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1. FOREWORD 

One of important goals of the demining mission is a reliable differentiation between land 
mines and clutter, which would decrease the false alarm rate. This project can be considered 
as a new approach to this issue, via a new method for solutions of inverse problems. It is 
natural, therefore, to test such an approach on a mathematical model first in order to see 
its main features. While being at an Army's demonstration of a demining process at AP 
Hill (VA) in 1998, we observed that the process of detection and identification of land mines 
by a hand-held GPR can be subdivided into two subprocesses, which, using an analog with 
medical imaging, we call: (i) screening and (ii) diagnostics. In the screening procedure 
one identifies horizontal coordinates of possible mine-like targets, many of which might be 
clutter. The screening procedure should be very rapid. The diagnostic procedure, however, 
is slower. This is a procedure of differentiating between mines and clutter. Another term 
for this is "classification" procedure. All targets being detected on the first stage should 
be checked out again. Finally, all targets, being identified as possible land mines should 
be removed from soil by soldiers. Since the diagnostic procedure usually takes many hours, 
even for a small area, it would be quite helpful to develop new methods, which would speed 
it up very essentially, while still maintaining high reliability. 

From this prospective, the goal of this project was to develop a new mathematical ap- 
proach of an inverse problem, which potentially might lead to a successful diagnostic proce- 
dure for land mines. The input data for an inverse problems are measurements by a GPR of 
a back reflected electric signal on an array of antennas, using a frequency sweep. The output 
of the solution of the inverse problem is the vector consisting of coordinates of a target (s), 
as well as, dielectric permittivity e and electric conductivity a within a target(s). On the 
next stage, this vector is supposed to be used as an input for the classification procedure. 
Since we are interested in imaging of plastic antipersonnel mines with a low depth of burial 
ranging from 1 cm to 10 cm, we work with a high frequencies penetrating up to this depth. 
The range of these frequencies is from 0.5 GHz to 3 GHz. 

The solution of the corresponding inverse problem, however, is quite a challenging issue 
in its own right. This issue was addressed in this project. Specifically, a new method for the 
corresponding inverse problem was developed, which is a second generation of the so-called 
Elliptic Systems Method (ESM), being previously developed by the Co-PIs for Diffusion 
Tomography with medical applications [10, 12-14]. (In this report references in bold face 
letters refer to Bibliography section. References like [1] refer to section fitted "Listing of all 
publications and technical reports supported under this grant.") The new method provides 
accurate estimates of the above parameters in about six minutes of CPU time on SGI Origin 
200 with one processor. This time frame is realistic for the diagnostic purpose. It can also 
be decreased if using several processors. The key reason for such a small time frame is that 
in this new approach the resulting linear system has a differential, rather than conventional 
integral form. This means, in turn, that the matrices to be inverted are sparse, rather than 
full, the very property, which enables one to apply modern techniques of Numerical Linear 
Algebra for their inversion. We want to point out that almost all conventional methods of 



solutions of inverse problems are relying on solutions of ill-posed integral equations, which 
inevitably lead to large full matrices to be inverted, thus requiring a significant CPU time. 

Since methods of integral equations are quite time consuming, as compared with ours, 
we compare our technique with the best competing approach, being initially developed by a 
well known German expert in inverse problem F. Natterer six years ago [19]; also see follow 
up publications [5,6]. Thus, we modified our algorithm accordingly. Naturally, the modified 
variant is also based on resulting differential, rather than integral operators. In the view of 
possible applications to the experimental data an important advantage of the second version 
is that the differentiation of the data with respect to the frequency is not required, unlike the 
first version. On the other hand, while both versions have a similar performance in terms 
of timing and locations of targets, the first one still often provides better values of electrical 
parameters within targets, which is the key for the diagnostic goal. Since the development of 
computational tols of the project was very time consuming, we did not have sufficient time 
left to work on the experimental data. Our modified algorithm is an advanced version of 
Natterer's method, since we calculate the resulting matrices precisely, whereas only diagonal 
elements of matrices are counted in [5,6,19]. Thus, if using only those elements (i.e., if 
literally following the idea of Natterer), images by the second method would be much worse 
than by the first one. 

Although the topic of the project is inverse problems, one must always possess a rapid 
algorithm for solutions of corresponding forward problems, when working with the inverse. 
However, when starting the work on this project, we discovered that such an algorithm 
simply did not exist at that time, for the high frequency range we used. Therefore, the very 
first, although axillary task was to develop such a method. 

Thus, major tasks of this project are ones listed below. Work on each of these tasks 
required approximately one year. 

Task 1 (axillary) 

Development of an efficient numerical method for the solution of the forward GPR prob- 
lem for the high frequencies. 

Task 2 

Development of a second generation of the ESM for the solution of the GPR inverse 
problem. 

Task 3 
Development of the modified version of the method of Task 2 and comparison. 

All these three tasks were successfully completed. Summary of results in given below. 
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4. STATEMENT OF THE PROBLEM UNDER STUDY 

4.1. Partial Differential Equation 
The GPR signal is modeled here as a polarized electric plane wave E0 = (0,0, exp 

(iUy/JIeö ■ x2)) ■ exp(-iut) propagating along the positive direction of rc2-axis in the half 
space {x2 < 0}. Here u> = 2irf is the angular frequency of the signal, fi = Air-10-7 Henry/m 
is the magnetic permeability and EQ = 8.854 • 10~12 Farad/m is the dielectric permittivity of 
free space. It is assumed that {x2 < 0} is air and {x2 > 0} is ground, where mine-like tar- 
gets are located. All functions below depend only on two spatial variables (xi,x2) = x. Let 
E(X,LJ) = (0,0, u(x,u))) ■ exp(-iu)t) be the electric field. Then the following Helmholtz-like 
PDE for the function u(x,u) can be derived from Maxwell's system [3] 

V2u + k2(x,u)u = 0. (4.1) 

Here the function k2 (x,u) has the form k2(x,u) = uj2iJ,e(x) + iujfia(x), where e(x) and a(x) 
are respectively the dielectric permittivity and the electric conductivity of the medium, and 
/i is the magnetic permeability, which is assumed to be constant everywhere and equal to its 
value in free space, // = const. We also assume that e = Eo'xa. air. 

4.2. Ranges of Parameters 
It is useful first to establish ranges of parameters in the PDE (4.1). All units below are 

is between 0.5 GHz and 3 GHz, i.e., given in SI system. The frequency of the signal / 

/ € (0.5,3) • 109—. Let e = ereo where er is the relative dielectric constant. In air er = 1 

2^ 

sec 
and a = 0. We introduce the so-called "loss tangent" as [9] 

/T 

tan(5) 
uje 

Then 
k2 = u2fie[l + i-tan(8)]. 

(4.2) 

(4.3) 
d 

We assume that the loss tangent does not depend on w, i.e., -^— [tan(<5)] = 0. This condition 
UUl 

is a requirement for the presented imaging algorithm. It is satisfied with sufficient accuracy 
in many practical scenarios of land mine detection. 

