. Subband Decomposition 

Subband decomposition is performed by exploiting a set of analysis and synthesis filters. 

Discrete Fourier transform (DFT) and modified-QMF filter banks are examples of perfect 

reconstructed (PR) and near-perfect reconstruction (NPR) filter banks, respectively [8]. 

Decimation can be applied between the analysis filters and the synthesis filters to reduce 

the processing data rate. The decimation rate should not exceed the number of subbands. 
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Such decimation, however, often reduces the steady state system performance due to 

aliasing. We maintain that, the PR and NPR properties can be easily destroyed if adaptive 

techniques are employed between the analysis filters and the synthesis filters because of 

the changes in the aliasing characteristics. In this paper, no decimation is performed for 

subband signal components. In this case, the synthesis filters are either not necessary, or 

can be integrated at the analysis filters. 

Let the subband decomposition devide the data sequence at the output of ith virtual 

channel, Xi(l), into Q subband sequences, x\ '(I),-■ • ,x\ '(I), where the superscript (m) 

denotes the signal component at the mth subband. We define 

xr(o = [(41)(0)T,---,(4°)(0)TlT 

as the signal vector for the subband arrays with 

4m)(0 = [4m)(0,4m)(0---,#)(0]r. 

As a general expression, we can relate xr(Z) and x(l) by a QN x MN transform matrix as 

xr(0 = Tx(/). (14) 

We only consider the specific cases where T is square (i.e., Q = M) and unitary (i.e., 

TTF = THr£ = IMN)- That is, the number of subbands is set equal to the number of the 

snapshots at each array sensor. This kind of subband processing is also known as real-time 

transform-domain processing [18]. 

A good example of such transform is the DFT filter bank, where the transform matrix 

T can be expressed in the form 

T = PT(IAr<g>T0)P (15) 
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where <g) denotes Kronecker product, and 

T   = 

n 
W°M        W*M ^r1 

TT/O WM-1 W 2(A/-1) w- /(M-l)2 

(16) 

with WM = exp (-fp)-  In (15), P is a permutation matrix to change the order of the 

elements of vector x(Z) such that the M samples at each array sensor align together. 

The DFT filter bank satisfies the PR condition [19] because the only non-zero sum of 

the column vectors (i.e., the coefficients of the analysis filters for different subbands) of 

T0 appears at the first column. 

B. Subband Array with Centralized Feedback 

In this part, we consider the subband array with centralized feedback scheme, as illus- 

trated in Fig. 1. Weighting xT(Z) by the weight vector wr = [(w^)7* (w^2))T ••• (wJ,M))rl  , 

the output of the transform domain array system becomes 

yr(0 = w£xr(/)=w£Tx(Z). (17) 

Again, using the MMSE creterion 

xnmE\yT(l)-Sl(l-v)\' 

= m'mE 

the optimum weight vector becomes 

w£x;r(Z) — S\(l — v) 
(18) 

™T,oPt = R-Ar = (TT)-V opt (19) 

where 

*T>rrT Rr = £[x£(0xf (0] = T*RT 

is the correlation matrix of xx(Z), and 

(20) 

TT = E[x*T{l)Sl(l-v)] = T*r 
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is the cross-correlation vector between xT(Z) and Si(l - v).  When the optimum weight 

vectors are used for both STAP and the subband array, it is straightforward to show 

VT{1) = w£optTx(Z) = w^x(0 = y(l), (22) 

and that the MSE of the subband array equals to the MMSE of the STAP systems 

MSECF   =   E\yT(l)-Sl(l-v)\2 

=    E\y(l)-Sl(l-v)\2 (23) 

=   MMSE. 

IV. Subband Array with Localized Feedback 

A. Structure 

Subband arrays with the localized feedback scheme are often used for reduced system 

complexity and improved convergence performance. The basic idea behind the localized 

feedback is that the signal correlaton between signals at different subbands are often small 

due to the decorrelation function of the subband decomposition. Therefore, the signals at 

different subbands can be processed separately. A subband array with localized feedback 

scheme is illustrated in Fig. 2. 

In the localized feedback scheme, the reference signal is decomposed into its subband 

version 

si?\l-v) = -±=TW^(l-v), (24) 

which is then used as the reference signal at the mth subband, where 

T<m) = ^=\W°M W% ■ ■ ■ W(
M

M~1)m] (25) 

is the mth row of the matrix T0, and 

s\(Z - v) = [Sl(l - v) Sl(l - v - 1) • • • s1(l-v-M + l)f 
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is the M samples of the reference signal used for the subband decomposition. The factor 

l/\/M used in (24) is to normalize the power of the reference signal at each subband 

because 

M-l 

£ 
m=0 
Y:T^S1(I-V) = 

M-l 

,m=0 

M-l 

E 
m=0 

M-l 

E<En-E< M 
m=0 

s1(/-u) = VMsi(/-u).     (26) 

The JVxl weight vector at the mth subband, independent of other subbands, can be 

(m) obtained from the N x N correlation matrix R^ ' = E xflJ(/)(xf,;(0) », r(
m)n\\H and the N x 1 

correlation vector r (m) _ E (4m,(o)'*sm)(i-t>); as 

w i(m) (TO)\-i„(m) (R^m;) (27) 

B. Performance Analysis 

Denote 
rR(i) 0 0 

kvj* — 
0 T}(2) 0 

0 0 :      p(A/) 

and 

(r«)T   (r?»)T   ...   (r<">y 
iT 

Using the following property of block-diagonal matrix 

Wr) 
i \-i 

(i)\-i 

0 (W) 

0 
(2h-i 

0 

0 

o o       ;    (R^V1. 

the weight vector of the localized feedback subband array can be expressed as 

(28) 

(29) 

(30) 

w. 

(R?,)-1r?) 

W) (2)x-i    (2) 

LOW 
(Mk_i   (M) 

= W1^ (31) 
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As implied from (28), R^ is the block-diagonal approximation of R^ by ignoring its off- 

block-diagonal elements. On the other hand, the cross-correlation vector between the 

received signal vector and the reference signal at the mth subband is 

(m) E[(^(i)ys^(i-v)} 
E[(T^x(l))*s^\l-v)] 

E (TM)* f^Hpsp(0+b(/)j   _^Tira>Si(Z-t;) 

= -L [T^HJ'ü; [8;(osf (/ - v)] [T<™> 

(32) 

where T^m^ is the iV x MN submatrix of the matrix T corresponding to the mth subband, 

3V is an (M + Z?i - 1) x M matrix expressed as, provided that we choose v < D\, 

3V — E BUl)3i(l-v)   =K   IM  Ob^-r,]1, (33) 

where 0V denotes the zero matrix of size v x M. 

Therefore, the MSE of the localized feedback subband array is given by 

MSE LF = E jT. 

(34) 

Si(l) - w'rxr(0 

= 1 + r'£ (R^)-1Rr(R^)-14 

-2Re [r^R^rr] . 

Equation (34) implies that the localized feedback subband array approach is suboptimal, 

and, its performance depends on the significance of the cross-correlation between signals 

at different subbands. It is clear from (20) and (34) that the off-block-diagonal elements of 

matrix Rx depends on both the transform matrix T and the channels Hp,p = 1,2,..., P. 

V. Partial Feedback Scheme of Subband Arrays 

In the previous section, we discussed the subband array with the localized feedback 

scheme as an approximation of the subband array with the centralized feedback scheme. 
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The former scheme has an independent weight update loop at each subband, at the cost 

of performance degradation, since the cross-correlations between different subbands are 

neglected in the weight estimation. 

To provide more flexibility in trading-off the system performance and the complexity, 

we introduce subband arrays with the partial feedback scheme. As will be depicted, the 

partial feedback scheme is indeed a generalization of the centralized and localized feedback 

schemes, both can be considered as two extreme cases of the partial feedback scheme. 

A subband array with partial feedback scheme is shown in Fig. 3, where the total M 

subbands are devided into K groups. The number of subbands in kth group is Mk,k — 

1,2,..., K, with Mi + M2 -\ h MK = M. In this paper, we consider the simple case of 

Mi = M2 = • • • = MK = M/K. 

In this case, the signal covariance matrix KT is approximated by a new block-diagonal 

matrix R£ with a larger block size MiN, expressed as 

where 

Rj>  — 

■R?0       0 

0       R<?2)    • 

.   o        0 

o   ■ 

0 

■R(G*) _ 

(R-r)(fc-l)MiAT+l,(A;-l)M1Ar+l      ' ■■      {R.T)(k-l)MiN+l,kMiN 

(R-T)fcMi/ V,(k-\)MiN+l (Rr )kMiN,kMiN 

(35) 

(36) 

and (Rr)ij is the (i,j)-ih element of matrix Rr. When Mi > 1, since fewer off-block- 

diagonal elements are ignored in R^ as compared with R^, the partial feedback scheme 

should provide more accurate optimum weights estimation and subsequently better MSE 

results than those of the localized feedback scheme. 
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Similar to (30), we have 

(K) w\-l 

(GI)N-I (Rfi;) 
o 

0 
(G2)W (Rf20 

0 

0 

o o        ;   (R^)-
1 

Therefore, the weight vector in the partial feedback scheme is given by 

where 

w£ = (R^W = 
(RJ^)-

1
^ 

.(Gfc) E[(^\i)ys^{i)}, 

(37) 

(38) 

(39) 

r" = 
T 

(40) 

(41) 

(42) 

(4Gi))  ••• (#K)Y 
s[ k  is the reference signal at the kth. group, and 

^\i)[(4k'i)Mi+i\i))T ■■■ {4kMi\i)y 

The MSE of the partial feedback subband array is therefore 

MSEpF    = E |si(0 - w''Jxr(0 f 

= 1 + r'f (R^)-1RT(R^)-1r^ 

-2Re [^(RJ.)-1^] . 

VI. Simulation Results 

A three-element linear array with half wavelength inter-element spacing is considered. 

Two user signals are illuminating the array (P—2), each has a maximum delay spread of 5 

symbols (D = D\ = D2 = 5). Six multipaths are randomly generated for each user whose 

detailed parameters are given in Tables 1 and 2, respectively. The input signal-to-noise 

ratio (SNR) is 20 dB for both signals. 
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Fig. 4(a) and (b) show the magnitude of the correlation matrices R and Rx, where 

M=8. In Fig. 4(a), —60 dB is used to represent zero values so as to avoid errors in 

decibel calculation. In Fig. 5(a) and (b), we show similar results for M=32. It is clear 

that, while the value of R for different taps would be large depending on the channel 

coefficients, the value of R^ between different subbands becomes much smaller. However, 

the cost is increased floor values of the correlation matrix. The sidelobe effect is reduced 

as the number of subbands increases, as evident when comparing Fig. 4 and Fig. 5. This 

reduction is responsible for improving the MSE performance and pusing it closer to the 

optimum MMSE. 

Fig. 6 shows the MSE performance for different feedback schemes. The number of 

subbands M changes from 4 to 32, and the MSE performance at different values of Mi 

are evaluated. The dashed line shows the asymptotical lower bound of the MSE as M 

increases towards infinity. It is shown in Fig. 6 that the difference between different 

feedback schemes is large when M is relatively small (M is 4 or 8 in this figure) and small 

for large value of M (M is 16 or 32). Therefore, the subband array with localized or partial 

feedback schemes can closely approach the optimum MMSE performance when increasing 

the number of subbands. 

VII. Conclusion 

We have analyzed the performance of subband arrays with different types of feedback 

schemes, and the expressions of the steady-state mean square error (MSE) have been de- 

rived. It has been shown that subband arrays with localized and partial feedback schemes 

are generally suboptimal, and their performance depends on the channel characteristics, 

the filter banks employed, and the number of subbands. The proposed partial feedback 

scheme generalizes the subband arrays with centralized and localized feedback schemes, 

and provides more flexibility in trading-off the system complexity with the MSE perfor- 

mance. 
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TABLE I 

PARAMETERS OF THE SIGNAL OF USER 1 

hi AOA (deg) 

r=   0 0.7016+ J0.0000 33.54 

T=    T 0.1188+ J0.0570 18.06 

T = 2T -0.1353+ ;'0.3165 38.26 

r = 3T -0.2231 - jO.1808 5.89 

r = 4T 0.1476+ J0.2898 34.79 

r = 5T -0.3106 - jO.2945 30.78 

TABLE II 

PARAMETERS OF THE SIGNAL OF USER 2 

h2 AOA (deg) 

r=    0 0.6787 + jO.0000 47.77 

r=    T 0.1561 - jO.0592 54.82 

T = 2T -0.2173+ J0.3342 68.07 

r = 3T -0.2801+J0.1987 55.60 

r = 4T -0.1119+ J0.2950 39.89 

T = 5T -0.3122+ J0.1938 44.11 
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Fig. 1      Subband array with centralized feedback. 
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Fig. 2      Subband array with localozed feedback. 
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Fig. 4 Magnitudes of elements of R and RT (M=8). 
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Fig. 5      Magnitudes of elements of R and RT (M=32). 
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Fig. 6      MSE performance versus M and M\. 
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Abstract 

We address the problem of blind source separation of non-stationary signals of which only instan- 

taneous linear mixtures are observed. A blind source separation approach exploiting both auto-terms 

and cross-terms of the time-frequency (TF) distributions of the sources is considered. The approach is 

based on the simultaneous diagonalization and anti-diagonalization of a combined set of auto-term and 

cross-term time-frequency matrices, respectively. Numerical simulations are provided to demonstrate the 

effectiveness of our approach and compare its performances with existing TF-based methods. 

THE WORK BY M. AMIN IS SPONSORED BY ONR, GRANT # N00014-98-1-0176. 
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I. Introduction 

Blind source separation consists of recovering a set of signals of which only instanta- 

neous linear mixtures are observed. Signal separation algorithms are based on the main 

assumption of mutual independence of the source signals. Various techniques have been 

proposed, including the separation by maximum likelihood [3], separation by decorrelation 

and rotation [1], [?], separation by neural networks [2], separation by contrast function 

[9], separation by information-theoretic criteria [10]. 

For non stationary source signals, blind source separation based on time-frequency dis- 

tributions has been introduced in [5], [6]. The methods consider only auto-terms of the 

signal time-frequency distributions. They exploit the diagonal structure of the so-called 

Spatial Time-Frequency Distributions (STFDs) of the source signals, evaluated at the 

auto-term TF points. In this paper, we propose to exploit, in addition to the auto-terms, 

the cross-terms of the signal time-frequency distributions. This is achieved by exploiting 

the anti-diagonal structure of the STFDs of the source signals, evaluated at the cross-term 

TF points. Moreover, we propose an automatic selection procedure to decide, with no 

a priori knowledge about the sources, whether a considered TF point corresponds to an 

auto-term or a cross-term. 

As a consequence, in comparison with the method in [5], the proposed one is more 

robust to noise and TF point selection errors and results in better separation quality of 

the sources. 

II. Problem formulation 

Consider m sensors receiving an instantaneous linear mixture of signals emitted from 

n < m sources. The m x 1 vector x(t) denotes the output of the sensors at time instant t 

which may be corrupted by additive noise n(t). Hence, 

x(t) = As(*) + n(f), (1) 
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where the mxn matrix A is called the 'mixing matrix'. The n source signals are collected 

in a n x 1 vector denoted s(i) which is referred to as the source signal vector. The sources 

are assumed to have different structures and localization properties in the time-frequency 

domain. The mixing matrix A is full column rank but is otherwise unknown. In contrast 

to traditional parametric methods, no specific structure of the mixture matrix is assumed. 

The problem of blind source separation has two inherent ambiguities. First, it is not 

possible to know the original labeling of the sources, hence any permutation of the esti- 

mated sources is also a satisfactory solution. The second ambiguity is that it is inherently 

impossible to identify the scaling of the source signals. We take advantage of the second 

indeterminacy by treating the source signals as if they have unit power. This normaliza- 

tion still leaves undetermined the ordering and the phases of the columns of A. Hence, the 

blind source separation is a technique for the identification of the mixing matrix and/or 

the recovering of the source signals up to a fixed permutation and some complex factors. 

III. Spatial time-frequency distributions     _ 

The discrete-time form of Cohen's class of Time-Frequency Distributions (TFD) for a 

signal x(t) is given by [7] 

oo 

Dxx(t, /)= £  <j>{m, l)x(t + m + l)x*{t + m- l)e~iA!Kl1 (2) 
/,m=—oo 

where t and / represent the time index and the frequency index, respectively. The kernel 

4>(m, I) characterizes the distribution and is a function of both the time and lag variables. 

The cross-TFD of two signals Xi(t) and X2(t) is defined by 

oo 

DX1X2{t, /)= $>(m,Ifait + m + ltäit + m- l)e-j^fl (3) 
l,m=—oo 

Expressions (2) and (3) are used to define the following data spatial time-frequency distri- 

bution (STFD) matrix, 

oo 

Dxx(t, /)= 53  </>{m, l)x(t + m + l)xH{t + m- l)e~jA7rfl (4) 
l,m=—oo 
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where [Dxx(£, /)],-j = DXiX.(t,f),   for  i,j = l.---,n and the superscript H denotes the 

transpose conjugate operator. 

Under the linear data model (1) and assuming noise-free environment, the STFD matrix 

takes the following structure: 

Dxx(t,f) = ABss(t,f)A
H (5) 

where Dss(t, /) is the signal TFD matrix whose entries are the auto- and cross-TFDs of 

the sources. 

Auto-STFD:. We define the auto-STFD by 

D°s(i, /) = Dss(«, /)  for auto-term TF points (6) 

Since the off-diagonal elements of Dss(i, /) are cross-terms, the auto-STFD matrix is 

quasi diagonal for each TF point that corresponds to a true power concentration, i.e. 

signal auto-term. 

Cross-STFD:. We define the Cross-STFD by 

Dss(^> /) = Dss(£, /)   for cross-term TF points (7) 

Since the diagonal elements of Dss(i, /) are auto-terms, the cross-STFD matrix is quasi 

anti-diagonal (i.e. its diagonal entries are close to zero) for each TF point that corresponds 

to a cross-term. 

IV. Proposed algorithm 

Let W denote an m x n matrix, such that (WA)(WA)// = UUH = I, i.e. WA is an 

m x m unitary matrix (W is referred to as the whitening matrix, since it whitens the 

signal part of the observations). Pre- and post-multiplying the TFD-matrices T>xx(t, f) 

by W, we define the whitened TFD-matrices as: 

DXX(*,/)=WDXX(*,/)W" (8) 
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From the definition of W and Eq.(5), we can express Dxx(t, /) as 

Dxx(i,/) = UDss(i,/)U* (9) 

Joint Diagonalization (JD):. By selecting auto-term TF points, the data auto-STFD will 

have the following structure, 

Dxx(i,/) = UDs°s(i,/)U
i? (10) 

where D°s(t, /) is diagonal. The missing unitary matrix U is retrieved (up to permutation 

and phase shifts) by Joint Diagonalization (JD) of a combined set {Dxx(^, fi)\i = 1, • • • ,p} 

of p auto-STFD matrices. The incorporation of several auto-term TF points in the JD 

reduces the likelihood of having degenerate eigenvalues. 

The joint diagonalization [4] of a set {Mk\k = l..p} of p m x m matrices is defined as 

the maximization of the JD criterion: 

V     m C(V)d^££|v?MfcVl|
2 (n) 

fc=i i=i 

over the set of unitary matrices V = [vl7 • • •, vm]. An efficient joint approximate diago- 

nalization algorithm exists in [4] and it is a generalization of the Jacobi technique [8] for 

the exact diagonalization of a single normal matrix. 

Joint Anti-Diagonalization (JAD):. By selecting cross-term TF points, the data cross- 

STFD will have the following structure, 

Dxx(t,/) = UDS
C
S(*,/)U" (12) 

where D£s(i, /) is anti-diagonal. The missing unitary matrix U is 'uniquely' (i.e. up to per- 

mutation and phase shifts) retrieved by Joint Anti-Diagonalization (JAD) of a combined 

set {Dxx(£2, fi)\i = 1, • • •, q) of q STFD matrices. 

The joint anti-diagonalization is explained by first noting that the problem of anti- 

diagonalization of a single m x m matrix N is equivalent1 to the maximization of the 
1This is due to the fact that the Probenius norm of a matrix is constant under unitary transform,  i.e. 

norm(N) =norm(VHNV). 
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criterion 
m 

C^V^-^lvfNv,!2 (13) def _ 

7=1 

over the set of unitary matrices V = [vi, • • •, vm]. Hence, JAD of a set {Nk\k = l..q} of 

q m x m matrices is defined as the maximization of the JAD criterion: 

q q     m 

C(V) d^ £ C(Nfc, V) = - £ £ |vf NfcVi|
2 (14) 

*=i fc=it=i 

under the same unitary constraint.   A Jacobi-like algorithm has been derived for the 

maximization of the JAD criterion (14). 

Combined JD/JAD algorithm:. The Combined joint diagonalization and joint anti-diagonalization 

of two sets {Mfc|fc = l..p} and {Njt|/c = 1..^} of m x m matrices is defined as the maxi- 

mization of the JD/JAD criterion: 

m   / v q 
def 

i=\   \fc=l k=\ 
C(V) = E   E Ivf M,Vl|

2 - E |vf Nfcv,|2 (15) 

over the set of unitary matrices V = [vi,---,vm]. A Jacobi-like algorithm has been 

derived2 for the maximization of the JD/JAD criterion (15). 

Selection procedure:. The success of the JD or JAD of STFD matrices in determining the 

unitary matrix U depends strongly on the correct selection of the auto-term and cross-term 

points. A simulation example is given in Section 6. to emphasise this point. Therefore, 

it is crucial to have a selection procedure that is able to distinguish between auto-term 

and cross-term points based only on the STFD matrices of the observation. Here, we 

propose a selection approach that exploits the anti-diagonal structure of the cross-term 

STFD matrices. More precisely, we have 

TVace(D£x(t,/))   -   Trace(UD^,/)U") 

=   Trace(DL(*,/))~0. 
2Details of the JAD algorithm are omitted here due to space limitation. 
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Based on this observation, we derive the following testing procedure: 

if   ~xx- ' ...  < e —> decide that (t, f) is a cross-term 
norm(Dxx(t,/)) 

.,.  Trace(Dxx(t, /)) ,   .,    ,      ,    r. . 
if    ——;—rrr- > e —> decide that (t, /) is an auto-term 

norm(Dxx(i,/)) K,J) 

where e is a 'small' positive real scalar. The correct choice of the value of e is still under 

investigation. An ad-hoc value (e = 0.1) has been used in our simulation experiment. 

Identification Procedure:. Equations (5-15) constitute the proposed blind source separation 

approach which is summarized by the following steps: 

• Determine the whitening matrix W from the eigen-decomposition of an estimate of the 

covariance matrix of the data (see [5] for more details). 

