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2000 PHYSICAL ACOUSTICS 
SUMMER SCHOOL 

FORWARD 

These are the Proceedings of the 2000 Physical Acoustics Summer School (PASS 00). The 
lectures were recorded and most of the verbatim transcripts were subsequently edited by the 
authors for publication here. 

ponsored by the Office of 
Acoustical Society of America (ASA) and the National Center for Physical Acoustics 
(NCPA), PASS 00 was held June 16-23, 2000 at the Asilomar Conference Center in Pacific 

Grove, California, the site of the first and subsequent Summer Schools, PASS 92, PASS 94, 
PASS 96 and PASS 98. Participation in each of the Summer Schools was limited to a total of 50 
that included students, lecturers, and discussion leaders. 

The purpose of these Summer Schools is to bring graduate students, distinguished lecturers, 
and discussion leaders together to discuss a wide variety of subjects in physical acoustics. 
This gives the students the opportunity to meet experts and talk about topics most students 

ordinarily wouldn't encounter at their own colleges and universities. The focus was on graduate 
students and academic participants.  Approximately half of the participants have been advanced 
graduate students in physical acoustics. 

The Summer Schools have their beginning in an ONR Principal Investigators meeting in 1988 
where it was decided that the best investment of this kind would be in a Summer School 
focused on graduate students. In 1990, an informal Summer School for students of ONR 

Principal Investigators and some invited guests was held as part of a Principal Investigator's 
meeting at the Naval Postgraduate School, Monterey, California, and this controlled experiment 
set the pattern and influenced the site selection for the subsequent PASS 92, PASS 94, PASS 96, 
PASS 98 and PASS 00. We hope that the Summer Schools will continue as biennial events with 
the high standards and wonderful success we have thus far enjoyed. This has happened and will 
happen again because everyone involved does their best, and for this I say, "Thank You!" 

LOGAN E. HARGROVE - ONR 331 
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CONNECTIONS IN PHYSICAL ACOUSTICS 
AN INTRODUCTION TO PASS 2000 

Anthony A. Atchley 
Pennsylvania State University 

DR. ATCHLEY: The abstract for this lecture is largely a disclaimer that I cannot cover 

physical acoustics or even a significant part of physical acoustics in three hours. Having 

confessed this, I have chosen the following approach. We will begin with a simple piece of 

acoustics and follow a path, adding more complexity and more physics as we go, and see where 

that gets us. In the process, I want to try to touch on at least most of the other topics to be 

addressed by the other lecturers. 

[Transparency 2] 

This diagram depicts a generic experimental system. Let's look at it and see where it leads 

us. Although one might quibble with the names I've assigned to its various parts, the elements of 

this system are common to almost every experiment. There is a source of a signal that runs 

through an amplifier that is tied to some acoustic source. There is also some type of receiver and 

a receiving system. There is also a test chamber that contains something to be studied. To 

simplify matters, as physicists do, let's put a perfect vacuum in there as a place to start. Later we 

can start throwing things into the chamber. 

Suppose you set this experiment up. Set this frequency to a kilohertz. The source moves 

back and forth. What do you think I am going to detect? You would think nothing, right? There 

is, after all, a vacuum in the chamber and we all know that sound can't propagate through a 

vacuum. Are you really going to hear nothing coming from the loudspeaker? 

First, there are plenty of reasons why you will hear a kilohertz coming out of here. There 

could be electrical pickup, cross talk. There could be structure-borne coupling. There could be 

some acceleration sensitivity in the receiver. In fact, you'd have to work hard to get rid of all 

these problems. 

But suppose you get rid of all those problems? What are you going to hear? Buzzzzzz — 

noise, right? The question is, is that nothing or is that something? Is there any information you 

can gain about the system from that noise? That is what Dr. Gabrielson is going to talk about. 

(By the way, I go first and then they have rebuttal time.) 



[Transparency 3] 

So let's build up from next to nothing. Let's put a single atom in the chamber. The 

question is, if you had the same system with a single atom or molecule in chamber and the 

source was oscillating at a kilohertz, what would you hear? What would you hear from that 

system? Would it be like "pong?" That is, the atom rattles around in the test chamber and 

finally hits the receiver that produces a blip? The question is what would the acoustics of a 

single atom or gas molecule be like? It turns out this problem is too hard for me, but Mo 

Greenspan wrote a paper, I guess, what? 30-some years ago in physical acoustics that told us 

about propagation of sound in gases at very low pressures. This is something I think may be 

worth discussing some evening. 

[Transparency 4] 

Let's add a lot of atoms or molecules to the chamber so we have a continuum Now we've 

built up to something. Now what I want to know is how does describe the wave phenomenon in 

that chamber? Where do you start? How do you add more physics into it? Once you do that, 

what can you learn from it? What can you learn by adding pieces to the system? Answering 

these questions is the goal of this lecture. 

[Transparency 5] 

The place you begin is with the fundamental equations for a lossless fluid continuum. We 

have enough material in our chamber that it can be treated as a continuum, a fluid in particular. I 

am not going to talk about solids very much. We are also going to assume it is lossless, to start 

with ~ we are going to put losses in later. 

So what do you make of this? How would you interpret these equations and what can you 

do with them? You begin with the general equation for conservation of momentum. The Greek 

letter p, with no subscript, is the total density of the fluid, the ambient density plus the 

fluctuating part, u is the vector velocity of the gas. P is the total pressure, again the ambient part 

plus the fluctuating part. 

The question I ask you is what do these equations really mean? What do you gather from 

the equation for conservation of momentum. What does it tell you? What concepts does it 

relate? It is really Newton's second law per volume. It relates net forces on pieces of the fluid to 

the acceleration of the fluid. 



What about the equation of continuity? What does that tell you? It is coservation of mass. 

It says if I have a little segment of this gas I look at how much mass goes into it and how much 

comes out of it and the difference has to be what stays in there. These are the starting points for 

all of our work. 

Normally, you would now linearize these equations and find the 1-D form. These are the 

standard acoustical approximations. However, introducing them does throw in some limitations 

for us. However, I will mainly talk about linear acoustics, and I am going to talk about ID 

propagation for the first 80% of the lecture. I'll mention a bit about nonlinear acoustics at the 

very end of the lecture. 

We also need to throw in an equation of state, and I have used a standard linearized 

equation of state. B is adiabatic bulk modulus. By the way, the 0's indicate ambient conditions 

and the sub-1 on g means the first-order fluctuating component. The p is acoustic pressure 

amplitude and we are assuming no net flow. Normally what you would do at this point is 

combine these three equations and derive a wave equation. However, we are not going to do 

that. 

[Transparency 6] 

What I want to do, instead, is to pretend that I can do something in terms of computational 

acoustics, which really is a joke. Let's take the same linearized form of the ID equations and 

convert them into their simple finite difference forms. All I have done is represent the gradients 

with a difference in pressure, say, at a point n+1 and a point n, and I have also assumed expQat} 

time dependence. Yes, I use/. Get over it. Uis volume velocity and S is cross-sectional area. 

So it is a simple transformation to go from the linearized 1-D forms to the finite difference 

forms. What does this tell you? Notice that the equatinos are obviously coupled. It says that the 

pressure at one point depends on the pressure at a previous point and something that has to do 

with the volume velocity. Similarly, the volume velocity changes by some amount that depends 

on the pressure. Coupled equations. 

[Transparency 7] 

Now what I want to do is show a pictorial representation of what these equations mean. 

You may soon think that the bulk of this lecture is devoted to equivalent circuit representation. It 

really is not. I am bringing in equivalent circuits because you have familiarity with them and it 

is a pictorial view to keep track of the physics.   You can think of the circuit diagrams as 



Feynman diagrams for acoustics. They get more complicated as the interactions change ~ if you 

do not like the term "equivalent circuits," think of Feynman. 

Let's take the momentum equation. I want to define this thing called in inertance, M, which 

is po&x/S. The standard equivalent circuit interpretation of the finite difference equations is that 

you have a segment of a duct of length Ax and area S, filled with a fluid. If you try to squeeze 

volume velocity through the segment, it will is going to result in a pressure difference. The 

electrical analogy of this process would be an inductance. Depending on the inertance and the 

volume velocity you build up a certain pressure difference across this element. 

What does the pressure difference depend upon? Why would it depend on the cross- 

sectional area, for instance? When you look at these equations, I do not want you to just stare at 

them and say, ugh!, an equation. I want you to look at them, think about them, and see if you 

understand what they are telling you. So somebody explain why, as the cross-sectional area goes 

up or down, this pressure difference would change — intuitively? 

PARTICIPANT: [Inaudible] 

DR. ATCHLEY: Yes, good! If the area decreases, you are trying to squeeze the same 

mass through a smaller area. You would think that should build up a bigger pressure difference. 

That does it for one of our fundamental. I want you to keep this model in mind — 

inertance. 

As we go through this lecture we are going to add complexity, losses for instance, to this 

system. As we add complexity, we will build on our model. This is our starting point. I am 

hoping that at least the first part of this lecture ~ actually, I am hoping for all the lecture ~ there 

will be nothing startlingly new. What I hope might be different is the context it is put in and the 

connections you make with it. 

[Transparency 8] 

Now let's do the same thing with an equation of continuity. It says that if I put some 

volume velocity in one end and get volume velocity out of the other, those two do not necessarily 

have to be equal. Some mass can stay inside the segment. The difference in volume velocity is 

expressed in terms of this thing we call compliance, C = SAx/B. B is the adiabatic bulk modulus. 

Pictorially, think of this as electric current. If you put current in and you do not get the 

same amount out, that missing current must have gone somewhere.   Electrically it would be 
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shunted to ground through the capacitance, which is the electrical analog of as compliance.  In 

acoustics what has happened is that you are just building up pressure in the segment. 

Why, when the bulk modulus goes to infinity, would the compliance go to zero? What 

does infinite bulk modulus imply? 

PARTICIPANT: Incompressibility. 

DR. ATCHLEY: Incompressibility, right. If the fluid is compressible, then whatever you 

put in has to come out. Good. 

[Transparency 9] 

The next step, of course, is to combine these two concepts into one, because, in reality, any 

piece of this fluid is going to have both the property of inertance and the property of compliance. 

So you have pressure at one end and volume velocity going in. You have a different 

pressure and volume velocity on the other end. What happens in-between is a combination of 

inertance and compliance. These effects are represented by combining the circuit elements as 

shown. 

Suppose I have an initial pressure and an initial velocity. The compliance of the gas, 

causes some current, if you will, to go into ground, which modifies the volume velocity. Now 

you have a different volume velocity going across the inertance. The volume velocity going 

through the inertance results in a pressure drop. 

Does it matter in which order I take these things into account? Let's arbitrarily put the 

compliance first and the inertance. Does it matter? It seems as if it could. For instance, if I have 

no initial pressure, then there will be no change in volume velocity due to the compliance. 

However, if we were to put the inertance first, then the volume velocity would generate a 

pressure difference and the compliance would have an effect. So you might imagine that it 

matters a little bit which order I take these things in. This is a question we want to try to get to, 

how to choose to order these things best, for instance, if you want to do numerical calculations. 

[Transparency 10] 

Now that we have the combined circuit representation, then let's see what we can calculate 

and how well we can calculate it. In this example, I have taken a constant cross-section pipe of 

some length, and I have broken it up into a number of segments. I will represent each segment in 

terms of a number of the lumped parameters, inertance and compliance. 
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To be specific, what I have done is slightly different from what I have shown you on the 

previous page. I took half of the compliance and put it on the other side of the inertance in the 

circuit representation. It does not really matter that much. This is just how I chose to do it. 

I have plotted the pressure as a function of position. I start at the left end with a pressure 

amplitude of 1 and no volume velocity. Also, I have chosen a frequency so that 1 m corresponds 

to half a wavelength. The different lines correspond to the different numbers of segments used 

to represent the meter-long pipe. 

Suppose you represent the entire pipe with one lump? You would think that would be 

pretty lousy. It turns out that the result is not as bad as one might expect. 

Now if one uses four segments, each 25 cm long. You would think that might be way too 

big to do any good. It turns out the x's are the pressure predictions based on four segments. By 

the way, remember that I know things only at ends of the segments. The lines are just 

connecting the dots. The solid line is the exact result, a cosine curve. Four is really not bad and, 

depending on what you wanted to do, that might be good enough. Finally I pushed used 50 

elements, so each is a 2-cm-long section of pipe. It does a pretty good job. 

In effect what we have is a first attempt at computational acoustics. All you have to do is 

take the fundamental equations, discretize them, and write some eight or nine lines of code to 

calculate how variables changes across the elements. Pretty simple and we can get reasonable 

answers! 

What else can you get now? I showed you a plot of pressure. You can just as easily plot 

the volume velocity. If you have pressure and volume velocity, what else can you get? 

Everything there is to get. You can get intensity. You can get power flow. You can get 

impedance. All good things flow. Just by taking the 1-D equations and doing the simplest 

possible finite difference interpretation. 

By the way, everything I am presenting in this lecture is something that I have been able to 

calculate. This is an important point. Sometimes people will show you things and say, "Oh, you 

can do this," but what they really show you is something that is made up, a cartoon. I have not 

done that here. All the graphs you are going to see are the results of calculations I have done. 

The main purpose is to show you that if I can do it, you can do it. With Mathematica or 

MATLAB these days you can do a lot of things that I could not do as a graduate student. 

[Transparency 11] 
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How far can you push it? 

The upper left graph is the same one from the previous page. The other two graphs show 

how things degrade as the pipe gets longer. The upper right graph corresponds to a 2-m long 

pipe. The lower graph shows a 3-m long pipe. I thought it was interesting that even when the 

pipe was 2-m long, so the segments for the 4-element case are half-a-meter long, 4 segments 

does not do too badly. Obviously, 50 elements is better, and as you keep making things longer 

and longer, you can start to see more and more discrepancies even with 50 elements. You 

quickly get to the point that if you want to do what Ken Gilbert does and propagate kilometers in 

the atmosphere, this is not the best way to do it. 

The question now is what would be the next-best guess for the next higher order approach 

to these kinds of computational problems? 

[Transparency 12] 

In the process of preparing this lecture and talking to colleagues, I noticed the following. 

Suppose you take the simple 1-D form of equation of continuity and conservation of momentum, 

and just rewrite them in the forms shown in the first two lines. Compare these forms to those 

used in, for example, fourth-order Runge-Kutta techniques. The forms are exactly the same. 

One might interpret, then, that these higher order numerical techniques are just a better guess of 

how to organize inertances and compliances to be more computationally efficient. We talked 

about how it might matter in what order you arrange the circuit elements things, depending on 

boundary conditions. Maybe the interpretation of higher-order numerical techniques is just a 

more general approach to arranging the circuit. Of course, with these higher order techniques 

you can make bigger step sizes and achieve higher accuracy. The point is, even if you go to 

something higher order, it still has the flavor of a simple model and the extension is not too 

difficult. 

The main point of the first part of the lecture is that one can start with the fundamental 

equations, discretize them in very simple ways, and get numbers out. If the simple lumped 

parameter discretization does not yield satisfactory results, then going to a higher order 

numerical approach is conceptually no different. It is just a slightly different interpretation of the 

circuit elements that we used to represent our fluid. 
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By the way, notice that we have not done anything about the wave equation, I have not 

even mentioned it yet (to any extent). To do acoustics, there is no requirement to use a wave 

equation, necessarily. 

We can go only so far sometimes by breaking a system up into discrete elements. The next 

step complexity is to apply the fundamental theorem of differential equations, that is, assume you 

know the answer and use it. 

[Transparency 13] 

Let's assume we are looking for wave-type. Returning to the differential form of the 

fundamental equations, we can divide the inertance and compliance by the length of the segment. 

Me and Ce are inertance and compliance per unit length. 

Seeking solutions of the form, exp(-jkx), and substituting them in the fundamental 

equations, allows one to write the equations in matrix form. The values of k that satisfy these 

equations is then found by setting the determinant equal to zero. Doing so yields that for this 

simple system, k = ±cdc, where c is defined to be one over the square root of the inertance per 

length times compliance per length.  This relationship is the dispersion relation.  Substituting Mt 

= p</S and Ce = S/B into this result shows that c turns out to be equal to the square root of bulk 

modulus over density. This is the adiabatic sound speed,, exactly as one would expected. 

It turns out that sometimes getting this dispersion relation is all we really need. That is, we 

do not necessarily care about the behavior in detail of pressure and velocity. We just want to 

know the characteristics of the propagation. 

By the way, why is there a plus or minus sign? Why are there two values of kl The 

interpretation certainly is a wave going one way or a wave going the other, but why are there 

two? 

DR. WAXLER: Two linearly independent solutions. 

DR. ATCHLEY: Thank you. Had we gone far enough to derive the wave equation, then 

you would all have resoundingly shouted "because it's a second-order differential equation," so 

you would have expected two roots. 

Knowing the dispersion relation is going to be important for Dr. Keolian's and Dr. 

Sabatier's lectures. Therefore, I want to take some time to set up their talks, or perhaps it is 

better to say that I want to set them up. 
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So far we have explored simple lossless systems - the simple stuff. We began with the 

fundamental equations, and discussed their interpretation in terms of lumped parameter circuit 

elements. The use of these circuit analogies provides a way of holding the physics in our minds. 

We saw how these elements can be used to calculate pressure and velocity, or anything else one 

cares to know about an acoustical system And we have just seen that if one does not want to 

take a computational approach, one can instead assume solutions and get a dispersion relation. 

The dispersion relation can tell you a good bit about the physics underlying a problem 

We are going to now go back to the beginning and follow exactly the same steps, but now 

we want to put in some realities of the gas. We're going to introduce viscosity and thermal 

conductivity and see how that modifies the fundamental equations and our interpretation of the 

them. After a while we will find the propagation constant, including viscous and thermal wall 

losses in our little segment. First, we introduce the physics. 

[Transparency 14] 

I give credit to the approach taken in this part of the lecture to Greg Swift and everybody 

else in this room or not in this room who has taught me anything about thermoacoustics. The 

approach I am taking is a standard approach used by thermoacousticians. Dr. Sabatier will 

discuss much the same phenomena with slightly different parameters, but it is the same physics. 

What I want to do now is introduce viscous effects into our fluid. Acoustic attenuation in 

the bulk of the fluid is not going to be important for the systems we deal with in this lecture. The 

dominant dissipation in these systems is due wall losses, the only kind of attenuation I am going 

to include. 

If one wishes to take into account viscous effects in the viscous fluid, how will that modify 

the fundamental equations with which we started? What the new equations must we deal with? 

The answer is the Navier-Stokes equation, that is, the simple force equation. Newton's second 

law per volume shows up again, but now we have to tack on terms to include the effects of 

viscosity. You can go to Landau or Lifshitz, or somewhere else, and pull out the equation shown 

at the top of Transparency 14. The left-hand side and the first term on the right-hand side make 

up the equation for conservation of momentum we what we used at the beginning of the lecture. 

All we have done is tacked on the two terms to handle viscosity. 

By making "reasonable" assumptions, the N-S equation can be simplified quite a bit. What 

are those reasonable assumptions? I am going to be a bit glib ~ read Swift's review article in 
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thermoacoustics and you find out what "reasonable assumptions" mean. For us it means we are 

going to linearize things. We are going to throw away terms that are just too nasty to deal with. 

And, of all the various gradients and divergences that matter to us, the gradients in the transverse 

direction are going to be the most important. This is because the transverse gradients are going 

to be dependent on a quantity called the penetration depth, which typically, for our purposes, is a 

10th of a millimeter or so. For the longitudinal gradients, the characteristic scale is on the order 

of an acoustic wavelength, and for all the cases we deal with that length is much longer than a 

penetration depth. This means all the derivatives associated with them are much smaller. 

If we assume propagation in a circular pipe or circular duct, the N-S equation reduces to the 

second equation on T14. Let's identify all the terms. The left-hand side is equivalent to the time 

derivative of u. The first term on the right-hand side is the linearized pressure gradient. Te final 

term comes from keeping only the radial part of the gradient. Go back and look in your notes 

and convince yourselves that all we have done is add this radial gradient term to the equation for 

conservation of momentum. Notice that in the absence of viscosity that goes away and we're left 

with the same equation we had before. Introducing viscosity adds the last term. What do you 

think that adding this term is going to do? It is clearly going to add something else into our 

model. What I want to do now is figure out what that term does. 

Would all the discussion leaders please raise their hands? I want the students to look 

around and see all the discussion leaders. Every single one of them will be glad to tell you how 

you go from the second equation to the third. (Laughter) 

The third equation is the solution to the differential equation given just above it. J0 is the 

spherical Bessel function of order zero. Sv is the viscous penetration depth. If you are not 

familiar with it, I will say a few words about it in a few minutes, ju is viscosity; co is angular 

frequency; and a is the radius of the duct. 

One thing that has happened now that we've introduced viscosity is that things are no 

longer uniform across the radius of the duct. There is now radial dependence. We'd like to get 

rid ofthat as soon as we can. Therefore, the next step is to integrate the velocity over the cross- 

section of the duct to get volume velocity. 

[Transparency 15] 

If one integrates u with respect to r ~ it is not too tough - one gets the result at the top of 

T15 for volume velocity.   Comparison the result we had earlier shows that the relationship 
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between volume velocity and pressure gradient has been modified by the factor fv. This function 

is going to show up in a lot of places. Dr. Keolian will show you similar functions for 

thermoacoustics. Dr. Sabatier will show you similar functions for porous media, except you are 

not going to use different notation, right? 

DR. SABATIER: This time I am going to use the viscous penetration depth. (Laughter) 

DR ATCHLEY: The point is that by adding viscosity into our model now we are starting 

to make connections with thermoacoustics and porous media work. We will see where that gets 

us. 

[Transparency 16] 

This graph shows/, as a function of a/8. There are three curves. The solid line is the real 

part of/,, the dotted line is imaginary part, and the dashed-dot line is the magnitude. The 

horizontal axis can also be interpreted as a frequency scale, because the penetration depth has an 

sqrt(l/ö)) dependence. 

In cases where the radius is large compared to the penetration depth, maybe a centimeter or 

more in our case, fv approaches a high-frequency limit. The dissipation function get smaller. 

When a/Sy is small, that is, when the penetration depth fills the cross-section of the pore, the 

imaginary part is zero and the real part is magnitude of one. There is a peak in the magnitude of 

the imaginary part offv when the radius is on the order of the penetration depth. 

Dr. Wilen and his students measure these functions for a living and I am sure they would 

be glad to tell you about the intricacies of doing that. This function and others related to it show 

up in a lot of places. It will be important to remember that something happens when the size of 

the pore is comparable to the penetration depth. You may want to keep that in mind as we go 

through the lecture. 

[Transparency 15] 

Back to our finite difference version of the equation. If/V were zero, the third equation on 

T15 would be the same as the lossless version we have seen before. Introducing viscosity 

modifies the last term. If you compare it with the lossless version you will see that we modified 

the inertance by that factor, 1/1 -fv. That modified inertance, because fv is complex, has both a 

real and an imaginary part. What do you think that is going to do? 

Before, the inertance showed up in the representation as a reactance. There was no loss 

associated with it. However, now the inertance is complex. Therefore, we will now have a part 
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that will lead to a circuit element having a real impedance, that will lead to dissipation.   It is 

easiest to look in what is called a boundary layer limit, in which al8v is a large number. 

[Transparency 17] 

If one go through some algebra, one find that in the boundary layer limit, the ratio of Jj to 

Jo isj. Let M' be the modified inertance including viscosity. In the boundary layer limit you can 

see how it breaks up into a real part and an imaginary part. The real part is just (lossless) 

inertance we had before. The lossless inertance also shows up in the imaginary part but modified 

by the factor SJa. 

[Transparency 18] 

After a little math, one finds the boundary-layer-limit equivalent resistance Rv due to 

viscous interactions between the fluid and the wall of the duct. In the lossless case, the inertance 

led to a pressure drop across the segment of duct that was 90 degrees out of phase with the 

pressure at the entrance. Now we have a term that is in phase with it. The electronic analog to 

that is resistance; that is, the pressure drop is equal to the current times the resistance. 

[Transparency 19] 

Introducing viscosity leads to a modification in our equivalent circuit representation of our 

duct. Volume velocity shows up in both terms in the finite difference equation, so, electrically, 

that is analogous to circuit elements in series since they share the same current. So the inertance 

is modified slightly because there is viscosity and there is now this new term for resistance. 

[Transparency 20] 

A graph of M'/M is shown on T20. The important thing to notice is that whereas the real 

part has very little dependence on alSv, the real part gets very large for values of alSv on the 

order of one and smaller. In other words, the resistance is very high in small diameter ducts. 

[Transparency 21] 

For those of you who are not familiar with the viscous penetration depth, let me give you a 

mini-tutorial on it and then we will take a break. Suppose you had to solve the following 

problem. A viscous fluid oscillates parallel to a motionless rigid boundary. Infinitely far away 

from the boundary, the velocity amplitude is U0. On the boundary, the velocity amplitude is 

zero. Find the velocity as a function of distance from the boundary and time, i.e., u(y,t). That is, 

what is this profile of the fluid velocity in a viscous fluid? Dr. Keolian is going to show us an 

animation that has the real details of this envelope. 
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[Transparency 22] 

How do you find the profile? You go back to the diflusion equation, which I have written 

at the bottom of T21, and you ask all the discussion leaders in the room how to solve it. Just 

kidding. When I solve it, I assume I know the answer. Assume an answer of the type given at 

the top of T22. Now you might be tempted to say, "You can't do that in a diflusion equation, 

that's only good for waves." Well try it and see what you get. 

If you substitute this result into the differential equation, you will be left with an algebraic 

equation that will tell you what values of ä: make the assumed solution work. If you do that, you 

find that this xrhas equal real and imaginary parts. The quantity sqrt(2ju/poi) pops right out and 

that is the definition of the viscous penetration depth. 

If you break up this solution, you can see that it has a propagating part, with a wave 

number equal to \I8V. There is also a decaying part that decays with the same scale length. I call 

it a mini-tutorial, one weeks of fluid dynamics in 38 seconds. 

We will take a break and when we come back I want to introduce thermal conductivity in 

our model. 

All right, introducing viscosity changed the momentum equation. Introducing thermal 

conductivity is going to change the equation of continuity. So how are you going to introduce 

thermal conduction losses between the fluid and the walls? You write down the general heat 

transfer equation make reasonable assumptions to simplify it. 

When one linearizes this equation, terms including viscosity are discarded. Therefore, in a 

linear model one can separate viscous and thermal effects. However, at the nonlinear level these 

terms are retained. Does that mean at the nonlinear level you cannot separate those two effects? 

I leave this question for further discussion. 

Now we ask the question what happens to the gas when thermal conductivity is included? 

When the gas inside the segment is compressed and heated up, then the pressure changes, the 

temperature changes, and the density of the gas changes. 

The second equation on T23 is the linearized version of the first equation. It relates 

pressure changes, density changes, and temperature changes. If you go back and look at the 

equation that we were just talking about for viscosity, you will see that this equation has exactly 

the same form. Therefore, the solution is exactly the same; that is, we will have an/function for 

thermal conductivity.  The third equation describes how the temperature varies with position in 

19 



the segment. ß'\s the thermal expansion coefficient of the gas. T0 is the ambient temperature and 

Ti is the first order fluctuation in temperature. cp is the isobaric specific heat capacity. K is the 

thermal conductivity of the gas. The term in the brackets has exactly the same form we found 

before for viscosity. 

This equation describes how the temperature changes across the duct as a result of heat 

transfer to the walls. We still have to get to the equation of continuity. How do you do that? 

What concept is an equation of continuity? What parameters does it connect? 

[Transparency 24] 

Thermodynamics tells us how to relate changes in variables such as pressure, temperature, 

and density, as shown in the first equation. To find the linear acoustics version of this equation, 

let dp becomes the acoustic fluctuating part pi, dp becomes the acoustic pressure p, and dT 

becomes the acoustic temperature fluctuation 7y. The partial derivatives can be expressed in 

terms of properties of the fluid, namely, the isothermal bulk modulus BT and the thermal 

expansion coefficient ß. Using these relations, we can relate acoustic density changes to 

pressure changes and temperature changes, as shown. On the previous page, we had an equation 

for T\, as a function of acoustic pressure. Now we can express it in terms of the acoustic density 

fluctuation. 

[Transparency 25] 

Just to show you that there is light at the end of the tunnel, the top of this page says we are 

almost there. The idea behind all of this is not to bore you with equations, it is just to bore you in 

general. (Laughter) 

I am including all the details for completeness. I realize that you will not follow the steps 

here, but the details are there so that you can find them if you ever need to later. 

After significant work you get down to the equation at the bottom of T25. This equation 

relates the gradient in volume velocity to the acoustic pressure. If we were to neglect thermal 

conductivity, this function,/*, which is exactly the same form z&fv, would go away, leaving the 

lossless version of the equation of continuity 

[Transparency 26] 

Let's quickly get to the bottom line. That function fK includes the thermal penetration 

depth. If you go back to T21 and ask yourself what the thermal penetration depth is, it comes out 

of the following problem.  Instead of a movable boundary and viscous fluid oscillating back and 
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forth, suppose that up at infinity we have an oscillating pressure. Up at infinity you know what 

the temperature change is, right? It is the adiabatic temperature change, because infinitely far 

away there is no time for heat to conduct from up there down to the boundary. At v = 0, there is 

an infinite heat sink. Therefore, the temperature at that boundary will not change. Hence, the 

temperature fluctuation is zero there. You have exactly the same boundary conditions. What 

kind of equation describes thermal conduction problems? A diffusion equation, right? You go 

through the same process and you get thermal penetration depth, which has the same 

interpretation as the viscous penetration depth. 

Remember when we included viscosity, the inertance of the fluid was modified. There is a 

graph on T20 that shows how the inertance changed with frequency or the size of penetration 

depth compared to radius. That graph shows that is a modification of the real part and the 

imaginary part. As the penetration depth gets large compared to the radius, the imaginary part 

zooms through the roof. It completely swamps the real part, which means the dissipation from 

viscosity dominates in small pores. Do you think the same thing is going to happen with thermal 

conduction? We are about to find out. 

[Transparency 27] 

The consequence of adding thermal conductivity to our model changes the compliance. C" 

represents the compliance modified by including thermal conduction. It differs from the losselss 

compliance C by the factor 1 + (j-VrfK- Notice that the compliance is now complex. 

[Transparency 28] 

This page shows a graph of this complex compliance on T28. As before, the solid line 

represents the real part and the dashed line the imaginary part. The real part behaves similarly to 

the real part of the inertance. That is, it changes slightly as a function of alSK. Can someone 

explain the transition in the real part of compliance? By the way, this graph is for air. The real 

part of C and it goes from 1 at large values of alSK to 1.4 for small values. Can somebody 

explain that change? As the thermal penetration depth gets small compared to the pore, what is 

going on? At large values ofa/SK the process is adiabatic. That is, at penetration depths that are 

really tiny compared to the pore, most of the gas cannot conduct heat to the wall in the time 

allowed, so it behaves adiabatically. Thus large values of alSK is the adiabatic limit. 

For small values ofalöK, the penetration depth swamps the radius and all the gas is in good 

thermal contact with the wall.   Therefore, acoustic processes in this limit are isothermal.   The 

21 



transition the real part of C is indicative of the transition from adiabatic propagation to 

isothermal propagation, y is 1.4 for air. 

Now what about the imaginary part of C? Notice that its dependence on alSK is completely 

different from that of the real part. Further, it is completely different from the behavior seen in 

the viscosity-modified inertance, that went through the roof for small values of alSv. Here, 

notice that the imaginary part is very small at either limit of al8K. The acoustic processes are 

lossless in either extreme. Why? Adiabatic processes and isothermal processes are both lossless. 

It is only in the region where the pore is roughly the size of the penetration depth that significant 

losses due to thermal conductivity come into play. By the way, that little bump in the imaginary 

part of C is thermoacoustics, at least one flavor of thermoacoustics. Dr. Keolian will tell us 

more about that. 

[Transparency 29] 

Combining everything leads to the finite difference version of the equation of continuity 

shown at the top of T29. As you can see, introducing thermal conduction leads to another 

resistance into our model, representing the lossy part. Notice that it is drawn as a resistance to 

ground. What happening is that the thermal conduction is modifying the compliance. It is taking 

volume velocity out of the flow. If you squeeze gas into the segment, the ordinary compliance 

leads to a pressure build up in the segment that reduces the volume velocity coming out. 

However, the thermal conduction from the gas to the walls leads to another reduction in volume 

velocity coming out. 

It is important to remember that thermal conduction introduces this resistance. Can you 

imagine any circumstance under which this resistance could be negative, where it could act like a 

source of volume velocity? We'll leave that question for another lecture. 

[Transparency 30] 

The discussion of compliance on T27 and T29 were in the boundary layer limit, when al8K 

» 1. T30 shows what the real and imaginary parts of the compliance look like when the 

boundary layer approximation does not apply. Other than that, there is nothing new on this page. 

[Transparency 31] 

Of course, a fluid element displayes properties of both inertance and compliance. This is 

borne out by examination of the finite difference versions of the equation of continuity and 
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conservation of momentum shown at the top of page T31.  These equations lead to a combined 

equivalent circuit representation as shown at the bottom of the page. 

To summarize this part of the lecture, we have seen that by adding complexity to the 

fundamental equations, we can build upon our representation of the acoustic behavior of a fluid. 

We have expressed the physics involved with two parameters, inertance and compliance. We 

have seen how the finite difference forms of the fundamental equations are modified. If we 

wanted to at this point, we could return to the model used to generate the plots shown on T10 and 

Tl 1 and introduce losses. However, rather than spend to time to do this, I want to return to a 

different topic that we discussed earlier, the dispersion relations. 

[Transparency 32] 

Here are the differential equation forms of the fundamental equations. Notice that they 

have been modified by putting primes on the inertance and compliance per length. The primes 

indicate that the viscosity and thermal conductivity-modified forms of these quantities should be 

used. As before, by assuming propagation-type solutions, these equations can be cast in matrix 

form. Also as before, the propagation constant is found by taking the determinant ofthat matrix. 

And as before, there are still two values, corresponding to waves propagating in two directions. 

We can write the propagation constant k as +dcKV, where cKV is the phase speed. Notice that the 

phase speed is now complex, because fv and/*- are complex. 

Let's look at the complex phase speed for sound propagating through a segment of duct. 

To do so, we are going to break it up into two parts. We are going to look at the thermal 

conduction part first and then we are going to look at the viscous part. 

[Transparency 33] 

The solid line is a graph of, using the left axis, the ratio of that complex phase speed 

including only thermal conduction losses divided by the ordinary thermodynamic (lossless) 

sound speed c0 as a function of, again, the same parameter, alSK plotted on a log scale. You will 

notice that in the high-frequency limit, the phase speed divided by the ordinary adiabatic sound 

speed is 1, which means we have adiabatic propagation of sound. As you transition through this 

boundary layer range you get down to a value of about 0.84 relative to the adiabatic sound speed 

for air. Why is it 16% lower? Is Sir Isaac Newton in the room? That is the isothermal sound 

speed. It is about 16% lower than adiabatic sound speed. The transition is, again, from adiabatic 

propagation to isothermal propagation.   We saw the same behavior when we looked at the 
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complex compliance but this representation, I think, is a little bit clearer. Notice that the action 

happens where the radius is comparable in size to the penetration depth. 

The dashed line is the factor exp(-aZ). I have taken the imaginary part of the complex 

propagation constant to get the attenuation coefficient a. A is the acoustic wavelength, which is 

2;z/Re[£j. The factor exp(-or/l) is the amount by which the amplitude of the sound will decay as 

it propagates a distance of one wavelength. In the high-frequency, adiabatic limit this factor is 

one. There is no loss for adiabatic propagation. At the low-frequency, isothermal limit, the 

factor is also one, again lossless. The propagation is lossy only in the intermediate range where 

the radius is comparable to the penetration depth. You see that in the worst case, as sound 

propagates one wavelength, it decays to about 60% to 70% of its initial value, so it decays about 

30% over a wavelength. 

[Transparency 34] 

This graph shows the same thing, but this time only including viscosity. Comparing this 

graph to the previous one, they are very different. Dr. Sabatier will going to tell us why. The 

phase speed starts off in the high frequency limit equal to the ordinary sound speed. But, as the 

penetration depth gets larger and larger compared to the radius, the sound speed starts to drop, 

just as it did in the thermal case. However, in this case it does not level out as it did before, it 

plummets and goes to zero. 

If you were to call waves moving in the high frequency limit fast waves, what would you 

call waves in the low frequency limit? Slow waves. Dr. Sabatier will tell us all about slow 

waves. The attenuation factors get really big, too. So as you can see thermal and viscous effects 

cause drastically different behavior in the propagation characteristics of sound in a duct. 

[Transparency 35] 

If you put them together, what do you get? That is the case shown in the next graph. Alt is 

not very different from the one on the previous page. As before, for small pores the phase speeds 

can get really slow and attenuation factors get really high. This raises an interesting question 

about ceiling tiles and sound absorbers. If you look in textbooks that talk about attenuation of 

sound in sound-absorbing ceiling tiles, they almost always neglect the thermal component of 

attenuation, they include only viscosity. When would this be acceptable? The choice of answers 

is, A, never; B, sometimes or C,always. The answer is B, when the pore is small in diameter 

compared to penetration depths.  Go back and look at the thermal plot.  There is no loss down 
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here because it is isothermal. So if the pores are really small compared to the penetration depth, 

you can include just the viscous terms. The viscous terms dominate and that is why you can get 

away with it. 

The point of this part of the lecture, is to show you that you can go through a lot of 

complexity and keep building up equivalent circuits and finite difference equations. However, 

but if you just want to know something about the propagation characteristics, get the dispersion 

relation. It tell you quite a bit about the nature of the propagation. 

Everything I have done so far has been with a circular pore. A lot of things in 

thermoacoustics is done with other types of cross-sections. The only thing that needs to be 

modified substantially to take these different shapes into account is that there will be different 

equations for the/*: and/v. However, the frequency dependences of the different/s are all more 

or less the same. 

The physics we've discussed so far is relevant not only to thermoacoustics, but also to 

porous media. There is one big difference, however. Rhe ground is not made of a bunch of 

straight, circular pores. The pores in the ground bend and the cross section is certainly not 

constant. The other thing we have to worry about is what is dirt? Excuse me, what is soil? 

Something you can make acoustic measurements in and make Dr. Sabatier happy. (Laughter) 

There is a solid part and there is a gaseous part. If you want to couple sound into the ground, 

how are you going to get it in there? There are a couple of ways, right? You could push on the 

solid part and get that moving or you could push on the gas part and get that moving. If you 

push on the gas part, you talk about the propagation in the gas. That is what we have discussed. 

When you push on the solid part, do you think that the wave you generate will be faster or slower 

than when you push on the gas? This is the origin of the so-called fast wave, propagation 

through the solid part of the ground. The slow wave is propagation through the gas. However, 

recall that his is a viscous medium. As the gas sloshes in and out of the ducts, there will be drag 

on the duct wall. Or if I move the solid part, the gas will get dragged along. So there is coupling 

between the two modes of propagation. You can couple between the sound in the gas and the 

sound in the solid. As I have said, Dr. Sabatier is going to say something about this. 

[Transparency 36] 

I asked a question a few minutes ago:   Are there any circumstances under which the 

resistance due to thermal conduction could be negative? The answer is yes.  If you start with 
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fundamental equations as we have done but include the possibility that our duct had a 

temperature difference along the axis, you can derive, again, the equation of continuity. 

However, now the results will be different, as shown at the top of T36. The difference can be 

represented as an additional equivalent circuit element, as Greg Swift and colleagues have shown 

us. The new element, represented by the diamond, has the properties of a current source that 

depends on the the temperature gradient. If there is no gradient, we have the equation we had 

previously. If there is a positive gradient, the factor e will be positive and the element is a source 

of additional current. If the gradient is negative,^ will have a negative value ad the element will 

be a sink.. Therefore, depending on the magnitude and sign of the temperature gradient, current 

will either be added or taken away. 

The point is that even introducing the complexity of a temperature gradient can be 

represented by an equivalent circuit element. The equation at the top of T36 is not so easy to 

derive. That is why I say in quotation marks, "it can be shown." It can be shown but I am not 

going to show it. 

We are now going to abandon this equivalent circuit approach and concentrate more on 

propagation constants. 

This is a good time for a break. 

DR. ATCHLEY: I knew the second part of this lecture was going to be brutal. However, I 

wanted you to see where the effects of real gas properties, such as thermal conduction and 

viscosity, come in and how they modify the fundamental equations. I did not know any other 

way to do it than just to be brutal about it and drag you along. I hope the notes are complete 

enough that if you really want to understand it you can go back and find all the details. It is 

really more of an historical record for completeness. I suspect many of you are halfway burned 

out. I apologize. 

I think the next hour is going to be better, because now we have built up all physics that we 

need for understanding bigger systems. We could construct a larger system with equivalent 

circuits. However, we'll take a different approach. Rather than use a whole lot of circuit 

elements, we will take advantage of the fact that we are seeking wave-type behavior. We will 

construct our system from building blocks. Each block can be arbitrarily long compared to the 

wavelength. The only requirement is that the individual building blocks have uniform properties 

within them. 

26 



[Transparency 37] 

If that is true, then we can treat segments in terms of counterpropagating waves because we 

know how to calculate the propagation constants. That is, we know the dispersion relation. So 

here is the approach we are going to take now. 

Suppose you know the pressure and volume velocity at end of the system, or equivalently, 

you know the impedance at that end. Typically we want to know what the acoustic parameters 

are at the input to the system To get this information, we'll use a "propagation matrix" 

approach. Here is how it works. We have two counter-propagating waves. We know how to 

calculate the coefficients in terms of boundary conditions. 

We have M segments. We start at x<>. The ends of the subsequent segments are denoted as 

xi through xN. Pressure and volume velocity are expressed as shown. Also, each segment can be 

characterized with a characteristic acoustic impedance Z„. 

[Transparency 38] 

Assuming that pressure and volume velocity are continuous, the boundary conditions at the 

end of the last segment can be expressed in the form shown at the top of T38. Assuming that the 

M-matrix can be inverted, then this equation can be solved for the matrix CAT, which contains the 

propagation coefficients for segment N. 

[Transparency 39] 

Now we move to the next junction, between segment JV-1 and N. Application of continuity 

of pressure and volume velocity leads to the equation at the top of T39. This equation can be 

solved for the matrix CN-I. 

[Transparency 40] 

You finally arrive at the coefficient matrix Ci, which contains A and B in the first segment. 

If you know A and B in the first segment, you know the pressure and volume velocity at the 

beginning. Problem solved. 

This technique allows you to break a complicated system up into a bunch of segments 

having different cross-sections, different lengths, even different gases ~ it does not matter — as 

long as the properties within any one segment are uniform. Let's apply the technique to a system 

to see what we get. 

[Transparency 41] 

27 



Consider a pipe one inch in diameter, one meter long with a rigid termination at the end. 

The ratio of P to U at the rigid end is known. The question is what the ratio of P to U at x = 0? I 

have arbitrarily broken the pipe up into five segments, some having different lengths just to 

illustrate the flexibility of the technique. The graph at the bottom of T41 shows magnitude of the 

ratio of the pressure to the volume velocity at x = 0 as a function of frequency. Not surprisingly, 

you see that the impedance peaks at frequencies corresponding to a half wavelength in the pipe, a 

full wavelength, and so on. Keep in mind that the model includes thermal and viscous wall 

losses, so the quality factor can be determined from the width of the peaks. The circles indicate 

the peak frequencies 

Why would you expect the peaks to decrease in amplitude with increasing frequency? Is it 

just an artifact of our calculation? Who knows if it is real? How do you check it out? That is a 

pretty striking property that these amplitudes decrease in some monotonic way. There must be a 

simple way to figure out what should happen. 

Let me ask you this. This is a pop quiz for all the discussion leaders. If you are working 

from the rigid end towards x = 0, how does the pressure vary with x? It varies as cosine. What 

about volume velocity? Sine, right? So how will the impedance vary? If you dig back far 

enough, you will remember that the input of mechanical impedance is something like -jp0cS 

cot(kL)7 What is kL for the first peak? n. What is the cotangent of TI? Infinity. What is the kL 

for the second peak? Do I hear 2%? What is the cotangent of 2rc? Infinity. 

I suckered you into it. What is kL at the peaks? Remember k is complex. So kL is largely 

7i or N7C, but not exactly. There is a small imaginary part that provides attenuation. That 

decrease in amplitude of the peaks in the impedance at the input is due to the frequency 

dependence of the attenuation in the pipe. Why should it be frequency dependent? What is 

changing as the frequency changes? The penetration depth. How? It goes as the square root of 

frequency. If you break kL at the peaks into real and imaginary parts, you'll find that the real part 

that is close to a multiple of %. Throw that away. If you take the cotangent of the complex part, 

you will get exactly the ratios that come out of here. I have done it. 

This discussion brings up an interesting sideline. The attenuation coefficient goes up with 

the square root of frequency in this system. You would normally think that higher attenuation 

would mean lower quality factor Q. However, it turns out the Q actually goes up as well. Both 
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attenuation and the Q go up. Have you seen an electrical circuit where that is true, when you add 

more damping and the Q goes up? I think it is a parallel LRC circuit. 

[Transparency 42] 

DR. ATCHLEY: Now what I want to do is change one of the segments and see what 

happens. Suppose the fourth segment has a radius half the value of the rest of the pipe. This 

situation is shown on T42. Compare the graph with the previous one. It is quite a bit different, 

at least for certain modes. Some modes are not changed as much as others. Professor Garrett 

will show us an example of how this behavior can be applied to generate very large amplitude 

standing waves in resonators. 

Now, suppose I set up this experiment in a black box. Also suppose that I told you that the 

pipe is one meter long, how many segments there are, how long they are, and the diameters of 

the four equal-diameter segments. Finally, I tell you what the peak frequencies are — not the 

values of the impedance at the peaks, just the frequencies. What could you do with that? It turns 

out you can tell me the diameter of fourth segment. That is, you can tell me something about this 

system from a measurement of the input impedance. That is illustrated on the next graph. 

[Transparency 43] 

I did give my computer program the frequencies from the previous graph, not the 

impedance, just the frequencies. I told it that the fourth segment had a diameter somewhere in 

the range between the original value and one-tenth ofthat value. I asked it to find the radius of 

the fourth segment. 

The computer came back and said, "I think the best fit is 1.269 cm" Not too bad. I then 

took that number and recalculated the response of the system. The result is shown in the graph. 

The x's make the peak frequencies. The circles are from the graph on T42. I think the match is 

pretty good. The point is that by measuring the resonance frequencies of the system and by 

knowing something about the system you can calculate, for instance, how large or small that 

constriction was. Keep in mind that our model is one-dimensional. Therefore, we have 

neglected complications due to abrupt changes in cross-section. 

This part of the lecture was intended to set up Dr. Migliori. The main point is that by 

measuring properties of a system and a knowing something about the system, say, the 

eigenmodes or eigenfunctions, it is possible to calculate other properties of that system. In my 

case, I calculated the radius, which tells you something about the compliance and the inertance. 
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You could extend that to elastic constants if you went to a solid. Dr. Migliori is going to tell us 

how to do this on more complicated systems and what you can learn about the physics of those 

systems. 

[Transparency 44] 

Let's ask ourselves how you might include propagation in more than one direction in 

physical acoustics. A place to begin is with the Helmholtz equation. If you take the ordinary 

linear acoustic wave equation, for instance, in pressure, and you take the temporal Fourier 

transform, you get the Helmholtz equation. You can get the Helmholtz equation by substituting 

single frequency solutions into the wave equation. The Helmholtz equation is the starting point 

for this part of the lecture. Instead of discussing pressure as a function of position and time, we 

will be dealing with the temporal Fourier transform of pressure, which is going to be a function 

of position and frequency. Even though P is the Fourier transform of pressure, I am going to 

refer to it as pressure for simplicity. 

[Transparency 45J 

What follows is based on things that I've learned from the fields of Fourier optics and 

Fourier Acoustics. By the way, there is a great reference for this on the market now by Earl 

Williams from the Naval Research Lab called Fourier Acoustics. . 

Suppose we take the spatial Fourier transform of the Helmholtz equation. ~ Why? Because 

we can. Bear with me. ~ Let's do it in rectangular coordinates so we have an explicit expression 

for the Laplacian. Take the Fourier transform in the x- and y-directions, that is, the transverse 

Fourier transform. 

[Transparency 46] 

The result is the following: After you take the Fourier transform, the derivatives in the x- 

and ^-directions become multiplications by the transverse wave number components kx and ky. 

Therefore, the Helmholtz equation has the form shown in the first equation. Using the 

relationship among the various wave numbers given on T45 , the transformed Helmholtz 

equation can be written in the form shown in the third equation. You all recognize this familiar 

differential equation. It is the 1-D Helmholtz equation. And, you all know what the solutions 

are, counter propagating plane waves. What good is this? 

[Transparency 47] 
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Consider the following situation. Suppose you only have waves propagating in one 

direction, say in the positive z-direction. This is an important assumption. The situation is much 

more complicated if you have waves going in both directions. Also, suppose you know the 

pressure in some plane, say at z = 0. Take the spatial Fourier transform in that plane. According 

to our one-way propagation assumption, the transform at z = 0 equals the coefficient A. How 

would you find the pressure here in some other plane at z > 0? Planar Fourier acoustics says you 

do the following. To find the pressure in some other plane, propagate the transformed pressure 

in the z = 0 plane forward simply by multiplying it by the phase factor exp(-yfez). This process 

gives you the spatial Fourier transform of the pressure in the new plane. To find the pressure in 

that new plane, take the inverse spatial Fourier transform. You're done. Let's do an example. 

[Transparency 48] 

Suppose the pressure amplitude in the z = 0 plane is given by the function shown in the top 

graph. It is zero everywhere except across some finite width, where it is one. Given this 

pressure distribution, find the pressure in some other plane at z > 0. The first step is to take the 

spatial Fourier transform of the pressure distribution. What is the Fourier transform of this 

function? A sine function, as shown in the second graph. In principle the range of the sine 

function is from plus to minus infinity. I just stopped because my page was of finite size. 

Now, pick a point on this graph. It corresponds to a specific value, if this is a 1-D problem, 

of the value of kx. What does a specific value of kx mean in a Fourier representation? 

Remember, this rectangular pressure distribution is made up of an infinite number of sinusoids. 

The positive wave numbers kx propagate in the positive x-direction and the negative values 

propagating in the negative x-direction. A particular value of kx corresponds to a constant 

amplitude, infinitely-long sinusoid propagating in the x-direction with that wave number. 

Describe the radiation from this wave. It is a plane wave propagating in a direction 

determined by kx and k as shown in the figure in the lower left corner of T48. Keep in mind that 

for a constant frequency, k is constant. Therefore, each different value of kx corresponds to a 

different direction. Also, each different value of kx corresponds to a different value of h- 

Therefore, each different ^-component of the transform advances in the z-direction with phase, 

given by exp(-y^z). 

Notice when k = zero, the direction of propagation is 0=0. Suppose kx = kt What is the 

direction of propagation? 90°.  The range of kx from 0 to k corresponds to propagation angles 
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from 0 to 90°. This range is indicated by the rectangular window in the second graph. In the 

third graph, this range of wave numbers has been converted to angle. There is a one-to-one 

correspondence between each value of kx in the window and an angle from -90° to +90°. 

What happens to values of kx greater in magnitude than kl To what angle do they 

correspond? No real angle. They correspond to evanescent components of the field. It is only 

the values of kx within the range ±k that survive in the farfield of real. The wave number 

components outside that range correspond to nearfield effects. 

An elementary explanation of a null in the farfield radiation from sources is destructive 

interference of the pressures propagating from different parts of the source. The Fourier 

acoustics interpretation of a null would be that the Fourier transform is zero for that particular 

value of kx. Therefore, the pressure propagating along that particular angle has zero amplitude. 

This is going to be important for Dr. Gilbert's lecture, particular wave numbers correspond 

to particular angles of propagation. 

DR. HAMILTON: You get a nice benefit you get from this. In the farfield of any 

directional radiator the beam pattern is the Fourier transform of the source point. 

DR. ATCHLEY: Thank you. I meant to say that: The farfield radiation pattern is the 

Fourier transform of the source function shown in the first graph. It also explains why the 

nearfield and the farfield are different, as shown on the next slide. 

[Transparency 49] 

This slide is Fourier acoustics on one page. Suppose you have a wave normally incident on 

a rigid baffle that has a slit in it. What does a diffracted field look like? The first step is to find 

the pressure in the plane of the baffle. The standard Kirchoff approximation is that the pressure 

is given by a rectangular function. This assumption, of course, neglects edge effects. 

So the pressure in the baffle-plane is known. Take the spatial Fourier transform. It is a 

sine function. Propagate the transformed pressure from 0 to z according to the plane wave 

propagator exp(-jkzz). Keep in mind that kz depends on k and kx. Some of the Fourier component 

will have real values of kz, others imaginary. As the wave propagates, the Fourier transform 

evolves. Fourier components with real values of kz simply change phase, while those with 

imaginary values of kz decay. As the wave propagates farther and farther, these components 

decay more and more. In the farfield they would be completely gone. Once the transform has 

been propagated the appropriate distance z, take the inverse spatial Fourier transform to get the 
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pressure in that plane. This is the modern way to do diffraction problems. If you buy into this 

wave number approach, it is pretty powerful. 

By the way, this is also the foundation of nearfield acoustic holography. You measure the 

pressure distribution in one plane, you take the Fourier transform, you propagate it to another 

plane and you can reconstruct the field. If Dr. Maynard were here, he would tell you that it is not 

necessary to worry about the evanescent behavior for any finite source, because instead of 

representing the field in terms of plain waves, you can represent it in terms of spherical 

harmonics. 

So where are we? Almost finished, you will be glad to know. Let me summarize what we 

have done and then see where we have yet to go. We started by assuming simple 1-D 

propagation and we found techniques that will allow us to understand those systems. One was 

through a simplistic finite-difference approach that at least allowed us to open the door to 

computational acoustics, although that door can open a lot wider. The finite-difference equations 

led us to lumped parameter equivalent circuits. We found out that by understanding the 

parameters, you can determine the propagation constant, the complex wave number. From that 

you get the phase speed and attenuation coefficient. 

Next we introduced more complexity, such as viscosity and thermal conduction. We found 

that, at least in the linear world, introducing viscosity modifies the momentum equation and 

introducing thermal conduction modifies the equation of continuity. Even though it added 

complexity to the system in more ways than one, this added complexity could still be expressed 

in terms of inertance and compliance. We also found that we could still get the complex 

propagation constant in a relatively simple way. This led to a discussion how phase speed and 

attenuation frequency. 

We used the propagation constant to go beyond what you can do in small differential 

elements, and talked about propagation in a system that can be broken up into subsystems that 

can be long in terms of the wavelength. We used this approach to look at, for instance, the 

impedance in a simple ID system. We saw that if you change the properties of one of the 

subsystems, for instance, the radius, that changes the resonance structure altogether. You can 

use the technique for that purpose alone or you can use the measured properties to infer 

something about the system itself and to determine unknowns. 
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Next we talked about the limitations that a 1-D approach imposes. For instance, if you 

change cross-section you really have to use a 2-D analysis. If you are going to treat two 

dimensions, a nice technique to use is planar Fourier acoustics. There, when you come to two 

dimensions, from a Fourier point of view, each of the Fourier components in the spectrum 

correspond to propagation of plane waves in a given angle with a given phase speed. 

What else can we do? The one thing I have not really touched on is what happens if our 

assumption of linearity goes out the door. How does that change things? I want to wind up in 

the next couple of minutes by cracking the door to nonlinear acoustics and, again, I am only 

cracking. 

[Transparency 5] 

This part of the lecture is motivated by a chapter in Dr. Hamilton and Dr. Blackstock's 

book, Nonlinear Acoustics. Go back to the general lossless forms of the equation of continuity 

and conservation of momentum, as shown at the top of T50. An alternative formulation is to 

have the same versions of the fundamental equations in their full form and write the relationship 

between, say, pressure and density in the form shown in the lower right corner. It is an equation 

of state. Dr. Hamilton will be glad to tell you where that comes from. For our purposes Ä is a 

property that relates to the state of the fluid. As before, we want to find the 1-D versions of these 

equations. However, this time we will keep terms that we neglected in the linearization process. 

Notice for instance, that the momentum equation contains a total time derivative, which includes 

both the partial with respect to time and the convective term 

[Transparency 51] 

This leads us to the versions the equations of momentum and continuity shown at the top of 

T51. If you take the fundamental equations and apply the equation of state, you get equivalent 

forms shown on the third line. So what? Although it may not be obvious, these equations tell us 

how things propagate? By adding and subtracting these two equations, they can be recast in the 

form shown at the bottom of T51. J+ and J. are called Riemann invariants. What is important 

about them? Notice the form of these last equations. 

[Transparency 52] 

They have the same form as the 1-D version of the total time derivative, partial with respect 

to t, partial with respect to x. u + c and u - c play the role of the speeds with which the Riemann 

invariants propagate.   If the total time derivative of a quantity is zero, what does that mean? 
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Suppose a property called q that has a value of, say, 4 at one place. If that property moves with 

speed v, the value will not change as it propagates. In the derivation on T51, that speed is the 

sound speed plus or minus the particle speed. So now things do not move at the speed of sound, 

they move at the speed of sound plus or minus the particle speed. However, the particle speed is 

amplitude-dependent. So now we have introduced modifications to our fundamental equations 

to result amplitude-dependent effects. This brings us to the realm of nonlinear acoustics and that 

is where Dr. Garrett picks up after lunch. 

With that, I will end. Thank you. 
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NONLINEAR ACOUSTICS 

Steven L. Garrett 
The Pennsylvania State University 

DR. GARRETT: I would like to start by thanking the organizing committee, Drs. 

Hargrove, Bass and Atchley, for inviting me to come back to PASS again. Even though it is not 

clear why I should be giving this talk on nonlinear acoustics, the organizers are competent 

acousticians, they made the pick, and I will trust them. Logan, Hank, and Anthony were all 

recipients of what I used to call the "Boy Wonder Award," until Ilene Busch-Vishniac won it. It 

is now called the Lindsay Award (it used to be called the Biennial Award) and it is presented to a 

member of the Acoustical Society of America, under age 35, who "has contributed substantially, 

through published papers, to the advancement of theoretical or applied acoustics, or both." In 

principle, the organizers should know what they are doing. 

When I am faced with making a presentation, I immediately ask myself two questions: The 

first is, "What do you want to accomplish in giving this talk?" The second question is, "How are 

you going to reach those objectives? 

In my case, there is a third question, but I get to that on the next transparency. 

[Transparency #1 - Nonlinear Acoustics] 

My answers to those questions are given at the bottom of the first transparency. My 

motivation is to provide a general introduction to the simplest concepts and techniques of 

nonlinear acoustics and, in doing so, to be able to present a variety of phenomena that can be 

understood only by extending our treatment beyond the linear acoustic approximation. These 

will be phenomena that would not be observed if acoustics were strictly linear ~ I want to be 

able to show you some of these and tell you why they are unique. 

The third reason is a personal prejudice of mine. I believe that we develop a better 

understanding of any subject if we go beyond the limitations of that subject. If we want to 

understand linear acoustics, we need to go to nonlinear acoustics, because from that perspective, 

we really get a much better understanding of what we did when we linearized the equations 

which describe acoustical phenomena. What did we throw away, and what does not fit within 

the limitations imposed by linearity? 
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There are many examples of what is to be learned by "going beyond" and then "looking 

back." I was just having a conversation with Roger (Waxier) about radiation pressure and 

streaming. These are two nonlinear effects. My current understanding of those effects is quite 

separate, yet Roger has a very unified perspective. If I can adopt that perspective, then set 

viscosity equal to zero, I should get the radiation pressure back. That would provide me with a 

better understanding of the material. 

That third objective, I think, is important. If you are going to study fluid dynamics, it is 

nice to study either plasma physics or superfluid hydrodynamics, where your system requires 

more variables than simple liquids: in plasmas you have to consider electric charge, in 

superfluids you have counter flow of the superfluid and normal fluid components. If you get an 

understanding of these multi-component fluids, you end up with a better understanding of 

ordinary single-component hydrodynamics. It is nice to study that, because it gives you a much 

deeper perspective on the simpler system and some day, a two-component fluid system might be 

of interest, as in the case of the liquid-vapor thermoacoustic systems now being investigated by 

Willy Slaton at NCPA in Mississippi. 

That is what I hope to accomplish: use simple techniques, show you some new phenomena, 

and exploit the perspective provided by nonlinear acoustics to give you a better understanding of 

linear acoustics. 

So, how will I attempt to accomplish those objectives? There are two ways to proceed: 

either the Greek Euclidian viewpoint or the Babylonian viewpoint. The Euclidian viewpoint is 

there are certain fundamental axioms that are taken to be true. In the case of nonlinear acoustics, 

those would be the full equations of hydrodynamics. Then we would use mathematics to build 

up the theorems and lemmas and create this beautiful structure, all based on these very clear 

axioms. That is the Greek approach. 

There was another approach that was developed in Arabia, the Babylonian approach, which 

led to algebra. It is a much more egalitarian approach that says all starting points are equal. We 

are just going to tell you how to get from point A to point B and from point B to point C. It does 

not matter where we start, point C is no better as a place to start than point A, but just as there is 

a way to get from point A to point B, there is also a way to get to point B from point C. 

I will take the Babylonian approach. There are several reasons for that choice and some of 

you know one some of those reasons.   The fundamental reason is I am not a very competent 
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mathematician. That stops the Euclidian approach pretty quickly. Among my colleagues, I am 

known as a "computational cripple." I regret that I am not good at mathematics, but like any 

other handicapped person, I have developed other techniques to compensate. Just as blind 

people rely more on their hearing than sighted people do, and deaf people use sign language. 

Richard Feynman was one of the best physicists of the 20th century and quite a character. I 

always liked one of his observations: "One measure of our understanding is the number of 

different ways by which we can arrive at the same result." That is a sort of Babylonian way to 

reach an understanding of a particular subject. I will try to treat the same problem in several 

different ways that will get us to the same result. The problem with that approach is 

encapsulated by this Japanese proverb: "A man with one watch knows the time, a man with two 

is never sure." 

Tf I build it up from a nice self-consistent, unified (Euclidian) perspective, then you have 

one watch and you know it works and you are always sure you know where you are going. Their 

is risk in the approach I will take, but I have to take the risk, because even if I could do the 

mathematics, I am not sure that it would be a pleasant way to spend the next two-and-a-half 

hours. 

[Transparency #2 - Why Me?] 

The third question is not a question that you have to answer, but it is a question that I 

obviously have to answer. After "what am I trying to accomplish" and "how am I going to do 

it," the question becomes, "why me?" Before I started writing these lectures, I sat down and 

started writing the names of- it says "guys" here, but some of them are women ~ people who 

are more qualified to give this lecture than I am and could do it. (I made a mistake, David 

Crighton passed away about a month ago, so he cannot do it, but everybody else on that list, as 

far as I know, is still alive and is better qualified.) 

But as I said in the introduction, the organizers here are really good acousticians, so I asked 

myself, "What could they possibly have been thinking?" I realized there might be a good 

acoustical explanation: (i) We assume that the students have very little understanding because of 

their lack of exposure to nonlinear acoustics, (ii) We assume that the people listed by name on 

Transparency #2 have a really comprehensive understanding, (iii) We know from acoustics that 

if we form an impedance matching-later with an impedance that is the geometric mean of the 
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knowledge, then there is going to be perfect transfer of their information to you students, as long 

as I represent something that is X./4, roughly, in thickness. 

[Transparency #3 - Lecture Outline] 

I would like to start with an acknowledgement: What I will be presenting today is really a 

perspective that was generated by my thesis advisers. I learned that perspective as a graduate 

student, and I found it to be a very good way of understanding. I want to credit Isadore Rudnick 

and Seth Putterman with most of the stuff that I present correctly. Professor Rudnick is no 

longer with us in body, but I hope his spirit will be adequately represented. I also want to thank 

the Danish-American Fulbright Commission, because they gave me the luxury of living in 

Copenhagen while writing the notes for this lecture. 

The lecture is broken into two unequal parts. Two-thirds of the lecture will be about wave- 

wave interactions and one-third of the lecture will be about nonlinear effects that produce non- 

zero time-averaged effects. What I mean by wave-wave interactions are the cumulative effects 

that the wave has on the medium or on some other wave. Those effects modify the way that 

waves propagate. I will talk about the cumulative effects of convection and nonlinear elasticity 

in generating shock waves; that is, I will talk about the inherent instability of a simple 

monochromatic wave when you include those effects in the nonlinear approximation. 

Then I will use that perspective of wave-wave interactions to talk about nonlinear mixing 

phenomena, in particular, the parametric array. Bruce Denardo will demonstrate these effects 

tomorrow in the acoustic demonstration session that will be held at the Naval Postgraduate 

School. 

I will then "shift gears" and not look at the time-harmonic effects such as harmonic 

generation and shock wave formation; I am going to look at the time-independent parts, forces 

and torques on solid bodies in intense acoustical fields. I am going to use an approach that is 

based on essentially the Bernoulli effect. Since the Bernoulli pressure depends on the square of 

the fluid velocity, there are going to be non-zero time averaged-effects, because v2 is positive 

definite. When we take a time average of a positive definite quantity, we are not going to get 

zero. 

I am going to use the Bernoulli effect to talk about acoustic levitation and acoustic 

levitation stability but, again, I want to give you "two watches."   I will also introduce the 
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Ehrenfest Adiabatic Principle as another way of thinking about forces on objects placed in 

intense acoustic standing wave fields. 

[Transparency #4 - Disclaimers and Cautions] 

Now, the disclaimers: "Your mileage will vary." Nonlinear acoustics is a very rich field 

and, out of necessity, I had to not treat some very interesting topics. I will not cover bubble 

dynamics and nonlinear oscillators (I think Bruce is going to talk about that), numerical solutions 

and model equations like the Burgers equation. I will mention the Burgers equation only twice - 

that was it. (Laughter) 

N-waves and sonic booms are also excluded. I am going to treat periodic disturbances, but 

it is possible to understand a sonic boom in the same way. I am going to talk about deterministic 

problems. I am not going to take a stochastic distribution of waves, traveling in a variety of 

different directions, and then ask about the nonlinear interactions of that ensemble. That is a 

problem known as wave turbulence ~ very interesting but I am not going to touch it. 

I am going to stick to one dimension. It is a lot harder to deal with beams. Mark 

(Hamilton) does with this very well. He is here at the Summer School and he may choose to say 

something about that problem during one of this evening's discussion sessions. I am not going 

to talk about streaming, which is a term that refers to steady heat and mass flows produced by 

oscillatory acoustical flow fields. Streaming is really at the heart of thermoacoustics. I am not 

going to talk about solitons, because Bruce is going to take care ofthat. 

I also want to warn you there could be a whole bunch of errors in here. Some of them are 

just my errors. There are other errors that are subtler and might be more dangerous. Although 

Bill Gates does rule the world, you cannot run all of his software in every country. The font sets 

are different: I could not make any "vectors," I could not make any square brackets, and I could 

not do any integral signs. I used "white out" and put those symbols into the transparencies by 

hand. The font sets I had available in Copenhagen did not run with Mathtype™, so you have to 

watch those equations closely. 

[Transparency #5 - Linear Acoustics] 

I will start with one slide on linear acoustics. From the standpoint of this lecture the only 

"bonus" that you get by accepting the limitations of linearized hydrodynamics, is the principle of 

superposition. In linear systems you can take more than one solution and the sum of those 

solutions will still be a solution.   We will consider two "packets" of waves shown here.  The 
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high-frequency packet is moving to the right. A lower frequency-content packet is moving to the 

left. In the region where they occupy the same space you will see junk; all kinds of wiggly stuff 

that will change with time, but they will pass through each other entirely unchanged. No new 

"stuff will be generated by their interaction. When you shine two flashlight beams across each 

other, the light beams pass right through each other. In the linear case that is what you get: 

superposition is "legal." 

In nonlinear acoustics, that is not true. Superposition is the first thing that is lost. 

[Transparency #6 - Shallow Water Gravity Waves] 

I am going to start talking about nonlinear acoustics with a problem that is not traditionally 

considered acoustical within the "Kinsler and Frey" perspective. My first example is a 

hydrodynamic surface wave. It is not a compressional wave, but we are so close to the ocean, 

and it is so easy to visualize surface waves, I think this is the right place to start with shallow- 

water waves, better known as "surf." 

I am going to make that problem very simple. I am going to limit my consideration to 

shallow water, by which I mean that the equilibrium depth, ho, is constant and much less than 

X/2n. You can see automatically that my first figure is not drawn to scale; it is too deep to 

satisfy that last criterion. 

We are going to take the simplest possible equation of state: the fluid density, p, equals a 

constant. Nothing this wave is going to do is going to change the density of this fluid, so we do 

not need an equation-of-state. We have an incompressible fluid and the reason it is 

incompressible is that if you try to squeeze it, there is a free surface and the surface will just goes 

up. It does not need to compress, it requires much less energy to just raise the height of surface 

to ho + hi. 

We are also going to consider a disturbance in the mean height as a progressive wave of 

small amplitude, so that the modulation in the depth, which I call hi, is small compared to the 

mean depth, ho. Again, one of the reasons I start with this problem is that I can get some of my 

terminology in place. 

The height of the free surface will be a function of position and a function of time. We are 

going to break the depth up into a part that is a constant, ho, and a part that varies with the 

frequency (co = 27if) of the disturbance, hi (x, t). Nonlinear effects will generate other 

components of the wave that may have contain other frequency components and also depend 
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upon position or time. I am going to write that deviation from the equilibrium depth in space and 

time as a traveling wave going to the right, hi sin (©t-kx). 

As Anthony (Atchley) pointed out in the first lecture, if I have a continuity (mass 

conservation) equation, a force (Euler) equation, and an equation-of-state, I can describe wave 

motion, in this case, on the surface of this fluid. The continuity equation is very simple. The 

change in height depends on the difference between the fluid that came in to a differential 

element of fluid of width, dx, through the imaginary surface on the left, and the fluid that exited 

that element through the imaginary surface on the right. If there is a gradient in the horizontal 

velocity of the fluid, vx, the height is going to go up. That is exactly what is going to happen, 

because this wave is going to progress to the right. The fluid to the right of dx is going to start 

going up and then it is going to go down. 

I will write all of my equations in Eulerian coordinates that are fixed to the "laboratory 

frame-of-reference." A lot of people who do nonlinear acoustics use Lagrangian coordinates. 

They like to follow a particular "piece" of gas or fluid as it moves back and forth. I am not going 

to do that. I get seasick. I want my coordinate system to be fixed in space and I will look at stuff 

coming in and going out and going up and going down, but I am not going to tag any particles. 

This Eulerian point-of-view is a prejudice that is consistent with my choice of experimental 

technique. I do not ordinarily put dye or tracer particles in my fluid. I prefer to place a pressure 

or velocity sensor in the fluid. My sensors are fixed in the laboratory frame-of-reference and the 

fluid goes by them. 

The reason the surface goes up is that more fluid came in on the left than went out on the 

right. That is what the Continuity Equation [1] is telling me: hi is the change in height with time, 

and vx is the x-component of the velocity, which is much larger than the y-component of the 

velocity. 

I have the Euler Equation [2], which tells me that the acceleration of the fluid particles in 

this direction is -1/p times the gradient of the pressure. In this case, the pressure is just the 

hydrostatic pressure, pgh. I can take that derivative easily because p is a constant, since we are 

considering an incompressible fluid. The gravitational acceleration, g, is a constant, except in 

Denardo's demonstrations (he likes to modulate g) ~ we are not going to do that — and I am left 

with just the derivative of the height with respect to position. 

[Transparency #7 - Wave Propagation Speed] 
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At this point I could find the speed of sound by doing just what Prof. Atchley did in his 

lecture. Equations [1] and [2] are two coupled linear differential equations. I could set the 

determinant of their coefficients equal to zero.  That would give me a phase speed, Cgrav = G>/k, 

and the result would be cmv = (gho)1/2. 

Or I could take the time derivative of the continuity equation, subtract ho Gust a constant) 

times a spatial derivative of the Euler equation, and end up with the Wave Equation [3] for 

shallow water gravity waves. I am glad to see that I am not the only person in this room who 

contends that the wave equation is THE most useless equation in acoustics » maybe we will talk 

about that in the discussion sessions. We are familiar with the Wave Equation and we recognize 

that that combination of constants that multiplies the second spatial derivative in the second term 

of [3] is the velocity squared for the propagation of waves in one direction or the other. I have 

written that result down in [4], but I did not have to form a wave equation to do that. Equation 

[4a] is a more complete expression that is true for all depth, but if you take the limit for long 

wavelengths and small depths, X » ho, it will reduce to [4]. 

There are a couple of interesting results that come out of this analysis immediately. We 

have an expression for the sound speed [4]. That sound speed depends on the depth, ho. We just 

said that this wave changes the depth, at least locally. The wave's crests make the water deeper 

and, therefore, the crests would travel faster than the "equilibrium" wave speed. The troughs are 

shallower, and in [4], ho would be smaller, so the troughs would travel more slowly. In fact, we 

can take the derivative of equation [4] with respect to the depth. The change in the equilibrium 

sound speed with height is just one-half of the equilibrium sound speed divided by the height [5]. 

When we create a disturbance in this fluid, the depth changes and, therefore, the sound 

speed changes locally. There will also be a change in the propagation speed due to the motion of 

the fluid itself- a kind of self-Doppler Shift. If we assume traveling wave solutions (as we did 

on Transparency #6), the continuity equation [1] dictates that the ratio of the change in height, 

hi, to the mean depth, ho, is equal to the velocity in the longitudinal direction, vx, divided by the 

wave propagation speed, Cgrav We will now define a useful dimensionless quantity called the 

Mach Number [6]. It is the ratio ofthat longitudinal fluid velocity, vx, to the equilibrium wave 

speed at the equilibrium of depth, CgraV. 

You can see that based the change in height, there is also a change in wave speed. So 

dh/dvx is just ho over the wave speed [6]. We used the continuity equation to give us the freedom 
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to express the amplitude of the wave in terms not necessarily of its height, although that is a 

good way to do it; we may choose to express the amplitude in terms of the horizontal velocity. 

That choice turns out to be very useful. 

[Transparency #8 - Cumulative Waveform Distortion] 

This transparency is the single most important transparency in the first hour of this lecture, 

so I am going to linger with this transparency for a while. If you understand what is going in 

Transparency #8, and can connect it with waves out there on the beach, then everything else I am 

going to say about nonlinear distortion should follow by analogy. When I get through this, if 

these concepts do not make sense to anyone, please stop me. 

To summarize what I have just said, the presence of the wave changes with wave speed in 

the medium. It is important to recognize at this point that I have just violated the most precious 

assumption of linear acoustics: the wave does not affect the medium in linear acoustics. I have 

just shown that the assumption is not true, the wave does affect the medium and it affects it in 

two ways. 

First, since the wave causes the fluid to move with a strong component in the propagation 

direction, there is a convective velocity correction to the wave speed. There is a Doppler shift 

that is added to or subtracted from the wave speed. When the fluid is moving to the right and the 

wave is moving to the right, the wave speed is higher than its equilibrium value, Cgtav When the 

fluid is moving to the left, it reduces the wave velocity to a value that is lower than the 

equilibrium wave speed. The velocity also changes with depth [5], so as the surface of wave gets 

higher, the speed goes up and, as the surface of the wave goes down, the wave speed goes down. 

I can summarize these two effects if I define a local propagation speed that is dependent on 

the amplitude of the wave [7]. I could have expressed the "local" speed in terms of the excess 

height of the wave, hi. That might seem more natural, since we think of the amplitude of the 

wave in terms of the excess height, but it is much more convenient to describe the wave 

amplitude in terms of the longitudinal velocity, vx. By choosing to express the wave amplitude 

in terms of the velocity, I can take the Doppler (convective) correction, vx, and add it directly the 

equilibrium value of the wave speed, CgraV. The change in the local sound speed with depth can 

also be expressed as a function of the longitudinal velocity by combining [5] and [6]. It is the 

equilibrium part plus the velocity plus the change in the equilibrium velocity with height. 
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I end up saying that the "local velocity," the amplitude-dependent velocity, is the 

equilibrium velocity plus three-halves vx. What we are saying is that the Doppler shift, due to 

the convective velocity, contributes one part and the change in depth contributes half a part, so 

the convective part is twice as important in shifting the velocity as the change in depth. That is 

the meaning of the three-halves at the right-hand-side of [7]. Convection and the change in wave 

speed with depth both affect the wave in the same way. They do not necessarily have to add up, 

and I will show you some deviant cases later in this lecture. In this case, for surf, they add up 

and in most cases they add up. 

Now, we can re-examine a wave that was initially sinusoidal. If we move along with the 

wave, by traveling at the same speed as the "zero crossing" of the wave, that is, we move along 

at just the equilibrium wave speed, we find is that as time goes on, the sinusoidal waveform 

starts to distort. The reason should be very obvious. The crests are traveling faster than the zero 

crossings. The troughs are traveling slower than the zero crossings. Since we are moving along 

at the zero crossing speed, we see the crests advancing and, of course, in proportion, the other 

parts of the wave with hi > 0 are also advancing. We see the troughs retarding (and, again, in 

proportion, the other parts with hi < 0 are retarding). That is forcing that waveform to bend over. 

As we go farther and farther, the crests are going to get farther and farther ahead, so these 

effects are cumulative. They do not average out to zero, even though the heights average out to 

zero. They are cumulative effects. 

We can ask ourselves when this simple picture starts to fall apart. The simplest answer is 

not the conventional answer. We can ask how far does this wave have to go in order for the crest 

to actually get ahead of the zero crossing and the trough to get behind the zero crossing? In a 

system that does not have a free surface, the wave would become multiple-valued - one position 

could have three different values of hi. Of course, out on the beach it does become multiple 

valued. Waves curl, they do that. Then they crash. 

In other systems that do not have a free surface you cannot get a multi-valued result for the 

amplitude of the wave at a single location. At the point the wave front is vertical, there will be 

an infinite gradient. If there are any dissipative effects whatsoever, that large gradient is going to 

prohibit a vertical wave front. 

At this point we are in a position to determine how far the wave would have to propagate 

before the gradient would become infinite.  Another way to pose the question would be to ask 
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ourselves what would be a characteristic length or characteristic distance that a wave had to 

travel before it became a shock wave? It would be easy to calculate that distance because we 

know that the crest of the wave is traveling at a speed that is three-halves vx greater than the zero 

crossing. For the crest to catch-up to the zero crossing, it would have to advance by a distance 

that is a quarter-wavelength, X/4. The distance the wave would travel in that time would be the 

equilibrium wave speed times the time it would take to for the crest to advance by a quarter- 

wavelength. 

What is that time? It is X/4 divided by the additional speed, 3vx/2. So this is what we 

might call the shock-inception distance, except that you do not want to use X/4. It turns out that 

the waveform becomes vertical at this the zero-crossing when the crest has advanced by X/2%. 

But you get the basic idea whether you use X/4 or X/2n: We want to know how far the wave has 

to go before you reach an essential discontinuity. That is known as the discontinuity distance or 

the shock-inception distance, and that is what I have calculated in [8]. 

So let's review this because Transparency #8 is the most important slide of this hour. The 

amplitude of the wave affects the local propagation speed. It affects it in two ways. It adds a 

Doppler shift, a convective term, due to the longitudinal velocity of the fluid. It also changes the 

depth, so it changes the wave speed. Those effects cause the crests, which have the positive 

velocities to speed up, the troughs to slow down. The waveform distorts. There is a 

characteristic distance, Ds, associated with this distortion process [8]. That distance, in units of 

the wavelength, for shallow water gravity waves, is the wavelength divided by 3% times the 

Mach Number. As you consider waves of larger amplitude, the shock happens at a distance that 

is closer to the source. 

Who is uncomfortable so far? 

[No response] 

Then I am not trying hard enough. Let's move on. 

[Transparency #9 - The Grüneisen Parameter] 

We are not generally, as acousticians, interested in surf— at least in the professional sense. 

Typically, we are interested in the nonlinear behavior of gases or gas mixtures, like air, or water 

and other fluids, or solids. As long as you understand the basic concept illustrated in 

Transparency #8, those ideas can be applied to other continuous media. The 3vx/2 term was a 

characteristic of the shallow water wave problem.    Other systems will have different co- 
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efficients, depending upon the nonlinear characteristics of the media, but otherwise the distortion 

processes will be identical. 

To treat the more general case, I will follow the same strategy. I will let the local sound 

speed depend on the longitudinal velocity in the medium that is generated by the presence of the 

wave. I will introduce a new parameter, capital gamma, T, which will provide the factor that 

multiplies the convective velocity to incorporate the change in the equilibrium value of the wave 

speed due to the presence of the wave. I use T because my graduate education was in the area of 

condensed-matter physics. In that field, a Grüneisen constant was introduced to account for the 

elastic nonlinearity that produced the thermal expansion of solids. 

Nobody but Seth Putterman and me uses that designation, but it is not important. Some 

people call the parameter of nonlinearity ß. A common choice in acoustics is to specify a B/A 

coefficient. I will show you how to make connections to all those, but I am going to use 

T because it makes it easy for me to track the strength of the nonlinear effects. 

All I need to do is find the value of T for a particular situation and I will be able to take 

everything I just explained to you about surf and apply it to some other medium. For instance, if 

the speed of sound depended on density, then T would be one plus the change in sound speed 

with density times the change in density with velocity as shown in [10]. Of course, that is easy 

to evaluate because the continuity equation [11] relates changes in density and changes in 

velocity. I chose that particular example because, later, when we talk about parametric arrays, 

[10] will arise directly out of the hydrodynamic equations. 

Let's apply this approach to sound in air or sound in any other ordinary gas. We need to 

determine rgas. Then we throw that rgas back into the "surf equations" and we are home free. 

[Transparency #10- The Grüneisen Parameter] 

The speed of sound in an ideal gas [12] is given by c0
2 = yRT/M. In this case, lower-case 

gamma, y, is the ratio of the specific heat at constant pressure to the specific heat at constant 

volume. R = 8.31451 J/mole-°K, is the universal gas constant. T is the absolute (Kelvin) 

temperature, and M is the molecular weight (in Kg/mole) of the gaseous medium. 

We can differentiate [12], but before we do, recognize that the speed of sound in an ideal 

gas is controlled by only one parameter. Since the molecular weight and the ratio of specific 

heats are not affected by the presence of the sound wave, the temperature controls the sound 
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speed. The pressure change is cancelled by the density change. The way a wave changes the 

sound speed in a gas is by changing its temperature. The relative change in sound speed is one- 

half the relative change in absolute temperature [12], 

Now we build the chain that connects the variation in sound speed with the variation in the 

oscillating longitudinal fluid velocity produced by the sound wave. The local propagation speed, 

as a function of the velocity amplitude, is the equilibrium sound speed, plus the convective 

contribution, plus the change in sound speed with temperature. We can relate to the change in 

temperature, Ti, to the change in pressure, pi, through the adiabatic gas law [14, 15]. We then 

relate to the change in pressure to fluid velocity through the Euler equation [16]. We put it all 

together, holding the entropy constant (since sound propagation in gases is adiabatic), so all we 

have are a few derivatives to evaluate. 

We have already calculated (3c/9T)s [12]. (öT/dp)s can be obtained from the adiabatic 

equation-of-state. This beautiful trick in [14] was shown to me by Tom Gabrielson. I used to 

have a harder way of doing this. We know that pV is a constant and we know the ideal gas law: 

pV=nRT. Again, in this case [15], I prefer to take the logarithm before I differentiate, when I 

have expressions that involve power-law behavior. 

As before, we can use the hydrodynamic equations, but now we want to relate pressure to 

velocity. That sends us directly to the Euler equation [16] and we find that the changes in 

pressure are related to changes in velocity by the specific acoustic impedance, p0c0. We 

substitute values of all three of those derivatives into [13] and we find [16] that the Grüneisen 

coefficient, rgas. For a gas this is 1 (the convective part) plus (y-1 )/2 (the nonlinear equation-of- 

state part), which I can simplify to (y+l)/2. 

For an inert gas, y is five-thirds, so the distortion parameter is T = 1.333. The fractional 

part is due to thermodynamics; the integer part is due to convection. For air, the ratio of specific 

heats is seven-fifths, so you get the convective part plus another 20% due to the thermodynamic 

part. 

The reason I point this out is that some people tend to believe that the nonlinearity of the 

medium is an important component. It is certainly important, but it is not nearly as important as 

the convective part in many cases. You could have a perfectly linear medium, say a gas that 

compresses isothermally, and you will still get distortion.    You would get only 20% less 
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nonlinear distortion than if you sending large-amplitude waves into air. The nonlinearity is built 

into the hydrodynamics; it is not strictly a property of the nonlinearity of a specific medium 

[Transparency # 11 - Shocks in Air] 

Let's apply this result in order to get a feeling for what we are talking about in terms of 

shock distances and distortion. We start by using the loudest sound wave that we would 

normally encounter in ordinary air-borne acoustics, 120 dBspL- That is the threshold of pain. 

That corresponds to a 20 Parms disturbance, so peak pressure amplitude, pi, the amplitude of a 

peak or trough is 28 Pa. The Mach Number, which is the critical nondimensional measure of 

how strong that wave is, is given by v/c or pi/yp0. That amplitude corresponds to a Mach 

Number, which is only 200-ppm [18]. The loudest sound (peak pressure) you can hear without 

really hurting yourself is only 280 ppm of the mean atmospheric pressure, less than 0.03%. 

We can plug that result for the Mach Number, M, back into the expression that I had for the 

shock inception distance [8]. We now must use the appropriate value of T for air, rair = 6/5, 

instead of T ~ 3/2 that was used for shallow-water waves. We find that the wave will form a 

discontinuity, if it is one-dimensional, in air at a frequency of one kilohertz, after traveling 230 m 

away from its source [19]. 

Does some other effect take over before you reach this the shock formation distance, Ds, to 

stop the shock-wave formation? Is it possible that just simple thermoviscous dissipation will 

attenuate that wave and it will not maintain that original Mach Number out to Ds? If you look at 

Prof. Bass's work on attenuation in the atmosphere, you find that at 1 kHz in dry air, the distance 

that it takes for the wave's amplitude to decay to 1/e of its initial value, that is, the exponential 

attenuation length is 4.3 km. This suggests that shock wave effects will be more important, in 

this case, than classical attenuation effects. 

We form another dimensionless quantity called the Goldberg Number to compare the 

nonlinear effects with ordinary (linear) dissipation. The Goldberg Number is the ratio of the 

distance that it takes for the wave to attenuate by 1/e, divided by the distance that it takes to form 

a shock, Ds [20]. When the Goldberg Number is bigger than one, shock waves will form; hence 

this wave will shock before it attenuates. 

If we increase the frequency by a factor of 10, if we go up to 10 kHz, then the wave would 

shock in 1/10 the distance if the attenuation was the same at 10 kHz as it was at 1 kHz. The 

shock formation distance is scaled by the wavelength. If I raise the frequency by a factor of 10,1 
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shorten the wavelength by a factor of 10. That 10 kHz wave would shock in 23 meters, except 

that the attenuation increases with the square of the frequency. The attenuation length drops 

from 4.3 km to only 43 meters. 

In fact, the Goldberg number goes from our initial (1 kHz) case of 19, which is clearly 

shock-controlled, to a lousy factor-of-two at 10 kHz. This indicates that the 10 kHz wave is 

going to shock, but it is just barely going to produce a slight "discontinuity" for a little while and 

will then attenuate away in a more linear fashion. When we get up to 100 kHz, a very high 

frequency, where the shocking distance would be only 2 m, it will never form a shock front, 

because the attenuation has gone up so high that the wave will attenuate before the crests catch 

up with the troughs. 

There is a whole range of these Goldberg Numbers and for the case of deep ocean waves 

Goldberg Numbers are always about a million. Viscosity is entirely irrelevant for deep ocean 

surface waves. All of the interactions of the waves on the surface of the ocean are completely 

dominated by nonlinearity. Navier can take off with Stokes and they can have a good time. You 

just do not need them for that case. The Goldberg Number will tell you whether you are going to 

be controlled by nonlinear distortion or irreversible thermal conduction and viscous losses that 

Professor Atchley talked about earlier. 

[Transparency #12 - Stable Waveforms] 

If you are in the large Goldberg Number regime, then you are going to form a shock front. 

Every monochromatic periodic wave that you excite, for a sufficiently large Goldberg Number, 

will end up looking like a sawtooth wave. If you put in a sine wave you will get a sawtooth. If 

you put in a sawtooth wave, you will get a sawtooth. Put in a triangle wave, you will get a 

sawtooth. Put in a backward sawtooth, you will get a forward sawtooth. 

It is interesting, if we are going to study nonlinear acoustics, to understand what goes on in 

a sawtooth wave. We can represent a sawtooth waveform as the superposition, in the Fourier 

sense, of sinusoidal waves of progressively higher frequency that are harmonics of the 

fundamental [21]. 

We can analyze the dissipation created by the large gradients produced by the shock front 

in at least two ways. One way involves writing conservation equations for the pressure and the 

density behind and in front of the shock. Those conservation equations [22, 23, and 24] are 

known as the Rankine-Hugoniot relations. From there, one can show that across the shock there 
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is a discontinuity in the entropy. The dissipation that takes place at the shock front is third-order 

in the relative pressure difference ahead and behind the shock [25]. That approach is explained 

nicely in Landau and Lifshitz, Fluid Mechanics. 

[Transparency #13- Shock Attenuation] 

If we are in the regime where the wave dissipation is due entirely to the shock front; the 

fully-developed shock wave limit, then there are large gradients. As shown in the figure, a 

straight line that pivots about the zero crossing can represent the non-shock part of the 

waveform If we are moving in a frame that is moving along at the same speed as the zero 

crossing, each point on the waveform which is not part of the shock front is going to more 

forward by an amount that is proportional to its amplitude. That corresponds to a solid-body 

rotation. 

In fact, the wave wants to pivot about this zero-crossing point. To do that, it is going to 

have to eliminate the part of the wave represented by the smaller shaded triangle as it passes 

through that shock front. I have reproduced this geometrical construction from my notes on a 

course given by Prof. Rudnick at UCLA back in 1977, but I could not find this elegant 

geometrical approach presented anywhere in the scientific literature. 

As the line rotates, then its intersection with the vertical shock front will drop. I have 

exaggerated the infinitesimal drop, du, for visual effect. The part of the construction that moves 

ahead of the shock travels with the excess velocity in the moving frame and advances by a 

distance Tudt, in a time, dt. The two shaded triangles are similar, so the ratio of the opposite to 

the adjacent legs [26] is equal; hence we have an expression for du that can be integrated to 

produce [27]. 

This is an interesting expression for attenuation. It is not what we are used to; it does not 

lead to exponential decay. It is an algebraic attenuation that has a very long time tail, which you 

do not observe, since at long times, the linear thermoviscous dissipation takes over. What you 

find is that the shock will attenuate much more quickly than classical exponential decay. What is 

initially even more surprising is that the decay rate does not depend on magnitude of the 

transport coefficients. When you talk about attenuation in linear acoustics, you expect to see loss 

rates that are proportional to viscosity and thermal conductivity. The only "material" parameter 

you see in [27] is T. I would like to explore what that means. 

[Transparency #14- Shock Front ThicknessJ 
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Rudnick's geometrical construction says that some amount of energy is going to have to be 

removed from the system to allow the sawtooth waveform to evolve by the "solid body rotation" 

model. To do that, the gradient is just going to get as steep as it needs to be. If the wave 

amplitude is larger, then the gradient is going to get steeper, so that the steeper gradient can 

dissipate the required amount of energy. If it is not such a large sawtooth wave, then that 

gradient will reduce as necessary, but the energy loss does not depend on the dissipative 

coefficients directly; those dissipative coefficients will determine the magnitude of the gradients 

across the shock front. 

I am going to use that picture to calculate the thickness ofthat shock front. This is another 

interesting problem in nonlinear acoustics. As always, I am going to cheat, since the correct 

answer is already known by a more careful analysis. We know that the kinetic energy contained 

in one wavelength, E, is proportional to the velocity squared [29]. That proportionality constant, 

k, could be >4p. The length of a unit cross-section of one wave is "k. 

Since E is proportional u2, the change in energy divided the energy is two times the change 

in velocity divided the velocity ~ that is just a differentiation of [29]. Our construction happens, 

conveniently, to have produced [26]; just the quantity we need, du/u. If I plug du/u into [30], I 

obtain the relative change in energy, dE/E, in terms of the relevant parameters of the problem, M, 

T, and X. 

On the other hand, if we go to classical acoustics and we ask what is the thermoviscous 

attenuation, we can write [28], which is probably familiar to most of you. The attenuation rate in 

space, a, is some product that depends on, co , the frequency squared, p, the shear viscosity, a 

relaxational component, £, if you have a media other than an inert gas, K, the thermal 

conductivity, cp and Cy, the specific heats at constant pressure and constant volume. What may 

be less familiar is my preference for gathering these details describing the transport properties 

into a single "collision" time, x. Using that time, and the equilibrium sound speed, c0, I can 

define a characteristic length that is related to the mean-free-path, mfp, between collisions of the 

molecules which make up a gas. 

I am going to exploit the fact that the frequency squared determines the attenuation. That 

way I can approximate the thickness of the shock front is by ignoring all but the highest 

frequency component (remember the Fourier expansion of the sawtooth in [21]), since that will 

be the frequency component that attenuates the most amount of energy. 
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The logic behind this approach is based on my assumption that the thickness of the shock 

front, 8 = A.max/2, is equal to one-half wavelength of the highest frequency component, fmax, 

required to represent the waveform in the Fourier superposition [21]. Using [28] as the 

expression for the thermoviscous loss, the relative energy loss due to thermoviscous attenuation 

of that single high-frequency component, dEy-v/Ei-v = -2a dx. Equating that result to the 

relative energy loss due to the shock front [30], we obtain an expression for the shock thickness 

[31]. 

That approximation to the thickness turns out to be 7i2/2r times the mean-free-path. This is 

not exactly right, because I was fudging here by throwing away all the lower frequency 

components, but I end up with a result for the shock thickness that is related to the mean-free- 

path divided by the Mach number. The stronger the shock, and the larger the value of M, the 

thinner the shock front will be. This is essentially a quantification of the argument presented 

previously that explained the absence of the transport coefficients from the shock attenuation 

result [27]. 

For the example I gave you, which is about the weakest shock you can think of, a Goldberg 

Number of 19, that thickness is only 70 microns. It is 20,000 mean-free-paths, but it is very 

small compared to the wavelength; that is, the wavelength divided by the shock-front thickness, 

even for a very weak shock, is a factor of 5000. That shock thickness is 1/5000 of the 

wavelength. If you upgrade to a really good shock, with M « 0.1, then the thickness gets down 

to be on the order of only about 40 mean-free-paths; less than 0.2 microns. 

The picture that I want you to take from this discussion is that once you are fully developed 

as a shock wave, that the back of the sawtooth wave joining the successive fronts is going to 

rotate as the wave progress. That energy loss is going to be absorbed by the steep gradient 

represented by the shock front. The gradient is going to adjust its steepness so that it can get rid 

of the part of the "triangle" that does not belong there, since it would make the front multiple- 

valued. If we accept that it is a thermoviscous process, although that is irrelevant, we can say 

what the shock-wave thickness will be due to thermoviscous processes. 

MR. TUTTLE: Can you show us on that graph where the thickness is? 

DR. GARRETT: At the scale of the construction in Transparency #13, a vertical line 

represents the shock front. In a weaker shock it will be tilted slightly. Remember, even in the 

weak shock limit, the "tilt" is one part in 5000. It is virtually vertical and that is why I said that 
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you have to really go down to the molecular level to "observe" the tilt. The tilt is on the 

molecular level and the wavelengths are on the hydrodynamic level. That was the outcome of 

the previous development. 

[Transparency #15 - Distortion in Liquids] 

It is very common to extend this treatment of shocks to liquids. A lot of work is done, 

particularly in biological liquids. The people who work in that area prefer to talk about the B/A 

coefficient. In their literature, you will see B/A's for brain tissue, for bovine serum albumin, and 

other stuff that I lump into the same class as hamburger meat. The researchers who work with 

liquids and biological materials choose to express the nonlinearity in the equation-of-state for 

their favorite media by expand it in terms of a power series in the density of the media. That 

power series is known as a virial expansion [32]. 

The first term is proportional to the deviation of density [32a]. The second term is the 

coefficient of deviation in density squared [32b]. The third term is the coefficient of the relative 

density deviation cubed [32c]. That approach to the equation-of-state is called a virial 

expansion. Van der Waals has another way of writing an equation-of-state. There are lots of 

ways of writing it. The adiabatic in gas law is another equation-of-state. 

I have taken those various virial coefficients and expressed them in terms of 

thermodynamic derivatives [32a-c]. Those results express the virial coefficients in terms of the 

change in sound speed with pressure. A practical choice, since measurement of the change in 

sound speed with pressure is a pretty common way to determine the nonlinearity in the equation- 

of-state. We can express the sound speed in terms of those virial coefficients as well [33]. That 

form is useful to me, because I said there is the convective contribution and the sound speed 

contribution to the nonlinear distortion process. 

The lowest-order correction is B/A times the relative deviation in density. If we take the 

expansion to the next order, it adds a further correction, which is C/2A times the relative density 

deviation squared. If we stop the expansion here, we can identify those terms. T is just 1+B/2A. 

You see that result in almost every nonlinear acoustics book (except they will not call it T). The 

distortion term is 1+(B/2A), the "one" being the convective contribution. 

I am going to take you a little further, because there is something interesting that happens if 

we go to the third term.   Again, as I say, if you step beyond what you are setting out to 
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understand, you will have a more complete picture when you look back. I hope the following 

will give you a broader perspective. 

The third term is positive definite, so if the third coefficient in [33], C/2A, is negative, then 

when the density increases, the third term makes the speed decrease. When the density goes 

down, the speed still decreases, because (5p/p)2 is positive definite. If the C/A term is important, 

then instead of the convective term and the sound speed term having the same sign, the terms 

will have an opposite effect for half of the acoustic cycle. 

[Transparency #16- Double Shock Formation] 

For half of the cycle, both contributions will add up and distort the wave. For the other half 

of the cycle, they will cancel each other. The completeness of the cancellation will depend on 

the amplitude of the wave, as well as the relative sizes of A, B, and C. That is what I have 

shown in the figure. If you include the third term in the virial expansion, then there is a critical 

amplitude, v<j, corresponding to the complete cancellation between the B/A term and the C/A 

term. When the amplitude is much less than that critical amplitude (in fact, in the top waveform, 

just half of the critical amplitude), then the crests travel faster than the troughs and the troughs 

travel slower than the crests. This produces a waveform that is similar to the shock-wave 

formation waveform on Transparency #8. You can see there is a little bit of asymmetry between 

crests and troughs, but it is not dominant. 

When you get to an amplitude where the peak particle velocity is equal to this critical 

velocity, then you will notice that the crests did not move relative to the zero-crossing at all. This 

is because the B/A term is speeding it up by exactly the same amount, at that amplitude, that the 

C/A term is slowing it down. The crest at this very point stays put, of course, but the trough is 

shocking like crazy. 

If you go to larger amplitude, that C term takes precedence during more of the cycle. At 

small amplitudes, the B term is still having its way, but when you start getting to the larger 

amplitude portions of the wave you can observe the "retardation" during both half-cycles. When 

you get to very large shock amplitudes, you produce two shock fronts per wave. 

DR. BASS: You made the assumption that B/A is a composite quantity. Why did you 

make that? 

DR. GARRETT: Because I have not gotten to my next transparency. Prof. Bass is exactly 

right.  In ideal gases, B/A is a positive quantity; in most substances it is a positive quantity.  In 
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liquids near their critical points, it is necessarily positive. In solids it may not true. In third 

sound on thin films of superfluid helium, it is not always true. The sign of B/A depends upon 

film thickness. Second sound, which is a thermal wave in superfluid helium, it is not always 

positive. In the case of second sound, it is a function of temperature. I am just working you up 

to the deviant cases because I live for the deviant cases. 

You can see if you continue this, you will not get the crests always traveling fester and the 

troughs always traveling slower, if there is a higher-order correction in this picture. 

[Transparency #17- Double Shock Occurrence] 

The question is do we ever see double shock formation? In ideal gases C/A is, in fact, 

negative. The ratio of specific heats, y, is always less than or equal to 5/3, so by [36], the C/A 

coefficient is negative. But if you plug that result into the expression for the critical value of the 

Mach Number [35], the denominator vanishes. You cannot produce double shocks in an ideal 

gas no matter how strong the shock wave. 

Classical liquids: You can do the same thing for a classical liquid. Both the C/A coefficient 

and B/A coefficient have been measured for water. You need to get to velocities that are 20% 

higher than the sound speed. You need supersonic amplitudes. It is not going to happen since 

the required pressure amplitude is 26,000 atm, well past the cavitation threshold for water. What 

is the record for water, Tom? 

DR. MATULA: Two hundred atmospheres, negative. 

DR. GARRETT: So you are two orders-of-magnitude away from ever seeing this shock 

doubling in water. 

It turns out that in liquids near their critical points this effect has been observed. One of the 

big mistakes I made in my career was writing a theoretical article on this effect and publishing it 

in the Journal of the Acoustical Society of America. Unfortunately, any time the editors of JASA 

saw weird shock-wave calculations from really good mathematicians, they would send those 

articles to me for review. After hearing enough lame excuses, they finally realized I could not 

referee these articles. There are several such articles published in the Journal of Fluid 

Mechanics and in JASA, where you do see this double shock behavior in liquids that are close to 

their critical points. 

You should be able to see this effect in superfluids, because the fluid velocity depresses the 

superfluid fraction and slows down the propagation speed [37]. It does not matter whether the 
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velocity is in one direction or in another direction.   It has been observed and there are places 

where you can get these deviant forms of shock waves. 

DR. ATCHLEY: Has anybody looked at sonoluminescence? 

DR. MATULA: Not for water, not that I know of. 

[Transparency #18 - Reverse Shocks] 

DR GARRETT: I would like to answer Prof. Bass's question, which was based on the fact 

that there are circumstances where the equation-of-state part has a different sign than the 

convective part. One of the cases that is closest to what we talked about when we started this 

presentation with surf is what is known as third sound or waves in thin films of liquid helium on 

a nice flat substrate. 

There the dominant restoring force for these very thin films is not gravity; it is van der 

Waals force. I just heard that it is also van der Waals force that keeps geckos on vertical walls 

and ceilings. It was just published in an article in Nature. Anyway, the van der Waals effect is 

what is pulling the free surface of the helium film down toward the solid substrate, not gravity, 

because we are at really talking about films with thickness that are comparable to atomic 

dimensions. That van der Waals force is proportional to the inverse-fourth-power of the 

thickness, due to fluctuations in the electromagnetics. The fluctuating dipoles are attracted to 

their "images" in the substrate, so you have a fourth-order dependence of force on the thickness. 

Since the wave propagation speed is determined by the acceleration of gravity and the 

depth in a shallow-water wave [4], the force that appears in the wave speed, is now van der 

Waals attraction, instead of gravity [38]. You find out that in thin films, the thin parts travel 

faster because the restoring force is greater. For a sufficiently small mean depth, when the film 

gets thinner, the wave speed goes up; just the opposite of the result [4] derived for shallow water 

gravity waves. 

In third sound, there is a thickness where the convective part is exactly canceled. For even 

thinner films, the waves break backward. For thicker films they break forward, like ocean 

waves. If you are an electron, you can surf on a thin sea of superfluid helium and never worry 

about being wiped out. The waves break behind you. 

This also occurs in another superfluid helium sound mode. There is a thermal wave called 

second sound. Its speed will decrease with increasing temperature. This is just the opposite of 

an ideal gas, where the speed increases with increasing temperature.  Therefore, when a second 
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sound "crest" becomes hot, it slows down. It can slow down enough to compensate for the 

convective part. If you are at a temperature close to superfluid transition temperature, the 

lambda temperature, 1\, the second sound wave will form a trailing-edge shock front. If you are 

at a temperature well below the Tx, it will form the shock at the leading edge. In between, there 

is a temperature, 1.884 °K, where it will not break at all [S. Putterman and S. Garrett, "Resonant 

Mode Conversion and Other Second-Order Effects in Superfluid Helium," J. Low Temp. Phys. 

27(3/4), 543-559 (1977)]. The nonlinear effects will have to appear at higher order. 

The same is true, as Phil pointed out to me once, in shock tubes. They are solids. 

DR. MARSTON: You can have anomalous waves. 

DR GARRETT: They use those in shock tubes. When they want to make a high- 

amplitude pulse with a sinusoidal shape, they pass it through some material that has shock waves 

break backward. If they make the material thick enough, the shock can "un-distort" and it 

returns to the desired sinusoidal shape. 

DR. HAMILTON: Glasses will do that. 

DR. GARRETT: Thank you. 

[Transparency #19 -1- Review and Summary] 

This concludes the first portion of my lecture. Let me go over what I think I have tried to 

present: 

Self-interaction: The presence of a wave affects the sound speed. It does it in two ways. It 

does it because there is a convective contribution to the sound speed due to the fluid particle 

velocity in the direction of propagation. There is also a constitutive contribution that comes out 

of nonlinearities in the equilibrium equation-of-state. 

Nonlinear effects accumulate with distance: The nonlinear effects do not change sign, so 

they do not cancel; crests always advance and troughs retard. These effects accumulate with 

distance. If nonlinear effects dominate dissipative effects, you always end up with sawtooth 

waveforms. The fate of those sawtooth waveforms is that they will attenuate faster than you 

would expect based on the linear dissipation mechanisms due to thermoviscous effects. They 

attenuate in an algebraic way, not in an exponential way, until the algebraic long-time tail 

intersects the linear-acoustic exponential decay. That is basically the waveform "life cycle." 

Fully developed shocks have sawtooth waveforms: If an initially sinusoidal wave has a 

Goldberg Number greater than unity, it forms a shock beyond Ds.   The steep gradients in the 

58 



shock front dissipate energy until the wave's amplitude is small enough that the linear-acoustic 

thermoviscous effects now provide the primary attenuation mechanism. 

There are interesting deviant cases: There are places where the convective and the 

constitutive parts have opposite sign. There are higher order contributions, say, the C/A term, 

which may not change sign, while other parts are changing sign, thus leading to other types of 

shock formations. 

With that, you have 10 minutes for a break. When you return, we will move on to looking 

at this whole process again, but from a different perspective. 

DR. GARRETT: Ready for part two of the Babylonian captivity? 

As I promised, we are going to look at the same distortion phenomenon again, but we are 

going to look at it in a slightly different way. I am going to attempt a more formal approach. It 

is still based on the same concepts we introduced in the first hour, using convective and 

constitutive nonlinearity. I am going to be a little more careful about breaking the acoustic fields 

into, say, a first-order contribution and a second-order contribution. This approach was first 

executed in a very elegant way, at a time when the Americans were shooting each other in the 

Civil War, by a man named Earnshaw (I do not know his first name) in England. 

[Transparency #20 - Waveform Instability] 

Earnshaw looked at this problem by saying just what we said during the first part of this 

lecture. We take a look at an ordinary first-order linear sound wave with some amplitude, v', and 

we write the original sound wave as Vi(x, t) = v' cos (cot-kx). He factored the angular frequency, 

co, out of the phase factor as shown in [39]. At that point, he could have said, "All right, I'm not 

going to restrict the velocity be a constant, c0, but I'm going to substitute this local velocity into 

this equation [40] to generate a correction to the original wave form [39]." A binomial 

expansion for small Mach Number, Vi/c0, will generate the next order correction [41]. We have 

just executed an iterative process. We have substituted the simple result, vi, into a term that will 

produce a correction of higher order and smaller magnitude. 

[Transparency #21 - Earnshaw Continued] 

We know how to treat a trigonometric function that has an argument that is expressed as a 

sum [41]. We know that cos co(a+b) is cos oa times cos ©b minus sin coa times sin cob. Since 

cosine of a small number is one, and sine of a small number is just that small number, we obtain 

[42].  The first term in that expression just gives us back vi, so it is easy to identify the second 
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term as v2. Substituting our expression [39] for vi in the second term produces an expression for 

v2 with amplitude proportional to v'2 [43]. 

We know that 2 (sin a) (cos a) is just sine of 2a, so we can rewrite this trigonometric 

product as [44]. We have this combination of factors: x, ©, T, times the amplitude squared 

divided by the equilibrium sound speed squared, times a wave with twice the frequency and half 

the wavelength. By doing this procedure, Earnshaw was able to generate an expression for the 

second harmonic component that grows linearly with distance, x, from the source. When this 

pure sinusoidal wave starts to propagate away, the second harmonic gets bigger and bigger 

linearly with distance. I actually like to write [44] in a slightly different form on the right-hand- 

side of [44]. You end up with a second harmonic propagating component that is proportional to 

the distortion amplitude, which amplitude grows with the distance, x, scaled by the original 

wavelength. 

We find that the first-order solution is unchanged, but that is an artifact of our 

approximation. You cannot be generating energy at 2f and not taking it out of somewhere. 

Obviously, it must be coming out of the energy at frequency, f. But because we are doing this in 

a kind of sloppy iterative way, which I will correct in a moment, what we do is we just recover 

the fundamental and we get a linearly growing second harmonic. If the magnitude of the v2 term 

is small, then the decrease in the Vi term should be negligible. 

We can ask ourselves where this approximation should become invalid. Since we were 

assuming that each successive contribution was smaller than the previous one, v2 « vi, we can 

certainly say that that the approximation should fail when those two contributions are of equal 

size, V2 « Vi. If we ask ourselves at what distance does the V2 term equal the vi term, so we know 

we are in trouble, since our assumption is being violated, what do we get? 

Surprise! You get the twice the shock-inception distance. At this crude level, this all 

makes sense. If we use this iterative solution to generate the weak distortion product, it will 

work quite well. We have to account for the energy lost in the fundamental, but we will do that. 

This is a nice way to look at that shock formation, I believe. We are just taking the velocity 

and substituting it back into the original wave to modify the local sound speed. Even in this 

case, the trigonometry is a bit messy, so it is not something that you want to do very repeatedly 

to generate the higher frequency components required to "fill out" the Fourier representation of 
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the sawtooth wave form [21]. Let's say we wanted to get the third harmonic, and the fourth 

harmonic, et cetera. 

[Transparency #22 - Higher Harmonic Generation] 

There is actually an easier way that a young Dr. Hargrove came up with in 1960. He 

reverted to that geometrical description again that says that the excess velocity is proportional to 

the waveform's velocity amplitude at each position. We know that the crests are traveling faster 

than the troughs, so we can parameterize the distorted waveform. We can say that the y- 

amplitude equals sin 6, but the value of that amplitude is going to occur at a distance farther 

along the wave that is proportional to that amplitude [47]. The obvious scale length for the 

parameterization of the x-position is the shock inception distance, Ds, as shown in [46]. 

We are going to plot this parametrically. We are going to plot y and then we are going to 

use y to determine where we plot the x-value for that given value of y. You get something that is 

distorted, as shown there, but that we can calculate the Fourier coefficients in the usual way. 

[Transparency #23 - Higher Harmonic Generation (Continued)] 

In principle, we should be able to get back Earnshaw's solution and pick up the decay in the 

fundamental, as well as the growth of the second, third, and fourth harmonic; as high as you want 

to go. All of this works out because you are taking the trig function of something that is already 

a trig function; that process generates Bessel functions. By doing a Fourier analysis ofthat shape 

[48], you end up with coefficients for each frequency component. The individual coefficients are 

proportional to Bessel functions of the same integer order as each of the harmonics, divided by 

the argument of the Bessel function [49]. The fundamental is proportional to a Ji Bessel 

function, divided by the argument of the function. 

When you first look at this, you go, oh, yes, it looks like Bessel functions, because Jo has a 

value of 1 and it decays with increasing argument and looks just like that. No, that is not J0. 

That is Ji. For small values of the argument, Ji actually increases linearly with argument, 

initially, divided by the argument that also is increasing linearly. You get something that looks 

fairly constant for a while (as with the Earnshaw result) but then falls off. That is where your 

fundamental power is going, to feed the hunger of these other growing children; the higher 

harmonics. 

Of course, any such analysis of the growing harmonic distortion will only be valid up to the 

point where the gradient, that is, the waveform, becomes vertical.    These calculations of 
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harmonic distortion were done by various horrendous mathematical techniques, but Hargrove's 

was certainly the slickest and easiest way to obtain the desired result. What is that result? 

The second harmonic grows linearly with distance. This is the distance it has traveled 

scaled by the shock formation distance. This second harmonic grows linearly, which is what was 

produced by the Earnshaw solution. I just did it for you in a completely different way. The third 

harmonic grows as the square of the distance from the source. The fourth harmonic grows as a 

cube initially. 

[Transparency #24 - Kongensvej] 

I will not be able to do too much detail in the next section, but what I would like to attempt 

is at least an introduction to the concept of a formal perturbation solution to the hydrodynamic 

equations. Prof. Atchley showed the hydrodynamic equations. The title of this transparency is 

proof that I was actually in Denmark when I prepared these notes. Does anybody know what 

Kongensvej means in Danish? 

PARTICIPANT: King's Road. 

DR. GARRETT: Right. 

In principle, everything I have done in the sort of Babylonian way should be recoverable in 

the Euclidian limit. I can start by saying that we are talking here about fluids and that the 

thermodynamics of a single component, homogeneous, isotropic fluid can be described by two 

variables. Two variables form a complete description: a mechanical variable like density or 

pressure, and a thermal variable like entropy and temperature. 

If we want to describe not only the thermodynamics, but also the hydrodynamics, we have 

to add three more variables; that is, we have to give every point in space a velocity. So five 

variables completely describe the fluid's hydrodynamic behavior and, therefore, I have to come 

up with five independent equations and the algebraic system then becomes "closed." 

I have five equations. I have conservation of mass [50], conservation of entropy for the 

two thermodynamic terms [51], and conservation of momentum for the three components of 

velocity [52]. Again, I apologize, but the Danish font set would not support vectors in my 

computer. It should not introduce too much confusion. You know which variables are vectors 

and which are not by how they are being treated. 

I should be able to regenerate everything I have done so far by taking the hydrodynamic 

equations up to second order. 

62 



[Transparency #25 - Formal Perturbation Expansion] 

You are all familiar with the linearization of the hydrodynamics that produces ordinary 

linear acoustics. The equation of state has to be introduced, because you will notice there are 

five equations [50, 51, and 52], except they happen to contain six unknowns. They require both 

pressure and density, so I have to add an auxiliary equation, the equation-of-state, to relate the 

pressure and the density. To obtain the linear results, I have to expand the equation-of-state only 

to first order, neglecting the final term in [56]. 

transparency #26 - First-Order (Linear) Solution] 

I end up, again, with the infamous wave equation [61], which is important in this 

discussion only to the extent that it is homogeneous, which means that if I ever see this 

combination of terms I can cross them out; I can throw them away. That combination is equal to 

zero; that part is very useful. The other thing, of course, is it assures us that the first-order 

solutions are traveling waves for velocity, density, or pressure, whatever you choose [62]. 

[Transparency #28 - Nonlinear Wave Equation] 

Instead of stopping at linear terms, I now include all terms up to second order in the 

continuity equation [68], the Euler equation [69] and the equation-of-state [70]. If we examine 

conservation of mass [68], the derivative of density with respect to time contributes two terms. 

There is a first-order term, öpi/öt, and a second-order term, dpildt. There is the dot product of 

the velocity vector and the gradient of the density, which is a second-order term, but there is also 

the divergence of the velocity times the density that has both a first-order and second-order 

contributions. Then there is, again, the term, like the first-order term, that involves a second- 

order quantity, which makes it also second order. 

These are all of the terms that you must keep, a lot more than in the linear case. Similarly 

with the Euler equation [69], you have acceleration of the first-order contribution, acceleration of 

the second-order contribution. Also, the product of the first-order deviation in density and the 

first-order deviation in velocity is a second-order term and I have to hang onto it, I cannot throw 

it away as was done in the linear problem. 

Similarly here, this is an important term, (vi • V)vi. That term will represent the 

convective part of the nonlinearity - the self-Doppler term. If you multiply that term by the 

ambient density, p0, you generate a second-order term. Both the first-order contribution to the 

pressure gradient and the second-order contribution must also be included. 
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Similarly, one must expand the equation-of-state to second order. The first P2 term in [70] 

is just the equilibrium sound speed squared times the second-order density variation, p2. There is 

also a contribution from the second derivative of the pressure with respect to density times the 

square of the first-order density variation, pi2, if I am taking everything at adiabatic conditions. 

Transparency #27 shows the relative strengths of the first- and second-order terms. 

If we now return to Transparency #28 and do the same manipulation I employed to create 

the first-order wave equation, I produce a second-order wave equation [71]. Instead of it's being 

homogeneous; there is the Laplacian of a term that came from the convective part and a term that 

came from the second-order part of the equation-of-state. Lo and behold, we are back to 

convection and equation-of-state as the "drivers" of nonlinear wave distortion! 

In feet, remember dp/dp at constant entropy is sound speed, so ^p/dp2 is just the density 

derivative of the sound speed, which is what you see in [72]. It is the same term I wrote way 

back in [10]. The term in parentheses in [72] is just T, the Grüneisen coefficient. What we find, 

if we do the hydrodynamics correctly to second-order, is a wave equation for the second-order 

terms (in this case I have chosen density but pressure would have been fine) that is driven by 

quadratic combinations of the first-order sound fields. 

That new approach leads us to a different interpretation; another complementary picture of 

what is going on to produce nonlinear distortion. It is a very powerful and a very useful picture. 

It gives us another mechanism to explain what is going on and also provides a nice way to take a 

look at the effect of two waves of different frequencies and different wavelengths, when they 

interact in a nonlinear fashion. So far, we have only investigated self-interaction. That is why I 

am taking you down this third road. 

[Transparency #29 - Parametric Array] 

If we go back and reproduce what we did before, with just a single wave distorting, we can 

take a cosine-propagating wave of peak amplitude p', we can square it, and generate a constant 

term and then a "2f term as shown in [73]. That is the term "driving" the nonlinear wave 

equation [72]. We can interpret quadratic term as an array of virtual sources. The virtual sources 

are created by the co-linear interaction of these waves squared; a whole bunch of little 

loudspeakers. We are generating sound at a frequency, co, but now in one-dimension, along this 

column, there are a whole bunch of loudspeakers that have a source amplitude that is determined 

by that operator on the right-hand-side of [72].  Since co/k = 2co/2k, the sound from the virtual 
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loudspeakers have the same phase velocity as the propagation velocity for both the fundamental 

wave and the second harmonic component, so they behave as an end-fire array for the second 

harmonic. 

That is another way of looking at the initially linear growth we saw first in the Earnshaw 

solution [44]. You start with one loudspeaker. When its wave reaches the second loudspeaker, 

they add in phase, making the amplitude of the second-harmonic component grow with distance. 

The sum of the first and second loudspeaker outputs reach the third loudspeaker and add, in 

phase, to its output. This is also a good model for linear growth of the second-harmonic 

distortion component. 

[Transparency #30 - Nonlinear (but Co-linear) Wave Mixing] 

But why stop there? We have reproduced the Earnshaw solution [44]. What happens if we 

take two waves of different frequency and different wavelength? Let's just choose them to be not 

very different, so that the frequency of wave No. 2 is slightly less than the frequency of wave 

No. 1. The difference in their frequencies is much smaller than the frequency of either one. 

What we envision here is a loudspeaker that is generating two frequencies, or possibly two 

different loudspeakers, at the same location, generating two different frequencies. Those 

frequencies are interacting within the medium. We have this quadratic term [72] that is "mixing" 

the two waves. The squared terms in [75] produce harmonic distortion of the "pump" waves. 

Then from the product of two terms with different frequencies, and trig identities, we have two 

additional terms that represent "virtual sources" at the sum frequency and the difference 

frequency. 

The medium is generating distortion of the first pump, distortion of the second pump, and a 

wave that is at the sum of those frequencies and a wave that is at the difference of those 

frequencies. All of those waves have the same phase speed [76], so these are all driving that 

second-order wave equation in "geometrical resonance," producing a virtual end-fire array. 

The difference-frequency term happens to be a particularly interesting. The reason it is 

particularly interesting is that the length of this virtual array is determined by the attenuation of 

the pump frequencies. Let's say the pumps are at 100 kHz and 102 kHz. The length of the array 

that is generating that difference wave, which is one of the four products that is being generated 

in [75], is determined by the attenuation of those high frequency pump waves at 101+1 kHz. 
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You can make a very long end-fire array for the low-frequency source and, therefore, a 

very directional low-frequency source from something that is really actually a very small high- 

frequency source.   That has attraction for different applications.   (See article following Trans 

30.) 

[Transparency #31 - Parametric Array Waveforms] 

The picture, schematically, is this. You have two pump waves of fairly high frequency that 

are attenuating over some distance. Each wave is creating second harmonic components that are 

growing initially. Of course, since the pump waves are attenuating, and the second harmonic is 

at twice the frequency, the attenuation of the second harmonic is four times as fast [28]. The 

pump harmonic distortion is attenuating in a distance that is short compared to the attenuation 

distance of their parent (pump) wave. On the other hand, the difference frequency is growing 

linearly until this pump waves attenuate. What can you do with that? 

[Transparency 31a - A New Kind of Sound Reproduction] 

Here is an article from a recent German audiophile magazine that is really bizarre in the 

extreme. I think it is also technically a disaster. The technical discussion in that article is almost 

entirely incorrect, but I have got to show it to you, because it is so entertaining. 

Imagine sitting in a concert hall. You and everyone else are enjoying some marvelous 

music and suddenly the artist addresses you. Only you can hear what the artist is saying. 

Incredible? No, mental hospitals all over the country are filled with people who hear other 

people talking only to them. (Laughter) 

This works only as a joke. 

Anyway, there are commercial units, and Bruce (Denardo) is going to demonstrate one of 

them tomorrow at NPS. It looks very much like the unit in this article. I do not know what the 

legal issues are. I know Andreas (Larraza) has one of the American units and this article 

describes a Sennheiser product, so I do not know if there is cross-licensing or patent 

infringement between one group and the other. 

You all have now taken enough of this course already to know that the waveform in the 

figure is entirely wrong. The other pictures are kind of nice. They illustrate that end-fire array 

idea. Each "virtual loudspeaker" is delayed by a ti, T2,... x„. They are all adding in phase; that 

is kind of nice. Tomorrow, Prof. Denardo could choose one of you to receive a secret message: 

"KillGarrett." (Laughter) 
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The best they could come up with in the article is to create the illusion of birds flying by. 

They suggest doing this by bouncing the directional sound beam off of a statue or off of a wall. 

Originally they were saying that this would be great for stereo, but you already know enough 

about parametric arrays to know that it is going to be lousy; the bandwidth is going to be terrible. 

The array length is fixed by the attenuation of the pump frequencies. If you have a very low 

frequency then you have a very short distance in terms of the low-frequency wavelength. If it is 

high frequency, then you have really a lot of sound being generated. It is just terrible in terms of 

fidelity. 

They say, well, you can make talking statues and bounce it off of other things. Believe me, 

the Navy's use for this was much more intelligent. We will not talk about what it is. 

[Transparency #32 - Phase Matching] 

We talked about the interaction of co-linear waves in the absence of dispersion. I have said 

that the waves all have the same phase speed. I have assumed a dispersionless medium. If there 

is dispersion, then you do not necessarily get linear growth within the interaction region. After a 

certain distance, the "virtual sources" will start going out of phase. The nonlinearly generated 

wave will build up and it will shrink down and it will build up, it will shrink down; it will 

basically beat in space. That is the bad news, but the interaction can still be useful and 

interesting in a dispersive medium. 

