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ABSTRACT 

Formulas are deduced for vibrating systems of one, two,and 

three dimensions.   Undamped and damped free vibrations and 

harmonic forced vibrations are treated.   Methods are proposed 

for calculating the damping constants from test observations 

I.   INTRODUCTION 

In developing formulas for vibration and possible flutter of structures 

1,2 
such as rudders,   '     it may be necessary to include damping forces.   Since 

these forces are not easy tocalculate, methods of determining them from test 

3* 
observations may be needed.        The basic theory for two- and three- 

dimensional cases will be considered and feasible methods of observation 

will be sought.   First, however, formulas for the one-dimensional system 

will be written to assist in treating the main problem.   For convenience of 

reference,  a summary of the results is given in Table 1; see pages 30 and 31. 

II. ONE-DIMENSIONAL VIBRATIONS 

Assume as the equation of motion 

mx + ex + kx = P(t) [l"J 

in which m, c, and k are positive constants, x = dx/dt, and P(t) denotes an 

applied force varying with the time t. 

1   References are listed on page 33. 
*   In Reference 1 (see pages 78 and 83), certain damping terms were omitted 
from the flutter equations because methods for determining these terms from 
experiments were unknown to the authors at that time.   These flutter equa- 
tions including the damping terms originally omitted are of the same form as 
the equations given here for the three-dimensional case. 
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1.   DAMPED FREE VIBRATIONS 

If P = 0, thG general solution of Equation [l] can be written (as is 

easily verified) as follows in terms of independently arbitrary amplitudes a 

and b: 

2 - t 
If c   < 4 mk (less than critical damping):   x = e ^   (a cos cot + b sin cot) 

c ,     2 _ k        12 2 
where M-TT"    

an<3   w   - ~ 2m m 
— m c 
4 

c 
2m 

If c    -A mk (critical damping):   x =  (a + bt)e ^ , fi- 

If c   > 4 mk (greater than critical damping):   x = ae ^"*    + be  ^ 

whereof    and /./    denote the following two values: 

^l,2=2m 

2 .    HARMONIC FORCED VIBRATIONS 

(c ± 4 c2 - 4 mk   ) 

With P =  p cos co t in terms of arbitrary constants p and co 

x = a cos w t + b sin to t 
o o 

/i 2, 2     2 (k - mco     )   +   c co 
o o . 

(k - mco    )   +  c co 
o o 

A, 2\\    2    2 
(k - mco    ;   ♦  c co 

o o 

a = (k - mco    ) p 
o ' v 

b = ceo p 
o 

,2,2,       2        a 
(a   + b ) - p  ,      -j- = 

k - mco 

ceo 

w 

Thus a = 0 and the vibration is in time quadrature relative to P 

hen co = ^]k/m, which is the value of co for undamped free vibration.   The 

maximum amplitude or maximum of 

when 
r 2 1 

... 5». o     9 
= 0 

I    2        2 
:"^J a   + b     forgiven p, however, occurs 

(d/dco ) 
o 

/l CM \ £t £t 
(k - mco    )  + c a 

o o 

■-«* ^,i^!ii3\ti'^.''^.^'p4^^t>i&Mi^«ir^ ■■'- '- 



or when 

2     k     c2 

CO       = o "   m 2 
2m 

2 
This differs from k/rn by twice as much as does to   in a damped free 

oscillation. 

These formulas exhibit several features for which analogs mayreason- 

ably be expected in more complicated cases, namely: 

(1) Two independent modes of damped free vibration occur.   Their 

amplitudes can be chosen to make x and x agree with any assumed initial 

values. 

(2) These free vibrations are oscillatory provided the damping constant 

c is not too large; in this case, c produces only a second-order change in the 

oscillatory frequency. 

(3) In a harmonic forced vibration, c introduces a component of x in 

time quadrature relative to the applied force P (proportional to sincoQt 

instead of to cos to t). o 

(4) x is entirely in quadrature relative^to P when the forcing frequency 

factor co   equals the value of co for undamped free vibration. 
o 

(5) The maximum amplitude of x for forcing at given p, when damping 

is present, occurs at an co differing from the undamped free co by more than 

does the oscillatory co in damped free vibration. 

3.   EXPERIMENTAL DETERMINATION OF c 

If yx^tO, its value can easily be determined from a curve showing 

either x or x as a function of t during damped free motion.   Then c = 2myx . 
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If w is also determined from the curve, the ratio k/m can be calculated as 

2       2 
k/m = w + fJ-   .   To determine k and m separately, one of them must be 

known from some other source. 
i I 
i   I       : 

j i Or, during a damped forced vibration the ratio b/a may be observed as 

| | the ratio of the components of x respectively in lagging quadrature to P and 

■ ! 2 ; j in phase with p, or the equal ratio for x.    (Note that here x = -to    x). Then 
! i o 
! I '       1 ,,              2.b : c = — (k - mw    ) — 

!                                                                                 to o     a 
; o 
i In this case, the values of both k and m must be known. 
i 

j  j III. TWO-DIMENSIONAL VIBRATIONS 
l  | 
I  : Assume that the kinetic energy T and potential energy V of a two- 

4   5* dimensional system can be written as    ' 

T--| m/ ♦ | m2y2 + m^xy, V=| ^x^ Iv'+k
i2

Xy 

in which x and y are generalized coordinates and m1 , m   , m      are inertial 

and k1# k^, k^ elastic constants, of which only m      and k      may be 

negative.   Substitution of first q = x and then q = y in Lagrange's   equation 

or 

d  3T  , aV  ZQ 
dt aq     aq 

j   0  ' gives as equations of motion 

|* m1xi+  kxx + m12y + kJ2y = P(t) 

ml2^1+k12X + m2y * k2y   =^(t) 

• in which P(t) and Q(t) represent the total generalized forces acting on the 

*  Also see Appendix A of Reference 1. 
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system (not including internal elastic forces).   Part of P and Q may be due 

to linear damping forces.   Expressing the latter in terms of damping 

constants c  , c  , c     , c     , the equations of motion may be written: 

rr^x + kjX + m12*y + k^y + c^ + c    y = P(t) 

mi2^+ k12X + m2y + V + °21* + C2y = Q(t) 

[2] 

in which P and Q represent possible external forces acting on the system 

(aside from damping forces). 