• Compute the TF distribution of the array output according to (4). 

• Select a set of TF points (usually corresponding to the high amplitude points of the 

signal TF transform) then distinguish between auto-term and cross-term points using the 

above selection procedure. 

• Determine the unitary matrix U by maximizing the JD/JAD criterion applied to the 

whitened STFD matrices computed at the selected TF points. 

• Obtain an estimate of the mixture matrix A as A = W#U, where the superscript # 

denotes the pseudo-inverse, and an estimate of the source signals s(i) as s(t) = UffWx(t). 

V. Discussion 

We give here some comments to get more insight into the proposed blind source sepa- 

ration (BSS) method: 

1) In practice, the source cross-STFD matrices will not be purely anti-diagonal. This 

is because some auto-terms, through their side lobes or main lobes, will intrude over the 

cross-term regions. The cross-terms will be however the dominant components. This 

situation is similar to the earlier work on joint digonalization of STFD selecting auto- 

term points [5], where the source auto-TFD matrix are not purely diagonal because of 
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cross-term intrusion. This impairment is taken care of thanks to the joint approximate 

character of the diagonalization and the anti-diagonalization algorithm and its robustness. 

2) In contrast to the previously proposed Time-Frequency Separation (TFS) approach [5], 

the new proposed algorithm, allows selecting TF points in both auto-term and cross-term 

regions, as both regions provide separate key information about the signals. This results 

in a better separation performance (see simulation example in Section 6.). 

3) The cross-term issues rise in both t-f and ambiguity domain based BSS. Therefore 

our blind separation method can be applied to both domains. 

4) The smoothing kernel reduces the cross terms by re-distributing them across the t-f 

domain, rather than being concentrated at specific points where they can be confused 

with real energy. This re-distribution process will place some of these terms on the top 

of the autoterms, rendering the STFD matrix, constructed from autoterms, non-diagonal. 

So, in many cases, the Wigner-Ville distribution is more robust then any other distribution. 

5) The JAD algorithm provides an estimate of the unitary matrix U and cross-STFD 

matrices DgS (£,/). A necessary condition for the uniqueness of the solution is that the 

number of equations is greater than the total number of unknown parameters. This leads 

to the condition q < m — 1 where q is the number of the m x m matrices to be fed to the 

JAD algorithm. Note that for the JD algorithm we need only p < 1 as necessary condition. 

A more detailed study on the identifiability of the problem will be given elsewhere. 

VI. Simulation 

First experiment:. We consider a uniform linear array of n = 3 sensors having half wave- 

length spacing and receiving signals from m — 2 sources in the presence of white Gaussian 

noise.  The sources arrive from different directions cßi — 10 and </>2 = 20 degrees.   The 
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emitted signals are two chirps. The kernel used for the computation of the TFDs is the 

Wigner-Ville kernel. Eight STFD matrices are considered. 

The performance is characterized in terms of signal rejection. The mean rejection level 

is defined as 

T^Y,E\k*Kpq\* (16) 

We compare in Figure 1 the performance of the TFS algorithm proposed in [5] and the new 

algorithm for a signal-to-noise ratio (SNR) in the range [5 - 20 dB]. The mean rejection 

levels are evaluated here over 100 Monte Carlo runs with 1024 samples. It turns out that, 

in this case, the new algorithm performs slightly better than the TFS algorithm. 

Second experiment:. In this experiment, we consider two chirp signals (n = 2), described 

by 

si(t)   =   exp(-j0.004?rt2) 

s2{t)   =   exp(-j0.004irt2-jnOAt), 

embedded in noise leading to an SNR of 0 dB. We set m = 5. The Wigner-Ville distribution 

(WVD) of the mixture at the middle sensor is depicted in Figure 2. From Figure 2, we 

selected eight arbitrary TF points, among which one was a cross-term. Using the algorithm 

based on JD only, suggested in [5], we obtain the estimated signals, described by WVDs, 

shown in Figure 3. The figure clearly shows that the algorithm had failed. An estimate of 

the mean rejection rate was as high as 3 dB. However, if we apply the proposed method 

from Section 4., the results are more promising, leading to Figure 4 with a signal rejection 

level estimate of -26 dB. One may suggest to remove the cross-term, identified with the 

method suggested in Section 4., and run a JD algorithm based on the auto-terms only. 

The result of this approach is depicted in Figure 5. Although visually not noticeable, 

this approach is worse as the signal mean rejection level estimate is higher by circa 2 dB 

(-24dB). 
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Third experiment:. Here, we use three sources signals at 20 dB SNR. The number of 

antenna elements is again m = 5. The WVD of the mixture at the middle sensor is 

depicted in Figure 6. Six TF points are considered, among which six are cross-terms. The 

procedure described above was used with e = 0.1 to identify the auto-terms and cross- 

terms and the JD/JAD criterion ran.The result is depicted in Figure 7. It is clearly seen 

that the method performs very well with a rejection mean level estimate of -28 dB. 

VII. Conclusions 

In this paper, the problem of blind separation of linear spatial mixtures of non-stationary 

source signals based on time-frequency distributions has been investigated. A solution 

based on the hybrid diagonalization / anti-diagonalization of a combined set of spatial 

time-frequency distribution matrices, selected in both the auto-term and cross-term re- 

gions, has been proposed. Numerical simulations have been provided to illustrate the 

effectiveness of our approach. 
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Abstract 

Spatial time-frequency distributions (STFDs) have been recently introduced as the natural means to 

deal with source signals that are localizable in the time-frequency domain. Previous work in the area has 

not provided the eigen analysis of STFD matrices, which is key to understanding their role in solving 

direction finding and blind source separation problems in multi-sensor array receivers. The aim of this 

paper is to examine the eigenstructure of the STFDs matrices. We develop the analysis and statistical 

properties of the subspace estimates based on STFDs for frequency modulated (FM) sources. It is shown 

that improved estimates are achieved by constructing the subspaces from the time-frequency signatures of 

the signal arrivals rather than from the data covariance matrices, which is commonly used in conventional 

subspace estimation methods. This improvement is evident in low signal-to-noise ratio (SNR) environment 

and in the cases of closely spaced sources. The paper considers the MUSIC technique to demonstrate 

the advantages of STFDs and uses it as grounds for comparison between time-frequency and conventional 

subspace estimates. 
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Time-frequency distribution, subspace analysis, time-frequency MUSIC, spatial time-frequency dis- 
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I. Introduction 

While time-frequency distributions (TFDs) [1], [2], [3], [4] have been sought out and 

successfully used in the areas of speech, biomedicine, automotive industry, and machine 

monitoring, their use in sensor and spatial signal processing has not been properly in- 

vestigated. The evaluation of quadratic time frequency distributions of the data snap- 

shots across the array yields the "spatial time-frequency distributions" (STFDs) [5], [6]. 

These spatial distributions permit the application of eigenstructure subspace techniques 

to solving a large class of channel estimation and equalization, blind source separation, 

and high-resolution direction-of-arrival (DOA) estimation problems. In the area of blind 

source separation, the spatial time-frequency distributions allow the separation of Gaus- 

sian sources with identical spectral shape, but with different time-frequency localization 

properties, i.e., different signatures in the time-frequency domain. For direction-of-arrival 

estimation problems, the construction of the signal and noise subspaces using the source 

time-frequency signatures improves angular resolution performance. 

Although the applications of the spatial time-frequency distributions to blind source 

separation and DOA estimation problems using multiple antenna arrays in nonstationary 

environments have been introduced in [5], [7], [8], yet so far there has not been sufficient 

analysis that explains their offerings and justify their performance. The aim of this paper 

is to examine the eigenstructure of the spatial time-frequency distribution matrices and 

provide statistical analysis of their respective signal and noise subspaces. The paper 

focuses on the class of frequency modulated (FM) signals, as they represent a clear case of 

nonstationary signals that are localizable in the time-frequency domain. It shows that the 

subspaces obtained from the STFDs are robust to both noise and angular separation of 

the FM waveforms incident on the array. This robustness is primarily due to spreading the 

noise power while localizing the source energy in the time-frequency domain. By forming 

the STFD matrices from the points residing on the source time-frequency signatures, we 

increase, in essence, the input signal-to-noise ratio (SNR), and hence improve the accuracy 

of the subspace estimates. 

This paper is organized as follows. Section II presents the signal model and considers 

nonstationary environments defined by FM source signals.  The statistical properties of 
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signal and noise subspace estimates for uncorrelated FM signals over the observation period 

are delineated. In Section III, we give a brief review of the definition and basic properties 

of the spatial time-frequency distributions, and derive the signal and noise subspaces using 

STFD matrices for the general class of FM signals. We demonstrate the robustness of the 

STFD-based subspace estimates to both noise and angular source separation as compared 

to those obtained in Section II using covariance matrices. The analytical results of Sections 

II and III are used in Section IV to examine the performance of the direction finding 

MUSIC technique based on the covariance matrix and STFD noise subspace estimates. 

Numerical simulations are given in Section V. 

II. Subspace Analysis for FM Signals 

A. Signal Model 

In narrowband array processing, when n signals arrive at an m-element array, the linear 

data model 

x(i)=y(i)+n(*) = Ad(*) + n(i) (1) 

is commonly assumed, where the m x n spatial matrix A = [a1; • • •, a„] represents the 

mixing matrix or the steering matrix. In direction finding problems, we require A to have 

a known structure, and each column of A corresponds to a single arrival and carries a 

clear bearing. On the other hand, when we consider blind source separation problems, A 

is a mixture of several steering vectors, due to multipaths, and its columns may assume 

any structure. The analytical treatment in this paper does not depend on any special 

structure of matrix A. 

Due to the mixture of the signals at each sensor, the elements of the m x 1 data vector 

x(t) are multicomponent signals, whereas each source signal di(t) of the n x 1 signal vector 

d(t) is often a monocomponent signal. n(t) is an additive noise vector whose elements 

are modeled as stationary, spatially and temporally white, zero-mean complex random 

processes, independent of the source signals. That is, 

E[n{t + r)nH{t)} = G5{T)1 and  E[n{t + T)nT(t)} = 0 for any r (2) 

where 5(T) is the delta function, I denotes the identity matrix, a is the noise power at 
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each sensor, superscript H and r, respectively, denote conjugate transpose and transpose, 

and E(-) is the statistical expectation operator. 

In equation (1), it is assumed that the number of sensors is larger than the number of 

sources, i.e., m > n. Further, matrix A is full column rank, which implies that the steering 

vectors corresponding to n different angles of arrival are linearly independent. We further 

assume that the correlation matrix 

Rxx = E[x{t)xH(t)] (3) 

is nonsingular, and the observation period consists of N snapshots with N > m. 

Under the above assumptions, the correlation matrix is given by 

Rxx = £[x(i)xH (*)] = ARdd AH + al, (4) 

where Rdd = E[d(t)dH(t)} is the source correlation matrix. 

Let Ai > A2 > • • • > An > An+i = An+2 = • • • = Am = a denote the eigenvalues of Rxx. 

It is assumed that A;, i — l,---,n, are distinct. The unit-norm eigenvectors associated 

with Ai,..., An constitute the columns of matrix S = [si, ...,sn], and those corresponding 

to A„+i,..., Am make up matrix G = [gi,..., gm-n]- Since the columns of A and S span the 

same subspace, then AHG = 0. 

In practice, Rxx is unknown, and therefore should be estimated from the available data 

samples (snapshots) x(i), i = 1,2,..., N. The estimated correlation matrix is given by 

Rxx = ^Ex(z)x"(*). (5) 
i=l 

Let {§1, ...,s„,gi, ...,gm_n} denote the unit-norm eigenvectors of Rxx, arranged in the 

descending order of the associated eigenvalues, and let S and G denote the matrices 

defined by the set of vectors {§;} and {gi}, respectively.   The statistical properties of 

the eigenvectors of the sample covariance matrix Rxx for signals modeled as independent 

processes with additive white noise are given in [9]. 

B. Subspace Analysis for FM Signals 

In this paper, we focus on analytic frequency modulation (FM) signals, modeled as 

&(t) = [d1(t),...,dn(t)]T = [Die^t\...,Dne^^}T, (6) 
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where Di and ipi(t) are the fixed amplitude and time-varying phase of ith source signal. 

For each sampling time t, di{t) has an instantaneous frequency /;(£) = ■ ililZ 
2n    dt 

FM signals are often encountered in applications such as radar and sonar [2]. The 

consideration of FM signals in this paper is motivated by the fact that these signals are 

uniquely characterized by their instantaneous frequencies, and therefore, they have clear 

time-frequency signatures that can be utilized by the STFD approach. Also, FM signals 

have constant amplitudes. To simplify the analysis, we assume that the transmitted signals 

propagate in a stationary environment and are mutually uncorrelated over the observation 

period [1 : N]. Subsequently, the corresponding covariance matrices are time-independent. 

Under these assumptions, we have 

1_ 
N 

N 

Y2di(k)d*j(k) = 0        for i ^ j, i,j = l,...,n. (7) 
fc=i 

In this case, the signal correlation matrix in (4) is 

R-dd = diag D2, i = 1,2,..., n 

where diag[-] is the diagonal matrix formed with the elements of its vector valued argu- 

ments. From the above assumptions, we have the following Lemma. 

Lemma 1: For uncorrelated FM signals with additive white Gaussian noise, 

a) The estimation errors (§j — s,-) are asymptotically (for large N) jointly Gaussian 

distributed with zero means and covariance matrices given by 

E [(§i - Sj)(§j -Sj)H] 

a 
N 

^ Xi + Xk — o 

^  (A*-A,)2 s*sf + £ A, 

k 

E[(si-si)(sj-sj)
T] = 

i (o- - Xi)' 

a (Xi + Xj — a) 

rg*gf 5ij A WiSij, 

SjsJil-Sij) AVij. 

(8) 

(9) 
N   (A,-A2)

2 

b) The orthogonal projections of {g,} onto the column space of S are asymptotically 

(for large N) jointly Gaussian distributed with zero means and covariance matrices given 

by 

E (ss'fc) (ss-fe)1 = ^ 
N 

Xk H 

^ T7^SkS> u=i 
kj ^ JjVSij, (10) 
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E (SS"g;) (SS*!,)7] = 0 for all i, j. (11) 

The proof of part a) is given in Appendix A. The proof of part b) follows the same exact 

steps of the respective results derived in reference [9], and is not given here. Equations (8) 

and (9) hold strong similarity to those of [9]. The only difference is that the term (AjAfc) 

in equations (3.8a) and (3.8b) in [9] is replaced by CT(AJ + Xk - a) in (8) and (9), due to 

the uncorrelation property (7). Accordingly, for high input SNR (Afc > a, k = 1,2, ...,n), 

the estimation error of (s* — S;) can be greatly reduced. From (8) and (9), each column 

of the signal subspace will be perfectly estimated when a = 0. This is in contrast with 

the estimation error that would result under the same noise-free condition, if we use the 

temporally-independent signal characteristics considered in [9]. 

Equations (10) and (11) are identical to (3.9) and (3.10) derived in reference [9]. The 

reason of such identity is that, despite the difference in the signal eigenvectors in the two 

different scenarios, discussed in this paper and in reference [9], the signal subspaces in 

both cases are identical, and is spanned by the columns of matrix A. Accordingly, the 

projection of the estimated noise eigenvectors on the true signal subspace for either FM 

signals or white random processes yield equal results. 

III. Subspace Analysis for STFD Matrices 

The purpose of this section is to show that the signal and noise subspaces based on 

time-frequency distributions for nonstationary signals are more robust to noise than those 

obtained from conventional array processing. 

A. Spatial Time-Frequency Distributions 

We first review the definition and basic properties of the spatial time-frequency dis- 

tributions (STFDs). STFDs based on Cohen's class of time-frequency distribution were 

introduced in [5] and its applications to direction finding and blind source separation have 

been discussed in [7], [8] and [5], respectively. In this paper, we consider the simplest 

member of Cohen's class, namely the pseudo Wigner-Ville distribution (PWVD) [1] and 

its respective spatial distribution. Only the time-frequency (t-f) points in the autoterm 

regions of PWVD are considered for STFD matrix construction.   The autoterm region 
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refers to the time-frequency points along the true instantaneous frequency (IF) of each 

signal. The crossterms may intrude on the autoterms through the power in their main- 

lobes or/and sidelobes. This intrusion depends on the signal temporal structures and the 

window size. In this paper, however, we assume that the crossterms are negligible over 

the autoterm regions. 

The discrete form of pseudo Wigner-Ville distribution of a signal x(t), using a rectan- 

gular window of odd length L, is given by 
L-l 

2 

Dxx{t,f)=    £    x(t + T)x*(t-r)e-ji*fT, (12) 
T~ 2 

where * denotes complex conjugate. It should be noted that incorporating multiple 

time-frequency points, via time-frequency averaging, over the autoterm region causes the 

crossterm components present at the signal IF to cancel each other, rendering their overall 

effect negligible. 

The spatial pseudo Wigner-Ville distribution (SPWVD) matrix is obtained by replacing 

x(t) by the data snapshot vector x(t), 

L-l 
2 

Dxx(i,/)=    £    x(t + r)xH(t-T)e-^fT. (13) 
T= 2~ 

Substitute (1) into (13), we obtain 

Dxx(t, /) = Dyy(*, /) + Dyn(t, /) + Dny(f, /) + Dnn(i, /). (14) 

We note that Dxx(t,/), Dyy(t,/), Dyn(£, /), T>ny(t,f), and Dnn(t,f) are matrices of 

dimension mxm. Under the uncorrelated signal and noise assumption and the zero-mean 

noise property, the expectation of the crossterm STFD matrices between the signal and 

noise vectors is zero, i.e., E [Dyn(t, /)] = E [Dny(£, /)] = 0, and it follows 

£[Dxx(i,/)]   =   Dyy(tJ) + E[Dnn(t,f)} 

=   A-Ddd(t,f)AH + E[Dnn(t,f)}, (15) 

where the source time-frequency distribution (TFD) matrix 

L-l 
2 

Ddd(t,/)=    E    d{t + T)dH{t-T)e-»**r (16) 
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is of dimension n x n. For narrowband array signal processing applications, the mixing 

matrix A holds the spatial information and maps the auto- and cross-TFDs of the source 

signals into auto- and cross-TFDs of the data. 

Equation (15) is similar to the formula that has been commonly used in DOA estimation 

and blind source separation problems, relating the signal correlation matrix to the data 

spatial correlation matrix. In the above formulation, however, the correlation matrices are 

replaced by the spatial time-frequency distribution matrices. The well established results 

in conventional array signal processing could, therefore, be utilized and key problems 

in various applications of array processing, specifically those dealing with nonstationary 

signal environments, can be approached using bilinear transformations. 

It is noted that relationship (15) holds true for every (t, /) point. In order to reduce 

the effect of noise and ensure the full column rank property of the STFD matrix, we 

consider multiple time-frequency points, instead of a single one. That is, the signal and 

noise subspaces are constructed using as many (t, f) points in the source autoterm regions 

as possible. This allows more information of the source signal time-frequency signatures 

to be included into their respective subspace formulation, and as such enhances direction 

finding and source separation performance. Joint-diagonalization [10] and time-frequency 

averaging are the two main approaches that have been used for this purpose [5], [7], [11]. 

In this paper, however, we only consider averaging over multiple time-frequency points. 

B. SNR Enhancement 

The TFD maps one-dimensional signals in the time domain into two-dimensional sig- 

nals in the time-frequency domain. The TFD property of concentrating the input signal 

around its instantaneous frequency while spreading the noise over the entire time-frequency 

domain increases the effective SNR and proves valuable in the underlying problem. 

The ith diagonal element of TFD matrix Ddd(^, /) is given by 

Ddtdi(t,f)=    J2    DfeW^-^-^-^/r. (17) 

Assume that the third-order derivative of the phase is negligible over the window length 

L, then along the true time-frequency points of the iih signal, /,-(£) = 1-^-, and 
27T    at 
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ij>i(t + T) - ipi(t - T) - 47r/j(t)r = 0. Accordingly, for <t<N . 

L-l 
2 

Ddldi(t, f>(t)) =    J2   D2
t=LD}. (18) 

Similarly, the noise STFD matrix Dnn(t,/) is 

L-l 

D„„(*,/)=    E    n(t + T)nH(t-r)eW. (19) 
' 2 

Under the spatially and temporally white assumptions, the statistical expectation of 

Dnn(*,/) is given by 

L-l 
2 

E[Dnn(t,f)]=    £    E[n{t + r)nH(t-T)]e-^T = <Tl. (20) 

Therefore, when we select the time-frequency points along the time-frequency signature 

or the IF of the ith FM signal, the SNR in model (15) is LDf/a, which has an improved 

factor L over the one associated with model (4). The IF of the FM signals can be estimated 

from the employed TFD, which in this case is the PWVD. It may also be given separately 

using any appropriate IF estimator. It is noted that the STFD equation (15) provides a 

natural platform for the direct incorporation of any a priori information or estimates of 

the IF into DOA estimation. 

The pseudo Wigner-Ville distribution of each FM source has a constant value over the 

observation period, providing that we leave out the rising and falling power distributions 

at both ends of the data record. For convenience of analysis, we select those N — L + l 

time-frequency points of constant distribution value for each source signal. In the case 

where the STFD matrices are averaged over the time-frequency signatures of n0 sources, 

i.e., a total of n0(N — L + l) time-frequency points, the result is given by 

6=
n.(Jy-

1t+i)S"s'D°fa^"'»- <21> 
where Jq,i{ti) is the instantaneous frequency of the q-th signal at the zth time sample. x(t) 

is an instantaneous mixture of the FM signals di(t),i = 1, • • •, n, hence features the same 

IFs. The expectation of the averaged STFD matrix is 
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D   =   E D 
1 n0 N-L+l 

„o(A,_L+l)g £ EP=ft, ««<))] 

=   ^E[£ß,2a,af+<*] = ^A°RSd(A°)'' + aI, (22) 
no q=i Tl0 

where K°dA = diag[Df,i = 1,2, • • -,n0] and A0 = [ai,a2, • • • ,a„J represent the signal 

correlation matrix and the mixing matrix formulated by considering n0 signals out of the 

total number of n signal arrivals, respectively. 

It is clear from (22) that the SNR improvement G - L/n0 (we assume L > n0 throughout 

this paper) is inversely proportional to the number of sources contributing matrix D. 

Therefore, from the SNR perspective, it is best to set n0 = 1, i.e., to select the sets of 

N-L + l time-frequency points that belong to individual signals one set at a time, and 

then separately evaluate the respective STFD matrices. 