If there is dispersion, you are no longer restricted to co-linear interactions. The velocity of 

the 2f component is different from the velocity of the If component. You can use the "scissor 

effect" if the phase speed of the pump wave is less than the phase speed of the nonlinear product. 

You can take two beams and send them in directions that are not co-linear and, therefore, their 

phase velocity will be something higher than the phase velocity of the thermodynamic sound 

speed. As shown on the transparency, the ki's will add up vectorially to something less than 

2|ki|, but the frequency will be 2© and the phase speed will be the thermodynamic sound speed 

divided by the cosine of the half-angle. The transparency shows the full angle between them 

The cosine is always less than one, so that speed is always greater than the thermodynamic sound 

speed, c0 [76]. 

If you have a dispersive medium where the sound speed increases with frequency, then you 

can take two waves that are not co-linear and still create a parametric array. In fact, that is part 

of what you need to do to understand the distribution of waves on the surface of the ocean. 
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There is very strong dispersion in deep-water gravity waves. That provides selection rules for the 

conversion of energy and the cascade of energy from low frequencies, the big rollers, down to 

the high frequencies in wind-drive waves on the ocean [see A. Larraza, S. L. Garrett and S. 

Putterman, "Dispersion relations for gravity waves in a deep fluid: Second sound in a stormy 

sea," Phys. Rev. A41(6), 3144-3155 (1990)]. 

[Transparency #33 - Dispersion] 

If the velocity decreases with increasing frequency, then you cannot couple the pump 

waves to a nonlinear product. There is no way to phase-match, because [76] only leads to a 

higher velocity, not to a lower velocity. There is a forbidden region where the dispersion curve 

crosses over. Solid-state physicists like dispersion curves rather than sound speed as a function 

of frequency because they like to slap Planck's constant in front of everything and say that they 

are conserving momentum and energy but, of course, they are not. They are just doing phase 

matching. 

One positive consequence of "downward dispersion" behavior is that if you find a medium 

where you can control the "bending" of the dispersion curve, as is the case for superfluid helium, 

then by changing the pressure, you can go from an allowed region to a forbidden region. In the 

forbidden region, you do not have to worry about dissipating waves as shocks, if you happen to 

be sending a very strong, highly focused beam of sound to make, say, an acoustic microscope. 

The people in Cal Quate's group at Stanford exploited this by going to the region where you get a 

decrease in sound speed with increasing frequency and suppressing the energy that they would 

lose due to shock formation. 

Shock formation is not always necessarily a bad thing. These are two sonogram images 

[Note: these images could not included in the transparencies.] They are images of the same 

piece of tissue. This one clearly has less resolution contrast than the other one. The one with 

lower resolution was made by ensonofying the tissue with a wave at 2.5 MHz and looking at 

sound scattered by the tissue at the same frequency, 2.5 MHz. 

Exciting the wave at 3.5 MHz and looking at 7 MHz made this image, the one with the 

higher resolution. This company was able to use the ordinary transducer in their imaging system 

at high amplitude creating second harmonic distortion to provide higher resolution by going to 

higher frequency and shorter wavelength. I will let the guys who are going to talk about medical 
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ultrasound tell you whether or not it is a commercially important effect. It is definitely 

interesting. 

[Transparency #34 - Mode Conversion in Solids] 

There are two cases I would like to introduce where the scissors effect can be used to do 

something completely different. It is what we call mode conversion. In solids we know that 

there are two sound modes: There are longitudinal waves and there are shear waves. According 

to the laws of elasticity, the shear-wave speed, which is the square root of the shear modulus 

divided by the density, is always lower than the longitudinal wave speed, which is the square 

root of the Young's modulus divided by the density [77]. Shear waves will always be slower 

than longitudinal waves. 

Since cs < CL, the phase speed of two non-co-linear intersecting shear waves can equal the 

phase velocity of the longitudinal wave. In aluminum, this occurs when the angle between the 

shear waves is 52°. In the mid-1960s, Rollins, Taylor, and Todd took a nice cylindrical piece of 

aluminum, put flat faces on one side that were separated by 52° and mounted shear wave 

transducers on the flats. At the opposite end of the cylinder, they received longitudinal waves. 

They were taking two slower waves and interacting them at an angle. The phase velocity, then, 

was resonant with the second-order longitudinal wave equation, and they were able to convert 

one mode into another mode by nonlinear effects, not by bouncing them off of boundaries, which 

is another way to convert energy between otherwise distinct modes. 

[Transparency #35 - Mode Conversion in Superfluid 4He (Hell)] 

A similar type of mode conversion was demonstrated in superfluid helium, where, again, I 

mentioned there were two sound speeds. There was a slow thermal wave and there was a fast 

compressional wave. The slow thermal wave is known as second sound and the ratio of the 

speed of first sound to the speed of second sound, is a large number. The ratio is temperature 

dependent below Tx, but typically it is about 10. Therefore, the angle of interaction for nonlinear 

mode conversion is almost anti-co-linear. 

The measurement of nonlinear mode conversion from second sound to first sound was the 

topic of my thesis experiment at UCLA. The best way to get two plane waves to interact over a 

long distance at a precisely controlled angle is to generate the waves as higher-order (non-plane) 

modes in a waveguide of rectangular cross-section. By accurately controlling the ratio of the 

drive frequency to the cut-off frequency for the higher-order waveguide mode, you could finely 
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control the interaction angle.  The interaction angle is given as the square root of one minus the 

square of the cut-off frequency divided by the driving frequency [80]. 

[Transparency #36 - Resonant Mode Conversion in Hell] 

Unfortunately, superfluid helium is expensive and difficult to store. You cannot easily get 

volumes that were very large. To maintain the superfluid, you have to do your experiments in a 

Dewar vessel (a fancy thermos bottle). My advisor, Professor Rudnick, remembered that his pal, 

Bob Leonard, had built a spiral waveguide as an anechoic termination for a probe-tube 

microphone [R. W. Leonard, "Probe-Tube Microphones, J. Acoust. Soc. Am. 36(10), 1867-1871 

(1964)]. What we did was we sent second sound waves bouncing up and down the spiral 

waveguide to interact over a meter inside a Dewar vessel that was only 6 inches in diameter. All 

ofthat useful interaction length just by winding up the waveguide as Leonard had done in air. 

A pair of heaters, shown to the right of the spiral waveguide in the transparency, generated 

the thermal waves. If you look carefully, you can see that the heater elements are "shaped" like a 

sine wave to optimize the coupling to the first higher-order waveguide mode. The frequency of 

the drive was divided in half by a frequency divider that Prof. Keolian developed when he was a 

young child. (Robert and I were both at UCLA at the same time.) Since Joule produces the 

heating, I2R, the frequency of the second sound is restored to that of the original drive frequency. 

You can take a look at the pressure (first sound) wave created by the nonlinear mode conversion 

process at the end of the waveguide opposite from the heater. 

The graph at the bottom of the transparency [S. L. Garrett, S. Adams, S. Putterman and I. 

Rudnick, "Resonant Nonlinear Mode Conversion in He II," Phys. Rev. Lett. 41(6), 413-416 

(1978)] shows that the measurements (points) fall very close to the solid line that was calculated 

from the sound speed measurements of Heiserman, Hulin, Maynard and Rudnick [Phys. Rev. 

B14(9), 3862-3867 (1976)] that determined the thermodynamics of the superfluid [J. Maynard, 

"Determination of the thermodynamics of He II from sound-velocity data," Phys. Rev. B14(9), 

3868-3891 (1976)]. The line has no adjustable parameters. 

DR. SABATIER: What is on top of the heater? 

DR. GARRETT: They are just two probably 0-80 screws where you could attach the wire. 

The heater is constantan wire that is wound back and forth in almost a sinusoidal profile, as well 

as I could do. I could do better "fine work" when I was 20, than I can now at age 50. 
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It is just two heaters. They are independent. The electrical current through the heaters is 

90° out-of-phase, so the heating is 180° out-of-phase. 

[Transparency #37-2— Review and Summary] 

So we have come to the end of the second portion of these lectures on nonlinear acoustics. 

We will finish up with non-zero time-averaged second-order effects, but I want to summarize 

first. 

We decided to approach, in this second hour, the nonlinear effects by doing a perturbation 

expansion. The linearized hydrodynamics is correct only to the extent that the acoustic Mach 

Number is much, much smaller than one. When you can no longer neglect the Mach Number, 

then you have to include the second-order effects. 

I started out by taking the sound speed and feeding it back to the first-order solution to the 

wave equation; that was the Earnshaw solution. We found that the second harmonic initially 

grows linearly with distance from the source. By doing a Fourier analysis of the geometrical 

construction of a distorting waveform, instead of the iterative picture employed to produce the 

Earnshaw Solution, we found exactly the same result as Earnshaw for the second harmonic 

growth, being linear with distance from the source, but we also picked up the third harmonic, the 

fourth harmonic, etc. We observed the required decrease in the amplitude of the fundamental 

(pump) wave, which had to provide energy for the generation of those other higher-order 

distortion products, so the Hargrove solution was a much more complete. But, again, the 

Earnshaw picture was nice, because you saw the second-harmonic generation through the effect 

of the first-order solution on the local sound speed (or at least I think it is nice). 

Then we went down the "Royal Road." We said let's take the hydrodynamics and let's not 

linearize it. Let's keep all terms up to second-order. We found that the second-order 

contributions were generated by quadratic products of first-order terms. That approach led us to 

the end-fire parametric array model where you have all these "virtual sources" being generated 

by nonlinear mixing in the medium. If the medium was non-dispersive, all of the co-linear 

virtual sources added up in-phase, again giving us linear growth as we go away from the source. 

If there is dispersion, and it has increasing velocity with frequency, then you can spread the 

interaction angle and still meet the geometrical resonance criteria. 

The nonlinearly generated "difference wave" was interesting because it allows us to 

produce a virtual low-frequency directional sound. In linear acoustics that would not be possible 

71 



unless you have a "piston" with a diameter that was very large compared to the wavelength of 

the low frequency "difference wave." To get directionality, you need a source whose 

circumference is many, many wavelengths. At 100 kHz in air, you can have a source that is very 

directional but still not much bigger than your hand. The attenuation length of the 100 kHz 

sound will produce an end-fire line array antenna that is many, many wavelengths for the low- 

frequency difference tone. 

Dispersion will lead to a de-phasing ofthat array and, in fact, you can use that concept to 

convert energy from a slow mode to a fast mode, or vice versa. Cherenkov radiation [L. D. 

Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1960), 357-359] 

is an optical effect that is similar in the sense that an electron traveling at a speed faster than light 

in some dielectric medium will emit electromagnetic waves as an angle determined by the ratio 

of the electron speed to the speed of light in the medium 

You now get another 10-minute break and then we are going to talk about acoustic 

levitation and the acoustic forces and torques produced by high-amplitude standing waves. This 

last topic should again be a useful introduction to some of the demonstrations Prof. Denardo will 

show you tomorrow at the Naval Postgraduate School. 

[Transparency #38 -Non-Zero Time-Averaged Effects] 

DR. GARRETT: I am going to shift gears and not look at the interaction of sound waves, 

either with themselves or with others. I want to introduce some fascinating non-zero time- 

averaged effects. As you know, if you look at the linear acoustic pressure, pi, and you take its 

time-average [82], the integral of a sinusoidally varying function over a sufficiently long time 

will integrate to zero [83]. It produces as much positive pressure as it produces negative 

pressure. 

Second-order term in the product [82] contain a constant that I have not been addressing in 

the earlier portions of this lecture. Of course, a constant has a time-averaged value that is non- 

zero; that is, <p2>t, the second-order part, when time-averaged, is non-zero. This can lead to 

substantial forces. There once was an acoustician named Hillary W. St. Clair. I do not really 

know too much about the guy, but he made some very impressive acoustic devices when he was 

at the US Bureau of Mines in Salt Lake City, UT [e.g., "An Electromagnetic Sound Generator 

for Producing Intense High Frequency Sound," Rev. Sei. Inst. 12, 250-256 (1940)]. In the 

Review of Scientific Instruments, back in 1941, he had a picture of a siren, a reflector, and three 
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pennies levitated in space. Pennies are made from copper, they are eight times as dense as water, 

and they were being held up dancing in a sound field, so these forces can be substantial. 

Those of you who have seen a Boeing 747 know that these forces can be substantial. There 

are unbelievable amounts of aluminum and upholstery that can get pulled off the ground because 

a fluid that is moving has a lower pressure than a fluid that is static. It is known as the Bernoulli 

effect. 

You are probably familiar with that effect if you have a shower that has a shower curtain. 

When you turn on the shower you would think that the flowing water would push the curtain out, 

but, no, it always sucks it in. If you are a male graduate student, that curtain is disgusting. When 

that thing comes at you, it is terrible. (Laughter) 

The point is that the water is driving the air inside the shower into motion and the air that is 

outside the curtain is not moving. The static external pressure is greater than the internal 

pressure, so anything that is as flexible as a shower curtain is going be moved by that small 

pressure differential. Everybody has experienced that. So even for fairly small velocities, if you 

have large enough areas and compliant structures, things will move. 

[Transparency #39 -Non-Zero Time-Averaged Effects] 

This effect of the Bernoulli pressure was discussed in Lord Rayleigh's Theory of Sound 

when he talked about the Kundt's tube. The Kundt tube is an air-filled is a tube that was used in 

the days before electroacoustics (much of this refers to the days before electroacoustics). The air 

resonances were excited when you would stroke a rod to create longitudinal vibrations at the end 

of the bar that would couple to the air in the resonator. You would adjust the length of the tube 

with a piston to make the bar and air resonances occur at the same frequency. Cork dust was 

placed in the resonator because it would be agitated by the high-amplitude standing wave. They 

did not have microphones and oscilloscopes in those days. 

The cork dust, besides oscillating around, did a couple of other things that Rayleigh 

explains here. It would tend to form striations. You can see those striations in the lower photos. 

I was flabbergasted when I read the article that contained those photos, because I figured, man, 

nobody has used a Kundt tube for research purposes in a hundred years; it is a demo for lectures, 

but would anybody do research with a Kundt's tube? 

Here it is, 1999, The Journal of the Japanese Acoustical Society. A guy was studying 

architectural bricks that are used for absorbing low-frequency sound and there was an apparent 
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anomaly. An absorption peak was observed that was not at the Helmholtz frequency. The 

authors of the article went to great lengths to discover that it was the first standing-wave mode in 

the neck of the Helmholtz resonator. It is a concrete brick with a hole in it. 

On the left, you can see the Helmholtz mode. You can tell that there is a large uniform gas 

velocity through the neck, since you see striations throughout the neck. When they went to the 

higher frequency, where the absorption anomaly occurred, low and behold, there were striations 

near the ends of the "neck", but nothing in the middle of the neck where there would be a 

velocity node for the first open-open, half-wavelength resonance. Striations at the ends but none 

near the center. This is still apparently a state-of-the-art research technique in Japan. 

Lord Rayleigh in the Theory of Sound, Vol. II, Sec. 253b, described the striations. The 

reason you find these striations is that you have cork dust particles that are large enough that 

their inertia immobilizes them; so the gas flows by them The cork dust does not move with the 

gas. This is not true, as Dick Stern points out, for smoke particles, which are so light that they 

move with the fluid flow. If the particles are massive enough that the flow moves around them, 

and if you have two particles aligned in the direction of the sound field, they will repel each 

other causing the striations. This is because there will be stagnation of the gas between the 

particles which block the gas flow. The pressure will be high in between them and everywhere 

else the pressure will be lower, because there is substantial gas velocity. The particles will repel 

each other, and that is what you see. The striations are lines of repelling particles. Of course, 

since the Bernoulli force depends upon v2, it does not matter that the flow velocity is changing its 

direction twice per cycle. 

On the other hand, if two particles are separated along a line that is perpendicular to the gas 

flow, you can see that the flow has to speed up to get between them. The Bernoulli Equation 

[84] guarantees that the pressure between them is lower and that lower pressure in-between will 

draw the particles together. That is also evident if you view the striations from the side instead 

of from above. The particles are stacked up together in the direction perpendicular to the gas 

flow. What you have are stacks of particles. They block the gas flow so Bernoulli pushes the 

stacks apart. 

DR. ATCHLEY: What is the distance? 

DR. GARRETT: Good question. I believe that basically it is the effect of the Laplace 

equation which governs the flow patterns in the absence of viscosity, V2v = 0. There is only one 
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scale length that can enter through the V2v term. I believe that the relevant scale is the height of 

the particle stack. The height of the stack is determined by the competition between the 

Bernoulli "stacking" force and gravity. How high they stack probably determines how far they 

separate. I think that is true, but it is intuitive, it is not algebraic. A striation spacing that is 

equal to the stack height is what you see if you look at the dust particles in the Kundt tube. The 

separation distance between striations is roughly the same as the height of the striations. That is 

what you would expect if the flow field is going to satisfy Laplace's equation. 

[Transparency #40 - The Rayleigh Disk] 

Instead of considering "point particles," let's say we examine an extended object in a sound 

field, like a disk. Bruce is going to demonstrate the forces and torques on a disk in a standing 

sound field tomorrow. The figure at the right is a resonator with a 1-inch loudspeaker at the right 

end and here is a circular disk suspended by a torsion fiber at the center of the resonator. The 

disk happens to be metallic, because the angle the disk makes with the axis of the resonator is 

measured by the five sets of electrical coils that surround the resonator tube [S. Garrett, 

"Butterfly-valve inductive orientation detector," Rev. Sei. Inst. 51(4), 427-430 (1980)]. 

Let's say that the disk is at some angle with respect to the axis of the resonator and 

therefore to the oscillatory gas flow, as shown in the Figure 54a from Theory of Sound, if we 

were looking down toward the disk along the direction of the torsion fiber. When the gas is 

moving to the left, as shown by the arrows, there is a stagnation point on the upwind side 

between A and B. The gas has to speed up to get around the top at point B and travel quickly 

past point P to rejoin the flow. Similarly, when it leaves, the gas is coming around the other way 

from C and meets with the flow from P to create another stagnation point on the side of the disk 

opposite Q. At the stagnation points where there is no flow, there is high pressure. Where there 

is higher speed flow, there is low pressure. Therefore, the sound wave produces a moment on 

the disk that will produce a torque that tends to align the disk perpendicular to the fluid flow 

direction. 

That torque is given by [85]. It involves, of course, the Bernoulli pressure so it is 

proportional to pv2. The torque depends on the angle, because when the disk is perpendicular to 

the flow, there is no torque on it; the stagnation is uniform across it. 

When the disk is aligned with the flow, there is also no torque on it, so [85] has to be 

proportional to 29, where 8 is the angle between the normal to the disk and the direction of the 
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fluid flow in the absence of the disk. Of course, when the disk is aligned with the flow (0 = 90°), 

the equilibrium of the disk is unstable. If it were to rotate just a little bit, it will slam over in a 

direction perpendicular to the flow (9 = 0°). If it were to rotate just a little bit in the opposite 

direction, it would slam over the other way (0 = 180°). If there were no restoring torque from 

the torsion fiber, the disk tends to align itself perpendicularly to the flow field. 

That is why there are people in Hartford, Connecticut that were not killed by the windows 

that fell out of the Hartford Insurance skyscraper. That Hartford Insurance building had 

problems with the glass windows falling out. As we just saw, the windows did not come down 

like a knife and slice people into deli-sized pieces; the windows floated down like a leaves. 

Leaves do that because they are going to try to align themselves perpendicularly to the flow 

field. 

Before the days of electroacoustics, the Rayleigh Disk was the most accurate way to 

measure the absolute amplitude of a sound field. You could measure the oscillatory particle 

velocity produced by the sound wave by measuring the torque on the disk. The torque rectified 

the high frequency oscillatory sound field since the torque depended on the square of the 

acoustic velocity. It did not matter whether the flow was going this way or that way. 

[Transparency #41 - Bernoulli's Equation] 

I do not want to spend too much time producing a hand-waving derivation of Bernoulli's 

equation. We can start from the hydrodynamic force (Euler) equation [86], including the 

nonlinear term (remember, this is obviously going to lead us to a v2 term). The goal of the 

following manipulations will be to derive the Bernoulli equation by expressing the Euler 

equation as the gradient of some other quantity. 

Instead of dealing directly with the (l/p)(dp/dx) term in [86], I can include the pressure by 

use of the enthalpy function [87]. The enthalpy function is the internal energy of the gas, 8, plus 

pdV and Vdp. The internal energy is TdS-pdV, so if we substitute for the internal energy, it 

eliminates the pdV term in favor of TdS. If the sound wave is adiabatic, we lose the TdS term, 

since the entropy is constant in an adiabatic process. For a unit mass in a volume, V, the 

reciprocal of the specific volume is the density. So we can express the (l/p)(öp/dx) using [86] as 

just the gradient in the enthalpy as shown in [88]. The v (dv/dx) term is equal to one-half the 

derivative of v2 by the product rule. 
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So all I have to do to get all of the terms in the form of gradients is to express the velocity 

as a velocity potential, <}>, whose gradient I define as the velocity. Now I have all of the terms 

inside a gradient that is equal to zero [89]. The result [90] is the "strong form" of Bernoulli's 

equation: the time rate of change of the velocity potential plus I/2V2, plus the enthalpy, is a 

constant. It is constant everywhere throughout the fluid, not just along a streamline. That is the 

big advantage of deriving the Bernoulli equation in the way I just did. Let me demonstrate the 

utility ofthat result in acoustics. 

[Transparency #42 - Time-Averaged Pressure] 

We take the strong form of the Bernoulli equation [90], and we expand it out to second 

order. This means the enthalpy, which is a thermodynamic function of the fluid, will also be 

expand to include both first and second order terms as shown in [91]. If the fluid entropy is held 

constant, (3h/9p)s is just 1/p. The second derivative term is just derivative of (1/p) with respect 

to pressure. It is one over the sound speed squared times (-l/p0
2), again by the product rule. 

We end up now with an expression [92] that is correct all the way to second order in 

deviations from equilibrium. We can take the time average of the second-order pressure 

contribution, <p2>t, because all we are interested in are time-averaged effects since we are 

concerned about acoustic forces on objects that are so big that their inertia prohibits them from 

responding to pressure gradients at the acoustic frequencies. Of course, even "massive" objects 

can respond to steady-state gradients in the pressure. 

We are using the fact that the objects we are interested in manipulating with sound fields 

have some mass to basically freeze out the AC part of their mechanical response, so we take the 

time average. When we time-average the derivative of the velocity potential, since it is 

sinusoidal, it vanishes. The equilibrium value of the enthalpy, ho, becomes an irrelevant constant 

since we need pressure gradients to produce forces, so we can just amalgamate it with the other 

constant on the right-hand-side of [92]. We end up with two terms that have a non-zero time 

average that will contribute to the time-averaged second-order contribution to the pressure, 

<P2>t- 

We ask ourselves, if we have a traveling wave, what is the time-averaged force produced 

by [93]? Since pressure in a traveling wave is the specific acoustic impedance, pc, times the 

velocity, we can make that substitution for the quadratic velocity term in [93] and we find out 
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that there is no pressure on a solid object immersed in an acoustic traveling wave field.  Does 

that mean if we generate a traveling wave and we put an object in it, it will not feel a force? 

It will feel a force, but I have just proved that in a traveling wave it will not feel a force. 

Does Garrett speak with forked tongue? Will there be a net DC force on it or not? 

The answers to this apparent paradox is contained in the fact that you cannot put a solid 

object in a traveling-wave field and not have a standing-wave component produced by reflection 

of sound from the object. It is this sort of quantum mechanical paradox, where if you make the 

measurement, you create the force. If you put the object in there, there will be scattered 

component. The scattered component will combine with the traveling-wave component to 

produce a standing wave, so the object that scatters the traveling wave will feel a force. It is kind 

of an interesting result, if you choose to view it from that perspective. 

[Transparency #43 - Levitation Force] 

For a standing wave, you have a pressure that has cosine dependence in space, let's say, and 

a sinusoidal time dependence [95]. The velocity that corresponds to that pressure distribution is 

given to you by the Euler equation [96]. If we substitute those two results into equation [93], we 

end up with [97]. You now have cos2-sin2, which we know from trig identities that is cos (2kx). 

We find that the non-zero time-averaged portion of the second-order force varies with 

twice the spatial periodicity, or half the wavelength of the first-order standing wave field. The 

second-order pressure is proportional to the first-order pressure squared or the first-order velocity 

squared. The pressure gradient will exert force on objects located within the standing-wave 

sound field. I am going to generate a standing wave and then put the object in; I am not going to 

cheat as I did when the object scattered sound and produced its own standing wave pressure 

field. 

If there is a time-averaged pressure, the pressure difference across an object is the pressure 

gradient times the effective "thickness" of the object in the direction of the pressure gradient. A 

force on a disk is proportional to the product of a pressure times an area [98]. The product of the 

thickness of the object and the area of the object produces a term that is proportional to the 

volume of the object. For a sphere of radius, a, you end up a result [99] of exactly the same 

form: 4/37ia2 times a. That is, the volume of the sphere times the square of the pressure 

amplitude times the sin (2kx) divided by the wavelength, roughly. 
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Since the force on a sphere or a disk scales with the volume of the object and the mass 

scales with the volume of the object, assuming the object is made of a material with a constant 

density, then the levitation force on a solid object that is necessary to overcome gravity is 

determined, of course, by the wavelength (the shorter the wavelength, the more force you get). If 

you have an acoustic pressure amplitude squared that is greater than y times the mean pressure 

times the density of the sphere, times the acceleration due to gravity, times the wavelength 

divided by n [100], you will levitate an object against the force of gravity. You will be able to 

hold objects in space using standing-wave sound fields. 

MR. PORTER: Is this essentially radiation force? 

DR. GARRETT: Yes, it is, that is one way to look at it, but, remember, the theme of this 

lecture is that understanding only one way is not enough. 

[Transparency #44 - High Amplitude Standing Waves] 

Levitation requires very large acoustic pressures. If you are levitating something with a 

density of, say, water, you are talking about 10% acoustic overpressures in standing waves, pi/p0 

= 10%. Nothing I have presented thus far has prepared you to deal with nonlinear standing 

waves; everything I have told you so far has to do with traveling waves. 

I now have to address the standing-wave issue, because I need these high-amplitude 

standing waves to do tricks with solid objects. One way to connect the traveling wave and 

standing wave problems has been suggested by Tempkin. He likes to think of a nonlinear 

standing wave in a resonator as being a traveling wave that keeps getting folded back on itself. 

Every time the wave hits the wall it is reflected, it comes back, it hits the wall, it is reflected, and 

that is how you build up resonance. 

According to Tempkin, one can consider a resonator with some quality factor, Q, as being a 

very long traveling-wave tube that is QL long. The resonator is a traveling wave tube that is Q 

times longer than its physical length, L, for the purpose of calculating the nonlinear distortion. 

If the resonator is what Prof. Atchley likes to call a consonant resonator, that is, a resonator 

with perfectly rigid ends, so that the harmonics are integer multiples of the fundamental (and that 

is true for a perfectly rigid resonator), then at high amplitudes, you have a shock wave slamming 

against the right wall, being reflected and slamming against the left wall. You just get this shock 

wave that keeps bouncing back and forth, it looks nothing like sinusoidal wave, just a shock front 

that bounces back and forth through the resonator. 
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In a consonant resonator, the second harmonic is also a resonance. The resonance of the 

cavity will enhance it. If the third harmonic is also a resonance in this cavity, it will get built up, 

and if the fundamental is a resonance of this cavity it will get built up, so you are building up the 

fundamental and you are building up all the harmonics. 

DR. HARGROVE: It sounds as if you are using super position in a nonlinear context. 

DR GARRETT: Does it? (Laughter) 

No, I am saying that the shock wave travels at the sound speed, which is true ~ remember, 

the shock front travels at the speed of the zero crossing — and it just propagates back and forth. 

Professor Atchley has an article in The Encyclopedia of Acoustics that analyzes consonant 

and dissonant resonators. He defines a de-tuning parameter [101], this h„ that has nothing to do 

with the enthalpy. If you take the frequency of the n- harmonic, subtract from it n times the 

frequency fundamental, and divide by n times the frequency of the fundamental, you obtain a 

relative frequency deviation parameter to quantify the de-tuning of the harmonics. 

The effect of the de-tuning depends on the Q of the resonator. Since two modes are 

involved in the de-tuning, [102] creates an average Q for the fundamental and whatever 

harmonic is being examined. If the width of the resonance is within the overlap, then you have a 

consonant resonator and you have distortion problems. If not, you will be less susceptible to 

shock formation within the resonator. 

MR. PORTER: My question goes back to traveling waves do not put a pressure or a force 

on an object. If I were to have an incident wave on a solution that has particles in it and there is 

noticeable streaming that is taking place, you are saying it is due to a standing wave — 

DR. GARRETT: Ah, Tyrone just raised the stakes. 

MR. PORTER: ~ or is that due to attenuation in the fluid that leads to — 

DR GARRETT: There is another nonlinear effect that is on my list of topics I was not 

going to discuss, but I would be glad to talk about in the discussion section tonight. In fact, we 

have a really interesting perspective Roger Waxier has on streaming, because he has developed a 

unified view of streaming and radiation pressure and I have a partitioned view. 

If a fluid has viscosity, there are dissipative effects that can absorb energy and momentum 

The energy appears as heat but the rate of momentum loss must show up as a force on the fluid. 

That force creates fluid "streaming" that can drag along a particle immersed in the fluid. It is a 

very nice question, but we will save it for the discussion session this evening, because it involves 
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a nonlinear effect that I have not prepared and do not have time to describe.   It is a very 

important nonlinear effect. 

[Transparency #46 - Nonlinear Standing Wave Shapes] 

These are some waveforms that can be created in a consonant resonator. The middle 

waveform, labeled (d) in the diagram, is driven exactly at resonance (Q = 1.0). You can see 

clearly that you have a shock front. I suspect that the small amount of high frequency "ringing" 

is due to the natural oscillation of the pressure transducer diaphragm. The resonator has a 

circular cross-section and is as close to being consonant as they could make it. The top three 

waveforms: (a), (b), and (c) are driven below the resonant frequency (Q < 1). Waveforms (e), (f) 

and (g) correspond to excitation above the resonant frequency (Q > 1). You can see at resonance 

you have a really well-defined and very well-developed shock front. 

DR. HAMILTON: Is that computational or an experiment? 

DR. GARRETT: I think it is an experiment. 

[Simultaneous discussion among participants.] 

DR. GARRETT: These shock waves would limit your ability to levitate solid objects in 

sound fields and they would limit compression ratios for sonic compressors. 

[Transparency #47- Standing Wave Shock Suppression] 

As we know from the parametric end-fire array picture, if there is dispersion, you can undo 

the distortion process by adding distortion components that are out-of-phase with distortion 

products created closer to the source. There are various ways of producing dispersion. You 

automatically get dispersion from thermoviscous effects, but you can intentionally put in 

dispersion by changing the resonator geometry. If you were to make the resonator a horn-shaped 

device, instead of a straight cylinder of uniform cross-sectional area, then you have a wave 

equation that explicitly involves the position-dependent cross-sectional area S(x) [105]. For an 

exponential change in cross-sectional area [103], when you plug the pressure wave [104] into 

this wave equation, you find that the phase speed, Cph, is a function of frequency [106]. 

The phase speed depends on how close you are in frequency to the cut-off frequency, fa» 

for the horn. The cut-off frequency is determined by the flare constant, h. If the flare constant is 

small, meaning the horn flares out very quickly, then you have a high cut-off frequency. Below 

cut-off you have no propagation along the horn. Above cut-off you have a phase velocity that 

goes from infinity at cut-off to the thermodynamic sound speed well above cut-off. 
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You can control the superposition of the harmonics geometrically. One way to look at 

shock wave suppression in standing wave resonators is to say that there is geometrical dispersion 

in the resonator. That approach is the one favored by a company called Macrosonix 

www.macrosonix.com, located in Richmond, VA. Macrosonix is a company that was founded to 

commercialize a nonlinear acoustic device that is a sonic compressor. 

[Transparency #48 - Waveform Shaping] 

Macrosonix makes their sonic compressor by shaking the entire resonator, shown here 

schematically as a trapezoid. The resonator cross-section is intentionally shaped so that you do 

not get shock waves but the "peaked" waveforms shown below the diagram. They shake the 

entire resonator to generate high-amplitude standing waves. At the small end of the resonator 

they have two sets of "flapper valves" with opposite flow directions. When the pressure within 

the resonator exceeds ambient pressure, the inflow valve is closed, and the outflow valve is 

forced open by the excess internal gas pressure. Compressed gas exits the resonator. 

On the subsequent half-cycle, the pressure at the valve end is lower than ambient. The 

inflow valve is sucked in, allowing fresh gas to enter the resonator and be compressed and sent 

out again during the next half-cycle. This "acoustic ratchet" is a nice trick. Due to the 

international ban on production of CFCs legislated by the Montreal Protocols on Substances that 

Deplete Stratospheric Ozone; chlorofluorocarbons (CFCs) can no longer be used for 

refrigeration. This has caused problems for the refrigeration industry, because the substitute 

chemicals, the HFCs, which have no chlorine, are difficult to combine with the lubricants that are 

required to keep the refrigeration compressors from wearing out. 

CFCs are compatible with hydrocarbon lubricants. That is why the compressor in your 

refrigerator will last 20 or 30 years. You can put in CFCs, and load up the compressor with just 

ordinary crankcase oil. The compressor will be bathed in oil and the oil will not degrade the 

CFCs. Everything will work perfectly for decades, except, of course, the Earth's stratospheric 

ozone layer, that has protected this planet from the harmful effects of ionizing ultraviolet 

radiation. 

The HFCs are not compatible with hydrocarbon lubricants. You have to use very 

expensive esters to lubricate the pumps used with the new HFCs like R-134a. The people at 

Macrosonix wanted to build a refrigeration compressor that has only flapper valves, which are 
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basically reed valves that do not require lubrication. You get away from the lubrication problem 

and you can still keep the refrigeration industry happy doing vapor-compression cycles. 

Macrosonix took this idea of tailoring the waveform to new heights by using the 

geometrically induced dispersion to optimize the standing wave shape for compressor 

applications. You would like to have very high-pressure peaks but, of course, you can never 

produce negative pressures. This suggests that you would like to produce a waveform that has a 

fairly flat bottom but a fairly high-pressured peak. That shape allows you to push out gas at very 

high pressure and suck in the gas at very low pressure over a longer time interval during each 

cycle. 

The desired waveform is shown on the transparency. Here I do have a computer simulation 

of the waveform. The dots are the measurements and the agreement between the two is 

excellent. This idea of shaping resonators to suppress shock formation has been brought to a 

very, very high level of sophistication by this company. The ratio of the peak pressure to the 

minimum pressure in this figure is three-and-a-half. I believe that have achieved pressure ratios 

close to ten in resonators without valves. 

[Transparency #49 - Modal Anharmonicity (Dissonance)] 

Three of their resonators are shown at the top of this transparency. Below is a spectral plot 

of the fundamental and the harmonics. You can see in the figure caption that Macrosonix has a 

particular way, which I think is quite a good way, of non-dimensionalizing the resonance 

frequencies. Using the total length of the device, they create a "reference frequency" by dividing 

the sound speed by twice the total length. Its fundamental frequency is 1.8 times this reference 

frequency. You can see the overtones are in no way harmonically related to 1.8: 2.2, 3.1, 4.2, 

and 5.1. By doing that, they can sum the different distortion components with the proper phase 

producing the desired waveform. You can do a Fourier analysis of the waveform on the previous 

transparency and ask what frequencies and what phases are required, and then calculate the 

resonator shape, just as Anthony did in his introductory lecture. 

DR. WAXLER: How do you get a periodic waveform if you add up a bunch of different 

frequencies? I mean, if you are going to have some period of repetition in-between, it is not 

going to be periodic. 

DR. GARRETT: I do not have a glib answer. 

PARTICIPANT: It is driven periodically, so the response is going to be periodic. 
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DR. GARRETT: At the linear level, that is true. 

DR. KEOLIAN: Even here, too. Harmonics are fundamental.... 

[Simultaneous discussion.] 

DR. GARRETT: The distortion products occur at frequencies which are integer multiples 

of the fundamental that is designated Qi = 1.789 times the reference frequency in the figure. 

They shake the resonator at a frequency of Qi. The higher modes (eigenfrequencies) of the 

resonator are shown as Q2 through Q5 on the spectrum The higher-mode frequencies act to pull 

the nonlinear distortion products, which are generated at integer multiples of the drive, nQi, 

away from producing a simple shock front to producing the desired waveform which has a 

"fundamental" frequency of Qi. When you take the Fourier spectrum of the desired "pointy" 

waveform, its Fourier components are obviously at integer multiples of Qi. 

[Transparency #50 - A Second Watch] 

I would like to introduce another way of looking at the use of geometrical perturbations of 

the resonator shape to detune the overtones because I can combine the new approach with 

another concept, which will be the last topic of the lecture. We can vary the cross-sectional area 

of a uniform resonator by putting a rigid piece of material in the resonator at different locations. 

In the upper figure, I have placed a rigid cube of material that is small compared to the 

wavelength at the rigid end of the resonator of uniform cross-sectional area is S. The length of 

the resonator is L. The volume of the resonator, SL, is much larger than the volume, V, of this 

obstacle. 

If I put that obstacle at the rigid end, the obstacle is going to raise the frequency of the 

fundamental half-wavelength mode of the resonator. The frequency ofthat fundamental mode is 

the sound speed of the gas inside the resonator divided by twice the length of the empty 

resonator, ft = c/(2L). One way to see that the obstacle is going to raise the frequency of the 

fundamental, is to recognize that in the fundamental mode of oscillation, the gas at one end is 

being compressed while the gas at the other end is being expanded. The near the center, the gas 

is oscillating back and forth rather rapidly. 

By excluding some of the volume at one end with an incompressible obstacle, the gas 

spring at the end with the obstacle is stiffer than the gas spring at the other end, because the 

obstacle excludes some of the gas volume. If the incompressible solid was made of wax, and I 

tilted this resonator into a vertical orientation, I could heat the end and melt the wax.    The 
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volume of the wax would not change, but it would flow to create a plug of uniform thickness at 

the end, as shown in the lower figure. The plug reduces the length of the resonator, which again 

has a uniform cross-section, by a length, V/S. The effective length of the resonator is shortened 

and the new resonance frequency is increased to fip = c/(2Leff) > fi. Since all I am doing is 

excluding volume, the plug is going to have exactly the same effect on the frequency as the 

cubical obstacle as long as both were small compared to the wavelength of the sound. 

You can see that the resonator length will be reduced by the thickness of this plug. By 

putting an obstacle at the pressure antinode, the fundamental mode frequency is shifted to a 

slightly higher frequency. Having the obstacle at a pressure antinode will raise the frequency of 

the mode. 

[Transparency #51 - Resonator Obstruction Model] 

If I take the same obstacle, before it was melted, and put it in the middle of the resonator, 

then the gas will have to move faster to produce the same pressure amplitudes as the ends of the 

resonator. The obstacle is now causing the flow streamlines to go around it. This increases the 

flow velocity and increases the kinetic energy. By Rayleigh's method, it means that the same 

obstacle is lowering the frequency of the fundamental mode. Rayleigh says that the frequency of 

an oscillator is proportional to the square root of the ratio of the potential energy to the kinetic 

energy. If the potential energy stays the same, and the kinetic energy increases, the frequency 

will have to decrease. The obstacle located at the center of a resonator will lower the resonance 

frequency of the fundamental and the same object at a rigid end will raise the frequency of the 

fundamental. 

If we consider the second harmonic mode of the empty resonator, what we would have a 

pressure antinode at the center of the resonator, as well as having pressure antinodes at both 

ends. For the second mode, even though the obstacle is in the same position at the center, 

acoustically it is at the pressure antinode, so the second harmonic will be increased in frequency. 

Does everybody buy that? The second harmonic is just like having two separate resonators with 

a rigid wall at the center. 

I cannot tell you as easily as I did for the case where the obstacle was at a pressure antinode 

what the downshift is for the fundamental mode when the obstacle is located at a velocity 

antinode. That is because the magnitude of the frequency shift depends on the shape of the 

obstacle as well as its volumes. What you can appreciate, in at least a qualitative way, is that if I 
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have an obstacle at the center of the resonator of otherwise uniform cross-section, the obstacle 

will drive the fundamental frequency lower and drive the second harmonic frequency higher, so 

the presence of the obstacle insures that the second harmonic frequency is not exactly twice the 

fundamental frequency. The obstacle has made a consonant resonator into a dissonant resonator. 

That is another way to look at this geometrical dispersion. 

[Transparency #52 - Two Double Helmholtz Resonators] 

The obstacle in the middle of the uniform resonator starts to transform the resonator into a 

geometry that is known as a double Helmholtz resonator. If I make that obstacle bigger and give 

it streamlined contours, what do you see? You see the neck of a Helmholtz resonator that 

connects two volumes. 

What you see in the upper figure is exactly the same double Helmholtz resonator shape, 

except there is a lot of thermoacoustic hardware thrown in. Besides the two loudspeakers at the 

ends of the volumes, there are two pairs of heat exchangers and two stacks in the two volumes. 

It is thin and empty in the U-shaped neck portion. One purpose of that resonator shape is to 

make the modes of the resonator dissonant instead of consonant. For thermoacoustic 

refrigeration, we like nice sinusoidal waveforms and certainly do not want to dissipate acoustic 

energy by generating shock waves. 

Shown at the bottom is the limiting case ofthat double Helmholtz geometry. This is a very 

large double Helmholtz resonator that weighs about a ton and is almost seven feet long. Tom 

Gabrielson designed it. It has held as much as 900 psi of pressure. With half that amount of gas 

pressure, the stored energy in the gas is as much as the energy in 3.5 pounds of TNT. It is a 

monster. Again, it is a thermoacoustic device that wants to maintain sinusoidal waves, so we 

need to suppress the shocks. By putting in an obstruction or necking-down the center section, we 

de-tune the fundamental from the overtones. 

[Transparency #53 - Ehrenfest Adiabatic Principle (EAP)] 

I said that if we have another way of looking at geometrical dispersion, we are going to get 

another insight into the levitation effect. To get that insight, what we have to do is apply another 

important theorem in mechanics known as the Ehrenfest Adiabatic Principle. It says that the 

energy contained in some mode, the n- mode, divided by the frequency of that mode, f„, will 

remain constant when you change variables in the system slowly [107].    Slowly is the 

86 



"adiabatic" part of the principle. The energy-to-frequency ratio is only an invariant if you make 

the changes to the resonator on time scales that are long compared to the acoustic period. 

One simple example comes from the blues guitar style. If you take a guitar string and do a 

Claptonesque kind of bend to increase the tension in the string, the frequency of the note will 

increase. You did work on the string by stretching it. You did that work slowly because the 

tension increased over about a half-second. If the note had a frequency at around one kilohertz, 

then the string vibrated about five hundred times while you were doing work against it, so it was 

definitely an adiabatic stretch. By doing work on the string, you raised its energy. But the 

Ehrenfest Adiabatic Principle required that the energy-to-frequency ratio was not changed. The 

energy increased, so the frequency had to increase also. 

Unfortunately, this is a result from classical mechanics, as it was known in the 19s* century. 

This form in [108] is actually recognized by a lot more people these days than the version in 

[107]. The version in [108] is known as Plank's law: the energy of a photon is a constant times 

its frequency, but it is just [107], where the constant has been given a name. 

All of you have seen this, but you are saying, "What?" The energy over the frequency is an 

invariant? What?" But it is. If that is the case, then it can tell us something about levitation and 

stability and it can relate levitation forces to shifts in the resonance frequency of the resonator 

used to levitate objects using intense sound fields. 

[Transparency #54 - Work Against Radiation Pressure] 

Before I try to relate adiabatic invariance to acoustic levitation, I want to convince you that 

in the simplest case, adiabatic invariance makes sense. If I consider the resonator shown in the 

figure, driven in its fundamental mode, I have already told you that the pressure near the center is 

going to be lower because the velocities are high and the Bernoulli effect is going to reduce the 

mean pressure down. But it is a closed resonator. The mean pressure is lower in the center, from 

the equation-of-state; the density at the center is lower also. Since the resonator is closed, we 

still have the same amount of gas inside, so the density had better be higher at both ends. Again, 

the higher density at the ends corresponds to a higher pressure at the ends. The average density 

will remain constant, because no gas is getting in or out of the resonator. 

If we take the frictionless piston shown at the left, and we move it inward a distance dx, 

then we have done work against the radiation pressure. If the resonator is oscillating in its 

fundamental half-wavelength mode, the time-average of the total energy is the sum of the kinetic 
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plus the potential energy. Since those contributions to the energy are equal and out-of-phase, the 

time average of the total energy can be represented by just the maximum value of the kinetic 

energy, which is just the kinetic energy density, ^(pv2), integrated over the entire resonator. The 

sin (kx) spatial variation in the velocity introduces another factor of 1/2. The total energy in the 

mode is the cross-sectional area, times pv2^, times the length of the resonator [109]. AL is the 

volume of the resonator that multiplies half the maximum Bernoulli pressure drop at the center 

of the resonator, where the velocity is the greatest. 

From the earlier viewgraph [97], the time-averaged, second-order pressure, <p2>t, is 

proportional to the product of cos (2kx) within the resonator and ViCpv2). When we push this 

piston in, we are doing work against that radiation pressure. We are pushing it slowly, so we are 

changing the resonator dimensions over a large number of cycles. The force on the piston, which 

is the pressure times the piston area, is multiplied by the displacement to give us the work that 

we have done with the piston against the radiation pressure [110]. 

Adiabatic invariance tells us that the change in energy divided the energy, 8E/E, should be 

the negative of the change in frequency divided by the frequency, 8f/f. That is exactly the result 

shown in [111]. The change in energy is the work we have put into the system by making a 

displacement of the piston against radiation pressure. 

You can see in [111] that the only thing that is left after canceling like terms, is dx divided 

L. The A is cancelled, the p is cancelled, the v2 is cancelled, and the 4's cancel, so we will end 

up with dx/L, which, in fact, is the relative change in the frequency, 8f/fi. If you shorten a 

resonator by dx, you will raise the frequency by 8f. 

It is pretty obvious, at least in this case, that the Ehrenfest Adiabatic Principle is obeyed. 

What does that mean for us? 

[Transparency #55 - Levitation Revisited] 

It means that we can revisit this levitation problem and look at it in a different way. I have 

shown you that by moving that block around in a resonator, the resonance frequency will depend 

on the position of that obstacle. For the fundamental mode, if the block is against an end, the 

frequency goes up. If the block is in the center, the frequency goes down. Frequency will be 

position-dependent. 

If the frequency is position-dependent, the energy is position-dependent, because of the 

Ehrenfest Adiabatic Principle.  Therefore, if the frequency is changing with position, the energy 
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is changing with position. Forces can be expressed as gradients in energy. By simply measuring 

the resonant frequency as you move whatever object it is you want to levitate around in the 

resonator, you can figure out what the levitation force is without ever doing a levitation force 

experiment. That is a much easier experiment and it can be done at modest acoustic amplitudes. 

You move it. You measure the resonance frequency. You move it again. You measure the 

resonance frequency. All you have to do is add the pi2 part and you have the levitation force. 

[Transparency #56 - Levitation Instability] 

So you have an object that is held in position by a standing sound field. The object is at 

equilibrium What does equilibrium mean? It means the levitation force holding it up is equal to 

the gravitational force pulling it down. The equilibrium is stable so we can describe deviations 

from the equilibrium position by an harmonic-oscillator equation [112]. The object has mass and 

the sound field provides the stiflhess. If the object moves up from its equilibrium position as 

shown in the figure on the right, then the levitation force will decrease and gravity is going to 

move it back down. If it moves down, it is going to get pushed back up because the pressure 

gradient is going to raise it up if you are in the fundamental mode. 

But most acoustic levitation systems, all the ones I have seen, are operated at a fixed 

frequency that does not depend upon the position of the levitated object. When the object moves 

up and when this object moves down, it is changing the natural resonance frequency of the 

resonator. The motion of the object causes the resonance frequency of the resonator to get closer 

to, or farther from, the driving frequency. As the resonance frequency approaches the driving 

frequency, pi2 will get larger. If the change in the position of the object is pushing resonance 

frequency farther from the driving frequency, then pi2 will get smaller. 

There is a change in the stiffness of [112], because the position of the obstacle changes the 

resonator tuning. If you are driving at fixed frequency there is going to be a change in the 

effective stiffness. No big deal, it is not a problem; it is just a change in the effective stiffness 

that depends upon the position of the object. 

What is a big deal is that resonator does not respond to where the object is. Resonators 

respond to where the object was. As you know, a resonance takes time to build up to its steady- 

state amplitude. There is a characteristic time for a resonance, say, T„ for a mode that has a 

quality factor of Qn, and some resonance frequency fn. The time xn, is the time that it takes for 

the sound field to catch up with the position of the obstacle. 
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So you not only have de-tuning but you have this de-phasing. The sound field at any given 

time is the field that would be near its steady-state amplitude when the obstacle was at a position 

at some earlier time T„. Let's take a look at the consequence of this retarded response. Let us 

assume that the tuning of this resonator is sharp; that is, if the frequency of the driver is higher 

than the resonance frequency of the resonator. When the object moves down, the resonance 

frequency goes up and moves closer to the driving frequency, so the pressure amplitude 

increases and the levitation force on the object also increases. 

If the force increases when the object is at its lowest point, just after it reaches its lowest 

point, the levitated object starts moving up. It is moving up when the force is getting bigger 

because of the retardation. The peak in the force will come a little bit later than the time when 

the object is at the bottom of its motion and has no velocity. The force and the velocity will be in 

phase as it starts to move up, so the sound field will do a little additional work on this object. It 

will add to the energy of the small oscillation because of this retardation and the change in 

tuning. 

When the object gets to its top position, if the driver is tuned sharp, then you are farther out 

of tune at the top of the oscillation, so the force is less than it would have been had there been no 

change in the tuning. The force of gravity will be slightly too large. Gravity is pushing down. 

When the object is at its highest point in the oscillation, it is about to go down, but the force is 

going to take a while to decay from that de-tuning and you will get that additional force of 

gravity applied to the object when it is moving down. Again, the force will be in-phase with 

velocity. That gives you a resistance term that is negative and the oscillations will grow in 

amplitude. 

The point here is that if your driver is tuned above resonance frequency of the resonator, 

any oscillation in the position of the object around its equilibrium position will grow. Initially 

that growth will be exponential in time. This will destabilize the system. In fact, there is a nice 

report about how acoustic levitation control of objects on the Space Shuttle was a complete 

disaster. They would levitate the objects and the objects would go slamming up against the wall 

of the resonator. Since the goal of using acoustics to hold the objects away from the walls to do 

"containerless materials processing," slamming samples into resonator walls was verboten. The 

whole objective was to keep it away from the wall. That was the point at which I was called into 

the project as a consultant to the Jet Propulsion Laboratory in Pasadena, CA. 
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[Transparency #57 - Levitation Superstability] 

On the other hand, if you time flat, with the driver frequency lower than the resonance 

frequency of the resonator, the de-tuning/de-phasing process produces additional damping [US 

Pat. No. 4,773,266 (Sept 27, 1988)]. If you tune the system flat, exactly the opposite thing will 

happen - the system stability will increase. 

If you tune flat, when the object moves down from its equilibrium position, the sound field 

is going to provide less levitation force. When the object starts moving up from its lowest 

position, the force and velocity will be out-of-phase and the resistive term, Rm, in [112] is 

positive, so you increase the damping in the system. In addition to the Stokes drag on the object 

from its motion through a viscous liquid, you have an active system that is going to oppose any 

motion whatsoever, but only if you tune flat rather than tune sharp. 

What the people at JPL realized, when I explained how this all worked, was that they were 

always "tuning sharp" because they were tuning their levitation chamber exactly to the resonance 

frequency before they put their object in the resonator. When you put the object in, if it is close 

to the center where they levitate it, then you are tuned sharp, because the resonator just went flat. 

At that point, we all ran down into the basement where the levitation laboratory was 

located at that time and you will see the movie of what came out ofthat new understanding. But, 

yes, STS-41B was a disaster in 1984, stuff was just slamming up against the walls, and nothing 

worked. 

Let me show you that effect. I will show you the JPL levitation device, which is kind of a 

pretty one. [Video] 

Here is your levitator ~ it is actually a three-axis levitator. There is the Styrofoam sphere 

that is going to be levitated. You can excite standing waves in the y- direction, in the x- 

direction, and in the z-direction. We are going to be concerned with only the z-direction since 

the sphere will be lifted against the force of gravity. There is a little piece of window screen that 

keeps the sphere from falling all the way down to the bottom of the levitator. 

At first you are going to see this thing tuned at resonance condition, which I already 

pointed out is really as little bit sharp. See the ball come up. We will crank up the power. It 

takes about 15 cycles for the oscillations of the sphere to almost settle down. See how it keeps 

dancing around? 
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Now we are going to use acoustic damping and viscous damping. You saw how long it 

took to settle out with only viscous damping. Here it goes. Two-and-a-half wiggles and it is 

stable. Notice it is a little bit lower in the resonator than it was before. This is because now they 

are not at resonance exactly so they are not going to generate as much pressure. 

Now they are going to tune it intentionally sharp. You can count the oscillations all you 

want but that sphere is never going to stop oscillating. The sound wave is just going to keep 

pumping energy into those oscillations because of the de-tuning. It does not take too much 

imagination to realize that the effect will be even more destabilizing if there were no gravity. 

[Transparency #58 - Final Summary and Conclusions] 

All right, we have reached the final summary slide. Let's see what have I done to take you 

away from the volleyball court? We have examined the life cycle of a plane progressive wave. I 

have emphasized again and again that the linear approximation is not correct, because the fluid 

convection caused by the wave motion, combined with the change in the equilibrium sound 

speed produced by the wave modulates the local sound speed. We have expressed the local 

sound speed as the thermodynamic sound speed plus some coefficient, T, which only Seth 

Putterman and I call the Grüneisen coefficient, times the fluid velocity produced by the wave. 

The sinusoidal waveforms of sufficient amplitude are unstable. They start out as a pure 

sine wave; they will accumulate harmonic distortion with increasing distance from their source. 

Eventually, for large enough distances and strong enough waves they will evolve into a stable 

sawtooth waveform. For distances beyond shock-inception distance, Ds, all you ever have is a 

sawtooth for sufficient amplitudes in one-dimensional propagation. 

Once the nonlinear distortion processes produce the sawtooth, the linear dissipation 

mechanisms that you have grown to know and love in linear acoustics does not describe the 

attenuation of the sawtooth; something else happens. The gradient produced by the shock or the 

steepness of that wave front, controls the amount of energy that needs to be removed and by 

putting in more energy, all you do is make the wave front steeper. The wave has to produce 

bigger gradients to consume that additional energy, so there is the natural saturation process that 

limits the amplitude of sound waves. 

I then tried to do a somewhat more formal treatment of the nonlinear distortion by using 

second-order perturbation techniques to solve the hydrodynamic equations. I think I skipped that 

viewgraph, but on Transparency #27 in your handouts, you will see that as the Mach Number 
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becomes significant, you have to include additional terms in the hydrodynamics that you 

previously neglected in the linear case. 

Using the second-order perturbation series, we found that the wave equation for the 

second-order contributions to the sound field is now inhomogeneous and the source terms for 

that inhomogeneous wave equation are proportional to quadratic combinations of the linear 

sound field variables. That result was used to explain the generation of harmonic distortion 

through a linear end-fire array source model. That model led to linear growth of the second 

harmonic distortion when there was phase-matching. If there is dispersion, or the waves are not 

co-linear, then other things can happen, like mode conversion. 

[Transparency #59 - Final Summary and Conclusions (Con 't.J] 

I then talked to you during this last hour of the lecture about non-zero time-averaged 

nonlinear effects. Most of what I said during the first part was that we could use the Bernoulli 

equation that expresses pressure reduction due to the square of the flow velocity. The velocity 

squared is a positive definite quantity, so its time average will be non-zero. Those second-order 

time-averaged pressures will cause point particles to agglomerate and to separate. It will create 

torques on extended objects such as a Rayleigh disk and can be used to levitate solid objects 

against the force of gravity. 

At that point we were dealing with standing waves instead of traveling waves. We saw that 

we could suppress that shock-wave formation by changing the resonator geometry, and the 

company that is trying to build sonic compressors had taken that geometrically-induced 

dispersion to the status of a real art form. Their horns and cones and bulbs were designed to tune 

up the phases of the different distortion components and produce custom wave shapes that not 

only are not shocked, but also may be tailored to a particular application. 

I also introduced an interpretation of this geometrical dispersion in terms of little blocks 

that were occluding the channel at the center of resonators or excluding volume at the resonator 

ends. That model was combined with Ehrenfest's Adiabatic Invariance Principle to relate 

changes in frequency to the spatial gradient in energy that produces levitation forces. Viewed in 

the opposite way, the adiabatic invariance showed that the de-tuning, when coupled with the de- 

phasing, could increase or decrease the stability ofthat levitation point. 

We have reached the end of this second lecture: Nonlinear acoustics made simple. These 

are my final words: 
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1. Know your limitations. When the Mach Number starts to become something 

bigger than one part in 104,100 ppm, the results of linear acoustics may not apply. 

2. If the Goldberg number is large, that is, the shock formation distance, Ds, is 

shorter than the exponential attenuation length, 1/oc, you are going to have to consider nonlinear 

effects. 

I restricted the mathematics, to make analysis of nonlinear phenomena as simple as 

possible, to one-dimensional systems. If you read the literature, if you look at what Mark 

Hamilton and others in the field publish, it is a lot harder. I cannot do it. The basic principles 

here are the same; the execution just gets to be extremely challenging. The beams can be 

divergent in three dimensions, and spherical spreading has to be taken into account. It takes 

really ugly mathematics to handle those problems, but there is nothing in there you have not seen 

in terms of the physics. 

Hopefully, this extra effort in understanding these limitations of linear acoustics has been 

rewarded with some interesting new effects. Enjoy your volleyball game and thank you for your 

attention. 
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ACOUSTICS DEMONSTRATIONS 

Bruce C. Denardo 
Naval Postgraduate School 

A transcript was not made of the Acoustics Demonstrations. Included in this document is a 
description of each demonstration that Dr. Denardo provided. 

Dr. Denardo wishes to acknowledge the following individuals for their contributions to the 
demonstrations: 

Robert Keolian - Pennsylvania State University 
Andres Larraza - Naval Postgraduate School 

David Grooms 
George Jaksha     y NPS Staff 
Robert Sanders 

Contents of the follow demonstration descriptions: 

1. Few-Degree-of-Freedom Oscillations 
2. Mechanical Waves (Not Including Sound in Air) 
3. Sound in Air 
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Oscillations 

1. Uniform circular and simple harmonic motions 

2. Spherical pendulum 

3. Foucault pendulum model with round, I-beam, and square rods 

4. Physical pendulums: two rectangular plates with holes 

5. Torsional oscillator and mock demo of determination of G 

6. Coupled oscillations: Lissajous pendulum, V-coupIed 
pendulums, Wilberforce oscillator, and double pendulum 

7. Relaxation oscillations of an RC circuit with a neon bulb 

8. Electromagnetically coupled oscillators 

9. Resonance pendulums 

10. Keolian's driven oscillator: bent tuning curves and hysteresis 

11. Parametrically driven pendulum: hand and loudspeaker 

12. Parametric instability: spring pendulum and V-coupled 
pendulums 

13. Phase locking: metronomes and organ pipe 
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0S.1 Uniform circular and simple harmonic motions 

Two identical billiard-ball pendulums are 
side-by-side and touch in equilibrium. 

B 

,'"iY--- y 

-►X 

Top view of the motion. The balls are 
pulled aside, and ball A is given an 
initial velocity in the x direction while 
ball B is initially held at rest.- 

The nearly elastic collisions of billiard balls are utilized in this demonstration. For 
small amplitudes compared to the pendulum length, the two balls are displaced equally 
in the y direction (see diagram above). One ball is held at rest while the other is given 
an initial velocity toward the first, which is released at the moment of impact. It is 
important that the collision be head-on. The incident ball is given a magnitude of the 
initial velocity such that motion is roughly circular. The motion of the system is then 
observed to repeat, as shown in the second diagram above. This shows that conical 
and planar pendulums of the same length have the same period for small amplitudes, 
which occurs because simple harmonic motion in a plane is the projection of uniform 
circular motion onto the plane. Hence, the position in simple harmonic motion varies 
sinusoidally. 

The magnitude of the initial velocity is not critical as long as the resultant 
amplitude is small. The motion is in general an ellipse, and the period is independent of 
the eccentricity, so the motion of the system repeats in this general case. 

The colliding ball is eventually observed to have more and more forward 
momentum after each collision, which occurs because the collisions are not perfectly 
elastic. The amount of forward momentum slowly accumulates, and is apparent after 
roughly 6 collisions. After many collisions, the balls move together. 

When the demonstration is done at higher amplitudes, the motion typically 
becomes unstable after several cycles. One reason for this is that the period of a 
conical pendulum increases with amplitude, whereas the period of a planar pendulum 
decreases with amplitude. Hence, the collisions cease to be head-on. 
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0S.2 Spherical pendulum 

A spherical pendulum can be used to show how symmetry breaking leads to 
precession. For small amplitudes, Hooke's law holds and the general motion is seen to 
be elliptical. However, when one amplitude is large and the other small, the pendulum 
precesses in the direction of motion (forward precession).. 

y 

Spherical pendulum, which oscillates 
both in and out of the plane of the figure. 
The trajectory lies on a spherical surface 
concentric with the support. 

Top view of the trajectory of a spherical 
pendulum whose amplitude is initially small in 
the x direction and large in the y direction. 
Forward precession occurs. 

The precession occurs because the period of a planar pendulum decreases for 
greater amplitudes (the oscillations soften). To understand how this causes the 
precession, consider the second diagram above. Because the motion is approximately 
linear, we can view it as a superposition of motions in the x and y directions. The x 
motion has a greater frequency, so this motion has gone though one cycle from P to Q, 
whereas the y motion requires a greater time, going through a cycle from P to R. 
Hence, forward precession occurs. For oscillations that harden, backward precession 
occurs. 

Only two central forces yield orbits that close on themselves: inverse-square 
(Newtonian gravitation and Coulomb electric force) and Hooke's law (elastic 
deformations). Both orbits are in general ellipses. There is a symmetry o"r; degeneracy 
here, because the orbital frequency equals the radial frequency. General relativity 
breaks the symmetry with effects that are not inverse-square. Mercury's elliptical orbit 
forward-precesses at a rate of 1.3 degrees per century. Of this, 0.012 degrees per 
century is due to a general relativistic effect. This additional precession was empirically 
discovered in 1845 by Urbain LeVerrier, who proposed that a new planet orbiting nearer 
to the sun was responsible. He named the planet Vulcan. It should be noted that more 
people today know of a planet by that name (from the Star Trek television series and 
movies) than of Einstein's achievement that accounted for the additional precession of 
Mercury. 
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0S.3 Foucault pendulum model 

Vibrating rod pendulum 
clamped to a support 
which is attached to a 
rotatable platform. The 
plane of oscillation is 
observed to remain fixed 
as the platform is rotated. 

In 1851, Foucault employed a pendulum to show that the earth rotates about Its 
axis. Years earlier, he had noticed that the plane of vibration of a vibrating rod with one 
end clamped in'a lathe remained fixed as the lathe turned. A universal ball joint with 
negligible friction, for which it is obvious that the plane of oscillation is fixed, is not 
required. 

A Foucault pendulum at the north or south pole can be modeled by the system 
shown in the diagram. The restoring force for this oscillator is both gravity and the 
flexural stiffness of the rod, although what supplies the restoring force is irrelevant here 
as long as it is isotropic. The mass is set into oscillation in a plane, and it is observed 
that the plane remains fixed as the platform is slowly rotated. For an observer on the 
platform, the plane of oscillation appears to precess 360° for every revolution of the 
platform. Foucault performed his pendulum experiment not at a pole, but in Paris, 
France. What happens in this case? Such a situation can be simulated in the above 
model by arranging the rod to be inclined in equilibrium. The plane of oscillation is now 
observed to have precessed after one rotation of the platform. Examination shows that, 
for an observer on the platform, the plane of oscillation appears to have precessed less 
than 360° for every revolution of the platform. It can be shown that the angle of 
precession for one cycle equals the solid angle subtended by the axis of the pendulum 
(Hannay's angle). 

The orientation of the pendulum is now returned to the vertical, and the 
demonstration is repeated. That the plane of oscillation remains fixed depends.upon 
the isotropy of the oscillator. What happens for an anisotropic oscillator, which has two 
distinct frequencies in perpendicular directions? This is readily demonstrated with a 
pendulum having a plastic I-beam rod (available in hobby stores). An I-beam is stiffer 
for oscillations in the plane of the I rather than perpendicular to the plane. One of the 
modes of the pendulum is excited, and the platform is rotated slowly. The plane of 
oscillation is now observed to rotate with the table. This is an example oiadiabatic 
invariance: if a mode of a conservative system is excited and one or more parameters 
of the system are slowly altered, the other modes remain unexcited. If the platform is 
not rotated slowly, the other mode is observed to.become excited, and a Lissajous 
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pattern results. 
A rod of rectangular cross section would yield the same result as the I-beam rod. 

What happens for a rod with square cross section? This is not obvious. On one hand, 
it is natural to think that a square rod has a different stiffness when flexed perpendicular 
to a face compared to a diagonal plane (rotated 45° from a face), and so there should 
be two distinct frequencies of oscillation. On the other hand, oscillations of normal 
modes with different frequencies should be perpendicular to each other. The 
demonstration is done with a square rod, and the plane of oscillation is observed to 
remain fixed. This indicates that the flexural stiffness of the rod is isotropic. If the rod is 
flexed by hand, a difference in stiffness perpendicular to a face and to a diagonal plane 
is not detected. It can be shown (see below) that the flexural stiffness of a square rod is 
indeed isotropic. 

The moment of force that results when a rod is bent is proportional to the integral 
of the square of the distance of a cross-sectional element from the midplane:1 

K2 = -Jy2dxdy , 

where S is the cross-sectional area and y is in the direction in which the rod is bent. 
Performing the integral for axes that are parallel to the faces of the rod (see diagram 
below) yields K = a/V3, where 2a is the side length. 

Geometry of the 
cross section of a 
square rod, and 
transformation of 
coordinates. 
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We determine the value of K when the rod is bent in the y' direction (see diagram 
above) by transforming to xy coordinates. This is convenient because the limits of 
integration are simple in these coordinates (x = ±a and y = ±a). Substituting y' = 
-sin(G)x + cos(9)y and dx'dy' = dxdy in the expression for K2, squaring the expression 
for y', integrating, and simplifying, yields a value independent of 0: K = aNZ (the same 
value found above). This establishes the surprising result that a square rod has the 
same bending stiffness in any direction. 

■ Vhilip M. Morse, Vibration and Sound (Acoustical Society of America, 1981), pp. 151-153. 
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0S.4 Physical pendulums 

Which orientation of this rectangular physical pendulum 
yields the greater period of oscillation? 

Which orientation 
of this circular 
physical pendulum 
yields the greater 
period of 
oscillation? 

These physical pendulum apparatus are machined from 1/4-inch thick aluminum. 
A brass knife edge clamped to an upright is used as a pivot. The pendulums have a 
number of interesting features.1,2 

To determine the period, one must calculate the distance from the pivot to the 
center of mass, as well as the moment of inertia about the pivot. The center of mass is 
known by symmetry in the first case. How can the other center of mass and the 
moments of inertia be accurately calculated? The principle of superposition can be 
employed here. The first pendulum can be considered as the superposition of a 
rectangular plate of uniform density p and a disk of uniform density -p, and similarly for 
the second pendulum. The moment (mass times distance to center of mass) and 
moment of inertia of each pendulum are thus the differences of the corresponding 
quantities of the simpler objects. 

How does the period of the rectangular pendulum change if the equilibrium 
orientation of the pendulum is rotated by 90°? The distance to the center of mass, 
which is the radius of the hole, does not change. Surprisingly, the moment of inertia 
also does not change as a result of the parallel axis theorem, which relates the moment 
of inertia I about an axis is related to the moment of inertia l0 about the parallel axis 
through the center of mass: I = l0 + Md2, where M is the mass and d is the distance 
from the axis to the center of mass. The period is the same in the two cases because d 
is the radius of the hole. (In fact, the period is independent of the location of the pivot 
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along the circumference of the hole.) This equality is not obvious because the 
equilibrium orientations of the pendulum are geometrically different. They are, however, 
dynamically equivalent. The equality of the period for the two orientations can be 
verified by timing a large number (say, 10) of oscillations with a stop clock. 
Alternatively, a direct comparison can be made with two pendulums of identical shape 
but different orientation. Note that these demonstrations can be considered as 
experimental confirmation of the parallel axis theorem. 

Another interesting demonstration can be performed with the two rectangular 
pendulums in the above diagram. For simplicity, both are arranged to have the same 
orientation. One is then rotated a small amount (roughly 5 to 10°) so that it is no longer 
perpendicular to the support. The pendulums are then set into oscillation with the same 
amplitude and phase. After some time, it is apparent that the phase of the rotated 
pendulum is gaining relative to the other pendulum. Hence, the rotated pendulum has a 
slightly smaller period. This occurs because the moment of inertia is slightly less. 

The circular pendulum can be inverted, and is observed to oscillate about this 
equilibrium orientation. From this stability, we conclude that the center of mass must lie 
inside the hole. By inverting the pendulum, both the distance from the axis to the center 
of mass and the moment of inertia about the axis decrease. However, the relative 
decrease of the first is much greater than that of the second, so the period increases. 
Indeed, as the distance to the center of mass of any physical pendulum approaches 
zero, the moment of inertia approaches a nonzero constant, so the period approaches 
infinity. 

1Bruce Denardo and Richard Masada, "A not-so-obvious pendulum experiment," Physics Teacher, vol. 
28, pp. 51-52(1990). 

2Bruce Denardo, "Demonstration of the parallel-axis theorem," Physics Teacher, vol. 36, pp. 56-57 
(1998). 
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0S.5 Torsional oscillator housing to 
support wire 

Torsional oscillator. 
After being initially 
displaced, the 
dumbbell rotates 
back and forth due to 
the shearing stiffness 
of the wire. 
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A dumbbell made of movable brass disks and an aluminum rod is suspended by 
a wire. The support structure is made of clear acrylic. After the dumbbell is angularly 
displaced from equilibrium or given an angular impulse, it undergoes oscillatory 
rotations. The disks can be moved nearer to the center to reduce the moment of inertia 
and thus increase the frequency. It should be noted that the mass remains the same in 
this case; it is the distribution of the mass that has been altered. In the absence of the 
small mirror (refer to the diagram), the disks can be brought together so that they touch 
the wire. The moment of inertia in this case decreases by roughly an order of 
magnitude, causing the frequency to roughly triple, because the period of a torsional 
oscillator is T = 2K(KI\)V2, where K is the torsional constant and I is the moment of 
inertia. 

This apparatus can be used to illustrate Cavendish's experimental determination 
of the universal constant of gravitation G. A small mirror is glued to the horizontal arm, 
as shown in the above diagram. Laser light is reflected off the mirror to a distant wall. 
Very small motion of the torsional oscillator can be detected with this "optical lever." 
Cavendish measured the steady deflection of the torsional masses due to the presence 
of two large masses. Currently, the most accurate measurements of G are made by 
measuring the increase in torsional frequency when two large masses are brought near 
the torsional masses. 
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0S.6a        Lissajous pendulum 

Lissajous pendulum, 
where the ratio of the 
frequencies in the 
two directions is fx/fy 

=(LA,r. 
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As shown in the diagram, a ball (for example, a billiard ball) is suspended with 
string from a support. The frequency of motion in the x direction is fx = (1/2tt)(g/Lx) 
and in the y direction is fy = (1/27i)(g/Ly)1/2, so the ratio of the frequencies is fx/fy = 
(Ly/Lx)

1/2. Possible dimensions are Ly = 60 cm and Lx = 40 cm, so that the vertex is 20 
cm from the bottom of the support. The ratio of the frequencies is then fx/fy = (3/2)1 . 

It is useful to first demonstrate motion purely in the y direction, and to note the 
relevant pendulum length, and then repeat this for motion purely in the x direction. 
These are the normal modes of the system. Next, if approximate circular motion is 
initiated, the motion is observed to quickly alternate between circular motion in the two 
directions. The motion appears to repeat, but this is not the case because the ratio of 
frequencies is an irrational number. 

Finally, the connections of the string at the support are moved as far apart as 
possible, so that the angle of the V is nearly 180°. Circular motion is initiated in one 
direction, and the motion slowly alters, becoming a straight line, a circle in the opposite 
direction as the initial state, a straight line, and finally the initial state. The motion then 
approximately repeats. This is Lissajous motion for slightly different frequencies. 
Because the x and y motions have approximately the same frequency, the general 
motion is approximately elliptical. The phase between the x and y motions slowly 
changes, however, so that the motion slowly cycles through all possible elliptical 
motions. 

The Lissajous pendulum offers a means of fooling observers (including 
physicists). A pendulum is made by inconspicuously looping the top of a string over a 
high structure such as a fluorescent light fixture. The pendulum mass is chosen to be 
nonmagnetic (e.g., aluminum), and is arranged to be near the floor. A magnet is placed 
just below the mass. Many people try to explain the behavior as due to electromagnetic 
induction! However, the behavior is simply Lissajous motion with slightly different 
frequencies (see above). 
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0S.6b       Two coupled pendulums 

Coupled pendulum 
apparatus. The 
masses oscillate 
perpendicular to the 
plane of the diagram. 

More elaborate forms of this standard demonstration exist, but none matches the 
simplicity of this design, which is due to Robert Keolian at Pennsylvania State 
University. Two identical simple planar pendulums are constructed with string in a "V" 
shape. A knot is tied where the Vs overlap. 

If one mass is set into oscillatory motion, while the other is initially at rest, the 
energy will "beat" back and forth between the two oscillators. The motion thus consists 
of two frequencies. The beat frequency is substantially smaller than the frequency of a 
single pendulum. 

The two normal linear modes can easily be demonstrated. These modes, each 
of which has a pure frequency, consist of in-phase and out-of-phase motion with equal 
amplitudes. Note that the in-phase mode has the same frequency as a single pendulum 
(the coupling is effectively inoperative in this case). The knot is at rest in the out-of- 
phase mode, which results in a higher frequency because the effective length of a 
pendulum is shorter. 

An interesting nonlinear effect can be demonstrated with this apparatus. The 
out-of-phase mode is stable at high amplitudes, whereas the in-phase mode is unstable. 
This is a general nonlinear instability which occurs for any system of coupled identical 
nonlinear oscillators that exhibit a breakdown of Hooke's law at finite amplitudes.1 

Pendulum oscillations soften', the frequency decreases with amplitude. To understand 
the instability, consider in-phase motion where pendulum A has a slightly greater 
amplitude than B. Because the frequency decreases with amplitude, A will lag behind 
B. This results in B doing a net amount of positive work on A over one cycle, so the 
amplitude of A will increase. This causes A to lag even farther behind B, which causes 
A to absorb even more energy from B, etc. The situation is thus analogous to a ball on 
a hill: The slightest displacement of the ball to one side causes the ball to move farther 
on that side, so the initial state is unstable. 

1Bruce Denardo, John Earwood, and Vera Sazonova, "Parametric instability of two coupled nonlinear 
oscillators," American Journal of Physics, vol. 67, pp. 187-195 (1999). 
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0S.6c        Wilberforce oscillator 

Wilberforce oscillator. 
The locations of the side 
masses are adjusted so 
that the frequencies of 
longitudinal and torsional 
oscillations are the same. 

k, K 

Longitudinal and torsional motions of a system of a mass suspended from a 
spring are carefully tuned to have the same frequency. The angular frequency of 
longitudinal oscillations is coL = (k/m)1/2, where k is the spring constant and m is the 
mass, and the angular frequency of torsional oscillations is ©T = M)1/2, where K the 
torsional constant and I is the moment of inertia. The mass of the spring has been 
neglected in both cases. Once the system has been built to yield roughly the same 
frequencies, the equality ©L = ©T is achieved empirically by adjusting the locations of the 
side weights and thus the moment of inertia. 

The system is initiated in either a pure longitudinal or torsional mode. Complete 
energy transfer back and forth between the two modes is dramatically observed. The 
situation is essentially the same as the coupled pendulum system (OS.6b). Here, 
however, the normal modes are not immediately obvious. The normal mode of lower 
frequency involves the spring uncoiling as it stretches, and coiling as it compresses. 
The normal mode of greater frequency involves the spring coiling as it stretches, and 
uncoiling as it compresses. An initial pure longitudinal or torsional excitation is an equal 
superposition of these two normal modes, which explains why the energy "beats" back 
and forth between the longitudinal and torsional modes. 

Each normal mode can be demonstrated by carefully driving the top of the spring 
by hand to achieve an approximate pure-frequency response. An alternative is to raise 
or lower the mass and coil or uncoil the spring, and release the mass from rest. For a 
specific ratio of the linear and angular displacements, only one normal mode will be 
excited. The period of each normal mode can be measured with a stop clock (e.g., for 
20 oscillations), and the values can be compared. The coupling is evidently weak 
because there is a long beat period in the normal demonstration above. Hence, the 
periods of the normal modes differ only slightly. It can be quantitatively confirmed that 
the beat frequency is the difference of the two normal mode frequencies. 
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0S.6d        Chaotic double pendulum 

Double 
pendulum 
clamped to a 
table. 

A double pendulum is constructed with aluminum bars and ball bearings such 
that the damping is small, and such that the arms can rotate through complete 
revolutions. The apparatus must be securely clamped to a sturdy table. By driving the 
top by hand to support small-amplitude motion, the demonstrator can exhibit the two 
linear normal modes (in-phase and out-of-phase monofrequency motions). By initiating 
motion in which the arms travel over the top, chaotic motion is observed. 

Chaos is usually defined as extreme sensitivity to initial conditions. Specifically, 
if the initial conditions are slightly altered, the evolution of the system exponentially 
diverges from the original motion. This sensitivity to initial conditions can be 
demonstrated by releasing the system in the same position in successive trials. An 
appropriate initial condition that is easily repeatable is the upper pendulum inverted and 
the lower pendulum horizontal (refer to the bottom diagram). As other examples, the 
pendulums can be released from rest with the both pendulums inverted vertically, or 
with the upper pendulum inverted vertically and the lower pendulum normally vertical. 
The motion can be very different after several rotations. While demonstrating this, it is 
useful to point out some peculiar aspect of the motion during the first trial. It is unlikely 
that the same behavior will be observed during the second trial, even though the initial 
conditions were very nearly identical. An example of a peculiarity is the bottom arm of 
the pendulum rotating over-the-top in the same direction 4 or more times without 
reversing. 

Initial condition useful 
to show sensitivity to 
initial conditions. The 
system is released from 
rest in the configuration 
shown." 

S 
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0S.7 Relaxation oscillations of an RC and neon bulb circuit 

R 

vww 
v 

neon bulb with 
breakdown voltage Vb 

Relaxation oscillator, where the 
breakdown voltage Vb must be less 
than the source voltage V. 

capacitor 
voltage Vc 

V 

Vb 

Vc = V[1 - exp(-t/RC)] 

timet 
flash flash 

Graph of voltage across the capacitor vs. time. 

A relaxation oscillation is one in which the response steadily grows as a result of 
an external or internal drive until a maximum is reached, which triggers some 
mechanism that causes the response to decay. The process then repeats indefinitely. 
The decay of the response is typically substantially quicker than the growth. Relaxation 
oscillations occur in many systems. A simple example is the charging of a capacitor 
through a resistor, where a neon bulb across the capacitor causes a discharge before 
the capacitor is fully charged. 

The neon bulb conducts and emits light at a breakdown voltage Vb. A variac can 
be employed to show this, although it should be noted that the light is dim when the 
peak voltage is at breakdown because the emf is alternating as opposed to dc. The 
breakdown voltage is less than 100 V. 

A dc supply of approximately 100 V charges a capacitor C through a resistor R. 
The neon bulb is connected across the capacitor. Convenient values are R = 1.0 MQ. 
and C = 1.0 uF, which yield the time constant RC = 1.0 s. The charge on the capacitor, 
and thus the voltage across it, increase until breakdown of the bulb occurs. This 
produces a flash of light and shorts the capacitor, and the process then repeats. The 
bulb flashes with a period of roughly 1 s, although the period depends upon the relative 
values of V and Vb. For example, if V is only slightly greater than Vb, the period is 
substantially greater than RC. By considering the above graph, it not difficult to show 
that the exact flashing period is RC ln[V/(V - Vb)]. 

That the time constant is proportional to RC can be dramatically shown as 
follows. By adding a second 1.0 MQ resistor in series with the original resistor, the 
resistance is doubled. This doubles the time constant, causing the original flashing 
period to double. The second resistor can then be added in parallel with the original 
resistor, which halves the resistance and thus halves the flashing period. A second 1.0 
\iF can be added in parallel to the original capacitor to double the capacitance, and thus 
double the original flashing period. The second capacitor can then be added in series 
with the original capacitor to halve it the capacitance, and thus halve the flashing period. 
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OS.8 Electromagnetically coupled oscillators 
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Two identical setups consist of a magnet suspended by a spring such that one 
pole of the magnet is near an end of a solenoid. The two solenoids are connected by 
wires, and are far apart. When one magnet is set into oscillation, the other begins to 
oscillate. In the final state, both magnets oscillate with equal amplitude either in-phase 
or out-of-phase. The phase is reversed if one magnet is inverted, or if the polarity of the 
connection is reversed. 

When one magnet is set into oscillation, an oscillating emf is produced by 
Faraday induction in its solenoid. The resultant current causes the other solenoid to • 
exert an oscillating magnetic force on the other magnet. In the final state, the emfs 
created by the oscillating magnets are out-of-phase and thus cancel. Hence, there is no 
current and the motion is only lightly damped. This is one normal mode of the system. 
In the other normal mode, the emfs are in-phase and thus add, so this mode is highly 
damped due to joule heating of the current. This explains why only one mode is 
eventually present. 

The system of a single magnet and solenoid can be used to demonstrate 
electromagnetic damping. When the circuit is open (solenoid not connected to itself), 
the oscillations persist for a long time. When the circuit is closed, the oscillations 
quickly damp out. Due to the joule heating associated with the induced current, energy 
conservation requires that the oscillations dampen. The mechanism is essentially the 
same as in eddy current damping: the magnetic field caused by the current in the 
solenoid always impedes the motion of the magnet. 
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0S.9 Resonance pendulums apparatus 

Resonance apparatus 
consisting of uncoupled 
flexible pendulums of 
different lengths suspended 
from a bar, which is 
oscillated by a heavy rigid 
pendulum. 

D 
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Seven light-weight flexible pendulums of successive lengths are attached to a 
horizontal bar that is driven by a heavy rigid pendulum attached near one end. The light 
pendulums are not coupled to each other. Common features of resonance can be 
demonstrated, including maximum amplitude on resonance and the phase of the 
response relative to the drive on and off resonance. The light pendulum having 
approximately the same length as the heavy pendulum has the greatest amplitude in 
the steady state. Furthermore, the phase of this light pendulum is observed to lag the 
phase of the heavy pendulum by 90°, and the phases of the other pendulums are 
observed to successively increase from 0° for the shortest to 180° for the longest. The 
apparatus thus effectively achieves a spatial display of the frequency response curve for 
a single oscillator as the drive frequency is slowly incremented in time. 

Two fundamental problems occur in the construction of such an apparatus. First, 
unwanted longitudinal motion can occur due to the same parametric instability that can 
cause a vibrating string not to remain planar. Second, the transient time of the 
pendulums (roughly the time required to reach steady state motion) may not be short 
compared to the decay time of the heavy pendulum. Flexible strips of material for the 
pendulums are employed to reduce the longitudinal motion. The strips also increase 
the air drag and thus reduce the transient time. To further reduce the transient time, 
ping pong balls are used as the masses. 

The center of the resonant ping pong ball lies about 1 cm below the center of the 
heavy mass. The effect is not due to the extended nature of the masses or to 
dissipation, both of which can be shown to be negligible. There are three contributing 
causes: the natural frequency of a light pendulum is increased due to the stiffness and 
mass of a strip, and the natural frequency of a light flexible pendulum corresponds to 
the length from the bottom of the horizontal bar whereas the frequency of the heavy 
rigid pendulum corresponds to the length from the center. Surprisingly, this third effect 
nearly completely accounts for the 1 cm distance, even though the strip mass effect 
alone is calculated, to produce a 1/2 cm shift. There is an additional effect here that 
roughly cancels the effect of the mass and stiffness of the strips: the "hydrodynamic" 
mass, which is due to motion of the ping pong ball and strip through the air. This added 
inertia decreases the frequency of a pendulum. 

( 
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OS.10 Driven nonlinear oscillator 

A mass-and-rubber band oscillator is driven vertically by a loudspeaker. 
(The function generator and amplifier are not shown.) Nonlinear shifting of 
the resonance, including hysteresis, are demonstrated. 

This demonstration was created by Robert Keolian (Graduate Program in 
Acoustics, Pennsylvania State University). Rubber bands are attached to supports and 
a wooden ball (see diagram above). A rod attached to a loudspeaker drives vertical 
oscillations of the ball. An 8-inch diameter 8-fi loudspeaker is appropriate. The "V" 
arrangement breaks the degeneracy between the vertical mode and transverse 
horizontal mode. Otherwise, the vertical mode will readily parametrically excite this 
horizontal mode, in the same way that a string vibrating in a plane can develop motion 
perpendicular to the plane. 

In the first part of the demonstration, the low-amplitude (approximately linear) 
response of the system is shown. A suitable voltage to the loudspeaker is 0.5 V. The 
drive frequency is finely (0.01 Hz) and slowly increased so that the motion is 
approximately steady state. Resonance occurs at 11.55 Hz for one arrangement, and 
the response is observed to be roughly symmetric about resonance. 

Next, the voltage is increased roughly an order of magnitude (4.0 V is suitable). 
The drive frequency is again slowly and finely increased, but now the maximum 
response amplitude is large and occurs at 12.05 Hz, after which the amplitude 
discontinuously decreases by a substantial amount. Further increase in the drive 
frequency causes a continuous decrease in amplitude. The drive frequency is now 
decreased, and the amplitude continuously increases until 11.92 Hz, at which the 
amplitude discontinuously increases. Further decrease in the drive frequency causes 
the amplitude to continuously decrease. The system thus exhibits hysteresis when the 
response amplitude is sufficiently large. For a drive frequency roughly midway between 
the jump frequencies (for example, 12.00 Hz), there are thus two stable response 
states, which can be demonstrated by appropriately adjusting the initial conditions by 
hand. 

This behavior occurs because Hooke's law breaks down for finite amplitudes of 
oscillation here (see explanation below). At small response amplitudes, the motion is 
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approximately linear, and the frequency-response curve (steady-state amplitude vs. 
drive frequency for a fixed drive amplitude) appears as in (a) in the graph below. For 
greater response amplitudes, a shift of the resonance frequency becomes apparent. 
The frequency-response curve conforms to the "backbone" curve for free oscillations. 
At sufficiently large response amplitudes, the frequency response curve becomes 
multivalued as in (c) in the graph, giving rise to hysteresis. In the multivalued region, 
the largest and smallest amplitudes are stable, whereas the intermediate amplitude is 
unstable. 

Frequency-response curves 
for a driven nonlinear 
oscillator. The response is 
approximately linear in (a), a 
shift of the resonance 
frequency is apparent in (b), 
and hysteresis (dotted lines) 
occurs in (c). The dashed 
"backbone" curve corresponds 
to free oscillations. The linear 
natural frequency is f0. 

To understand the nonlinearity, consider the simplified oscillator shown in the 
figure below. Let k be the spring constant of each spring, and a be the unstretched 
length. Each spring is stretched to a distance b > a in equilibrium. When the mass has 
displacement x, the net restoring force is F = 2F0sin(G), where the force due to each 
spring is F0 = k[(b2 + x2)172 - a] and where sin(G) = x/(b2 + x2)1/2. Hence, F = 2kx[1 - 
a/(b2 + x2)1/2]. For x/b « 1, the approximation (b2 + x2)"1'2 = b'1(1 - x2/2bz) yields F = 
2k(1 - a/b)x + (ka/b3)x3. This shows that the oscillations harden (the stiffness increases 
with amplitude). In the calculation, note that the increase in tension causes hardening 
while the geometry [i.e., sin(9)] causes softening. However, the net result is hardening. 

Transverse displacement x 
of the mass of a mass-and- 
spring oscillator. For finite 
amplitudes, the restoring 
force is not linear in x. 
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0S.11        Parametrically driven pendulum 

Pendulum 
parametrically 
driven by hand 
such that the 
length of the 
pendulum is 
modulated. 

Pendulum 
parametrically 
driven by hand 
such that the 
acceleration due 
to gravity is 
modulated. 

t 

It Is instructive to begin by demonstrating a pendulum that is parametrically 
driven by hand. A weight on a string can serve as the pendulum. Two means of 
parametric excitation can be shown. In the first, an eyelet around the string is formed 
with the index finger and thumb of one hand, which is held fixed. The other hand 
alternately shortens and lengthens the portion of the string below the eyelet. If this drive 
frequency is approximately twice the natural frequency of the ambient pendulum, and if 
the drive amplitude is sufficiently large, parametric excitation of the pendulum will occur. 
This is referred to as "parametric" because the excitation results from the modulation of 
a parameter (in this case, the length of the pendulum) upon which the natural frequency 
depends. 

Second, the upper end of the pendulum is held with one hand, which thus serves 
as the support for the pendulum. The hand is oscillated vertically. For values of the 
drive parameters as in the previous case, parametric excitation will occur. In the 
noninertial frame of reference in which the support is at rest, the acceleration due to 
gravity is effectively modulated according to Einstein's principle of equivalence. (For 
example, a person in an elevator that is oscillating up and down would alternately feel 
heavier and lighter, respectively.) Hence, the relevant parameter in this case is the 
acceleration due to gravity. 

A controlled parametrically driven pendulum can be constructed by hinging a 
hollow plastic rod to the cone of a loudspeaker, which is driven by a function generator 
and a power amplifier. This demonstration was created by Robert Keolian 
(Pennsylvania State University). A 4.5-inch rod and an 8-inch diameter 8-Q 
loudspeaker are appropriate (see diagram below). In the first demonstration with this 
apparatus, the loudspeaker is driven at 3.70 Hz and 3.0 V. The pendulum is given a 
push, and parametric excitation occurs. After steady state motion obtains, the drive 
frequency is decreased in increments of 0.01 Hz, and the response amplitude is 
observed to increase. At approximately 3.30 Hz, the response dies.to zero. The drive 
frequency is now increased, while the pendulum is given slight pushes between 
increments, but the response remains zero. At 3.50 Hz, the motion returns. This shows 
the hysteresis that is inherent in parametric excitation (see graph below). 
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Hinged pendulum connected to a 
loudspeaker, which acts as a parametric 
drive". (The function generator and 
amplifier are not shown.) 

The loudspeaker is now inverted, so 
that it parametrically drives an inverted 
pendulum. 

In the next demonstration, the drive frequency is again initially 3.70 Hz, but now 
the drive amplitude is doubled to 6.O.V. The frequency is slowly reduced and the 
response amplitude increases until the rod touches the rim of the loudspeaker. Now the 
drive frequency is increased to roughly 4.0 Hz. The contact with the rim has reversed 
the original gravitational softening of the oscillations (natural frequency decreasing with 
amplitude), causing the oscillations to now harden. 

response amplitude 

Steady-state frequency- 
response curve for a 
parametrically driven 
pendulum. The'dashed 
line represents free 
(undriven) oscillations. 
The lower part of the 
curve corresponds to 
unstable motion. 

frequency 

In the final demonstration, the loudspeaker is inverted. The vertical orientation of 
the pendulum is now unstable. However, by parametrically driving the pendulum, it is 
possible to stabilize it. Suitable drive parameters are 25.0 Hz and 6.5 V. 
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0S.12        Parametric instability 

A mass connected to a spring 
initially undergoes vertical 
oscillations, but then develops 
transverse motion. 

m 

A mass connected to a spring is made to undergo vertical oscillations. By 
adjusting the spring constant or mass, or frequently not adjusting either, it is observed 
that vertical oscillations are unstable; specifically, that pendulum motion unavoidably 
develops. The motion "beats" between mass-spring and pendulum oscillations. This is 
often considered to be a nuisance, but the phenomenon is interesting. It occurs most 
readily when the mass-spring frequency f = (k/m)1/2/27t is twice the pendulum frequency 
(g/L)1/2/27i, where L is the ambient length of the spring-mass system. This is a 
parametric instability, because the mass-spring mode is driving the pendulum mode by 
modulating the length of the pendulum. When the mass-spring frequency is only 
roughly equal to twice the pendulum frequency, there is an amplitude threshold for the 
instability to occur. This instability has caused ships to capsize. Waves can cause a 
ship to bob up and down. If the frequency of these oscillations is roughly twice the 
frequency of the side-to-side rocking motion of the ship, then the rocking motion can 
grow to the extent that the ship capsizes. 

Two coupled pendulums also exhibit a parametric instability. Refer to OS.6b. 

OS.13a      Mode locking of two coupled metronomes 

Two mechanical 
metronomes with slightly 
different frequencies are 
placed on a nonrigid 
platform. As a result of 
the coupling and the 
drives, the metronomes 
eventually lock to the 
same frequency. 

Two metronomes with driven pendulums are set at low frequencies that are 
slightly different. First, the metronomes are placed on a rigid table, so that their 
coupling is negligible. The frequencies are seen and heard to be different because the 
phase between the metronomes slowly cycles through 0°, 90°, 180°, and -90°. Next, 
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the metronomes are placed on a platform with hacksaw-blade supports such that the 
blades flex in response to the motion of the pendulums. The metronomes now 
eventually mode lock, so that their frequencies are the same, which can be both seen, 
and heard. The metronomes tend to lock approximately out of phase, although 
approximate in-phase locking is possible. 

Another means of coupling the metronomes so that mode locking can occur is to 
attach a strong small neodymiunrviron-boron magnet to each pendulum bob. The 
metronomes are then arranged to face each other at a distance where the coupling is 
negligible. One metronome is then slowly pushed toward the other. At a critical 
distance, the metronomes will mode lock. This can be done such that the magnets 
either attract or repel. 

OS.13b     Mode locking of an organ pipe to a loudspeaker 

loudspeaker   / \. 

microphone 

power 
amplifier 

function 
generator 

rf 
organ pipe 

pre- 
amplifier 
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oscilloscope in XY mode 

An organ pipe is driven by an air supply, and produces a tone. When a 
loudspeaker driven at a slightly different frequency is brought near the organ 
pipe, the tone can lock to the frequency of the loudspeaker. 

This demonstration was created by Robert Keolian (Graduate Program in 
Acoustics, Pennsylvania State University). An air supply is fed to an organ pipe, which 
produces a tone. A loudspeaker is driven at a slightly different frequency, as evidenced 
by beats that are heard. This is also shown on an oscilloscope by a steadily rotating 
Lissajous pattern. When the loudspeaker is brought near the organ pipe, the rotation 
ceases to be steady. As the loudspeaker is brought even nearer to the organ pipe, 
there is a critical point at which only a single frequency is heard and the Lissajous 
pattern ceases to rotate. The organ pipe has then become mode-locked to the 
loudspeaker. 
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Mechanical Waves 

1. Speed of sound in solids: collision balls and glider collisions of 
mass ratio 3 

2. Aluminum rods: excite and reveal overtones. Doppler effect 

3. Resonant acoustic breaking of a glass 

4. Waves in nonuniform systems: standing waves on torsional 
wave machine impedance matcher, and variably nonuniform 
resonators 

5. Nonradiating wave source: hot wire in magnetic field 

6. Dispersion: magnet lattice 

7. Solitons: pendulum lattice and gravity waves 
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MW.1a       Collision ball apparatus 

The collision ball apparatus is 
a familiar toy. When a ball at 
one end is pulled back and 
released, the ball at the other 
end rises to nearly the same 
initial height. Why does only 
one ball depart from the end? 

A ball at one end of the apparatus is pulled back and released from rest at some, 
height. The ball comes to rest after the collision, and the ball at the other end emerges 
to nearly the same height, showing that the collisions are elastic. For good apparatus, 
the process repeats for a substantial number of cycles. Why does only one ball 
emerge? For example, why cannot two balls emerge together and rise to a lesser 
height (so that energy is conserved)? The answer is that the former is the only way in 
which both momentum and energy are conserved. The behavior can be explained by 
imagining that the balls are separated by a small distance. (For the importance of this, 
see below.) What occurs is then a series of binary equal-mass elastic collisions where 
each target mass is initially at rest. Hence, the initial ball comes to rest and the final ball 
is ejected with a speed equal to the initial speed. 

Two balls at one end can be pulled back together, and then released from rest: 
The same can be done for three and four balls. If the incident balls as well as the other 
balls are imagined to be separated by a small distance, the idea of individual equal- 
mass collisions can be used to explain the behavior in these cases. Another 
demonstration is to pull back two balls on one end and one ball on the other, and 
simultaneously release the balls from rest. Other possible demonstrations of this type 
can also be done. 

It is interesting to use a piece of double-sided tape to join two balls at one end. 
This can be done either openly or surreptitiously. The latter "trick" is appropriate 
because many students are aware that the number of incoming balls equals the number 
of outgoing balls. When a single ball on the other end is pulled back and released, what 
happens? The double-ball combination rises to a lesser height than the incident ball, 
other balls also exit, and the incident ball rebounds. 

A small gap between the balls is not only convenient in explaining the behavior, 
but necessary to achieve good results with the apparatus. The problem is that collisions 
in general are more complicated if they are not binary (refer to MW.1 b). One might 
think that the collisions would be binary even if the balls touch in equilibrium, due to the 
finiteness of the speed of sound in the balls. However, for this to obtain, the duration of 
a collision between two balls must be shorter than the transit time of the sound Wave! 
This is evidently not the case, because a small separation distance is observed to lead 
to much better results. 
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MW.1b       Head-on collision with bodies of mass ratio 3 

Vio 

o - 
m, 

V20 

o - 
rri2 

Vi v2 

O- o 
m, nri2 

Initial state of two bodies. Final state after a one- 
dimensional collision. 

For a one-dimensional elastic collision of two bodies with masses mi and m.2 and 
respective initial velocities vio and v2o, the final velocities are 

Vi = 
_ (m1 - m2)v10 + 2m2v20 

m1 + m2 
and v2 = 

2m1v10 - (m1 - m2)v20 

m1 + m2 

Consider a head-on collision in which the masses have the same initial speed v0. 
Setting Vio = -v20 = v0 in the equations yields Vi = (mi - 3m2)v0/(m1 + m2) and v2 = (3m! 
- m2)vo/(mi + m2). Hence, if mi = 3m2 a particularly simple final state occurs: Vi = 0 
and v2 - 2vo. 

Qualitatively, for a collision between mass mi and m2 in which the velocities are 
equal and opposite, mi must continue to move in the same direction if mi » m2. For 
mi = m2, mi will move in the opposite direction with the same speed. Hence, there must 
be a critical value of m^ between m2 and a value much greater than m2 such that mi will 
be at rest after the collision. The above theory shows that this value is 3m2. 

Two gliders move with 
the same velocity toward 
the end of an air track. 
The larger glider is at 
rest after the collisions. 

4-      ■«■£■%! 
3m m 

A one-dimensional collision in which two bodies have equal and opposite initial 
velocities can be arranged with gliders, on an air track by giving the gliders the same 
velocity v0 and allowing the front glider to collide elastically with the end of the track. 
The gliders and end of the track should have spring bumpers. After the first collision, 
3m is moving with velocity v0 toward m. After the second collision, 3m is predicted to be 
at rest and m moves with velocity 2v0 opposite to the initial direction. The result is not 
undramatic. It is interesting that binary collisions must be made to occur here. If m 
starts to collide with 3m before the collision between 3m and the boundary is completed, 
3m will not be at rest in the final state, but will be moving away from the boundary. This 
can be demonstrated by carefully arranging the two gliders to remain in contact or near 
contact as they travel toward the end of the track. 
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MW.2a       Longitudinal vibration rods 

L9 L3 L9 T§- nn TJ~ rtr nm TL9—| 

Longitudinal vibration rod for odd harmonics, with markings at nodes 
of the 1st, 3rd, and 9th longitudinal modes. "C denotes the rod's 
center, which is a node for all odd-numbered modes including the 
fundamental (1st). The L3 nodes are also L9 nodes. 

HOI L6|   1L10     IC L10I   IL6        ICTT TE~ |L10    L6|  |L10    | LlOl   |L6  L-fÖf ur 
Longitudinal vibration rod for even harmonics, with markings at 
nodes of the 2nd, 6th, and 10th longitudinal modes. The L2 nodes 
are also L6 and L10 nodes. 

Solid aluminum rods with diameter 1/2 inch and length 6 feet are employed to 
demonstrate longitudinal standing waves. A rod with the same dimensions is used in 
the next demonstration (MW.2b) to show transverse standing waves. Circumferential 
notches mark the nodes of various free-free modes. Stamped near each notch on the 
rod are the designations Ln, where "L" refers to "longitudinal" and n is the number of the 
corresponding mode. The nodal positions are the zeros of the displacement function 
cos(n7ix/L), where L is the length of the rod, and are listed in the two tables below. In 
the tables, c = (Y/p)1/2 is the speed of longitudinal waves, where Y is the Young's 
modulus and p is the density. The nodal positions are listed to the nearest 0.1%. For 
demonstrations, this yields an acceptable precision of ±1 mm for a rod of length 6 feet. 

Frequencies and 
nodal locations of 
odd harmonic 
longitudinal modes 
of a free-free rod. 

Frequencies and 
nodal locations of 
even harmonic 
longitudinal modes 
of a free-free rod. 

mode frequency 
(fi = c/2L) 

L1 
L3 
L9 

fi 
3f, 
9f, 

mode freauencv 
(f, = c/2L) 

L2 
L6 

L10 

2f, 
6fi 
10f, 

nodal positions measured from one end 
(percentage of length of rod) 

50.0 
16.7,50.0,83.3 

5.6,16.7,27.8, 38.9, 50.0, 61.1, 72.2, 83.3, 94.4 

nodal positions measured from one end 
(percentage of length of rod) 

25.0, 75.0 
8.3,25.0,41,7,58.3,75.0,91.7 

5.0, 15.0, 25.0, 35.0, 45.0, 55.0, 65.0, 75.0, 85.0, 95.0 
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A rod is held between a thumb and forefinger at a desired node. Longitudinal 
sound modes are generated by pulling the rod between the other thumb and forefinger 
that have been rubbed with rosin. Another means of exciting sound is to strike the end 
of the rod against the floor, although the rosin method is much more effective. Each rod 
is marked at points where it can then be held to eliminate the primary mode and thus 
show that higher modes are present. 

Rosin is essential for good results. It greatly enhances the stick-slip action of the 
thumb and forefinger rubbing the rod, and thus leads to much larger response 
amplitudes. This same action occurs for the motion of a bow on a stringed instrument. 
(Indeed, the rosin is easily obtained at musical instrument stores.) To properly coat the 
thumb and forefinger, small pieces of rosin should be rubbed between the thumb and 
forefinger. Small pieces can be broken off the rosin by lightly tapping an edge of it on a 
hard surface. 

The sound can be very loud, even to the point of being painful to the ear. Due to 
the loudness and the slow decay time, many students think that the .rod is made of 
some special material, or that there is a hidden source of energy. It should be pointed 
out that this is not the case; the quality factors of the various acoustic modes of metal 
rods and plates are typically very high. 

The odd-mode rod is held at the center C, so that the 1st mode is primarily 
excited by the rubbing. To show that the 3rd mode is also present, the demonstrator 
then holds the rod at an L3 node other than the center. This very quickly damps the 1st 

mode, and the pitch jumps by a factor of 3 (an octave and a fifth). The next mode 
present is the 9th, which is demonstrated by holding the rod at an L9 node different from 
the L3 nodes. The pitch again jumps by a factor of 3. 

The 2nd mode can be demonstrated by holding the even-mode rod at either L2 
node and rubbing the rod. It is useful to demonstrate the fundamental immediately prior 
to this, so that the fact that the second mode is an octave higher (twice the frequency) 
can be heard. Modes 6,10,14,..., are also excited, but not modes 4, 8,12  In fact, 
this is easier to see than in the corresponding odd-numbered mode case, because both 
the ends and the center are antinodes for even-numbered modes (refer to the standing 
wave diagrams). That the 6th mode is present can be demonstrated similarly as in the 
case of the odd-numbered modes: After exciting the rod by holding it at L2, the 
demonstrator holds it either halfway between L2 and C or halfway between L2 and the 
nearer end. 

The use of a microphone and oscilloscope allows the frequencies of the modes 
to be measured and compared to theoretical values in the above tables. 

After demonstrating longitudinal and transverse modes of a rod, the instructor 
can ask students if another type of wave can propagate in a rod. This makes contact 
with the torsional wave machine (MW.4a). 
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MW.2b      Transverse vibration rod 

T3| T2| TT1 JK. us: m: m [T2 ITS' 

Transverse vibration rod, with markings at nodes of the first three 
transverse modes. "C denotes the rod's center, which is a T2 node. 

A solid aluminum rod of the same size as the longitudinal vibration rod (1/2-inch 
diameter and 6-foot length; MW.2a) is used to demonstrate transverse (fiexural) 
standing waves, although the low modes typically do not have sufficient amplitude to be 
heard. 

First three transverse 
standing wave modes of 
a free-free rod. 

As in the longitudinal rod, circumferential notches mark the nodes of various free- 
free modes, in this case the first three. The designation T1, T2, or T3 of the 
corresponding mode is stamped near each notch on the rod. Due to the presence of 
hyperbolic functions in addition to circular trigonometric functions describing transverse 
standing waves on a bar, the frequencies and nodal positions must be numerically 
solved, although the spectrum quickly approaches a simple relationship. The results 

1/2 are displayed in the table below. In the table, L is the length of the rod, c = (Y/p)    is 
the speed of longitudinal waves, where Y is the Young's modulus and p is the density, 
and K = a/2 is the radius of gyration, where a is the radius of the rod. For 
demonstrations, nodal positions to the nearest 0.1% yield an acceptable precision of ±1 
mm for a rod of length 6 feet. 

Frequencies and 
nodal locations of 
the first three 
transverse modes of 
a free-free rod.1 

mode        frequency 
(f0 = 7CKC/8L2) 

T1 
T2 
T3 

3.0112zfo 

5.00002fo 

7.00002fo 

nodal positions measured from one end 
(percentage of length of rod) 

22.4, 77.6 
13.2, 50.0, 86.8 

9.4, 35.6, 64.6, 90.6 

The rod is initially supported horizontally by hand at the two nodes of the 
fundamental (T1). The rod should rest on the straightened index finger of each hand, 
with the remaining fingers straightened immediately below for support. For control, the 
thumbs should be lightly rested on the top of the rod. The rod is then quickly lowered as 

122 



the knee .of a leg is lifted in order to strike the rod at the center. For a moderately large 
impulse by the knee, the fundamental transverse mode is clearly visible for more than 
several seconds. 

The importance of supporting the rod at the nodes of the desired mode can be 
demonstrated by repeating the above with the hands at arbitrary asymmetrical 
positions. In this case, the response of the rod quickly dampens. Excitation of the third 
(T3) mode can be accomplished as in the case of the fundamental, but with the hands 
at a pair of diametrically opposed T3 nodal positions. This can then be repeated with 
the other pair of T3 nodal positions to indicate the existence of a total of four nodes. 

The second (T2) mode can be demonstrated as follows. A microphone is 
connected to a voltage amplifier whose output is connected to an oscilloscope. The rod 
is held vertically between a thumb and forefinger at the center of the rod, and then the 
palm of the other hand is used to impart an impulse at roughly the middle of either half 
of the rod. After a delay of several seconds, during which the higher modes decay, the 
microphone is scanned along either half of the rod from the center to the end. The 
microphone should be near the rod but not touch it. The signal due to the sound 
emitted by the vibrations is displayed on the oscilloscope. The node at the center, the 
antinode, the node between the center and the end, and the motion of the end of the 
rod are all clearly visible. The demonstration can also be done by imparting a large 
impulse to the rod, and immediately scanning with the microphone. Distortions of the 
waveform, which are due to the presence of higher standing wave modes, are then 
observed on the oscilloscope. The distortions are observed to rapidly decay. 

Demonstration of the 
second flexural mode. The 
rod is held at its center, and 
is transversely struck. A 
microphone is scanned by 
hand along the rod to show 
the response. 

t 

to preamplifier 
and oscilloscope 

The use of a microphone and oscilloscope or spectrum analyzer allows the 
frequencies of the modes to be measured and compared to theoretical values in the 
above table. For Y = 7.1 x 1010 Pa, p = 2.7 x 103 kg/m3, we find c = (Y/p)1/2 = 5.13 x 103 

m/s. For a = 0.25 inch = 6.35 x 10"3 m and L = 6.0 feet = 1.83 m, we then find f0 = 1.91 
Hz. Hence, the frequencies of the first three modes are fi = 17 Hz, f2 = 48 Hz, and f3 = 
94 Hz. 

1Lawrence E. Kinsler, Austin R. Frey, Alan B. Coppens, and James V. Sanders, Fundamentals of 
Acoustics, 3rd ed. (Wiley, New York, 1982), pp. 75-76. 
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MW.3 Resonant acoustic breaking of a glass 

digital function 
generator 

power amplifier 

oscilloscope 

I 
preamplifier 

compression 
driver 

glass 

Arrangement for breaking a glass by acoustic resonant excitation of a mode. 

A wine glass, glass beaker (e.g., from 100 to 500 milliliters), or other type of thin 
glass is broken by acoustically driving the fundamental mode of the glass (see diagram 
below). The glass can be supported by machine nuts, watch glass, or some other hard 
object or objects that contact the glass over a small area, in order to minimize the 
damping of the mode of the glass (improve the quality factor). If, howeyer, the glass 
"walks" while subjected to the high-amplitude sound, then the quality factor should be 
improved by using double-stick tape on the bottom of the glass to prevent it from 
moving. 

Top view of the fundamental 
or "bell" mode of a glass. 

^rrr- 
A procedure for the demonstration is as follows. The glass is tapped on its rim, 

and a pitch is heard. If the oscillations decay too quickly for a definite pitch to be heard, 
then the support for the glass should be improved such that the oscillations persist 
longer. A frequency near that of the pitch is selected on a digital function generator. 
For a moderate drive amplitude, the frequency is then varied while the response of the 
glass is monitored on an oscilloscope connected to a microphone and a preamplifier. 
The resonance frequency is found by maximizing the response amplitude. If this 
maximum is only slightly greater than amplitudes for frequencies far from resonance,   ~ 
then the quality factor needs to be improved. The resonance frequency should be 
determined with a precision of roughly one part in 104, which is the reason that a digital 
function generator should be used. Hunting for the resonance is instructive, and should 
be done while the audience observes. The microphone is removed, the demonstrator 
inserts ear plugs and puts on safety goggles, and the audience is instructed to put their 
fingers in their ears. The drive amplitude is then increased until the glass breaks. If the 
increase is rapid, the glass typically splits roughly in half either along the plane that 
bisects the driver or along the perpendicular plane, consistent with points of maximum 
strain of the mode. If the increase is slow, the glass typically fractures into many 
pieces. 

I 
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MW.4a       Standing waves in a nonuniform medium 

Top view of torsional wave 
apparatus with a nonuniform 
wave speed. (The speed 
decreases from left to right 
due to increased inertia.) 
The supports are not shown. 

This demonstration utilizes the Pasco torsional wave apparatus in which the 
length of successive cross rods steadily changes from a short to a long value (see 
diagram above). The apparatus is marketed as an impedance matcher for two uniform 
torsional wave apparatus whose cross rod lengths equal the short and long values. 
One end of the nonuniform apparatus is driven with the included shaker at a frequency 
corresponding to a standing wave resonance. For example, a clearly visible standing 
wave with 5 half-wavelengths occurs if one end is fixed and the other is driven at 3.25 
Hz and 5.0 V rms. It is observed that the wavelength decreases and the amplitude 
increases from left to right in the above diagram. If the driver is on the right, one might 
think that the amplitude is greater to the right as a result of attenuation. That this is not 
the case can be shown by driving on the left, which yields the same variation in 
amplitude. 

To understand the variation in wavelength and amplitude, we consider traveling 
waves rather than standing waves. This is entirely general because a standing wave is 
the superposition of two counter-traveling waves even in a nonuniform medium, as long 
as a traveling wave changes adiabatically (gradual nonuniformity so that no reflections 
occur). It is instructive to first consider the simpler case of transverse waves on a string 
whose density increases from left to right. For a wave traveling along the string, the 
frequency f must be constant; otherwise, a steady state would not occur. If the wave 
travels from left to right, the wavelength X decreases because the wave speed c = Xf 
decreases due to the increasing inertia. Because c « p~1/2, where p is the mass per unit 
length, the wavelength varies as X oc p~1/2. 

The change in amplitude can be understood and quantified in the case where the 
wave changes adiabatically. The average energy per unit length of a traveling wave is 
twice the average kinetic energy per unit length: p©2A2/2, where A is the displacement 
amplitude and co = 2nf. The energy in a wavelength X = 2nd<a is thus 7ipccoA2, which 
must remain constant for adiabatic propagation. Because c oc p"1/2, we find that the 
energy per wavelength is proportional to p1/2A2. An adiabatic invariant is thus pA4, so 
the amplitude varies as A oc p~1M. Because p increases to the right, the amplitude A 
must decrease, in contrast to what is observed for the torsional wave apparatus. 

For the torsional wave apparatus, the wave speed is c oc |"1/2, where I is the 
moment of inertia per unit length. Because I = pL2/12, where L is the rod length, and p 
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3/2 oc L, we find that I oc pJ and thus c « p    . The wavelength thus varies as X. cc p"0/z (in 
contrast to p     for transverse waves on a string). The average energy per unit length is 
\Q2/2, where Q. is the angular frequency amplitude of a rod. If A is the displacement 
amplitude of the end of a rod, the angular frequency is the velocity amplitude ©A divided 
by the distance L/2: Q = 2coA/L. The energy per unit length is thus 2IGö2A2/L2, which is 
proportional to pA2, and the energy in a wavelength is proportional to p~1/2A2. An 
adiabatic invariant is thus p"1A4, and the amplitude varies as A oc p1/4 (in contrast to p"1M 

for transverse waves on a string). This predicts that the amplitude increases from left to 
right, which agrees with the observation. 

The Pasco nonuniform torsional wave apparatus has minimum and maximum rod 
lengths that differ by a factor of 2.0. Ratios of measurements of the half-wavelengths 
and amplitudes at either end are in good agreement with the predicted wavelength ratio 
2     and amplitude ratio 2 1/4 

MW.4b      Variably nonuniform resonators 

Acoustic resonators with a 
step discontinuity in cross- 
sectional area. In the first 
case, the frequency of the 
fundamental mode is heard 
when either end is slapped by 
hand. The two frequencies are 
different. In the second case, 
the two halves are clapped 
together to sound the 
fundamental. Three different 
frequencies are heard 
depending upon the 
orientations of the halves. 

Acrylic rods have holes of different diameter bored from either end and meet in 
the middle. One rod is a single piece, while the other is cut in half along its length. An 
end of the first is slapped by hand, or the two halves of the second are clapped 
together. These excitations produce a definite pitch corresponding to the fundamental 
mode of the closed-open resonator. If the other end of the single-piece resonator is 
slapped, the pitch differs by a musical third. If one half of the double-piece resonator is 
inverted, the pitch differs by one musical whole tone. If the other half is also inverted, 
the pitch differs by another whole tone. 
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Of the different ways to alter the pitch of a resonator, this is perhaps the most 
unusual. Note that the volume remains constant here; it is the nonuniformity that is 
effectively altered. In the lower-frequency case the resonator necks down toward the 
open end, and in the higher-frequency case it necks up. The different diameters were 
carefully calculated and machined to give musical intervals.1 The effect can be 
qualitatively understood by noting that the neck-down configuration is similar to a 
Helmholtz resonator, which yields a low frequency in the limit of a narrow opening. The 
neck-up configuration effectively shortens the resonator in the limit of a narrow section 
near the closed end, which yields a higher frequency. 

1Bruce Denardo and Steven Alkov, "Variably nonuniform acoustic resonators," American Journal of 
Physics, vol. 62, pp. 315-321 (1994). Bruce Denardo and Miguel Bernard, "Design and measurements of 
variably nonuniform acoustic resonators," American Journal of Physics, vol. 64, pp. 745-751 (1996). 

MW.5 Nonradiating wave source 

Pasco magnets 

nichrome wire 

function 
generator 

pulley 

hanging 
weight 

Arrangement to demonstrate a nonradiating wave source. The current in the wire causes it both 
to glow and to experience a magnetic force due to the magnets. Motion of the wire visibly cools 
it. For nonradiating conditions, the motion is observed to be confined to the drive region. 

A nonradiating wave source drives a medium over some region, but no radiation 
escapes the region due to complete destructive interference. Such sources have been 
predicted to occur in one and higher dimensions.1 The one-dimensional case of a 
uniform force over some distance L of a string can be simply understood.2 We consider 
the drive to be a uniform collection of a large number of point sources (see diagram 
below). If the frequency of the drive corresponds to wavelength L/2, L/4, L/6,.... then 
the radiation cancels in pairs of the point sources, analogous to the minima of single slit 
diffraction. The diagram illustrates the fundamental nonradiating wave. There is a half- 
wavelength between the two point sources labeled by solid lines, and so their radiation 
cancels outside them. There is also a half-wavelength between all other similar pairs of 
sources, so no radiation escapes the driven region. The response inside the source 
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has the appearance shown in the diagram. If the frequency is doubled, there is again a 
nonradiating state. The response inside has two humps now, with a node at the center. 

A uniform force over 
length L with frequency 
corresponding to 
wavelength L/2 leads to 
complete destructive 
interference outside the 
driven region. 

LLkkkk 

A nonradiating wave source can be demonstrated with waves on a wire that 
passes between the pole faces of an extended magnetic field (see above diagram). 
The Pasco magnets, which are 7.5 cm in width, can be juxtaposed if held by large 
clamps. An oscillatory current is passed through the wire, resulting in an oscillatory 
magnetic force perpendicular to the plane of the diagram. The force is approximately 
uniform between the pole faces and zero outside. Nichrome wire is used with sufficient 
current so that the wire glows when not in motion. The wire is dark in regions with 
sufficient motion, because this cools the wire. For the fundamental nonradiating state, 
the wire is dark over a region at the center of the magnets, and the wire glows uniformly 
outside the magnets. The second nonradiating state, which has two dark regions, is 
difficult to obtain. 

1Michael Berry, John T. Foley, Greg Gbur, and Emil Wolf, "Nonpropagating string excitations," American 
Journal of Physics, vol. 66, pp. 121-123 (1998). 

2Bruce Denardo, "A simple explanation of simple nonradiating sources in one dimension - Comment on 
'Nonpropagating string excitations,' by M. Berry, J. T. Foley, G. Gbur, and E. Wolf," American Journal of 
Physics, vol. 66. pp. 1020-1021 (1998). 
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MW.6        Magnet pendulum lattice 

Section of a lattice of 
magnet pendulums, 
which exhibits 
longitudinal waves. 
(The vertical and 
other supports are 
not shown.) 

g 

N N N N 

Longitudinal waves can be demonstrated on a lattice of pendulums whose 
masses are magnets arranged as in the diagram above. The repulsive force between 
the magnets supplies the coupling. Note that if the pole orientations instead alternated, 
the lattice would.be unstable for all but perhaps small-amplitude oscillations. It is 
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interesting to exhibit waves to students and others without first revealing that the 
masses are magnets. Strange explanations for the coupling can ensue. In one case, it 
was argued that compressions and rarefactions of the air between the masses was 
responsible for the coupling! 

If a wave packet is created by moving a pendulum on one end back and forth 
several times at a frequency roughly equal to the pendulum frequency, the packet is 
observed to propagate very slowly. This occurs because the waves are dispersive, and 
the phase velocity is large near the lowest frequency of propagation, while the group 
velocity is small. To understand this, we consider motion in the continuum limit, where 
the wavelength is large compared to the lattice spacing. For small-amplitude motion, 
the equation of motion for the displacement y(x,t) of the pendulum at position x and time 
t is dVdt2 - c^y/Sx2 + co0

2y = 0, where c2 is a measure of the coupling strength and co0 

is the natural angular frequency of an uncoupled pendulum. The dispersion law for 
monofrequency waves, which is the relationship between the wavenumber k and 
angular frequency co, is found by substituting y = Acos(kx - cot) into the equation of 
motion. The result is or = co0 + c k , which is shown in the graph below. Note that for 
infinite wavelength, where all of the pendulums are in phase with the same amplitude, 
the frequency is just the frequency co0 of a single pendulum. 

6) 

Dispersion law co(k) for 
waves on a pendulum 
lattice in the continuum 
limit. The relationship 
asymptotically 
approaches a = ck. On 

In general, the phase velocity is vph = co/k and the group velocity is vgr = dco/dk. It 
is convenient to express the group velocity as vgr = (k/co)d(co2)/dk2 = (1/vph)d(co2)/dk2. 
Substituting the dispersion law co2 = co0

2 + c2k2 yields vphvgr = c2, which is well-known 
relationship that also occurs for waveguide modes. From the dispersion law, we find vph 

diverges in the limit k -> 0, so the group velocity must approach zero. Hence, a wave 
packet with frequency near co0 moves very slowly. 

For the magnet pendulum lattice, it appears that wave packets move slowly even 
if the frequency is significantly greater than co0. This evidently occurs because the 
coupling is weak. For small values of c, the asymptotic line co = ck law in the above 
graph rises slowly, so the group velocity dco/dk remains small. The demonstration 
needs to be improved by adding a controllable drive. 

The exact dispersion law for the magnet lattice can be calculated. Because there 
is both a lower cutoff mode (in which all the pendulums are in phase) and an upper 
cutoff mode (in which the pendulums are in antiphase), the dispersion law has the 
appearance shown in the diagram below. The wavelength of the lower cutoff mode is 
infinite (k = 0), and the wavelength of the upper cutoff mode is 2a (k = rc/a), where a is 
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,2/„2\ the lattice spacing. The dispersion law is or = co0 + (4(r/a*)sin (ka/2), which is the 
standard mass-and-spring lattice dispersion law for co2 added to the constant a>0

2. If the 
coupling c2 is weak, then OH «co0 and the group velocity vgr = doo/dk is small for all 
wavenumbers. 

Exact dispersion law 
(a(k)forwavesona 
pendulum lattice. There 
are both lower and 
upper cutoff modes, so 
propagation occurs in a 
band of frequencies. 

m 

e>i 

(Do 

it/a 

MW.7a       Solitons on a pendulum lattice 

g 

Section of a lattice of coupled pendulums whose motion is transverse. 
The support is oscillated vertically in order to parametrically excite the 
pendulums. Two types of standing (nonpropagating oscillatory) solitons 
are observed. 

A lattice of 20 to 40 pendulums is constructed with string and machine nuts as 
shown in the above diagram. Suitable lengths are L0 = 8.5 cm and l_i = 6.0 cm, with a 
2.5 cm spacing between pendulums. A small knot is tied where the Vs overlap in order 
to ensure the coupling. The horizontal support is fixed by vertical rods that are attached 
to a shaker, which parametrically drives the lattice. The shaker can be a modified large 
loudspeaker. The lattice has a lower cutoff mode in which all of the pendulums move in 
phase with a common amplitude, and an upper cutoff mode in which the pendulums 
move in antiphase with a common amplitude (see MW.6). The linear frequencies of 
these modes are f0 = (g/L0)1/2/2n and fi = (g/Li)1/2/2u, respectively. For the dimensions 
stated above, the parametric drive frequencies corresponding to the modes are 2f0 = 
3.42 Hz and 2fi = 4.07 Hz. 
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In the first demonstration, the drive is not employed. A meter stick is used to 
initiate the lower cutoff mode by releasing all of the pendulums from rest with a common 
amplitude. For a sufficiently large amplitude, the mode is observed to be unstable. The 
motion evolves into a number of localized oscillating "humps" that attenuate due to 
dissipation. The humps exhibit very little if any translational motion. These are 
examples of solitons, and are referred to specifically as breathers. Solitons are 
localized waves that act as particles, where nonlinearity is responsible for the 
localization. 

