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LONG-TERM GOAL 

Derive a new drag law and roughness length relationship for the coastal zone. 

OBJECTIVES 

Our primary objective is to isolate the influences of wave age and fetch on the drag coefficient and 
surface roughness length. This includes examination of the influence of internal boundary layer 
development on heat and momentum fluxes in the coastal zone, that can lead to large deviations from 
existing similarity theory. The second main objective is to augment the wave age with more specific 
wave properties. The final objective is to provide the data sets to other modeling groups. 

APPROACH 

Our initial objectives were realized by first quality-controlling the RASEX data and intercomparing 
fluxes between different levels. Different estimates of the "observed" roughness length using the 
profile and eddy correlation methods were compared. Using the observed values of the drag coefficient 
and roughness height, different existing relationships were tested and new formulations for the transfer 
coefficients for heat and momentum were developed. The analysis has been extended to a much larger 
RASEX data set outside the intensive period, which includes a large sample of offshore internal 
boundary layer cases.   We have also added the offshore tower data from the University of Uppsala. 

WORK COMPLETED 

During the past year, we have evaluated the Charnock relationship and simple wave age models using 
RASEX and the Swedish data sets. We have also explored the relationship between the aerodynamic 
roughness length and atmospheric stability. 

RESULTS 

The Charnock coefficient relates the aerodynamic roughness length to the surface friction velocity. To 
our surprise, we found that the success of the Charnock relationship is almost exclusively due to 
artificial correlation guarenteed by the relationship between the friction velocity and the roughness 
length in the Monin-Obukhov drag law (stability-modified log law). In fact a higher order 
parameterization of the roughness length in terms of the friction velocity out performs the Charnock 
relationship, although the success of this formulation is due primarily to artificial correlation as well. 
These results were suggested by both the random rearrangement of actual values of the input variables 



(heat flux, wind speed and momentum flux) and by specifying a gaussian distribution of each 
independent variable. 

We have found that the aerodynamic roughness length depends substantially on atmospheric stability. 
The roughness length is orders of magnitude smaller with stable conditions, presumably due to 
supression of downward momentum transport to the sea surface is weaker. This stability dependence 
also leads to a stability dependence of the Charnock coefficient (Figure 1). For these analyses, the 
RASEX data did not contain a sufficiently wide range of stability to assess the stability dependence. 
We therefore supplimented the Swedish data sets with existing data sets which we have in-house. 
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Figure 1. The dependence of the Charnock coefficient on the bulk Richardson number defined in terms 
of the temperature and wind at the observational level and the sea-surface temperature. The data sets 
are the Swedish 8-m data from an offshore tower in the Baltic (red solid), LongEZ aircraft data from 
approximately 15 m during SHOWEX (November 1997-black dashed, March 1999-blue solid, 
November 1999-red dashed) and TOAGA CO ARE NCAR Electra data at approximately 30 m (green 
dashed), 

All the data sets indicate a similar decrease of the Charnock coefficient with increasing stability except 
for the TOAGA COARE data. In the latter data set, significant stability is achieved by very weak winds 
rather than significant air-sea temperature difference. Furthermore, the number of cases is fairly small 
because of the minimum wind speed criteria. 

However, we have not yet reached a decision on whether a formulation of a stability dependent 
roughness length or Charnock coefficient is ready for use in models where no information on wave 
state is available. This stability dependence is different between weak wind and moderate wind 



conditions, persumably due to the increased influence of swell with weak winds. The composited 
results in Figure 1 exclude winds less than 4 m/s. More investigation is needed. 

We have also developed models of the roughness length and Charnock coefficient on wave age. 
Again, the resulting relationship is largely due to artificial self-correlation.   We are currently studying 
the influence of swell propagation with respect to the mean wind. 

IMPACT/APPLICATION 

The previous success of the Charnock formulation in the literature may have also been primarily due to 
artificial self-correlation. This does not suggest that common use of the Charnock formulation in 
numerical models should be terminated but rather that existing physical interpretation of the Charnock 
formulation cannot be justified. In addition, the common use of the Charnock relationship to reduce 
the drag coefficient to neutral values is not justified and may lead to misleading results. 

RELATED PROJECTS 

Work on an ONR grant entitled "Spatial Variations of the Wave, Stress and Wind Fields in the 
Shoaling Zone" (N00014-97-1-0279) has completed the observational work and is concentrating on 
data analysis. This program studies spatial variations in the coastal zone using the LongEZ research 
aircraft and ground based sonic anemometers at the shore and on the pier. 

PUBLICATIONS 

Mahrt, L., D. Vickers, J. Edson, J. Wilczak, J. Hare and J. Hojstrup, 2001. Vertical structure of 
offshore flow during RASEX. Boundary-Layer Meteorology, 100,47-61. 
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Abstract. The adjustment of the boundary layer immediately downstream from 
a coastline is examined based on two levels of eddy correlation data collected on 
a mast at the shore and six levels of eddy correlation data and profiles of mean 
variables collected from a mast 2 km offshore during RASEX. The characteristics of 
offshore flow are studied in terms of case studies and inter-variable relationships for 
the entire one month data set. A turbulent kinetic energy budget is constructed for 
each case study 

The buoyancy-generation of turbulence is small compared to shear-generation 
and dissipation. However, weakly stable and weakly unstable cases exhibit com- 
pletely different vertical structure. With flow of warm air from land over cooler 
water, modest buoyancy destruction of turbulence and reduced shear-generation of 
turbulence over the less-rough sea surface cause the turbulence to rapidly weaken 
downstream from the coast. The reduction of downward mixing of momentum by 
the stratification leads to smaller roughness lengths compared to the unstable case. 
Shear-generation at higher levels and advection of stronger turbulence from land 
often lead to a maximum of stress and turbulence energy above the surface and 
downward transport of turbulence energy toward the surface. 