This procedure is made possible by the fact that STFD-based direction finding is, in 

essence, a discriminatory technique in the sense that it does not require simultaneous 

localization and extraction of all unknown signals received by the array. With STFDs, 

direction finding can be performed using STFDs of a subclass of the impinging signals with 

specific time-frequency signatures. In this respect, the proposed direction finding technique 

acts as a spatial filter, removing all other signals from consideration and, subsequently, 

saves any downstream processing that is required to separate interference and signals of 

interest. It is also important to note that with the ability to construct the STFD matrix 

from one or few signal arrivals, the well known m > n condition on source localization 

using arrays can be relaxed, i.e., we can perform direction finding or source separation 

with the number of array sensors smaller than the number of impinging signals [6]. From 

the angular resolution perspective, closely spaced sources with different time-frequency 

signatures can be resolved by constructing two separate STFDs, each corresponds to one 

source, and then proceed with subspace decomposition for each STFD matrix, followed 

by an appropriate source localization method (MUSIC, for example). The drawback of 

performing several direction finding using different STFD matrices is of course the need 

for repeated computations of eigen-decompositions and source localizations. 
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C. Signal and Noise Subspaces Using STFDs 

The following Lemma provides the relationship between the eigen-decompositions of the 

STFD matrices and the data covariance matrices used in conventional array processing. 

Lemma 2: Let A? > X°2 > ■ ■ ■ > X°Ho > A°o+1 = A°o+2 = • • • = A^ = a denote 

the eigenvalues of R°x = A0R^d(A°)// + erl, which is defined from a data record of a 

mixture of the n0 selected FM signals. Denote the unit-norm eigenvectors associated with 

AJ, ...,A°o by the columns of S° = [s°, ...,s£j , and those corresponding to A°o+1,..., A£, 

by the columns of G° = [g°, ...,g^_nJ. We also denote X\f > X2
f > ■ ■ ■ > Xl

n{ > Xl
n
f
o+1 = 

XKo+2 — ■ ■ • = Kl — atf as tne eigenvalues of D defined in (22). The superscripttf denotes 

that the associated term is derived from the STFD matrix D. The unit-norm eigenvectors 

associated with A*/,..., Aj£ are represented by the columns of S^ = [s\f,..., sj£] , and those 

corresponding to A^{+1,...,A^ are represented by the columns of G^ = [g[f, ...,g^_nJ. 

Then, 

a) The signal and noise subspaces of S'^ and G'^ are the same as S° and G°, respectively. 

b) The eigenvalues have the following relationship: 

L .„     /       L 
\ a        i < nn 

(23) A[>=f£(Af-ff)+ff=£Af+(i-£)<'  !£n" 
[atf = a n0 < i <i _ m. 

The proof of Lemma 2 is shown in Appendix B. 

An important conclusion from Lemma 2 is that, the largest n0 eigenvalues are amplified 

using STFD analysis. Fig. 1 shows the two principal (largest) eigenvalues A° (i.e., L = 1) 

and Aj- (for L = 33 and L = 129), where a uniform linear array of eight sensors (m = 8) 

separated by half a wavelength and receiving signal from two sources (n0 = n — 2) is used. 

The two signals are of equal power(£>i = D2 — D), and their angular separation A6 is 

defined as 02 — 6\- We choose 6\ + 92 — 0, that is, the two signals are symmetric with 

respect to the broadside direction. Denote 

ß =       a"a2 

|al||2  ||a2M2 

as the spatial correlation coefficient between the two directional vectors a! and a2, cor- 

responding to the angles 9i and 02.   Ha||2 is the 2-norm of a vector a.  The two largest 
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eigenvalues for the two uncorrelated signals are given by [12] 

\0
h2 = mD2[l±\ß\] + a. (24) 

Hence, combining (23) and (24), we obtain 

\% = — D* [1 ± \ß\] + a. (25) 

The amplification of the largest n0 eigenvalues improves detection of the number of the 

impinging signals on the array, as it widens the separation between dominant and noise- 

level eigenvalues. Determination of the number of signals is key to establishing the proper 

signal and noise subspaces, and subsequently plays a fundamental role in subspace-based 

applications [13]. When the input SNR is low, or the signals are closely spaced, the number 

of signals may often be underdetermined. Fig. 2 shows, for the same signal scenario of 

Fig. 1, the threshold level of the input SNR required to determine the correct number of 

signals n = 2 according to the Akaike Information Criterion (AIC) [14] 

7i(n)" rnin iV(m — h)log 
/2(A) 

+ /s(n), (26) 

where 

I XXI 

/i(ra)A ——  X)  *i>    /2(n) A  (   Ü   A* ]        >    h(n) A n(2m - h). (27) 
= m — n .  . ., i •  - ,, 

It is clear from Fig. 2 that, when the STFD is applied, the SNR threshold level necessary 

for the correct determination of the number of signals is greatly reduced. 

Next we consider the signal and noise subspace estimates from a finite number of data 

samples. We form the STFD matrix based on the true (t, f) points along the IF of the n0 

FM signals. 

Lemma 3: If the third-order derivative of the phase of the FM signals is negligible over 

the time-period [t — L + l,t + L — 1], then 

a) The estimation errors in the signal vectors are asymptotically (for iV > L) jointly 

Gaussian distributed with zero means and covariance matrices given by 
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oh 

k n0(N-L + l) 

E(sF-#)(f-sf)T 

oh (X\f + \'/ - a) 

. H       rn-rio \tf 

=1  (ff-Aj 

(28) 

n0(iV 

U-±L ^   -r^i   ~u'stS (stfV (1 _ ,  .)  A yt/ (29) 

b) The orthogonal projections of {gf] onto the column space of S^ are asymptotically 

(for N » L) jointly Gaussian distributed with zero means and covariance matrices given by 

E (S" (S«/)Äg?) (s" (s'/)flgf 
# 

CTL 

n0(iV-L + l) 
A*/ 

S^-AiO2" 
,«/ (4')"' *ij A 

1 
(N-L + l) 

E (s" (s")" g|') (s" (S")V)T = °  for a11 *. 3- 

U'%,      (30) 

(31) 

The proof of (28)-(29) is given in Appendix C, and the proof of (30)-(31) is given in 

Appendix D. 

To demonstrate the performance advantage of using STFDs, we substitute (23) into 

(28)-(30), 

W-WW-*/)* = J^ITT* 

-  (A? - q) + (Ag - a) + ^r H     " (A? - a) + > „ 

(Ag - A?) jt=i (a - \;y Sij,        (32) 

E(sf-s«')(ä;'-s/): 

^.W-)±W-)+4f^w)r(1_Mi (33) 
N-L + l (K ~ A?)2 

and 
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N-L + l Ä    (--W   Sfc(Sfc) *ü- (34) 

From (32)-(34), two important observations are in order. First, if the signals are both 

localizable and separable in the time-frequency domain, then the reduction of the number 

of signals from n to n0 greatly reduces the estimation error, specifically when the signals 

are closely spaced. The examples, given in the following section, show the advantages of 

using t-f MUSIC with partially selected signals. The second observation relates to SNR 

enhancements. The above equations show that error reductions using STFDs are more 

pronounced for the cases of low SNR and/or closely spaced signals. It is clear from (32)- 

(34) that, when X°k > a for all k - 1,2, ...,n0, the results are almost independent of L 

(suppose N > L so that N-L + l ~ N), and therefore there would be no obvious 

improvement in using the STFD over conventional array processing. On the other hand, 

when some of the eigenvalues are close to a (X°k ~ a, for some k = 1,2,..., n0), which is the 

case of weak or closely spaced signals, all the results of above three equations are reduced 

by a factor of up to G = L/n0, respectively. This factor represents, in essence, the gain 

achieved from using STFD processing. 

IV. The Time-Frequency MUSIC 

To demonstrate the robustness of the eigen-decomposition of the STFDs when used in 

practical applications, we consider in this section the recently proposed time-frequency 

MUSIC (t-f MUSIC) algorithm [7]. The DOA estimation based on time-frequency maxi- 

mum likelihood (t-f ML) is investigated in reference [8]. 

We first recall that the DOAs are estimated in the MUSIC technique by determining 

the n values of 9 for which the following spatial spectrum is maximized [15], 

fMu(6) = [aH(0)GGHa(0)]"' = [a"(0) (i - SS*) a(0)|"'. (35) 

Where a(0) is the steering vector corresponds to 9. The variance of those estimates in the 

conventional MUSIC technique, assuming white noise processes, is given by [9] 

2_   1  a*(fl,)Ua(fl,) 
Efa-Ui)  -—       m (36) 
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where w; is the spatial frequency associated with DOA 9{, and LüJ is its estimate obtained 

by the conventional MUSIC. In the above equation 

A* U = a 
£ i° ~ A*): ;sk*k ,    d(6i) = dnißöldu,    HO,) = dH(9l)GGHd{6l).      (37) 

From the results of Lemma 1, part (b), Ü = U, which implies that (36) also holds true 

when the conventional MUSIC algorithm is applied to FM signals in white noise. 

Similarly, for t-f MUSIC with n0 signals selected, the DOAs are determined by locating 

the n0 peaks of the spatial spectrum defined from the n0 signals' time-frequency regions. 

fHu(0) = [a»6" (G")*a(0)]-1 = [a*(0) (i - S" (§")") a(ö)]"1 (38) 

Following the same procedure in [9] and using the results of Lemmas 2 and 3, we obtain 

the variance of the DOA estimates based on t-f MUSIC, 

1 a"(0z)U"a(02) Efö-Ui)   = (39) 
2(N-L + 1)       h^iOi) 

where 0$ is the estimate of u)l obtained by the t-f MUSIC, Utf is defined in (30), and 

htf{Oi) = dH(0i)G
t'(Gtf)Hd(Oi) (40) 

which is equal to h(6i), if n0 = n. 

V. Simulation Results 

Consider a uniform linear array of 8 sensors spaced by half a wavelength, and an obser- 

vation period of 1024 samples. Two chirp signals emitted from two sources positioned at 

angle 6\ and 62. The start and end frequencies of the signal source at 6i are cosi = 0 and 

u>ei = 7T, while the corresponding two frequencies for the other source at 02 
are ws2 = TT and 

uje2 = 0, respectively. The noise used in this simulation is zero-mean, Gaussian distributed, 

and temporally white. The SNR of the ith FM signal is defined as SNRj = 10 log {Df/a). 

Fig. 3 shows the PWVD of the mixed noise-free signals for L = 129. 

Fig. 4 displays the variance of the estimated DOA 6\ versus SNR for the case (6i,62) = 

(—10°, 10°). The curves in this figure show the theoretical and experimental results of 

the conventional MUSIC and t-f MUSIC (for L=33 and 129).  The Cramer-Rao bound 
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(CRB) is also shown in Fig. 4 for comparison. Both signals were selected when performing 

t-f MUSIC (n0 = n = 2). We assume that the number of signals is correctly estimated 

for each case. Simulation results were averaged over 100 independent trials of Monte 

Carlo experiments. The advantages of t-f MUSIC in low SNR cases are evident from this 

figure. The experiment results deviate from the theoretical results for low SNR, since we 

only considered the lowest order of the coefficients of the perturbation expansion of v; in 

deriving the theoretical results (see Appendix A). Fig. 5 shows estimated spatial spectra 

at SNR=-20 dB based on t-f MUSIC (L = 129) and the conventional MUSIC. The t-f 

MUSIC spectral peaks are clearly resolved. 

Fig. 6 shows examples of the estimated spatial spectrum based on t-f MUSIC (L = 129) 

and the conventional MUSIC where the angle separation is small (9i = -2.5°, 62 = 2.5°). 

The input SNR is -5 dB. Two t-f MUSIC algorithms are performed using two sets of time- 

frequency points, each set belongs to the time-frequency signature of one source (n0 = 1). 

It is evident that the two signals cannot be resolved when MUSIC is applied, whereas by 

applying t-f MUSIC separately for each signal, the two signals become clearly separated 

and reasonable DOA estimation is achieved. This is attributed to the signal's distinct 

time-frequency signatures. It is noted that there is a small bias in the estimates of t-f 

MUSIC due to the imperfect separation of the two signals in the time-frequency domain. 

It should be noted that the computation cost used to implement the t-f MUSIC is 

higher than the conventional MUSIC because it involves the additional processing based 

on bilinear t-f distributions. Nevertheless the pseudo Wigner-Ville distribution consid- 

ered in this paper is relatively simple and only requires a bilinear product and one FFT 

operation. Moreover, there exist now several computationally efficient t-f kernels that al- 

low time-frequency distributions to be provided via spectrogram-based implementations, 

recursive, and multiplication free processing. On the issue of practical implementation, 

many procedures have been devised so that any distribution can be calculated quickly 

with minimum computer resources [16]. Recently, kernels have been devised, specifically 

tailored to very fast computation, with the binomial kernel devised by Jeong and Williams 

being the prime example [17]. Methods for decomposition of kernels, leading to fast com- 

putation and increased understanding, have also been carried out by White [18], Amin 
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[19], [20], Venkatesan and Amin [21], and Cunningham and Williams [22]. 

VI. Conclusions 

Subspace analyses of spatial time-frequency distribution (STFD) matrices have been 

presented. It has been shown that for signals with clearly defined time-frequency signa- 

tures, such as FM signals, smaller estimation errors in the signal and noise subspaces can 

be achieved using spatial time-frequency matrices over the subspace estimates obtained 

from the data covariance matrix approach. This performance improvement is the result of 

incorporating the time-frequency points along the instantaneous frequencies of the imping- 

ing signals on the array into the subspace estimation procedure. Under the assumption 

that the instantaneous frequencies are idealy located, these points belong to autoterm re- 

gions of high power concentrations, and as such, when used in constructing STFDs, they 

provide high SNR matrices with improved eigen-decompositions. 

The advantages of STFD-based direction finding over traditional direction finding meth- 

ods using data covariance matrices were demonstrated using the MUSIC algorithm. It was 

shown that the time-frequency MUSIC outperforms conventional MUSIC in the two situ- 

ations of low SNR and closely spaced sources. 

Unlike conventional array processing techniques, which are nondiscriminatory, and must 

therefore spatially localize all signals incident on the array, the STFD-based array pro- 

cessing provides the flexibility of dealing with all signal arrivals, or only a subset of them. 

In this respect, it does not suffer from the drawback of requiring higher number of sensors 

than sources. The ability to select fewer sources depends on the differences of their time- 

frequency signatures from those of other source signals. The eigenstructure of the STFD 

matrix constructed from the time-frequency points that belong to the autoterm regions of 

a number of sources will only yield the signal subspace of these sources. It was shown that 

the maximum improvement offered using STFD over data covariance matrices is obtained 

when constructing the STFD from only one source signal. 

Appendix A 

For notation simplicity, we denote v,-, i = 1,2,..., m, as the eigenvectors of the correlation 

matrix Rxx, where the first n vectors form the signal subspace (s^, i — 1,2,..., n), and the 
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last m — n vectors form the noise subspace (gj, i = 1,2,..., m — n). 

To derive the covariance matrices, we follow the same procedure in [9] and [23], but note 

the fact that the underlying signals are deterministic rather than White random processes, 

which are considered in [9] and [23]. We define Rxx in terms of a random perturbation to 

Rxx with a perturbation factor p, 0<p<l. Thus, 

Rxx — Rxx + (Rxx — Rxx) — Rxx + pB. (A.l) 

When the source signals are FM and the noise vector forms a multivariate white Gaussian 

process, then B is a Hermitian, zero-mean random matrix whose elements are asymptoti- 

cally jointly Gaussian. Let Vj denote the unnormalized perturbed version of the eigenvector 

Vj. According to [24], 
m    / oo 

^v. + EE»'^ (A.2) 

where i|j.\ Z = 1,2,..., are the coefficients of the perturbation expansion of v$ along v*. 

By keeping the term with the lowest order of p, then [23] 

llk — 
vfBv, 
Ajt — \ 

, k^i. 

(0 The mean square value of t\l is given by 

E E 
(A* - A;)2 

(A.3) 

(A.4) 

To evaluate the numerator in the above equation, we consider the following general case. 

E [vf BvjVf Bv,]    =   -jE [vf (Rxx - Rxx) vjVf (Rxx - Rxx) v,] 
p. 

(NPy 

l 

:E 
N \    / N 

53 vf x(tr)x
H(tr)vjj I £ vf x(t,)xH(t,)V/ 

\.r=l 

  vf Rxx Vj vf R,« Vj. 
P 

(A.5) 

It can be easily realized that the expected value in (A.5) is taken from a product of four 

non-zero mean Gaussian random variables. It is well known that for Gaussian random 

variable xi,x2,Xs,Xi with non-zero means, 

E[xix2x3Xi]   -   E[xix2]E[x3xA] + E[xixz]E[x2x^ 

+E[x1xi]E[x2x3] - 2E[x1]E[x2]E[x3]E[xA\. (A.6) 
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Using the properties of the zero-mean circular complex Gaussian noise vector and the 

deterministic source signal vector, then 

E[x(tr)}    =   y(ir), 

E 

E 

x(tr)x
H(tq) 

x(tr)x
T(tq) 

=   y(tr)yH(tq) + aisr,q, 

=   y(tr)yT(tq). 

Accordingly, (A.5) can be written as 

E vfBvj-vfBv, 

N    N 

(j^EE^ [vf x(tr)x"(*r)v;] E [vfx(tq)x
H{tq)vK 

+ (^52 E E £ [v?x(«r)vf x(t,)] E [xH(tr)v3x
H(tq)Vl 

+ 7^)2 E E £ [v?x(«r)x*(gvj £ [vf X^X^V,] 
Q 

N    N 

-2 (^ E E E [v?x(*r)] ^ [^WvJ £ [vf x(t,)] £ [x"(t,)v,] 

 2 vf RxxVj vf RxxVj 

E E Kv/a^.vf y(tg)y
//(ir)vJ 

+7^2 E E [v?y(*r)yff(*,)v,vf Via(5r,,] 
9 

AT     AT 

+^EE[vWvAj 

Lr E [v?y(My*(tr)vi<W] + 77L E [M;,*"a 

(iVp)2 rti 

By using the uncorrelation assumption (7), 

^X>(*r)y*(*r)  =A 

(Np)2 Ptj 
(A.7) 

r=l 

Af 

-£d(*r)d"(*r) 
iV  r=l 

H 

AR-ddA        =  R-yy   =  R-XX  — flj 

(A.8) 

equation (A.7) simplifies to 
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E vfBv.vfBv, 

a 

Np2 

a 
Np1 

klvk Ryyvj + vfRyyV,«Jijfc] + Jjyklkk 

[<^/vf (Rxx - o-I) Vj + vf (Rxx - crl) vj<Jijfc] + -jjrfSiJS3r 

r-2  [(Ji,jvf RxxVj + vf RxxV(5j>it - CT^f^ 

iVp2 

cr 
[Xi + Xj - o)&i,i5j,k- (A.9) 

Therefore, 

E E 
(Afc - Az)

2 

g   (Aj + Afc - a) . 

iVp2    (A,-A,)2   '^ 

and 

£ *S(^)* £ 
vfBvjvfBvfc 

.(Afc — Aj)(Afc — Xj) 
0, A; ^ z, k + j. 

It is shown in [13] that 

cov (VJ, Vj) = cot; (vi, Vj) + o(iV 2). 

By ignoring the terms of N 2, then 

cov (Vj, Vj)   ~   cot; (v,, Vj) ~ E 
•   m 

=    £ .(0 2 

E*S    Afcvfiy 

E*Spv*IIE*äVfc 

Xi + Afc — a 

\  k=l 
. \k^i 

= -E 

(A.10) 

(A.11) 

A^S  (Ai-Afc)
2 Vfcvf^j.     (A.12) 

k^i 

Replacing vfc by s^ or gk leads to equation (8). Similarly, 

cov (vi,v*)    ~   cou(vi,v*) 

/ 
E E*i>* 

\ it=i 
E&W 
k=l 
kft 

= p2E E E «Ävfclv: 
'*2 

fc1=l   jb2=l 

p2EE£ 
ffi v^Bvi     vgBv 

L. 2^^ 7T TT7Ä TTVfclVfc2 (A.13) 

fc15£i fc2^j 
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From (A.9), it is clear that the above equation has non-zero value only when ki — j and 

k2 = i. Noting the fact that ki ^ i and k2 ^ j, (A.13) becomes 

cov  Ji,3) (*<■*;')   ~   ~ (A _ Xiy
E [vfBv.vfBv,] v,vf(l - Si 

=   -^j^W^-S,,,). (A,4) 

For the signal subspace, v, is Sj, i = 1, ...,n, and (A.14) yields (9) and this concludes the 

proof for part a) of Lemma 1. 

Appendix B 

Using eigendecomposition theory, we have 

A°R°d(A0)" = Q3Q" (B.l) 

where S = diag [£i, • • •, £„o, 0, ■ • •, 0] is a diagonal matrix whose elements are the eigen- 

values of A0Rdd(A°)w and Q is the corresponding eigenvector matrix.   Clearly, & = 

\°-a,i = l,---,n0, and Q = [  S°   |   G°  ]. 

From the definition of A? and A/, it is evident that 

D   =   -QSQ" QHQ" + al = Q 
n0 n0 

qH (B.2) 

Therefore, R°x and D share the same set of eigenvectors, that proves part a) of Lemma 1. 

The zth eigenvalue of D is —& + a = —(A° — a) + a for i < n0 and is a for n0 < i < m, 
n0 n0 

subsequently leading to part b). 

Appendix C 

Similar to Appendix A, we let Vj, i = 1,2,..., m, represent the whole eigenvectors of the 

STFD matrix D, where the first n0 vectors form the signal subspace (s/, i = 1,2,..., n0), 

while the last m—n0 vectors form the noise subspace (g,- , i = 1,2,..., m—n0). As discussed 

in Section III, we assume that the selected time-frequency points belong to regions where 

no crossterm components are present. 