A single breather (see diagram below) can be observed indefinitely by using the 
drive to overcome dissipation. The drive frequency should be slightly less than twice 
the linear frequency of the lower cutoff mode (3.38 Hz is suitable), and the peak-to-peak 
drive amplitude roughly 3/4 mm (350 mV pp into an APS shaker amplifier). A breather 
is initiated by hand, and will settle into the appropriate steady state profile. The breather 
can be moved by momentarily holding a pendulum in the tail, or by blowing air along the 
lattice. 

Representation of the top view of 
a breather at a turning point of its 
motion. The pendulums outside 
the breather are at rest. 

"•—♦--•«-•"--f-j- f4— ■••—•- 

Representation of the top view of 
a kink at a turning point of its 
motion. The pendulums outside 
the kink have uniform amplitude. 

■i---l- 

Next, a different kind of standing soliton can occur in the upper cutoff mode. The 
drive frequency should be slightly less than the twice the linear frequency of the upper 
cutoff mode (4.05 Hz is suitable), and the peak-to-peak drive amplitude roughly 2-3 mm 
(1.0 V pp into an APS shaker amplifier). A duration of roughly 5-10 seconds is allowed 
to elapse so that the pendulums develop small-amplitude motion, and then the motion is 
amplified by reducing the drive frequency (reducing to 4.00 Hz is suitable). What is 
typically observed are regions of upper cutoff motion separated by a highly localized 
region of a pendulum at rest (see diagram immediately above). In some cases, the 
region may consist of two neighboring pendulums moving in phase with the same 
relatively small amplitude. These transitions between the upper cutoff regions are 
examples of "kink" solitons. As in the case of a breather, a kink can be moved by hand. 
If two kinks are brought near each other, they will annihilate. 

The existence of the breather and kink states is remarkable because the system 
is responding in monofrequency modes that are not the usual uniform standing wave 
modes. To understand the localized modes, we first note that the drive serves to 
balance dissipation, so we ignore both of these. The key to understanding the breather 
is that it exists at a frequency below the linear frequency of the lower cutoff mode. We 
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can consider the body of the breather as driving the tails, where linear theory applies. 
Because the frequency is below the linear cutoff value, the tails must exponentially 
evanesce with distance from the body, which is indeed observed. In the body, the 
nonlinearity of the pendulums causes the oscillations to soften (to be at a frequency less 
than the linear value) whereas the curvature of the profile produces an increase in 
frequency. The profile represents a competition between the nonlinearity and curvature 
such that there occurs a monofrequency response less than the linear frequency. It can 
be shown by weakly nonlinear theory that the profile satisfies a modified nonlinear 
Schrödinger equation that has hyperbolic secant solutions.1 

An understanding of the kink can be gained by considering the linear mode 
whose frequency is immediately below that of the upper cutoff mode. The profile of this 
mode is a sinusoid with a single node at the center of the lattice. Note that the effect of 
the curvature of the amplitude profile here is evidently to lower the frequency, which is 
the opposite of motion near the lower cutoff mode. (This occurs because the 
pendulums are in antiphase.) We now imagine that the amplitude of the mode is 
increased. The frequency will decrease due to the softening nonlinearity. The system 
maintains a spatially monofrequency response in two ways. Near the node, where 
linear theory applies, the curvature of the profile increases to reduce the frequency. In 
the wings (far from the node), where the nonlinearity operates, the curvature decreases. . 
The ultimate result is that the profile becomes flat in the two wings, which oscillate 180° 
out-of-phase. The localized transition between these two regions is the kink, which 
behaves as a particle because it can be moved without altering the response in the 
wings. In particular, the kink is not influenced by the boundaries of the system. It can -    ._ 
be shown by weakly nonlinear theory that the kink profile satisfies a modified nonlinear { 
Schrödinger equation that has hyperbolic tangent solutions.1,2 The pendulum lattice 
also reveals that kinks in modes other than the upper cutoff mode exist, and even that 
two different modes can coexist in juxtaposition.2,3 The transition region between two 
different modes is referred to as domain wall. 

1 Bruce Denardo, Observations of Nonpropagating Oscillatory Solitons (Ph. D. dissertation, Department of 
Physics, University of California, Los Angeles, California, 1990). 

2Bruce Denardo, Brian Galvin, Andres Larraza, Alan Greenfield, Seth Putterman, and William Wright, 
"Observations of localized structures in nonlinear lattices: Domain walls and kinks," Physical Review 
Letters, vol. 68, pp. 1730-1733 (1992). Bruce Denardo and William B. Wright, "Structural properties of 
kinks and domain walls in nonlinear oscillatory lattices," Physical Review E, vol. 52, pp. 1094-1104 
(.1995). 

3Bruce Denardo, Andres Larraza, Seth Putterman, and Paul Roberts, "Nonlinear theory of localized 
standing waves." Physical Review Letters, vol. 69, pp. 597-600 (1992). 
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MW.7b      Surface wave solitons 

£, 
IL7 

/ 
w 
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Channel of water that is vertically driven by a shaker (not shown). Steady- 
state surface wave breather solitons are observed for deep water, and kink 
solitons for shallow water. 

The solitons observed in the parametrically driven pendulum.lattice (MWJa) are 
general states that can occur in other systems. Here we consider surface waves on a 
liquid. These waves have the linear (small-amplitude) dispersion law co2 = gktanh(kd), 
where co is the angular frequency, g is the acceleration due to gravity, k= 2nlX is the 
wavenumber, and d is the depth. When kd is sufficiently large (deep liquid), the 
dispersion law can be approximated by co2 = gk. When kd is substantially less than 
unity (shallow liquid), the dispersion law becomes dispersionless: co = (gd)1/2k. 

Consider a standing surface wave mode. Remarkably, the mode softens (natural 
frequency decreases with amplitude) for deep liquid and hardens (natural frequency 
increases with amplitude) for shallow liquid. The crossover occurs when kd = 1.058, So 
the crossover depth for the fundamental mode across a channel (X = 2w in the above 
diagram) is dc = 1 .058W/TC. 

The cross mode of the channel of liquid is similar to the lower-cutoff mode of the 
pendulum lattice. Because both modes soften, we thus expect breather solitons to 
occur in the channel of liquid when d > dc. This is indeed the case.1 As explained in the 
pendulum lattice demonstration (MW.7a), the monofrequency breather and kink solitons 
exist due to a balance between nonlinearity and curvature of the amplitude profile along 
the system. Kink solitons exist in the upper cutoff mode of the softening pendulum 
lattice. The curvature of the amplitude profile in this case has the opposite effect upon 
frequency compared to the normal case (for example, for a string Or for the lower-cutoff 
pendulum lattice mode). Hence, the kink solitons that exist in the upper-cutoff mode of 
a softening system should exist in the lower-cutoff mode of a hardening system. 
Mathematically, this amounts to simply switching the signs of the nonlinearity and the 
effect of the curvature on frequency.2,3 We thus expect kink solitons to occur in the 
channel of liquid when d < dc, which is indeed the case.2,3 

A surface wave channel can be constructed from clear acrylic. Suitable 
dimensions for the observation of a breather soliton are w = 3.0 cm, L = 38 cm, and d = 
2.0 cm. So that a longitudinal mode is not excited by the parametric drive, the length L 
of the channel should be roughly midway between lengths corresponding to such 
resonances; that is, L/w should be roughly midway between integral values. Water can 
be used as the liquid. A small amount of a wetting agent such as Kodak Photo-Flo 
should be added to reduce the effect of pinning of the water along the walls. A small 
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amount of flourescein or food coloring can be added so that the surface can be more 
easily seen. The parametric drive frequency should be roughly several percent less 
than twice the linear frequency of the cross mode, 2f0 = [gktanh(kd)]1/2/n = 10.04 Hz, 
Where k = n/w. A suitable drive frequency is 9.85 Hz and peak-to-peak drive amplitude 
is roughly 1.0 mm (500 mV pp into an APS shaker amplifier). A small spatula can be 
used to initiate a breather, or the channel can be transversely tilted. As in the pendulum 
lattice, the uniform mode is unstable and will self-focus into one or more breather 
solitons. 

The surface wave kink soliton is more difficult to obtain because of the requisite 
small depth (d < dc = 1.058W/TI), which causes substantial dissipation. Although the 
creation of a kink in the above channel is possible, it is difficult to accomplish and not 
easily seen. A better approach is to use ethyl alcohol in a large channel. Suitable 
dimensions are width w = 5.71 cm and length L = 76.2 cm. It is important that the width 
be uniform. Because alcohol slowly attacks acrylic, the alcohol should be removed from 
the channel after each use. A depth d = 1.0 cm can be used. It is very important to 
carefully level the channel, so that the depth is uniform. The drive frequency should be 
roughly a percent or two greater than twice the linear frequency of the cross mode, 2f0 = 
5.23 Hz. A peak-to-peak drive amplitude of roughly 1.0 mm is appropriate. A kink can 
be initiated by imparting an angular impulse to the channel about a vertical axis not near ■•• 
the ends of the channel. A kink forms near the axis, and then slowly drifts due to 
nonuniformities. That a kink is a localized state can be dramatically demonstrated by 
moving a kink by inserting a small spatula parallel to the channel at the node of the kink, 
and then slowly moving the spatula. The kink can be removed by dragging it to an end ( 

of the channel. A pure cross mode then develops. It is also possible to create two 1 
kinks in the channel. By bringing them near each other, they do nor annihilate as in the 
case of the pendulum lattice, but strongly repel. This is probably a Bernoulli effect due 
to the reduced velocity between the kinks. 

1Junru Wu, Robert Keolian, and Isadore Rudnick, "Observation of a nonpropagating hydrodynamic 
soliton," Physical Review Letters, vol. 52, pp. 1421-1424 (1984). Junru Wu and Isadore Rudnick, 
"Amplitude-dependent properties of a hydrodynamic soliton," Physical Review Letters, vol. 55, pp. 204- • 
207(1985). 

2Bruce Denardo, Observations of Nonpropagating Oscillatory Solitons (Ph. D. dissertation, Department of 
Physics, University of California, Los Angeles, California, 1990). 

3Bruce Denardo. William Wright, Seth Putterman, and Andres Larraza, "Observation of a kink soliton on 
the surface of a liquid." Physical Review Letters, vol. 64, pp. 1518-1521 (1990). 
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Sound 

1. Standing waves: hot-wire tube 

2. Propagation: Multipole source, unbaffled and baffled 
loudspeaker, and pulsed plane/waveguide in tube 

3. Photoacoustics: strobe and glass with carbon 

4. Thermoacoustics: Rijke tube and Hofler tube 

5. Nonlinear acoustics in a propagating wave tube: distortion and 
shocks, single sine burst, sum and difference waves, and 
absorption by noise 

6. Sound beam from a parametric array 

7. Bernoulli attraction and Rayleigh disk 

8. Kundt's tube: acoustic bunching and levitation 

9. Acoustically driven jetting in Heimholte resonators 

10. Streaming: spinning cups 

11. Radiation pressure: Crooke's and acoustic radiometers, 
acoustic Casimir effect, and flame tube 
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S0.1 Hot-wire standing wave tube 

dark bright 

/ 

nichrome 
wire 

compression 
driver 

o 
vanac 

from function 
generator and 

amplifier 

Standing wave tube with a hot wire on the axis. The wire uniformly glows when there 
is no sound. A high-amplitude standing wave causes alternate dark regions to occur. 

A closed glass tube has a compression driver at one end. A nichrome wire lies 
along the axis of the tube. The voltage from a variac is adjusted so that the wire just 
visibly glows. A sufficiently high-amplitude standing wave cools the wire in regions of 
the velocity antinodes, causing the wire to be dark. A spatially-alternating bright and 
dark pattern thus occurs, allowing the standing wave to be seen. 

The mechanism of the cooling is not clear here, because the particle motion is 
parallel io the wire. Acoustic streaming (SO. 10) may be the cause. Shown in the 
diagram below is the (steady) streaming motion for one-dimensional standing wavesin 
a tube without a wire. The presence of the wire may cause an opposite flow within a 
viscous penetration depth of the wire, similar to the walls of the tube. This would cause 
cooler air to converge near a velocity antinode, and may thus be responsible for the 
cooling. The cause of the cooling is currently under investigation. 

I 

PAorVN PNorVA PAorVN 

Steady streaming motion due to a standing wave in a tube. The viscous 
penetration depth is 8 = (2v/a)1/2, where v is the viscosity and a is the angular 
acoustic frequency. PA and PN refer to pressure antinodes and nodes 
respectively, and VA and VN to velocity antinodes and nodes, respectively. 
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S0.2a        Multipole source 

Multipole source apparatus. 
Four identical loudspeakers 
are connected to a switching 
box, into which a signal is fed. 
The switches allow for each 
loudspeaker to be driven in 
phase or 180° out-of-phase 
relative to the signal. The 
system can thus be selected 
to act as a monopole, dipole, 
or quadrüpole. 

from amplifier and 
function generator 

Four identical loudspeakers with enclosures are connected to a switching box, 
into which an audio signal is fed. The loudspeakers are connected in parallel with the 
signal, and the switches allow for the phase of the signal to each loudspeaker to be 
independently set in phase or 180° out-of-phase relative to the original signal. Each 
switch also has an "off' position. The frequency of the signal is chosen so that the 
wavelength is large compared to the apparatus. A frequency of 200 Hz (wavelength of 
1.7 m) is suitable. 

First, the polarities of the switches are selected to be the same. The four 
loudspeakers are thus all in phase and act as a monopole source (refer to the diagram 
below). Next, the polarities of two loudspeakers on a side are flipped, so that the 
loudspeakers now act as a dipole source. Because the wavelength is large compared 
to the spacing of the loudspeakers, the radiated sound in all directions is significantly 
reduced. Note that there are two possible arrangements for the dipole source (refer to 
the diagram below). Finally, the radiated sound is further reduced by adjusting the 
switches so that two dipoles are oppositely juxtaposed, so that the loudspeakers act as 
a quadrupole. The actions can be represented by holding up the palms of the hands 
next to each other, and moving them forward and backward. This is done first in phase 
to represent a monopole, and then out of phase (in two possible orientations) to 
represent a dipole. Finally, rotating the hands out of phase about the knuckles 
represents the quadrupole. 

Monopole source 

+ - 
+ - 

+ + 

Dip ole sour ces Quadrupole source 
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S0.2b        Unbaffled and baffled loudspeaker 

power 
amplifier 

small raw 
loudspeaker 

o 

function 
generator 

A small raw loudspeaker driven at a low 
frequency is inaudible or barely audible. 

The loudspeaker is clearly audible when placed 
in the aperture of a large sheet of plywood which 
serves as a baffle. 

A small (2 or 3-inch diameter) loudspeaker is driven with a low frequency (e.g., 
200 Hz) such that the wavelength is large compared to the diameter of the loudspeaker. 
The loudspeaker is "raw;" that is, it is not part of an enclosure. The voltage to the 
loudspeaker is chosen such that very little, if any, sound is heard by the audience. With 
the loudspeaker remaining in operation, it is now pressed against the back of a large (3 
or 4-foot diameter or side length) sheet of plywood, where there is a hole to 
accommodate the loudspeaker. The wood operates as a baffle for the loudspeaker, 
and the sound is now clearly audible. 

The raw loudspeaker is a dipole source: When the cone creates a compression 
in front, it simultaneously creates a rarefaction in back. The wavelength being 
substantially larger than the size of the loudspeaker has two effects. First, there is 
substantial diffraction, so the sound produced on each side of the cone is propagated 
on the other side. The sound produced on each side thus interferes. Second, the large 
wavelength compared to the distance between the front and rear sources means that 
interference will tend to be destructive, so there is a small amplitude of sound. The 
effect of a large baffle is to change the dipole to a monopole, so that no interference 
occurs, which is responsible for the dramatic increase in amplitude. 

The baffle causes the power of the sound to increase in both the front and rear. 
The source of this power must be the drive circuit. How does the drive circuit "know" to 
deliver more power? The answer is that the baffle alters the radiation impedance such 
that the drive circuit delivers more power. This can be quantitatively investigated with 
the apparatus. A power amplifier should be used to drive the loudspeaker so that the 
voltage is precisely the same for the two cases. (The voltage output of a function 
generator varies with the impedance.) A precision current meter then -shows that the 
current surprisingly decreases when the baffle is employed. The effect is on the order 
of several percent. The only way that more power is delivered is if the phase between 
the current and voltage decreases a sufficient amount. That the phase indeed 
decreases can be demonstrated by using the signals to create a Lissajous pattern on an 
oscilloscope operating in the xy mode. This does not explicitly show that the power has 
increased, but makes it plausible. To complete the demonstration, a power meter 
should be used to verify that the power increases. 
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S0.2c       Waveguide modes 

compression drivers microphones      - absorber 

m   n 
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Propagating wave tube. A closed PVC tube has two compression drivers attached to one 
end and a foam rubber absorber at the other end. The compression drivers are driven 
180° out-of-phase with a several-cycle sine burst that produces a waveguide packet and a 
plane wave packet which travel at different speeds. 

Plane waves of any frequency can normally occur in a waveguide, where the 
wave fronts are perpendicular to the waveguide. (Electromagnetic waves in a 
waveguide with a simply-connected cross section are an exception; plane waves cannot 
exist in this case.) In addition, modes where the wave fronts are not perpendicular to 
the waveguide can occur. These are composed of a standing wave perpendicular to 
the waveguide, and a propagating wave along the waveguide. Each such mode exists 
at frequencies above a cutoff frequency, which corresponds to the presence of only the 
standing wave component, and thus to the wave front being parallel to the waveguide. 
For a rigid acoustic waveguide with circular cross section of radius a, the cutoff 
frequencies are1 fmn = cj'mn/27ta, where c is the speed of sound and j'mn is the n"1 zero of 
the Bessel function derivative Jm'(r). The mode (m.n) has m interior pressure-node 
diameters and n pressure-node circles. The plane wave mode (0,0) can be included as 
the case j'oo = 0. The first several cutoff frequencies correspond to j'i0 = 1 -841, j'2o = 
3.054, and j'0i = 3.832. As the frequency of a waveguide mode approaches the cutoff 
frequency from above, the phase velocity approaches infinity and the group velocity 
approaches zero. For frequencies much greater than the cutoff frequency, the phase 
and group velocities approach c. Hence, the group velocity of a waveguide mode is 
always less than the velocity c of a plane wave. 

This difference is speeds can be demonstrated with the propagating wave tube 
shown above. (The same apparatus is used to demonstrate nonlinear acoustics effects 
in SO.5.) The inner diameter of the tube is approximately 2.0 inches, which yields the 
first cutoff frequency fio = 4.0 kHz. The compression drivers are driven 180° out-of-    . 
phase by reversing the polarity of the wires to one of the drivers. A 5-cycle 4.5 kHz sine 
burst that repeats every half-second is input to the drivers. The microphone near the 
drivers shows a single pulse, but the microphone near the absorber shows that the 
pulse has split into two, corresponding to the plane wave and the (1,0) wave. The plane 
wave is excited due to asymmetries in the drivers and the driver geometry. If the . 
frequency is increased to 5.5 kHz, the time interval between the pulses is observed to 
decrease. 

Vhilip M. Morse, Vibration and Sound (Acoustical Society of America, 1981), pp. 397-399. The zeros of 
the Bessel function derivatives are j'mn = not™. 
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S0.3 Photoacoustics effect 

The clicking of a 
stroboscope is 
substantially louder 
when the light 
strikes a plate upon 
which carbon has 
been deposited. 

<> 

to audience 

glass plate with 
layer of lampblack 

A glass plate with a layer of "lampblack" (particles containing carbon) is required 
here. This can be obtained by carefully holding a lit candle underneath the plate so that 
the flame touches the plate, and slowly and patiently moving the flame. The carbon 
does not adhere well to the glass, so it should not touched by hand or hit with an object. 
To help prevent this, and to signify which side is carbonized, it is useful to write a 
statement such as "Carbon Side - Do Not Touch" on the side. 

In the demonstration, a stroboscope is operated at a frequency of roughly 10 Hz. 
First, the stroboscope is operated normally and the audience is asked to note the 
loudness of the sound produced. A glass plate without carbon is then placed as shown 
in the diagram, and the audience is asked to observe that the sound altered very little if 
at all. Next; the glass plate with lampblack is brought near the stroboscope, and the 
loudness substantially increases. This occurs because the carbon absorbs the light, 
causing an increase in temperature. The resultant abrupt thermal expansion produces 
the sound. The field of photoacoustics deals with such phenomena. 

It is interesting to reverse the orientation of the plate, so that the carbon is on the 
opposite side. A comparison is performed with the plate without carbon, and the sound 
to the audience is found to be only slightly louder. Next, all of the apparatus are turned 
so that the carbon side now faces the audience, and the comparison is performed 
again. The sound is observed to be louder, although it is not as loud as in the initial 
demonstration above. Because the glass is much more dense than the air, the carbon 
expands in the direction of the air, and so the sound is emitted in that direction. The 
reduction of this sound when the plate reversed is not due to the reflection of the light 
from the glass, because this is small. The reduction probably occurs because the 
infrared part of the light spectrum is primarily responsible for the heating of the carbon, 
and infrared radiation is strongly absorbed by normal glass. The thickness of the 
carbon layer may also play a role in the reduction of the sound. 

Pasco carbon paper for use in electric field mapping experiments, as well as 
carbon paper for use with typewriters, do not yield sound. This may be due to a lack of 
sufficient carbon or to damping caused by the paper. 

.140 



S0.4a        Rijke tube 

Heat-driven standing 
wave of sound in a 
open-ended tube: (a) 
heat supplied by a wire 
screen that was heated 
by a Bunsen burner, 
and (b) heat directly 
supplied by a Bunsen 
burner. 

(a) 

wire 
screen mini 

(b) 

flammable 
gas 

This effect was discovered in 1859 by Rijke.1,2 A vertical aluminum tube open at 
both ends has several layers of wire screen located roughly one-quarter tube length 
from the bottom. The wire is fully heated with a Bunsen burner, which is then removed. 
A very loud sound of definite pitch (the fundamental of the tube) is subsequently heard 
until it eventually ceases as the wire cools. Several interesting demonstrations can be 
done while the wire is sufficiently hot. The sound ceases when either end of the tube>is 
covered, and recurs when uncovered. The sound also ceases when the tube is rotated 
to a horizontal orientation, and recurs when the tube is returned to the original vertical 
orientation. Sound can be produced in the horizontal orientation if the tube is translated 
along its length if the screen is in the forward direction. (This can be achieved by the 
demonstrator running with the tube.) These demonstrations show that convection is 
necessary for the sound to be produced. The sound also ceases if the tube is inverted, 
so that the wire is in the top half. For the normal orientation of the tube, the sound can 
alternatively be produced without a wire screen by directly heating the air with the 
Bunsen burner.  • 

The effect can be understood as follows. We imagine that the fundamental 
acoustic mode of the tube is excited. The problem is to explain how heat from the wire 
screen is fed into this mode to maintain it in the presence of dissipation. There is 
evidently more heat added to the air during a compression rather than an expansion. 
Consider first a horizontal tube [refer to diagram (a) below]. Due to the acoustic 
oscillations, a small parcel of gas is compressed and heated as it translates toward the 
middle of the tube, and expanded and cooled as it translates away from the middle. A 
parcel that passes through the screen is heated equally whether the motion occurs 
during a compression or expansion. Hence, the heat cannot maintain the oscillations. 

Convection breaks the symmetry that occurs for the horizontal tube. The motion 
of a parcel is now the superposition of oscillatory and steady upward motions. Some 
parcels are thus only heated during compression [refer to diagram (b) above], and the 
oscillations can be maintained. 
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In (a), a small parcel of gas that passes through the wire screen is heated 
equally whether the motion is during a compression or expansion of the 
acoustic wave. In (b), convection causes some parcels to be heated only 
during a compression. 

The explanation reveals why sound does not occur when the tube is inverted, 
because in this case heat is added during the expansion rather than the compression. 
Sound can be produced with the wire screen in the upper half of the tube if the wire 
sufficiently cools the air, and if there is an upward flow of hot air.2 It may be possible to 
achieve this by pouring liquid nitrogen onto the wire while lightly heating the air at the 
bottom of the tube. I 

1A. B. Pippard, The Physics of Vibration (Cambridge, New York, 1989), pp. 343-345. 

2John William Strutt (Lord Rayleigh), The Theory of Sound," vol. II (Dover, New York, 1945), pp. 231- 
234. 

S0.4b Hofler tube 

Standing wave of sound driven by 
a gradient in temperature in a 
closed-open tube. Air can 
oscillate longitudinally in the 
stack, which has an externally 
maintained temperature gradient 
along it. 

stack 

hotter colder 

This thermoacoustic device was invented by Thomas Hofler (Physics 
Department, Naval Postgraduate School).1,2 The essential geometry is shown in the 
diagram above. Roughly midway in a closed-open metal tube is a stack composed of 
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parallel strips of material that has high heat capacity but low thermal conductivity. 
Stainless steel can be used. Each end of the stack is maintained at a different 
temperature, where the end towards the closed end of the tube is at a hotter 
temperature than the other end. The hotter side can be heated with a Bunsen burner 
while the colder side is at room temperature, or the colder side can be cooled with liquid 
nitrogen while the hotter side is at room temperature. A very loud sound whose pitch 
corresponds to the fundamental (quarter wavelength) mode of the tube is heard. 

To understand the effect, suppose that the fundamental acoustic mode is 
excited, and consider a small parcel of air that is oscillating in the stack (see diagram 
below). As the parcel is compressed, its temperature rises. If the temperature of the 
stack at the location of the parcel rises with distance more rapidly, heat will flow from 
the stack to the parcel, thus driving the acoustic mode. Similarly, heat is removed when 
the parcel is expanded and cooled, which also drives the mode. The acoustic 
oscillations can thus be maintained if the temperature gradient of the stack is greater 
than a threshold value. 

Small parcel of air 
oscillating in the stack, 
one plate of which is 
shown. As the parcel 
is compressed, heat is 
added from the plate. 
As the parcel is 
expanded, heat is 
absorbed by the plate. 

hotter 

compression 

D--  
-o- colder 

expansion 

hotter 0 colder 

The thermoacoustic mechanism here is reversible. If the fundamental mode is 
driven (for example, by a loudspeaker at the closed end), a steady thermal gradient will 
occur along the stack. This is the basis of thermoacoustic refrigeration. 

1J. C. Wheatley, T. Hofler, G. W. Swift, and A. Migliori, "Understanding some simple phenomena in 
thermoacoustics with applications to acoustical heat engines," American Journal of Physics, vol. 53, pp. 
147-xxx(1985). 

2J. C. Wheatley and A. Cox, "Natural engines," Physics Today, vol. 38, pp. 50-xxx (August, 1985). 
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S0.5 Nonlinear acoustics in a propagating wave tube 

compression drivers 

JL 

microphones absorber 

Closed PVC tube has two compression drivers attached to one end and foam rubber 
absorber at the other end. The finite-amplitude effects of distortion, shocks, sum and 
difference frequency production, suppression of sound by sound, and absorption of 
sound by noise are demonstrated for pure tones. 

Several sections of 2-inch inner-diameter schedule-40 PVC pipe are joined 
together to make a pipe roughly 40 feet long. Two high-power compression drivers are 
attached at one end, and are driven by function generators and a dual-channel power 
amplifier. At the other end is several feet of a foam rubber absorber. The tube is closed 
at both ends. Microphones are placed as shown in the diagram, and are fed to 
preamplifiers and then an oscilloscope. In all of the demonstrations, the drivers are at 
frequencies below the first cutoff frequency (4.0 kHz), so that only plane waves 
propagate. 

In the first demonstration, one or both of the drivers is made to produce a low- 
amplitude pure tone. The waveforms on the oscilloscope are sinusoidal, and some 
attenuation is observed at the second microphone if the sensitivities of the microphones 
and preamplifier gains are matched. As the drive amplitude is increased, the output of 
the first microphone remains sinusoidal, but that of the second microphone exhibits 
distortion in the form of a steepening of the regions of positive slope. The presence of 
higher harmonics can be seen on a spectrum analyzer. At a sufficiently high amplitude, 
the steeper slope at the pressure zero crossing becomes infinite. At a slightly greater 
amplitude, a shock front is observed. Ringing of the microphone can also be observed, 
and can be reduced by filtering. The distortion and eventual shocking are due to 
compressions traveling faster than expansions (see diagram below). This occurs for 
two reasons: the speed of sound is greater for higher temperature, and the speed of 
sound is boosted by the particle velocity.1 

p.v.p.T 

Compressions travel faster 
than the linear speed of sound 
c0, and expansions travel 
slower. A sinusoidal wave 
thus distorts, eventually 
becoming a sawtooth wave 
with shock fronts. 

direction of 
propagation 

^> 

c0-A 
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In the second demonstration, the input is a single sine burst that repeats at a low 
rate. At high amplitudes, the burst evolves into either a single shock front or an N wave, 
depending upon the polarity of the burst (refer to the diagram below). The N wave 
lengthens in time (dashed lines in the diagram) because the negative-pressure shock 
front moves more slowly than the positive-pressure shock front. 

<=> 

^> 

Depending upon its polarity, a single high-amplitude sine burst evolves either into (a) a 
single shock front, or (b) an N wave. Shown here are the variations in space (rather than 
time), which can be displayed on an oscilloscope by using the input invert feature. 

In the third demonstration, the drivers are driven at different frequencies (750 Hz 
and 2.0 kHz are suitable). At small amplitudes, the spectrum analyzer shows that the 
response at the first and second microphones is simply the superposition of the two 
tones. At greater amplitudes, however, many more peaks occur at the second 
microphone. The larger of these can be shown to be the sum and difference 
frequencies of the primary waves. The other peaks involve sum and difference 
frequencies of various combinations of the primary and secondary waves. 

Suppression of sound by sound is demonstrated next. One driver emits a high- 
amplitude tone ("pump") at low-frequency (750 Hz is suitable), and the other a low- 
amplitude tone ("signal") at a high frequency just below cutoff (4.0 kHz). Due to the 
creation of sum and difference waves, energy is removed from the signal as it 
propagates. Remarkably, the amplitude varies in space as the absolute value of the 
J0(x) Bessel function, where the distance to the zeros is inversely proportional to the 
amplitude of the pump.1 Just after the first zero, the amplitude of the signal increases 
with x due to a restitution of energy from the sum and difference waves. The zero can 
be exhibited by observing the sound at the second microphone with a spectrum 
analyzer. As the amplitude of the pump is slowly increased, the amplitude of the signal 
falls to zero and then rises. 

In the final demonstration, one of the drivers is driven with noise in a band of 0.5- 
2.0 kHz, while the other is driven with a pure tone at a higher frequency. It is 
convenient to use a brickwall filter to achieve an abrupt band of noise. To maximize the 
effect, the pure tone should be just below the cutoff frequency and as great an 
amplitude as possible without significant distortion. The output of the second 
microphone is fed to a spectrum analyzer. As the noise intensity is increased, the 
amplitude of the pure tone is observed to decrease, showing that finite-amplitude noise 
absorbs energy of a wave. This is due to the sum and difference waves produced by 
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the wave with all of the components of the noise. Remarkably, this causes the wave to 
attenuate with distance not as an exponential but as a gaussian.2 

'Mark Hamilton, "Fundamentals and Applications of Nonlinear Acoustics," in Nonlinear Wave Propagation 
in Mechanics, AMD-Vol. 77, edited by T. W. Wright (American Society of Mechanical Engineers, New 
York, 1986), pp. 3-6, 8-9. Mark F. Hamilton and David T. Blackstock, editors, Nonlinear Acoustics 
(Academic, San Diego, 1998), pp. 66-79, 82-84. 

2Andres Larraza, Bruce Denardo, and Anthony Atchley, "Absorption of sound by noise in one dimension," 
Journal of the Acoustical Society of America, vol. 100, pp. 3554-3560 (1996). 

SO.6 Sound beam from a parametric array 

A ring of transducers 
transmits high-intensity 
ultrasound. Due to the 
interaction of sound 
with sound, a narrow 
beam of audible sound 
is produced. 

CD player 

1*1 v 
1*1 
1*1 

1*1 

signal conditioning 
electronics 

s*s 
i' 

ultrasonic amplifier 

This remarkable device was developed by a company.1 A 20-cm diameter ring 
has many small ultrasonic transducers mounted on it. The transducers, which operate 
at roughly 30 kHz, are connected in parallel to two wires from an amplifier, signal 
conditioner, and CD player. An audio microphone and preamplifier, or some other 
source, can be substituted for the CD player. As a result of nonlinear interactions of the 
sound in the air, the original audio signal is broadcast in a beam with distinct boundaries 
and no side lobes. The beam can be reflected from walls. 

To understand the effect, consider a high-amplitude wave consisting of the 
relatively slow amplitude modulation of a monofrequency wave (carrier). Nonlinear 
interactions occur over roughly the attenuation length of the carrier, and can be shown 
to produce a wave whose pressure is proportional to the second derivative of the 
square of the modulation function.2 This is referred to as self-demodulation. The carrier 
attenuates relatively rapidly, leaving only the demodulated wave. This wave is driven 
over a length that is substantially greater than the size of the primary source. The 
resultant beam is highly directional without side lobes. This is the principle of the 
parametric array, which is normally realized by two primary waves of slightly different 
high frequencies.2 Nonlinear interactions drive a wave whose frequency is the 
difference of the two primary frequencies. The effect is as if there were an in-line array 
of linear sources whose phase variation and amplitude taper are precisely that which 
yield a highly directional on-axis beam with no side lobes. This occurs automatically in 
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the case of nonlinear interactions of two collinear primary waves or a single amplitude- 
modulated primary wave. In addition to adding the high-frequency carrier, the signal 
conditioner of the above device evidently "predistorts" the signal so that the self- 
demodulated sound is nearly identical to the original audio signal. 

'American Technology Corporation (San Diego, California). Web site: http://www.atcsd.com. 

2Mark Hamilton, "Fundamentals and Applications of Nonlinear Acoustics," in Nonlinear Wave Propagation 
in Mechanics, AMD-Vol. 77, edited by T. W. Wright (American Society of Mechanical Engineers, New 
York, 1986), pp. 13-16. Mark F. Hamilton and David T. Blackstock, editors, Nonlinear Acoustics 
(Academic, San Diego, 1998), pp. 246-252. 

SOJa        Bernoulli attraction 

Side view of a sheet of 
paper supported in front of a 
loudspeaker. When the 
loudspeaker is driven so that 
a low-frequency high- 
amplitude sound wave is 
emitted, the paper is 
attracted to the loudspeaker. 

from amplifier 
and frequency 

generator 

loudspeaker 

sheet of 
paper 

A suspended sheet of paper is attracted to a loudspeaker that is driven with 
sufficient amplitude at a low frequency (200 Hz is suitable). Because the flow velocity is 
greater on the loudspeaker side of the sheet, Bernoulli's law implies that the steady 
pressure is reduced there. This occurs regardless of the direction of the flow, so the 
sheet is attracted to the loudspeaker. 
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S0.7b        Rayleigh disk 

Top view of a note card suspended 
by string in an acoustic chamber. 
When the loudspeakers (rectangles) 
drive a high-amplitude standing 
wave mode that has a velocity 
antinode at the center, the card 
rotates to become perpendicular to 
the flow. 

Illustrated above is a Bernoulli effect in addition to the attraction of a sheet of 
paper to a loudspeaker (S0.7a). A note card is suspended from a string that is taped to 
the center of the top of an acoustic chamber. In equilibrium with no sound, the note 
card is at an angle as shown in the diagram above. A standing wave mode is driven in 
one direction of the chamber such that a velocity antinode occurs at the center. This 
corresponds to modes with an odd number of half-wavelengths across the chamber, 
which includes the fundamental mode. For sufficiently high amplitudes of the mode, the 
note card rotates such that it is perpendicular to the particle displacement. The note 
card is referred to as a Rayleigh disk in this case. 

To understand the torque on the note card, consider the flow (see diagram 
below). The separation points of the flow occur must occur above and below the center 
of the card, as shown. By Bernoulli's law, the lack of velocity at these points implies a 
greater steady pressure. The same occurs when the flow reverses. Hence, there is a 
steady torque that causes the disk to orient perpendicular to the flow. 

Flow around a Rayleigh disk. 
By Bernoulli's law, the pressure 
is greater at the stagnation 
points (x's). There is thus a 
clockwise torque on the disk. 
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S0.8 Kundt's tube: Bunching and levitation 

compression 
driver 

from frequency 
generator and 

amplifier 

Kundt's tube, consisting of a closed clear acrylic tube with a compression driver at one 
end. When a high-amplitude standing sound wave is driven, small styrofoam disks 
tend to bunch at velocity antinodes (dashed lines). 

The Kundt's tube is a dramatic Bernoulli demonstration in addition to Bernoulli 
attraction (S0.7a) and the Rayleigh disk (S0.7b). High-amplitude standing waves are 
driven by a compression driver at one end of a closed clear acrylic tube. Small 
styrofoam disks tend to bunch at velocity nodes (pressure antinodes) because the time- 
averaged pressure is least there. On either side of a velocity antinode, there is a time- 
averaged pressure gradient that forces the disks to the velocity antinode. In addition, 
the Rayleigh disk effect causes the disks to orient perpendicular to the oscillations. 

If the tube is then tilted so that it is , 1 
vertical, the disks can be levitated. When 
this occurs, the upward force due to the 
time-averaged pressure gradient balances 
the downward gravitational force. The 
disks thus levitate below the velocity 
antinodes (refer to the dashed lines in the 
diagram to the right). 

If the apparatus is tilted 
vertically, the disks can be 
levitated. g 

Q 
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S0.9 Acoustically-driven jetting 

A glass flask is driven at its 
Heimholte resonance frequency 
with a loudspeaker. At 
sufficiently large amplitudes, a 
lit match placed in front of the 
neck will be extinguished. 

from amplifier and 
function generator 

loudspeaker 

glass 
flask 

An open glass flask serves as a Heimholte resonator in this demonstration. First, 
a small microphone connected to an oscilloscope is placed inside the flask, and the 
frequency of the loudspeaker is varied until the resonance value is determined. The 
amplitude should not be large, so that distortion of the microphone is prevented, and so 
that the sound is not unpleasant to the demonstrator and audience. For a typical one- 
liter flask, the resonance frequency is approximately 180 Hz. Next, the microphone is 
removed, and the amplitude is increased to a high level. A match is lit and brought near 
the front of the neck of the flask. A steady flow of air jetting from the resonator can 
extinguish the flame. To show that the sound oscillations cannot extinguish the match, 
the resonator can be removed and a lit match brought near the loudspeaker. 

The steady flow can be explained as follows. By Bernoulli's law, the large- 
amplitude Helmholtz oscillations of the air in the neck lower the steady pressure there. 
This creates a steady in-flow of air, which must be accompanied by an out-flow. For a 
pipe immersed in a fluid, when fluid is sucked into a pipe, it tends to enter from all 
directions. However, when it is blown out, it tends to form a jet perpendicular to the 
plane of the end of the pipe. The flow is symmetric only for very small velocities. The 
out-flow jetting from the Helmholtz resonator can be observed just prior to the match 
being extinguished, or the drive amplitude can be reduced so that the match remains lit 
but the flame is pushed outward. 

The jetting effect can be utilized to create an acoustic motor. Two small 
Christmas ornaments with their stems removed are mounted on either end of an arm 
that is pivoted at its center (refer to the diagram below). The ornaments serve as 
Helmholtz resonators. The assembly is placed in a closed clear acrylic box with 
loudspeakers attached to the sides. The top plate is hinged so that it can be open and 
closed. The horizontal cross section of the box is a square with height roughly one-third 
the side length of the square. To help achieve large acoustic amplitudes, the box is 
constructed such that its fundamental acoustic mode has approximately the same 
frequency as the Helmholtz resonance of the ornaments. The inside length of a side is 
a = 16 inches, so that the fundamental acoustic mode [that is, the (1,0) or the (0,1) 
mode] has approximate frequency f = c/2a = 420 Hz. 
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Top view of rotating 
Christmas ornaments in 
a closed clear acrylic 
box with loudspeakers 
attached to the sides. 
The ornaments rotate 
counterclockwise due to 
acoustically-driven 
jetting. 

With the ornaments assembly initially at rest, the loudspeakers are driven at 
resonance and the assembly accelerates to a fast angular velocity. The demonstration 
can be repeated with the assembly being given an initial angular velocity in the opposite 
direction of the torque due to the jetting. Before the loudspeakers are turned on, the 
assembly moves with nearly constant angular velocity. After the loudspeakers are 
turned on, the assembly decelerates and reaches its terminal angular velocity as before. 

During operation, the sound level is heard to be modulated by the rotation of the 
ornaments. This may occur because the resonance frequency of the cavity is modified 
depending upon the orientation of the ornaments. Because the drive frequency is fixed 
near this modulated resonance frequency, the response amplitude will increase when 
the resonance frequency approaches the drive frequency, and decrease when it 
recedes from it. 
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SO.10        Spinning cups 

(a) 

0 0   . 
® 

.0 0 

(b) 

V ^ 

V ® 
I 

Top view of a closed acoustic chamber with styrofoam cups (shaded disks) 
supported on spindles. The cups spin when appropriate modes are driven at high 
amplitude by pairs of loudspeakers (rectangles) that are 90° out-of-phase. 

A closed clear acrylic chamber has pairs of drivers on adjacent sides, as shown 
above. In (a), a styrofoam cup pivoted on a spindle is at the center. The pairs of 
loudspeakers are made to drive the fundamental mode in each direction with the same 
amplitude but 90° out-of-phase. The particle motion is thus uniformly circular. The 
velocity (circular arrows in the diagram) is v = v0[cos(7tx/L)cos(27xft)i + 
cos(7ty/L)sin(27ift)j], where the origin is at the center, L is the length of each side, f = 
c/2L, and the x displacement is assumed to lead the y displacement. One might think 
that this would cause the cup to spin in the opposite direction due to viscous drag. 
However, the cup spins in the same direction has the particle motion. In diagram (b), 
four cups are employed and the drive frequency f is doubled. The particle velocity now 
alternates between quadrants, and the cups again spin in the same direction as in each 
quadrant. 

The effect is due to acoustic streaming, which is a large-scale steady flow 
induced by acoustic motion. Streaming can occur when there is attenuation due either 
to bulk motion or to boundaries, so that the energy of sound wave is attenuated but the 
momentum is not. The streaming that causes the cups to spin is unusual in that it 
arises from circular rather than oscillatory acoustic motion. The following is a 
paraphrase of a physical explanation in Ref. 1. Outside of the viscous layer of the 
boundary of the cup, the particle motion is circular. Inside, however, the loop becomes 
smaller due to viscosity and is flattened due to the presence of the boundary (see 
diagram below). If the loop is deep within the layer, the half of the motion closer to the 
boundary is subjected to more viscous damping than the other half. This reduces the 
size of the former, which causes the loop not to be closed and results in a shift of the 
particle motion (to the left in the diagram). The accumulation of these shifts over many 
cycles constitutes a drift motion or streaming, which exerts a torque on the cup. 
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Particle motion outside 
and inside the viscous 
layer of a boundary, from 
Ref. 1. The viscous 
penetration depth is 5 = 
(v/rtf)1/2, where v is the 
viscosity. Near the 
boundary, the loops are 
not closed, which results 
in a drift motion to the left. 

O 

'Chun P. Lee and Taylor G. Wang, "Near-boundary streaming around a small sphere due to two 
orthogonal standing waves," Journal ofthe Acoustical Society of America, vol. 85, pp. 1081-1088 (1989). 

S0.11a      Crooke's radiometer 

Crooke's electromagnetic 
radiometer. When exposed 
to light of sufficient intensity, 
the vanes spin with the white 
side leading the black 
(counterclockwise viewed 
from above). 

Crooke's electromagnetic radiometer is a well-known physics demonstration and 
toy. A glass bulb contains a freely rotating assembly of four vanes, where one side of 
each vane is black and the other side is white (refer to the diagram above). When 
exposed to light of sufficient intensity, the vanes rotate. Light has momentum, and thus 
exerts radiation pressure when it strikes a surface. Because light is absorbed by the 
black sides and reflected by the white sides, there is a greater momentum transfer 
(nearly twice) on the white sides. Due to this imbalance in radiation pressure, the vanes 
should rotate from the white sides to the black sides (clockwise in the diagram viewed 
from above). However, the vanes are observed to rotate in the opposite direction. It 
can be shown by a simple estimate that the radiation pressure is extremely small here. 
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The observed behavior is due to a thermal effect associated with the gas in the bulb, 
and can be overcome only with a very high vacuum and a pivot with a very small 
amount of friction. 

It is a common misconception that the behavior can be explained as follows. The 
volume inside the glass bulb is not a high vacuum, and may not be evacuated at all. 
When the radiometer is exposed to light, the black side becomes hotter, which 
increases the temperature and thus pressure of the gas on this side. This increased 
pressure causes the rotation from the black sides to white sides. In addition, close 
inspection reveals that the vanes typically have a slight twist about a horizontal axis 
such that the upward convection near the black sides may help drive the assembly. 
This argument is incorrect because any pressure imbalance between the gas near the 
black and white sides quickly equilibrates at the speed of sound. Althoughfthe average 
speed of the gas particles is greater near the black side because the temperature is 
greater, the density is less such that the pressures are the same. 

An understanding of the behavior of Crooke's radiometer occupied some of the 
most capable scientists of the late 1800s, including Maxwell, Stokes, and Reynolds. 
The following physical explanation was given by Einstein in 1924. Consider gas within 
roughly a mean-free-path length from the edge of a vane (refer to the diagram below). 
A gas particle moving toward the black side has an average speed dictated by the 
greater temperature on that side. The particle is impeded not only by similar particles 
from the black side but also by particles from the White side. Because the latter have 
less average speed, the particle is impeded less than it would have been if it were 
nearer the center of the black side (i.e., several mean-free-path lengths from the edge). 
The particle thus strikes near the edge of the black side with greater momentum. 
Similarly, a particle on the white side strikes near the edge ofthat side with less 
momentum. 

Explanation for the behavior of the 
radiometer. A gas particle striking near the 
edge of the black side is impeded less 
because the particles from the white side are 
at less temperature. Similarly, a particle 
striking the white side is impeded more.   • 

black 
side 
T, 

white 
side 
T2 

T,>T2 
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SO.11b     Acoustic radiometer 

Acoustic radiometer, showing the metal 
side of the left pane and the foam rubber 
side of the right pane. When placed in a 
reverberating acoustic enclosure (not 
shown) ensonified with noise, the panes 
rotate clockwise viewed from above. 

When any type of wave is incident on a surface, there can be a nonzero time- 
averaged pressure, or radiation pressure. For an absorbing surface, this pressure is 
less than that for a reflective surface. Hence, when two such surfaces are joined back- 
to-back and placed in an isotropic and homogeneous wave field, there is a net force in 
the direction of the reflective to the absorptive side. If this device is mounted such that it 
is allowed to spin as a result of the net force, the system can be considered a 
radiometer because it detects the presence of the wave field. However, the well known 
electromagnetic radiometer spins in the opposite direction (counterclockwise viewed 
from above) when exposed to light of sufficient intensity (refer to SO.11 a). 

The acoustic radiometer shown above can be used to demonstrate radiation 
pressure.1 Each pane has an aluminum side and a foam rubber side. The panes are 
attached to a rod that is supported by a pivot that has with very little friction. When 
placed in an enclosure and exposed to isotropic and homogeneous acoustic noise of 
sufficient intensity, the apparatus spins in the direction predicted by radiation pressure 
(clockwise viewed from above). 

Preliminary quantitative results show that the actual torque is at least 50% 
greater than that predicted by theory. Research is currently being conducted to confirm 
and understand this. 

1Timothy G. Simmons, Bruce Denardo, Andres Larraza, and Robert Keolian, "Acoustic Radiometer 
Demonstration," Proc. of the ltfh International Congress on Acoustics and 135^ Meeting of Acoustical 
Society of America, 20-26 June 1998, Vol. I, edited by Patricia Kuhl and Lawrence Crum, pp. 129-130. 

SO.11 c      Acoustic Casimir effect 

Top view of vertical metal plates, where 
one of each pair is fixed and the other is 
attached to a rotatable arm. The 
system is enclosed in a clear acrylic box 
with compression drivers attached to the 
bottom. The plates are attracted when 
high-intensity acoustic noise is present. 
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The acoustic enclosure in previous demonstrations is utilized here, where two 
compression drivers are employed to generate high-intensity noise. Metal plates are 
vertically attached to the ends of an arm that is pivoted at its center (refer to the diagram 
above). Two other plates are fixed such that they are parallel to and near the movable 
plates. When the drivers produce high-frequency (e.g., 7.5 kHz to 15 kHz) noise of 
sufficient intensity, the arm rotates counterclockwise in the above diagram; that is, the 
plates are attracted.1,2 

This effect is due to an imbalance in radiation pressure. The noise is 
approximately uniform and isotropic outside the plates, and is composed of nearly a 
continuum of modes. Between the plates, however, the boundary conditions due to the 
plates reduce the number of modes and thus the noise intensity. In fact, if the distance 
between the plates is less than the smallest half-wavelength of the noise "(at the upper 
limit of the band) the noise intensity between the plates is zero. The reduction in 
intensity between the plates causes an imbalance in radiation pressure, so the plates 
are attracted. ' 

An analogous imbalance in radiation pressure is responsible for the celebrated 
Casimir effect, in which two parallel conducting plates in a vacuum are slightly attracted 
due to the existence of the zero-point quantum electrodynamic field (virtual photons). 
The boundary conditions reduce the intensity of the field between the plates, which 
results in attraction. 

It is remarkable that, under certain conditions in the acoustic case, the force can 
be repulsive instead of attractive. This effect is not due to resonance amplification of 
the modes between the plates, which is negligible here because the plates are open on 
the sides.. The repulsion is a result of a nonzero lower limit of the band of noise.2 This 
effect does not occur in the Casimir case for parallel plates because the lower 
frequency limit of the zero-point field is zero. 

1 Andres Larraza, "A demonstration apparatus for an acoustic analog to the Casimir effect," American 
Journal of Physics, vol. 67, pp. 1028-1030 (1999). 

2Andres Larraza and Bruce Denardo, "An acoustic Casimir effect," Physics Letters A, vol. 248, pp. 151- 
155 (1998). Andres Larraza, Christopher D. Holmes, Robert T. Susbilla, and Bruce Denardo, "The force 
between two parallel rigid plates due to the radiation pressure of broadband noise: An acoustic Casimir 
effect," Journal of the Acoustical Society of America, vol. 103, pp. 2267-2272 (1998). 

S0.11d      Flame tube 
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In the flame tube, the velocity distribution of a standing wave is shown by 
the variation in the heights of flames from small holes in the tube. 
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In this very dramatic demonstration, propane or methane flows into a closed-end 
metal tube that has small holes drilled along its length. A loudspeaker at one end of the 
tube is driven with a frequency generator and amplifier. At resonance frequencies, the 
heights of the flames vary along the length and are maximal at velocity antinodes of the 
standing wave. Music (a superposition of frequencies) can then played through the 
loudspeaker, creating a dramatic effect. The finale of Stravinsky's Firebird is both 
effective and appropriate for this purpose. 

The effect may be due to radiation pressure, which is the time-averaged 
pressure. The radiation pressure of a wave equals the average potential energy density 
minus the average kinetic energy density.1 Note that this is in accord with Bernoulli's 
law for incompressible flow, which yields a reduction in pressure at points of increased 
velocity. The radiation pressure of a standing wave in a closed tube varies as in the 
diagram below. The greater pressure at the pressure antinodes (velocity nodes) could 
be responsible for the flames being higher at those points. 

Peak velocity and radiation 
pressure corresponding to the 
standing wave in the above 
diagram. The maxima 
(arrows) of the radiation 
pressure distribution could be 
responsible for the higher 
flames at those points. 

ft     ft     ft     ft     ft 

A possible problem with this explanation is that it may not account for the 
surprising fact that some flame tubes have maximum flame heights at the opposite 
locations (pressure nodes or velocity antinodes).2 

1
L D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed. (Pergamon, New York, 1987), pp. 257-258. For 

a closed tube, the radiation pressure can include a spatial constant in addition to the energy density - 
terms, but this does not appear to have any effect here. 

2Harry F. Meiners, ed., Physics Demonstration Experiments, Vol. I (Ronald Press, New York, 1970), pp. 
495-496. 
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NOISE AND SENSORS 

Thomas G. Gabrielson 
Pennsylvania State University 

INTRODUCTION 

DR. GABRIELSON: The last few times I have been to PASS I have spoken about the 

physics of sensors in relationship to self-noise and in relationship to signal response. This year, 

I'm not going to speak about signal response. Instead, I'm going to expand the material on 

sensor noise because it is truly fascinating in its own right. 

[Transparency 1-1] 

A lot of people believe that any time I talk, the talk itself is noise, but I had an illuminating 

conversation with Dr. Hargrove at the beginning of PASS this year. He pointed out that there is a 

critical difference between noise and lack of information. For example, my talks are lack of 

information, not noise. Noise contains a great deal of information and I hope that by the end of 

the lecture, I will have convinced you ofthat. 

First, where did my interest in sensor noise originate? A number of years ago, we started 

examining some very high-performance sensors of various sorts; sensors intended for detection 

of very small signals of different kinds. 

For example, inertial navigation systems have accelerometers and angular-rate sensors 

(gyroscopes). For long-term inertial navigation you have to detect very small signals and sensor 

noise becomes very important as a limit to the ultimate performance. 

At about the same time, I got involved in microfabrication (MEMS) technologies, and there 

noise is also critically important. Normally, noise becomes more significant when a sensor or 

device is made smaller. So I started studying noise and it has really been fascinating. It has been 

a good education for me; hopefully, you will get something out of it, too. If not, you can always 

write nasty things on the evaluation. 

[Transparency 1-2J 

Where are we going to go and what are we going to do? I am going to break this talk into 

three parts. First, I am going to talk about mechanical thermal noise; that is, the noise associated 

with molecular motion, the normal molecular motion that exists at the temperature at which we 

operate our system. 

158 



I am not going to talk about very low-temperature systems or superconducting sensors. I 

am not going to talk about sensors that are so small that they support only a very small number 

of thermally induced modes. These are interesting cases but generally less important from a 

practical standpoint and they would make the talk a little bit too long. Even sensors that operate 

at cryogenic temperatures generally show fully developed thermal fluctuations so these 

exclusions will not limit the applicability much. 

Second, I will discuss shot noise. This is noise associated with movement of discrete 

independent particles of some kind. They could be photons, they could be electrons, or they 

could be particles of sand dropping on a surface. This is a good place to introduce some other 

concepts as well. 

Finally, in the third hour, I will pick some topics that are favorites of mine and talk them. 

This part of the lecture will be a little bit more disconnected but you will see the roots of the 

earlier discussions in these topics. 

/.  THERMAL NOISE 

[Transparencies 1-3 and 1-4] 

If I consider a very simple system - like this demo, a mass on a spring - and I displace it a 

bit then let it go, it vibrates. If the system is attached to motionless support (and not my hand!), 

the oscillation will decay to any arbitrarily small amplitude if you wait long enough, right? 

Let's consider a system that has a resonance frequency of 100 Hz, a Q of 10, and a mass of 

a milbgram. It is not outrageous to think of a sensor built with these parameters. If you displace 

the mass by a millimeter, how long does it take for the amplitude to decay to 10"8 mm? Actually, 

it does not take very long. You can calculate the exponential decay rates in the simple manner of 

Q-decay of oscillations. Is 10"8 mm a reasonable amplitude? If this system were an 

accelerometer, that amplitude would correspond to an applied acceleration of just under a micro- 

g, and there are certainly plenty of times we want to be able to sense a micro-g at 100 Hz. 

How long does it take to decay to 10"8 mm? At room temperature it takes forever, it never 

reaches that level because of thermal fluctuations. Molecules in this system are fluctuating and 

the system is coupled to all kinds of other fluctuating things. That is the subject of the first hour: 

simple thermal fluctuations. 

[Transparency 1-5] 
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Most of the time when we are taught simple harmonic oscillators, we are shown a mass on 

a spring, and we study that for a while, and then throw in a damping element and study that for a 

while. You consider an initial displacement. Or, the mass might have been given an initial 

velocity instead of an initial displacement. It decays to some arbitrarily small level according to 

this homogeneous differential equation on the left. You all have seen this, hopefully: mass times 

acceleration plus resistance times velocity plus the spring constant times the displacement with 

the sum set equal to zero. 

But this is really not correct. This is bad physics. What really happens is that the mass 

motion decays into a background of noise. Many times in experimental work you are so plagued 

with things like 60-Hz interference (or 50-Hz interference, depending on which side of the ocean 

you work) that you forget about the fundamental noise processes associated with these sorts of 

motions. There is a fundamental fluctuating force that is directly related to the introduction of 

damping in this system. 

On the right is the proper equation of motion for a damped system and above it is the 

proper diagram for that system. If you put in a damper, that fluctuating force generator must go 

in, also. It's bad physics to leave out the force fluctuations. 

[Transparency 1-6] 

A number of classic papers have been written on this subject. One classic theorem is the 

fluctuation-dissipation theorem. This theorem can be expressed in terms of an equation, but, for 

our discussion, the equation is not too important. The idea behind the theorem is more important 

so I am just going to talk you through the theorem. 

If we look at a sensor like a condenser microphone - a structure that has a fixed back plate 

and a movable diaphragm - we can identify various damping mechanisms. The volume between 

the diaphragm and the back plate is filled with gas and there is a viscous damping associated 

with squeezing this layer of gas in and out as the diaphragm moves toward and away from the 

back plate. Also, the diaphragm and its edge support have mechanical loss. And, the diaphragm 

radiates sound, which also causes energy to leave the system. 

Normally, radiation is not called damping; however, any path by which the energy can 

leave the system is, from the system's point of view, a loss of energy. From the perspective of 

the diaphragm, radiation is a loss mechanism. 
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Any time there is a path from the system out to the environment along which energy is lost, 

then that same path also permits energy exchange from the environment back into the system. 

Because the path is bi-directional, the fluctuations in the environment that result from normal 

molecular motion act back on the system and keep the system from decaying down to any 

arbitrarily small level. 

[Transparency 1-7] 

Frequently you see this sort of phenomenon explained in terms of the principle of 

equipartition. Equipartition describes the total thermal energy in the system. Any system may 

have many different modes of vibration. It may have a mode characterized by twisting back and 

forth - a torsional mode. It may have a rocking mode. It may have a breathing mode or 

asymmetric elastic modes of vibration. 

For any one of these modes, the total energy from thermal agitation is 54 times Boltzmann's 

constant, kB, times the absolute temperature of the system. For a simple mass on a spring, there 

is kinetic energy associated with the velocity of the mass. There will be a thermal energy of 54 

kBT associated with that mass motion. There will also be potential energy associated with the 

compression or extension of the spring. A thermal energy of 54 kBT will be associated with the 

elastic energy storage in the spring. The total energy for the simple vibration is then kBT. 

What about the value of Boltzmann's constant? It is a pretty small number, so you think, 

well, what is the big deal: kB times T at room temperature is about 4 times 10"21 joules. It sounds 

so small how could there possibly be any influence on a system? But intuition is misleading 

here. In sensors, we often can measure very small quantities and that seemingly small thermal 

energy can overwhelm a sensitive measurement. 

If you consider a molecule in a liquid, each independent direction of translation has a 

thermal energy of 54 kBT. This is a statistical average. All of the molecules do not have same 

energy. The x component has an average energy of 54 kBT, the v component has an average 

energy of 54 kBT, and the z component has an average energy of 54 kBT as well. 

But this is not only true for individual molecules. It is also true for macroscopic objects 

like a ball bearing in a liquid. As for the molecule, for each independent direction of translation, 

the thermal component of the kinetic energy, 54 mv2, is equal to 54 kBT. What is the difference? 

The mass is much larger for the ball bearing than for the molecule, so the velocity is 
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considerably smaller.   Even so, the effects can still be strong enough to limit our ability to 

measure the ball bearing's position (for example). 

Other sorts of systems have a corresponding store of thermal energy. In a capacitor, you 

would write the stored energy as one-half times the capacitance times the voltage-squared. The 

equilibrium energy of fluctuation that results from thermal agitation is lA CV2 equal to 14 kßT. In 

any case where we can write the energy as some scalar times some dynamic quantity squared, 

there will be a component of thermal energy in equilibrium with a value oVA kBT 

[Transparency 1-8] 

I would like to make a point about molecular agitation with an example - a protozoan 

[Loxodes striatus]. This is an interesting little creature. It is 200 microns long. It has, up at the 

top in this picture, a very small chamber and I've also shown an expanded view of that area. 

Biologists believe, in fact, that this animal exists only as a male, there are no females of this 

variety, because the head area is so small, (laughter) 

The chamber that I've highlighted is about 7 microns in diameter. In that chamber is a 

little nodule - a mineral accretion on the end of a hair-like structure. If the animal is oriented as 

shown in the photo, the hair bends away from the "head"; if the animal turns over, the hair bends 

toward the head. This bending creates a chemical interaction at the root of the hair structure and 

this chemical signal adjusts the way the flagella around the organism move. 

If the organism is pointed in one direction with respect to the gravity vector, then the 

flagella act in coordination and the organism travels in more or less of a straight line. If it is 

pointed in the other direction, the organism swims randomly. 

Why would it do this? That is a fascinating story and I can only give you the highlights. It 

likes to find an optimum dissolved oxygen concentration in the fluid in which it lives. It uses a 

chemical sensor to figure out what the concentration is and it uses the gravity sensor to migrate 

toward it or away from it, depending on what the concentration changes are. Stratification 

occurs in lakes and ponds, so we know the oxygen concentration varies most strongly in the 

vertical direction; consequently, a gravity sensor is useful. 

Let's consider the sensor's potential energy. I will just estimate it as the mass (about 45 

picograms) times the gravitational acceleration (9.8 m/s2) times the range of the mass motion 

(about 3 micrometers). Now the ratio ofthat potential energy to the total thermal energy, kT, is 
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about 350, a reasonably large number, so there is enough change between the up and down 

orientations that this animal can sense gravity unambiguously. 

The animal is not fixed in any particular orientation; it is not sitting motionless for minutes 

at a time, so it cannot do much integration. It is moving around all the time, so it does not have 

much integration time to improve the estimate. If you reduced all of the dimensions linearly by a 

factor of four, then the ratio of available potential energy change to thermal energy would be 

about one and the organism would not know up from down. 

This is a mature adult. A juvenile might be about half that size or so. There is probably 

some excess sensitivity in the adult so that the juvenile with its smaller sensor can still survive. 

But, all things considered, nature has contrived to push this sensor pretty close to the edge of the 

thermal limit. 

When I talk about high-performance sensors, I don't necessarily mean detection of 

extremely small signals. This protozoan has a very high-performance sensor, because it's 

performance is excellent for its size - this sensor is extremely small. Not only that, it reproduces, 

which is unusual for a sensor, (laughter) 

So high performance might mean extremely small size. Or, it might mean a device that is 

extremely cheap - our sponsors like that sort of argument as well. All of these factors enter into 

the design of sensors. But, I cannot take credit for the design of the protozoan. 

DR. MAYNARD: How close is the human ear to the kT limit? 

DR. GABRIELSON: I have read different accounts, but the majority claim that a young 

person's ear - a pre-Sony-Walkman ear - is very close to the thermal limit. But, I've never tried 

to investigate the threshold myself so I honestly don't know. My own ears have degraded 

substantially so I won't be the test subject. 

DR. MIGLIORI: Is the cavity in the protozoan an open space or is it fluid filled? 

DR. GABRIELSON: It is fluid filled. 

DR. MIGLIORI: So it is damped. 

DR. GABRIELSON: Yes, strongly. 

DR. MIGLIORI: So that kills your integration time. That is why you say there is no 

integration? 

DR. GABRIELSON: Yes, that is a good point. The damping and the continuous motion 

of the organism both conspire to prevent effective signal integration. 
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[Transparency 1-9] 

A free body in a bath of thermally agitated molecules is affected by random collisions. The 

smaller the body, the larger the effect. For example, the influence of thermal agitation on the 

small nodule in the gravity sensor of the protozoan is much greater than the influence of the 

molecular collisions on the protozoan itself. 

Einstein studied the process of molecular agitation of free particles. As he showed, the 

root-mean-square displacement is proportional to the square root of two times the diffusion 

coefficient times the time. As time increases, the particle "wanders" further from its initial point 

as the square root of time. The diffusion coefficient is kT divided by the equivalent mechanical 

resistance. 

If we consider the RMS drift in one second for various size bodies, we can see the strong 

dependence on size. In the table shown, the bodies are considered immersed in water (and 

considered to have the same density as water). A body with a radius of one meter is virtually 

unaffected and a body with a radius of one millimeter shows very little influence. When the 

radius shrinks to one micrometer, the drift is about equal to the size of the body; smaller particles 

are mercilessly beaten about by molecular collisions. This has obvious relevance in the design of 

microscale "robots" for fluid environments. In paper designs, the problems of stability in the 

environment of molecular agitation are often ignored. 

[Transparency I-10] 

Consideration of the total thermal energy is educational and we can draw some interesting 

conclusions from it, but we will get a lot more mileage by establishing the frequency distribution 

of the noise. Fortunately, Nyquist solved that problem He gave us a very simple procedure for 

finding the frequency distribution. 

Nyquist's expression is remarkably simple. If we take the mechanical resistance (that is, 

the ratio of force to in-phase velocity) then multiply by four times Boltzmann's constant times 

the absolute temperature times the relevant interval of frequency, you get the mean-square 

fluctuation force associated with that interval of frequency. It is very simple. 

Johnson noise in electrical resistors is written the same way. The mean-square fluctuation 

in voltage is equal to the electrical resistance times 4^7 times the interval of frequency. (Quite 

often we divide both sides of this equation by the frequency interval to produce the spectral 

density of the fluctuations on the left-hand side.) 
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Now, this is not quite right. If you integrated this expression over all frequency, you would 

get infinite power. The form of Nyquist's relation that is generally valid at all frequencies is also 

included on the slide. I wanted to show you the exact form of equation so you would see that it 

really does behave properly. This form is a quantum-mechanical necessity. However, the 

complicated factor is unity for every problem that we will do. 

If the frequency is high enough or the temperature is low enough, then the correction does 

become important and you need to know that it is there. What the extra factor does is to roll off 

the noise contribution rapidly after reaching the point where Plank's constant times the 

frequency equals Boltzmann's constant times the temperature (that is, where the thermal energy 

equals a quantum of energy). 

At 1 kelvin you would need to go up to about 2 GHz to reach the break point. At one 

millikelvin you would still have to go up to 2 MHz to reach the break point. It is not out of the 

question to have to cope with this roll off but in most practical sensors, the roll off is not an 

issue. Please remember that the roll off exists; you never know where your research will take 

you. 

At more common temperatures and frequencies, the simpler expression applies. We can 

use this relationship to estimate Boltzmann's constant if we believe the voltage measurements 

that we make and we have confidence in our knowledge of resistance and temperature. All it 

takes is a good, low-noise amplifier and some care in the measurement. In principle, we could 

also estimate Plank's constant by carrying out the measurement at sufficiently low temperature 

and sufficiently high frequency but this would be much harder. A bit later in the lecture, we will 

see how to estimate the elemental charge on an electron from a noise measurement. "We don't 

need no stinkin' signals" to do physics, (laughter) 

[Transparency I-11J 

Having said that, I will immediately qualify my position. We should not get too narrowly 

focused on noise. What is really important in most systems, is the signal-to-noise ratio. We 

would like to get as high a signal-to-noise ratio as possible for a given cost or a given size or for 

some other constraints. 

There are many ways of tracking the signal-to-noise ratio in an analysis. Instead of talking 

about a fundamental quantity like the noise voltage, we can translate that quantity into the 
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effective signal level that would produce that noise voltage.  This is the signal-equivalent noise. 

By doing this, you can avoid being misled about the achievable signal-to-noise. 

Let's consider a simple accelerometer, a mass-spring system inside a case. If the case 

moves up and down, a relative displacement is produced between the mass and the case. If we 

set the noise generator to zero, we can calculate the signal response. Then we set the signal (the 

applied acceleration) to zero, which we could do by clamping the case to an immovable object, 

and solve for the response to the noise generator. From those two values - the zero-noise signal 

response and the zero-signal noise response - you can calculate the noise-equivalent signal. For 

example, if the voltage-noise level of an accelerometer is 1 microvolt RMS (root-mean-square) 

and the signal response is 0.1 volt per g, you would say that there was a 10 micro-g RMS noise- 

equivalent signal. The noise-equivalent-signal specification is far more useful because it 

connects the limiting performance of the accelerometer with the physical quantity that you are 

interested in measuring. Just having a very small noise is not in itself valuable; however, if that 

corresponds to a very small signal, then you have something. 

[Transparency 1-12] 

Let's consider the accelerometer. If calculate the noise of the system and the response of 

the system, we discover that the response of the mechanical system is not flat with frequency - it 

has a resonance. When we calculate the noise-equivalent acceleration, though, we find that it is 

independent of frequency because both the signal and the noise response have the same spectral 

shape. 

The result is rather simple. The square of the mass times the noise-equivalent acceleration 

is equal to the Nyquist value for the square of the fluctuating force. Solving for the spectral 

density of the noise-equivalent acceleration (in meters per second-squared per root hertz), we 

obtain the expression, AkT times the mechanical resistance divided by the mass squared. 

Alternatively, we can express the result in terms of the system Q. In that form, the noise- 

equivalent acceleration is equal to AkT times the resonance frequency, fi*j, divided by the product 

of the mass and the Q. 

How can we lower the noise-equivalent acceleration for this simple system? We can 

increase the mass. If the damping, R, is fixed, then the noise-equivalent acceleration is inversely 

proportional to the mass squared. In changing the system, R may also change, so you must be 

careful to consider all of the implications of a structural modification. However, in any case, the 
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mass is in the denominator so, if the noise from thermal agitation is the limiting factor, 

increasing the mass lowers the noise-equivalent acceleratioa 

One of the popular new technologies is microfabrication or MEMS (Micro-Electro- 

Mechanical Systems). By microfabrication, we can make very small structures that can perform 

the same function as larger, conventionally machined devices. But, if we try to make a very 

small accelerometer, we must contend with the fundamental problem associated with a very 

small moving mass - the noise-equivalent acceleration that results from thermal agitation can be 

very high. Sometimes it is implied that the only reason we have not made extremely small 

highly sensitive sensors in the past is that we do not have suitable machining processes. It's not 

simply a matter of miniaturization though. By making the sensor physically smaller, we are 

increasingly subject to molecular agitation and if we are unaware of such processes, we can 

make unrealistic, unsupportable claims. 

By intelligent design, however, we can push the performance as far as nature permits. For 

example, if we decrease the resonance frequency (and can accept the lower bandwidth), the 

noise-equivalent acceleration can be reduced. If we increase the Q, we can also reduce the noise- 

equivalent acceleration. Both of these changes have implications in performance but, with some 

thought, we may be able to make the consequences acceptable. 

Bruel and Kjaer make a low-noise microphone that embodies this design philosophy. In 

this microphone, they make the mechanical Q considerably higher than in a conventional 

condenser microphone. This adds a significant peak in the spectral response at the high- 

frequency end. Since this departure from flat response is not desirable, they electronically 

compensate the response to flatten it. The result is a microphone with lower self-noise than 

conventional designs of the same dimensions. 

Once you understand the basics, a bit of unconventional thinking can produce sensors with 

higher performance than obtainable with standard approaches. This is the sort of philosophy that 

I hope you will make your own this week: try to reach a deep understanding of the fundamentals, 

then apply that understanding to your research instead of working blindly through the list of 

"tried-and-true" methods. 

These concepts of thermally induced fluctuations are intimately tied to the thermodynamics 

of systems in equilibrium.   One of the nice things about equilibrium thermodynamics is that we 
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can solve a problem in different ways.   Even if we use very different techniques, we wind up 

with the same answer. Now, I would like to show you a nice example ofthat. 

[Transparency 1-13] 

Let's consider the noise associated acoustic radiation. Remember that, when I was 

introducing the fluctuation-dissipation theorem, I told you that radiation from a system counts as 

a loss mechanism. Radiation provides a path by which energy can leave the system, so we ought 

to be able to calculate what the corresponding noise is. 

For example, consider a small source - a monopole - that generates spherical waves. The 

source could either be very small and of arbitrary shape or it could be a spherical source 

operating in the spherically symmetric "breathing" mode. The spherical wave solution has the 

form of a radially expanding traveling wave with an amplitude inversely proportional to the 

radial distance, r. 

The volumetric-density form of Newton's law relates the gradient of pressure (force per 

unit volume) to the density and the time derivative of velocity. If we rewrite that equation using 

complex exponential forms for time dependence and evaluate the gradient in the radial direction, 

we can solve for the radial particle velocity, ur. 

Once we have expressions for both pressure and radial velocity, we can write the 

impedance. The mechanical impedance is the pressure times the area divided by the velocity. 

For simplicity, we can let the product of wave number, k, and radius be very small (i.e., the 

source is much smaller than a wavelength). This is not necessary but it makes the algebra easier. 

Having done that, the real part of the impedance approaches the product of density times sound 

speed times area times the quantity (kr)2. This we can rewrite as pi times density times 

frequency squared times area squared divided by sound speed. Now that we have the real part of 

the radiation impedance, we can immediately write the spectral density of the noise-equivalent 

pressure. The noise-equivalent pressure squared is the noise-equivalent force squared divided by 

the area squared. The result is that the noise-equivalent pressure squared is 4kT times n times p 

times f divided by c times whatever bandwidth we are considering. This is a nice, relatively 

simple expression. 

[Transparency 1-14] 

At this point, we've solved the problem, but let's try to solve it in an entirely different way. 

Let's start out by putting a very small pressure sensor in a box - a cube with perfectly rigid walls. 
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The sensor is located at the center point of the box. The box dimensions are 21 by 2L by 21; the 

shortest distance from the source to a wall is L. 

What are the acoustic modes if this is a rigid-walled box? The modes are standing waves 

having pressure maxima at the walls. From symmetry, these modes either have pressure maxima 

or pressure zeros at the center. Any mode having a pressure zero at the center is not sensed by 

our detector so we will not include those modes in our solution. 

For maxima at the center (0, 0, 0 in our coordinate system), the relevant modes will be 

cosines. The arguments for those cosine functions that produce maxima at the walls are given by 

any integer times n times x divided by L. The component of the wave number in the x direction 

is just the factor multiplying x, so the wave number component is always an integer times n 

divided by L for any of the three coordinate directions. 

What is the spacing between these allowed wave number components? It is just 7t/L. The 

total wave number squared, k2, is the sum of the squares of the wave number components. If we 

plot the locations of all of the allowed wave number components in wave-number space, the 

result is a very simple cubic lattice with evenly spaced points. 

The dimension of a unit-cell in A>space is it/L. Consequently, the unit-cell volume is 

(n/L)3. Also, there is one k-point per cell. (If you locate the eight k-points that bound a unit cell, 

an eighth of each is inside the cell, so you really have one point per unit-cell.) 

By equipartition, each mode has JAkT associated with the kinetic energy and 'AkT 

associated with the potential energy, so the total equipartition thermal energy per mode is kT. 

Furthermore, the density of thermal energy in £-space is the energy per wave number (i.e., per 

mode) divided by the volume (in &-space) per wave number. 

[Transparency 1-15] 

In principle, the problem is solved; however, we are in &-space and we really want to be in 

frequency space. So we need to figure out the relationship between dk and df. What is dkl It is 

the region in £-space between k and k+dk, which is a spherical shell. The volume of that 

spherical shell is 4nk2 dk. The energy, dE, in the shell is the energy density times the volume of 

the shell. At this point, we let the box dimension, L, go to infinity so that there is a continuum of 

modes and we can consider the differentials as differentials of a continuous function rather than 

continuing to count individual modes. 
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The relationship between wave number and frequency gives the corresponding relationship 

between dk and df so the energy increment, dE, can be written in terms of df. If we divide by the 

spatial volume of the cube (2L3), we obtain the energy density for the increment of frequency, df. 

But we also know that the energy density can be written as pressure squared divided by the 

quantity p c2. Therefore, we set these quantities equal and solve for the pressure squared. The 

result is the same as before even though we used a radically different approach. The noise- 

equivalent pressure is the same either way and that is very satisfying. Of course it could mean 

that I have made exactly the same mistakes in both problems, (laughter) 

DR. MGLIORI: Do you want to comment about the fact that your system has an infinite 

number of modes, whereas most systems do not? 

DR. GABRIELSON: Very good point. Thank you for bringing that up. My ideal box is 

infinitely large so the number of modes is infinite and they are arbitrarily close together in wave- 

number space. This is equivalent to the radiation-impedance solution since those results were 

derived under the assumption of propagation out into infinite space. So the two idealized 

situations that I considered are compatible. 

In a real system, the boundaries are not at infinity and there are a finite number of modes. 

If they are spaced so closely and have sufficient damping that their response functions overlap to 

form a virtual continuum, we don't need to make any adjustments to what we've done above. 

Often, however, there are distinct modes with sufficient separation that the continuum 

approximation is not reasonable. In this case, equipartition still applies but the thermal energy is 

"concentrated" in the individual modes and the spectral distribution depends on the modal 

damping (or Q). Experiment and theory still agree but we have to be more careful with the 

calculations and drop the continuum assumption. 

[Transparency 1-16] 

One simple adjustment that we can make is to relax the assumption that the sensor is small 

with respect to a wavelength. In the case of a spherically symmetric body or a circular piston in 

an infinite rigid baffle, the expressions for the real part of the radiation impedance are not 

particularly complicated regardless of the frequency. For our "small" sensor approximation, the 

noise-equivalent pressure was directly proportional to frequency. For both the sphere and the 

piston, the noise-equivalent pressure becomes independent of frequency when size of the sensor 

exceeds the acoustic wavelength.    The modal structure in the infinite-box model has not 
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changed; however, when the sensor's active surface becomes large enough, the mode wave 

function is averaged over the active surface and the contribution of the higher-frequency modes 

is reduced by this area averaging. It is unnecessary to treat the details of the individual mode 

shapes, though. We have an expression for the real part of the radiation impedance and 

Nyquist's theorem gives us the correct answer without working nearly as hard as we would if we 

continued the modal approach. 

[Transparency 1-17] 

The next topic I'd like to address is the connection between noise and causality. On the 

surface, this seems like a strange association but there is an incredible richness in the study of 

fluctuations and a number of fascinating relationships between "random" aspects and 

"deterministic" aspects of real systems. Nyquist gave us the first such example in the intimate 

connection between the real part of an impedance and thermal noise.  Kramers and Kronig give 

us the next. 

If we examine a linear system by applying some forcing function, we observe some 

response. We can characterize the system as some function h(t), given an input fin, and a 

corresponding output fout. One way of writing a general relationship between the input and the 

output is to write two terms: the first is merely a constant times the input (an instantaneous 

response); the second is a convolution integral (a response that may extend beyond the input in 

time). 

Jackson uses this model for the general, linear system response. It's a clever formulation 

but it did not strike me how clever it was until I started doing some calculations. The separate 

term for the instantaneous response is unnecessary. We could, instead, drop the first term and 

include a delta function in the definition of h(t). However, the instantaneous response occurs 

frequently enough that it's useful to consider it separately and dispense with the delta functions. 

For example, if the system is a resistive voltage divider, the transfer function is just a real 

constant. Simple delayed responses can also be treated as separate terms. As long as there is a 

part of the system that acts so as to reproduce the input waveform with only an amplitude scaling 

or a shift in time, treating that part as a separate term simplifies the analysis. 

In a physical system, we do not want the output to anticipate the input. If there's an output 

before the input starts, then something's wrong.   Consequently, we have a condition on the 
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function, h(t).   The function, h, must be zero if its argument is less than zero.   This simple 

condition leads to some interesting consequences. 

[Transparency 1-18] 

Consider the Fourier transform pair of h(t) and H(aj). In the transform from the time 

domain to the frequency domain, we do not have to integrate from negative infinity to infinity 

because the integrand is zero for negative time. 

Now, the Fourier transform implies that we are examining the function along the real- 

frequency axis, but we can continue the solution into the complex oplane. In the transform 

from the frequency domain into the time domain, we can allow «to be complex. If we consider 

complex frequency, the exponential factor becomes the combination of the usual oscillatory 

factor and an exponential-decay (or growth) factor. 

If the imaginary part of CD is negative, then the complex exponential factor grows with ax 

In order for the result to be bounded, H(aj must be well behaved in this region. In contrast, if 

the imaginary part of ß? is positive, then the exponential decay of the complex exponential factor 

in the integrand can work against singularities in H so that the integral is still well behaved. So 

for all the physically realizable h(t)'s we encounter, H must be analytic if the real part of 

frequency is less than zero. To say this another way: if a system is causal (that is, its output does 

not anticipate its input), then H(<o), the Fourier transform of the system response function, must 

be analytic in the region where the imaginary part of a> is negative. 

Furthermore, we need to examine the behavior of the integrand when a is real since that's 

the path of integration for the inverse transform integral. We certainly want the integrand to go 

to zero as the frequency goes to either positive or negative infinity. We will insist on that. 

We will also require the integrand to be finite along the real axis. We will not allow poles 

for real frequency. In other words, we are not analyzing ideal, dissipation-free systems. In all of 

our real systems, we have dissipation even if it's small so the poles are never right on the real 

axis. Neither of these two additional conditions is an obstacle to understanding physical systems. 

There will always be idealized, unrealizable systems that can cause problems but we are not 

interested in abstractions. 

[Transparency 1-19] 

Now, for integration in the complex plane, we look for poles, among other things. If the 

contour of integration surrounds a pole, the contribution to the integral associated with that pole 
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is the residue of the integral at that point. The residue is related to the integrand by an imaginary 

factor. What happens when you multiply a complex number by the simplest imaginary number, 

j? The real parts become imaginary parts and the imaginary parts become real parts. So, if we 

introduce a pole by dividing the function, H(a), by co- 0*, then integrate along the right contour, 

we can swap real and imaginary parts. Such an integral is shown here. This is, in fact, a Hilbert 

transform, which Dr. Waxier pointed out to me last week. 

If we introduce the simple pole right on the real axis, and perform the integration along the 

real-ö? axis, then we can construct a closed-loop path as shown. The arc in the lower half-plane 

closes the path. Because of our previous constraints on H(a), the integral over this arc path is 

zero. Therefore, the only contribution to the closed-path integration is from the residue on the 

real axis. (And because of the path deformation, we only use half the residue.) 

There is another clever trick that can make evaluation of the integrals easier. The integral 

from minus infinity to infinity of any constant over a simple pole is zero. That's because it's an 

odd function integrated over limits symmetric about zero. This maneuver is unnecessary from 

the point of view of the theory but it can make numerical evaluation much easier since the 

integrand is much better behaved near the pole. Most numerical integration codes will not 

sample exactly at the pole so the apparent problem of zero over zero does not come up. Even if 

the code does sample right at that point, a little manipulation of the limits is usually sufficient to 

shift the sampling away from the pole. 

[Transparency 1-20] 

This leads us to one of the classic forms of the Kramers-Kronig relationships. In science, 

we never call something by a descriptive name; we always use some person's name and we do 

that, because if we called everything by a descriptive name, you would not need to go to 

graduate school to understand things: everything would be obvious, {laughter) 

To write the Kramers-Kronig relationships we take the result from the last line on the last 

slide and separate the real and imaginary parts. The imaginary part is equal to an integration 

involving only the real part and the real part is equal to an integration involving only the 

imaginary part. The consequence is that the real and imaginary parts of a causal function are 

related! 
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Impedance is one of the functions to which we can apply the constraint of causality. The 

impedance relates the current produced to the voltage applied and, in a physical system, we can't 

have a current produced before the voltage is applied. 

Now this is not only intellectually interesting, this has implications for the noise of a 

system. The thermal-agitation noise is solely a function of the real part of the impedance but the 

Kramers-Kronig relationships say that we could determine the noise even from the imaginary 

part. (Or, by measuring the noise, we could calculate both the real and imaginary parts of the 

impedance.) In order to complete the integrals, we need to know the behavior over all 

frequencies but, many times, the integrand goes to zero rapidly enough that we can evaluate the 

integrals with only a limited knowledge of the integrand. So, in principle, we can compute the 

total impedance from a noise measurement. I made this slide before I tried it, so I wrote "usually 

easier said than done." That is always a safe statement to make when you're talking about a 

measurement. 

[Transparency 1-21] 

In spite of the risk, I decided to try the measurement and the analysis anyway. I examined 

a very simple system - the parallel combination of a resistor and a capacitor. I used values that I 

knew I could build and measure with an amplifier that I had. I measured the noise spectrum 

from 0 to 50 kHz with an FFT-based spectrum analyzer. 

Next, I calculated the real part of the impedance by dividing the mean-square value of the 

measured voltage noise by 4kT. The result is the slightly jagged line in the upper figure. The 

smooth line is the theoretical real part of the impedance from the resistor/capacitor combination. 

Then I used the measured real part and the appropriate Kramers-Kronig relation to 

calculate the corresponding imaginary part. Since the measurement consists of discrete points, 

the integral becomes a summation. The result is the imaginary part of the impedance shown as 

the jagged line in the lower figure. As before, the smooth line is the predicted value. I was 

actually surprised that it worked. Of course, if it hadn't worked, I never would have said a word 

about it to you. {laughter) 

But it did work. Certainly it's a special case. You can run into all kinds of practical 

problems trying to implement such an approach. I was lucky enough to pick a circumstance that 

worked pretty well. 

[Transparency 1-22] 
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The real part of impedance also contains the essential information about power flow in the 

system. From the real part of the electrical impedance of a transmitting transducer, we can 

calculate the power input to the transducer. From the real part of the radiation impedance, we 

can calculate the amount of radiated power. Having these two quantities, we can calculate the 

transmitting efficiency. If both the noise of a system and the efficiency of a system are 

connected to the real part of impedance, we might guess that there's a relationship between 

system noise and system efficiency. In fact, there is. 

For a linear, reversible transducer, reciprocity applies. If we operate the transducer in one 

direction (say, as a transmitter), we can calculate the ratio of the "potential" produced by some 

input "flow." If we operate the same transducer in the other direction (as a receiver), we can also 

calculate the ratio of the potential produced to the input flow. In the first case, potential is the 

pressure at some point in the field and the flow is the input electrical current; in the second case, 

the potential is the open-circuit voltage produced and the flow is the acoustic volume velocity of 

a hypothetical source located at the same field point. By reciprocity, these ratios are identical. 

By invoking this relationship for two situations, the transducer plus the medium and the medium 

alone, we can connect the receiving response (open-circuit voltage divided by pressure at the 

face of the transducer) to the transmitting response (volume velocity at the transducer face to 

input current). So, the first thing we find is a relationship between the transmitting response and 

the receiving response. 

[Transparency 1-23J 

The pressure noise associated with the radiation impedance can be found from the Nyquist 

relationship involving the real part of the radiation impedance. We can convert this to the noise- 

equivalent voltage at the electrical terminals by the receive sensitivity, M. The total thermal 

noise at the electrical terminals is given by the real part of the electrical impedance. 

Consequently, the ratio of the noise associated with the radiation load to the total noise is simply 

related to the ratio of the real parts of the radiation impedance and the electrical impedance. 

[Transparency 1-24] 

The radiated acoustic power is directly related to the real part of the radiation impedance 

and the total input power (as a transmitter) is directly related to the real part of the electrical 

impedance. We can then write the transmitting efficiency. By the reciprocity relationship, the 

transmitting efficiency is identical to the ratio of the noise power associated with radiation to the 
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total noise power as a receiver.   This is just one more example of the intimate association 

between system noise and other measures of system performance. 

This is a good time for a break. Please come back in about ten minutes. While you're 

leaving, please pick up one of the cards with the resistor taped to it. We'll talk about that later. 

//. SHOTNOISE 

[Transparency II-l] 

I spent the last hour talking about thermal noise. During that discussion, we didn't need to 

know anything about the details of the noise mechanism. Only that any form of dissipation is 

associated with some fluctuation. Now I'd like to talk about a mechanism for noise generation 

that is dependent on details of the process. In particular, I'd like to talk about the noise 

associated with the flow of discrete particles or carriers that act independently. We might 

consider flow of electrons or flow of photons. 

[Transparency 11-2] 

If you believe what I've said so far, you should believe that there is a measurable voltage 

across the resistor in this picture. In fact, we can measure that voltage with reasonable accuracy 

- it represents the thermal or Johnson noise. 

But let's force a flow of electrons through the resistor. Let's connect it to a current source 

so that a flow of discrete particles, electrons, is produced. How does the noise change? I won't 

answer the question right away but you'll see later that it is a very interesting question. 

[Transparency 11-3] 

To set the stage I will give you one version of the derivation of the shot-noise expression. If 

we examine an electrical current closely enough, we could, in principle, observe a sequence of 

impulses. These impulses represent the arrival of electrons at our detector. The impulses occur 

at random times and they all have the same strength. So we can represent the current as a sum of 

delta functions. 

Let's expand that sum of impulses as a Fourier series. We will pick some time interval, T, 

that encompasses many of these events, then expand the function as an infinite series of sines 

and cosines. In the cosine-sine form, we have the coefficients, a* and bk, and we sum over as 

many terms as we need for the series to adequately represent the real flow. The coefficients are 
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obtained by integration but the integrations are simple. We're integrating over delta functions 

and it doesn't get much easier. 

The expression for a* is a sum of cosines sampled at the times of the impulses. The same 

thing is true for bk except that the sum is of sine functions. 

If the sample we take is T seconds long, then the Fourier-series coefficient (actually, the set 

of both ak and bk) represents an frequency interval of 1/T. The mean-square value will tell us the 

fluctuation power in that frequency interval. After squaring, we have a cosine squared, a sine 

squared, and a cosine-times-sine. Under the time average, the cosine-times-sine terms go to zero 

and the cosine-squared and sine-squared functions go to one-half The mean-square value is 

simply one half the sum of the coefficients squared. 

[Transparency II-4] 

Both au and bk are expressed as series. To expand their squares, we write each as the 

product of two series. It is usually useful to separate such a product into the terms in which both 

indices are equal and the terms involving unequal indices. Frequently, the behavior of these two 

groups of terms is markedly different. 

When the indices are equal, each term is cosine-squared plus sine-squared, which is one. 

When the indices are not equal, the result is not so clear. However, if (and only if) the events 

(the impulses) are statistically independent, these cross terms sum to zero. 

I can do the sum of one from one to N - it is one of the series that I have memorized. 

(laughter) The result is simple: the mean-square value is two times the charge squared times N 

divided by T2, but only if the impulses are statistically independent. What does statistical 

independence mean? It means that the occurrence of any impulse has no connection with the 

occurrence of any other; there's no way I can predict when the next one will occur based on any 

amount of knowledge of past events; or, prior events have no influence on future events. 

Now, the mean value of the current is the charge times the number of events divided by the 

time. Also, the interval of frequency is 1/T. Consequently, the mean-square current is 2 times q 

times the average (DC) current times the bandwidth. That is the classic form of the shot noise 

expression. There are other ways of deriving this result but this is good enough for us. (The 

derivation is quicker if we know something about Poisson distributions, for example.) The result 

applies to processes consisting of events that are impulse-like and independent. There are many 
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cases in which noise processes are highly dependent and we will take a look at some of those 

processes shortly and how they differ from the shot-noise formalism. 

(We can modify the derivation to remove the requirement for impulse-like events by 

putting in the impulse response associated with the event but it makes the derivation too difficult 

and does not add any fundamental insight.) 

[Transparency II-5J 

Let's consider a simple problem: molecules of air hitting a circular disk. There ought to be 

a fluctuating pressure on the surface of the disk. The molecular collisions are impulse-like so we 

should be able to examine the fluctuations with the shot-noise treatment. 

The average force produced by the sequence of collisions is the total momentum change of 

a single molecule divided by the average time between collisions. That is equivalent to the 

molecular flux (molecules per second moving toward the disk) times the momentum change per 

collision. 

Notice that I have drawn the molecular collision as a specular reflection. We know that the 

molecules do not collide with solid surfaces in the same way that light reflects from a mirror. 

The angle of departure of the molecule has little to do with the angle of incidence; however, I 

can get away with the model of specular reflection if I assume that the velocity distribution has 

reached equilibrium. A particular incoming molecule will not, in all likelihood, rebound 

specularly but I will be able to find some other molecule that comes off at that angle and I can 

pair incoming and outgoing molecules up to match angles as long as I am not changing the 

overall velocity distribution. 

Now let's give the disk a little bit of motion and write the equation for the force on the disk. 

What is the molecular flux? Molecular flux is the number density of molecules divided by two - 

because half of them are going toward the disk and the other half are going away - times the area 

ofthat disk times the x component of the average molecular velocity minus the speed at which 

the disk is moving. 

The momentum change is two times the mass of the molecule times the relative velocity 

between the molecule and the disk. Expanding this expression gives three terms. The first term 

is the number density times the mass times the average velocity squared times A. From kinetic 

theory, this is just the static pressure on the disk. 
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The second term is a factor times the velocity of the disk (x-dot). The third term is a factor 

times the velocity of the disk squared. We are going to say that the disk is not moving very fast 

compared to the molecular speeds. This is a very good assumption; it is very difficult to move 

the disk at anywhere near the speed of molecular motion. The consequence of this assumption is 

that the third term is negligible. 

Because the second term is a factor times x-dot, the factor must be an equivalent 

mechanical resistance. So the mechanical resistance is two times the number density of 

molecules times the mass of a molecule times the average value of the x-component of velocity 

times the area of the disk. Now that we know the mechanical resistance, we can calculate the 

associated fluctuations. 

[Transparency 1-6] 

In thermal equilibrium, the mean-square fluctuation force is simply 4kT times the 

mechanical resistance. To get the mean-square pressure, divide by the area squared. From 

kinetic theory, the static pressure is the number density times kT and the average molecular 

velocity is twice the average value of the x-component. Therefore, the fluctuation pressure is 

two times the average momentum change times the static pressure over area times df. This looks 

just like a shot-noise expression, doesn't it? 

[Transparency 1-7] 

The nice thing about shot-noise expressions is that they all have basically the same form if 

you are careful how you write them. They all have the form that the mean-square fluctuation in 

flux density is two times the quantity of the "stuff' that the "particle" carries, whether it is 

momentum or charge or energy, times the average flux density times the bandwidth divided by 

the area through which the particles flow. For shot noise in electrical current, the flux density is 

the current density; the carriers are electrons with "quantity" q. Here is the shot-noise expression 

for an electrical current written in terms of flux densities. 

It's hardly ever written this way, but it fits the model form. If we multiply through by A2, 

we get the normal form for shot-noise current. For light, it's photon flux density. The photon 

"carries" energy, hf. The optical intensity, /, is the flux density. 

And the third example is the one we just found. Pressure is momentum flux density. 

Consider this expression more closely. This equation says that the mean-square fluctuations in 

pressure depend linearly on the static pressure.  In other words, the noise power in the pressure 
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fluctuations is directly proportional to the static pressure. This is a very important conclusion 

because this linear dependency is NOT observed in measurements at normal pressures. 

Apparently, something is wrong. 

[Transparency II-8J 

Well, let's try the derivation another way. For very small disk speed, we can use the 

Stokes' flow solution to calculate the mechanical resistance experienced by the disk. In that case, 

the mechanical resistance is 16 times the viscosity of the fluid times the radius of the disk. Once 

we have an expression for the resistance, we can calculate the pressure-fluctuation noise power 

using Nyquist's relation. However, by doing this, we find that the mean-square pressure 

fluctuations are not proportional to static pressure. (Actually, viscosity is a function of pressure 

for real gases but the dependence is very weak.) So we have a problem - which solution is 

correct? 

[Transparency 11-9] 

Remember I said that for the shot noise derivation to be accurate, the intermolecular 

collisions must be independent. That is, in fact, the source of the problem. Take a look at the 

ratio of the two expressions we obtained for the mean-square pressure. The ratio is a constant 

(nearly equal to one) times the radius of the disk divided by the molecular mean free path. So 

there is a very interesting transition when the mean free path - the average distance between 

intermolecular collisions - becomes equal to the radius of the disk. 

When the mean free path is much smaller than the radius of the disk, a molecule cannot 

simply come in from far away, collide with the disk, then travel away again. Instead, it is 

constantly interacting (colliding) with other molecules. Intermolecular collisions are more 

influential on the velocity distribution of the molecules than are collisions with the disk. The 

collisions are not independent events. The motion of the disk modifies the velocity distribution 

of the rebounding molecules but those rebounding molecules almost immediately transfer those 

changes to the incoming molecules. The incoming molecules are strongly influenced by the 

reflecting molecules. The fundamental premise of the shot-noise development is wrong. 

However, when the mean free path is very large compared to the disk radius, then the 

derivation is fine. The molecules do not interact very often with each other compared to their 

probability of hitting the disk and an incoming molecule has very little chance of encountering a 

rebounding molecule before striking the disk. 
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If I plot the fluctuation pressure as a function of static pressure, then at high pressure 

(meaning pressures for which the mean free path is small compared to the disk radius) there is 

little dependence on static pressure. For low pressures, however, there is the expected linear 

dependence on pressure. This latter regime is the free-molecular-flow regime; the former is the 

normal continuum regime. 

Interestingly enough, from measurements made for flow through tubes, at atmospheric 

pressure there is a 10% departure from the continuum assumption for a tube diameter of 6 

micrometers. The mean free path in air at atmospheric pressure is a bit less than 0.1 micrometers 

and you'd think that 6 micrometers is much larger than that. But we start to see the effects of 

independence well before we reach the fully developed free-molecular-flow regime. This "pre- 

free-molecular flow" region is called "slip flow," because the flow behaves as if it is continuum 

flow but with slipping at the boundary - the normal assumption in continuum viscous flow is that 

the tangential flow speed is always zero right at the boundary. 

This has consequences for microfabricated sensors because the spacing between moving 

structures can often be just a few micrometers. Consequently, you cannot be too glib about the 

continuum hypothesis in these devices; you have to understand carefully how the molecules are 

behaving. 

You certainly have to be careful to determine whether discrete events are independent; it's 

tempting to assign any process involving discrete carriers a shot-noise component and not all of 

those processes are accompanied by shot noise. 

MR. APOSTOLOU: Are there sensors that can be evacuated to reduce the noise associated 

with molecular impact? 

DR. GABRIELSON: Definitely. A pressure sensor must be in contact with the fluid in 

order to function and we can't avoid the collision mechanism; however, an accelerometer can be 

packaged in a vacuum. This only removes the fluctuations associated with molecular collision, 

though. We still need to consider other loss mechanisms and we also need to consider the impact 

of electronics. I'll say more about electronics in the third hour. 

[Transparency II-10] 

Now, let's consider another flow of discrete objects: electrical current. First, we'll look at 

electrical conduction in metals.    Metals are characterized by a conduction band, which is 
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populated with plenty of carriers (electrons). Conduction bands in metals are the urban areas of 

electrical conduction. The population density is high. 

Because population density is so high and because no two electrons can occupy the same 

state (the exclusion principle), their motion is strongly correlated. They cannot just jump 

randomly into any nearby state; for the most part, the nearby states are full. They can only move 

if another one moves to vacate a state (which, of course, means that many other carriers must be 

involved to provide suitable vacancies). The carriers can move together, but there is a 

substantial coordination in the movement. 

(The classical way of making this argument is to point out that each electron has an electric 

field and, if they are close together, the interaction of the electric fields produces a strong 

correlation in the motion from electron to electron.) 

As a consequence, the carriers in a metal are highly dependent: we do not observe shot 

noise in metallic conduction. The fundamental noise mechanism is the thermal Johnson noise. 

[Transparency 11-11] 

Semiconductors are a different story. If we consider an intrinsic semiconductor, all of the 

carriers in the conduction band got into the conduction band by being thermally excited from 

lower energy levels. Unless the semiconductor is very heavily doped, the density of conduction 

carriers is very low compared to a metal. There are plenty of unoccupied neighboring states and 

the carriers can hop from state to state without much influence on other carriers. Consequently, 

for conduction in a semiconductor, we do observe shot noise. 

[Transparency 11-12] 

I would like to explain this same phenomenon in a different way. Remember that, when I 

was discussing the noise associated with radiation, I drew a plot in £-space for the acoustic 

modes in a box. We can draw the same type of plot for the states occupied by the electrons. 

Because of the exclusion principle, we build the diagram up by adding electrons to the k- 

space grid with one electron per grid point (two, if you'd like to account for both spin states). 

We fill up the states from the low-momentum states near the center outward as we add more and 

more electrons. 

The occupation diagram in &-space for a metal looks like a solid disk centered on the 

origin. The occupation extends out to rather large values. For copper, the outer edge is at about 

7 electron volts whereas the average thermal energy (kT) at room temperature is about 0.25 
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electron volts. At zero temperature, the edge of the disk is very sharply defined. There would be 

no fluctuations to blur the edge. If it looks fuzzy to you, then you need to visit the eye doctor. 

What happens if we raise the temperature a bit? The states in the interior of the disk are 

fully occupied. Even at room temperature, the available thermal energy is only 0.025 electron 

volts so an electron occupying a state in the interior doesn't have enough energy to jump to the 

nearest unoccupied state at the disk's edge. 

So, at elevated temperature, the occupation picture looks like a slightly out-of-focus 

version of the same disk. The disk is fuzzy around the outside. It is still solid on the inside - the 

occupation is still complete on the inside - but now the outer edge is fuzzy. 

[Transparency 11-13] 

How do the conduction carriers in a semiconductor appear in &-space? An intrinsic 

semiconductor at zero kelvin has no carriers so &-space is unpopulated. As the temperature 

increases, some electrons (or holes) are sufficiently excited thermally to reach the conduction 

band. There is a small, blurry region around the origin; the population density is small. On the 

overhead, it looks like a quantum dust bunny. As in our previous analysis, nearby states are 

easily accessible so the carriers can act as if they were independent. 

If we apply an electric field, then the distribution translates one way or another, depending 

on the direction of the electronic field. The direction of translation corresponds to the flow of 

current and the fluctuations constitute a feature as significant as the shift. This is characteristic 

of shot noise. The magnitude of the fluctuations is proportional to the steady flow. 

If we had applied a field to the metal, the occupation disk would also have shifted. 

However, because the radius of the disk is extremely large compared to the thermal excitations 

available, the pattern of fluctuation (the fuzzy edge of the disk) doesn't change noticeably. This 

is characteristic of Johnson noise - the fluctuations do not depend on the bulk flow. 

[Transparency 11-14] 

This is not just interesting theory. The difference between the shot-noise prediction and the 

Johnson-noise prediction for a metallic conductor is so large that it's relatively easy to 

demonstrate with a simple measurement. This is a useful (although sometimes impractical) 

strategy for physical investigation: you get some insight, translate that insight into a 

measurement, and confirm (or refute) the insight. If the measurement fails to correspond to your 

insight, then you don't tell anyone about it; if it confirms your insight, then you make a big deal 
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out of it. (laughter) Actually, as Feynmann (I think) suggested, you should commit to publishing 

the results regardless of the outcome. If you do careful experimental work, the results are 

valuable either if they confirm what you think should happen or if they run counter to what you 

think. Unfortunately, many people do just what I suggested in jest. You're probably going to be 

wrong more often than you'll be right. As long as you learn the lesson nature is trying to teach 

you've made a valuable contribution either way. 

Enough philosophy. I construct this simple circuit. It's little more than a standard, non- 

inverting amplifier with a gain of about 100 except that the usual input resistor on the positive 

input has been replaced by a bridge of four, one-megohm resistors with battery and a switch. 

Regardless of whether the switch is open or closed, the equivalent resistance of the bridge is just 

one megohm. No matter what I connect between the two points where the battery is drawn, the 

amplifier sees the same input resistance so its operating point doesn't change. The only input to 

the amplifier is noise produced by the resistor network. The amplifier is an inexpensive but 

fairly low-noise operational amplifier. A noisy amplifier chip would mask the noise produced by 

the resistor network. 

The bridge arrangement is convenient for this measurement. If the bridge is well-balanced 

(nearly equal resistance in each leg), then even a large voltage applied at the mid-point 

connections does not produce any voltage at the input to the amplifier. Also, noise produced by 

the battery flows equally in both legs of the bridge, so that battery noise is cancelled to a large 

degree. What we are interested in measuring is noise produced in the resistors - either the basic 

thermal noise or additional noise produced by current flow. The bridge arrangement allows us to 

measure this without contamination from the source of voltage. 

If you picked up one of the little cards with the attached resistor that I passed out, you have 

the official Perm State precision noise source. It is really quite good. It is a one megohm resistor 

with a 1% tolerance. If you know what the temperature is, you can predict the thermal noise 

level produced by the resistor. If you're careful, you can also measure that noise level. The 

circuit I show is suitable for such a measurement. You could even connect it directly to a good 

Stanford lock-in amplifier and measure the noise. Most spectrum analyzers are not capable of 

measuring that noise level directly but, using a simple, low-noise amplifier, you can. We obtain 

the same result from the bridge.   The noise is flat over a reasonable frequency range (it is 
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"white"). If we close the switch to force current through the resistor network, we can again 

measure the noise. 

[Transparency II-15] 

The curve labeled B is the noise measurement of the resistor bridge with no current flowing 

through it. Shown to the right is the level predicted by the Nyquist expression for thermal noise. 

If I close the switch using a 9V battery, the noise changes somewhat at low frequency. 

This measurement is given by the curve labeled A. If I calculate the noise expected according to 

the shot-noise formula, the level is an order of magnitude higher than the measurement. This is a 

convincing demonstration that shot noise is not an operative process in for conduction in a metal- 

film resistor, and it is something you can do at yourself without sophisticated equipment. 

In our simple theory, the noise with current flowing should be virtually the same as 

without. However, at low frequency, there is more noise when current is flowing. There are two 

reasons for this. The extra wire associated with the connection to the battery picks up more 

interference of 60 Hz and its multiples than when the battery is not used. More important, there 

is another noise mechanism that we have not discussed. Frequently, when power is being 

supplied to a system, noise is produced that has a spectral distribution in power that varies as the 

inverse of frequency. This noise component is not straightforward to model but it is often 

observed. For certain types of resistors (carbon-composition, especially), the so-called ///"noise 

can be substantial. For the metal-film resistors used in this measurement, it's rather small but 

still measurable. 

[Transparency II-16] 

Next, let's examine a case of electrical conduction in which the carriers are independent. 

We'll use the model of an electrical diode made in the usual way with a PN semiconductor 

junction. We'll apply a small voltage to the diode and examine the behavior of the current. 

The PN junction forms a potential barrier. Regardless of the sign of the voltage, the current 

can be represented as the sum of a forward current and a reverse current. We can't measure the 

two currents separately but we can describe them separately. The reason that we can postulate 

two currents is because of fluctuations - charges will "flow" against the potential on occasion 

because of their thermal energy. 

The forward and reverse currents are related by the most important result from statistical 

mechanics - the Boltzmann distribution.   The probability of a carrier traveling "uphill" with 
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respect to the applied voltage is related to the probability of a carrier traveling "downhill" by an 

exponential. The exponent is the ratio of the potential energy difference from one side of the 

junction to the other to the unit of thermal energy, kT. 

The current that we would measure with a DC current meter is /, the difference between the 

forward and reverse currents. Using the Boltzmann relation, I can write the measurable current 

in terms of the forward current. Ohm's law - the voltage difference divided by the effective 

resistance - also gives the measurable current. 

The noise associated with the forward current is not correlated with the noise associated 

with the reverse current. The passage of charge across the PJV-junction potential barrier is a flow 

of independent carriers. So the total noise power (expressed as the mean square fluctuation in 

current) is the sum of the squares of the current fluctuations from the forward and reverse 

current. The total current noise is then the sum of two shot-noise expressions. We can eliminate 

the forward current by substituting .dFover R and the exponential relation above. The total noise 

is this rather unwieldy expression involving the charge, g, the voltage drop, the resistance, and a 

combination of exponentials. Of course, you can program it and graph it, but it is often useful to 

examine the limits and that is what we will do. 

[Transparency II-l 7] 

For a qAV rcaxch smaller than kT, that is when the voltage across the diode is much smaller 

than about 25 mV (at room temperature), the expression goes to a Johnson-noise limit. 

(Remember that, for current noise, the Johnson-noise expression has the resistance in the 

denominator.) 

In the "large" voltage limit - when the voltage across the diode is much larger than 25 mV 

- the limit is the shot-noise expression. So it all makes sense. When I do not apply any external 

voltage, the noise is simply Johnson noise, and that's what should happen. When I force a 

current of independent carriers through the junction, the noise is shot noise. There's a nice 

transition between the Johnson-noise expression and the shot-noise expression and that's 

described by the more complicated form on the previous slide. 

I've included a figure from an interesting paper. The paper was published in 1997 and the 

subject was the search for the fractional quantum Hall effect. It doesn't matter to us just what 

the fractional quantum Hall effect is.   The important aspect is the prediction that, in a certain 
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special circumstance, the electrical charge carriers will appear to have a charge of q/3 instead of 

q. How did these people test this hypothesis? By measuring noise. Very nice. 

The plot shows the spectral density of the noise that they measured as a function of the DC 

current. The low-current limit gives them the Johnson-noise value and this value serves as a 

calibration of their measurement independent of the fractional-charge effect. As the current is 

increased, the noise power makes a transition from independence of current (Johnson-noise 

regime) to linear dependence on current (shot-noise regime). But the slope of the shot-noise 

section of the curve corresponds to q/3, not q. Fascinating: a fundamental physical measurement 

with noise. 

[Transparency 11-18] 

This last experiment regarding the fractional quantum Hall effect is very interesting but so 

are some more common processes. Let's consider the noise in transistors. This subject is not as 

arcane as the quantum Hall effect but it's still rich in physics and, normally, more practical. We 

stray a bit from sensors, acoustics, and vibrations but if you make a sensor, you usually process 

the signal by means of electronics. 

I'm going to discuss noise process in the bipolar junction transistor. There are several 

important varieties of transistors but the noise analysis for the bipolar transistor is 

straightforward. The transistor has a base, collector, and emitter. There is a relatively large 

current that flows from collector to emitter (or vice versa) and a relatively small current that 

flows into (or out of) the base. The small base current controls the large collector-emitter current 

and this is the basis of the device as an amplifier. The collector current is roughly proportional 

to the base current through the parameter, ß. Since ß is much larger than one (for transistors 

used to amplify small signals), the collector and emitter currents are very nearly equal. 

Various models are used to represent the behavior of transistors. On the right, I've drawn a 

simple version of the transconductance model. This model represents the transistor as a voltage- 

dependent current source. The collector current is equal to a constant - the transconductance, gm 

- times the base-emitter voltage. The unit of transconductance is inverse resistance. 

Because the transistor junctions look just like diodes, we can use the expression we derived 

for the PN junction to write the collector current. If I calculate the transconductance by 

differentiating the collector current with respect to the base-emitter voltage, I obtain the quantity, 

qlc over kT. This assumes that the base-emitter voltage is much larger than 25 millivolts, but this 
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is usually a good assumption. Because the current produced (Ic) is in phase with the control 

voltage (Vbe), the reciprocal of transconductance really does represent a true resistance. This is 

important because resistances or mechanisms that behave just like resistances generate noise. 

[Transparency 11-19] 

Now that we have a model for the transistor, let's calculate the noise. We'll calculate the 

noise from the point of view of the input (the base) to the transistor - this is the conventional 

way to reference the noise in a device. There is a shot-noise component associated with the base 

current. Because the base-to-emitter is a reverse-biased junction, the carriers are independent 

and we get full shot noise: 2qh or 2qlc divided ß. 

Since the transconductance represents the reciprocal of a resistance-like phenomenon, there 

is a voltage noise associated with it. Because the voltage is in phase with the current, it does not 

really matter whether you can identify a physical part having some measurable resistance. 

What's important is that the phenomenon is dissipative. The voltage noise power is 4kT times 

the reciprocal of the transconductance and that can be rewritten in terms of q and the collector 

current. 

An interesting measure of the noise power of a device is the product of i„ and e„ divided by 

the quantity, 4kT. This number is often at least roughly constant for a particular device and, if 

the number is significantly less than one, the device can be characterized as "low noise." For the 

bipolar transistor, the result is one over the square root of 2ß. Although it is not obvious from 

our discussion, ß is not a strong function of the operating point of these devices - it is roughly 

constant. If the collector current changes by several orders of magnitude, ß might change by a 

factor of two. For a given transistor geometry and material, you are stuck with this number. If 

you increase the collector current, you can reduce the voltage noise but the current noise goes up; 

if you decrease the collector current, the current noise decreases but the voltage noise increases. 

This is a common tradeoff. 

The next quantity is more common in the literature. People often divide the noise voltage 

by the noise current - they call it "noise resistance" - to get a function that does depend strongly 

on the operating point. It is inversely proportional to the collector current. The "noise 

resistance" is often taken to be the optimum source resistance for best noise performance in the 

matching of a sensor (the "source") to a transistor but the situation is actually more complicated 

than that. We'll talk more about this later. 
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In a real transistor, of course, we also have to worry about physical resistances in the 

transistor structure. If there is a real physical resistance, we must calculate the noise associated 

with that also. 

[Transparency 11-20] 

What are the consequences for transistor design then? Let's try for a voltage noise of 1 

nanovolt per root hertz. That happens to be a pretty good specification for noise voltage; devices 

of this sort are commercially available. From the fundamental transistor relations, I know that 

the collector current must be 0.4 milliamps to get that noise value. Notice, from the fundamental 

relations, that ß doesn't enter the calculation for voltage noise; the voltage noise level is a 

fundamental quantity. I would need to know ß to find the noise current, but I don't need to know 

/?to find the noise voltage. 

In an operational amplifier, you would need two transistors for the differential front end, so 

the total current consumption just for these two transistors would be almost one milliamp. This 

is quite consistent with the current consumption of op amps with this noise voltage. Also, the 

effective emitter resistance is 60 ohms, so it's not too difficult to keep the physical resistances 

below this value. (Remember that we have to account for Johnson noise from any physical 

resistances also.) 

Now let's try for an equivalent input voltage noise of 0.1 nanovolts per root hertz. As far as 

I know such transistors are not commercially available but why not try to build one - there'd be a 

market for it. What is the required collector current now? Forty milliamps for each transistor or 

almost 0.1 amps for an operational amplifier front end. Wow. 

Commercial power transistors can handle currents that high but at these current levels we 

need to consider thermal dissipation in the chip. Also, the effective emitter resistance is six 

tenths of an ohm, so we also need to be very careful to keep physical resistances in the base- 

emitter path low. This requires a massively parallel base architecture - the base region would 

need to be very wide to keep the resistance low. In practice, this is accomplished by placing 

many structures in parallel, which takes up considerable space on the chip. I don't think it is out 

of the question to build a transistor with this noise level but it would be very large and would 

probably need a heat sink. Wouldn't that be interesting: a low-noise amplifier with a heat sink 

on the input stage? 

[Transparency 11-21] 
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But modern transistors are so small does a "large" one really take up much room? Some of 

the integrated circuit manufacturers publish their die layouts so that people who want to use the 

bare die instead of the packaged integrated circuit can figure out where the connections must be 

made. One example is the Analog Devices AD743, a good representative of the class of low- 

noise amplifiers. 

Here is the die layout. On the left are the input transistors. It actually looks like there are 

four grid-like devices but it's really only two. The two are interleaved so that processing 

differences in production and thermal gradients in operation average out across the two input 

transistors. (This is called "common centroid" design.) 

These two input transistors occupy an area of one millimeter by one millimeter. That's a 

density of about two transistors per square millimeter. That's the area required for thermal 

dissipation and for low base resistance. In feet, this chip when packaged comes in an 8-pin 

standard package (the "DIP"); however, it is only available in the 16-pin small-outline package 

because the die won't fit into the 8-pin small outline. This is a substantial design constraint that 

many people overlook. We are so used to the incredibly high densities of transistors used in 

microcomputer chips that we're accustomed to thinking that the real estate required for a single 

transistor is entirely negligible. Pentium chips have thousands of transistors per square 

millimeter. 

It pays to understand the size requirements of low-noise design. The technology known as 

MEMS (Micro-Electro-Mechanical Systems) is hot right now. Many people are proposing 

extremely small mechanical structures, sometimes for sensing, sometimes for actuating. They 

are so fascinated with the new freedom in creating very small mechanical structures that they 

don't worry about the support electronics. But, if they are designing a sensitive sensor, it may 

turn out that the area required for the support electronics is far larger than for the mechanical 

structure. The low-noise electronics may completely dominate the size of the device and the 

great advantage of building small is lost. You always have to be careful about glib statements 

concerning new technologies. 

That brings us to the end of the second hour. This is a good place to stop and take a break. 
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///. SPECIAL TOPICS 

[Transparency III-l] 

At the beginning of this lecture, we discussed the most fundamental of noise processes - 

the noise generation that results from random thermal agitation of molecules. This source of 

noise is relevant to almost any problem we might consider. Then we considered shot noise, 

which still has fundamental roots, but is not applicable as broadly as thermal noise. Just before 

the break, we extended these ideas to transistors and now we are going to discuss a few more 

extensions of these basic ideas. The underlying theme is that these fundamental physical 

processes show up in interesting ways and in interesting structures. 

[Transparency III-2J 

From a practical point of view, one of the most important subjects is the interaction 

between electronics and a sensor. We usually connect our physical sensors to some kind of 

interface and let's examine the classical method for analyzing this problem. 

The standard model for an amplifier is constructed as follows. We replace the real 

amplifier with a noiseless gain stage and two equivalent noise sources - an equivalent voltage 

noise source and an equivalent current noise source. There are, then, two basic components to 

the noise associated with the electronics. One component is simply the effective voltage noise of 

the amplifier; the other is produced by the amplifier current noise flowing into the sensor 

impedance thereby generating another voltage-equivalent component. Then, of course, there is 

the basic Nyquist noise associated with the sensor. I won't prove that this is adequate but I will 

give you a plausibility argument later. 

It is important to understand the implications of this model when designing systems for 

maximum performance. For example, if the sensor is predominantly capacitive, the equivalent 

current noise is critical. At low frequency, the impedance of the capacitor is high and the 

current-noise component can dominate; at high frequency, the impedance is low and the voltage- 

noise component can dominate. The notion of one "best" amplifier usually leads to suboptimal 

designs, something we want to avoid. 

Once we've niinimized each component's contribution to the total system noise as far as 

possible and the only remaining strategy is to reduce Boltzmann's constant, we've completed a 

successful design, (laughter) Of course, there are some circumstances in which we can reduce 

the temperature for some reduction in noise but, if the noise is fundamental thermal noise, going 
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to liquid-nitrogen temperatures only buys a factor of four in temperature or a factor of two in 

noise amplitude. 

[Transparency III-3] 

At Penn State we teach a transducers lab course; one of the labs involves measuring the 

noise characteristics of resistors and amplifiers. Here is a picture of one of the breadboards with 

an integrated circuit, a couple of gain resistors, and a place to plug in other resistors. Alongside 

is the schematic diagram showing a simple non-inverting amplifier with a gain of 101. 

By changing the resistance value at Rs, we change the relative proportions of the Johnson 

noise, the amplifier voltage noise, and the noise voltage produced by the noise current flowing 

into the resistor. Also, we perform the same set of measurements with different kinds of 

amplifier chips. 

[Transparency III-4J 

Here is an example of such a set of measurements performed with two different amplifiers. 

One curve is for the AD743 that I showed you before. When we put various resistors on the 

positive input, we discover that for low values of resistors the output noise does not depend on 

the value of the resistor. The noise stays at some level and that level is, in fact, the voltage noise 

of the amplifier. (The values shown on the plot are the values referred to the amplifier input. 

Multiply by 101 if you want to find the actual output noise.) 

For another range of resistor values, we discover that the measured noise is very close to 

the Johnson noise of the source resistance. Then, for very large values of resistance, we discover 

that the curve again bends away from the line that represents the resistors' Johnson noise. 

In low-noise amplifiers there are typically three distinct domains of operation depending on 

the value of source resistance. We see one region in which the noise does not depend on 

resistance, one region where the noise increases as the square root of resistance, and one region 

where the noise is linear with resistance. 

If we examine another chip - the LM4250, a low-power chip - and perform the same 

sequence of measurements, we discover a similar behavior. The most obvious difference is that 

the total noise is always higher than that of the AD743. Also, there is only a very small region in 

which the noise curve approaches the resistor Johnson-noise curve. The LM4250 is not 

marketed as a low-noise amplifier; it is marketed as a low-power amplifier. 
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Let's calculate some of the quantities that we discussed earlier in relation to the transistor. 

The product of e„ and i„ divided by 4kT is 0.42 for the LM4250. For the AD743 it is 0.001. The 

smaller this number is, the wider the range of resistance for which the amplifier's noise is below 

the intrinsic resistor noise. The ratio of e„ and /„ is 240 kQ for the LM4250 and 420 kü for the 

AD743. Notice that, at 240 kü, the LM4250 curve reaches its point of closest approach to the 

intrinsic resistor-noise curve. 

If the normalized e„i„ product is greater than about 0.1 and the sensor's impedance is 

predominately resistive, the eji„ ratio can be used to select the amplifier by matching it to the 

sensor resistance. Before we had such a variety of very-low-noise chips, this used to be the 

recommended way of selecting amplifiers. It is not a good design procedure these days but, 

unfortunately, it is still described as a design procedure in recent literature. 

With the AD743, there is a large region where the total noise is dominated by the intrinsic 

resistance noise. The smaller the normalized e„i„ product is, the larger that region is. In fact, if 

you take the e„/i„ ratio and multiply by the normalized e„i„ product, you get 420 ohms, which is 

the resistance at which, on the low end, the total noise curves starts to depart significantly from 

the Johnson-noise curve. If you take the e„/i„ ratio and divide by the normalized e„i„ product, 

you get 420 megohms, which is the resistance at which, on the high end, the total noise curve 

starts to depart. So, we can easily predict the range of resistance over which the amplifier's 

contribution to the total noise is negligible compared to the intrinsic contribution (for a resistive 

source). The width ofthat region for the AD743 is very large whereas the width of the region for 

the LM4250 is very small. If we were using a sensor with a 240 kQ resistance and we were 

designing by the rule of matching the e„/i„ ratio, we'd pick the LM4250 over the AD743. And 

we would be making a very poor choice! For a source resistance from 10 kü to 100 MÜ, the 

AD743 would be a reasonable choice even though those limits are far from the value given by 

the e„/i„ ratio. 

I want to emphasize that this is not a totally theoretical process. The measurement is 

definitely practical. With some care in constructing the circuit and shielding, it is suitable even 

for an undergraduate lab exercise. In fact, in our lab we used to do it using those white plastic 

perforated plug-in boards, which are really not suitable for many precision measurements. There 

would be a great deal more understanding of the contribution of electronics to system noise if 

more people performed this experiment. 
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I sorted through some manufacturers' specification sheets and I recorded values for 

equivalent voltage noise and equivalent current noise (at 1000 Hz) of a number of operational- 

amplifier chips and discrete transistors. Then I made a scatter plot of those values. From this 

plot, you can see that it is hard to find a device with equivalent voltage noise below a nanovolt 

per root hertz. Those devices that are close to one nanovolt per root hertz are based on bipolar 

transistors. 