The approximate values of the parameters er, tan(5),k2,k and the wavelength A = 
2TT/ Re(fc) for different soil moistures as well as for trinitrotoluene (TNT) are given in Table 
1 for the frequency / = 1 GHz. In this table we use the data of [7] 

Table 1. Approximte Values of er,tan(6), k2, k and A for 
Different Soil Moistures and TNT at / = 1 GHz 

Medium Sr tan(5) k2 1 

m2 k 
1 

m 
A [cm] 

Air 1 0 439.2 21 30 
Dry soil 30 0.025 1273 + % ■ 31 35.7 + i- 0.43 17 
Wet soil, 5% moisture 4 0.22 1756 + i ■ 395 42 + ?-4.7 15 
TNT 2.86 0.0018 1256 + i ■ 2.26 35.4 + i ■ 0.03 17.7 



4.3. Statement of the Forward Problem 
We assume that the electrical parameters e and a have constant background values 

everywhere in the ground, except in the mine-like targets, whose sizes are small, as compared 
with the size of the region of interest. Let k0 = k0(x2,u) be the function k in (4.3) for the 
background medium. Then this function has a discontinuity on the air/ground interface, 

2fu;Vo, forz2<0 .      . 
K° ~ \ u2iie0er [1 + * • tan(<y)],    for x2 > 0. K       ' 

Let u0 = UQ(X2, IJJ) be the solution of the PDE (4.1), which corresponds to the initial plane 
wave without targets present. Then u0 consists of the initial, reflected, and transmitted 
plane waves [9], 

_   (  eik0x2+R(ko)e-«o*2 ?      for X2<0 

Uo-\T(k0)e
ik^, forx2>0, ^^ 

where R(k0) and T(k0) are the reflection and transmission coefficients given by 

R(h) = ^§,       TflW = -^p, (4.4c) 

Here k$ and k£ are the values of k0 for x2 < 0 and x2 > 0 respectively. The presence of 
these coefficients ensures the continuity of the function u0 together with its first derivatives 
at {x2 = 0}. 

We seek a solution of the equation (4.1) in the form u = u0+v, where the function v (x, u>) 
represents the wave scattered by mine-like targets with compact supports in R\ = {x2 > 0}. 
Hence, this function satisfies the following PDE 

V2v + k2v = -g,        xe R2, (4.5) 

where k2 = k$ outside of the targets and 

,      \ _ / 0) outside targets 
^ '   '     \ (A;2 — k%)u0,   inside targets. 

In addition, we impose Sommerfeld radiation boundary conditions at infinity 

lim^(^-ikov) =0, (4.6) 
r-»oo      yor ) 

where r = yxf + jcf, Im(fc0) > 0 and the limit holds uniformly in all directions. The 
uniqueness and existence of the solution of the problem (2.6), (2.7) was proven in [3] for 
the 3-D case. It follows from the proof in [3] that similar results hold in the 2-D case 
for functions v E H1-* with s > 1/2, where Hl's = {u : Dau G L2's, \a\ < 1} and 
L2'S{R2) = {v : (1 + \x2\2)sl2v € L2(R

2)}. Likewise, if D is any bounded domain such that 
either D C R% or D C R2_, then v e H2(D).   It follows also from [3] that if in (4.4a) 



tan(5) > 0, then for x2 > 0 the functions v(x,u),vXl(x,u) and vX2(x,u) decay exponentially 
as u —► oo. The function (fc2 — fcoX^) is assumed to be bounded and to have compact support 
in {x2 > 7} for some positive constant 7. 

It is natural to consider in practical computations a bounded domain GL, which is ob- 
tained by a cut-off of the infinite space R2. For the numerical solution of the forward problem, 
we consider a square GL = {|a?i|, \x2\ < L}. In this case the condition (4.6) is replaced with 

vXl T ik0v\Xl=±L = 0,        vX2 T ik0v\X2=±L = 0. (4.7) 

So, below we will always assume that the boundary value problem (4.5), (4.7) has an unique 
solution v e H1

(GL)- By the well known results for elliptic equations, this implies, in turn, 
that v G H2(GL n {x2 > 0}) and v e H2

(GL f~l {x2 < 0}). A natural question to ask would 
be about the influence of the value of the cut-off constant L on the resulting solution v. It 
was shown numerically in [1] that if the targets are located "well within" the square GL (i-e., 
far from the boundaries), then, for the range of parameters listed in Table 1, the resulting 
value of the function v(x,u) for points x located near the air/ground interface {x2 = 0} 
is independent of L as long as L > 53 cm. For this reason, for the solution of the inverse 
problem we chose a smaller rectangle Q. C GL,CI C R2

+. First we generate the data w^o 
and vX2 \X2=0 for the inverse problem using the solution of the forward problem in the domain 
GL with L = 1.5 m. To solve the inverse problem, we use the rectangle 

Q = {x — (xi,x2) : \xi\ < Iq = 0.6 m,0 < x2 < L2 = 0.4 m}. 

In doing this, we use the following boundary conditions for the function v on the side and 
top boundaries of Q. : 

VX1 T *Mxi=±Li = 0 (4-8a) 

vX2 - ikv\X2=L2 = 0. (4.8b) 

As to the boundary conditions on the bottom boundary v|l2=0 and vX2\X2=o, they are used 
as an input data for the inverse problem and, thus are taken from the solution of the forward 
problem in the domain GL- 

4.4. Statement of the Inverse Problem 
Let £j and tan(<5i) be the values of the parameters e and tan(J) everywhere in the ground, 

except for the mine-like targets. Then 

e(x) = E\ + h£(x),        tan(£) = tan(^i) -I- ha(x), (4.9) 

where the perturbations hs(x) and ha(x) are due to the presence of the mine-like targets. 
Hence, the determination of these functions would yield both the locations of these targets 
and the values of the electrical parameters within them. Since the loss tangent does not 
depend on the frequency u>, we introduce a perturbation h(x) of the background coefficient 
kl(x,oj) as a "whole," 

™ = *{%Ta)- ("0) 



Hence, 
k2(x,u>) = k2[l + h(r)} = u2k2

s[l + h(x)}, (4.11) 

where k^s = k\ju?.  By (4.9)-(4.11) the function h(x) can be obtained from the functions 
he(x) and ha(x) through the following transformation: 

,      he + i[eiha + he tan(5i) + h£ha] 
h =    

e1[l + itan(51)] 

Once the complex valued function h(x) has been obtained from the solution of the inverse 
problem, one can recover the perturbations of the physical parameters by using the formulas: 

h£ = £i[Re(/i) — tan(<5i) • lm(h)], 

lm(h) ■ [1 + tan2^)] 
h„ = a     l + Re(h)-tan(<5i)-Im(/i)' 

Inverse Problem. Given functions ip(xi,uj),ip(xi,w) defined as 

(p(x1,uj) = v\X2=0, (4.12a) 

ip(x!,uj) = vX2\X2=o, (4.12b) 

for X\ € (—Li,Li), u) G (wmin,a;max), determine the perturbation function h(x). 
Here (wmin,wmax) is the available frequency band, over which measurements are per- 

formed. We assume that measurements are performed at points on a certain interval 
(—L\,L\) of the line {x2 = 0} located on the air/ground interface. To explain a possi- 
ble way to evaluate the normal derivative ip in (4.12b), we observe that if the function 9? 
is given, one can uniquely solve the boundary value problem (4.5), (4.8), (4.12a) in the air, 
i.e., for {x2 < 0} n {\xi\ < Li}, where no targets are present. This is sufficient to determine 
the function ip. Another option to obtain the normal derivative vX2 would be to measure 
not only the third component E3 of the electric field E, but the first component #1 of the 
magnetic field H as well, since Maxwell's system implies in our case E3x2 = iußHi. 