For an array mixture of FM signals, we select points from n0 signals at the time- 

frequency domain, where the pseudo Wigner-Ville distribution matrix is defined in (13). 
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We define D in terms of a random perturbation to D with a perturbation factor p, 0 < 

p < 1. Thus, 

D = D+(D-D) = D+pB. (C.l) 

Matrix B is a Hermitian, zero-mean random matrix whose elements are asymptotically 

Jointly Gaussian [8]. Similar to Appendix A, we derive 

E [vf Bvj-vf Bv,] 

= ^E h" (ö - D) vtf (ö -D) V<1 
i 

p* 

;E 
(noP(N-L + l)Y 

-^vfDvjvfDv,. 

n0  N-L+l \   I n°  N~L+1 

E E vfDxxfe,/,^    E E vfDxx^,/,,^, 

(C.2) 

Substituting (21) and (A.7) into (C.2), we obtain 

E vfBv.vfBv, 

1 n0     n0   N-L+l N-L+l 2 

(n0p(iV-L + l))2
gi=ig2=1   il=1     i2=l 

E E E   E    E     E  e~ji^^Ti+fq^T2'\ 
Ti- — T2- 2~~ 

xjtf [vf x(til + r1)x
H(iil - n)Vi] £ [vf x(ti2 + T2)x

H(ti2 - r2)v,] 

+£ [vf x(til + n)vf x(t<2 + r2)] £ [xH(^ - rOvj-x^fe - r2)v«] 

+£ [vf xfo + Ti)x*(ii2 - r2)v,] £ [vf x(t<2 + r2)x"(^ - n)Vj] 

-2£ [vf xfo + n)] £ [x^ti, - n)vj] £ [vf x(ii2 + r2)] £ [xH(ii2 - r2)v,] } 

-^Dv^-vfv, 

nD     n0   N-L+l N-L+l      -f- ~f- 
     E   E      E E E E       e_j4'ri/9i'ii7"1+/92'i2T2j 
1))     9l=l92 = l     li = l        12 = 1     n=_I^lr2=_£=I (noP{N -L + 

x vf y(*it + TX)y
H(ti2 - T2)viaSjtkStil-r1,u2+ri 

+a6ij5tii+Tuti2-T2Vky(ti2 + r2)y
H(th - TX)WJ 

+^2Si,tSjjk5t   t 5TU7 (C.3) 
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Under the assumption of no crossterms, qx should be equivalent to q2 to have non-zero 

values, and in this case, qx = q2 = q. Note that within the time-frequency region of the qth 

signal, y(t) = yq(t) A Adq(t). When the third-order derivative of the phase is negligible 

over [t — L + 1, t + L — 1] for any signal and any t, we have 

E vfBv.vfBv, 

n0 N-L+l N-L+l      kT~ 2 

(Np(N - L + l))2 § £  £ T15^rJL 

x v?y(<ii + Ti)yH(U2 - T2)vi(T6jtk6tii-n,ti2+Ts 

+a6ij6tli+Tutil-T1vf?y{ti2 + T2)y
H(th - n)vj 

+ n0(N-L + l)p^>k 

ah 
n, 

(Xi — a) + (Xj — o) + a SiiSj 'j,k n0(N-L + l)p2 

ah 
n0{N-L + l)p2 

Let Vj denote the unnormalized eigenvector given in a perturbation expansions by 

{X1/ + X)f -a)]5^5hk. (C.4) 

m     / oo 

vFv1 + EE4Vn (C.5) 

where ill, I — 1,2,..., are the coefficients of the perturbation expansion of Vj along v*, 

and keeping the term with the lowest order of p, then 

i)_   v"Bvt 
flA:  — 

Therefore, 

E E 

, k^i. (C.6) 

v^BvjvfBvfc 

oL 

and 

£ 4MV ^ 

0(iV-L + l)p2   (A;/_At/) 

vfBvzvfBvfc 
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(C.8) 



Similar to Appendix A, we follow 

COV (Vj,Vj)     ~    COV (Vj, Vj) 

E 
\ 

H-y 

fc=l 
L \k& 

m \   I   m 

= E ,(i)2 

E*S A*vf^ 

n, E   \tf    \tf„ wHSij. 
0{N-L + I)& (xlf-xlfy 

k^ti 

(28) follows by properly replacing v* by sfc
7 or g/. Similarly, */ ^ „*/ 

COV (VJ,V*)    ~   cov(vj,v*)~E 

fc1=i fc2=i 

P2 

m \   I  m 

\ *=i       / i fc=i 

vgBv«       vgBv,- T" 

(Ai{-Af)(AK-Af)VfelVfc2 

Tn 

^/^ [vf Bv.vf BvJ v,vf (1 - 8id) 

aL xY + Xf-a-    T 

(C.9) 

(CIO) 
n0(iV-L + l) (Af-Af)2 

For the columns of signal subspace, v; becomes s- , and (CIO) becomes (29). 

Appendix D 

This appendix follows the procedure of [9]. Denote 

r = (s")fl
DG

4/, 

and 7^ the ith column of T. Using the results of (C.2) - (C.4), and the fact (S^)   DG4/ = 

0, we have 

E li% H,q 
E tjs;0"Dg:')((gf)°Ds 

Subsequently 

aL 

tf 

n0(N -L + l) 

aL 

i*f 

n0(N -L + l) 

xyst^ij.    (D.i) 

A.tfSiJt (D.2) 
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where A^ = diag \{ ,...,A^ . Similarly, 

E[^J}tq = E [((*)'ttf) (tf)'ttf)] 
and subsequently 

E [7l-7J] = 0. 

o, (D.3) 

(D.4) 

H 
Since S'^ (S^J   g-   has the same limiting distribution as that of -Sf/(r — al) 1ji [8], 

then it follows 
H 

£(s</(s'/)V) (s"(s'/)V 

CTL 

n0(iV-L + l) 

 ah 
n„"" 

- [s(A" - al^A^A" - aiy'S"] 6hj 

£ jf 
(*)" fc 

and 

io(N-L + l) {£[(<,-fly' 

E (s" (s")" g{') (s" (S^)H g/)T = 0  for all i, j. 

(D.5) 

(D.6) 
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Fig.l      The principal eigenvalues of correlation matrix and STFD matrix. 

141 



m 

15 

10 

5 

0 

|-10 

ir-15 z co 
-20 

-25 

-30 

-35 
10 

L=  1 
L=33 
L=129 

10" 10' 
angle separation (degrees) 

10' 

(a) SNR threshold vs. angle separation N = 1024 

-5 — —i—^T ■                i >——i 1 1—i    ■   ;                            . 

-.^  L=   1 
^- ^  L= 33 

   L=129 
-10 

fn-15 "    -    ^ 
■o 

N v 
o >. 
ffi-üu ^   ^ 

CC "•   ^ 
Z *-   _ 
05-25 

■v     '""--.. 
-30 

^\^ 

10' 10' 10J 

number of snapshots 
10 

(b) SNR threshold vs. number of snapshots Ac? = 20° 

Fig.2      SNR thresholds to identify two signals (m = 8). 

142 



0.5 

100  200  300  400  500  600  700  800  900  1000 
Time 

Fig.3      Pseudo Wigner-Ville distribution of the mixture of the two signals. 

MUSIC 
•     MUSIC (exp) 

L=33 
n      L= 33 (exp) 
-       L=129 
o     L=129(exp) 

CRB 

-15 -10 -5 
SNR (dB) 

Fig.4      Variance of DOA estimation vs. SNR. 

143 



= 10 

10 

;10 

10" 
-40 

t-f MUSIC 

MUSIC 

-10 10 
6(deg) 

40 

Fig.5      Estimated spatial spectra 

(m=8, 7V=1024, SNR= -20 dB, L = 129 for t-f MUSIC). 

t-f MUSIC 

Fig.6      Estimated spatial spectra for closely spaced signals 

(m=8, iV=1024, SNR= -5 dB, L = 129 for t-f MUSIC). 

144 



Spatial Averaging of Time-Frequency 
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Abstract 

This paper presents a new approach based on spatial time-frequency averaging for separating signals 

received by a uniform linear antenna array. In this approach, spatial averaging of the time-frequency 

distributions (TFDs) of the sensor data is performed at multiple time-frequency points. This averaging 

restores the diagonal structure of the source TFD matrix necessary for source separation. With spatial 

averaging, crossterms move from their off-diagonal positions in the source TFD matrix to become part 

of the matrix diagonal entries. It is shown that the proposed approach yields improved performance 

over the case when no spatial averaging is performed. Further, we demonstrate that, in the context 

of source separation, the spatially-averaged Wigner-Ville distribution outperforms the combined spatial- 

time-frequency averaged distributions, such as the one obtained by using the Choi-Williams distribution. 

Simulation examples involving the separation of two sources with close AM and FM modulations are 

presented. 

This work is supported by Office of Naval Research under Grant No. N00014-98-1-0176. 
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I. Introduction 

Recently, time-frequency distributions (TFD) have been employed for direction finding 

and blind source separation problems in sensor array processing [1-5]. The spatial time- 

frequency distributions (STFDs) were introduced in [1] and represented by a spatial matrix 

whose elements are the auto- and cross-time-frequency distributions of the data received 

at the different array sensors. STFD techniques are most appropriate to handle sources of 

nonstationary waveforms that are localized in the time-frequency domain. The robustness 

of the subspace estimates using STFD matrices is analyzed in [17], and shown to have an 

advantage over those obtained from the covariance matrices. 

The application of STFDs to separating sources with distinct time-frequency (t-f) sig- 

natures is presented in [2]. In this reference, it is shown that the source TFD matrix, 

whose elements are the auto- and cross-TFD of the source signals, and the sensor data 

STFD have the same relationship as the one between the source and the data correla- 

tion matrices. This relationship is defined by the mixing, or the array manifold matrix. 

The steps applied in blind source separation based on second order statistics (the SOBI 

technique) outlined in [9] could therefore be used in the time-frequency formulation of the 

problem. The general theory of solving blind source separation problems using spatial 

arbitrary joint-variable distributions, including those of time and frequency, is given in [3]. 

In [4], the two arbitrary variables are chosen as the time-lag and frequency-lag, and the 

source separation was performed using spatial ambiguity functions. The use of STFDs for 

direction finding is discussed in [5] and [18], where the time-frequency MUSIC and the 

time-frequency maximum likelihood techniques are proposed. 

Although blind source separations based on time-frequency distribution outperform the 

SOBI method for nonstationary signals, the fundamental problem with the bilinear time- 

frequency approach remains the need for the incorporation of STFD matrices computed 

only at the source autoterm points. Crossterms impede performance, as they reside on the 

off-diagonal elements of the source TFD matrix, and as such, violate its diagonal structure 

necessary for source separation. Identification of autoterm regions are often difficult for a 

large class of multi-component nonstationary signals, and even if properly identified, due 

to the complexity of the impinging signal time-frequency signatures and the use of finite 

146 



data records, autoterm regions cannot be entirely free from crossterm mainlobe or/and 

sidelobe contamination. 

In this paper, we discuss the role of TFD crossterms and demonstrate the effect of spatial 

averaging on STFDs. By utilizing the Vandermonde structure of the array manifold matrix 

and performing spatial averaging on the spatial time-frequency distribution matrices, we 

set the off-diagonal elements of the corresponding source TFD matrix to zero. This is 

achieved by moving the crossterms from their off-diagonal positions to join the autoterms 

as diagonal entries of the source TFD matrix at one time-frequency point. In this respect, 

the performance of the source separation technique becomes much less dependent on the 

selection of the time-frequency points at which the STFD matrices are computed. It is 

shown that the spatially-averaged STFDs outperforms the case where no spatial averaging 

is performed, even when only autoterm points are involved in both cases. 

Spatial averaging is a simple and well-known technique in conventional array process- 

ing [6]. It employs additional array sensors to reduce cross-correlation in coherent and 

correlated signal environments, and thereby permits proper angle-of-arrival (AOA) esti- 

mations and source separations. In this paper, we show that spatial averaging plays a key 

role in the underlying TFD-based source separation problem and its application leads to 

matrix diagonalization and crossterm mitigation. Spatial averaging gives robustness to 

time-frequency point selections and yields improved performance over other TFD-based 

techniques, specifically for sources whose signatures are closely separated in the time- 

frequency domain. 

The restoration of the diagonal structure of the source TFD is only part of the prob- 

lem. Source separation using spatially-averaged TFD evaluated at a single time-frequency 

point can still lead to noisy and non-unique results. Since the power distribution of the 

signals impinging on the array varies over the time-frequency plane, then different time- 

frequency points may exhibit different SNRs. The main two advantages of incorporating 

several spatially-averaged TFD matrices evaluated at different time-frequency points into 

a joint-diagonalization scheme are to avoid having degenerate eigenvalues and to reduce 

the possibility of choosing a point with high noise contamination. 

It is noted that, unlike the method in [2], the proposed approach requires the information 
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on the array manifold, and is sensitive to the calibration error. In this case, conventional 

AOA estimation methods, such as the maximum likelihood [11], matrix pencil [12], MUSIC 

[13], root MUSIC [14, 15], and ESPRIT [16] techniques, can also be used to estimate the 

mixing matrix, and further to separate the source signals. The proposed approach not 

only requires no angular search but also enjoys the discriminatory property of TFD-based 

array processing, where fewer sources can be considered by only selecting their respective 

time-frequency signatures [17-19]. 

This paper is organized as follows. In Section II, the source separation approach based 

on spatial time-frequency distribution is briefly summarized. In Section III, we introduce 

the spatially averaged time-frequency distributions, and discuss the difference between 

spatial averaging and kernel methods in handling the crossterm problem. Simulation 

results demonstrating the usefulness of the proposed technique are given in Section IV. 

II. Source Separation Based on Spatial Time-Frequency Distributions 

A. Spatial Time-Frequency Distributions 

In many practical situations, the data vector x(i) for an iV-element array follows an 

instantaneous mixture model and is given by 

■Kit) = y(t) + n(t) = As(t) + n{t), (1) 

where x(t) = [x0(t), • • •, x^^i(t)]T is the data snapshot vector at time t, and the superscript 
T denotes transpose. The vector s(t) — [si(t), ■ ■ ■, sn{t))T contains n source signals at the 

same time, and n(i) is the additive noise vector. This model is commonly used in the 

field of narrowband array processing. The vector y(t) = [yo{t), • • •, yN-i(t)]T contains the 

noise-free array output. The mixing matrix A is the transfer function between the source 

signals and the data at the array sensors. We assume that the mixing matrix A is full 

column rank. 

The source signal vector s(t) is assumed to be a deterministic signal vector with corre- 

lation matrix 

Rss(r)= lim !;>>(*+ r)s"(*) (2) 
T^ooi t=i 

where superscript H denotes the conjugate transpose of a matrix or a vector. In reference 

[2], it is assumed that Rss(r) = diag[rn(T), ■ ■ ■ ,r„„(r)], where diag[) is the diagonal 
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T 
matrix formed with the elements of its vector valued argument, and rn(r) = lim Y, S{(t + 

T-xxt=i 

r)Si(t) denotes the correlation of s,(t). This assumption implies that the components Sj(£), 

1 < i < n, are mutually uncorrelated. However, in our proposed method, this assumption 

is no longer necessary. 

The additive noise n(t) is modeled as a stationary, temporally white, zero-mean complex 

random process independent of the source signals. For simplicity, we also require n(t) to 

be spatially white, i.e., 

E[n(t + r)nH(t)}=al6(r)I (3) 

where S(T) is the Kronecker delta and I denotes the identity matrix. Since the signal 

power and the signal ordering are indeterminable in source separations [3], we simplify the 

problem by treating the source signals as if they have unit power. Accordingly 

Rss(0) = I and Ryy = \im | £y(t)yH(t) = AA*. (4) 

The discrete-time form of Cohen's class of TFD for signal x(t) is given by [7] 
oo oo 

Dxx(tJ)=   Yl     E   <t>(m,l)x{t + m + l)x*(t + m-l)e-4nfl (5) 
/=—oo m——oo 

where t and / represent the time index and the frequency index, respectively. The kernel 

4>(m, I) characterizes the TFD and is a function of both the time and lag variables. The 

cross-TFD of two signals Xi(i) and Xj(t) is defined by [7] 
oo oo 

DXiXj(t,f)=  £     £   tim^Xitt + m + l^it + m-Qe-W. (6) 
1=.—oo m——oo 

One possible definition of spatial time-frequency distribution (STFD) is given in [2] and 

incorporates both equations (5) and (6), 
00 00 

Dxx(t,/)=  £    £   <t>(m,l)x(t + m + l)xH(t + m-l)e-^fl (7) 
l=—oo"i=—00 

where [Dxx(t, /)]■ • = DXiXj(t, /), for i,j = 0, • • •, N — 1. It is shown in the next section 

that other forms of STFD can be more useful in the context of source separation. Under 

the linear data model of Eq. (1), and assuming noise-free environment, the STFD matrix 

in (7) takes the following simple structure 

Dxx = ADss(t,/)A" (8) 
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where Dss(i,/) is the signal TFD matrix whose entries are the auto- and cross-TFDs of 

the sources. Eq. (8) is similar to the formula that is commonly used in conventional 

blind source separation and direction-of-arrival (DOA) estimation problems [8,9], relating 

the signal correlation matrix to the data spatial correlation matrix. If Dss(i,/) is a full- 

rank matrix, the two subspaces spanned by the principle eigenvectors of Dxx(£,/) and 

the columns of A become identical. In this case, direction finding techniques based on 

eigenstructures can be applied. If Dss(t,f) is diagonal, i.e., the signal cross-TFDs at the 

time-frequency point (t, f) are zeros, the mixture matrix and the signal waveforms can be 

recovered using blind source separation methods [1,2]. 

B. Source Separation Based on Spatial Time-Frequency Distributions 

The source separation algorithm based on spatial time-frequency distributions is an 

essential part of the proposed method. The algorithm is given in details in reference [2] 

and is summarized below. 

The first step is the whitening of the signal part y(t) of the observation. This is achieved 

by applying a whitening matrix W to y(t), i.e., annxiV matrix satisfying: 

1   T 

£™> r^Wy^yH^W" = WRyyw" = WAAHA" = I. (9) 

WA is an n x n unitary matrix U, and matrix A can be written as 

A = W#U (10) 

where superscript # denotes pseudo-inverse. The whitened process z(t) — Wx(f) still 

obeys a linear model, 

z(i) = Wx(t) = W [As(<) + n(i)] = Us(t) + Wn(i). (11) 

By pre- and post-multiplying the STFD matrices Dxx(/,/) by W, we obtain 

Dzz(t,/)=WDxx(f)/)Wfl (12) 

which is, in essence, the STFD of the whitened data vector z(t). From the definitions of 

W and U, 

DM(i,/) = UDM(*,/)U". (13) 
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Equation (13) shows that if Dss(i,/) is diagonal, then any whitened data STFD matrix 

is diagonal in the basis of the columns of the matrix U, and the eigenvalues of Dzz(i, /) 

are the diagonal entries of Dss (*,/). An estimate U of the unitary matrix U may be 

obtained as a signal subspace of a whitened STFD matrix evaluated at a time-frequency 

point corresponding to the signal autoterm. The source signals can then be estimated as 

§(£) = ÜWx(t), and the mixing matrix A is estimated by A = W#U. 

Although the unitary matrix can be obtained from a single time-frequency point, STFDs 

corresponding to different (t, f) points should be incorporated, so as to reduce the possi- 

bility of having degenerate eigenvalues and subsequently non-unique solutions. The joint- 

diagonalization (JD) scheme can be used to incorporate multiple time-frequency points 

[2]. This scheme forms K STFD matrices {Dzz(t,, fi)\i = 1, • • •, K} at a set of preferable 

K time-frequency autoterm points. The unitary matrix U is then obtained as the joint 

diagonalizer of the set {Dzz(ij, fi)\i = 1, • • •, K}. 

III. Spatial Averaging Time-Frequency Distributions 

A. Spatial Averaging Methods 

Spatial averaging method was introduced by Pillai [6] to restore the full-rank property 

of the signal correlation matrix in the presence of coherent signals. Unlike other spa- 

tial smoothing methods [20-23], which only restore the full rank property of the mixing 

matrix when the impinging signals are coherent, the spatial averaging method enforces 

the diagonal structure of the signal correlation matrix. This diagonal matrix property is 

essential to perform source separation, as previously discussed. Here, we present the role 

of spatial averaging in the context of TFD analysis, and propose signal separation using 

joint diagonalization based on spatial averaging of spatial TFD matrices. 

The basic idea of spatial averaging is to use subarrays of a uniform linear array to obtain 

an averaged correlation matrix, or in the underlying problem, an averaged STFD matrix, 

with the off-diagonal elements set to zero. 

Without loss of generality, we consider a simple example of n = 2, i.e., there are only 

two sources, Si(t) and s2(t). The result is generally true for n sources and N sensors, as 

long as n < N. 
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By ignoring the effect of noise, the received signal at the i-ih array sensor (i = 0,1, • • •, N- 

1) is represented by 

,(2) Xi{t) = x\l,(t) + x\2)(t) = Sl(t)e-jdi^ + s2(t)e-jd'u'2 
(14) 

where u)k = 2n sin (j)k/X,k = 1,2, are the spatial radian frequencies, </>fc are the angles-of- 

arrival, A is the RF wavelength, and dt is the distance between the 0-th and the z-th array 

sensors. The cross-TFD of Xi(t) and Xj(t), assuming uniform linear array, is 

DXiXj (t, f)    = Dxwxv (t, /) + Dxmxw (t, f) + Dxwxw (t, f) + D^^ (t, f) 

= 'DSlSl(t,f) + DS2Sl(t,f)e-^^-^]e-^-d^        ' (15) 

+ [DS2S2{t, f) + Dsia2{t, f)e~M"*-»i)] e-M-W»*. 

Due to the presence of the cross-terms (second term in each bracket in (15)), the TFD 

matrix Dxx(£, /) does not provide the proper information to carry out source separations. 

The auto- and cross-TFD of the data x0(t) and Xi(t), i = 0,1, • • •, N - 1, is 

DX0Xi(t,f) = [DSlSl(t,f) + DS2Sl(t,f)]e^' +[DS2S2(t,f) + DSlS2(tJ)]e^\      (16) 

where we used the sensor receiving x0(t) as the reference sensor and set d0 = 0. Denote 

bx{t,f) = DSlSl{t,f) + D82Sl(t,f) and b2{tj) = DS2S2(tJ) + DSlS2(tJ). The values 

of bi(t,f) and b2(t, f) are generally complex. If bx{t,f) and b2(t,f) are real, then the 

Hermitian Toeplitz spatial time-frequency matrix 

DX0X0(tJ)       DX0Xl(t,f)      •••    D^^itJ) 

D*X0Xl(t,f)       DX0X0(t,f)      ■■■    DX0XN_2(t,f) 
Dxx(«,/) (17) 

D*X0XNJtJ)    D*XoXNJt,f)    •••      DX0X0(tJ)  J 

generated from the cross-TFDs DXoXo(t, /), DXoXl (*,/),•••, DXoXN_t (t, f) between the data 

samples at the reference sensor and those at other sensors of the array can be expressed 

as [24] 

Dxx(f,/) = ADss(t,/)A
// (18) 

where A is a Vandermonde matrix, and 

BM{t,f) = diag[h(t,f), b2(t,f)} 
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is the corresponding source TFD matrix. Note that Dxx(i, /) has a different structure 

from that of the STFD matrix defined in (7), and was used in reference [2] for blind source 

separation. Clearly, (18) has the same form as (8), but Dss(£, /) here is diagonal, even if 

the selected (t, /) point corresponds to a crossterm. 

