
NPS-MA-01-001

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Support of JCATS Limited V&V

by

James G. Taylor
Beny Neta

September 2001

Approved for public release; distribution is unlimited.

Prepared for: Dismounted Battlespace Battle Laboratory
Ft Benning, GA

20011106 028

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

RADM David R. Ellison
Superintendent

R. Elster
Provost

This report was prepared for Naval Postgraduate School and funded by Dismounted
Battlespace Battle Laboratory.

This report was prepared by:

Operations Research Department

rN^__Q_JL^ j

Beny Neta
Professor
Mathematics Department

Reviewed by:

Michael A. Morgan, fenair
Mathematics Department

Released by:

V^f). V^ Netzer
Associate Provost and
Dean of Research

REPORT DOCUMENTATION PAGE
Form approved

OMB No 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (O704-0188). Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

September 2001
3. REPORT TYPE AND DATES COVERED

1 October 2000 - 30 September 2001

4. TITLE AND SUBTITLE

Support of JCATS Limited V&V

6. AUTHOR(S)

James G. Taylor and Beny Neta

5. FUNDING

MIPROCNPSJV033

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

NPS-MA-01-001
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Dismounted Battlespace Battle Laboratory
Simulation Center
Bldg. 2868A Way Street
Ft. Benning, GA 31905

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

Approved for public release; distribution is unlimited.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words.)

The goal of this study effort was to assess the ability of the Joint Conflict and Tactical Simulation (JCATS) to simulate
the capabilities of non-lethal weapons (NLW) and to provide a product that can be incorporated into the full VV&A of JCATS.
This work investigated the first 32 algorithms on the JNLWD V&V Priority List. It evaluated JCATS algorithms in two ways:

(1) verification of computer code against algorithm documentation,
(2) appropriateness of algorithms within context of U.S. Army current model standards.

All 32 algorithms were verified, with very few discrepancies with the documentation being found. Of these 32 algorithms, only
25 were documented already by LLNL in the JCATS Algorithm Manual so documentation for the remaining 7 was developed
with the help of LLNL from documentation internal to the JCATS computer code. Evaluation of these algorithms (actually a
subset of five or so key algorithms) within the context of a compendium of algorithms developed for the Close Combat Tactical
Trainer (CCTT) developed by AMSAA revealed that several key algorithms (particularly target acquisition) should be upgraded,
if possible. This research also revealed a document that could be used to provide the theoretical basis of most of the AMSAA
algorithms, particularly those for attrition. Such a document was never available to LLNL. Although some key algorithms
should be upgraded (mainly because of modeling and simulation developments of the last five years or so), all JCATS
algorithms (including its target-acquisition algorithm) were at one time more than adequate for analysis purposes. Moreover,
overall the algorithms reviewed are deemed to be adequate (particularly in comparison with Janus Army) for playing close
combat with non-lethal weapons in urban terrain for purposes of analysis. Further work (particularly along the lines of the
issues raised by this work) is necessary, however, to document these modeling issues. Some research is required to better
articulate the technical issues raised here, particularly if future V&V efforts are to build on the work at hand.

14. SUBJECT TERMS
limited V&V, algorithms evaluation, target acquisition

15. NUMBER OF PAGES
46

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT
UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT
UNCLASSIFIED

20. LIMITATION OF
ABSTRACT

NSN 7540-01-280-5800 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std 239-18

Support ofJCATS Limited V&V

by

James G. Taylor
MOVES Academic Group
Naval Postgraduate School

Monterey, CA 93943

and

Beny Neta
Mathematics Department

Naval Postgraduate School
Monterey, CA 93943

ABSTRACT:
The goal of this study effort was to assess the ability of the Joint Conflict and Tactical

Simulation (JCATS) to simulate the capabilities of non-lethal weapons (NLW) and to provide a
product that can be incorporated into the full W&A of JCATS. This work investigated the first 32
algorithms on the JNLWD V&V Priority List. It evaluated JCATS algorithms in two ways:

(1) verification of computer code against algorithm documentation,
(2) appropriateness of algorithms within context of U.S. Army current model standards.

All 32 algorithms were verified, with very few discrepancies with the documentation being found.
Of these 32 algorithms, only 25 were documented already by LLNL in the JCATS Algorithm
Manual so documentation for the remaining 7 was developed with the help of LLNL from
documentation internal to the JCATS computer code. Evaluation of these algorithms (actually a
subset of five or so key algorithms) within the context of a compendium of algorithms developed for
the Close Combat Tactical Trainer (CCTT) developed by AMSAA revealed that several key
algorithms (particularly target acquisition) should be upgraded, if possible. This research also
revealed a document that could be used to provide the theoretical basis of most of the AMSAA
algorithms, particularly those for attrition. Such a document was never available to LLNL.
Although some key algorithms should be upgraded (mainly because of modeling and simulation
developments of the last five years or so), all JCATS algorithms (including its target-acquisition
algorithm) were at one time more than adequate for analysis purposes. Moreover, overall the
algorithms reviewed are deemed to be adequate (particularly in comparison with Janus Army) for
playing close combat with non-lethal weapons in urban terrain for purposes of analysis. Further
work (particularly along the lines of the issues raised by this work) is necessary, however, to
document these modeling issues. Some research is required to better articulate the technical issues
raised here, particularly if future V&V efforts are to build on the work at hand.

Introduction:

The Dismounted BattleSpace Battlelab (DBBL) is planning to conduct a limited verification
and validation (V&V) study of the non-lethal capabilities of the Joint Conflict and Tactical
Simulation (JCATS) model. The goal of this study effort is (1) to assess the model's ability to
simulate the capabilities of non-lethal weapons (NLW) and (2) to provide a product that can be
incorporated into the full W&A of JCATS.

Statement of Work:

Assist in the conduct of a limited V&V of the non-lethal capabilities of JCATS.
1. The first 32 algorithms on the proposed JNLWD V&V Priority List of Algorithms

(see Appendix 1) will be reviewed in detail and verified that they are appropriately
implemented in the JCATS computer code.

2. Attention (but at a lower level of priority) is also to be paid to algorithms validity
(particularly the algorithms for simulating the capabilities of NLW) and whether the
JCATS algorithms satisfy Army model standards in a fashion consistent with
JNLWD intended use.

Algorithm Evaluation:

This work investigated the first 32 algorithms on the JNLWD V&V Priority List. It
evaluated JCATS algorithms in the following two ways:

(1) verification of computer code against algorithm documentation,
(2) appropriateness of algorithm.

The first aspect (i.e. verification of algorithm implementation in JCATS computer code) is
straightforward and a well-accepted part of the V&V (Verification and Validation) process. It does
not need further discussion. Results of this algorithm verification are given below.

The investigation of the appropriateness of JCATS algorithms was a more subtle task, and
only a few key algorithms were investigated. Some key algorithms investigated (e.g. target
acquisition, assessment of direct-fire-engagement outcomes) were found to be in need of upgrade.
To be sure, those algorithms that were chosen for investigation were those that were suspected of
needing such upgrade. In all fairness, though, the same could be said about Janus Army (e.g. its use
of independent rounds for direct-fire-engagement-outcome assessment). Thus, some upgrading
(particularly for target acquisition) should be done, but it is the opinion of these authors that JCATS
is quite comparable to other current high-resolution Monte-Carlo combat simulations that are
currently used for analytical work in DoD. Although a legacy model (for which there is no funding
for further model development unless specifically paid for by a user), JCATS may well be as good as
other leading simulations that could be used to investigate close combat with non-lethal munitions,
especially for military operations in urban terrain.

The need to investigate the appropriateness of the JCATS algorithms in the first place came
from consideration of the target-acquisition algorithms. It was found that the algorithm for the
optical-sensor model was an obsolete one that the Army had replaced since the original development
of Janus (from which JCATS has descended). In fact, since the original development of Janus the

Army had developed an entire program of model standards1 had been developed, and the Army had
apparently not kept Lawrence Livermore National Laboratory (LLNL) explicitly informed of these
developments and others2. Consequently, it was found that JCÄTS was using a number of
algorithms at variance with current Army model standards. It is recommended that major JCATS
algorithms (see below) be brought into conformity with Army model standards (at least where it
appears to make a significant difference in results).

Verification of Computer Code Against Algorithm Documentation:

Our verification work was to compare the JCATS Algorithm Manual (draft version 2.0.0)
written by the Conflict Simulation Laboratory of LLNL (report number UCRL-MA-135117 DR,
dated 30 September 1999) to the code. Beny Neta visited Lawrence Livermore on 6 April 2000 and
met with the principals at the Lab. He was given full access to the code and help from Hal Brand to
answer any questions that he had. At the end of the day he was given a hard copy of the following
algorithms: NVEOL Thermal Model, Enhanced Lighting and FASCAM effects (which are not in the
algorithm manual).

The code for specific algorithms was received by mail (hard copy only) upon request. We
have checked that the code agrees with the algorithm manual. We have not run the code, since only
hard copy was released to us. Clearly we have made the comparison only for those algorithms for
which we had a description in the algorithm manual (see Appendix 1). All but three algorithms
agree.

For algorithm 4, NVEOL Optical Sensor Scan we have found several typos and we are
including the modified algorithm as appendix 2. For algorithm 8, Assess Hit Internal, we found a
typographical error in the manual. The code checks if moFPk > 0, but the manual (page 3-2, lines 16
and 20) by mistake had if moFPk < 0.

For algorithm 19, Engage by Direct Fire, we found a discrepancy in computing
medianrounds. The code takes the integer part of (SSPK* 100+0.5), i.e. rounds the number and the
algorithm manual takes the integer part of (SSPK* 100), i.e. chops the number. I have talked to Hal
Brand about these two and he said that the algorithm manual would be modified to agree with the
code. In our opinion this is the appropriate remedy.

The BEAM weapon algorithm was verified, after we received a write-up from LLNL. We
include this write-up as Appendix 6. We visited LLNL again on 24-25 August to complete the V&V
for those 5 algorithms not written in the manual. We managed to get three algorithms out of the 5
done. Algorithm 5, NVEOL Thermal Sensor Scan is now given as appendix 3. Algorithm 20,
Planned Direct Fire and algorithm 21, Planned Indirect Fire are given in Appendices 5 and 4,
respectively.

During another visit on 25-29 September we completed the V&V of the ground movement
algorithms (numbered 22-31) and the other undocumented algorithms (5,17). We made some
changes to algorithm #24 (Trafficability Factor). The bullets concerning Fence and Building
Components should not be there. In algorithm #25 (Calculation of slope) we modified the formula
for speed factor (SF) to read as follows:

1 As a consequence of the creation of the Defense Modeling and Simulation Office (DMSO) in 1991 and subsequent
formation of the Army Model and Simulation Office (AMSO) in 1992. There are currently 19 different model standards
categories.
2 For example, the development of various compendia of algorithms for use in Army models and simulations.

4

SF=(ln(100*|slope|)-ln(MaxSlope))/(ln(100*|slope|)*(l-ln(MaxSlope))).

Algorithm #28 (Fatigue factor) is given in Appendix 9. Algorithm #5 (Enhanced Lighting) is now
given as Appendix 7 and algorithm #17 (FASCAM) is in Appendix 8.