Also, it is hard to find a device anywhere in the region below 2 nanovolts per root hertz 

and below a few hundred femtoamps per root hertz. The bipolar devices cluster in one region 

with low voltage noise and relatively high current noise. The junction field-effect devices cluster 

in another region: they have lower noise currents but somewhat higher noise voltage. 

MOS and micropower devices do not have very low voltage noise but the MOS devices 

can reach reasonable levels for current noise. A plot like this provides some direction for 

making intelligent choices. If power consumption is really important, I'm going to have a hard 

time reaching a nanovolt per root hertz. If I can back off on the voltage-noise requirement, then I 

can work with the very-low power consumption devices. 

It's important to understand that this plot is constructed for a single frequency - in this 

case, 1000 Hz. At low frequency, noise with a 1/f power spectrum enters the picture. A device 

with one nanovolt per root hertz at 1000 Hz may show much higher levels at one hertz. Both the 

current and voltage noise may show 1/f behavior at low frequency. (These effects are usually 

most pronounced in the MOS devices.) 

Another important factor is temperature. From the basic equations for the bipolar 

transistor, there is a fundamental temperature dependence in the noise. For junction field effect 

transistors, temperature effects can be even more extreme. The noise current in a JFET device is 

dependent, through a shot-noise relation, on the steady leakage current into the gate (the analog 

to the base of a bipolar transistor). This leakage current is exponentially dependent on 

temperature. Consequently, for increasing temperature, this leakage current can become quite 

large with a corresponding increase in current noise. A specification for current noise that is 

attractive at 20 degrees C may translate to unacceptably high current noise at 50 degrees C. 

[Transparency III-6J 
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I can take the same data and plot them on other axes. If I use the factor of en i„ 14kT for the 

ordinate and the ratio <v7„ for the abscissa, the plot emphasizes other features or limitations of 

the devices. The ordinate is something akin to a figure of merit for the amplifier; and the 

abscissa is the value corresponding to the center of the range of "optimum" source resistance. 

You can see immediately that the junction field-effect transistors are the clear winners in terms 

of our "figure of merit." They can be used effectively over fairly large ranges of source 

impedance. 

Now it is useful to see the variations in noise performance of real devices, but, more 

importantly, we have learned something about why there are limits to these devices; more 

fundamental limits than manufacturing process limits. 

[Transparency III-7] 

Now that we have some practical tools for noise analysis, let's consider a system with a bit 

more complexity. About a year ago, we were interested in developing a microfabricated 

accelerometer. We did not want to develop a fabrication process, so I located a manufacturer 

that made a packaged accelerometer. The noise floor of the commercial accelerometer was too 

high for our application, but it appeared that the integrated electronics was the limiting factor 

rather than intrinsic limits in the mechanical structure. The manufacturer sold me a few of the 

mechanical structures and I built an accelerometer based on those structures. 

Each of the structures was a differential capacitor. Each had a central moving mass 

between two fixed plates so that when the mass moved the capacitance on one side increased and 

the capacitance on the other side decreased. For my device, I used two of these structures so that 

I could assemble a full bridge - two capacitances increased and two decreased with motion of the 

center masses. 

I drove the bridge with a 40 kHz sine wave generated by a function-generator chip. The 

upper side of the bridge was driven with the sine wave and the lower side was driven with an 

inverted replica of the same sine wave. Consequently, if there were no displacement of the 

center masses, there would be no output. With some displacement of the center masses, there 

would be an output at 40 kHz. The amplitude of the 40 kHz output is proportional to the 

displacement of the center mass set. 

Instead of generating a voltage that is directly proportional to the acceleration input, this 

configuration produces a 40  kHz  signal that  is amplitude modulated according to the 
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acceleration. This technique has been around for a long time and there are some significant 

advantages to the procedure even though it adds some complexity. The output of the bridge goes 

to a differential input stage then to a high-pass filter. The high-pass filter eliminates much of the 

additive electromagnetic interference. 

Then the signal goes to one input of an analog multiplier. A replica of the signal that is 

used to drive the bridge goes to the other input. After low-pass filtering the output of the 

multiplier, the actual acceleration signal is recovered. This process is analogous to the process in 

a lock-in amplifier but without the frills. 

In a complicated system, it is useful to analyze each component to determine its 

contribution to the overall noise. Then, if one component is found to dominate, that's the 

component to attack in lowering the noise. Once you've gotten down to the fundamental limits 

you're done unless you can change the sensor itself. I show, on this slide, the noise budget for 

this system. I've referred everything to the output. For this system, it turns out that the limiting 

noise is in the multiplier (since I can't do anything about the basic sensor chip). 

It's worth making a point here. Many people think that if they have analyzed the first stage 

of the electronics and everything is fine, they do not have to do any more than that. However, 

sometimes the noise is dominated by a stage further down the line as it is in this example. The 

commercial off-the-shelf accelerometer has a noise floor of 25 micro-g per root hertz. My 

measured performance was about 0.5 micro-g per root hertz, almost two orders of magnitude 

better. 

[Transparency III-8J 

Why would you consider such a complex system including a high-frequency drive and 

synchronous detection? The bridge would work with a DC voltage. There are many advantages. 

Earlier I said that for a sensor that is electrically a capacitor there is a component of noise that 

increases rapidly with decreasing frequency. This component results from the current noise of 

the amplifier flowing into the ever increasing capacitive impedance. Because it's difficult to 

make a small air-gap capacitor with high capacitance, this noise component can dominate easily 

at low frequency. 

Also, much of the electromagnetic interference appears at low frequency. If important 

sensor signals are in the same frequency region, then it's difficult to get good performance. If, 

however, I translate the important signal information up in frequency, I'm able to separate the 
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electromagnetic interference from the signals. Furthermore, the relevant noise characteristics of 

the first-stage amplifier are those characteristics at 40 kHz. So the problem with current noise 

into the capacitive impedance is not an issue nor is 1/f noise in the amplifier. 

In fact, the resistance to electromagnetic interference is impressive with this technique. In 

the transducers lab class at Perm State, we set up a strain-gauge bridge on an aluminum 

cantilever. We wrap the bare output wires from the bridge around a ballast transformer for a 

fluorescent light a few times and then into the first-stage amplifier. Fluorescent ballast 

transformers are notorious for generating high levels of electromagnetic interference so this is a 

pretty severe environment. But, the high-frequency drive, filtering, and synchronous detection 

make the final signal very clean. 

DR. GARRETT: Does the term "sadist" mean anything to you? (laughter) 

DR. GABRIELSON: Yes, it's synonymous with "professor" at Penn State, (laughter) 

These techniques are important to keep in mind. If you have the basic understanding of 

synchronous detection, you have an approach to reducing the system noise. If you understand 

the fundamental limits, then know how far it is practical to go in noise reduction. Building up 

your toolbox of techniques is a very useful exercise, one that can pay dividends when you are 

faced with difficult problems. 

[Transparency III-9J 

Now I would like to talk about noise in fiber-optic sensors. Fiber-optic sensors are a 

wonderful place to look if you are interested in noise, because they involve so many different 

kinds of noise mechanisms. If you're not aware of them, they'll frustrate your attempts to build 

good sensors. 

For years, many people have said that fiber-optic sensors are wonderful. Optical fiber is 

cheap and all I need to do to increase the performance is wind more fiber. Any time you hear 

someone say "all I have to do is ...," you should know that there's trouble ahead. Often, it is the 

thing that we think is trivial that cause the most trouble when venturing onto new ground. 

As I said, there is a wealth of noise mechanisms. We've already talked about thermal 

fluctuations in the sensor structure. We have also considered the noise associated with 

electronics. Optical detection involves shot noise - the photons are independent unless we raise 

the optical intensity so high that we are in danger of melting the optical detector.   And we 
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already have the tools to analyze shot noise.    Beyond shot noise, excess noise can be 

problematic. 

There are noise limits associated with demodulators. In interferometric sensors, we need to 

convert phase shifts to voltage level changes. My friend at the Naval Research Laboratory, Tony 

Dandridge, tells me that 1 microradian per root hertz equivalent phase noise is about as good as 

you can do in the laboratory. For a commercially viable system, you wouldn't plan on doing this 

well. 

The light source that drives the interferometer contributes noise. Lasers have both 

amplitude noise and phase noise (and some other weird things that are tun to learn about). 

Thermal fluctuations in the fiber contribute noise by generating extraneous phase shifts. 

Coherent Rayleigh scattering (CRS) and stimulated Brillouin scattering (SBS) also corrupt 

signals - CRS when signals traverse fiber in both directions and SBS when the light levels are 

high enough to stimulate emission in the fiber. So much material, so little time. I'm only going 

to discuss shot noise in the photodetection process and thermal fluctuations in the fiber. 

[Transparency III-10] 

There are a number of ways of figuring out what thermal agitation in the fiber does to an 

interferometric sensor. First, what are we worried about? We are worried about phase changes - 

phase fluctuations - in an interferometric sensor. In a pressure sensor, we worried about 

pressure fluctuations. In an acceleration sensor, we worried about acceleration fluctuations. For 

the interferometer, we need to find out what the magnitude of phase fluctuations is. There are 

several ways of calculating this; I am going to show you one way. 

Let's start with an analogy. Electrical power is voltage times current (the in-phase 

components but let's not worry about that now). What is the analog for thermal power? Heat 

power, g-dot - or dQ /dT- is equal to temperature times S-dot, the time derivative of entropy. 

The g-dot is power, the potential is temperature, and the rate of change of entropy is the 

flow quantity. I'm not going to say the word "entropy" again. Don't be scared by it, just 

consider it the flow quantity in this equation. 

For a cylindrical element with radius a and length L, Q-dot is equal to the thermal 

conductivity times the cross-sectional area times the length times the potential difference across 

the cylinder - the AT.  The analog for an electrical conductor is that the electrical power is the 
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current, /, times the potential difference, Ae. To find the flow quantity in the thermal case, we 

divide the power, g-dot, by the potential, T. 

For the electrical element, we could perform the equivalent operation but we also know 

that the flow, /, is equal to the potential divided by the resistance, R. By analogy, the flow in the 

thermal case must equal the potential divided by an analog to the electrical resistance. The 

thermal "resistance" is then L times T divided by the quantity thermal conductivity times area. 

This is not the usual definition of thermal resistance but it is the proper analogy to the electrical 

case. 

Now that we know the equivalent resistance, it's child's play to find the potential 

(temperature) fluctuations. We simply use the Nyquist relation. Of course, talking about 

temperature fluctuations is dangerous. Temperature, itself, is defined in terms of equilibrium 

states. I'm using the concept of potential fluctuations as a means to an end, though, so bear with 

me. 

[Transparency 111-11] 

If we consider a piece of optical fiber, we would find that the local temperature at any point 

changes randomly. Very nearby, the temperature fluctuations would be very similar. Further 

away, there would be some similarities and some differences between the patterns of fluctuation. 

Even further, there wouldn't be much similarity between the fluctuations. This suggests a 

particular scale length for the "coherence" of temperature fluctuations. What do you think the 

scale length is for that phenomenon - for the coherence length of temperature fluctuations? Any 

guesses? 

DR. MIGLIORI: The thermal penetration depth. 

DR. GABRIELSON: Give that man a cigar. Yes, the thermal penetration depth. It is not 

only an essential parameter for thermoacoustics, it is also relevant for noise analysis. For an 

interferometric sensor, phase change as a result of transit through the fiber is important. The 

phase change associated with a "patch" of temperature fluctuation is the change in wave number 

that results from the temperature fluctuation times the coherence length. Or, written more 

conventionally, the change in index of refraction times the average wave number times the 

correlation length. 

Well, what is the change in index of refraction? It is the change in temperature times the 

derivative of the index of refraction with respect to temperature.   The index itself is temperature- 
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dependent but, in addition, the temperature changes the length; both effects must be included. So 

there are two terms, one is the fundamental change in index of refraction with temperature and 

the other is the change in effective index because of the change in length. 

The mean-square phase fluctuation then equals the mean-square temperature fluctuation 

times the square of the change in index with temperature times (kot)2. Of course, I can substitute 

our previous expression for the mean-square temperature fluctuation. It is getting a little ugly 

but we'll be done soon. 

[Transparency III-12J 

What I am going to try to do is to try to extract the essence of the behavior and forget about 

the details in the equation. Nice when you can do it. The basic size scale, the thermal 

penetration depth, determines the nature of the fluctuations. The fiber appears to act as if it were 

a collection of patches each with dimension equal to the thermal penetration depth. For now, 

we'll take the radius of a patch to be equal to the penetration depth, which we'll also consider to 

be identical to the coherence length for the fluctuations. I am being very sloppy with factors of 

two here. It is the difference between doing something in a few minutes and doing something in 

a few hours. To get the details right, I would have to do some very careful integrations. Instead, 

we'll be almost right. 

We know how to write the thermal penetration depth so we can write the phase fluctuations 

as shown. Here, all of the coherence lengths or radii have been replaced with the thermal 

penetration depth. 

In the fiber, the optical field is concentrated in the vicinity of the fiber axis. This region is 

called the mode field and is characterized by the mode-field radius, amf. Of course, the physical 

fiber is considerably larger but the majority of the energy is concentrated in this central region by 

index grading. 

At a particular frequency, we could sketch the arrangement of coherent patches - the size 

of the patches depends on frequency through the thermal penetration depth. In the diagram 

shown, the mode field cross-section contains ten or so patches. The ultimate effect on the optical 

signal is an average over the fluctuations produced by these ten patches. We don't need to 

consider details smaller than the patches because the thermal fluctuations are coherent on smaller 

scales.   So much for the effects across the mode field.  As the light travels along the fiber, the 
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effects of the patches accumulate. In particular, the mean-square fluctuation increases linearly 

with length along the fiber. 

Even if you haven't followed the math, you should notice that something different is 

probably going to happen if the thermal penetration depth equals the mode-field radius. I'm sure 

you all were thinking that, right? Good. 

[Transparency III-13] 

The sketch on the previous slide really represents the high-frequency limit where the 

thermal penetration depth is small compared to the mode-field radius. In that case, we averaged 

the fluctuations over the patches in the mode field. The averaging reduces the mean-square 

fluctuation as the ratio of the area of a patch to the area of the mode field. As the frequency 

increases still further, the fluctuation patches grow ever smaller and the mean-square fluctuation 

is further reduced. Note also that the mean-square fluctuation is proportional to the fiber length. 

On the other hand, if the thermal penetration depth is much larger than the mode-field 

radius, then there is no averaging over the mode-field cross-section. The entire cross-section 

shows the same fluctuation. In this regime, the fluctuations are independent of frequency (but 

still proportional to fiber length). 

[Transparency 111-14] 

Since there's been so much interest in optical fiber systems, it's relatively easy to find the 

parameters required to calculate the actual fluctuations in phase. As an example, let's consider a 

fiber length of 100 m. For this single-mode fiber, the thermal penetration depth is equal to the 

mode-field radius at about 50 kHz. Below this frequency, the mean-square phase fluctuation (the 

spectral density, that is) is independent of frequency and is a bit more than one microradian per 

root hertz. Above this frequency, the spectral density of the phase fluctuations drops. 

This is very important for sensors based on optical fibers. It is frequently claimed that it is 

only necessary to wind more fiber on a particular sensor to improve its performance (lower its 

noise floor, for example). Even if the noise floor were independent of fiber length, at some point 

the responsivity would be high enough that intrinsic noise in the sensor mechanical structure 

would take over as the dominant noise source and further increase in fiber length would only 

increase the cost, not the performance. However, especially for a sensor designed for signal 

frequencies below 50 kHz, the phase fluctuations introduced by thermal agitation in the fiber 
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itself increase linearly with fiber length.  For 100 meters of fiber, we are up to IV2 microradians 

per root hertz. This is at or near the limiting noise floor for a very good demodulator. 

If we use 1000 meters of fiber, we are not going to have to buy a very expensive detector, 

because the fiber will limit the performance well before a good demodulator would.  Issues of 

noise are extremely important in fiber systems but the lessons should not be restricted to fiber 

sensors.   Any time a "very sensitive" detection mechanism is "discovered" the questions of 

limits to performance and self-noise should be among the first questions asked. 

[Transparency 111-15] 

I'd like to end the discussion of noise in fiber-optic systems by going through the analysis 

for shot noise. This is a popular calculation but it's actually not terribly important in most cases. 

Usually, the actual noise floor of an optical-fiber sensor is well above the floor predicted by the 

shot-noise calculation. It's worth discussing, though, because it does give a performance limit 

and, in a few instances, the shot-noise limit has been approached. 

The basic photodetector response can be written as the photodetector current being 

proportional to the incident optical power. The response factor, B, has the units of amps per watt 

(or the more "tasteful" microamps per microwatt). The fundamental interferometer response 

produces a sine-wave like output as a function of the phase difference between the two beams. 

The fringe visibility is a measure of how complete the interference is. If the two beams are 

perfectly balanced, then, for destructive interference, the resulting intensity will be zero. This 

perfect balance is equivalent to a fringe visibility of one. The maximum sensitivity is obtained at 

the point where the response function is changing most rapidly. If we calculate the rate of 

change of photodetector current with phase difference at this maximum point, we find that it is 

equal to the fringe visibility times B times the incident optical power. 

[Transparency III-16] 

The mean-square value of the current fluctuations is equal to the standard shot-noise form 

based on the average photodetector current - 2 times q times Io- We could have also written an 

equivalent expression for the mean-square fluctuations in optical power as 2 times hfo times the 

average incident optical power, Po. The quantity, hfo, is Plank's constant times the optical 

frequency and it is the energy per photon. Dividing the second form by B2 gives another 

expression for the mean-square current fluctuations. 
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From the relationship between the phase and the photodetector current, we can convert the 

current-noise expression into a phase-noise expression. The spectral density of the phase 

fluctuations is 2 times Plank's constant times the speed of light divided by the quantity, fringe 

visibility squared times the optical wavelength times the incident optical power. For any 

particular system, we can now calculate the shot-noise limit. Notice that the phase noise is 

inversely proportional to the incident optical power so, if shot noise is significant, it is likely to 

be so in systems operating with very low optical power. For an interferometer operating at 630 

nanometers and only 10 microwatts of optical power, the shot-noise floor is well below the limit 

achievable by practical demodulators. 

People have, in fact, reached shot-noise limits in fiber systems, but it takes hard work, and 

few people succeed. The other noise mechanisms I've discussed are generally more important in 

fiber systems, but everyone working with such systems should appreciate the roots of shot noise. 

Please don't ever believe that once you've calculated the shot-noise limit you've found the actual 

noise floor, though. 

[Transparency III-l 7] 

Not all noise problems can be described in terms of thermal or shot noise. Some noise 

mechanisms are not as straightforward. However, most if not all noise mechanisms involve 

interesting physics. Now, I would like to talk about a fascinating problem regarding noise in 

ferroelectric materials. The noise process that I'll describe is not one that can be treated as a 

fundamentally thermal or shot process. 

Ferroelectric materials are those materials that we usually call piezoelectric materials. The 

class of piezoelectric materials is a broader class. All piezoelectric materials show evidence of 

linear charge "generation" under stress or linear dimensional change under application of an 

electric field. Ferroelectric materials are piezoelectric but they are a particular variety of 

piezoelectric material. These materials have a permanent electric dipole moment that can be 

manipulated. Under the application of a sufficiently high field (perhaps also at elevated 

temperature), the direction of permanent moment can be reversed. This is the operation that is 

normally called "poling." One of the consequences of this "flippable" dipole moment is that 

these ferroelectric materials are more strongly piezoelectric than ordinary piezoelectric materials 

like quartz. In addition, they are also pyroelectric - that is, they also respond to application of 

heat. 
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The buzzer disk in your watch is made from a ferroelectric ceramic. Ultrasonic humidifiers 

are driven by ferroelectric transducers. Many types of hydrophones, microphones, and 

accelerometers are made from ferroelectric materials. 

Besides having large piezoelectric coefficients, these materials have other very interesting 

properties. In 1957 some folk at Penn State published an intriguing set of measurements on the 

ferroelectric material, barium titanate. They took a small piece of it and applied stress to it. The 

stress was applied suddenly - a step-function in stress. After a half-hour or so, they released the 

stress suddenly. During this process, they measured the strain produced. 

In an ordinary elastic material, the strain is directly proportional to the applied stress 

without any delay in response. However, this material does not behave that way. The graph in 

this slide shows the behavior of a sample at several temperatures. The horizontal (time) scale 

starts at the onset of the stress. The applied stress is 24 MPa. At room temperature, the initial 

strain is about 270 microstrain. Over a period of about 20 minutes, the strain creeps slowly up to 

about 360 microstrain. At a somewhat higher temperature, the creep is still evident but it reaches 

equilibrium more quickly. 

At still higher temperature, the strain is quite a bit lower but now there is no evidence of 

creep. This last temperature is just above the Curie point for this material, which I will talk a bit 

more about. Below this temperature, the process is very interesting because of the time required 

to reach the equilibrium strain. If you see a process like this, you might suspect that there is a 

noise process with a similar time scale lurking in the background and, in fact, there does seem to 

be a noise process associated with this mechanical creep. 

MR. GLADDEN: On that slide, is the stress released at about 30 minutes? 

DR. GABRIELSON: Yes, at 30 minutes they released the stress. After the stress is 

released you see a relaxation back the other way. This is a reversible creep. It did not happen 

just once. Each time they applied the stress, the strain followed the same curves. 

[Transparency 111-18] 

This is a molecular structure that is representative of ferroelectric materials. In particular, 

this is the unit cell for barium titanate. Above a certain temperature, the structure is cubic with 

no preferred orientation. The blue atoms (the largest ones) are oxygen atoms; the red atoms (at 

the corners of the cube) are barium; and the little black atom in the middle is the titanium atom. 

204 



If I take a slice through the center of the unit cell, I see a titanium atom surrounded 

symmetrically by oxygen atoms. The titanium atom has only one stable configuration and there 

is no net polarization (charge asymmetry). As the temperature decreases, there is a rather sudden 

transition at the Curie temperature. Here, the crystal structure changes from cubic to tetragonal. 

(Tetragonal just means that the cube has been stretched in one dimension; all the angles are still 

right angles.) 

Now the central slice shows that two of the oxygen atoms are much closer to the titanium 

atom than the other two. As a consequence, there are two stable locations for the titanium atom 

In either stable location, there is net charge asymmetry and, therefore, a permanent dipole 

moment. If we apply a strong enough electric field, we can flip the titanium atom into the other 

stable state. This is the essence of poling a ferroelectric. Furthermore, the "permanent" moment 

produced by the "flippable" charge asymmetry give the ferroelectrics most of their interesting 

properties. 

Even when poled by a strong electric field, the moments are not completely aligned 

throughout the material. Domains form. In each domain, the unit cells are poled in the same 

direction. In an adjacent domain, the direction of poling might be at 90° or 180° with respect to 

its neighbor. The boundaries between domains are called walls and they may be either 90° walls 

or 180° walls depending on the difference in orientation across the wall. Of course, when the 

material is poled there is a strong tendency for the domains to be oriented in the poling direction 

but the thermal energy is sufficient that there are still many domains perpendicular and opposite 

to the poling direction. Under stress, the walls "move." Actually, unit cells near the wall 

boundary re-orient. Many people believe it is the migration of the 90° walls that control the 

physical properties of the material. 

As I said, if you apply a stress, the walls move, but it takes time for the walls to move (or, 

equivalently, for the domains to reorient). What happens when the dipole moment of a unit cell 

changes direction? It produces a change in the charge distribution and that is sensed as noise. 

[Transparency 111-19] 

This is quite different from microcracking because this is a reversible process. Some years 

ago, people noticed that some kinds of hydrophones produced noise for 30 minutes to an hour 

after they were dropped into the water. Because the heat capacity of the water is large and there 

was a strong flow past the hydrophone as it descended to depth, the temperature of the 
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hydrophone reaches equilibrium much faster than 30 minutes. (Originally, the noise was thought 

to be a pyroelectric effect but the time scale just doesn't make sense.) 

Here are some measurements I made shortly after this problem was discovered. I made 

some structures of piezoceramic material bonded to aluminum Some structures had ceramic on 

only one side; others had ceramic on both sides of the aluminum substrate. 

If the temperature changes, the difference in coefficient expansion between aluminum and 

the ceramic results in a large stress on the ceramic. This is a better way of stressing the ceramic 

than pushing on the structure; if you try to stress the ceramic by pushing on the structure, you 

introduce so much extraneous vibration that the stress-induced ceramic noise is masked. 

Not much of a temperature change is required. For these measurements, I used a 

temperature change of 10° C. After the temperature change, there is a significant amount of 

noise bursts to 10 minutes or so for the single-sided structure. Initially, the bursts are strong and 

very close together. As time goes on, the level and frequency of the bursts decrease. 

Interestingly enough, in the double-sided structure the bursting noise takes considerably longer 

to decay. You can see noticeable bursting events almost two hours after application of the 

temperature change. The induced stress is substantially different between the two types of 

structures so it is not surprising that the noise characteristics would be different. Unfortunately, 

from the standpoint of signal response, the double-sided structure is better. 

The noise generation is repeatable. If I reverse the temperature change, I see the same sort 

of noise production. It is not a cracking phenomenon because it is repeatable. Although it 

remains to be proven, it appears that this noise phenomenon is closely linked with the anelastic 

behavior of the material through the mechanism of domain wall motion. In any event, this is 

another example of a physical process into which we gain some insight through study of its 

noise. 

[Transparency III-20J 

For the last subject I would examine the impact of feedback systems on noise. This subject 

is discussed in the literature at least as far back as the 1930's. A little more recently, Dr. Keolian 

published a paper about a nice demonstration apparatus for feedback-controlled systems. This is 

a very instructive demonstration to reproduce. Dr. Keolian describes the construction and 

operation and he also discusses some of the practical issues associated with the system. 
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I am going to skip the practical issues. Let's consider a simple mass-spring oscillator with 

damping. (I've left out the noise-force generator but you know how to put that in.) If you put 

two magnets on the mass, you can drive the mass with one magnet (and a coil) and detect its 

motion with the other. If I amplify the detector output as shown, then the output voltage is some 

constant times the velocity of the mass. 

If I take that voltage and pass it through a standard voltage-to-current converter, I can 

produce an actuation force that is proportional to the mass velocity. Now, my schematic drawing 

is sloppy. There would also be direct electromagnetic coupling from the actuation coil to the 

detection coil. Dr. Keolian came up with a nice solution for that problem but you'll have to read 

the article to see how. 

[Transparency 111-21] 

Let's consider the system without feedback first. Some applied force produces an output 

voltage. The block A represents the conversion between velocity and voltage. The differential 

equation is straightforward. The force equals the mass times the acceleration plus the resistance 

times the velocity plus the spring constant times the displacement. Of course, I should consider 

noise as well. 

If I connect the output back to the input through block B, which represents the conversion 

from voltage to force, then I've added another term to the force. By combining terms, I discover 

that the damping now depends on the original mechanical damping minus this A-times-B term. 

The damping can be increased or decreased. In fact, if the AB term is large enough (and 

positive), the damping becomes negative and the system will oscillate. This is standard control 

theory but what happens to the noise? We've argued that the noise is linked strongly to the 

damping. What happens if we change the damping not by changing the physical loss mechanism 

but by adding feedback in such a way as to modify the apparent damping? 

[Transparency 111-22] 

As always, what's really important is the signal-to-noise ratio. There is a very nice 

theorem that we will use to simplify our argument. For a linear system, the signal-to-noise ratio 

at the output terminal (this is, at the load impedance) does not depend on the value of the load 

impedance. 

Often, feedback loops are "broken" when the load impedance goes to zero and, if the 

feedback loop is gone, the analysis is usually considerably easier.   We can either use the usual 
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voltage ratios for SNR and let the impedance approach zero or let the impedance be zero and 

calculate the SNR in terms of the signal and noise currents. 

[Transparency 111-23] 

Now, I can certainly change the effective Q of the system with feedback. I can make the Q 

either higher or lower, depending on the sign of the AB term. If I decrease the effective 

resistance, can I reduce the noise of the system? 

Let's use the theorem. If I calculate the signal-to-noise ratio for the system, A, without 

feedback, then add feedback, B, what happens? If I set the load impedance to zero, the feedback 

path is broken. The signal-to-noise is that of the original system PLUS whatever is contributed 

by resistances or electronic noise in the B path. It turns out that I can never improve the signal- 

to-noise ratio by adding feedback if the dominant noise is in system^ or in the input to system A. 

(If the noise is dominated by something after the AB feedback system, then I may be able to use 

feedback to increase the overall signal level and improve the SNR until I've also raised the 

internal noise high enough to become the new dominant source.) 

If I'm very careful, sometimes I can make the noise added by the B path small and 

accomplish something. In some cases, this is useful. 

[Transparency III-24J 

In or around the 1950's, Mylatz performed a nice set of experiments to show how both 

signal and noise change with feedback. There are two strategies to consider. Design the Q of the 

system to be very small (to get a flat response, for example) but then add feedback to increase 

the sensitivity of the system. The intrinsic noise is determined by the real, physical damping 

mechanism and, if the Q is small the damping associated noise will be large. The signal-to- 

noise ratio is not going to be very good to begin with; adding feedback is only going to make it 

worse. The reason the feedback-induced damping does not control the intrinsic noise is that the 

feedback-induced damping is not equilibrium loss. The feedback is precisely (within the limits 

of the electronics, that is) coherent with the signal AND the noise so it is not a process that 

contributes additional fluctuation proportional to the loop gain (i.e., to the artificial damping). 

The natural damping reflects a process that is in thermal equilibrium with the environment, so 

that controls the thermal noise. 
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Another strategy is to design the mechanical Q of the system to be naturally very high. 

That produces a good signal-to-noise ratio with respect to intrinsic thermal noise. Then we can 

add feedback to flatten the response. 

In the process, of course, noise is added by the feedback loop. However, if I've designed 

the feedback carefully I still have better SNR than if I had made the response flat just by making 

the natural damping large. It is not easy. I have tried it in a number of cases and it is difficult to 

get much of an advantage, but you can sometimes improve the SNR significantly. 

In some circles, this is called "cold damping." There was even a paper in the European 

Journal of Physics this year (2000) that discusses cold damping. As with many aspects of noise, 

if you understand the fundamentals, then you can make some wise decisions about design 

strategies. 

We've been embroiled in details in this last hour. Let's summarize. We've discussed the 

very fundamental thermal-noise mechanism - the noise associated with temperature fluctuations. 

This variety of noise shows up in many interesting places and it is fairly easy to do calculations. 

It is important in fiber-optic sensors with relatively long fiber lengths. It is important in 

microfabricated sensors that have very small moving parts. You ignore such a fundamental 

mechanism at your own peril. You may postulate wonderful performance and fail to achieve it if 

you ignore noise. 

We also saw that there is a basic relationship between some quantities that we associate 

with purely deterministic processes and quantities that are associated with noise. I measured the 

real part of an impedance by making a noise measurement and I calculated the imaginary part of 

the impedance from the real part using the Kramers-Kronig relationships. 

We talked in some detail about molecular collisions and conduction electrons in metals and 

semiconductors. We saw a nice analogy between these two cases and, hopefully, learned 

something about shot noise in the process. 

Then we examined some special applications in which the principles discussed in the first 

two hours were extended in several ways. Thank you very much for your kind attention. 
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RESONANT ULTRASOUND SPECTROSCOPY 

Albert Migliori 
Los Alamos National Laboratory 

DR. MIGLIORI: Before I start the talk, this is a picture of me being shot through a glove 

box window. 

[Transparency] 

I am behind two sets of chain-link fences with razor wire on the top and there is about a 10- 

foot separation between the two fences. In-between the fences are microwave and infrared 

personnel detectors. Looking up over the fences all around are guys with 50 caliber and M60 

machine guns, pointing them out through little ports about this big. 

After you have gotten 2 million security clearances, random drug testing, et cetera, you can 

go through the first set offences. Then another 2 million or 3 million pieces of paperwork and 

you can go into the changing room, strip, put on what Los Alamos calls anti-C, for anti- 

contamination, clothing. 

Then you head in through another set of guards with Ml6s and all sorts of stuff and they 

lock you up between two little gates, take your badge, look at you, read your palm print and then, 

if they like it, they let you inside a vault door, which is about an 18-inch-thick piece of solid steel 

inside a building within a building at the plutonium facility at Los Alamos. 

This building actually has a set of airtight seals that can close the entire building, and they 

know that there are no leaks, because they check this. The roof is a whole bunch of stressed 

concrete and stuff, and they claim you can crash a 747 nose-end into it and it will not collapse 

the building. 

You go inside in there and you have one of your resonant ultrasound laboratories, and in 

that laboratory we have access to plutonium. In fact, some of the measurements that motivate 

my recent work have been the first measurements of elastic properties of plutonium since 1973. 

Because of the extensive security and other regulations required to get in here, I cannot use 

postdocs, you just cannot get them clearances in time, so I actually have to do work myself, 

(laughter) 

Right over here in my hand — at this point here ~ is a 14.something-gram chunk of 

plutonium 239, which is weapons grade plutonium. That chunk of plutonium was removed from 
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a thermonuclear weapon from what  is  called  "the pit,"  or the  fission trigger,  from a 

thermonuclear weapon. 

It was given to us to purify and then make resonant ultrasound samples of. 

I think this experiment was probably responsible for the destruction of one thermonuclear 

weapon. [Computerslide] 

Part of the reason for mentioning all of this is that I just have to make a comment about the 

recent events at Los Alamos. I do not know of anybody I work with who would be so 

unbelievably idiotic as to download secrets from a classified to an unclassified computer, or walk 

out the door with a bunch of hard drives. I do not know what is going on here, but I think it is a 

very rare event. They have been exceedingly careful in all the aspects of working with these 

very dangerous materials, both from the health standpoint and from the political and weapons 

standpoints. 

You can see behind me here we have a continuous air monitor, there are fire alarms in the 

glove box, pressure monitors in the glove box. The room, security, everything, I feel very 

comfortable working with this stuff at Los Alamos. 

Another minor point here is that this sample, by the way, I can feel the heat from its self- 

radioactive decay in my glove. [Computer slide] 

I am going to shut this stuff off and continue. 

The fire at Los Alamos, by the way, completely surrounded the building in which these 

experiments were done and there were flames on all four sides of it. In the process, the 

laboratory was shut down for two weeks. 

That two weeks turned out to be precisely the two weeks before Libby required me to 

deliver viewgraphs for this presentation. 

I had wanted to try something distinctly different this year, so although I did not succeed 

completely in getting the viewgraphs in the form I wanted ~ you will see that in the middle of 

the talk, where I actually had to copy some preprints that I had prepared for this for another 

reason — but I wanted to do this year is provide you with a set of preprints in your notes, rather 

than viewgraphs, which, when you go back and read them, for those of you who find that this 

may be something you care to work with in the future, you will find a complete set of self- 

contained publications there, with references. 
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I think, in addition, because of the detail that is in those, I will not cover every one of those 

at all; guaranteed that I will not go through all the viewgraphs you have in your lecture notes. I 

also guarantee that if you have trouble sleeping, they are an instant cure for insomnia later. 

[Transparency] 

I will begin by giving away the entire talk in the first part of this. Then I will cover bits 

and pieces of details on ~ well, let's see, classical mechanics, solid-state physics, acoustics, 

statistical mechanics, electronics design, maybe a little relativity; we will try to get through all 

the basics. 

I will give you some details, again, which will be a little dry at the beginning, on how the 

method works. But then something very important that I want you to take away with you is the 

importance of ultrasonic measurements in solid-state physics. 

There are very, very powerful motivations for making sound speed measurements in solids. 

Often glibly, those are thrown off as the elastic stiffness that controls the sound speed is a second 

derivative of free energy with respect to strain. 

What I am going to do in the middle part of the talk is to, point by point, precisely and in 

detail, show you exactly why making sound-speed measurements can be some of the very most 

important measurements in all of solid-state physics. It is a shame that they are hard to do, so 

they are not used as frequently as they should be, and I will show you how that gets famous 

theorists in trouble. Then I will show you some results. 

This year I am going to present bits and pieces of electronic design. The talk this morning 

was perfect, because I have kind of spent the last several years implementing instrumentation 

systems in which I aspire to do things the way Tom described this morning, but I will show you 

where you cannot and how we made some compromises that still result in stunning homemade 

black boxes, and I think you will like that. 

[Transparency] 

Orson Anderson at UCLA is really the father of resonant ultrasound spectroscopy. He 

began this in the late 1960s with his postdocs and students at Bell Labs and then used the 

technique to measure the speeds of sounds in lunar finds. These were small spherical samples of 

rocks, spherical because of impact and heating on meteor strikes, that were returned by the 

Apollo missions from the moon. 
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Those samples had been very carefully vacuum-shipped from the moon. They took great 

pains not to contaminate them. Orson really developed resonant ultrasound spectroscopy -- at 

least everything that he did then we do now (it may be more difficult, more complicated) ~ but 

all the bits and pieces were there. 

He used this technique of measuring mechanical resonances of small objects to extract the 

elastic moduli to study the stiffnesses of rocks that appeared on the moon. These rocks also 

appear on the earth and what he found was that the speeds of sound in these rocks were 

anomalously low and, in fact, if you look at the sound speeds in kilometers per second here for a 

couple of lunar rock samples, you will see that they fall very nicely amongst the speeds of sound 

of various cheeses, (laughter) 

Not to be deterred, and with very little analysis, because Orson had already figured out the 

answer, he, of course, published this in Science. 

What had happened was that these lunar finds had been vacuum-cracked on the moon, so 

instead of being a homogeneous uncracked solid sample of rock they had microcracks. They still 

looked like a homogeneous medium to a long wavelength sound wave but they were much 

softer. 

As soon as he brought them out and began to let moisture heal these cracks, the sound 

speeds came right back up to the normal Earth speed, so they discovered something. He did put 

out this Christmas card. 

"SEASONS GREETINGS 
It brightens the spirit 
In times like these, 
To know the Moon 
Is made of cheese." 

By the way, Orson Anderson, in World War II, was a fighter pilot who also had a cartoon 

strip that he regularly published, and he liked to do these sorts of things. 

I really have to thank Orson, but I did not get to thank him when I began this work. In fact, 

when high-temperature superconductors came out, I realized that we were not going to get large 

enough samples to do conventional pulse-echo ultrasound measurements on them, so I began to 

use and set up experiments to use resonances to extract elastic mmodulus information. 
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We did, indeed, succeed in putting together all of the pieces and had published one or two 

things, when one day Orson Anderson walked into my lab in Los Alamos, he had come out from 

UCLA, and he said that he wanted to have me help him do some electronics. I said, "Orson, 

what for? Glad to meet you, what do you want to do with it?" 

He said, "I'm measuring the resonances of small samples." I said, "Oh, so am I." He says, 

"We're using it to get elastic constants." "Oh, I'm doing that, too." As it turns out, I guess Jay 

Maynard quoted me in Phvsics Today. "Six months in the lab can save you a day in the library," 

and I fell victim to that. 
It was a good thing, too, because we did take somewhat different approaches to the 

computation and the electronics development and, in the end, those approaches made this 

technique quite usable for almost anybody who really needs to make sound-speed measurements. 

[Transparency] 

The basic principle is that the measurement of the resonances of small samples with 

accurate geometry can get you elastic moduli. This is a small sample of steel inside some half- 

inch diameter assemblies that are used as transducers, and we will talk about every last detail that 

I go through at the beginning here. 

[Transparency] 

Having set up a transducer assembly, we have to acquire data and, as you noticed in the 

other picture, the sample is making point contact. This is because we want to drive all the 

resonances and, therefore» we want to touch the sample at a low symmetry point so that we 

excite all the modes. 

That means that we have dry point contact, we do not have to glue transducers on to the 

sample and with that dry point contact comes very weak electrical coupling, so great attention 

has to be paid to the preamplifiers, the detection, and the data-acquisition systems. 

[Transparency] 

Unfortunately, solids behave completely differently from liquids and gases when sound 

propagates through them, so you have to use a much more sophisticated analysis technique to 

extract the mechanical properties from the resonances; that is, the mechanical resonances of a 

solid are not simple functions of ID parameters. The reason is, when I squeeze a solid, it bulges, 

and it bulges so that the volume is not preserved. 
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The analysis now becomes quite sophisticated, but we are able to calculate normal modes 

for such objects. 

[Transparency] 

This is an example of some of them for a solid that is orthorhombic or higher in symmetry, 

and we will go over that in a little bit, too. 

[Transparency] 

Each of these modes is either symmetric or anti-symmetric across three separate planes. 

We can take the data, we understand the mechanics problem, and we can compute the normal 

modes, and we can even go backward, so that when we measure resonances ~ I will keep 

popping up plutonium here, just because I have been working on it recently, but also because it 

turns out to be a very average sample for resonant ultrasound spectroscopy. It is not the very 

best material to do it in, but it is not the very worst, and we get very nice data. 

The systems we are using now are optimized for all sorts of signal dynamic range and noise 

parameters, but you can see that on a small — this happened to be a 1.43-gm sample ~ you can 

see that we have signal-to-noise and full-phase sensitivity, so we can acquire those resonances 

quite nicely. 

[Transparency] 

The resonances produce elastic moduli (and I will go over that a little bit, too), but there is 

an approximate bottom line to this and that is that this technique probably ~ not probably, it does 

have the highest absolute accuracy of any routine elastic modulus measurement technique. 

This has been tested against single-crystal silicon in a round robin between us and other 

laboratories, including NIST - Hassel Ledbetter and the late Chris Fortunko. Here is an 

example of a relatively good sample ~ still not the best and, in fact, I am not going to show you 

the best, because you just would not believe it. 

No, that is not true. The reason I am not going to show you the best is because my office 

was locked for two weeks and I barely had time to get the viewgraphs out. They would not let us 

in. 

This is an example of why people use resonant ultrasound and not other techniques when 

they really need elastic moduli. It turns out that the bulk modulus stiffhess on hydrostatic 

compression is independent of whether I have a single crystal of a material or a bunch of 

polycrystalline grains put together in an ordinary commercially processed piece of material. 
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In this case we were looking at beryllium, which has the second highest sound speed, 

diamond being the first.  It also has an extremely curious property that when you squeeze it, it 

does not bulge. 

We were measuring single crystals of beryllium here and a polycrystalline material, both of 

these high purity. Although this looks like a viewgraph you should never show, I am going to 

walk you through it a little bit and then we will come back to it later. 

What I want you to notice is that we can measure resonances (these are in megahertz), we 

can compute elastic constants by fitting the five independent moduli for the single crystal or the 

two independent moduli for the polycrystal and we come out with error bars in the ballpark of 

these sorts of numbers consistently, but those error bars are computed on the basis of statistical 

analysis of the data. 

There should be a check, and the check is that these two should have the same bulk 

modulus, and here you go, so it does quite well. It is also quite sensitive for various bits and 

pieces of solid-state physics. 

[Transparency] 

Here is a plot of the deviations in a plutonium, not the beryllium sample, but this is very 

typical. These are the percent errors that a fitted set of elastic moduli produce when you 

compute the frequencies that you should have measured and compare them to those that you did 

measure. The technique works great. It lets you see lots and lots of marvelous stuff. 

[Transparency] 

This, for example, is a superconducting transition in niobium at around 9 Kelvin. There is 

a break in slope of the shear modulus. This distance between here and here is about 3 ppm, so 

we are watching sound-speed changes at the 3-ppm level as the electronic distribution shifts from 

ordinary metal to superconductor in niobium. 

At low temperatures, as we all know, everything gets nice, so this particular sample had a 

mechanical Q of 109,000, which we can measure to about 1% - right, pretty nice, you do not see 

that in gases. 

[Transparency] 

The technique also has commercial applications, which I have kept away from in the last 

few years, relating to quality control. This was the first launch of the Trident II ~ those are 

Logan's boys, (laughter) 
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Here it is, going about Mach 1, straight into the ocean. 

There are applications to quality control as well as to the study of science. One way to see 

how that can happen is to remember that we are easily able to see parts-per-million stuff. Here is 

a ball bearing that is a little bit out of round, so that one of its normal modes — like this - if it 

were perfectly round, this normal mode and this normal mode would have the same frequency, 

but if it is a little off in roundness and the material is isotropic, they split, you break the 

degeneracy. 

Here is a split in those two modes. It turns out that for spheres there are odd numbers. 

When they split, it is sort of 2L+1, so you have to have an odd number of modes, and it turns out 

there are actually two modes under this peak and one over here. 

The 700-ppm shift between the modes can be quantitatively connected to an error in 

manufacturing, how out of round this ball is. In the end, this technique has become important at 

some leve 

[Transparency] 

This is a book by some obscure authors on this subject. This is a commercial system that I 

actually did the electronics design for that does, in a nice and sophisticated way, the acquisition 

of resonance data for small solid samples. 

DR. HARGROVE: What is the scale on that? 

DR. MIGLIORI: Let's see, this book must be 8 x 10, and they are all on the same scale, so 

actual size. 

That is what I am going to tell you about. To do that, I am going to start with some 

viewgraphs that have been taken from that book. The intent here is to just warm up by 

examining the properties of resonances, so I will not follow it page by page, as you have it, but I 

will pick and choose things. So here we go. 

[Transparency] 

We are looking at resonances; I need masses and springs. Having played with the 

measurement of solids for longer than I can remember, I know that for all of the experiments I do 

there is no such thing as a rigid wall, so I drew this resonator without the proverbial brick wall 

that you attach the springs to, so this is floating in free space and it has two masses ~ like this ~ 

and a damping piston and a spring. 
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There are a lot of interesting things to note about this when you start to look at center 

frequencies of resonances with Q's of 104 or 105, where the resonances are very sharp, and I will 

chat about that for a minute here. 

[Transparency] 

You are all experts in this. Right now we are going to set the equations of motion up so 

that we have inertial pieces, the ma part, F=ma, damping springs. There is F=ma with the factors 

of two in my own notation here. We are going to assume harmonic motion and you know we are 

going to get complex frequencies from that eigenvalue equation. 

[Transparency] 

This has been covered so many times, but we are now in a realm where we can actually see 

some of these shifts; that is, the Q's can be typically so high that I can see small effects. 

For example, we can see that the real part of the solution to that mass-spring equation is 

slightly shifted by the dissipation — I think everybody has discussed that ~ and there is an 

imaginary piece that kicks in. You notice that the change in the real part of the frequency is 

quadratic in the dissipation while the imaginary part is linear in the dissipation. We can define 

sort of a canonical resonant frequency for this thing of two times the spring constant over the 

mass, just exactly the sort of thing you have already seen. 

[Transparency] 

But there are some twists to it that have to do with plotting out the response function. We 

cannot see, mostly, the effects of thermal noise in these systems, so that even though Tom, two 

years ago, did his very nice viewgraph with the thermal-noise generator, the problem with these 

systems is that we detect building vibration and everything else at levels much higher than the 

thermal-noise background for the mechanical system, so I am going to ignore it, roughly. 

But I am not going to ignore the fact that we are measuring the complex amplitude and, in 

fact, the electronics I now use preserve the full complex response so that I know just what is 

going on. It is, of course, approximately Lorentzian (it is not exactly, because it is not a single 

isolated resonance). 

[Transparency] 

Remember, in these mechanical systems there will be many resonances, so the tail of one 

overlaps another, and all of those are relatively small effects, but there is a particularly 
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interesting and not-so-small effect under some circumstances. This relates to the termination of 

the center frequency of the resonance. 

How do you know what the center frequency of these resonators is? There is the normal 

counting problem in measuring frequencies; that is, at the very most fundamental level there is a 

one-count error in your measurement and if you try to beat it, you will not, because then noise 

will kick in. 

For example, if I take a pulse train and I start my discriminator at the beginning of the train 

and I wait for 106 cycles and I count how many I have in there and then I stop it, I have to stop it 

at some point. If I stop it right on the transition, I might get a count error of one in that total, so I 

waited one second, I counted 106 things, I get a megahertz, but sometimes I get 106 plus one 

things going on, and sometimes I might get 106 minus one going on, and you cannot beat that 

one, because noise will force you to be unable to determine precisely where that count is, even if 

you have a very clean system, so there is an intrinsic problem in measuring frequency of about 

one count. That is not so bad, because I can wait as long as I want. 

There is another set of problems in a system that appears to be essentially noise-free and, 

for the purposes of this discussion, we will assume it to be noise-free, and that is that the 

frequency is not quite well-defined in a damped problem with a complex eigenvalue. 

For example, the displacement is a maximum when the frequency equals R omegao the 

square to 2k/M times 1 -I/2Q2 to the V2. That is the biggest displacement the oscillator sees. 

That is not quite the real part of the eigenvalue when we solve that equation ~ notice that this has 

a 4 here, and that has a 2 there ~ and it is not the frequency at which the displacement is exactly 

out of phase with the force, which is omega». 

There are essentially three choices here for what the center frequency of that resonator is 

and they all differ by order 1/Q2. If Q is 100 and I can see parts-per-million things, I can actually 

see that sometimes. 

There is another physics aspect to it, and that is that, intrinsically, the elastic response of a 

solid is defined for a dissipation-free solid. As I begin to increase dissipation, that is, reduce the 

Q, the meaning of elastic constants starts to change; that is, mechanical systems start to open up 

the response into a hysteresis loop and it is not quite so clear any more what an elastic constant 

means because ofthat hysteresis and dissipation. 
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That is reflected in this problem here. I just wanted to show you that briefly to make clear 

that if we solve a linear problem with no dissipation and then go and measure, we have to take 

some pains to make sure that either we can ignore those problems or we know what they are. 

[Transparency] 

Here is a response of a typical resonance from those. Here is the amplitude. Here is the 

real part and the imaginary part. Another thing to notice, which we actually make use of, is that 

if I simply plot the real part of the response of this resonator, it is apparently narrower, much 

narrower, than either the imaginary part or the actual displacement. 

That comes in handy when we are trying to separate closely spaced resonances. 

MR. APOSTOLOU: Which one of the three would you choose to have the resolution to 

the speakers to actually get the elastic constants? Which relates closer to ~ 

DR. MIGLIORI: The one that relates most closely is the one where you are in phase with 

the force. It is the zero crossing of the imaginary part, if you will, because that is the one that is 

the square to 2k/M. If the noise properties of the system are good enough, that is fine. Of 

course, if the Q is 105, then Q2 is 1010 and we are home free, we do not care. 

[Transparency] 

We are dealing with solids here and stress waves in solids have lots of stuff going on, 

including shear waves, that the standard liquid or gaseous acoustics problem does not have to 

address. That becomes very painful, extremely painful. 

There is this interesting question as to when a material is a liquid and when it is a solid, 

which I think has a lot to do with the viscous penetration depth. For example, is the viscous 

penetration depth is a few light ears, it is probably a solid, but if it is a few millimeters it is 

probably a fluid. 

Just think about window glass, for example, with time constants for drooping of 10 years. 

The stuff behaves, for all intents and purposes, like a liquid over very long time scales but, like a 

solid, over short ones. There are some complications in there, but we are not going to worry 

about those, because anything that shows any signs of being viscous or liquid-like does not work 

for these techniques, it sags, it is gone. 

In fact, we can hardly measure window glass, which anneals at room temperature, because 

the dissipation is so high that we get Q's of 10 or 20 on many samples; the resonances are 

smeared and it is hard to look at. 
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[Transparency] 

We are going to talk a little bit about the wave equation in solids, and the beginning point, 

of course, is the standard one, where we have a solid elastic constant. Unlike the pressure or the 

compressibility of a liquid, we will have to be very careful about boundary conditions. 

One engineering unit is Young's modulus, and that is a stiffness constant whereby if I 

stretch something, I apply stress on the end faces but I leave this surface free, so when I stretch 

it, it shrinks in diameter and that means that that modulus has both compression and shear, and 

we will get to that in a little bit. 

I can set up, for example, a set of equations for something that has density in Young's 

modulus, but I might have to set up other equations as well, and I have to deal with shear. 

[Transparency] 

Let's talk a little bit about shear for a second. Shear is a volume-preserving distortion of a 

solid. Look at the little parallelogram here. It is pretty clear that if I took this square of material 

labeled A and I just shear it, I make this parallelogram. 

But if I took material C and I sheared it this way, I also make a parallelogram whose shape 

is identical it just happens to be oriented slightly differently. In fact, if I take this plate and I 

push it in at those two corners and stretch it at those two, I also make a parallelogram. 

All of these sets offerees produce a shear, so there is a little bit of a choice as to the way I 

can define a shear and a solid, and I will pick one that is symmetrized in a little bit. That 

symmetrized shear looks something like this, where I claim that I have a shear strain, epsilon 1,2, 

that is, I have a displacement in the 2 direction along the 1 axis. If I take U to be a particle 

position, dul dx2 +du2 dxl and a put a half in front of it, now I have something nice and 

symmetric. 

I have to pick a whole bunch of these shear pieces in, shears in different directions with 

different moduli, as well as the ordinary compressional stiffness pieces to write the energy of the 

solid. That makes for enormous complications. 

[Transparency] 

In fact, the full equations of motion for a solid turn out to have a bunch of fourth-rank 

tensors in them; that just means I have something with four indices on it. It is pretty clear how 

those are going to work.   I am going to connect things like a strain, which is a second-rank 
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tensor, for example.   I have displaced the solid in the 1 direction with a force along the 1 

direction. That might be a stress sigma 1,1. 

Then I get several strains. If I squeeze it this way, I get a strainm an epsilon. in the one 

direction along the 1 direction, but I also get strains that vary in the 1 direction along the 2 

direction as it bulges out, so I have a huge number of things. I have to connect stresses with two 

indices to strains with two indices. I need things with four indices, so the elastic stiflhess tensor 

for the solid is a fourth-rank tensor. 

All it means is I am connecting all these weird strains together in some nice linear 

equation, and we are going to look for solutions that e0™ -omega T for this, except now we are in 

3D with all sorts of weird indices floating around, so that all of the waves in the solid are 

described by this. 

Most of the waves are neither shear nor compressional; they have K vectors in some 

direction with momentum transfer in another and displacements not parallel or perpendicular to 

either of those directions. So the problem is nicely complicated, but it is very rich in 

information. 

[Transparency] 

It is also sufficiently complicated and it yields to the usual physical properties of tensors 

that anything really nicely physical like this has to be symmetric, so there are not so many 

independent elastic constants in a solid; in fact, there are only 21. 

That means you can kind of reduce the number of indices in that tensor, and this is a 

description of how the indices are collapsed, for your reference, so if you see something later that 

is C44, C44 means it is really lambda 2,3,2,3, which is just a way of decoding it. 

Another thing that is nice about many solids is that, for example, almost everything that we 

make stuff out of has a symmetry in which the crystallographic axes are all at right angles to 

each other. What that means is that the elastic stiflhess tensor, when I relate stress to strain, has 

zeros in all of these regions here and that this region down here is pure shears that are volume- 

preserving, and this region up here includes things that look more compressional-like. 

[Transparency] 

This sort of behavior has subtle modifications. For example, if I have a single crystal with 

a little atom and a big atom ~ I have drawn it that way here just to be simple - and all of these 
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little barbells are on a cubic lattice but they are oriented at some angle to it, when I squeeze this 

stuff, it rotates. 

In those cases, when I squeeze it I get strains this way, I get strains this way, I get strains at 

odd angles, and I have a complete mess, in which case I need every single entry in that elastic 

modulus tensor to describe it, but I also get to extract tons of physics from it, if I can do it. 

Here is the tensor for a cubic-or-higher symmetry. As you keep reducing the 

crystallographic symmetry, you get fewer and fewer elastic moduli. 

[Transparency] 

So when you hit cubic, I have got lots of zeros in the problem, so you can see, for example, 

that a shear strain in the x-direction connects only to a shear stress in the x-direction, because this 

is a diagonal piece of the matrix. 

You can also see that I keep all the volume non-preserving stuff in one location, so it 

becomes very easy to deal with, and there are only three moduli, one shear modulus, one 

longitudinal wave modulus, and something that describes how much it bulges when you squeeze 

it, so for a cubic I am down to only three moduli. 

The way you use these sorts of things, if you want to do a computation ~ for example, let's 

say you want to compute the bulk modulus of an anisotropically elastic solid ~ what I do is I 

might take the stresses in the x, y, and z directions and set them to one, and then I solve these 

equations for the strains, compute the volume change, and I have got the bulk modulus. 

For example, a simple one is to compute the engineering modulus, Young's modulus, the 

one where I just stretch it one direction and leave everything free. There I have a stress in the 

one direction — here — and every other stress is zero. I have no shear and I have no stress on the 

other faces, so the shear strains are zero, I can solve these three equations here for the three 

unknowns, and, boom, out comes Young's modulus from the elastic moduli. 

It is very easy to deal with and I guess there are MatLab programs and all that to play with 

these. 

[Transparency] 

The key problem and the problem with dealing with resonances is the bulging. This makes 

the computation of resonances nasty, because if I want to measure the elastic properties of 

something, I kind of need to have resonances that access all of them. 

225 



In order for that to happen, an object has to be small, compact, aspect ratios near unity. If I 

have aspect ratios near unity, when I start it resonating it bulges and then necks down --1 am just 

showing a cylindrical resonator here. There is a substantial amount of energy in the bulging 

motion, which means that the frequencies now are no longer simply related. 

For example, if I have a short bar, the first half-wavelength resonance in it does not have a 

frequency that is half of that of one with two half-wavelength resonances in it, so the progression 

is no longer simple; every single mode needs to be computed. 

That is what we are going to talk about in the next section, the computation and actual 

measurements. I think I am going to take a break here for 10 minutes, and then we will start on 

the next part. 

DR. MIGLIORI: This next section is essentially required for resonant ultrasound. It has to 

do with the computational problem in some detail. It is interesting and it is important to see it, 

because it will make you aware of how complicated a problem like this can get and, also, how it 

is actually possible to wade your way through to a really nice solution. 

[Transparency] 

The computational problem itself is a massive computer problem. In fact, when Bill 

Visscher and I first started working this problem back in, oh, it must have been in 1987-1988, we 

had a Cray XMP computer and we set the program up in Fortran, which works fine and I still 

like it, in spite of the fact that it is out of fashion. 

It was written in Fortran fairly carefully and I will show you what was written in a minute. 

The Cray at that time was bought by the nuclear bomb designers to make bigger and better 

bombs, but every once in a while they would let us use it. 

We could run this code and it would take about a second per iteration to do this 

computation on what was then the most drool-inspiring computer in the universe. At the same 

time, we ran the thing on an 8-MHz IBM P.C.AT computer, with a 16-bit nice Fortran compiler 

on it. We thought they were the greatest things since sliced bread ~ actually, I never understood 

why sliced bread was great. It would take 12 hours per iteration. 

I now have this 600 Pentium III laptop computer with a nice 32-bit compiler on it and there 

you go, 1.2 seconds per iteration, same code, with minor, minor variations but, really, no 

different. That is my computation of how fast a modern P.C. is. 
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I am going to put off the motivation for the use of resonances and why we want to study 

elastic moduli until after I get through this computational section, because this starts to get to be 

really interesting and a lot of fun ~ honest. 

[Transparency] 

We are measuring resonances and right now I will just blow off the complication of what 

the frequency is. We are going to just pick something close to omegan and hope we have a Q 

high enough not to intrude on the data. 

By the way, you guys remember that there are lots of ways of measuring the Q, but you 

have to be careful to note whether you are looking at power or displacement, because there are 

factors of two floating around, and sometimes we will use the Q or the dissipation to extract 

physics. 

The basic route to solving this problem is not finite-element computations. We could do 

finite element, but I am doing a measurement that is good to a part in 106 quite often. You 

cannot, even on a modern - well, if the Los Alamos Blue Mountain machine actually worked, 

you still could not do a finite-element computation as well as you would like, that is, a part in 106 

errors require meshes that have 106 elements in each linear dimension, and the computational 

intensity of the problem goes like a cube of the length. 

But I can write down the Lagrangian for the solid and if the solid is homogeneous and it is 

continuous, it does not have to be isotropic, something really cool happens. So we begin with a 

Lagrangian, where we have a kinetic energy density and a potential energy density (notice that 

the elastic constants are now coming in), and I let the Lagrangian vary and look for a stationary 

point. 

[Transparency] 

I can then use Green's theorem to convert this volume problem to a surface problem, so 

now I have a computational problem in which all I have to do is get a bunch of functions on the 

surface of the object that I am measuring to show zero traction, that is, free surface, and obey this 

Lagrangian. That now becomes a much, much simpler computational problem. 

Well, I do not need finite elements — it is not simple by any means, but it becomes a very 

nice computation that you can do, and you can do it pretty rapidly. I am going to need to 

generate a complete set of functions to then adequately approximate a stationary Lagrangian on 

the surface of the sample, and the functions do not necessarily have to be orthogonal, which 
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makes it really easy, because you can choose the set of functions that you use to approximate the 

vibrations of the solid to match the geometry of a solid, for example, spheres, cylinders, 

rectangular parallelopipeds, whatever you like. 

I need a set of functions and I wind up, really, with a pretty straightforward set of equations 

to solve on the computer, a simple matrix eigenvalue problem, and that is not so bad to do. 

[Transparency] 

We have used trig functions for the basis set, cosines and sines, Legendre polynomials. 

[Transparency] 

And even simply powers of x, y, and z, depending on the geometry and the mood we were 

in. With solid-state systems that have orthorhombic, that is, all the angles are right angles or 

higher, symmetry, meaning orthorhombic, cubic, isotropic, the whole problem reduces to a set of 

block diagonal matrices, and you can do it very fast. 

[Transparency] 

So we are solving that eigenvalue problem that we extracted by finding the stationary 

points of the Lagrangian. That algorithm, as well as our Fortran computer program, are available 

to any U.S. citizen who asks, and I think we can ship them to non-U.S. citizens, but it is going to 

require about 80 pounds of paperwork (it did not used to). This is a big problem with this 

craziness. 

What I have just shown you — you have to think about this for a second - is a route to 

computing the normal modes of vibration of a homogeneous solid of well-defined shape with 

zero dissipation, but that is not what I want. 

I want the stiffness constants. So there is now an inverse problem. What I am really after 

is I want to take all the measured normal modes and compute the elastic moduli to produce this. 

This turns out to be a really snotty problem. There have been a lot of approaches to solving it. 

One that we use now is a modified, kind of steepest descent, minimization with, unfortunately, a 

fair level of operator expertise required when you are looking at 200-micron samples and you 

have absolutely no idea what their elastic moduli are. I will show you that in a second. 

So that is the route through the computational problem. 

[Transparency] 

Now I will go over some other details about the experimental situation in general. I want 

to try to compare ~ I am going back to hardware for a minute - the signal-to-noise ratios one 
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might expect in doing a pulse-echo measurement, you know, ping, time the pulse, measure the 

elastic constants to a resonance measurement. I am going to go through pieces of the 

measurement here on this slide and estimate signal to noise. 

In a pulse-echo system I want to measure elastic constants. The sound speeds are the 

square root of an elastic constant over a density, so if I measure the speed of sound and the 

density I can get the elastic constants pretty quickly. One way of doing it is to take a big block 

of material, polish the faces flat, glue a transducer on it, ping it, measure the time of flight, 

measure the length, I have got the speed of sound, I have the density, I have the elastic stiffness. 

Then you take the transducer and put it over here and you measure the next elastic 

constant, then here, then you glue on a shear transducer and you measure three shears, and then 

you cut the sample at 45° and you put them on, and pretty soon you have the whole elastic 

tensor. That is one way of doing it. 

That technique requires that I ping the sample and then wait and then time the response, so 

that is a pulse-echo measurement. When I do it, I might put 160 V into a 50-ohm transducer for 

1 nsec to generate a sound pulse. I could probably push pulse repetition waves up for small 

samples to 10 kHz, so the average power is on the order of a few milliwatts for this. 

In a resonance system I put 5 V into a high-impedance transducer, so I have the same 

average power in both cases; I am trying to be reasonably generous. Remember, an order-of- 

magnitude difference here probably does not mean much when we are all done. 

The measurement bandwidth: in a pulse-echo system, nanosecond pulse, 10"9 seconds, hit 

the sample. In order to have lots of accuracy, I had better be able to measure the time that I 

receive that pulse to 109 seconds. That means my electronics has to have a bandwidth of 109 

cycles per second, a gigahertz. The noise bandwidth, my electronics is wide open, I am looking 

at a whole gigahertz of Tom's noise there. So I have a problem. 

Resonance measurement: Actually, I am being very generous here to the pulse-echo guys, 

because if I were making a resonance measurement and I have, say, a Q of 10 , which is quite 

common (that means a megahertz resonance is only 100 Hz wide), I need to look at only a few 

resonances, maybe, say, 10 of them, for an isotropic material and they are each 100 Hz wide, so I 

really need to measure only about a kilohertz of the universe. 

It is very easy to get a small number there. The noise bandwidth for the resonance system - 

-1 mean, I have to measure, maybe, over a whole kilohertz, but what is even better is I can take 
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my time, I can sit there and measure at a frequency, step the system, measure again, so I can 

average as much as I like. I can actually make the noise bandwidth very, very small, but we will 

leave it at a kilohertz for the purposes of comparison here. 

Electronic noise: There is no good reason why these should be different, so I have not 

made them different and, in fact, although I do not quite hit 1 nV prHz on the system I built, I do 

do 3 nV pr Hz. There are good reasons for that. Those are about the same. 

Then I have the detection duty cycle. How long is it, how much of the time am I actually 

processing useful information? In a resonance system it is 100% of the time. In the pulse-echo 

system there are problems. You are really only acquiring information during ~ well, I do not 

know if I want to go into real depth here, but think of the following problem 

When I do not have a pulse present, look, I have pinged the system, boink, boink, when 

there is no pulse present, it is just as important as if there is a pulse present, so you cannot really 

say that your duty cycle is a nanosecond at a 10-kHz rate, but it is still not very high, so I have 

been somewhat generous here and put in .01. 

Now I can compute the overall voltage signal-to-noise ratio by combining all of these 

factors. You see it is that not different; resonances are better by a couple of orders of magnitude 

but it is not seven or six orders of magnitude. So resonances are nice and they help; if you are in 

a noisy environment you would probably want to use them, but they are not maybe as wildly 

good as you might have expected. I did this once before and got the wrong answer, so I needed 

to put a better answer up this time. 

[Transparency] 

Maybe measuring resonance is 100 times better than measuring a pulse-echo response in a 

system if you really look at it carefully ~ well, sometimes a factor of 100 is nice. 

DR. GARRETT: How do you factor in all the time it takes to unglue it and reglue the 

transducers? 

DR. MGLIORI: Thank you, Steve. Not only that, I have to make bond corrections, which 

means I have to think and I have to write something in my lab notebook instead of reading it 

from the computer screen. If I think, I could get fired, (laughter) 

No, I am paid only to fill out security plans and standard operating procedures. If I am 

caught doing any work, it had better be after hours, (laughter) 
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That was a rough description of signal to noise. There is a whole bunch of little details on 

getting resonant ultrasound to work. For example, I probably want elastic constants to a 10th of 

a percent when I am done, which means I have to take little 1-mm samples and get their faces 

parallel and perpendicular to a 10th of a percent, which is a micron. 

We could not figure out how to spend the government's money, even though we had plenty 

of it, to buy something that would do that, so we came up with a simple scheme. This is a Pyrex 

plate. These are gauge blocks ~ have you ever seen these in the shop? ~ you buy four sets of 

gauge blocks. You put the gauge blocks down on this plate and then you take your sample and 

you catch it in the middle ~ you see I can push this block and this block together ~ put a magnet 

under there and a little heat-sensitive glue and I can push those four things in to hold the sample. 

Then I can polish it on an ordinary piece of sandpaper, flip it over, and polish it again. 

Now I have two parallel faces. The problem is getting perpendicular. So now I take those two, 

bring them up, push in with the gauge blocks, and I get a perpendicular face. So pretty quickly, 

using $20.00 worth of stuff, we can do better than the the several-thousand-dollar polishing rigs 

that you may occasionally see for sale. 

Solving this problem got us from a nonworking experiment to a 10th-of-percent 

experiment, because if you make little errors in parallelism, these resonances start to cross each 

other, that is, the thing you thought was the 18th resonance is now in the 19th position. You 

completely misinterpret the spectrum. You try to fit it, you get big errors, you are dead meat. 

The technique actually will not do much worse than about half a percent. If it goes beyond 

half a percent, it instantly and nonlinearly scrambles and you get nonsense. 

MR. APOSTOLOU: How long does it take you to do one sample? 

DR. MIGLIORI: How long does it take me? How long does it take a new postdoc? How 

long does it take an experienced postdoc? Anywhere from an hour to a week-and-a-half. 

For example, it might take me a week-and-a-half, because I can work on it only about 30 

seconds at a time. For example, we did a measurement on Europium hexaboride, single crystal. 

The crystal was 200-microns thick, about 800 microns long, and maybe the other dimension was 

300 microns. That took us about a week-and-a-half. 

First, we had to x-ray-orient it to find the crystallographic axes. We had to then mount it, 

take that goniometer and polish one face of the crystal.   Then we had to remove it without 
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cracking it and proceed by making shims that were the right thickness, which we had to actually 

surface grind. But an ordinary piece of steel might take an hour or less; very easy. 

[Transparency] 

This is a typical, meaning the only, commercial room-temperature resonant ultrasound 

stage. There is a hinge here, so I can pick this up with my fingers, use a tweezers to put the 

sample in there, and I am done. That was the transducer-mounting problem 

You talk to the pulse-echo guys and that is why you see a lot of dust on their pulse-echo 

equipment after they get to play with one of these. 

[Transparency] 

The transducers are not quite trivial and, in fact, we had to spend a lot of time making sure 

that those transducers - remember, we have done a carefiil job in electronics design. We got lots 

of signal to noise. That electronics package will pick up anything those transducers produce. 

One of the things transducers like to produce is whatever happened to the sound that goes 

from this transducer through the base, up around here, through here, and back to here? It is very 

easy to get lots of signal when you do not have a sample. 

Also, if you are a commercial designer of electronics and you decide to build a resonant 

ultrasound system and you did not pay too much attention, you can also get signals when there 

are no samples present. One of the competing manufacturers did this by taking this 2 nV prHz 

receiver and sticking it inside the computer. 

We need to isolate the transducers themselves from their surroundings and what we used 

was a glass, a glass that is really a nice glass at low temperatures, namely, Kapton. It is a 

polyamide film, it is an orientational glass, its ultrasonic attenuation increases as you get it 

colder. Glasses tend to do that. 

For example, in fused silica the ultrasonic attenuation goes up by a factor of 200 when you 

cool from room temperature down to 40 Kelvin. This has to do with the fact that as you cool, kt 

starts to approach the energy required to reorient molecules in the glass and when kt equals that, 

they go crazy. You get big attenuation peaks. 

We used glass, namely, Kapton, and we glued small single-crystal lithium niobate 

transducers. These are piezoelectric, not ferroelectric, there are no domains, the hysteresis is 

zero, for all intents and purposes, and they have no dissipation, so they are strictly piezoelectric. 

You squeeze them, single crystal they make electricity. 
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That kept dissipation there down and then we messed that up by putting these plastic leads 

on it. Plastic leads turned out to be really important, because any metal conductor we use would 

carry sound right out the lead. Jay Maynard has been using polyvanilidine fluoride, which solves 

this same problem by using a plastic transducer. There are a lot of good ways to do it. This is 

the one we like and it has very successful. 

Then we have a backload and mostly we have using single-crystal diamond for the 

backload, because its sound speed is so high that when I bond it to this mess - the resonant 

frequency of this is very high and it does not really intrude very well. The little bit of damping 

here keeps the Q's, when we hit the first resonance, is low enough that we can usually see the 

samples and select them out, so there is some care in this design. 

[Transparency] 

We do a lot of low-temperature measurements. I have a 10-pF transducer there. That 

transducer is a millimeter-and-a-half in diameter. I have to get a signal from a 10-pF transducer 

up to 2 m of cable into the room-temperature electronics, another not-so-nice problem. 

Here is how this one goes. I put together an op-amp circuit and I choose things so that the 

noise voltage from this resistor at the frequencies at which I measure is completely short- 

circuited by the capacitive reactants. This, then, gives me DC stability for this op-amp so that it 

does not run away. If I moved this resistor, it would integrate its output and just run to the rails. 

I see some blank looks? Okay, I do not think I am going to give an op-amp course right 

now, but suffice it to say, when you design something with op-amps like this and you have a 

capacitor in the feedback circuit, it has no DC path. Therefore, the op-amp's input errors, for 

example, it might produce 25 uV of input offset voltage, which means it is a voltage that is 

always present and it then attempts to amplify that, although I have negative feedback meaning I 

am taking the output and making it talk to the inverting input of the op-amp. 

If I have no DC path, I cannot correct for that offset and it will just keep trying to remove 

the offset until it gets up to the power-supply voltage and quits, so you have to have a DC path, 

but I am trying to measure transducers with a few picofarads of impedance, so I cannot have 

more than 10's of picofarads here. 

If I have 10's of picofarads here and I am interested in measurements at frequencies of 

hundreds of kilohertz, this thing has to be 10's of megohms. What is the noise voltage off a 10- 
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megohm resistor? At order of 30 nV prHz, my bandwidths might be lots at these frequencies of 

kilohertz. That resistor produces tons of noise. 

As long as the frequency at which I make the measurement is such that the impedance of 

this capacitor is low compared to the resistor, I will not have a problem What happens is at low 

frequencies I do see this and all my electronic sees is this enormous low-frequency tail to the 

noise, but as soon as I get into the 10's of kilohertz range, this thing shunts the noise voltage 

generated by this resistor and it starts to look as if I have a pure capacitance in there. 

The key is that this op-amp has to first order an infinite gain. This terminal is connected to 

the ground, zero voltage. The op-amp is going to do everything it can to keep this terminal 

always at zero voltage, but the transducer is generating charge as it flexes, say, at hundreds of 

kilohertz or megahertz frequencies. 

The transducer pumps charge down this cable here trying to raise the voltage of the center 

conductor, but the op-amp says no way, it sucks the charge off this way, keeping this at zero 

voltage. You would say to yourself, gee, it does not do anything but, in fact, it does. 

When it pumps charge this way, this stays at zero, this thing has to start following the 

charge, so the voltage out here is proportional to the charge transferred in here, but there is a 

really cool thing that happens. The op-amp is keeping this at zero voltage all the time. The outer 

part of the coaxial cable is at zero voltage. So what is the difference in voltage between the 

center and the outside? Zero. 

As long as the op-amp is fast enough to keep this process going, the cable capacitance does 

not short the transducer out, so I can get my 10-pF transducer, I can get the full signal right up to 

room temperature. There are lots of other tricks like this in the electronics and some of them I 

am going to show you in the last part of the talk. 

[Transparency] 

Finally, there are bits and pieces of black art floating around. This is a measurement on 

some material (I forget what it is). I made a measurement. I have measured these resonant 

frequencies here and I attempted to do a fit to elastic moduli and I find there are a couple of 

resonances that just have these great big fat errors. Oh well, what did I do wrong? 

If you look at it very carefully, you can see that this resonance really corresponds pretty 

well to the next one down, and this one here, and so on. What happened is I missed a resonance, 
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something went wrong, there was a node on the transducer for a particular mode; I swept right 

through it and never saw it. 

But the pattern here tells me what to do. What I do is I tell the computer, well, I missed a 

resonance, so we will just put in a zero there and tell it to ignore that in the computation. Now 

all of a sudden I get everything lining up and my errors go from this to this on the same data set 

just by my guessing that at that point I missed a resonance. 

There are several pages in the book on how to make that guess better, but this is an 

example of the primitiveness of the computational procedure, at least the way I do it. In the end, 

we win, and we will go back to those beryllium data again. 

[Transparency] 

I want you now to look pretty carefully at this column ~ right here. These are percent ~ let 

me say it, again — percent errors between measured frequencies and the computer-generated fit 

by juggling elastic moduli -- .09%, .02%, .01% (there is a bad one at .02%). That is what this 

thing does. 

[Transparency] 

So we can use it to do some physics. This was a measurement' of a colossal 

magnetoresistance material and it was quite interesting, because this material was rhombohedral. 

Can anybody tell me what a rhombohedral crystal structure looks like in this room? 

DR. GARRETT: The same as it does outside. 

DR. MIGLIORI: Excellent, (laughter) 

[Transparency] 

Rhombohedral: I take a cube and I take it along the body diagonal and I stretch it, so 

rhombohedral is a cube with the body diagonal stretched a little bit. The crystallographers show 

us the crystal structure of this system as rhombohedral. 

You look at it and it is a mess, because they always draw it — in the crystallography books 

they will draw the crystal structure in such a way that its "rhombohedralness" jumps out at you, 

but what they do not tell you is that it is only maybe 4/10% distorted from cubic. 

I do not have a code to do rhombohedral very easily and I probably need to measure 30 

resonances to get rhombohedral elastic constants if I wanted to use that messy code. So we tried 

to fit a cubic. It fit perfectly. We got sub-10th% of a fit of cubic elastic constants for the system. 
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What we found, which was very interesting, is that the single crystal had stacked up with 

the rhombohedral axes located randomly, just like the domains in your ferroelectric, but the 

distortion is so slight that even over macroscopic distances the net displacement of an atom from 

perfect cubic symmetry was very small, a fraction of a unit cell 

That turned out to be really important, because it showed that there was an instability to 

that lattice that helped to understand a lot of the properties. For example, application of a 5-T 

magnetic field with shifting elastic constants 15%. What it was really doing was realigning some 

of these little rhombohedral distortions, we think. 

A measurement of the full elastic tensor with resonant ultrasound told us that this 

rhombohedral system looked cubic and that, therefore, it had to have a fine-scale, very weak 

domain structure with a very small energy difference between these and, therefore, there was a 

mechanism for clicks in elastic constants as you apply magnetic fields. 

To do that with pulse echo, you would not have found out, because either — pulse echo 

always gives you an answer, I always get a speed of sound. I do not know if the crystal was 

rhombohedral or cubic, but resonant ultrasound will say if this were rhombohedral, and 

significantly so, I would not be able to fit cubic elastic constants to it. 

I might have missed that whole point and I did get the entire elastic tensor, so I noticed that 

in certain directions in the magnetic field there were no effects on elastic constants and from that 

we can kind of eke out what the physics was. 

[Transparency] 

This is a martinsitic transition in a gold-zinc single crystal. These martinsitic transitions 

are sort of an ordinary phase transition, except what happens is some part of the crystal starts to 

go from one crystal structure to another. It generates a strain field, which then hangs up the 

transition nearby until the temperature drops a little farther, at which point this one goes and now 

builds a bigger strain field and forces the transition to hang up a little more. 

You lower the temperature, and so the whole transition takes a while to do and kind of 

makes a mess ultrasonically of it, but here is just an example of a bunch of resonances measured 

on this crystal as a function of temperature and then it goes martinsitic and they go through the 

floor; you get large shifts. I am just showing you bits and pieces of measurements. 

[Transparency] 
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Here, again, was the superconducting transition in niobium. That is interesting, because - 

was it Peppard? maybe ~ in 1955 did an analysis of what happens to the elastic constants at a 

superconducting phase transition. 

Superconductivity, the old-style one, was a perfectly good sealer quantity. There were 

effects in the specific heat, and so on, but there was no order parameter that had a direction to it 

in a simple type I superconductor and, therefore, there was no expectation that if I sheared the 

superconductor this way, or this way, that I would have anything different happen, it should be 

the same, this shear and this shear, all the physics should have been the same. 

From that you can bootstrap yourself into realizing that the elastic moduli cannot have a 

discontinuity at that phase transition, they can have only a break in slope, and there it is, a break 

in slope of the shear modulus, and about the right size, and so on. 

[Transparency] 

Another interesting thing that we did was to attack the electronic subsystem in a narrow- 

gap semiconductor. The compressional stiffness of a solid also includes compressing the 

electrons as well as the atoms and the vibrations. 

What we did here was to assume that this was a narrow-gap semiconductor, so it had 

electronic densities of states just on either side of a Fermi energy, if you will, that were very 

narrow and peaked. From that you can compute the elastic constants that you would expect. 

When we fit that, we found that there were very narrow peaks in the electronic density of 

states along the gap. We could fit it very well to a function that generated this and we were able 

to predict quantitatively the electronic density of states in this system. It disagreed completely 

with microscopic photoemission measurements and we were into a little controversy. 

Those measurements were then redone by someone at Stanford and they found, by going at 

very high resolution with their photoemission spectrometer, these two peaks in the density of 

states that we had predicted based on a benchtop classical physics measurement. 

[Transparency] 

That was kind of the nuts-and-bolts and a little bit of what we measured and at this point I 

am going to start on the real motivation for making resonant ultrasound measurements and we 

will finish up with electronics. 

[Transparency] 
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I am going to start with a review of statistical mechanics, my favorite thing. This stuff is 

going to be applied to plutonium. I am going to convince you that the study of acoustics is going 

to tell us how to understand this mess. 

These are the crystal structures of plutonium metal between room temperature and about 

600 Kelvin. It starts out at room temperature in a monoclinic, which is a kind of sheared strange 

crystal structure with 16 atoms per unit cell required to describe this element. 

You warm it up to about 100 C. and it goes to a body-centered monoclinic crystal structure 

with 34 atoms per unit cell. You warm it up some more and it goes orthorhombic, which has 

now everything at least at right angles but none of the axes are the same. 

You warm it up some more and it goes face-centered cubic. Now we are starting to get to 

crystal structures that you can actually deal with. Finally, you warm it up again and it becomes 

body-centered cubic just before it melts. 

All right, that is about as many phases as anything but cerium has and it is a puzzle, it is a 

very big puzzle that is not understood. Most metals will have two phases, maybe fee and bec and 

very few metals have anything lower in symmetry than hexagonal; certainly monoclinic is a 

mess. 

There are other very weird things going on with plutonium. For example, I am up at a 

moderate temperature and it becomes face-centered cubic. Now I start to warm it and the 

volume contracts on warming. Throughout the entire existence of this phase the volume thermal 

expansion coefficient is negative. 

Then it makes a phase transition to body-centered cubic. There is a big 3.5% volume drop 

when it heads for body-centered cubic. Now the thermal expansion coefficient turns positive, a 

nice small positive value. When it melts, the volume drops another 3%. 

Studying plutonium is an intellectual puzzle that we have been denied, because of the 

nuclear weapons problem, until recently, when this metal has been made available to us to do 

basic research. This is a fantastic problem It has every piece of weird metallurgy that you 

might find in six or 10 or 20 other systems, all combined in one system. 

Except for the fact that you have all those guys with machine guns watching it, it is a great 

metal to study. 

[Transparency] 
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I am going to show you that the single most important tool for studying plutonium is 

acoustics, period, no question. To do that, I need to lead you through statistical mechanics. 

It is easy to forget what is going on here, because people talk about things like "free 

energy." I have absolutely no idea why they came up with that phrase. I know exactly what it is, 

I know exactly what it means, but I do not understand where those words come from and I think 

it has to do with the Kramers-Kronig problem. You know, when you get your Ph.D. they take 

you into a little room and they give you the secret decoder list for all these physics phenomena, 

like "this simple concept is free energy," "that simple one is Kramers-Kronig," and you are not 

allowed to tell anybody else. 

But we are going to get through this, so I think you will at least have a gut-level intuitive 

understanding of free energy, and I need to get there so I can get to ultrasound. To get there, I 

have to start with something simple and what it is going to have to do with are numbers, numbers 

of objects. 

We are going to look at some really simple system like flipping coins, and Jay Maynard is 

going to let me get through this without throwing oranges at me. We are going to look at 

something really simple, like a few coins that we are going to flip. Then we are going to imagine 

that we can extrapolate this to 10 of the 22nd objects. What you will find is that approximations 

that are crude and very weak for 8 coins become so close to exact for 10 objects that we are 

very happy with the problem. 

[Transparency] 

We will start doing a little statistics, first, and kind of easy statistics. We are going to flip 

coins. I have 8 coins and I flip them and I look at what I have on the table. Sometimes I get one 

head, sometimes I get zero heads ~ 1, 2 ~ so here is the number of heads. I could get 0 to 8 

heads. 

Then I look at how many ways I could get zero heads. There is only one. All the other 

coins have to be tails, but there are 8 ways I could get one head to show. The first one could be 

head and all the rest tails or the second one could be a head and all the rest tails, and so on. So 

there 8 different ways of getting one head and there are 70 different ways of getting 4 heads. 

If I have no reason to believe which particular throw will produce what, I have to assume 

that I sample all the possible arrangements equally. When I do that, I find that, on average, 70 of 
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my throws will be equal numbers of heads and tails and then 56 out of every 256 throws will be 

5 and 3, and so on. It is a very simple calculation, you guys can all do it pretty easily. 

I get a distribution that tells me what all of the states of this system are and how likely it is 

I will get them because I see how many possible ways there are of getting each state of a given 

parameter, the parameter being the number of heads. 

Let's see, 70 out of 256 is 40% percent of the time you get half and half and then it 

decreases. The interesting thing to note about this system that has 8 objects and 256 possible 

states is that the least probable state has a probability of 1/256 of being observed, and the most 

probable state has a probability of 70/256 of being observed. That is almost two orders of 

magnitude difference; that is not very much. 

I do not know how carefully I am going to show this to you, but as the numbers get much, 

much bigger, the sharpness of this distribution function gets much sharper as well. For example, 

if I have 1022 coins, there is still only one way of getting all heads, but there is of order two to the 

1022 ways of getting 50-50. 

So the ratio of the peak height to the wing is very much, much greater, and I am starting to 

get numbers whose exponents have exponents in them. When I get to big numbers, this 

distribution becomes extremely sharply peaked, and stuff like that. You remember all that from 

stat mech. 

[Transparency] 

There is a ton of incredibly clever math that goes on. For example, the number of states 

with N heads, if N is the total number of coins, and n is the number of heads, then the number 

that have n heads is this thing here. Let's say I want 3 heads, so I have 8 choices for the first 

head, 7 for the second, 6 for the third, but there is 3 x 2 x 1 ways of arranging those. The answer 

should be 8 x 7 x 6/3 x 2 x 1. 

Well, 8 x 7 x 6 is this piece here, and 3 x 2 x 1 is that piece, so that gives me the number of 

states. It also turns out that this is the pre-factor in expanding A+B to the end. I can see right 

away that if A=B=1, 1+1 is 2, 2 to the n, t is 256, the total number of states we have and that is 

just the sum of all these factors. I always like these things. I do not know how they connect up 

so nicely, but that is wonderful. 

There are other fancy math tricks in stat mech that are nice, but when we start to push these 

to large numbers, we are getting numbers like this.    One of the interesting things to ask 
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yourselves is, well, I now know how to calculate this probability distribution and with a few 

approximations I can do it for 10   objects. 

If the most probable state has a probability P, what state has a probability P/2? Forget what 

the probability is, just ask how far do I go on the distributions before is drops in half. It turns out 

that if you work this problem you get a square root into it. 

In 1022 flips it would be reasonably likely to get 10nth more heads than tails. That seems 

like a big number, but 1011 out of 1022 is only a part in 10nth, so the errors in my experiment 

when I do 1022 coins are parts in 10nth. Even at Los Alamos we have trouble measuring 

physical quantities to that accuracy. 

Big systems, the effects on large numbers: It is going to clean this problem up. The 

statistics produce things that we can count on to be essentially exact. First rule: All the numbers 

are going to be large. We will make it so. Even with nanomaterials we can easily get 10 or 10 - 

108 particles in little tiny masses and springs fabricated on silicon chips. 

It turns out the other half of the errors, instead of being square root are of order log, so the 

log of 1022 is 51, which is pretty small compared to 1022, so once we hit these size numbers, we 

can do almost anything we want, as long as we introduce operations that will produce errors like 

square roots or logarithms. 

[Transparency] 

Next rule: Every system has lots of possible states, the coins on the table. For the coins 

there is no reason to expect that you would get any one particular of those 256 states over 

another. Of those 256 states, 70 of them have one property in common but they are still 

individual states, so every one of those states is equally likely. 

Physical system explores, as time progresses, all of the states that have an energy very near 

to the energy that it has. I am using "very near," because I am going to get tied up in the 

difference between classical and quantum statistical mechanics and I cannot, for the life of me, 

understand classical statistical mechanics. The quantum stuff is infinitely easier, because I can 

count everything (I will show you that). 

Here I have lots of different possible states and we are going to assume that the system 

explores all of the ones that have equal energy. There are circumstances where this so-called 

ergodicity hypothesis and those have to do with physical constraints, like sometimes the particles 
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are in a box, so you cannot have them explore a state in which they are in a spherical volume 

because of the constraint, simple things like that. Then there are more complicated ones. 

[Transparency] 

Then we can do the classic state mech computation: I have the particles in a box, what is 

the probability that any atom of gas is in the left half of the box? It is a half. What is the 

probability that half of the 1022 of them are in the left half? It is a half to the 1022. What is the 

probability in the life of the universe that I will see that happen? 

The probability that any one atom of gas is in the left half is a half. The probability that all 

of them are in the left half is 2 to the -1022. The number of times that we observe this happen in 

the entire life of the universe? Let's say that we do the experiment at a rate of 10nth times per 

second, relating to the collisions between gas molecules. 

So we try the experiment 10nth times per second, which means that in the life of the 

universe we will try it 2 to the 402 times. It looks like a big number, yes? The probability is 2 

to -1022 that they will all be in the left half, so in the entire life of the universe we do not even 

come close to seeing this happen. 

It turns out, though, if you start to ask how many boxes are in the entire universe, so that 

the number of times you try it on each box is 1011 but there is something of order 1060th boxes, 

there may be a chance. But you cannot say every once in a while you are going to see this box 

with everything in the left half; the probability is not different in the entire life of the universe 

than it is one second to any appreciable degree. 

Okay, big numbers, nothing improbable is going to happen. That is really important. 

Last rule is that the total number of states is a very strongly increasing function of the total 

energy and I can do this only with the quantum system, so let me show you the quantum system, 

because I do not know how to do it with the classical one. 

[Transparency] 

Here is the quantum system It is three harmonic oscillators sitting there. Harmonic 

oscillators have equally spaced energy levels, so this is at ground state, first excited state, second 

excited state. The frequency of the oscillator tells me the energy separation, so as I add a 

quantum of energy, h bar omegan. I go from here to here. When I add a second h bar pmegao, 

exactly the same energy, it goes to here, and so on. It always exhibits the same frequency. 

[Transparency] 

242 



If I have two quanta of energy in my system of three harmonic oscillators, then there are 

six possible states. I can have two quanta in the first, zero in the second, zero in the third, and so 

on, six states. Now I put in three quanta of energy. It turn out I now have 10 states -- just count 

them up. You see how easy this is in quantum mechanics, I can count the states, I just know 

what they are. 

If now I have a big system that is composed of groups of these three harmonic oscillators 

and I add energy to it, if I increase the energy by roughly 10%, then each subsystem has its 

energy increased by roughly 10%, on average, and, therefore, it has 10% more states than it did 

before that it can access. 

If there are 1022 of these, then I take 10%, which is 1.1, to the 1022 and that tells me how 

many more states I have when I added a little energy to this. The number of configurations, the 

number of states, of systems, is a very strongly increasing function of energy. 

[Transparency] 

Okay, I am set. 

Let's just do a little manipulation now. I have a large system whose total energy is E ~ 

wait, let's stop and have a break and we will continue afterward. 

DR. MIGLIORI: Actually, we have a chunk of copper here and we have drawn in Magic 

Marker a little line on it. Everything outside the line is part of the larger system. Everything 

inside the line is part of the smaller system. We noted before that as I increase the energy of a 

system, the number of possible configurations increases wildly and, correspondingly, if I 

decrease its energy, it drops rapidly. 

I might ask, what is the probability that the smaller system has some energy El, whatever 

that energy is. It is proportional to the number of configurations that the smaller system has with 

energy El times the number of configurations that the larger system has, if it has an energy E-El 

- an absolutely trivial statement. 

[Transparency] 

But now I want to know what is the most probable energy El that is in the system. What I 

do is I try and find the maximum and the probability P, so I take the derivative of P with respect 

to the energy of the smaller system, set it equal to zero, and I get this curious piece here. 

I notice that d log omegai dei equals d log omega? de-E2, which is the same as the energy 

of the smaller one.  So I found a property that, if I put these two systems together, they have in 
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common; that is, the probability distribution is very sharply peaked. I am going to see in the life 

of the universe only the most likely configurations, meaning I am going to see the group of 

configurations near this particular energy, because everything else is in the tails. 

When that occurs, it is a particularly interesting state. It says that the fractional change in 

the probability of one of the small system, if I remove energy from it, is matched by the 

fractional change in the opposite direction of the probability of the larger system as I added to it, 

fractional change. 

That says that these quantities are the same if I look at the system and let it equilibrate, wait 

for a long time. From that comes the definition of temperature. It is d log omega de, the inverse, 

with a k Boltzmann in front of it. That is the fundamental definition of temperature, not kinetic 

energy, not anything else. It is related to the derivative of the logarithm, the number of 

configurations with respect to energy. 

Then we can define entropy as the logarithm of the number of configurations and that is 

pretty cool, too, because that is a way of making an extrinsic quantity of entropy. 'That is, two 

pounds of butter have twice as much entropy as one pound. I did that out of things that are being 

multiplied together. Remember, the probability is the number of configurations in the smaller 

system times the number in the larger, so I now figured out, using logarithms, how to make an 

additive quantity of things that are multiplied together. There is temperature and entropy. 

[Transparency] 

This is all very puzzling, because the net result of this is that the universe behaves in a 

pretty strange way. Let me give you a simple example. I have a warm glass of water. I cannot 

tell because I am always looking at the most probable configuration, whether 10 minutes ago 

that was a warm glass of water or it had hot and cold water poured into it and they have mixed. I 

cannot tell what that system looked like 10 minutes ago. 

But every single physical law that goes into describing that system is time-reversal 

invariant, so something went wrong somewhere. In fact, I have taken a quote from Landau and 

Lifshitz that really describes this, and you can read it for yourselves, but they and other people, 

myself included, believe that there is some fundamental thing very strange about that particular 

property that defines an arrow of time. It tells you that the entropy is always increasing, because 

whatever I do, that probability is always heading toward the maximum value as time progresses. 
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But let me use it for a second now that we have that. I will do a simple Taylor expansion. 

I have a system with an total energy E and a smaller system with energy ej. I want to know how 

many configurations the larger system has as I juggle energy into and out of it, so I will Taylor- 

expand it, so log of omega of E-ej is just log of a system as if it had the total amount of energy 

minus d log omega de;. A simple manipulation tells me that the number of configurations with 

energy E-e;, that is, I have taken from the bigger system, over the total number of configurations 

of the big system is the Boltzmann factor. 

So now I have the Boltzmann factor out of this simple thing. To get actual probabilities 

from number of states, I simply have to normalize it, so now I just sum over all the possible 

Boltzmann factors, and I get the very famous partition function. So just this trivial manipulation 

with flipping coins and saying we are going to see the things that are most probable, and the 

large numbers, got us the Boltzmann factor and the partition function. 

[Transparency] 

The partition function describes kind of the number of configurations times the energy of 

every possible configuration that the system has; that is, instead of summing over every possible 

energy, I might group systems in different energies. For example, water has a certain energy per 

atom and ice has a certain energy per atom. 

I will say, for the most part, every configuration of ice has the same energy per atom and 

every configuration of water has the same energy per atom. I am going to be off only by the 

square root of something like 1022 or the logarithm, so it is good enough. 

I do that and I will rewrite that partition function as the number of systems that have energy 

e* times the probability of finding each of those systems with energy e*. Now I am going to 

further collapse the whole mess by saying that distribution is so sharply peaked that, in fact, I 

observed only one energy, E bar, and there are omega states with that energy and everything else 

is negligible, and those states have a probability E-e bar/kt. 

From this I have got the free energy ~ here it is. I just make this thing equal to the E-free 

energy/kt. If I take the logs, I find out that the -kt log z, the partition function, is the energy -T 

times the entropy, it is the free energy of the system. If I exponentiate the free energy, I get back 

to this piece here. 

This is really important to look at, and let's look at it down here even more. The partition 

function kind of tells me how many states are water and how many are ice. At any temperature, 
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I do not care what it is, let's say I am at 800 C, there is a probability that this system is existing 

as ice, as water, and as steam. How likely is it that it exists as ice? 

The number of configurations at 800 Kelvin of ice is so small compared to the number of 

configurations of steam that even though the system is fluctuating into that over an infinite 

amount of time I very rarely see it, so it looks like steam. 

As I get it very cold, the probability of steam is so low that even though steam has lots and 

lots of configurations, this weighting factor makes it so improbable that I do not see it, but there 

is a temperature at which even though liquid water has a higher energy per atom than ice, 

therefore, it has of order that energy difference to the 1022 more configurations, but every one of 

those configurations is less probable by E-ewatei/kt than for ice. 

But there is a temperature at which the huge number of configurations of water matched by 

the fact that they are less probable equals the fewer number of configurations of ice, matched by 

the fact that they are more probable, and that is the phase transition temperature and that is what 

the free energy is good for, and that is it. 

Our job with plutonium and everything else is to understand the bits and pieces that go into 

this. They are almost all the sound speeds, that is what controls it. 

[Transparency] 

Phonons: Unlike Tom's problem, we are going to have a finite number of modes when we 

are done with this. Solid material: I am going to model it in ID just to make it easy. We will 

have a big long string of masses connected by springs, so the "..." means this thing going on 

forever. We solve that problem by setting up F=ma. 

[Transparency] 

Here it is. We have a discrete problem. We have discrete masses and discrete springs, so 

the displacement of the ith mass and the ith-1 mass, and so on, come into it. We find that the 

solutions are sine waves. The dispersion relation for this long chain of masses and springs is 

sinusoidal in the k vector, where k is 27i/lambda. 

Sine wave is linear at very low frequencies. Those are the sound speeds, d omega dk of the 

speed of sound at low frequencies. At very high frequencies it flattens out. 

[Transparency] 

Here is a picture of a set of dispersion curves. Here is omega as a function of k. Every one 

of those is a normal mode of the system, every normal mode acts like a harmonic oscillator. All 
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we have to do is figure out how to calculate the entropy of a simple harmonic oscillator. Add 

them up over every single vibrational mode in the solid and I know the entropy of the solid and 

the energy. 

It turns out that in plutonium or steel or nickel, at 800 Kelvin, 95% of all the physics is the 

vibrational entropy of the solid. That is what is going to control the phase transitions, and I will 

show you how in a second. Let me hit this for a minute. 

[Transparency] 

We are going to dot our i's and cross our t's. The average quantum number for each normal 

mode can be found from the partition function by just noting that is the normalization factor, I 

want to find the expectation value of N. I put in the weighting factor, sum over all the modes. 

Because the modes are equally spaced, I can do the sum in closed form and if kt is much less 

than the frequency of oscillations of any of the modes, then approximately the average quantum 

number is kt/h bar omega. Modes oscillating at h bar omega ought to all have kt of energy, and 

Tom told us that this morning, therefore, the quantum number is about kt/h bar omega. 

The energy is h bar omega times the quantum number plus the zero point energy, and that 

has to be equal to kt. That all works out. 

[Transparency] 

The key point is that TS, the piece in the free energy that determines the number of states - 

not the probability but the number of states - of any particular energy is kt times 1 plus the log 

of the quantum number. So now I take every single mode. Here is a mode, here is a mode, here 

is a mode. There is a discrete number of them because there is a discrete number of atoms in the 

solid. 

For each of those modes I compute the frequency. I then compute the log and I use that to 

compute TS. In fact, this computation from the measured phonon dispersion curves that you get 

from ultrasound for an insulating solid produces specific heat numbers that are better than the 

measured value, more accurate. 

But more importantly, it is going to tell us if we change the vibrational frequency spectrum, 

what is going to happen, and that is what we are after. Before I go on, this was computed for that 

simple mass-spring system. I can also take the mass-spring system and add second-nearest- 

neighbor springs. When I make those positive, I get a dispersion curve that looks like that. If I 

were to make it negative, it would go like this (which I forgot to put on this picture). 
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We made some attempt to use sound speeds in plutonium, very preliminary, and neutron 

scattering measurements, very preliminary, to generate dispersion curves for plutonium 

[Transparency] 

Here you can see it. There is the second-nearest-neighbor piece with a positive spring 

coefficient. Here is the second nearest neighbor piece, with a negative spring coefficient. Those 

are different mode types, shear compressionals. 

DR. GARRETT: Aren't you worried about scattering neutrons off plutonium? Isn't that 

kind of a bad thing to do? 

DR. MGLIORI: The problem is that you cannot do it on Pu-239. The absorption cross- 

section is so high, you cannot get enough neutrons to detonate a subcritical mass, but the 

absorption cross-section is infinite. You actually have to use Pu-242 for the neutron-scattering 

experiment. 

It is very amusing, there are only a few pieces of 242 around ~ anywhere. It generates the 

most amazing fights among scientists as to whose Pu-242 it is and which experiment they get to 

do, but I think I won about two weeks ago, so it is mine and I get to do what I want with it. That 

is a good point. 

These indicate different directions in the solid, 45°, 90°, but we are getting a picture of it. 

[Transparency] 

What is really going on? Two phases of plutonium 

— look at this for a minute. This is face-centered cubic, except I have drawn it rotated 45°, 

so it looks like body-centered tetragonal. This is exactly identical to a face-centered cubic solid. 

That is one phase of plutonium. 

Here is body-centered cubic. That is another phase of plutonium. Look what happens 

when I squeeze this. It becomes that. So try this experiment. I have a single-crystal plutonium. 

It is face-centered cubic and I am holding it in my gloved hands inside the glove box with the 

guys with the machine guns behind me. 

There is no stress on this face, these faces, or these, or these. It is cubic. Now I squeeze it. 

I squeeze it so that the ratios of the legs change by the square root of two, making it body- 

centered cubic. Now it is body-centered cubic but I have no stress on this face, and no stress on 

this face. What is the stress on these faces? Zero by symmetry. 
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When I squish this stuff, I am compressing this metal and it goes "mmmm" and then 

"voompf" and when it reaches dec it stops, there is no force. That is called a Bain route. That is 

a very soft route. It can fluctuate into that route, and I am starting to develop a theory of 

negative volume expansion, because it appears that the bec phase has a smaller volume and it is 

fluctuating into that at higher temperatures, so the volume is decreasing. 

DR. GARRETT: But there is an activation energy. 

DR MIGLIORI: There is an activation energy but I can actually, from the phonons, start 

to compute it. 

[Transparency] 

I just wanted to show you that route, because it is very interesting, but the other thing that 

is interesting is that in bec plutonium I have not figured out how to draw it, but it turns out there 

is a bunch of ball bearings that are just touching each other, so they are kind of rolling like this. 

If I look at the cubic crystal and I run a shear wave along a face diagonal, it is as if I am 

moving the ball bearings like this. There is essentially zero shear stiflhess. Got this? The shear 

wave speed along the face diagonal is almost zero in many bec materials. It is not known in 

plutonium but every other bec material has maybe 5 to 10 times lower shear wave speed in that 

direction than it does along an edge. 

That means that all the normal modes ofthat system are lower in frequency associated with 

that mode. That means it has lots of entropy, lots of states; if kt is large, your average quantum 

number is large. If the quantum number is large, the entropy is large. 

This system has higher energy but it has this soft mode, which means it is very probable — 

I mean, you can get tons of them, millions of configurations. The theory that I am working on 

now, which appears it is going to yield, is that this phase is strictly a result of the fact that we 

have a lot of entropy in that phase because it has soft elastic constants, so it is more probable and 

it forms. 

There are 20 years of literature claiming that the F electrons in plutonium do something 

extremely weird to stabilize this phase and they have to do very strange things that are not 

probable and they have not done this computation. We are about to do this measurement 

completely using neutrons and resonant ultrasound and get the numbers. 

To give you an idea of what the numbers are, TS ~ over here ~ the best we can compute 

from our preliminary dispersion curves is about 730 meV/Kelvin.    The latent heat is 20 
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me V/Kelvin. That means that a change in the average sound speed enough to make the log of 

that sound speed change by 20 parts out of 730 could completely account for the phase transition 

of plutonium without invoking a single piece of weird F-electron physics and band structure, and 

I think we are going to pull that off. 

[Transparency] 

I am going to show you just one thing here and then we will go on to electronics. These 

are a bunch of measurements ~ actually, there are more now — that we have made on polycrystal 

plutonium samples using resonant ultrasound. The only measurements that ever agree with each 

other are ours on different samples from time and one other, Hassel Ledbetter at NIST, who 

made 7-mm-long single crystal at Rocky Flats before Rocky Flats turned into a Superfund site. 

Those numbers and ours agree and everybody else is scattered all over the place, so we are 

getting a handle on it and I think we will be able to put this to rest using acoustics to do, I think, 

first-rate solid-state physics. 

Okay, that is enough for that. 

[Transparency] 

I now have color, again. I am going to talk a little bit about instrumentation, noise, and 

stuff like that. A lot of this was supported by the National High Magnetic Field Lab in which I 

head an instrument design team. For some strange reason they are actually paying me to build 

electronics, something I enjoy a lot. 

[Transparency] 

The problem with noise interference, et cetera, is that you can only make things worse. 

That is the best you can do. I did not put the noise current in here. Anything you do will make it 

worse. Your job in getting data from your system into your hard disk is to make it only a little 

worse and you have to decide how. Tom has covered this stuff beautifully — I am going to talk 

about that. 

[Transparency] 

Let's go back to Tom's picture of op-amps, for example. I am going to show you one way 

of screwing things up. It is amazing how similar our viewgraphs get to be. Here is a bipolar op- 

amp, CLC-425. This has 1.05 nV prHz, but it has a lot of current noise. Here is a JFET op-amp. 

It has 6 nV prHz input noise but almost no current noise. We are going to hook it up to a 

resonant ultrasound transducer in a second, but let's look at the curves first. 
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Here is the voltage noise, 1.05 nV prHz. It is flat with source resistance. Here is the 

current noise. It is just the noise current into the source resistor, so it proceeds linearly with 

source resistance. 

Here is the Johnson noise from the source resistor, so where do you want to use this op- 

amp? It would be really nice to have the noise dominated by the Johnson noise, and that means, 

as Tom correctly points out, you do not pick it here, you operate anywhere from the point where 

the Johnson noise is bigger than the voltage noise to the point where the Johnson noise is bigger 

than the current noise through the source resistor, so I have a huge wide range for this very fine 

bipolar operational amplifier. It looks cool. 

Now you go to a JFET input op-amp, an LT-1169, which is a particularly fine high-speed 

one. I do the same plot. Voltage noise is much bigger, 6 nV prHz. Current noise is really tiny, 

so I can off to 10 gazillion ohms and still be okay. 

I now have a very long range where this amplifier is just great. Which one do I use? Six 

nV prHz or 1 nV prHz with the transducers I am using? You had better know what the 

transducers do, because here is what happens. I did not actually do this, I computed this, and I 

knew what to use beforehand, but I made this viewgraph by substituting one for the other, just to 

see what would happen. 

[Transparency] 

This is a 10-pF transducer into one of these op-amps. Here is what happens. White noise 

is good. Yes. Here is what the system produces with no signals. It is just wonderful and that is 

a random spike, somebody turned on a light switch, or something like that, we pick up 

interference, so we get white noise. 

Now we hook up a resonator, a little sample, with that very low 1.05 nV prHz bipolar op- 

amp. Here are the resonances ~ pretty crummy looking compared to the 6 nV prHz but no 

current noise JFET op-amp. So there you go. You can see this had lower voltage noise than this 

but the system noise overall, because I took care to compute impedances and current noise, I do 

lots better with that. 

But if I am looking at 100-ohm source impedance I am going to win with this one. 

Anyway, just a graphic illustration of what to do. 

MR. GLADDEN: What was the source impedance for that one? 
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DR. MIGLIORI: It is a capacitive-looking transducer, a lithium niobate single-crystal 

piezoelectric transducer, so if you look here from 20 to 140 kHz, the impedance is changing 

linearly with one over frequency. 

Pulsed magnets: I need to get electrical resistivity out in 16 msec. Resonant ultrasound: I 

need to make, say, 600 lock-in amplifier measurements at different frequencies over the course 

of 10 seconds, the same measurement problem. The usual approach is to use a lock-in amplifier. 

[Transparency] 

What happens with a lock-in is that I have a signal with noise. I am going to walk you 

through it so you know just what it does. The first thing that is usually done is it goes through 

some preamplifier, which bandwidth-limits it and thereby does a little noise reduction, but that 

original initial preamp will have no effect on the final output noise of the lock-in. 

The reason that it is used is simply to prevent the front end from overloading, because what 

is going to happen later is we are going to bandwidth-limit it down the line at a level much 

tighter than the preamp does, so the preamp is only limiting. 

We have a signal now and what we do is we take that signal, we multiply it by an infinitely 

clean sine wave, point by point instantaneously multiplied, so that I get out a signal that now has 

frequency components at zero and twice the original signal frequencies ~ that is the mixer or the 

synchronous switch, whatever you want to call it. 

Then I RC-filter that and I get my output signal. Tom described it earlier, I shifted all my 

information up to the lock-in frequency by mixing it with itself if you will. So I took 

information, say, at whatever the lock-in frequency was, a kilohertz, and I moved it down to DC, 

so I am measuring at a kilohertz. I do not have the 1/f noise problem and I do not have 

interference problems because I can narrow-band the system at a kilohertz, and then I shift it 

down to DC by mixing it with itself, and if I did the mixing right, I did not make too big a mess, 

and I am done. 

I have a DC signal now that is proportional to the AC amplitude of the frequency that I 

want to measure and the bandwidth is simply an RC time constant now, because I am filtering 

around DC I do not have to make a fancy bandpass filter; all I need is an RC filter and the time 

constant tells me the filter bandwidth. 

For example, a 1-second time constant has a 1-Hz bandwidth on the output. A 10th of a 

second time constant is a 10-Hz bandwidth, approximately.   It is a way of making an AC 
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measurement and easy-to-do AC filter, but there is almost no reason to use these things any 

more. 

[Transparency] 

Here is why. Who does not have a medium-sized digitizer in his lab? Everybody has got 

digitizers. Somehow you have to take data and put them into a Bill Gates program, except for 

Jay, who is smarter than the rest of us. You have to get data into your computer, so you are 

going to digitize something at some point. 

The point is that you should digitize it right away. For example, if this is a sine wave and I 

make a clock generator that generates the sine wave at the frequency at which I wish to do the 

measurement and clocks the digitizer at an integer multiple of that frequency, then I get dots like 

this. 

If I want to implement a lock-in function, I can software multiply these dots by a sine wave 

and then average them. Because this is synchronous, I am digitizing at a multiple of the 

fundamental frequency, it does not matter where I start and stop. After one cycle I have exactly 

the same number of data points of this value, this value, and this value, so when I average this 

way, I have a time constant, that is, the number of cycles I choose to average, that settles exactly 

at the end of my digitization process. I do not have to wait for an RC DK. 

In addition, I am taking N digitizations per cycle and the digitizer resolves M bits, my 

result after I sum and average all of these is M plus N bits of real precision if I do it right, so I do 

not have need that high a number of bits on the digitizer. Signal to noise improves by the square 

root of N and I have every last piece of information in the signal when I have done this, which 

means, later, I can change the phase, the time constant, but I can do other things. 

[Transparency] 

By the way, here is a conventional lock-in settling with an RC filter and here is something 

where I have simply digitized. Actually, it is settled right here, but I have shown it settling fully 

after exactly one time constant in case I used an odd number of digitizations on it. That is the 

output of this digital scheme to do this. 

[Transparency] 

To make it more precise, here is a block diagram of the lock-in. Usually we have a low- 

level signal plus noise coming to a preamp, some limiting and filtering — for example, the 

Stanford Research lock-in has an analog-to-digital converter ~ it digitally multiplies by sine and 

253 



cosine, it does a digital RC-type low-pass filter and software. Then it does a digital-to-analog 

conversion, and spits out an analog signal, which you then hook up to your digitizer and digitize, 

again, (laughter) 

Here is what we are doing now and this is exactly how the resonant ultrasound systems 

work as well as the pulse-magnet ones. Remove this line, it does not belong here. Low-level 

signal plus noise goes to a preamplifier, which we digitize. We also have a sine-wave 

synthesizer that generates the sine wave and clocks the digitizer at an harmonic ofthat. Those go 

straight into the computer. 

I have only one unavoidable analog-to-digital conversion in the system. 

[Transparency] 

Here is what we have actually done. You will see on this that we have digitized a signal 

synchronously. The second step: We read data into the computer. 

[Transparency] 

Listen to this. I have digitized the data with a digitizer of reasonable speed. Before I send 

it to the lock-in function in software I can clip it and limit it, I can get rid of spikes in a time 

domain that you cannot ever do in a lock-in. The first thing I do is time-domain filter it. Then I 

multiply it by the reference signal, which exists only in software at that point, and I begin the 

lock-in process of detection and then I filter it. 

So I can now do both time domain- and frequency domain-filtering and if I do not like the 

RC time constant of the phase or the limiting, I can go back and do it, again, without having to 

reshoot the magnet or retake the data, if I choose. 

So here is a pulse-magnet shot in a 60-T pulse magnet, 600 Gauss, in which we are trying 

to measure resistivity. The magnet comes up to 600 Gauss, then drops, and here is the 

magnetoresistance. Here is the raw signal with the sine wave in it. Here is the detected signal 

after we have multiplied it in software. 

[Transparency] 

Here it is after applying a Bessel filter to the output — boom, like this — so these are now 

resistivity data in a pulse magnet. 

[Transparency] 

This is a little bit more detail on what is going on. Here is the raw sine wave. We have just 

multiplied it by the artificially generated sine wave and here it is after we have put on a Bessel 
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filter. We can just play games after the shot as much as you want. You see here all I have is a 

preamp and a digitizer. I have thrown away the lock-in amplifier, and I have done the rest in 

LabView. 

[Transparency] 

There is another interesting aspect to it. When I RC-filter, there is a time shift. Your RC 

filter acts by causality after the data, but if I take all the data and go back and filter them, I do not 

have a causality problem and I can actually take ~ for example, the red is an RC- filter function 

and it is delayed in milliseconds over the real signal, but I can center my filter at zero time 

instead of having a delay and remove that delay, so the blue shows the superconducting 

transition of BiSrLaCuO, a high-Tc superconductor, in a big fat pulsed field. 

So now I have the fields correct, because I do not have this time delay associated with the 

RC filter that does everything. 

[Transparency] 

Just for fun, this is not a Stanford Research but this is another popular lock-in. Here we 

took data using just the digitizer and the software functions. Preamps were identical in this one. 

This is the output of our system in which we took all the data and then manipulated them 

afterward. 

This is the output of a digital lock-in, a commercial one. What happens is it tends to semi- 

autozero itself at random times, so you get these level shifts ~ they are small ~ and then, when it 

spits out its analog output at the end of all this processing, there is digitization noise that is not 

properly filtered, because they are trying to have a very fast time-constant output, so you get this 

very high-frequency stuff. 

In fact, the black and the red traces have exactly the same time response for real signals, 

but the commercial one has a lot of excess hash in it 

[Transparency] 

This is resistivity and the Hall effect on a Ag2Se sample in a pulse-magnetic field. As far 

as we can tell, these data, taken in 16 msec in a magnet that has been pulsed by a capacitor bank 

about half the size of this room — we closed an ignitron switch, we dumped 20,000 Amps at 10 

kV into this magnet this big surrounding the experiment and we are trying to measure microvolts 

off the sample. 
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Here it is. These data are as clean as if you took them in a superconducting persistent 

magnet in the lab with shielding around it, because we can attack almost all of the problems. 

[Transparency] 

Just for fan, this is the dual digital synthesizer that right now is only a serial port interface 

that generates the two clock signals that we then feed to any commercial digitizer that we like, so 

we have sine- and square wave-outputs at two frequencies that are clocked and phase-locked 

together and that is what we are using right now for most of this stuff. 

I think I am going to quit there. Thanks. 

MR. GLADDEN: Your digital lock-in, the software is programmed in LabView? 

DR. MIGLIORI: Yes, just because my technicians are really familiar with it. 

MR. GLADDEN: But it is a combination, you have some hardware in there? 

DR. MIGLIORI: That is right, we are driving the synthesizer with LabView, we are 

driving the digitizers with LabView and, of course, I have to do an in-phase and quadrature, 

multiplying afterward, and I have to keep track of the starting times to keep the phase correct 

after each shot, but all ofthat is pretty straightforward. 

The synthesizers are available from the guy I gave the circuit diagrams to make the boards 

for Los Alamos ~ it is in Albuquerque — I think they are about $1000 apiece. I think if anybody 

wanted the LabView drivers, we would give them away to anybody who wanted to use them. 

We do not care. 

DR. GARRETT: The National High Magnetic Field Laboratory, I thought that was in 

Florida. 

DR. MIGLIORI: There are three campuses: Los Alamos for the pulsed magnets, Florida 

State for the D.C. magnets, and the University of Florida for the NMR magnets. 

That experiment in the pulse magnet uses somewhat less than a penny's worth of electricity 

when we pulse it. To do the same measurement in the FSU bitter magnet, which is the DC one, 

they are running 20 mW for about an hour. 

It is really fan to be able to do some experiments where the pulse-magnet data are perfect. 

There is no reason to have to run these huge power supplies unless you are doing a thermal 

measurement. Next year I will show you how to make thermoconductivity measurements to 1% 

in 10 msec on anything. I did not have time this time for that, but these are the three omega 

techniques, which we are also working on. 
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Often there are experiments that cannot be done in a pulse magnet, but the number is 

decreasing. We still cannot figure out how to do resonant ultrasound in a pulse magnet. 

DR. GARRETT: When you have this godawful magnetic pulse, how come it does not just 

induce resonance and burn up your signal processor before you get to do the signal processing? 

DR. MIGLIORI: This is a fair amount of art in attempting to keep the open area, loop area, 

very small on the leads that come in. The samples are very small. You run things parallel to the 

field, the wires are parallel to the field coming out. There is a lot of black art to it. 

In the end, we do get 1-V slowly varying and clean on top of 100-uV transport signals at 

150 kHz. We are running a lot of these at fairly high frequencies. 

Thanks. 
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ATMOSPHERIC AND METEOROLOGICAL ACOUSTICS 

Kenneth E. Gilbert 
University of Mississippi 

DR. GILBERT: I started out going to graduate school right before the Vietnam War and 

that was a golden era, but during that period it got to be not so golden. I had a friend from the 

Applied Research Lab at the University of Texas who showed a viewgraph that I want to show. 

It might have been in Physics Today or it might have been in Science magazine. I have never 

been able to find it since, and I have drawn a crude representation of the cartoon. 

[Transparency 1] 

If you can send me a nice photocopy, I will reward you handsomely. Here is how it went. 

You have these two guys working on a car. It is a young guy and an older guy. One says, "Gee, 

pop, how did you end up as an auto mechanic?" He says, "Well, son, I started out in quantum 

mechanics but I made a wrong turn somewhere." 

I started out in quantum mechanics but I made a right turn and ended up in acoustics. I 

started out working for the Navy and I had some fun but, really, the most fun I have had has been 

over the past decade working in atmospheric sound propagation. The reason is there are just a 

lot of data out there. Ocean experiments are very expensive and there are not a whole lot of data. 

In atmospheric acoustics there were plenty of data going back to the 1960s and no one had an 

explanation for it. 

During the daytime, the ability to predict sound levels was limited to about 100 meters or 

so and there was no explanation for data that had been measured at that time 30 years prior. 

[Transparency 2] 

The story I want to tell today is progress in the past decade in understanding daytime sound 

levels. I originally started to tell about everything important in outdoor sound propagation but I 

realized that not only was that dull but I could not do it in three hours. 

[Transparency 3] 

What I am going to do, basically, is tell a research story. The last bullet, "A Research 

Story," is what I am really trying to get to but I have to make clear what we are trying to find out 

and along the way I will have to tell you about the atmospheric or turbulent boundary layer. My 

time at Penn State was very valuable to me, because I became a close collaborator and colleague 
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of John Wyngaard, who is a world-class meteorologist, and a little of what he knows rubbed off 

on me. 

To understand the research story you will also need some information about sound 

propagation. An important tool that has come into widespread use in this past decade is the 

parabolic equation and I will try to give you the flavor ofthat. Then I will tell the research story. 

[Transparency 4] 

Let me pose the first question. The question is what are the mechanisms that control sound 

levels in the daytime acoustic shadow region? We are going to proceed with the most useless 

equation in acoustics, the wave equation, but for me and for anyone interested in propagation it is 

the most important equation. 

What we are really doing is applying acoustics to propagation in the real atmosphere. The 

theme of this talk, is that nature has given us an atmosphere, it has been there a long time, and it 

has certain systematic properties. 

One of the things I will want to emphasize is how tightly what you observe in acoustics is 

controlled by what is in the atmosphere. If you try to invent your own atmosphere you will 

eventually go astray. We tried to stick to that theme but we got a little bit off track, but some 

colleagues from the Ecole Centrale de Lyon set us straight and once we got back to what the real 

atmosphere is, things made a lot more sense. That is part of the story I want to tell. 

[Transparency 5] 

I will be talking about daytime, primarily, but to give some perspective I will talk a little bit 

about nighttime propagation. When you have daytime propagation you effectively have a sound 

speed that decreases with height, so that if you imagine a wavefront coming along like this, the 

bottom half is going faster than the upper half and it turns upward, you get upward refraction. 

At night you have the sound speed lower near the ground and so part of the wave is 

refracted downward and bounces, so you get a duct here. This process of ducting and producing 

quite long ranges is a fairly well-understood thing. 

The levels here in the shadow zone were not understood. Various things were tried, such 

as surface waves and some phenomenological approaches. The fact that it was maybe due to 

turbulence had been talked about by Gilles Daigle, but no one had ever really tried to make 

realistic calculations that you could compare with data. 
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Mike White, a former graduate student at Ole Miss, had done his Ph.D. thesis and he had 

put together the first parabolic equation that was actually used in atmospheric acoustics. But 

Mike left, took a job, before we got to do the turbulence part, so my colleagues, Richard Raspet, 

Xiao Di, and I picked up at that point and wanted to ask the question: If we take realistic 

turbulence, can we explain what is going on in the shadow zone? 

[Transparency 6] 

This effective sound speed that was on that previous picture, to a good approximation, is 

composed of two parts. We have what is called the adiabatic sound speed. This is a very well- 

known expression and you can write it in a simpler form, where you have a reference sound 

speed Co and a reference temperature T0, but the main thing to note is that it varies as the square 

root of absolute temperature. 

For example, if you pick Co as 331 and T0 as 273, that is 0°C, then this expression works 

just fine. The effective sound speed has, in addition, the component of wind along the direction 

of propagation. The quantity np is a unit vector in the direction of propagation, so the effective 

sound speed is the adiabatic sound speed, the still-air sound speed, plus the advection due to 

wind. 

When you have a situation where you have an upward-refracting profile and wind, if you 

go against the wind, the wind will refract upward, so you get even more upward refraction. If 

you go cross-wind nothing happens very much; it then is just the adiabatic sound speed. When 

you go downwind there is a battle between upward refraction and downward refraction, and 

sometimes the wind will win, sometimes the temperature will win. 

You have four directions, in general. You have upwind and cross-wind (twice) and 

downwind, so in three of those four directions you are going to have upward refraction. That is 

basically what is going on in daytime. 

[Transparency 7] 

Dave Swanson, at Perm State, did a nice measurement that illustrates this phenomenon, 

diurnal (day by day) variation. He measured the temperature a 10th of a meter and a half-meter 

off the ground. During the daytime the temperature goes up and it cools down at night. It goes 

up in the day, cools down at night. 

If you look at the associated sound-pressure levels, they are high at night and down in the 

daytime by about 10 dB, so as the temperature goes up, you get upward refraction, and the levels 
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in the shadow go down. It is these levels that we would like to predict from a really physical 

basis. This is only a 10-dB difference. This is 54 Hz at 450 m. If you go to higher frequencies 

and longer ranges this can easily be a 20- or 30-dB difference between day and night. 