In the case of complex signal waveforms, the realness and the diagonal structure of 

T)ss(t, f) can be restored by spatial averaging. We add N - 1 array sensors symmetrically 

about the reference point, as shown in Fig. 1. The received signal at i-th sensor of the 

new set is, 

x-i(t) = x{l}{t) + x(*}{t) = Sl{t)ejdi^ + s2(t)e
jdilJ2. (20) 

The new cross-TFD of x0(t) and X-i(t) is, 

DX0X_{(tJ) = [DSlSl(t,f) + DS2Sl(tJ)}e-^ + [DS2S2(t,f) + DSlS2(t,f)]e-^\ (21) 

The spatial averaging of (16) and (21) is given by 

D®(t, f) = [DX0Xi(t, f) + D*X0XJt,/)] /2 = Cl(t, f)e^ + c2(£, f)e^        (22) 

where 

Cl(t, /) = Dai8l(t, f) + Re [DS2Sl(t, /)],    c2(t, f) = DS2S2(t, f) + Re [D8l,2(t, /)]. 

Since the terms in the brackets in (21) are all real, the matrix formed from the TFDs (22) 

Dx°xKtj)   rnttj)  ■■■ m-'Ktj) 
Dif(t,f)        £>Pj(t,f)      •••   Dx

N
x-

2\t,f) 
Dxx(*,/) (23) 

is Hermitian and Toeplitz. This matrix is referred to as the spatially-averaged TFD 

(SATFD) matrix. Similar to the real TFD case, in the noise-free environment, the SATFD 

matrix in (23) can be expressed as 

where 

i)xx(t,f) = ADss(tJ)AH 

Dss(t,f) = diag[Cl(tJ), c2(t,f)] 
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The off-diagonal elements of Dss(i,/) are zero, where as the matrix diagonal entries are 

now made up of both autoterms and crossterms of the impinging source signals. By 

enforcing the diagonal structure of the source TFD matrix Dss(t,f), spatial averaging 

of the Hermitian Toeplitz STFD matrices extends the validity of the TFD-based signal 

separation in the presence of cross-TFDs. 

The steps for source separation used in [2] and summarized in Section II can be applied 

to the SATFD Dxx(t,/) instead of the STFD Dxx(t,f). With spatial averaging, the 

incorporation of STFDs at only autoterm points into the joint-diagonalization scheme is 

no longer crucial to achieve good performance. 

B.  Comparison between Spatial Averaging and Kernel Methods 

There are two sources of crossterms in the underlying source separation problem. The 

first type are the crossterms that are the results of the interactions between the components 

of the same source signal. Whether we use the STFD defined in (7) or in (17), those 

crossterms are not harmful to the blind source separation problem, since they always 

reside, along with the autoterms, on the main diagonal of the source TFD matrix. The 

other type of crossterms are those generated from the interactions between two signal 

components belonging to two different sources. These crossterms are associated with cross- 

TFDs of the source signals and, at any given time-frequency point, they constitute the 

off-diagonal entries of the source TFD matrices. The crossterms generated from the data 

cross-TFDs violate the basic assumption in the problem of source separation regarding 

the diagonal structure of the source TFD matrix. We must therefore select the t-f points 

that belong to autoterm regions where crossterm contributions are at minimum. However, 

the selection of autoterm points is often difficult in the absence of a priori information of 

the source signals, specifically for low SNR or when the signals have highly overlapping 

time-frequency signatures. The later case can be encountered in radar echoes and acoustic 

signal processing. 

The use of smoothing time-frequency kernel for crossterm reduction is a candidate so- 

lution of the above problem. The main function of this kernel in the context of source 

separation is to prevent the selection and incorporation of crossterm points in the joint- 

diagonalization scheme, as well as to reduce the contribution of crossterms at selected 
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autoterm points. In essence, the fundamental role of the t-f kernel is to make the source 

TFD matrices as close to a diagonal structure as possible. The t-f kernel can be applied 

to both forms of STFDs in (7) and (23). It is noteworthy that the smoothing kernel does 

not distinguish between the aforementioned two types of crossterms, and accordingly it 

reduces all entries of the source TFD matrix, including the diagonal elements. 

The problem with the smoothing kernel is fourfold. First, for sources with closely 

separated time-frequency signatures, the effectiveness of the smoothing kernel in reducing 

crossterms is highly impaired. Second, reduction of crossterms depends on their time- 

frequency locations, especially when fixed shape kernels are used. For example, t-f kernels 

satisfying the marginal properties are not suitable for removing the crossterms which lie 

on the time-lag and frequency-lag axes in the ambiguity domain. Third, depending on 

the employed t-f kernel, part or all of the crossterms may be displaced to mount on the 

selected autoterm points. The situation can make the source TFD matrix to further 

deviate from a diagonal structure, cause performance deterioration from the case when 

no smoothing is applied. We refer to this undesired property as the smoothing problem. 

Fourth, since source separation is often performed incorporating a finite number of data 

samples, the intrusion of crossterms on autoterm regions cannot be prevented or entirely 

removed. This is because the window spreads out the crossterms in the time-frequency 

domain so that the mainlobe or/and the sidelobes of the crossterms are deemed to overlap 

with the signal autoterms. We refer to this undesired property as the leakage problem in 

STFDs. In addition to the above drawbacks, the t-f kernel ignores the fact that the first 

type of crossterms need not be smoothed, as its appearance along the diagonal elements 

can improve the effective signal to noise ratio. 

The spatial averaging of the STFD defined in (23) at a given (t, f) point does not 

smooth or reduce the crossterms at that point, but rather move them from their residence 

on the off-diagonal matrix entries to be part of the matrix diagonal elements. The other 

part represents the contribution of the autoterms at the same point. Therefore, not only 

we are able to set the off-diagonal elements of the source TFD matrix to zeros, but also 

we can improve performance by selecting the (t, f) points of peak values, irrespective of 

whether these points belong to autoterm or crossterm regions. 
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IV. Performance Evaluation 

A. Performance Index 

We use a slightly modified version of the performance index applied in [2] to evaluate 

the performance of the proposed source separation technique. The estimate of the source 

signal vector is computed by applying the pseudo-inverse of the estimated mixing matrix 

A to the received signal vector x(i), i.e., 

s(i) = A#x(t) = A*As{t) + A*n(t) (26) 

where A = W#U. We stress that in general, this procedure is not optimal for recovering 

the source signals based on an estimate A. For large enough sample size, matrix A should 

be close to the true one A, so that A#A well approximates the identity matrix. We 

normalize matrix A by 

Äe = Adiagonal (A#
A) (27) 

where diagonal(F) denotes the matrix formed by the diagonal elements of F. As such, the 

diagonal elements of A*A become exactly one, giving more meaning to the performance 

index 

7P, = JB|(Ä#A)J
2 (28) 

which defines the interference-to-signal ratio (ISR). Thus, Ipq measures the ratio of the 

power of the interference of q-th. source signal to the power of the p-th source signal. As the 

measure of the global quality of the separation process, we also apply the global rejection 

level to evaluate the overall performance of the proposed method 

Iperf = "52 Ipq- (29) 

B. Effect of Crossterms between Source Signals 

In this section, we examine the effect of the time-frequency crossterms on source sep- 

aration perr^rmance when spatial averaging is not applied. To simplify the problem, we 

assume that Rss is an identity matrix. When crossterms are present at the off-diagonal 

elements of the TFD matrix Dss(£, /), then 

Dss(tJ) = P(tJ)G(t,f)PH(t,f) (30) 

156 



where G(t, /) is the diagonal matrix with the eigenvalues at the diagonal elements, and 

P(t, /) is the matrix whose columns are the corresponding eigenvectors. Note that all the 

above matrices depend on the selected (t,f) point. Substituting (30) in (8), the STFD 

matrix of the data vector under noise-free conditions becomes 

Dxx(i, /) = ADss(t, f)A
H = AP(t, f)G(t, f)PH(t, f)AH (31) 

and the STFD matrix of the whitened array signal vector is 

D„(*, /) = WADss(i, f)A
HWH = WAP(t, f)G(t, f)PH(t, f)AHWH.        (32) 

Since G(t,f) is diagonal, WAP(t,f) is unitary. If the estimated mixing matrix A is 

provided based on a single (£, /) point, then from (32), 

A = W#WAP(i, /) = AP(t, /) 

which is dependent on the unitary matrix P(t, /). Furthermore, 

A#A = [AP(t,/)]#A = P"(*,/) 

and 

(33) 

(34) 

A?A 
i-i 

diagonal (A#
A)]   'Ä#A 

diagonal (PH(t,f))]~lPH(tJ) 

-Pn(t,f) O 

PnitJ) 

O 

Pn(tJ)    P2i(t,f) 

Pl2(t,f)      P22(t,f) 

1 

PnPnitJ) 

P22P2l(tJ) 

Pnn(tJ)i     lPln(t,f)     P2n(t, f) 
■■■     PnnPnl(t,f) 

■••     PnlPn2(t,f) 

■ PnPln{t,f)     P221P2n{t,f) 

where Pij = [P(t,f)]i:j. Accordingly, the performance index becomes 

ipq Pqq(t,f)pqp(tJ) 

Pnl(tJ) 

Pn2(t,f) 

Pnn(t,f) 

(35) 

(36) 
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and the global rejection level is given by 

n n n 

Iperf = J2IPq = Y,\Pw(t>f)\~2     S     IPW^./JI^SIPMC*./)!"
2
-"- (37) 

q^tq 9=1 P=lpj^q 9=1 

In general, since the absolute values of pqq{t,f) are always equal to or smaller than 1, 

the global rejection level Iperf takes a positive value. It is clear that Iperf = 0 only when 

Pqq{t, /) = 1 holds true for all q. That is, P is an identity matrix, which implies that there 

is no off-diagonal non-zero elements in matrix Dss(i, /). 

Consider the specific case of n = 2. If we select a (t, f) point where the contributions 

of the two sources to the source TFD matrix are the same, i.e., DSlSl(t,f) — DS2S2(t,f), 

and since DSlS2(t,f) = D*2Si(t,f) by definition, then it is straightforward to show that 

\Pqq(t,f)\ — l/\/2- m this case, IpeTj is constant equal to 2. The (t,f) points having such 

property include all crossterms at which the autoterms have equal contributions. 

C. Simulation Results 

In this section we demonstrate the effectiveness of the spatially-averaged time-frequency 

distributions in source separations. The whitening joint-diagonalization scheme [2] is 

used for incorporating multiple time-frequency points into the proposed spatial averag- 

ing method. In all simulations, two sources with the chirp signals 

Sl (t) = e~^,     Sl(t) = e-J>T-(«+J"')' (38) 

are used, where // is chosen as 0.0087T. Different values of u and a are considered. These 

values control the frequency offset and amplitude variation between the two signals and 

can be chosen to yield closely or widely separated source signatures in the time-frequency 

domain. 128 data samples are considered, from which a time-frequency matrix of 128 x 

128 is formed. The DOAs of the two signals s\(t) and s2{t) are set equal to 30° and 

60°, respectively, from the broadside direction. Furthermore, we assume an equi-spaced 

5-element linear array with the interelement spacing 0.5A, where A is the wavelength. 

Subsequently, when the spatial averaging method is used, two sub-arrays are formed, each 

with 3 elements. 

In the first set of simulations, we choose a=0, i.e., neither signal is amplitude modulated. 

The Wigner-Ville (WV) distribution of each signal is shown in Fig. 2, where Sf (=u>/2ir) is 
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ÄfA 

set equal to 0.05. Fig. 3 shows the time-frequency distribution of the mixed signals at the 

center array sensor. No noise is present for this case. It is clear that the crossterms lie in 

the middle of the two chirps, and their amplitude change periodically. Fig. 4(a) shows the 

time-frequency distributions of the separated signals using the technique in [2], where joint 

diagonalization is used without the utilization of the proposed spatial averaging method. 

Three time-frequency (t, f) points are used at t — 32, 64, and 96. The frequency / is 

chosen so that the TFD computed using the data at the center array sensor is the largest 

at each t. Peak values of the WV distribution may either correspond to autoterms or 

crossterms. In this case, out of three (t, /) points, one crossterm point and two autoterm 

peaks were selected. The obtained A*A matrix is 

■ l.OO. + jO.OO     0.19 + J0.65- 

.-0.21+J0.63 l.OO + jO.OO. 

and the computed global rejection level Iperf is —0.43 dB. The result is clearly unsatis- 

factory, as the matrix A* A is far from the identity matrix and crossterms appear in the 

separated signals. 

Next, we force the selection of autoterm peaks by only considering the (£, /) points along 

the instantaneous frequencies of the two input signals at the same above time instants. 

Although no crossterm point is selected, yet as discussed in Section III, because of the finite 

data record, the crossterms leak into autoterm regions, causing the source TFD matrix to 

deviate from a diagonal structure. We show in Fig. 4(b) the result of source separation 

when only the autoterm points are considered. The obtained A*A matrix becomes 

r l.oo + jo.oo   o.oo-jo.06- 
A. A. — 

L-0.01-j0.01    1.00 + jO.OO. 

and the respective global rejection level Iperf is —23.96 dB. It is clear that the source 

separation performance is greatly improved. This good performance implies that the con- 

tributions of crossterms at the three selected autoterm points were insignificant, implying 

that the corresponding source TFD matrices in this case were close to diagonal. 

Fig. 5 shows the time-frequency distributions of the separated signals at the same con- 

dition as Fig. 4(a), except with the utilization of the proposed spatial averaging method. 

Spatial averaging entirely mitigates the effect of crossterms. It is clear that the time- 

frequency distributions of the separated signals are the same as those of the original source 
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signals, and A*A are exactly identity matrices. Similar results can be obtained when all 

three (t, f) points are autoterms. 

Fig. 6 shows the global rejection level Iperf versus the frequency difference Sf between the 

two chirps, where the input SNR is 20 dB. When the proposed spatial averaging method 

is used, the global rejection level maintains low values. On the other hand, without 

spatial averaging, the global rejection levels become very high. The main reason of the 

large fluctuation of the Iperf without spatial averaging is that the influence as well as 

the number of crossterm points incorporated in the joint-diagonalization scheme varies 

with the frequency difference Sf (when <5/=0.1, no crossterm points were selected). Note 

that the crossterms of the Wigner-Ville distribution remain high even when the frequency 

difference is large. When selected, these terms put large values along the off-diagonal 

terms of the source TFD matrix, and subsequently cause considerable error, as evident 

from the figure. However, when only autoterm (t, f) points are used, the global rejection 

level decreases as Sf increases. In this case, the matrix off-diagonal elements are the 

crossterm values at the autoterm points which become smaller for higher values of Sf. 

Next we show the effect of using time-frequency smoothing kernels for reduced inter- 

ference terms. The Choi-Williams (CW) distribution [10] is considered with a=\. Fig. 7 

shows the CW distribution of each signal separately, whereas the CW distribution of the 

mixed signals at the center array sensor is depicted in Fig. 8. The signals are the same as 

the ones used in the WV distribution simulations with <5/=0.05. Fig.9(a) shows the CW 

distributions of the separated signals. The obtained Äf A matrix is 

[ 1.00 + jO.OO     0.03 + ;0.70" 
A A = 

L-0.05 + j'0.67    1.00 + jO.OO. 

and the respective global rejection level Iperj is -0.26 dB. At this small frequency offset, 

effective smoothing of crossterms is difficult, and as a result, even with the use of time- 

frequency kernel, one crossterm (t, f) point was still selected out of the three (t, f) points. 

When only the autoterm (t, f) points are used, the A*A matrix becomes 

ri.OO + jO.OO    -0.02 + J0.18" 
A A = 

LO.Ol+jO.14     l.OO + jO.OO . 

and the global rejection level Iperj is reduced to -12.86 dB. The CW distributions of the 

separated signals are shown in Fig. 9(b). 
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Fig. 10 shows the CW distributions of the separated signals under the same condition as 

Fig. 9(a), with the utilization of the spatial averaging method. Again, it is clear that the 

time-frequency distributions of both cases are the same as the source signals, and A*A 

are exactly an identity matrix. The same results can be obtained when only the autoterm 

(t, f) points are used. 

Fig. 11 shows the global rejection level versus the frequency difference 5f between the 

two chirps, where the input SNR is 20dB. It is evident from this figure that the kernel 

method fails when the two signals have close time-frequency signatures. Using the pro- 

posed spatial averaging method outperforms the case when no spatial averaging is applied. 

Three important observations on the difference between the WV distribution and the CW 

distribution in the context of source separation are in order. First, the CW kernel ef- 

fectively reduces the crossterms, particularly when 5f is large. Accordingly, crossterms 

are not as large as the autoterms, and as such, it is unlikely for the crossterms to be 

selected and incorporated in the joint-diagonalization scheme. Second, when Sf is large 

enough, the global rejection level is significantly reduced for the CW distribution, even 

when spatial averaging is not applied. Third, when the spatial averaging method is used, 

the performance at small frequency offset from the CW distribution is worse than that 

obtained from the WV distribution. The reason is, source separation is perturbed by the 

presence of noise, and the performance nevertheless is sensitive to the input SNR. When 

comparing the WV distribution and the CW distribution, the noise floor relative to peak 

values is lower in WV distribution than CW for the underlying chirp signal example. 

To show the effect of the input SNR on the source separation performance, Fig.12 

and Fig.13 depict the global rejection level versus the input SNR, where the frequency 

difference is 0.01. Increasing the SNR certainly improves the source separation perfor- 

mance when spatial averaging is applied. On the other hand, without spatial averaging, 

the source separation performance holds an almost constant high level. Such performance 

demonstrates that crossterms are more of a fundamental problem than noise in TFD-based 

source separation problems. 

In the second set of simulations, to is set to zero in equation (38), rendering the two 

source signals identical in terms of their instantaneous frequency characteristic. However, 
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one of the two source signals is amplitude modulated, caused by a nonzero positive value 

of a. 

Fig. 14 shows the global rejection level versus a, where the WV distribution is considered, 

and the input SNR is 20dB. It is clear that, the two signals cannot be separated without 

spatial averaging, but when applying spatial averaging, satisfactory performance of source 

separation can be achieved. For a=0.002, the proposed technique yields a global rejection 

level -26.72 dB. 

V. Conclusions 

Spatial averaging of spatial time-frequency distributions has been introduced and the 

role of spatial averaging in mitigating the effects of crossterms when bilinear transforms 

are used for signal recovery has been shown. The spatial averaging of the spatial time- 

frequency distributions of the data across an antenna array removes the undesired effect 

of crossterms between the impinging signals. These terms reside along the off-diagonal 

entries of the source time-frequency distribution matrix, and consequently impede the 

source separation performance, which is based on preassumed diagonal matrix structure. 

Spatial averaging amounts to forming a spatial Hermitian Toeplitze matrix using the auto- 

and cross-time-frequency distributions of the data over one half of the uniform linear array. 

This matrix is then added to the spatial matrix corresponding to the other half of the array. 

The desired effect of this averaging is reallocating the interaction between the source signals 

in the time-frequency domain from the off-diagonal to the diagonal elements of the source 

TFD matrix. In this respect, unlike the method proposed in [2], cross-terms, due to their 

potential high values, are regarded as useful components that could be used for improved 

performance. Spatial averaging can be applied to all members of Cohen's class of TFDs, 

irrespective of the employed smoothing kernel. When using a time-frequency kernel, the 

problem amounts to averaging in all three dimensions of time, frequency, and space. 

Joint-diagonalization (JD) is applied to include multiple spatially averaged time-frequency 

distributions at different time-frequency points. With cross-terms moved to the diagonal 

entries of the TFD matrix, the prime task of the source separation based on the JD scheme 

is to avoid degenerate eigenvalues which are responsible for non-uniqueness solution of the 

problem. 
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Simulation examples were presented to illustrate the effectiveness of the new approach. 

The two performance measures used were the global rejection level and the values of the 

off-diagonal elements of the product of the mixing matrix and the Pseudo inverse of its 

estimate. Two sources and five sensors were considered. The source signals were chirp 

signals with the same sweeping frequency, but their corresponding constant frequencies 

and amplitudes were offset by different values. Both Wigner-Ville and Choi-Williams 

distributions were considered. It was shown that the spatial averaging method significantly 

improves the performance measures over the non-spatially averaging method, specifically 

when the two signals have close time-frequency signatures. 

Without spatial-averaging, performance is very sensitive to whether only auto-term 

or cross-term points or their mix are incorporated in the source separation procedure. 

With spatial averaging, this is no longer a concern, since both terms appear along the 

diagonal. It is also shown that the Choi-Williams distribution provides better results than 

the Wigner-Ville distribution when no spatial averaging is applied, since it lowers the 

likelihood of selecting crossterm points. With spatial averaging, the issue becomes merely 

SNR, and in this respect, the Wigner-Ville distribution, due to its high peak values, yields 

better performance than the Choi-Williams distribution. Therefore, the time-frequency 

smoothing becomes unnecessary whenever spatial array averaging is possible. 
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Abstract 

Multiple source signals impinging on an antenna array can be separated by time-frequency synthesis 

techniques. Averaging of the time-frequency distributions of the data across the array permits the spatial 

signatures of sources to play a fundamental role in improving the synthesis performance. Array averaging 

introduces a weighing function in the time-frequency (t-f) domain that decreases the noise levels, reduces 

the interactions of the source signals, and mitigates the crossterms. This is achieved independent of the 

temporal characteristics of the source signals and without causing any smearing of the signal terms. The 

weighing function may take non-integer values, which are determined by the communication channel, 

the source positions and their angular separations. Unlike the recently devised blind source separation 

methods using spatial time-frequency distributions, the proposed method does not require whitening 

or retrieval of the source directional matrix. The paper evaluates the proposed method in terms of 

performance and computations relative to the existing source separation techniques based on quadratic 

t-f distributions. 
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I. Introduction 

Time-frequency distributions have been shown to be very useful for nonstationary signal 

analysis and synthesis [1], [2], [3], [4], [5]. While time-frequency distributions (TFDs) have 

been sought out and successfully used in the areas of speech, biomedicine, automotive 

industry, and machine monitoring, their applications to sensor and spatial signal processing 

have not been sufficiently investigated. By properly incorporating the spatial dimension 

into time-frequency signal representations, the bilinear and higher order forms of TFD 

can be a powerful tool for high resolution angle of arrival estimation and recovery of the 

source waveforms impinging on a multi-sensor receiver, specifically those of nonstationary 

temporal characteristics. 