The resulting PDE for the function v is 

V2v + u2klsv + u2klsh{x)v = -u2k%sh(x)u0, (4.13) 

where h(x) is a bounded function with compact support in Q, and the function u0 is given by 
(4.4b) (for x2 > 0). We will assume that the medium of interest Cl is basically homogeneous, 
except for a few mine-like targets whose sizes are small compared to the size of fl. This 
suggests the related assumption that ||^||x,2(n) ^ llsllz,2(n)> wriere the function s(x) = 1. 
Note that function v depends nonlinearly on the function h. However, we will consider a 
linearized inverse problem, assuming that perturbations are small, as compared with the 
background. Hence, linearization leads to dropping the h(x)v term in (4.13). This approach 
was used previously in publications about the ESM [10, 12-14]. The assumption about the 
linearization can actually be relaxed if using Newton-like updates [10, 12-14].   However, 



limited testing of those updates for the range of parameters we used did not show significant 
improvement of the images. 

Thus, below we will consider the inverse problem only for the linearized, with respect to 
h, equation (4.13), while the data simulation for the forward problems will still be done for 
the original equation (4.13). Linearization of (4.13) with respect to h leads to 

V2v + u2k2
sv = -uj2kl8h{x)u0 (4.14) 

5. SUMMARY OF THE MOST IMPORTANT RESULTS. 

In this section we discuss only results of tasks 1-3, which are the most important ones 
in this project. These results were obtained by M. V. Klibanov, Yu. A. Gryazin and T. R. 
Lucas. It should be noted that some results of a lesser importance were also obtained by 
other members of the scientific personnel: T. P. Weldon, V. J. Patel [4,6] and S. Pamyatnikh. 
However, these results are not discussed here. 

5.1. TASK 1 (AXILLARY). 
DEVELOPMENT OF AN EFFICIENT NUMERICAL METHOD FOR THE 

SOLUTION OF THE FORWARD GPR PROBLEM FOR HIGH 
FREQUENCIES 

Since this is axillary (although an important) task, we will provide a rather brief descrip- 
tion of this development referring to [1,3] for details. 

As it was pointed out above, the very first difficulty we faced in this project was the 
absence of a rapid algorithm for the solution of the forward problem for small wavelengths 
A we used. For example, as it follows from Table 1, for the frequencies / G (0.5,3) GHz the 

J (5,35) cm, in the ground ,_ .... 
\ (10,60) cm, in the air ^ ' ' 

This range of wavelengths significantly affects the grid size in the Finite Differences Solution 
for both the forward and the inverse problem. In order to calculate the forward problem 
accurately, one should use at least 10 grid points per wavelength. Suppose, for example that 
one wants to calculate the function it in a square region of 2 m x 2 m. Then, because of (5.1), 
this would mean that one should use at least 400 x 400 grid for A = 5 cm. When analyzing 
this problem, we quickly realized that standard direct solve routines, such as LAPACK, for 
example, are inapplicable here, since they provide data generation for the inverse problem 
in about 6 hours of CPU time on Silicon Graphics Origin 200 (SGI). This was a strong 
motivation for us to develop a new efficient algorithm for the forward problem. 

The idea is to develop a high quality Krylov subspace based method (GMRES). First, 
we approximate the differential operator of the Helmholtz equation (4.5) in the square GL 

with finite differences assuming the coefficient k2 depends only x2. In the resulting matrix 
operator we replace the Sommerfeld-like boundary condition (4.8) with either Dirichlet or 
Neumann boundary condition.   The resulting matrix is then used as a pre-conditioner to 



accelerate the convergence of GMRES. To invert this matrix effectively, eigenvectors of the 
corresponding operator are found and used as an orthonormal basis. Such an orthonormal 
basis is possible to find, because both Dirichlet and Neumann boundary conditions generate 
self adjoint matrices, which is the key reason of replacement of Sommerfeld boundary con- 
ditions with either of the above two in this pre-conditioner. This leads to a diagonal matrix 
to invert, which obviously can be done very rapidly. Iterations are used "with respect" to 
both boundary conditions (in order to get boundary conditions (4.8) in the end), and the 
mine-like targets. In order to generate data on many frequencies, a high order extrapolation 
technique is used to give a starting value for a higher frequency given values at the lower 
ones. This, in combination with the pre-conditioner, leads to a total CPU time of about 5 
minutes for 150 frequencies on a 199 x 199 grid. 

The idea of the pre-conditioner was published in [3]; and complete details were published 
in [1]. It is worthwhile to mention here that this work received a warm reception from the 
Editorial Board of Journal of Computational Physics [1], and one of figures of [1] was selected 
for the cover of the issue. 

In all numerical examples below data simulation for the inverse problems were provided 
by solution of the forward problem (4.5), (4.8) using the method of [1]. In particular, some 
results of solutions of this problem by this method are presented on Figs. 2-4. 

5.2 TASK 2. 
DEVELOPMENT OF A SECOND GENERATION OF THE ESM FOR THE 

SOLUTION OF THE INVERSE PROBLEM 

We refer to this algorithm as the "p-method" because we compare it below with an analog 
of Natterer's method, which we call "#-method". Results of this section are published in 
[12]. 

As it is always the case in the field of inverse problems, it is useful to establish an 
uniqueness result first. This result is formulated in Theorem 5.1. 

Theorem 5.1. For x2 > 0 let k% = u)2k%s, where the complex constant k0s was defined 
in (4-11), does not depend on UJ and x, Re(fc0s) > 0 and lm(k0s) > 0. Suppose the functions 
(p(xi,w) and ip(xi,uj) in (4-12a,b) are given for Xi G (—00,00) and UJ e (wmjn,u;max), where 
0 < ujm\n < cjmax. Then there exists at most one pair of functions (v,h) satisfying (4-6), 
(4-12), (4-H) i-n R+ such that h(x) is a bounded function with compact support in {x2 > 7} 
with a positive constant 7, and v G Hl~s(R?+) with s > 1/2. 

An obvious inconvenience of the equation (4.14) is that this is one equation with two 
unknown functions h(x) and v(x,u) in it. The key idea of the ESM is to eliminate the 
unknown perturbation term h(x) from (4.14) using differentiation with respect to a "free" 
parameter LO. This leads to an integro-differential equation, in which integrals are taken with 
respect to UJ (see below), supplied by the boundary condition resulting from (4.8), (4.12). 
Naturally, the next question is: How to solve the resulting boundary value problem (BVP)? 

In the first generation of this ESM, which was aimed on medical applications and was 
applied to the time dependent diffusion equations, integrals were eliminated via truncated 
generalized Fourier series with respect to time [10-14].  As a result, a BVP for an elliptic 
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system was obtained (the latter led to the name of this method). A shortcoming of this spe- 
cific implementation was that while locations of abnormalities were imaged very accurately, 
values of unknown coefficients within them were estimated with a poor accuracy. This is 
clearly unacceptable for the applications to imaging of land mines, in which an important 
input in the process of differentiation of land mines from clutter would come from the values 
of electrical parameters within those targets. This motivated the development of the sec- 
ond generation of the ESM, in which the BVP for the integro-differential equation is solved 
directly, i.e., without elimination of integrals. The resulting algorithm provides accurate 
images of both locations of targets and values of electrical parameters within them. 