Summary of Findings on Algorithm Verification:

• Total of 32 algorithms
24 documented and 8 are undocumented
We have received documentation for 1 and generated 7 more with the help of LLNL
We have verified all 32 algorithms.

The results of the verification are as follows:
• Algorithm 1, Line of sight - done
• Algorithm 2, general sensor scan - done
• Algorithm 3, general sensor sweep - done
• Algorithm 4, NVEOL Optical Sensor Scan - corrected some typos in the algorithm manual
• Algorithm 5, NVEOL Thermal sensor scan - algorithm written with the help of Hal Brand (LLNL)
• Algorithm 6, Enhanced lighting - written with help of LLNL
• Algorithm 7, assess shot - done
• Algorithm 8, Assess hit internal - we found a typographical error in the manual. The code checks if
moFPk > 0, but the manual (page 3-2, lines 16 and 20) by mistake had if moFPk < 0.
•Algorithm 9, do secondary suppression - done
• Algorithm 10, assess secondary suppression - done
• Algorithm 11, detonate - done
• Algorithm 12, assess impact - done
• Algorithm 13, handle suppression -done
• Algorithm 14, is suppressed - done
• Algorithm 15, HE effect - done
• Algorithm 16, ICM effect -done
• Algorithm 17, FASCAM - written with help of LLNL
• Algorithm 18, target by direct fire - done
• Algorithm 19, Engage by Direct Fire, we found a discrepancy in computing medianjrounds. The
code takes the integer part of (SSPK* 100+0.5), i.e. rounds the number and the algorithm manual
takes the integer part of (SSPK* 100), i.e. chops the number. I have talked to Hal Brand about these
two and he said that the algorithm manual would be modified to agree with the code.
• Algorithm 20, Planned Direct Fire - written with the help of LLNL
• Algorithm 21, Planned Indirect Fire - written with the help of LLNL
• Algorithm 22, length of hop - done
• Algorithm 23, calculation of speed - done
• Algorithm 24, trafficability factor - done
• Algorithm 25, calculation of slope - done
• Algorithm 26, weather factor - done
• Algorithm 27, lighting factor - done
• Algorithm 28, fatigue - written with help of LLNL
• Algorithm 29, encountering a linear object - done

• Algorithm 30, encountering a minefield - done
• Algorithm 31, encountering other objects - done
• Algorithm 32, Beam weapon - we received a write-up from LLNL.

Appropriateness of Algorithms:

The working hypothesis for the evaluation of the appropriateness of current JCATS
algorithms was the following: the algorithms in "The Compendium of Close Combat Tactical
Trainer Algorithms..." (AMSAA Special Publication No. 74, June 1996)3 (AMSAA [1996a])
should be the point of departure for the development of JCATS algorithms. Discussions with
key personnel at AMSAA reinforced that this was an appropriate course of action (Carouthers
[2000], Dinsmore [2000]). Moreover, this research revealed that the U.S. Army's "Engineering
Design Handbook: Army Weapon System Analysis, Part One" (DARCOM [1977]) provides the
theoretical justification for many of the algorithms (particularly, the attrition ones) in "The
Compendium of CCTT Algorithms."

Algorithms in Need of Upgrade:

The following algorithms should be upgraded (given in order of decreasing priority):
(1) target acquisition (both optical and thermal sensors),
(2) direct-fire attrition,
(3) indirect-fire attrition,
(4) non-lethal weapons (where appropriate).

These algorithms need upgrade because of changes in Army model standards that have occurred
since the development of Janus (and subsequently JCATS) (see Appendix 10).

Concerning target acquisition the two-dimensional ACQUIRE methodology (AMSAA
[1996a, Section 2], [2000, Section 2]) should be implemented in JCATS. The so-called Night
Vision Laboratory (NVL) methodology used by JCATS was replaced by the ACQUIRE
methodology in 1993. The ACQUIRE methodology is in Janus (Army) and all other current Army
detailed simulations. It should be easy to implement because it utilizes the same equations (with one
minor exception) as the NVL methodology but requires modified input data. ACQUIRE had to be
developed because of a new generation of Army sensors.

Furthermore, initialization of sensor-target pairs (see Parish and Kellner [1992]) is another
feature that must be implemented in ACQUIRE (Dixon [2000], Parish [2000]). This point is not
covered in the AMSAA documentation of ACQUIRE, but was repeatedly stressed by key personnel
at TRAC-WSMR. It apparently has a significant impact on simulation outcomes (Dixon [2000],
Parish [2000]). These two changes in target acquisition are rated as top-priority items to be
implemented in JCATS.

Additionally, for many direct-fire weapons (e.g. tanks), including those used in dismounted
infantry combat (Carouthers [2000]), a better model for fire assessment (and one that makes a
significant difference in combat outcomes (Dinsmore [2000])) is the miss-distance-distribution
method (see Appendix 8). AMSAA apparently has data (Carouthers [2000], Dinsmore [2000]) that
allows one to play a "variable bias" (see AMSAA [1996a, p. 4-3]) that leads to significantly different

3 Updated by AMSAA Special Publication No. 97, May 2000 (AMSAA [2000]).
6

outcomes in many cases than the assumption of independent rounds (see Appendix 11 and also
Appendix 12). Appendix 13 discusses on theoretical grounds why the independent-round model is
not a good model for many (if not most) cases of practical interest. Also, AMSAA has similar
refined methodology to handle cases of burst-fire systems and burst on target (see AMSAA [1996a,
Section 4]). Thus, it appears that the adequacy of the assessment algorithms for direct-fire combat in
JCATS need further investigation.

There is also concern about the model for impacts points for indirect-fire weapons. The
current algorithm in JCATS (Algorithm 21, Planned Indirect Fire) does not appear to be in
conformity with the indirect-fire model in the "CCTT Compendium" (AMSAA [1996a, Section 6
(especially Figure 6-4)]), but there was not sufficient time to investigate this important point in any
depth.

Also, there is concern about the playing of non-lethal direct-fire weapons with independent
rounds. If AMSAA or some other source has data that allows non-lethal weapons to be played along
the lines the recommended playing of conventional direct-fire weapons discussed above (see
AMSAA [1996a, Section 4]), then this should be done. If sufficient data does not exist at this time
(we did not have time to investigate this important point), then independent rounds would appear to
be an adequate model.

Summary of Findings on Evaluation of Algorithms:

Although some key. algorithms should be upgraded (mainly because of modeling and
simulation developments of the last five years or so), all JCATS algorithms (including its target-
acquisition algorithm) were at one time more than adequate for analysis purposes. That is the
problem with being a state-of-the-art legacy model for which there has been no funding for further
development for a number of years. Now would be a good time to make such capital investment.
Moreover, all 32 algorithms investigated were essentially verified to agree with documentation
(either internal to the computer code4 or external in the JCATS Algorithm Manual). The authors
were quite impressed by this fact.

Overall, the algorithms reviewed in JCATS appear to be of comparable quality as those in
other contemporary, comparable high-resolution Monte-Carlo combat simulations (e.g. Janus Army)
and therefore adequate for analysis of issues concerning, for example, close combat with non-lethal
munitions. However, this fact should not inhibit further research on such combat models,
particularly concerning issues encountered in this work (e.g. adequacy of independent-round model
to apply to all direct-fire weapons). In fact, further theoretical research is required just to more
adequately articulate what the problems are.

REFERENCES:

Office of the Deputy Under Secretary of the Army (Operations Research) (ODUSOR) and Army
Model and Simulation Office (AMSO), "Army Model and Simulation Standards Report, FY98,"
October 1997 (Copy maintained on AMSO website; current address for AMSO Homepage is
http://www.amso.army.mil.)

For these algorithms, documentation was developed with the help of LLNL and appears in the appendices to this report.
7

Mike Carouthers, Army Materiel Systems Analysis Activity (AMSAA), Personal Communication,
August 2000.

Alan Dinsmore, Army Materiel Systems Analysis Activity (AMSAA) (Chairman of AMSO Attrition
Standards Coordinating Committee (SCC)), Personal Communication, August 2000.

Dave Dixon, TRAC-White Sands Missile Range (TRAC-WSMR) (Chairman of AMSO Acquire
Standards Coordinating Committee (SCC)), Personal Communication, August 2000.

Randall M. Parish, TRAC-White Sands Missile Range (TRAC-WSMR), Personal Communication,
August 2000.

Randall M. Parish and A.D. Kellner, "Target Acquisition in Janus Army," U.S. Army TRADOC
Analysis Command White Sands Missile Range (TRAC-WSMR), White Sands Missile Range, NM,
October 1992.

J.G. Taylor, "Flaw in Janus Direct-Fire Assessments," unpublished working paper created on
4/24/99, Naval Postgraduate School, Monterey, CA, 1999. (a)

J.G. Taylor, "Flaw in Janus Direct-Fire Assessments-2" unpublished working paper created on
4/28/99, Naval Postgraduate School, Monterey, CA, 1999. (b)

U.S. Army Materiel Development and Readiness Command (DARCOM), "Engineering Design
Handbook: Army Weapon System Analysis, Part One," DARCOM-P-706-101, Alexandria, VA,
November 1977.

U.S. Army Materiel Systems Analysis Activity (AMSAA), "The Compendium of Close Combat
Tactical Trainer Algorithms, Data, Data Structures, and Generic System Mappings," Special
Publication No. 74, Aberdeen Proving Ground, MD, June 1996. (a)

U.S. Army Materiel Systems Analysis Activity (AMSAA), "Compendium of High Resolution
Attrition Algorithms," Special Publication No. 77, Aberdeen Proving Ground, MD, October 1996.
(b)

U.S. Army Materiel Systems Analysis Activity (AMSAA), "The Compendium of Close Combat
Tactical Trainer Algorithms, Data, Data Structures, and Generic System Mappings," Special
Publication No. 97, Aberdeen Proving Ground, MD, May 2000.

M. Uzelac, Lawrence Livermore National Laboratory (LLNL), Personal Communication, June 2000.

Appendix 1

In this section we have the prioritized list of algorithms from DBBL. The priority is given in column
2. Algorithms for which there is no write-up in the JCATS Algorithm Manual (draft dated 30
September 1999, version 2.0.0, report number UCRL-MA-135117 DR) are denoted by TBW in
column 3. Column 4 indicate if the code verified. Any findings are given in the last column. In
column 5 we indicated by x those algorithms we have in hand (hard copy only). Note that we have
verified the acquisition algorithm at the Lawrence Livermore National Laboratory (LLNL). The
date we requested the algorithm from LLNL is in column 6.