Synthesizing the signal from bilinear distributions of the data at a single antenna re- 

ceiver is often impeded by the presence of high levels of noise and crossterms. These 

undesired terms not only obscure the true signal power localization in the time-frequency 

(t-f) domain, but also reduce the synthesized signal quality. Signal synthesis using TFDs 

can be improved using an antenna array receiver. The availability of the source signals at 

different array elements allows the implementation of t-f synthesis techniques that utilize 

the source spatial signatures for crossterm reduction and noise mitigation. In this paper, 

we introduce a new approach for signal synthesis in antenna arrays which utilizes the 

spatial separation of the sources as well as the sources' time-frequency characteristics. In 

effect, we perform source separation, or signal recovery, based on the difference in both 

the time-frequency and spatial signatures of the signal arrivals. The signals impinging on 

the multi-antenna receiver are assumed to be localizable in the time-frequency domain, 

e.g., FM and polynomial phase signals. 

Unlike the proposed technique, the existing array signal processing techniques for non- 

stationary source separation using bilinear distributions require the construction of spatial 

time frequency distribution (STFD) matrices from the data snap shots. The elements of 
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this matrix represent the auto- and cross- time frequency distributions of the data across 

the array. It was shown in [12], [13], [14] that the formula relating the TFD matrix of 

the sensor data to that of the sources is identical to the relationship between the data 

covariance matrix and the source correlation matrix. Blind source separation (BSS) can 

therefore be performed using the source t-f signatures, instead of their correlation func- 

tions. The former is more suitable for nonstationary signal environments. The BSS based 

on TFDs method introduced in [12] first estimates the array, or the spatial signature, 

matrix from the STFD using joint diagonalization. Then, it proceeds to use this matrix 

estimate to undo the mixing at the array and recover the source signals. 

The main difficulty of the above approach, however, is the need to construct the STFD 

matrices from auto-term points. Selections of cross-terms violate the diagonal structure of 

the source TFD matrix - a necessary condition for most blind source separation methods. 

Even if successfully selected, the autoterm region is often contaminated by high level of 

noise and intruded upon by the crossterms through the energy in their mainlobes and/or 

sidelobes. The key feature of the proposed technique is the utilization of the sources' 

spatial structures to enhance their time-frequency signatures in the t-f domain. Bilinear 

signal synthesis methods [6], [7], [8] can then be applied to the enhanced source t-f features 

to recover the signal waveform and its temporal characteristics. By averaging the time- 

frequency distributions of the data across the array, we permit the source spatial signatures 

(SS) to play a fundamental role in reducing noise and crossterm contamination of the true 

signal t-f power concentration, leading to improved synthesis performance. It is shown 

that the performance is determined by the inner product of the source array vectors and 

improves for weakly correlated and orthogonal source spatial signatures. In the case of 

Gaussian channel and omni-directional uniform linear arrays, spatial averaging produces 

a sine weighting function whose maximum value, normalized to one, is assigned to all 

source autoterms, whereas its fractional values are assigned to the source crossterms, and 

thereby mitigating their effects.  It is shown that the extent of crossterm reduction is a 
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function of the spatial frequency separation of the sources and does not rely on the source 

specific locations or their time-frequency characteristics. However, sources positioned near 

the broadside will generally exhibit lower interactions in the t-f domain than those at the 

endfire. 

Unlike source separation techniques based on STFD, the proposed approach does not 

require whitening or retrieval of the source directional matrix, thereby, simplifies the signal 

recovery process. Further, as a result of the averaging process in the proposed approach, a 

weighting function in the time-frequency domain is constructed which decreases the noise 

levels, reduces the interactions of the source signals, and mitigates the cross-terms. This 

is achieved independent of the temporal characteristics of the source signals and without 

causing any smearing of the signal auto-terms. 

The paper is organized as follows. The signal model is presented in Section II, and 

the proposed array averaging technique is also formulated. The effect of source angular 

separation on cross-term reduction is cast in Section II using the implicit beamforming 

properties of spatial averaging. Section II also addresses the equivalent t-f mask introduced 

by the proposed technique. The complete synthesis procedure is devised in Section III, 

where the signals are synthesized from the array averaged modified WVD. The modified 

WVD [9] is used to avoid the need for extracting the odd-indexed and even-indexed vectors 

separately via eigen-analysis. Numerical simulations illustrating the performance of the 

proposed method are given in Section IV. 

II. Problem Formulation 

A. Signal Model 

Assume L source signals incident on an M-sensor array. The propagation delay between 

antenna elements is assumed to be small relative to the inverse of the transmission band- 

width, so that the received signals are identical to within a complex constant. The data 
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received across the array is given by the narrowband model 

x(*)=y(t) + n(t)=As(t) + n(t),   * = 1,...,JV (1) 

where x(t) = [xi(i),..., xM{t)] and s(i) = [si(£),..., sL(t)]T are the M x 1 data snapshot 

vector and the Lxl source signal vector at time instant t, respectively. The superscript 

T denotes the vector/matrix transpose. The Mxl vector n(t) is the noise vector whose 

elements are modeled as stationary, spatially and temporally white complex Gaussian 

processes with zero mean and variance of a2, i.e., 

E[n(t + r)nH{t)]=a26(r)I (2) 

where the superscript H denotes transpose conjugation. Moreover, S(r) is the kronecker 

delta and I denotes the identity matrix, and A denotes the M x L mixing matrix, 

A=[ai,...,aL], (3) 

The columns of matrix A are the source spatial signatures (SSs), and are given by 

a* = [aji,...,aiAf]r (4) 

where a^ is the jth. component of the ith SS, a^. Matrix A serves as the transfer function 

between the source signals s(t) and the data x(t). Furthermore, we assume that matrix 

A is of full column rank, which implies that the SSs associated with the L sources are 

linearly independent. To simplify the discussion, we exchange any possible scalar factor 

embedded in a; to the source signal and assume that ||ai||2 = M. It is clear that this 

exchange does not affect the data observed from the antenna array. 

It is evident that when L > 1, equation (1) represents a multi-component scenario due 

to the mixture of the signals at each sensor. Therefore, a quadratic TFD at the individual 

sensors would contain not only the autoterms of all source signals, but also the interactions 

of the source signals, causing undesirable crossterms. 

179 



For the purpose of subsequent derivation, we first expand equation (1) using definitions 

(3) and express the received noise-free data vector 

L 

y(t) = 5>s<(*)- (5) 
i=i 

Specifically, the data received at sensor k (k = 1,2,..., M) is given by 

L 

yk{t) = J2a^Si(t). (6) 
i=i 

B.  The Array Averaged WVD 

The discrete form of WVD of the signal y(t) is given by [4] 

00 

Wyy(i,/)=   £ y(t + 0y*(*-0e-'"4,r/l, (7) 
(=—oo 

where * denotes complex conjugation, and t and / represent the time index and the 

frequency index, respectively. Equation (7) is often referred to as the auto WVD of the 

signal y(t). Similarly, the cross WVD of any two signals yi(t) and y2(£) is defined as 

oo 

wyiya (*,/) = £ yi(t + 0y;(*-0c-J'4,r/l. (8) 
/= —oo 

Substituting (6) into (7), we can express the WVD of the signal at the A;th sensor y*(£) as 

L     L oo L     L 

WW1(*,/) = EE^ E ^(t + Os^t-Oe-^^EE^fcW.,./*,/),      (9) 
2=1 j = l l= — 00 2=1 J = 1 

where Wyiyfc(£,/) will herein be referred to as the auto-sensor WVD oiyk(t). WSjS.(t,/) 

corresponds to the auto-source or cross-source WVD, depending on whether i = j, or 

i ^ j. It is important to note that there are two types of crossterms in the underlying 

problem. The first type are the crossterms that are present in the auto-source WVD. 

These terms are the results of the interactions between the components of the same source 

signal, which is the case when the source signal itself is of multi-components. Without 

loss of generality, we assume mono-component sources, and as such the auto-source WVD 

has no cross-terms. The other type of crossterms are found in the cross-source WVD and 
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generated from the interactions between two signal components belonging to two different 

sources. A variant of the two is the crossterms in the cross-sensor WVD, which results from 

the interactions of the signals from different array elements. It is generally the collection 

of the above crossterms and the source auto-terms. We note that the cross-sensor WVD 

does not play a role in the analysis presented in this paper. 

Averaging the auto-sensor WVDs over the array yields 

iM L    L   f 1     M \ 

w(*,/) = jj7Ewym(*,/) = EE j^E^ifc wStS,(t,/) 
lvx k=l i=lj=l \m fc=l / 

=   EEf^afa^W^,^/). (10) 

In equation (10), a^a* is the inner product of the SSs a; and a,.   For i = j, afa, = 

||a;||2 = M. Define the spatial correlation coefficient 

ßa = jj*fa» (ii) 

Equation (10) can be then rewritten as 

w(t,/) = EEÄi^('./)- (i2) 
j=l j=l 

The above equation shows that W(i, /) is a linear combination of the auto-source and cross- 

source WVDs of all signal arrivals. To obtain a general and compact form for W(i, /), we 

define the source WVD matrix that enters WSiS.(t,/) as its (i,j)th element, 

Wss(t,/)=[wSiS.(*,/)],   i,j = l,...,L (13) 

and 

T   =   ^A*A = [#,-],   i,j = l,...,L (14) 

Accordingly, the averaged WVD W(£, /) could be simplified to 

W(t,f) = nH[Wss(t,f)QT]u, (15) 
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where 0 denotes the Hadamard product, or the matrix element-by-element product, and 

u is an L x 1 vector of unit values, i.e., u = [1,..., l]r. Equation (15) is valid for every 

(t, /) point and elucidates the averaging of the WVD across the array. It includes all 

the signal autoterms and crossterms that naturally appear in a typical multi-component 

WVD. However, in (15), these autoterms and crossterms are weighted by constant values, 

which are the spatial correlation coefficients that have resulted from the inner product 

between the sources' SSs, exhibited in the elements of matrix T. It is important to note 

that by the virtue of the inner product, the source directional information carried by its 

respective SS is lost in W(t, /). 

The diagonal elements of the matrix W8S(i, /) 0 T constitute all the autoterms of the 

L source signals, whereas the off-diagonal elements are their respective cross-terms. It is 

straightforward to show that for the z'th and the jth. sources, 

\ßij\ < 1, i? J  and  ßij = 1, i = j, (16) 

indicating that the constant coefficients in (15) for the auto-source WVDs are always 

greater than, or at least equal to, those for the cross-source WVDs. For a large array or 

widely separated sources, \ßtj\ < 1, leading to significant suppression of the crossterms. 

This property is utilized by the array averaging process and is shown to improve the signal 

synthesis performance. 

An interesting case arises when all SSs are orthogonal, i.e., ßtj = 0 for any i ^ j. In 

this case, T becomes an identity matrix and yields 

L 

I W(*,/) = £WS^(*,/). -   (17) 

It should be noted that W(t,f) in (17) is solely the summation of the source signal 

autoterms. The above equation highlights the fact that all source signal crossterms are 

entirely eliminated from W(i, /) and only the autoterms are maintained, which is most 

desirable from the synthesis perspective. 
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C. Beamforming Effect 

In order to establish quantified analysis on the suppression effect of crossterms based 

on the proposed array averaging technique, we consider the special case of a Gaussian 

channel and a uniform linear array(ULA). With no signal scattering, the SS displays the 

structure 

ai= [l,e>Ui,...,e*M-1'>Ui]T. (18) 

The spatial frequency of the ith source u>i is given by 

Ui = — sin (00 , (19) 

where d is the inter-element spacing, A is the wavelength, and 0j is the angle of arrival 

(AOA). From (11) we obtain 

\ßü\ 
I _ gjMAw 

M (1 - e>'Aw) 
sin(MAo;/2) 

M ■ sin(Aw/2) 

where Au = LüJ — u>i denotes the difference between the two spatial frequencies Uj and 

u>i. Equation (20) is the well-known array factor for an M-element linear array [15]. 

The spatial pattern represented by (20) reaches its maximum value within the mainlobe 

at Ato = 0. The pattern has secondary maxima in the side lobes. The largest of those 

maxima occurs within the first sidelobe and is asymptotically (for large M) 13dB down 

from the unit value. In this regard, if the difference in the spatial frequencies of adjacent 
27T 

sources are greater than AQ = —, which is half of the mainlobe width, the suppression 

of crossterms could always be guaranteed by at least 13dB for a large value of M. From 

equation (20), we have 

Ä, I A,-l = o, i±i- (2i) 

Using this result, we could further rewrite equation (12) as 

JHmoW(t,/) = 5:WBfc.4 (*,/), (22) 
fc=i 
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which is the asymptotical form of the orthogonal scenario described in (17). The im- 

portance of equation (22) lies in the fact that by utilizing the array averaging approach, 

crossterm could be suppressed to any extent if there are sufficient number of array ele- 

ments. In other words, the orthogonality in SSs could be always approached by increasing 

the array manifold. As such, in the underlying problem, the array size is cast as an im- 

portant parameter influencing the performance of crossterm suppression through array 

averaging. 

Since M and d appear as a product in (20), then as the number of the sensor M increases, 

the sources could be more closely spaced without impeding crossterm suppression. It is 

important to note that because of the nonlinearity between Aw and A9, the condition on 

angular separation A6 for the same level of cross-term suppression is more relaxed when 

the sources are near the broadside and more rigid when they are placed at the endfire. 

The condition for the orthogonal structure of all SSs in a ULA, and subsequently full 

crossterm suppression, could be determined by simply setting equation (20) equal to 0. 

Consequently, we obtain, 

27T 
Aw = ±m— = imAfi,   m = l,2,..., (23) 

and equation (17) follows. Conversely, the worst performance corresponds to the case 

in which the sources have the same AOA, i.e., Aw = 0, or they are closely spaced, i.e., 

|Aw| <C —. In this case, \ßij\ « 1, and the crossterms would not encounter any significant 

changes as a result of array averaging. In general, if all the sources impinging on the array 

are closely spaced, the source signal crossterms will not suffer any substantial reduction, 

and the averaged WVD becomes almost no different from the WVD computed from the 

output of a single antenna receiver. 
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D. Equivalent Time-Frequency Mask 

The incorporation of the source SSs into WVD results in multiplying the original WVD 

with an appropriate mask function in the t-f domain. However, unlike the conventional 

mask functions that typically, but not necessarily, assigns 1 for desired t-f regions and 0 

elsewhere, the mask produced by the source spatial structure may assume any values, which 

are dependent on both the communication channels and source spatial locations. These 

mask values are high over autoterm regions and small over crossterm regions, regardless 

of their specific locations in the t-f domain. 

It is noteworthy that since the crossterm suppression is controlled by the inner product 

of the source SSs and is not dependent on the source temporal characteristics and sig- 

nal frequency contents, the evolved time-frequency mask in the underlying problem only 

reduces the crossterms that are produced from the interaction of the signals of different 

sources. That is, the array averaging process of the sensors' WVDs does not reduce the 

crossterms of the signal components belonging to the same source. These crossterms are, 

in essence, highlighted by the same coefficient that multiplies the respective source au- 

toterms, and their retainment is important when synthesizing multi-component signals. 

In other words, unlike reduced interference distributions (RIDs) [4], [10] in which appro- 

priate kernels are applied for smoothing all crossterms, the proposed synthesis method 

using array processing applies selective mitigation of crossterms, as it identifies and elim- 

inates the "undesired" crossterms over any t-f regions, even if they are overlapped by the 

source autoterms, which is the case shown in the simulation section. Another advantage 

of the proposed method over the RIDs lies in the fact that, the array averaging technique 

does not produce any smearing effect. That is, the averaging process, apart from scalar 

multiplication, does not alter the shapes of the signal autoterms in the t-f domain. 

The averaged WVD W(t, /) is not a valid WVD, as there rarely exists a signal waveform 

that has the same WVD as W(t,/).   In the sense of signal synthesis or blind source 
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Separation, the criterion of minimum square error(MSE) is often applied to obtain the 

signal yopt(t) with WVD that best approximates the modified WVD, i.e., 

yopt(t) = arg  min £ £ 
y     t    j 

Wy(tJ)-W(tJ) 
2 

(24) 

If desired, one may combine kernel smoothing and spatial smoothing. This is achieved 

by replacing the WVD in (13-17) with another member of Cohen's class of TFDs. It 

is evident from above equations, however, that the extent to which the crossterms are 

mitigated via spatial averaging is kernel blind. It depends exclusively on the expression of 

T, which is determined by the spatial information of the source signals and is independent 

of Wss, the specific t-f expression used. The integration of both spatial and time-frequency 

averaging can result in significant crossterm suppression that cannot be achieved by each 

type of averaging applied alone. 

The above discussion is based on the noise-free assumption. Because the noise is spatially 

and temporally white, the averaging process in the presence of noise could also provide 

an enhancement of the signal-to-noise ratio (SNR) in W(i, /) by a factor of M over the 

WVD of the single sensor. This amounts to increasing the synthesis robustness with 

respect to noise, which becomes important in the environment where the desired signals 

are submerged within the noise. Therefore the benefits of the proposed method is two-fold, 

reduction of the signal crossterms as well as the additive noise level. 

III. Signal Synthesis 

A. Signal Synthesis Using Linear TFDs 

Unlike bilinear approaches, methods that use linear filtering to recover or estimate the 

time-varying signal could avoid the troublesome crossterms. There are several methods 

in linear synthesis approach. The most common and straightforward one is by short-time 

Fourier Transform (STFT) [9]. If the masked STFT is still a valid transform, then the 

signal could be recovered perfectly. If not, usually the MSE criterion is applied to obtain 
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the most optimal solution. Another linear approach in signal synthesis is based on wavelet 

transformation (WT) [11]. Related works could also be found out in [9], [11]. 

Although capable of solving many nonstationary problems, the linear approach is not 

always an appropriate technique to restore the signals with fast-changing t-f signatures, 

e.g., the linear polynomial phase signals. A natural and reliable approach for FM signals 

is through the bilinear t-f transforms, typically, the WVD. 

B. Analogy of the Array WVD Signal Synthesis 

The proposed array averaging technique structurely resembles the "weighted model" 

introduced in [7], and is given by 

w(t,/) = £EayWB,.,(t,/) (25) 

where o^ is the weighting factor for the signal sources' auto- or cross-terms WSfcS((i, /). 

W(t, /) denotes the weighted t-f distribution and is similar in structure to the array av- 

eraged WVD W(i, /) defined in (12). The key difference between equation (25) and (12) 

is that, in the underlying problem, we do not intentionally select the weight factors ßij in 

(12). They evolve naturally from the inner products of the associated SSs embedded in 

the matrix of T and are generated without any "human intervention" through the process 

of array averaging. 

To synthesize the signal from the averaged WVD, we apply transformation to the mixing 

matrix as 

B = A-diag(di,...,dL) .    (26) 

where dj = ||SJ(£)||, i = 1,...,L. This is equivalent to normalizing the signal power 

and exchanging the scalar factor in Sj(i) to the mixing matrix B. Next, we perform the 

following singular value decomposition (SVD), 

UH(B)V = diag(\1,...,\L) (27) 
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where Ai > A2 > ... > XL > 0. and U and V are M x M and L x L unitary matrices, 

respectively. Denote V = ^B^B, it is straightforward to show that 

V"(r')V = ^(|,...,§) (28) 

Following the same procedures in [7],we could derive the result of the synthesized signal 

from the averaged WVD as, 

L 

Sopt(') = Z!7*s/fc(<) (29) 
fc=i 

with 

lk = 7Fd7' (30) 

where \xk is the fcth element of matrix V's first column Vi, that is, the eigenvector of 

r" corresponding to the largest eigenvalue \\/M. From (29), and drawing an analogy to 

the weighted model in [7], it is clear that the synthesized signal using the array averaging 

technique is a linear combination of the source signals sk(t). The combination coefficients 

7* are irrelevant to the signals' t-f characteristics and depend only on the formation of 

matrix T' which is only a variation of T. 

Equation (29) shows theoretical results of signal synthesis based on the averaged WVD. 

Without any mask that distinguishes the different signal auto-terms, the synthesized signal 

is generally a combination of the source signals Sk(t), which is no different from the signal 

received at a single antenna sensor. In the special case where there is no cross-terms 

present, (29) gives a solution of a single source signal with the maximum energy [7]. 

C. Single Signal Synthesis from Averaged WVD 

In order to recover the sources respective signals without crossterms contamination, 

which become mostly suppressed by the array averaging process, an appropriate mask is 

often placed on the autoterms of each source in the t-f domain. 
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Practically, the WVD-based synthesis techniques could be found in [6], [7], [8], [9]. 

In this paper, we apply the method of extended discrete-time Wigner distribution 

(EDTWD), introduced in [9], to the output of array averaged WVD. The advantage of 

using the EDTWD lies in the fact that it does not require a priori knowledge of the source 

waveform, and thereby avoids the problem of matching the two "uncoupled" vectors (even- 

indexed and odd-indexed vectors). 

The overall synthesis procedure is summarized in the following steps. 

1. Given the received data of the iih sensor x,-(t), compute the EDTWD 

WXiXi(i,/)=    £    Xi(t+l)xim{t-±)e-1**k',   t = 0,±0.5,±l,.... (31) 
fc-.t+fez 

2. Apply the averaging process, that is, summing the EDTWD across the array 

1   M 

W(t,/) = lEWw(t,/). (32) 

3. Place an appropriate t-f mask on W(f, /) such that only the desired signal autoterms 

are retained. 

4. Take the IFFT of the masked WVD W(£, /) 

p(t,T) = Jw(t,f)e^fdf. (33) 

5. Construct the matrix Q = [q^] with 

%=P (4^'*-•?')• (34) 

6. Apply eigendecomposition to the matrix [Q + QH] and obtain the maximum eigenvalue 

Xmax and the associated eigenvector u. The desired signal is given by 

Sopt = eJV2^w  u. (35) 

7. Repeat step 3 through 6 until all source signals §i(t), s2(t), ...,§/,(<) are retrieved. 
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D. Array Matrix Estimation 

Upon synthesizing all the source signals, we could utilize these signal waveforms to 

estimate the mixing, or array, matrix A through the MSE criterion, 

N 2 N   ( L 

= E Ut)- 
t=\ t=i \      i=i 

The solution is to find the matrix that minimizes the cost function e, that is, 

H 

e = £ x(i) - AS(t)    =E(X(*)-E^(*))    |x(*)-i;aiM*)|- (36) 

Ä = arg mine. 
A 

The necessary conditions for (37) is 

de 
dak 

N 

E 
t=i 

§fc(t)   x(*)-I>§*(*) 
J=l 

-f k + ]T aiRiA: 
i=l 

0,   fc = l,...,L. 