Certain restrictions on the possible values of the constants are worth 

noting.   Let x and y be so chosen that T and V are never negative.   Damping 

effects can never increase the sum T + V.   Multiply the first of Equations [2] 

by x and the second by y and add the two equations.   The sum of the 

resulting m and k terms is easily seen to equal (d/dt) (T + V); hence, if 

P = Q = 0 

I"   <T+V) = -c/-c/-(circ21)xy 

To keep (d/dt) (T + V) from ever being positive, it is necessary that c > 0, 

c_ > 0, since either x or y may vanish.- Similarly, to keep T > 0 and V >0, 

it is necessary that m  , m  , k  , and k   all be > 0. 

Further restrictions may be inferred from the following theorem.   LetoC, 

yS,//   e, g be real numbers.   Then 

2 n  2 2 2 
de     +    ßg     +   yeg>0or   de   + ßg    >-yeg rgi 

for all values of e and g if and only if 

<^>0,   ß>0, y2< 4^/3 

To prove this, note first thatch and ß cannot be negative because of 

S    ! 



cases in which only e =  0 or g =  0.   Relation [3] then clearly holds if e and 

I g are such that/eg >   0. 

Suppose, however, that yeg < 0.,  Then Equation [3] in its second 

form is equivalent to the following: 
2 

0 0 o 
(^e   + ßg ) >   (/eg) [3a] 

provided that positive square roots are taken in passing back from Equation 

[3 a] to Equation [3] .But 

| (?te2*ßg2) = Ke2-/3g2)     + 4«Cß(eg)2 

I 2 2 
I Hence, ifcOO a.nd/3>0 and if e and g are chosen so that    ^e =/3g   , 

? ? 2 2 { then ipCe + ßgJ)   =   4<^/3(eg)   .   Thus Equation [3a] can hold generally only if 
i 
i 4~x/3>y2

4If either^ or ß vanishes, Equation [3] requires thaty=0.    Conversely, 

i 2-22 2 2 2 
if the condition that &<P^y    is met butc^e   =£ ßg   , then {cCe   + ßg ) 

\ 
2 2 2 r    T r i >4dß(eg)   >y  (eg)    and Equation |3aj holds, also Equation |_3J . 

Substitute here<^=m /2,  /3=m /2,   y-m     , e = x and g = y; next, 

cC = k /2,    ß=k /2,    y=k     , e   = x and g =  y; and finallyo< =c..,      ß -c^, 

y  =c+   c,e  = x and g = y.      Compare the resulting expressions with 

expressions previously written for T, V, and (d/dt) (T + V).   It will then be 

clear that, to prevent T and V from ever becoming negative or (d/dt) (T + V) 

positive, it is necessary and sufficient that 

f I"l22- mlm2' k12^   klk2'  (C12 + °21)2^   4C1C2 M 

These restrictions will be assumed to hold. 

It follows then also that 

2m12k12 < mxk2  + m2kr c^c^ < c^ [5a.b] 

1! 
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\   * 

For (m^ + m^)2 =  (mik2 - m^)2 + ^m^ > ^m^k^ *™1Z\Z
2 

by relations [4] .    (Note that a square cannot be negative.)   Similarly, in 

any case 4c12c21<4c12c21 + (c12 - c21)2 =   (c^ + c2i)
2; hence, by 

Equation [4] , 4c    c21 <4c1c2< 

Two other relations that can be inferred in a similar way from relations 

[4]  are: 

(C12+  C21)ml2<Cim2+ C2ml'   (C12+C21)k12< Clk2 + C2kl    [5c'd] 

1.    UNDAMPED FREE VIBRATIONS 

Undamped free oscillations merits consideration as background for 

study of the damped case.   Let c   =  c=c=   c=0, P=Q = 0.   Then 

Equations [2] become 

rr^x + k x + my + k^y = 0    m^x + k12x + n^y + k2y =0       '    (XI 

Two special cases may first be noted.   According to Equations [6]  , x 

2 2 
can vibrate while y = 0 only if k   - m to   and k     - m    to   are both zero. 

The first condition fixes w at "\j k /m  ; the second requires that either 

m      = k     = 0 or m k      = m    k   .   Similarly, y can vibrate with x= 0, and 

w =i kg/m. only if either m      = k      = 0 or m k      = m 2k   . 

If x and y vibrate together in proportion to cos cot, the following 

equations must be satisfied: 

2 2 
(kx - n^co ) x + (k12 - m12co ) y= 0 

2 2 
(k12 - m12co ) x + (k2 - m2w )   y = 0 

Elimination of x and y gives for the determination of co the following equation: 

2 2 2 2 
(k1 - m1co ) (k2 - nyo ) - fc     - m^to )  =   0 [7a] 
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■ or 

2    4 2 2 
^mim2 ~ mi2  ^W   ~ ^mlk2 +  m2kl  ~   2ml2k12^w    + ^klk2 ~ k12  ^ = °   t7b^ 

': 2 9 
If k       =   ^k  , one root of Equations [7b] is:   to   =  0.   Alternatively, 

9 if m m    = m       , only one mode of vibration is possible. 