5.2.1. INTEGRO-DIFFERENTIAL EQUATION 

Note that because of (4.4), the function u0 in (4.14) has the form 

Mo = T(fc0) exp(iu)k0sX2). (5.1) 

The function h(x) in (4.14) can be isolated by dividing both sides by aj2k%su0. Let 

H{x,u) = -TJ— • (5.2) 

Then because of (5.2), (4.14) becomes 

V2H + 2iüjk0sHX2 = -h(x),   xeü (5.3) 

with the corresponding boundary conditions 

#|xa=o = <P(xi,u),        #s2ls2=o = £0&i,w),        w E (cJmin,wmax), (5.4a) 

HX1 ± iujk0aH\Xl=±Ll = 0 (5.4b) 

H\x2=L2 = 0) 

where functions (p and V> are obtained from the functions ip and ip of (4.12) in an obvious 
way. 

To eliminate the function h(x) from (5.3), differentiate this equation with respect to u. 
Let 

We assume that for every x G fi 

and 

f      \     dH 

\imH(x,Lj) = 0 (5.5) 
ui—>oo 

p,pX2 eLi(wmin,oo), (5.6) 
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as functions of u. In the case when the 2-D boundary value problem (4.5), (4.6) is consid- 
ered over the whole space R2, including the case of the linearized (with respect to h(x) ) 
equation (4.14), conditions (5.5) and (5.6) easily follow from the above mentioned result of 
[3]. However, at this point, we have not been able to rigorously establish these conditions 
for the case of the finite domain Q. Still, we have observed them in the computations of 
solutions of the forward problem. We assume below that conditions (5.5) and (5.6) hold. 
Hence, 

oo 

H(X,UJ) = —     P(X,T)CIT. 

However, we will use approximation 

OO Umjx 

/ p(x, r)dr «    /  p(x, r)dr 

U 111 

and thus 
Wniax 

H(x,u) = -   I p(x,T)dr. (5.7) 

In (5.7) "«" is replaced with "=" for the sake of notational convenience. 
Let gi(xi,o;) = -§^(p{xi,uj) and g2(x1,uj) = -j^ip{xi,uS). Then because of (5.3), (5.4) and 

(5.7), we obtain 

V2p + 2iu)k0sPx2 = 2^os   / Px2(
x,T)dr,   xeQ, (5.8a) 

ÜJ 

p\x2=o = gi{xi,w),        Px2l2=0 = 92(xi,u), (5.8b) 

pXi T iuk0sp\Xl=±L2 = Tikos   /  p(a:,r)rfr|Xl=±Ll, (5.8c) 

Px2\X2=L2=0. (5.8d) 

Thus, we have obtained the boundary value problem (5.8) for the integro-differential equation 
(5.8a) with Volterra-like integrals being present in both the equation itself and the boundary 
conditions. Once the function p is found from (5.8), the function h(x) can be easily recovered 
by backwards calculations: First, the function H(x,u) is available through (5.7); next, the 
function h(x) can be calculated from (5.3) evaluated at u = a>mjn. Therefore, the principal 
computational question becomes: How to solve the boundary value problem (5.8)1 This 
question is addressed below. 

The problem (5.8) is overdetermined, because both Dirichlet and Neumann boundary 
conditions are given at x<i = 0 in (5.6). There is no guarantee that the solution of the 
overdetermined problem (5.8) exists. Therefore, the idea is to find such a function p, which 
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satisfies conditions (5.8) in an optimal sense. That is, we want to find a minimal norm 
solution. In terms of matrix equations resulting from the finite difference approximation of 
(5.8) for each value of u, this means that we will find a normal solution of the matrix system 
for each u>, which is a parameter of this system. 

5.2.2. AN IDEALIZED CASE OF COMPLETE DATA COLLECTION 

To explain our idea better, we assume in this subsection that both Dirichlet and Neumann 
boundary conditions are given over the entire boundary du. Then (5.8) becomes 

Au(p) := V2p + 2icjkosPx2 = ^hs   / Px2(
x,T)dT,        x e ft, (5.9a) 

Op 
p\dQ = 9i{x,u),        -j^laa = 92(X,UJ), (5.9b) 

where Au is the differential operator in the left hand side of (5.8a), and the functions g\ and 
g2 are given for (x,u) G du x (wmin,ct>max), with gi\X2=0 = gi,92\x2=o = 9i- First. consider 
the more general problem 

Au(P) = S(x,w), (5.10a) 

n»=&>    %\™ = to (5-10b) 
where the function S E L2(Ct x (wmin,^max))- 

Important Remark. We note that if the right hand sides of equations (5.3), (5.4) 
are zeros, then H = 0. Similar statement is true for the system (5.8): if the right hand 
sides of equations (5.8) equal zero, then p = 0. This follows from the well known theorem 
about uniqueness of solution of the so-called "Cauchy problem" for the elliptic equation, 
cf. [15, 16]. This observation is important for our computations, because it justifies linear 
independence of column of matrices A% and B(ßj) below, provided that the grid size is 
sufficiently small. This, in turn, implies that matrices ^2*^2 an(^ B*(ßj)B(,ßi) are Hermitian 
Positive Definite ones, which enabled us to use Conjugate Gradient Method for their solution. 

We seek solution of the problem (5.10) in the minimal norm sense as 

||yT(P) - S(x,u)\\L2{n) ->■ min, for every w G (wmin,wmax), (5.11a) 

OP 
pL=2i>        -fo\an = h, (5-llb) 

P(X,UJ) e H2(ti) for each fixed u G [wmin,^max] and       sup      ||P||j/2(n) < °o     (5.11c) 

This minimization problem is equivalent to the solution of the 4th order elliptic PDE: 

(AU*AU) (P) = AU*{S), (5.12) 
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plus the conditions (5.11b). Next, we replace in (5.12) the function S with the right hand 
side of (5.9a). Thus, we finally come up with the following boundary value problem for an 
elliptic integro-differential equation of the 4th order 

Wmax 

(AU*A") (P) = A"* ( 2iJfcb,   / PX2{x, r)dr j ,        xEÜ, (5.13a) 

dP p\dn = fafaa),        -^\aa = jfefoa), (5.13b) 

plus the condition (5.11c) (5.13c) 

The problem (5.13) can be solved iteratively as 

(A"*A") (P„) = Au 

Wmax 

2ik0s   /   (Pn-i)X2{x,T)dT (5.14a) 

P0 := 0 (5.14b) 
QPn 

Pn\dQ. = 9i(x,u),        -Q^\™ = ihfav)- (5.14c) 

Therefore, on each iterative step n one should solve the boundary value problem (5.14) for 
the 4th order elliptic operator Bw = A^A" for each value of the parameter u> G [wmm, wmax]. 