Code
Algorithms Proposed JNLWD

V&V Prioritized List
To Be

Written
verified In hand requested

BEAM 1 TBW
Acquisition 1 V

Line of Sight 1 V

General Sensor Scan 2 V

General Sensor Sweep 3 V

NVOEL Optical Sensor Scan 4 V

NVOEL Thermal Sensor Scan 5 TBW X 1-May

Enhanced Lighting 6 TBW X 1-May
Weapons Effects 7 V X 1-May
Point Effect Munitions 7 V X 1-May

assessShot 7 V X 1-May

assessHitlnternal 8 V X 1-MayFound typo in manual
doSecondarySuppression 9 V X 1-May
assessSecondarySuppression 10 V X 1-May
Area Effect Munitions 11 V X 1-May
detonate 11 V X 1-May
assesslmpact 12 V X 1-May
handleSuppression 13 ' V X 1-May
isSuppressed(mult) 14 V X 1-May

HEeffect 15 V X 1-May
ICMeffect 16 V X 1-May
FASCAMeffect 17 TBW X 1-May
BEAM 17 TBW

Automated Targeting 18 V X 9-Jun

Target by Direct Fire 18 V X 9-Jun

Engage by Direct Fire 19 V X 9-Jun Found disagreement with code
Manual Targeting 20 X 9-Jun

Planned Direct Fire 20 TBW X 9-Jun

Planned Indirect Fire 21 TBW X 9-Jun

Movement 22 28-Jun
Ground 22 28-Jun
Length of Hop 22 28-Jun
Calculation of speed 23 28-Jun

Trafficability Factor 24 28-Jun
Calculation of Slope 25 28-Jun
Weather Factor 26 28-Jun
Lighting Factor 27 28-Jun

Fatigue Factor 28 TBW

Encountering a Linear Object 29
Encountering a Minefield 30
Encountering other objects 31
Capture 32 TBW

Surrender 33 TBW

Environment 34 TBW

Barriers 34 TBW

minefields 35 TBW

light 36 TBW

weather 37 TBW
Casualty 38 TBW

Fratricide 39 TBW

Fatigue 40 TBW

Defilade 41 TBW

Buildings 42

Movement in Building Shells 42

Movement in Enhanced Buildings 43

Environmental Effects 44 TBW

Aggregation 45

Aggregate on Aggregate 45

ableToJoinAggregate 45

onJoinAggregate 46

onFormAggregate 47
followTheLeader 48
reconfigureAggregate 49
De-Aggregate an Aggregate 50
dropMemberlnternal 50
removeActiveMember 51
onLeaveAggregate 52
handleAcquisitionDividing 53
onDeaggregation 54

addActiveMember 55
dropMemberlnternal 56

Rotate 57
Formations 58

To Front 58

To Rear 59

Modify Formation 60
Closing Ranks 61
Automatic Formation Adjustment 62

Supply 63
Transfer Supplies 63
Transfer Ammo from System to System 63
Re-Supply 64

Resupply Ammo from System to System 64

Level Supply 65

levelAmmoSupply 65

Level Load 66

level Ammo Load 66

level Supply Load 67
Recover Ammo 68

Recover Ammo by Aggregate 68
Recover Ammo from Aggregate 69
Recover Weapon 70

Active Radar
Active Sonar

28-Jun
28-Jun
28-Jun
28-Jun

10

Passive Radar
Passive Sonar
Horizon Check

Appendix 2

General Sensor Scan

All entities within sensor range are considered. The following series of tests is applied to each entity that may be
acquired.
If the viewer is not a human with peripheral vision enabled and the entity to be acquired is not in the FOR, ignore it.
If the entity to be acquired is active in an aggregate, ignore it.
If the entity to be acquired is mounted, ignore it.
If the sensor is not sonar and the entity to be acquired is under water, ignore it.
If the entity to be acquired is closer than min sensor range or farther than max sensor range, ignore it.
If the entity to be acquired is dead, ignore it. (Show Dead is a special function handled at the client level.)
If fratricide is on and the entity to be acquired is in the viewer's coordination level, ignore it.
If fratricide is off and the entity to be acquired is a friend, ignore it.
If this sensor can only detect moving targets and the entity to be acquired is not moving (its speed is below the moving
speed threshold of 0.25m/s), ignore it.
If this sensor is limited as to air, land or marine targets, test to see if the entity to be acquired is in the right area. If not,
ignore it.
If the entity to be acquired hasn't been ignored, try to acquire it.
At this point the algorithms diverge depending on the type of sensor. The rest of the algorithm is provided in the
following sensor-specific sections.

General Sensor Sweep

A sweep performs the same process as a scan for the existing acquisition list, except that LOS is not checked (it is
assumed to be OK). Each entity is re-sensed, and its acquisition level is adjusted up or down. No entities are added to or
removed from the acquisition list during a sweep.

NVEOL Optical Sensors
NVEOL optical sensors model the naked eye, binoculars, etc. They perceive in the visible spectrum (.4 - .7u). The
algorithms in JCATS were derived from the Night Vision Electro-Optical Lab (NVEOL) model. **How do we differ?
At the start of the simulation a 128X128 matrix is generated from the NVEOL Detection Map used in JANUS(A) 5.0.
The Detection Map consists of one hundred values representing a log normal distribution. JCATS randomly selects from
the Detection Map while filling a 128X128 matrix. All viewer/entity pairs in the simulation are then hash mapped to the
matrix. This means that for a given simulation run, a given viewer/entity pair will always have the same acquisition
threshold value. However, due to the random fill of the matrix, the same viewer/entity pair may (and probably will) have
a different threshold in subsequent runs.
Some terms that will be used in the following discussion are:
• threshholdfviewer] [entity] is one of a hundred numbers representing a log normal distribution. It is applied to the

cycles constants described below for the various levels of detection.
• cyclesN50Detection, cyclesN50Classification, etc., are the bars needed for a 50% probability of the corresponding

level of acquisition given infinite time. They are:
• cyclesN50Detection = 1.0
• cyclesN50Classification s 2.0
• cyclesN50Recognition = 3 .5
• cyclesN50Identification = 6.4

11

NVEOL Optical Sensor Scan

If the tests described in the General Sensor Scan section have been passed, proceed as follows:
If the viewer is under water, no acquisition by NVEOL sensor is possible. Exit.
Check LOS. If blocked, ignore the entity.
If entity to be acquired is within two meters of the sensor, consider it within the FOR.
If the entity to be acquired is not in the FOR and peripheral acquisition is off, ignore it.
If enhanced lighting is on,

get ln(conrrast_at_target) from the Environment and Light models.
Else,
get ln(contrast_at_target) from the weather model. This value is in bars/milliradian. (DATA)

If the entity is in defilade,
ln(contrast_at_target) <r- ln(contrast_at_target) - 1.0.

optical_size <r- sqrt(optical_dimension * height(posture, defilade) * LOS_exposure_fraction) * transmission_factor
• optical_dimension comes from the PhysicalPropertyModel (DATA), and is different for humans versus all other

entities.
• height is defined for non-human systems in Scenario Editor/Systems/Vehicle Data tab. For humans, height is 1.75

meters. In both cases it is adjusted for the entity's posture and defilade state.
• LOS_exposure_fraction is the fraction of total height to which the sensor has unobstructed LOS.
• transmission_factor is calculated using PLOSB through intermediate terrain features and smoke, if any.
• PLOSB is the probability that LOS is blocked per 10 meters of this terrain feature and is defined for a given type of

terrain in the Terrain Editor.
If range <= 10 meters,

optical_size <- 100 * optical_size
• range is the distance from the sensor to the entity to be acquired in meters. It is calculated in three dimensions.
ln(contrast_at_sensor) <- ln(contrast_at_target) + ln(extinction(range))
• extinction is loss of contrast resulting from normal atmospheric effects. This value comes from the weather type

entered in Scenario Editor/Tools/Scenario Parameters/Environment/Weather Conditions tab and is a function of
range.

If (ln(contrast_at_sensor) < ln(minContrast))
sensitivity(ln(contrast_at_sensor)) <— 0.0.

Else if (ln(contrast_at_sensor) > ln(maxContrast)),
sensitivity(ln(contrast_at_sensor)) <— maxCyclesPerMilliRadian.

Else,
sensitivity(ln(contrast_at_sensor)) <— value from slope, intercept calculation.

true_bars -e- sensitivity(ln(contrast_at_sensor)) * (optical_size /range) * 1000
• true_bars are the bars of resolution- used to determine acquisition level.
If currentSimTime() < weaponsEffectEnd,

WeaponsEnhancementMultiplier <- weaponsEffectMultiplier.
Else,

WeaponsEnhancementMultiplier <- 1.0.
If speed > movingTargetSpeed,

detFactor <— movingTargetSize.
Else,

detFactor <— 1.0.
detection_bars <— true_bars * weaponEnhancementMultiplier * detFactor
• detection_bars are the bars of resolution used to test for detection.
• weaponEnhancementMultiplier accounts for the increased probability of detecting a system that just fired its

weapon.
• detFactor increases the effective size of a moving system.
If the viewer just blinked (is suppressed),

acquisitionFactor <— acquisitionFactor * reacquisitionFactor
• reacquisitionFactor is defined in Scenario Editor/Tools/Scenario Parameters/Human Factors/Acquisition tab.
If the viewer is moving (speed > 0.25m/s),

acquisitionFactor <— acquisitionFactor * movingSensorSize
• movingSensorSize is defined in Scenario Editor/Tools/Scenario Parameters/Human Factors/Acquisition tab.

12

If(detection_bars < threshhold[viewer][entity] * cyclesN50Det), ignore it.
• threshhold[][] is the value from the 128X128 matrix described earlier.
Else,

acquire it.
If this is a new acquisition (not on the old acquisition list),

acquisition_priority <— 0.5 * detection_bars for entities outside the FOR, or
acquisition_priority <- 1.0 * detection_bars for entities inside the FOR.

If the entity is in the FOR,
if it recently fired its weapon,
prob_in_FOV <- 1.0

• Just Fired Time is defined in Scenario Editor/Tools/Scenario Parameters/Human Factors/Acquisition tab.
else,

prob_in_FOV <- (%_timeJooking_in_FOR/100) * FOV/FOR
If entity is not in the FOR,
if it recently fired its weapon and %_time_looking_in_FOR < 100,

prob_in_FOV <- 1.0
else,

prob_in_FOV <- ((1 - %_time_looking_in_FOR)/l 00) *
FOV/(27t - FOR)

If prob_in_FOV > 0,
if acquisition_level is none,
factor «- acquisitionFactor(acqLevelBeforeBlinking > Detection)

• acquisitionFactor as above.
if (detection_bars * factor > threshhold[][] * cycleN50Det)

ratio = detection_bars * factor/cyclesN50Det
If (ratio <1.8),

W = 2.7 + (0.7 * ratio)
pDetectlnfinite(ratio) = ratio ** W/(l + ratio ** W)
factor <— pDetectInfinite(ratio)/3.4.