2 2 2 
Assume now that k       < k k   and m       < m m   .   To locate w  ,     ' 

|    . consider L, the left-hand member of Equation    [7a]  or Equation    [7b]  , as a 

2 2 2  ■ 2 
function of to  .   At w  =   0, L > 0; but when co   has increased to w     ;    . 

nun 
i • ' 
! representing the lesser of the two values k An    and k An   , then it is clear . 

'    ' ' r    i 2 \ from Equation    [7aj that L < 0.    Hence L=   0 at some positive value of co 
i    : ■ • • • 
i 2 

less than co     .   .   Also at the greater of the values k An   and k An   , L<0, 

1 but as .to-*■ oo   it-is clear from Equations [7b] that L> 0.   Hence a second 
i 

root of Equation    [7a, b] occurs at a value of to" greater than both k, An. and 

] ; k2An2. 
.ii- . 

Thus two different modes of vibration of the system are possible with 

both x and y vibrating.   In each mode 

I   \ • Z  -       k12 - ml2"2 kl - mi"2 

i   \ x  ~   ~ , 2 ' 2 
!   I       . k2. - m2W k12 " m!2W 

3 i 
*      * 

2 .    DAMPED FREE VIBRATIONS 

Let P =  Q = 0 so that Equations [2] read ' 

mxx+  kxx + m12*y + k12y + c^ + c^y = 0 [8a] 

m12x + kl2x + m2'y* + k2y + c^x + c2y = 0 [8b] 

In special cases especially if m     = k      = 0 and c     = 0 so that 

Equation    [8a] reduces to Equation [l] with P = 0, x can vary while y = 0; or. 
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similarly, if c     -  0, y alone may vary.   Such cases will not be discussed 

further here. 

For the general case,  solutions may be sought in which 

x = aeXt,    y=beXt      ■ 

where a, b, and X are non-zero constants, real or complex.   Substituting in 

Equations [8a,b] and canceling out e     : 

2 2 
(m1X    + kx + c1\ ) a  + (m12X    + k     + c12X) b= 0 [9a] 

(m12X2
+  k12 + c21X)a + (m2X2

+ k2+c2X)   h=Q ^ 

The result of eliminating a and b from these equations may be written: 

e4 X 4 + e3  \3 + e2 X2 + ^X + ^ = 0 J-10J 

where 

€o = klk2 - k122<    «l = Clk2 + C2kl " (C12 + C21)k12 

€2   =mik2 +m2kl- 2ml2k12  +C1C2  " C12C21 

2 
3 " ~1"'2 T ~2*"1      v"l2 T"21""12'        "4 = "V^ ' IU12 

€-3 = cimo + comi ~ (
C

TO 
+ c,.)m.n,        <r   . m,m„ - m 

The coefficients eQ .  .  .  .  <r   are all > 0, according to Equations [4] 

and [5a,b',c,d]  .   Hence no root X of Equation [lO] can be a positive real 

number.   Probably if the damping is strong enough, negative real roots may 

occur, possibly even four in number, but this difficult question is of little 

practical interest here. 

For the general case, write X=   - p. + lw where 1=    ^j -1 and n. and <o 

are real numbers.   The following two equations result from substituting in 

Equation[l0] ,   then equating the real and imaginary parts separately to zero; 
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li < 

and dividing the imaginary equation by iw on the assumption that OJ ^fc 0: 

*4U   " {V3 €3^+ 6 €4^ )w  + *o ~ «l^+V"   " e3/* +V-= °        [lla] 

2 2 2 3 
€1 ~ V°   ~ ^2e2~ 4f4°J ^ + 3e3/i    " 4e4At    r ° LllbJ 

2 
These equations determine^ and co   .   The conjugate quantity -p.  -Uo ■ 

is then also a root of Equation [lO] .    Since there are only four roots in all, 

there can be only two pairs of values,^     and w  , and/A „ and w  .   These 

pairs define two modes of damped oscillation.    Since damping cannot 

increase the total eneigy, it must turn out that both p.    and yu    are positive. 

To obtain real expressions either the real parts of all quantities (i.e., 

solutions) may be chosen or the imaginary parts divided by i; the two pairs 

of real solutions thus obtained are in relative time quadrature.   The value of 

the ratio b/a for each mode may be obtained from Equations [9a,b] .   Since 

usually b/a will turn out complex, there will generally be a difference of 

phase between x and y as functions of the time. 

Thus four real expressions are obtained representing four independent 

damped oscillations.    For these oscillations, x and y can be written thus: 

x = e"^1* (A   cos w t + A' sin« t), y = r   e"^1 [AI cos (o^t + ej* A^ sin^t +€J)j 

or 

-uot -A*-2* T "I      ■ 
y=e ^    (A2 cosc^t + A^ sino^t), y = r£ e ^    [A2 cos (o^t +e2^+A2 sin(w

2
t+€2^J 

Here A   , A' , A„, A'  are independent arbitrary constants which can be 

adjusted to fit any assumed initial values of x, x, y, y.   It should be noted 

that 

10 

.  ,      ,.....,„„......^-s; - - —liilüS^i 



!    ! 

I 
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2 2 .»2        2 
x = - (co1 -p. 1) x and y =  - (to   -/i,)y 

in any one mode whereas in the other 

" / 2      , 2, ... ,2        2. 
x =  - (w2 - fJ.  ) x and y =   - («2 -,«-2)y 

Only small damping effects appear to be important in practice.   Hence 

no general discussion of Equations [lla,b] will be undertaken here. 