With flow of cool air over a warmer sea surface, a convective internal boundary 
layer develops downstream from the coast. An overlying relatively thick layer of 
downward buoyancy flux (virtual temperature flux) is sometimes maintained by 
shear-generation in the accelerating offshore flow. 

Keywords: Coastal zone, Air-sea interaction, Sea surface stress, Internal boundary 
layer, Turbulence energy. 

t$ © 2000 Kluwer Academic Publishers.   Printed in the Netherlands. 
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1.   Introduction 

The response of the atmosphere to surface discontinuities is often posed 
in terms of internal boundary layers (Garratt, 1990). In flow of warm 
air from a rough land surface over a cooler sea surface, the turbulence 
decreases due to a combination of stable stratification over the water 
and reduced surface roughness. The flow above the thin stable surface 
layer, which was part of the boundary layer over land, may become 
partially decoupled from the surface, accelerate and form a low-level 
wind maximum (Smedman et al., 1995; Tjernström and Smedman, 
1993). The shear on the underside of the low-level wind maximum 
may eventually generate turbulence and reestablish a surface-based 
boundary layer. In this case, the main source of turbulence is elevated 
and not at the surface and Monin-Obukhov scaling does not apply 
(Smedman et al., 1995). Sun et al. (2000) show that close to the coast, 
advection from land dominates the near-surface stress. 

Even without such decoupling, the reduction of surface roughness 
and surface stress over the sea can lead to a low-level wind maximum in 
offshore flow of warm air over cooler water (Garratt and Ryan, 1989). In 
a numerical study of the influence of the continental diurnal variation 
on offshore flow, Garratt (1987) found that the onset of daytime con- 
vective turbulence was advected offshore as a sharp horizontal change 
that could be traced for hundreds of kilometers offshore, well beyond 
the fetch in the present data. The numerical simulations of Mengelkamp 
(1991) indicate that the top of the stable internal boundary layer can 
be defined in terms of a minimum in the vertical profile of turbulence 
kinetic energy while numerical simulations of Garratt (1987) similarly 
indicate a minimum of eddy diffusivity at the top of the stable internal 
boundary layer. The level of minimum turbulence separates the under- 
lying internal boundary layer from overlying decaying turbulence. In 
Mengelkamp (1991), this overlying decaying turbulence still exhibits 
some upward buoyancy flux offshore, characteristic of the upstream 
convective boundary layer. 

A number of studies document development of well-defined convec- 
tive internal boundary layers in flow of cool air over a warm surface (see 
review in Garratt, 1990). The growing convective internal boundary 
layer is capped by a thin entrainment zone of downward buoyancy flux. 
In contrast, Sun et al. (1998) studied a convective internal boundary 
layer, which is capped by a relatively thick layer of downward buoy- 
ancy flux, maintained by elevated shear-generation. The above studies 
suggest varied vertical structure of the convective internal boundary 
layer in offshore flow. 
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The present study analyses offshore data from the Ris0 Air-Sea Ex- 
periment (RASEX). Using this data, Vickers and Mahrt (1999) found 
that close to the coast, modifications to Monin-Obukhov similarity 
theory may be required. Convective eddies are suppressed by the top of 
the thin internal boundary layer in unstable offshore flow. This partial 
suppression leads to larger nondimensional gradients and weaker fluxes 
than predicted by Monin-Obukhov similarity theory. For stable offshore 
flow, the nondimensional shear is smaller than predicted by the usual 
stability functions for Monin-Obkuhov similarity theory, particularly 
for young waves. In contrast, above the wave boundary layer for sta- 
tionary onshore flow, Monin-Obukhov scaling successfully describes the 
turbulence energy budget (Edson and Fairall., 1998; Wilczak et al, 
1999) and the flux- gradient relationship (Vickers and Mahrt, 1999). 

2.   Data 

We analyze offshore tower data collected during RASEX. The full in- 
strumentation is described in Barthelmie et al. (1994) and H0jstrup 
et al. (1997). In this study, we analyze observations taken at the sea 
mast west tower, located 2 km off the northwestern coast of the island of 
Lolland, Denmark, in 4 m of water, for the intensive observing period 3 
October through 8 November 1994. The variation in mean water depth 
due to tides is only about 0.3 m. Local off-shore (southerly) flow is 
characterized by a sea fetch ranging between 2 km and 5 km. On-shore 
flow has a fetch between 15 km and 25 km as it travels across an inland 
sea, and is still potentially fetch-limited. Fetch is the distance along 
the flow from the coast to the sea mast. Water depths for the longer 
fetches range from 4 m to 20 m. The nearby land surface is relatively 
flat farmland. 