(37) 

(38) 

where 

R = £§(«)§*(*) 
t=i 

(39) 

represents the estimated signal source covariance matrix, and f = [ii,... ,rL], with 

N 

5>(*)s;(t) (40) 
«=i 

is the correlation vector between the data vector received across the array and the ith 

source signal Sj(£). In equations (38-40), "A" signifies the fact that we deal with estimated 

variables. The matrix form for all the L equations expressed in (38) is 

-f + AR = 0. (41) 

The estimate of the array matrix is 

A = fR1. 
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It is evident from the implementation of the proposed algorithm, that the spatial in- 

formation needs to be compromised in the first phase to permit crossterms and noise 

suppressions. The mixing matrix A could be estimated only after the complete retrieval 

of the signal source waveforms. This is fundamentally different from other algorithms that 

combine array signal processing with conventional bilinear distributions, e.g., the spatial 

time-frequency distribution (STFD) in which the mixing matrix estimation precedes the 

estimation of the source signals and is provided using relationship 

DXx(i,/)=ADss(t,/)A, (43) 

where ~Dss(t, /) is the signal TFD matrix whose entries are the auto- and cross-TFD's of the 

sources and Dxx(£, /) is the data STFD matrix. In the STFD-based source separation, the 

estimate of A is provided using whitening, followed by joint diagonalization of Dxx(£, /) 

for (t, f G autoterm regions). This estimate is then included to obtain the source signals 

using Pseudo-inverse of A. 

A hybrid technique based on both array averaging and STFD canbe adopted The 

array averaging of WVDs is first performed to offer a good estimate of t-f signatures of 

source signals through cross-term suppression properties. Once the auto-source WVDs 

are determined, we could then construct the STFD matrices and recover the synthesized 

signal waveforms, as well as the mixing matrix based on equation (42). 

E.  Computational Cost 

To compare the computational cost of the proposed method and STFD, we use the 

number of complex multiplications as the evaluation criterion. For the array averaged 

WVD, the computational cost is shown to be (Appendix A) 

JVaa^(l + Z, + 41og22A0-O(JV2), (44) 

where the operand O(-) denotes the order of "•". Equation (44) shows that the computation 

cost required for the proposed method is almost proportional to 0(N2). 
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The computational cost for a typical STFD process is given as (also see Appendix A) 

NSTFD^\og2N-0{N2). (45) 

Thus the array averaging technique requires more computations than the STFD. 

F. Signal Synthesis with Overlapping T-F Signatures 

The procedures we have discussed is appropriate to synthesize the signal waveform whose 

t-f signatures are distinct. In this case, the masked t-f region always contains the autoterm 

of the desired source signal with the influence from other sources often negligible. However, 

if the source t-f signatures overlap, the mask is deemed to capture undesired autoterms. 

This problem cannot be mitigated by spatial averaging of TFDs and a modification of the 

proposed method is in order. 

Assume that upon implementing the synthesis process described in section III.D, we 

obtain the estimate of the mixing matrix A. Since there are interfering signal autoterms 

from other sources, A should be considered different from A. We use A to construct a 

beamformer applied to the data received across the array (assume the noise-free scenario). 

That is, 

z{t) = ¥Ä"x(<) = JikHAs{t)- (46) 

where z(t) = [zi(£),..., z/,(t)] is a L x 1 vector. Clearly, 

Zk{t) = (¥a"a*)Sk{t)+£ (ifä"a0S/W- (47) 

It is expected that a^ is a perturbed version of a*. With the approximations 

1 
Mä"a* ßkk = 1 (48) 

and 

1 
T7a*a, ßik<l,l?k. (49) 
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then, the WVD of Zk(t) is given by 

wltlt(t,/)«w841lfc(«,/) + £  £  ß*/rjkv?w(t,f). (50) 
*=i ü=ij'#«) 

for j ^ i, ßikßjk ^ 1- This shows that in equation (50), except the fcth auto-source 

term, all other terms, either auto- or cross-source terms, are significantly reduced from 

WZfcZ/t(£, /). In the case of ULA, the suppression of those terms are at least 13dB for large 

value of M. The suppression of the autoterms other than source k is \ßik\2, which is more 

than 26dB down from the fcth source. Therefore, the effect of the overlapping autoterms 

from other sources becomes negligible. If we apply the steps (3-8) of the synthesis pro- 

cedure of section III-D using the improved WVD in (50), the synthesized signal will be 

enhanced. 

IV. Simulation Results 

In this section, we provide computer simulations to demonstrate the improvement gained 

by the proposed technique in the reduction or elimination of crossterms. Specifically, we 

examine the effect of array averaging on the retrieval and separation of the nonstationary 

signals impinging on the multi-sensor array. In all the simulations presented below, we 

consider several signals incident on an eight-sensor ULA (M = 8) with inter-element 

spacing of half-wavelength. The additive noise is zero mean, Gaussian distributed, spatially 

and temporally white. The length of the signal sequence is set to N = 128. 

Moreover, we use the same performance index applied in [12] and [14] to evaluate the 

performance of the proposed technique 

Ipq = E (Ä*A)M (51) 

where the superscript * denotes the pseudo-inverse. Equation (51) defines the interference- 

to-signal ratio (ISR). Thus, Ipq measures the ratio of the power of the interference of qth 

source signal to the power of the pth source signal. For large enough N, we have Ipq « 0 

193 



for p j£ q. We also apply the global rejection level to evaluate the overall performance of 

the proposed method 

Iperf — 2_*   PI' 
Q^P 

(52) 

In the first example, three chirp signals, Si(t), s2(t) and s3(i), arrive at the array 

with AOAs of —20°, 0° and 20°, with the respective start and end frequencies given 

by (0.97r,0.57r), (0.667r,0.267r), and (0.57r,0.l7r). In the t-f plane, the source signals have 

parallel signatures, emulating a multipath environment. The crossterm of si(t) and s3(t) 

also forms a chirp-like crossterm structure whose frequency starts from 0.77T and ends with 

0.37T, and therefore lies closely to the t-f signature of s2(t). Fig. 1 depicts the WVD of 

the signals at the reference sensor (sensor #1) for the case of noise-free environment. It 

is clear that the t-f signature of all signal autoterms and crossterms are parallel in the t-f 

domain. The crossterms produced from the three source signals are even more dominant 

than the source autoterms. In the single sensor receiver, it becomes difficult to distinguish 

the source autoterms from the crossterms without any a priori knowledge of the sources. 

From the above AOAs, we obtain 

-A"A 
8 

1 0.2236 0.1048 

0.2236 1 0.2236 

0.1048 0.2236   1 

(53) 

The off-diagonal elements are small (< — 13dB), compared to the matrix diagonal entries, 

indicating that the sources spatial signatures are weakly correlated, and the array aver- 

aging process could result in a substantial reduction in the crossterms. Fig. 2 shows the 

corresponding array-averaged WVD. Due to the reduction in cross-terms by more than 

13dB, the t-f signatures of the sources are distinctively exhibited in the plots. Explicitly, 

the crossterm from Sx(t) and S3(i) ceased to become an interfering factor in identifying 

the adjacent signal source S2(t). In effect, averaging the WVDs across the array has sig- 

nificantly reduced the crossterms, whereas the three signals' autoterms have remained 
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intact. 

Next, we add 5dB noise to the data at each array sensor so that the input SNR is -5dB. 

Fig. 3 and 4 depict both the reference-sensor WVD and the array-averaged WVD. It is 

evident that the noise obscures both the signal autoterms and crossterms of the WVD at 

a single sensor. It is difficult, therefore, to retrieve the desired signal if we only synthesize 

from a single sensor. 

Upon averaging, both noise and crossterms are sufficiently reduced to clearly manifest 

the individual source t-f signature, and the signals could be individually recovered if we 

place the appropriate masks in the t-f region. Fig. 5 and Fig. 6 shows the WVD of the 

synthesized signal s2(t) using the array averaging and STFD techniques, respectively. Fig. 

7 displays the real parts of the original signal s2(t), the STFD-recovered s2(t), and s2(i) 

synthesized by the proposed method. It is clear that the result from the array averaging 

technique is closer to the original signal than the recovered signal from the STFD-based 

method. We also plot the global rejection level Iperf versus the input SNR in Fig. 8. 

The input SNR takes values from -lOdB to 20dB. Both the STFD-based and the array 

averaging-based techniques are used to compute the empirical Iperj defined in equation 

(52). Increasing the SNR certainly improves the performance for both methods, and 

simulations show that the STFD-based method is outperformed by the array averaging 

technique, which is consistent with the results given in Fig. 7. 

In the second example, we use two chirp signals with overlapping autoterms. The 

signals are from AOAs of —20° and 20° with start and end frequencies of (0.77T, 0.37r) and 

(0.37T, 0.77r), respectively. There is no additive noise in this example. Fig. 9 shows the 

WVD of data from the reference sensor #1. The two signal autoterms overlap, and their 

cross source terms could also be clearly noticed. The array averaged WVD is plotted 

in Fig. 10. Using the conclusions derived in section II, we expect that the cross-source 

terms would be suppressed by about 19dB after the array averaging process. This is 

supported by the plots in Fig. 10. To synthesize the signal, we place the mask along each 
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t-f signature. Any reasonable selection of the mask inevitably includes components from 

the other source. Therefore, each signal synthesized following the procedures described in 

section III-D is, in essence, corrupted by the other signal. Fig. 11(b) depicts the WVD of 

one synthesized but corrupted waveform, compared to the WVD from the original source, 

which is shown in Fig. 11(a). By further implementing the beamformer and synthesis 

procedures from section III-E, we could obtain less noisy waveform. The WVD of the 

improved synthesized signal is shown in Fig. 11(c). The power leakage in Fig. 11(b) 

almost disappears in Fig. 11(c). The corresponding global rejection levels are calculated 

and equal to 0.02652 and 0.00159 for the respective cases, showing the important role of 

the proposed beamformer approach. 

V. Conclusion 

A two-step synthesis technique using bilinear distributions was proposed for multi-sensor 

receivers. The first step is to average the Wigner-Ville distributions of the sensor data 

across the array. This averaging process allows the distinction in the spatial structures 

of the sources to play a key role in improving their time-frequency representations. This 

improvement is manifested in the reduction of the noise floor and mitigation of cross-terms 

in the t-f domain. The second step is to apply well-known bilinear synthesis methods to 

the averaged WVD. It was shown that the proposed synthesis approach is fundamentally 

different form the one recently devised using spatial time-frequency distributions. In the 

latter, the source spatial signatures need to be first estimated before the sources could 

be separated. The main attraction of the proposed approach is that it naturally extends 

bilinear signal synthesis to array processing. In doing so, it capitalizes on the spatial 

dimension to reduce the cross-terms without smearing the auto-terms, which can not be 

achieved using the t-f smoothing operation via reduced interference distributions. 
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Appendix A: Computation for STFD-Based and Array Averaging-Based 

Techniques 

We first derive the computational requirement for a single EDTWD counting the com- 

plex multiplications. It is clear from equation (42) that for a sequence y(i) (* = 0,1,..., N- 

1), the EDTWD would generate a (2N-1) x (2N - 1) two-dimension time-frequency dis- 

tribution Wyy. The computation cost is determined by constructing a (2N-1) x (27V-1) 

matrix whose element are given by 

W(t,k)=xi(t+t)Xi*(t-^)e-^kf,   t = 0,0.5,l,...,N-l,k = 0,±l,...,±(N-l). 

(A.l) 

The number of complex multiplication involved in (A.l) is 

nx   =   l + 2 + ... + (JV-l) + JV+(/V-l) + ... + l = iV2. (A.2) 

The EDTWD could be obtained simply by calculating the fast Fourier transform (FFT) 

with respect to the k parameter in Wi(t, k). Assume NFFT is the computation cost for a 

sequence of length (2JV - 1), we have NFFT « 2/V x log2 2iV. Therefore the computation 

cost required in a single EDTWD is 

n2   =   (2N - 1) x NFFT « 4/V2 log2 2N. (A.3) 

Other costs are NFFT for IFFT, L ■ 0(N2) (according to [16]) for eigendecomposition to 

recover source waveforms, L(L + l)/2/V + LMN + 0(L2) for recovery of mixing matrix. 

The total cost is computed by summing the above results. Since the number of samples 

TV is often much greater than other parameters, we neglect all items but 0(A^2), yielding 

Naa = n1+n2 + NFFT + L ■ 0(N2) « (1 + L + 41og2 2N) ■ 0(/V2). (A.4) 

The computation requirements of STFD could be calculated in two parts.   The first 

part is related to extractions of the t-f signature.   This is achieved by computing the 
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WVD of the data from a single reference sensor and selecting the t-f points that are 

associated with the different signal sources. Similar to EDTWD, the required cost for 

this process is log2 N ■ 0(N2). The second part involves the constructing of the STFD 

matrices and recovery of the signal waveforms. It is straightforward to show the respective 

computation cost is: Estimation of the auto correlation matrix: NM2/2; Computation of 

the whitening matrix: 0(M3); Whitening of the data: NLM; Estimation of the STFDs: 

aTL{L - 2)/2; Joint Diagonalization: 0{KLz)\ Separation: LMN. The variables L, M, 

and N are the number of sources, sensors and samples, respectively, whereas K is the 

number of the chosen t-f points. aT is the cost of one classical TFD. In a typical scenario, 

L, M, K, aT < N, Therefore the computation cost for STFD is 

NSTFD^\og2N-0(N2). (A.5) 
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Fig. 1. WVD in noise-free case at reference sensor. 

Fig. 2. Array-averaged WVD in noise-free environment. 

Fig. 3. WVD of the corrupted signals at reference sensor. 
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Fig. 4. Array-averaged WVD of the corrupted signals. 
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Fig. 5. WVD of synthesized s2(t) using array-averaging. 
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Fig. 6. WVD of synthesized s2(«) using STFD. 
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Fig. 7. (a) Real part of original s2(t) (top); (b) Real part from the STFD-recovered s2(t) 

(middle); (c) Real part from the array averaged s2(t) (bottom). 
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Fig. 8. Global rejection level versus input SNR. (o: by STFD; *: by array averaging). 
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Fig. 9. WVD of the two overlapping signals from a reference sensor. 

203 



Fig. 10. Array averaged WVD. 
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Fig. 11. WVD of: (a) original signal (top); (b) synthesized signal from array averaging 

(middle); (c) synthesized signal based on beamforming (bottom). 

204 



Time-frequency maximum likelihood methods 
for direction finding 

Yimin Zhang, Weifeng Mu, and M. G. Amin 
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Abstract 

This paper proposes a novel time-frequency maximum likelihood (t-f ML) method for direction-of- 

arrival (DOA) estimation for non-stationary signals impinging on a multi-sensor array receiver, and com- 

pares this method with conventional maximum likelihood DOA estimation techniques. Time-frequency 

distributions localize the signal power in the time-frequency domain, and as such enhance the effective 

SNR, leading to improved DOA estimation. The localization of signals with different time-frequency 

signatures permits the division of the time-frequency domain into smaller regions, each containing fewer 

signals than those incident on the array. The reduction of the number of signals within different time- 

frequency regions not only reduces the required number of sensors, but also decreases the computational 

load in multi-dimensional optimizations. Compared to the recently proposed time-frequency MUSIC (t-f 

MUSIC), the proposed t-f ML method can be applied in coherent environments, without the need to 

perform any type of preprocessing that is subject to both array geometry and array aperture. 

Keywords 

Time-frequency distribution, direction finding, maximum likelihood, spatial time-frequency distribu- 

tion, array processing. 
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I. Introduction 

The localization of spatial sources by passive sensor array is one of the important prob- 

lems in radar, sonar, radio-astronomy, and seismology. So far, numerous methods have 

been proposed for direction finding, most of which are based on the estimates of the data 

covariance matrix. Among these methods, the maximum likelihood (ML) technique was 

one of the first to be devised and investigated [1]. It has a superior performance com- 

pared to other methods, particularly when the input signal-to-noise ratio (SNR) is low, 

the number of data samples is small, or the sources are highly correlated [2]. Therefore, 

despite its complexity, the ML technique remains of practical interest. 

The evaluation of quadratic time-frequency distributions of the data snapshots across 

the array yields what is known as spatial time-frequency distributions (STFDs) [3], [4]. 

STFD techniques are most appropriate to handle sources of nonstationary waveforms. 

STFDs spread the noise power while localizing the energy of the impinging signals in the 

time-frequency domain. This property leads to increasing the robustness of eigenstructure 

signal and noise subspace estimates with respect to the channel and receiver noise, and 

hence improves spatial resolution performance. 

In this paper, we propose the time-frequency maximum likelihood (t-f ML) method for 

direction finding and provide the analysis that explains its performance. It is shown that 

the superior performance of the t-f ML method relative to other methods is attributed 

to the following three fundamental reasons: 1) Time-frequency distributions localize the 

signal power in the time-frequency domain, and as such enhance the effective SNR and 

improve the direction-of-arrival (DOA) estimation. 2) The localization of signals with 

different time-frequency signatures permits the division of the time-frequency domain into 

smaller regions, each containing fewer signals than those incident on the array. The reduc- 

tion of the number of signals within different time-frequency regions relaxes the condition 

on the size of the array aperture as well as simplifies the multidimensional optimization 

estimation procedure. 3) Compared with the previously proposed time-frequency MUSIC 

(t-f MUSIC), the t-f ML method can be applied when the signal arrivals are highly corre- 

lated, whereas the t-f MUSIC algorithm cannot do so without some sort of preprocessing, 

such as spatial smoothing. 
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This paper is organized as follows. In Section 2, the signal model is established, and a 

brief review of the spatial time-frequency distributions is given. In Section 3, we discuss 

the SNR enhancement based on time-frequency distributions and its effect on the signal 

and noise subspace estimates using STFD matrices. The subspace estimates obtained 

from the STFD matrices are more robust to SNR and angular separation compared to 

those obtained from data covariance matrices. Section 4 presents the t-f ML and shows 

its performance in time-varying environments. 

II. Background 

A. Signal model 

In narrowband array processing, when n signals arrive at an m-element array, the linear 

data model 

x(t) = y(t) + n(t) = A(0)d(i) + n(i) (1) 

is commonly assumed, where the mxn spatial matrix A(0) = [a(#i), • • •, a(0„)] represents 

the mixing matrix or the steering matrix, and a(0;) are the steering vectors corresponding 

to angle of arrival 0;. Due to the mixture of the signals at each sensor, the elements of 

the m x 1 data vector x(£) are multicomponent signals, whereas each source signal dj(i) 

of the n x 1 signal vector d(t) is often a monocomponent signal. n(t) is an additive 

noise vector whose elements are modeled as stationary, spatially and temporally white, 

zero-mean complex random processes, independent of the source signals. That is, 

E[n(t + r)nH(*)] = aS{r)I and E[n(t + r)nT(t)] = 0 for any r (2) 

where 5(T) is the Kronecker delta function, I denotes the identity matrix, a is the noise 

power at each sensor, superscript H and T respectively denote conjugate transpose and 

transpose, and E(-) is the statistical expectation operator. 

In equation (1), it is assumed that the number of sensors is greater than the number 

of sources, i.e., m > n, and the number of snapshots is greater than the number of array 

sensors, i.e., N > m. We also assume that matrix A is full column rank, which implies that 

the steering vectors corresponding to n different angles of arrival are linearly independent. 
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Under the above assumptions, the correlation matrix is given by 

Rxx = E[x{t)xH(t)] = A(0)RddA//(0) + al, (3) 

where Rdd = E[d(t)dH(t)] is the signal correlation matrix. For notational convenience, 

we drop the argument 0 and simply use A instead of A(0). If © is an estimate of 0, 

then we also use A instead of A(0). 

Let Aj > A2 > • • • > An > An+i = An+2 = • • • = Am = a denote the eigenvalues of Rxx. 

The unit-norm eigenvectors associated with Ai,...,An constitute the columns of matrix 

S = [si, ...,sn], and those corresponding to An+i,..., Am make up matrix G = [gi, ...,gm_„]. 

Since the columns of A and S span the same subspace, then AHG = 0. 

In practice, Rxx is unknown, and therefore should be estimated from the available data 

samples (snapshots) x(i), i = 1,2, ...,N. The estimated correlation matrix is given by 

Rxx = ^£>(*)x"(0. (4) 

Let {§i,...,sn, gi, ...,gm_„} denote the unit-norm eigenvectors of Rxx, arranged in the 

descending order of the associated eigenvalues, and let S and G denote the matrices 

made of the set of vectors {s2} and {gi}, respectively. The statistical properties of the 

eigenvectors of the sample covariance matrix Rxx for signals modeled as independent 

processes with additive white noise is given in [6]. 

In this paper, we focus on frequency-modulated (FM) signals, modeled as 

d(t) = [d1(t),...,dn(t)]T = [Die>*«\...,Dnei*"V)T, (5) 

where Di and ipi(t) are the fixed amplitude and time-varying phase of the 2th source signal. 

For each sampling time t, di(t) has an instantaneous frequencv (IF) fi(t) = —. 
2TT    at 

FM signals are often encountered in applications such as radar and sonar. The con- 

sideration of FM signals in this paper in motivated by the fact that these signals are 

uniquely characterized by their IFs and, therefore, they have clear time-frequency signa- 

tures that are utilized by the STFD approach. Also, FM signals have constant amplitudes 

and, subsequently, yield time-independent covariance matrices. This property makes them 

amenable to conventional array processing based on second-order statistics. 
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B. Spatial time-frequency distributions 

The STFDs based on Cohen's class of time-frequency distribution were introduced in 

[3] and its applications to direction finding has been discussed in [4]. However, the per- 

formance of direction finding based on STFD has not been made clear yet. In this paper, 

we focus on one key member of Cohen's class, namely the pseudo Wigner-Ville distribu- 

tion (PWVD) and its respective spatial distribution. Only the time-frequency points in 

the autoterm regions of PWVD are considered for STFD matrix construction. In these 

regions, it is assumed that the crossterms are negligible. This assumption serves to sim- 

plify the analysis and does not present any condition on performance. It is noted that 

the crossterms in STFD matrices play similar role to the cross-correlation between source 

signals [5], and therefore they do not always impede the direction finding process. 

The discrete form of pseudo Wigner-Ville distribution of a signal x(t), using a rectan- 

gular window of length L, is given by 

L-l 
2 

Dxx(t,f)=    £    x(t + r)x*(t-r)e-^T, (6) 

where * denotes complex conjugation. The spatial pseudo Wigner-Ville distribution (SP- 

WVD) matrix is obtained by replacing x(t) by the data snapshot vector x(£), 

L-l 

D«(t,/)=    £    x(t + r)x"(i-r)e-^. (7) 

Substitute (1) into (7), we obtain 

Dxx(t, /) = Dyy(t, /) + Dyn(t, /) + Dny(t, /) + Dnn(t, f) (8) 

Under the assumption of uncorrelated signal and noise components and the zero-mean 

noise property, the expectation of the crossterm TFD matrices between the signal and 

noise vectors is zero, i.e., E [Dyn(i, /)] = E [Dny(£, /)] = 0, and it follows 

E [Dxx(i, /)]   = Byy(t, f) + E [Dnn(t, /)] 
(9) 

= ADdd(tJ)AH + E[Dnn(tJ)]. 