Else,
factor <— ratio/6.8,

power = - mTimeOnTgt * factor
pDetec(ratio, mTimeOnTgt) = 1.0 -exp(power)
probability <— pModel —> pDetec(ratio, mTimeOnTgt)
probability <— probability * prob_in_FOV
if (probability < draw),

not acquired. Break to calculate acquisition level difference below.
acquisition_level <— Detection

if acquisition_level is Detection,
factor = acquisitionFactor(acqLevelBeforeBlinking > Classification)
if (true_bars * factor >threshhold[][] * cycleN50Class)

ratio <— true_bars * factor/cyclesN50Class
probability <— pModel -> pDetec(ratio, mTimeOnTgt)
probability <■— probability * jumpiness
if (probability < draw),

no change in acquisition level. Break to calculate acquisition level
difference below.

acquisition_level <— Classification
if acquisitionjevel is Classification,
factor <— acquisitionFactor(acqLevelBeforeBlinking > Recognition)
if (true_bars * factor > threshhold[][] * cycleN50Recog)

ratio <— true_bars * factor/cyclesN50Recog
probability <— pModel -> pDetec(ratio, mTimeOnTgt)
probability <— probability * jumpiness
if (probability < draw),

13

no change in acquisition level. Break to calculate acquisition level
difference below,

acquisitionjevel <- Recognition
if identification at recognition

acquisition_level= = identification
break

if acquisitionjevel is Recognition,
factor <- acquisitionFactor(acqLevelBeforeBlinking > Identification)
if (true_bars * factor > threshhold[][] * cycleN50Ident)

ratio = true_bars * factor/cyclesN50Ident
probability <— pModel -> pDetec(ratio, mTimeOnTgt)
probability <■— probability * jumpiness
if (probability < draw),

no change in acquisition level. Break to calculate acquisition level
difference below,

acquisitionjevel <— Identification
changeJn_acquisition_level <— acquisitionjevel - old_acquisitionJevel.
acquisition_priority 4- old_acquisition_priority + 4.0 * changeJn_acquisitionJevel.
Put the entity on the acquisition list for this sensor.
Once all entities have been scanned, sort the list by acquisition priority and trim it to the defined number of entities.
• The number of entries on a sensor's acquisition list is defined in Scenario Editor/Sensors/General tab.

14

Appendix 3

NVEOL Thermal Sensors
The algorithms in JCATS were derived from the Night Vision Electro-Optical Lab (NVEOL) model. **How do we
differ?
At the start of the simulation a 128X128 matrix is generated from the NVEOL Detection Map used in JANUS(A) 5.0.
The Detection Map consists of one hundred values representing a log normal distribution. JCATS randomly selects from
the Detection Map while filling a 128X128 matrix. All viewer/entity pairs in the simulation are then hash mapped to the
matrix. This means that for a given simulation run, a given viewer/entity pair will always have the same acquisition
threshold value. However, due to the random fill of the matrix, the same viewer/entity pair may (and probably will) have
a different threshold in subsequent runs.
Some terms that will be used in the following discussion are:
• threshhold[viewer] [entity] is one of a hundred numbers representing a log normal distribution. It is applied to the

cycles constants described below for the various levels of detection.
• cyclesN50Detection, cyclesN50Classification, etc., are the bars needed for a 50% probability of the corresponding

level of acquisition given infinite time. They are:
• cyclesN50Detection s 1.0
• cyclesN50Classification = 2.0
• cyclesN50Recognition = 3.5
• cyclesN50Identification s 6.4

NVEOL Thermal Sensor Scan
If the tests described in the General Sensor Scan section have been passed, proceed as follows:
If the viewer is under water, no acquisition by NVEOL sensor is possible. Exit.
Check LOS. If blocked, ignore the entity.
If entity to be acquired is within two meters of the sensor, consider it within the FOR.
If the entity to be acquired is not in the FOR and peripheral acquisition is off, ignore it.
Get NVEOL IR index for the entity
If the entity is in defilade

Diveide the index by 2
End
Get ln(Delta T_at_target) from a table by the index found.
optical_size <— sqrt(optical_dimension * height(posture, defilade) * LOS_exposure_fraction) * transmission_factor
• optical_dimension comes from the PhysicalPropertyModel (DATA), and is different for humans versus all other

entities.
• height is defined for non-human systems in Scenario Editor/Systems/Vehicle Data tab. For humans, height is 1.75

meters. In both cases it is adjusted for the entity's posture and defilade state.
• LOS_exposure_fraction is the fraction of total height to which the sensor has unobstructed LOS.
• transmission_factor is calculated using PLOSB through intermediate terrain features and smoke, if any.
• PLOSB is the probability that LOS is blocked per 10 meters of this terrain feature and is defined for a given type of

terrain in the Terrain Editor.
If range <= 10 meters,

optical_size <— 100 * optical_size
• range is the distance from the sensor to the entity to be acquired in meters. It is calculated in three dimensions.

15

ln(Delta T_at_sensor) <- ln(Delta T_at_target) - extinction *range - opticaMen
• extinction (really the In of it) is loss of contrast resulting from normal atmospheric effects. This value comes from

the weather type entered in Scenario Editor/Tools/Scenario Parameters/Environment/Weather Conditions tab and is
a function of range.

• OpticaMen = 0
If (ln(Delta T _at_sensor) < ln(mm Delta T))

sensitivity(ln(Delta T _at_sensor)) <— 0.0.
Else if (ln(Delta T _at_sensor) > ln(max Delta T)),

sensitivity(ln(Delta T _at_sensor)) «- maxCyclesPerMilliRadian.
Else,

sensitivity(ln(Delta T _at_sensor)) <- value from slope, intercept calculation.
true_bars «- sensitivity(ln(Delta T _at_sensor)) * (optical_size /range) * 1000
• true_bars are the bars of resolution used to determine acquisition level.
If currentSimTime() < weaponsEffectEnd,

WeaponsEnhancementMultiplier <- weaponsEffectMultiplier.
Else,

WeaponsEnhancementMultiplier <— 1.0.
If speed > movingTargetSpeed,

detFactor <- movingTargetSize.
Else,

detFactor <- 1.0.
detection_bars <- true_bars * weaponEnhancementMultiplier * detFactor
• detection_bars are the bars of resolution used to test for detection.
• weaponEnhancementMultiplier accounts for the increased probability of detecting a system that just fired its

weapon.
• detFactor increases the effective size of a moving system.
This is how to get the acquisition factor for any of the levels:
If the viewer just blinked (is suppressed),

acquisitionFactor <— acquisitionFactor * reacquisitionFactor
• reacquisitionFactor is defined in Scenario Editor/Tools/Scenario Parameters/Human Factors/Acquisition tab.
If the viewer is moving (speed > 0.25m/s),

acquisitionFactor <- acquisitionFactor * movingSensorSize
• movingSensorSize is defined in Scenario Editor/Tools/Scenario Parameters/Human Factors/Acquisition tab.
If(detection_bars < threshhold[viewer] [entity] * cyclesN50Det), ignore it.
• threshhold[][] is the value from the 128X128 matrix described earlier.
Else,

acquire it (verify you have LOS).
If this is a new acquisition (not on the old acquisition list),

acquisitionjpriority <- 0.5 * detection_bars for entities outside the FOR, or
acquisition_priority «- 1.0 * detection_bars for entities inside the FOR.

If the entity is in the FOR,
if it recently fired its weapon,
prob_in_FOV <- 1.0

• Just Fired Time is defined in Scenario Editor/Tools/Scenario Parameters/Human Factors/Acquisition tab.
else,

prob_in_FOV <- (%_time_looking_in_FOR/l00) * FOV/FOR
If entity is not in the FOR,
if it recently fired its weapon and %_time_looking_in_FOR < 100,

probjnJFOV <- 1.0
else,

prob_in_FOV <- ((1 - %_time_looking_in_FOR)/100) *
FOV/(27t - FOR)

If prob_in_FOV > 0,
if acquisition_level is none,
factor <- acquisitionFactor(acqLevelBeforeBlinking > Detection)

• acquisitionFactor as above.

16

if (detection_bars * factor > threshhold[][] * cycleN50Det)
ratio = detection_bars * factor/cyclesN50Det
If (ratio <1.8),

W = 2.7 + (0.7 * ratio)

Else,

pDetectlnfinite(ratio) = ratio ** W/(l + ratio ** W)
factor <- pDetectInfmite(ratio)/3.4.

factor <— ratio/6.8,
power = - mTimeOnTgt * factor
pDetec(ratio, mTimeOnTgt) = 1.0 -exp(power)
probability <— pModel —> pDetec(ratio, mTimeOnTgt)
probability <- probability * prob_in_FOV
if (probability < draw),

not acquired. Break to calculate acquisition level difference below,
acquisitionjevel«- Detection

if acquisition_level is Detection,
factor = acquisitionFactor(acqLevelBeforeBlinking > Classification)
if (true_bars * factor >threshhold[][] * cycleN50Class)

ratio <— true_bars * factor/cyclesN50Class
probability <- pModel -> pDetec(ratio, mTimeOnTgt)
probability ■«— probability * jumpiness
if (probability < draw),

no change in acquisition level. Break to calculate acquisition level
difference below,

acquisitionjevel <- Classification
if acquisition_level is Classification,
factor <r- acquisitionFactor(acqLeveIBeforeBlinking > Recognition)
if (true_bars * factor > threshhold[][] * cycleN50Recog)

ratio <— true_bars * factor/cyclesN50Recog
probability «- pModel -> pDetec(ratio, mTimeOnTgt)
probability <- probability * jumpiness
if (probability < draw),

no change in acquisition level. Break to calculate acquisition level
difference below,

acquisitionjevel <— Recognition
if identification at recognition

acquisitionJevel= = identification
break

if acquisitionjevel is Recognition,
if silhouetted

break
factor <- acquisitionFactor(acqLevelBeforeBlinking > Identification)

if (truej>ars * factor > threshhold[][] * cycleN50Ident)
ratio = truejjars * factor/cyclesN50Ident
probability <— pModel -> pDetec(ratio, mTimeOnTgt)
probability <— probability * jumpiness
if (probability < draw),

no change in acquisition level. Break to calculate acquisition level
difference below,

acquisitionjevel <— Identification
changeJn_acquisitionJevel «- acquisitionjevel - old_acquisitionJevel.
If change Jn_acquisitionJevel > 0

acquisition_priority <— old_acquisition_priority + 4.0 * changeJn_acquisitionJevel.
End if
Put the entity on the acquisition list for this sensor.
Once all entities have been scanned, sort the list by acquisition priority and trim it to the defined number of entities.

17

The number of entries on a sensor's acquisition list is defined in Scenario Editor/Sensors/General tab.