If the c's are sufficiently small, fJ.   will also be small, and the co- 

efficients   e   and   e   are likewise small.   Consequently all terms in 

Equation [lla] containing^, are small at least to the second order, and the last 

three terms in Equation [lib] are small to the third order.   For an approximate 

solution, these terms may all be dropped.   Then Equation [lla] becomes: 

4 2 r        -, €
4"   - e2(x'   *   e0   ~0'   This a3rees with Equations [7a,bj for the case of 

a 

no damping so that to the degree of approximation under discussion, the 

oscillation frequencies are the same as if there were no damping. From 

Equation [lib] the approximate value of fJ. is 

2 
i 11      3 [12] 
2 o        2 

V2e4w 

More accurate solutions can be obtained from Equations [lla,b] by a 

process of successive approximation. 

3.    HARMONIC FORCED VIBRATIONS 

If the applied forces are harmonic funcllons of the time t, they cause 

harmonic vibrations of x and y.   At the start there may also exist superposed 

damped free oscillations whose amplitudes can be adjusted so as to produce 

11 

I    . 
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on the whole any initial values of x, y, x, y.   These damped free oscillations 

will be assumed to have died out. 

Since in the one-dimensional case, the presence of. damping intro- 

duces a phase difference, assume: 

P = pcos co t + p' sin co t, 0 -  q cos co t + q' sin to t 
Q ° ° [13] 

■x = a, cos co t + a' sinco t, y = a„ cos co t + a' sinco t 
1 p       1 o 2 o       2 o 

In Equations \l~\ the cosco't and sinco t terms must balance separately. L -1 o o 

After canceling the time factors, the result is the following four equations: 

(k. - m co    )a.,  + c co a'   + (k      - m    co    )a    + c    w a"  = p 
1 lo      i        lol 12 12  o      I        12.  o £ 

~ClVl +   (kl - miWo2)ai " C12V2 +  (k12 - mi2Wo2)a2 =P*     [l4] 

(k12 " mi2CJo2)äl + C2lVl *   (k2 " m2Wo')a2 + c
2"oa2 = q 

-C2lVl + (k12 " mi2Wo2)al " C2V2 + (k2 " m2u0
2,a2= q' 

Here p, p', q, q', a   , a!' , a   , a'  are eight real numbers.   In general, any 

four of them can be assigned arbitrarily; the equations then fix the values 

of the other four.   Furthermore,  since cos co t and sinco t differ only in 
o o 

phase, the zero for t can be so adjusted that any chosen one of the eight 

quantities a    .... q' vanishes, without altering the physical form of the 

vibration.   Thus all cases can be covered while keeping one coefficient 

zero. 

In particular, Equations  [l4] may be solved for the amplitudes a   , a' , 

a   , a'  caused by given applied forces represented by p, p', q, q'.   The 

determinant A of the coefficients of a  , a' , a   , a'  is easily found to i.ave 

12 



.-#- 
1 

>   f the value 

22 

a=[(kl ■ m
1°Jo2)(k2 " Vo^ " (k12 - ml2Uo2) ] . " wo4(clC2 " C12C21)2 

If there is no damping, comparison with Equation [7a] shows that A  =     0 

when oj   equals the value of to for either of the frequencies of undamped free 

vibration of the system. 

.   If c   , c  , c     , c     are merely all small,  A will vanish at two 
J. it J. £t £* X 

slightly modified frequencies that differ also slightly from the frequencies 

of damped free oscillation.   As w   approaches either of these frequencies at 

which A= 0 while p,  p', q, q' remain fixed, the amplitude of the forced vi- 

bration becomes large (the phenomenon called resonance). 

4.    EXPERIMENTAL DETERMINATION OF c, c2, c, c21 

One method is to make "bumping" observations by starting a motion 

and recording it as it decays.   By proper adjustment of the initial values of 

X/ x, y, y, the system can be made to vibrate in either of its two modes of 

damped free vibration with the other mode absent.   Observations may be 

2 
made of either x and y or x and yas functions of the time since x = - (w 

2 .. 2 2 ..2        2.. 
p.     ) x and y = - (u      - JJL    ) y in one mode and x = - (co. -/i.) x, y = 

2 2 
- (w„    -jtt„  ) y in the other.   From these observations, values can be cal- 

culated for each mode of the frequency u>, the damping constant fx , and the 

amplitude ratio r and phase e of y relative to x, giving the eight known 

quantities 

13 
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Insertion^of co   and/z    and then of co   and/i.    for co and fj. in Equations 

[lla,b] then provides four equations which can be solved numerically for 

c   , c  , c     , and c      provided the six constants m   , m   , m     , k  , k   , and 

k      are known..   It might be more accurate, however, to use equations 

containing the constants   e    and   <r    which differ from zero only because of 

damping.   If bumping observations are to be used, further study of the 

methods of calculation should be made.   The damping may be weak enough 

to justify the use of simplifying approximations. 

It may be worth noting that observation of all eight quantities w   to 

€„ should make possible the calculation of nine of the ten quantities m   , 

m„, m10 , k, , k„, k, „ ,  c,, c0, c, 0 , and c01 .   For a restriction exists on 

the possible variation of these quantities.    Let Equations [8a,b] be 

multiplied by an arbitrary constant js.   The new equations may then be 

regarded either as equations in a different form for the original system or as 

equations for a different system having constants js times as great but the 

same damping modes as the original system.   In order to know which system 

of this similitude class the observed constants w e    refer to, 

it is necessary to know at least one of the ten quantities m c 

Then the remaining nine can all be calculated from the eight observed 

constants co    .  .  .  .  .  .  .  . e?. 

(If Equations [8a, b] are multiplied by different numbers, they are still 

valid for the original system but cannot be regarded as equations in the same 

form as Equations [8a,b] for a different system because the new m „^   m_ 

14 
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and k    ^ k
?1 •)   Even if the initial values of x, x, y, y cannot be properly 

adjusted, since one mode will usually die out before the other, both sets of 

values,  jU. and co   and JU.? and co  , can be inferred from the same curve of x 

or y as a function of time.   If both modes persist, it is still possible to 

7-10 observe each mode in turn by means of a filter. Or a vibrator may be 

used and adjusted in frequency so as to be in resonance with one mode; 

then, after the vibrator is removed, a damped free oscillation will occur in 

this mode only. 