To formulate convergence result for this iterative process, we first introduce the Banach 

spaces CX = C (c^ß(ß),Cß(ß)\ and C2 = C (cß(Ö),Ct+ß(ÜJ} of bounded linear opera- 

tors. Let Bu = AW*A". Obviously, B^ G C\. The existence of the operator B'1 G C2 for 
every u G [wmin,wmax] follows from Theorem 4.1 of [11]. Furthermore, the perturbation 
theory for linear operators implies that       sup      H-Bj1!! < M, with a positive constant M, 

cf. Theorem 2.23 in Chapter 4 of [15]. We also assume that there exists a function F(x,u>) 
such that 

1. F(x,u) G Ci+ß{ü) for every UJ G [umm,umax\, and the norms ||F(a;,a;)||4+Jg are uni- 
formly bounded for all u G [wmin,^max]- Here ß = const. G (0,1). 

2. F\xa = gi(x,w) and §£|9n = Mx^)- 
A method of construction of such a function F was described in [13]. The following 

Theorem can be proven using the above result concerning the operator B~l as well as the 
conventional approach to Volterra-like integral equations: 

Theorem 5.2. Let Cl C R2 be a convex bounded domain with dQ G C°°. Also, assume 
the existence of the function F(x, u>) with the above properties. Further, let the operators 
Aw have the form (5.9a) and B^ = AU*AW. Then for every UJ G [WO,^] there exists an 
inverse operator B~l G L2 and       sup      ||S~1||Af, where M is a positive constant; the 

W^E^mini^max] 
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boundary value problem(5.13) has an unique solution P* such that P* G C0 (Q) for every 
UJ G [wo,tJi]; the iterative procedure (5.14) converges to this solution; and 

sup      HP* - Pn\U+ß < —Kn (wmax - u)min)n , 

where the positive constant K depends only on the domain Q., the constant kos in (5.9a) and 
the numbers u>min,u;max. 

5.2.3. INCOMPLETE DATA COLLECTION 

Briefly, the idea here is as follows. Let a;min = ß0 < ß\ < . • • < PN = wmax be a 
discretization of the frequency band [u;mjn,u;max] with a uniform step Aw. Let A7^ := Af* be 
matrix representing the finite difference analog of the operator V2 + 2iu!k0s-^ in (5.8a), as 
well as, the left hand sides of boundary conditions (5.8 b-d). Let p" be the corresponding 
discrete approximation of the function P(x,co) at u = ßn, and p = (p°, ■ ■ -pN). Further, let 
Sn(p) be the matrix representing the finite difference approximation of the right hand sides 
of (5.8 a-d), in which integrals are taken from u = ßn to a;max in a discrete form. Then the 
discrete analog of the system (5.8) is the following matrix system 

An
d(Pn) = S2&) (5.15) 

We assume that values pk for k = n + 1, • • • , N are given and pN = 0. The system (5.15) 
is overdetermined, because of two boundary conditions (5.8b), rather than one. This means 
that the number of rows in the matrix A% exceeds the number of columns. Thus, we seek a 
normal solution of this system as 

(ATA«d)(pn) = A?S2(p) 

This was a brief description of our idea for the case of incomplete data collection. Details 
are given below in this section. 

Consider the second order central finite-difference approximation of the boundary-value 
problem (5.8) with an uniform mesh cell size of hXl x hX2, where hXl = j^-, hX2 = jf- and 
MX1 and MX2 are the number of grid points in the X\ and x2 directions, respectively. The 
gridded region uses x\ values over the interval [—L\ + hXl/2, L\ — hXl/2] and x-i values over 
[hX2/2,L2 — hX2/2\. The boundary conditions (4.8b)-(4.8d) are imposed by use of a second 
order approximation formula centered on each boundary, using fictitious values outside of 
Q, which are eliminated in setting up the matrix system. In this case the discretized system 
(5.0) can be written in the following form 

Wmax wmax 

T-p = M^D' / A,lP(r)ir + p.J^,^ / *r)dr + G, (5.16) 
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where AZ2 is the central second order approximation of the first derivative in the x2 direction; 

D1 = diag (d^, d\x,..., dih ..., 4/^MzJ > 

where 
dl1 = 0,i = l,...,MXl 

dij = l,i = I,..., MX1, j = 2,... ,i = 1,..., Mx 

D2 = diag \d2
n, d

2
2l,..., d\,..., d2

MxiMx2) , 

where  / 4 = M = 1, • • • ,MXi, j = 2,... ,MXz . 
\ d?- = 0, otherwise ' 

g1 = (g~\,... ,g\fx )    and #2 = (g\,... ,g2
Mx )    are approximations of the boundary condi- 

i2 tions (5.8b) and G = (Gn,..., GMxii,G12,..., GMxi2,0 • • •, 0)T, where Ga = g\ = ^Vl G, 
(iashX2 - l)2g£. 

In (5.16), A" is the rectangular matrix, which consists of the finite difference approxima- 
tions of the left hand sides of equalities (5.8a-d), multiplied by h2

2. The number of rows in 
the matrix If exceeds the number of columns, because of the overdetermination in (5.8b). 
To find the standard least squares solution of the overdetermined system (5.16), we use the 
method of normal equations as in equation (5.18) below. In practice the final normal system 
is similar to the system, which would result from setting up the 4th order finite difference 
operator as in (5.13a). However the advantage of our treatment of the incomplete data case 
is that no explicit treatment of an unknown second boundary condition along parts of the 
boundary, other than {x2 = 0}, is required. In particular no spatial weight function needs 
to be introduced, as it was the case in earlier works [13,15,16] 

In principle, the system (5.16) can be solved by iterations, similar to (5.14). But because 
it is Volterra-like integro-differential equation, a more natural way is to use the marching 
method [4], which produces the solution in one step. First we approximate the integral 
terms in the right hand side of (5.16) by a simple trapezoidal rule. For this purpose we use 
a regular mesh in the w-direction: 

ßu = ^min + n • Aw,        where n = 0,... ,N and Aw=    max   ——. 

Then (5.16) can be rewritten in the following form 

-rßn^       „.,   ,2   nlT.     P  + P A/1, 
4?fcs nx2 n2 V^ P  + P        A , ■   ,   rm A   P  =^kshxD J>2— ^+ -D L^-Aw + G- 

Finally, we obtain the system 

An
dF = Sn

d{pn+\---,Pn-\t'\t'n), (5-17) 
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where 

and 

taking into account the assumption that pN = 0. Note that the matrix A^ depends only on 
the frequency ßn, but not on the right hand side, or the solution p7 for any value of j. 

Similarly to (5.16), (5.17) is an overdetermined system. To solve it for each ßu starting 
from n = N — 1 to n = 1, we use the normal equations method. Thus [ ], we replace (5.17) 
with the normal equations form 

AfAn
d{pn) = An

d*Sm,        n = N-l,...,l. (5.18) 

Thus, on each step n of the marching method we must solve the system (5.18). 
Iterations with Respect to H(x,umax) 
The above described procedure relies on the formula (5.7), which is an approximation for 

H(X,LJ) = -   / p(x,T)d,T + H(x,umax). (5.19) 

So, the use of (5.7) implies that the term H(x,ujmax) in (5.19) is neglected. In our 
numerical experiments, we first tested the case where this term was included. Namely, we 
used an accurate value for H(x,umax), which was computed by the solution of the above 
forward problem of data simulation. In such a case the above described inverse algorithm 
led to images, which were almost identical to the correct ones. Therefore, we decided to 
mitigate the influence of the cut-off of the function H(x,umax) by the following iterative 
procedure. 