Appendix 4

Algorithm number 21
Planned Indirect Fire

Target line (manually entered)
Who is shooting (one or more)
The line is divided equally to the number of shooters, each shoots at the center of its piece.
Munition
Mission type (ASAP, priority, timed)
Number of volleys

I. Schedule mission:

Loop over all potential shooters
Sum number of target points

End
If number = 0 can't schedule
Else

Calculate target points (divide line to number of shooters and find center
of each)

End if
Loop over all shooters

Assign target points to each
End

• Number of points is in NumberOfArtlleryTubes
if we are operational

loop over all weapon stations
if the station can do

return 1
break

else
return 0
end if

end loop
else
return 0

• To find if a station can do:
if I am dead

can't do
else
loop over all weapon stations

pick ammo for the request
if possible

can do

18

else
can't do
end if

end loop
end if

• How to pick ammo for request:
Make sure not broken and can fire in indirect mode
If we selected one and it's not me

can't fire
endif
Loop over all munitions

If the munition is useable for artillery
Return 1

Else
Return 0

Endif
end -

• How to find out if munition is useable
if there is a selected munition and I am not the one or there is no selection

and can be fired in indirect mode and I am the right type
make sure I am not sensor guided
make sure I am not crew guided
make sure I am not self guided
return true

else
return false

endif

• How to assign target points
If I am not operational

don't schedule
else

loop over all weapon stations
try to schedule mission
stop on the first chance
break

end
endif

• How to schedule mission
If I am dead - can't schedule
If no more points left - can't schedule
Loop over all my weapons

Pick ammo
Make artillery mission
Queue it
Return true

End
II. Start Artillery:

If no mission return false
If the first in line is active return true (don't start another)
If mission should start now

return false
else

create artillery engagement
start engagement
return true

endif

19

• How to create artillery engagement
Set mission to active
Find time we can shoot (out of defilade)
Find time we can fire (load)
if when_to_fire < 0

can't do
break

Time_to_fire = maxc (Time_to_fire, Time_to_shoot)
If not ASAP mission

If time to start shooting < Time_to_fire
Abort

Else
Time_to_fire = Time_first_volley

End
Calculate range
Calculate number of volleys

III. Shoot Artillery:
Find our position (x,y coordinates)
Get target position (x,y coordinates)
• Take your piece of the line, divide by the number of volleys and shoot at the

center of each.
If it is a grenade see later what to do in this case
If this is the first volley

Calculate aiming error
Endif
Check range to target
If munition range < target range

Abort mission
Endif
Calculate aiming point based on aiming error
• aiming point = target position + aiming error (set z coordinate to 0)
If this is a grenade we need to correct for the proper floor
Shoot at the aiming point
If we didn't get a shot

Abort mission
Decriment the number of volleys

If number of volleys = 0
Done
Stop engagement

Endif
Make weapon ready to fire with that munition
If it can't be made ready

Abort engagement
Endif
Queue event

• How to calculate aiming error
If FASCAM and not grenade

Aiming error = 0
Else

Find indirect fire aiming error (next bullet)
endif

> How to find indirect fire aiming error
Given launch point and aim point

20

Range = distance from launch to aim
If range < 2

Aim error = 0
Else

Find a unit vector in the direction of shot
Find a unit vector perpendicular to it
Look up the indirect fire range table for the ammunition
• For each range the table contains: Time of flight

Angle of fall
Aim error in 2 directions
Ballistic error in 2 directions

Interpolate (linearly) based on range
• keep it constant outside range
error = range error * normally distributed random number +

deflection error * normally distributed random number

• What to do in the case of grenades
Find my_floor (environmental model if in building and what floor)
lfmy_floor*0

If shooter is in the same playbox as target (exclude tunnels)
Target position z coordinate = shooter z coordinate

Endif
Endif
Check throwing the grenade (allow 1 meter to either side for side-arm throwing
Check if grenade is blocked where you are or where the 1 meter can throw

• How to find out if grenade is blocked
If line from shooter to target is blocked or there are systems in the way

return true (blocked)
endif
Loop on seven different angles from horizontal

Construct a parabola from shooter to target with that angle
If the parabola is not blocked

Return false
Endif

End loop

IV. Impact Point:
Given launch point and aim point (with aiming error)
Ifrange<2

Aim point = impact point
Else

Find a unit vector in the direction of shot
Find a unit vector perpendicular to it
Look up the indirect fire range table for the ammunition
Interpolate (linearly) based on range
• keep it constant outside range
ballistic error = range error * normally distributed random number +

deflection error * normally distributed random number
Compute impact point (including ballistic error)
• This gives z coordinates based on terrain
• In the case of grenade - correct for height

z impact point = airburst height (specified) + z impact point
Check if the round is blocked on the way down to impact
• Compute angle of fall from impact based on the range table

In case of a bomb drop the angle is 90 degrees

21

Take a unit vector in this direction
Multiply the unit vector by min (1000 m, 25% range)
Calculate that point and check if projectile is blocked

If it is blocked
Impact point = point of blockage - 5 cm

Endif
Endif

Appendix 5

Algorithm number 20
Planned Direct Fire

Given target position center and radius
Pick a list of shooters

I. Schedule direct fire
If not operational

done
else
loop over all weapon stations

if weapon station can schedule mission
done

end

• How to schedule a mission
If dead or blind (no sensor) return false
If direct fire at entity and not acquired by our sensor return false
If can find direct fire munition weapon pair

• first for beam weapon then for other weapons
Create a mission for direct fire
Create a mission for beam weapon (target is picked differently)
• see later

Queue mission
Return true

Else
Return false

• How to find munition weapon pair
Loop over all weapons

If can direct fire and (this is ASAP or
time for direct fire setup < required time to first shot)

Tell weapon to pick direct fire ammunition
If it can

if the suppression ofthat weapon is
better than the best so far

make this best weapon
endif

endif
end

if we have best weapon return true

• How to find if a weapon can direct fire
If not broken and can be used in planned direct and

22

(no selection or I am selected)
Loop over all ammunitions

If can fire direct
Return true
Break

Endif
Return false

How to pick direct fire ammunition
If request to use beam weapon and I am not beam weapon

Can't pick
Else

If request not beam weapon and I am beam weapon
Can't pick

Endif
If not broken and can be used for direct fire

Loop over all munitions
Get the direct fire suppression indicator (ind)
lfind>0

If request is beam
Take this munition

Else
Break

Ratio = Suppression indicator/sustained
cycle time

ifthisisbestsofar
take this ratio as best so far

endif
endif

endif
end loop

endif

II. Start direct fire
If no mission return false
If mission in front is active return false
If mission in front should not start now return false
Start mission

If mission can be started
Create direct fire engagement
Break

Endif
If we don't have an engagement return false

Start direct fire engagement
Return true

• How to create direct fire engagement
If direct fire at target

Create and return direct fire at target engagement
Else

Create and return direct fire at area engagement
Endif

• How to start direct fire engagement
This is given in two parts. Part A for area and part B for target

A. Find Time when to fire
If time when to fire < 0

Stop

23

Find time when can shoot (clear defilade)
Time when to fire = max of the two times
If timed mission and time of first shot is before we can fire

Abort
Else

Time to fire = time of first shot
Endif

B. If we can't see the target
Abort

Find time when weapon is ready to shoot
If time < 0 or target is dead

Abort
Find time when weapon is ready to shoot out of defilade

Time to shoot is the max of the two
If timed mission

If we can't shoot in time
Abort

Else
Time to shoot = time of first shot

Endif
Endif

III. Shoot direct fire
This is given in two parts. Part A for area and part B for target

A. IfcenterofareaisNOTinrange
Abort

Else
Pick a target position in the area at random
Fire

If weapon doesn't fire
Abort

Else
Cycle weapon and ask when it is ready
Endif
If mission is over (time is up)

Done
Endif
If weapon is not ready (broken or out of ammo)

Done
Endif

Endif
B. If target is dead

Abort
Endif
If target is out of range

Abort
Endif
IfLOSislost

Abort
Endif
Pull the trigger
If failed

Abort
Else

Cycle weapon and reload if necessary
If mission time is up

Stop engagement

24

Endif
If weapon is not ready

Stop engagement
Endif

endif

• How to pick a target at area
If area is in building

Change the area to vertical about the diameter
perpendicular to line of shooter (keep the same floor)

else
Drape circle to terrain

endif
• How to pick a target for beam weapon

Doesn't shoot randomly but sweeps across the circle
aiming 1 meter above terrain
The sweep is from left to right along the diameter
Perpendicular to line from shooter to center of target area
The step size is the beam diameter at range

25

Appendix 6

Beam Weapons

The weapon category used to define a directed-energy system is the beam weapon. The munition of a
beam weapon is described as a pulse length, i.e., pulses of 1, 2, and 3 seconds describe three different
munitions.

Effects

The incapacitation (suppressive) effects of each munition (pulse length) against each vulnerability
category is given in the table associated with that category and the beam weapon. An example of
such a table is shown in Figure 1.

Suppression Degradations

Range
(m) Speed

Position Shoot
Prep PH

Shoot
Prep Acq Rest

Energy
Loss

Energy
StDev

Supp
Time

Supp
StDev

0.00 0.10 6.00 0.10 6.00 6.00 0.10 2000. 2.00 120.0 2.00

50.00 0.20 5.00 0.20 5.00 5.00 0.20 1000. 1.50 90.00 1.50

100.00 0.30 4.00 0.30 4.00 4.00 0.40 500. 1.00 60.00 1.00

200.00 0.40 3.00 0.40 3.00 3.00 0.60 250. 0.75 30.00 0.75

300.00 0.50 2.00 0.50 2.00 2.00 0.80 100. 0.50 10.00 0.50

400.00 1.00 1.00 1.00 1.00 1.00 1.00 50.0 0.00 0.00 0.00

0.00 LOO 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00

0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00

0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00

0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00

Figure 1. Data table for suppressive effects of beam munitions.

Each value in the table describes, as a function of range from the weapon to the target, a degradation
to the target's ability to perform actions after being struck by the beam weapon. These values are
multipliers for the parameters described by the column headings. For example, using Figure 1, a
target shot at a range of 100 m would have:

—his speed reduced to 30% of his normal speed
—his time to prepare a position increased by a factor of 4
—his shoot PH degraded to 30% of its normal value
—his shoot preparation time increased by a factor of 4

26

—his acquisition times increased by a factor of 4
—the value of rest reduced to 40% of its usual effect
—an energy loss averaging 500 energy units,

with a standard deviation of 1 energy unit (normally distributed)
—these effects last for an average of 60 seconds,

with a standard deviation of 1 second (normally distributed).

Weapon description

Parameters needed to define the beam weapon are:

Minimum range
Maximum range
Setup time
Lay time
Lay time per 90 degrees
Tear down time
Duty cycle
Range parameters

Minimum and maximum range define the minimum and maximum ranges at which the system can be
used.

Setup time refers to the time required to get the weapon ready to fire after moving it or turning it off.

Lay time is the time needed for the shooter to aim at his target.

Lay time per 90 degrees is not currently implemented. In future versions of JCATS this parameter
will be used to define how long it takes to re-aim through an angle. This can be thought of as the
time required to slew the weapon; the lay time will then describe the finer adjustments needed to aim
the weapon.

Tear down time is the opposite of setup time and refers to the time required to prepare the weapon for
movement or to turn it off.

Duty cycle is given in percent. As currently implemented, the beam weapon will fire one shot, the
needs to recover for the amount of time defined by the duty cycle. The recovery time is given by:

pulse length * (1 - duty cycle)
recovery time = * ° ——

duty cycle

For example, if the duty cycle is 10% and the pulse length is 2 seconds, then the weapon will have to
recover for 18 seconds (2 sec * 0.9 / 0.1).

27

The range parameters of the weapon are described in a table consisting of three columns: range,
beam diameter, and pulse length. At ranges from the minimum weapon range to the first entry in the
table, the first row of the table is used. At ranges from the last table entry to the maximum range of
the weapon, the last row of the table is used. Between these, data for beam diameter are interpolated.
At a given range, the pulse length used is that corresponding to the nearest table entry for range.