It is noted that the relationship (9) holds true for every (t, f) point. Therefore, multiple 

time-frequency points can be used to reduce the effect of noise and ensure the full column 
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rank property of the STFD matrix.   In this paper, the STFD matrices over multiple 

time-frequency points are averaged, as is discussed in next section. 

III. Subspace analysis for STFD matrices 

The purpose of this section is to show that the signal and noise subspaces based on time- 

frequency distributions for nonstationary signals are more robust than those obtained from 

conventional array processing. 

A. SNR enhancement 

The ith diagonal element of TFD matrix Ddd(£, /) is given by 

Ddld,(t,f)=    £    A2eJ[^(t+r)"^(^T)1_i47r/r- (10) 

Assume that the third-order derivative of the phase is negligible over the window length 

L, then along the true time-frequency points of z'th signal, ft = —, and tbAt + T) — 
2TT    at 

ipi(t — T) — AnfiT ~ 0. Accordingly, 

L-l 

IW*,/,-)=    £    D} = LDl (11) 
r=-i=i 

2 

Similarly, the noise STFD matrix Dnn(£,/) is 

D„„ (*,/)=    J2    n(t + T)nH(t-r)e-^T. (12) 

Under the spatial white and temporal white assumptions, the statistical expectation of 

Dnn(*,/) is given by 

L-1 
2 

' 2 

E[Dnn(t,f)}=    Y,    E n(t + r)nH(t-r) e~^T = aI. .    (13) 

Therefore, when we select the time-frequency points along the time-frequency signature 

or the IF of the ith FM signal, the SNR in model (9) is LDf/a, which has an improved 

factor L over the one associated with model (3). 

The pseudo Wigner-Ville distribution of each FM source has a constant value over the 

observation period, providing that we leave out the rising and falling power distributions 
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at both ends of the data record. For convenience of analysis, we select those N — L + 1 

time-frequency points of constant distribution value for each source signal. Therefore, the 

averaged STFD over the time-frequency signatures of n0 signals, i.e., a total of n0(N—L+l) 

time-frequency points, is given by 

Y n0 N-L+l 

n0(iV-L + l)§   §   D**(^/9,i)> (14) D = 

where fqji is the instantaneous frequency of the qih signal at the ith time sample. The 

expectation of the averaged STFD matrix is 
I n0  N-L+l D =g[°K(JV-L+1)g gsp~fc/„)] 

1     n°   r T '       ' 
= - E [LD2

qa(eq)a
H(eq) + ol] = -A°Rdd(AT + <*, 

where Rdd and A0, respectively, represent the signal correlation matrix and the mixing 

matrix constructed by only considering n0 signals out of the total number of signal arrivals 

n. 

B. Signal and noise subspaces based on STFDs 

The statistical properties of the eigenstructures using the STFD matrix are provided in 

this subsection. 

Lemma 1: Let X\ > X°2 > ■ ■ ■ > A°o > A°o+1 = A°o+2 = • • • = A^ = a denote the 

eigenvalues of R°x, which is defined from a data record of a mixture of the n0 selected 

FM signals. Denote the unit-norm eigenvectors associated with A°,..., A°o by the columns 

of S° = [s°,...,s°J , and those corresponding to A°o+1,..., A^ by the columns of G° = 

[g?,.... g^-nj- We also denote X[f > A? > ■ ■ ■ > A£ > Aj£+1 = A£+2 = • • • = A# = a*' 

as the eigenvalues of D defined in (15). The unit-norm eigenvectors associated with 

\\ ,..., A^{ are represented by the columns of S*^ = [s*/,..., sj£] , and those corresponding 
t0 AJi+i,..., Xll are represented by the columns of G(/ = [g*/, ...,g™_„J. Accordingly, 

a) The signal and noise subspaces of S*^ and G^ are the same as S° and G°, respectively. 

b) The eigenvalues have the following relationship: 

' — {X° - a) + a = — A° + (l - -) o        i<n0 

0*1 = 0 n0 <i <m. 
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Both parts of the above equations are direct results of (15). From Lemma 1 it is clear 

that the largest n0 eigenvalues are amplified using STFD analysis. 

Lemma 2: If the third-order derivative of the phase of the FM signals is negligible over 

the time-period [t — L + l,t + L — 1], then D — D is a zero-mean, random matrix whose 

elements are asymptotically jointly Gaussian. The proof is given in Appendix A. 

Lemma 3: If the third-order derivative of the phase of the FM signals is negligible over 

the time-period [t — L + l,t + L — 1], then the orthogonal projections of ig1/} onto the 

column space of S*^ are asymptotically (for N ^> L) jointly Gaussian distributed with 

zero means and covariance matrices given by 

E (s» (s") V) (sf (s<0 V)" = Wzkn)v"^ (17) 

where 

E (s" (s") V) (s" (s") V)r = ° for a11 *. i. 

u"   = oh 

nn 

a 
-  (Ag - a) + fa H 
2- (ff _ Ao,2       S^ lSJ 

Lfc=l 

(18) 

(19) 

The proof is given in [10]. For comparison, we quote the results from reference [6], which 

were provided using the data covariance matrix, 

H      a E(sS"gl)(sSHgjy = E 
Xl 

N L=i (" - A*) 
2SkS" Ji,3 (20) 

E (SS^g,) (SS^g^ = 0 for all i, j. (21) 

where S,Sk,gk,Xk are analogous to S°,sg,gg,Ag, respectively, except they are defined for 

all n signals instead of only n0 signals. 

Comparing (17) and (19) with (20), two important observations are in order. First, 

if the signals are both localizable and separable in the time-frequency domain, then the 

reduction of the number of signals from n to n0 reduces the estimation error, specifically 

when the signals are closely spaced. The second observation relates to SNR enhancements. 

The above equations show that error reductions using STFDs are more pronounced for the 
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cases of low SNR and/or closely spaced signals. It is clear from (17) and (19) that, when 

X°k > o for all k = 1,2,..., n0, the results are almost independent of L (suppose N ^$> L so 

that N — L + 1 ~ N), and therefore there would be no obvious improvement in using the 

STFD over conventional array processing. On the other hand, when some eigenvalues are 

close to a (A£ ~ a, for some k = 1,2,..., n0), which is the case of weak or closely spaced 

signals, the result of (17) is reduced by a factor of up to G = £-. This factor represents 

the gain achieved using STFD processing. 

IV. The time-frequency maximum likelihood methods 

In this section we analyze the performance of the maximum likelihood methods based 

on time-frequency distributions (t-f ML). For conventional ML methods, the joint density 

function of the sampled data vectors x(l),x(2), ...,x(iV), is given by [2] 

/(x(l),...,x(AJ)) 

=n ^rr B w> - Ad«i" w!) - AdW0 • 
where det[-] denotes the determinant. It follows from (22) that the log-likelihood function 

of the observations x(l),x(2), ... ,x(iV), is given by 

1   N 

L = -mN\na - - £ [x(i) - Ad{i)}H [x(i) - Ad(i)]. (23) 

To carry out this minimization, we fix A and minimize (23) with respect to d. This yields 

the well-known solution 

d{i) = [AHA]~1AHx(i). (24) 

We can obtain the concentrated likelihood function as [2], [8] 

FML(S) =tr{[l- Ä(Äi/Ä)-1Äi/] Rxx} , (25) 

where tr(A) denotes the trace of A. The ML estimate of 0 is obtained as the minimizer 

of (25).   Let u>i and a>j, respectively, denote the spatial frequency and its ML estimate 

associated with 6i, then the estimation error (a),- — uji) are asymptotically (for large N) 

jointly Gaussian distributed with zero means and the covariance matrix [9] 

E[(Coi-uJi)
2}=^-[Re(HQRT

dd)Y
1 

xRe [H © (RddA
HUARdd)Tj [Re(H 0 R^d)j 
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where 0 denotes Hadamard product. Moreover, 

u = E r[ (o- - A* 

H H = C 

du 

Sfcsf, 

I-A(AWA)_1AH C, (27) 

Next we consider the t-f ML method. As we discussed in the previous section, we select 

n0 <n signals in the time-frequency domain. The concentrated likelihood function defined 

from the STFD matrix is similar to (25) and is obtained by replacing Rxx by D (Appendix 

B), 

D. (28) ^ML(0) = ^[I-Ä
O
((Ä°)"Ä

O
)  \A°)

H 

Therefore, the estimation error (u1/ - u;*) associated with the t-f ML method are asymp- 

totically (for N ^> L) jointly Gaussian distributed with zero means and the covariance 

matrix 
E u/ - Wi )1 

xRe H° 0 (Ddd(A°)"U"A°Ddd)     [Re(H° 0 D^d)]_1 (29) 

a 
2{N-L + 1) 

-[Re(H°0(Rddr)] 
-l 

xRe H° 0 (Rdd(A°)^U^A°Rdd)     [Re ((H° 0 Rdd)r)]_1 

where U^ is defined in (19), and 

H° 

C° 

(C°)H 

dA° 
du> 

A°((A°)"A°)  ^A0)" 
(30) 

In the case of n0 — n, then H° = H, and C° = C. 

The signal localization in the time-frequency domain enables us to select fewer signal 

arrivals. This fact is not only important in improving the estimation performance, partic- 

ularly when the signals are closely spaced, but also reduces the dimension of optimization 

problem solved by the maximum likelihood algorithm, and subsequently reduces the com- 

putational requirement. 

214 



To demonstrate the advantages of t-f ML over the conventional ML and the time- 

frequency MUSIC (t-f MUSIC), consider a uniform linear array of 8 sensors separated by 

half a wavelength. Two FM signals arrive from (6i,62) = (—10°, 10°) with the instanta- 

neous frequencies fr(t) = 0.2 + O.lt/N + 0.2 x sm(2nt/N) and f2(t) = 0.2 + 0.1t/N + 

0.2 sm(2nt/N + TT/2),* = 1, ...,N. The SNR of both signals is -20 dB, and the number 

of snapshots used in the simulation is N = 1024. We used L=129 for t-f ML. Figure 1 

shows the PWVD of the mixed noise-free signals at the reference sensor. Figure 2 shows 

(61,62) that yield the minimum values of the likelihood function of the t-f ML and the ML 

methods for 20 independent trials. It is evident that the t-f ML provides much improved 

DOA estimation over the conventional ML. 

In the next example, we compare the t-f ML and the t-f MUSIC for coherent sources. The 

two coherent FM signals have common instantaneous frequencies /1>2(i) = 0.2 + O.lt/N + 

0.2sin(27r£/iV),£ = l,...,iV, with - phase difference. The signals arrive at (61,62) = 

(—2°, 2°). The SNR of both signals is 5 dB and the number of snapshots is 1024. Again, 

we used L=129 for both t-f ML and t-f MUSIC. Figure 3 shows the PWVD of the mixed 

noise-free signals, and Figure 4 shows the contour plots of the likelihood function of the 

t-f ML and the estimated spectra of t-f MUSIC for three independent trials. It is clear 

that the t-f ML can separate the two signals whereas the t-f MUSIC cannot. 

V. Conclusions 

The time-frequency maximum likelihood (t-f ML) method has been proposed for direc- 

tion finding, which is based on the spatial time-frequency distribution (STFD) matrices. 

By taking frequency-modulated (FM) signals as example, we show that the STFD matrices 

provide more robust eigen-decomposition than covanrice matrices. The analysis and simu- 

lation results showed that the t-f ML improves over the conventional maximum likelihood 

technique for low SNR, and outperforms the t-f MUSIC in coherent signal environments. 
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Appendix A 

Proof of Lemma 2 

From (1), (14), and (15), 

D-D 

= MATT) % N~El     £_, yft + r)nH (ti ~ T)e-M*<r 

1 

g=l       i=l       __     L-l 
2 

nD  N-L+l     -21 

n0{N TTTTS   E      E    n(*2 + r)y*^ - r)e-«." (A.l) 

2 

n0  N-L+l      -T" 

+ n(N  1
L + 1)T,   E       E    n(^-fr)n^^-r)e-«--aI. 

2 

We first consider the first term in (A.l). Denoting t'i = ti — r, and noting the fact that, 

when the third-order derivative of the phase is negligible over [t — L + l,t + L — 1] for any 

signal and any t, rfg(^ + 2T)e~j47rf"-iT ~ d9(£-) at the time-frequency point (U,fqti), then 

L-l 

E   E       E    yte + T)nfffe-r)C->"4*'«.<T 

9=1     i=l     T=_t^i 
2 

= EArE+1    E    y(*| + 2r)n*(«;)C-^.'T (A.2) 
9=1     t\=\     r=_i=i 

n„  N-L+l N-L+l 

^E E M^'X^n"^) = £ £y('>"(*D 
9=1  t';=i *;=i 

Therefore, the elements of the first term in equation (A.l) are clearly asymptotically 

jointly Gaussian from the multivariate Central Limit Theorem [7].   Similar result can 

be obtained for the second term of (A.l).  The elements of the third term in (A.l) are 

also jointly Gaussian from the fact that the covariance between the (p, r)th element of 

n(t + r)nH(t — r) at time t{ and tk is given by 
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El 
L-l 

2 

X 

53   M*i + TiK(*i-Ti) 
71-—2- 

/ ^ 
-£     YJ   M*< + ri)n*(*t - n) 

L-l 
2 

53      n*p(h +T2)nr(tk -T2) 

E\     E    n*p(tk + T2)nr(tk - T2) 

e-j4nfq,in 

r2=-^ 

KT2 = ~ 

L-l L-l 
2 2 

,-3±nfq,kT2 

=    E      E   EMU + nKiu-n)] 
,- _     L-l „ _     L-l 
71 2~T2- — 

xE[n*p(tk + r2)nr(ifc - r2)]e-^(/^-/^) 
1,-1 L-l 

2 2 

+  E     E  %(*i + ^iK(tt + T2)] 
ri=-v-2=-^i 

L-l L-l 
2 2 

+    E        E    E[np(ti + n)nr(tk - T2)} 
-r   —       *■-!   ^   —       L-l Tl- 5-T2- — 

xE[n*p(tk + T2)n;(ti - Tjle-Mfo^-f^) 
L-l' L-l 

~    E        E    v2öp,Te-j4<f^i-fq,kT2) 
L-l ,, _     L-l 

72=-- 

La2& 'i,ife- 

(A.3) 

Since the linear combination of joint-Gaussian processes is jointly Gaussian, then D — D 

is a random matrix whose elements are asymptotically jointly Gaussian. Also D — D —>■ 0 

as N —> oo. 
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Appendix B 

Derivation of (28) 

The number of data samples available for the construction of the STFD matrix is N - 

L + 1, where the selected n0 signals are included. Denote uk as the kth column of D, 

and Uk the kth column of D. From Lemma 2, we know that uk is asymptotically jointly 

Gaussian, and its density function is 

ftffik) 
1 
-det 

7T 

1 

N-L + l 

x exp -\^-^H(N_l
L + 1

A*)     (Ü*-M 

(B.l) 

where A^ stands for the asymptotic covariance matrix of u* 

Ak A   \imJN -L + 1)E [(Ü* - ufc)(ufc - uk)H] . (B.2) 

From the results of Lemma 2, it is clear that Ak is a diagonal matrix with equal diagonal 

elements. Denoting Afc — ßl, the log-likelihood function is given by 

Ltf = 
11 1 

2m N - L + l""0"     2ß 

Maximizing Ltj is equivalent to minimizing 

hk A [üfc - uk}H [uk - ujt]. 

For different k, we may construct the following cost function 
m 

h     A   £ hk 
= k=i 

m „ 
=  E  [Ü/fc - Uk]     [Ük - Uk] 

k=l 

(B.3) 

(B.4) 

(B.5) 

= tr |[f) - D]" [D - D]|. 

Similar to (24), and by taking into account that we used n0 signals instead of n signals, 

the estimation of D is obtained as Ä° ((Ä°)HÄ°)_1 (Ä°)ffDÄ° x ((Ä^^Ä0)-1 (A°)H, 

and the minimization of equation (B.5) leads to (28). 
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Fig. 1 Pseudo Wigner-Ville distribution of the mixture 

of the two FM signals. 

(a) t-f ML 
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(b) ML 

Fig. 2 (0i,#2) which minimize the t-f ML and ML likelihood functions. 
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Fig. 3 Pseudo Wigner-Ville distribution of the mixture 

of the two coherent FM signals. 

(a) t-f ML 

(b) t-f MUSIC 

Fig. 4 Contour plots of t-f ML likelihood function and spatial spectra of t-f MUSIC. 
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I. Introduction 

The evaluation of quadratic time-frequency distributions of the data snapshots across 

the array yields spatial time-frequency distributions (STFDs), which can be used to solve 

a large class of blind source separation and high-resolution direction-of-arrival (DOA) 

estimation problems [1], [2]. STFD techniques are appropriate to handle sources of non- 

stationary waveforms that are highly localized in the time-frequency domain. 

The concept of STFD can been extended to arbitrary joint-variable domain [3], [4]. In 

this letter, the ambiguity functions are considered. Similar to STFDs, spatial ambiguity 

functions (SAFs) are descriminatory tools. The sources whose ambiguity domain signa- 

tures are used in constructing the SAF matrix are the only ones considered for signal 

separation and subspace estimation. 

II. Analysis Model 

The following linear data model 

x(«) = Ad(<) + n(t) (1) 

is commonly used in narrowband array processing, where A is the mixing matrix of di- 

mension m x n, x(i) = [xi(t), ...,xm(t)]T is the sensor array output vector, and d(t) = 

[di(t), ...,dn(t)]T is the source signal vector. The superscript T denotes the transpose op- 

erator. n(t) is an additive noise vector. In direction finding problems, we require A to 

have a known structure. 

The SAF matrix of a signal vector x(t) is defined as 

00 

Dxx(0, T)= J x(u + T/2)X
H

(U - T/2)ej6udu (2) 
—oo 

where 9 and r are the frequency-lag and the time-lag, respectively, and H denotes conjugate 

transpose. In noise-free environment, x(i) = Ad(t), then we have 

Dxx(0,T) = ADdd(0,r)A" (3) 

Equation (3) is similar to the formula that has been commonly used in blind source 

separation and DOA estimation problems, relating the data covariance correlation matrix 
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to the signal correlation matrix [5], [6]. Here, these matrices are replaced by the data 

spatial ambiguity function and signal ambiguity function matrices, respectively. The two 

subspaces spanned by the principle eigenvectors of Dxx(0,r) and the columns of A are 

identical. This implies that array signal processing problems can be approached and solved 

based on the SAF. 

III. Properties of Spatial Ambiguity Functions 

The SAFs have the following two important offerings that distinguish them from other 

array spatial functions. 

1) The crossterms in between source signals reside on the off-diagonal entries of matrix 

Ddd(#, r)> violating its diagonal structure, which is necessary to perform blind source 

separation. In the ambiguity domain, the signal autoterms are positioned near and at the 

origin, making it easier to leave out crossterms from matrix construction. 

2) The autoterms of all narrowband signals, regardless of their frequencies and phases, 

fall on the time-lag axis (0 = 0), while those of the wideband signals fall on a different (9, r) 

region or spread over the entire ambiguity domain. Therefore, the SAF is a natural choice 

for recovering and spatially localizing narrowband sources in broadband signal platforms. 

IV. Ambiguity-Domain MUSIC 

Similar to time-frequency MUSIC [2], the signal and noise subspaces E = [Es En] of 

the SAF matrix Dxx(0, r) can be obtained by the block joint-diagonalization of Dxx(0, r) 

obtained at different (#, T) points. Once the noise subspace En is estimated, the ambiguity- 

domain MUSIC (AD-MUSIC) technique estimates the DOAs by finding the n0 largest 

peaks of the localization function f{4>) = E„a(</>) 

Consider the scenario of a four-element equi-spaced linear array, where one chirp signal 

and two sinusoidal signals are received. The data record has 128 samples. All three 

signals have the same SNR of 20 dB. The DOAs of the chirp signal and the two sinusoidal 

signals are 15, 10, and 0 degrees, respectively. While the ambiguity function of the chirp 

signal sweeps the ambiguity domain with contribution at the origin, the exact autoterm 

ambiguity function of the narrowband arrivals Si(t) and s2{t) is zero for non-zero frequency- 

lags and may have non-zero values only along the vertical axis 9 — 0. 
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In this simulation example, we selected 24 points on the time-lag axis, excluding the 

origin, and as such emphasizing the narrowband components. Fig. 1 shows the ambigu- 

ity function where the two vertical lines represent the crossterms between the sinusoidal 

components. Fig. 2 shows the two estimated spatial spectra, one corresponds to the con- 

ventional method and the other corresponds to the AD-MUSIC. There are two dominant 

eigenvalues for the case of the AD-MUSIC, since we have not deliberately considered the 

chirp signal through our careful selection of the ambiguity-domain points. It is clear that 

the AD-MUSIC resolves the two sinusoidal signals, while the conventional MUSIC could 

not separate the three signals. 

V. Ambiguity-Domain Source Separation 

Analogous to blind source separation based on STFD [1], blind source separation based 

on SAF consists mainly of two steps. The first step is to whiten the array signal vector by 

an m x n matrix W such that (WA)(WA)ff = UUff = I, i.e., WA is a unitary matrix. 

The whitening matrix W can be obtained, for example, from the covariance matrix [1]. 

The second step is to perform joint diagonalization to obtain the unitary matrix U [1], 

which is then used to provide A = W#U, where # denotes pseudo-inverse, and the source 

signal vector is recovered as s(t) = UffWx(t). All of the above matrices are replaced by 

their estimates when dealing with one realization. 

Assume that we have two sources and three equi-spaced sensors. One source is a sinusoid, 

whereas the other is a pulsed sinusoidal signal that extends over 8 samples. The SNR of 

both signals, defined in the total power, is 10 dB. In this example, the mixing matrix did 

not have a presumed structure and its columns were not complex exponential vectors. 

The ambiguity function of the mixed signal at the first sensor is shown in Fig. 3. In 

this specific case, we select four points along the frequency-lag axis and the time-lag axis 

closest to the origin. Then, by using the spatial ambiguity functions, we are able to recover 

the original signals from only their observed mixture. Fig. 4 shows the waveforms of the 

original and the separated signals after multiplication by the proper complex scalar. 
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VI. Conclusions 

The spatial ambiguity function and its application to direction finding and blind source 

separation have been discussed. Based on the spatial ambiguity functions, we have intro- 

duced the ambiguity-domain MUSIC and the ambiguity-domain blind source separation 

techniques. 
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Fig. 2      The estimated spatial spectra of AD-MUSIC and conventional MUSIC. 
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and the separated signals ( ). 
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