Various corrections to the data are recorded in Mahrt et al. (1996). 
Averaged vertical profiles of the buoyancy flux and friction velocity are 
computed from the six levels of sonic anemometers. In offshore flow, the 
vertical variation of the flux is much larger than differences between in- 
dividual sonic anemometers. For some analyses, the fluxes for the three 
lowest levels will be averaged since the effect of instrumental differences 
may be larger than the actual vertical variation over such short vertical 
distances. The stability z/L for each record is computed from the fluxes 
averaged over the three lowest levels, where L is the Obukhov length. 
Insight into the vertical structure of the offshore flow can be gained by 
evaluating the turbulence kinetic energy budget using the stress and 
virtual temperature flux computed from sonic anemometers located at 
3, 6, 10, 18, 32 and 45 m on the offshore tower. 
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For shear-generation of turbulence kinetic energy, the mean wind 
shear is computed from seven cup anemometers (P224b sensor) located 
at 7, 15, 20, 29, 38, 43 and 48 m. Corrections to the cup anemometers 
were made by compositing the wind speed profile based on all of the 
records with fetch greater than 10 km and near-neutral conditions 
(abs.(z/L) < 0.1). This averaged profile is fit to a log-linear height- 
dependence and percentage corrections for each level are constructed 
from the deviation of the averaged profile from the log-linear fit. These 
corrections partially remove small systematic irregularities in the profile 
due to instrument error. Percentage corrections to the wind speed are 
always less than 2% but exert a greater influence on the shear. The 
computation of the shear-generation term neglects directional shear, 
which could not be adequately estimated from the sonic anemometer 
data due to small uncertainties in orientation. 

For offshore cases (fetch < 5km), advection of turbulence kinetic 
energy is estimated as 

.TKESM — TKELM-, /.V 
1 fetch J K ' 

where SM refers to the offshore mast and LM refers to the land mast. 
This term can be estimated at the 6- and 18-m levels, corresponding to 
the common sonic anemometer levels at the landmast and seamast. The 
wind speed V is the taken from the appropriate level at the sea mast 
Here, it is assumed that the turbulence kinetic energy, TKE, is spatially 
invariant along the coast for cases where the flow was not perpendicular 
to the coast. The above estimate of advection is probably an upper 
bound for the tower since the gradients are presumably strongest closer 
to the coast. Unfortunately, advection could not be estimated above 18 
m. 

Dissipation is estimated following the spectral approach of Edson 
and Fairall (1998). The spectral slope was determined from a least 
squares fit over the frequency range thought to be in the inertial sub- 
range. In some cases, the inertial subrange does not appear to be fully 
developed possibly due to nonequilibrium conditions in offshore flow 
and errors in the dissipation estimate may be significant. We expect 
the wave-induced pressure transport term to be small for this data even 
at the lowest (3 m) tower level (Hare et al., 1997). The wavelength 
and amplitude of the fetch-limited surface waves are generally small 
compared to open ocean values. 

The residuals for the turbulence kinetic energy budget are expected 
to be large because the pressure transport term is neglected and the 
errors in the vertical flux divergence and horizontal advection of turbu- 
lence energy are expected to be significant. The vertical flux divergence 
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of turbulence energy (triple correlation term) suffers larger random 
flux errors compared to covariances, and the flux divergence term is a 
small difference between vertical flux of turbulence energy at two levels. 
We have also neglected the Eulerian time-dependence term, the mean 
vertical advection of turbulence kinetic energy as well as horizontal 
flux divergence of turbulence energy equation. These terms appear to 
be small with relatively large errors. 

3.   Land-sea contrast 

The maximum upward buoyancy flux at the sea surface most often 
occurs in the morning when the air advected from the land is coolest. 
The maximum downward buoyancy flux at the sea surface tends to 
occur in the late afternoon when the air over land is warmest. On 
average, the diurnal amplitude of the buoyancy flux is 0.02 °Cms~1. 
This averaged diurnal amplitude is small due to the low sun angle for 
54 N in October and inclusion of numerous cloudy days in the average. 
Using temperature at two levels for summer for the same land and sea 
masts, Barthelmie et al. (1996) found, on average, stable conditions 
over the water during the day and unstable conditions at night. 

For the data analyzed here, the stress at the seamast in offshore 
flow is on average half of the value over land. The flow typically accel- 
erates 1 — 2ms-1 between land and the offshore mast. The roughness 
lengths over land (Barthelmie et al., 1996) are approximately 10 cm 
for southerly (offshore flow) and 5 cm for south easterly flow where 
trajectories experience a mixture of land and sea. These roughness 
lengths are several orders of magnitude larger than those over the sea. 

The buoyancy fluxes are relatively weak in this data set and the 
magnitude of z/L only occasionally exceeds 0.5. None the less, the 
vertical structure of the flow is sensitive to whether the flow is weakly 
unstable or weakly stable. The greater sensitivity of the flow to stability 
compared to over land (Section 5) may be due to coupling between the 
roughness length over the sea and the stability, as found in Plant et al. 
(1998). With stable conditions, the momentum flux to the sea surface is 
weaker. This corresponds to slower wave growth and smaller roughness 
compared to near-neutral and unstable cases. 