As an example, consider a weapon with a 10 m minimum range, a 500 m maximum range, and range
parameters as follow:

Range (m) Beam diameter (m) Pulse length (sec")
100 1.0 1.0
200 1.5 3.0
400 3.0 5.0

At ranges from 10 to 100 m, the beam diameter is 1 m and a 1 second pulse is used. At ranges
between 100 and 400 m, values for beam diameter are interpolated from the table. From 400 to 500
m, beam diameter is 3.0 m and pulse length is 5.0 sec.

Using the same table, at ranges from 10 - 150 m, a 1-sec pulse is used. From 150 - 300 m, a 3-sec
pulse is used. Beyond 300 m, a 5-sec pulse is used.

N.B. The user must take care to ensure that every pulse length referenced in the range parameter
table corresponds to a munition of the same pulse length.

As currently implemented, the only mode of use for a beam weapon is planned direct fire. The user
defines a circle that is his target. After the lay time, the beam weapon will begin to sweep across the
circle from one edge to the other. The distance from the weapon to the target determines the beam
diameter, and the weapon will shoot one beam diameter, then, after the recovery time defined by the
duty cycle, the weapon will move over by that diameter and fire the next pulse, etc., until the entire
circle has been traversed.

28

Appendix 7

Algorithm Number 6
Enhanced Lighting

Parameters:
1. CosViewingAngle =cos (88 deg) = 0.0349
cosine of the smallest angle between a panel normal and the sensor-to-panel vector at which the sensor can still
reasonable see the panel.

2. CosLightNearTarget =cos(2.5 deg.)= 0.99905
cosine of the largest angle at which the subject is considered backlit/silhouetted

3. SinAboveTheHorizon =sin(l deg.)= 1.7452e-2
sine of the angle measured positive vertically above the horizon above which the target is assumed to be seen against the
sky. Below this angle, the target is assumed to be seen against the ground

4. SteradiansOfSunMoon = 6.5e-5
The solid angle subtended by the Sun and the Moon

5. CosMaxScattering =cos(5 deg)= 0.99619
The cosine of the maximum angle at which forward scattering of lights into the sensor occurs.

6. ScatteringFraction = 0.02
The fraction of light within the forward scattering cone (as defined by CosMaxScattering above) that forward scatters
into the sensor

7. AreaLightSourceFraction = 0.1
The fraction of an area light (the sensor is in, but the target is not) that enters the sensors and overlays both the target and
the background.

minLightLux = sensorMinLux / 5.0
compute unit vector from sensor to top of target
compute unit vector from sensor to bottom of target
compute cosBetweenTopAndSensor = cosine of angle between normal to top surface of target and vector from sensor to
target top
topVisible if cosBetweenTopAndSensor > CosViewingAngle

compute cosine of angle between front (facing sensor) surface and vector from sensor to target
front Visible if this cosine > CosViewingAngle

29

compute cosBetweenSideAndSensor = cosine of angle side normal and vector from sensor to target
If this cosine is negative make normal point the opposite direction
side Visible if this cosine > CosViewingAngle

facetNormal = unit vector sum of(frontNormal+ sideNormal + topNormal)
facetVisible if cosine between this vector and sensor to target vector > CosViewingAngle

facet2Normal = unit vector sum of(frontNormal - sideNormal + topNormal)
if cosine between facet2Normal and sensor to target vector < 0.0

take facet2Normal = unit vector sum of(sideNormal - frontNormal + topNormal)

facet2 Visible if cosine between facet2Normal and sensor to target vector > CosViewingAngle

STEP 0: Initialize the luminance levels
luxOfTop = 0.0
luxOfFront = 0.0
luxOfSide = 0.0
luxOfFacet = 0.0
luxOfFacet2 = 0.0
luxOfBackground = 0.0
luxScattered = 0.0

STEP 1: Compute the contribution due to the NATURAL LIGHT SOURCES
(i.e. Sun/Moon) direct and sky/ground reflected light

Get skyLux and grndReflectivity (input)
luxOfSide = skyLux *((1.0 + grndReflectivity) / 2.0) * targetReflectivity

luxOfFront = skyLux *((1.0 + grndReflectivity) / 2.0) * targetReflectivity

luxOfTop = skyLux * targetReflectivity, if top Visible and 0 otherwise

luxOfFacet2 = skyLux * (3.0 + grndReflectivity) / 4.0) * targetReflectivity

luxOfFacet = skyLux *((3.0 + grndReflectivity) / 4.0) * targetReflectivity

luxOfBackground = skyLux if sensorToTarget.z > SinAboveTheHorizon
skyLux / skyToGroundRatio otherwise

Compute direct illumination contribution as follows:
get HghtLux = illumination of mNaturalBackGroundLight

if lightLux > minLightLux and lightLux > 0.0 and elevation of mNaturalBackGroundLight > 0.0
MaxEarthTerrainHeight = 9200.0

Find unit vector from the target to the Sun/Moon as
fromSunOrMoon=(-cosPhi*cos(theta),

-cosPhi*sin(theta),
-sin(elevation of mNaturalBackGroundLight)

where cosPhi = cos(elevation of mNaturalBackGroundLight)
theta = 7C/2.0 - azimuth of mNaturalBackGroundLight

Make sure Sun/Moon shining down
if fromSunOrMoon.z > 0.0 fromSunOrMoon.z = 0.0

if targetPosition.z < MaxEarthTerrainHeight
Calculate minimum distance we have to go back towards sun/moon

Calculate sunPosn = position of Sun/Moon
subtract minimum distance and add target position
Run line of sight from light source (sunPosn) to target position and get transmissionFraction and

exposureFraction

30

else
transmissionFraction = exposureFraction = 1

endif
Attenuate light due to partial transmission

lightLux =lightLux* transmissionFraction

Add direct attenuated Sun/Moon backlight if behind target
Compute cosSunToObserverTarget = -cosine of angle between vectors fromSunOrMoon and

sensorToTarget
if cosSunToObserverTarget > CosLightNearTarget

luxOfßackground =luxOfßackground+
cosSunToObserverTarget * lightLux / SteradiansOfSunMoon

Determine the lux reflected from each panel
lightLux =lightLux In
lambertCos = cosine of the angle between normal to panel and fromSunOrMoon
iflambertCos>0.0

luxOfTop = luxOfTop +lambertCos * lightLux * targetReflectivity
luxOfßackground =luxOfßackground + lambertCos * lightLux * gmdReflectivity

endif

All the remaining panels are target panels so multiply in reflectivity
lightLux = lightLux * targetReflectivity

Assume exposed portion is on top, so sides have less light
lightLux =lightLux * exposureFraction

Compute the Front Surface contribution
if front Visible

lambertCos = cosine angle between frontNormal and fromSunOrMoon
if lambertCos >0.0

luxOfFront =luxOfFront + lambertCos * lightLux
endif

Compute the Side Surface contribution
if sideVisible

lambertCos = cosine angle between sideNormal and fromSunOrMoon
if lambertCos >0.0

luxOfSide = luxOfSide + lambertCos * lightLux
endif

Compute the Facet Surface contribution
if facet Visible

lambertCos = cosine angle between facetNormal and fromSunOrMoon
iflambertCos>0.0

luxOfFacet =luxOfFacet + lambertCos * lightLux
endif

Compute the Facet2 Surface contribution
if facet2 Visible

lambertCos = cosine angle between facet2Normal and fromSunOrMoon
if lambertCos >0.0

luxOfFacet2 =luxOfFacet2 + lambertCos * lightLux
endif

STEP 2: Compute how much the spot and area light shine on the TARGET.

For each light source call HghtOnTarget (see below) to compute:
lightLux and insideLight indicator

31

ifinsideLight
luxOfBackground = luxOfBackground + grndReflectivity * lightLux
lightLux = lightLux * targetReflectivity
luxOfTop = luxOfTop + lightLux
luxOfFront =luxOfFront + lightLux
luxOfSide = luxOfSide + lightLux
luxOfFacet =luxOfFacet + lightLux
luxOfFacet2 =luxOfFacet2 + lightLux

else
compute unitVectorFromLightToTarget

lambertCos = cosine angle between normal to XYPlane and unitVectorLightToTarget
iflambertCos>0
luxOfBackground =luxOfBackground + lambertCos * lightLux * grndReflectivity
iftopVisible

luxOfTop = luxOfTop + lambertCos * lightLux * targetReflectivity
endif

endif

Get target reflection intensity
lightLux = lightLux *targetReflectivity* targetExposureFraction

Compute the Front Surface contribution
if frontVisible
lambertCos = cosine angle between frontNormal and unitVectorLightToTarget
if lambertCos >0.0

luxOfFront = luxOfFront + lambertCos * lightLux
endif

endif
Compute the Side Surface contribution

if side Visible
lambertCos = cosine angle between sideNormal and unitVectorLightToTarget

if lambertCos >0.0
luxOfSide = luxOfSide + lambertCos * lightLux

endif
endif
Compute the Facet Surface contribution

if facetVisible
lambertCos = cosine angle between facetNormal and unitVectorLightToTarget
if lambertCos >0.0

luxOfFacet = luxOfFacet + lambertCos * lightLux
endif

endif
Compute the Facet2 Surface contribution

if facet2 Visible
lambertCos = cosine angle between facet2Normal and unitVectorLightToTarget
if lambertCos >0.0

luxOfFacet2 = luxOfFacet2 + lambertCos * lightLux
endif

endif

STEP 3: doesn't exist in code
STEP 4: Determine which spotlights and area lights shine into the sensor to aid in silhouetting the target

For each light container:
call lightOnSensor (see below) to get thisLightsLuxScattered and thisLightsLuxBackground

luxOfBackground = luxOfBackground + thisLightsLuxBackground
luxScattered = luxScattered + thisLightsLuxScattered

end loop

32

Compute the contrast of the TARGET as follows
set: computedContrast = 0.0

isTargetSilhouetted = true
minLux = sensorMinLux
if minLux < 0.0 minLux = 1 .Oe-6
if top Visible

call contrast to get computedContrast and isTargetSilhouetted
endif
if front Visible

call contrast to get computedContrast and isTargetSilhouetted
endif

if sideVisible
call contrast to get computedContrast and isTargetSilhouetted

endif
if facetVisible
call contrast to get computedContrast and isTargetSilhouetted

endif
if facet2 Visible

call contrast to get computedContrast and isTargetSilhouetted
endif

Compute the log of the contrast
computedContrast = -1.0e20 if computedContrast = 0.0

log(computedContrast) otherwise

Contrast:

Contrast calculation and choosing

Parameters: SilhouetteRatio = 64.0
In order to be silhouetted, the background/target ratio must be more than this.

s = true if luxTarget< minLux
false otherwise

if luxTarget > maxLux
luxTarget = maxLux
s = true

else if luxTarget < minLux
luxTarget = minLux
s = true

endif
if luxBkgd > maxLux

luxBkgd = maxLux
s = true

else if luxBkgd < minLux
luxBkgd = minLux

endif

Calculate numerator of contrast ratio
num = luxTarget - luxBkgd
ifnum<0. num =-num
ifnotsand (luxTarget < 0.0 or luxBkgd/luxTarget > SilhouetteRatio) s = true
c = num / (luxBkgd + luxScattered)