Step 1. We use formula (5.7), i.e., we assign H(x,umax) := 0 and compute the function 
Pi(x,u) := P(X,LJ) for u £ [o>min,6jmax] by the procedure described above. Given Pi(x, a), 
we compute H\(x,a) as 

HX(X,UJ):=-   /   P!(x,T)dT,        u G [wmin,u;max] 
U! 

Next, given the function Ax(x, u), we compute the perturbation term h\(x) using Hi(x, UJ) 

for the lowest value of UJ :— a>min, that is by (5.3) 

Mx) = - [V2£i + 2iujksH1X2] |w=Wmin (5.20) 
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Finally, given the function hi(x) from (5.20), we solve the forward problem (4.5), (4.7) for 
the function v(x,ujmax). Having the resulting function V\ := v, we compute the function 
Hi(x,ojmax) by the formula (5.2). 

Step n > 1. In the above procedure for the solution of the inverse problem, we modify 
(5.7) as 

Wmax 

Hk(x,oj) = -   /  pk(x,T)dT + Hk^1(x,u;max). 

Then we proceed as in step 1. 
We found in our numerical experiments that this iterative procedure often enables one 

to improve the quality of the initial image of h(x) := hi(x). 
Another important problem to address here is a choice of a fast numerical method for 

the solution of the system (5.18). This system must be solved for many frequencies involved. 
In addition because of high frequencies involved, we need to use a fine spatial grid, which is 
similar to the above discussed case of the forward problem. Thus, if conventional Gaussian 
elimination techniques were used, this would be a time consuming procedure. 

The first key issue to resolve here is the band limited structure of the matrix C£ = 
A2*^4rf, since it is generated by a differential operator (rather than an integral operator 
in a conventional setting of inverse problems). The second key issue is the fact that the 
columns of A% are linearly independent, because of the Important Remark above. Hence the 
matrix C% is Hermitian Positive Definite. Thus, we have chosen a preconditioned Conjugate 
Gradient Method using the method of nested dissection [8], but only for a small number of 
frequencies. In this approach we have developed an automatic algorithm for the near optional 
choice of frequencies ranges, over which we use the same preconditioner. This method has 
enabled us to dramatically reduce the overall computational time. For a discretization of 
200x70, using 132 frequencies in the marching method, this approach yields a solution of 
less than 3 minutes for each iteration of H(x,u}ma,x) (usually two such iterations are used) 
using one processor on a SGI Origin 200. If using fast dual procesing techniques, this timing 
can be decreased by a factor of five. But even the above timing is quite acceptable for the 
above diagnostic procedure of land mines. More details about this method can be found in 
[2 ]. Algebraic system of section 5.5 is also solved by this method. 

5.3. TASK 3. 
DEVELOPMENT OF THE MODIFIED VERSION OF THE METHOD OF 

TASK 2 AND COMPARISON 
5.3.1. Description of the iJ-method 

The if-method is a second version of the above algorithm. Unlike the first version, we 
do not use the differentiation of the data with respect to the frequency u here. This seems 
to be more suitable in the view of possible work with the experimental data. In addition, 
unlike the p-method, the //-method does not use an assumption that the loss tangent is 
independent on frequency.   Another interesting feature of the H- method is that it is a 
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version of Natterer's method, which is the best competing technique in the field [5,6,19]. 
This enabled us to make a comparison with the best method in the field. 

Let h be the grid function approximating h(x) and B(u) be the finite difference based 
matrix representing the left hand sides of equations (5.3), (5.4) as a function of u. It_is im- 
portant to note that B(OJ) depends only on u, k0s and the spatial grid. Also, let SH(to, h,<p, if}) 
be the finite difference operator for the right hand sides of (5.3), (5.4). SH depends not only 
on u), k0s and the spatial grid, but also on a grid function h and, of course on the overde- 
termined boundary data <p and ^ evaluated at the interface grid points. Then on step j we 
solve the overdetermined linear system 

B(ßj)H
j = SH(ßj,h,¥>,i>), (5.21) 

where the vector H3 represents the finite difference approximation to the grid values of 
H(x, ßj), given h. Note that the system (5.3), (5.4)) gives one equation for each spatial grid 
point, plus one additional equation for each grid point along the air-soil interface x2 = 0. 

To solve the system (5.21), we use method of normal solutions, thus coming up with the 
system _ 

B'föWßj)!!* = B^ß^iß^M), (5.22) 

The system (5.22) is solved by the same method of the above system (5.18). Note that 

Hj ^ ~H3, i.e., systems (5.21) and (5.22) are not equivalent. Next, we use (5.1) to update h 
as 

h := -(V2Hj + 2iwk0sHX2)\w=ßj (5.23) 

where the differential operators are understood in terms of finite difference. _ 
The complete algorithm of the if-method can now be stated as follows: Initialize h to 

be the zero vector. Then complete a series of sweeps (beginning each new sweep with the 
latest value of h from the previous sweep) as follows until the stopping criteria is satisfied. 

For j = 1... n : _ 
I. Solve the system (5.22) using the latest value of h. 
II. Use (5.23) to compute the updated value for h. 
III. Repeat I-III k > 1 times. 

5.3.2. Brief description of Natterer's method 

In 1995 F. Natterer and F. Wuebbeling [19] proposed a new elegant method for solutions 
of inverse problems of ultrasound imaging. This method is also based on resulting differ- 
ential, rather than conventional integral operators. Later this idea was extended on other 
applications, by O. Dorn, et.al. [5,6]. 

Briefly, the idea of the method [19] is as follows. First, the solution of an overdetermined 
BVP (similar to one of (5.3), (5.4)) is calculated for one value of a "free" parameter under 
an assumption that the perturbation term (like h(x)) is known. This free parameter is 
the source position in the above referenced works, and is frequency u> in our case. That 
overdetermined problem is solved by the method of normal solutions, which is similar to 
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the above. Given the normal solution of this BVP, the value of the perturbation term is 
updated as the right hand side of an equation, which is similar to (5.3). Next, this updated 
perturbation term is used as an input for the same procedure being repeated for the next 
value of the free parameter. Thus, iterations are performed with respect to the value of the 
free parameter. It was shown numerically in [5,6,19] that this process often converges, if 
the unknown perturbation term h(x) is sufficiently small. 

This process was naturally called in [19] "propagation - backpropagation method". In- 
deed first, one "propagates" a "pseudo" field into the medium by solving the overdetermined 
BVP for an assumed value of h(x). Next, one "propagates if backwards" by updating h(x). 

The key advantage of the algorithm [19] over conventional techniques is that it solves 
differential, rather than integral equations on each step, which is similar to the idea of the 
ESM. The major disadvantage of the specific implementation of this method in [5,6,19], 
however, is that instead of using the entire resulting matrix for inversion, only diagonal 
elements of this matrix are counted in these publications. This would mean, that in the 
above case of if-method, only diagonal elements of the matrix A%*A2 in (5.18) would be 
counted, which would dramatically decrease the quality of the images. Thus, in order to have 
a fare comparison, we decided to use an advanced version of the method [19] by counting 
the entire resulting matrix, rather than its part. Although we are not making a direct 
comparison, but the improvement seems clear. 