So that is the phenomenological view of what goes on. 

[Transparency 8] 

In order to begin to put some physical basis for all of that, we need to talk about the 

atmospheric boundary layer. Sometimes that is called the turbulent boundary layer and it is 

basically the first kilometer of the atmosphere. 

[Transparency 9] 

Let's look at a cartoon to get our perspective here. On your notes I have "unstable" up here 

and Michelle Swearingen said that was confusing, so I moved it down here. This is a measure of 

the edge of the turbulent boundary layer. Above that we have free space, which is called the 

troposphere. It goes up to 11 km. Then you have the stratosphere, where the high winds are, and 

then you have the mesosphere, and then the thermosphere, so it goes up to 150 to 200 km, so in 

this lecture we are looking at the bottom 1% or less of the atmosphere. 

But this is where we live and this is where sound happens unless you go to infrasound. In 

the region of a few hundred hertz, this is where sound happens. The atmospheric boundary layer 

is pretty much driven by the sun. When the sun comes up in the morning, you start heating the 

ground. It really does not heat the air very much, it heats the ground, and then the ground heats 

the air and it becomes unstable and thermals start rising. If there is a wind blowing, as there 

usually is, you start getting these big atmospheric boundary layer eddies. This is the source 

region. 

Then it couples through nonlinearity to smaller and smaller eddies until it gets down to a 

millimeter level. This energy that is being put in at hundreds of kmeters disappears at a level 

you cannot even see. The viscosity at a millimeter is sufficient to soak up the energy of the 

eddies. There is also energy loss of the mean wind due to friction with the ground. 

Clouds generally are right above the top of the atmospheric boundary level here, so when 

you see these flat-bottomed clouds, you know they are sitting right on top of the turbulent 

boundary layer. If you ever fly in the daytime, it is very obvious when you pass from the 

turbulent boundary layer into the free atmosphere; things just suddenly get smooth. 
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What happens when the sun goes down is you start getting radiation from the surface into 

space and the ground starts cooling off and it no longer has a heat flux to drive it and it collapses 

pretty rapidly and you build up a stable layer near the ground. This stable layer is what drives 

nighttime propagation. This turbulent boundary layer is what drives daytime propagation. 

[Transparency 10] 

There is a particular phenomenon that is called the adiabatic lapse rate. I asked a 

meteorologist, if I took an insulated tube of air a kilometer long and stood it on end and came 

back a year later, what would be the temperature distribution inside of it? He said the adiabatic 

lapse rate, but that is wrong. It would be a constant temperature. It would have a pressure 

gradient, but it would be a constant temperature. 

So why does the atmosphere like a gradient of 9.8° C/km? Does anyone have any idea 

why it is you can have this?-- It is a neutral atmosphere but it is hotter near the ground than it is 

up here ~ why is that? How can that be neutral? 

DR. MIGLIORI: It has to do with the circulation or something. 

DR. GILBERT: That is the key to the adiabatic lapse rate. What happens is if you have a 

parcel of air that goes up, it will cool adiabatically. If it goes down, it will heat adiabatically. 

What you get is about 9.8 x 10"3 C/m. So this - right here, the adiabatic lapse rate, — provides a 

background for which a heating or cooling parcel of air stays neutral. The atmosphere always 

has mixing processes essential for setting this up. So if you have some turbulent mixing, if you 

leave it alone, it will go to this neutral condition, which is 9.8°C/km. 

The reason you do not really get an adiabatic lapse all the way to the ground is that the 

mixing cannot keep up with the heating and cooling of the ground. When the sun comes up, you 

start getting heating near the ground and it gets to be a bigger gradient than you have with the 

adiabatic lapse rate and the air near the ground, then, really does become unstable. 

If the sun just stayed in one place, eventually this would slide over to here so there was an 

adiabatic lapse rate all the way down. The temperature gradient gets steeper and steeper through 

the day, but when the sun goes down, it starts cooling off and, again, it cannot keep up and you 

get this part in here that is going backward, but this deepens over time. If the ground stayed the 

same temperature forever, then this thing would eventually slide back over to here and you 

would have the adiabatic lapse rate all the way to the ground. 
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That is a particularly important thing and it pretty much is what drives the dynamics of the 

atmosphere. 

[Transparency 11] 

In particular, there are always fluctuations and that is partly what we will talk about, but if 

you look at the mean adiabatic sound speed, it does the same thing that you were seeing with the 

temperature since it varies as the square root of the absolute temperature. 

As the sun comes up, you start getting this unstable air, it is more than adiabatic, and you 

have upward refraction. In the afternoon you get the biggest heating and you get very strong 

upward refraction. As the sun goes down, you get cooling and that refraction gets weaker. 

Then, as it cools at night, the upward refraction turns into downward refraction and you can get 

long-range sound propagation. 

From a practical point of view, the nighttime levels are a lot more important in noise 

control than in daytime, because it is at night where you have noise problems, but I am not going 

to talk about that. I am going to talk about daytime, because that is what we have been studying 

for the past 10 years. 

[Transparency 12] 

What about the wind? This is a figure from one of John Wyngaard's recent papers, a little 

tutorial, that shows what the wind looks like. It also shows what is called the potential 

temperature. Since potential temperature is a very common term in meteorology papers, I will 

tell you what it is. 

This profile is pretty much logarithmic. It has to go to zero near the ground. This is the 

temperature in the day, and this is the temperature at night. This peak in wind speed is called a 

nocturnal jet. In general, we can think of the wind profile as being logarithmic. 

If you notice, we have a theta here that does not change much, except at the very bottom. 

Theta is the potential temperature and here it is the mean potential temperature. The potential 

temperature is just the real temperature with the adiabatic lapse rate taken out, so the potential 

temperature is a constant when you have a neutral atmosphere and, when it gets over here to the 

left, it is stable. 

When it gets over here to the right, it is unstable. 
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These are little thermals. These are big eddies being created. Actually,air is entrained 

from the free atmosphere and some of the turbulent atmosphere is injected into the free 

atmosphere. The height of the nocturnal boundary layer is a couple hundred meters. 

The height of the daytime boundary layer is maybe as much as a kilometer. 

That is John Wyngaard's picture and that is what potential temperature is. 

[Transparency 13] 

What I would like to do now is show you what this beast really looks like. This is a picture 

of aerosol concentration measured with a laser device called Lidar. It is using the aerosol 

concentration as a marker of what the atmospheric boundary layer looks like. It is up to about a 

little bit over .6 km What you can see is all those pretty smooth lines are really quite irregular 

and ragged, so this is really kind of a mess. 

You can imagine that there is nothing really smooth in there, that there are lots of 

fluctuations inside the turbulent boundary layer. Surprisingly, the computational methods that 

meteorologists use today can pretty much capture that. 

[Transparency 14] , 

This is a large eddy simulation calculation done by Martin Ott at Penn State. We were 

doing electromagnetic propagation. If I have time, I will say a little bit about what we learned. 

This is the moisture content as a marker of the turbulent boundary layer. 

You can see it shows pretty much the irregular nature of the volume and the edge of the 

boundary layer. The resolution here is 20 m. Actually, there is structure down to a millimeter 

but computers are not up to that yet. We can sort of fake it out but we cannot really calculate it, 

not for the Reynolds numbers that are about 10,000. 

Anyway, I am beginning to give you the personality of the turbulent boundary layer. Jim 

Chambers and some of the young guys at NCPA went out to the Oxford Airport with some sonic 

anemometers. There are three components, they can measure the x, y, and z components of the 

wind and they can measure the temperature and they sample it 10 times a second, so you can 

really follow in time the kinds of structure you are seeing in these snapshots. 

[Transparency 15] 

This is what we measured about a meter off the ground. You are beginning to see now the 

strange behavior of the wind. This is the horizontal wind. 
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This is the vertical wind.  It has a mean of about zero, and why do you think the vertical 

wind component has to have a mean of about zero? 

PARTICIPANT: You would run out of air. 

DR. GILBERT:  Right.  You do not get flow into the ground, so it has to average out to 

zero. 

The horizontal wind is really fractal. You have large scales with intermediate scales, with 

fine scales, so when you start talking about means, you really have to say over what time period. 

Obviously, if I make an average of the mean wind over a period of a year, I might have a 

hurricane in there somewhere. 

Generally, the longer you average, the bigger the average and the bigger the variance. We 

are going to be interested in scales of about 10 or 20 m and less. What we are really interested in 

is averages over about this period of time (terns of seconds) — oh, I should say, excuse me, if you 

look up here, you see an average horizontal wind speed, more or less, of about 2 m/sec. So in 10 

seconds, 20 m of air goes by you. 

We are using something called the Taylor frozen hypothesis. If you imagine a coat hanger 

wire with lots of wiggles in it and you just had a little slit that you could look through and you 

pull the coat hanger wire by, you see this thing going up and down. It is just a mapping in the 

time of the structure in space. That is Taylor's frozen hypothesis, frozen turbulence hypothesis. 

It is really not true but it is good enough for the statistics. If you try to take it literally, you 

will find that it does not really work so well. Nevertheless, what we do in order to take this time 

structure, we multiply it by the mean velocity and seconds become meters. If I multiplied all 

these numbers by two, I could put meters down here and this would give some kind of 

representation of the spatial structure in time. 

What we want to do is look at the wavenumber components in that spatial structure. If you 

Fourier transform the wind data directly, you will get the frequency components. We want to 

discuss spatial components, so we assume the turbulence is frozen and convert the time series to 

a spatial series. 

[Transparency 16] 

The temperature looks similar. If we are interested in things on the order of 20 m and 

down, we are talking about maybe 10-second averages, so we want to look at the mean and 

variance over periods of about 10 seconds. 
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It turns out that, numerically, the standard deviation in wind and the standard deviation in 

temperature is about the same number, about a half-meter per second and about half a degree. 

The means can be whatever the means are. 

[Transparency 17] 

What we want to do now is start to get some estimates of how big the mean is and how big 

the variance is. The daytime mean, you could measure it directly, but you realty do not have to. 

There is a similarity theory by Monin and Obukov. If you measure two temperature values near 

the ground, you can apply the similarity theory and get a pretty good representation of the mean 

temperature. 

As I have said already, the velocity is logarithmic with height. This little zo is a small 

number that represents the thickness of the dead air, so in the dead air ~ it is not really dead, it is 

just not turbulent ~ you have some Vo. At zo this would be 0. Anyway, we have a logarithmic 

variation. 

What we want to do is represent the temperature in terms of a mean and a fluctuation and, 

similarly, the component of wind is a mean and a fluctuation. I want to give you some orders of 

magnitude, so you can have something to think about. 

The variation of temperature with height is going to be 5° or 10° Kelvin or C. The 

variation in height of the wind will be 5 or 10 m/sec. The RMS fluctuation is about 0.4 or 0.5 

Kelvin for the temperature and about .5 m/sec for the wind. If you take the expressions I showed 

you for the adiabatic sound speed and you expand them linearly, you will get your reference 

sound speed plus 0.6 times the temperature difference, and this is with height. 

When you take 5 or 10 and multiply it by .6, you get 3 to 6. Up here, with the wind, we 

have just the same thing, 5 or 10 m/sec. You can see these are comparable. The temperature and 

the wind contribute about the same when you look at the mean values, but when you look at the 

variance or the standard deviation, this 0.6 in front of the temperature does big things. 

If you put in 0.4 and square it to get the variance and multiply it by 0.6, you get 0.058, 

where this one 0.52 is 0.25. The wind contribution to variance is about four times that of the 

temperature, so when you talk about the variance in the effective sound speed, it is dominated by 

the wind fluctuations, whereas the means have about equal contribution from wind and 

temperature. 
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This is an important fact, because it really says that all you really need is the fluctuation in 

the horizontal wind component, because the fluctuations in the effective sound speed are 

dominated by the wind. 

[Transparency 18] 

What we want to do is just make some simple linear expansion of things and take this 

temperature and wind information and convert it. I will not go through all the mathematics. All 

I am doing is making linear expansions, saying that delta T is small compared to the mean value. 

If you expand this out, you will see, not surprisingly, that the mean effective sound speed is 

the mean adiabatic sound speed plus the mean horizontal sound speed. Then you get, over here, 

the fluctuation in sound speed from temperature and wind fluctuations. The whole coefficient of 

delta T is about 0.6, as I showed before. The last term is just the fluctuation in the wind itself. 

So we have a mean component and a fluctuating component for the effective sound speed. That 

sort of view will carry through the rest of the talk. 

[Transparency 19] 

Finally, what we want to do is not use sound speed but use index of refraction, so we need 

a little bit more linear expansion. This is the definition of the effective wavenumber. I can just 

put in a reference sound speed and this, then, is the effective index of refraction, tie = co/ce.. 

I have the effective sound speed, which is composed of a mean and a fluctuating 

component, and all I want to do is linearly expand the thing, so we get this expression for the 

mean index of refraction, and we get this expression for the fluctuating part. 

If you go back and take the expressions for the mean effective sound speed and the 

fluctuation in it and plug into that, you will find that the mean index of refraction is just your 

reference sound speed over the means for the adiabatic sound speed and the wind speed. 

This fluctuation in the index of refraction is this quantity times the wind fluctuation, and 

this quantity times the temperature fluctuation. To give you some feeling for what these things 

are, this number, the mean index of refraction, is not much different from one. 

This number right here, the fluctuation in the index of refraction, is going to be on the order 

of one part in a thousand. The fluctuation in the index of refraction is not a very big thing but it 

has big effects when you put it into propagation. 

The important thing at this point is to get a feeling for what these fluctuating components 

look like. Remember, if they fluctuate in time, it means they have some complicated structure in 
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space that gets advected by you. If you have noise, what is one of the primary characteristics 

that you want to know about the noise? You have this wiggly bunch of stuff like Tom showed. 

What is one of the primary thing you want to have in describing the characteristics ofthat noise? 

You might think in terms of the autocorrelation function, but what else is more commonly 

used? The spectrum. The spectrum of noise tells you a lot about the nature of the noise, 1/f 

noise and other types of noise. 

What we want to do with these fluctuations is to talk about the wavenumber spectrum for 

the fluctuations. The wavenumber spectrum tells what the fluctuations look like in space. 

[Transparency 20] 

It turns out that there is a part ofthat spectrum in here called the inertial sub-range, and it 

can slide up and down, it can go up and down in strength, but the slope is universal. The slope 

was predicted by Kolmogorov in 1941 through some scaling arguments. No one had ever really 

measured it at that time. He did not really calculate it, he just was a bright man. 

This slope is a -11/3 in three dimensions, it is a -8/3 in two dimensions, and a -5/3 in one 

dimension. In fact, the measurements we make are always one-dimensional. We stick a sensor 

up, the atmosphere blows by, and you get all these wiggles, so you have to make some 

assumptions, like horizontal isotropy or three-dimensional isotropy to go to bigger dimensions. 

The spectrum in this part is called the Kolmogorov inertial sub-range spectrum. It is really 

not a spectrum, it is just a piece of the spectrum. Up here, where this thing rolls over, in this 

region in here is those big huge eddies that go up a kilometer. That is the source region. 

This region down here is where you have eddies the size of millimeters and viscosity soaks 

up the energy. You are putting in energy here in these huge big eddies, but they couple, because 

it is a nonlinear process, to smaller and smaller eddies until they are down to the size of a gnat. 

What Kolmogorov realized was that in order for the cascade of energy — and this happens 

only on average, if you average out the spectra over a period of time, this is what you get — what 

Kolmogorov realized was that if I am putting in energy, then for the cascade of that energy 

through the various scales to be uniform, there has to be a special spectrum for that to happen. 

He deduced that it would be this. This is what is required for this energy put in, in the large 

source scales. In order for it to cascade and not build up anywhere, but cascade smoothly down 

to the place where it is dissipated, this is what has to happen. In a sense, it is kinematic. 
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This break point on the left is called by the Russians the "outer scale," and this break point 

is called by the Russians the "inner scale." In the U.S., in particular, this is called the "integral 

scale," because you can define it in terms of an integral over the autocorrelation function, and 

this is called the "Kolmogorov microscale." The inner scale is millimeters. The outer scale is 

hundreds of meters. That is the generic view of the turbulence spectrum and that is what nature 

gave us. Unfortunately, when we started our work, that is not what we used. 

[Transparency 21] 

This is what I was talking about. This is just the Kolmogorov line, -5/3, -8/3, -11/3, 

depending on the dimension. The actual spectrum rolls over at this end and at this end. We 

used, for reasons I will explain, a Gaussian spectrum. That is what seemed to be observed by 

acousticians. 

Meteorologists observed this (actual spectrum) and at that time this (Gaussian spectrum) is 

what acousticians took as gospel. It happened to fit, in a small region, the actual spectrum. The 

actual spectrum is what nature gives us and that is the theme, in my mind, of atmospheric 

acoustics, to look at the atmosphere that nature gave us and deal with it and not invent our own 

atmosphere. 

In underwater acoustics, people for many years invented their own ocean, because it made 

airy functions, special functions, nice and made the integrals nice, but they were always led 

astray, always. I do not know of any instances where eventually they were not led astray, and it 

is the same in atmospheric acoustics; you get led astray when you deal with something that is not 

what nature gives you. 

[Transparency 22] 

Now I am going to just define some terms and then I will finish up this section. 

[Transparency 23] 

I want to talk about some of the basics of propagation. What we deal with is the wave 

equation and we use the effective sound speed. In the wave equation are some things like 

geometrical spreading, refraction, diffraction and scattering, and attenuation and absorption. 

I will not talk about this (attenuation), because for the frequencies and distances we are 

concerned with attenuation is not a huge factor. At higher frequencies it can be a huge factor, 

but we will talk about just the first three topics to show you what I mean by those terms. 

[Transparency 24] 
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Geometrical spreading is basically a conservation-of-energy concept. If we have a point 

source and you look at the energy flowing through a spherical shell, this is in free space, in order 

for the same amount of energy to flow through a surface that is increasing as r2, the intensity has 

to go down as r2 and the pressure will go as the square root ofthat, so the pressure is falling off 

as 1/r and the intensity is falling off as 1/r2 in spherical spreading. 

In the nighttime situation, where the energy is trapped near the ground, I drew a cylinder 

here to suggest a cylindrical surface that these rays are passing through. This surface is 

increasing with radius as r, so intensity goes down as 1/r and pressure goes down as 1/square root 

ofr. 

In the general case where there is bending, it is not so easy to get the pressure or intensity, 

because we have no general rule that works for arbitrary propagatioa 

[Transparency 25] 

Another word that is important that I have been using already is refraction. As I said, it is 

easy to understand if you think in terms of the sound speed. It is higher down here near the 

ground. The bottom half is going faster, so it turns up. Here it is the reverse. The top half is 

going faster, so it turns down. 

As long as this bending is spatially slow compared to a wavelength, you just get these 

wavefronts that go up or they go down, but that is not the whole story. 

[Transparency 26] 

When you have structure that is large compared to a wavelength, such as the mean profile, 

there will be a general refraction. When you have smaller structure — this is supposed to be 

structure all out in here and you are thinking of turbulence as a huge mass of eddies or turbules 

(meteorologists call them eddies, acousticians call them turbules) - then something else happens, 

you get diffraction. 

The point of it is that these things represent wavefronts. When you come into contact with 

stuff like an eddy, new wavefronts get created. Before, to describe what happens to a wavefront, 

all you needed was Snell's law. Everybody knows Snell's law. That describes the normals to a 

wavefront. With structures on the scale of an acoustic wavelength or smaller, you have to 

account for diffraction because, in reality, the wavefronts get split into more wavefronts. To 

describe that splitting in terms of physics, you have to deal with the wave equation. The wave 

equation accounts for diffraction as well as refraction and geometrical spreading. 
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I will talk about solving the wave equation in the next session, and I guess this will be a 

good breaking point. Does anyone want to ask any questions at this point? 

MS. SWEARINGEN: You had mentioned that for the adiabatic lapse rate if the sun did 

not come out or it did not go down, the temperature profile would eventually collapse into that. 

Has anybody done a study on any part of the earth where you do have sunshine for days and days 

or nighttime for a long time? 

DR. GILBERT: It is not so much what the sun does, but if the ground stayed at a steady 

temperature and it started out unstable, the mixing processes would go on until it reached a 

neutral condition, which is 9.8°/km. At that point, if you move a parcel of air up, nothing 

happens, it is neutral. It is going to cool off as it goes up and heat up as it goes down, but all the 

other air around it is at whatever temperature it finds itself at. That is the neutral condition. 

The dynamics of the mixing are just going to work until that neutral condition is 

established. But that never happens. The ground is always heating up and cooling off, so this 

adiabatic lapse rate is always trying to catch up with what is going on, on the ground. 

At night there is not nearly as much mixing, so that process of catching up is very slow and 

you get this big cool layer of stable air near the ground at night, and that pretty much defines the 

dynamics. The mixing at night is just mechanical turbulence. Mixing in the daytime is 

convective. When the air is unstable, the wind can just take it up forever. 

DR. DENARDO: If the turbulence is associated with eddy motions, how can you have 

turbulence in one dimension? 

DR. GILBERT: Tell me what you mean by that question. 

DR. DENARDO: I thought you had the turbulence spectrum for three different 

dimensions. Maybe I did not understand. 

DR. GILBERT: Imagine you have three-dimensional turbulence coming by and it is frozen 

in space and it just advects by you. The one-dimensional part says if I take a cut along a line I 

will get a certain spectrum. 

DR. CRUM: I saw something very interesting yesterday and I presumed it had something 

to do with water vapor in the atmosphere. You did not mention much about water vapor. I 

presume the frequency here is an important thing, but when we were landing yesterday, when the 

flaps were down, there was a vapor trail coming off the edge of the flap.  What happened was 
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that the vortex coming off the end ofthat flap was a corkscrew, so I presumed there was some 

nucleation and evaporation and condensation there giving that vapor trail. 

What is the role of vapor in all of this and can you explain why these things develop? 

DR. GILBERT: Water vapor is not a huge factor in the acoustic sound speed. For 

electromagnetic waves it is everything. Water has a dipole moment at megahertz to gigahertz 

frequencies. Because it has a permanent dipole moment, it interacts with the electric field very 

strongly and controls the phase speed of the electromagnetic wave. Those calculations, the large 

eddy simulation I showed you, were for water vapor and it is nothing but a solution of the 

Navier-Stokes equations that has had the small scale filtered out so they can deal with it 

numerically. We did those calculations because we wanted to predict the index of refraction for 

electromagnetic waves, and that is almost totally driven by the water vapor content. 

In acoustics, the water vapor content is not a big deal; it is a small effect compared to 

everything else at these frequencies, which is a few hundred hertz up to maybe a kilohertz. It is 

not a huge effect. 

DR. SABATIER: When you have....six months. Is it just a long night in terms of sound 

propagation? It is just early morning propagation? 

DR. GILBERT: That is a good question. I do not know if the ground would ever reach an 

equilibrium. It is always radiating into space and that is what happens at night, this energy is just 

going off into space as the ground gets cooler and cooler. I do not know where that stops. 

If you could get the ground to stay at a steady temperature, if you had a kilometer-wide hot 

plate and held it at a steady temperature and could exclude the rest of the atmosphere, the mixing 

processes would go on until you got 9.8°/km, because then it becomes neutral. That is the 

boundary between stable and unstable, is this 9.8°/km. It is interesting because it looks unstable. 

You have hotter air near the ground. Why didn't it rise up? The reason it does not rise up is 

because the air it gets next to is the same as it is, so it does not have any buoyancy, positive or 

negative. 

MR. GLADDEN: You were talking about the fractal nature of wind speed, so you have to 

be specific about the time slices you are looking at. What guides you on choosing what time 

slice to look at? 

DR. GILBERT: What happens is, if you create the spectrum, it all takes care of itself. The 

way acoustics works is it selects out a piece of the spectrum.   You have the spectrum versus 
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wavenumber and if you take a slice, what you are interested in is the variance of that 

wavenumber interval slice, so your acoustics tells you what piece of the wavenumber you are 

looking at. 

If you are trying to express a mean and a variance to somebody, if you are talking about 

this little slice, you are talking about a time period that you are going to look at because it is a 

certain range and scale. Obviously, if I average temperature over a full day, it is going to be 

different than if I average it over an hour. That is just the way chaos and fractals work; 

everybody is pretty much comfortable with that nowadays. 

I will ring this bell in about two minutes. 

DR. GILBERT: A question was brought up at the end of the session about how a parcel of 

air cools when it goes up by expanding and is compressed when it goes down. What I forgot to 

say is that there is a pressure gradient in the atmosphere and when a parcel of air moves down it 

is going to higher pressure and it gets compressed and heated adiabatically. When it goes to 

lower pressure it expands and cools adiabatically, so that contraction and expansion is driven by 

the pressure gradient in the atmosphere. I forgot to say that. 

[Transparency 27] 

I hope you have lots of coffee in you, because I am going to show some equations. I will 

try to keep this as cartoonish as possible. If I can explain things with cartoons instead of 

symbols, I will. 

We talked about the basics of propagation, refraction and diffraction, and all that good 

stuff. It turns out that in about the early to mid-1970s a new approach was brought into 

underwater acoustics by Fred Tappert, and that was the parabolic equation approximation. 

It was actually invented in the 1940s in an analytic sense by Leontovich and Fock, a couple 

of Russian guys who analytically wrote this equation out, and Tappert realized that computers of 

those days in the 1970s could solve this thing and you could do wonderful things with it. 

What I want to do is give you an introduction to the parabolic equation approximatioa I 

am not going to do it the way Tappert did, because today we have a better understanding of what 

is really going on than was apparent in those days. 

I have Tappert's method written down here and maybe, if there is time at the end, I will go 

over it. 

[Transparency 28] 
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First of all, I want to give you the flavor for what the parabolic equation is all about and 

why it is important. It has been in the atmospheric community, really, for only about 10 years. 

The question is what is so special about the parabolic equation in outdoor sound propagation? 

The answer is that right now it is probably the only practical method for dealing with 

"range-dependent" environments. What does that mean? If you look at a sound speed, or any 

parameter that varies only with height, that means it is not varying horizontally, so you can think 

of this as a bunch of layers of plywood that extend forever this way. 

When I was explaining this to John Wyngaard, we explained and explained, and he said, 

finally, "Oh, you mean it's like plywood." I said yes. We actually used that term in an 

electromagnetics paper, we got it past the referee, and it is now known in the electromagnetics 

community as the plywood approximation, so I guess we will start it in the acoustics community, 

too. When you have things that are just strictly layered, it is like a bunch of sheets of plywood. 

That type ofthing allows you to do conventional separation of variables and you reduce it 

to ordinary differential equations and you can use standard methods. Great. But, unfortunately, 

nature does not pay attention to the plywood approximation. Nature is very complicated in every 

direction. 

You have a situation where, if you indicate a bunch of profiles that are changing with range 

due to turbulence, you have something like this, or you can have terrain that is not flat. For these 

types of environments that are range-dependent, we have to have a new approach. That new 

approach I will be calling the parabolic equation, but it is also known as one-way wave 

equations. One-way wave equations and wave extrapolation came out of the seismic 

community. We do not usually say wave extrapolation in acoustics but the seismic community 

still does. 

To avoid all that, I will mostly be talking about the parabolic equation. 

[Transparency 29] 

What are the important points that we need to think about? First of all, conventional 

separation of variables does not apply globally in complicated media, but you can slice up the 

medium into little thin slices and apply it in there. If you want really fine slices, you are really 

working your head off to do it that way. 

Another way would be to just take the equation and grid the world and solve it directly. If 

you sit down and count the number of points you need to do that, you lose your enthusiasm 
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pretty rapidly. In two dimensions you will need something like 10 million to 100 million points. 

In three dimensions you are going to need something like 10 billion or 100 billion points. That is 

really kind of daunting. 

If you use the parabolic method, what you are really doing is you are taking a starting field 

-- this is supposed to represent a Gaussian -- and you march it out and you are having to keep 

account of only these points, because the parabolic equation assumes one-way propagation. 

There are no echoes going backward, so it does not know what is out here until it gets there. 

You are just tracking maybe a couple thousand points vertically, and that is all you have to keep 

track of. 

In 2D it is typically a couple thousand points. In 3D it is 100 thousand to a million points, 

but even a million points per range step on a fast P.C. is not too bad. People in the meteorology 

community routinely take time steps with 106 points per step. They now do their calculations on 

P.C.'s and they routinely will be advancing in time a million points. 

I will show you at the end some 3D calculations. One of the main things they did for us 

was to show that the mean levels computed with 2D calculations are almost identical to the mean 

level you calculate with 3D calculations. 

The way of thinking in terms of a marching solution is really the new idea. I say wave 

equation but I am really talking about the Helmholtz equation; we are really talking about 

harmonic solutions. 

[Transparency 30] 

If you take this wave equation here at the top and you assume that we have some arbitrary 

space-dependent amplitude multiplied by our harmonic term that has a space-dependent phase, 

you can write this in complex form and take the real part and then this amplitude times this phase 

becomes a complex amplitude and that whole thing I call P hat to indicate it is complex, so we 

want to take the real part of this. 

Taking the real part is a linear operation and we have a linear equation, so we can just plug 

in that solution and go with it, and we find that the second time derivative becomes an -omega , 

so you end up with this equation with no time derivative, and that equation is called the 

Helmholtz equation. This quantity here is the wavenumber squared, so it is (27t/lambda ). 
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To avoid writing hats for the next two hours, we are just going to drop the hat and 

remember that, in the Helmholtz equation, pressure is a complex quantity; it has the amplitude 

and phase built into it. I will even sometimes call the Helmholtz equation the wave equation. 

The important point is that if we consider turbulence to be frozen in time and we consider 

lots of snapshots of turbulence, this equation describes everything, all the phenomena that we 

talked about, refraction, diffraction, scattering, geometrical spreading, everything is in this 

simple little equation. 

The mathematics is not so important as having some insight into what is in there and what 

phenomena in the real atmosphere cause things to happen. The real atmosphere is three- 

dimensional but we are going to solve two-dimensional equations, and here is the justification 

for it. 

[Transparency 31] 

If you look at del in cylindrical coordinates, and you assume azimuthal symmetry, then this 

term here goes away. If you, further, define a little p that has cylindrical spreading built into it 

and plug it into the Helmholtz equation, you get this. 

This term right here, 4k2/r2, if you look at it at one wavelength, it is 160, so already at one 

wavelength it is down by over a hundred. If you look at, say, three wavelengths, it down by a 

thousand. You do not have to go very far from the source before you are looking at what is 

essentially a two-dimensional equation. That is often called the farfield Helmholtz equation. 

Since I am really going to be talking about two dimensions, I am not going to use r very 

much, but will mainly use x, so we will be talking about this equation right here. It is a two- 

dimensional equation and I can assure you at this point that it is okay, because we have done 3D 

calculations and as far as mean levels go, the 2D works fine. 

So that is a Helmholtz equation, but we are not talking about a Helmholtz equation, we are 

talking about a parabolic equation. So what is the difference? 

[Transparency 32] 

The difference is, if we look at a one-dimensional Helmholtz equation, what we see is that 

we have a second derivative with respect to x. That means we have, for this kind of time 

dependence, e*" and e'^, which are the solutions. The first one goes to the right, the second one 

goes to the left. 
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If you want to extrapolate fields, you need a range derivative. There were a lot of people in 

the early days who just pooh-poohed this approach and said, "Look, I know how to solve 

equations with two range derivatives, why do you go through all this stuff? I'll just use blah- 

blah-blah's method and we'll just solve this equation directly." 

The problem with that is similar to Phil's problem of backing up waves. When you deal 

with this equation, the back-going waves are just lying there waiting for you to make a mistake, 

however tiny. The numerical noise starts exciting these backward-going waves and as you try to 

move out you start getting crazy things. 

The people who promoted that approach are not heard from very much any more. The 

approach that is taken is to split the two-way wave equation into two pieces, a forward-going 

equation and a backward-going equation. If k is a constant and you do all these indicated 

operations, you get back to the Helmholtz equation, but it is pretty clear that if I have a solution 

to this (parabolic) equation, it is also going to satisfy that (Helmholtz) equation. If one of these 

two terms is zero, it works. 

This is a one-way wave equation, it has one range derivative, the plus sign is right-going, 

the minus sign is left-going and they satisfy the Helmholtz equation but they are one-way 

solutions. You cannot make an echo with them, so no matter how short the word length in your 

computer is, the wave always goes in one direction. That is very important if you want to get 

answers that make any sense. 

This splitting of the two-way wave equations into one-way wave equations is the way 

people think about it nowadays. Tapper! did not do it that way but he got a useful answer 

anyway. I will try to put the parabolic equation in some perspective using the viewpoint 

generally taken today. 

Things get a little more ethereal and abstract when you go beyond one dimension. We split 

this one-dimensional Helmholtz equation; instead of k2 we had k, so we think of k as the square 

root of k2. But what happens when we try to do that with a two-dimensional wave equation? 

Instead of just k2, we also have a second z derivative. 

[Transparency 33] 

Now this thing is no longer a number but it is an operator I call Q. By sort of faking myself 

out, I can make it look like a one-dimensional equation.   If I just sort of blindly follow the 
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mathematics, instead of the square root of k2, we have the square root of Q. We can break it into 

a right-going and a left-going — formally right-going and left-going ~ wave. 

We have this thing called the square root of Q. I cannot say that is 13 or 6, or something, it 

is an operator. What does it mean? To sneak up on it, what we can do is say, okay, let's take k 

to be our reference wavenumber, ko. Thisko here is just a number. 

If you are talking about constant wavenumbers, you are talking about representing things in 

terms of plane waves. When I operate on a plane wave with a second z derivative, I get minus 

the vertical wavenumber squared. Up here, in the first equation, this is minus the vertical 

wavenumber squared, and we know that the vertical wavenumber squared plus the horizontal 

wavenumber squared is the whole wavenumber squared. 

That tells me that ko2 -kz
2 is the horizontal wavenumber squared, so this quantity is the 

horizontal wavenumber squared and the square root ofthat is the horizontal wavenumber. That 

is pretty obvious when you have k is equal to some constant number. 

But what happens, then, if you have some general wavenumber that is a function of z and x 

and so on? This, then, is a true operator. Instead of numbers we have to talk about the 

eigenvalues of the operator. The eigenvalues of Q are the horizontal wavenumbers squared and 

the eigenvalues of the square root of Q are plus or minus the horizontal wavenumber. 

How you approximate the square root of Q has generated a cottage industry among 

mathematicians. There have just been a lot of approaches. I am going to take the simplest 

possible approach; that is, to make a linear expansion. There are much better ways to do it but 

for our purposes a linear expansion is good enough. 

[Transparency 34] 

I have a viewgraph on what Tappert did but I think I will save it for the end in case there is 

interest and time in seeing what he did. It turns out, with Tappert's approach, you get the same 

answer but it does not tell you what you are doing, so you do not know how to do any better. 

We wanted to make a linear approximation to the square root of Q and we had this 

equation with outgoing waves, we had the square root of Q, and there is what Q is. I am going to 

go back to saying let's think about the wavenumber here being a constant. When we do that, we 

get the same thing in pictures that we had before in symbols, the wavenumber squared is the sum 

of the squares of the x and the z components, so the horizontal wavenumber is given by that 

expression there. This is the total wavenumber. Take off the vertical wavenumber and it leaves 

278 



the horizontal wavenumber squared. In general, when k is not a constant, these kx's are the 

eigenvalues of the square root of Q; (kx)
2 is the eigenvalue of Q, the square root, which is kx, is 

eigenvalue of the square root of Q. 

The idea is this, and the reason I drew this picture up here, is that if this angle is not too 

big, if your propagation is over angles that are not big -- what is not big? not big means less than, 

say, 10° with respect to horizontal - in those cases, whatever the eigenvalue of this operator is, it 

is not going to be much different from ko. You can see that kx and ko are about the same. 

What we can do, then, is linearly expand, and we do not expand about k but we expand 

about (ko)2. If you make that expansion of the square root of Q and just keep track of Q as a 

symbol that represents not a number but an operator, this is what you get for that linear 

expansion. If you plug back in the definition of Q, then you get that expression right there. 

Now we have things that we have some warmth for, that is, a second z derivative, and 

numbers, and functions, so we do not have to be experts in Hubert space, we can just be ordinary 

people. 

That is the expression that I will be using to represent the square root of Q and, further, I 

am going to call this -- this is (k+ko)(k -ko)and the k+ko I am going to call 2ko and divide by 2ko 

so we will approximate that with k -ko. Then the equation we end up with that is going to 

approximate the one-way propagation in the Helmholtz equation is given there. 

I will not go into it right now, because I want to make sure we do not run out of time but, if 

possible, I will show you what Tappert did. Tappert ends up with essentially this result. He does 

it in a very straightforward quick-and-dirty way and he gets this equation right here. 

[Transparency 35] 

An outline of Tappert's original approach is given in this transparency. The pressure field, 

p, is written as a carrier wave times a modulating amplitude. The idea is that the modulator 

varies spatially much more slowly than the carrier wave. The expression for p is substituted into 

the Helmholtz equation. The carrier wave drops out, leaving an equation for the modulating 

amplitude, vj/. Since vy varies slowly in space we can drop dV/dx2. [Note: to show alchc can be 

dropped, consider a plane wave making an angle, 6, with respect to horizontal, where 0 = 10°.] 

Once c^y/dx2 has been omitted we have a differential equation that is first order in x. The 

equation is identical to that at the bottom of transparency 33, which was obtained by linearly 

expanding ^Q, where Q = c^/dz2 + k2. 
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What he apparently did not know and what was discovered through work done in the 

seismic community is what he had really done was make a linear expansion of square root of Q. 

There are many, many other ways of approximating the square root of Q. An exploration 

geophysicist named Jon Claerbout at Stanford came up with a rational approximation. 

Mathematicians said, "Oh, we know what that is, it's a Pade approximation." Now Pade 

expansions, it's easy forget what you are doing physically. Using a linear expansion will keep us 

on track physically and it is perfectly good for our purposes. 

DR. SPARROW: At the bottom ofthat page, is there a misprint? The second derivative 

with respect to z, +k? 

DR. GILBERT: Right, you had up here a -ko that cancels that ko. That is right. It scares 

me that people are checking so carefully, (laughter) 

That last equation that I wrote really is kind of hard to make any sense out of, so I am 

going to do a little backstepping to get it into a form that is more physically interpretable. 

[Transparency 36] 

What I want to do is note that if you expand this (^/fc2 + d2/dz2) linearly, you will get a 

-/4kz
2/2ko . If you remember, kz

2 is what the second z derivative operator gives you when you 

are operating on a plane wave, it just brings down ik twice.  What that tells us is that this term 

right here (-VSkz2 öVdz2) can be replaced with this (^/£0
2 + d2/dz2 ko)  If I linearly expand this 

term, assuming this vertical wavenumber squared is small compared to ko, and that is true 

because of small-angle propagation, and I put this back into the equation we were looking at, we 

suddenly get something that has direct physical interpretation. 

The quantity, -Jkl + d2/dz2, gives the horizontal wavenumber for free-space propagation 

of plane waves. It is the square root of the total wavenumber squared minus the vertical 

wavenumber squared, which is the horizontal wavenumber squared. This term right here (k ko) 

is a measure of the departure of the wavenumber from the reference wavenumber. What we are 

getting, then, is this term, k-ko, which represents refraction. It will end up in an exponential and 

it will change the phase because k is changing relative to ko. That gives the refraction part. 

This part right here, ^/fc2 + 82/dz2,  is nothing but the horizontal wavenumber for a plane 

wave in free space and it just takes care of diffraction. If you notice, Anthony talked about a lot 
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of this stuff and the only difference here is I have this refraction term whereas in all of the 

Fourier propagation analysis that was talked about earlier there was no refraction. 

The gist of this method is simpleminded and it is probably why it works: It is 

simpleminded and it works. If you do the split-step Fourier method that we are going to talk 

about, and your range steps are small enough, then we can do diffraction and refraction in 

sequence instead of simultaneously, so we will propagate in free space and then make a phase 

correction and then do it over and over, again. 

It is basically saying over small enough range steps, I do not care that the rays are bent a 

little bit, I can make straight-line approximations and then just correct for the phase over that 

straight line. I will show you some of the mathematics that go behind that. 

[Transparency 37] 

Now let's look at the formal way of doing this. The reason I want to do this is because it 

brings in the notion of a "phase screen."   There is the equation we were just looking at, this 

(k - ko) being the refractive term, this (<Jko+d2/dz2) being the diffractive term, and we want to 

define an operator A for the refraction and operator B for the diffraction, and the sum of the two 

we will call U. 

Our equation becomes pretty simple-looking, a partial of P with respect to x is equal to 

some operator operating on P. The formal solution to this is to integrate U from 0 to x and put it 

in an exponential. If you plug that back in, you will find it does indeed satisfy the equation. 

But now we have done something that really simplifies life as we have integrated over x. I 

will call this integrated value of U, U bar times delta x. Similarly, that means U bar times delta x 

is A bar plus B bar times delta x. This quantity where we have integrated over the departure 

from a reference wavenumber over x was a function in general of x and z, but now that we have 

integrated over x, it is just a function of z. This quantity is called a phase screen, so it takes 

something maybe this big and collapses it down to something of zero width but it has a vertical 

phase variation. 

So A bar, which means the wavenumber integrated over x minus the reference 

wavenumber or the index of refraction integrated over x minus one — here is what we mean by 

this n bar ~ if we are talking about the turbulent part, there is some x variation. If we are talking 

about just the mean part, there is only z variation. For the mean part this just comes out to be 

delta x and cancels with this delta x. 
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Similarly, the B operator has no x dependence, so B bar is just B. If I look at the mean of 

n, the n bar is just the value itself, but for turbulence, where there is x dependence, we are 

integrating out the x variation and getting something that just varies with z. 

Our formal solution looks like exp(Ax (Ä+B)] operating on the field at xo and this carries 

the field forward an amount delta x. This x here is Xo plus delta x. That advances the field, but 

in order to do refraction and diffraction sequentially we need to make an assumption. This 

assumption is that these operators commute, ÄB=BÄ. 

Is that true? No, it is never true. So how do we get away with it? The reason we get away 

with it is that delta x is small enough that the higher order terms in the expansion of that 

exponential will get beat down. That lets us get away with it. The magic of this method is that 

small enough can be 100 wavelengths, so this method is semi-analytical. It has the sinusoidal 

variation built it. When we first did our parabolic equation calculations before about 1990, we 

just integrated the equations directly. 

How big a range step could we take in those days? About a quarter of a wavelength. We 

went from a quarter of a wavelength to 100 wavelengths, so we were really happy. Things have 

improved a little bit in direct integration, you can now get a couple of wavelengths with some 

very fancy Pade expansions of the operators, but this method for outdoor sound propagation is, 

to me, the most physical and the fastest and the simplest way to go. There are a lot of positives 

for the method. 

That is pretty much what we use nowadays. It is fast enough that we can go to three 

dimensions, we can do lots of statistics, so there is really hardly any reason for us to be looking 

at other things, but our competitors are always improving the other ways and coming up with 

stuff, but I do not care, (laughter) 

[Transparency 38] 

Here is the mathematics. There were lots of typos in the paper that somehow got corrected. 

These are not typos here, these are "pencilos." They are mistakes I made and I tried to correct 

them, but it does not matter. Just forget all that stuff. The only part I want you to pay attention 

to are the cartoons. The field shown at x=0 is a Gaussian. That is sort of a fat representation of a 

delta function. 

The reason is, we do not want this to be a delta function, because when we Fourier 

transform it, the wavenumbers go on forever. The vertical wavenumbers go on to infinity. That 
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corresponds to evanescent waves and very high-angle propagation. This representatio of a dealta 

function is fat enough so that when we Fourier transform it, the wavenumber spread in vertical is 

finite but is large enough for the calculation and is easy to deal with. 

What all this mathematics is saying is this: You take the starting field and you Fourier 

transform it, and that is p(kz) instead of p(z). What does this mean? It means the amplitude of 

the plane wave component that has vertical wavenumber kz. This represents the amplitudes of 

my plane wave decomposition. 

Once you have done that decomposition, all you have to do is multiply this component by 

eiAx^ko-k^ .  That is, I have to multiply p by exp[I(horizontal wavenumber times delta x] and 

that simple operation brings this Fourier amplitude down range in amount delta x, a very easy 

thing to do. 

To continue, we have really got to get back to z-space, so we do an inverse transform. This 

is all at the same range here, even though I have spread it out so you can see it. We get this thing 

advanced in k-space and then we Fourier transform and bring it back to z-space. Are we done? 

Not quite. 

There was stuff going on in here, there was refraction and we ignored it, so what are we 

going to do? We have got the thing back in z-space and this is just the phase screen, the 

integrated wavenumber, essentially, that accounts for all the phase change due to refraction in 

this region, so we just correct. We just need to multiply by the phase factor, el<Pl(z). 

In k-space the operator, expliy]k% +d2/dz2 Ax), is simple. It is a multiplication. In z-space 

the operator, e1<p(z), is simple. It is just a multiplication. So what have we done? We have said z- 

space, k-space, free-space, propagation, back to z-space, correct for the phase, and now we have 

got the field advanced a distance delta x. So all three of these things are really right here on top 

of each other. 

Then, you dot, dot, dot. That means at some point you have gone out as far as you want to 

go, say n steps, and you are doing the same thing on the nth step, you are bringing the Fourier 

amplitude forward, converting back to z-space, and making a phase correction, so now you have 

taken the field from zero to n delta x. 

DR. MAYNARD: What happened to the z derivative, the second-order z derivative that 

was in those? 
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DR. GILBERT: The second-order z derivative, when you Fourier transform, becomes -kz2. 

That is the reason you go to this Fourier representation, so that you do not have to do derivatives. 

DR MAYNARD: So that is where the B operator is put in? 

DR. GILBERT: Yes, this is the B operator right here. You take your field, you let it 

diffract like it is in free space, but you know there are some phase changes in there, so you bring 

it back to z-space and make those phase corrections. You are basically saying the curved rays 

are approximated with straight rays, that is all it is. 

I hope that was not too painful. The problem in using this method for outdoor sound 

propagation is that there is a ground surface and in the direct numerical integration it is very easy 

to put in the impedance condition for the ground. But with the Fourier method we are using 

here, no one in the past knew how to treat the ground. 

We had looked at another method that involved a spectral method for horizontal 

wavenumber and the hope was that we could get that into a vertical wavenumber instead of a 

horizontal wavenumber integration. My colleague, Xiao Di, who was finishing up his Ph.D. at 

Ole Miss that time and working for me, and I had all sorts of schemes for doing that. 

Xiao Di would work on this thesis during the day and do these calculations late at night and 

about the time he was leaving in the morning I would be coming in and he would say, "Dr. 

Gilbert, it no work." (laughter) 

We finally realized what was going on and formulated a very elegant method that accounts 

for the ground. It does some things that we really were not expecting to get that we did get. 

[Transparency 39] 

Here is the mathematics. You can more or less forget the mathematics, but what you want 

to notice is you have one, two, three, four things. This No. 1 is just the thing we have been 

talking about, the direct wave. This No. 2 is a new thing. This R is the complex reflection 

coefficient for the ground computed for a locally reacting impedance surface and it generates a 

specular reflection off the ground. 

This third term is something entirely new. When you do some contour integrations you 

pick up poles out of the reflection coefficient and those residues correspond to a surface wave. It 

travels horizontally to the ground and decays vertically exponentially. It also decays 

exponentially with range. 
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So we have a complete description that has the direct wave, the specularly reflected wave, 

and the surface wave. This really made the Fourier approach just what you need for acoustics. 

MR. APOSTOLOU:  Can you still do 100 wavelength slices when you have these surface 

waves? 

DR. GILBERT: Yes. In fact, this expression, if you consider the sound speed to be a 

constant, this is exact. It is an exact semi-analytic solution. I can go as far as I want as long as 

the sound speed is constant, but because we are having to make corrections for the fact that it is 

not constant, we have to take some finite range step. 

This is so much nicer than a bunch of numbers and direct integration. I can look at this 

term (number 3) and see how big the surface wave is. 

MR. SIMMONS: When you started, when you were in free space, I assume that the nature 

of the diffraction or refraction is due to the variation in the sound speed, the temperature and 

velocity fluctuations, so this last slide leads me to think can you apply this method of diffraction 

to, say, objects? Just the one wave propagation. 

DR. GILBERT: In some cases, you can. If you are interested in forward scattering, then 

this will work. In fact, that is how we treat turbulence. If you are interested in backscattering, 

there is none. It is explicitly excluded. 

You said something that indicates that you are confused. You said when you go to k-space, 

then you said something about refraction. When we go to k-space, there is no refraction. We 

throw it away and we let the diffraction occur as if the sound speed is constant. Once we have 

gotten to where we are going to go, we make a correction due to the fact that there are phase 

variations along the way. 

It is diffraction in free space, get back to real space and make a phase correction and then 

do it, again. The difference between this and what Anthony was talking about is we have this 

phase correction and that is really the only difference. 

MR. APOSTOLOU: These surface waves are sort of an artifact to complete the model or 

is it measurable — 

DR. GILBERT: It is measurable. 

MR. APOSTOLOU: ~ by experimental techniques? 

DR. GILBERT: Lots of people have measured it. It is there. 
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Really, it is a fact that if you have porous ground and if you get the right kind of porous 

ground, like snow, you can get a whopping surface wave. Some fellows have shot pistol shots 

over snow for decades measuring the surface wave, so this contains it in a more or less analytic 

form. 

DR. WAXLER: Can you....backscattering by.... 

DR GILBERT: People, particularly in the underwater acoustics community, have 

generated some very nice schemes for taking into account single scattering in the backward 

direction, and it is pretty weak, so single scattering is a pretty good approximation. Basically, at 

each range step they compute the backward-going wave and it gets all added up. 

For atmospheric acoustics it is measurable if you have a sodar. That is the principle it 

works on, but these levels are tiny compared to what the outgoing wave is. 

DR. HAMILTON: By surface wave, you do not mean like a Rayleigh wave, do you? 

DR. GILBERT: No. This is a wave that decays exponentially with height and 

exponentially with range. If you just look at the wave equation and you start writing out what 

are possible solutions, if you have a constant angle-independent impedance, which is what 

locally reacting ground acts like, you find that there are not only these propagating waves but 

there is an exponentially decaying wave that satisfies the boundary condition. 

It is kind of like an evanescent wave. You see these propagating waves but you also 

discover there is an evanescent wave that also satisfies the equation. If anyone has a better 

explanation of surface waves, I would like to hear it. 

MR. PETCULESCU: Does this surface wave radiate energy in the upper half? 

DR. GILBERT: No, it is exponentially decaying. It is evanescent vertically. It just hugs 

the ground and you can measure it as a separate arrival. 

MR. PETCULESCU: So it does not couble back into the upper half? 

DR. GILBERT: In a flat range-independent environment it does not couple but if you put 

something in there, you get scattering out of the surface wave into other waves, and vice versa, 

scattering from other waves into the surface wave. 

DR. GARRETT: This exists only if you have propagation into ~ if you have a wave 

penetrating the surface, right? 
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DR. GILBERT: Yes, but the locally reacting boundary condition lets you ignore what is 

happening below, but you are right. What you actually have is this. I was going to talk about 

this, but it seemed too far afield. 

[note: a hand-drawn transparency was used here. It showed an acoustic ray going from 

the air into the ground. The ray was refracted almost straight down.] 

The porous ground has air in it but the sound speed in the porous ground is what? 50 

m/sec?, very small. It is 350 or something up here in the air. What you get is whatever comes in 

is refracted straight down. No matter what angle it comes in, it goes straight down. Because 

there is nothing going on except refraction straight down, you really do not have to pay much 

attention to the physics. 

DR. GARRETT: But that is the explanation for the evanescent waves. You have a fast 

medium on top of a slow medium. 

DR. GILBERT: If you have a wave generated from down here, it will be evanescent up 

here, because this is slower than this, and that is one way to look at it. You can look at it as an 

evanescent wave coming from the other side. It is evanescent vertically. Then it will fall off 

exponentially and propagate like this. 

DR. GARRETT: It is a total internal reflection of the wave that is in the ground 

DR. GILBERT: Yes, that is a nice way to look at it. 

DR. GARRETT: I just want to point out that that is exactly how insect eyes modulate the 

amount of light. They secrete a precipitate that scatters the evanescent wave. 

DR. GILBERT: What Steve is saying is if I have a sound speed that looks like this and I 

have a field down in here in the ground, although it might be propagating to the right like this, 

above here you get total internal reflection, so it is going to have an exponential tail. Also, 

energy is getting soaked up like crazy down here, so it Ms off exponentially, but you really do 

not have to think about that. I did not want to get into the ground. Jimmy is the dirt man and I 

am the air man. (laughter) ("It is soil.") 

DR. GILBERT: Excuse me, soil. You can get more funding for soil than dirt. 

DR ARNOTT: On your equation there for the surface wave, that is propagating in the z 

direction? 

DR. GILBERT: Yes, let me point out what is going on there. 

[refer to Transparency 39] 
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DR. ARNOTT:   Beta looks like it is dimensionless. 

DR. GILBERT: Beta is 1/zhat and it is a complex number, zghat is a complex number, so 

1/zhat is also a complex number. It appears up here - right here « so this is a complex number, 

beta is a complex number, and the z- part will decay exponentially. It will wiggle, but it will 

decay exponentially. 

When you put it in here you find also you get an imaginary part that makes it decay 

horizontally. As the ground gets harder and harder, the imaginary part gets smaller and smaller 

and the decay takes longer and longer and it goes further and further, but this term out front that 

has beta in it, beta is getting to be very, very small, so you have this wave that goes forever with 

zero excitation. It is kind of a tradeoff. 

DR ARNOTT: Beta needs to be one over distance. 

DR. GILBERT: You are right. I will have to check on that. Something is wrong there. I 

think probably what is wrong is that I should not have normalized it. Anyway, you are right, 

beta should have dimensions of one over distance. One great thing about this lecture is I had to 

remember what I did over the last 10 years, but you are right, there is something wrong there. 

[Note: transparency #39 was corrected, ß = k(/zg not l/zg.J 

[Transparency 40] 

That is basically all the introductions I have and I want to begin on the research story and 

how we used this. The very first work I didwas with Mike White. He wrote his Ph.D. thesis on 

using the parabolic equation in atmospheric acoustics and he finished up in about 1989, and left 

for a job « he took Richard Raspet's old job ~ and he was like most graduate students, he wanted 

to get out as fast as possible, so he left before we could put turbulence in. 

My colleague, Xiao Di, Richard Raspet, and I carried on. What I want to show you is what 

Mike computed and why we knew something was wrong somewhere. 

[Transparency 41] 

These are Richard Raspet's data. You should appreciate what a wealth of information is in 

here. What we got is levels plotted versus frequency across the top versus range along the side. 

What are we plotting? What we are plotting is the result as a function of this parameter a, the 

refraction parameter. 

Negative values correspond to upward refraction, positive values correspond to downward 

refraction. If you look at the lower frequencies, it looks pretty good. As someone said, at least 
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everything is on the same page. But when you go over to higher frequencies, you are starting to 

see something that looks as if it is too low and if you go out in range, it is clearly too low ~ 

clearly too low. 

We could see that at the higher frequencies we were not even coming close to the data; we 

were like 80 dB below the data. It was pretty obvious that if we put some squiggles and wiggles 

into the sound-speed profile it was going to put some energy down there, but whether or not it 

would put anything that resembled reality or not was unknown to us. 

We teamed up with Richard Raspet, who taught us something about atmospheric acoustics. 

We had the notion that we might be able to understand the data. 

[Transparency 42] 

The data looked like this. This is the relative sound-pressure level versus range and 0 dB 

means spherical spreading. These are levels relative to a spherical wave. This part is called the 

skywave, this is the boundary of the shadow, and this is the shadow region. If you do a no- 

turbulence prediction, it just goes down and down and down whereas the data are fairly flat. 

[Transparency 43] 

What I mean is this. This part that goes up in the sonified region we call the skywave. 

This angle here is small, 5° or 10°. If you are in this region, you are in the skywave part, it is 

basically spreading spherically. As you come across this way, you are crossing the shadow 

boundary and the levels start falling. When you get out in here, relative to spherical spreading, it 

is pretty much constant. 

That is what the regions mean. You are up in the upward refracted part of the wave and 

you cross out ofthat, go across the shadow boundary, and you get out into the shadow and it is 

about -20, to -30 dB. If you just use mean profiles, you find out that the levels just drop 

precipitously, and that is not what the data do. 

DR. WILEN: I do not understand that picture with the source. Are you doing sort of one 

ray? 

DR. GILBERT: Yes. What we have is something like this. We have all sorts of rays and 

this is like the bounding ray. If a ray comes down at a steeper angle, it goes like this - or like 

this. The ray that just barely skims the ground is the indication here. This is a representation of 

the shadow boundary in terms of rays. Of course, it is not really that sharp. Depending on the 

frequency, it can be very diffuse. 

289 



If we take a cut through here, we get spherical spreading, zero dB, then we cross the 

shadow boundary and it drops a lot, 20-30 dB, and then you come out into here and the levels are 

fairly constant. 

These data were measured in the 1960s by Weiner and Keast. No one had ever explained 

this. This characteristic was in all the data and there was no explanation for it. So we said let's 

take a shot at that. We will take the code that Mike White wrote and we will put turbulence in it. 

It turned out that was an easy thing to do. 

[Transparency 44] 

How did we do that? Gilles Daigle and his colleagues at the National Research Council in 

Canada had measured temperature and wind fluctuations. They had fit the data, the 

autocorrelation function, with a Gaussian, because that was convenient for what they wanted to 

do and it looked like a pretty good fit to the autocorrelation function. 

The trouble is, if you have a Gaussian in space and you Fourier transform the Gaussian, 

what do you get? A Gaussian. In fact, if you look at Gilles' data, the Fourier amplitude 

spectrum is not Gaussian at all, but he was not interested in doing what we were doing. He was 

interested in some forward scattering with no refraction. 

The rest of the world said, well, we will blame the turbulence on Gilles and we took it as 

gospel. That way we were following what we thought was the purist approach, the scientific 

approach. We will take what is in nature and we will apply it and see if we get something that 

looks like what is measured acoustically. 

The way we did the calculation was to take measured spectral amplitude for turbulence. 

First, you take the square root of it, and multiply that by a random phase. Then add up all the 

spectral components. What does it do? It generates fake turbulence. This is horizontal range 

this way and height this way, we are doing a 2D calculation. 

Here is a meter, so you can see these wiggles that were generated by the Gaussian 

turbulence spectrum that came from Giles and his colleagues produces realizations of turbulence. 

This is what we have to crank into the P.E. calculation. In actuality, this was missing a lot of the 

small-scale structure, but it worked so well we felt pretty good about it, and the referee called it 

"pioneering work," a breakthrough in atmospheric acoustics. I have saved that somewhere, 

(laughter) 
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The first referee, I should say, on the paper Mike White and I put in, said, "So what? Why 

is this important?" We had to write a paragraph on why it was important. 

[Transparency 45] 

What we have here are some calculations with the parabolic equation. At this point we 

were just directly integrating numerically. If you look at the case - this is crosswind 

propagation, so you are basically looking at the temperature. This is range. This is height. This 

bar over here gives you the scale, the relative sound-pressure level. Zero dB is spherical 

spreading and we had only so many shades of black, so we had to quit down here. 

This is the calculation for crosswind propagation, weak upward refraction, without 

turbulence. We put into the index of refraction these little wiggles. I must remind you that these 

little wiggles - look at this scale over here, 5 x 10*3, so we are talking about a few parts in a 

thousand fluctuation in the index of refraction. 

When you are looking at relatively small propagation angles, this is a small angle here. 

This is about 70/1500, so it 7/150, so what does that come out to be? It is about 0.05, so 0.05 x 

60° is a few degrees; this is a few-degree angle. 

This angle over here is going to be maybe 6°, so this is a small angle, and that one-part-in- 

a-thousand fluctuation in the index of refraction just pours energy down into the shadow zone. 

The question is, what are the numbers? We have lots of good data; what are the numbers? 

What we do is we take a cut through here that represents the level versus range and that is 

what is measured, and we make a comparison to the measured data. These were data measured 

by Weiner and Keast in about 1963. 

[Transparency 46] 

And lo and behold, it worked sensationally well. The data are averaged ~ these wiggles 

represent a realization. We do a trial. We create some fake turbulence with the right spectrum, 

with what we thought was the right spectrum, we propagate through it, and we get these wiggles. 

This is a first trial. 

This is a second trial with totally different-in-detail turbulence and we see that the average 

level is about the same. We did not want to make this too complicated. The data are the little 

black dots. The dotted line is the calculation without turbulence. 

This is the crosswind, weak upward refraction. 

This is the upwind, stronger upward refraction. We seem to be overshooting a little bit. 
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We go up to a higher frequency and things look pretty good for the crosswind propagation. 

Now we start to see something that was a little disturbing, that we are considerably and 

obviously low. 

If I take this and put it up here, and this, and put it down here, for the calculation, it fits 

perfectly. I must have checked those figures at least a hundred times but I always concluded this 

is the right way it should go. So everything worked really well, except in this case, and we had 

some arguments about multiple scattering, and so on, but it turned out there was something more 

seriously wrong. 

[Transparency 47] 

Once we started using our Fourier method, we could do many, many realizations really, 

really fast and actually compute a mean level with standard deviations about it. It does not really 

tell you anything new, except you just get a smooth line. For the case where it did not work, you 

get a smooth line below the data, so averaging did not really change anything; what you see with 

your eyeball is what is there. 

But it was nice that we had a really fast computation. We just brute forced through this. 

You generate turbulence, take a random number generator for the phases and the square root of 

the amplitude, then you add it all up and you get a bunch of stuff. You do that again and again 

and then you can produce by brute force all the statistics you could ever want. 

We will leave Gilbert, Raspet, and Di stoutly defending their calculation against all 

complaints from my friends at the Ecole Centrale. namely, Daniel Juve, and everybody else in 

the world who knew anything about turbulence. They knew that the spectrum is not Gaussian, 

but we said we do not care, hey, look, it works, what is your problem? So I will leave us there 

and pick up in 10 minutes on the research story. 

DR. GILBERT: Before I pick up again on the research story, there is something I wanted 

to mention having to do with inventing your own atmosphere. One of the things that people had 

used a lot for the mean-sound-speed profile was a linear profile. That was because you can write 

solutions in terms of airy functions. 

But when we use a linear profile, it is not physical. The physical wind profile is 

logarithmic. When we used the linear profile we could not even come close to the data, so when 

we went back to what nature had in it, which is a logarithmic wind profile, it worked much 

better, the reason being, with a linear profile, you have a hurricane after a thousand meters, but 
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this logarithmic thing kind of straightens out, so most of the refraction is near the ground and not 

so much up high. That worked. 

We thought we were staying true to nature and using measured atmospheric inputs. It is 

not anybody's fault except ours. We lifted some work for the turbulence profile that really was 

not intended for what we wanted to do, but it worked so well that in our last episode we had me 

and Richard Raspet and Xiao Di stoutly defending our use of the Gaussian profile, and 

everybody in the world who knew something about turbulence knew that that was not what 

turbulence really was. 

The people who came to our rescue were the NRC guys, David Havelock and Gilles 

Daigle's group. We got together and said, look, let's do an experiment with lots of frequencies 

and from that we will be able to infer from the acoustics what the proper turbulence model 

should be. 

[Transparency 48] 

Here is the Havelock experiment. It was at a glider port outside of Ottawa. We had 700 

meters of runway, we propagated directly against the wind and so we had pretty good refraction 

upward. We had frequencies going from 40 Hz up to 940 Hz. 

We were beginning to realize that we were becoming somewhat of a joke in the 

community, because everybody knew that the turbulence spectrum, if anything, was Kolmogorov 

and not Gaussian. So instead of trying to do what we were going to do originally, which was 

prove something that everybody already knew, we decided to go the reverse route. 

[Transparency 49] 

We had a little propeller anemometer. It sampled only once a second, so it did not give us 

a whole lot of wavenumber resolution but it gave us enough wavenumber resolution that we 

could see the beginning of the inertial sub-range. This is this cascade region from the large-scale 

stuff down to the tiny stuff that follows a universal slope (not necessarily the amplitude). 

By getting this beginning of the Kolmogorov spectrum we could extrapolate down; that 

gave us the right level. That is what everybody in the world knew it should be, but our spectrum 

looked something like this and it fit in this region of around 500 Hz. 

[Transparency 50] 
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We created realizations just as we did with the Gaussian spectrum and here is a picture of 

the upper end of the frequency. We have the wind going this way. We have the skywave and 

the scattering by turbulence down into the shadow zone. 

[return to Transparency 48] 

We had a whole bunch of frequencies. If you noticed, one nice thing about this experiment 

was that there was a whole bunch of microphones on the ground ~ I do not know if that is the 

right number, but there was a whole bunch, because we calibrated them twice a day and it took 

about an hour. 

[Transparency 51] 

We looked at the levels along the ground and here you are in the sonified region, you pass 

into the shadow zone. We had this over a bunch of frequencies. This is 40 Hz. We had nine 

frequencies. This is six of them. This is the relative sound-pressure level versus range, 0 dB is 

spherical spreading, the range went out to 700 m. 

At the lower frequencies you are getting lots of diffraction, so you really do not see 

turbulence, you do not see the edge of the shadow zone. If you kept going out farther and 

farther, you would. By the time you get to a couple hundred hertz, you start seeing things drop at 

the edge of the shadow zone and then become flat in that characteristic step pattern. 

This was the lowest frequency and this was the highest frequency. This region is basically 

diffraction and this region, where it gets flat, is scattering from turbulence. That looked very 

good, it was a measured spectrum. 

We wanted to say, then, okay, now let's look at this, compare the measured spectrum to the 

Gaussian spectrum. 

[Transparency 52] 

Here are some other frequencies with the measured spectrum. I am basically showing the 

envelope from 380 Hz to 940 Hz. That is about a little over two octaves. Here are the data. If 

you look carefully, you will see that, on average, it progresses downward monotonically as the 

frequency goes up, so this is the envelope calculated from a measured realistic spectrum. 

[Transparency 53] 

If we do exactly the same calculation with the Gaussian spectrum we had been using, this 

is what you get.  At this point it became clear to us that using the Gaussian spectrum was the 
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same mistake we had made before with the linear mean profile; we were inventing our own 

atmosphere and nature said, you know, "I've made an atmosphere for you, please use it." 

When we did, it worked. When we invented our own atmosphere, it did not work. 

DR. BASS: At what height did you measure the turbulence, because if it is a function of 

height it should be put in. 

DR. GILBERT: I think they had a 10-m tower. The spectrum for the horizontal wind does 

not vary nearly as much as the spectrum for the vertical wind. The vertical wind changes 

dramatically with height. We looked at the JAPE data from a few meters up to about 30 m and I 

could not tell one spectrum from another; they all looked about the same for the horizontal wind. 

You have got to remember a factor of two or three in dB is not very much, so it was not that 

important. 

At any rate, it is the slope, the shape of the spectrum, that was unphysical. We knew 

something was wrong and I am kind of a nitpicker. When I get something that looks right, I 

want to push it as far as I can. Either it becomes clear that it is really right or it becomes clear 

that it has limitations. 

So we launched off on a project to really pick apart the calculation and look at what is 

physically going on. Earlier, about 1990 or 1991, we had done a perturbative calculation, so we 

pursued that route again as a way to understand the PE calculations. These brute-force PE 

calculations were giving us a result, but it is kind of hard to figure out physically what is going 

on. A standard procedure is plane wave perturbation theory, Borne approximations, which we 

had done before, but not with plane waves. 

The difference is we did not use plane waves, we used the actual point-source wave 

without turbulence, so that was a distorted wave instead of a plane wave and the name for that 

procedure is distorted-wave Borne approximation, or DWBA. That involves an integral. You 

can integrate over space, real space, or you can integrate over wavenumber space, and we did it 

both ways. The first time we integrated over real space. The second time we wanted to know 

what part of kz-space was important, so we integrated in wavenumber space, 

[Transparency 54] 

The thing I am calling the sampling function is the product of two Green's functions. I did 

not want to say that in public but that is what it is. Basically, this thing is being multiplied by the 
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fluctuation in the index of refraction and integrated over space. A plot of this function at 210 Hz 

looks like this. 

Green's functions are point-source solutions. Here, drawn by hand on the left, is one point- 

source solution from the source. You get a point-source solution for the receiver as well. You 

can think of a receiver like a source, except the rays go in the opposite direction. The region 

where these things cross is where you pick up the biggest contribution, so you can see this white 

region (from white to black it is 10 dB) is fairly well localized, so we are getting contributions 

from a fairly local region in space. 

That is nice, but what we really wanted to know was how localized is the contribution in 

Bragg wavenumber space, the reason being that we had a notion that we were selecting out 

specific parts of the turbulence spectrum when we measured the levels in the shadow zone. 

If, in fact, we were looking at a small wavenumber region, then we could understand it in 

terms of plane-wave Borne approximation, which assumes essentially that you have a single 

Bragg wavenumber. We knew we did not have a single Bragg wavenumber but when we look at 

the Fourier transform of this function and we look at it in Bragg wavenumber space, you see the 

contribution -1 do not remember what this range was, but it was a fixed range - the contribution 

is fairly well localized. It is saying the x component of Bragg wavenumber is essentially zero, 

there is some finite spread in the vertical Bragg wavenumber that is not zero. 

The way to understand the result is if you have a scattering angle that goes like this (the 

angle is small with respect to horizontal), the horizontal component is hardly changing, but the 

vertical component ~ this part ~ is not zero, it is finite. In fact, because we do not have exactly 

plane waves, there is some spread over this scattering angle and that is represented by the spread 

over the Bragg wavenumber. 

So in Bragg wavenumber space this was the sampling function and we began to see, then, 

gee whiz, we are really sampling over particular isolated parts of the turbulence spectrum. 

[Transparency 55] 

We assumed isotropic turbulence, so you can take everything from kx and kz into a single 

wavenumber, K, and do a one-dimensional integral over K. The sampling function then looks 

like this, it has a pretty long tail. When you multiply it by the spectrum, it kills off that tail and 

we see that we are sampling over a fairly small range of wavenumbers and from geometry you 

can compute the average Bragg wavenumber.   We just have this blob up there and we take a 
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point in the middle of it and we look at these angles and we compute the Bragg wavenumber and 

it falls right in the middle ofthat region. 

What we did, then, is we went back and considered the frequencies we were looking at and 

mapped out the region in k-space that was being sampled and plotted that on the spectrum 

This is the Kolmogorov spectrum. 

This is the Gaussian spectrum 

At 210 Hz we are sampling over this region of the turbulence spectrum At 380 Hz we are 

sampling over this region. It is 600 Hz here and 940 Hz here. What you see, at 940 Hertz we 

should be here, but we are way down here somewhere. We said, aha, now we can start to 

understand the data and our calculations for the data. 

[Transparency 56] 

Let me continue with that story. The mental picture is that we have a scattering volume 

and although this is a bunch of plane waves, the spread in wavenumbers is not so big, so we can 

think of the average wavenumber coming in and, the converse, the average wavenumber coming 

out. There is a bunch of wavenumbers but they are not spread very big, so we can think of a 

plane wave in and a plane wave out. That is a very well-known mathematical procedure called 

Borne approximation. 

[Transparency 57] 

Here is what you get. I am not going to go into how you do it, other than it is an integral 

that you can do in real space or in wavenumber space. It says if I have a region of space with a 

specific spectrum for the fluctuations in the index of refraction and I have an incident plane wave 

and a scattered plane wave and I scatter over a specific angle, the magnitude of the Bragg 

wavenumber is 2K sin theta.^,/2. and all that is, is the magnitude of the difference in the 

scattered wavenumber and the incident wavenumber. 

What you find is that your scattered level, if I measure the scattered level down here, is 

proportional to the index of refraction spectrum evaluated at the Bragg wavenumber. (There are 

a bunch of multiplying constants, including the volume of the scattering.) 

In a plane-wave sense you pick out a particular piece of the turbulence spectrum. In the 

actual experiment you pick out a narrow slice of wavenumbers in the turbulence spectrum. 

[Transparency 58] 
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Now we can start to make some sense ~ I repeat myself here. In plane-wave theory we are 

sampling at 210 Hz at - I do not remember the range - but we are sampling here and here. The 

Gaussian spectrum is a little too big here. It gets better here. It gets way too low here. 

Let me jump back to the calculations that we did and say those same words for you. 

[return to Transparencies 52 and 51] 

When we have the real spectrum, the envelope of the calculation looks like this. 

[return to Transparency 53] 

When we have the fake spectrum, if I can line these up, it looks like this. 

As you saw the Gaussian was too high at the lower frequencies and way too low at the 

higher frequencies. In effect, this is telling us that you have selected a piece of the turbulence 

spectrum and you guys invented your own atmosphere. 

[return to Transparencies 52 and 51] 

This is the real atmosphere. 

[return to Transparency 53] 

This is the Gaussian approximation. 

The Gaussian is really okay as long as you are interested in only fitting a particular piece of 

the real spectrum, but because we went over such a large frequency region, it is impossible to fit 

the real spectrum over that frequency region and it shows up here, that we are way too high at 

380 Hz and way too low at 390 Hz. 

One other thing I want to mention briefly. Plane- wave theory is right, it explains lots of 

things, but it did not explain one thing. If you do plane-wave theory, you find that the frequency 

dependence is frequency to the one-third power and that is about 2 dB per octave. If you look at 

these data, it is about an 11-dB spread. 

[return to Transparencies 52 and 51] 

We said to ourselves that if what we were saying is right, why do we have so much 

frequency dependence? We should have only about 3-4 dB from here to here. But look, we 

have quite a big spread. (I do not know why I said 11, but that is the number I remember — it 

does not look like 11— but it was more than we expected.) 

[Transparency 59] 

We said what is going on? What was going on is this. It was not the turbulence spectrum 

at all.   It was the fact that we had those products of two Green's functions that defined the 
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sampling in space. When you are at low frequencies, what you have is a dipole pattern. You 

have the source and its image in the ground and it creates a dipole pattern. 

At low frequencies there is a big, huge, fat lobe as shown in the hand drawing on the upper 

right corner. If you have two fat lobes multiplied together, that is what the Green's functions do, 

you get this nice fat uniform region that you are collecting energy from. When you push up the 

frequency, instead of having one big fat lobe you start getting multiple lobes like this as shown 

on the hand drawing on the lower right. 

When you overlap multiple lobes, you have zeros in there ~ here and here ~ and you have 

these three points of overlap and you have wiped out from the destructive interference, your 

sampling region goes from this down to this, and that is what, in fact, created the frequency 

dependence; it had nothing to do with the spectrum. That made us feel as if we were really on 

the right track here. 

We are really picking this thing to pieces and pretty much that is how we left things, 

because we were all familiar with Borne approximation. But I do not want to leave you guys 

here. Borne approximation, if you do it all your life, it is a very physical thing, but if you have 

never seen it before, it is just like magic: He says that is true, why should I believe it? 

[Transparency 60] 

What I want to do is go back to the parabolic equation and help you to understand in a very 

direct physical way what is going on with these Bragg wavenumbers and how they sample the 

spectrum. What I want to give you is a "phase screen" explanation of scattering from turbulence. 

[Transparency 61] 

Here is the picture, a kind of review of what we were doing with the parabolic equation. I 

want to consider a plane wave coming in to this little slab of turbulence. If you remember, we 

are going to integrate over x. I am assuming that the mean sound speed is a constant, so all we 

have is turbulent fluctuations, and they are represented right here. 

There is a plane-wave incident and this is the index of refraction fluctuations, but we want 

to integrate that over x and create a phase screen that just varies vertically. We bring this 

incident plane wave into - the z-axis at x=0. We have gotten there ignoring the fact that there 

was turbulence, and now, in order to go further, we have to make the phase correction by 

multiplying by the phase screen. 
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Then what happens is that you get the scattering, because we have this wiggly phase 

screen. To analyze this I want to assume this phase screen is made up of a sum of sinusoidal 

components with random phase, and some amplitude, Sj, which is proportional to the square root 

of the turbulence amplitude. This is, in fact, how we make fake turbulence. I should say, on a 

small scale, it is reasonable. On a large scale it is nonsense, because the structure in large-scale 

things, hundreds of meters, has nowhere near random phase, it is very coherent. 

When you get down to meters, tens of meters, this makes pretty good sense, so in this 

sinusoidal sum that represents all these wiggles I want to pick out one component and I want to 

say this is the nth component, so we have some cosine modulation. 

When a wave propagates through a sinusoidally modulated index of refraction it scatters 

waves primarily into two angles. The scattering occurs over plus or minus theta n, so you get 

just two scattering directions that is a direct function of what the wavelength is in this sinusoidal 

modulation. 

What is happening is along these angles you are getting constructive interference. 

Whenever the difference between the scattered wave and the incident wave is equal to the 

vertical wavenumber in the atmosphere (this is all called the Bragg wavenumber), whenever your 

Bragg wavenumber is equal to the wavenumber in the atmosphere, then you get constructive 

interference and you can connect that to the physical angle this way. 

If I set this equal to this, I can solve for this angle. If I take an acoustic wavelength of 1 m 

and the wavelength of this to be 5 m, we find out that the scattering angle of the constructive 

interference occurs at an angle of 11.5°. 

I am not going to stop there. I am going to push this ad nauseam until you really have 

some physical feel for it. 

[Transparency 62] 

What does all this stuff mean that I just said qualitatively, what does it really mean 

physically? I am not going to make you look at the mathematics very much, except to say that 

all I am doing is applying the PE method, where we Fourier transform, then we propagate that 

transform as in free space, and then we multiply by a phase screen. 

This already has a phase screen in it, so we have done that already and we are getting ready 

to do it again. This P at 0 as a function of z is an incident plane wave (this is x=0) multiplied by 
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this phase screen, which has the integrated fluctuation that is now a function of just z times a 

wavenumber and times delta x. 

I am going to assume delta x and delta n bar are small enough that I can expand this as one 

plus this argument. This argument, if you remember, you had one component of the phase 

screen that varied as a cosine, so we have one plus this cosine-varying term. When we do the 

integration and carry things into k-space, it gives me a spike at kz incident. 

What I have done here is I have written out the cosine in terms of its complex components 

and I have written out one as one. When we do this calculation, if you know the definition of a 

delta function, this is a delta function that says kz is equal to kz incident. 

As a cartoon, if we plot the distribution of kz, there is a big spike at the incident 

wavenumber, which is really the transmitted wave. At this level of approximation nothing 

happens to the transmitted wave; it actually just goes right on through. In reality, something 

does happen to it, but it is higher order. At this order of approximation, where we made this 

linear expansion, nothing happens. 

This is the k-space representation, basically, of the incident wave. It had one wavenumber 

and it continues on with one wavenumber, so there is a big spike. Not so for this term that is 

modulated with a cosine. In fact, we get some different kinds of delta functions. We get the 

incident wavenumber plus the wavenumber for the atmosphere and the incident wavenumber 

minus the wavenumber for the atmosphere. 

At this point things should be looking familiar. If I take a signal and I modulate it with 

another sinusoidal signal (i.e., multiply it by a different sinusoidal signal) ~ you can think of it as 

something nearby to the actual signal, I am going to modulate it with a nearby frequency signal - 

- what do I get? The sum and the difference frequencies. And what do we call those things? 

Sidebands. 

[Transparency 63] 

We have this sinusoidal varying spatial modulator instead of a temporal sinusoidal and 

when we put the signal through that, it creates sidebands. Those sidebands are the wavenumbers 

for the constructive interference. If you think of turbulence as a superposition of a whole bunch 

of sinusoidal modulators, each wavelength spatially creates its own particular Bragg-angle 

scattering. That is the direction of constructive interference. It also can be thought of as the 

sidebands that are created by the modulation. So this is starting to look like familiar stuff. 
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That is basically it. The turbulence is creating to sum-and-difference wavenumbers instead 

of frequencies and those represent sidebands or they represent constructive interference. 

Originally, our thought was we are going to let the acoustics tell us what the turbulence 

spectrum is. If we had pursued that approach, would it have worked? 

Convert it back to z-space and you get an upgoing plane wave and a downgoing plane 

wave. What you are seeing, then, pictorially, is that you add or subtract the atmospheric 

wavenumber to the incident wavenumber. This is the sum-and-difference wavenumbers. 

What you can say is the Bragg wavenumber is equal to the atmospheric wavenumber or 

you can say the scattered wavenumber is the incident wavenumber plus or minus the atmospheric 

wavenumber, so that is the same thing I just said. 

DR. ATCHLEY: May I interject something? This is exactly what a diffraction grating 

does. 

DR. GILBERT: Yes, that is what I am saying, it is a diffraction grating. I should have 

used those words, I usually do. The phase screen is a diffraction grating and if you think of it as 

a sum of sinusoidal components, it is linear acoustics, so you can add them up. You take one 

component ofthat. What does a diffraction grating do? It gives you wavenumber sidebands or 

gives you constructive interference in two symmetric directions ~ it is symmetric with respect to 

the incident wave. Thank you, that is an important word. This phase screen is nothing but a 

complicated diffraction grating. You can analyze it one spatial wavelength at a time, which is 

what I just did. 

Going back to what I wanted to say. The original thing we were going to do was 

experiment with lots of frequencies and we were going to infer what the spectrum should be. 

Could we have done that? Yes, I am going to show you that you could. 

[Transparency 64] 

But why didn't we do it that way? It got kind of embarrassing at this point to say we were 

going to do this fancy experiment to determine what everybody knew who owned an 

anemometer, that there was a Kolmogorov spectrum and that would be another "so what" paper. 

So we did it the other way, which is we said let's compare the Kolmogorov to the Gaussian. But 

could we have inferred the Kolmosorov spectrum? Yes, we could have. If you look at a given 

range in the shadow zone, what does it tell you? What it tells you is that the average magnitude 

of the scattered wave which is proportional to the amplitude of the incident wave and it is 
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proportional to the magnitude of the Fourier component.  If you account for the incident wave 

your measurement is proportional to the turbulence spectrum that is sampled. 

Hence, at a particular angle you are picking out a particular Fourier component or a small 

band of Fourier components. That is pretty amazing; at a particular range you are sampling a 

tiny slice of the turbulence spectrum 

This Fourier component is proportional to what the turbulence spectrum is and it is 

evaluated at the Bragg angle and the Bragg angle is just the 27c/lambda times 2 times the sine of 

half the scattering angle. For small angles, the Bragg angle is (2n/X) times (scattering angle). 

What this tells us is the mean strength of the wave that is scattered at some angle, (Gscat = 6n), is a 

measure of the mean strength of the nth component of the index of refraction, where that nth 

component corresponds to the nth wavenumber. 

The conclusion is if we had gone that route, from the levels in the shadow zone we could 

have inferred the Kolmogorov spectrum directly from what we are measuring acoustically, but 

we did not go that route, because we knew what the answer was by that time. 

DR. MARSTON: Back on your earlier page you indicated that you assumed a random 

phase, spatial phase, of the.... Can you give any information about that phase? 

DR. GILBERT: The question is: When we generated fake turbulence we took an 

amplitude proportional to the square root of the spectrum and we multiplied it by a random phase 

and added them all up, so what happened to the random phase? 

We are looking at mean levels. These levels get averaged over 5, 10, 15 minutes. 

Basically, with all these random phases, the cross products average out. If you look at the details 

of the time series, then those phases matter. In feet, no one to this point has made much use of 

the details of what is received as a function of time to deduce whether the random phases are 

really realistic or not. 

My friend John Wyngaard says at the smaller scales random phases is an okay assumption. 

We are sort of inventing our own atmosphere again but we know in terms of mean levels those 

phases are not going to matter. If you are a signal processor and you care about these things, the 

millisecond-to-millisecond fluctuations, it is another issue. 

MR. DEMIRCI: When I look at the graph there is a source and a receiver. I see the 

scattering from the scattering volume. Don't you also get the ground reflections? 
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DR. GILBERT: The question is, is the ground reflection included in the calculation? The 

answer is yes. This is a wave calculation. The only thing the parabolic equation neglects are the 

echoes coming back at you. In terms of forward propagation it has all the multi-paths, all the 

refraction, all the diffraction. It is a wave solution. 

MR. DEMIRCI: Do you get the volume scattering at the ground scattering in the same 

manner? Does the ground scatter it differently from ~ 

DR GILBERT: If you remember, we had a kind of bounding ray. There is a certain ray 

limit that defines the edge of the shadow zone. Anything that hits the ground comes back up into 

this region. This is as far as you can go without hitting the ground. If I come in and hit the 

ground here, it is going to come back up here. 

In the shadow region there is not a driving wave to create scattering. The only reason you 

can see the turbulent scattering here is because there is nothing else. It is like a night light in 

your room. If you leave it on during the day, you cannot see it, but when you turn off the 

overhead light and it gets dark, you can see it perfectly. 

Turbulence scattering is all up here in the insonified region, it is everywhere, but up in here 

the direct wave is so powerful that the scattering by turbulence is just a negligible part of the 

whole field. Down here in the shadow region you have turned off the overhead light and now 

you can see the levels you measure are, in fact, above a few hundred hertz. What you are 

looking at is sound scattered by turbulence. That was basically what this story was about; we 

learned a lot about what is happening in the shadow region that you look at in the daytime. 

PARTICIPANT: [Inaudible] 

DR. GILBERT: The question was what about the ground bounces. The ground bounces 

never get into the shadow region, but the scattering from them is all there. If you remember, we 

talked about a dipole pattern. That is the direct plus the ground-reflected wave, how it creates 

lobes and those lobes define the region you are sampling from. At low frequency it is a big fat 

lobe. At higher frequencies it is a bunch of lobes and reduces the strength of the unscattered 

wave. 

[Transparency 65] 

Let me finish up now. This whole argument has been based on two-dimensional 

calculations and we felt confident, since it worked so well, that it was okay, but not confident 
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enough that we wanted to leave it at that point, so we did some three-dimensional calculations. I 

am not going to go into much detail here. 

[Transparency 66] 

We created a pie slice and we had an impedance ground down here. Inside of this box 

there are mean profiles and there is turbulence. In order to enforce conservation of energy we 

did not want the turbulence scattering out and never coming back. We enforced periodic 

boundary conditions, so if turbulence gets scattered out this face, it comes back in over here in 

the other face, so we conserved energy. 

Also, this angle, with present-day computers, is about 15°. Every time computer speeds 

double, this angle is going to double. Eventually we will have a 360° calculation. 

[Transparency 67] 

This was the mean profile. It is upward- refracting. I do not remember exactly what the 

turbulence model was. [Note: The turbulence model was Kolomogorov turbulence.] 

Transparency 68] 

Here are pictures you have seen already. This is the field as a function of range and height. 

The next one I will show you is cross-range, looking side to side instead of down range. What is 

interesting about this is you see 50 Hz, 100 Hz, and 200 Hz. What do you notice about the 

shadow region as you go from 200 Hz to 100 to 50 Hz? It goes away. Why is that? Why does it 

go away at low frequencies? Remember, this is a wave calculation. At 200 Hz there is a pretty 

clear boundary to the shadow region. As I go down in frequency, what is going to happen? 

What happens to edges when you go to finite frequencies? You get diffraction and the edge gets 

blurred out, so as I go down in frequency, the energy here is not coming from turbulence. 

The energy here is coming from diffraction. 

If you remember those curves, if you look at 50 Hz you do not see a shadow boundary. It 

is not until you get around 200 Hz that you have a visible edge to the shadow zone, and that is all 

these pictures are telling you, is that as you go from a higher frequency to a lower frequency you 

do not even have a shadow zone. 

[Transparency 69] 

Here is the impressive thing. This is cross-range. I am looking at the source down this 

way and this perpendicular direction is cross-range, and you see pretty much the same thing 
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qualitatively, a nice clear shadow. As we go down in frequency, the shadow starts to fill up with 

diffraction. This is 200 m across this way and 200 m in height this way. 

What we were interested in doing was investigating what it would buy you to put receivers 

up in the air. When you put an array of receivers and you want to find out what direction the 

sound is coming from, you have got to have coherent addition across the array. 

Down in the shadow region in situations like this it is a mess. There is no coherence to 

speak of, so we computed the two-point correlation function. In other words, we said if we had a 

microphone here and a microphone here, how does the correlation vary as you separate the 

microphones? 

[Transparency 70] 

At low frequencies, and we had 0-, 25-, and 100-m heights as a function of separation. At 

50 Hz you get good coherence out to 100 m separation, so you could have a very long array. 

Down on the ground at 100 Hz your correlation distance falls off very fast on the ground but at 

25 and 100 m it is pretty good at 100 Hz. You go up to 200 Hz and what you find is that this one 

is in the shadow, these two are in the shadow, and the correlation distance between two 

microphones is very short, so long arrays will not help you. If you get up to 100 m you are back 

into the skywave and you get pretty good coherence again. 

DR. BASS: Have you tried comparing those NRC data to see how close they are? 

DR. GILBERT: We have compared it to our data. We did an experiment where we had 

two microphones and it is pretty reasonable. 

What has NRC got? 

DR. BASS: They did a bunch of different frequencies. 

DR. GILBERT: This is different. This is different heights we are interested in. 

DR. BASS: They were all about 1 or 2 m high. 

DR. GILBERT: Yes, they get very short correlation lengths and that is what this is saying. 

When you get down to 0 m height, the correlation lengths in the shadow are very short, and it is 

controlled by what the scattering angle is (I will not go into that). 

That is basically it and I just want to summarize what I talked about. 

[Transparency 71] 
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I did not try to give you an overview of everything you can talk about in atmospheric sound 

propagation. I told you about a particular thing that I was involved in and in doing that I hope 

that I told you something about things in general. 

I hope some of you found this interesting and will say, gee, this is not a dumb thing to 

study. If you are going to study atmospheric sound propagation, you need to know what the real 

atmosphere is and not invent your own atmosphere. We have done enough of that and gone 

down enough blind alleys. 

You need to know the basics of propagation: diffraction, refraction, scattering, that sort of 

thing. The parabolic equation is not the be-all or end-all for everything in the world, we did a lot 

of our analysis using Borne approximation, but the parabolic equation is probably the most 

important tool right now in outdoor sound propagation and you need to understand what is going 

on with it if you are going to do research. There are other ways you can go but this is a 

workhorse method. 

Finally, in order to not reinvent the wheel you need to learn what has been done in the past 

decade, because we have learned an awful lot about what is going on in the daytime. At night 

people have been able to get pretty good agreement with their data without turbulence, but that 

does not mean there are not some funny things going on. 

If you want to make a lot of money as a noise- control engineer, you are going to be 

worrying about what happens when rock bands give concerts at night. They are not a problem in 

the daytime but at night - Xiao Di and I did a lot of calculations for Walt Disney. They were 

worried about their nighttime shows putting Mickey Mouse in people's back yards two miles 

away. They ended up, in the original Anaheim park, having to air-condition houses so they 

could keep the windows closed, and, in proposed parks they wanted to know ahead of time what 

was going to go on so they would not have to air-condition so many houses after the fact. 

I hope there are no noise-control engineers here, but my impression is that noise-control 

engineering is in a very primitive state. No one even uses anything like this, so there are 

companies to be formed out there that do modern approaches to noise control. I do not know 

why I do not see it being done. If you are interested in starting your own business, this is a way 

to do it. There is plenty of business out there. 
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You need to get up to speed on what has been learned and, finally, there are probably other 

things, like learning how to use a microphone, a pre-amp, how to use a data recorder, I am sure 

that is something you need to learn, too, but that is not what I came here to talk about. 

MR. WILSON: Would you say again how Kolmogorov came up with this, how he 

deduced the — 

DR. GILBERT: He asked what spectrum would allow energy to flow uniformly through 

the scale size of eddies. He did that basically through dimensional arguments and the k"11/3 

spectrum is the only one that allows that to happen. That is what his argument was. 

Later on, people measured these things and said, "He's right." But it does not tell you what 

happens on the very large scales. There is nothing universal there, it just depends on what the 

weather is, but once you get into this cascading region it is Kolmogorov. 

Thank you very much for listening. 
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THERMOACOUSTICS 

Robert M. Keolian 
Pennsylvania State University 

DR. KEOLIAN: Hello, everyone, good morning. Today I am going to tell you about 

something that I still find kind of surprising, which is that you can cool a six-pack with sound. 

[Transparency 1] 

I am going to be telling you about thermoacoustic devices. These are devices that use 

sound to pump heat, and you can use that heat-pumping in different ways. You can build a 

refrigerator with it, you can build a heat pump with it, or you can build a heat engine from it that 

will turn the heat into work. I will be defining all these things for you. 

I want to say right off that the hard part about preparing this talk is in knowing what ink to 

leave in the bottle. This thermoacoustics business has gotten really big. There is a book out now 

by Greg Swift on the Web and I just recently taught a course from that. There is a bucket of 

math involved in this, and I could give you that, but I am not going to do that too much, because 

I have sat in on talks like this before and, before I was in the business, it took me a couple of 

years before I actually figured out how this thing worked. If I give you a lot of math, I do not 

think you are going to be able to take it away with you, so if you want to dig into it, the 

references I gave you earlier are a good way to dig in the literature, or this book from Swift. 

What I am mostly going to do today is qualitatively describe how these devices work. We 

are going to start off with an introduction. There was a point I wanted to get to but had decided 

not to cover it because it takes an hour of math to get to that point. But Prof. Anthony Atchley 

did that math for us in his talk, so I am going to slip the point in, and that is the extra viewgraph 

page I passed out (Transparencies 8a - 8d). Also, another sheet of paper was passed out, which 

is a paper that a student of Prof. Steve Garrett's, Reh-Lin Chen, and Steve wrote on a demo, 

which I will be showing you. 

As I said, I will be starting off with an introduction which will include a little bit of math, 

and then I am going to go qualitative and describe standing-wave devices and traveling-wave 

devices, the two classes of devices now being. Then I will conclude. 

[Transparency 2] 
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Transparency 2 is a nice place to start if you want to do some reading. This is an article by 

Greg Swift—I am going to be mentioning him a lot. There is one more thing to mention: I have 

been stealing wholesale from my colleagues', students', and friends' viewgraphs and thoughts and 

I am going to rely most heavily on the work of Greg Swift, who is at Los Alamos. 

This is the cover of a Physics Today review article on thermoacoustics, which is now a 

little bit outdated because it covers just this first class of standing wave thermoacoustic devices, 

but I show it because it is a nice color picture of sort of what these things are. 

There is basically a pipe that is foil of gas. That gas can be helium or air or some mixture 

of gases. There is a pair of heat exchangers. There is a speaker at one end and when you put 

sound into the pipe, entropy will be pumped along something between the heat exchangers called 

a secondary thermodynamic medium, a name given by  John Wheatley, who got this business 

rolling way back when. 
The guts of the thing are up at the top of this refrigerator in this diagram. Heat will leave 

the bottom heat exchanger and go into the top one. This bottom heat exchanger will get cold and 

his upper one will get hot—magically. 

[Transparency 3] 

Why would you want to do such a thing? There are no environmentally nasty refrigerants 

in thermoacoustic devices. We like to use helium, a mixture of helium and argon or helium and 

xenon or just plain air. These gases are usually under pressure, because more gas is better. 

There are not many alternatives to the usual way that refrigeration is done, which is the 

process of vapor compression. 

Thermoacoustic devices can be simply constructed, which means they are potentially 

cheap, and they are potentially very reliable. There is not much in them to break, so the 

maintenance on them should be pretty low. That is of interest to the Navy, for instance, who has 

been funding us for a while. They can be driven on waste heat, so there is sometimes no need for 

electricity to run these devices and so you can get free cooling. Those are the good things. 

The bad things are that the efficiency so far has been kind of so-so. It is not bad but it is 

not great. It is a little bit less than what vapor compression is doing. 

MS. POLIACHIK: There is a speaker in there. How do you run the speaker if you do not 

need electricity? 
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DR. KEOLIAN: There are two ways of doing it, with the speaker and without. With the 

speaker we are using electricity, without a speaker we are not using electricity. I will show you 

both. 

[Transparency 4] 

Let me start off with a little bit of thermodynamics just to define what we will be talking 

about. Let's talk first about what a refrigerator does for a living. What a refrigerator does is it 

pumps heat from a cold temperature up to a hot temperature. It is basically like a pump. To run 

that pump you need power coming in, which we call work, so the input to this thing is the work 

we are putting in, the output is the heat coming out the bologna sandwiches or six-packs and 

such. 

The first law of thermodynamics, which is just energy conservation, says that QH, the rate 

of heat coming out of the hot side at absolute temperature 7#, is equal to the rate of work we are 

putting in, W, plus the rate of heat we are pulling out of the cold side, Qc, at absolute temperature 

Tc- [The symbols Qc, QH and W should have dots on top of them to indicate that they are the 

time rate of change of the cold heat, hot heat and work, respectively. The dots were omitted to 

simplify the editing.] 

The second law—that is, the bogy-man entropy one—says that you cannot just move 

energy the way you might think you ought to be able to move it. Sometimes there are 

restrictions on it based on the randomness inherent in that energy. What it says is, this quantity, 

entropy, that Al Migliori and Jay Maynard talked about earlier, has to increase. The entropy 

leaving this engine—you have to take my word for it—is QHITH- 

The rate at which entropy is coming into the refrigerator is QCITQ. The amount leaving it 

has to be greater than the amount coming in, because any device can only create entropy or at 

least break even. This restriction is what the second law says. 

We are going to define what is sometimes called the first law efficiency 77/. It is also called 

the "Coefficient of Performance," or COP. What this is, is "what you want" divided by "what 

you pay for." What you want in a refrigerator is cold bologna, so Qc goes on top. What you pay 

for is the work coming in. That tells us what the first law efficiency is, QdW. 

If we are doing the very, very best we can (which we cannot do), then the entropy leaving 

the refrigerator is equal to the entropy coming into it, and there is no entropy production in the 

device.    Way back when, Mr. Carnot and his dad figured out that there is a limiting 
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thermodynamic efficiency, TJC (also called the "Carnot Coefficient of Performance," or COPQ. 

To find it, you set the input and output entropies equal to each other. We want an expression in 

terms of Qc and W, so you would go through the first and second law equations, eliminate QH, 

and you would find that QCIW is equal to TCI(TH-TC). Notice that this can be much greater than 

one, because that TH-Tc can be a small number. That is the best you can do. So a refrigerator 

can pump more heat out of the cold stuff than you are putting in as work. 

The second law efficiency rjn (sometimes called the "Coefficient of Performance Relative 

to Carnot," or COPR) is how well you did, TJ{, divided by how well you could have done, tjc, and 

that number always has to be less than or equal to one. 

[Transparency 5] 

Now let's talk about a heat pump. Let's say you want to warm your house, so what you 

want is warmth. You could take electricity from the wall and just burn it up or you can take fuel 

and just burn it up in your house, and that is what people normally do, but you can do better than 

that. 

You can imagine taking your refrigerator at home, sticking it out the door, opening the 

door of your refrigerator and aiming that outside. There are coils on the back of the refrigerator 

that normally reject heat behind the refrigerator. Put them on the inside of the house and try to 

refrigerate the outdoors. You are trying to make the outside cold, when it is already cold out 

there, pulling heat from the cold and putting it into your house. 

So you pull in heat from the outside, put in work to run the refrigerator, but you get out 

both the work you put in, plus whatever energy you can pull from the outside, so you win—you 

get more heat out than the energy you put in as electrical work. 

Now, the equations end up looking the same. The first law is the same as it was before. 

The second law is the same as it was before. All we are doing is redefining what is input and 

output here. 

The first law efficiency is now QHIW, because that is what you want divided by what you 

pay for. To get the Carnot efficiency you take the first and second law equations, but this time 

get rid of the Qc, and you end up with THI(TH-Tc). Notice that this can also be greater than one. 

The second law efficiency is t]i divided by Tjc, as it was before, and that it is always less than 

one. 
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By the way, let me teach you a little trick for remembering these Carnot formulas. When 

no entropy is produced the work is proportional to TH-TC- The Qc is proportional to 7c. The QH 

is proportional to TH. I actually do not work the equations out any more. I memorized the trick. 

If I want Carnot efficiency for a heat pump, I say I want QHIW for the Carnot case. I know that 

QH is proportional to TH, I know that W is proportional to TH-TC and I just write TH/(TH-TC) 

down. It is a handy thing to remember. 

[Transparency 6] 

Lastly, let's talk about prime movers. The word "engine" is used in two ways. Sometimes 

the it is used to include all these devices. More often "engine" is used to mean something that 

takes heat and turns it into work, like a steam engine, like a locomotive. "Prime mover" is 

another name for "engine" used in this sense. 

Now our input is like the burning coal in a locomotive, or QH. The output is the work W, 

turning the wheels on the locomotive. Waste heat goes out the smokestack, which is Qc. The 

first law is the same as it was before—QH has to be Qc+W. 

The second law says that the entropy leaving the engine has to be greater than or at best 

equal to the entropy coming in (meaning that in general there is some amount of entropy 

produced by the engine, which at best is zero), so QdTc and QHITH swap positions in the 

inequality QclTc >= QHITH. 

The first law efficiency is what you want divided by what you pay for, so rjj is W divided 

by QH. The Carnot efficiency is when everything is working perfectly, so if you use the trick I 

just taught you—W\s proportional to TH-TC, QH is proportional to TH—you get nc = (TH-TC)/TH. 

If you look at that, it always has to be a little less than one. Notice that it gets bigger and bigger 

as TH gets hotter and hotter. That is why people like really hot running heat engines, like the 

turbines on jet planes; they like to run them really hot. 

The second law efficiency is the same as it was before, how well you did divided by how 

well you could have done. 

MR. PORTER: So there must be a reason you move your refrigerator and stick it out your 

door and heat the house at the same time? 

DR. KEOLIAN: Well, you can, kind of. There is sort of a reason. Though commercially 

you do not see it too much, I believe. The conventional vapor compression relies on a phase 

transition of the Freon refrigerant.  The Freon goes from a liquid to a vapor phase, but there is 
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only a limited temperature range over which that will happen, so conventional heat pumps do not 

work very well when it gets really cold outside, so people tend not to use them. 

Plus, the work you are putting into the conventional heat pump is probably in the form of 

electricity. When you use electricity in your home, you have already suffered a lot of 

inefficiency getting the electricity from where it is generated to where your house is. Electricity 

is a little more expensive than the fuel would be if you run the heat pump off of gas or oil. I am 

going to be proposing that what we ought to be doing is making heat pumps running off of fuel; 

that is sort of how I am going to end this talk. 

Steve, did you want to say something? 

DR. GARRETT: Just that it is not a little more expensive, it is anywhere from 5 to 15 

times more expensive to burn electricity than it is to burn gas. That is a lot. 

DR. KEOLIAN: Is it? That is a lot. 

[Transparency 7] 

If Greg Swift ever reads these notes, here is a viewgraph I lifted right from him about 

length scales. There are various length scales in thermoacoustic engines that we should be aware 

of. 

Along the propagation direction, which we are going to call x, we have the wavelength, 

which is the speed of sound divided by the frequency. In this business we tend to use a for the 

speed of sound instead of c, because we are trying to use c for a whole bunch of other things, like 

heat capacity and compliance. 

There is also the gas displacement amplitude, which we are going to call xj, as before, in 

the previous lectures. These are the acoustic quantities that we are talking about, and xj would 

be Uj, the particle linear velocity, divided by the angular frequency ro. Perpendicular to the 

acoustic direction we have two characteristic lengths that previous lecturers have been talking 

about, the thermal penetration depth, SK, and the viscous penetration depth, Sv- 

I am going to be showing you these things in kind of gory detail with Greg's animations, so 

we will come back to these. The thermal penetration depth is the square root of twice the 

thermal conductivity divided by the angular frequency and p Cp—where Cp is the heat capacity 

at a constant pressure per unit mass, p is the mass per volume. When you multiply p and Cp 

together you get the heat capacity per unit volume, which is a nice way to think of that little 

combo. 
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The viscous penetration depth is the square root of twice the viscosity divided by a and p. 

The two penetration depths are the distance over which heat or viscous shear forces can 

propagate from the walls in about an acoustic period. We will see how that happens with the 

animations. It turns out these dimensions are typically about a tenth of a millimeter. 

They are both about the same, this 8V. and this 8K , so that their ratio is about one, but the 

OK tends to be a little bit bigger than the 8V. and that is a good thing for us, because good things 

are going to happen within that 8K and bad things are going to happen in that 8V., so we want the 

8vXo be as small as possible. 

In regular audio acoustics, like I am yacking at you now, the particle displacements might 

be a very small fraction of a millimeter, maybe just a few micrometers. The penetration depths 

are about a tenth of a millimeter and the wavelength is long—it might be about a meter or so. 

But in thermoacoustic engines we kind of reverse this. We get pretty big displacement 

amplitudes. At Penn State we are building a refrigerator that is big enough to cool a house and in 

the middle of it the xi is a foot. 

[Transparency 8] 

Transparency 8 is a condensation of the theory of ordinary acoustics and what's different in 

thermoacoustics. In ordinary acoustics we do an order expansion for various quantities of 

interest. The pressure is a mean pressure/?», plus the real part ofpy, the acoustic part, which is a 

function of x times eA(iat); we'll always be assuming harmonic time-dependence. 

There are four equations that describe the physics that is important in the propagation of 

sound. There is the momentum equation, which is basically F = ma. You can see it in there; 

dpi ax is basically F, icou is basically a, and p is basically m. 

Then there is the continuity equation. The first term icopi describes the rate at which 

density is changing in a little volume, and that is balanced by the second term, which describes to 

the rate at which stuff is coming in and out of the little volume. 

Third, there is an equation of state that tells you what the gas does in response to the 

pressure swings or the density swings. It is just basically the ideal gas law. 

But there is usually a cheat, you know. When deriving the speed of sound, normally no 

one ever says much about the fourth important equation that describes the movement of heat. 

The poor heat-transfer equation always gets neglected. Somehow, somewhere, somebody 

usually slips in that the sound is adiabatic without deriving it. It was done here in the equation of 
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State when pilpi is equated to dpi dp with the derivative to be taken at constant s—at constant 

entropy. The heat-transfer equation, which I did not write down here, is what tells you that you 

should do that. Well, in this business you have got to deal with that adiabatic or isothermal 

thing—or in-between—pretty carefully, and we will be doing that qualitatively later in the talk. 

We then normally combine all these equations to get the well known wave equation. 

However, a fellow named Nicholas Rott, about 30 years ago, carefully figured out what 

would happen if you put sound in a tube that had a temperature gradient along it. The tube could 

either be really big or it could be really, really tiny. We are going to allow heat to go between the 

gas and the tube walls. Because of the temperature gradient along the tube, the gas will move 

between hot and cold regions through the cycle. The temperature gradient and the heat transfer 

to the walls leads to Rott's more elaborate wave equation. 

It is kind of like what we just had. He had to throw in that heat-transfer equation pretty 

carefully, and there are a bunch of hard steps to get this new wave equation. But by the time you 

are done, you end up with something that looks kind of the same. 

In the normal wave equation the first term is pi. In the new wave equation we have^y too, 

but loaded up with other stuff \+(y-l)fK. Prof. Atchley described what this/* is and I am not 

going to go into a lot of detail about it, it is too hard, but there is stuff hiding in here. The/* 

describes the effects of heat going in and out of the wall, and how it dissipates some of the wave 

energy. If you make a really good thermal contact, if you have your pores really small, this/»: is 

going to turn out to be equal to one (we will see that) and the wave is going to change from 

adiabatic to isothermal propagation. 

In the second term, we have the second derivative, basically. There is one derivative, and 

next to it is the other, but there is all this other junk around it too. More fs—I hate these fs. 

Sorry to you guys from Ohio, but I really hate the f s, they are ugly when you write them out. 

These things have confused me for a long time, but they are the core of the game. 

Then we get this third term and that is sort of where the guts of thermoacoustics is hiding. 

In this third term, notice it has a dTJdx in it, the mean temperature gradient. Gee, you look at 

that thing and ask, what do I do? These fs are constants, they are just complex numbers. 

Here is how I look at this equation. I like the mass on the spring, I can handle that one. So 

I am going to say this equation in space is going to be like an equation in time. This middle term 
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is kind of like cFpldt1, if we think of space as being like time. That describes the mass part of the 

mass on a spring. 

The first term has just some stuff in front of it with a/?;, so that is kind of like the he term, 

the springy part. The last term has a single derivative in it, dpldx, so it is sort of like the 

resistance term. But notice that I have got this dTJdx in all this junk in front ofthat resistance- 

like term and I can mess with that. I can make dTJdx positive or I can make it negative, so I can 

make this thing look like a positive resistor or a negative resistor, willy nilly, by how I move the 

temperatures around, so I can get something that grows or decays, this time in space rather than 

in time. That is the good stuff that is happening. 

[Transparency 8b] 

Here is the theory part I wanted not to give you on two or three viewgraphs, but Prof. 

Atchley kind of set you up for it and there is a nice little nugget in here that is worth getting at. 

You will be rewarded with a little demo if you stay awake. We'll start with transparency 8b and 

come back to transparency 8a in a bit. 

Let's consider a little length of pipe. This could be a really little piece of pipe, it could be 

like a tiny little pore in something, or it could be a big fat pipe. We have a mean temperature, 

Tm, on one end, and Tm+dTm on the other. We are going to hzvepi on one end, and pi+dpj on the 

other end, and Uj coming in and Uj+dU] coming out. 

This is a capital Ui, by the way. What I was showing you before was a lower case uj. The 

lower case ui is the usual meters-per-second linear velocity of a particle. Capital Uj is the 

volume velocity, the time rate change of volume, or you can think of it as uj times the cross- 

sectional area A. 

This little element has a length dx. What we are going to do, instead ofthat wave equation 

I just showed you—instead of combining those four equations I told you about, momentum, 

continuity, equation of state, heat-transfer equation, and getting rid of a bunch of variables and 

leaving just a second-order differential equation for just pi—what we are going to do now is 

describe the sound with two first-order differential equations; an equation for dpi and an 

equation for dU\. 

Now these f s might make a little more physical sense if we can keep the two first order 

differential equations separated. We are going to figure out dpi and dU] as a function of pj and 
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Ui and imagine starting at one end of our device and working ourselves across and figuring out 

the changes and all these things go and see where we end up on the other end. 

The momentum equation, F = ma, is written here, and now perhaps it is in a form that will 

make a little more sense. Notice first that we have iaUjIA; that's the acceleration. Then take 

that dx, stick it under the dpi, so we have dpj/dx is just about equal to pm times the acceleration. 

That is F = ma, except that there is this \-fv in there. What the heck is that? This factor is taking 

into account the effect of the viscosity at the walls, through this funny /function. You can think 

of it as modifying the average ß„, making it complex. If there were no friction, then the mass in 

the tube would just be moving as a plug. But because there is friction at the walls, the 

distribution of mass motion is a little funny. There are phase shifts along the walls and it is as if 

the effective mass got changed. We are going to roll all that in to this screwy \-fv factor. 

Next we are going to get rid of these f s in favor of something perhaps a little easier to 

understand. Let's beat on that equation and force it to be in real and imaginary parts. That / 

function is a complex number and there is an / sitting there, so let's force this equation into the 

second form shown, (id dx + rvdx) Uj. We are going to put the reactive part in that id term. It 

is going to be the mass, effectively, of that plug of fluid. Then we are going to lump all the 

dissipation due to the motion of the fluid into the rv term. 

Let's think of this as an equivalent circuit. We are going to have/?; on one side, pj+dpi on 

the other. This is an equation for that dpi. It is kind of like the voltage drop, except it is not a 

voltage drop, it is more like voltage rise. You should think of this as pressure rise in order to get 

the signs right. In the voltage convention the value on the left would be higher than the one on 

the right. The convention in calculus and all the math you have ever done in waves is the other 

way, that the right-hand side is bigger than the left-hand side. 

The expression for dpi is as if we have an inductor and a resistor in series. The inductor 

represents the imaginary part of the terms in front of Ui, the resistor represents the real part. 

Here are two equations, if you like, that give you the inductance per unit length and the 

resistance per unit length in terms of stuff you know and these screwy f s, real parts and one 

minuses and imaginary parts. It is a big mess. But we can get these f s, there are equations for 

them, so it is not a big deal. 

The continuity equation is the next one. Continuity is dUi in terms of/?/ and Uj. Volume 

flows in, but some of the volume disappears because the gas compresses when it goes in our little 
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tube, so there is a bit that is proportional to pi and that compressing part is described by the iaC 

dx term. Part of the volume gets lost because heat is coming in and out of the walls and that is 

described by this l/rk term. The sound is changing between being adiabatic and isothermal at the 

walls a bit. 

Then there is this weird thing, e dx Uj, which is going to occur because of the temperature 

gradient at the walls. If gas goes, say, from the cold to hot region, it picks up heat from the walls 

and expands, and so you have gotten more volume velocity than you had before—more volume. 

We can describe these terms as an equivalent circuit, if you like equivalent circuits, in 

terms of three parts, a capacitor, a resistor, and this weird little current source that gives a current 

proportional to the current flowing through the big wire up on the top. 

If you do not like equivalent circuits, all the stuff is in the equations; the equivalent circuits 

are there just to help you see the equations if that is useful to you, if you have a EE background 

and are used to circuits. 

We have taken these f s, which I hate — 

DR. GARRETT: How do you feel about the f s, Professor? (laughter) 

DR. KEOLIAN: —and turn them into five numbers, which I kind of like, /, rv, compliance 

C, ric, and this e. 

DR. MATULA: I am a little confused. In the equivalent circuit, normally I would think of 

a resistor as being a real part and would not have a frequency dependence, yet the equation 

shows it is the imaginary part with a frequency dependence. 

DR. KEOLIAN: There are frequency dependences in those fs. I cannot give you a fast 

answer to that. 

DR. ATCHLEY: It is tied up because of the to is the first — 

DR. KEOLIAN: Yes, that is why the real versus the imaginary part is switched. 

DR. GABRIELSON: But it is true that the resistances do have frequency dependence. 

That is true. It is not like — 

DR. KEOLIAN: Right, but it is not strictly proportional to that o). In one regime it tends 

to go as the square root of ox All these weird things, all these things you can think about as 

being a problem are all wrapped up in the f s and that was the hard thing that Nicholas Rott did 

30 years ago, is figure all this stuff out and stick it in those f s. 

319 



DR. MIGLIORI: It is also true that everybody but EEs takes the dissipative part as 

imaginary. Every branch of science except — 

DR.KEOLIAN: And acoustics, buckaroo. (laughter) 

One more thing to drag you through here and then the reward. We can combine all this 

into a sort of combined equivalent circuit for the whole thing. 

[Transparency 8c] 

Here are our five parts: Inertance, sort of a mass per unit length; a dissipative part—this is 

describing pushing this viscous gas through the tube, it gives you loss when there is velocity 

through the tube; the capacitor describes the compressibility of the gas; the second resistor 

describes the thermal loss from the gas (that one is a little tricker to see and I will use the 

animations to help you through that one). These first two resistors are bad things, all they do is 

produce entropy and nobody likes entropy unless you are trying to warm up your house. Then 

there is the current source, and this turns out to be the good guy. It is a little freaky to 

understand, but the following may help. 

At any point the pressure and the volume velocity are related by the acoustic impedance Z. 

So let's do that, let's let Ui=pilZ. I am going to take that continuity equation that we had earlier 

and I am going to substitute e/Z with apj for eUi. Now the current source looks like a resistor. 

(It has an imaginary part too, but I'm going to ignore that.) I am going to call it rTA and it is 

going to be e/Z, which is equal to this funny combination of these fs and the a. The cr is called 

the Prandtl number. 

I can write this thing now as a resistor. These first two resistors are bad resistors, this new 

one is a good resistor. I can control this good resistor, I can control the sign of it with dTmldx 

and also with Z. 

The Z comes from our choice of how we put the acoustic resonator together. We can 

control the ratio of pressure to volume velocity. We can make a traveling wave, for instance, and 

have that Z be a real number. Or, we can create a standing wave and have that Z be an imaginary 

number. We can mess around with the standing wave ratio and make the phase of Z anywhere 

in-between. Our goal is going to be to make the conductance \lrTA associated with the good 

resistor to be big and real. The funny combination of fs and a times dTJdx times 1/Z we want 

to make have a big real part. If we have a secondary thermodynamic medium—somebody hands 

us a wad of cotton and we want to make the best refrigerator you can out of it—what we can do, 

320 



I believe, is figure out what complex value the term with the f s gives, and then adjust the Z to 

have the equal-and-opposite phase of it so that we can make the combination real. Then we can 

mess with the dTJdx to make a nice efficient device. 

DR. MIGLIORI: What happens when the Prandtl number is 1 and nothing special so/* and 

fv become equal, is that what it is? 

DR. KEOLIAN: That might be so, yes, that is probably so. I think that is so. I'll go back 

to transparency 8a to answer this. 

[Transparency 8a] 

Let me show you a plot of these /v's and this funny combination of factors here. That 

whole weird combination of factors here is shown by these graphs. The solid line is for this 

Prandtl number of 0.7. The dashed curve is for Prandtl number of 0.2. I really should have 

defined the Prandtl number for you. 

The Prandtl number goes down for low-viscosity gases. The viscous penetration depth 

goes down for low-viscosity gases. The Prandtl number is the square of the viscous penetration 

depth divided by the thermal penetration depth. 

Our student, Ray Wakeland, plotted these things out. He could not figure out what this 

whole combination of fs and <r looked like. A Prandtl number of 0.7 is appropriate for the noble 

gases, helium, argon, xenon, or for air. A crof 0.2 is the lowest thing you can get with the right 

mix of helium and xenon. A low Prandtl number is a good thing. It means you have lots of good 

thermal effects, not too much viscosity. Viscosity is always bad. 

But this funny combination ends up not depending too much on the Prandtl number 

because of the weird near cancellation between fK - fv in the numerator and 1-c in the 

denominator. Both the <J = 0.7 and the a = 0.2 curves end up looking like the dotted curve, 

which is just the raw/r» That's pretty much the answer to Dr. Migliori's question. 

Let's go back through our moral over here. The curves are plotted for parallel plates, that is 

the pore I have in mind. The curves are an average over the width of the cross-section of all 

these strange effects I have been yakking about, giving you a sort of effective mass, and an 

effective compressibility of the pore. It is all rolled into these messy f s. 

We are going to talk about two types of media pretty much. The first is called a 

regenerator. It has really teeny pores compared to the thermal penetration depth. It is going to 

be used in the Stirling cycle, which is kind of like a traveling wave.   The regenerator case is 
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going to lie on the left-hand side of these curves, at small yJSK. For both the fs and this whole 

screwy combination of fs and a, the real part is going to be near one, the imaginary part is going 

to be near zero. 

[Transparency 8c] 

When that is so, then in the expression for \lrTA the funny combination of fs and a is close 

to being one. So we want the impedance Z to be nearly real to get the biggest good stuff. That 

means we want something like a traveling wave when I have really small pores. 

[Transparency 8a] 

On the other hand, the traditional standing wave devices, which I will be describing in the 

next part of this talk, were developed first, historically. People figured out that they wanted to 

pick.yÄt0 msi:e the/and a combination have the largest imaginary part. 

[Transparency 8c] 

Back to the expression for \lrTA, if the combination of fs and a has a large imaginary part, 

then to make l/rTA have a large real part we want Z to have a big imaginary part, more like 

standing wave. 

There is, I believe, a whole continuum in-between. Given any hunk of junk that you want 

to make a thermoacoustic refrigerator out of, there is a standing-wave ratio that you want that 

will make VrTA the best. This is the unifying perspective that I believe Greg Swift meant in the 

title of his book Thermoacoustic Engines: A Unifying Perspective. I think this is the unifying 

part. You can see both cases of thermoacoustic devices all in one fell swoop with these difficult 

equations. 

[Transparency 8d] 

All right, no more punishment. On to the reward. I am going to tell you what is so swell 

about a negative resistor. When that resistor is negative, we are going to generate sound from 

heat. That is a good thing. When that resistor is positive, we are going to generate refrigeration 

from sound. That is also a good thing. So that resistor does good things for us whether it is 

positive or negative; it is going to be giving us refrigeration or it is going to be giving us sound. 

What I am going to be showing you here is an analog of that sort of thing with a tuning 

fork. I am going to show you that you can actively make a resistance which is what the 

thermoacoustics does. What I have is a tuning fork with a couple of magnets on it. 
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Let's start with the tine on the left. I have this funny yoke here with a pair of magnets and a 

coil of wire. The coil I took out of a relay. The yoke is oriented so that the magnets are just off 

the axis of this coil. When the tine moves in and out the magnets go in and out closer and farther 

from the coil, changing the magnetization in that coil. 

The voltage generated by the coil is proportional to the rate of change of the magnetization, 

so the voltage I get here is proportional to the velocity of the tine. I am going to amplify that 

with a preamplifier. I am going to phase-shift it for a reason I will show you in a second, and 

then stick it back in on the other coil. 

The other coil, on the right of the diagram, is aimed at the other tine. There is another little 

magnet there and the coil is going to generate a force on that magnet. That force is proportional 

to the current through the coil, unfortunately not the voltage through the coil. The amplifier 

gives me a voltage rather than a current. 

The current lags behind the voltage in an inductor. This coil has a fair amount of 

inductance, so I am going to compensate for that by throwing in a phase shift of the appropriate 

sign. Part of the trick in the demo is to orient these two coils perpendicular to each other so I do 

not make a big transformer in-between them. [Demonstration] 

What I want to show you is an active resistance. On this oscilloscope that is projected on 

the screen over here, the upper trace shows the velocity of the tines. The lower trace shows the 

current through the driving coil, and I have it disconnected from the power amplifier right now. 

I whack it. You can see the decay of the velocity signal on the oscilloscope. 

Now I am going to hook the driving coil up to the power amplifier. I have the preamplifier 

on a low gain. Since I have a velocity signal from the left tine and I can apply a force to the right 

tine I am just going to hook one up to the other and apply a force to the tuning fork proportional 

to its own velocity. 

As far as the tuning fork is concerned, the applied force looks like a viscosity. But I can 

mess around with the sign of it electrically by flipping the magnets or flipping a polarity switch 

on the preamplifier. So I can make that viscosity look positive or negative. 

DR. SABATIER: Could you point to me on the diagram where the voltage and the current 

that are being discussed are? 
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DR. KEOLIAN: There is a little resistor in series with the drive coil. The bottom trace is 

measuring the voltage across that resistor, which is proportional to the force or the current in the 

coil. 

The other side of the oscilloscope is measuring the voltage coming out of the preamplifier, 

which is proportional to the velocity. (If you look at this demo closely, I cheated, I did not bring 

my phase-shifter with me. I am faking the phase shift with the filters on the input of the 

preamplifier to get this thing to work right. You may see that the phasing does not quite work 

out on the scope, because you are not actually looking at what I am saying you are looking at, 

but do not worry about that.) 

I am driving the coil now, but at a very low gain on the preamplifier. I am now going to 

turn up the gain of the preamp—whoa, there it goes. Let's turn that baby down. 

I have oriented the phasing so that the force I am putting in is canceling the normal 

damping in the tuning fork and I get a self-maintained oscillator that generates a loud tone. If I 

fiitz with this a little bit—actually, it is already about futzed—I can get this, with the right gain, 

so that the loudness of the tone is neither decaying nor growing. I have it set just right so that the 

actively applied "negative viscosity" pretty much exactly cancels the natural passive positive 

damping. 

I can take out a little bit of energy by lightly touching the tines with my fingers, and the 

sound level drops and stays low. I can put in some energy back in by whacking a tine with my 

knuckle; I can charge it up more. I can take little bits in or I can take it out, again. 

If I turn up the gain the tone starts growing until a nonlinearity limits it. 

This is what the prime movers do. Instead of all this electronics, the prime-mover 

thermoacoustic engines use a temperature gradient and the gas moving in and out of the hot and 

cold areas to generate this negative acoustic resistor. 