To examine this relationship for the present data, roughness lengths 
were computed from the observed fluxes from individual one-hour records 
using the Paulson-Dyer stability functions. The roughness lengths were 
then averaged for different intervals of z/L. As a second calculation, 
roughness lengths were computed from fluxes, which were first averaged 
for different intervals of z/L before computing the roughness length. 
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Both methods showed a sharp decrease of the roughness length with 
increasing stability. For the second method, the roughness length for 
offshore flow at 3 m decreases from 0.05 cm for near-neutral conditions 
to 0.003 cm for the stability interval centered on z/L = 0.2, to 0.001 
cm for the stability interval centered on z/L = 0.6. The corresponding 
Charnock coefficient is 0.015 for near neutral conditions, close to tradi- 
tional values. The values of the Charnock coefficient decreases to near 
smooth flow values for the stable categories. As a result, the influences 
of stability and roughness change on the offshore flow are coupled and 
the over all effect of stability is enhanced compared to that over land. 
This problem is currently being investigated with eddy correlation and 
wave data from multiple sites. Inaccuracy of the Dyer stability function 
does not seem to be the cause of the correlation between the roughness 
lengths and stability. 

For the relationships examined in subsequent sections, the character- 
istics of the offshore flow are more systematically related to travel time 
than fetch in terms of the scatter, suggesting that the flow is influenced 
by an internal decay time scale. The turbulence may decay more near 
the surface where the travel time to the tower is longer (weaker wind 
near the surface) and the dissipation time scale is shorter (smaller tur- 
bulent length scale near the surface). For offshore flow, the travel times 
at the offshore mast generally range between a few hundred seconds 
and about 600 seconds. The decay time of convective turbulence can 
be estimated in terms of the ratio of the vertical length scale of the 
turbulence divided by the velocity scale of the turbulence. Nieuwstadt 
and Brost (1986) and Sorbjan (1997) provide specific formulations for 
the case where the velocity scale is the free convection velocity and 
the length scale is the depth of the convective mixed layer. Applying 
such a relationship to the RASEX cases with convective conditions over 
land predicts a decay time scale on the "order" of ten minutes, which 
is consistent with the observed variation of turbulence quantities with 
travel time over the sea found in Sections 4-5. 

4.   Upward buoyancy flux from the sea surface 

We now study the flow of cool air over the warmer sea surface in 
terms of three periods when the buoyancy flux at the surface exceeds 
0.01 °Cms~l for more than a half day (Table 1). All three cases are 
characterized by very weak instability. The time-height cross-section 
for the case of longest duration (Figure 1) shows diurnal variation with 
maximum upward buoyancy flux in the morning due to advection of 
cool air from land. 
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Figure 1. Time-height cross-section for unstable case UI for the buoyancy flux 
(°Cms~l) where darker areas correspond to upward buoyancy flux. Times are GMT 
which is one hour behind local solar time. 

The turbulence energy budget is averaged over all of the one-hour 
Records within each case. Averaging over nonstationary periods does 
not correspond to an ensemble average. However, the individual one- 
hour budgets are noisier especially with respect to the smaller terms 
in the turbulence kinetic energy budget. The residuals of the averaged 
turbulence energy budgets (Figure 2) are reasonably small consider- 
ing the possible substantial errors in certain terms of the budget and 
omission of the pressure transport term (Section 2). Error bars for 
the averaged profiles are not shown because much of the variation 
within the averaging period is due to either diurnal trend or other 
nonstationarity, rather than random variations. The analysis in this 
section also considers statistics based on all of the individual one-hour 
records within the entire field program when z/L < —0.1. 

5.   Vertical structure 

The buoyancy-generation of turbulence energy is quite small compared 
to the shear-generation and dissipation (Figure 2), although this weak 
buoyancy flux strongly influences the vertical structure, as discussed 
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Figure 2. The turbulence energy budget (m2s~3) for the weakly unstable cases. A 
is the advection term, e the dissipation, S the shear-generation term, F the vertical 
divergence of the flux of the turbulence energy and B the buoyancy-generation 
term. The residual, R, is computed from the two levels where all the terms can 
be evaluated. 

Table I. Case Studies. B.F. is the surface buoyancy flux ("Cms'1) averaged over 
the 3, 6 and 10 m levels, "travel" refers to the travel time in minutes, fetch is in 
kilometers and V is the 10 m wind speed. Case I for the stable and unstable flows 
include time-height cross-sections of the buoyancy flux (Figures 1 and 4). 

case study Time (DOY) travel fetch B.F. wind ms  ' z/L 

unstable-UI 291.9 - 293.0 5 3 0.02 10 -0.10 

unstable-Uli 289.25 - 290 35 18 0.03 9 -0.11 

unstable-UIII 307.7 - 308.35 4.5 2.8 0.01 10 -0.02 

stable-SI 297.0 - 297.7 5 2 -0.02 7 0.44 

stable-SII 299.0 - 301.0 6 2.8 -0.01 8 0.06 

stable-SIII 303.15 - 303.25 5 2 -0.01 6.5 0.11 

below. For unstable conditions, the horizontal advection of turbulence 
energy is also small in the turbulence energy budget, at least near the 
surface where it could be evaluated (Figure 2a, c). Horizontal advection 
presumably becomes increasingly important at higher levels and also 
shoreward of the seamast. 