33

Choose between existing values and new ones. Choose unsilhouetted contrast when available
if (not s and silhouetted and c > 0.0) or (not s or silhouetted) and c > contrast)

contrast = c
silhouetted = s

endif

LightOnTarget (For spot light, flare and area light)
Initialize the exposure fraction
exposureFraction = 1.0
Call lightOnPosition (see below) to get HghtLux and insideLight
targetExposureFraction = exposureFraction
return lightLux
lightOnSensor (For spot light and flare)
Initialize:
luxScattered=0.0
luxBackground = 0.0

Get the unit vector from light to sensor
compute cosLightVsTarget =cosine angle between vectors from sensor to light and to target

if cosLightVsTarget < CosMaxScattering return
Call lightOnPosition to get light Lux and insideLight

lightLux = lightLux *exposureFraction * %
if cosLightVsTarget > CosLightNearTarget

luxBackground = luxBackground +lightLux
else

luxBackground = luxBackground +ScatteringFraction * lightLux
luxScattered = luxScattered +ScatteringFraction * lightLux

endif
return

LightOnSensor (for area light)
Initialize

luxScattered = 0.0
luxBackground = 0.0

if light is turned off return
if sensorPosition.z < mCenterTopOfLight.z and we are inside light

if target is inside light
luxScattered = luxScattered +AreaLightSourceFraction * mLuxesInLight

else
both sensor and target inside the light no scattering or background light is added

return
endif

else
Sensor not in the light
compute unit vector sensorToLightCenter
See if lit area is in front of sensor. If not, quit now, i.e.
compute cosALightVsTarget = cosine angle between vectors from sensor to light center and to target
if cosALightVsTarget < 0.0 return
Compute lPosn=the center of the area light

34

if area light behind the target
take lPosn as point of intersection behind target
backLit = true

else if light lies between sensor and target
take lPosn as point of intersection behind target
lightBetweenSensorAndTarget = true

else if target is in light
take lPosn as point of intersection behind target
else
error message
return

endif
endif

endif
lightLux = AreaLightSourceFraction * mLuxesInLight

if lightLux < 0.2 * minLux return
Compute line of sight from lit area to sensor and get transmission'Fraction and exposureFraction

lightLux = lightLux *transmissionFraction * exposureFraction
if backLit

luxBackground = luxBackground +lightLux
luxScattered = luxScattered + ScatteringFraction * lightLux
return

else if lightBetweenSensorAndTarget
luxBackground = 0

luxScattered = luxScattered + lightLux
return

else
Estimate sensorToEdge = sensor to edge of light
compute 1 = norm of the vector sensorToEdge
if 1 < 0.0 or cosine angle between vectors from sensor to edge and to target < CosMaxScattering

return
endif

luxBackground = 0
luxScattered = luxScattered + ScatteringFraction * lightLux

endif
endif

LightOnPosition (for flare)
We are never "inside" a flare

insideLight = false
if flare is out return 0.0
ilium = illuminance of targetPosition (see below)
if ilium < 0.2*minLux return 0.0 ,

Run a line of sight from light to position to find how much light is lost due to transmission
Reduce the amount of light from flare by transmission fraction

ilium = ilium *transmissionFraction
return ilium

HghtOnPosition (for Spot)

We are never inside a spot light
insideLight = false

35

if Light is turned off return 0.0
ilium = illuminance of targetPosition (see below)

if ilium < 0.2*minLux return 0.0
Run a line of sight from light to position to find how much light is lost due to transmission
Reduce the amount of light from spotlight by transmission fraction
ilium = ilium *transmissionFraction / %

return ilium

LightOnPosition (for area light)
Initialize

insideLight = false
if light is turned off return 0.0
if the point is inside the light
insideLight = true
return mLuxesInLight

endif
lightLux = mLuxesInLight

Find distance outside of lit area.
For now lets use the approximate radius of the area light to subtract off the distance of the target from the light.
Compute lPosn = position from center to top of light
Estimate distance from light perimeter
If the entity is closer to the edge of the light than the lights "radius" treat it like it is in the light modulo the source

fraction
if lightDistSquared / lightRadiusSquared < 4.0

lightLux =lightLux * AreaLightSourceFraction * n
else if lightDistSquared > 16.0 * lightRadiusSquared

lightLux = AreaLightSourceFraction * (2.0 * mHeight * mLightRadius) / lightDistSquared
else

compute approxLightDistToEdge
Estimate subtended angle of light in XY plane (deltaTheta)

deltaTheta = 2.0 * arc tan (mLightRadius.approxLightDistToEdge)
Multiply lux of source by angle it the solid angle it subtends to get lumens on target.
lightLux = AreaLightSourceFraction * mLuxesInLight * deltaTheta *

sqrt(hSq/(hSq + (approxLightDistToEdge * approxLightDistToEdge)))
where hSq = mHeight * mHeight

endif
endif
if lightLux < 0.2 * minLux return 0.0
Perform LOS calculation from light to target
lightLux =IightLux * transmissionFraction / Jt

return lightLux

illuminance(for Flare)
computes illuminance by flare at a given position

Ifthe position is outside the cone return 0.0
ilium = 0.0
compute distSquaredFromLight

if distSquaredFromLight > 1.0
ilium = (mLumensOfLightlnCone / distSquaredFromLight) * 100

else

36

ilium = mLumensOfLightlnCone
return ilium

illuminance (for Spot)
If the point is outside the cone return 0.0
ilium = 0.0
Compute distSquaredFromLight

if distSquaredFromLight > 1.0
ilium = mLumensOfLightlnCone / distSquaredFromLight

else
ilium = mLumensOfLightlnCone

return ilium

Appendix 8

Algorithm Number 17
FASCAM

FASCAM, a FAmily of SCAttered Mines, comes in two classes, anti-tank and anti-personnel. Laying mines is
done like artillery (see planned indirect fire, algorithm 21) with one difference. In FASCAM the aiming error and
ballistic error are both zero. Adjudication of mines is explained in Encountering a Minefield (algorithm 30)

Appendix 9

Algorithm Number 28
Fatigue Factor

Fatigue factor is a degradation factor on a requested speed not max speed. It is done by a table look-up. The following is
a table of movement speed factor based on energy level.

Movement speed factor Energy level

1 81-100
.5 61-80
.4 41-60
.3 21-40
.2 0-20

37

Appendix 10: MOUT JCATS V&V- Algorithm Upgrade

Background.

The Naval Postgraduate School (NPS) is participating in the MOUT JCATS Verification and
Validation (V&V). Although the tasking has formally focused on verification of the JCATS
algorithms, research by the author has revealed that the most appropriate algorithms were not used in
JCATS in the first place. JCATS has expressed interest in exploring this point further, especially as
regards accreditation of JCATS for MOUT studies.

The state of military modeling and simulation was quite different when Janus (from which
JCATS has descended) was initially developed. The major difference (as pertains the V&V of
MOUT JCATS) is that there was no attempt at model standards by the U.S. Army. Moreover, the
development of model standards (e.g. standardization of algorithms) has also been accompanied by
the development of compendia of algorithms by the U.S. Army for various reasons. Thus, there is
information (detailed enough for a contractor to implement algorithms, including input data) now
available on a number of algorithms.

Need for Upgrade.

"The Compendium of Close Combat Tactical Trainer Algorithms, Data, Data Structures, and
Generic System Mappings" (AMSAA [1996a]) contains a number of algorithms appropriate for a
high-resolution Monte-Carlo simulation like JCATS. These algorithms represent the best that U.S.
Army weapon-system analysis has developed (e.g. see DARCOM [1977]). The author's own
teaching and personal research at the Naval Postgraduate School (NPS) substantiates this assertion.
For example, the AMSAA [1996] compendium of algorithms for the close combat tactical trainer
(CCTT) does not employ the assumption, in general, of statistical independence between rounds
because fire control usually introduces serial correlation between rounds. Moreover, AMSAA can
supply input data that allows one to play such serial correlation in a high-resolution Monte-Carlo
simulation like Janus or JCATS. The author's personal research has revealed that when such serial
correlation exists (and is appreciable), significantly different results are obtained when one ignores
such serial correlation by assuming statistical independence between rounds.

Moreover, the Army has apparently not kept Lawrence Livermore National Laboratory
(LLNL), the developer of both Janus and also JCATS, explicitly informed about Army model
standards and the significance of various compendia of high-resolution-simulation algorithms
(Uzelac [2000]). Consequently, LLNL has not been aware that the latest (and most appropriate)
algorithms were not being used in JCATS. Furthermore, the author has noted that even the Army
version of Janus contains a direct-fire attrition algorithm that should be upgraded because
independent rounds has been assumed (Taylor [1999a], [1999b]).

Sources of Information.

The U.S. Army has put together several compendia of algorithms for high-resolution Monte-
Carlo simulations. The AMSAA compendium of algorithms for the CCTT (AMSAA [1996a]) has
been noted above. This compendium has been subsequently updated (AMSAA [1999]).
Additionally the Army has also developed a compendium for high-resolution attrition algorithms
(AMSAA [1996b]) (see ODUSOR & AMSO [1997]). Further information about such compendia
and Army model standards may be found "Army Model and Simulation Standards Reporf's for
various FYs. Lack of time has not allowed such sources to be thoroughly researched at this time.

38

Algorithms Requiring Upgrading. Preliminary research has revealed that the following algorithms
need upgrading in JCATS:

(1) target acquisition,

(2) indirect-fire attrition,

(3) direct-fire attrition.

The order given above corresponds to their priorities, i.e. the first algorithm (target acquisition) has
the highest priority. In particular, the ACQUIRE algorithm (two-dimensional target) should replace
the obsolete Night Vision Laboratory (NVL) methodology (one target dimension). Moreover, the
Army has apparently implemented the ACQUIRE in CASTFOREM (and other Army simulations)
somewhat differently than LLNL has for the NVL methodology. Lack of time has prevented
documentation of the details here.

39

Appendix 11: Flaw in Janus Direct-Fire Assessments

The following explains a basic flaw in how Janus treats direct-fire hit assessments. The flaw
amounts to the fact that Janus does not use the appropriate AMSO model standard (the direct-fire hit
assessment methodology from "The Compendium of Close Combat Tactical Trainer Algorithms,
Data, Data Structures, and Generic System Mappings" (AMSAA [1996])).

Direct-Fire Hit Assessments

There are two fundamentally different approaches to direct-fire hit assessments that are
currently used by the US Army in high-resolution Monte-Carlo combat simulations (whether they be
for training or analysis purposes)

(1) miss-distance distribution method,

(2) PSSH method.

These two methods yield identical results for the first round, but can differ appreciably for multiple-
round engagements of a target by a particular firer.

Flaw in Janus

For multiple rounds fired in an engagement, the PSSH method amounts to (since sampling will
be independent in any Monte-Carlo procedure)

The above expression (in general) does not yield results exactly equivalent to the miss-distance-
distribution method, because of the presence of so-called variable bias in weapon-system
performance. Research is needed to determine conditions and weapons-system types for which this
difference can be appreciable. In any case, AMSAA has extensive data to support either method
(e.g. see AMSAA [1996]). The second (simpler) method is frequently used in high-resolution
simulations, when run time is an issue. The first method, of course, yields theoretically correct
results.