If I flip the sign by flipping the input amplifier, notice that the tone decays quite a bit—not 

really dramatically, because we had it set up so that the active negative damping was just 

basically canceling the natural damping, so I put in double the dissipation just then and it 

decayed about twice as fast. 

Now I turn up the gain really good. First, let me disconnect the amplifier and you hear it, I 

will whack it without the amplifier hooked up—that is the normal decay. Now I am going to 

hook up the amplifier—[taps the tuning fork]—and it goes "thunk."   When a thermoacoustic 
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device is running like a refrigerator, the stack or regenerator are pulling energy out of the 

acoustic wave and turning it into good stuff, into cold six-packs. 

This is a good time for a break. 

DR. KEOLIAN: You guys made it through the first part of the talk. That was, I hope, the 

worst part. Some of that was aimed at people already familiar with some of this stuff. The next 

bit I am going to aim directly, I hope, to people who are not familiar with thermoacoustics and I 

hope you guys take something away. 

During the break, Pat Arnott mentioned that a nice way of looking at those fs, if you just 

set them equal to zero, is that you get acoustics as you first learned it, no dissipation, just very, 

very ideal first-chapters-of-Kinsler-and-Frye kinds of acoustics. 

If you set the temperature gradient equal to zero, you get ordinary acoustics, but with 

dissipation. What is new here, what we are talking about now, are funny geometries, but also 

setting that temperature gradient to something non-zero and you get an active resistance that can 

be negative or positive resistance. 

I also want to thank Tom Gabrielson. A lot of the stuff I said in the first part was thanks to 

the observations of Tom. 

[Transparency 9] 

Now we are going to talk about what was originally called "intrinsically irreversible 

thermoacoustics" by John Wheatley. It is based on standing waves. This was the type of device 

invented first and it is what many people are still researching, although more may migrate over 

to the new Stirling traveling wave devices, which we will talk about in the third part of the talk. 

The phrase "intrinsically irreversible" comes from using the dissipation inherent in the heat 

transfer between gas and wall to generate the phase shifts you need to get this thing to work 

right, whereas the Stirling cycle does not rely on phase shifts generated through intrinsic 

irreversibilities; instead, the acoustic resonator is made a bit more clever, so it tends to have 

higher efficiency than the standing wave devices. 

I do not think the standing wave devices are going to die off, myself. They tend to be 

simpler, and simple is good. 

[Transparency 10] 

Here is your classic thermoacoustic refrigerator—here I am stealing viewgraphs from Prof. 

Steven Garrett. We have a gas-filled tube, and a driver if we are driving the device electrically. 
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We will put a stack of plates in there-called the "stack"-and a hot heat exchanger and a cold 

heat exchanger on either side of the stack. 

[Transparency 11] 

The stack can be made a lot of different ways. We need a solid material with gaps in it that 

are about two or threes thermal penetration depth wide. The sound will go through the pores that 

are a few thermal penetration depths across. In the early days at Los Alamos, where modern 

thermoacoustics was started, the first thing they did was they stack up flat plates, so that is why 

we call these things stacks, but you can use other methods. 

Prof. Tom Hofler cooked up the method shown here in the transparency of making stacks. 

It is a long thin strip of plastic with fishing line glued across it. You roll the plastic up into a roll, 

and you effectively get a bunch of plates that are a distance apart given by whatever thickness 

you pick for the fishing line. 

Another type of stack is this stuff that I'm laying on the projector that you can get from 

Corning. It is ceramic that has a bunch of little holes in it. This is what they use in catalytic 

converters in cars. It is cheap, a hundred bucks for a whole bunch of it, more than you could 

possibly want, and it is much easier than rolling up the plastic. 

Also, we heard yesterday that wires work pretty good. You take a bunch of filaments and 

stick them along the acoustic axis, or stick them across the acoustic axis, or even use an 

amorphous tangle of filaments. It really does not matter. The point is to have a solid in partial 

thermal contact with the gas. 

[Transparency 12] 

The heat exchangers that are on either side ofthat stack can look like this. This is a stack 

and heat exchanger from the refrigerator that Steven Garrett and his group over at the Naval 

Postgraduate School made not far from here. Again, the heat exchangers can be pretty much of 

any of the classic heat exchangers that you can find. They look like car radiators. This one is a 

tube-and-fin type; there is a copper tube there with a bunch of copper fins. 

[return to Transparency 10] 

Let's go back to transparency 10 to see how the thing works. This is the point I want you to 

take away if you have not seen this stuff before, so I am going to say it about three or four 

different times until you get it straight, each time a little more and more accurate. 

326 



Here is the easiest way to see it—this is what I tell my grandmother. This sponge in my 

had represents a fluid element. In the middle of the tube, the standing wave causes the fluid 

element to oscillate back and forth, so I move this sponge back and forth near the center of the 

tube. On either end of the tube the standing wave compresses and expands the fluid, as does the 

sponge. 

But in between the middle and the end, where the stack and heat exchangers are, the fluid 

element is doing both. At the stack, when it moves to the left it compresses, to the right expands. 

When it compresses, it gets hot. When it expands, it gets cold. You put what you want to get 

cold on the right of the stack. Like a sponge pulling water out of something that is wet, the fluid 

element pulls heat out of your load. Then the element raises the temperature of the thermal 

energy through compression, allowing heat to be pushed out at the higher temperature on the 

left—like squishing the sponge and wringing out the water. That is how it works. That is the 

first explanation. If you remember that, you are in business. The rest are details. 

Why does a gas get hot when you squeeze it? Here is what is surprising. If you flick a 

ping-pong ball between a wall and a paddle—an ideal paddle and an ideal ping-pong ball—the 

ping-pong ball will go back and forth. If you move the paddle in pretty quick, the ping-pong ball 

is going to go faster, it is going to pick up a little speed every bounce because of this moving 

paddle. 

What if you move the paddle really, really slow? You might think if you went really, 

really slow, you did not pick up much speed, but you have more bounces to go the same 

distance, which compensates for that in such a way that the speed of the ideal ping-pong ball 

depends only on the position of the paddle. It picked up the speed of this infinitely slow paddle 

through an infinite number of collisions, so it speeds up when you squeezed it and slows down as 

you expand it. 

So the little ping-pong ball is going faster, brrrrr, and it is going bang, bang, bang over 

here. The same thing is happening in a gas being compressed by a piston—or other gas. That is 

why these things work; you squeeze the gas, it gets hot. Fast molecules are hot molecules. That 

is the other essential piece of physics. 

[Transparency 10] 

Now, I lied a little bit. The heat pumping is actually happening near side walls, and the 

stack is made up of many such walls.  Let's say I have a horizontal wall here about where my 
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belly button is and I am going to put my sponge fluid element far away from the wall, up here 

above my head, so far that there is no time for heat to go between the fluid element and the wall. 

It is going to be hot on the left, so I imagine there is going to be a hard end of a resonator on the 

left side (the driver in the picture is at a pressure anti-node, so that end acts as a hard end). 

As this fluid goes towards the hard end, it compresses and gets hot, and as it moves away it 

expands and gets cold. Back and forth—hot, cold, hot cold. It is so far away from the wall at 

my belly button, though, that this is happening adiabatically, meaning no heat is flowing between 

the element and the wall. 

Now let's move the fluid element really close to the wall, down here by my belly button, 

and imagine heat (entropy, really) is like water in a sponge, and our goal is to pump water from 

the right to the left. Let's say that this wall and sponge are wet. My sponge is going to squish 

out water as it moves toward the hard end on the left. It is in really good thermal contact with 

the wall, really good wet contact with the wall, so as it comes back to the right, it sucks up just 

the same amount water from the same place that it just dumped it. It pushes it out and then it just 

sucks it right up again, as it moves back and forth. This is like isothermal contact—when I have 

too good a thermal contact between the fluid element and the wall. There is no net water or 

energy transport. 

But now I'm going to move the sponge element up away from the wall a bit, about shoulder 

high, to get a delay in the movement of water between the sponge and the wall (or heat moving 

between the fluid element and the wall). I'll get the maximum delayed transfer of heat when the 

fluid element is away from the wall by about the distance over which heat would want to difluse 

in an acoustic cycle, which is this thermal penetration depth. 

As the gas about a thermal penetration depth away from a side wall moves toward the 

pressure anti-node, it compresses, but then it finds itself hotter than the wall. As it lingers 

towards the left, it will lose heat and compress a little bit more, heat leaving it as if I'm squishing 

out water from the sponge. 

It then moves away from the hard end and expands a little bit and cools. It finds itself 

cooler than the wall, because those molecules slow down, and it will now suck up heat from the 

wall. As it lingers on the right picking up heat, the fluid element expands some more. So the 

fluid element or this sponge goes to the left, squishes out some water, comes to the right, sucks 

up water, back and forth moving water (or energy and entropy) from right to left. 
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This would work even if I made it a little bit cooler on the right and a little warmer on the 

left—or a little dryer on the right and wetter on the left. If I keep doing this, I am going to end 

up with more water on the left, but I can still keep pumping water up a wetness gradient, up a 

pressure head, up to a point. 

Now it is going to turn out that the temperature swings of each of these little elements 

might be only about a Kelvin, a degree. We want to pump heat over a greater temperature than 

this, so let's put many fluid elements in series. Let's have a long row of these moving elements— 

I now have a sponge in each hand—so they are all going to move to the left and squish out heat, 

come over to the right, expand, suck up heat, come over to the left, squish out heat, come to the 

right, suck up heat. I can effectively put a whole bunch of these elements in a series by making a 

longer and longer stack. 

The first element on the right pulls heat from the cold heat exchanger at a really low 

temperature, brings the energy up to a medium temperature and deposits it on the stack a bit to 

the left from where it picked it up. The next fluid element picks up that energy from the stack 

and moves it over to the left some more at a little higher temperature for the next element to pick 

it up, and so on up to the hot heat exchanger. The function of the stack is to get heat to go from 

one element to the other; it gives a little temporary spot for the energy to rest so that it can 

transfer from one sponge to another. It is like a big bucket brigade. That is what many of us call 

it. 

[Transparency 14] 

This is described in these fancy viewgraphs that Ray Wakeland made. Blue represents 

cold, red represents hot. The diagonal lines leaning to the right represent high pressure, the 

diagonal lines leaning to the left represent low pressure. A big element is low density, a small 

element is high density. There are three elements going through a cycle in each figure and a wall 

represented at the bottom The element furthest from the wall is adiabatic, the closest is 

isothermal and the middle one is in between. In these drawings, the pressure anti-node (the hard 

end) is on the right. 

First, we are going to have no mean temperature gradient along the stack. When the gas is 

far enough away to be adiabatic, nothing happens, really. The gas goes back and forth, it is hot 

on the right side, cold on the left side. For the gas that is really close to the wall, the element 

goes back and forth but there are no temperature swings.   Now there is heat transfer—that is 
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what these big red arrows represent—but the element dumps heat going from left to right and 

sucks up the same amount of heat going from right to left; so there is no net heat pumping. 

But the heat transfer will be delayed a bit for the elements that are about a thermal 

penetration depth away. The element moves from left to right, compresses and gets hotter. But 

because of the marginal thermal contact, the heat is being dumped to the wall while the element 

has reached the right side, rather than on the way there. Next, the element moves to the left, 

expands, and cools. But it doesn't start sucking up the most heat until it has made it to the left 

side. The net effect is that heat leaves the left side of the wall and is deposited on the right side. 

That little delay in the heat transfer is what we need to get the net heat transfer. The delay is 

coming from the effect of thermal penetration depth. There is a thermal resistance between the 

gas and the wall, and the element has a heat capacity, so it takes a little time for the element to 

come to equilibrium as it is pushed about. But we never let it reach equilibrium—we keep it 

going on its cycle and the heat lags behind. 

The heat transfer is intrinsically irreversible, because we are sending heat through a small 

temperature difference. That creates entropy, which is a bad thing. (The entropy dQIT^w 

entering the wall is greater than the entropy dQ/Tdemaa leaving the element when reiement > T'waii- 

When Twaii > reiement and heat goes the other way dQIT^w < dQ/Te\ement- In both directions 

entropy was created which ultimately leads to the device's inefficiency.) Much of the 

inefficiency of the standing wave class of device comes from using this dis-equilibrium of the 

fluid element to give us the desired phasing for the heat transfer. 

We can get a net heat transfer even if we have a small temperature gradient on the stack, as 

shown in the second figure of Transparency 14. This is the situation we have in a refrigerator— 

net heat transfer out of something that cold and heat being deposited at a higher temperature. 

^Transparency 15] 

Now let's put a temperature gradient on the wall or on the stack that just matches the 

temperature changes of the element as it moves back and forth adiabatically. This is called the 

critical temperature gradient. Notice this critical gradient does not depend on the amplitude. If 

we double the acoustic amplitude, the distance the element travels will double, but so will the 

temperature swings, so the critical temperature gradient is the same. 

The critical temperature gradient will depend on where you are in the resonator, however. 

Near a pressure anti-node, for example, there are sizable pressure and temperature swings, but 
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there is a lot less displacement, so the critical temperature gradient is large there. Closer to the 

velocity anti-node there is a lot of motion but little pressure or temperature swings, so the critical 

gradient is small there. 

So if we have a temperature gradient on the side wall equal to the critical temperature 

gradient, nothing much will happen for any of the elements. No matter if they are close or far 

from the wall, the fluid elements go through the same temperature variations that are already at 

the wall, so there is no transfer of heat. 

What happens if make the temperature gradient even bigger, if we make this right-hand 

side really hot? For the element that is far away, nothing much happens, as usual. There is no 

heat transfer because it is too far away. The close by element is isothermal and as boring as it 

was before. But at the right distance, about a thermal penetration depth away, our little fluid 

element will come over to the right and compress toward the high-pressure side, but it will find 

itself in an area that is even hotter than it wants to be. It will suck up heat and expand when the 

pressure is high, doing work as it pushes itself away from the hard end. It expanded because it 

got hot—it goes to this hot plate and goes "Whoa, gotta' get away." (laughter) 

It then flies away from the hard end, harder than it would have gone had there not been a 

temperature gradient. It got this extra little kick. It moves away and cools off but it finds itself 

in a region that is even cooler, so heat leaves it and it cools down even more and shrinks. That 

creates a small vacuum, which sucks it back toward the hard end, harder than it would have 

gone. 

If you imagine a little fluctuation just starting off in here, a little bit of sound, just a little 

kick from a molecule maybe, that little fluctuation normally will want to relax back to 

equilibrium—but now it cannot. When it goes over to the right, it gets hot, it gets pushed away 

to the left. When it comes over to the left, it gets cold and gets sucked back to the right, and 

back and forth, back and forth, it keeps growing and growing and grows exponentially as that 

tuning fork did. It is an active negative resistor. So with enough temperature gradient we get a 

prime mover that generates sound. The critical temperature gradient marks the boundary 

between the prime mover and the refrigerator regimes. 

Please ask me questions. 

MS. HIGHTOWER: Does that all happen in the region of the stack or does this happen 

along the whole length of the tube? 
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DR. KEOLIAN: It depends on where the mean temperature gradient is. The sound 

generation happens mostly in the stack. That is where we put the temperature gradient. It could 

happen along the walls of the resonator too if there was a big enough temperature gradient there. 

Let's go back to this picture. 

[return to Transparency 10] 

Let's say we make the left side really hot, and we make the right side really cold. Now we 

do not need the driver, we do not need the electricity. We can generate sound with the 

temperature gradient all by itself, If the left side is hot and the right side is cold, certainly lots of 

good stuff is happening in the stack. 

If the resonator walls are such, though, that they are even hotter to the left of the stack and 

the tube is even cooler to the right of the stack, then it is also happening along the resonator 

walls, but there is a whole lot less wall area there, so it is not as important. We can bring the 

tube to the left of the stack back down to room temperature, if we want, or it can stay hot; it does 

not really matter too much to the performance of the engine. 

That reminds me of something I should have said earlier, which is that if we are making a 

refrigerator we can get more and more temperature by making the stack longer and longer. But 

we can get more and more heat power in a refrigerator or more and more sound power in a prime 

mover by making more and more stacking area. The area of the stack makes the device more 

powerful. We can adjust the operating temperatures of the refrigerator or prime mover by 

messing around with position and the length of the stack. 

MR. GLADDEN: It seems like the stack spacing is a pretty critical thing. 

DR. KEOLIAN: Yes, it is, a very critical thing. 

MR. GLADDEN: Is it a couple of penetration depths? 

DR. KEOLIAN: Yes. There is a computer code that the Los Alamos guys wrote and they 

even wrote a manual for it and they give it away for free. What the people in the business do is 

they use that code and they fiitz around with the spacing until they get their best performance. 

When we went through those equations at the beginning, stepping it from one end to the 

other, that is what that program does. It ends usually up that the best spacing is about three 

penetration depths. 

MR. TUTTLE: In the middle picture of your standing-wave diagram you have shown a 

delay. Would you say a little more about the delay? 
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DR. KEOLIAN: The delay is the critical thing. Remember, there was no delay when the 

sponge was really close to the wall. When the little sponge squishes out the water and sucks it 

right back up, again, it does not work. If it is too far away, it does not work. But if I get that 

delay from being at the right distance the refrigerator or prime mover will work fine. A way of 

thinking about the delay is that the element has a certain heat capacity, and there is a bit of 

thermal resistance between that element and the wall. The delay is analogous to the "RC" time 

of a resistor-capacitor electrical circuit. 

It takes time, if I am far enough away, for the heat to get out of the gas and into the wall. 

In the parts that are really close, the heat goes really fast. In the parts that are really far, the heat 

takes forever to move. But if they are the right distance away, it takes about a period for the heat 

to go, or a fraction of period, from the gas to the wall. 

That breaks that symmetry between time reversal, you see. If it were just acoustic, going 

back and forth, you might think that whatever happens ought to be the same way in both halves 

of the cycle. But there is this net motion of heat from one end to the other. It is from this 

breaking of the time symmetry caused by that irreversibility that gave the delay, so that when the 

sponge went to the right and compressed, the heat transferred when the element was on the right, 

then it came over to the other side and sucked up that heat while it was over on the other side. 

MR. TUTTLE: So the thermal transfer holds up the whole thing at one end? 

DR. KEOLIAN: Yes, the time it takes for the heat to go from element to wall or wall to 

element is critical to the operation of this thing. It gives the phasing, the proper phasing that 

gives us the net heat transfer from one end to the other. If it were not for that, it would not work. 

In the other engine that will I show you, the Stirling traveling wave device, we are not 

going to use this intrinsic irreversibility. We are instead going to use some acoustic trickery to 

give us the phasing we want. 

DR. COSTLEY: So the increase in entropy is bad because it reduces efficiency but, if we 

did not have it, it would not work? 

DR KEOLIAN: That is correct, and that is why this class of device was originally called 

the intrinsically irreversible heat engine or, as John Wheatley at Los Alamos liked to call it, the 

"natural engine." There were no cams or pistons and weird mechanical things like you have in 

your automobile to get the phasing you need. That is its strength. It is really simple. On the 

other hand, you are accepting this inefficiency to make the thing work. 
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DR. ATCHLEY: You are showing the cycle as a series of discrete steps. Isn't the motion 

sinusoidal? 

DR. KEOLIAN: Yes, I do not want to move my sponge like this, squish, move out like 

that. I want to go Mm-mm-mm-mm, like that. More sinusoidal, (laughter) 

MS. PETCULESCU: When you were going from the critical gradient, increasing more 

and more the gradient, it looks like there is a compromise you have to make, because if you 

increase more and more the gradient, then you will do worse and worse in generating entropy. 

DR. KEOLIAN: Correct, but I will get more and more heat. 

MS. PETCULESCU: Yes, so you have to stay somewhere where if you want reasonable 

efficiency, you do not have to....very much. 

DR. KEOLIAN: Gabriela is absolutely right. There is a tradeoff between efficiency and 

power density. We get the best efficiency when we are at the critical gradient, but we get no heat 

transfer, we get no sound generated. This is generally true with all heat engines, it seems. 

But if we go off equilibrium, if we go away from that critical gradient, we can get some 

heat going but we are going to pay for it with inefficiency. So there is a tradeoff between 

making a really efficient engine and making one that is compact. If I can get more heat from a 

given stack, I do not have to make such a big heavy engine. 

There is no best engine, there is no best design. The user gets various tradeoffs between 

whether she wants high efficiency or he wants a really compact one. The user decides which one 

is the best. 

DR. HAMILTON: What determines where you put the stack, because I would think there 

is some gradient there, and your biggest gradients would be at a quarter of the tubes, it always 

seems to be toward the rigid end. 

DR. KEOLIAN: Yes, Mark brings up a good point, which is we need both the pressure 

swings to get this sponge to expand and contract and we need the motion; it is quadratic in the 

amplitude. Where in the resonator do we get the most of the product of those two things? 

[Transparency 10] 

At the hard end of the tube we get all the pressure swings—and thus temperature swings— 

but no velocity swings. In the middle of the tube we get all the velocity swing but no pressure 

swing.  We need both. The biggest product of the acoustic pressure and velocity is at a quarter 
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of the way along the tube, or an eighth of a wavelength from the end. But if you look at these 

engines, we never have the stack there. 

The reason is that this gas moving back and forth is rubbing against the stack walls. The 

gas is viscous, and that is giving us loss. So we generally trade some ofthat velocity for more 

pressure—we trade some of the power density for better efficiency—and push the stack closer to 

the hard end than a quarter of the tube to get the velocity down. We get a little bit more in the 

temperature swing, but not much, but we gain on the efficiency. 

The computer program that came out of Los Alamos, DeltaE, that is used by a lot of 

people—you just fiitz around until you get the best compromise. 

MS. PETCULESCU: And the lower Prandtl number should not matter very much? 

DR. KEOLIAN: No, it does. Lower Prandtl number is a good thing. Lower Prandtl 

number means we get that heat transfer between the sponge and substrate, but we do not pay so 

much in the viscosity of the gas moving back and forth, so we might be tempted to bring the 

stack a little farther away from the wall. 

MS. PETCULESCU: [Inaudible] 

DR. KEOLIAN: What Gabriela is saying is I previously showed that the magnitude of the 

good thermoacoustic resistance did not seem to depend too much on the Prandtl number, so she 

is wondering why would I say that we might want to move the stack away from the hard end if 

the Prandtl number were improved, which we can do, say, by adding some argon or xenon to the 

helium. 

The viscous losses still depend on the viscosity and the velocity, so if my viscosity is less, 

we are able to accept more velocity and get the power density up, get more motion out of the gas, 

so I think we am still tempted to move the stack closer to the velocity anti-node. 

It turns out there are so many variables in this business, it is really hard to wrap your brain 

around them all and keep track of them. So if you are getting confused, do not worry about it, 

everyone does. That is why the DeltaE program and others like it were written; you just try a 

bunch of things, to some extent. If you have been in it for a few years, you can sort of do this in 

your head, but it is really hard. 

DR. MIGLIORI: In other engines that have intrinsic irreversibilities, for example, 

thermoelectric coolers, in which heat conduction is always present, there is a critical temperature 

gradient in which you put in work and the engine pumps heat from hot to cold, so it does 

335 



nothing. There is a sort of dead band between where it is acting as a refrigerator and where it is 

acting as an engine. 

DR. KEOLIAN: Thanks. The same is true here too, but I've been ignoring it. 

[Transparency 16] 

If we can get a temperature gradient bigger than that critical gradient, this thermoacoustic 

device generates sound. If it is less than that, it generates cooling. Look at this cool thing we 

can do. This was called the beer cooler at Los Alamos long, long ago. It is a Hofler-style 

refrigerator; Tom Hofler was a grad student of John Wheatley's (he is over the Naval 

Postgraduate School now). He made these quarter-wave kinds of pipes with this big sphere on 

the end. 

The main thing I want to show you is that you can combine a prime mover and a 

refrigerator to make a heat-driven refrigerator. You can make the hot heat exchanger end of this 

device really hot, with a flame, say. You make the middle near ambient temperature, cooling it 

with ambient water or ambient air. This big temperature gradient in the prime mover stack 

generates sound. 

You can then use that sound to pump heat from the cold exchanger up to the middle, room 

temperature exchangers. This second stack on the bottom here is a refrigeration stack. The 

upper one is an engine or prime-mover stack. The net result is that heat comes in to the hot side 

and comes in from the cold side and leaves from the middle. Both the flames and the bologna 

are getting colder and the atmosphere is getting hotter. 

[Transparency 17] 

One of the things we are trying to push at Penn State is a geometry like this, here's a 

cartoon of it. One of the reasons I'm showing you this is to let you know that you can use a 

radial geometry for thermoacoustic devices as well. Let's say we have a duct of hot exhaust from 

something, like an automobile exhaust, diesel exhaust, or gas turbine exhaust. Let us wrap the 

duct with this contraption. 

We bring in some of the hot exhaust and get one side of this innermost stack hot. We can 

then cool this second-most outer place to ambient temperature with some ambient fluid, put a 

stack in there, and generate sound. We then get a radial sound wave being generated. Gas 

comes in, gets hot, jumps away, cools off, comes back in, generating a large amplitude radial 

mode. 
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Toward the outside of this thing is a refrigerator. As the gas moves to the outside it gets 

warm, dumps heat in the outermost ambient heat exchanger, comes back, expands, sucks up heat 

from the cold exchanger,. So we have a heat-driven refrigerator. We cool the exhaust, cool the 

six-packs, and something else gets warm, like the ocean or the atmosphere. 

Now let's get a computer involved. I'll be showing you many of the computer animations 

written by Greg Swift. You can download these animations from the Los Alamos 

thermoacoustics web site http://www.lanl.gov/thermoacoustics/. [Computer demonstration] 

We will look at the animation called WAVE first. This is a Macintosh, running Windows, 

running DOS.    (laughter) 

What this is showing is a wave in a tube. We have pressure on the top, velocity on the 

bottom, and little vertical lines that represent the boundaries of fluid elements—you can think of 

lines of paint on the fluid elements—and these things are moving back and forth. 

You can see a traveling wave here. It is a wave traveling to the right. On the bottom of the 

animation is the equation describing the pressure. It is a constant plus R cos(&f - fee), which is a 

wave going to the right, plus (1-R) cos(aX + fcc), which is a wave going to the left—and I can 

vary R. Right now R is 1, so it is all traveling wave going to the right. 

I can type a v and a little dot shows on a couple of places on the waving line. The vertical 

position of the dot is proportional to the pressure. The horizontal position ofthat dot tracks the 

vertical lines that map out the boundary of a fluid element. The phasing is such that the dot is 

sweeping out an ellipse. 

If you like, you can think of each of these fluid element boundaries as being like a piston. 

Consider this boundary below this right-hand ellipse. Think of all the stuff to the right as being 

like a volume, the boundary as being like a piston, and that this fluid element is compressing the 

volume of the stuff to the right. 

The ellipse then is mapping out the pressure p and volume change dV of the stuff to its 

right. The area inside the ellipse is the integral of p dV, and that is the net work that is being 

done by our fluid element on all the fluid to its right.. 

Mapping out the ellipse in this way shows that the pressure is low when it is moving to the 

left, and the pressure is going high when it is moving to the right. If you think of this as a piston, 

it is doing more work when it is moving to the right, because the pressure is high when it is 

moving to the right, than it is getting back when it is moving to the left. So there is net energy 
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going from left to right.  You can see that from the area ofthat ellipse. When it is being traced 

out going clockwise, that means energy is going from left to right. 

If I change that R factor to be 0.5, which means I have an equal amount of wave going to 

the right and an equal amount going to the left, I get the standing wave. Now take a look at this 

littlepV indicator diagram, as the ellipse is called. It is a straight line now, there is no area in it. 

Let's look at the left indicator diagram first. For the one on the left, when the element is 

moving to the right, the pressure goes up. That is what would happen if we were pushing against 

a spring. When we move back, we get all the force right back, again, all the energy we put into 

the spring comes right back out again. This is a good spring when we have a very good standing 

wave. 

But notice that with the indicator diagram on the right the pressure goes down when 

element moves to the right. The gas to the right of the element is mimicking a mass. The 

standing wave on the right-hand side of this velocity node looks like a mass. On the left-hand 

side it looks like a spring. It is purely reactive either way—some nice acoustics there. 

If I set R equal to zero, we have the traveling wave going to the left and now the ellipses 

move in the counterclockwise direction, showing that energy is moving from right to left. If I 

make R equal to 0.6 now, a little bit of standing wave and a little bit of traveling wave, I have an 

imbalance between the right- and leftward-going waves. 

What I want to show you is that these ellipses become sort of tilted. I am going to need 

this to explain the other things later in the day. The area of it tells you how much traveling wave 

there is. The slant of it tells you about the standing wave piece of it. If it is moving clockwise, 

energy is going from left to right. If it is going counterclockwise, energy is going from right to 

left. 

MR. APOSTOLOU: What are you going after with the work? 

DR. KEOLIAN: Right now I am just talking about some basic stuff. I have no goal at this 

point other than to set you up for the next animations. When we put a thermoacoustic device 

into the animation we'll want to see how the work flows. 

We have been talking a lot about penetration depths. Now I am going to show it to you, 

finally. First, we are going to do this oscillating wall animation, OSCWALL. If I have a fluid at 

rest at infinity and a wall moving back and forth, the fluid (meaning either a liquid or a gas) right 

next to the wall is stuck to the wall by viscosity and it has got to go back and forth with the wall. 
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Far away from the wall the fluid is not moving, but there is a distance over which there is 

some influence of the wall. Think about the physics of it. If the viscosity is really big, then the 

wall has an influence that reaches out farther into the gas. If the inertia of the gas is really big, 

then it limits how far the influence can go, because there is a balance between the viscosity of the 

gas trying to get the fluid away from the wall to move and the inertia of it trying to keep it from 

moving. 

There is a characteristic distance, the viscous penetration depth, which depends on the ratio 

of viscosity to density. It also depends on frequency. You can see a wave traveling away from 

the wall out to infinity, but it is highly damped. It has a wavelength—Prof. Atchley said this 

yesterday nicely: The real part and the imaginary part of the wave vector are equal. 

This characteristic distance, each of the tic marks on the vertical axis, is a viscous 

penetration depth. When you get to about four penetration depths away from the wall there is 

not much happening at all. 

Sound behaves like this, except in sound the fluid is moving and the wall is stationary. 

That is shown on the next animation, VISCOUS. 

Here we have a piston on the right-hand side of a tube driving the gas. The piston is not 

moving very much. Hitting a key has the animation plot the velocity and the pressure. This is 

sort of like basic acoustics now. It appears that the velocity goes to zero at both ends, but it does 

not quite. If you look carefully, there is a little bit of velocity that has to match the piston 

velocity. The velocity swings in the middle are much bigger than the velocity of the piston. 

That is the "Q amplification," because we are near resonance. 

Next, we turn on the vertical lines and we can see the gas in the middle sloshing back and 

forth—a typical standing wave. But hey, these little lines are rubbing against the wall. We are 

showing them moving, but that cannot happen, because right next to the wall they're stuck by the 

viscosity. 

So let's blow up a region in the center of the tube right near the wall and zoom in on it, and 

see what is happening. Not too far from the wall, a few viscous penetration depths, the gas is 

moving like a big plug of fluid, like we just saw in the larger scale picture. But right near the 

wall there is a viscous wave being launched by the wall going into the gas, like we saw in the 

animation VISCOUS. You can think of it as the viscous wave canceling the acoustic wave right 

at the wall. It is adjusted in just the right way such that those two solutions add up to zero at the 
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wall and you get this neat little motion from the combination. Notice it is coming to the right 

and then sort of whips along like that, and that's what's going on within the viscous penetration 

depth. 

MS. HIGHTOWER: Why does it....near the wall but not right at the wall? It looks like it 

goes faster than the liquid. 

DR. KEOLIAN: Yes, isn't that neat? It seems to lead, doesnt it? 

MS. HIGHTOWER: Why? 

DR. KEOLIAN: I do not know why, but it is neat, (laughter) 

There has to be a physical explanation, but I do not have it. That is what students are for. 

You have the time to ponder those things. 

Now let's go back to the oscillating wall demo, OSCWALL, which I already showed you. 

But now let's imagine that instead of the wall oscillating, the wall is fixed, and imagine that what 

we are plotting here is the temperature of the wall and the gas. We have a wall whose 

temperature is oscillating up and down. Right near the wall the gas has to follow the temperature 

swings of the wall. Far away the gas comes to whatever temperature it is at infinity, which is 

some constant. We can see that there is a thermal wave that goes from the wall out into the gas. 

This is like what happens to your water pipes. You can think of it as being hot when the 

base of the wave is to the right, as in summer. Then it goes to fall in the middle, and then winter 

when it goes to the left, and then spring and then summer. There is a thermal wave in the soil 

that goes down, away from the surface (up in the animation). For every place in the country you 

have to bury your water pipes down to a certain depth so that they do not freeze, and when they 

freeze is not in the winter. 

Notice that if you are some depth away, there is a delay. Like right now in the animation it 

is winter, and two penetration depths away, say, the buried pipe is still cooling. A moment later 

it is spring and, bingo, two penetration depths away, the pipe is coldest in the spring, not in the 

winter. 

The same thing happens in acoustics. Let's go now to the animation THERMAL. This is 

similar to what we had seen before. We have a standing wave in a pipe and pressure swings that 

are biggest on the left-hand side of the wall. We are also going to plot the temperature now. The 

upper graph is the temperature and the temperature swings pretty much follow the pressure 

swings. 
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We are going to look at the area right near the wall. We are showing the temperature 

swinging right near the wall, but that cannot be true, because the wall has a whole lot more heat 

capacity than the gas does. Actually, what is important is the amount of heat capacity within a 

thermal penetration depth in the wall—the wall has its own thermal penetration depth, too. It is 

the heat capacity in that little accessible volume at the end of the wall compared to the heat 

capacity of the gas within its thermal penetration depth. Since the wall is a thousand times 

denser than the gas, it has a lot more heat capacity and so remains isothermal. 

So let's zoom into the area near the wall. Right near the wall the temperature cannot swing 

very much and that is shown in the animation. You can think of that thermal wave being 

launched from the wall into the gas in such a way that it cancels the temperature swings that the 

gas was imposing on the wall. The diffusive wave of heat is going from left to right, and that is 

what it looks like in the animation. 

This leads to dissipation of acoustic power but that is a little hard to see. This is the cause 

ofthat thermally induced acoustic resistor rk in that equivalent circuit we had way back when in 

the first hour. We can see that over here on this bottom graph. Here we have the pressure and 

the fluid elements' boundaries shown, so we are going to consider one of the fluid elements as a 

piston and ask how much net work it does it transfer to the remaining fluid to its left. 

We are going to plot out the pressure and position with one of these little ellipses as we 

have done before. It is basically a straight line as I showed you for the standing wave. The gas 

to the left basically acts as a spring. Look at it from the right to the left. Imagine you are 

standing on the right of this little piston and you are pushing in. The pressure is going higher as 

you are compressing the volume on the left, and the pressure is high again as the piston comes 

back, again, but the pressure and motion are not quite in phase. The pressure is a little bit higher 

on the way in than on the way out. Why is that? 

There is a little bit of area to this ellipse, which means some work, real live time-averaged 

work, is going from right to left. The reason is, when the gas moves in, most of it is trying to 

compress adiabatically, but in this region—a thermal penetration depth away from the wall—the 

gas cannot make up its mind if it is adiabatic or isothermal. On the way in, the gas tries to 

compress adiabatically and raise its temperature, which causes a little bit of heat to be transferred 

to the wall once it's compressed. On the way out, it tries to adiabatically expand but it is now a 
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little cooler at any position than it was on the way in because it had just lost some heat. After it 

expands it pulls some heat out of the wall and is back where it started. 

The gas basically acts like a gas spring and the effectiveness ofthat spring depends on the 

temperature of that gas. When the molecules are moving faster, they push against the piston 

harder. It is a stiffer spring when the gas is hot, so it is a little stiffer coming in than when it is 

coming out. The piston put work in when compressing the spring, but it did not get quite all that 

work back out again as the spring expands, because the gas was a better spring coming in than 

when it was coming out. Where did that work go? 

It went into the wall as a net heat, as a net flow of heat from the gas into the wall, in 

addition to the oscillatory heat flow from the temperature oscillations of the gas. Entropy is 

being produced by the oscillatory heat flow because heat is flowing through a temperature 

gradient, giving an irreversibility that leads to a net loss of work and a net flow of heat out of the 

gas. 

The net work that is passing from right to left is given by this third line and the derivative 

of it tells you where the most dissipation was occurring. It is occurring about a thermal 

penetration depth away. That is where the net work is being lost from the acoustic wave and 

being turned into a net heat. 

You guys are nodding off. I am going to have to give you a break here, I think, and we 

probably should open some doors. 

DR. KEOLIAN: I want to finish up on these intrinsically irreversible standing-wave 

engines and then move on to the Stirling engines. One last standing wave demo, called 

STANDING. 

[Computer demonstration] 

Here is pretty much what we had before, a standing wave in a tube with velocity and 

pressure—shown on the two moving graphs. Now I am going to put in a stack of plates from the 

hard end and we are going to zoom in on that little bit in-between the two plates and watch a 

little blob of fluid going back and forth. 

PARTICIPANT: On this one it says "parcel." 

DR. KEOLIAN: Parcel on this one. Sometimes it is a blob, sometimes it is a parcel, 

sometimes it is a fluid element. 
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What we are watching is the pressure and volume of the parcel. Now notice, that this 

volume is the volume of the parcel, not the volume of everything to the left. It is a straight line 

right now, because I did not push the right button, (laughter) 

Let me start over here, and type an/for a flat temperature profile on the stack. What we 

are plotting is the temperature of the blob of gas when there is a flat temperature profile, no 

gradient, on the stack. The little blob is moving back and forth. When it gets hotter than the 

stack, heat leaves the blob and goes into the stack, as shown by the red arrows. When it is cooler 

than the stack, heat goes from the stack into the blob. 

A consequence of that is that the pressure is higher when the gas is warmer and 

compressing and a little lower when the gas is expanding and coming out, so there is a net area to 

this pV diagram for the blob. The little blob is absorbing work, which is a consequence of 

pumping heat from right to left. 

If you think back to those first thermodynamic diagrams I showed you, with work, cold 

heat and hot heat, you cannot pump heat without doing some work, although right now we are 

not pumping over a temperature gradient, so the Carnot efficiency would be infinite. 

Let's now put on a temperature gradient by typing r and have the blob pump heat against 

some temperature gradient. This is now a refrigerator—we now have a slight temperature 

gradient. The slope of this ellipse does not change. That is determined by the acoustics, by the 

ratio of pressure and velocity at that point. 

But we still arranged it so that the blob is a little bit cooler than the stack when it moves to 

the right and a little bit warmer than the stack when it moves to the left, so to the right it absorbs 

heat from the cold end, and dumps heat towards the hot end, and that is a very good thing. That 

makes it a refrigerator and refrigeration is a good thing to have. It is actually a $750-billion-a- 

year industry worldwide, that is how good a thing it is. 

MR. PORTER: The area....got less. Is one more efficient, like there is a difference in 

efficiency based on what that area is? 

DR. KEOLIAN: Yes. Part of it is efficiency, part of it is Carnot efficiency. 

Let me go to the next one, the critical temperature gradient by typing a c, and what we have 

done is adjusted the temperature gradient so it matches the temperature swings of the particle. 

Notice, though, that the area went to zero and that is how I know that in this simulation Greg did 

not throw in the viscosity of the gas. 
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MR. PORTER: So right now it is just basically a thermal gradient, not a viscous gradient 

established with the boundary layer? 

DR. KEOLIAN: I hope I am not saying this badly, I do not want to get you guys 

confused—yes. Ignore what I just said, (laughter) 

The area goes down because I am not pumping any heat and either the viscosity is 

neglected or for some reason it does not affect it here. The viscosity of the gas is not making the 

ellipse open up like I think it should. 

DR COSTLEY: In that case, if you had viscosity you would be putting work in. 

DR. KEOLIAN: That is what I am not a hundred percent sure of. I think I have to put 

work into the blob because the blob is going to be doing work against the wall. No, it does not 

do any work against the wall, excuse me, because the wall does not move. It takes work, turns it 

into heat and heat goes from the blob to the wall in a net way. So I'm pretty sure that this 

simulation is in the inviscid limit—we are imagining the Prandtl number is zero. 

The critical temperature gradient is the crossover point between a refrigerator and a prime- 

mover engine, which I will show you next by typing a p. Now we put a hot temperature on the 

left of the stack. The blob picks up heat when the pressure is high. It dumps heat when the 

pressure is low. It expands pushes out from the end of the pipe when the pressure is high, so it 

does work. It comes back relaxed, so the blob is doing net work. The net work is showing up on 

the pV diagram and that work is turning into sound. That is good stuff— the engine is 

generating sound. 

[Transparency 19, 20] 

Just to show you that this really happens, we have a real live demo here. What I have here 

is what I believe to be the world's simplest thermoacoustic demo. It was made by some students 

over at Perm State, primarily Reh-Lin Chen, and also Kevin Bastyr had something to do with this 

one. This one is Kevin's version. 

The Corning ceramic material is used as a stack in a test tube quarter wave resonator. A 

little nickel-chromium wire is wound on the end of the stack facing the closed end of the test 

tube. The nickel-chromium wire is acting as the hot heat exchanger and is attached to copper 

wires which come out of the open end of the tube. Reh-Lin has also driven this demo by 

focusing sunlight on the hot end. You do not need any electricity. 
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There is, in effect, not only no hot heat exchanger, there is no cold heat exchanger. What 

would be the cold end stays cold, perhaps because there is convection in here or maybe it is just 

the heat capacity of the thing. 

I am going to power up the nickel-chromium wire with a couple of six volt lantern 

batteries, and lots of sound comes out. It is not real touchy as to where I put the stack, which I 

can slide around in the test tube with the copper wires (but it is touchy about that wire being 

broken). If I get it too close to the hard end, it does not work, or too close to the open, it does not 

work. It has got to be just right. 

That is it for the standing-wave engines. 

[Transparency 21] 

Now we are going to turn our attention to the recent development, the Stirling class of 

engines. They are kind of traveling-wave-like and you will see what I mean by that. Let's do 

that with these animations. We are going to go to the one called PTR, or pulse-tube refrigerator. 

[Computer demonstration] Some of the names make no sense at all—"pulse tube refrigerator" is 

historical. 

A Stirling engine is quite different from a standing wave engine. This is a classic old 

refrigeration or heat engine cycle. What we have are two pistons moving back and forth and a 

stack-like thing is in between, except that it is going to be called a regenerator now . The 

difference between a regenerator and a stack is that the regenerator has really small little pores, 

much smaller than a thermal penetration depth. 

The typical way a regenerator is made is by getting a lot of window screen, except really, 

really fine window screen, cutting it up into a bunch of circles and stacking those circles up 

against each other. It makes a real tortuous little path for the gas to go through, getting the gas in 

really good thermal contact with the secondary thermodynamic medium. 

I am going to slow this animation way down so we can talk about it as it is happening. On 

the top is plotted pressure. On the bottom is temperature. What is happening now is that the two 

pistons are moving to the right, so we are pushing the gas from a warm temperature, room 

temperature, down to a cold temperature. 

Then we let the gas expand. We move the pistons away from each other, and everywhere 

between the pistons the gas expands and either lowers its temperature if there is nothing nearby, 
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or it sucks heat from whatever there is around it.  In particular, the gas to the right of the cold 

exchanger has expanded and turned cold. 

The next thing we do is we start pushing the gas to the left by moving both pistons to the 

left. The cold gas on the far right comes in and smacks into the cold heat exchanger on the right 

and cools it down, pulls heat out of it. Meanwhile, all the gas in the regenerator is moving to a 

warmer area and pulling heat out of where it is going. 

Then we start compressing the gas everywhere. The gas starts dumping heat into whatever 

it can, because it is trying to get hotter. The gas to the left of the hot heat exchanger does get 

hotter, because there is not anything near enough to dump heat into. 

Then we start displacing the gas to the right and that hot gas that was over to the left starts 

dumping heat into the hot heat exchanger. 

The net effect is that we cooled the right-hand exchanger and heated up the left-hand 

exchanger. We pumped heat from a cold temperature to hot. It is a nice little refrigerator. In the 

animation, we are expanding the gas now. This gas over here to the right of the cold heat 

exchanger is getting colder. It is lowering its temperature below the temperature of the 

exchanger. Then we shove all the gas to the left, that cools off that cold exchanger. The next 

thing that will happen is we will compress the gas, then we will heat up the gas on the left—I 

will speed it up a little bit—we are displacing to the left. 

Let's zoom in on what is happening near that cold exchanger by typing a c. Here is a little 

blob near the cold exchanger. The gas is moving to the right. We then expand it, it gets cooler, 

smacks into the cold heat exchanger, dumps heat into the exchanger. The blob hits the 

exchanger, changes its shape to get in there, it is colder, starts pulling heat out of the 

exchanger—that is a good thing, that is what we are paying for it to do. It then goes into the 

regenerator, which has a temperature gradient on it. 

It is pulling heat out of the regenerator as it is moving to the left, because it is coming from 

a colder area moving into a hotter area, but then when it comes back, again, it is dumping all that 

heat right back, again, just like that sponge I showed you that was too close to the stack. It 

pushes the water out and then sucks it right back up, again. 

It goes through the exchanger, pops out like that. It is now kind of floating out there. The 

pistons are now moving apart, it is expanding, it is dropping its temperature, and then coming 

back to complete the cycle. 

346 



DR. COSTLEY: What part does the regenerator play? 

DRKEOLIAN: I will show you. It is, again, sort of like a bucket brigade. Each parcel is 

moving back and forth. That is actually a hard question. When the heat pumping is zero, exactly 

the same amount of heat is moving to the left as is being sucked up on the way back, but that is 

not exactly true. There is an ever-so-slight imbalance between the two, and the heat is moving 

from right to left as a bucket brigade all the way down. There is a lot of heat, because there is a 

lot of heat going back and forth between the gas parcels and the regenerator, because they are in 

really good contact. [What I said in these last three sentences is wrong, and caused much 

confusion in the following discussion. I was confusing entropy flow with heat flow. What I wish 

I said is this: From what I can tell, the regenerator does two things—it acts like a bucket 

brigade and it changes the temperature of the gas so that it can accept heat at one temperature 

and reject it at another. The cycle of a blob of gas that's inside the regenerator can be seen in 

the animation by typing an r. When the gas is towards the right it is made to expand by the two 

pistons moving apart. This causes the gas to pull heafrom the regenerator. Next the pistons 

move to the left pushing the gas into a warmer area, absorbing some more heat and increasing 

the blob's temperature. The pistons then move towards each other, compressing the gas which 

deposits heat on the left. Lastly, the pistons move to the right, the blob goes down the 

temperature gradient replacing the heat it took out of the regenerator when it was moving to the 

left, and lowers its temperature, ready to start again. Notice that the regenerator was able to 

raise and lower the temperature of the gas without requiring work from the pistons (ignoring 

viscosity)—ideally the gas motion occurs at constant volume so it does not absorb work Notice 

also that heat was pulled out when the blob was on the right and deposited when it was on the 

left. The next blob to the left of this one will do the same, and so on, setting up the bucket 

brigade that pulls energy out at a low temperature and rejects it at a high temperature.] 

DR. MIGLIORI: ....the gas molecules make it through without transporting heat through 

this thing so you can get the gas from cold to hot without having to warm it up— 

DR. KEOLIAN: But I could do that with a big chunk of Styrofoam. I have to do more. I 

have to pump heat up the temperature gradient, but I do not want any conduction. 

DR. MIGLIORI: But it is a Stirling engine, right? The function of the regenerator is to 

allow you to get the gas to the hot end and have it be hot when it comes out, and then all the 

action occurs in those models, compression and expansion. 
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DR. KEOLIAN: What you say is true, too, but there is still heat-like stuff, there is still a 

flow of— 

DR. MIGLIORI: But ideally there would be no flow of heat through the regenerator. 

DR. KEOLIAN: That is not true. There would be no conduction, but there is a flow of 

heat going one way that is balanced by a flow of work going the other way, so that the net energy 

is zero, but that is for the cognoscente, this argument. [Better stated in retrospect: There is a 

flow of entropy (not heat) in the regenerator. Even though the blob is at a particular 

temperature determined by where it is in the regenerator, when it is moving to the left it is less 

dense than when it is moving to the right. When it is less dense it carries more entropy (at the 

same temperature), so more entropy is moving to the left than is moving to the right.] 

DR. GILBERT: It seems like I remember Greg Swift was saying we want this to be an 

isothermal process so that there is no entropy [generation], that you do not have anything 

flowing through a temperature [gradient]— 

DR. KEOLIAN: Yes, that is true. The gas is in such good thermal contact with the 

regenerator that if we look at one place in the regenerator, the temperature does not swing there. 

However, if we follow an element, that element is going through temperature changes. It is the 

difference between a Lagrangian and Eulerian way of looking at it. 

DR. ARNOTT: But it is always looking at something that is the same temperature as it is. 

DR. KEOLIAN: Yes, that is also true. As the gas moves back and forth it is changing its 

temperature. But it is in such good thermal contact that we are not creating much entropy in 

getting heat to flow back and forth between the blob and the regenerator—an ever so small 

amount because the temperature difference between the blob and the regenerator is so small. It 

is not intrinsically irreversible the way the standing wave devices are. There are some 

irreversibilities if we pump large amounts of heat but, if we do not, then the efficiency 

approaches Carnot's efficiency. 

Let's look at it from a sponge's point of view. I am going to bring a compressed sponge to 

your right, expand it, then move it to your left and then compress it—expand it on the right, 

compress it on the left. If we imagine that the sponge is in contact with something wet, it will 

pull water out of the right and bring it to the left, building up a puddle of water on the left. 

Because the sponge is bigger as it moves to the left it can carry more water to the left than it 

brings back coming to the right. 

348 



In the standing wave devices, the important blobs were a thermal penetration depth away. 

The blob moved to the left towards a pressure anti-node, compressed a little bit and raised its 

temperature as it did so, then squished out a little bit more as heat left it and it thermally relaxed. 

Then it moved to the right, expanded quasi-adiabatically a bit and cooled, then expanded some 

more as it pulled heat out of the stack. It expanded on the right and compressed on the left 

because of the marginal thermal contact. Now with the Stirling cycle maybe you can see that the 

blob ends up doing essentially the same thing, but instead of relying on thermal relaxation to 

give us the phasing, we are forcing the expansions and contractions of the gas by moving the 

pistons apart or towards each other. 

The effect is the same, I want to expand over here and compress over there. In one case I 

do it with the standing wave and its thermal delay. The other way I just brute force it with the 

pistons. 

DR. GILBERT: What is the reason? What are you getting by doing it the Stirling way? 

DR. KEOLIAN: We are getting the same effect—we are getting net heat going up a 

temperature gradient, which is worth $750 billion. 

DR. GILBERT: It is more complicated device. There must be some advantages to this in 

efficiency. 

DR. KEOLIAN: We did not have to have the heat flowing through a temperature gradient 

between the blob and the regenerator. We did not have the intrinsic irreversibility of the 

standing wave device to get the device to work. We are going to impose the phasing we want, in 

this case, with levers and pulleys. 

DR. GILBERT: Well, that makes that Stirling device more efficient. 

DR KEOLIAN: Correct. 

DR. ARNOTT: You are still sloshing the gas through these narrow [channels]— 

DR. KEOLIAN: Yes, and that is a problem that we will get to—I hope. 

Notice that with the left-hand piston, the pressure is high when it comes in and low when it 

goes out. Work is going from left to right. With the right-hand piston, the same thing is true; 

work is going from left to right. The right-hand piston is absorbing work from the stuff on the 

left. The left-hand piston is doing work on the right hand piston. 

In the traditional Stirling engine this work going into the right piston is recovered with 

levers and cams connected to the left piston to help push it; in any case, that energy was not lost. 
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But there are levers and cams and junk that make it complicated, which is not that much fun. 

Then somebody figured out that this piston over here on the right is just absorbing work. If we 

put a big absorber over here, we can do the same thing. 

A way of doing that is with something called the orifice pulse-tube. We can show it on the 

animation by typing an o. Here is the orifice. It is basically a big acoustic resistor. There is a big 

volume behind it that is basically a big spring or compliance. If you like, you can look at it as 

the analog of an electrical RC (resistor-capacitor) network. The combination just absorbs 

energy. 

The orifice, because it is absorbing energy, is warm, and we are trying to make the cold 

heat exchanger cold, so we want to keep these two things away from each other. We could do it 

with a big block of Styrofoam moving back and forth or we can do it with a long enough tube of 

gas. This tube between the orifice and the cold heat exchanger does the thermal isolation. A 

good name for it would be a thermal buffer tube but historically it has been called a pulse tube. 

We are losing energy in the orifice, but we got rid of some parts, which is good. 

[Transparency 23J 

What an actual orifice pulse-tube refrigerator looks like is something like this. You have a 

regenerator with a cold exchanger on the top and a hot or ambient exchanger on the bottom, a 

pulse tube, which is basically a tube at least about three displacements of the gas long (that is 

about what is needed to keep them isolated), a valve that acts as the orifice so you can adjust the 

amount of dissipation, and a tank so the gas has somewhere to go after it passes through the 

orifice. 

Los Alamos figured out to make it a little bit better. They can mess with the inertia, as well 

as the resistance, in this newer version with another valve. So that is really swell. 

DR. GARRETT: Do you want to say that the problem is that the....power that is being 

absorbed is not being fed back? 

DR KEOLIAN: Yes, this power that is being absorbed is just wasted. Nevertheless, it is 

not a bad thing, because you can now use a conventional thermoacoustic driver to make 

something useful. [Computer demonstration] 

Look what we can make, shown by the animation TADOPTR. It's a Thermoacoustically 

Driven Orifice Pulse Tube Refrigerator. We can use a stack to generate sound, get its left-hand 

side really hot, have the right hand side of the stack and the rest of the tube at ambient 
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temperature, put in our regenerator over here to the right, a pulse tube or thermal buffer tube 

next, then an orifice to dissipate the energy, and finally a volume as somewhere for the gas to go 

behind the orifice, over there. The left end is really hot with flames, the middle is at room 

temperature, and the cold exchanger on the regenerator is really cold, in feet, cold enough that it 

can liquefy natural gas. 

What Los Alamos is doing is building a gadget like this that will liquefy natural gas. 

Often, natural gas is found in oil wells, but usually not enough to make it worthwhile to pipe it 

out. It is too expensive to make the pipe. So what is often done is the gas is just burned up near 

the well to get rid of it, putting all that carbon in the air and just wasting all that juicy energy. 

What the Los Alamos guys are doing is burn some ofthat gas, make this left end hot, keep the 

ambient end cold (I think it is being cooled by the gas coming in, but I am not sure about that), 

and liquefying the rest. They drive the liquefied natural gas away in trucks and make money. 

The animation shows it working. It sort of puts together the things we have been talking 

about so far. The left-hand side looks like the standing wave devices we talked about in the 

second part of the talk, the right-hand side is a Stirling, traveling-wave device that we have just 

been describing. 

But as Steve pointed out, we are losing energy in the orifice and this had been bugging 

Swift for a little while. In the meantime, they put out this cool video. [The video was shown.] 

MR WOLIAN: "I am John Wolian, director of the acoustic liquefier program at Cryenco 

here in Denver. We are going to show you a totally new technology for the liquefaction of 

natural gas. We expect this technology to open up entirely new markets and applications for 

liquefied natural gas." 

DR. SWIFT: "In 1989 a small group of us at Los Alamos and at the National Institute of 

Standards and Technology in Boulder invented the first cryogenic refrigerator with absolutely no 

moving parts. Our first experiments....but the hardware had very little refrigeration power and it 

was not very practical. 

"When Cryenco heard about our invention, we began working together to make it powerful 

and practical for liquefying natural gas." 

WOMAN NARRATOR: "Natural gas is an abundant fuel widely used for home heating, 

for electric power production, as a heat source in industrial applications, and as....for chemical 

processes.   Most natural gas is carried from gas wells to the consumer in pipelines.   Where 
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pipelines cannot be used, natural gas is transported and stored as a liquid, because it takes up 

remarkably less volume. 

"Natural gas can only be liquefied by extreme cooling to about minus 140° Fahrenheit, 

much colder, even, than dry ice. When liquefied, the gas is known as LNG, liquefied natural 

gas. Such cold temperatures are called cryogenic temperatures. Until this project, all cryogenic 

liquefiers had moving parts. 

"Moving parts are subject to wear and leakage and often require lubricants and they may be 

costly to manufacture. Our new liquefier avoids these problems. It has no moving parts and 

may begin a major revolution in the use of liquefied natural gas." 

DR. SWIFT: "This is the world's first acoustic liquefier. It has three major components, a 

natural gas burner, which provides the input power, an engine, which converts the heat of 

combustion into an oscillating pressure wave inside this pipe. The oscillating pressure wave 

drives the cryogenic refrigerator, which liquefies natural gas at minus 240° Fahrenheit at a rate of 

100 gallons a day or about a cup a minute, so we put energy in the form of heat into that end and 

we get refrigeration power at this end. All this happens with no moving parts. 

"The hardware is simple, but the physics is complicated. At a pressure of 30 atm this 

helium is the thermodynamic gas for both the engine and the refrigerator. The helium pressure 

oscillates in a half-wavelength acoustic wave like the sound wave in an organ pipe. 

"The pressure goes up and down in the two ends of the pipe as the helium back and forth 

near the center. On the left, the engine uses the heat from the burner to generate the acoustic 

wave. The thermal expansion and contraction of the helium pushes and pulls on the acoustic 

wave, just like thermal expansion of the combustion products in a car engine pushes on the 

pistons. 

"While the engine pumps acoustic power into the wave, the refrigerator takes acoustic 

power out of the wave. Here, every time the pressure and the acoustic wave goes down, the 

helium expands and cools. That cold helium liquefies to natural gas. The helium oscillates 40 

times a second here. 

"All that action in this simple hardware, a pipe full of helium, three heat exchangers on the 

one end and four heat exchangers on the other end, and no moving parts, no sliding seals, no 

lubricating oil, nothing to wear out." 
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MR. WOLIAN: "Cryenco is commercializing this new technology for liquefying natural 

gas. We began our development in 1994, dividing our program into two phases. The first phase 

is to develop a 500-gallon-per-day liquefier. This prototype, which has one engine and one 

refrigerator, is the first step toward a 500-gallon-a-day liquefier. 

"This prototype now produces 100 gallons per day of LNG. It is 300 times more powerful 

than the original invention and has proven clearly that this technology works at large scale. 

Based on this success, we are now starting development of our 500-gallon-per-day prototype. 

Our efficiency target at that size is to liquefy 70% of the gas stream, while using the remaining 

30% to power the burner. 

"In the second phase of our program we will develop a 10,000-gallon-a-day liquefier, 

which will be similar to the 500-gallon-per-day liquefier, only larger. Both of these liquefiers 

will be small enough to install on transport trailers." 

WOMAN NARRATOR: "Today most LNG is made in very large plants with capacities 

from 100,000 to several million gallons per day. The largest systems cost billions of dollars and 

take years to construct. The acoustic liquefier is much smaller, costs much less, and will be 

factory-built. However, it will achieve the same basic objective, to allow economic transport and 

storage of natural gas where pipelines don't exist. 

"Small gas wells not connected to a gas pipeline could be brought into production with an 

acoustic liquefier. Offshore oil wells also produce some natural gas. An acoustic liquefier could 

withstand the hostile offshore environment and liquefy the gas for efficient storage and transport. 

"Pipeline gas could be liquefied at LNG filling stations locally for fleet vehicles and near 

highways for trucks. The large quantities of natural gas generated by landfills could be 

collected, liquefied, and used as fuel for landfill vehicles. 

"Local gas distribution companies could liquefy gas and store it when prices are low to 

have on hand when demand is high. Coal mines vent large amounts of gas over long periods of 

time. This wasted gas could be captured by acoustic liquefiers. Large-scale LNG storage 

systems have significant losses due to boiloff. A liquefier could recapture this boiloff." 

DR SWIFT: "High efficiency will be important for these applications. In parallel with 

Cryenco's commercialization efforts, Los Alamos is continuing research to push the efficiency of 

this technology higher and higher. Years ago, our first hardware was so inefficient it would have 

liquefied only 9% of the gas stream while burning the other 91%. 
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"When the prototype at Cryenco first liquefied 100 gallons per day, the efficiency was 

already 40% liquefied. The 500-gallon-a-day system should have an efficiency of about 70% 

liquefied. But even this is nowhere near the ultimate limit for efficiency for this technology. 

The acoustic liquefier is very new and our research has explored only a small fraction of all 

possible improvements to the thermodynamic and acoustic processes." 

MR. WOLIAN: "With the help of Los Alamos we have made astounding progress. 

Cryenco is excited about bringing this new technology to the marketplace." 

DR. KEOLIAN: Wasn't that perfect? [Computer demonstration PTR] 

Remember, the orifice was dissipating energy and this was, I believe, driving Greg nuts. 

Here is the basic Stirling engine again. I put the elliptical indicator diagrams back on it. Notice 

there is a bunch of wave energy moving from left to right. The arrows are the heat coming in 

and out of the heat exchangers. 

[Transparency 24] 

Meanwhile, a fellow named Peter Ceperley, not too long ago, had noticed that in that 

diagram this phasing of displacing the gas, expanding it, displacing it, compressing it, has the 

displacement of the gas and the compression of the gas 90° out of phase. 

If the displacement and the pressure are 90° out of phase, what is the phase relation 

between the velocity and the pressure?—180° or 0°—they are in phase. Acoustically, what does 

that mean, what kind of wave is that?—a traveling wave. 

So Ceperley figured out that this is just an acoustic wave, a traveling acoustic wave through 

a regenerator. What if we can get an acoustic wave going around and around an annulus by 

putting one regenerator in that drives it (applying the necessary temperature gradients to the 

regenerator) and then use that traveling wave to make a refrigerator with another regenerator? 

Dr. Arnott earlier brought up the problem of all that gas moving through the regenerator, 

through those little itty bitty pores. The viscosity of the gas is going to kill us. Ceperley made 

devices like those shown on this transparenncy and that is what happened. But he was on to the 

right idea. 

[Transparency 25] 

Back at Los Alamos these things were happening. There is the basic Stirling engine in (a). 

Then somebody else figured out, well, we can get rid ofthat piston on the right by putting in an 

orifice and a pulse tube, as I've described earlier, shown in (b).  Then the Los Alamos guys had 
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the idea, what if we could pull the energy out of the right-hand side and feed it back to the left- 

hand side acoustically? 

For instance, in (c), we can get the phasing of the energy going back to the left side to be 

anything we want by adjusting the length of that transmission line, so we should be able to 

recover the energy that would otherwise be dissipated by the orifice. 

Then they got more clever and cooked up the idea in (e), where they have this inductor and 

capacitor—they sort of messed around with the system here and published it in Nature (which 

I've passed out to you). In there is a description of this equivalent circuit. You can follow their 

math and it is not that hard to understand it that way. 

[Transparency 26] 

They built this thing and it looks like this. It has a couple of key inventions in it, key clever 

things. First of all, it is sort of like the Ceperley annulus in that energy is going to go around and 

around the loop at the end of the long tube, but this is not going to be an annular resonator of a 

wavelength around. It is actually just a small fraction of a wavelength. 

They are using lumped elements. They want us to think of the slightly narrower part of the 

loop as an inductor or an inertance. The fatter end where the turn is made we should think of as 

a capacitor or compliance. Then we have the regenerator, a thermal buffer tube, and a junction. 

By playing with those Us, R's, and Cs, as described in that paper, they found that they do not 

need a full wavelength going all the way around the loop. 

But how do you get rid ofthat viscosity killing you in the regenerator? What you do is you 

realize that the acoustic power is the pressure swing times the volume velocity. We need that 

product to be high. The higher that is the more heat pumping we will get—remember that the 

motion that gave us the Stirling cycle heat pumping is the same as for a traveling acoustic wave 

going through a regenerator. 

If we just use the ordinary traveling wave acoustic impedance pc (pa in our notation) to 

relate the pressure and velocity, our volume velocity is going to be too high. So what we need to 

do is up the pressure and decrease the volume velocity. What they did was, they stuck this loop 

gadget on the end of a big standing-wave tube. You can think of energy going around and 

around in the loop but riding on top of a giant pressure swing. They could have done it with a 

big piston coming in at the junction, where it says "To resonator" in the bottom figure, shoving 

gas in and out at just the right phasing. 
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[Transparency 27] 

A picture ofthat thing looks like this. 

An animation of it looks like this. [Computer demonstration] 

You can study this at will, but I am running out of time here, so I am not going to describe 

the animation in too much detail. 

DR. COSTLEY: How many wavelengths? 

DR. KEOLIAN: It was on the last diagram, the length, there was a scale bar. It is about 

four meters long, altogether. The loop is a fraction of a meter. 

This long tube, from end to end, is equivalent to a half-wavelength (it's actually more like a 

Helmholtz resonator to make it shorter). In the animation, you can think of the pressure swings 

and gas motion from the right of the junction, if you like, as being a piece of a big standing wave 

and think of the loop as being two branches coming off of the big standing wave. 

[Transparency 28J 

I am going to show you some diagrams now to help you understand this, and maybe it will 

help, as to what is essential to this thing. Here is what they are doing. They have a junction J, a 

slight constriction L for their inertance, compliance C, two pressure amplitudes p+ and p- on 

either side of the regenerator, and a thermal buffer tube TBT. We will see that what is essential 

is that the pressure swings atp+ are larger than and in phase with the pressure swings at/;-. 

Let's straighten the loop out as shown in the second drawing. Think of the loop as being 

the end of a big long standing-wave tube. The capacitor or compliance C is effectively the end 

of the tube. The inertance L is more or less additional length of the resonator tube. Here is our 

junction J, and here is our thermal buffer tube. The regenerator is effectively placed in a side 

branch to the main resonator tube. The end labeled p+ is closer to the pressure antinode than the 

side labeled p-, and so the regenerator has a slightly larger pressure swing on one side than the 

other. 

The impedance of the regenerator is basically that of a resistor because the pores are so 

small. And so the volume velocity through the regenerator is proportional to the pressure 

difference across it. But to have a large traveling wave, what we want is for the volume velocity 

to be in phase with the average of p+ and p-, because the power flowing through the regenerator 

is the pressure at the regenerator (the average of its two ends) times the volume velocity through 

it (the difference of its two ends).   So we want the difference in p+ and p- to be in phase with 
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their average. In the graphs at the bottom of the transparency we see that we can have a A/?, 

(which is proportional to the U) either by having p+ and p- having slightly different amplitudes 

but being in phase or byp+ and/?- having the same amplitude but being slightly out of phase. In 

the first case U is in phase with the average pressure swings at the regenerator, which gives us 

Stirling heat pumping. In the second case we get U in quadrature with the pressure, so we end 

up with the viscous losses associated with the volume velocity going through the regenerator but 

without any beneficial heat pumping, which is bad. 

If you think ofp+ and/?- as being taken from different parts of a standing wave, as in the 

second diagram of the transparency, we can see that/H- is a bit larger than/?- and in phase with it, 

as we want. We can make the average p really, really big, because we are on the end of a big 

standing wave that could have a really high Q, so we can get lots of heat pumping without much 

viscous energy loss in the regenerator. That is really clever. 

Another way of seeing it is through this third drawing. Imagine a Helmholtz resonator 

hiding inside a larger standing-wave tube. We have the compliance C being the volume of the 

little Helmholtz resonator, the inertance L is its neck, the junction J in front of that, and the 

thermal buffer tube, topologically, would be the space to the sides of the Helmholtz resonator. 

At the back end of the Helmholtz resonator we cut a hole and put in a regenerator. 

There will be a slight Q amplification from this Helmholtz resonator and the pressure 

swings inside the resonator would be a little bit higher than the ones outside. But we want the/?+ 

and p- to be in phase. If there were a phase shift between them, as they are in the bottom right 

graph, we would get the Ap and that would be proportional to the U, but the U would be 90° out 

of phase with the p. We would be getting the viscous losses from the U going through the 

regenerator, but we would not be getting any heat pumping. For that we need the/? in phase with 

the I/. 

So the right graph is bad phasing, and the left graph is good phasing. 

[Transparency 29] 

How do we get the good phasing? Think of the Helmholtz resonator like this. We tune it 

so that its resonant frequency is high compared to where we are operating it. We are on the 

wings of a resonance curve, so we get a little bit of pressure amplification, but without much 

phase shift if this is a high-Q resonator. That is the trick. 

[Transparency 30] 
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Now I'm ready to conclude. 

[Transparency 31] 

Efficiency: This is the calculated performance from an older refrigerator that Swift's group 

built for Tektronics. It was a heat-driven standing-wave engine, a precursor to the TAD part of 

this TADOPTR I showed you in an animation. They had 1000 W work going to a load. They 

were using 5400 W of heater power. So the first law efficiency, "what you want" divided by 

"what you pay for," was about 18%. 

The Carnot efficiency with the temperatures they had was 60%, so the percentage of 

Carnot they had was 30%. This was a well-designed engine—they got 30% of Carnot with a 

standing-wave device. 

Where were the inefficiencies coming from? Half of it was being lost in the stack, that 

thermal relaxation loss we were talking about to get the darned phasing. They got away from 

that by going to Stirling. This got nuked. 

There were viscous losses in the stack, 13%; 11% was being lost in the heat exchangers, all 

that gas moving back and forth. There was some heat leak to the room because they did not have 

enough insulation, regular losses on the walls of the resonator, some conduction along the stack 

and its casing, and losses from heat flowing through temperature differences in the heat 

exchangers. 

But for the Stirling engine TASHE I just showed you, instead of 18% efficiency they got 

30%—and they got 42% of the Carnot efficiency. This is good, this is going to be a good 

number. A pretty good commercial vapor compress unit gets 50% of Carnot. Some of the vapor 

compression chillers we are targeting that are in use by the Navy are less than this; the 

thermoacoustic Stirling beats them. An automobile engine is not this good. These guys are 

doing good on their first crack, so there is hope for high efficiency. 

MR. APOSTOLOU: How good is....the one with the levers and so forth? 

DR. KEOLIAN: Probably higher, I think, but it is more complicated. The acoustic one is 

with no moving parts. 

[Transparency 32] 

This transparency is a little small. It is from The Physicists Desk Reference from the 

American Physical Society. There is a chapter in there on energy usage. This is an interesting 

graph of where the energy in the country goes. These are in units of 1018 joules per year. 
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On the left-hand side is where the energy is coming from. There is nuclear power (a wee 

bit), hydro-power, a lot of it is burning natural gas, a lot of it is burning petroleum and natural 

gas liquids, and a lot of it is burning coal. 

The middle and right of the diagram shows where the energy is going. A big hunk of it, 

more than a third of it, is used to generate electricity in this country; the rest is going somewhere 

else. Of the electricity, this wee bit down here is useful, but look how much is wasted in the 

generation and the transmission of it. That means if you run something on electricity in your 

home, you have to take into account that you have been warming a lot of bird feet on the way of 

getting the electricity to you. That makes heat-driven thermoacoustic engines look better than 

they might otherwise look. 

Look how much of the fuel goes into household and commercial uses as just raw fuel 

usage. Presumably it is generating heat in homes and commercial buildings. That makes those 

heat pumps we were talking about perhaps a useful target application for thermoacoustics. 

[Transparency 33] 

Our weak spot in thermoacoustics, in general, is that our efficiency is not that great, 

compared to other heat engines. But Greg likes to make a point, which is, that Stirling has a 

better efficiency than vapor compression, yet you don't see any Stirling engines around. Why is 

that? 

What we are plotting here is the capital cost of making various types of refrigerators, the 

initial cost of building it, versus its operating cost. The operating cost depends, let's say, loosely, 

on efficiency, so we have high efficiency on the vertical axis, which is the same thing as 

operating costs going down on the other vertical axis. On the bottom axis is how much money 

you paid up front to build the refrigerator. 

Conventional piston driven Stirling has the highest ultimate efficiency, the little circle on 

the end of the line, but that is not very important, really, in general. Let's say you have only so 

much money you are willing to spend on a refrigerator and consider a vertical line, say, on the 

right-hand side of this graph. If you want to get really high efficiency, the best thing you could 

do is spend a lot of money and buy yourself a Stirling engine. 

But if you are going to spend a medium amount of money for a refrigerator, say, draw a 

vertical in the middle of this graph. Then for that amount of money you can do better with a 

vapor compression engine than you can with a Stirling.  The moral being that if you are willing 
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to spend any amount of money to get the highest possible efficiency, then you will have to buy a 

Stirling engine, but most people do not do that. They have only so much money they are willing 

to spend, which is not an infinite, so they buy something else. 

DR. DENARDO: You do not have maintenance costs in there. 

DR. KEOLIAN: Yes, that is why operating cost is sort of loosely efficiency at this point. 

We push that the maintenance cost on the thermoacoustic refrigerators should also be low, so 

that also helps. 

MS. PETCULESCU: The Stirling engines are still not in production. 

DR. KEOLIAN: Yes, but they have been around a long, long time, the technology has 

been around for a hundred years. 

MS. PETCULESCU: Aren't the costs a lot lower with mass production? 

DR. KEOLIAN: Yes, that's so and not on here. This is a loose graph. But just bear with 

me to get the point I am trying to make. 

Let's say a new technology like one of these thermoacoustic refrigerators comes along, it 

may not get to the same ultimate efficiency. The end of this new technology line might be below 

the vapor compression or the Stirling lines. But perhaps we can make thermoacoustics cheaper 

than vapor compression. Then if someone is willing to spend this amount of money on the left 

side of the graph, then the thermoacoustic version might be more desirable than vapor 

compression. 

For another way of looking at it, consider the horizontals. If you want to get a certain 

efficiency, draw a horizontal line. At moderate efficiencies, you can get it for less capital cost 

with this new technology, whatever it is, than with vapor compression or traditional Stirling. It 

is only if you need the very highest efficiencies that these fancy technologies look better. 

Our goal may not be so much to make high-efficiency thermoacoustic engines but cheap 

ones and then we can win. With that, I shall quit. Thank you. 

MR. APOSTOLOU: Environmental issues led to this? 

DR. KEOLIAN: Yes, I mentioned that in the beginning, I did not talk too much about it. 

We use helium, helium is nice. We do not use chlorinated flourocarbons (CFCs) or their 

replacements, the hydrogenated chloro-flourocarbons (HCFCs). The CFCs are banned now, and 

the HCFCs will be banned in about 30 years. 

MR. APOSTOLOU: What is the alternative? 

360 



DR. KEOLIAN: There are not many alternatives, there are not that many choices. That is 

why we are doing this. 

DR. COSTLEY: [Helium has a high]....speed of sound. It also has the long wavelength, 

but if you wanted something shorter, you could use — 

DR. KEOLIAN: I had to skip that transparency (#18) for time. It turns out that the power 

of the engine does not depend on its length. It depends on its area. For a given length, if you 

changed gas, then you win by the higher speed-of-sound gas. Your operating frequency will go 

up but your power density will go up with helium. That is why we are driven toward helium. 

Also, we are driven toward helium because we want a big temperature swing for a given 

compression, so we want all the noble gases. That also pushes us toward helium. 

DR. COSTLEY: Say that last one, again. 

DR. KEOLIAN: We want a large temperature swing for a given compression. That means 

we want a big y, the ratio of specific heats Cp/Cv—the noble gases have the best of that. For 

performance we want a light noble gas, which is helium. 

We can improve the Prandtl number by adding a little argon or xenon but there will be a hit 

on power density. If you want the most simple thing, use air. 

Thank you. 
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POROUS MEDIA 

James M. Sabatier 
University of Mississippi 

DR. SABATIER: I am going to talk about two things: acoustic seismic coupling, because 

that is kind of what I do and I was going to go through tubes and all this wonderful stuffy and 

then a little bit later on I was going to talk about mine detection. I have decided to turn it around 

and I am going to talk about mine detection first. That seems to be more exciting. I was really 

having a hard time staying awake this morning, because I have stayed up until midnight the past 

two or three nights in a row and waking up, as Roger Waxier would say, probably, at 4:30 every 

morning, but it is really 6:30. 

[Slide] 

Tom is here and Tom Muir made these slides for me in a motel room one time. We were 

going to go after lots of money. I came and told Tom how to find mines and I told Tom so well 

how to find mines that he was able to make slides that got me millions of dollars, so it is only 

appropriate that Tom is here so I can show him how well this technique really worked — the 

advertising technique. 

Let me tell you how we find a mine (Logan Hargrove taught me this). We take a big 

loudspeaker and broadcast at low frequency, 100 Hz, in the air, and we broadcast a tone, a swept 

tone or noise, and then you go to the spot on the ground and you measure the particle velocity of 

the surface of the ground. That is all you have to do. 

If it is big, there is a mine. If it is not big, there is not a mine. That is what this cartoon is 

trying to say. Here is the mine. It can be an anti-personnel or an anti-tank mine. It is buried in 

the ground ~ that is the surface of the ground. This is the particle velocity where there is no 

mine and this is the particle velocity where there is a mine. Tom was trying to tell me it is a lot 

bigger on top of the mine. 

Here is the loudspeaker and the loudspeaker broadcasts 100 Hz. We have gone all the way 

to 10 kHz and 10 kHz is not good. Here, then, is how we detect the mine. We happen to be 

using a laser Doppler velocimeter, a device that you can go buy ~ it is not quite at Walmart's yet, 

but in lots of places. It measures the velocity of the surface along the direction of the beam. It is 

a very easy idea; it is not complicated. 
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Anthony showed us on the first day that when the viscous penetration depth is large 

compared to the pore size, that is, when lamba or S, the shear wavenumber or this pore size 

parameter, is on the order of one, the sound speed is very low. It turns out it can be only 50 

m/sec in the ground. 

The sound comes in, in the air, at 340 m from our loudspeaker. It hits the ground and it has 

to go 50, so Snell says it has to bend toward the normal, so it bends strongly toward the normal. 

At low frequencies, on Anthony's curve, or as the frequency increases, the phase velocity of the 

wave in the tube increases. At higher frequencies it will not bend as much toward the ground, 

but it never gets equal to the speed of sound in air. It always stays less than the speed of sound. 

This is a patch of the ground, say, 1 m by 1 m. This is where the mine is buried and this is 

the light coming in. It looks right here but in a really steady position. It is bad if the laser beam 

moves a lot. It measures the velocity, then kind of steps across like this and the laser beam 

makes a raster scan, a digital raster scan. It stops and collects and measures the velocity. 

[Slide] 

This is a picture of, I think, an Ml9 mine. It is an anti-tank mine. It is 12 inches across, it 

is square, too. It has 21 pounds of TNT in it and it is made for taking out a tank. This is an 

image of the RMS particle velocity on the surface of the ground on a lm by lm area where this 

mine is buried at a single tone, at one frequency. 

When you do that measurement, you take the time-domain signal in, you do the Fourier 

transform, you go look at the instantaneous FFT, the real part of it, you see this phenomenon ~ I 

apologize, it is probably the magnitude, it is the magnitude of the FFT. The mine is right here. 

This is the same thing, the same spot on the ground, except now, since we broadcast ~ we 

trigger ~ the signal and we trigger the A to D when we send out the band of noise. We get the 

velocity at every point and we know the phase of the velocity at every point relative to all the 

other points. 

This is an image of what we might call the instantaneous velocity at a single frequency on 

the surface of the ground. The frequency is around 100 Hz. This is 1 m by 1 m and this is the 

velocity, so the ground goes up and the ground goes down. You kind of expect that, because the 

wavelength in air is 3.5 m at 100 Hz. This is only a fraction of half of a wavelength, so it pushes 

the ground down and pulls it back up and pushes it down. 
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Where the mine is, it is out of phase. These two phenomena happen only in narrow-band 

frequencies and it does not happen at every frequency. 

[Slide] 

That is not how it started, that is not the way our work started. It started in about 1986,1 

guess. This is frequency from 0 to 500 Hz. This is the magnitude of the velocity that we 

measure with a geophone. A geophone is something like an accelerometer but it is an integral of 

it. This is a device that measures velocity. It is a mass on a spring with a coil of wire around a 

magnet. The mass is a magnet, so when it moves up and down you get a voltage that is 

proportional to velocity. It has all been normalized. It goes to two. 

This is the velocity away from this mine measured with the geophone. All I did was set the 

geophone on the ground. It is an Ml9 case, it is empty. I filled it with plaster of Paris. It is 

buried in the dirt behind the old acoustics lab at NCPA. I lost it, by the way, and I never could 

find it. I could not figure out where it was. We moved from the building before we got back 

into the business. This is the velocity measurement with the geophone and that is on the target. 

This is on the target and this is the background. Hank Bass said, "Jim, just integrate those two 

curves and get a number and make a map." 

About this time Ken Gilbert suggested we should use a vibrometer, a laser Doppler 

vibrometer to do this, and Hank suggested we ought to write a patent. So we did. Ken and I 

drafted this ~ I think Ken mostly wrote it, I do not know, it has been too long to remember, but 

we wrote this patent and we did whatever you do and it got classified. 

The contract we had was broken, because we did not have a facility clearance at the 

University. I had a clearance and Ken, everybody had clearance, but we did not have a facility 

clearance. The security officer came, showed up, and took everything, including that graph, and 

kind of put us out of business, and then they gave a million dollars to another company to see if 

they could do this with a vibrometer. Needless to say, when they called me and asked me for 

help, you can guess what I told them, (laughter) 

In about 1994, right after the Persian Gulf war, we started getting a lot of press about 

mines, because doctors were getting out of jeeps and stepping on mines, so Congress started 

money in and more funding became available. We got money from ONR at NCPA to look at 

that high-frequency work, because we wanted to see if we could increase the frequency. 
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If you work at 100 Hz, you have to wait for this 100-Hz cycle and that is slow. The guys 

who do this with radar work up around a gigahertz, so they have to wait only 1 gHz of a cycle to 

get their data, so they can go a lot faster. 

[Slide] 

These are measurements with the geophone. This is a SIM30. It is 30 inches in diameter 

and it is buried 3 inches, and it is buried in the dirt behind Angsells [phonetic], we have a little 

plot back there. It is highly absorptive soil to this slow wave that we are talking about. The 

grain size is probably only 30 or 40 microns of the soil. The pore size is about a third ofthat. 

The sound does not go very far. This works better than we expected. 

The mine is buried at maybe zero centimeters and zero corresponds to the center of the 

mine. It is 3 inches deep. The mine is right here and we put the geophone on top of the mine at 

zero. We use a swept sine from 50 to 200 Hz and we look at the velocity, the magnitude of the 

geophone. As you go up, it gets big. Then we look at + and -2, so those are the three red curves 

(I do not know which ones are which). This is + and -4 inches ~ that is the black. This is + and 

-6 inches down here, both of the blue ones. Green is + or 8, and 10 is brown. So over the mine 

there is a great big signal and it cuts off very, very fast ~ that is with the geophone. 

Here is a piece of wood at 5 inches. It is a 10-inch plywood disk that we painted red and 

that is what happens when you look at that piece of wood. 

This is a concrete paver. It is about 10 or 12 inches in diameter, it is circular. You put 

these on your patio to walk on. That is the signal you get at a concrete paver at 8 inches.This one 

had gravel on the top of it. I painted it because I was trying to seal the pores. This one had 

gravel on the top, this is one of those fancy patio pavers. 

This is another concrete disk, it is 8 inches. On this one there was no gravel on top of it. I 

like to believe that this one is not showing up because it is porous concrete, but I do not really 

believe that. I think there are mines that we cannot see, that is what I really believe. 

We did all this. We received our current funding in September of 1997. That summer the 

sponsor from Fort Belvoir visited us. We bought this big LTV that you saw. He said, "Jim, this 

is really nice work you're doing, but you need to come to A.P. Hill and do a demo at A.P. Hill, 

where we have real mines buried in the ground. My work is what is called 6.2. I have to do a 

demo, that is the whole purpose of the money, is for me to go do a demo and show how well it 

works. 
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He said, "But there are a lot of political ramifications, don't come over here and fail." That 

is what he told me and that was all I needed to hear. 

[Slide] 

In November we took off. We knew something about an LTV. This is Pat Arnott's slide, it 

came from a paper by Pat and me. When we applied for the patent, I guess I did what I was told, 

but all I said I wanted was a vibrometer instead of a geophone, so somebody got me a 

vibrometer, and this is it right here. It was made by Dentech and we got this in 1987. 

Pat took it outdoors to see if he could measure what a geophone measured, not find mines, 

that is all classified now. We wanted to see if a vibrometer does what a geophone does. I 

showed we could find mines with the geophone, or buried objects, so now could we do it with 

this vibrometer. 

Pat had to bring an optics table out into the field behind Hank's house, and then he had to 

have additional isolation right here. Then he had to put a big box on top of this thing to try to 

shield it from the wind. He buried a geophone in the ground, flush, and he reflected the laser 

beam off of a mirror and down to this geophone. 

He did this in the lab with the geophone on the shaker. He mounted the geophone on a 

shaker and repeated this experiment and computed the transfer function, the voltage from the 

geophone, change it to velocity, divide it by the voltage from the vibrometer, change to velocity, 

and it is exactly 1, or very, very near 1. So he wanted to take it outdoors to see what happens 

outdoors. 

[Slide] 

To use it for a source he had an explosion. We had a small propane cannon that he put off 

at about 100 m and that thing was going to set off an explosion and the pulse was going to come 

by and the geophone would respond to that and the LDV would respond to that and he was going 

to compare those signals. That is the time-domain trace. 

This is the velocity, 150 microns per second, plus or minus, going on for about 200 msec. 

One of these is the LDV and one of them is the geophone. Time-domain traces do not always 

tell you a whole lot, so he used a loudspeaker to do the same experiment. 

The dashed line at zero is the lab. This is the transfer function between the geophone and 

the LDV in the laboratory. One of these curves, and I no longer remember which one, is the 

transfer of function when the LDV is looking at the buried geophone and the loudspeakers are 
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sweeping from 100 to 500 Hz. We would like for that to be zero dB, but it is not, it is one of 

these lines. They start to deviate pretty badly. 

The other one is when you just take the laser and instead of looking at the top of the 

geophone you look at the ground next to it, and I suspect it is the one that is the worst, whichever 

one that might be. My guess is it is this dashed dotted line. 

In any case, these data show that it works, that you can use an LDV outdoors to measure 

the vibrations on the ground and you can get the same thing you get with the geophone, so you 

ought to be able to find mines, and I knew that. 

[Slide] 

We did not have time to do much work with this vibrometer when we got it. We received 

it in April of 1997. I go off in June, July, and most of August to work with high school physics 

teachers and I had some young people who were going to try to use it to find mines. I got back 

in September and they said, "It doesn't work, we can't find anything buried." I said, "Well, I'll go 

with you to the field and help you." We got out there and it was just a matter of— I do not know 

what it was a matter of, but it started working (kind of voodoo). 

We went to A.P. Hill in November of 1998. Fort A.P. Hill is in Virginia, near 

Fredricksburg, and they had these lanes where they buried mines. This is what they call a dirt 

road. I told them they should not call it a dirt road, they should call it something else. A gravel 

road is what it really is, it has lots of gravel in it, there is a rock right there. If you take your 

pocket knife and you push you pocket knife in the ground, you push about a centimeter and you 

hit a rock. The rocks are all about an inch in size and they are packed in clay and sand. 

In the background is another road and they call that the blue gravel road and it is gray. 

That one has gravel all over the surface, about 1-inch sized gravel, and there is a layer of gravel 

on the surface. 

We got out there, and here is the vibrometer. Here is the truck with some electronics in it, 

there is a cable, there is a loudspeaker. We were looking at anti-personnel mines, which are a lot 

smaller. I just believed you had to have shorter wavelengths to find anti-personnel mines, so that 

is what that horn is about. That thing does not do much at 100 Hz but around 500 Hz it gets 

going pretty good, or 300 Hz, maybe. There is the loudspeaker, there is a mine, they are looking 

at the mine right there. 
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The first day, this guy (he was the sponsor) and about three or four of his buddies came 

down to watch. We were trying to hook cables up and they were looking over our shoulders and 

we were so nervous that I could hardly put a B&C cable onto the B&C connector. 

This guy right here, he really gets nervous. He makes me look like a cool dude ~ this was 

Ron Craig. Ron was shaking so much I told all the guys from Belvoir, "Do you have a coffee 

pot, let's go get some coffee," and we left. When we came back, they had everything set up and 

it was working, so we started scanning mines. 

[Slide] 

I have kind of explained this already, but the vibrometer measures the velocity of the 

ground and it does it at pixel spots on the ground. We get the magnitude ofthat and we look at it 

in bands and often we normalize. Then this instantaneous velocity, which is that animation I 

showed you, we know the phase, so you can put the phase in here, and we know the magnitude, 

and you can do some kind of animation. 

[Slide] 

Here are measurements now with the vibrometer. This is in micrometers per second, 

microns per second. It goes to 30. These are spots on the ground on that clay gravel road, the 

"dirt road," where there is no target. There are a half-dozen spots here that are all within a square 

meter and they all look very similar from 75 to 275 Hz. We broadcast a band of noise from 75 to 

275 Hz and then we measure the velocity, we take the Fourier transform, and that is the Fourier 

transform, that is the magnitude of the Fourier transform. 

Here are spots down the length of the gravel road from 3 m all the way down to 15 m and 

they pretty much all look the same, too. 

Now let me tell you how these lanes are made, the Army Corps made these. They came in 

and they excavated a foot of soil and they hauled it away and they put this fill material that they 

make roads with. If you are engineer you have to make roads in some prescribed manner. They 

put in 4 inches of this material and they packed it, put another 4 inches and packed it, and they 

made it 3-m wide and it was crowned, but it is very homogeneous, and that is what these data 

show. If you look around, everything is the same. 

[Slide] 

These are now spots on top of a mine. This one here is something called an 

electromagnetic 12, EM12.  It is a simulant for radar techniques.  It is buried at an inch.  The 
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black is the off-target spectrum in micrometers per second (this goes to 40 now). This is the 

velocity at one point with the laser looking on the center of the mine, so it is highly elevated. 

This is something called a TM62P made by the Russians; P is plastic. They have an M 

version that is easy to find with radar. It is buried 2 inches and you see a similar phenomenon as 

that one. 

This is an Italian mine. By the way, these are all anti-tank mines, a foot in size. This one 

is about 10 inches. It is the most difficult mine to detect of the anti-tank mines for anybody. It is 

buried one inch and this is the on-target velocity. That is the off-target velocity. 

This is an Ml9, which is that big anti-tank mine, at 5 inches. That is the on target. This is 

the off target, black is off target. 

I should tell you that when we first got there they told me not to walk on the lanes. I 

thought that was a good idea, you should not walk on the lanes. But then I learned that there was 

no detonator in these things and something called the booster was taken out and it was filled with 

some material that makes it look okay for radar. Usually it is filled with calk, rubber. 

Later on I learned that it was okay to walk on them, because I saw a pickup truck driving 

down the lanes, (laughter) 

[Slide] 

Here are some results of scanning VS. This is the brother of the 1.6, it is a 2.2. It is about 

10 inches in diameter and has a nice little carrying handle right here. It is made by the Italians 

and it says it has 4.7 pounds of "something" in it (I do not know what it is). It is an anti-tank 

mine. 

These are spots where we scanned. That is the ground right there, this is a video image of 

the ground. This is a very nice vibrometer. This white circle we added. The color of the dot is 

the area under the curve on the previous graphs, with these numbers assigned to them. (There 

are some problems with the units I do not really quite understand.) 

In any case, if it is green, in Mississippi there "ain't" no mines. If it is red, there is 

something there. You can smooth, you can interpolate between these things so you make this a 

nice smooth curve, and that is how I made those nice red and green circles that you saw — here is 

one right here. You can see an effect out to here, yhu can see these darker green dots out there. 
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We made pictures like the previous slide for about 40 mines while we were there on the 

first trip, and the sponsor could not believe it, because everything is green all the time. If there is 

a mine, it is green, if there is no mine it is green. If there is a mine, it shows up as red circle. 

So he took us off to a road in the woods. This is an image ofthat road and you can see 

leaves on the surface right here. Everything that is not this kind of light-colored stuff right here 

is bare soil, all this other stuff is short grass that was growing — it was November, so you can see 

leaves, and there are leaves on the ground right here (I suspect these spots right here are leaves). 

I asked, "What is this lane for?" He said, "Well, this is where we started about five years 

ago and nobody could find any mines on this lane, so we built the other two lanes that you've 

been working on." 

This one, if it were not for the grass, is easier, if you could just get the grass off the surface 

but leave the roots, it would be an easier spot. This is the mine that is buried. That is its image 

when it is 3 inches in this so-called off-road site. 

[Slide] 

We looked at anti-personnel mines.We did not plan to do this. This is a PMA3. This one, 

for some reason, really has explosives in it. This is all plastic. There is the signal from 350 Hz 

to 700 Hz. Again, red is on the target, black is off. That is in that clay surface, the so-called dirt 

road, at 2 inches. 

This is 1 inch in the granite gravel road. It is just loose granite on the surface. We do not 

look in these frequencies any more for these mines, because there is a lot of clutter in high 

frequencies, you see a lot of elevated signals. 

[Slide] 

This is a wooden mine. This is 4 inches by 8 inches, 1 inch deep and 2 inches deep, and 

these are images of them, or those are the spectra. This is running around 5 or 10 and the signal 

here is up around 20 um/sec. In every case the velocity is increased. 

[Slide] 

This is a U.S.-made M14, an anti-personnel mine. It is 2 inches in diameter. It is the 

hardest mine to detect of the anti-personnel mines and the U.S. puts them everywhere, 

apparently. 

This is an Italian-made mine and it is 2 inches and this is this clay gravel road. You can 

see two strings right here.  They told us the mine was between the two strings.  If you notice, 
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there is a rock right here holding the strings back, because the first time we scanned there was 

nothing there. 

I said, "It must not be here, so maybe it is off." We pulled it back and we slid this image 

over a little bit and we scanned again. This is only about 10 inches right here. The size of these 

red circles is the size of the mine, approximately. The positional accuracy of finding the mine is 

about an inch, that is how accurate it is in terms of locating it. With other systems it is 

sometimes a meter, which is not unreasonable for locating these things. 

[Slide] 

During that first trip in November of 1998 we scanned all of these kinds of anti-tank mines 

in three types of roads and the off road as well as all these anti-personnel mines. These numbers 

are the depths in inches and we made an image of every one of these, as we showed. 

[Slide] 

After we got back, I traveled to Fort Belvoir and gave a presentation and there were a lot of 

skeptics, and they probably should be. We showed them these data back at the Countermine 

Division at A.P. Hill and they were duly impressed, but someone said, "You have to do a blind 

test. If you know there is a mine in the ground and you're looking right there, you can always 

find it." That is what they believed and, for the most part, they are kind of right, but sometimes 

you can know there is a mine there and you cannot see it. Those are the facts. 

They asked us to come back and do a blind test. This is April. You will notice there is a 

different-colored forklift. There is a story about this forklift. This thing is slow, I did not tell 

you that, this is really, really slow. It takes us, on a good day, to scan this square meter, about 3 

minutes, maybe 2lA minutes. On a bad day it takes 20 minutes. 

Every time we wanted to move to another spot, we had to call this guy on a radio, the 

forklift operator. He would come down and start the forklift and move it 3 feet. I watched him, 

and I climbed up there and said, "I can do that, let me drive it." He said, "You can't, sorry." 

The next time I rented my own forklift, put it on my University American Express card. I 

got over there and Dan Costley, I think, was with me. They were in a tither, "You can't drive 

that forklift." I drove it off the truck. When I got on the truck, the guy unhooked his truck and 

said, "It's yours," and gave me the key. I asked, "You don't drive it off?" He said, "Nope, I just 

deliver." 

I got in and could not get the key in, so he showed he how to do that, (laughter) 
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When I turned the key, nothing happened, so he told me to put it in neutral. I turned the 

key and nothing happened. He told me to put on the brake and I put on the brake. It started. So 

then I put in forward and it would not go, so he told me to take brake off. (laughter) 

I get it off and I cannot get out, could not open the door, so I drive it to this and I set it up 

near here, and the guys at A.P. Hill ~ the engineers, now ~ were talking with the physicists and 

they were trying to figure out what they were going to do. They came over and said, "We maybe 

think you shouldn't be driving this forklift." 

I said, "You're probably right but the contract says I'm the only one who can drive it, so 

that's the way it's going to have to be," so I drove the forklift and I drive it every time. 

We changed things a little bit. One of the problems is, here are the loudspeakers. They are 

18-inch drivers. We started out with one, then we went to two, then we went to four, trying to 

find the mines we cannot see by getting more and more loudspeakers (it does not work very well, 

actually). 

This is the spot where we are going to scan. That is the vibrometer. The sound level right 

here is not a whole different from the sound level up there. In fact, what we are trying to do is to 

get this device far away from the drivers compared to the ground from the drivers; we are trying 

to take advantage of spreading the farther you are from the drivers. The ground does not vibrate 

a whole lot more than the platform, and this is an interferometer, it does not care who is moving; 

it measures the relative position between the two surfaces as a function of time. We had this 

thing very, very high in the air, up to maybe 7 or 8 m, trying to get farther away. 

They wanted us to do this blind test and what they told us was, "We're going to give you 60 

spots, we're going to put 60 golf tees down, 30 on the dirt road and 30 on the blue gravel road 

and you go see what happens and come back and tell us what your score is." 

The rule is that the mine is going to be somewhere within a square meter, the center of the 

mine, so the center of the mine could have been on the apex, the corner of this square meter, and 

if we scanned a square meter we would see only 25% of the mine, so we scanned 1.5 by 1.5 m. 

Actually, there is an interesting story about that and I will get to it in a second. 

[Slide] 

We thought we should practice before the blind test started. This was in the middle of the 

week and this is an Ml 5 at 3 inches on the blue gravel road, 1.5 m by 1.5 m. We know the mine 

is there, they is why it is in the middle. This is the velocity going up to 60 um/sec, so that is the 
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highest number right there. The frequency band in which this was being imaged is between 120 

and 150 Hz. 

We did this for a while and we went back to the motel on Saturday -- we had collected 

quite a bit of data like this on Friday -- and we started worrying about this blind test. We had 

never really thought about what a blind test might be like, so we thought about it over dinner and 

got intimidated, because we said there were going to be some spots without mines and we had 

not scanned a lot of spots without mines and what are we going to do if there is no mine? Well, 

we are going to look deep into the background in the noise and see if we can see this elevated 

signal. 

We came back on Saturday and I closed up the windows on the truck and closed the door 

and one guy stayed in and the other two got out and we moved the LDV around and we would 

not tell him where we were looking. We would put no mine or we would put the mine half on 

the circle or we would put the mine right in the middle of it and every time he got it right. We 

collected a lot of data like that. 

That weekend we renamed all the files, because our coding system tells us the name of the 

mine, so we renamed all the files so we would not know there was a mine there and we gave 

ourselves a blind test on the computer. We learned some stuff by doing that. We learned that we 

could miss some mines, that when we had a spot that did not have a mine and we looked really 

hard, we could find things. It never looked like this, so we could be fooled. 

[Slide] 

So we came up with a strategy over that weekend and this was our strategy. We collected 

quite a bit of data and were able to do this. We said we were going to scan 1.5 by 1.5 m with a 

10-cm pixel size spatial resolution and we were going to use a 10-Hz frequency resolution on our 

FFT and we were going to do three averages. That takes something like two minutes. 

We decided that if we saw a mine we would get on with business. If we did not see a mine 

we would rescan with 7-cm resolution and 5-Hz frequency resolution at closer points together; 

we were going to get more points on top of the mine if there is one there. We were going to do 

five averages instead of three, and that takes a little bit longer. We had lots of data to justify this. 

We had never done this before for anti-tank mines. We said, well, maybe we might want to 

look really close in an area and we invented this little thing in the motel room, half-meter by a 
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half-meter, with a 3-cm pixel size or spatial resolution, and this was going to take five minutes. 

That is what we did. 

[Slide] 

We go out the next morning and we are getting set up. I did not tell you this, but when the 

wind would blow the thing does not work and the wind always blows. We had learned that if we 

bought a U-Haul cardboard box and put it on top of the vibrometer and duct-taped it down, it 

worked a heck of a lot better. 

When I cut the cardboard box I cut through one of those cables that ran all the mirrors and 

we were really nervous, so this was a good thing. We knew how to solder and the wires 

happened to be all color-coded, so we rebuilt it. By the time we were through working, all our 

nerves were gone. 

That is a scan in the blind test, it was not the first one, so we said that must be a mine, and 

they were not happy with our telling them that. They wanted us to give it a score, 1, 2, 3, or 4. 

One is a mine, definitely a mine. 

Four is definitely not a mine. Two is maybe that is a mine. Three is maybe it is not a 

mine. I did not know the damned difference, I really did not, but we scored this a one. 

[Slide] 

Here is another one. I do not know what they are. In fact, my sponsor does not know; it is 

kind of a double-blind test. The people out there do not know where they are, but there are some 

surveyors who come from IDA, Institute for Defense Analysis, and a judge. The judge sits there 

and writes down what you say. 

Here is a spot where there is no mine, that goes to 70 and that goes to 70 urn/sec. 

[Slide] 

Here is one of the coarse scans. We get this a lot. We are close to the loudspeakers and 

although I do not always understand it, at some frequencies you get bands of red across here of 

high velocity and we are used to that and we can live with that. 

But this spot right here got us interested. We though maybe that might be a really deep 

mine. It is around 40 um/sec. It is in high frequency, pretty high frequency compared to the 

other mines I showed you before. 

[Slide] 
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We rescanned it with 7 cm. Now it has been auto-scaled, so this is still only 40, so maybe 

that is a mine. 

[Slide] 

We decided to do this zoom scan on it. That is now 50 by 50 and now you see that it looks 

like three things and we ruled it as not a mine. 

When people walk, you can see here this is someone's heel, this print right here, it went 

through the sand. These are car tracks here in the sand. These things often show up as high 

velocities. If you have enough area, then you can see what that is and you can tell that is not a 

mine. 

Most of the time the mines are great big red circles, it is just the ones that are deep that you 

have to worry about, and maybe we do not know that we should not be worried yet, but we really 

worry about that, and you will see why as I go on. 

[Slide] 

In the blind test this was the target set; there were supposed to be 60 spots, but there are 

only 59. Nineteen of them contain mines, they are all anti-tank mines, and these are depths they 

were at and you can see that most of them were up here in the shallow depths. 

[Slide] 

We did not know this. Of the remaining ones that did not have mines, 31 of them were just 

spots down the lane were they knew there was no mine, but nine of them were kind of special, 

nine of the spots without mines. These lanes were built for advanced mine detectors, something 

that goes on a jeep and you drive it down the road at 10 km per hour, so there are a lot of ground- 

penetrating radar mine-type data and it has GPS coordinates and they get lots of false alarms. 

These nine spots, everyone who has a ground-penetrating radar and drives it down the road 

on these nine spots all say it is a false alarm, so they call it contractor-to-contractor false alarms, 

and those were thrown in and we did not know that. 

[Slide] 

These are the results. We missed one of the mines. That is a 95% probability of detection. 

It has never been done before. The best anybody else had ever done was about 80%. 

The mine that we missed ~ this is from the people at IDA and this is their quotation ~ "The 

mine at 6 inches missed but it is clearly present in the data." It goes on to say that the operator 

said it was a big rock. 
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I am not going to show you this, but they showed me lots of pictures of rocks, photographs, 

from rocks this big all the way down to rocks this big, all sizes. We just knew they had to give 

us a rock, so we thought we could tell how big the mines were by counting those little red dots 

across and multiplying by the pixel size, we could get the diameter, so we had something that 

was 50 cm, and we said that was too big to be a mine. 

Subsequently, we found out that a lot of them are 50 cm. It was a big red circle and we 

thought it was too big, a mistake. We have not seen a rock at this time in our measurements. 

In 41 patches we found a false alarm, only one, and, most importantly, in the non-cluttered 

spots, none of them sounded an alarm, so this was very promising for people who are in the 

mine-hunting business, because radar-type devices can find most of the mines but they find 

immense numbers of false alarms. 

This was the false-alarm rate. They often find numbers that are 10 times this big, one mine 

every two square meters. You have to get this number a lot farther down or you spend all your 

time looking for land mines. 

[Slide] 

They still did not believe us, so they sent us to Yuma to look for rocks. The soil at Yuma is 

like powder, talcum powder. It is very, very fine-grained stuff. They built four lanes, put in a 

zillion mines, all anti-tank mines, buried them at 5,10, and 15 cm. They had three types. 

The soil really turns to talcum powder, so they went out with a water truck and they wet it 

down with water. When you do that, this desert soil at Yuma turns to rock, it gets really, really 

hard. You can drive a forklift across and it does not make a track in the soil, that is how hard it 

is. 

They did that on one of the lanes. They were going to do it with all of them, but there was 

another group there from Stamford International who had a radar and they could not see any of 

the mines in the one that they had wet down three days before, so they did not wet any of the 

other lanes down. 

We found 110 mines, apparently there were 18 that were not visible, and we did not find 

any rocks. We did not see any false alarms ~ we saw one false alarm, and there we could dig. 

We are not allowed to dig at this Fort A.P. Hill place. These guys were a lot more relaxed. 

We went back and we found a big red circle, so we went back and we dug and it was a pile 

of debris, stems and branches from a desert plant.   When they made the roads, a road grader 
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scraped this stuff up and it just happened to be -- first, I thought it was the root mass from a 

plant, and when the grader had sheared off the top of the plant, it was just the root mass. I could 

see how that might be a mine, but it was not. I do not really understand how it got there like that, 

but it did. We did see any rocks and there were a lot of rocks, a lot of rocks the size of your 

hand. 

Remember, we are looking about 6 and 7 cm apart and looking for things about that big. 

They do not show up in the low frequency. 

We did a blind demo. There were 27 patches. We found 93% of the mines, but we had a 

false-alarm rate of 0.11, but there were some holes, they dug some round holes in there. I 

screamed foul. I think that if they did a radar test and buried metal plates, people would scream 

foul. 

There is another system out, called nuclear quadripole resonance (now it is just quadripole 

resonance), and if you bury chunks of TNT, they would scream foul, too, because it is not a 

mine, it is just a chunk of TNT. 

But in any case, we will always find holes, and you will see why as we go on. 

[Slide] 

Here is a rock ~ that is a 2.5-inch tape measure there. We dig a hole and bury that rock in 

it, someone thinks it is about that deep, it does not look like a round mine. 

[Slide] 

Here is the image. This is the velocity from 100 to 160 Hz, this is where we can see it. 

The red and the blue are off the target, so the velocity is less than 5 microns per second, but on 

the target it goes up a little bit. We often look down here to see if we can find mines. 

[Slide] 

There is an image of it, so we would probably miss that. There are some times where you 

see things like this and it gets you in trouble. 

I think we should take a break, so we will stop for 10 minutes, then we will come back. 

DR. SABATIER: Albert Migliori asked me a question. 

DR. MIGLIORI: With all this success now, you have no possibility of ever spending 

enough time to understand what is going on? (laughter) 

DR. SABATIER: That is what I was going to try to do. I do not understand all that is 

going on and that, hopefully, will come through. 
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Let me talk about the rock first. I showed that picture of the rock and Albert said, "Well, 

do you see rocks or you don't see rocks?" It is not an easy answer, because I buried that rock. If 

you go to a soil and you dig a hole, you know you cannot put all the soil back in. That is a rule 

of thumb. Even if you save all the soil, it does not all go back in. 

That will generate an increased velocity if you dig a hole, so I do not know if that slightly 

increased velocity is due to the feet that we disturbed the soil or if it is due to rock. We are going 

to do some experiments - there are obviously lots of experiments that you would be able to do 

and maybe I will describe them at the end when you understand a little more about the physics. 

MS. HIGHTOWER: Can you tell from your data how deep they are, the mines are? 

DR. S AB ATIER: Not really. If the porous material properties were homogeneous, then 

we could. You will see some things like that. 

DR STERN: If you are looking for mines, this should not happen. I mean, everybody dug 

a hole, somebody dug a hole. I guess the real question is how long does it take for a hole to 

recover so that now you cannot tell whether it is a week or if it is a month. 

DR. SABATIER: The mine that I showed you that was in the off-road lane had been in the 

ground for three years when we looked at it, and there are some mines in that lane that we do not 

detect. 

MR. APOSTOLOU: ....to the loudspeakers, how loud is it? 

DR SABATIER: Do you work for OSHA? (laughter) 

If you say yes, I would say it is 80 dBA where the operator sits, because if you look in 

Kinsler and Frye, they have a chapter on environmental noise and it says you can listen to 80 

dBA all day long, no hearing protection is required. 

We get the sound level where the spot is we are scanning in the band we are showing you 

to about 120 linear C-weighted. 

DR. GILBERT: Instead of digging a hole, has anyone tried just covering it up with dirt so 

that there is no difference in the character of the soil compared to the surroundings? Cover the 

thing up with 6 inches of dirt? 

DR. SABATIER: Just to put a target on top of the ground and just put dirt on top of it? 

We do this in sand, clean washed homogeneous sand. It works great and you can take the mine 

back out and smooth the sand out and it does not show up. 
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But what happens in a soil - this is leaving porous material and talking about granular 

materials, which is a subtle point but may be important. Soil is in some what we might call a 

strained state and it is due to whatever its history has been. 

If you take the soil and put it in what is called an odiometer and you increase the pressure, 

the stress, and you measure the strain, the strain does not change until you get the stress back up 

to its "remembered" stress. Then, when you go beyond that point, the grains start to move, they 

start to slip, and it starts to strain again. 

Now, if you release the pressure and you start turning the pressure back up and you watch 

the strain, the strain does not start to change until you get back to that. The acoustics is the same 

way. We have done an experiment where we measured compressional and shear wave velocities 

in a soil and we stress them and we measure the strain and we measure the compressional wave 

velocity as we do that, then we relax the stress and measure the compressional wave velocity and 

we get the same number. Until you get the stress back up to where it was and start to strain 

again, the velocity does not increase until that point. 

DR. GILBERT: But do you see rocks or not? You have told me that you do see rocks. 

DR. SABATIER: I showed you a rock that I saw. 

DR. GILBERT: But then you said maybe it was because the soil was -- 

DR. SABATIER: In that case. What I think we see are right circular cylinders that are the 

appropriate size, concrete disks. That rock was not a concrete disk, there is scattering that is 

going on. 

MR. PETCULESCU: Under dense grass, does grass affect the vibrometer? 

DR. SABATIER: Of course, but it is not going to affect the acoustics, but it will certainly 

affect the vibrometer, so I do not say that maybe this vibrometer is the instrument that you use to 

go find mines. It is an instrument that could be used in some cases, but there are other 

techniques. Albert and other people were saying you could use radar. Radar goes right through 

gas and hits the surface of the ground, so if you could make a Doppler radar with enough 

sensitivity and the right pixel spatial resolution, that would work. 

Realize, also, if the mines are really on the surface and they are covered with grass, 

probably just an impedance tool would be a good way to find it. 

DR. CRUM: Since Doppler radar is a different mechanism, if you combined the two you 

could reduce the false-alarm rate. 
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DR. SABATIER: I did not say it, but we are working with another company that has 

synthetic aperture radar and we have always scanned the same spots in the last two years, we 

always have done this simultaneously, and our measurements are orthogonal in terms of false 

alarms, so there is some potential there, and their spot size is about the same as ours, so they are 

looking at 5 to 7 cm. The data could be fused down at that fundamental level, which is 

important. 

DR. CRUM: They can scan a lot faster, so therefore, if they could say they got a lot of 

false alarms, and you could go in and check out the false alarms, then ~ 

DR. SABATIER: That is one scenario and they have a name for this: They call it a 

confirmatory sensor. You drive down the road and they mark all the spots ~ they have 

something called an overpass vehicle ~ then you come back with the slower technique and rule 

out the false alarms, so speed does not have to be that important. 

We are not going to fight any wars where we have to breach mine fields any more. That is 

the old view of how we fight wars. We demonstrated recently that we do not fight wars anyway, 

so we do not have to go fast. What we really need to do is clean up the problem. Maybe I 

should say a little bit about this. 

An anti-personnel mine is a lot harder for us. We are scheduled to do one of these blind 

tests on anti-personnel mines as soon as it cools off in Virginia. We tried the high frequencies, 

around 400 to 700 Hz. When we do that, we see lots of clutter, footprints. The heel of a 

footprint on a dirt road, on a sandy road, if it crusts the sand, it shows up as a high velocity, but if 

we drop it down (and we just recently learned this) and work between, say, 175 to 250 Hz, those 

things do not show up but the anti-personnel mines do, but not the little tiny one, the U.S. one 

that is less than 2 inches. We will have to give up on that one, but there will not be any false 

alarms. 

The wisdom of most people I talk to who are in the mine-hunting business believe you 

want low false-alarm rates, because that is what they think slows people down. That is probably 

artificial, because someone says you have to go 5 km per hour. No one ever decided how fast 

you could go. Someone just said this is how fast you have to go, and that does not make a lot of 

sense. 

DR. CRUM: Wouldn't a false negative be more important than a false negative? 

DR SABATIER: Sure. 
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Someone once told me there was on the order of 100 million mines in the ground; that is 

108, and the current cost is about 103 dollars to remove a mine, so that is 10n dollars. That is a 

big industry. 

Now I am going to talk not about mines but just the coupling of sound into the ground. 

People have done -- actually, mostly us (for some reason nobody else really cares about this 

problem), more people now are caring now that you can find land mines but in the old days 

nobody really cared about this. When you go to ASA meetings, I am the only person who ever 

talks about this. It is just kind of the way it is. 

[Slide] 

Here is a loudspeaker. Here is the surface of the ground. Here is the geophone and usually 

you bury these things. You bury the geophone, and I put a reference microphone right here and 

maybe you are worried about this angle. You measure the frequency response of the geophone 

divided by the microphone. 

Other people are interested in ground impedance - Ken Gilbert talked about that. This is 

really outdoor sound propagation and people want to know what the ground impedance is, and 

that is how we got into this business. Before they knew about turbulence, ground impedance was 

really important, but now that they know about turbulence nobody cares about ground 

impedance. 

You can imagine having two microphones. I call this a reference microphone and the 

combination of these two the gradient microphone, so that gives you delta P/delta V. That is 

impedance. When people measure ground impedance they do not do it this way. You could, you 

could use a two-microphone impedance, too. Does anybody know what that is? 

Tim knows what it is, Pat knows what it is. They built one. You can buy them from B&K. 

There is a standard for measuring ground impedance with these devices. You essentially have a 

tube here and you pound this tube in the ground and you measure this in the tube and you get 

impedance. It is notoriously a very hard measurement to make. 

We bury a microphone. We put a microphone in a brass tube and we push it in the ground. 

In the ground we measure two things. We think this measures velocity and we think that 

measures pressure in a porous material. 

[Slide] 
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These are some data taken by Hank Bass, 150 Hz to 1500 Hz. This is zero. This is the real 

part of the impedance and it has been divided by the impedance of air. It has been normalized by 

air and that is 5,10,15, and 20. And that is 5,10,15, and 20. 

We could ask the question, are these reasonable numbers for the impedance of the ground? 

Since Hank is not here, we can do that. So let's look out here. The real part of the impedance is 

five and the imaginary part is 

about five. We get the magnitude and say it is about five. Is that a reasonable number for 

the impedance of the ground? 

If you have been listening to thermoacoustics all this time, what happens at the wall of the 

tube or the end of the tube when a gas parcel hits it? Velocity goes to zero. What is the 

impedance? Infinite. 

This is not infinite, right? People at one point took a while to realize that the impedance of 

the ground really was finite, it was not infinite, and that is because it is porous, it is because it is 

a tube, so this is probably a reasonable number. 

Forget about that line right there. I think there is a lot of structure in these data. I think it 

goes up and down and up and down. Most people do not believe that, that there is any structure 

in ground impedance. 

[Slide] 

This is a measurement of the geophone. This is the normal component of the particle 

velocity below the surface of the ground normalized by the acoustic pressure, so this has units of 

centimeters per second per microbar and goes up to about 100. It goes from 30 or 40 Hz up to 

about 250 Hz. Forget about the dashed dotted line but the solid line is the measurement, so you 

see some structure in this curve. 

You primarily see two peaks. 

The punch line is because the ground is layered in a weathering process. It is layered 

because there is a water table, it is layered because there is grass, the grass roots grow down into 

the ground and they stop somewhere, normally about a foot, and there are discontinuities, and 

those are the things that cause this structure. 

[Slide] 

This is the result of a probe microphone. That is not attenuation, it should say 

"magnitude."   This goes from 40 Hz to about 2000 Hz.   This is magnitude of the signal as a 

382 



function of depth in 500-micron glass beads, which is like beach sand. This is the phase. What 

you observe in this measurement is that the attenuation at any one frequency is relatively 

homogeneous, but there is a tendency for the attenuation to increase. It is also on the order of 

about 5 dB/cm, so it is pretty big. Your sound is not going to go very far if your attenuation is 5 

dB/cm. 

This is the phase and you can look at the phase difference between two of these depths and 

come up with a measurement of phase speed and we see that the phase speed down at 50 Hz is 

less than 40 m/sec and it tends to increase with frequency. 

[Slide] 

This is taking the previous slide and constructing what the attenuation is and you can see 

here at about 40 Hz here is attenuation over the first 5 cm. This is the first 10, the first 15, and 

the first 20. This is in washed sand; that means that it comes from a sand quarry, it has a lot of 

clay in it, and they wash it, then they sell it to brick masons. It still has quite a bit of clay in it, 

but it is sand. 

You can see that there is 2- to 3-dB variation in the data, it is not really very homogeneous 

as the glass beads were. The glass beads are significantly more repeatable than natural materials. 

[Slide] 

Let me say something about the properties of porous materials. We need to talk about the 

density of the solid and the density of the fluid. We can define the porosity to be the volume of 

the fluid divided by the bulk volume and, of course, the bulk density is one minus the porosity 

times the solid plus the porosity times the fluid density. 

In the models that people develop for sound propagation in the ground they assume that all 

the voids are connected, that there are no isolated places. 

[Slide] 

Flow resistivity is an important parameter to be able to measure and if you have a 

cylindrical sample of length 1 and you apply a delta P across the sample and you measure the 

velocity of the fluid flow, you can define the flow resistance to be delta P over this velocity, the 

volume velocity per unit area, and that is like the resistance of a wire, we can get the resistivity 

by dividing by the length of the sample and there is an apparatus for doing this -- Leonard 

developed it and published it in JASA in 1946 and Rudnick made a modification to it. 

[Slide] 
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Here is the jig. You can get this jig by going to the demo room and you take an old 

balance. This is the base of the balance, that is the pole, the knife edge is right here, and this is 

the mass bar. Usually you have a pan hanging on this side and a pan hanging on that side. You 

get the pans off. 

You hang a cylindrical dish right here, a piston, if you wish, that you can attach to this side. 

On this side you can suspend weights. You have a sample holder you put your porous material 

in that mates to an annulus that you can put kerosene in. This piston now slips in this kerosene. 

What you can now do is apply some mass here and you can pull this piston up and because 

it is sealed with the kerosene you can play air through here. There is a pointer down here and, as 

the beam moves across, you can measure how far the pointer moves and you can time the time 

that it takes the piston to go up to height h. If you get the time it takes the piston to go up to 

height h, you know the area, you know the volume of air that went through, you know this area 

and you know the length of the sample and you know the mass that you put on either side (you 

have to measure this thing), you know the force. On the other side is atmospheric pressure, so 

you can compute, then, delta P over the velocity. 

In terms of all these parameters — that is an expression for it — mg delta t (the time) Ai is 

an area, and there should be an Ao here (squared) divided by the height it moves and the length 

of the sample. Right now I cannot remember which one is Ao. 

If you take the sample holder off and you just had this open to the air and you try to 

balance this thing, what happens is it takes it a very long time to stop moving. When it starts to 

go down, this mass or volume that is in the kerosene displaces some fluid, so then the buoyant 

force increases, so it starts to go back up. 

When it starts to come out, you have less volume in here, so it gets heavier and goes back 

down. What Rudnick did was put a little mass on top and you adjust the height of this mass to 

counteract this change in buoyant force. If you do not have this mass properly set, if you have it 

too high, it falls over, flops to one side. If you have it too low, it oscillates for minutes. If you 

put this mass on here it damps out in about two cycles (actually, about one-and-a-half cycles). 

It is a very nice device, very simple, it works remarkably well. 

[Slide] 

Another property is the pore tortuosity. I have never made this measurement, but you fill 

the porous sample, you saturate it with a conducting fluid and you measure the electrical 
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resistivity, then you do it with just the conducting fluid and you measure the electrical resistivity. 

They define the tortuosity to be this - omega is the tortuosity of the sample. 

[Slide] 

In the next few slides what I am going to do is to develop two models of the ground. One 

is cylindrical tubes and the other is parallel slits. That is exactly what has been done by Larry 

and his graduate students in terms of looking at trying to develop viscous F-fiinction models. 

We want to develop two models of pores. One of them is cylindrical models of pores of 

radius R and the other one is parallel slits with 2 A. We have seen this already, equations of state, 

continuity, and motion. We combine those to get the so-called most useless equation in the 

world. 

[Slide] 

There are some mistakes on yours. We take a solution (probably a useless solution, but 

maybe not) to find out that k, the wavenumber, pmega/C, is this expression right here. 

[Slide] 

If we think about fluids with absorption, we usually write k as a complex quantity. We 

stick that in our solution and we get this, so we rewrite the wave equation with a complex C or a 

complex k, where k is in terms of this effective density and effective bulk modulus. 

[Slide] 

This is our goal, to write down expressions for the effective density and the effective 

modulus. If we can do that in terms of pore properties, and we know we can, because Anthony 

has done that for us already in his review, we can solve for the wavenumber. 

If we have the wavenumber in this tube model, we can measure the phase velocity and the 

attenuation, which is what I had been measuring with the probe microphone. We are going to 

assume, to start, just as they do in thermoacoustics, that the tube walls are rigid, and when you 

squeeze the gas the tube walls do not move, but that is not what really happens in the ground. 

The ground really is elastic, so this is not complete enough to describe the ground. 

[Slide] 

The viscous penetration depth ~ Anthony did that for us and I just put this here. At 100 Hz 

it is 200 microns. That is going to be larger than all of the pore sizes, or most of the pore sizes, 

we are going to work with. Normally, if you talk about spherical grains of soil, the pore size is 

385 



about a third of the size of the grain, so grain sizes are from 50 microns to, probably, sand can be 

300 microns. 

[Slide] 

This, historically, was done in terms of looking at ceiling tile by Zwicker and Kosten. 

Tijdeman did this, Pat Arnott did this, Mike Stinson did this, and Swift did this. The main thing 

that is assumed here in Zwicker and Kosten is that the pressure is a function of Z down this tube, 

and we talked about justifying that on the first day. We are going to start here and assume that 

that is the case. 

[Slide] 

I will just do a brief summary. For a cylindrical tube you write F=ma (Anthony did this). 

You rewrite this in cylindrical coordinates, you are supposed to say this is Bessel's equation and 

that is the solution, where 1 is defined to be this term here. 

[Slide] 

You now need to get the velocity across the radius of the tube, the average velocity, so you 

integrate it and we get that expression. Now s is the pore radius divided by the viscous 

penetration depth, the square root of two, and that has been called the shear wavenumber. 

If you rewrite equation [30], then you can cast it in this form and you can see that we will 

write this effective density now as the original density plus this expression. 

You can do the same the same thing for slits and you get a hyperbolic tangent, and s' here 

has a2 in it, which is the half-width of the parallel slits. Biot did this, Attenborough did this, and 

their idea was that we are going to let these be the two limiting pore geometries of the ground. 

We are going to say all soils must be somewhere in-between here and they scaled these two 

functions, and I will show that and introduce the pore shape factor so you can eliminate the 

radius or this semi-width and you end up with this adjustable parameter that is going to help you 

describe all porous materials. It does not work or it is not needed on the ground and I will show 

that a little further on. 