For the two short fetch cases, the turbulent transport term the 
vertical flux convergence is positive near the surface (Figure 2), which 
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Figure 3. The dependence of the vertical flux of turbulence energy (m s~ ) at 18 
m on travel time for all of the one-hour records with fetch values less than 5 km for 
unstable conditions (z/L < — 0.1). 

would be consistent with the fact that the tower occupies the bulk of 
the internal boundary layer. For the long fetch case, the vertical flux di- 
vergence term is negative near the surface corresponding to traditional 
export of turbulence energy upward out of the surface layer. 

In contrast to the short fetch cases, the flow in Case Uli reaches the 
tower after a relatively long fetch of 18 km and travel time of about 
35 min. The flow is unstable at all levels and the momentum flux for 
Case Uli is approximately constant with height, within the uncertainty 
due to differences between different sonic anemometers. The unstable 
internal boundary layer is deep compared to the tower layer because of 
the longer travel time over the water. The buoyancy flux is small and 
erratic for this case due to small air-sea temperature difference and the 
flux shows no obvious trend with height. 

The layer of upward buoyancy flux is capped by a layer of downward 
buoyancy, which sometimes is as thick as, or thicker than, the layer of 
upward buoyancy flux. This vertical structure is seen in the first part of 
Figure 2, after which the depth of the convective layer grows and engulfs 
the entire tower layer. In the former case, the vertically integrated 
buoyancy flux is small or even negative and the vertically-integrated 
turbulence is driven by shear-generation. 

The turbulent transport of turbulence energy (Figure 3) is often 
large upward for unstable cases with short travel time of less than 300s 
where advection from land is most important. The turbulent transport 
is never significant downward. For stable offshore flow, the pattern is 
quite different (next section). 
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Figure 4- Time-height cross-section of the buoyancy flux ^Cms-1) for stable case 
SI where lighter areas correspond to stronger downward buoyancy flux. Times are 
GMT which is one hour behind local solar time. 

6.   Downward buoyancy flux 

Flow of warm air over a cooler surface is now analyzed in terms of three 
case study periods where the magnitude of the downward buoyancy 
flux at the surface is greater than 0.01 "Cms-1 for most of the episode. 
The time-height cross-section for the buoyancy flux is shown for the 
case with the largest sustained downward buoyancy flux (Figure 4). 
For this case, the downward buoyancy flux at the sea surface is due 
to advection of warm air from the heated land surface over the cooler 
water and exhibits significant diurnal variation. The vertical structure 
of the turbulence kinetic energy budget is averaged for all of the one- 
hour records in each of the three cases (Figure 5 a-c). All three cases 
correspond to short fetch and short travel time (Table 1) and weak 
stability. We will also analyze statistics based on all of the individual 
one-hour records during the entire field program when z/L > 0.1. 

6.1.  ELEVATED STRESS MAXIMUM 

For stable periods, the stress often increased with height (Vickers and 
Mahrt,  1999). This occurred for even weak stability but was more 
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Figure 5. The turbulence energy budget (10_3m2s-3) for the three weakly stable 
Cases (a-c). A is the advection term, e the dissipation, S the shear- genera- 
tion term, F the vertical divergence of the flux of the turbulence energy, B the 
buoyancy-generation term and R, the residual. 

pronounced for the few cases of stronger stability, as in Figure 6, where 
the measured stress and downward heat flux near the surface have 
essentially collapsed, within measurement error. This vertical structure 
is quite different from observed traditional stable boundary layers where 
the stress, buoyancy flux and turbulence energy decrease monotonically 
with height (Caughey et al., 1979; Lenschow et al., 1987; Sorbjan, 
1988). In the present observations of offshore flow, the elevated maxima 
of stress and turbulence energy are maintained by shear-generation and 
presumably augmented by advection of stronger turbulence from land. 

The stress convergence below the elevated stress maximum acts to 
accelerate the flow and may account for much of the observed flow 
acceleration downstream from the coast. The observed vertical conver- 
gence of stress at the sea mast, applied over the travel time from the 
coast, corresponds to an acceleration of 0.5-1.0 ms-1. The observed 
acceleration ranged from 0.8 - 1.3 ms_1. A rigorous assessment of the 
momentum budget is prevented by inadequate assessment of the local 
horizontal pressure gradient. 

The observed increase of stress with height does not appear to be 
related to instrumentation differences. For long-fetch, near-neutral con- 
ditions, the observed stress is essentially constant with height across 
the tower layer (or decreases very slowly with height), as expected in 
non-advective traditional boundary layers where the boundary layer is 
much deeper than the tower layer. 

An elevated stress maximum is also observed by Glendening (per- 
sonal communication) in an LES model of flow from a rough surface to 
a smooth surface with zero buoyancy flux. He used this elevated stress 
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Figure 6. Vertical profiles of the friction velocity (ms-1), buoyancy flux ("Cms-1) 
and aw (ms~l) for a one-hour period during case SI where surface fluxes are very 
weak. 

maximum to define the top of the new internal boundary layer. The 
elevated maximum was maintained by horizontal advection. Definition 
of the top of the internal boundary layer in terms of a stress maximum 
contrasts sharply with definition of the top of the internal boundary 
layer in terms of a minimum of turbulence, cited in the Introduction. 
The differences of the vertical structure may be due to different relative 
position downstream from the surface change. The present observations 
in offshore flow are short fetch and Mengelkamp (1991) finds that the 
minimum develops beyond a certain fetch offshore. 