Suggested Change in Janus

If possible (and practically feasible), it is suggested that the miss-distance distribution
method (as described in "The Compendium of Close Combat Tactical Trainer Algorithms, Data,
Data Structures, and Generic System Mappings" (AMSAA [1996, Chapter 4]) be implemented in
Janus for direct-fire hit assessment.

Reference

40

US Army Material Systems Analysis Activity (AMSAA), "The Compendium of Close Combat
Tactical Trainer Algorithms, Data, Data Structures, and Generic System Mappings," Special
Publication 74, Aberdeen Proving Ground, MD, June 1996.

Appendix 12: Flaw in Janus Direct-Fire Assessments

41

This updates the author's "Flaw in Janus Direct-Fire Assessments" (see Appendix 8 above).
The additional information given here is an updated reference to standard Army algorithms used in
high-resolution attrition modeling (AMSAA [1996]). The AMSO's Standards Coordinating
Committee for Attrition (AMSO [1997,]) has proposed them as standard algorithms in the
development of high-resolution simulations and simulators for distributed environments. The
compendium's focus is primarily on ground combat, attack helicopters, and ground-based air
defense. The areas addressed include vulnerability modeling and the physical aspects of attrition for
various categories of weapon systems: direct-fire weapon systems, indirect-fire weapon systems,
ground-based air-defense systems, and minefields. The behavioral and cognitive aspects of attrition
are also included (AMSO [1997, p. 43]).

References

US Army Material Systems Analysis Activity (AMSAA), "Compendium of High Resolution
Attrition Algorithms," Special Publication 77, Aberdeen Proving Ground, MD, October 1996.

Army Model and Simulation Office (AMSO), "Army Model and Simulation Standards Report
FY98," Washington, DC, October 1997 (Available on AMSO World-Wide Website, with Homepage
http://www.amso.army.mil.)

Appendix 13: Independent Rounds or Correlated Rounds?

42

Introduction.

This report has been critical of the use of the so-called independent-rounds model implicitly
used by LLNL in JCATS. This appendix will attempt to briefly give some insight into the technical
basis for this criticism. AMSAA has developed an excellent technical solution to this problem:
namely, Monte Carlo every round. This solution is not only technically sound, but also very simple.
Unfortunately, its very simplicity masks the underlying technical issue.

Background.

For direct-fire attrition, JCATS assesses firing outcomes by Monte-Carloing outcomes
overtime to simulate the engagement kill probability. - Since this Monte-Carlo procedure, draws
independent samples from a (uniform) pseudorandom-number generator, this sampling procedure is
equivalent to using the following formula and doing a single draw from the random-number
generator.

where Pic(n) denotes the engagement kill probability based on firing the n rounds at the target, and
PSSK denotes a single-shot kill probability (assumed to be constant over time). When the single-shot
kill probability is allowed to change over time (e.g. through changes in the range between firer and
target), formula (1) takes the form (still assuming independence between rounds)

where the subscript "j" on PSSK denotes a particular round that has been fired. Use of this subscript
allows one to play variations in PSSK over time. However, the U.S. Army's "Engineering Design
Handbook: Army Weapon System Analysis, Part One " (DARCOM [1977, p. 20-5]) says5

We should emphasize immediately that Eqs. 20-5 and 20-66 do not apply in general for
multiple rounds. In spite of their almost universal use, they can be subject to serious errors
in many applications not involving the rather strict assumptions that on the average the
gunner has zero aim error but commits a shot-to-shot air error described by a^, as we will
see. Walsh (Ref. 1) indicates that for relatively small hit probabilities per shot, formulas of
the type of Eqs. 20-5 and 20-6, the latter being of the Poisson type, may still apply with
suitable accuracy even for occasions involving dependent events. Hence, such uses of Eqs.
20-5 and 20-6 should be checked independently as the occasion may require.

In some very real sense, the "Engineering Design Handbook" provides the theoretical background
for the attrition algorithms in AMSAA [1996a], [1996b], [2000]. Moreover, such AMSAA/BRL
work has not led to simple formulas that clearly explain to the neophyte why the model (1) is
inappropriate under many (if not most) operational circumstances. In the next section, an example is
given (salvo fire) that can be used to show how bad an approximation (1) can prove to be.

The results in Chapter 20 "Multiple Round Hit Probabilities, Target Coverage, and Target
Damage" of DARCOM [1977] primarily apply to artillery fire, traditionally a major concern of
modern armies. There is little tie-in given for direct-fire weapons, although it certainly exists. The

5 This document was primarily written by Dr. Frank E. Grubbs, formerly Chief Operations Research Analyst of the U.S.
Army Ballistic Research Laboratories (BRL), prepared for the Engineering Design Handbook Office (prime contractor to
U.S. Army Materiel Development and Readiness Command) (DARCOM [1977, p. xx]). BRL was the predecessor
organization of AMSAA.
6 This second equation cited here is an approximation to (1) that was widely used before computers were as wide spread
as they are today. The first is simply equation (1) above.

43

important point to note here, however, is that there are no simple models and formulas for correlated
rounds given in DARCOM [1977] (see also Eckler and Burr [1972, Chapter 2]). This is the
underlying reason why essentially Monte-Carlo procedures are the only practical way of simulating
multiple-round engagements when there is appreciable round to round correlation (and there
invariably is, at least AMSAA data tells one). Moreover, this is the theoretical justification of the
direct-fire attrition algorithm for non-automatic-fire modes given in "The Compendium of CCTT
Algorithms" (AMSAA [1996a, Section 4.3.1], [2000, Section 4.3.1]). The fact the non-independent
rounds are being considered is evident from the use of a "variable bias."

Before leaving this section, some useful notation for future comparisons will be established.
Let us accordingly denote the engagement-kill probability (i.e. cumulative kill probability) for n
independent rounds as
The engagement-kill probability for these n independent rounds is given by

Salvo-Fire Model.

The term "salvo" is used to denote the situation in which all n rounds are directed at the same
aim point. The rounds are assumed to be independent of each other and all have the same delivery
error. For simplicity in illustrating our point, the one-dimensional case will be considered here.
Then the engagement-kill probability is given by

where the conditional single-shot kill probability is given by

The above notation will be explained below.

The assumptions made for this salvo-fire model are as follows

(1) target located at x = 0,
(2) common aim point, denoted as xa, for salvo of n rounds; Xa is a random variable with

mean 0, standard deviation aa, and density function denoted as
(3) delivery error D about aim point has mean xa and standard deviation Od ; the i- round

impacts at
(4) lethality function denoted as l(x),
(5) cumulative damage negligible.

If one assumes a so-called Gaussian lethality function (e.g. see DARCOM [1977, Section 15.6] or
Taylor [1983, p. 141]), then the lethality function in (5) is given by
and it follows that the conditional single-shot kill probability is given by

Let us further assume that all distributions are normal (i.e. the distributions for aim error and
delivery error). Substituting (6) into (4), using the binomial theorem, and carrying out the term by
term integration, one obtains

It should be noted that for the above model the aim error, denoted as Xa, is realized only
once for the salvo of n rounds, while the delivery error, denoted as D, is realized every round.
Moreover, this aim error is in some sense equivalent to a target location error. This is an important
point, since it allows one to interpret the above model as applying to the case in which the same
realization of the target location error is used for all n rounds, whereas the case of independent
rounds essentially means that the target is being aquired again independently after each round is
fired. This latter point is key for understanding why AMSAA data does not support the
independent-round model.

Summary of Results for the Two Models.
44

In this section, the results for the two models considered above are summarized. The salvo-
fire model yields the following expression for engagement-kill probability

where the conditional single-shot kill probability is given by

For the case of a Gaussian lethality function and normal distributions for aim and delivery errors,
one finds that the engagement-kill probability is given by (7).

The independent-round model yields the following expression for engagement-kill
probability

where the single-shot kill probability is given by
and hence

where the standard deviation a is the mean square error for aiming and delivery of fire, namely

Results of Numerical Computations.

This author has had students in classes at the Naval Postgraduate School do numerical
experiments on the computer to compare the above two models. When the aim error (equivalently,
the target-location error) is small relative to the delivery error, both (8) and (10) yield very similar
results. However, when there is a relatively large aim error, there can be large discrepancies
between the two formulas (8) and (10), with the independent-round model invariably yielding more
optimistic results. In fact, the independent-round model can yield results several times larger than
the salvo-fire model, even for as few as five rounds. In these cases, moreover, as n becomes large,
the salvo-fire model does not even approach 1.0 asymptotically, but approaches a number less than
one.

Discussion.

The above should provide some insight why the independent-round model (3) is simply a bad
model for computing engagement-kill probability for many (if not most) cases of practical interest.
Since most of the time targets are just not independently re-acquired after the firing of each round,
one should not expect equation (10) to be a good model in all cases. Simple formulas were obtained
above because of the assumption of Gaussian lethality, otherwise there are no such simple formulas
in terms of conveniently tabulated functions. This is the reason for the Monte-Carlo procedure given
by AMSAA [1996a], [2000] for direct-fire attrition (and identified by the occurrence of a variable
bias). Furthermore, AMSAA has data that shows that the independent-round model (10) is simply a
bad model for many (if not most) cases of practical interest.

References:

A.R. Eckler and S.A. Burr, Mathematical Models or Target Coverage and Missile Allocation,
Military Operations Research Society, Alexandria, VA, 1972.

J.G. Taylor, "High-Resolution Combat Models (Micro-Combat Analysis)," Unpublished Class Notes
Dated October 1983, Naval Postgraduate School, Monterey, CA, 1983.

U.S. Army Materiel Development and Readiness Command (DARCOM), "Engineering Design
Handbook: Army Weapon System Analysis, Part One," DARCOM-P-706-101, Alexandria, VA,
November 1977.

45

U.S. Army Materiel Systems Analysis Activity (AMSAA), "The Compendium of Close Combat
Tactical Trainer Algorithms, Data, Data Structures, and Generic System Mappings," Special
Publication No. 74, Aberdeen Proving Ground, MD, June 1996. (a)

U.S. Army Materiel Systems Analysis Activity (AMSAA), "Compendium of High Resolution
Attrition Algorithms," Special Publication No. 77, Aberdeen Proving Ground, MD, October 1996.
(b)

U.S. Army Materiel Systems Analysis Activity (AMSAA), "The Compendium of Close Combat
Tactical Trainer Algorithms, Data, Data Structures, and Generic System Mappings," Special
Publication No. SP-97, Aberdeen Proving Ground, MD, May 2000.

46

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library, Code 013
Naval Postgraduate School
Monterey, CA 93943-5100

3. Research Office, Code 09
Naval Postgraduate School
Monterey, CA 93943-5000

4. James G. Taylor, Code OR/Tw
Naval Postgraduate School
Department of Operations Research
Monterey, CA 93943

5. Beny Neta, Code MA/Nd
Naval Postgraduate School
Department of Mathematics
Monterey, CA 93943