[Slide] 

This is from Allard and, in fact, my outline follows Allard very closely. This is the ratio of 

this effective density to the density of air ~ that is the real part and that is the imaginary part. 

We are working down here all the time, so the low-frequency approximations for s are 

appropriate for those functions. 
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This is for slits. These two things look very similar. It leads you to believe that you can 

scale them and I will show the scaling in a second. 

[Slide] 

Anthony did this as well. We would like to get the heat-conduction effect, thermal 

conductivity, into the bulk modulus. I write it down for a circular tube and I write it down for a 

slit. We get very similar functions, except the Prandtl number is here, which is about three- 

quarters. The same approximations we used for the effective density work here. Hyperbolic 

tangents for parallel slits, that is what that function looks like versus s. Again, we are down in 

this regime down here. That is the hyperbolic tangent or the parallel-sided slit. 

I am going to skip 10 slides in your books and go directly to the results. 

[Slide] 

What we were trying to do is, as you recall, come up with a bulk wavenumber in terms of 

the effective density, the complex density, and the complex bulk modulus, but we are going to do 

it in the low-frequency approximation. That is the only place we are really interested in. 

[Slide] 

If you do that, you can do all of this on a calculator. This is the result for the complex 

wavenumber. Gamma is the ratio of specific heats, a is this constant, aq2 is the tortuosity. This 

Sp is the scaling parameter. For a cylindrical tube this is one, flow resishivity, porosity, omega. 

What I do in the notes is show you how to get these measurable properties into the model of the 

ground. 

When we go outdoors, we measure the flow resistivity and we measure the porosity, we do 

not measure the pore diameter, so we want to get the effects of pore diameter into a bulk media. 

That is the 10 pages that I skipped. I show you how to do that and it is not complicated. Again, 

this is the low-frequency approximation and it is good for all soils up to several kilohertz. 

If we take the high-frequency limit of this expression, this thing gets small because of this 

term right here, this is constant. This is about one, the tortuosity squared is about one, and if this 

gets small enough that at high enough frequencies you can write this expression down. We see 

that this ratio of the sound speed to the sound speed in the bulk material goes as the square of the 

tortuosity. We call this an acoustic index of refraction. It does-not agree with the measurement I 

showed you in terms of, conceptually, what is going on, but our notion of the tortuosity is it is 

the ratio of the sound speeds in air to the pores in the high-frequency limit. 
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Pat Arnott and I talked about what should the tortuosity be for spherical glass beads and 

came up with the notion that if a glass bead is a sphere, if the glass bead were not there, the 

sound would go straight through, but because the bead is here, it has to go around, so the 

tortuosity ought to be half the circumference divided by the diameter, which is n/2, or 1.6. That 

is a generally accepted number for measurements of tortuosity. 

[Slide] 

The problem with kb is it is in this square root sign with this expression. What I can 

measure is the attenuation in phase speed in the ground and I would like to back out the 

properties of the ground. I would like to determine what is the flow resistivity of the ground, 

what is the porosity. 

If you just squared this, then you can separate the real and imaginary parts of this 

expression. You can equate, then, the real part of kb2 with frequency squared and tortuosity. The 

imaginary part of this expression has omega in it and sigma omega. 

The only unknowns in this expression are sigma times omega and the unknown here is q . 

I can use my probe microphone measurements to measure these properties ~ only two of them, I 

cannot get all three of them. 

If we look at the impedance, the normalized impedance is one over the impedance of air 

times the frequency divided by the square root of these two terms, the effective density and the 

bulk wavenumber. In the low-frequency approximation of this expression we find that in the low 

frequency the real part of the impedance and the imaginary part of the impedance are equal and 

they go as one over the squared omega — sigma over omega square root, one over this frequency. 

In the high frequency we see that they are proportional to a constant, the square root of the 

tortuosity squared divided by the porosity squared. 

We set off not understanding this very clearly — this result right here ~ trying to measure 

all the properties of porous materials. We were going to use reflection measurements, and I will 

show that, to determine the tortuosity, the flow resistivity, the porosity, and even the pore shape 

factor, before we knew how unimportant the pore shape was. 

This tells us that at least in impedance measurements you cannot do it. These are not 

independent parameters. In the high-frequency limit you get a ratio of these two parameters. In 

the low-frequency limit you get a ratio of these two parameters. They are not independent, that 

is what I am saying here. 
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[Slide] 

This is the calculation ofthat previous expression for the impedance. At the low frequency 

we see that they are very nearly the same. At the high frequency (this is not quite high enough), 

this one is tending to zero and this is going to tend to a constant. It becomes purely real. 

The data tend to have this correct frequency dependance. 

DR. MIGLIORI: How can you fit a horizontal line through that? 

DR. SABATIER: I did not say it fit the data or, if I did, I did not mean to. I still contend 

there is a lot of structure in these data. This assumes that the ground is semi-infinite material of 

cylindrical tubes. 

[Slide] 

I mentioned this probe microphone. Here is a closeup of it. You buy this element at Radio 

Shack for a dollar. You put it in a brass tube and you have to design a nose cone to go on it. The 

only reason you put a nose cone on it is to protect the element when you push it in the soil. It is 

invasive, you have to be very careful when you insert this. In glass beads and sand it works 

perfectly, because they seal. When you do it in soil you have to drill a hole and you can have 

leaks and it does not work worth a hoot. 

Here is a photo of it. You use a camera tripod and this acts as a jig to drill holes in soils 

and also to put the probe in to support it, and there is the reference microphone. 

I am going to skip this, you have seen these kinds of data. 

[Slide] 

Here is the analysis of the data. We measure the probe response at two different depths due 

to a source in the air as a function of frequency and we compute a transfer function. From that 

transfer function we can get the phase, we can calculate the phase of the transfer function. That 

is equal to the real part of the wavenumber times delta d. 

We calculate the magnitude of the signal dB and we can relate that to the imaginary part of 

the wavenumber. We can solve, then, for the real and imaginary parts of the wavenumber from 

our measurements; we can construct kr and kj. 

This is a plot of the imaginary part of kb
2, these are the data, and that is a fit. 

[Slide] 
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This should be linear with frequency. We determine the slope and with the slope we can 

come up with the imaginary part of kb2 - right here -- we can determine the product of sigma 

omega. 

[Slide] 

This is a fit, then, to the real part of kb
2 and that is the one that should go as omega2 despite 

what is in my notes, so we can fit this and we can determine the tortuosity. 

[Slide] 

These are measurements for five sizes of spherical glass beads that range from 500 microns 

down here to, I think, 60 microns up here in diameter. The important thing is that this is the DC 

flow resistivity that we measured with Leonard's apparatus, and this is the result of fitting sigma 

omega to the data. 

This is the sigma omega that we calculate with the model and the probe microphone. This 

is the DC flow resistivity. If you take the slope of this line you get 1/.4, which should be the 

porosity. The slope of this line is 2.5. One over that is the porosity. The porosity of randomly 

packed glass beads is 38%, so this technique arrives at a reasonable number for what the porosity 

of the sample is or, if you know the porosity, it arrives at a reasonable number of what the bulk 

flow resistivity is. It is a way to measure the flow resistivity of the ground, but you have to put 

the probe microphone in the ground and that can be a problem. 

[Slide] 

We can take advantage of another measurement (Ken talked about this). This is a sound 

source, and this is a microphone. This is a Lloyd's mirror experiment. We broadcast sound from 

here. A ray goes there. A ray also goes up here and down there (this is the reflected ray). There 

is also a surface wave. It is all in the model that Ken put up for this. 

Here is the pressure at that microphone. It is e* ° times ri divided by ri plus the reflection 

coefficient times e* 0/r2. This is done with spherical waves, so this is the spherical wave 

reflection coefficient, which is written in terms of a plane wave reflection coefficient and this 

correction factor, which is a function of impedance and frequency and angle. 

Z is the function of these three parameters. What we do is we broadcast swept tones, swept 

sines or noise, and we measure this response. We usually put another microphone right here and 

take the transfer function of these two to take out the source. 
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Once we do that, we can then fit this model to the data and tweak these parameters to see if 

we can do Lee squares inversion on the data and come up with those numbers. 

[Slide] 

Carl Fredrickson did this. Here he has done the calculation of the frequency response from 

10 or 20 Hz up to 2 kHz for the sound level difference for two of these microphones, two 

vertically separated microphones. He did it for cylinders, slits, triangles, and it is not dependent 

on pore shape. That is why we believe we do need pore shape. 

He now does the calculation for bulk flow resistivity and he lets the flow'resistivity range 

from 69,000 to 80,000, and he shows that this is the kind of effect you are going to get, so we are 

not going to be able to get the flow resistivity extremely accurate, but if the flow resistivity is 

much larger than this, it is a dramatic effect; this thing can change easily by 20 dB, over two 

orders of magnitude in flow resistivity. 

Here are some measurements of this level difference measurement, and that is the 

calculation ofthat curve, the Lee squares fit. From these data you can get the ratio of the pore 

parameters that I wrote for the impedance. Carl did this and he compared the probe microphone 

measurements of the properties of glass beads to the level difference, to the reflection technique, 

and it did not work very well, and he did it for sand. 

The reason that it does not work (he did not learn this until after the fact and it has not been 

done again) is that when he put his sand in, he just threw the sand in with a shovel ~ actually, a 

front-end loader, I think ~ and then he took a skrete and he scraped the surface until it was 

smooth; he did not make the material homogeneous, he just put it in like it was. 

Then he made probe measurements down to a depth of 20 cm and then he made level- 

difference measurements. The level-difference measurement does not sample nearly as deep, it 

gets mostly the surface properties of the porous material, so when you go with a probe over deep 

depths, if the material is not homogeneous you cannot get the same measurement as the 

reflection ~ at least I think that is the estimation. 

Now we are going to take a 10-minute break. 

DR. SABATIER: The second part of this has been that the ground was rigid ~ maybe I did 

not emphasize that enough — and the granular materials could not move, only the gas could be 

moving in and out of the pore space. 

[Slide] 
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When we put a geophone in the ground, the geophone responds to motion of the matrix of 

the soil, so we have to do something different when we find mines. The laser is measuring, I 

think, the velocity of the soil particles, the particle velocity of the soil itself on the surface of the 

ground. 

The way we do that is to go through wave equations developed by Biot. I want to point out 

a couple of things in these wave equations; these are coupled wave equations. H, C, and M are 

elastic constants that can be defined (that Biot defined) in terms of the complex compressibility - 

- he did not do that but Attenborough put in for air the complex bulk modulus in terms of M and 

C. H just looks like lambda plus 2nu in some limits of poroelastic materials. 

Here is the F function written in the F form that other people have talked about. This is the 

flow resistivity. 

First of all, e and squiggle, e and Z, are displacements -- actually, dilations ~ of the solid in 

the gas of this poroelastic material. This term here has been referred to as an inertial drag term. 

It is equal to the tortuosity, the fluid density divided by the porosity, so if this term would go to 

one ~ well, let me rephrase it. 

Because the measure of the tortuosity of the pore path, as the air tries to move back and 

forth, curved pores, as you accelerate gas you accelerate the wall, this is a measure ofthat effect 

~ it is clearly a very small effect. 

[Slide] 

The stress-strain relationships: The only thing I want to point out is that there is a 

connection between the pore fluid pressure and the dilation of the solid and the dilation of the 

gas. On this slide I want to point out if we take plane wave solutions to these equations and stick 

these back into the two differential equations, we get these characteristic equations in which we 

know the determinant has to be zero and the solution is in terms of P, or it is quadratic and l2, 

which means there are two roots, two wave types that result from these two equations. 

It kind of makes sense. You have two phases, but they are coupled. In one of these 

solutions, say we call it Biot type I, the solid and fluid are moving together as a wave. In the 

type II wave the solid and the fluid are moving together but with a different wavenumber, so 

there are two wavenumbers and these two wavenumbers have different dispersion characteristics. 

Their characteristics are defined in terms of a type I and a type II wave. 
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If we solve either of these two equations for the ratio of A/B - so what are A and B? A is 

the displacement, if you wish, of the solid part of the matrix, B is the displacement of the fluid 

part of the matrix. If we wrote these as particle velocities, then it could be velocity amplitudes. 

It does not really matter, it is just time derivatives. 

Here, then, we can solve for what the ratio of the amplitudes is of the two wave types and 

there is an 1 here that is a wavenumber, so there are two wave types, there are two amplitudes. 

[Slide] 

On this slide we plot the phase speed and the attenuation for the type I wave and we put in 

properties that are appropriate for saturated sand, air-saturated sand. This is the type I wave and 

we find that we get a phase velocity that is constant with frequency in the range we are working 

over and we get an attenuation that increases as F2; however, it is very small. 

This is the ratio of the solid displacement to the fluid displacement for the type I wave and 

we see it is about one, it is on the order of one. That means that the fluid and the solid are 

moving with the same amplitudes for this wave type. 

If we go to the type II wave and repeat the calculations, this is just the phase speed and the 

attenuation that comes from the tube model. Here is the ratio of solid-to-fluid displacement and 

now it is very, very small for the type II wave. What this says is for the type II wave the matrix 

does not move very much compared to the gas. In the other case they are moving together. 

[Slide] 

This is an experiment that was set up by Craig Hickey to look in the laboratory ~ I did all 

this stuff outdoors and he was not happy with that, so he wanted to look at what happened in a 

tank if you could try to do a controlled experiment. 

DR. ATCHLEY: Can you go back to the last one? Can you go back and explain the 

difference between them, again? 

DR. SABATIER: Yes, I can. I did not do a very good job, now that you ask me. 

[Previous slide] 

The type I wave, when you solve this equation, you get two roots, you get two 

wavenumbers. One of the roots corresponds to in-phase motion of the solid and the gas. This is 

the displacement of the solid for the type I wave. This is the displacement of the fluid for the 

type I wave, so this wave propagates and squeezes the gas when it propagates. They go together, 

they are coupled. 
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DR. GILBERT: This is like forward-going and backward-going. You do not know what 

you are going to get until you do something physical. 

DR. SABATIER: That is just solutions to a wave equation, no boundary conditions. It is 

an infinite material. If you do it for 12. there are two of these, so now there is another wave that 

goes into the solid with a different wavenumber and coupled to it is a wave that goes into a gas 

with the same wavenumber, with the same phase speed. 

The 11 and 12, these are the wavenumbers, so 11 has little attenuation and a constant phase 

speed, no dispersion, and 12 is the tube wave that we have been talking about. It has a lot of 

dispersion, its velocity changes with frequency, and its attenuation increases with frequency. 

A lot of people believe, or at least say, that the type I wave moves only in the solid and the 

type II wave moves only in the gas, and that is wrong, and I am going to show that in a 

measurement that that is wrong. 

[Slide] 

Let me go to measurements that I think are going to show some of this. This is a tank 

experiment set up in the lab. This is meter by meter, a cylindrical tank. In this tank Craig buried 

vertical component geophones down here and he buried them in 10-cm spacings on this side, and 

on this side he offset them by 5 and buried them in 10-cm spacings, and I guess they are 30 cm 

from the wall. 

Then he put in microphones all the way down to the bottom of the tank, also in 10-cm 

spacing. He put in horizontal component geophones, so these vertical component geophones 

respond to motion this way, the horizontals respond to motion this way. 

He has horizontal, vertical, and geophones and microphones. Then he has two sources of 

excitation. One is a loudspeaker suspended above the surface. The other one is a mechanical 

shaker that he can put on the surface here or on the surface there ~ or anywhere he wants, 

actually. 

[Slide] 

No one has been able to separate out a pulse for these two wave types unless you go to 

low-temperature physics, and I do not know if they did it there, but in water-saturated porous 

materials and air-saturated sediment you cannot directly separate out the wave speeds. 
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Plona did some tricks, but he did not separate them out going down through a porous 

material; he had to take advantage of a critical angle [?]. He is the first person to make a 

measurement of this slow wave and report it in the literature in a poroelastic material. 

What I will say is that everybody who did architectural acoustics and everybody who does 

thermoacoustics have been measuring slow waves as long as they have been making 

measurements, at least in the gas, and thermoacoustics people do not worry about the wall of the 

tube. In architectural acoustics people have only recently begun to worry about the walls of their 

architectural materials. 

[Slide] 

Here is the loudspeaker source and he sends a 3-cycle tone burst at these three frequencies. 

He measures the time of arrival versus the depth in the tank. These are shallow depths and at 

shallow depths, at the first 10 cm, all he has is the probe microphone ~ I failed to mention that. 

Let me back up. 

[return to Slide] 

He has a probe microphone that he can look every centimeter with, so with his probe he 

can look every centimeter down this tank. 

MS. SWEARINGEN: Did you mention what material was poured into this tank after all 

these sensors were put in? 

DR. SABATIER: These data are with one of the sands that we used in the previous 

experiment, so it is sand that has, probably, grain sizes of a few hundred microns in diameter. It 

is very clean sand. 

[return to Slide] 

This is the arrival time at the sensors as a function of depth. These are three frequencies 

where he broadcasts a tone burst. He plots the arrival time versus depth, so one over this is the 

wave speed. These are the slopes of the data, and it is 122,134, and 149 m/sec. 

This is the kind of dispersion that you would expect from the slow-wave calculation. From 

the rigid porous material calculation this is what you expect. 

[Slide] 

He now uses the shaker source, not the loudspeaker, and with the shaker source at these 

three frequencies, using microphones and the vertical geophones, he is now looking from 5 cm 

deep into the tank and he looks at this arrival time (that is probably milliseconds, again) and he 
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has, on this curve, a microphone and a geophone at every place — the same thing on this one and 

the same thing on that one, and these are the same three frequencies and these are the velocities. 

They are either constant or there is negative dispersion (I would like to think they are constant). 

You do not see dispersion and the velocity is twice as high, and it is twice as high all the 

way to the bottom, all the way to the top. This is a mechanical shaker shaking the source instead 

of a loudspeaker. 

[Slide] 

This, now, is the loudspeaker source. I showed it to 10 cm earlier. Now this is the 

loudspeaker source all the way to 50 cm and he gets these numbers at 1 kHz. He gets these 

numbers back at low frequency, 143 m/sec. Then there is a transition region to the deep sensors 

where you get 240 m/sec. 

You see that on the probe microphone, which samples every centimeter down to about 20, 

and you see that on the buried microphones all the way out to 30 or 40, and you see it on the 

geophone at 5, all the way down here but, importantly, right here. 

[Slide] 

He computes the sound absorption, the attenuation, and I hope yours says magnitude of the 

signal — I transferred these over the net and somehow a lot of things got lost. Two kilohertz — 

this is the attenuation now, this is the loudspeaker, and he is using the probe microphone and he 

gets this straight line, and that straight line, 3.8 dB per centimeter and 1.3 dB per centimeter. 

If you measure the flow of resistivity and the porosity and make some assumptions about 

the tortuosity ~ take a guess, we do not measure it other than acoustically 

— these are the numbers you get for the slow wave. 

MR. APOSTOLOU: There are two different slopes, but how can you tell if one of them is 

VI and the other one is V2? 

DR. SABATIER: We do not know which one is which. Oh, how do we know? Because 

we showed that in the shallow depth there was frequency dependence and V2 has a lot of 

dispersion and VI does not. 

The important thing here is that when you use a loudspeaker, the loudspeaker is 

impedance-matched well to the air in the pores, so it drives the gas in and out, but the 

microphone and the geophone are both measuring the same thing. 

396 



I will say that a little differently. The microphone and geophone are both giving us the 

same phase speed. One, I think, is measuring matrix velocity and the other one, I think, is 

measuring fluid pressure. 

PARTICIPANT: [Inaudible] 

DR. SABATIER: Time in milliseconds, arrival time, so this is like inverse sound speed. 

This is important in that if you use a shaker you do not get this. I do not know whether he 

did not take the data, but I do not have them. 

We have done this on two different other kinds of soil types and if you have a much higher 

flow-resistivity soil, this break point moves down deeper and deeper. All I am trying to tell you 

is if you use a loudspeaker, slow wave is the predominant energy and that energy decays away 

and you are left with another slope, which is the fast wave, or the type I wave. 

In big enough pores the slow wave can get faster than the fast wave, so that is not a good 

choice; the type II wave can become faster than the type I wave if your pores are large enough. 

In granular materials the sound speeds is nominally 200 m/sec. If you get big enough pores you 

can get above that. 

Let me back up a second. I think this idea is important in terms of how we are finding 

mines. If you use a shaker to excite the ground, you do something different than if you use a 

loudspeaker. In one case you can excite this type II wave, in the other case you cannot excite the 

type II wave. 

MR. APOSTOLOU: You think you are getting good success with all kinds of soil because 

you couple through the gas, is that the reason? 

DR. SABATIER: No, what I want to say is that the type II wave can see this target. It is 

very sensitive to changes in porosity, the tube diameter, particularly if you close off the tubes. 

That is what I want to say. There was no notion about mine detection when we did these 

measurements. 

The motivation for these measurements was we knew that if we took our probe microphone 

and pushed it down in a soil and measured the attenuation very carefully as a function of depth, 

we got nice uniform attenuation. Then at some depth we did not get uniform attenuation. The 

signal would go up, it would go down, it looked like noise, you had a sine wave. You turned the 

loudspeaker off and there was still plenty of energy. 
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When you do this outdoors in the ground or when you do it in this tank, actually (you can 

see this effect in this tank, I think, as well), the type I wave has a lot less attenuation. The slow 

wave just dies out, it does not know what is below it unless it is very, very close. With the fast 

wave there is much less attenuation and it sees boundaries that are below the surface of the 

ground. That is what motivated us to try to do this experiment. 

When you take the probe microphone and you start measuring the pressure as a function of 

depth, it decreases, decreases, decreases, and decreases differently, and that is what prompted us 

to do this. We are doing this again now and we are going to do this in five sizes of glass beads 

and eventually we going to put land mines in here. Glass beads have nice properties because 

they are all the same as you change the size, except for the flow resistivity. 

[Slide] 

This is the notion of what the ground looks like. We want to apply this model to the 

ground. This is the air-soil boundary. I just assumed that the ground was layered, just a single 

layer, and these are the wave types that are allowed for a plane wave source, an incident wave 

and a reflected wave. 

This is the type I wave. This is a porous material and this is the displacement or the 

amplitude of the motion for the matrix ~ that is for the fluid. It hits this boundary and reflects. I 

assumed that this was non-porous, so it transmits only as a type I wave. It could, of course, 

mode-convert here to a type II wave upon reflection. 

Here is the type II wave coming down. This is the amplitude or displacement of the matrix 

for the type II wave. This is the displacement, B2, for the displacement of the type II wave for 

the fluid. It can hit here and reflect. It can mode-convert to a type I wave, but it cannot go 

through the boundary, because I am assuming this is non-porous. This is a shear wave, and I did 

not bother to show those equations. 

MR. SPARROW: I am curious....local reacting assumption at this point? 

DR. SABATIER: Yes, in fact, I never use the local reacting assumption. The local 

reacting assumption, and you might correct me, assumes that the sound speed tone is to the 

normal. What does the speed of sound have to be in the ground for that happen? 

MR. SPARROW: It is slow. 

DR SABATIER: Very slow, zero maybe. But Pierce talks about local and extended 

reaction and it is a little different idea. 
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So we need some boundary conditions and I am not a mathematician. There is a series of 

13 papers about the boundary conditions between poroelastic materials. They are in the Bulletin 

of Seismological ~ something - which I cannot remember right now, by Doritzovic, I think, and 

somebody named Scaflak, and I refer you to them. 

The top set is just general boundary conditions for a porous material, continuity of, the 

normal component of stress, matrix of velocity, parallel components, tangential components of 

stress, velocity, normal components of pressure, and fluid velocity. 

Over a pore-solid interface, I list them there, and over a fluid over a pore-solid, I list them 

there, and I used those boundary conditions in the calculations I am going to show you (I took 

them from the literature). 

[Slide] 

There are 10 amplitudes in the previous sketch. One of the amplitudes is known; that is the 

incident. We can apply the nine boundary conditions that we have, the four for the fluid over the 

pore-solid, the others for the pore-solid over the substrate, non-porous substrate, do lots of 

algebra, and give that to a matrix-equation solver and solve for the amplitudes. 

Once we have the amplitudes solved, then what we have to say is suppose we want to 

calculate the normal component of the particle velocity, we have to come down here and sum up 

the normal components of all of these plane waves and add them up. We do the a's and we can 

get the matrix velocity. 

We could do the same thing for the fluid. We can do the same thing for the incident 

reflected wave. We can construct things like the surface impedance and this should not be a 1 

and a 2, this should just be pressure at the surface is iko for air, lo for the wavenumber in air times 

the incident reflected amplitude, the sum of those two. It is just the sum of the pressure above 

the boundary. 

We can do the same thing for the surface. Scratch out these l's and 2's. These are incident 

reflected amplitudes, that is the incident angle of the wave, and the other thing here is this klo for 

air ~ 1 is for wavenumber in air, omega/Co, k is the complex compressibility of air, which is the 

compressibility of air, it is not complex. 

Once we have P and V, then we can construct the impedance, the surface impedance. If we 

want to measure what happens in the porous material, we can sum the pressure associated with 

the down-going and the up-going waves. I already said if we want to find the particle velocity as 
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a function of depth, if we want the normal component, we can sum the normal component of the 

up-going and down-going type I and type II plus shear waves. 

That is what I did and these are the results. 

[Slide] 

Where did I get all the numbers? We can measure all the pore properties. We can measure 

densities. To get Biot's elastic constants we have to get the matrix compressibility, we have to 

get the granular compressibility, and we have to get the shear moduli. 

What we do is do something called a shallow- refraction survey. You hit the ground with 

sledge hammer and you have a string of geophones and you measure the arrival time of the wave 

speeds. If you string your geophones far enough apart, the wave speeds increase in the ground 

and you will see deep-layer wave speeds — this is what seismologists do to find oil. 

We do that experiment and that lets us find all the velocities in these two layers. With 

those velocities we construct Biot's elastic constants. What I will tell you is that the grain 

modulus does not matter. It does not make any difference what the grain is made of, within 

reasonable numbers. So these are measurements, and these are calculations. 

I should point out that Pat Arnott made the same calculations using an elastic theory and 

gets the same results, so you do not need, on this particular soil, Biot theory to get these results, 

but on Craig Hickey's soil (and that experiment still needs to be done) it suggests you need Biot's 

theory or it suggests Craig Hickey is wrong. 

[Slide] 

This is another material where the measured is the solid line with lots of peaks and valleys 

and there are no adjustable parameters. You put in the layer depth, you put in the measured 

moduli via the speed sounds and you get these kinds of curves. 

[Slide] 

This is the interesting stuff. This is a calculation of the surface impedance from this 

layered model done at two different angles of incidence, 80° and 68°, and you get some funny 

structure in the impedance curves. 

[Slide] 

If you take the layer velocity and you bump it up by a factor of 10, the substrate velocity, 

the curve does this at 0° and 80°. At 0° the solid line shows one peak here, another one there, 

another one there ~ this is on a log axis, log frequency, and it goes from 50 to 1000 Hz. 
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When you go to 80° you get a twin structure, you get two peaks; they come in pairs. These 

are resonances that are due to compressional waves and shear waves going down into the porous 

material, but there is a smooth trend in the impedance to decrease with frequency as well as in 

the imaginary part. I showed both of these to Henry and he said to make them all go away. 

People have measured them and some people think they see them in some cases. In snow 

they are clearly visible but no one ~ Giles Dagle, maybe, published a paper that says he 

measures them, not this, but that. 

[Slide] 

Hank's data are right there. It seems to me we need to find out where these data were 

taken, but I have a feeling that the layer depths are going to be ~ we could almost fake it and 

begin to show that we are going to get structure in these curves. 

I think this is all I want to do here and I want to switch and do something else. 

[Slide] 

What we have been doing for the last 18 months with this technique for finding things 

buried in the ground is to try to find out how well we can make it work, or where won't it work, 

under what conditions. 

One of the questions we were asked is how far up the road can you find land mines or 

things that are buried in the ground. I mentioned that we tried to get the vibrometer away from 

the loudspeaker. Here is an attempt to put it in an isolation box (Dan Costley did this). In this 

box the vibrometer sits on a set of springs and this is some constrained-layer damping material in 

an attempt to try to quieten the vibrations, reduce the vibrations. A lot more work needs to be 

done. 

In the next set of slides I am going to show you what happens. The mine is over here and 

we are going to back this forklift up to get farther and farther away. We are going to keep the 

loudspeaker in the same place to keep the sound pressure constant. 

What is going to happen is the angle of incidence of the laser beam is going to come down 

and we are going to be measuring the cosine of the normal component, but we are going to be 

getting part of the radial component of the velocity. 

[Slide] 
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We also put these up on this device up here and that makes the coupling worse. We have 

had this thing operating as high as 7 m, looking 7 m in front of us. When we know there is a 

mine there, we find every one of them and we go to the calibration lengths. It works very well. 

[Slide] 

Here is the particle velocity measured at one point on the target — this is velocity as a 

function of frequency, 50 to 500 Hz. This is the angle of incidence from the normal. This is 

about 2 m, and this is about 12 m. As you move away, the velocity gets smaller, about like the 

cosine of the angle. 

There is a problem, and that is if you look at the off-target velocity, this is the one at 46°, as 

you move away, it does not change. This is one of our difficulties and we are working to 

improve this, but we are probably not going to. As the vibrometer looks farther and farther 

away, not only does the velocity come down, the noise floor of the instrument comes down, 

because there is significantly less light coming back into it. 

As less light comes into the optics and eventually through a phase-locked loop detector, the 

noise floor comes up. These things will measure 50 nm, but that is under optimal light 

conditions and we are not under optimal light conditions. The light coming back is always at a 

very low level in this instrument. 

We did a blind test in a forward-looking scenario and we decided to do, at about this angle, 

a 6.5-m standoff in front of this vehicle. We did it on the same lanes where we did the first blind 

test, where we found 95% of the mines. We found 70% of the mines and we had no false alarms. 

I think it is correct in the sense that the noise floor is coming up and we cannot see mines 

when the velocity is close to them As this thing comes up, you cannot see these mines, but they 

do not look like mines. It is random velocity variations over the surface and they do not appear 

as big round red circles, so we need help here and we are working with some people to try to 

improve this. 

[Slide] 

This is what an image looks like as you start to look off; this is at 8 m, and you begin to get 

some distortion in what it looks like. 

[Slide] 

People do all kinds of things to us now. Somebody decided that this is how an anti-tank 

mine is buried, and this is how anti-personnel mines are buried to protect the anti-tank mine. 
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Maybe you find this thing with your sensor, but when you walk up to it, you step on one of these 

— kind of a nasty trick. These are real, these are live. I had the opportunity to glue some 

accelerometers on these, there are two here and there is one on the bottom, gljued on top of it; I 

was just trying to see what the acceleration looks like. 

[Slide] 

That is an image of what it looks like. This is up to 300 Hz. These are the three anti- 

personnel mines. This is the anti-tank mine. Normally, these things show up at around 150 Hz. 

When you go up to these high frequencies you start to get this kind of distortion. Maybe with 

this characteristic pattern it could help to find mines that were deployed this way. 

[Slide] 

Here are some intriguing things that might explain a little bit about why I think the slow 

wave is what is seeing this mine, or at least shallow mines. These are two mines that were 

buried - all the mines that were buried have been buried at random depths. I requested that they 

be buried at 1-inch increments, take this mine and bury it from 1 to 6 inches in increments of an 

inch, and do the same thing for that. This is a foot in diameter. That is about 10 inches in 

diameter. This is 4 inches, and it stands up about 3 inches on top of this mine. 

[Slide] 

This is the particle velocity measured with the vibrometer on top of the mine, right in the 

center of this VS, and this is its depth, from 1 to 6 inches, and this is the background. What you 

seem to see is, first of all, signals that decrease in amplitude with frequency ~ or with depth — 

and signals that decrease in amplitude with frequency, so you see attenuation due to depth and 

you see attenuation due to increased frequency. 

You also see attenuation here, but no attenuation there at the deeper depths. The same 

thing occurs on this target. This target is not nearly as visible ~ I suspect because it is 

automatically 3 inches deeper. If we look in this low-frequency band, we do not think we can 

see that 3- or 4-inch circle, but we can see the big body of the mine, which is a lot deeper, so we 

start off with the smaller signal. 

Maybe there is a decrease in amplitude and maybe there is not. The peaks do not move 

around, I will say that. The deeper the target ~ this happens to be, I think, the deepest target ~ 

these are two others, this one is a foot across, that one is about 10 inches across. These are anti- 

tank mines. 
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[Slide] 

Here we see a similar phenomenon. These two are attenuated, but these are not, these are 

more random ~ two are obviously not enough. Maybe it is just as bad here. Here is the 

background, the dashed line. The green is the 1 inch, the blue is down here, but the 5 is almost 

as high as the other one. If we have a lot of signal, we seem to see this phenomena a lot, where 

there appears to be two kinds of attenuation. When we do not have a lot of signal, we do not 

tend to see that. 

[Slide] 

These are some intriguing things about shape. If we stand these three objects buried in 

sand about an inch deep and we do a very high resolution, we scan them with a pixel size every 

millimeter, everything else has been scanning about 10 cm, when we stop every millimeter and 

collect data, we get these kinds of pictures. 

[Slide] 

The round disk is round, but the amplitude is positive, or higher than the background ~ you 

actually see another ring around here. For the squares and the triangles it is smaller over the 

target, higher around. This is a single frequency, the velocity over the surface. This is 8 inches 

by 8 inches, a 4-inch target. 

[Slide] 

If we attempt to do a nearfield calculation of the pressure and say we are going to calculate 

the pressure in a fluid for a target ofthat size and we do this equation numerically ~ 

[Slide] 

— for the long wavelength case, if the wavelength is three times the target size, the diameter 

to the side is one and the depth is a 10th of the diameter, we get a square, a circle, and a triangle, 

and we see dips over the center, and we can see no dip here, so we can find frequencies where 

we see the behavior that I showed you ~ these have holes in the middle, and these have bumps in 

the middle and it is bigger here. 

[Slide] 

In the short wavelength case, where the wavelength is a third of the target size, the 

diameter of the target, the depth is a 10th, we get this kind of phenomenon. 

[Slide] 

I showed that one, and I would like to stop and take questions. Thank you. 

404 



DR. MIGLIORI: What do they do when they find a real one? 

DR. SABATIER: You put a mark on the ground. 

DR. MIGLIORI: So you are driving along in this truck and you say, "There's a mine," and 

then you decide to miss it if you continue to — 

DR. SABATIER: You have a vehicle that can drive over it, it does not bother it. It has 

enough surface area that it will not set it off. 

DR. MIGLIORI: Even the anti-tank ones? 

DR. SABATIER: It will not set off the anti-tank ones. The problem is, it will set off the 

anti-personnels, but they will not bother it. There are a lot of overpass vehicles now that are 

currently already at work. 

DR. WILEN: When we saw the animation, it was obvious that the signal over the mine was 

out of phase with the ground and we did not get to see an animation for the rocks. Is that the 

same case with the rock? 

DR. SABATIER: It does not do that. You do not see this phenomenon on every target. 

You see it on lots of them, though. Every mine does not behave that way, but lots of mines do. 

DR. ARNOTT: On that calculation you did for that, could you say a little bit more about 

that, the one you had two slides back? 

[Slide] 

DR. SABATIER: Craig typed that into Mathematica and he just let it be ~ it has been 

done two ways. The first one was to just let it radiate, the piston radiate. Subsequently, we have 

been working with doing the floor. He has a circular disk, he lets a plane wave come in and 

reflect off the surface and he sums them up. 

What we know is that as this gets deeper, this effect goes away very, very fast. It does not 

have to get but about half the diameter deep and it looks as if everything is round, but up when it 

is very close, you actually see the shape, so it is just done on Mathematica. 

The integration routines you do not do on Mathematica. You go to some library 

somewhere to see if you can find a Mathematica that will do the integrals over all these shapes 

very fast, so we did not sum them up point by point. We used someone's algorithm developed 

for integrating shape. 

DR. WAXLER: I remember a few years ago hearing about some people who were 

studying sand and they noticed that it seemed to come in clumps and the conjecture was that the 
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stress holding the sand up occurred in these two-dimensional sheets.   I wondered if you see 

anything like that ~ I guess in type I wave scattering. 

DR. SABATIER: I think there is definitely something referred to as stress chains through 

materials, where the materials are connected together. You move the material below it and it 

will stay in place. 

At the frequencies we work at, we do not have, I think, the resolution to resolve that, would 

be my guess. 

MR. APOSTOLOU: When you say "slow," you mean type I? 

DR. SABATIER: I mean type II, I am sorry. 

MR. APOSTOLOU: Is 6 inches the maximum depth they bury these things? 

DR SABATIER: That is too deep, more like 1, 2, and 3 inches is more typical. How deep 

people bury mines depends on how much time they have. In some places you cannot bury them 

at all, they just cannot get them through the ground. 

DR. GILBERT: You described to me at one time the original test that you did out in 

Hank's back yard with a sledge hammer. You hit the ground and then, a long time later, you 

would see this pulse come in that was more like 50 m/sec, but weren't you getting a seismic wave 

really quick and isn't that a measurement of the slow and fast waves? 

DR. SABATIER: Kind of yes and no. Henry reported that. You fire a pistol and if you 

have a geophone over there, you see a wave that comes in at a very high speed with a very low 

amplitude and then you see a wave come in with a high amplitude that corresponds to the speed 

of sound in air. 

Now, the wave that you receive at that sensor is the super position of the type I and the type 

II waves from air. The one that you get from the pistol hitting the ground, from the pistol signal 

going through your body into the ground — and it goes deep into the ground, where there rocks — 

it travels at 3 km per hour, very fast, and then comes up to your sensor, that is the only fast wave, 

seismic wave — actually, it is probably motion of the gas associated with it. 

The main thing is it is different excitation mechanisms is what I am trying to say. In one 

case you are preferentially exciting the slow wave. In the other case, you do not excite it. It is 

not that you are not exciting the fluid and the gas; you always excite the fluid and the gas. 

DR. GILBERT: At a long enough distance you ought to be able to separate the pulses if it 

does not decay too fast. 
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DR. SABATIER: It decays extremely fast. In the soil behind my house, when we cut the 

grass and kill it and spray it, and let all the organic matter in the grass decay away, it is soil that 

has about 40-micron grain size, the attenuation at 100 Hz on a good dry day is 10 to 15 dB/cm. 

On a wet day, when it is really wet, it can go up to 40 or 50, but you can still find mines 

with acoustic seismic coupling. We have taken that when it was pouring down rain, it does not 

make any difference. We have taken it after long rains. That is probably just the fast waves. 

Both of these waves can see the mine. That is the point I am trying to make, but it is shallow, 

and if you have a low enough floor sensitivity, the slow wave really sees them, but we cannot 

predict the frequency of these curves, we cannot do that. 

We are working on it, but we have to solve the scattering problem of a non-porous elastic 

material — a cylinder in a poroelastic material. It has been done in underwater acoustics in a way 

that I am not able to understand ~ by Ray Lim and Steve Cargill, and we have invited them to try 

to help us work on this problem. 

MR. GLADDEN: You say right now you are at about two minutes for a scan on a good 

day — 

DR. SABATIER: When the thing is working right. 

MR. GLADDEN: Have you thought about any ways that you might speed that up? I am 

sure that is a concern. 

DR SABATIER: Sure, we have. I forgot to show a couple of slides, since you raised that. 

[Slide] 

We have taken a mirror and we put a triangle wave voltage on one of the mirrors on this 

LDV, so it sweeps across. This is a very low sweep rate, 16 seconds. As the beam sweeps 

across here, this drives the beam, this is the velocity output of the vibrometer and the mine is 

right here in the middle. 

Two things happen, and we are broadcasting a 180-Hz tone, single frequency, so we get 

some big spikes, but there is a general increase in the signal over the mine and then it goes back 

down again. When the voltage tells the galvanometer to go back the other way, it rings on both 

ends when it stops and when it goes this way ~ when it stops, I guess. 

This is the spectrogram. There is a postdoc named Vincent Vallo, from France, who has 

been doing this. Here he is doing a spectrogram, it is a timed frequency analysis, because you 

have to take a Fourier transform with time.    Horizontal energy correlates to what we are 
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broadcasting. Vertical energy seems to correlate with the speckle ~ or at least we think this is a 

phenomenon called speckle. 

Here is some other kind of distribution and it cleans this picture up a little bit. We have 

been able to show this work on both the roads at A.P. Hill. We are broadcasting now at four 

tones and here you can see the four frequencies. This is the spectrogram. This is one of those 

big pulses that has nothing to do with the mine, it is continuous in frequency. Notice this is 4 

seconds and this is a meter ~ we are scanning a lot fester now. 

[Slide] 

This is something called the short-time coherence and this is the spectrogram time of the 

coherence, so these are signal-processing ways of finding mines. This corresponds to 1.4 km/hr, 

this sweep rate. 

What we are going to do is we are working with a company that is going to put 16 700-nm 

Doppler beams through one Bragg cell and we will have 16 beams coming out. The reason we 

are going to do one Bragg cell is you save a lot of money. The Bragg cell is $5000, the most 

expensive part. 

That is going to let us have 16 parallel beams and we are going to be able to go at 1.4 

km/hr, that is what we think, that is what we are going to try to do. This shows that we can find 

mines where the beam moves. People who have vibrometers say this does not work, you cannot 

do this. It works, okay? It does not work very well, but it works. 

Now we still have to deal with the problem of the platform is not moving, so that is going 

to be another problem and we are going to have to deal with that. We can find mines when the 

forklift is running; we did that accidentally. Dan Costley is in the room, Dan has worked with 

military technologies. They are a contractor in our building and we subcontract to them. Dan 

wrote the specs on a ruby laser wholefield interferometer. 

This thing sends out a collimated light beam that is a meter by a meter and it is pulsed and 

has a CCD camera that catches the reflected speckle pattern. It interferes with itself and gets a 

fringe pattern. Then it pulses the laser again before the surface moves much more than half an 

acoustic cycle, and the laser pulses again and we collect another one of those. It interferes with 

itself and you have two fringe patterns. 
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This is all done in computers. You interfere with the fringe patterns and you can make the 

same images of mines that I showed you, in principle. We know it does what the LDV does in 

terms of making images. 

What we are now going to do, I think, is take it to the field, put it on a forklift, and we are 

going to image mines. What are we going to get? The camera has a million by a million pixels. 

If we can make shape work, we are going to be able to get lots of spatial resolution and be able to 

get shape about things is what we are hoping. Those are two things we are going to do. There 

are problems with it. 

[Slide] 

This is what the Army thinks, and they have nothing to do but to think about what might 

happen. It is pizza technology. If you want a pizza, what do you do? Call Dominoes, right? 

Tell them what you want on it. That is the way they do in the Army. They call some contractor 

and say, "Hey, here is what we want. We want it to go 5 km/hr, we want it to find 92% of the 

mines." They just order it. Nobody ever thinks about whether it will work. 

This is what they think about our program, they think very positively, so positively that we 

are going to spend about $5 million a year over the next five to seven years doing some of this 

stuff. 

[Slide] 

Remember, I glued those accelerometers on a mine? This is a big anti-tank mine. This is 

an accelerometer that cost a few dollars. 

This is one they give away. I glued this one on the top ~ it was kind of unnerving, 

actually. 

I glued this one on the top next to it. I glued this one on the bottom. I set this one on the 

ground away from the mine. 

This is acceleration. What do I say? These two are close. The one on the back is clearly a 

lot smaller. It does not make sense to me. It seems to me the back of the mine ought to be going 

with the same acceleration as the front of the mine, unless the top is moving relative to the back. 

A lot of people believe that; in fact, if you were at the last ASA meeting, the guys from Georgia 

Tech are saying they are measuring resonances. 
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It just happens to be at the same frequency you get when you put a geophone on the 

ground, you do not use the laser, so I think there is something else and I do not know what it is. 

This was one experiment and it is not enough for me to really answer anything. 

That is it. 
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MEDICAL APPLICATIONS OF ACOUSTICS 

Lawrence A. Crum 
University of Washington 

DR. CRUM: Thanks very much for inviting me and giving me a chance to participate, 

again. I participated in the first PASS about 10 years ago. As Logan Hargrove approaches the 

waning years of his professional career, I wanted to acknowledge Logan and all the things that 

he has done for physical acoustics. I have been in a lot of different organizations, and I like the 

Physical Acoustic Society ~ it is my favorite society — and my favorite part of that is the 

Physical Acoustics Technical Committee. I think it is the most vibrant, alive, exciting group of 

acousticians and scientists in the world. That is not all due to Logan, but some of this has been 

due to Logan. He gave me my first grant and I appreciate that very much and maybe the Society 

is not better because I am in acoustics, but at least I am in acoustics because of some things 

Logan has done and I want to appreciate that and I want us all to appreciate the good things he 

has done for physical acoustics in the United States. [Applause] 

I want to tell you something I read in the paper this morning: "Everyone knows what the 

process of science is about. Some reclusive egghead slaves away at some obscure subject, 

learning more and more about less and less until reaching the point of being so completely expert 

at some sliver of something or other that it is only of interest to three competitors in Berkeley, 

Cambridge, and Budapest." (laughter) 

My wife is always telling me we are nerds and we constantly lose contact with the real 

world, and I say, "Oh, that's stupid, you don't understand scientists." She says, "Okay, what 

about the Roy Arnold story?" I say, "Okay, you're right on that one," so I have to tell you about 

the Roy Arnold story. 

When I first went to Mississippi 20 years ago or so, Hank Bass, Roy Arnold, and Lee 

Bowen were the first tornado chasers. They were out there long before you saw the movie 

"Twister" and all that stuff. What they were trying to do was to plant a package in front of a 

tornado, believe it or not, an acoustic package, so that they could measure the sound and all the 

output of a tornado. (Hank even has a patent for a tornado detector — when the house starts 

shaking, it is there.) (laughter) 
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At any rate, Roy Arnold was the guy who did this more than anything, and on a very low 

budget. He got an old pickup truck and loaded his stuff in the back and chased tornados all over 

Tornado Alley in the Midwest. One spring, tornado season, as soon as school was out, Roy 

Arnold went. off to Texas, Oklahoma, and Nebraska. He had this young undergraduate student, 

a young lady, who went along with him. 

They were out and they got a call that there was a tornado in a particular area, so they were 

going to go out and deploy this package. The package had a bunch, in those days, of long 

microphones that they put in the ground to use as a geophone. The way they put those things in 

the ground to protect them from the rain and everything is they put a condom over the end of 

them. 

They got out there and were about ready to deploy this thing and did not have any 

condoms. Roy jumps in the truck and the little girl gets in with him and they drive to some little 

country store. She is running somewhere and Roy is running somewhere when he calls out, 

"Jenny, I found the condoms. How many do we need?" 

Jenny said, "It's going to be a long night, Roy, you'd better get a dozen of those." Roy said, 

"I've been tearing a bunch of those, maybe I ought to get two dozen." (laughter) 

They go up the counter and, you know, this is the Bible Belt of Oklahoma, and Roy is 

standing there and he looks at the clerk and is about to ask, "What?", because the clerk is looking 

at him as if he were crazy. Jenny comes up and Roy said to her, "Gosh, I just thought of 

something. How are we going to keep these things from leaking?" Jenny said, "Not to worry, 

I've got two big rolls of duct tape." (laughter) 

Anyway, you can lose contact with the real world, so I am going to talk about medical 

applications of acoustics. 

[Slide 1] 

I started this lithotripsy stuff back in Mississippi a long time ago with Charlie Church, Ron 

Roy, and so forth. Then we moved to Seattle and we have now what is called an NIH program 

project. A program project means you have grants from several different institutions. The 

names of the institutions are here and the names of the people involved (I will not go through 

those); I just wanted to tell you there are a lot of people involved. 

[Slide 2] 
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What is lithotripsy and why do you do this? By the way, I am going to give three lectures: 

one on lithotripsy; one I am going to call general aspects of ultrasound; then I am going to 

specialize and do one on acoustic hemostasis. 

In terms of lithotripsy, you get these stones. Ten percent of the population has kidney 

stones at some point in their lives, so there is a good chance that at least one of you in this room 

has a kidney stone. Ten percent of those, or 1% of the population, become symptomatic at some 

time, so of the almost 100 of us here, it is not unlikely that one of us in here at some time in our 

lives is going to have some sort of treatment for these kidney stones. 

They form because you do not drink enough beer and you drink too much milk. They are 

basically calcium oxalate stones that form in the kidney and they usually just hang around and 

bang around in there and do not usually cause that much problem. If they fall off these sort of 

stalagtite-type formations of the kidney and pass through the system before they get big, you are 

okay. 

But if they get so big that they cannot get out and they start blocking the ureter here, then 

you get into trouble, particularly if they are big enough to get in the ureter and then cannot move. 

Then you are really in trouble, because then you get this enormous back pressure and your 

kidney starts swelling up, so you have to do something about it. 

When do you an x-ray you can see these things quite easily and the idea is to break them up 

when they are in here so that you sort of pee sand rather than getting a blockage from that kidney 

stone. 

The techniques until about the early parts of the 1980s were to go in there and cut into the 

kidney and pluck them out or to run a catheter all the way up through here and go in there and 

pluck them out that way. You can see here the little baskets and things that you use to actually 

take them out. 

There was a serious paper from some Japanese who actually had a device in which they ran 

a little piece of explosive up there and put it against the stone and lit off the explosive, literally: I 

heard this person talk about how many patients he had tried that on. "Oh, we don't blow up the 

kidney, we don't put much explosive up there," he said. 

This was such a successful technique that about 80% of people who are not grossly 

overweight have this done now. It is the concept of extracorporeal shock wave lithotripsy, in 

which you set off an arc discharge of some sort, generate one humongous shock wave, and that 
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travels through some water tank or through some coupling medium and it focuses it down on the 

kidney stone. It is just like taking a hammer to the stone, you break it up, and that solves the 

problem quite readily. 

[Slide 3] 

This is a real case for nonlinear acoustics, because the waveforms here are pretty 

humongous. Almost everybody is treated now with the Dornier Human Machine 3. People love 

this machine. We work with a lot of urologists; they do not want anything else. There are lots of 

other machines that have been made that have come and gone, but this one lasts longer than 

anything. 

These are idealized waveforms, but we have measured these things. Basically, in a few 

nanoseconds (maybe lOths of nanoseconds), but quicker than you can measure it ~ there are no 

hydrophones now with which we can measure the rise time of that waveform there — it goes 

from 0 atm to on the order of 750 to 1000 atm within lOths of nanoseconds. 

Then it decays down and goes negative here, and it is hard to determine, sometimes, how 

negative it gets, maybe on the order of 100 to 150 atm of negative pressure. Then it stays 

negative and this tail here is not being able to be resolved by most hydrophones, because you get 

cavitation from the hydrophone itself, so some optical-fiber hydrophones are indicating that this 

thing hangs negative down here for maybe 5 to 7 usec, and then it wiggles a little bit and goes 

back to normal. 

What happens is, when this waveform hits a stone, it breaks up into little pieces. You can 

usually break it up into little pieces like this with maybe 50 shocks, but because you do not want 

a big stone collecting in the ureter, you continue not for 50 but for 2000 to 4000 more shocks. 

That is a problem, because you can break up a stone into big pieces right away but you want to 

get them down into really small pieces, if you are a physician, to prevent liability. That is the 

driving algorithm for physicians, of course, is liability. 

[Slide 4] 

We have done a lot of experiments at the University of Indiana in Indianapolis. Peter 

Chang here is using one of these small handheld ultrasound devices. We use pigs that weigh 

about 100 to 150 pounds. We put them in this tank and we treat the kidney ~ without stones, we 

do not put stones in there. It turns out that the damage that one gets to a kidney ~ the kidney is 
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about the same size as the human kidney ~ the damage that you get you can approximate with 

this porcine model. 

[Slide 5] 

There are about 90,000 people in the United States treated with lithotriptors every year, so 

there have probably been millions, if not tens of millions, have been treated with these 

lithotriptors, and not a single person has died where they have done an immediate autopsy. A 

couple of people died at the very beginning because they started heart arrhythmias, but no one 

has gone in and removed the kidney, so no one knows, who I am aware of or the urologists are 

aware of, about what happens to a human kidney when treated with lithotripsy, but we know 

what happens to a pig kidney when it is treated with lithotripsy, and this is what happens to a pig 

kidney when it is treated with a lithotriptor. 

I am going to show you, in this little movie sequence here, slices through that kidney, what 

happens. [Movie] 

Now I am slicing through the kidney. These are really thin slices that are then 

photographed, and what you are seeing here now is the damage to the kidney. The dark areas are 

hematomas; that is, broken blood vessels that are releasing blood into the system. You can see 

massive hematomas in the area of the kidney itself. 

We are slicing all the way through and you can see there is a big hematoma on the outside, 

a subscapsular hematoma there, and now that is starting to show here as we cut down through it. 

This is all blood and damaged tissue as we slice all the way down, so this is pretty massive 

damage to the kidney. 

DR. BASS: Is the lithotripsy normally accompanied by significant urinary blood loss? 

DR. CRUM: There is significant hematuria but doctors say, "Come on, I broke up that 

stone," and all that sort of stuff. 

These people at Physical Acoustics Society meetings come to the lithotripsy sessions to 

hear all these anatomists who are in this program talk about the damage to the kidney in terms of 

the biological damage, but I am not going to talk about that. I am going to talk about the physics 

of it, if I can, but I wanted to impress upon you that there are significant amounts of damage to 

the kidney. Fifteen percent of the kidney mass is destroyed, it has become scarred, and so forth, 

but some people are born with only one kidney and you never know until you do an ultrasound 

scan or they die, so you can live easily with one kidney, it is not a problem at all, you have a lot 
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of reserves there, so it is not a big problem. It is just that you do not want to damage a vital 

organ unless you have to, so we are trying to understand the mechanisms that cause biological 

damage and do something about them. 

Even back in Mississippi, when we were starting to do this stuff, we put some pieces of 

chalk (pieces of plaster of Paris, really) and applied the lithotriptor for 10 shocks, 20 shocks, and 

so on, and you see this debridement that occurs, it just slowly eats away. This is a soft stone 

rather than a hard stone. A hard stone, like a marble, just shatters, but if you have a soft stone, 

you slowly debride or ablate it away. 

Those little pits remind me, and those of you who know anything about cavitation, of 

cavitation, so we proposed in some applications to the NIH that this was cavitation and cavitation 

was the mechanism that broke up these stones. 

[Slide 6] 

I learned something about lithotripsy when I was on sabbatical in London in 1985, when 

they had the first lithotriptor in Europe, or at least in London, at Saint Thomas Hospital. I saw 

that and I said that has got to be cavitation. Of course, everybody who knows me knows that I 

see cavitation everywhere all the time. 

What can cavitation do? Cavitation is the collapse of a bubble. When a bubble is 

expanded by an ultrasonic field and then collapsed, an enormous amount of energy can be 

associated with the collapse of the bubble, particularly a liquid jet that shoots at maybe the 

velocity of sound in the liquid against a surface, and that causes enormous damage. 

Here are some original propellers, screw propellers, screws from old steamships, and look 

how they have been debrided by cavitation. The edges are all worn away by cavitation. It took a 

long time before the military learned how to solve the cavitation problem for screw propellers. 

[Movie] 

Now I want to show you just a high-speed movie of cavitation in a lithotriptor, and it is 

really going to be impressive. It is very fest. The shock wave lasts for 4 or 5 usec, so the 

cavitation bubbles are formed and go away in maybe lOths of microseconds, or perhaps even 

lOOths of microseconds, so you need very, very high-speed photography to see that stuff. 

Right now we are trying very hard to get the resources necessary to purchase high-speed 

photography. 

[Slide 7] 
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Here is a stone being held by a little device and I am going to show you, again, that I think 

cavitation is important in this. 

By the way, when I was in London I went to visit Dornier, who was making these things, 

and I said, "I have the answer to all of your problems. I know what's causing stone breakup and 

let me tell you how to solve the problem." There were almost as many people from Dornier in 

my lecture. I said it was cavitation that was breaking up the stone. They all listened very 

politely, thanked me and they left and, as I left, I asked the guy who had hosted me, "How many 

people believed what I said?" He said, "Ah, probably two or three." 

I think we are still right; we have not proved it to the community. Most of us in the group 

are going to Germany next year, after 10 years, to still try to convince them that cavitation is 

important. 

This is a little bit closer. There is a stone. All these cavitation bubbles kind of collect on 

the stone and this is still running. Now watch: Some of the cavitation bubbles collapse right 

there — you see that collapse. Watch in time as those bubbles collapse. See the little debris 

coming oft? The debris comes off synchronously with the collapse of the cavitation bubbles 

themselves. 

What happens when you have a cavitation bubble collapse is that if you have a piece of foil 

— this is sort of the blast zone, which is about the size of a small cigar, inside the body. The 

HM-3 lithotriptor works very well because doctors get bored. They aim this thing at a stone and 

then you have to shoot this thing, let's say, 4000 shots, and you cannot shoot it any faster than 

one per second, so you can imagine, after the first 100 or 200 or maybe even 1000, you are 

getting kind of bored, so you go outside to have a cup of coffee. 

Meanwhile, the person who is lying there getting this lithotripsy decides he wants to twist a 

little bit, so the stone goes out of the shock-wave focus and if it is not right at the focus, then you 

are missing the stone and you are not going to break up the stone. 

The HM-3 has this huge blast path that is as big as a cigar, so that even a doctor can hit a 

kidney stone. What happens in these pits here — this is foil ~ is you see these enormous holes 

produced by this collapsing cavitation bubble. This shows you can tear a hole in it. 

I even put a piece of brass plate about a quarter-inch thick in there and you can see the 

holes that were formed after just one or two shocks. Here is a blowup ofthat, maybe 15 microns 

in diameter, but enormous damage from one cavitation bubble collapse. 
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DR. COSTLEY: What is next to the kidney? If you move this thing, where does it hit? 

DR. CRUM: Usually this stone is in the collecting volume of the kidney, which is 

surrounded by urine. That is very important, because urine you can make cavitation in. It is 

very difficult to make cavitation in blood. 

[Movie] 

Dahlia Sokolov is working on this particular project and she took some of these movies and 

I want to make sure that she gets credit. She is trying to understand how to control this 

cavitation. In this particular sequence she has two lithotriptor pulses shooting right at each other. 

We are trying to actually concentrate the cavitation only at the stone, so this is a very difficult 

timing thing. 

This, I think, is a very interesting movie. There are two shock waves coming in. This is on 

a piece of foil. Watch these bubbles collapse right on the foil ~ right there, ping, it is collapsing 

right down on the foil. 

Now the bubble goes away and look at the damage sites there on the foil. When those 

bubbles collapse, they throw these jets right into the foil and they make holes, in a sense. If this 

were a piece of brass plate, you would see a big depression in the brass plate. There is an 

enormous amount of energy associated with the collapse ofthat event. 

[Slide 9] 

There is a lot of mathematics associated with this and I am not going to go into that, it is 

just mathematics. A lot of people have been trying to understand what happens for a long time. 

We often talk about a Rayleigh cavity. Cavitation was first looked at seriously in an analytical 

way by Lord Rayleigh. We talk about a Rayleigh cavity and we talk about the Rayleigh-Plesset 

equation after a professor at Caltech who expanded Rayleigh's equations, and so forth. 

This one here is called the Gilmore-Akulichev expression, an equation that describes the 

radius time curve of the bubble itself. If you have a bubble and you apply some sort of acoustic 

field to it, the bubble is going to oscillate. If it is one short little lithotriptor-type pulse, then you 

can examine it, basically, by the Gilmore equation, and this is an expression for it. 

Here is the acoustic field that gets inserted into the Gilmore equation. One of the other 

things that we have learned is that when the bubble gets big, it gets big (I will show you this 

radius-time curve) for a long time ~ relatively ~ 500 usec, so gas diffuses into that essentially 

418 



vacuum. So now there is a diffusion equation that dumps gas into the bubble itself, and we can 

talk about that. That happens to be an important quantity. 

Again, just pictures rather than numbers, so if the waveform looks like this, there are three 

sort of pressure pulses radiating through the fluid. 

[Slide 10] 

This little picture here says that we have an ellipsoidal reflector and an arc discharge. An 

arc discharge goes off and you are expanding now, you are dumping energy into an expanding 

bubble, so there is a direct radiated ray that goes shooting out initially very quickly. It turns out 

we did not know until just recently from Tom Matula's work that that was important. 

Then all of that energy from that expanding burning shock wave, so to speak, as that arc 

discharge goes off, hits this ellipsoidal reflector and then that comes out to focus and that is what 

you see here. But then there is a big cavitation bubble that was formed by this expanding arc 

discharge. That goes out, collapses about 3 msec later, sends off a shock wave that hits the 

ellipsoidal reflector and comes down in later. 

[Slide 11] 

This is work by Andy Coleman and some people in London. They are showing only two of 

them here. This is the principal shock wave, this is the delayed bubble-collapse shock wave, and 

now what happens to a bubble if you do a radius-time curve? 

When this positive edge hits here, if you have a bubble that you assume is already there, 

and you have to assume that you have a bubble already there, because if you do not have a 

bubble there you are not going to get one, so what happens after a few shocks is that you have 

bubble nucleation sites or little bubbles, let's say, on the order of 3 microns in size. When that 

positive pressure hits it, you collapse that. 

Then the negative pressure here starts the bubble growing and it takes off. This is on the 

order of maybe 5 to 7 usec. This time here is on the order of 300, 400, 500 usec. Once you get 

that cavity growing, it grows by inertia, so this is called inertial cavitation. The bubble grows by 

inertia, stays big a very long time — this is a logarithmic plot ~ and then, eventually, a long, long 

time later after the shock wave goes past, the bubble collapses, and this area here is where we 

think the stone is broken up. 

If this bubble collapses initially due to the positive pressure and then collapses due to the 

expansion, there ought to be two radiated shock waves from the bubble, so there is one here, and 
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one there. We look for this double pulse, this dual pulse, as the signature for acoustic cavitation 

occurring in the kidney itself. 

[Slide 12] 

Ron Roy, Bob Apfel, and Christy Hollin embedded passive and active cavitation detection 

~ this is passive cavitation detection. This has been developed mostly by Oleg Shapoznikoffand 

Mike Bailey at our laboratory (Mike Bailey as well as two or three other people came from Mark 

Hamilton's lab). This is a very inbred group, as you can see. 

Robin Cleveland, Mike Bailey, and Oleg Shapoznikoff built these what we call passive 

cavitation detectors, so here, now, the arc discharge goes off, you focus it down like that, and 

now you have a small focused transducer that is looking at only one little spot here, trying to get 

those bubbles that collapse in that particular spot to see if you can see some evidence of 

cavitation. 

[Slide 13] 

In fact, when you have only one passive cavitation detector, you get everything along the 

path that goes into the hydrophone, so what they have done now is to have two focused systems. 

These are high geometrical gain, so the volume they are looking at you see there. One focuses 

here and this one has a focus there, this one has a focus there. All three of them are confocal, so 

these cavitation detectors can look at only bubbles in this particular region of the kidney. 

What we want to do with that thing is to scan through the kidney and see where the 

cavitation is occurring and see if the cavitation is occurring at those sites where there is tissue 

damage, so this is a device, a very crude device, in a sense, for determining a correlation between 

cavitation and tissue damage. 

[Slide 14] 

Does it work? It works pretty well. When Charlie Church first took a simple Rayleigh- 

Plesset equation and applied a waveform that went from zero up to 1000 bars in a few 

microseconds and then gone to a negative, 150 bars, in another 2.5 jisec and said, "Now I can tell 

what a bubble is doing," I said that is computer fantasy and do not tell me anything but that. 

But Charlie stuck to his guns and now everybody sort of believes this stuff and there is 

enough evidence that one should believe it. 

Here is what you calculate for that particular waveform. Here the bubble collapses. It 

grows and then it collapses again, so this is the calculated bubble radius.  This is the calculated 
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acoustic emission from this bubble now, and here is what you measure from that passive 

cavitation detector. 

What is really interesting, you get the time right. You sort of get the amplitudes right, so 

this is now a relatively believable detection device. 

[Slide 15] 

You see this double pulse. This is cavitation growth and collapse. Now you can change 

the voltage on the arc discharge, 18 kV, 20 kV, 22 kV, 24 kV. This is how much arc discharge. 

The physicians, who are in a hurry, want to crank this thing up to 24 kV and blow that stone out 

of the water, so to speak. 

It is not good to work here, though, because you are getting a lot of massive cavitation and 

that is probably associated with tissue damage, and we are trying to see if we cannot move this 

thing back into the lower regions and still get cavitation stone breakup. 

[Slide 16] 

This does not show very well, it is a complicated figure. If you remember the movie, let 

me try to explain this whole thing here; this is important. Here is that waveform, again, where 

you have the bubble collapsing initially and then it grows and collapses again and you get some 

emissions. Here it looks as if you even get a rebound, or something like that. 

Dahlia and Mike have filmed this cavitation field, and in a free field with no stone, you see 

here at this particular point a clear field, and now you get some indication of bubbles associated 

with the initial collapse starting to grow. Here is the growth region, you see all these bubbles 

here, then a collapse, and when it collapses all those bubbles should go to practically nothing, so 

the field clears up a little bit. There is some rebound (it is kind of hard to see the rebound) here 

and then it clears down, again. So this is no stone. 

Here is what is interesting, and I showed you that movie so that you would believe that, 

here is what happens if you have a stone in there. Now, instead of having to film what is going 

on inside the kidney, you can use this acoustic passive cavitation detector to do the inverse 

problem and guess, or have some measure of what is going on inside the kidney. 

Now you notice, this is the time frame here for collapse (we call this the silent time). The 

silent time has been expanded considerably, because look what happens if you have a stone in 

there. When the bubbles grow, they all tend to get collected on the stone itself. There are things 

called Bjorknes forces that tell you that there are forces between bubbles and these bubbles 
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probably, because there is sound reflected off the interface here, tend to get collected on the 

stone itself, and now this little bump there is a big bubble or a cluster of bubbles. 

Now the whole cluster collapses, and cavitation cluster collapse, if we can say that, has 

been studied for a long time. When you do high-speed movies of cavitation on a propeller, you 

see sheet cavitation and cluster collapse and you can imagine, instead of having one bubble 

collapsing, if you have a whole bunch of bubbles collapsing, you would have a more violent 

collapse, and you see that is the sort ofthing that we have here. 

I am sure you can think yourselves of ways that you might be able to perhaps control 

cavitation to make this thing work a little bit better. 

Charlie Church and a guy I was working with when I was on sabbatical in London 

measured the waveforms of various lithotriptors and because different companies have to have 

different intellectual property, they did them differently. Dornier had this arc discharge. 

Siemens has a different way of generating the shock wave. They run a huge current through a 

big plate that causes the plate to expand. You have this big plain wave coming out and they have 

an acoustic lens that focuses this down. 

The Wolf Piezolith has, instead of an arc discharge, a whole bunch of transducers. EDAP 

had the same sort ofthing. These two groups have gone defunct, I think, but, nonetheless, they 

could control the waveform through piezotransducers of some sort. 

What intrigued me was the whole sequence, that if you made the cavitation bubble grow, 

then what collapsed the bubble? Atmospheric pressure. Surface tension is not important, 

atmospheric pressure collapsed the bubble, so in one of my sort of insights of genius I said to 

myself, aha, I now know how to solve this whole problem. 

Instead of having the waveform first that crushes the bubble and then the bubble grows 

during the negative portion, why not just turn this thing around? Interestingly enough, EDAP 

did. Their system did not work, but they were trying to drive this thing at 60 Hz, because doctors 

do not want to wait for an hour or two to do this treatment; they want to get it done in 10 

minutes, so they ran this thing at 60 Hz, but it did not work, and I will explain later why this 

thing did not work at 60 Hz. 

I had the idea that if you turned this thing around and made a waveform with, instead of a 

positive pressure and then a negative pressure, the negative pressure first and then the positive 

pressure this thing would work. 
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[Slide 17] 

I proposed that in a proposal and David Blackstock was involved as a reviewer on some of 

this. He had a student named Mike Bailey and Mike said, "That's a great idea, I want to do that 

for my dissertation project," working for David Blackstock down in Texas. 

David said, "I don't know anything about lithotripsy," and Mike Bailey said, "I'll go up and 

work with Larry Crum." Anyway, Mike Bailey did this thing. It was a huge mistake for Mike 

Bailey, a wonderful success story for me but a huge mistake for Mike Bailey. You know, this 

makes sense, and anything that makes sense initially usually is wrong, I think. 

This was my idea and how do you turn this thing around? 

[Slide 18] 

Mike had the idea that instead of, when the shock waves goes off and you collapse all this 

stuff back here by a reflection off of an interface, having a rigid reflection, you have pressure- 

release reflection, so he made a styrofoam reflector. 

Now when the shock waves comes out and reflects, it comes out negative leading and then 

positive. That seems like a good idea, doesn't it? All my ideas always seem like good ideas. 

But if you take this thing and fire 100 shots at a stone, it breaks up like that. If you take this 

thing, the negative leading edge, and fire 100 shots at this stone, it does this. A wonderful 

success story, (laughter) 

Actually, usually when something does not go right, it gives you a chance to learn 

something, and sometimes just learning something is useful in itself. So what went wrong here? 

[Slide 19] 

Probably cavitation went wrong. Here is what you have when you have a rigid reflector, 

shooting now, instead of putting the foil perpendicular to the beam you put it parallel to the 

beam, so the beam is coming in like that, and this is showing you the blast path of the focus of 

the lithotriptor. This is pretty big, this is 2 cm across here, so this is maybe 10 cm along there, so 

this is a big blast path. 

These are all cavitation bubbles that have occurred. If you do the same thing with a 

pressure-release reflector, you still see a little bit of cavitation, but very little. What is interesting 

is that if you go to a pig, take the pressure-release reflector and shoot 4000 shots at the stone in a 

pig, you have two things happen. One is, you do not break up the stone - that is, of course, bad - 
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- but you do not damage the kidney, so that is good. Do no harm. That is the first rule for a 

physician, do no harm. Do not necessarily fix the situation, but do no harm, (laughter) 

So why doesn't this thing work? It took us some time to figure out why it did not work. If 

you have the negative leading edge, then the bubble starts growing very dramatically here. Then, 

if you have this positive pressure, it collapses, and look at this collapse. It is a fantastically 

enormous collapse.If you believe the theory, this thing would be such a violent collapse it would 

blow the kidney stone right out of the water. 

The problem is that you are all assuming sphericity of the bubble behavior, so you can 

imagine the bubble grows up and then you suddenly hit it with this humongous positive pressure. 

Well, the bubble is no longer going to behave like a nice spherical cavity; it is going to collapse. 

I think what happens with this positive pressure here is it just shreds the bubble and you get 

nothing but a bunch of little bubbles, or something like that, so you lose the comparison between 

theory and experiment. You no longer can model it by this waveform here. I think what is 

happening in here is that you destroy the bubbles with that positive pressure, so anything down 

here that drives the bubbles again is probably way out of phase and it just does not work. 

[Slide 20] 

Another thing that happens that is quite intriguing is that if you have a positive pressure 

like this and the bubble gets really big, it is a vacuum and it stays a vacuum for 500 usec, so gas, 

if you now go in and look at the diffusion equation, will diffuse into the bubble, so when you 

start out with a 3-micron bubble, after one shot, one shock wave goes through you should have a 

16-micron bubble. You pump a lot of gas into that cavity, so we eventually learned how to 

interface this diffusion equation with the Rayleigh-Plesset equation and now interesting things 

happen. 

[Slide 21] 

If you change the pulse repetition frequency ~ I told you about EDAP having a system 

where they were going to fire at 60 Hz and it was going to solve a lot of physician time problems 

— here is what happens if you fire it at a slow rate (I do not know what the slow rate is). This is a 

high-speed movie of the cavitation field and you see you get bubbles and they collapse and go 

away. 

If you fire it at 3 Hz, not 60 Hz, look how many more bubbles you get. Why do you have a 

lot more bubbles here than you do here? I think that when these bubbles grow and collapse you 
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pump air into those bubbles and now you have got a 60-micron bubble that is sitting there in the 

urine, in the kidney, and it is slowly dissolving away. 

Now the next shock wave comes through before it dissolves away and you have a whole 

bunch more nucleation sites and a whole bunch of bubbles, so what happens is that you are 

reseeding the fluid with nucleation sites. You can see that after a while you are trying to shoot 

through a bubble cloud. 

We learned in underwater acoustics that you cannot propagate through the surf zone, 

because every time you have a breaking wave you get huge clouds of bubbles. That cloud of 

bubbles looks like a wall to the acoustic field and you cannot propagate through it. I think that is 

the explanation for the EDAP failure in cycle rates. 

We now started looking at what is the optimal cycle rate. Could you cycle it at 10 Hz, 

could you cycle at half-a-hertz? What is the optimal cycle rate, and let's look at the behavior of 

these bubbles. 

This is at 0 atm of applied pressure, so here is a pressure chamber — this is just a Coke 

bottle — where we can apply 3 atm of pressure. Look at what happens if we scan this thing now 

with a diagnostic ultrasound system. A diagnostic ultrasound system gives you an image of the 

whole system. If you apply no ambient pressure (this is 1 atm of ambient pressure), then you can 

see the residue after the shock wave goes through, but if you apply 3 atm of ambient pressure, by 

the time the ultrasound scans all the way through and forms an image, there is practically nothing 

there, which means that if you apply overpressure, you can get rid of the daughter bubbles that 

formed from the previous shock wave. 

[Slide 22] 

Oleg Shapoznikoff and Vera Koklova now sort of interfaced this whole bubble dynamics 

thing together, so they have the shock wave here, they get the positive compression and the 

negative pressure comes up and makes the bubble grow. It collapses and now they have got 

diffusion in the equation, and it slowly diffuses under ambient pressure. This is 10 orders of 

magnitude in time here, so you can put the whole thing on one figure, so this is the lifetime of a 

bubble inside a kidney. 

It grows and collapses, and what they found was that if you have overpressures, very 

modest overpressures, these residue bubbles ~ remember, the bubble starts here, grows by 

diffusion to this point, and then collapses if you have ambient pressure on the thing. If you have 
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atmospheric pressure, the bubble dissolution time is on the order of 60 seconds, which means it 

takes a long time before those bubbles dissolve. 

If you put just a few atmospheres of ambient pressure, you can run that time, so you can 

cycle this thing much faster if you could put people in hyperbaric chambers. You could really 

shoot fast. We would propose that to lithotriptor manufacturers. 

[Slide 23J 

Here is a little bit better demonstration of that. Here is this Coke bottle, something like 

this, and this is a scan with no overpressure. You can see all of the sound scattering from the 

nuclei, from the bubbles that are formed. You apply 1 atm of overpressure ~ this is indicating 

the scan of the diagnostic ultrasound system -- and you see it is completely clear. 

We can do things with overpressure to control the daughter nuclei that allows you to 

recycle and obviously have some input on tissue damage, because if you get these bubbles in the 

blood, and now you are constantly firing these lithotriptor pulses at bubbles in the blood, that is 

probably where you get the damage. 

[Slide 24] 

Here is a higher pressure chamber. We decided if you could do good things with 3 atm of 

pressure, what could you do with 100 atm of pressure. Mike Bailey and a few other guys made a 

real pressure chamber here, where they have windows, pretty good acoustic windows, and you 

can now apply up to 100 atm of pressure. 

DR. SABATIER: In one of your earlier slides you showed a person lying on a table with a 

transducer coupled to him and you had one on the top that showed him in the water. 

DR. CRUM: Yes, they have different stages. In the HM-3 you just lie in the water, that is 

your coupling medium. 

DR SABATIER: My question is, is that enough increase in pressure when you are below 

the water? 

DR CRUM: I do not think so, that is 1 m, or something like that. You have got to 

transmit that pressure inside the kidney itself, so if you really had a lot of pressure in your 

bladder, maybe that would help. Drink three or four beers before you went in, that might help. 

It is not enough. 

Here is an interesting thing. This is pulse-repetition frequency and overpressure, so even at 

high pulse-repetition frequencies, up to 3 Hz now, if you apply overpressure, you have no 
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residual bubbles after one shot. This, of course, is a little too much of a fantasy to think about 

hyperbaric chambers but, nonetheless, we wanted to push this thing in trying to understand what 

was going on. 

[Slide 25] 

One of the things you can do is to calculate that if the bubble is growing up like this and 

then it collapses, there is still the concept — you cannot forget this concept, or at least I could not 

- of if you had a strong external pressure that bubble would collapse more violently, so if you 

can calculate, in a sense, the normalized peak radiated pressure, that is, the violence of the 

bubble collapse, as a function of overpressure in terms of atmospheric pressure, that is, if you 

apply this overpressure, doesn't the bubble collapse more violently? 

It does, and if you calculate how much it collapses, what the effect of that is, you get this 

almost factor of eight increase in the violence of the collapse if you apply 30 or 40 atm of 

ambient pressure ~ not that you are going to do this to humans, but there might be something 

that you could learn from this whole process here. 

That is the calculation. Does it work? In foil you see that there is some increase as you 

apply external ambient pressure. The big issue here, the big quandary in this whole thing, is 

what is the mechanism that breaks up the stone? Most of you, because you are listening to me 

and you know that I am a brilliant person, a scientist, and everything, are saying, "Oh, yes, he's 

right, it's cavitation breaking it up." There is not a single person, probably, at Siemens or 

Dornier who believes that cavitation is involved. 

They think that it is the shock wave itself that is breaking it up. I argued, "Look, Mike 

Bailey made this pressure-release reflector, he's got the same amount of positive pressure, the 

same amount of negative pressure, the same energy in the shock wave, and he can't break up the 

stone." 

"Well, maybe your rise time isn't quite right," or something like that. I said, "If I can 

completely get rid of cavitation, would you believe?" That was said in a sort of rhetorical sense. 

"If I got completely rid of cavitation, would you agree that cavitation is important in breaking up 

the stone?" That was a good rhetorical question, so that was sort of a goal. 

If you apply lots of overpressure, eventually that negative pressure cannot produce a 

bubble, so, therefore, you would not get any cavitation and you should not break up the stone. 

Well, that is what happens.   If you apply elevated pressures, extremely high values of elevated 
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pressures, you cannot break up the stone, but if you just reduce the pressure to 10 atm, or 

something like that, you get even enhanced breakup of the stone, all consistent with the theory. 

DR. MARSTON: There is a counter to that argument, however. If the mechanism is 

falling, which is one of the alternative mechanisms related to the reflection of the shock wave 

from the back of the stone, independent of the length of the shock wave, one could argue that 

that it would also be inhibited by the static pressure. 

DR. CRUM: Yes. I am having one of these senior moments where I forget the name of 

the guy who always has a counter to all of my arguments -- it is my wife, but there is also 

someone who is a scientist, and maybe I will remember his name and maybe I will give you the 

answer at the end about why I may, again, be wrong. 

[Slide 26] 

This is interesting, just as an aspect. If you apply all this high ambient pressure, why 

wouldn't you destroy all the nuclei and, therefore, you would never get cavitation? Mike Bailey, 

either by hook or by crook or by intention, actually had a little crack in a glass plate and he 

applied zero ambient pressure and you see the cavitation, but if you apply high pressure and scan 

it, you still get some cavitation, because that crack traps gas. 

Even if you applied high pressure to the stone, you would still have little nuclei trapped 

inside the stone and we think that this is an important component of the whole process. 

[Slide 27] 

To summarize this, Mike and Dahlia have been trying to find ways to actually take physical 

acoustics and do something with it that Siemens could use, or Dornier could use, to make a better 

lithotriptor. That is an important goal for us alk to have some impact of our science. 

One of Dahlia's projects was to see if she could goose the bubble at exactly the right time, 

so here is the bubble growth and collapse. Let's suppose you hit the bubble at exactly the right 

sequence in its collapse. If you hit it up here, you are probably going to destroy the bubble, 

because it is trying to grow and nothing happens.This is foil and there is almost no damage at all 

to the foil when you hit the bubble with a second pulse at this particular stage. 

If you hit the bubble at this particular stage with a second pulse, you get lots of cavitation 

and it is spread around all over the place. 

If you hit it right here, it is too late, so all the cavitation is generated by these individual 

interactions of these two shock waves. [Movie] 
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Let me show you, again, the sort of thing that Dahlia is trying to do and trying to 

understand. We think this might be an important aspect of this. What Dahlia is doing is firing a 

shock wave in like this, and one in like this, and trying to time them so they overlap right at the 

stone itself. 

Now, back here, if this were just one shock wave coming through, you would have 

cavitation bubbles about like that, but because as the shock wave goes through, it destroys all 

these bubbles here and, as this one goes through, it destroys all the bubbles there, you get 

behavior only here in the middle, so you have concentrated the cavitation at one particular spot. 

What is interesting is that you get what she calls a butterfly pattern here of the interaction 

of these two shock waves coming in here in the field itself, and she has been spending a lot of 

time trying to understand that. This has a lot of promise, we think, for concentrating the 

cavitation at one particular site. 

You can see now the area of concentration of the cavitation is only in a very small spot and 

we think that this is something that would be very useful, although we cannot envision someone 

being in a tank with lithotriptor pulses coming in from two different angles, but you can envision 

ways of doing it. 

[Slide 28] 

I was going to show you, again, the foil stuff, but I want to end now, because time is 

running outt, with a lead-in to Tom's stuff- maybe he will not talk about this ~ but at least it is a 

lead-in to some of the things he is doing. We wanted to find out whether you get 

sonoluminescence from a person during lithotripsy — that seems kind of interesting. 

This is a true story. We had a site review from the NIH; in a program project they bring all 

these people in and we have to give a presentation and then they give us a score to determine 

whether they are going to fund us for another five years. It is a big project, so this site visit is a 

very important thing. 

Brad Sturdevant, whom maybe some of you know, from Caltech, was there to give the 

presentation and the very day that he was to give a presentation he had a kidney stone drop down 

in the ureter and block it up, during the site-visit time, so he is in the hospital and cannot give the 

presentation. 

Jim Lingaman, who is our lead urologist and has treated more kidney-stone patients than 

anybody, probably, in the world (they were treating 6000 patients a year at the Indianapolis 
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Center for Stone Disease), runs a catheter all the way up into the ureter and he films all this stuff. 

He is up in there and he is reaching in, trying to grab the stone, and we are watching some of this 

and we say, "God, this is fantastic, you're looking at this through an optical fiber, right?" He 

says, "Yes, yes." "Let's hit it with a lithotriptor, put a PMT on the back of it, and see if we are 

getting sonoluminescence out of this guy." (laughter) 

He said, "No, you haven't got the protocol, you can't do that." We actually had everything 

all set. Robin Cleveland was running out, trying to get the PMT, and Mike was doing the optic; 

we really had a fun time. 

But you really can get sonoluminescence out of this whole system, so here are the shock 

waves coming out, the radiated shock waves coming out, and here is the sonoluminescence and 

they correlate very readily and, interestingly enough, you sometimes have more light coming out 

of the compression than you do out of the growth and final collapse. 

I am finished with that sort ofthing and now maybe a little bit of time for questions. 

DR. GARRETT: What makes you think it is sonoluminescence and not 

triboluminescence? 

DR. CRUM: Well, if you did it in just ordinary water with the shock wave, you get 

sonoluminescence, so if you put a stone in there, you tend to get more sonoluminescence, so 

maybe there is some triboluminescence, but if you do it without a stone, you still see the 

sonoluminescence. In fact, I am not so sure what the answers are to that, but I think you would 

probably get even more, because you tend to get more spherical collapses when you do not have 

a boundary in there, so you do get sonoluminescence out of it. 

One of the things that Tom is trying to do is to levitate a single bubble and hit it with two 

lithotriptors so that we can do single-bubble sonoluminescence at, instead of 1 atm, 100 atm, so 

we really want to goose the thing. 

MR. GLADDEN: That last video that you showed with the butterfly pattern, what was the 

length scale on that? 

MS. SOKOLOV: The vertical dimension on that was 2 cm. 

DR. CRUM: Eisenminger, I wanted to talk about Eisenminger. Let me answer your 

question and then you can ask another. Eisenminger is this brilliant guy, I think he is from 

Stuttgart, and I give a paper and then I say, "Wolfgang, what do you think ofthat?" He says, 

"Yes, but 
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~ you haven't thought about this," and always I had not thought about that, but 

Eisenminger, as some of you know, is this very brilliant guy, so I showed these data at Berlin 

and said, "See, it has to be cavitation, because we apply atmospheres of pressure, 50-60 atm of 

pressure, and we cannot break the stone. 

"If we flip the waveform, just change it, we get the same amount of energy, we can't break 

the stone. Now, tell me how spallation, and so forth, could cause the stone to break up and how 

come cavitation is not important?" 

Well, here is his answer. He says that he thinks that the stone breaks up by microfractures 

and spallation, so the shock wave comes in, hits the back, reflects off, and now you develop 

these nice little microfractures and, after a while, of course, it is like taking a stone — if you have 

ever seen a stonecutter cut a brick, what he will do is he will tap, tap, tap, and then hit it really 

hard and it breaks along that area where he made the microfractures. 

What he says is happening is that the shock wave is causing microfractures and then 

eventually it just breaks apart under spallation. The reason — this is probably a good reason — 

that when you apply high overpressure you do not get any stone breakup is that you compress 

everything down and now the microfractures do not break up, because everything is under 

compression. It is like prestressed concrete. 

Maybe these guys are right, after all and maybe the shock wave itself is extremely 

important in breaking up the stone, but obviously cavitation has some role, too. 

DR. MARSTON: On your study of the effect of overpressure on the.... , could you say 

something about what the gas content was in the liquid in your overpressure model? 

DR. CRUM: In my next presentation I am going to talk about contrast agents, and we used 

perfluorocarbon, these gases that have a very low solubility, but in urine you have probably got 

mostly air, so the diffusion is mostly air rather than C02 or anything else like that, so we do the 

diffusion equation with air in there. Is that your question? 

DR. MARSTON: But it is essentially when you overpressurize the urine, is the urine 

saturated at the overpressure value? 

DR. CRUM: It depends on what the time is, what time you apply there, and all that sort of 

stuff, so we do not want to do that. We do not want to supersaturate the fluid. If you apply 

ambient pressure with a gas ullage above it, then you will eventually supersaturate it and the 

equilibrium concentration of gas in the liquid will be 3 atm rather than 0 atm, since we try to do 
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it fest enough that the equilibrium concentration is at 2 atm and the ambient pressure at 3 

atm.The bubble in the compressed stage is actually saturated with respect to the gas, so it would 

normally diffuse out. We want to dissolve those bubbles. The scheme here is that what we are 

trying to do, and I ended too quickly, I did not have time for a summary here, is to reduce the 

damage. We are pretty sure we do not have any problem in breaking up the stone by cavitation, 

but if we have all those little bubbles around ~ that first slide I showed you was all this damage 

to the kidney — we think these are bubbles that are going into the capillaries and the cavitation is 

going by and that is causing damage to the capillaries and you are getting hematomas. 

We think that if we could somehow or other do two things, prevent those cavitation 

bubbles from growing inside the capillaries we would not get damage, and the other thing is we 

are thinking of putting in some sort of liquid, vitamin C, or something like that, that would 

absorb the free radicals that can cause the potential bioeffects of the cavitation byproducts, these 

free radicals and everything, from causing damage, and maybe even do something with the 

mechanical effects. 

DR. SPARROW: You are using this for kidney stones. I heard a while back that people 

were trying to do this with gallstones. Was that successful? 

DR. CRUM: Yes, the reason people made these things was for gallstones. The reason they 

made them for gallstones is that the prevalence of bile disease is 10 times that of kidney disease, 

but it turns out now, with these endoscopic microscopic techniques, you just stick a little needle 

in there and you go in and you suck out the gallstone, because it is not a hard stone and you can 

essentially put in some fluid and dissolve it and suck it out. Almost all bile stones are treated 

with laparascopic techniques now and lithotriptors are not used for gallstones ~ unfortunately. 

MR. PORTER: Has anyone else run a lithotriptor at a higher PRF? 

DR CRUM: This guy, Delhis, had one that was running at 60 Hz and he found out that he 

could not only not break up the stone but had orders of magnitude higher damage to the kidney 

when he went to these high pulse-repetition rates, because, I think, you have got all these bubbles 

in there and you have all these cavitation effects of the bubbles. He never could get to the stone. 

That is why they cannot cycle it faster. The maximum rate they will approve it now is, I 

think, 2 Hz, the maximum rate they will permit. 

DR. WAXLER: Have you tried any of these techniques to reduce bubble formation or 

cavitation on animal kidneys? 
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DR. CRUM: Yes, it would be nice to pull all the urine out and de-gas it, put it back in, and 

so forth, but you can take de-gassed water and as soon as you hit 10 to 20 lithotriptor shocks you 

have taken all that gas that was in solution and you put it into those bubbles and now you have a 

faster dissolution rate but you cannot take this fluid out very easily. 

What is interesting is your body does not have many nucleation sites in it; otherwise you 

would never be able to go scuba diving. In 40 or 50% of the cases in which you give a 

lithotriptor treatment the first thing they do, often, is run a catheter in there and put in x-ray 

contrast agents so that they can see if you have any stones in your ureter. If you have just kidney 

stones and you are hurting, they do not want any stones in your ureter, so they often do that. 

What do you think they squirt in there? It is phosphate-buffered saline, not de-gassed 

phosphate-buffered saline. They just put very gassy water into the collecting volume of your 

kidney. It is hard to control the fluid inside someone's kidney. 

Let's take a break. 

DR. CRUM: I want to talk to you now about mostly medical ultrasound and I wanted to 

also tell you that I am just a spokesperson for a lot of this work that is going on. We are now 

trying to build a program that is called the Center for Industrial and Medical Ultrasound at the 

University of Washington. We are mostly trying to get involved in technology transfer. 

The applied physics lab is about a 300-person laboratory that has been around for 55 years 

and, except for the director, not a single person has tenure, so we have to raise money; we are all 

on soft money. As a consequence, our distinction from an ordinary department is that we try to 

do technology transfer in the Seattle region, which is a very high-tech region with lots of start-up 

companies ~ it was number one or number two in the United States in terms of start-up 

companies last year. 

I am going to emphasize a bit of the technology-transfer aspect of this and tell you of our 

attempts to actually take some of this 6.1-type research, basic research, and actually spin off 

some companies. That is the motivation for some of the work that we are actually doing here. 

We are involved in diagnostic ultrasound and therapeutic ultrasound, and here are some of 

the devices that we already have. Here are the people who are involved in the Center and the 

applied physics labs, where a lot of us are, but there are 11 other departments. We have 20 

different companies that we are involved with right now in some way, either as SBIRs or dual- 
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use projects, called dual-use science and technology. There are a lot of people involved and I am 

particularly a spokesperson for the kinds of things we are doing. 

We are interested in trauma, and this is trauma. This is what happens if you are not careful 

when you are riding your motor bike down the road, you have all kinds of trauma that develops 

and we are trying to treat trauma. 

[Slide 29] 

One of the things that we are trying to do is to solve a problem in what we call combat 

casualty care. Most of the money that we are getting for our programs come from the combat 

casualty care divisions of the Navy and the Army. These are at the 6.3 level in most cases. We 

got one project from DARPA and we have one project now from the Navy, another one that is in 

the process of being funded from the Army and another proposal in to the Navy. They are all at 

these 6.2 and 6.3 levels. 

We are working with a lot of companies and I want to walk through some of the projects 

that we are doing. In the next hour I am going to focus on acoustic hemostasis. The largest 

market share of diagnostic ultrasound equipment in the world is Advanced Technology Labs, 

ATL, which was purchased by Phillips not too long ago. This is the kind of stuff that you can 

with ultrasound. 

I would call that a picture of a fetus, Pat Buchanan would call that a baby, but, nonetheless, 

you can see that you can have remarkable acuity now in determining the imaging of ultrasound 

with these systems. 

These are, by the way, gallstones. With a device like this you certainly can determine 

whether somebody has gallstones. There has been an incredible advance in this technology. It is 

about a $3 billion-a-year business. ATL's headquarters is in Seattle, and Siemens' headquarters 

are in Seattle. Together, they have more than 50% of the market share of diagnostic ultrasound. 

[Slide 30] 

There were lots of people who were involved in trying to build devices that would solve 

some of the problems in combat casualty care. Imagine that you were out in Somalia or Kosovo 

and somebody got shot. If you tear a major blood vessel, then how do you determine whether 

this person is bleeding to death or he just has a gallstone? How do you do triage on the 

battlefield? 

434 



The way you do triage on the battlefield is that you take that HDI-5000, which weighs 

about 300 pounds, costs about $300,000, is about as big as a refrigerator, and you apply advances 

in ASIC technology and you put it all into a small thing. I wrote a proposal to DARPA under the 

Dual-Use Science and Technology Program to work with ATL and we got $14.7 million to take 

all of this stuff and put it into a single unit and make a handheld diagnostic ultrasound unit. 

ATL then spun off a company called SonoSite, and SonoSite is making these things. 

SonoSite's income is approaching $100 million a year from just making these things.This was a 

success story for DARPA. 

We did not get a single dollar, a single intellectual property equity share, out of this whole 

thing, which was, I think, a real mistake on our part in terms of learning how to do that, so one of 

the things that I think you young students now, maybe even you young scientists, have to learn to 

do, is to do technology and get a share of this technology for the government or for your 

university or for yourselves. That is going to be, I think, the future of science and technology, is 

learning how to build these new companies and make them successful. 

One of the things that we were trying to do is to take a device like this, you can make it 

wireless, so you can radiate over here this image. It goes up to a satellite and comes right down 

to a radiologist — this is our resident radiologist, Steve Carter — and he can communicate 

wirelessly now and direct the scan. Steve can communicate with me wirelessly and I can do 

scanning like that, so maybe on the battlefield we could do that. 

That is one of the things we are trying to do in terms of what we call telemedicine and 

remote emergency medicine. 

[Slide 31] 

I want to take four or five slides to show you some other things that some of the graduate 

students are doing at the basic science level. You can see from the basic science how we have a 

technological transfer potential, we think. 

Tyrone Porter is doing things like this. What he wants to do is to understand how 

ultrasound can actually take drugs and transport them into the cells. It is called sonoporation. It 

is a big topic right now, because with a little bit of ultrasound, not very high intensity, and a little 

bit of drug, you can take that drug and stick it right inside a cell. This could be a toxic drug that 

you could apply to a specific site, so this is called site-specific ultrasound-activated drug 

delivery. You could imagine you could do this to the prostate or to the pancreas. 
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Chemotherapy is a vicious thing to do to people. If you could do chemotherapy in only 

certain areas, it would be a very important thing. Tyrone and Connie Kwok, working together, 

are trying to understand how you get that ultrasound to increase the transport across the 

boundary like that. 

This is some of Connie's work. What Connie found was that if you take a certain polymer, 

and they make these "smart polymers," they call them, at the University of Washington in the 

bioengineering department, and you take a drug (in this case it is an antibiotic) and put it in a 

sponge, or something like that, a reservoir, and then you put a coating of this polymer on top of it 

and apply ultrasound, you can cause the drug to come out, so you have sonoactivated poration, 

that is, you release the drug. 

With this antibiotic here, if you have this red line here uncoated, if you put it inside the 

sponge and you apply ultrasound, then when you have the ultrasound on, you get this release of 

the drug. When you turn the ultrasound off, it comes down, and now it is still leaking out. This 

is not good. 

But if you apply this polymer and you treat it (not with ultrasound) with some sort of 

incubation scheme to harden up the carbon chains, to lengthen the carbon chains, now look what 

happens ~ it is the green line. You turn the ultrasound on, you get release of the drug, and it 

almost goes back to ambient or no release. Whenever you turn the ultrasound on, you release the 

drug; turn the ultrasound off, you do not release the drug. 

If you can get this release rate high enough and you can get a feedback mechanism, you 

can do this with insulin, so now there is insulin release with these things. What we have in mind 

is that you would embed this insulin sponge, apply ultrasound, release the insulin, and you have 

some feedback mechanism looking a the glucose level inside the body. 

[Slide 32] 

Another thing that is very important in terms of applications of ultrasound is the blood- 

brain barrier. If you get a tumor in the brain, you are almost a goner for a variety of reasons, one 

of which is you cannot do chemotherapy on the brain because of the blood-brain barrier. 

Here is a capillary. Here is brain tissue. Your brain is protected so that drugs, viruses, and 

bacteria do not get into your brain, they do not get across that blood-brain barrier. Pierre Murad 

and Dahlia worked on this stuff for awhile. 
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Here is a rat. You take off the skull, that is the brain. You apply ultrasound — it is laser- 

guided, which just means you know where to apply it ~ to the brain and at the same time injected 

into the bloodstream is a dye. This is basic research. When you apply the ultrasound you can 

see that you have the penetration of the dye into the gray matter of the brain itself. 

So you open the blood-barrier. You can do that in lots of different ways, so could you do it 

with ultrasound and what is the mechanism? We have spent a lot of time trying to find the 

mechanism. It turns out that — right there ~ is what is sometimes called a tight junction. If you 

look right in there — I cannot tell this and you cannot tell this — but a good neurophysiologist 

says, "Aha, I see that the tight junction is open," and you could actually have passages of things 

in like that. 

It turns out that when you apply ultrasound here, this becomes available for the transport of 

molecules as large as 70,000 Da for up to 96 hours. This would be an ideal thing. You could do 

chemotherapy on the brain if you could apply the ultrasound in at the right intensities, and so 

forth. 

[Slide 33] 

Here is another company that we are involved in starting, and we do a lot of SBIRs with 

that. A lot of people, particularly older people who do not exercise, get clots in the veins in their 

legs and those become very painful and can become dangerous, so how do you remove those 

clots? 

One of the ways of doing it is to put ultrasound on the tip of a catheter. Here is a catheter, 

it has a little transducer on it here. You run the catheter down into the vein in the leg and you 

squirt out a thrombolytic drug. A thrombus is a clot and lytic means to dissolve, so you put in a 

clot dissolvant, aspirin, or something like that. These are urokinase, streptokinase, and tPA. 

You take this catheter, you run it right into the clot, squirt out the drug, turn on the ultrasound. 

Here is an example. Here are two veins that are blocked. You put a catheter in both sides, 

you turn the ultrasound on in this one and it releases in just a few minutes. You do not turn the 

ultrasound on this one and you have the drug coming out and it does not release. 

These are examples of the fact that ultrasound-enhanced drug delivery works very well. It 

turns out this company was going along fine, with about 70 employees, had spent about $25 

million, and it turns out that you can dissolve a clot in the leg in, instead of four hours, two 

hours, and you would think that would be a good sales things, but physicians do not want to wait 
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even two hours. They say, "What the hell, just put a drip into the arm, I'll go home and come 

back in the morning, so it will dissolve in four hours. Why should I be involved to save two 

hours?" The whole company almost went broke until now, when it is going back to an even 

more challenging problem: What if you have a clot in the brain? You do not have two hours. 

Now they have made this thing small enough to get into clots in the brain when you have a 

stroke and now they have had great success. They have recruited only five patients but in each 

case they have been able to dissolve those clots very rapidly. 

[Slide 34] 

One of the things that you can do in terms of ultrasound, you see all these beautiful images, 

but the biggest challenge in diagnostic medicine right now is to determine how extensive your 

heart attack is. If you have a heart attack, how bad is the damage to the myocardial tissue? 

You can do ultrasound and you can see the blood vessels going into the heart. Could you 

do myocardial perfusion; that is, how much blood is going to that damaged area of the heart? 

That is the sort of Holy Grail or goal of ultrasound nowadays. The idea, then, is that if you can 

use some technique for enhancing flow ~ this is contrast agents, small stabilized microbubbles, 

and some very nice new technology called harmonic imaging. 

If you put a bunch of bubbles into the kidney ~ this is the kidney now ~ and you look at 

the enhanced scatter from these bubbles, you can actually look at all the blood flow through the 

kidney. Now, if you could look at the blood flow through myocardial tissue of the heart, it 

would be even better. 

I show this picture to show we went in and damaged, we punctured holes in the kidney 

there, preventing perfusion to that particular area, and we pointed out to our military sponsors 

that we could determine damage to kidneys under combat casualty rather than the more 

commercial myocardial perfusion. 

[Slide 35] 

In a lot of cases we are interested in therapy. It means we want to have a biological effect. 

In some cases you do not want to have a biological effect. If I am scanning the heart to see if 

there is myocardial perfusion, I do not want to violate the first law of Hippocrates: Do no harm. 

Here is what Andy Braman, a new person, has looked at. He has looked at the damage that 

contrast agents applied with diagnostic ultrasound intensities would cause.  He has scored these 
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sorts of things here. At this particular intensity you have complete destruction of a layer of cells 

in a particular area. 

Here you have none. 

[Slide 36] 

I want to show you his results that show the effect of these contrast agents. Remember, 

now, almost every new diagnostic ultrasound machine that is sold for therapy has to have tissue 

harmonic imaging and harmonic imaging systems, because everybody wants to use contrast 

agents, which are stabilized bubbles. Why wouldn't you get cavitation from this and why 

wouldn't you cause damage? 

The whole bioeffects community is now excited, again, because we can now look at the 

effect of cavitation due to diagnostic ultrasound machines. 

What Andy was able to show in terms of this cell damage here, a damage score, is that if 

you do not use contrast agents - this is Albunex ~ then you can get into the pressure regimes 

here of 1.5 at 15 atm before you see much of any damage. 

As soon as you use contrast agents, Albunix, even at these relatively low values, you can 

start to see damage, so you have to consider benefit versus risk. If you are trying to determine if 

somebody is going to die from a heart attack, you can cause a little damage to the tissue in the 

heart, but if you are just looking for whether a woman is pregnant or not, or if you are trying to 

track an egg moving down the Fallopian tube, you sure as heck do not want to be causing that 

kind of damage. 

[Slide 37] 

One of the things that Wen Chen is working on here is these contrast agents. He is 

working with a couple of companies, ECPS and Point BiomedicaL in trying to understand not 

only the role of the contrast agent in terms of ultrasound-enhanced imaging but also the 

bioeffects. 

This is kind of the life cycle of a contrast agent, according to his cartoon. Optison is a 

bubble that is filled full of octafluropropane. It has an albumin shell and it is a relatively thick 

shelL When you apply ultrasound, even at diagnostic ultrasound intensities, you break the shell 

and this perfluorocarbon gas comes out and you now have free gas bubbles. 

If you apply more ultrasound to this system, these things oscillate. They go into nonlinear 

oscillations but basically we consider this stable cavitation if the intensity is not too high, but if 
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the intensity is higher, then this bubble can grow into inertial cavitation, get really big, collapse, 

and now you have the potential for bioeffects, maybe even bioeffects down here at the stable 

cavitation threshold, but certainly bioeffects here at the inertial cavitation threshold. 

[Slide 38] 

Here are some of the effects of contrast agents. They are on the order of between 1 and 7 

microns in diameter. This is a system where you use a diagnostic ultrasound system to scan. 

You put the things in a little chamber. This shows you what the effect of contrast agents is at 

different levels of concentration with a commercial diagnostic ultrasound system. 

This is a lite chamber and you see that you have enhanced the contrast. At this particular 

concentration you have significant contrast enhancement, but look what happens if you continue 

to increase the contrast. You then get shadowy, because you can have the concentration too high 

and you are trying to propagate through a bubble cloud, so to speak. 

Here is a little tube now and there is a diagnostic ultrasound system that is irradiating these 

things down like that. One of the things that happens is that you break up these bubbles. As 

soon as you break up the bubbles and the gas is released, the gas is probably dissolved, these 

things are cleared, so you see this is nice contrast but, after you apply ultrasound for a little 

while, it is cleared and the contrast is no longer there, so you are breaking up the bubbles. 

You can envision that the first person who invited this - in fact, it was a guy by the name 

of Weinstein, I think, at the University of Chicago - was a physician. What he thought was 

happening was that the ultrasound went in, hit the bubbles, scattered back. He got lots of scatter 

and that is how you got the contrast. 

It is a lot more complicated than that. For example, one of the things that happens is you 

break these bubbles and, once you break those bubbles, all kinds of things can happen, so Wen is 

trying to understand that. 

[Slide 39] 

Let's just look at this portion right here. This is a case where he is applying ultrasound to a 

vial of contrast agent bubbles and then using this passive cavitation detector to look at the sort of 

acoustic emissions from that. 

This is part scattering and part emissions, it is hard to detect exactly what is what, but as 

you increase the amplitude in this direction, you get no acoustic emissions, no scattering, or very 

little, and then there is a region where you probably break the shell, release the gas. You have an 

440 



effect.  This is what we call a PI or a shell-breaking fragmentation threshold.  Then everything 

gets quiet again, or at least quieter. This, by the way, is the FFT ofthat. 

If you continue to increase the amplitude, pretty soon you get what we would call sustained 

inertial cavitation. This is to be avoided if it is in a little baby's veins. This is a potentially high 

bioeffect. This is not what you want to use if you are trying to do imaging. 

[Slide 40] 

Wen is trying to understand what happens now as a function of amplitude and as a function 

of pulse width. One of the things I wanted to tell you about lithotripsy is that once you have 

cavitation, you have a growing bubble, you have got perfusion of gas into that bubble, and now 

you have debris, and that is gas-bubble debris, daughter bubbles, if you wish. They are bubbles 

resulting from the previous event. Those things hang around and they can be the nucleation sites 

for the next acoustic cavitation event. 

If you have a short pulse length, then nothing much happens in here when you break up the 

shell. If you have a longer pulse length, then you can start to see some behavior in here that, 

after you do something with them, it goes way. You see that this sort of falls down after a while. 

The idea is that you break the shell, the bubbles come out, you cause them to become 

activated a little bit, you break them up into little pieces, and they sort of go away. They do not 

go completely away but they sort of go away. 

Now, when the amplitude is up very high, all those little bubbles that are broken up from 

the previous event, now the amplitude is high enough, the intensity is high enough, the threshold 

is slow enough, they just sit there and cavitate and that is a dangerous position to be in. 

[Slide 41] 

If you have high pressure amplitude, which is this curve right here, you can have sustained, 

continuous cavitation that can cause damage. If you have lower pressure amplitudes, it can come 

up and then it goes away, you use up the bubbles, or if you have a long pulse length 

~ at short pulse lengths the bubbles break up and sort of become inactive ~ but if you have 

a long pulse length, you continue to activate the bubbles. 

Anyway, this is work in progress from Wen and he is still coming along on his dissertation. 

[Slide 42] 

Here is some work from Sandy Poliachik. Again, I am not doing justice to some of this 

stuff but I wanted to show you some of the things that they are doing. What Sandy is interested 
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in is whether you can perform what we would call acoustic coagulation. In the next lecture I am 

going to tell you about how we use ultrasound to stop bleeding. 

What Sandy has discovered is that if you apply high-intensity focused ultrasound to blood 

with various levels of hematocrit (the amount of blood cells in the dissolved fluid), you can 

activate blood platelets. Platelets are the things that start the initial coagulation scheme to get a 

clot to stop you from bleeding. 
Here is platelet aggregation; that is to say, these platelets are sticking together, one of the 

first stages in the formation of a clot. This is the threshold, which is a pretty high threshold, but 

without contrast agents, and she starts to get aggregation as she increases the pressure amplitude 

here, or some sort of intensity. It goes up like that. As soon as you add contrast agents, you 

back this up and it goes much, much faster. 

She has tried to correlate this in terms of what we call the cavitation dose so that we can do 

some sort of acoustic emission system, determining how much energy you can apply to the 

system and how much feedback you get to give some sort of dose response. 

Here is a kind of intriguing figure. These are little clumps of blood platelets and these little 

strands in here are strands of collagen. If you cut yourself, the blood platelets get activated, they 

suddenly recognize they are in a high flow field, so they activate and they send out little sensors. 

Then they all join arms, they aggregate, and that happens a lot in your bodies. You get platelet 

aggregation all the time as you go through the heart valves, but you do not want to have clots 

running around in your bodies. 

The way they actually form a clot is they see exposed collagen. If they see exposed 

collagen, they rapidly grab onto the exposed collagen and that is what you want to have happen 

if you cut yourself. 

DR. GARRETT: To quantify the platelet aggregation, why don't you shoot heparin in 

there  and  titrate  it to  determine what  concentration of heparin nullifies the ultrasonic 

coagulation? 
MS. POLIACHIK:   It is an anticoagulant.   We actually use anticoagulant in the blood 

samples that we take and then this is overcoming that. 

DR. CRUM: We are bypassing that actual stage. What does heparin do? Does it jump 

over the von Willebrand's factor? 

MS. POLIACHIK: It stops one of the proteins in the platelets. 
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DR. CRUM: Maybe I will show you later that we bypass a lot of the stages in coagulation 

when we use ultrasound.  We can do coagulation with or without heparin, it is not a problem at 

all 
That is a good comment, Steve, in terms of trying to quantify this sort of stuff. 

[Slide 43] 

Let me move on here and tell you about some other things. Here is something that we want 

to try to understand and that is how contrast agents work themselves to make a better contrast 

agent. One of the things that Tom Matula and some of his students are trying to do is to look at 

an individual contrast agent, because we want to know the acoustic characteristics of those 

individual contrast agents. 

Let's suppose you acoustically levitate it, as Tom does, single-bubble sonoluminescence. 

You do a levitation of a single contrast agent bubble and you can do this at, say, 20 kHz, and 

then you have in here a 2 mHz transducer, also, and you ping it. What happens is, if you do light 

scattering off of it, you can actually see the radius-time curve of a single contrast-agent bubble. 

This shows you not a single contrast-agent bubble but the capabilities of a light-scattering system 

— truncated — but here are the rebounds of the system. 

In this particular case I showed where if you had a breakoff of a microbubble you can 

actually see that, so the resolution of the light-scattering system is enormously better than any 

way people have now for looking at single-bubble contrast agent bubbles. We have an NIH ROl 

that is going in, in a few weeks, to study this whole problem of the individual bubble dynamics 

of ultrasound contrast agents. 

By the way, there were 17 companies building ultrasound contrast agents and the 

capitalization of those companies was approaching about a billion dollars and they were all about 

to go broke because the diagnostic ultrasound companies used the idea of the harmonic effects of 

bubbles to do tissue harmonic imaging, so they do not really need these contrast-agent bubbles as 

much as they used to. Nonetheless, this is a huge industry. The whole contrast-agent industry, 

not ultrasound contrast, is a several-billion-dollars-a-year industry and we are trying to 

understand something about that. 

[Slide 44] 
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I have a lot of things to cover, and here is something else. That was sort of tip-toeing 

through some of the graduate students' projects, and now let me tell you about some of the things 

we would like to do in the future and some of the stuff that we are doing now. 

If you do high-intensity focused ultrasound, and I am going to use that as a noun and a verb 

in all kinds of things, HIFU, if you HIFU something, we have high-intensity focused ultrasound, 

focusing it down on the tissue here, and instead of doing scanning and imaging, we are actually 

going to try to do therapy. 

If you take this transducer right here and focus it down and the intensity you use is 

kW/cm2, not mW, which they use in the diagnostic industry, you actually can cut holes in liver 

tissue. If you move it around, you have so much absorption at MHz frequencies you cook the 

tissue. If you can cook the tissue, you can stop bleeding, and I will tell you about stopping 

bleeding. 

[Slide 45] 

Let me tell you about the potential of what I call bloodless surgery, or HIFU surgery. This 

is a nascent industry. There are two or three little companies that are trying to do this sort of 

stuff, but I think it has fantastic potential. 

The idea is that you have a HIFU transducer, a coupling medium. You focus the 

ultrasound down to a spot. This spot can be controlled, depending on your aperture, your 

geometrical gain, your phasing of this thing, to the size of a grain of rice, not much bigger than 

that. You can propagate the ultrasound down and get a focusing of the ultrasound here so that 

you have a spot something like this. 

This could be either the temperature ~ this is actually the acoustic field, the intensity, and 

then you convert that to a bioheat equation and you get a temperature field. 

[Slide 46] 

Let me tell you a little bit about how you can do this stuff and let me show you an effect 

now. This happens to be the lens of a cow's eye, so you can see through it. This is about a 

centimeter in diameter this way, maybe a half-centimeter the other way, so it is a completely 

transparent medium. 

The movie will not turn on. Let's skip it. 

[Slide 47] 
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The idea is that if you apply the ultrasound by what we would call image-guided 

ultrasound, here is an imaging system, so this is what you see with the imaging system, and 

suppose that is, say, a metastatic tumor inside the liver itself. Then, when you apply the 

therapeutic ultrasound, this indicates that you are apply the therapy and the imaging 

simultaneous (actually, sequentially). You can actually see a spot appearing at the focus of the 

HIFU that shows in the imaging, so you can guide the therapy to a particular spot. 

Here, we want to damage this tissue inside the liver itself. We went through the skin of the 

pig like this, no damage here ~ no damage here - no damage around here, only at the area where 

we are trying to apply. Gail Truhar, whom some of you know, at the Institute for Cancer 

Research in London, has actually treated almost a hundred patients with this sort of stuff now, 

but without image guidance. Our claim to fame is image guidance. 

[Slide 48] 

The other thing that you can do in terms of bloodless surgery ~ on the front page of one of 

the newspapers yesterday was that they have a new blood substitute that will allow people to do 

bloodless surgery, I did not read the thing far enough, but here is how you do bloodless surgery. 

This is a lobe of the liver. What you want to do is cut that lobe of liver off, because there is 

cancer in here. You cauterize right there. We apply ultrasound down like that and we cauterize 

the tissue with ultrasound. Now, when you cut through there, you can take that lobe of the liver 

off and it does not bleed. 

For a lot of people bloodless surgery is a very attractive thing. When you have a 

splenectomy, taking the spleen out, you often use 7 units of blood, so being able to do a 

splenectomy without using 7 units of blood would be a very desirable thing. 

[Slide 50] 

One of our real challenges, and Mike Bailey, Shiram Voisay, Roy Martin, and a whole 

bunch of people are working on this, is could you do image-guided therapy and monitor the 

therapy at the same time? Here is the real challenge and we are working really hard on this. 

Here is the HIFU beam It is producing a lesion, and this is in vivo now, because we are 

scanning, and this is in the liver of probably a pig and we are actually seeing the spot where the 

lesion is occurring. If we could monitor this lesion occurring in time and there was a tumor, let's 

say, right there, we could just sort of paint out the tumor with the HIFU and cause a coagulative 

necrosis, or destruction of the tissue. [Movie] 
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We have used various techniques for lesion imaging, so here is the thermal beam itself, and 

this is all scaled, so that everything is at approximately the right scale. If you do just an ordinary 

diagnostic ultrasound scan of that, you see this little area right there, that is probably due to 

bubble evolution outgassing as you heat this thing up to 70°. You have to heat it up to 70° or 80° 

to kill the tissue. 

If you do what is called collar-power angiogram, which looks at the flow of blood due to a 

harmonic Doppler effect, you see this area right in here. If you do what is called flash-power 

Doppler, that is to say, any time there is an emission coming out, if the cavitation is sending out a 

pulse and there is a Doppler transient, then you try to correlate that ~ you see that is all 

uncorrelated here, there is no collar, but there is nothing coming out of the area in there, because 

all the contrast-agent bubbles are no longer alive there, they are destroyed. 

Now you are starting to see a real image of the lesion and if you cut this thing open and 

look, there is the lesion. This is almost to scale now, so we are very closely getting to the point 

now where we can actually guide the image to the site of the tumor. 

[Slide 51] 

There are lots of nice acoustics to do in this and I am going to skip through some of this, 

but I want to show you some of the nice acoustics that we have done. If you shoot a long time, 

what happens is that you probably get a cavitation bubble and then you cannot make the lesion 

go beyond that cavitation. 

If you shoot slow and at a lower intensity, you can actually make a nice long, well- 

controlled lesion. What happens if you have a cavitation bubble that occurs right at the focus? 

Francesco Curra, a graduate of PASS two years ago, has done lots of analysis of computations of 

the lesion formation, and I will talk about that a little bit more. 

If there is no bubble in there, he calculates this sort of shape, but if you put a bubble in 

there you get lots of backscatter and you get a tadpole-shaped lesion, so we are starting to model 

that. There are lots of nonlinear effects here. 

[Slides 52 and 53] 

If you are depending upon the nonlinear characteristics of the tissue itself, and various 

tissue types have various nonlinear characteristics, if you have very little nonlinear, the B/A, and 

all these sorts of things are quite low, like blood, then you do not have much of a nonlinear effect 

and the sound propagating from the HIFU ~ you look at the various harmonics here and they 
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look like this - look what happens if you add more and more nonlinearity to the tissue. You get 

this very dramatic shock wave. The dramatic shock wave has lots of higher harmonics in it. 

The tissue attenuation depends very strongly upon the frequency, so you can control the 

amount of absorption at the focus by controlling the amount of harmonic content. 

DR.ATCHLEY: What is the z/F? 
DR. CRUM: That is the distance between the focus and the point it is looking at; so z/F of 

less than one is upstream, z/F of greater than one is downstream and z/F equal to one is right at 

the focus. [Movie] 
This is a movie of the propagation through three layers, water, fat, muscle, and liver. 

[Slide 54] 
He has done this now in three dimensions. This is, I think pretty sophisticated nonlinear 

propagation. Vera Klokova and Oleg Shapoznikoff, who come out of Rudenko's group, have 

taught Franco to do some of this stuff. He starts with a transducer over here. He has built this so 

that he can take into account an array, so he does not have any kind of geometry required. He 

allows both forward and backward propagation, so he is not doing the parabolic equation or the 

KZK approximation. 
He allows an attenuation coefficient to have a power law, because some of these different 

tissues have power laws in terms of attenuation of 1.2, some have 1.4, some have 1.1, and he also 

then couples the bioheat equation to the acoustic propagation equation and so these things down 

here are actually calculations of lesion size, depending on whether you use a temperature 

criterion of 75° or a thermal dose criterion of 120 minutes at 43°; that is the thermal dose 

criterion. 
Now what we are trying to do, then, is model the propagation of these waveforms inside 

and calculate the lesion itself. 

[Slide 55] 
I want to show you the sorts of things that we are trying to do in terms of actually building 

systems to do that. In terms of commercial systems, what we want to do is to try to make 

transducers that actually can produce some of this type of HIFU effects. 

One of the things that you can envision (I am going to show you this later) if you wanted to 

stop bleeding in a particular area, you would want to do that with a device that even a doctor 

could use and could not damage. Now we have actually built a system where this is a holder, 
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this is the transducer, and this is a waveguide, an aluminum or brass waveguide.  This is a very 

durable system and this is the kind of waveform we get with that, the sort of beam profile. 

You get a very strong beam here that is relatively focused in this particular direction, and 

here is the profile of the intensity pattern. This is removed from the tip. Depending upon the 

shape ~ actually, you can make this concave or convex ~ you can shape the tip of this beam 

profile so that you can apply it in some sort of what we call an intraoperative acoustic hemostasis 

technique. 

[Slide 56] 

One of the biggest industries that could develop is catheter-wound sealing. Five million 

people a year get a catheter run up their femoral arteries into various regions of their bodies, 

particularly their hearts. If you have a stenosis in one of your coronary arteries, the first thing 

they do is they go up and look at it, or they do some sort of angiogram. 

[Slide 57] 

They run that catheter up in there and they do a balloon angioplasty or they just look at it, 

so they do lots of catheterizations a year, 5 million catheterizations a year, run the catheter in the 

femoral artery up to the heart. When they take that catheter out, you have got a hole in your 

femoral artery, which is a strong artery, and if you allow that to bleed, you will die. How do you 

stop the bleeding, how do you induce coagulation in that particular femoral artery when you pull 

the catheter out? 

The way they do it now, the state of the art, is put your thumb on it (you actually put three 

fingers on it, one finger upstream to stop the flow, another finger down to hold it like that, and 

then a finger downstream) and hold it for a little while and then put a sand bag on it with some 

sort of strap around it. 

Quite often, if you talk to someone like my father-in-law, who had a catheterization, he 

said, "I had to lie there for eight hours with a sand bag strapped to my leg." That is what he 

remembers from the balloon angioplasty. 

There is a whole industry for stopping that bleeding. One company, called Perclose, 

actually put a collagen plug in there. You run it down in there and you stick that plug in there, it 

has little fish hooks in there to hold it. It is a very invasive scheme to try to do that. 

With this company we are working with now, Ferris, we think we can do it this way. We 

could focus the ultrasound in both an imaging and therapeutic way and when that catheter comes 
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out, we fire the ultrasound down and we just cook that tissue right there, and that seals it. I will 

talk about how we seal things with catheter wounds and acoustic hemostasis in the next talk. 

We have been able to generate, or at least they have told us they are going to give us $4,8 

million from the Army to try to stop not this problem, but the acute arterial wound bleeding in 

the combat casualty care situation, where we are trying to solve this same problem This is the 

sort of approach that we are trying to use. 
I want to take just a few minutes for discussion and then I want to get into the specifics of 

the particular case of acoustic hemostasis. 
I want to summarize this whole thing by saying that I think there is a tremendous 

opportunity for physical acousticians to go into the therapeutic ultrasound industry. Diagnostic 

ultrasound imaging, when you see things and you can make a diagnosis, that is great, and that is 

a $3-billion-per-year industry and it is getting bigger and better all the time. 

If you could use this capability of ultrasound to go in, with damage to intervening tissues, 

and have a biological effect, a controlled biological effect, at depth, the whole idea of 

noninvasive image-guided transcutaneous bloodless surgery is all in front of us. This is going to 

be done. Probably I will not be involved in a lot of it, but some of you could be, and I think there 

are tremendous opportunities here and we should follow through on some of these opportunities 

and go for this whole new industry that is going to develop in the future. A lot of good physical 

acoustics has to be understood before we know how this is going to work. It might work without 

it, but it would certainly work a lot better if we understood the physical acoustics. 

Comments? Questions? 
MS. SWEARINGEN: When you are talking about using contrast agents for some 

situations, how small does something need to be before they need to use a contrast agent or what 

areas of the body are they more used in? 
DR. CRUM: You try to make them about the same size as a red-blood cell so that they will 

go through the body and will not block them, so you have to keep them about less than 7 microns 

in size. 
One of the attractions of this thing is that you can do venous injections. If you do venous 

injections, it goes in through here, it goes to the heart, goes through the lungs, and then goes to 

another particular area ~ well, it goes into the upper portion of the heart, then it goes to the 

449 



lungs, and goes back into the ventricle. Then it goes to the coronary arteries, so it would be nice 

to be able to do venous injections. 
Of course you can put it into the carotid artery o the various arteries that go directly to the 

left side of the heart, but it would be very nice to have these things that stay in the body for a 

long amount of time. 
Contrast agents are now being designed to go to particular areas. For example, 50 A of 

human males over 50 have some form of prostate cancer. It might be jus« hyperplasia and 

preformation, but humans are no. mean, to live beyond 50, so they develop these cancers. 

If you tag - you have heard of prostate-specific antigen, PSA - PSA is a tag that says I see 

a certain specific antigen inside the prosuate itself. You can tag a contrast agent with a prostate- 

specific antigen on the outside, it goes to that particular area, and now yon do an ultrasound scan 

and the area where you might have cancer inside the prostate just lights up, so you now can do 

very specific imaging ofthat particular site. 
Now think about the next thing. Suppose you took that bubble that was starting to sttck to 

the cancer cells in the prostate, you could image it there. Jus, hi. it a little bit harder with HIFU, 

then you are going to start killing that tissue. Or if yon do not want to get so active like that, just 

have a prostate-specific chemotherapy drug that gets released only there. That is what we would 

call site-specific drug delivery in a particular area. 
AU of these contrast agents provide ways now of carrying drugs. Rather than using them 

as contrast agents for ultrasound, they can be site-specific drug-delivery vehicles. 