To form a simple measure of the vertical structure of the stress for 
individual records, the ratio of stress in the upper part of the tower 
layer to that in the lower part of the tower layer, is computed as: 

stress ratio = 
stress upper 

stressic 
(2) 

where stressupper is the average of the stress magnitude at the two 
upper tower levels, 32 m and 45 m, and the stressiower is the average 
of the three lowest levels, 3 m, 6 m and 10 m. This ratio is computed for 
all of the one-hour records where z/L > 0.1. The momentum flux ratio 
is sometimes large for small travel time, exceeding two in a significant 
fraction of the cases (Figure 7). These values correspond to a rapid in- 
crease of stress with height. The momentum flux ratio decreases rapidly 
with increasing travel time to values closer to unity for travel times of 
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Figure 7. The stress ratio (Eq. 2) as a function of travel time for all of the one-hour 
records with stable conditions [z/L > 0.1). 

ten minutes and longer, although the scatter is large. For values near 
unity, the stress changes slowly with height, implying that the internal 
boundary layer is deep compared to the tower layer. 

What generates this vertical structure? Firstly, the shear-generation 
term tends to increase with height (Figure 5), in contrast to the usual 
boundary layer where it decreases rapidly with height. Secondly, the 
turbulence advected horizontally from land in offshore flow is thought 
to decay more slowly at higher levels where the turbulence length 
scale is larger. The dissipation rate divided by the turbulence energy 
decreases with height for both stable and unstable cases. Finally, the 
advection of stress might increase with height due to increasing wind 
speed with height. 

6.2.  DOWNWARD TRANSPORT OF TURBULENCE 

For Cases SI and SHI, the vertical turbulent transport of turbulence 
kinetic energy is significant downward (not shown), implying that the 
main source of turbulent kinetic energy is elevated and the near surface 
flow is a sink of turbulence energy. This downward transport of turbu- 
lence energy is consistent with the increase of turbulence and stress with 
height. The downward transport of turbulence kinetic energy leads to 
significant vertical flux convergence of turbulence energy at the lower 
levels (Figure 5). The turbulence near the surface is therefore partly 
maintained by downward transport of turbulence energy. The down- 
ward transport of turbulence toward the surface may be augmented by 
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m on travel time for all of the one-hour records with stable conditions (z/L > 0.1). 

the pressure transport term in the turbulence kinetic energy equation 
(Smedman et al., 1995). 

Considering all of the stable one-hour records, the vertical transport 
of turbulence energy for short travel times is often large positive (Figure 
8), as also occurred in the unstable offshore flow cases. However, in 
contrast to unstable conditions, the vertical transport of turbulence 
energy is sometimes large downward for short travel times less than 
300 s (Figure 8), again implying that the main source of turbulence 
is elevated in some stable offshore flows. These cases of downward 
transport of turbulence energy normally correspond to an increase of 
stress with height (Figure 9, momentum flux ratio > 1). Our attempts 
to model this type of "boundary layer" have not been successful to 
date. 

7.   Conclusions 

For the present data, weakly convective internal boundary layers in flow 
of cooler air over warmer water are sometimes capped by a relatively 
thick layer of downward buoyancy flux. In such cases, the vertically 
integrated buoyancy flux is small or even negative and the vertically- 
integrated turbulence is driven by shear-generation and possibly hori- 
zontal advection. 

With advection of warm air over cooler water, the vertical structure 
may be quite different even though the flow is normally only weakly 
stable (z/L < 0.5). These cases often occur in the afternoon with flow 
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of warm air from the heated land surface. In some cases, the turbulence 
energy and stress increase with height, reaching an elevated maximum, 
and the transport of turbulence energy is sometimes downward toward 
the surface, in contrast to unstable conditions. This structure was ob- 
served with travel times less than 10 minutes (fetches generally less 
than 5 km). The increase of stress with height appears to be main- 
tained by horizontal advection of stronger turbulence from land and 
shear-generation associated with accelerating flow over the water. 

The downward transport of turbulence kinetic energy over the sea 
implies that the net generation of turbulence over the water surface 
is much weaker than over the upstream land surface due to a combi- 
nation of stability and reduced surface roughness over the sea. These 
two effects are not separable in that stable stratification restricts the 
downward transport of momentum to the sea surface, which leads to 
very small surface roughness lengths. Consequently, the overall effect of 
buoyancy is greater than that over land where the roughness length is 
essentially constant. The relationship between the roughness length and 
the stability may contribute to the large differences in vertical structure 
of the flow for the cases of weak upward and weak downward buoyancy 
flux, which occur even though the buoyancy term in the turbulence 
kinetic energy equation is small compared to shear-production and 
dissipation. 
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10.1 Introduction 

The coastal zone is of considerable practical importance since it is a region of intensive 
human activity and rich in biological activity, compared to the open ocean. At the same 
time, the spatial variation of the atmospheric surface flow and the surface wave field are 
complex and both are often in nonequilbrium. Formulations of surface stress must 
include the influence of developing wave state and shoaling (Section 3). Growing waves 
occur with offshore flow and with time-varying wind fields, often induced by diurnal 
variation of the heat flux discontinuity at the coastal interface (Section 5). Current 
formulations of the surface flux may perform poorly in developing internal boundary 
layers in offshore flow (Section 4). Difficulties with formulation of surface fluxes in the 
coastal zone is a major topic of this chapter (Sections 2-3). Offshore flow must adjust to 
smaller surface roughness and different surface heat flux over the sea. The modelling 
problem is particularly difficult with offshore flow of warm air over a cool water 
surface (Section 4). The development of stratus and other cloud regimes in the coastal 
zone is beyond the scope of this survey. This chapter will assume familiarity with 
previous reviews found in Donelan (1990) and Geernaert (1990). 