If c      = c     =  0, c   and c    can be calculated from  ju.    and/i.    . 

Otherwise the observed values of /x    and fj.    furnish only two relations 

among the four quantities c, , c„, c, „, c„. . 
i       L       \l       21 

An alternative method is to study forced harmonic vibrations produced 

by applied forces P and Q whose relative amplitudes and phases can be 

controlled.    (Applied forces are pure P when they do no work during varia- 

tion of y alone, or pure Q when no work is done during variation of x alone.) 

Two alternative procedures will be described which require no measurements 

of P or Q.   The constants m   , m   , m     , k  , k  , k     , however, must be 

known.   Either x and y or x and y may be observed since in forced 

2      .. 2 2 
oscillations x =    -co    x, y=   -co    y and co     will be seen to cancel out in all o o o 

final formulas. 

First Procedure:   Isolation of c  ,. c  , c     , c      in turn.   Make 

observations as follows: 

(1)   Cause x to vibrate with y = 0.   Assume p' =   0, so that a1 denotes 

15 
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the amplitude of the component of x that is in phase with P and CL" the 

amplitude of the quadrature component of x.   To do this, apply P =  o cos w t 
o 

and adjust the amplitude and phase of Q so that a   = a' =  0.  Then Equations 

[141 reduce to 

2 
(ki'Vo2,aitciVrp 

(k12 " mi2Wo2) al +C2lVl   =q 

C
Tw«ai + (k. - m w    ) al   = 0 1  o  1 1        1  o       1 

-c2iVi+(ki2-mi2wo2)arq' 

The magnitude of to   should be made quite different from  '^jk /m   .   Only the 

ratio a^/a, needs to be observed. 

Probably the adjustment of Q can be effected most conveniently by 

varying its amplitude   \] (q)   +   (q1)    until a    (or the component of y in phase 

with P) is zero, then varying the phase of Q (thus varying q') until the 

, quadrature amplitude a^ of y equals zero, and repeating these adjustments 

i ' 
: in turn until both a    and a'  remain negligibly small. 

Then 

Ü ■ ai 2 
!| Cl = Z1T (kl " ml"o } 

I   : o   1 

|   : (2)   Similarly, to keep x = 0, apply Q = q cos co t, hence q' = 0, and 

I with WQ not near ^j k2/m2 ,    adjust p and p"   so that a   =  a" =  0, and read 

\  * a2/^2"   Then 

n    -    ^      n, 2. C2-^T7 (k
2-

m2Wo) 
o 2 
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(3)   Cause x and y to vibrate in phase with P; that is, writing 

P = pcoswot with p' = 0, adjust q and q' so that a; = aL = 0.   Read a /a 
X £, J. C* 

Then from the second one of Equations [l4] 

C12T-a2   Cl 

In this case the simplest way to effect the required adjustment of Q 

might be to vary its amplitude so as to reduce the larger of a*  and a' until 

al = a2' then adjust the Phase of Q so as to minimize a'    and repeat these 

adjustments until a^ and a^ have been made sufficiently small. 

(4)   Cause x and y to vibrate in phase with Q, assuming q' = 0.   Adjust 

p and p' so that a^ = a^ = 0 nearly enough.   Read a /a   .   Then from the 

fourth of Equations [l4] 

C21-"ai   C2 

This procedure should yield the most accurate values of the four c's, 

but the experimental adjustments required may be considered too tedious. 

Second Procedure:   Single-phase forcing.   Apply P and Q in any known 

ratio but in the same phase.   Write P=  p cos co t, Q = q cos w t, so that 
o o 

p' = q" = 0.   Read a^ a2 as amplitudes of inphase and a' , a' as amplitudes 

of quadrature components of x and y.   Repeat with a different ratio Q/P, 

distinguishing the amplitudes thus obtained by a bar. 

Substitute each set of a's in turn into the second and fourth of 

Equations [l4] , in which p' = q' = 0.   The resulting equations can be 

17 
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written: 

i 
! 

VlCl + V2C12 r   (kl - mi"o2) ai +  (k12 " mi2Wo2) a2 

co a o 1C1 + V2C12 = (kl " mlWo2) ai *   (k12 " ml2Wo2) a2 

VlC21+   V2C2 =   (k12 -mi2ÜJo2) ai + (k2 ~ m2t°o2) a2 

VlC21 + V2C2 =   (k12 - mi2Wo2) ai +   (k2 " m2"o2) a2 

These two pairs of equations are easily solved for c  , c     , and c  , c     . 
1 JL C, C, C, X 

IV. THREE-DIMENSIONAL VIBRATIONS 

Let x, y,  z denote the three displacement variables, for example v; y 

aC motion of a rudder (see Reference 1).   Then linear equations of motion 

can be written as follows: 

nyx + kjX + m12y +  k^y + m^z + k^z + C]x + c^y + c^z  = P(t)  [l5a] 

m12k" + k12X + "V + k2y + m23*Z' +  k23Z + c21* + C2* + °23Z = Q(t) ^^ 

m13x + k13x + m23y + k23y + rn^z + k^ + c^x + c^y + CgZ  = R(t)    [l5c] 

Here P, Q, and R are generalized external forces so defined that the rate at 

which they do work on the system is always Px + Qy + Rz.   The m's are of 

the nature of inertial constants and the k's of elastic constants. 