MS SWEARINGEN:   I guess the question I was asking was how big, typically, is an 

object tha, yon are imaging?   How big does it have to be before you do not really need the 

contrast agents to see it well? 
DR. CRUM: I do not know how to answer that question in the sense that the resolution 

that one has with diagnostic ultrasound systems depends on their frequency. If you go to 

transvaginal imaging with 7.5 to 10 MHz, you can see eggs moving down the Fallopian tubes. If 

you want to try to do just images of a baby, you use 2.5 MHz and you can see the nose and ears, 

so you are talking about various dimensions, depending upon the frequency, resolution, and so 

forth. 
I did not mean to be a politician there and just go on and talk about other things; I really did 

mean to answer your question. 
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Time for a break. 

DR. CRUM: This work was done by Lisa Couret and Cyril Lafont and I think it is a very 

interesting movie, because you can now see, in a sense, what HIFU does in tissue. [Movie] 

Over here is a transducer. This is a lens, maybe a centimeter in diameter, maybe 8 mm, or 

something like that, 4 or 5 mm in depth. These are little holders. Remember that sort of focus is 

in here somewhere, it was hard to tell where the focus really was. 

This is like the albumin in an egg. You can almost see through an egg, the white of the 

egg. Obviously, the lens of the eye you can see through, but as soon as you heat it up to about 

65° or 70°, these proteins cross-link, in the same way as when you cook an egg, it gets stiff and 

is no longer opaque. What we are doing here is cooking the proteins, cross-linking the proteins, 

in the lens of the eye. Now you can see quite readily this lesion forming. 

What Cyril has done is calculated, in a sense, the size of this thing, the intensity it requires 

to start it, and the expansion, so to speak, in time. You can see that it has an evolution in the 

sense that it will start right here, moves downstream, stops there, backs up a little bit, now 

expands in this direction. You can see all the good thermodynamics and acoustics occurring 

there, and all in one simple little device, a nice model, we think, for studying this therapy stuff. 

Now I want to go back and do a specific aspect of this HIFU therapy. This is the case now 

of this battlefield combat casualty care. We were very successful in building a company, even, 

to make these handheld diagnostic ultrasound devices. They are distributing these things now in 

Kosovo and in Korea and on Navy ships. 

One of our undergraduate students just got a NASA KC135 flight to carry one of these 

things in zero G, because what happens in zero G is you no longer have gravity pulling your 

organs down, to try to measure what is happening to your organs as you go to zero G in terms of 

the redistribution of these things. 

Now, could we make a system that could solve the problem that one has had since they 

started killing people with sharp objects; that is, if you cut one of your arteries and it is a 

relatively major artery, unless you can stop the flow, the coagulation, the blood-clotting 

sequence, is not going to stop you from bleeding to death in many situations. In particular, if it is 

an aorta or a femoral artery, or some of the major arteries inside the abdominal area, you are 

going to bleed to death. 
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Since the Crimean War, when Florence Nightingale first started doing statistics, about 40% 

of the people who die on the battlefield die within the first 10 to 15 minutes from exsanguination, 

which means bleeding to death, so that is a problem. 
We proposed, whether or not we ever get a solution to this problem, that we build, first of 

all a small device for imaging those systems like this (you can now see it), and then HIFU-ing it 

and stopping that bleeding, so now we want to look at this stopping-the-bleeding problem 

[Slide 58] 
Here is the problem in one slide. If you lose 2L of blood, you go into cardiovascular shock 

- that is this line right here. You have about 7L in your body, so 2/7ths of it is enough to kill 

you if you lose it. If you cut a major artery, like a bullfighter's wound when the bull nps out the 

femoral artery, you are bleeding at 400 mL/min, you have less than 10 minutes. That is why a 

lot of bullfighters die when they get gored in the groin. 
Now, if you run into a tree and run a post up your chest, then you might get into something 

like this, which is on the order of 40 mL/min, and now you have an hour to stop that bleeding, so 

these are various levels around here. 
Our idea was that if we could slow the bleeding rate down into this area here, then you 

would have an opportunity for what they now call FAS teams, forward Army surgical teams. 

There is a nice Army expression for it, "grab and run," or something like that. The medic is 

supposed to go in, grab the person by the collar, pull him back, put him in a Humvee or some 

sort of armored personnel vehicle, and then you would try to stop the bleeding right there. 

If you could do something like that to stop the bleeding, where you could evacuate them to 

an Army MASH unit, where you could do surgery, you could save these people's lives. 

[Slide 59] 
I showed you earlier the capabilities of diagnostic ultrasound for imaging the vascular 

system, and here are specific ones. This is called power angiogram, which means that you collar 

anything that is moving, so here is blood being irradiated into the entire kidney itself.  You can 

see all of the perfused area. 
If you go to 3D, you scan and then you move the transducer over and you scan again, store 

all this, and reconstruct the image. This is a 3D collar-power angiogram of the blood vessels 

inside the liver. 
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These are the blood vessels inside the kidney.  You can image the entire vascular tree and 

see vessels down to the order of a few millimeters in diameter. If you had enough time, and you 

do not, you could actually see a lot of these bleeding sites. 

[Slide 60] 

Rather than do all that, another way of doing it in terms of solving the exsanguination 

problem is, first of all, determine how much someone is bleeding. The bleeding rate is extremely 

important, so that is the first thing that you want to try to do. 

They are actually using this system now in the Level I trauma center at Harborview 

Hospital, which is a Level I trauma care unit in the University of Washington medical system It 

turns out, on a Friday night in Seattle, you still get two or three people who are shot or who run 

their cars into trees and are bleeding internally, and you want to know how much they are 

bleeding internally. 

This is being used, in fact, all over the world. I just came back from Florence and people in 

Florence were using this system to do the following: This white area here is the amount of fluid 

that is gathering in ~ I think this is the Morison's pounch, which is an area underneath your liver 

here ~ yes, Morison's pouch, so you can measure how much blood is being filled into that area. 

If you can measure the volume ofthat as a function of time, you can say, well, the person 

has an hour before he is going to bleed death, or the person has 10 minutes, let's do something, 

go Code Blue, or whatever they do in the E.R., and go in and do that. 

[Slide 61] 

In a military situation, first of all, you have to do this triage, or diagnosis. The second thing 

is, now if you see that someone is bleeding very rapidly, to try to find the site of bleeding. 

Again, ultrasound can do that. This is a pseudo-aneurysm. A lot of people have pseudo- 

aneurysms, your aorta has a little weak spot in it and the blood is squirting out and coming back, 

squirting out and coming back. If that breaks into a full aneurysm and you start bleeding 

internally from the aorta, you are going to die and there is not much you can do about it. 

One of the things they are doing at the University of Washington in the vascular surgery 

department now is just random screening of people. They go in and they scan these major 

arteries to see if you have a pseudo-aneurysm. Here Kirk Beach and some of the guys doing this 

have detected one, and this is an artery here and there is a little weak spot in there, so the blood is 

squirting out and coming back. 
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If you do Doppler and you collar something going up, up-Doppler is red and down-Doppler 

is blue, you can see turbulence and you can see, then, a pseudo-aneurysm, but the point is that 

Doppler not only tells you that you have this bleeding site but gives you spectral Doppler and 

you can tell the volume, so you can tell magnitudes, and so forth. 

[Slide 62] 

One of the things that this guy, Kirk Beach, discovered was a nice structural acoustics-type 

thing. Imagine that you have a pipe and you have a leak in the pipe and the water is squirting out 

of the pipe, you can go in and measure, with a Doppler system, the blood coming out. You have 

movement there and you can look at the Doppler effect and it is all very nice, and that is what 

they do. 

What he did was go in and look at the pipe itself and determined, as the water goes out, that 

you get eddies formed and the pipe vibrates. What he saw in there was low-frequency vibrations 

on the order of 200 Hz, which are the structural vibrations of the artery itself as a jet of fluid 

comes out. 

Those low-frequency vibrations are bruits. Some people who are really good ~ Kirk is an 

M.D.-Ph.D., and he said, "You know, in the good old days people could hear these with 

stethoscopes," because they actually make enough noise, you can hear them. We think that this 

might be a way of going in and determining whether a person is bleeding at a particular rate or 

not. 

[Slide 63J 

You see here is a very complicated figure that Kirk has made in terms of explaining to the 

military the various ways that he is going to use to determine the various detection schemes for 

bleeding. In some areas you would use collar-flow imaging (that is that pseudo-aneurysm 

Doppler thing that I showed) and down in here is vibration detection, and down in here is 

expansion. 

The other thing that you can determine, for example, if you are bleeding in the brain and it 

is all encapsulated, that is bad, because you have the skull here and that prevents the blood 

pressure from being released, so if you get a subcapsular hematoma on the brain, what you do is 

you apply pressure on the brain that then collapses some arteries going to that portion of the 

brain and your brain dies. 
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One of the things you want to do is cut a little hole in there and take that blood out to 

release that pressure. You look at the expansion of the brain, or the movement of the brain, and 

Kirk contends that he can detect high-frequency nanometer movements. Anyway, the idea is that 

you can see a lot of these bleeding sites with ultrasound. 

[Slide 64] 

I have already talked to you about contrast agents and how you can see bleeding with 

contrast agents. This is another picture of some of our experiments in which we are using 

contrast agents to detect bleeding. 

[Slide 65] 

I want to show you now how we can stop bleeding, how we go about stopping bleeding. I 

mentioned to you before that if you have this focused ultrasound down and you leave it at one 

spot, you get cavitation and you get debridement and you cut a hole in it, but if you move it 

around, you cook the tissue. If you cook the tissue, you can, in a sense, do the old John-Wayne- 

movie type thing, he gets shot and he is bleeding, so John Wayne sticks the poker into the fire, 

gets it red hot, and jams it into the wound. That is cauterization. It worked in the movies. 

[Slide 66] 

Here, now, is the blood-and-guts portion of this particular sequence. I am going to show 

you how we can do what we call acoustic hemostasis under a variety of conditions. 

This is going to be the old stuff in which we stop bleeding in the liver. 

This is going to be punctured blood vessels. 

This is going to be lacerated blood vessels (and I do not think I am going to do the spleen). 

[Slide 67] 

Roy Martin, one of our guys, always wants to say how successful this stuff is and a big 

thing in the biomedical community is your N value, because it costs you $500 to do a single 

animal, a large animal, so it is expensive to do lots of animals. If your N value is 1 or 2, it means 

you do not have very much money, you cannot do very many animals, and nobody believes you. 

If your N value is 15 or 20, this is a lot of pigs he has killed, and that is not good, either, 

because the animal rights people do not like your N values to be up. The point is that in order to 

get the scientific community to believe you, you have to have high N values and a lot of these 

different statistics. 
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I put that in just to point out to you that our N's are very large for some of these; we have 

killed a lot of pigs. 

[Slide 68] 

Here, now, is the first sequence. This is a bunny rabbit, a white rabbit. By the way, 

everybody should be sensitive to this. At the University of Washington, which has one of the 

largest funded biomedical programs in the country (I think it is No. 2 or No. 3 from NIH in terms 

of funding), $350 million a year to the medical school, at every animal experiment that is done 

you have a veterinarian or an animal rights/animal care person who sits there and holds the 

rabbit. 

In this particular case, this woman would stroke the ears of the rabbits and when they 

sacrificed the animals it is done as well as you could in terms of protecting the rights of these 

animals, or at least to do this in the proper way, so I do not mean to show any lack of concern at 

all for these animals. We are trying to do these experiments in the most humane way we can. 

What we are doing here is this rabbit's liver is exposed, it is under water. Here is a 

transducer and now we are going to cut the liver. 

[Movie] 

This rabbit, because it is bleeding under water, would bleed to death. Now what we have 

done is we have a transducer that is, again, under water, and it is focusing the ultrasound at pretty 

high intensities now - we are talking about kW/cm2, so we are talking about 50 or 60, maybe 

even 100, atm of pressure at 4 MHz. That is just cooking the tissue. 

This would be a tremendously difficult wound to seal, to stop bleeding. You might say, 

well, this is just a rabbit and why would you do something like that? There is liver surgery all 

the time and the people we have involved in these programs are liver surgeons who try to solve 

the problem of how do you stop bleeding in the liver. 

Can you envision trying to sew the thing up? You cannot sew it up, you cannot suture it. It 

is very hard to get to the bottom of these systems and apply these bovies, which are high- 

frequency microwave systems that cauterize the surface, so getting way down to the crack at the 

bottom here is almost impossible. 

The way they do this is they do some cauterization on the surface, then they stuff it and 

they pack it. If someone is doing liver surgery on you, very likely he is going to stuff your liver, 

pack it, with all kinds of tissue and let it sit there for 40 minutes to an hour. Then they go back 
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in and very delicately pull that out and see if your body has coagulated and stopped all that 

bleeding. That is the only way they can do that. 

Now look what we can do here. We can just cook the tissue with this ultrasound. What I 

have done here is cut out about 30 seconds and in about a minute we were able to cauterize this 

wound along here and we were able to keep that rabbit in the water for as long as humanely 

possible, which was about an hour, and it did not start bleeding, again. That is the first case. 

This is gross. This is a liver of a pig. This is what happens if you slam your car into a tree 

and your steering wheel hits your liver. It is going to fracture the heck of it. This liver is all 

fractured here. There is a technique for actually doing this involving a metal plate and a nail gun 

for this pig ~ that is how you do it (transcutaneously, believe it or not). 

[Movie] 

What we are doing with this transducer is we are moving it around on top ofthat area there 

and we are actually cauterizing the tissue at depth and all through the surface. If you apply that 

ultrasound there, it just cooks the tissue. You might say, gosh, that is damaging the tissue. Well, 

if you do not have a liver, you are going to die, so if you could damage part of it and stop the 

bleeding ~ oh, gee, I missed that, I did not think it was coming up that fast. 

What we did in the liver is we cauterized one side of the liver and it essentially stopped 

bleeding and the other side we just let bleed and it bled for as long as we could humanely keep 

the animal open. It never stopped bleeding. We were able to demonstrate in that case that we 

were able to stop bleeding in a fractured liver. 

Now we cut a hole in this femoral artery and the blood was squirting out. We are applying 

the ultrasound now through this very crude device, moving it back and forth trying to stop this 

bleed in a femoral artery. The femoral artery is as big as my middle finger, or bigger. The cut 

we made was 7 mm, almost a centimeter, in diameter, and this blood squirted out in an arc of 

about three feet. This pig would have died in about 10 minutes. 

[Movie] 

I want to show you how fast. This is real time now. We are shaking this transducer around 

to get maximum coverage and you can see that spot right there. Watch very closely after he 

takes that off. There, right there is that sealed point, we have sealed it, and you can see the heart 

beating. 
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I did not run the volume up on this and you are not going to be able to hear this, I think, 

unless you listen very carefully. 

DR. COSTLEY: What frequency is that? 

DR. CRUM: Somewhere between 2 and 5 MHz. We have different transducers, 

depending upon how deep, but anywhere between 2.5 and maybe 7 MHz, in some cases, but 

these are all probably 3.5. [Movie] 

Now here, I thought, is an ingenious thing that Roy Martin did. If you listen carefully, 

maybe you can hear it. The idea is this: They punctured the artery, the blood is squirting out. 

You apply the transducer down. This is about the size of a small catheterization. 

When you apply the transducer down on top of the thing, where is it bleeding? You cannot 

see, so you move it around. If you move it around, that spot is about the size of the hole here, so 

you are cooking all of the tissue around there. How do you aim a little bit better? 

In this transducer they are applying they use the system as a Doppler system; that is, they 

send out a pulse from the therapy transducer, listen back for the frequency components, and you 

can hear this, you can play this. If you listen very carefully, maybe you can hear it. You can 

hear the blood coming out toward the transducer. 

Every time the heart pumps, it goes "cch, cch, cch." If you move this thing around until 

you maximize the amplitude, then you know that the therapy system, which is focusing down, is 

right on top of the hole, and then you go "uuum," and you are going to hear that, and that is firing 

the therapy system trying to hit the spot, so maybe you will hear all this. [The audio segment is 

played.] 

That worked. He moved it around and all it took was about one second of a HIFU blast 

and we stopped the bleeding. That is why we have some confidence, or we can at least argue to 

the military, that we do not need a lot of power here. 

DR. WILEN: In a situation like this, are you coagulating the blood in the vessel or are you 

cooking the tissue of the vessel wall? 

DR. CRUM: I will show you. You did not know that was coming up unless you were 

looking ahead. 

[Slide 69] 

Here is a blow-up now of the artery and here is that wound ~ right there. When we pull the 

needle out, then tissue comes out and probably sloughs back in there. When we apply HIFU, we 
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cook this tissue here.  Why don't we cook the inside, why don't we cause occlusion inside the 

blood vessel? That is what we were worried about. 

If you stop the thing from bleeding and you shut of all the blood flow to the leg, maybe it 

would be better to bleed to death. What happens is that we cook the tissue right in the hole, so 

this is necrosed fibrin tissue up in here, but if you look in really close, we find that in the interior 

this endothelial tissue here is still alive. 

We have not done survival studies. One of the most difficult things to do when you do 

large animal studies is survival studies, because you can imagine stripping open this pig and 

going in and getting these arteries and punching holes and sealing them up, then sealing the 

whole pig back up, again, because you have to do this all sterile, then let the pig run around; the 

animal care people find it very difficult to allow you to do survival studies on something like 

this. 

In this particular case you can leave the animal exposed for several hours and there is no 

rebleeding and it looks as if this tissue is still alive there. Why is that true? Physics proves it. 

One of the nice things about having physicists working in this particular area is that we can do 

quantitative calculations. 

[Slide 70] 

Francesco Curra, one of our graduate students, did this calculation. Here is the transducer - 

- over here. If you are up here close enough, you can see some of the field coming in. He has 

converted this to a temperature field, so it is warming up a little bit here. Without a blood vessel 

here is the temperature profile of the focus of the HIFU therapy transducer. 

If you put a blood vessel in there, look, there is no high temperature in there at all, it is 

really cool, 45° to 50°, inside the blood vessel in this dimension. Why is that true? Two things. 

These Powerpoint slides have their limitations, but if you look up there you can see a stream of 

blue collar going up in there. Well, the blood is going up in that direction, so two things are 

happening. 

One is, the absorption coefficient of sound in blood is very low compared to the absorption 

coefficient in tissue, so there is very little sound absorbed in the blood. The second thing is the 

blood is flowing through here relatively fest and it cools the inside, so two good things are 

happening there to prevent damage to the inside of the blood vessel. 
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That gives us some hope that we will be able to do this, actually, on humans and that there 

will not be any long-lasting deleterious effects. 

[Slide 71] 

Here are some data, again, to make it scientifically rigorous in terms of numbers. Here is 

something that Steve Garrett asked. If you do heparinized and non-heparinized animals, the 

difference between the coagulation times, or, as we call it, the hemostasis times, either complete 

or major, is independent. The red bar here is heparinized, the blue bar is non-heparinized 

animals, and there is no difference in terms of the complete hemostasis times, depending On 

whether they were heparinized or non-heparinized animals. 

These are the times and the times required to do this stuff here are on the order of 20 to 30 

seconds in this particular case. 

Roy and Shiram built this Doppler system so they could listen to where the blood jet was 

coming out, and when the blood jet was used with Doppler-guided HIFU, 80% of the wounds of 

the bleeding sites were stopped in maybe 10 seconds - here is 20 seconds. You see that almost 

100% of them were done in 30 seconds, 80% of them were done in about 10 seconds, either with 

heparinized or non-heparinized systems. 

[Slide 72] 

The really difficult problem that was thrown to us was, okay, you so have a bleeding site in 

a blood vessel that you can see and you can apply HIFU. Well, I can do this with hot pokers. 

Why is ultrasound of such potential benefit? The potential benefit of ultrasound, of course, is 

that you can do it transcutaneously, you can focus it, you can do all the imaging, and everything 

like that. 

Here is our real challenge and I am going to show you a movie of how we were actually 

able to do this, a demonstration of image-guided transcutaneous acoustic hemostasis. 

[Movie] 

We went in and punctured an artery, the femoral artery, on a pig ~ here is the pig. We 

pulled the catheter out. We used this probe here to image the bleeding site. There, when we 

pulled the probe out, you can see the bleeding. We used this therapy system here to apply 

therapy ~ there you can see the spot. 
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We dragged this spot on top of the bleeding site and sealed the artery in vivo. Afterward 

you can monitor with a Doppler and see that there is no blood coming out here and you can take 

everything off and show that there is no blood coming out here. 

[Movie] 

This movie has sequences of this thing and it shows different aspects of the whole thing. 

Here we are pulling the catheter out. This is the imaging probe now. Even by applying pressure 

this thing is still bleeding, because that was a pretty big catheter, a 14 French, or something like 

that. You can see it is still bleeding. 

Now, when we apply the Doppler ~ this is called duplex, this little pie-shaped thing here is 

the Doppler, the rest of this stuff is diagnostic ultrasound, so you do these things together, so you 

are imaging and doing Doppler at the same time. As you pull this catheter out along this path 

here you are seeing the blood squirt out and you can watch this, you can even see the heart beat. 

See, you can see it pumping there. 

The next thing we are going to do is apply HIFU. Now the HIFU is going to come in and 

you are going to see a little spot develop. When you have this little spot develop, that tells you 

where the focus is. You take that focus and you drag it over to the spot that is bleeding. 

Now, when you turn the HIFU on, you see this outgassing, we think, of the HIFU spot, and 

you drag that over on top of here, fire it there ~ I have cut out some of this stuff— and you see 

there is no longer bleeding. These sequences are too long, I just wanted to show you the end 

result. 

We have done this now in many animals and it was essentially almost every time. We have 

had just an enormous success rate on this ~ those guys have, anyhow. 

[Slide 73] 

Let me show you one other aspect of this thing that I think is potentially very useful. First 

of all, we have to miniaturize all this. We are trying to sell this to the military now, so we are 

talking about a particular situation, that is, combat casualty care. 

This is out in some combat zone, so first of all, we have to do the miniaturization. This is, I 

thought, was really a success or an unsuccess story on our part, being able to build one of these 

SonoSite units. Using the SonoSite unit, we can use that to drive the imaging system. We cannot 

use the SonoSite unit to drive the therapy system, but you can envision, can't you, that this could 

all be packaged into one unit, putting the imaging and the therapy into one unit. 
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What I wanted to show you here ~ first of all, this was a sales thing to the military to say 

we could use the SonoSite thing ~ the other thing is, I can monitor the surgery, monitor 

bloodless surgery. [Movie] 

First of all, we wanted to show you this SonoSite system. You can see the HIFU occurring. 

We turned it on and do you see that spot right there? That spot right there, depending on what 

kind of coupling you have, if you have water coupling you have all kinds of cavitation in the 

water and that gives you a lot of backscatter. You really need to know what you are looking at. 

Now this is the liver of a pig. What we are going to do is focus the HIFU right there. This 

is still a very interesting experimental problem. If you are applying HIFU so that the 

temperature is rising up to 70°, why do you get all this contrast, hyperechogenicity? 

I think that what you are doing is the local value of the dissolved gas concentration is 

exceeding the saturation concentration, you are actually getting outgassing of gas into little 

bubbles in that very hot spot, so that is what is giving you the contrast imaging. 

Other people think that it is a change in the scattering characteristics of the heated tissue 

but, nonetheless, watch what happens now when we apply that HIFU. You can just cut out an 

area. You turn it on and you can watch it developing. Turn it on and move it downstream a little 

bit and you can just cut through like that. 

We are cutting lines through liver. I took that slide out of sequence, but do you remember I 

showed you that liver where we had this line through the liver? What we are able to do was 

actually do a cauterization through the liver. Then you can go back and cut that piece of the liver 

off and it does not bleed. 

As one doctor said, "Why would you even cut it off, just leave it that way, it's going to die 

and get absorbed inside the tissue." Right. So you can see all kinds of things we can do with 

this. 

[Slide 74] 

Here is the real challenge. This is going to be not physics but engineering; that is, can you 

put an imaging array together with a therapy array so that you would have one small package of 

stuff with which you could imaging (this pie-shaped thing here) and then therapy at the same 

time and monitor it in real time? That is the real challenge. 

We proposed that to the military and they said no way, it costs too much, it was a very 

expensive program. They said, "Could you just give us something like a pop can that you could 
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carry, give it to a corpsman and that particular corpsman could stop bleeding of acute arterial 

wounds on the battlefield?" 

There is a book that is now the bible, apparently, of the combat casualty care community, 

called Black Hawk Down. You might remember in Somalia, not so long ago, four or five years 

ago, they got into a huge fire fight and 18 U.S. Marines were killed, and there are stories about 

what happened to those Marines. 

They were in this urban area and they had all these Black Hawk helicopters trying to get 

them out of there and they could not, because there were all of these Ugandans shooting at the 

helicopters and this one guy had his femoral artery torn. Even though they were communicating 

back and forth with doctors, they could not stop that bleeding and the frustration ofthat young 

corpsman trying to save his buddy from bleeding to death is now an apocryphal story about what 

you need to do to save even one life ~ you know, future wars, zero casualty wars. 

[Slide 75] 

We proposed this, but we do not know whether it is going to be funded or not, but we 

proposed to do the following, that if you had just a pop-can-type thing with a battery and it 

would have an imaging system that would scan in a Doppler sort of way to see if you could see a 

jet of blood, if the jet of blood is coming up, then you have to move this thing around until the jet 

is coming straight up into the transducer and then you would be listening to that with a Doppler 

thing and then you would fire one second of burst to try to stop that bleeding. Anyway, that is 

what we proposed and, hopefully, we will get funded to do that. 

[Slide 76] 

What we are trying to do, also, is, in working with a company called Ferris, to do this 

commercial problem of catheter-wound closing. Five million catheterizations are done a year, so 

we are trying to build this system here to do the commercial problem of sealing catheter wounds. 

[Slide 77] 

I think I showed you this slide before from the Ferris Corporation in which we are trying to 

build these systems and we have submitted a whole bunch of SBIRs and dual-use science and 

technology projects to try to do that sort ofthing. 

That sort of summarizes all the things that I wanted to show you. That is the end of the 

lectures and maybe we could talk a little bit about future perspectives. 
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When we did this meeting in Seattle a few years ago, since I was in charge of the meeting, 

I also arranged to have a lot of the P.R. people come look at all our research results. At any rate, 

we got in the news and it was not necessarily a good thing, because I think I received anywhere 

between 25 and 50 letters from people who had relatives or they themselves have incurable 

diseases, liver cancer, brain tumors, and so forth. 

I got these just anguishing letters. I have two of them posted to my bulletin board to 

motivate me, one of them from a women who said that her husband, whom she has been married 

to for 60 years, has inoperable liver cancer and she does not think she can live if he dies. Her 

only hope is for me to come in and do something, "Would you please, please do something?" 

When you get letters like that, that is a hell of a motivation. 

Let me tell you another story. I do not mean to go on about this, but these are tremendous 

motivations for some of us. I got this voice mail message and the voice mail message says, "Hi, 

my name is John Doe and I'm an attorney in Kansas City and please call me immediately." What 

do you do when you get a call like that? You do not call the guy immediately, you know, 

(laughter) 

For three or four days I would come in and I would get this message. I thought, geez, what 

have I done, what has my wife done, what has Tyrone done, you know? (laughter) 

Finally, I am in my office one day and this guy catches me on the phone. "Hi, I'm John 

Doe, how come you don't return my phone calls?" I said, "Oh, you're the attorney from Kansas 

City." "Yes," he says, "I've been trying to get hold of you. I have a son, my only son, he is 12 

years old. He has a brain tumor and the doctors say there is nothing they can do about it. I can't 

go on without my son, he's the only thing I have. I can't let him die." 

I said, "I can't do anything for you." He says, "Yes, but I know the problem. You can't use 

this stuff yet, can you?" I said, "That's right, I can't use it." He said, "It's the goddamned FDA. 

They're preventing you from doing it, aren't they? I will sue the sons of bitches. I've got to save 

my son's life." That was a phone call. 

It would really be nice to be able to do things like that. I would like to be able to do that, 

save people's lives. 

DR. MARSTON: On one of your slides you showed that on a HIFU you could use a.... Is 

that standard, or what technology do you use to generate high intensities? 
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DR. CRUM: We have a guy by the name of George Kileman who has a company called 

Sonic Concepts who builds our transducers for us. We use different kinds of transducers and he 

is the transducer expert and he builds these things. The biggest problem that we have is trying to 

get ~ our problem in the future, right now we do not have a problem with just making a curved 

array so that we get geometrical focusing. If you machine them to a high-enough tolerance, you 

will get very good focusing. 

They are single-focus systems, so it is one spot and you have got this coupling problem, so 

it is a really difficult problem You can imagine taking this magnifying glass and you are not 

allowed to move it very much in cooking that spot, so the ideal thing, as you all know, is to go to 

an array. 

Building arrays that can do both imaging and therapy is a major technological problem. I 

went to ATL, which makes all these transducers, and said, "You guys are the transducer experts, 

you make all these transducer arrays, can you make an imaging and a therapy array?" John ~ 

what is his name? — said, "Of course, we can, but we're not going to do it for you, because this is 

very sophisticated technology and we are not, probably, going to do that." 

Ferris, this company that we have hired, has hired some people away from ATL and they 

think now that they actually can use some of these composite transducers and maybe some of 

this new single-crystal piezoelectric stuff that has high performance capabilities to do both 

imaging and therapy with the same transducer. 

Maybe you would have to use some transducers, like DCT4, that has high sensitivity, to go 

for the imaging capabilities, because you have plenty of power, and BZT8 or a single-crystal 

transducer to go for the therapy, but that is the engineering and it is something we do not know 

much about, but it is a real challenge. 

If we could solve that problem, then we get into the big money production capabilities and 

it would be a really good thing. 

DR. GARRETT: If you have had so much success with implosive lithotripsy tied to your 

shock spark, why don't you consider something like that with a deformable mirror? 

DR. CRUM: There is Biddlinger ~ I can never remember where these guys are from, but 

there are a couple of groups in Europe who are using lithotripsy for all of this work. They do, I 

do not know if you would call it HIFU, but they do bloodless surgery with lithotriptors. The 

effect there is all cavitation. 
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I contend that cavitation, even though it is heresy for me to say this, is an undesirable thing 

to have in bloodless surgery. Did you hear that? It is an undesirable thing to have, because you 

cannot control it, while the thermal lesion is much easier to predict, much easier to calculate, 

much easier to control. I contend that you should use thermal effects rather than the cavitation 

effects. 

There is a whole group of people trying to do it with short pulses, producing cavitation, and 

they can control things in a different way. 

DR. GARRETT: It is easier to deform a mirror than it is to phase array at high powers. 

DR. CRUM: Right. In fact, there is a guy in our lab who has this acoustic lens and you 

can move it. We even thought of doing that. Engineering is something that we have other 

people doing and I am not interested in more than giving them specs and saying, "Give me this," 

rather than in actually trying to do the design for the engineering configurations. 

We obviously have opportunities in the future, so if some of you graduate students are 

interested in this sort of stuff and finish your postdoc, give us a call. Thanks very much for your 

time. 
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SONOLUMINESCENCE 

Thomas J. Matula 
University of Washington 

[Transparency 1] 

DR. MATULA: First of all, I would like to thank Dr. Hargrove, Dr. Bass, Dr. Atchley, the 

organizing committee for inviting me, and Dr. Libby for helping organize everything. 

I am going to talk to you today about sonoluminescence. I have heard from several of you 

who have never heard of sonoluminescence, so this will be a good lecture for you. For those of 

you who know something about it, I hope to at least impart some new knowledge that I have 

learned over the past couple of years. 

I have been working in this field for about six years now and what I am going to tell you 

today is basically a bunch of knowledge that has been handed down to me from a lot of smart 

people and it is going to go through the Matula filter out to you. This Matula filter is very 

nonlinear, chaotic at times, and it is very noisy but, hopefully, I will be able to describe 

sonoluminescence to you. 

[Transparency 2] 

First of all, I will tell you what sonoluminescence is through a picture — it is not this 

person, who was a graduate student of Larry Crum's at one time ~ it is this little bubble — right 

there. That little bubble is actually giving off its own light and that is called the "light fantastic," 

sonoluminescence. 

The way it is achieved here is you have transducers. This particular cell has a transducer at 

the bottom and top of the cell, setting up a standing wave and you are filling the cell with water. 

You have to de-gas the cell, you have to remove a lot of the air out of the cell, about 10 or 25% 

of saturation, and you can inject the bubble in there by various mechanisms and you can turn up 

the pressure in the sound wave and the bubble will go to a pressure antinode. It is an antinode, 

so the bubble will expand and compress with the sound field. 

As you turn up the sound field, the bubble gets a little jittery but soon after it locks into 

place and it actually gives off light. You can tell it is a bluish light. 

The big questions after this phenomenon was discovered by Felipe Gaitan at the University 

of Mississippi, NCPA — a couple of questions immediately came to mind.   One is why is this 
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bubble stable? You can have this bubble sitting in this flask, in the cell, for hours on end if it is 

properly tuned and it will not disappear. I will show you later that that should not be the case, 

this bubble should dissolve away. 

The other question is what is the mechanism, why is it giving off light? Those are two 

questions I want to answer today that most scientists now agree on or at least feel somewhat 

comfortable with, agree as to what the mechanism is. 

Before I leave this viewgraph, I need to tell you a story. This particular picture was 

published in Physics Today. Larry Crum was asked to write an article several years ago and this 

picture was published in Physics Today, only this bubble was missing in the published version. 

It turns out the graphics artist saw this smudge and erased it. (laughter) 

[Transparency 2] 

The graphic artist did not like sonoluminescence, but there are a lot of parts of society that 

have been enamored with sonoluminescence. A lot of newspapers have written articles on it, 

The New York Times, a lot of magazines have written articles on it, Popular Science. Physics 

Today, other magazines. 

This one is the New Scientist. At the bottom here you can see "Bubbles Hotter Than the 

Sun." They have a couple of horns generating the sound waves here. This graphic artist did not 

like bubbles, either, so he just had a hand closing down and causing fire, or something. 

The media, of course, has been very interested in sonoluminescence. 

[Transparency 4] 

Our government officials have also been interested in sonoluminescence. I actually had the 

ear of a Congressman for a whole half-hour, which is a long time for a Congressman, talking 

about sonoluminescence. He wanted to know how he could power his car with that glowing 

bubble, even after Willie Moss and I told him about a dozen times he would never get it done, it 

would never happen. Two weeks later we got another call asking how it would work and 

whether we could get his car powered. 

The military is interested in it. This came from a Web site, I believe. Somebody got the 

ear of the Joint Chiefs of Staff and actually gave a talk on sonofusion, which down here says is 

related to sonoluminescence. Military officials have been interested in sonoluminescence, so the 

media and the government. 

[Transparency 5] 
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Popular culture is interested in sonoluminescence. The First Annual Sonoluminal 

Conference: Music and Light. This is the light from sonoluminescence down here, so it is even 

in the popular culture. 

[Transparency 6] 

Of course, scientists are interested in sonoluminescence and what I am plotting here is the 

number of sonoluminescence papers published from about the mid-1960s on up to 1999 (I just 

got this off the Web). There has been a steady number of publications and I will talk about that 

in a second, but when Felipe Gaitan discovered single-bubble sonoluminescence, which is SBSL, 

the number of publications shot up dramatically. 

[Transparency 7] 

Most of the articles that you read about and most of the people who talk about 

sonoluminescence talk about single-bubble sonoluminescence and that is this area from 1990 on, 

but sonoluminescence was discovered, I believe, back in the early 1930s. There had been some 

work done in sonoluminescence and I want to move over to that area for a second. 

If you take a high-intensity ultrasound source, you can generate sonoluminescence and that 

is that bluish light there. It is just thousands of bubbles and this is time-lapsed photography, just 

open the shutter for five minutes, and you get a bluish glow coming down from the transducer. 

It is interesting that in the early 1930s, when this was discovered, it was difficult to see the 

light, so you can imagine what had to have happened. Some professor is telling his grad student, 

"Go into the darkest, dampest recesses of the lab, turn off the light for several hours, and see if 

you can see a glow." Of course, it was observed. 

Here is another pretty picture of sonoluminescence coming from a high-intensity sound 

source. The transducer is located up here and you are getting a really pretty picture here. 

I have in my notes here, to keep students awake, to ask you what kinds of parameters you 

could vary in this system to study. Does anybody want to volunteer? What kinds of parameters 

would I want to vary in this system to study sonoluminescence? 

("Change the gas content.") 

("Pressure amplitude.") 

("Frequency.") 

DR. MATULA: Very good. You guys are awake. 
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This is sonoluminescence, a bluish glow of light. It is related to sonochemistry. If you use 

high-intensity ultrasound sources, you can generate chemical reactions or you can facilitate 

chemical reactions. That is what a lot of people are interested in, especially in the chemistry 

community. They are interested in facilitating and enhancing chemical reactions in a particular 

process. 

A lot of people wonder if you can use sonoluminescence as a probe. Instead of actually 

measuring the chemical compounds that are created, you can use just the light emission as a 

probe. 

[Transparency 7] 

I am going to go on a little excursion here out of sonoluminescence and talk about 

sonochemistry just for a couple of minutes. Using high-intensity ultrasound sources, you can 

change the chemical structure in your matrix. Up here we have CFCs, which was mentioned 

earlier in the week as kind of bad for the environment and they are being banned, but they can 

get in your groundwater supply. 

What you can do is you can take some of this contaminated groundwater, put it in a flask, 

apply a high-intensity ultrasound source to it and you will get sonoluminescence but you also get 

a decrease in the amount of CFCs produced. This is the sonication time, concentration versus 

time. Over about a 10-minute period you can get rid of all these harmful CFCs. 

Another application is for carbon tetrachloride, which is in the lower graph, concentration 

versus time, and this is in about 40 minutes. The concentration is in the red line. As you are 

sonicating it you are destroying the carbon tetrachloride. 

Another example I have not shown here is parathion, which is an insecticide that has been 

banned. Parathion can be destroyed in about an hour; it has a half-life of 100 days, or something 

like that. Of course, when you destroy a compound you are forming other compounds. In the 

case of parathion you are forming other hazardous compounds but they are not as hazardous as 

the original parathion and that is good. 

[Transparency 8] 

Another interest is not just the chemistry that occurs but the formation of particles, in this 

case nanoparticles. In the very bottom left-hand part of the viewgraph here is nickel powder. It 

is very rough, it is under a microscope here (I forget what the magnification is). It is a very 

rough surface and if you sonicate it for about an hour, you can see that it gets very smooth. 
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In fact, here is a very interesting picture of one. It looks like two zinc particles have 

collided and fused together. It must be pretty high velocities of these particles to collide and fuse 

together like this. 

You can make interesting particles. You can make amorphous iron using high-intensity 

ultrasound, which has kind of interesting applications. 

MS. POLIACHIK: Is it velocity or heat? 

DR. MATULA: I think people believe it is velocity. The person who gave me this 

viewgraph thinks it is the velocity of the two colliding. It is just particle-to-particle friction that 

is smoothing them out. That is a whole field all by itself, sonochemistry. There is a European 

Society of Sonochemistry. Everybody is interested in enhancing chemical reactions. 

You can imagine a company like DuPont has a process and if you can apply ultrasound in 

the middle of the process to increase the chemical rate, your total time of processing decreases, 

your profits increase. 

[Transparency 9] 

Let's go back to sonoluminescence, though. I want to talk about the light emission itself. 

What I have is this handy-dandy little pocket spectrum that shows the electromagnetic spectrum 

from millimeters on up to gamma rays. 

In the second column here is their origin and you can see, for visible light, which is what 

we are looking at, the blue light, you can see that the origin of this light comes from either outer 

electrons or molecular vibrations ~ you can actually get molecular rotations. 

The sources of these come from over here, either sparks, high-voltage sparks, combustion 

flames or thermal emissions. When sonoluminescence was first discovered, people thought it 

was an electrical phenomenon. You can be cracking the liquid open, generating a spark between 

the liquid fracture and the side wall containers. 

Anthony Atchley, I think ~ didn't you do your PH.D. study on the fact that cavitation 

comes from stabilized microbubbles and not from the fracturing of the liquid? 

DR. ATCHLEY: That is too far back for me to remember, (laughter) 

DR. MATULA: Anthony Atchley, I think, proved that it was not fracturing of the liquid. 

But even now there are people who believe that sonoluminescence comes from electrical 

discharges and it is reasonable; there are arc discharges and they give off visible light. 
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Most people believe it now is a thermal emission and I will show later that it seems to fit 

the data that it does appear to be thermal. 

MS. PETCULESCU: But isn't it visible just because you can see lower and higher 

energies because of the water? 

DR. MATULA: Yes. What happens is you see sonoluminescence and it is a bluish light, 

and that is in this range right here. We have actually gone down and looked in the infrared 

spectrum and you can actually see it decreasing down into the infrared, down about a micron ~ 

that is right here, 1 micron. 

You cannot go too far into the ultraviolet because water absorbs in the ultraviolet. I will 

show spectra later, but you can go to only about 200 nm in energy, that is about 6 eV or so. You 

cannot actually see at higher energies. If this emission were giving off x-rays, for instance, it 

would have been absorbed by the water long before it ever reached your eye, your detector. 

[Transparency 10] 

In multi-bubble sonoluminescence, when you have thousands of bubbles (and people have 

been studying this for years), you can actually calculate spectra. This is a particular carbon fluid, 

silicon oil, and they are looking at a particular emission, a Swan band emission. They can 

calculate these synthetic spectra, and I want to look at this delta-nu-equals-1 spectra right here. 

Basically, the calculation is by this formula that I wrote down. 

There are a bunch of constants, nu, A, S, G, and F. Those are all constants that you look up 

in tables. They tell you what the energy of vibrations and rotations is, they tell you what the 

transition probabilities are. At a particular wavelength you can plug in those numbers and you 

can calculate the spectra at that particular wavelength and that particular temperature. 

If you get an emission band, you can fit it to this synthetic emission spectrum and you can 

see what the temperature of sonoluminescence is. That was done in the late 1980s, I think, for 

multi-bubble sonoluminescence. 

This was done by Flint and Suslick. 

[Transparency 11] 

The red line shows the measured spectrum (this is for the Swan bands, this is in silicon oil), 

and you can see the little bumps, shown here. For those of you who have seen spectra before, 

normally you have shorter wavelengths on the left and longer wavelengths on the right ~ this is 

just backwards, so these are actually lower energy bands here. 
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If you take that synthetic spectra that was calculated on the last viewgraph, you can just 

match up with a single parameter fit temperature and find out what the temperature of 

sonoluminescence is, assuming that it is a thermal emission. This fit is for 4900 Kelvin. 

For sonoluminescence in a multi-bubble field people have been measuring it now for 10 

years and they always get some number near that, 4500, 3500; everything is less than 5000 

Kelvin (the surface of the sun, of course, is also 5000 Kelvin). 

One question I might want to ask you is why does the sun look yellow and 

sonoluminescence looks blue if they are both the same temperature? Think about it. 

[Transparency 12] 

Sonochemists have been studying sonoluminescence for a while now and they actually 

have a graph that tells you where sonoluminescence is. It is called The Islands of Chemistry and 

this is from Ken Suslick at the University of Illinois, Champagne-Urbana. 

What he has here is the time of interaction occurring along this axis, the energy along this 

axis, and the pressures generated along this axis. You can see, for instance, that geochemistry 

occurs over very, very long time scales, relatively small energies but very high pressures. 

Sonochemistry and sonoluminescence associated with that occurs way over in this region ~ 

right here ~ very short time scales, high pressures, and high energies. He likes to say (and I 

agree with him) that this is a physicist's dream, you can put all of chemistry onto one slide. 

For the past several viewgraphs I have been talking about sonoluminescence from a 

cavitation field and sonochemistry associated with that. It is very easy to do chemistry from this 

field. These bubbles generate these chemical reactions, you can measure the chemical reactions 

from a lot of bubbles, but as a physicist this is very hard to study. You want to isolate a single 

bubble, you want to study a single interaction, and that we were able to do with single-bubble 

sonoluminescence. 

[Transparency 13] 

But now computers are getting powerful. This is a calculation of a multi-bubble cavitation 

field done by a Werner Lauterborn student in Germany. They can actually now calculate a 

million bubbles interacting and the qualitative nature of the cavitation field, so with computers 

now people are getting pretty good at being able to look at cavitation fields and not just a single 

bubble. 

[Transparency 14] 
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But a single bubble has its advantages. It is a lot easier to study. Here is a bubble, again ~ 

shown right there. I just glued a transducer on the bottom of it. This is mostly to show you two 

things: one, it is a single bubble (and this is what we want to study) and, two, you do not have to 

have a really nice cylinder to do your measurements in, you do not have to have a sphere or 

rectangular cell, you can use a beer glass, a wine glass, all sorts of different types of glasses. 

What you need is a three-dimensional standing wave that is stable. 

One of the first things that was done when single-bubble sonoluminescence was discovered 

was to measure the radius of the bubble as a function of time ~ it is motion. 

[Transparency 15] 

The blue dots on this graph show the radius as a function of time. What it shows is that 

during the negative part of the sound field the bubble grows, so you are just under tension, the 

bubble grows. When the pressure turns positive ~ right here, somewhere — the bubble cannot 

extend itself any further, it will collapse by inertia. By now it has grown by a factor of 10 or so, 

there is mostly vapor inside the bubble, it is just going to slam through the inertia of the fluid. 

It slams down very hard, it actually gives off a flash of light there and I will show that a 

little bit later, and then it rebounds, like you have hit it with a sledge hammer and it is just 

oscillating at its resonance frequency. 

At the very end of this sine wave, which happens just a little bit off this graph, the bubble's 

position ends up at exactly the same place where it started, so that when the cycle repeats itself, 

the bubble repeats itself in that exact same motion. 

If you can get chemistry from thousands of bubbles, you should be able to get chemistry 

from this system. The problem is it is just a single bubble and you are not going to get very 

many molecules undergoing chemistry, but I have heard of a guy named Dudenko who actually 

is measuring chemistry from a single bubble. 

I should mention something about how you make this measurement now. This bubble is 

growing and collapsing, so the way we make the measurement is we scatter light off the bubble. 

You scatter light off the bubble and you look at it with a photon detector, a photomultiplier tube. 

When the bubble gets big, more light gets scattered in the photodetector and, when it collapses, 

less light gets scattered into it. That is basically how you can get an increase and a decrease in 

the light scattered from the bubble. 
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It is actually a lot more complicated than I have described; something called Mie scattering 

theory is involved. But if you make assumptions, if the bubble size is big enough, you can 

actually just relate the scattered intensity to the bubble radius. I think the radius goes as a square 

root of the intensity. 

MR. PORTER: Is it a laser beam? 

DR. MATULA: Yes. What you want to do is when you shine the laser beam through the 

cell and it interacts with the bubble, you want to make sure the laser beam is much larger than 

the size of the bubble so that it is scattered from the whole of the laser beam. 

The size of this bubble is 4.5 microns. It grows to about a factor of 10 times its original 

size. We are driving this system at a little over an atmosphere of pressure, so you have ambient 

plus the sound pressure of about an atmosphere. The frequency here is about 20 kHz, 20 to 50 

kHz. That is where single-bubble sonoluminescence lives, in that frequency range. 

In multi-bubble sonoluminescence you can take a high-powered sound source and you can 

operate it up to a megahertz if you want to, or higher. 

You can scatter light off the bubble and you get its radius time curve, but now you will 

need to fit it to some equation that describes the bubble's motion. I am not going to drive it for 

you, I am just going to show it to you. 

[Transparency 16] 

It is called the Rayleigh-Plesset equation and there are a lot of different versions of this 

equation. A lot of them have terms in front of them that are different and that do not make sense 

but they are all basically equivalent. Basically, what it tells you is that there is an inertial part of 

this equation and it is being driven by the difference in pressure between the inside and the 

outside of the bubble, and if there is a pressure difference you will drive the bubble. 

There is a very important part to that equation that I did not add in, and that is right here. 

The reason I did not add it in was just for simplicity, but I need to put it back in for me to tell you 

that there is no velocity of sound in the liquid in this equation and you need sound radiation to 

damp the bubble, and that comes from this term right here: It is the radius of the bubble divided 

by the velocity of sound in the water and the derivative of the pressure with respect to time. 

That is a correction factor. That allows you to take into account sound radiation and 

removes energy from this oscillating bubble. There is going to be a paper coming out very 

shortly that actually makes another correction to this equation, which is 20, 30, or 40 years old. 
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When you think about the bubble oscillating, it is going to collapse and it is going to 

radiate pressure out into the water, but what is the most compressible part of the system? If you 

were going to make a compressibility correction to the system, would you make it the 

compressibility of the liquid or would you first put in the compressibility of the gas? 

The gas. But people have neglected that part. If you can put in the compressibility of the 

gas, what happens is when the bubble starts collapsing, pressure waves get radiated inside. 

There will be another term added on to this equation including the compressibility of the gas. It 

will not affect the dynamics that you calculate very much but it is an important part of physics 

that has been neglected until now. 

You can take this equation and put it in your MatLab program or your Mathematica 

program and for various values of the radius, surface tension, driving pressure, you calculate 

what we call an RT curve, radius-versus-time curve. 

[Transparency 17] 

Here are two such curves. The green is data and the blue is the fit, using that equation back 

there. You can see it works pretty well. The bubble here is actually not giving off light and it 

shows large after-bounces, but when the bubble expands dramatically, crashes, a lot of sound is 

radiated out into the fluid (that is why you need that term) and a lot of the after-bounces here 

disappear. 

MS. PETCULESCU: So the key point here is the pressure? 

DR. MATULA: It turns out that the bubble actually shrinks when you go up in pressure, 

so this bubble is at 10 microns and it is being driven at 1 atm. Then if you turn up the pressure, 

the bubble actually shrinks in size. I cannot really tell the bubble to be any particular size I want 

it to be. I will show later that gas diffusion governs how big the bubble is, but if you turn up the 

pressure the bubble will shrink a little bit and then the bubble will grow by a much larger factor. 

This bubble is going from 10 to almost 30 microns. This bubble is growing from 5 to 

almost 40 microns. That is a problem in doing sonoluminescence research. Actually, when you 

are turning up the drive pressure, for a physicist, you want to change one parameter, say, the 

drive pressure, and look at the change in light emission, but what you are actually doing is you 

are changing the bubble size as well, and that was discovered several years after the fact. 

It turns out, if you want to do good measurements, you have to actually measure the size of 

the bubble when you change a parameter. 
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Light scattering allows you to measure the size of the bubble over time, but there is another 

method that has come about recently. 

[Transparency 18] 

That method is just imaging the bubble. It is not too hard to do. You have a cell with your 

bubble glowing in the middle of it. You have a PZT driver that drives the sound field, it drives 

your standing wave, a certain frequency in amplifier to make sure you are tuned up, then you 

send a delay pulse into an LED and give it a short flash. On the other side you have a 

microscope and CCD camera. 

What you are doing is you are looking at the shadow graph, basically, of the bubble. If the 

light flash is very short, you are basically freezing the bubble, you are strobing the bubble, or 

whatever phase of the sound field you want based on the delay generator. 

Here are two pictures. This one shows a bubble at its maximum size (about 100 microns in 

diameter). 

This one shows it at its equilibrium size before it starts to grow, and that is about 8 microns 

in diameter. 

MR. APOSTOLOU: What is the bright spot in the middle on the picture on the left? 

DR. MATULA: It is just the light going through the big bubble. You can think of it as 

direct rays going right through the bubble. 

I am going to show that bubble growing and collapsing, using this imaging technique. 

[Video] 

What this delay generator does is it sets the phase, so I capture the bubble at a single time 

in its oscillatory cycle, but if I put here another function generator and I synchronize their 

frequencies and then I just offset one function generator by a hertz or so different from the other 

one, then you have got this beating that is going on and the strobe is changing over many 

seconds and you can actually watch a kind of time-averaged motion of the bubble. 

Here is the bubble growing and collapsing — it grows, collapses, grows. You can see the 

rebounds that are occurring when it collapses. It is giving off light and if you turn off the lights, 

you can actually see the light, but now I think it is just being overpowered, probably by the room 

lights. 
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This particular set of data is two cycles in the motion and then repeated over and over, 

again. You can see after two cycles that the bubble has shifted a little bit. You can see that the 

bubble starts off at a different place after two cycles. 

This bubble is very stable. You can carry it around with you, it is glowing. You can set it 

down, it will still glow, but it will drift a little bit. 

PARTICIPANT: What causes that? 

DR. MATULA: Thermal gradients in the liquid, things like that, just bulk flow. I will 

show you a little bit later that the bubble itself may be a little unstable, generating dipole motion 

of the liquid that will cause the bubble to move. 

If you use a laser you can actually see the shock waves emitted from this bubble, you end 

up seeing a lot of refraction and diffraction and a lot more noise out in this area here. I will show 

a graph showing high-speed camera photography of the shock waves in just a second. 

DR. COSTLEY: Did you change the timing? 

DR. MATULA: No, what you change is, if you have two frequency generators, setting up 

a frequency between the two, you just change that. I just told the student to make sure the 

sonoluminescence cycle lasted, I think, four or five seconds, so he changed --1 do not know what 

the numbers are. You can make it last as long as you want, however close to a frequency 

matching you get. 

MR. APOSTOLOU: So the inertial cycle is coming - is it microseconds? 

DR. MATULA: What I am doing now is I am averaging. This is not a single bubble going 

over one cycle in four seconds. I am averaging over hundreds of cycles and that is what imaging 

does. Your camera shutter is actually open for a long time and you are flashing and changing the 

flash mode, so it will not give you an instantaneous view of the bubble. Light scattering will. 

What imaging does is it gives you a direct image of the bubble size, because you can stick 

a calibrated slide in there and you can know exactly what the size of the bubble is, whereas light 

scattering does not. It gives you an intensity and you have to work your way back to get a 

radius. 

As soon as the bubble deviates from sphericity you run into problems. The bubble might 

jump out of place, it might eject a microbubble in a recoil. A lot of people believe (and the 

consensus is) that to get the light emission you have to have a geometrical collapse of the bubble, 
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geometrical focusing of energy, so if the bubble is not spherical you do not get that geometrical 

focusing; it is squishy and you will not get a light emission, which is typically the case. 

If I de-tune this system and I make the bubble jittery and bouncing around, the light 

emission is much weaker. 

MR. DEMIRCI: Is there a difference between the top of the bubble and the bottom of the 

bubble, the pressure at the bottom of the bubble would be higher? 

DR. MATULA: I will show that in the third hour, why we think buoyancy is an important 

parameter in this system. Under most calculations the bubble is only a couple of microns and the 

wavelength of this sound field is on the order of several centimeters, 5, 6, 7 cm, so the pressure 

gradient is not that big across the bubble wall, but I think it might be big enough to cause some 

sorts of instabilities and I will show that later. 

You saw where the bubble collapsed. When the bubble collapses really strongly like that it 

is going to radiate a sound wave and that is why I had to add in that other term in the Rayleigh- 

Plesset equation. 

[Transparency 19] 

If you use a very high-speed camera, 20 million frames a second, you can see the shock 

wave emitted by this bubble. This is the bubble's collapse — right here. Down here the bubble is 

still there and it is still collapsed. The shock wave is going off and you can see the shock wave 

expanding here as it goes out, and it looks like a spherical shock wave. 

You can do another trick. You can scatter light off the bubble into a very, very fast photon 

detector called a streak camera. It allows you to look for a very short time interval at what is 

going on. 

[Transparency 20] 

When you do that, your laser beam will refract off the shock waves, and you can see that. 

That is what I show here. This was done by Pacha and Gompf in Germany. Here is the bubble - 

- this is time going along this axis. Here is the bubble collapsing, giving off light emission and 

then rebounding out here. 

These two lines are the shock waves emitted by the bubble. I do not know if you can tell, 

but it is not a straight line, it is a bent curve, a shock wave that is being emitted from the system. 

This is time, this axis down here, so you can imagine this bubble is collapsing right here, it 

gives off its light pulse and then expands out here, so that is expansion of the bubble. This is the 
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expansion of the shock waves on either side of the bubble. That was just an image taken off the 

camera. This was done by scattering light off the bubble. 

[Transparency 21] 

Once you have these data you can actually plot the pressure versus distance. You can use 

the Täte equation of state for a liquid and you can plot the pressure as a function of distance. 

That is what is calculated here: pressure in kilobar or thousands of atmospheres. This is a 

40,000 atm pressure as a function of distance from the bubble. 

This decay is much faster than 1/R — it would be interesting to see if it were a finite 1/R log 

R decay, I do not know if that is true or not, but it is faster than 1/R 

~ and it loses about 50% of its energy in the first 25 microns. The calculated velocity of 

the shock wave is 4000 m/sec. It is very fast. 

MS. HIGHTOWER: What is the key describing? 

DR. MATULA: Different pressures. If you drive the bubble at a different pressure, you 

will get more intense shock waves or less intense shock waves. This one up here is being driven 

by a much harder sound field, it was collapsing much harder, generating higher shocks. 

This one is not collapsing. 

This triangle, circle, and other symbol represents a calculation of the pressure inside the 

bubble, a very elementary calculation inside the bubble, which seems to agree well with the 

measured pressure right outside the bubble. 

Why don't we take a 15-minute break. 

DR. MATULA: I was asked a very important question, and that is, how did Felipe Gaitan 

discover single-bubble sonoluminescence? I thought I would share with you the story. Felipe 

was using this particular cell at the time and he was studying multi-bubble sonoluminescence and 

the stability of single bubbles that were much larger but not sonoluminescent in a standing wave. 

He would generate a cloud of bubbles in this area and turn up the pressure and get 

sonoluminescence. In another experiment he would just generate a big bubble in the center and 

study its dissolution and things like that. 

One day, after spending all morning studying this one giant bubble and how fast it 

dissolved and all that, it was time for lunch, so he left and went to lunch. As a typical graduate 

student, he did not come back until evening, (laughter) 
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He walks into the room and said, "Oh, shoot, I left my equipment on." He looks at his 

apparatus and he sees the bubble is still there. "Oh, heck, by now it should have dissolved, it 

should have dissolved hours ago. Why is it still there?" He looks closer and asks, "Is it still 

glowing?" He runs over, turns off the lights, goes back to his apparatus, and says, "Oh, my God, 

it's glowing." He ran over to Larry and said, "Larry, it's glowing," and ran over to Ron Roy, "It's 

glowing," and nobody believed him for months on end. 

So that is the story, but it is not the true story, (laughter) 

That is the story I was told when I started in this field and that is the story a lot of people 

were told. When I asked Felipe directly, it was a coincidence. He was studying the phase of the 

light emission from a cloud of bubbles and every once in a while the phase locked at a particular 

phase in the sound field and it took him a while to figure it out, but it was a single bubble. 

The part about Larry Crum not believing him is true. It took him a lot longer to convince 

his adviser that it was as single bubble, (laughter) 

What he believed happened is that the water, the fluid he was using, which was a 

combination of water and glycerol solution, was too gassy to sustain single-bubble 

sonoluminescence. You have to de-gas the liquid, but if you are cranking up the pressure and 

you are studying a bunch of bubbles, over time it is going to de-gas itself, so he thinks over time 

it de-gassed and just by happenstance was able to get to the right pressure regime to generate 

single-bubble sonoluminescence. 

MR PORTER: I have a question. How do you get just the one single bubble? 

DR. MATULA: What you do as an experimentalist is you can inject air into the system 

somehow. A lot of people use the Hiller method, which involves taking a little nichrome 

[phonetic] wire, putting it inside the fluid with the water, and putting heat through it, boiling the 

water around the wire and generating vapor bubbles, and then those vapor bubbles will be 

attracted to the pressure antinode and on the way there they will fill in with gas, but that is lots of 

vapor bubbles and all sorts of different sizes. 

Nature decides to change the size through gas diffusion to whatever size it likes best. 

PARTICIPANT: So these are multiple bubbles that coalesce? 

DR. MATULA: They will coalesce into a single bubble, yes. If you have stabilized 

bubbles, like contrast agents, they will agglomerate but they will not coalesce.  I have done this 
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with contrast agents and you get a whole bucket of them all around but they will not coalesce 

into a single bubble. 

[Transparency 22] 

Felipe discovered that it is the phase of the light emission that was very important, and here 

is the phase. You have the sine wave driving your system and at a particular phase in the sound 

field you see a single light emission going at a particular phase. If you have multi-bubble 

sonoluminescence, it is scattered all over the place, but a single bubble locks into a particular 

phase. 

Seth Putterman at UCLA and his graduate students did a really nice set of experiments to 

show what the period between successive flashes was. You are taking a flash, you are looking at 

the period to the next flash ~ it is about 50 usec or so ~ and then you are looking at the jitter in 

that period. They are finding that the full width at half-max is on the order of 100 psec, so it is a 

very synchronous event occurring at the same time cycle to cycle to cycle. 

Anthony Atchley and a collaborator, Glen Holt, found that if you de-tune the apparatus a 

little bit you can actually get period-doubling effects and continue on into chaotic events, where 

the synchronicity breaks down and you get just chaotic behavior but, if it is extremely tuned, you 

get a very synchronous event, and that is the mark if single-bubble sonoluminescence. 

[Transparency 23] 

One of the most important measurements that was made is measuring the pulse width of 

the light flash. It occurs once every acoustic cycle but it is a very, very short flash and it is hard 

to measure the width ofthat flash. 

Now there are a couple of methods to do it. This was the original method. Basically, you 

have your flask and you have a little bubble in there glowing and it gives off a flash of light, so a 

photon may leave this side and reach this photodetector and another photon, some time during 

that flash, may leave this side and enter this photodetector and you use filters to limit what 

wavelengths you want to look at and to make sure that you are looking at only single photons. 

The photons go through a timing device, a constant fraction discriminator (it is just a 

timing device) and then the two photons go into this TAC, a time-to-amplitude converter, which 

basically gives you a voltage level proportional to the time between when it saw the two photons. 
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If you do this with a femtosecond laser, they get this curve right here, which shows that 

they can resolve the pulse width of a femtosecond laser within 49 psec, so that is basically the 

impulse response of their system. 

When they look at single-bubble sonoluminescence, they get a curve that looks like this 

and they actually measure counts, because you build up a histogram here, and they measure a 

pulse width on the order of 100 psec. So the pulse width of sonoluminescence is on an order of 

100 psec. It has been measured to down below 50 psec and up to around 400 psec, or something 

like that. 

Another important feature of the sonoluminescence light flash is the fact that it is 

asymmetrical; it does not go up and come down symmetrically, it has an asymmetry to it. This 

particular method of measuring sonoluminescence flash widths cannot resolve which side the 

asymmetry is on, so when this paper was published in Physical Review Letters they had some 

physical argument as to why this asymmetry should actually be on the left-hand side here but, 

over time, people realized that it should actually be on the right-hand slide, so I flipped their 

diagram over for them. 

PARTICIPANT: Then this is some type of artifact? 

DR. MATULA: No and, in fact, there are lots of artifacts that they have to get rid of. 

When photons leave the bubble they will reflect off the glass, you will get reflections off the 

glass so, actually, you end up with bumps on either side of these that you have to get rid of. You 

have to worry about that kind of stuff. 

MR. APOSTOLOU: I do not understand. Why can't you use light detectors inside the 

medium? Obviously, I do not know if there are any, but - 

DR. MATULA: A light detector inside the water? 

MR. APOSTOLOU: Yes. 

DR. MATULA: To do what? 

MR. APOSTOLOU: To measure the light, because you mentioned the problem with the 

glass walls of the container, and so forth. 

DR. MATULA: I suppose you could take like a fiberoptic, stick it next to the bubble, have 

the light go in, and then do a fast photomultiplier tube. 

MR. PORTER: If you had a standing wave, would that do any disrupting? 
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DR. MATULA: If you had a really thin fiber you could probably get it pretty close to the 

bubble. For this particular method you need two photons, you need two detectors, you would 

have to put two fiberoptics in there. Actually, aligning a fiberoptic over the bubble is not easy to 

do. Some people do spectra from the light, because you want to measure the energy from the 

light, so they stick a fiberoptic over there and if you are off by just a fraction of a millimeter, you 

are missing everything, because a solid angle is very important. 

DR. CRUM: At that time you get a lot of dispersion, so you will spread the pulse way out. 

DR. MATULA: So all fibers are that dispersive? 

DR. ATCHLEY: At this scale. You also have problems with phosphorescence and things. 

DR. MATULA: So this experiment, of course, is really nice. In fact, what you can do with 

these filters here is you can put a red filter, a blue filter, you can pick out the energy levels that 

you want to look at from the light flash. 

If sonoluminescence is blackbody radiation, then, when the bubble collapses, it will get hot 

in a certain order: infrared, it will start emitting red light, then green, yellow, blue, and then, as it 

cools down, the last part of the light that will be emitted is red. If you put red filters up here and 

then put blue filters, you can compare the length of the emission. If it is blackbody radiation, the 

red pulse width should be longer than the blue pulse width. 

It is exactly the same if you do the measurement. There is no difference between red and 

blue at these temperatures, at normal ambient temperature, so that immediately ruled out 

sonoluminescence being due to blackbody radiation. 

That immediately ruled out a lot of other things, too. If you assumed it was a blackbody 

radiator, it was a very hot blackbody radiator. 

[Transparency 24] 

Here are measurements of the pulse width as a function of how hard you drive the bubble. 

Remember, if you drive the bubble harder, you get more light. Also, what happens is the pulse 

width increases as you increase the driving pressure. These are three different experiments for 

three different concentrations of gas inside the liquid. 

As you de-gas the liquid, you are going from top to bottom. As you remove gas from the 

liquid, a particular driving pressure will give you shorter and shorter pulse widths. As the UCLA 

group asked, why are you stopping here, why not de-gas the liquid more and more? 
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They did and they ended up with pulse widths on the order of 40 psec, so you can actually 

get lower than 50 psec for a pulse width. That is a very, very short pulse width. 

[Transparency 25] 

Another important parameter to measure is the spectrum. Any time you see light being 

given off from something you want to measure its spectrum. These are some of the first 

measurements done by the UCLA group. This shows a spectrum of different gases dissolved in 

a liquid. 

This purple one is argon. This is a log-log scale, the radiance watts per nanometer and the 

wavelength from the UV out toward the near infrared. In argon, for instance, it continues to 

grow into the UV. Helium does the same thing. In feet, most gases will continue to grow as you 

go out into the UV until the cutoff of water, or the cutoff of your quartz flask, which starts to 

absorb too much. 

It turns out that the cutoff of water is actually 180 nm, not 200 nm, so I am not exactly sure 

why you cannot go a couple of nanometers farther, but there might be some errors that just grow 

exponentially there. 

There are some gases that show a turnover, a maximum, in the light intensity at a particular 

wavelength. Those gases happen to have xenon in them, or mixtures of xenon. 

MS. PETCULESCU: For those pure gases, how can you do that? How can you make sure 

you have only argon? 

DR. MATULA: The way they do it is they take their water, they filter it, de-ionize it (I am 

pretty sure this is what they do), and then they attach a vacuum to the head space above their 

container of water. What that means is they remove all the air above the water, so then the gas 

inside the water will move up so that there is an equilibrium in concentration above and below 

the water surface. 

They will keep on pumping out the gas until they have removed as much air as humanly 

possible. There is always going to be some air, you cannot an infinite amount of air out of the 

system, but they will de-gas the system as completely as they can. 

Then they will pump in whatever gas they want to pump in, argon, say, and they will pump 

in argon, they will stir it in, they will saturate the thing with argon, then they will de-gas it again. 

Then they will pump in more argon and de-gas it again. They will go over and over, again, until, 

experimentally, they see no differences when they do an experiment. 
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They might refill this water with argon four or five times before they actually do an 

experiment. Nobody can guarantee that there is not a single air molecule in there but it is almost 

all argon. 

MR. APOSTOLOU: Then they just inject the bubble with argon? 

DR. MATULA: They probably use a nichrome wire approach, where they have this little 

nichrome wire in the cell and they boil it. The problem with injecting bubbles is you might 

contaminate the system with air, or something. 

You can get whatever gas you want into your system just by backflowing it in under 

pressure. 

MR PORTER: What is the best combination in terms of gas? 2% of xenon in nitrogen or - 

.? 

DR. MATULA: The amount of xenon you put in, or the amount of argon you put in, is 

interesting. You end up having to put in a certain amount to make the bubble stable. You cannot 

just inject any bubble at any gas concentration and make it stable; only a certain range of gas 

concentrations make it stable. These particular concentrations give a stable bubble. 

These spectra do not show band emissions as I showed for multi-bubble sonoluminescence, 

so you cannot fit a temperature to it very easily. You can take this as a tail of a blackbody 

radiator, even though I have already shown you that it cannot be blackbody, and take a fit to that 

and see what the temperature is, and people did that. 

[Transparency 26] 

Here is the spectral radiance on the side here versus wavelength, from 200 to 700 nm. 

They fit the data, shown as blue squares, with this formula and they fit it with a single 

temperature, and they had to fit the wavelength, too, here. 

They got temperatures, if you believe this, from 1000 to 500,000 Kelvin. It is very hot. 

When these data were taken and this information was released, immediately nuclear physicists 

went into their codes and showed that the bubble was not only 500,000 Kelvin, it was on the 

order of millions Kelvin. It was a very hot bubble. 

PARTICIPANT: How long does it stay hot? 

DR. MATULA: It stays hot for picoseconds. 

At the time, five years ago or so, this is what people thought was sonoluminescence: an 

extremely hot phenomenon and maybe even fusion was occurring. 
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[Transparency 27] 

During this time there were these questions that were asked. Why is it stable? I told you at 

the very beginning that it should not be stable, it should dissolve. What was the mechanism for 

light emission? I have already told you it is not blackbody radiation but, still what is the 

mechanism? Multi-bubble and single-bubble sonoluminescence have different spectra. Single 

bubble does not show band emissions, but multi-bubble sonoluminescence shows band 

emisssions, so does that mean they have different mechanisms? 

Finally, can Iraq foil the nuclear test ban treaty? Why do I say that? Well, these are very 

high temperatures, right? This could be millions of degrees in temperature. 

[Transparency 28] 

The London Independent wrote an article on how Iraq could get around the International 

Atomic Agency and test nuclear fusion ~ I believe it says "sonoluminescence" on there ~ that is 

one way they could get around it. This was a time period when people really thought 

sonoluminescence was very hot, so when you are offered to go look for neutrons underneath a 

mountain in Provo, Utah, you take the opportunity and go. 

[Transparency 29] 

When I was asked to go look for neutrons in Provo, Utah, I took my camera and my 

sonoluminescence rig and I went under a big mountain. You go under a big mountain to look for 

neutrons to get rid of cosmic rays that increase the background radiation. 

You add salt bags around your apparatus to get rid of cosmic rays. You add veto counters. 

These are basically fluorescence devices that are attached on the outside that are used as timing 

devices. If it receives a signal and your experiment has a signal and they are correlated in time, 

then you know it was a cosmic ray that caused it. 

I spent a week trying to find neutrons from single-bubble sonoluminescence, because it is a 

very hot phenomenon and you should see neutrons. It turns out there are no neutrons that I could 

see from the system, but I had a good week. 

[Transparency 30] 

Just because I could not find neutrons does not mean Hollywood cannot find neutrons. In 

fact, they had a movie, called "Chain Reaction," and I hope none of you saw it. The nice thing 

about it is three square blocks of Chicago got blown up in their sonoluminescence apparatus and 

though I would not mind being a part ofthat, I do not think it could happen with me. (laughter) 
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That is me playing Keanu Reeves. Okay, okay. 

So we are answering one of the questions: Can Iraq foil the test ban treaty? Hollywood 

says yes, they can. 

Another question we wanted to ask was the difference between multi-bubble and single- 

bubble sonoluminescence. In multi-bubble sonoluminescence you see band emissions, you can 

calculate its temperature, it is 5000 Kelvin. 

[skip to Transparency 40] 

In single-bubble sonoluminescence there were some calculations showing it to be 100,000 

Kelvin or so. I will show later that most people now believe it is on the order of 10,000 to 

20,000 Kelvin, so it is slightly hotter than multi-bubble sonoluminescence. 

We did an experiment in sodium chloride solution, just water with table salt. We measured 

the spectra in single-bubble sonoluminescence and multi-bubble sonoluminescence. In single- 

bubble sonoluminescence you get this blue line and it is pretty much a continuum from low 

energies to short wavelengths for high energies. 

If you do the same experiment in multi-bubble sonoluminescence, you see this telltale 

sodium emission line at 589 nm. 

How do you get sodium inside a bubble? Sodium is nonvolatile, so how do you get it 

inside the bubble? In single-bubble sonoluminescence I would expect to see a continuum, 

because I cannot imagine how you get sodium inside the bubble. 

In multi-bubble sonoluminescence people have had several arguments for it, but one of the 

accepted ideas is that you have lots of bubbles interacting with each other, generating jets, as 

Larry Cram showed this morning, you have jetting going on, so you can actually get fluid inside 

the bubble and, therefore, you can entrain sodium inside the bubble and then you can get sodium 

emissions. 

Another possible effect is that you can actually get a shell of liquid surrounding your 

bubble hot enough to cause sodium emission, so why don't I see it in single-bubble 

sonoluminescence? It might be that I just do not have enough sodium in the solution to be able 

to see it. You cannot just continually add a lot of sodium because the bubble becomes unstable. 

The third mechanism, there is another mechanism by which you can get sodium emission; 

that is, you can generate radicals inside the bubble that leave the bubble and interact with sodium 

atoms and you can get sodium emission through radical chemistry, which I know nothing about. 
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So the difference between single-bubble sonoluminescence and multi-bubble 

sonoluminescence is quite dramatic when you look at the spectra. 

[skip to Transparency 41] 

But it turns out that you can get interesting effects with single-bubble sonoluminescence if 

you go to another liquid. Until very recently everybody doing single-bubble sonoluminescence 

has done it in water. Ken Suslick's group has been able to use another liquid and they have been 

able to get single-bubble sonoluminescence, stable single-bubble sonoluminescence, and 

measure the spectrum from the system 

This blue line is the spectrum from a stationary bubble and these wiggles are just noise. If 

they then change the pressure or de-tune the system so that the bubble is no longer stationary but 

is moving around, they actually get a bump in their spectrum and it corresponds exactly at the 

right wavelength for CN emission. 

What scientists think what is occurring here is that when you have a stationary bubble you 

have this bubble growing and collapsing and you get geometrical focusing and the bubble gets 

hot, but as soon as it becomes jittery, you cannot focus as much energy in the system, the bubble 

will not get as hot and then you can see these bound-bound transitions generating band 

emissions. These are vibrational CN transitions. 

DR.KEOLIAN: What was the liquid? 

DR. MATULA: I was waiting for somebody to ask that question. I cannot tell you. This 

has not been published yet. 

DR. CRUM: It has been accepted at Nature. 

DR. MATULA: Are you sure? 

DR. CRUM: Well, it got one good review and I know another is sent, (laughter) 

DR. MATULA: You tell them, then. I was told I cannot tell them. What I am told is it is 

a liquid that physicists do not want to use, that it is dangerous, but it is really not that dangerous 

as long as you are careful with it. 

PARTICIPANT: What is CN? 

DR. MATULA: Carbon nitrogen. I do not know what it is called, the name of it. 

So multi-bubble sonoluminescence appears to be a weaker, cooler form of single-bubble 

sonoluminescence and that is what a lot of scientists now think is occurring, though not 
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everyone.   I was just at a conference in Europe where at least one scientist still thinks it is an 

electrical discharge phenomenon occurring, but most of us believe it is a thermal effect. 

[Transparency 31] 

Two other questions: Why is the bubble stable and what is the mechanism of 

sonoluminescence? That is what I want to answer. I want to answer, first, why is the bubble 

stable over hours on end? 

To answer that question we need to look at diffusion across the bubble wall. If the gas 

diffuses into the bubble faster than it diffuses out, the bubble will grow. If the gas diffuses out 

faster than it can diffuse in, it will shrink over time. That is given by this diffusion equation. 

You also have the bubble's motion, which is governed by the Rayleigh-Plesset equation, 

which is shown here. These two equations are actually coupled. If you change the gas 

concentration inside the bubble, then that has to be related by the pressure. If you change the 

pressure and drive the bubble harder, you are going to change the gas diffusion. 

Although nowadays you can actually solve this with powerful computers, it is a lot faster 

just to make some approximations and get rid of, for instance, the convective term there. 

[Transparency 32] 

So what people do is they make some approximations. They assume that the radius time of 

the bubble is periodic, which it is, every acoustic cycle is periodic. They also assume that you do 

not care what is happening over a single acoustic cycle; what you want to know is whether this 

bubble is stable over long time periods, whether it is going to grow or shrink, so you ignore what 

occurs in a single cycle. 

You go through a lot of mathematics and you end up with an equation that relates how 

many moles of gas are entering or leaving your bubble and it depends on the radius time curve of 

your bubble, and it depends on how gassy your liquid is. This ratio tells you how much gas you 

have put into the liquid divided by how much it can sustain saturation concentration. 

What you do is you take that Rayleigh-Plesset equation and you solve it in MatLab or 

Mathematica, you plug it into here, and you can get whether dN/dt is negative or positive, telling 

you whether the bubble is growing or shrinking. 

MS. SWEARINGEN: You said that it is definitely periodic but in the video you showed us 

it looks as if it collapses much faster than it grows. Is it just because it is collapsing at the same 
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rate over time and growing at the same rate of time that it is periodic even though it is not evenly 

growing and shrinking? 

DR.MATULA: Right. 

[return to Transparency 15] 

This bubble is going over one acoustic cycle here, just a little bit less than one acoustic 

cycle, and it is doing this motion, growing, collapsing, rebounding. Then at the very end it 

repeats itself, so that is the periodicity of it. 

There are actually a lot of different time scales involved here. One is the period of the 

sound field. One is the growth cycle that occurs over about half a period or so. The collapse 

phase occurs over a couple of microseconds. The light emission phase occurs over picoseconds 

and the rebounds occur over several microseconds, so there are a lot of different time scales 

involved in this phenomenon. 

MR. APOSTOLOU: Why is there a time lag between the pressure, the maximum and the 

reduced? 

DRMATULA: Inertia. 

[Transparency 32] 

You can take this equation, and I think I found a mistake in it already. What happens if 

R=Ro? You get 1, right? What happens if you get Cmfinity/CR are equal? Take a 4-micron 

stationary bubble, saturate your liquid so the saturation concentration, Cmfiuty, is equal to 

thesaturation concentration and this equation predicts that your bubble is stable. 

What is going to actually happen to your bubble? It will dissolve. Actually, you have to 

include surface tension here, which I did not include. 

Take that equation, plug it into MatLab along with your Rayleigh-Plesset equation, and you 

can generate curves like this. 

[Transparency 33] 

For various values of your equilibrium radius and various values of your pressure you can 

determine whether dN/dt, the number of molecules entering or leaving the bubble, is positive, 

negative, or zero. This red line corresponds to the equilibrium condition, where the bubble is 

stationary. This region inside is the growth region, where more molecules are going into the 

bubble over time than leaving the bubble, so the bubble will grow, and the region outside is the 
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dissolution region, so there are more gases leaving the bubble than coming into the bubble and 

the bubble will dissolve over time. 

Let's take a look at this, because this is very important. A sonoluminescence bubble should 

not be stable and it is based on this diagram, so I am going to go over it with you, so pay 

attention. 

If you are driving this bubble at 1.35 atm and it is about 5 microns, you are right on that 

line, so you are stable, the bubble is not growing or dissolving. Suppose the bubble undergoes a 

hiccup and grows a little bit to 7 microns. What is going to happen to it? It is going to dissolve. 

It is going to come straight down this line because you are driving it at a constant pressure. 

What if it undergoes a hiccup and goes down here? It is going to grow. So not only is this 

an equilibrium but it is a stable equilibrium. 

You can have a bubble down here, too. It can be right on this line and it can be in 

equilibrium and glowing, but if it goes off this line in one direction or the other, it will continue 

to move off in that direction. 

This line, of course, not only depends on the RT curve, the Rayleigh-Plesset equation, but 

it depends on that ratio of how much gas is dissolved in your liquid, CMnity/CR. For this line that 

ratio is .005. If I chose .002 it would be down here more. If I chose a bigger number, it would 

come out here farther. 

MR. GLADDEN: I am sorry, would you tell me again what that pressure is? 

DR. MATULA: The drive pressure, how hard you are cranking the system. Pressure 

amplitude. It is a sine wave. 

MR. TUTTLE: Does the bubble oscillate between those two states of it? 

DR. MATULA: I see it all the time. Bubbles oscillate between states all the time. I am 

not sure if this is the reason for it or if it is the fact that in a real system, when you set up a 

standing wave in a system, you are actually also generating higher harmonics. If your three- 

dimensional standing wave is not very stable, the bubble can actually jump between different 

positions, actual physical positions. That might be related to this, I do not know. 

If you went from this state up here and hiccuped down to this state, it is going to continue 

to dissolve unless it is stabilized somehow by moats or crevices, or something like that. 

[Transparency 34] 
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This is the calculation. Now we can apply it to a sonoluminescence bubble. I like to use 

Ro as a function of Pa, the equilibrium size of the bubble as a function of the driving pressure, 

but the group that did the experiment actually likes to go Pa versus Ro differently. Maybe what I 

could do -just reverse the axis, pressure amplitude as a function of radius. These are measured 

radiuses of bubbles. This is the equilibrium line. 

This is the sonoluminescence bubble up here. These bubbles up here are being driven at a 

little over 1.25 bars or atmospheres. Their sizes are 2,3,5, 7, microns in radius. 

These other bubbles are bubbles that are unstable. These are all unstable bubbles over 

here. If you generate a 5-micron bubble at 1.15 or 1.2 atm, it is in a region of growth and it will 

grow out to this instability line and it will undergo instabilities, and you can see that in a video 

camera and you say, okay, that bubble is unstable right there, so that is how this line was made. 

This line right here was calculated through that diffusion equation I showed you in that 

other calculation to match the sonoluminescence bubbles that they had in their system 

These are the actual values that they found - right here. If sonoluminescence bubbles 

obeyed gas diffusion, then this line ~ they should have been along either this line or this line 

should have been along the sonoluminescence bubbles, one or the other, so there is obviously 

something wrong here. We are not predicting the correct gas diffusion that is going in single- 

bubble sonoluminescence. 

It turns out the answer to that was given by a physicist and all the chemists are mad at him 

for this reason: When the bubble collapses, it gets hot. What happens when you have a hot 

bubble? You have chemistry. You have air inside your bubble, you have nitrogen, oxygen, and 

some other contaminants. The nitrogen and oxygen will undergo dissociation when it is hot. 

They will dissociate, they will be excited, they will form other products when it cools down, like 

nitrites and nitrates, NOx compounds. Those are readily dissolvable in liquid, they will migrate 

out of the bubble and dissolve out into the fluid. 

What will not generate chemistry is argon, a very, very small percentage of air, but it is 

argon, so that will stay in the bubble. It turns out, if you take this calculation for air and you say 

"I don't have air in my system, I have, actually, argon, which has a concentration a hundred times 

smaller than air," then this line will shift right along there. 

[Transparency 35] 
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Bob Apfel's student, Jeff Ketterling, who has now gone off to bigger and better things, 

actually did those measurements. This is back along the way I like it, which is Ro is a function of 

Pa. Here is the gas diffusion equilibrium curve for pure argon saturated to 0.26% of saturation. 

He generates bubbles and they kind of follow along that curve, so when you have pure 

argon the bubbles seem to follow along the curve. You get stable bubbles and even some 

unstable bubbles of the right size being driven at the right pressure amplitude. 

Then you take pure nitrogen. This is a curve corresponding to pure nitrogen saturated to 

10%. For a particular bubble size at a particular driving pressure you can get bubbles. These 

particular bubbles are not glowing but they are stable and they should fit on this diagram. 

They fit pretty close; they kind of go up where they are supposed to go up, but not like that 

other graph I showed you. 

If you take 1% of argon dissolved in 99% of nitrogen, what is that? That is air, basically, 

mostly nitrogen, some oxygen, and 1% argon. You dissolve it in your system. You have two 

curves, depending on whether you think your system is füll of argon or full of nitrogen. 

This curve corresponds to nitrogen. 

This curve corresponds to argon. 

If you are driving the bubble and it is not giving off light, you get bubbles that are stable 

along this curve right here, but if you crank up the pressure and the bubbles start to emit light, 

what happens is they all shift over to this side of the curve, which is an inference that what has 

happened is you have had dissociation of the nitrogen leaving the bubble, leaving you with 

argon, so the bubble is now an argon bubble. 

[Transparency 36] 

Another experiment was done where we looked at the evolution of the light emission by 

the bubble below and above the sonoluminescence threshold, below, where it is not glowing, and 

then above, where it is giving off light. That is the blue marks. The red line is a timing device, 

basically. 

On the left side of this timing vertical line the bubble was stable, not giving off light. We 

then cranked up the pressure amplitude really fast to a state where it would be giving off stable 

sonoluminescence. Of course, it is a finite system; it will take some time, depending on the Q of 

the system, for it to respond and for the bubble to give off light. 
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But if you notice here, it starts to give off light, but very slowly. It actually takes about 10 

seconds for the light to become stable and bright. If you take that stable bright bubble giving off 

light and you then bring it down below the sonoluminescence threshold, when it is not giving off 

light, you get this intensity, which is zero, again, but then if you immediately bring it back up to 

give off light again, it immediately comes up and, instead of having this delay, it immediately 

gives off very bright intense light. 

Basically what we argued was that there is a 10-second time frame that chemistry and gas 

diffusion is occurring over for the bubble to become an argon bubble. If you bring it back down 

to not giving off light and you leave it there long enough, the gas will diffuse back in and it will 

become an air bubble, again. If you do not, if you bring it back up really quickly, it will remain 

an argon bubble and will emit light right away. It is about a 10-second transition phase for the 

chemistry and the gas diffusion to occur over. 

Based on those two sets of data, people are fairly comfortable now, at least with noble 

gases, nitrogen, and oxygen, to say the following: When you start off with a bubble and it is 

undergoing sonoluminescence you are going to get dissociation of the diatomic molecules, 

whatever is in there. 

If they are miscible in water, they will dissolve out into the fluid and what is left over will 

be whatever nonreacting species you have, which, in this case, is a noble gas, so what you think 

is an air bubble when you added air into your system turned out to be an argon bubble. 

[Transparency 37] 

Sonoluminescence exists in a particular parameter space. I said before that at a particular 

frequency range we get it between 20 kHz and 50 kHz. Why don't we go below 20 kHz? I have 

gone down to 7 kHz — not me, personally, I had a student do it — but why would you not want to 

go down to 7 kHz? It hurts. It hurts big time, so 20 kHz, the limit of human hearing, people do 

not want to go below that. 

People have gone up to about 70 kHz, but after you get up to higher frequencies the Q of 

the system becomes such an important factor that it is hard to generate a stable bubble. 

In pressure amplitude there is also this region of stability. At very low pressure amplitudes 

you just have an oscillating bubble. If you drive it harder, it actually goes into this dancing 

motion, nonstable behavior, and if you keep on cranking it up, you generate a single-bubble 

sonoluminescence. 
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You have a lower threshold and you have an upper threshold, this extinction threshold. If 

you drive it too hard, you drive it above this threshold, the bubble disappears. 

[Transparency 38] 

It turns out that if you drive it near that threshold you should start seeing stability problems. 

The stability problems are observed by watching the bubble jitter around the flask but are 

calculated by assuming you have a spherical bubble and you are going to superimpose a 

nonspherical oscillation on it, spherical harmonics. 

If you remember spherical harmonics, they have a coefficient out in front of them If that 

coefficient is zero, you have a spherical bubble. If that coefficient is greater than zero, you have 

some other mode that is not a pure sphere. So you can add spherical harmonics to the system to 

induce quadripole oscillations or higher mode oscillations, if you want, and you can look at the 

evolution ofthat factor in front of the spherical harmonic and see whether it grows or shrinks in 

time, and that kind of tells you, calculationally, whether your bubble is going to stay stable or 

not. 

This is a calculation, three different conditions, for a bubble where you have added on a 

spherical harmonic, where you have added on an instability. This instability ~ right here ~ is 

calculated to occur every acoustic cycle and it turns out it occurs right when the bubble is 

collapsing and people call that the Rayleigh-Taylor instability. 

You also have an instability that occurs every cycle but kind of grows and shrinks over 

time and kind of goes back and forth and that instability these researchers, Hilgenfeldt and 

Lohse, have termed "afterbounce instability"; it occurs right when the bubble collapses and then 

a few afterbounces afterward. 

Then there is the parametric instability that grows cycle to cycle to cycle. All of these 

instabilities are calculated to occur in single-bubble sonoluminescence and all those instabilities 

can extinguish the bubble, can destroy the bubble. 

[Transparency 39] 

If you take those instabilities that are calculated, you take the gas diffusion equation and 

you put them all on one plot, this is the region where sonoluminescence exists. You have Ro, the 

size of the bubble you are starting with, that nature determines (I cannot determine that for it, 

nature determines the size of the bubble), the driving pressure amplitude ~ that I can fix ~ and 

what you have here is the following. 
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Let's look at this red line. This is an Mach=l line. At some point, the bubble, as you 

increase the pressure amplitude, starts to emit light. We do not know what that lower threshold 

actually is but we assume that the bubble must be going at least Ml or so, the speed of sound in 

gas, to be able to emit light. We call that the lower boundary. The bubble has to be going fester 

than that. 

On the other end, the bubble cannot generate instabilities, so the upper boundaries are these 

instabilities. Here is one right here, going across the top, and here is one, right down, going 

down. Those are those instabilities I showed on the last viewgraph. 

Sonoluminescence occurs in the region between the instabilities and this lower M=l 

threshold. It does not occur anywhere in here. It actually occurs along the line and that is how 

much you have de-gassed the water. 

This curve tells you where sonoluminescence will exist in your system. The idea, of 

course, is to expand this region as much as possible. We cannot expand it going down this way, 

because the bubble has to be collapsing at a certain velocity before it gives off light, to begin 

with. 

The idea is to expand this region up here, or this region on the side here. If you expand 

those regions, you are going into larger bubble sizes, if you can go up here, which gives you 

more time to make measurements when the bubble is collapsing. If you expand this region out 

here, you can actually drive the bubble harder. 

The point I want to make for the second hour is that there is a parameter space that single- 

bubble sonoluminescence lives in. You have to take into account chemistry that is going on, 

because chemical reactions are occurring, but if you take those into account, you can define the 

parameter space that sonoluminescence is in. 

In the next hour I will talk about what makes sonoluminescence, what that is. 

DR. MATULA: I described why a bubble is stable and that involves chemistry. Now I am 

going to describe the mechanism of sonoluminescence. It is still somewhat controversial - 

remember, you are going through the Matula filter — but it is the most accepted theory of the 

mechanism of sonoluminescence. 

[Transparency 42] 

The assumptions here are that when you compress the bubble, it gets hot, and when you 

have a hot bubble it emits light.   Those are assumptions, because other people will say, "My 
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assumption is that when you compress a bubble, you have charges on the outside and those 

charges generate an electric field and the light emission comes from the discharge." So this is a 

different assumption. This is a thermal assumption. 

Basically what happens is that when you compress the bubble you get exciting molecules, 

they dissociate. You get sonochemistry from this (those first couple of viewgraphs that I showed 

you). You get partial ionization that is calculated to be less than 10% -- it depends on the noble 

gas that you use. At the bottom of the collapse or very near the bottom of the collapse you start 

emitting photons and then the bubble rebounds. 

[Transparency 43] 

There are a couple of different ways to look at this. One way is to take your bubble 

motion, send it to Lawrence Livermore National Laboratory, have them take their bomb codes 

and see what happens inside the bubble. When you do that and you make a couple of 

assumptions, you come out with a formula that describes the radiating power from a 

sonoluminescence bubble. 

This is the mechanism. The bubble is a combination of a thick and thin radiator. What do 

I mean by that? There is an optically thick, or opaque, core that you cannot see into. It is 

optically opaque. That means that photons generated in the core are absorbed immediately, so 

they do not come out. It is kind of like our sun; photons generated in the core of the sun we do 

not observe. 

Then there is an optically thin region surrounding the core ~ this is the optically thin 

region, the actual bubble size is much larger than that. It is a shell, it is thin, it is not opaque, you 

can actually see into that region and that is where you see the light emission. It is like the shell 

of the sun, why we think the sun is 5000 Kelvin when it is actually generating thermonuclear 

fusion. 

The most important factor that people discovered in adding in new physics to try to figure 

out why single-bubble sonoluminescence was not a blackbody radiator was this term right here, 

Kappa, the opacity of the radiating matter. The opacity basically tells you how far you can look 

into this bubble. 

I drew out this morning what might happen with a xenon bubble and an argon bubble as 

you go into the bubble along this axis (or that could also be time), and this is the temperature. If 
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temperature is increasing, the opacity for xenon is different from the opacity for argon.   The 

opacity, of course, is photon absorption. 

The opacity for xenon will turn on at a lower temperature, which means you will see it for 

a longer period of time and over a larger volume than you will for an argon bubble, where the 

opacity turns on at a higher temperature, which would be at a smaller volume. 

For this mechanism the radiating volume is the important aspect that gives off light 

emission. Xenon looks brighter than argon, not because it is hotter than argon (or it may be), but 

mostly because it has a larger radiating volume. It turns on at a lower temperature and it emits 

light for a longer period of time and it looks brighter, more photons. 

[Transparency 44] 

You can calculate a spectrum with this formula. This was done by Willie Moss at 

Lawrence Livermore National Lab. You get the following. This is the spectral energy density 

and notice the units here, femtojoules. The amount of energy given off by this bubble is not 

enough to power your car. I will bet more energy is given off by a mosquito slamming into a 

wall than is given off by sonoluminescence bubbles. This is as a function of wavelength. 

The data points for argon are shown as blue circles here, the circles with the blue line, and 

the data points for xenon are shown by the circles with the red line going through. The 

calculation depends on the radius time curve of the bubble — he has to plug that into his 

calculation scheme. 

When he looks in the literature, he sees different values for Ro, Pa, the important 

parameters of sonoluminescence, so he cannot calculate a specific spectrum, but whatever values 

he gets from the literature he can calculate his spectrum to. 

For argon he was able to make two calculations from all the data showing a bound for the 

spectra; that is, he found the smallest Ro, the smallest Pa, that worked, and the largest Ro and the 

largest Pa, and he calculated the spectra for those two cases and he got a dashed curve down here 

and this bigger dashed curve up here. He is very happy that sonoluminescence data are 

somewhere between those two curves. 

He also calculates a xenon calculation. There are lots fewer data for xenon, so he has only 

one curve. Again, he is happy, not because the two overlap but because it shows an important 

distinction between the two types of sonoluminescence, the argon, which does not show a hump 
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down to 200 nm, and the xenon, which does show a hump. Willie Moss is very happy that his 

calculations lie somewhere in that data range. 

When you go through that method, you really do not have a mechanism for the light 

emission. It is just a bunch of calculations, an opacity table that I do not even understand, but he 

just plugs in values that are given to him by other researchers, and you can calculate the 

spectrum or the light emitted by the bubble. 

He says that it is probably radiative recombination, so you get an electron coming back 

down and radiating, or Bremsstrahlung occurring, but that is not actually in his code, so it really 

does not tell you what the mechanism is. 

[Transparency 45] 

Another group of researchers has done analytical calculations that are much more simple 

than having to use the Lasnix [phonetic] codes, the nuclear codes at Lawrence Livermore. Here 

they make assumptions for what the radiation mechanism is and then they go on from there. 

They assume there is thermal Bremsstrahlung. You have electrons near ions and there are 

neutral atoms giving off light and you have radiative recombination. If you work through the 

mathematics, you get a power spectrum with a couple of terms. One is the Plank blackbody 

formula and then this other stuff that incorporates the opacity, again, which is very similar to 

what Willie Moss showed in the other viewgraph. He showed two terms, one, Plank body 

(which is shown right here), and then this other term with the opacity (the optically thin part). 

I was asking myself this morning what the heck does Kappa actually mean. What do I 

mean when I say photon absorption? I wrote down something really quick ~ I think I am right 

here. Photon absorption is just the reverse process of photon emission. You can have free-free 

interactions. You can have bound-free interactions, and you can have bound-bound interactions. 

A bound-bound interaction is just an excited state interacting with a lower state and you are 

getting some known emission, some known energy. That will generate band emissions or line 

emissions. If you have bound-free or free-free interactions, those drive a continuum but they 

also are involved in the photon absorption. 

MR. GILBERT: Would you say again what free and bound refer to? 

DR MATULA: Sorry. If you have an electron, in one of its shells it is bound. If it is in 

an excited state and it comes to a lower state or if the molecule is vibrationally excited and it 

relaxes to another state, that is a bound-bound transition.   If an electron comes from the free 

500 



r~ 

space, whizzing around, and it relaxes to a shell of one of the atoms, that goes from a free state to 

a bound state. Because the electron can start off with any energy and it ends up at a specific 

energy, that can generate a continuum emission. 

MR. GILBERT: So what do you mean by free-free interactions? 

DR. MATULA: That is a good question. Normally I say it is a good question, because I 

can answer it, but this one is not so easy to answer.A free-free interaction is when you have 

electrons and ions interacting with each other and what can happen is, in the photon emission 

case, an electron can interact with an ion, collide with it and emit a photon, or it can inelastically 

collide with it and absorb a photon. That is what they mean by free-free. 

MR GILBERT: But they do not mean single electrons, because my remembrance is that 

you cannot conserve momentum and energy with a free electron, so it cannot absorb a photon 

completely. 

DR MATULA: Really? 

MR GILBERT: Yes, I think so. It has to be interacting with something else. 

DR. MATULA: They say that it is an interaction between free electrons and ions, or 

neutrals, so can it work that way? 

[Simultaneous discussion] 

DR. MATULA: These are scattering, they are inelastic collisions. 

MR. GILBERT: It does not just absorb the photon and keep it. It re-emits it. 

DR MATULA: It can re-emit it, but can't the ion change its state? 

MR. GILBERT: The ion can. 

DR. MATULA: And then you can get nonradiative relaxations after that? 

MR. GILBERT: Right, by individual free electrons. I will check it and see. 

DR. MATULA: There are two different models that I am working with here. One is the 

Willie Moss model, which is qualitative, because they use Lasnix codes and all the calculations 

are done with a lot of mathematics that I do not understand. Basically, what is occurring here is 

you have this opacity as a function of temperature that is different for xenon and argon. 

Xenon turns on at a lower temperature, as I mentioned earlier, and so it radiates over a 

larger volume and it looks hotter than argon. That is how, qualitatively, you look at the Moss 

model.  It generates spectra that do not match the data exactly but it has the same relationship; 
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argon spectra are a continuum that increases into the ultraviolet, xenon spectra have bumps in 

them. 
In the Lohse model, they actually calculate what the absorbance is, this Kappa. They 

calculate it assuming hydrogen-like atoms -- which is not really occurring here, you have argon 

or xenon -- but they make assumptions. Then they argue, by pointing to other references, that it 

is close enough. 

What they get is an absorbance that depends on the ion energy and 2 times K* Boltzmann's 

constant times temperature. So Kappa here depends on the ion energy, which is different for 

xenon and argon; xenon has a lot lower ion energy than argon. 

[Transparency 46] 

I showed you what the spectrum looked like when you looked at the Willie Moss method. 

Here is what the spectrum looks like when you look at the Lohse method, and the Hilgenfeldt 

method. Here is the power, watts per nanometers, as a function of wavelength from 200 to 800 

nm. This is calculated for xenon, and this is calculated for argon. 

For xenon it matches the bump that you see experimentally. Unfortunately, for argon it 

does not. It shows a bump for argon as well. Lohse uses a very simple ideal gas type of model 

to model his emission. Because of that, I think you are not going to ever get perfect matching 

with data. In fact, I would claim this line right here tells me that his emission mechanism is 

absolutely wrong. 

Of course, if he then takes his emission mechanism and calculates the full width at half- 

max, the pulse width, has a function of the light emission intensity and he looks at all the data 

shown in black — here and here ~ and then he calculates that same pulse width, his calculation 

fits very well. 

In one case you can use a relatively simple ideal gas law, taking into account the hard core 

of the van der Waals hard core, which you need to have, a simple energy mechanism, and 

calculate full width at half-max that are on the order of 50 to 200 psec, which match the data, and 

you can calculate spectrum, but every once in a while you will get something that does not work 

out, like this. 

Willie Moss' theory, on the other hand, has the same trends everywhere. The argon 

spectrum continues up, the xenon spectrum turns over, and Willie Moss also shows the trends 

here that match data. 
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One other difference between the two models is in the shape of the pulse. This is the shape 

of the pulse that we saw earlier. It has an asymmetry to it, it is longer in the tail. Moss does 

show a very similar looking tail and Lohse's tail is much more spread out. 

I do not want to say that that simple model is wrong. What I want to say is that it is a very 

simplified model. It is an ideal gas interacting. You are assuming hydrogen atoms and you are 

getting absorption and you are getting photon emissions by very simple models. It is not going 

to predict everything. It does a very good job of predicting some features like some parts of the 

spectrum and the pulse widths. It is also very good because you can do hundreds of calculations 

in a single day, it is very simple. 

Willie Moss1 model requires coupling a Rayleigh-Plesset-like equation to this nuclear 

fusion equation, the Lasnix code. On the other hand, he seems to match all the data I have seen 

out there so far. 

MS. HIGHTOWER: If his method is assuming hydrogen atoms, then how can he have a 

difference between xenon and argon when he calculates stuff? 

DR. MATULA: Actually, there are two parts to it. There are the free-bound transitions 

that occur that he assumes are hydrogen-like transitions — I forget offhand, actually. I was 

thinking the free-free was the xenon. He assumes the hydrogen atom is what generates the free- 

bound transition and his absorbance is calculated through free-free transitions, I think, but that 

does not make sense, because, to me, still it is an ionization effect that comes into play. I do not 

know. 

So Willie Moss calculates this Lasnix code, generates calculations that seem to match data. 

The Lohse code can be done a lot faster. It matches some of the data but does not match all of 

the data, so there is something missing in it. 

There is actually another calculation that is very important that does not go into the detail 

of Willie Moss' nuclear code but expands far beyond Lohse's simple adiabatic model and that is 

done by Andrew Szeri at Berkeley. 

[Transparency 48] 

Andrew Szeri takes the gas-diffusion equation, takes the Rayleigh-Plesset equation, does 

not make assumptions, just plugs it all into his powerful computer and starts cranking out data. 

What he finds is something very interesting. 
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Remember those curves I showed you for gas diffusion equilibria? We assumed that no 

gas is diffusing over one cycle, we just look over long time frames to see if the bubble is stable 

or not? If you actually look in one acoustic cycle, you can see gas diffusion. 

This graph shows what actually happens if you mix argon and helium together. As the 

bubble collapses, you get a separation or a segregation of the two species. One of the species, 

and I believe it is helium, will migrate out to the wall and the other species migrates into the 

center of the bubble, so you actually get segregation of the two noble gas species. 

These are brand new data so there are no real experiments that have been done to test 

whether this hypothesis is true or not. One can envision that if it is true, if this is argon inside 

here, it should be the one that is giving off the light, not the helium, and you should be able to 

tell whether it is argon or helium inside the bubble when you mix the two, but it is an interesting 

calculation to show that there is segregation occurring inside the bubble. 

[return to Transparency 47] 

He actually includes chemical reactions going on inside the bubble. Chemical reactions 

can be a pain. This reaction scheme was done by Kamath and Prosperetti several years ago. 

They wanted to see how much energy was removed from the system by chemical reactions, 

endothermic reactions, so they looked at water and they looked at some of the reaction schemes 

that water undergoes. 

They have right constants and they can sum up the number of reactions going in one 

direction that are endothermic and the number of reactions that are exothermic, take the energy 

difference, plus it into their calculations to see if chemistry is affecting the amount of light being 

emitted. There are 19 mechanisms here. 

There is another guy, named Yasui, who I saw, in his paper, had 63 different schemes ~ 

that is a lot ~ to include chemistry. 

[Transparency 49] 

Chemistry is important, as we have seen before, but what appears to be a very important 

piece of the puzzle is water vapor. Water vapor, as we have always claimed before, cushions the 

collapse. If you increase the temperature of water and you generate sonoluminescence, the 

bubble is much dimmer. If you decrease the temperature, Hiller showed that you can get an 

order of magnitude or more increase in the sonoluminescence intensity. So we have always said 

it must be the water vapor cushioning the collapse somehow. 
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Andrew Szeri shows that in some sense of the word that is indeed what is occurring. He is 

plotting here the mole fraction, the number of moles of water vapor, divided by the total number 

of moles inside the system as a function of radial position and he is doing this in a Lagrangian 

scheme, so basically these are particle tracers. 

Here is a bubble 833 nsec before its collapse. It extends out to 23 microns. As it collapses 

it gets smaller and smaller to this size - that is what this graph shows, the end points, the radial 

position. 

This is the distribution that he is calculating for water vapor inside the bubble. It is almost 

uniform through the bubble, but as the bubble collapses, water vapor will condense to the outside 

until a certain point is reached when the bubble's velocity is so fast you cannot condense water 

vapor any more and it traps the water vapor. 

I am not exactly sure why, but it also looks as if you get this distribution inside the bubble. 

A lot, of course, stays on the walls and a lot less is actually in the middle of the bubble. 

[Transparency 50] 

If you include the endothermic reactions that occur when water molecules are torn apart, 

you get a very interesting result. Szeri plots the maximum temperature that he gets from his 

bubble as a function of this expansion ratio, the maximum bubble size to the calculated minimum 

bubble size. 

If you do not assume water vapor, if you leave water vapor out of the equation, as the 

bubble expands to bigger and bigger sizes you just get higher and higher temperatures. If you 

include water vapor, which is an energy-sucking-up mechanism, you get this green curve and 

you actually saturate in terms of the maximum temperature you can achieve by single-bubble 

sonoluminescence. According to his calculations, I cannot just continue to drive this bubble 

harder and harder; it is going to saturate. 

If you include some other chemical reactions you get some more endothermic reactions and 

more energy sucked out of the system. 

[Transparency 51] 

That was really bad news for me, because I told people that we had a lithotriptor, and Larry 

showed it earlier today, that if you take a single bubble and generate a bubble in a lithotriptor 

pulse, you can expand it to millimeter scales (the calculation he showed earlier), and when that 

millimeter-size bubble collapses to microns it should emit a lot of light. 
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In fact, this is a measured radius time curve from a bubble in a lithotriptor pulse. I am 

proud of this curve, because nobody had ever measured this before. Although people were pretty 

sure that a bubble would undergo this type of expansion and collapse, we were able to actually 

scatter light off of a single bubble and measure its growth, collapse, and rebound. 

Look at the growth here. It is starting off at about 80 microns and it is growing to over a 

millimeter in size. If you make just a simple assumption of adiabatic collapse over this time 

frame, you would get, probably, hundreds of thousands of Kelvin, very hot, but you actually get 

less sonoluminescence from this than you do in single-bubble sonoluminescence. 

According to Andrew Szeri, the reason is simple: You are trapping more water vapor and 

water vapor is removing energy from the system. 

Another thing regarding this particular viewgraph that Larry asked me to talk about is the 

feet that you also get sonoluminescence when you first compress the bubble, when you take a 

radial bubble and compress it with a shock wave, so we actually see sonoluminescence at the 

very beginning and at the very end, but in both cases we do not see as much as we see in single- 

bubble sonoluminescence. 

DR.ATCHLEY: [Inaudible] 

DR. MATULA: That brings up an interesting question. How do you take a container of 

water, stick it into a water bath and generate a standing wave, because your boundary conditions 

are all shot to hell. The answer is you have a lithotriptor pulse that is being focused to the center, 

so we actually make our sonoluminescence rig with an air gap everywhere except where the 

shock wave is going to come through. That is the only region of the cell that sees the water on 

both sides. 

DR. ATCHLEY: It does not matter what phase you are at? 

DR. MATULA: Oh, yes, it matters a lot. This is a really nice curve, obviously, or I would 

not have brought it. 

If you hit the bubble during the growth phase, as Larry showed earlier, the bubble will just 

collapse immediately and probably shatter, and we see that. If you accidentally time the system 

perfectly so that the shock wave hits the bubble as it is collapsing, we should be able to get much 

more light emission. We have not timed it well enough yet to get to that, but we are trying. 

What I was hoping to do was just the opposite: Instead of worrying about timing the shock 

wave to hit the bubble during the collapse, I would just use the negative portion of that shock 
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wave and make the bubble expand really big until Andrew told me that water vapor was going to 

kill me. 
Of course, the solution is not to use water.   We are going to find a low-water-vapor 

solution and try it in that. 

If you believe what I said about the mechanism for sonoluminescence, that it is thermal, 

that we can match the data, sonoluminescence is known, we understand it - a least some aspects 

of it, or a lot of aspects of it ~ where do we go from here? 

In fact, not being a very bright guy, but knowing a little bit, I can predict the future of 

sonoluminescence, and I do that here. 

[Transparency 52] (laughter) 

Number of publications, starting with the discovery of sonoluminescence ~ that is my Ro ~ 

maximum number of publications. You guys should feel sorry for me: Look at how many 

publications I had to read last year. A year or so from now there should be a collapse in the 

publication record. If anybody can tell me why it goes negative, I would appreciate it. 

But what is the future of sonoluminescence? There are several interesting aspects. I told 

you that if you drive the bubble hard enough it will reach what we call the extension threshold 

and disintegrate. People have calculated that you get surface modes on the bubble by assuming 

spherical harmonics, but they have never told me what the mechanism for those spherical 

harmonics is. 

One possible mechanism is the buoyancy force. I show that in this viewgraph here. 

[Transparency 53] 

Let's look at the sound field in our cell, where this is top, this is bottom, for two cycles - 

here and here. The dashed line is the gradient of the pressure. During the negative portion of the 

sound field the bubble grows, it expands. You can qualitatively look at this as seeing that the 

pressure above the bubble is less negative than the pressure below the bubble, less negative, 

positive, pushes the bubble down. 

At 180° out of phase you have the pressure compressing the bubble. Now the pressure 

below the bubble is larger than the pressure above the bubble and you have a force in the 

opposite direction pushing you up, but because the bubble is smaller, the force is smaller, so over 

an average of an acoustic cycle the net force is to hold the bubble at this pressure antinode - 

right here. 

507 



The interesting thing is that you have a periodic force on this bubble and that periodic force 

should translate into a periodic translation of the bubble. 

[Transparency 55] 

Skipping the mathematics, let's look at what happens if we calculate what a bubble should 

do in the sound field. Again, this is the sound field, and when it turns positive, you have this 

demarcation line going from a force toward the antinode to, on the other side, a force away from 

the antinode. 

Below I have the instantaneous force, the acoustic radiation force. For a bubble driven 

calculated at 1.3 atm, most of the time the bubble is in this region where the force is toward the 

antinode. You see on the instantaneous force it has mostly a negative component. 

If you drive the bubble harder, the bubble will expand for a longer time period and collapse 

later in the acoustic cycle. Now the bubble spends some time of its motion, where its volume is 

large, in a region where the force is away from the antinode and you actually get this positive 

component of the acoustic radiation force popping up. 

If you could drive this bubble at 1.7 atm, which you cannot, you would see that positive 

component growing even larger, so I use this as a qualitative argument that the bubble is 

undergoing translational motion. It can develop instabilities in the shape, it can die out, it can be 

extinguished. 

[Transparency 56] 

This viewgraph shows possible asymmetries in the bubble behavior. This is from Lafont's 

group in Belgium. They had a single bubble giving off light, and that is shown in A, B, and C, 

down here, and they very carefully stuck a very small needle with some dye and injected a small 

amount of dye above the bubble to see what would happen. 

The dye came down closer to the bubble and when it reached very near the bubble it started 

spreading out and, in fact, went back up, not around the bubble, but it went back up. If they 

injected the dye next to the bubble, it did the same thing, it went back up, vertically upward. The 

reason they injected it next to the bubble because the first time you would have set off a shock 

wave from the bubble that is pushing it back up, but now they are injecting it to the side and the 

shock wave should push it off to the side.In all cases they found that the dye went vertically 

upward above the bubble. 
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In a second experiment they let the dye go down to where the bubble was and then they 

generated a sonoluminescence bubble that was surrounded by this dye. Instead of the dye 

spreading out in all directions, it all went up above the bubble. 

[Transparency 57] 

These experiments motivated Michael Longuet-Higgins, who is in San Diego, to calculate 

what would happen if you had a radially oscillating and translating bubble. What he calculated 

was that you would get this dipole field of fluid motion ~ and I do not remember which way is 

up and down in this particular picture. 

This is not for a sonoluminescence bubble, it is for a linear oscillating bubble. 

Nevertheless, it is an interesting calculation that shows that you do get this asymmetry. I am 

arguing that you have this periodic force on the bubble pushing it up and down and there are 

some other data that show there is some asymmetry going on in the system and we want to get 

rid of the asymmetry. The best way to get rid of asymmetry is to get rid of its source. 

[Transparency 58] 

To me, the biggest source of asymmetry in this system is buoyancy. So we get rid of 

buoyancy by going on the "vomit comet," and I think you all know why it is called the vomit 

comet. It is a roller coaster ride. The airplane goes up into a 45° nose-high position, generates 

about 1.8 G's of acceleration, then it turns over and, as it is turning over, you are basically falling 

and the plane is going to fall with you for about 20 seconds or so, then it pulls out before it hits 

the ground. 

What this allows me to do is an experiment in micro-gravity ~ it is not really zero gravity, 

it is micro-gravity.  It allows me to try to remove some of this asymmetry that I am arguing is 

occurring inside the cell. 

[Transparency 59] 

This particular experimental setup is relatively simple to do. You just use laboratory 

equipment, a function generator, power amplifier, power supply for the PMT. Everything has to 

be done in a light-tight box because of the lights in the system and we have a video camera 

monitoring what is happening. 

Obviously, it is a lot of fun to go up in the vomit comet, it is a blast, but not everybody has 

a lot of run. 
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Here is my experimental apparatus right here when I sent one of my students, and I am 

looking for him and I do not see him anywhere around here, (laughter) 

He is not enjoying himself. He had a pretty hard time. Fortunately, the experiment ran 

without him I knew him well enough to be able to computer-control the whole experiment. All 

he had to do was start the equipment and the computer, using a solid-state relay, generate a 

bubble, monitor its stability, track its motion, run through the experiments that I wanted it to run 

through, and all he had to do was shut it off at the end. 

The good thing about this is I do not have to worry about my students, whether they are 

sick or not. The bad thing is the students are not going to work, they are going to sit there and 

play the whole time, and they do. 

[Transparency 60] 

What happens with the data now? That is the important part. The red line shows the 

gravitational acceleration. You go into the parabola, you go from about 1.8 G's down to micro- 

gravity for about 20 seconds or so. You come back out of the parabola and you just keep on 

going through this parabola roller coaster ride. 

The blue line shows the light intensity. What I am doing here is I am holding everything 

absolutely constant, I think, except for G. As a physicist I am just varying G. I am not driving it 

any differently and I am seeing a large increase in light emission — I am up to a 40%, sometimes 

50% increase in light emission when it goes from 2G to micro-G. 

You have to be careful when you go on this airplane, because things other than G are 

changing. The shape of the parabola, you have to worry about whether the orientation of your 

system is causing an effect (it turns out that is not a problem). The weather conditions, the pilot's 

ability to hold micro-gravity. If you look at these micro-gravity data right here it is actually very 

poor, it is not a very good day, I think, that we had in micro-gravity, a lot of jitter in the G. 

The biggest effect is the fact that your bubble is actually a few centimeters below the 

surface of your water and there is actually this column of water above your bubble, hydrostatic 

pressure, rho GH above G. As soon as you remove G, that hydrostatic ambient pressure changes 

and, in fact, if we removed the hydrostatic pressure or we changed the ambient pressure by the 

hydrostatic pressure by rho GH by some value, we can see changes in the light-emission 

intensity. 
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Part of this can be resolved by just saying the hydrostatic pressure is changing in a liquid, 

the ambient pressure is changing. When you go to micro-gravity, you are decreasing the total 

ambient pressure on the bubble and you get increased light emission and when you go to hyper- 

gravity you are increasing the ambient pressure and your light emission goes down. 

That accounts for about 5% of the light emission intensity; we have done the experiment in 

the lab to make sure that that is accounted for. So what we are seeing is sometimes a 40% 

change in light-emission intensity. I think there is the possibility that buoyancy does play a role 

in single-bubble sonoluminescence and I am trying to convince NASA to send me up on the 

mission to Mars or some place to do this experiment. 

[Transparency 61] 

I want to finish by thanking all the students and other people who have helped me and 

given me advice for this work. Thank you. 

DR. GARRETT: Does the bubble go into a different part of the standing wavefield as you 

change gravity, because at one point it is working against gravity and at one point it is not 

working against gravity? Even though the amplitude of the drive as measured at any given point 

is constant, the amplitude that the bubble sees depends on how close you are to the center of the 

sphere or whatever you are using. 

DR MATULA: That is, in fact, occurring. When you look at the bubble ~ let's look at it 

theoretically and experimentally - experimentally, when you go into micro-gravity the bubble 

shifts downward. The reason is, when you are in the laboratory the bubble is not at the pressure 

antinode, it is above the pressure antinode because of buoyancy, the average force is zero. 

When you remove buoyancy, the bubble drifts back down to the pressure antinode. How 

much of a drift occurs? We are using a spherical cell, so we calculated with a spherical Bessel 

function the amount of pressure change that the bubble would see when it did this change. What 

we saw was that the change in pressure amounted to a change in intensity of the light by about 

1%, so smaller than the hydrostatic pressure but definitely there and definitely in the same 

direction, so that you actually have to add the 5% correction with the 1% correction. 

The amount that it moves is very small. It does not move as much as you might think. 

Maybe that is the confusion. I forget the numbers offhand for how much it moves. 

MR. PETCULESCU: [Inaudible] 

511 



DR. MATULA: You asked, I think, two questions. People wondered whether this was a 

laser and I have heard ~ they give it some other weird names. I looked at one of those 

calculations and it just did not make any sense to me at all, because the guy was talking about ~ I 

do not remember offhand, now that I think about it, but I remember it did not make very much 

sense, so lasing does not appear to me to be a practical effect of sonoluminescence. 

Coherence: I think Putterman tried to measure that and I do not think he saw ~ I do not 

think he has ever published it but I think I remember talking to him back in the early 1990s and 

there was nothing there, it was not coherent radiation. I am pretty sure he tried that measurement 

and did not measure anything, but my memory is failing me. 

DR. KEOLIAN: As I remember, he measured the angular distribution ~ 

DR. MATULA: He did that measurement, he measured the angular distribution. Several 

people have done that. If I remember correctly, he measured the angular distribution to see if the 

bubble was asymmetrical and argued that there is some asymmetry in the light intensity as a 

function of angle and he was able to argue that the bubble was slightly flattened at emission, it 

had some ecentricity to it. I remember that publication. 

DR. ATCHLEY: He looked at polarization as well. 

DR. MATULA: He looked at polarization but I do not think he published that and I do not 

think he saw any polarization effects. 

I do know of a group, along the same lines as looking at angular distributions ~ nobody 

actually knows what the emission spot size is, what is the volume size of this emitter. I have 

been told that in astronomy you measure the size of the emitter, the size of the star, by doing 

something called the Heinberry-Brown-Twis experiment, where you have a couple of detectors 

at some angular distance and, through magic or quantum mechanics, either one, you have 

wavefunction overlaps that occur and you actually can measure over a small angular distance the 

size of the emitting star. 

Somebody tried to do the same thing with single-bubble sonoluminescence, they tried to 

use angular measurements to measure the size of the light-emitting region, but they were 

unsuccessful in that. 

DR. WILEN: I heard early on that one of the mysteries was that jitter in the light emission 

was much slower, orders of magnitude slower, than the jitter in the driving frequencies? 
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DR. MATULA: Yes, that one viewgraph I showed earlier where you have the flash 

occurring every acoustic cycle with about a 100-psec foil-width half-max, if I remember 

correctly, they said that their instrumentation was not that good at jitter, if they had a higher jitter 

in their instrumentation, how could they generate flashes that have smaller jitter? It does not 

make sense. 

The only argument I have heard to counter that is the fact that if you take into account the 

Q of the cell, high-Q cells, the jitter should decrease as 1/Q. I have heard that argument, I am not 

sure it has been proved, but it makes sense to me. 

DR. GARRETT: If the Q is, say, 10,000 ~ what you are saying is the jitter in the oscillator 

is higher than the jitter in the flash ~ but if the Q is, say, 1000, that means that each time the 

oscillator is putting in only 1/1000 of the amplitude, so if it is off a little bit it is not going to 

amount to much, because you have established a resonance where you are just kicking it at 

slightly the wrong time with a much lower — 

DR. MATULA: That is a good way to explain it. 

MR. GLADDEN: In the RT curves, is radius a function of time for the bubble? When you 

roll off and you have that initial collapse and, actually, for each subsequent collapse, I am sure 

someone must have calculated what kind of acceleration you are talking about right at that cusp 

there where there is that sort of hard sphere limit. I am just wondering what kinds of magnitudes 

there are. 

DR. MATULA: People have calculated it but, better yet, people have measured it. People 

have measured down to the limits of resolution of their system to bubble collapse and the 

rebound. Putterman did this with a very fast femtosecond laser, strobing it, and a group in 

Germany did it using light scattering into a streak camera. 

I believe the number was astronomical. It was like 1010 G's. It was just an astronomical 

number. That was what made sonoluminescence a very controversial subject for a lot of years. 

It appears to be an exotic regime, such fantastical numbers are associated with it that people 

started putting out all sorts of theories. At one time I counted 14 different theories for 

sonoluminescence that extended from everything from squeezing a bubble, it gets hot, to 

electrical discharges, because bubbles are known to carry electrical charges on them, to quantum 

vacuum radiation. We had seen a talk earlier in the week on the Kasimir effect. You have two 

forces on parallel plates and you saw the acoustic analogy to that, which is really cool. 
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Schringer postulated that sonoluminescence could be due to a dynamical Kasimir effect, 

where you had the bubble moving and then real photons being created out of virtual photons and 

those being emitted. It took about seven or eight years over all the calculations. That is a 

possibility but the number of photons being emitted is so small as to be minuscule and not really 

part of what we see, probably. 

Other theories? There were theories that involved the bubble being unstable and I think 

Larry Crum showed a jet going through the liquid — that is a famous picture of Larry Gram's — 

and if the jet goes through the liquid it smacks the liquid below the bubble, it can fracture the 

liquid, and you get something called fractoluminescence; somebody was arguing that a while 

back, that that should generate light emission that depends on the gas that is dissolved in the 

liquid. 

Chemiluminescence: People have been arguing for years that it is just chemistry, it is not 

really getting hot, it is free-bound transitions, free-free transitions, bound-bound transitions, just 

normal chemistry. In fact, it is kind of like that but it is just a little bit hotter, it appears to be a 

little bit hotter. 

Most people believe now that it is just a thermal mechanism. Chemistry occurs from a 

thermal mechanism as well, of course. It is not very hot. Most people believe now that it is 

10,000 to 20,000 Kelvin, which is still hot, much hotter than the sun. 

That reminds me of that question I asked at the very beginning. If the sun is 5000 Kelvin 

and it is yellow, and multi-bubble sonoluminescence is 5000 Kelvin, why is it blue? 

PARTICIPANT: It is not blackbody, so - 

DR. MATULA: But the sun is, right. That is my explanation for it. 

MS. HIGHTOWER: But the sun is not yellow in space. 

MR. PORTER: Yes, that is what I have heard. After it goes through the atmosphere it 

turns yellow. 

DR. MATULA: But the peak in the spectrum at 5000 Kelvin, isn't that yellow? 

[Simultaneous discussion] 

DR. MATULA: There are two parts to the outer layer. One is the corona, which is 5000 

Kelvin. That is the one I am talking about. 

MR. GILBERT: But it is much hotter in the interior. 
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DR. BASS:  In the photosphere what you see is 5800.  The corona is much hotter.  You 

never see it, so you do not worry about it. 

DR. MATULA: Yes, that is right. 

Thank you. 
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