10.2 Formulation of surface fluxes 

The surface stress, heat flux and moisture flux are formulated through the bulk 
formulas: 

t~'~r2 , ~^~r2s 1/2     ^ -2 ( 10-1 ) (w u    +wv   )     = Cdu v '"    ' 
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(10-2) w0 = Chü[Q0-Q] 

V7=Cqü[qo-q] (10"3) 

where Cd is. the drag coefficient, Ck is the transfer coefficient for heat, Cq is the transfer 
coefficient for moisture, z is the observational height, 8ffl and qB are surface aerodynamic 
values of the potential temperature and specific humidity, to be defined below, and ü is 
the speed of the vector averaged wind where the x-coordinate has been rotated into the 
direction of the mean wind. Similar bulk formulations can be written for turbulent 
transfer of other scalars although definition of the aerodynamic surface quantities 
becomes problematic (Sun et al. 1998a). Numerous variations of the bulk formula are 
used where the vector averaged speed is replaced by the averaged instantaneous speed, 
the total stress is replaced by the stress in the along-wind direction, or the current 
velocity is removed from the wind (see Mahrt et al. 1998). Since the stress, wind and 
wave propagation directions may be systematically different (Geernaert 1990; Rieder et 
al. 1994; Rieder 1996), omission of the cross wind stress seems inadvisable even though 
this component can be characterized by large flux sampling errors. 

In the case of weak winds, the precise definition of the velocity used in the bulk 
formula becomes important. This velocity scale has been generalized to include the 
influence of "large convective eddies" (Beljaars 1995; Fairall et al. 1996; Grachev et al. 
1998) or mesoscale motions which are on smaller scales than the spatial or 
grid-averaging scale (Mahrt, Sun 1995; Vickers, Esbensen 1998). Resolving this 
problem is made difficult by severe flux sampling errors in the weak wind case (Mahrt 
et al. 1996) which can be reduced only with long stationary records. With weak winds 
and swell, the momentum flux may even be transported from the waves to the 
atmosphere (e.g. Smedman et al. 1994). 

The simplest formulation of the surface stress specifies the neutral drag coefficient 
to be constant or a function of wind speed but independent of wave state (see studies 
surveyed in Geernaert, 1990). The transfer coefficient for heat is often specified to be 
constant where Qg is equated to the surface radiation surface temperature of the water or 
the near-surface water temperature and qgis specified to be the saturation specific 
humidity evaluated at the value of the surface temperature. The appealing simplicity of 
this approach meets the demand of economy required in some large scale models. 

However, in the coastal zone, stability strongly influences the transfer coefficients. 
One might expect stability -zIL to be smaller over water than over land since surface 
heat fluxes are typically smaller over water than over land, where L is the Obukhov 
length 

u% I ( 10-4) 

Kz(g/Qv)w 0v 

where u. is the surface friction velocity (square root of the surface stress magnitude) and 
K is the von Kaiman constant. However, the shear stress is also weaker over the sea than 
over land due to small surface roughness so that the stability -zIL can significantly 
influence the transfer coefficients even without strong surface buoyancy flux. As a 
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result, stability may strongly influence the flux-gradient relationship in the coastal zone. 
To include the influence of stability on the drag coefficient and transfer coefficients, 
Monin-Obukhov similarity theory (Monin, Obukhov 1954) is applied by either: 
1) using similarity theory to reduce the drag and transfer coefficients to their equivalent 

neutral values (Section 10.2.2) and relating the neutral values to the wind speed and 
wave state or 

2) explicitly applying Monin-Obukhov similarity theory and relating the roughness 
length to wave state (Section 10.3.2). 

10.2.1 MONIN-OBUKHOV SIMILARITY THEORY 

Monin-Obukhov similarity theory provides a model for the flux-gradient relationship in 
the surface layer, above the wave boundary layer (Figure 10.1). In the surface layer, the 
flux-gradient relationship is assumed to be independent of the wave state and a 
universal function of only z/L. This flux-gradient relationship is posed in terms of the 
nondimensional vertical gradient 

(dQ/dz)(Kzu*) o°-5) 
(z/L)m —  

w'eu) 

(dü/dz)(Kz) (10-6) 
«I»«(z/L) s 

K* 

which have been empirically fitted to dependencies on z/L (Högström 1988). The 
nondimensional gradient <J> can be interpreted as the inverse of the mixing efficiency. 
The transfer of moisture and other scalars are often assumed to follow the same 
dependence as that for heat. This interpretive survey will concentrate on transfer of heat 
and momentum as examples. 