5.4. NUMERICAL EXPERIMENTS 

The main goal of the numerical experiments presented in this section is to demonstrate 
and compare the properties and performances of both p and H methods for realistic ranges of 
parameters and frequencies. The values of the coefficients in the Helmholtz equation, which 
correspond to the electromagnetic properties of air, soil and different targets were presented 
in Table I. In the numerical experiments the background medium is a wet soil with a 5% 
moisture content. The targets are assumed to be filled with TNT. 

The physical domain for the inverse problem is selected to be [—LXl, LX2] x [0, LX2] where 
LX1 = 60 cm and LX2 = 40 cm, with a 201 x 71 grid. In both approaches the system was 
non-dimensionalized in space and frequency. However for simplicity the results are presented 
here in the original coordinate systems. The spatial grids selected are uniform, but do not 
necessarily have the same spacings in xi and x2. 

5.4.1. The most practically important case of a simple target filled with TNT. 

First we consider a case of a simple mine-like inclusion, which seems to be the most 
important one for applications to diagnostics of mine-like targets. This is a circular target 
filled with TNT, with the center at x = (xi,x2) = (10,5) cm and a diameter of 5 cm. Thus 
h(x) = (k%NT - kletsoil)/kletsoil = -0.319 - 0.152«. The real part of the corresponding 
function h(x) is displayed in Figure 1. 

For this application simulations of the solution of the forward problem are made using 
the forward solution for the discrete frequencies uij G 2iv ■ [0.5,3] GHz with the step size 
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Target 1: TNT in wet sou .-«        Boundary conditions for Hat the air—soil interface 

Figure  1:    Re[/i(x)]  for a circular 
shaped signle target filled with TNT 

Exact 
Noisy 
Smoothed 

1.5 2 
I, GHz 

Figure 2:  Re[H(x,u>)] as a function 
of the frequency / at x = (10,0). 

of 2TT • 0.01 GHz. The physical domain is taken to be a square with 300 cm sides centered 
about the air-soil interface, and a 400 x 400 point computational grid is used to achieve 
accuracy at the higher frequency values. Two of the studies to be made here consider the 
effect of various choices of u>min,ujmaiX and the frequency spacing Aw on the quality of the 
inverse problem solution. 

For Figures 2, 3 and 4 the solid line represents the real parts of the original values obtained 
through the solution of the forward problem, the stars, which are the data originally received 
by the algorithm, represent those values with a = 0.1 multiplicative Gaussian noise added, 
and the dot-dash line the result after a C2 cubic spline smoothing process [1]. Figures_2 and 3 
display the real parts of H(x,u) = <p(10,w) and the normal derivative HX2(x,u) = ip(10,uj) 

as a function of / 
2^' 

just above the target at x = (10,0) on the air-soil interface. 

Despite the scatter in the noisy data, the C2 cubic spline smoothing process appears to be 
doing a good job of returning smoothed values close to the original. The largest differences 
are around the peaks of the curves and to the far left of Figure 3. Figure 4 displays the 
real part of H(x,u>0) = </>(#, ^o) along the air-soil interface {x2 = 0} for u0 = 1.0 • 27r 
GHz. It should be clarified, that smoothing was done for each spatial point x = xu, where 
Xu = —LXl + AXl(i — 1/2),i = 1. • • • ,MXl, with respect to the frequency UJ as described 
above. However, no smoothing was performed with respect to the spatial variable x\. 

In this first test the p and H imaging algorithms were applied to a single target of 
circular shape filled with TNT as specified above. The results used data over frequencies 
from 0.5 GHz to 3 GHz, using an increment of A/ = .01 GHz.   The stopping criteria 
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..->      Boundaiy conditions for dIVdy at the air-soil Interface 

Figure 3: Re[HX2(x,u>)] as a function 
of the frequency / at x = (10,0). 

Figure 4: Re[H(xi,u)] for OJ0 = 1.0» 
2-KGHZ as a function of x\ along 

{X2 = 0}. 

Rul pirt of racovtrKl \magt (p mtthod) Real part of recovered image (H method) 

Figure 5: Re[himaged(x)] for the solu- 
tion of the inverse problem by the p 
method. 

-0.t5 

Figure 6: Re[himaged(x)} for the solu- 
tion of the inverse problem by the H 
method. 
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Horizontal cross section of h (p method] Vertical cross section of h (H method) 

Figure 7: Horizontal cross-section of 
Re[himaged(x)} after two sweeps using 
the p method for different values of 

10        15        20        25 
y(cm) 

Figure 8: Horizontal cross-section of 
Re[himaged{x)] after two sweeps using 
the H method for different values of 

Wn OJr, 

here and elsewhere requires running one more sweep than was used, stopping when the last 
result either decreased, showed significant oscillations or changed very little. Figures 5 and 6 
display the real part of the imaged function h := himaged(xa) obtained after two sweeps of the 
p-method and one sweep of the //-method respectively. The contour plots of the recovered 
function Re(h) are similar, both accurate as to the centered location, both lacking significant 
artifacts. However, the maximal value of the H solution within the target is about 20% off the 
correct one. Whereas the value for the p solution is exact. This difference speaks favorably 
for p solution in the light of the goal of diagnostics of mine-like targets. The imaginary part 
of h here and elsewhere is in general less satisfactory because |Im (k)\ << | Re(fc)| by Table 
1. 

The effects of using frequencies from /min = 0.5 GHz to various upper values of /max from 
1.0 GHz to 3.0 GHz was also considered for both the H and p methods. The frequency 
spacing A/ is fixed at 0.01 GHz. To clearly demonstrate the results quantitatively, cross- 
sections of the real part of the imaged function h along both vertical and horizontal lines 
are displayed for each method. In each case, the cross section is along the line where the 
values are greatest. Typically for the horizontal lines this is close to x2 = 5 cm, and for the 
vertical lines close to x\ = 10 cm. In Figures 7-10 the solid lines represent the exact values 
and various other lines, as identified by the legend, the cross sections of various computed 
solutions. 

As one can see, the increase of the range of the frequencies from 0.5 — 1 GHz to 0.5 — 1.5 
GHz to 0.5 — 2 GHz gives significant improvements in the heights of the recovered images 
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Horizontal cross section of h (p method) Horizontal cross section olh(H method] 

Figure 9: Vertical cross-section of 
Re[himaged{x)] after two sweeps using 
the p method for different values of 

Figure 10: Vertical cross-section of 
Re[himaged(x)] after two sweeps using 
the H method for different values of 

un Wn 

for both the p- and if-met hods and is thus clearly desirable. 
The effect of various frequency spacing A/ = AU/2-K was also examined. It was con- 

cluded that it is unnecessary to use a fine frequency spacing of A/ = 0.01 GHz, since 
A/ = 0.02 GHz provided the same results. 

5.4.2 Three targets filled with TNT 

In the remaining numerical examples the application of both algorithms to the case of 
three multiple mine-like targets of different sizes and soil depths is considered. These targets 
are again in wet soil with a 5% moisture content and filled with TNT, using parameter 
values from Table I. The buried objects chosen for this test are three rectangular mine-like 
targets. Two of the targets are 5 x 4 cm and the third is 10 x 4 cm. Three mine-like targets 
were examined to see if the H and p inversion algorithms could separate multiple scatterers 
and reconstruct well the deeper object. The frequency range in this test is from 0.5 to 3.0 
GHz for the p method and from 0.5 to 2.0 GHz for the H method, and the frequency step 
is A/ = 0.02 GHz as suggested above. The two smaller targets are centered 5 cm into 
the ground and the larger rectangular target is centered 10 cm deep into the ground. The 
horizontal centers are at —10,0 and 10 cm. As in the first example, the detector readings are 
simulated from the forward problem with the addition of a = .10 multiplicative Gaussian 
noise. 