Then there may be, as in Equations [ 15a,b,c] , nine linear damping 

constants cr c^ c^, c^, c^, c^, c^, c^, c32.   The six cross 

constants c     , etc., will be limited in relative size, as in the two- 

dimensional case,  since the damping necessarily tends to decrease the total 

18 
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energy T + V; they are likely to be relatively small and may be negligible, 

but this cannot be assumed to be true in general because the magnitudes of 

all nine constants will vary with the choice of the variables to be called x, 

y, z. 

The situation will be analogous in general to that for two dimensions. 

IfP=Q = R = 0 and all c'c are zero, there will be solutions of Equations 

[l5a,b,c] representing three modes of undamped free vibration.   If any c's 

do not vanish, these modes become three modes of damped free oscillation; 

or, if the c's are sufficiently large, one or more modes may be replaced by 

two modes of exponential decrease without oscillation, such as were 

represented by formulas in the one-dimensional case. 

In the oscillatory case, on the other hand, there will be three damping 

constants p.   , fi   ,  fj.  .   In any one mode of damped oscillation, the three 

variables x, y, and z may be assumed to be proportional to e "l   cos 

(at + c), in another mode to e ^2   cos (w t + e), and in the third to e  ^3 

cos (u t + e), the phase angle € being different in general for x, y and z 

and different in the three modes. 

The frequency factors co  , to  , GO   will not be quite the same as in the. 
J. Ci O 

undamped vibrations, but the difference will be only of the second order if 

the damping is relatively small. 

A more detailed discussion of these various cases follows: 

19 



1.    UNDAMPED FREE VIBRATIONS 

If     P : Q : R : 0 and all the c's are zero, a solution of Equations 

[l5a,b,c] is 

x = a   cos cot, y = a   cos cot, and z = a   cos cot, a   , a   , and a„ being real 

numbers; from Equations [l5a,b,c]  : 

(kl " miw2) al +  (k12 - ml2w2) a2 + (k13 " mi3"2) a3 = ° 

(ki2 - m12co2) ax +  (k2 - m2co2) a£ +   (k^ - m23co2) a3 = 0 

(k13 - m13co2) a2 +  (k23 - m^J) a2 +   (kg - m^2) a3 = 0 

Equating the determinant of a   , a   , a    in these equations to zero gives the 

equation: 

2 2 2 
(k1 - m1co )(k2 - m2w )(kg - m13co ) 

+ 2(k12 " mi2u2)(k13 " mi3C°2)(k23 " m23"2) 

- (kx - mlW
2)(k23 - m23co2)    - (k2 - m2co2)(k13 - m^co2) 

2 
- (kg - m3co )(k12 - m12co2)    =0 [l6] 

2 
This is a cubic equation in co   whose three roots furnish the frequencies for 

three modes of undamped free vibration.   Any two of the original equations 

can be solved for the ratios of a   , a   , and a„ to each other in any one of 

the three modes (see, for example, Appendix C of Reference 1). 

2 .    DAMPED FREE VIBRATIONS 

Assume P = Q = R = 0 and write 

Xt Xt Xt x = a^e     ,   y = a e      ,   z = a e 

20 
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whore a^, a^ a^ and X may all be complex numbers.   Substitution in 

Equations [l5a,b,c] then gives: 

2 7 
(kx + m1 X     + cxX ) al + (k12 + m12 X     + c12X) a2 

2 
+ (k13+m13X    +c13X)a3 = 0 

(k12 + mi2  X2 + C21X ) ai +  (k2 + m2 X 2 + C2X } a2 

+ (k23+m23X2 +C23X,a3 =° 

(k13 * mi3 X 2 + C31X ) ai + (k23 + m23 X 2 + °32X > a2 

(k3 + m3 X 
2 + c3X) a3 = 0 

The determinant of a^ a2, a3 in these three equations set equal to zero 

gives : 

2 2 2 (kx + m1 X     +c1X)(k2+m2X     +c2X)(k3+m3X     + cgX ) 

+ (k12+m12X2 -o12X)(k23+ m23X2 + c23X)(k13 +  ^X2^) 

+ (k12+ mi2X2 +C21X)(k23+ m23X2  + C32X)(k13 + ml3^*°13^ 

-(k1 + miX
2 +0^)^23 + m23X2  +c23X)(k23+ m^X2  .c^X) 

-(k2 -m2X2
+c2X)(k13+ m13X2 ♦c^xMk^ m13X2 + c31X) 

-(k3+m3X      +c3X)(k12 +m12X      ^X^ + m12 X 2 + cn X ) = 0 

[17] 
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This is an equation of the sixth dogree in \ .   It may have real roots 

if the c's are large enough, perhaps as many as six real roots.   On the 

other hand, analogy with the two-dimensional case suggests that if the c's 

'are not too large, there will be six complex roots in three pairs: -AI. + ico   , 

Two equations for the determination of co   , co   , co   and >j   ,JJ,    , jj.     , 

analogous to Equations [lla,b] in two dimensions, can be obtained by sub- 

stituting X   = -yu. + i:o and separating real and imaginary parts.   In the three- 

dimensional case, however, these equations are voluminous and the chance 

of their ever being put to practical use seems to be very small, hence they 

will not be written out here in full. 