The real part of the corresponding function h(x) is displayed in Figure 11. The recon- 
structed images of the real part of the coefficient are shown in Figures 12-14.  From these 
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Real part of «tact krage 

Figure 11: Re[/i(x)] for three mine-like targets of various sizes. 

figures it can be seen that both algorithms perform reasonably well. The locations and 
shapes of the objects are both fairly accurate. The methods provide maximal values of Re[h 
imaged (%)] within targets which are about 12% off the target value for p-method and 7% off 
for if-method. 

5.4.3 Conclusions for Comparison of p and H Methods. 

The //-method generally works better for the lower upper frequency than the p-method. 
Also, unlike p-method, if-method does not require neither the differentiation of the data 
with respect to the frequency, nor independence of the loss tangent from the frequency, 
which might be an advantage for the case of an experimental data. Both methods provide 
accurate locations of targets. Another key parameter for the goal of diagnostics of mine- 
like targets is the maximal value of Re[h imaged {%)] within targets. In the case of a single 
target, which is the most important one for a practical scenario, the p-method provides very 
accurate maximal values of Re[h imaged (x)] within a target, as opposed to the iJ-method, 
for which those values are 20% off the correct ones. The latter speaks favorably for the 
p-method in the light of the above diagnostics goal. 

As to the comparison with the best algorithm in the field, H-method is an advanced 
version of the original algorithm of F. Natterer [5,6,19]. In those works only diagonal 
elements of resulting matrices to be inverted were counted, as opposed to our case, in which 
the entire matrix is counted. Therefore, if we would literally follow the idea of Natterer 
by counting only diagonal elements of those matrices in the above H method, then images 
would be much worse than those obtained above. 

5.5. CONCLUSIONS 
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Real part of recovered image (K method) Real part of recovered Image (p method) 

-0.2S 

Figure 12: Final reconstruction of 
Re[himaged{x)} after one sweep using 
the p method. 

-0.15 

-MS 

Figure 13: Final reconstruction of 
Re[himaged(x)] after one sweep using 
the H method. 

The problem of differentiating mines from clutter using hand-held GPR was considered as 
an inverse problem. In this approach locations and electrical properties of mine-like targets 
would be imaged via solution of an inverse problem. The input data for such a problem 
would be the back-reflected electrical signal measured at many frequencies ranging from 0.5 
to 3 GHz. Locations and electrical properties of targets, in turn might be used on a later 
stage as an input for a procedure of classification of targets. 

Three major tasks were achieved in this project. Each of these required about one year 
of effort. First, a new rapid algorithm for the solution of the forward problem on high 
frequencies was developed and implemented [1,3]. This task, though axillary, was necessary 
to perform, because the conventional classical algorithm of Gaussian elimination is too slow 
for this range of frequencies. 

Next, a second generation of the Elliptic Systems Method (ESM), which was used earlier 
in Diffusion Tomography, was developed and tested for the inverse problem of diagnostics of 
mine-like targets using GPR [2] (p-method). The key new element of this second generation 
method is that the resulting integro-differential equation is solved directly, rather than by 
eliminating integrals, as it previously was. In addition, a fast preconditioner was developed 
for the Conjugate Gradient Method, which significantly speeded up solutions of inverse 
problems of this project. The resulting algorithm provides accurate images of both locations 
of targets and values of the Re[h imaged (x)} within them in about 6 minutes of CPU time 
on a SGI Origin 200 with a single processor. This timing is well acceptable for the goal 
of diagnostics of mine-like targets, since the process of diagnostics is much slower than one 
of screening. Still, this timing can well be decreased by a factor of five, if using fast dual 
precessing techniques. 
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Horizontal cross section ol h 

Figure 14: Horizontal reconstruction of Re[himaged(x)] using the p and H methods. 

Finally, a modified version of the algorithm [2] was developed (if-method), which is 
actually an advanced variant of the method of a well known German scientist F. Natterer 
[19]. It was shown that both versions provide the same accurate locations of targets, while 
the second version usually performs better for the lower values of the upper frequency. 
However, in the practically most important case of a single target the first version performs 
much better for the key parameter Re[/i imaged (#)] within the target. It is also reasonable 
to conclude that if using the original method of [19], in which only diagonal elements of 
matrices are counted (as opposed to its more advanced version used here), the quality of 
the resulting images would be much worse than ones presented above. This speaks in favor 
of the second generation of the ESM, as compared with the best competing technique of F. 
Natterer. 

5.6 POSSIBLE FUTURE DIRECTION OF RESEARCH 

First, it would be very interesting to verify the performance to both p- and //-methods on 
the experimental data. The methods are now mature, although a few new features should be 
implemented before this would be possible. Some of these features are: the measurement line 
should be "raised" from the air/ground interface, geometric irregularities of the air/ground 
interface need to be incorporated in the model, and possibly a point source, as opposed to 
the current initializing plane wave, should be incorporated. 

There is also a second pressing need of research, connected with the development of 
globally convergent, as opposed to locally convergent, inverse algorithms for imaging of land 
targets. This would be a far advanced second generation of the above methods. The vast 
majority of inverse techniques, including the ones presented above, is heavily relying on an 
assumption that the properties of soil are known with a good accuracy. This leads either 
to the linearization of the inverse problem, or to a perturbation approach, which is a slight 
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modification of the linearization. In practice, however, electrical properties of soil are not 
always known with a good accuracy. Therefore linearization of an inverse problem is not 
feasible in such cases. The key drawback of the conventional least squares objective functions 
is that they suffer from the problem of local minima, as soon as the starting vector is chosen 
far from the solution [18]. Therefore, in the scenarios when properties of soil are not known 
with a good accuracy, there is a pressing need for algorithms, which would neither rely on 
the perturbation approach, nor suffer from the problem of local minima. 

A new idea of globally convergent algorithms has been developed by M. V. Klibanov 
in the past several years, cf. [17]. It was only recently however, when the computational 
feasibility of this idea was verified by M. V. Klibanov and A. Timonov [18]. In [18], this 
approach was termed convexification. By the convexification approach, the original inverse 
problem is reduced first to a boundary value problem for a non-linear integro differential 
equation, in which the unknown coefficient is not involved. This equation is similar to the 
above equation (5.8a), except of the non-linearity, which is obviously not present in (5.8a). 
Next, this boundary value problem is solved via a least squares cost functional J. The 
key new element of J, however, is the presence of the so-called Carleman weight function 
(CWF). The role of the CWF is that it guarantees strict convexity of J on a compact set of 
user's choice. Actually, the role of the CWF is to suppress the presence of terms with low 
order derivatives, which are responsible for destroying the strict convexity of the Laplace 
operator V2- Therefore, because of strict convexity, rapid global convergence of a number of 
minimization algorithms to the unique minimizer of J is guaranteed. If can be also proven 
that the distance between the minimizer of J and the vector, which corresponds to the 
correct solution of the inverse problem, is small, if the data are not "too noisy". Preliminary 
results in this direction are quite promising. 
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