For practical use when the c's and hence also the JX 's are small, 

abbreviated approximate equations can be obtained by omitting all terms of 

second or higher order, that is, all terms containing a power of /LL higher 

than the first or both /j. and one of the c's or the product of two c's.   This 

rule of approximation justifies replacing   X    in Equation [ll\  by-co   -2ico£i 

and also X by ico.   Furthermore, all products of c terms.may be omitted.   The 

first of the six products in Equation [l7] , for example, is to be replaced by 

2 2 (k    - mo   - 2itom   /x + icoc )(k    - n^co   - 2iwm2 /x + icoc2) 

2 
(k    - m co   - 2kom   fJ- + icoc ) 

3 *3 o o 

and then expanded as 

22 
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2 2? 
(kx - n^co )(!<2 ~ m2w )(k3 - m-co ) 

+ iw (-2m1 p. +c1)(k2 - m2«2)(k3 - m u2) 

2 2 + iw (-2m2   /c», + c2)(k1 - m co')(k    - m w ) 

2 2 
+ iu (-2m3 fj, + c3)(k

1 
- m u ){k    - m cu ) 

It is easily seen that the real part of Equation [17] as thus reduced is 

the same as Equation [16] for undamped vibration.   Hence the frequencies 

of oscillation in the three damped modes are approximated here by the 

frequencies of undamped vibration and may be calculated from Equation [16], 

To shorten the notation, write now 

2 2 2 
Gl=   kl ~ miw   '   G2 =  k2 ~ m2W  '   G3 = k3 ~ m3w 

12 =   k12 " mi2,a)2' Gi3=    k13 - m13"2' G23=   k23 " m23w2 

Then it will be found that the imaginary part of Equation [l7] divided by ico 

can be written in its approximated form thus. 

"2 * [mi<G2G3 - G232) +   m2(GlG3 - G132)+  m.3(GlG2 " Gl2
2) 

+ 2ml2(G13G23 " G3G12)+  2ml3 (G12G13 ~ G2G13> 

+ 2m23(G12G13 - G1G23}]   +C1 <G2
G3 " G

23
2) + C

2
(G1G3 ~ Gl3

2) 

+ C3(G1G2 " G122) + <C12 + C21,<G
13G23 " G3G12J + (°13 + C31> 

(G12G23-G2G13) + (C23+C32)(G12G13-G1G23) = 0 [l8] 
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2 After inserting in the G's the proper value of «   for any one of the 

damped modes, this equation is easily solved for an approximate value of 

tIie ^.süHBi!19_£onsta_nt ,u for that mode. 

3 .    HARMONIC FORCED VIBRATIONS 

Assume 

P =  pcos «t + p' sin« t, Q = q cos co t * q" sin« t 
o o o o 

R = r cos co t + r' sin co t 
o o 

where p,  p', q, q*, r, r' are any six real amplitudes and co   is any positive 

real number.   For the resulting steady vibration write 

x  =a   cos« t + a" sin« t, y = a0 cos« t •{- a^ sin« t •i o i o 2 o 2 o 

z = a„ cos « t + a' sin « t 
3 o J o 

a     .... a'   being six real numbers. 

In any particular motion, by a proper choice of the origin for t, any 

chosen one of the six variables P, Q,  R, x, y, z can be made to vibrate in 

proportion to cosu^t, or to sin« t.   Thus any one of the twelve amplitudes 

P,  p"  .   .   .   . a   , a^ can be assumed to be zero without altering the motion 

that is represented. 

Substitution in Equations [l5a,b,c] and separation of sine and cosine 

terms gives six equations.    To shorten the notation, write: 

2 r-    -   u 2 „   _    ,_ 2 
V   Wo V  Wo V   k3"m 

3  o 

F12=   k12 " ml2Wo2 F13=   k13 " mi3"o2 F23=    k23 " ^o' 
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Then the six equations read: 

Flal + ClVi + F12a2 + cl?.uoa2 + F13a3 * c13woa3 = P [19a] 

-ClVl + Fiai " C12Moa2 + F12a2 - C13V3 + F1333 = P' [l9b] 

F12ai + C2lVl  + F232 + C2"oa2 + F23a3 + °23Vs = q ^1 

"C21 Vl * F12ai- W2 *  F2a2 " C23V3 * F23a3 = q" ^ 

I'    a,  +c„,wa' + Fnoa   ♦ c„<oa' +  *3
a3 + C3Woa3 = r ^ •l3ai + °3lVi +-F23V C32uoa3T  * 3"3     ^3 o 3 

[I9f] 
-C3lVl + F13ai " C32Moa2 + F23a2 " C3Moa3 + F3a3 = r" 

In general any six of the twelve amplitudes a]L ..... r' can be 

assigned arbitrarily and the equations then fix the values of the other six 

4.    ECPERBLTNTAL DETEUIINATTÜN OF 

C-,.,    C2,    C3,    C12,    C13,   C21,    C23,    C^,    C32 "i- 

The methods described for a two-dimensional system can be extended 

to three dimensions.   Determination of the nine damping constants from 

general bumping observations, however, will not be discussed here because 

it appears to involve very complicated observations and calculations. 

A feasible alternative might be to lock each of the three coordinates in 

turn so as to hold it at zero.   The given three-dimensional system could thus 

be studied as a combination of three two-dimensional systems and the 

methods already described for such systems would be available. 

Of three-dimensional motions, only forced harmonic motions will be 

considered here and only the simplest use of these.   In such motions, x, y, 

? 2 2 
.-..,-., ., „,-.o e<-m--.i ""snec-ively to -w  "x, -co    y, and ~w    z so that either x, y, 



or z may be measured. 

Apply P,  O,   R i.r. cny or 

Assume p' -  q' 

a    and the   dmce c 

0, 

a ratio but all in the seme phas 

:ubb;r|   ti'i'COP   lPP!'"iri~   i? m rj v -.,-'•_• . 

esa;,*»,*-, tie; Iab:er being 

relatively CK:!1,    Repeat with diriorent ratios of P, O, R. disRcigui,dune; 

the a's thus obtained by a bar, end then with 3 third set of ratio:::, meekinc 

%:'';; a>G v-"-:^ ■■■ 'a-'a'-.j ].; r,    A possible choice vould be to use only P the 

f.u'.ri'. time,  or.1 by C'1 :' a second idno.  c no ;-■■■>.:■.,■ ;~; :;>;-< oo.-l tin.->, 

Substitution o.i the first, sat of obsrro'od n's j.a fkurn-n,,,,', \'\Rn.y ,-R 

than the second -cd of a's,  and finally the thiul set tyive? bes.a noseys of 

three equrudors arch for the detoi nbru- iRon of 'he nine o''s,    Sfroe in ell 

cases p' --  a'::   r! :.-   0, the causeless may be slvjhtly fer-vraryed to reed as 

follows; 

a. c, ■;■   a „ c, „ -:■ a , c     .-  ■-  fp  3 '  + F    a'   s- a    .-,: ) 
3      w     v 1   1      "' 12   2      " J3' 3' o 

asc^   a9ci?+  V^s" ;f-  (V'l   ■   ",o^. -<  F..„a;J 

c. -'• a , o 
1 i   I/, ci   .13      o.y 1   x 12   2 13   i 

aiC21 + a2C2 * a3C23 = of"   (F]^ * F
?
a? * F

?,
0^ 

o " '        ~ '   '" 

V21+ V2+   *3C2Z rIT   (F12al  + V2   *F23aP o 

aiC21 * a2C2 * a3C23 r 7T  (F12ai + F2*2 * 
F23*3} 

[20] 

i   31      ^2~32      "3-3      o)ö   VC13Q1 * r23°2   *" W 



'lC31*  a2C32 + a3C3 = IT  (F13ai + F2332 + F
3
a3} 

o 

aiC31 * a2C32 + a3C3 = IT (F13al + F23a2 + W 
o 

Assuming that the six cons tents F^ F£, Fg, F12, F^, F      have been 

calculated from the constants of the nys'em and the chosen value of w  , the 
o 

first three of Equations [20] can be solved for c   , c        c     , the middle 

three for c   , c     , c     , and the last three for cQ, c     , c     . 

The computation can be shortened by observing differently.   Using 

chosen p and q, adjust r (p\ q", r" being all zero) so that a    = 0.   Read a   , 

a2' al' a2' aY    Repeat with a different pair of values of p and q, making 

a3 - 0.    Read a1, a2< a^, a'?, a'      Then the first two of Equations [20] are* 

easily solved for c   and c        the fourth and fifth for c. and c01 , and the 
J. J.£ 2 21 

seventh and eighth for c01 and c,10. 
31 32 

Repeat using two pairs of values of p and r and adjusting q each time 

so that a2=  a2 =  0.   Read a^ a3, a|, a^, a^ andä^ ä^ ä|, ä^( ä^.   Then 

pairs out of Equations [20] yield c    and c     , c      and c„„. me same three 

and c   and c     . 
■3 Ox 

All of the c's have thus been obtained, with duplicate values of c , 

c21 and c31.   Other combinations of p, q, r may be used in a similar way. 

It will be noted that neither procedure requires actual measurements 

of P, Q, or R. 
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V.   VAhCALh DAMPING 

In practice there sesms to bo a Landency for high-frequency vibrations 

to «lie out more rapidly than lorn-frequency vibrations .  Such differences rosy 

result in many www from the characteristics of the systems.   T': is worth 

noting, however, that 

(1) A simple increase of scale is likely to lower the damping r-i.ie, 

(2) The dwnphqg rate of a high-frequency mode of vibration crn be 

less 'ih'\n that of a leva frequency mow; of the same system,, 

1.    CHANGE OF SCALE 

As a simple example,  consider a mess on a spring subject to linear 

damping,  its equation of motion being 

rnx ■:■  ex -:- kx = 0 

In a damped vibration 

x - Ae   ^'   sino.it 

2 r> 

where    /.<. =c/(2m) and to   =   (k/rn) -p. " 

Now let all linear dimensions be changed in any ratio A without change of 

3 2 
material.   Then* m cc    X' , k cc    X'A   What happens to c?   At given x, 

water resistance will tend to vary in proportion to the surface wetted; hence 

\ 2 2 
c cc   A   .   For simplicity,  suppose /.i    may be dropped in comparison with 

k/m.   Then, approximately. 

•*   In a change of scale including change of both cross section and length of 
X2 3 

spring, koc -^ - A .   Fora mass on a spring, when all dimensions change, mccX , 

k cc X , woo ~c.   If only the length of the spring does not change, m cc   X 

k cc X    , to cc     —!— 
1JX 28 
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toCC  l/   *\j X     ;    /'yOC  lA      /"   '''Mcc u 2 
0 

Or, if c does n:A change when X ~=f=    1, then approximately when^t is small 

oj cc 1/    ^1 X ;  jj.ee 1/ X ; .' ./zee co 

In both cases/.i and co both increase if X < 1 and decrease if X   > 1, thus 

varying "in the same direction." 

2 .    CONTRARY MODES FOR A GIVEN SYSTEM 

Since higher frequency tends to mean higher velocities at a given 

amplitude, it might reasonably be guessed that the damping will be greater 

in modes of higher frequency.    This is not. necessarily the case, however, 

because the components of displacement are in different ratios in different 

modes and some components may be damped more heavily than others. 

As a simple example,  suppose 

m. x + k x + k    y + c^x = 0 m^y + k2y + k^x + c2y = 0 

where L/ni.ji-k./m. but cVrn   «c  An   . 
22        11 22 11 

If k      =0 and c   = c   =  0, then in one mode, x vibrates with y = 0; in the 
12 12 

other, y vibrates at much higher frequency with x = 0.   If k 2 = 0 but c 

and c   are merely small, then the two frequencies are little altered, by c 

and c   , and the damping will be much less for the second or y vibration 

than for the first or x vibration. 

Thus higher frequency is accompanied here by lower damping.   This 

conclusion will net   be altered if k  . is merely kept small but not zero,  so 

that y vibrates a little in the first mode and x vibrates a little in the second 

mode. 
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