The surface drag coefficient and transfer coefficient for heat are estimated by 
vertically integrating the <|> functions downward to the surface roughness lengths in 
which case one can derive: 

C. = [ * ]2 (10-7) 
ln(zlZo) -Vm 

Ch = [ - ][ - ] (10-8) 
In(zlzo) -Ym     ln(z/zoh) -\rh 

where z0 and zoh are the roughness lengths for momentum and heat, respectively, and \|/ 
and xjr^are the integrated analytical forms of the nondimensional gradients for 
momentum and heat, <j>m (z/L) and §k (z/L). This vertical integration (Paulson, 1970) 
requires that the fluxes and the wind direction are approximately independent of height 
and requires additional mathematical approximations (Enriquez, Friehe 1997). The 
nondimensional vertical gradients, tyM (z/L) and <J>4 (z/L), have not been extensively 
evaluated over the sea. Recently, H0jstrup (1998) found that for onshore flow in the 
coastal zone, the land-based stability dependence for §m (z/L) approximated the observed 
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values of §m although the scatter was large. Conflicting evidence is noted in the next 
subsection. 

Note that Monin-Obukhov similarity theory does not describe the actual 
flux-gradient relationship below the surface layer in the wave boundary layer. The 
extrapolated wind profile described by similarity theory vanishes at the roughness 
height z0 instead of at the surface. As a result, the extrapolated and actual wind profiles 
in the wave boundary layer are not expected to be the same. The extrapolated profile of 
potential temperature is also expected to be different from the actual profile in the wave 
boundary layer, and reaches the "aerodynamic" surface temperature at the roughness 
height for heat, zoh. Both the aerodynamic surface temperature 90 and zBh are unknown. 
Specifying Q0 to be the surface radiation temperature or near-surface water temperature 
redefines thoroughness height for heat z^. Over the open ocean, the thermal roughness 
height is normally related to the roughness length for momentum (Lui et al. 1979). In 
the coastal zone, Mahrt et al. (1998) find little relationship between zoh and z„ where 
zok appears to be strongly influenced by development of internal boundary layers while 
z0 is more influenced by wave state. Both the physical meaning of the roughness height 
for heat and its dependence on other parameters remain elusive, especially in the coastal 
zone. 

z/L       z/h 

u.-o. 
uurfact layer 

x/L 

mutfmcm layer 

z/L (z/k, CJu*) z/h wave b.l. w 

iom »oi» 
surface layer   

WavebJ. (zA,C/u*)zA. waveb.1. (z/X., CJu*)   x/L 

ZJÄ^^^-^    —-^—s^—    ^^^^^^   —-^ -""^ 

Figure 10.1 Idealized layering of the lower boundary layer. Using 10 m as a reference height, the 
first scenario shows the ideal case where Monin-Obukhov similarity theory applies. In 
the second example, the reference level is in the wave boundary layer and wave length 
scales are required to describe the local flux-gradient relationship. In the third example, 
the reference level is above the surface layer and bulk boundary-layer scaling is 
required. In the fourth example, the influence of the boundary-layer depth extends 
downward to the wave boundary layer and the conditions for Monin-Obukhov similarity 
theory are not met at any level. 

10.2.2 REDUCING TO NEUTRAL 

To eliminate the influence of stability, the drag coefficient and transfer coefficients are 
sometimes reduced to their neutral values (Deardorff 1968). This procedure attempts to 
eliminate the influence of stability so that the neutral drag and transfer coefficients can 
be studied as a function of wave state and wind speed. The reduction of the transfer 
coefficient to neutral conditions using Monin-Obukhov similarity theory must impose 
restrictions on the roughness length such as Charnock's relationship with constant 
coefficient (Geernaert, Katsaros  1986; Geernaert  1990). Smith (1980, Figure  13), 
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Geernaert (1988) and Mahrt et al. (1996) find that the reduction of the drag coefficient 
to neutral values does not completely remove the influence of stability although it is not 
clear if the stability functions tym(z/L) and §h(zlL) themselves are incorrect, measurement 
errors are large or influences not included in the Obukhov length are large. 

10.2.3 WAVE BOUNDARY LAYER 

The wave boundary layer is the layer adjacent to the wave surface, but above the very 
thin laminar sublayer at the surface (Figure 10.1). In the wave boundary layer, part of 
the atmospheric transporting motions are directly induced by the waves and associated 
perturbation pressure field in the air (Chalikov, Belevich 1993; Hare et al. 1997). The 
depth of the wave boundary layer is thought to scale with the surface wavelength 
(Chalikov, Belevich 1993). Multiple wave boundary layers associated with wind driven 
waves and swell may coexist. However, the transport by eddies in phase with the swell 
may be small since the swell are characterized by small slopes. In the wave boundary 
layer, Monin-Obukhov similarity theory does not describe the local flux-gradient 
relationship which depends partly on the amplitude and wavelength of the dominant 
surface wave (Large et al. 1995). Apparently, the profile functions, tym and tyh depend on 
zfk as well as zIL (or equivalently zJL and 7JL) where X is a dominant wave dimension, 
either wave length or wave height. 

Consequently, Monin-Obukhov similarity theory must be applied in the surface 
layer above the wave boundary layer, along with specified roughness lengths, in order 
to predict the surface fluxes. Analogously, over land, Monin-Obukhov similarity must 
be applied in the surface layer above the roughness sublayer to predict surface fluxes. 
Eqs. (10-l)-(10-2) correctly predict surfaces fluxes using Monin-Obukhov similarity 
theory for the drag and transfer coefficients (Eqs. (10-7)-(10-8)) only if the roughness 
lengths can be appropriately specified. 

There are two fundamental differences between the flux-gradient relationship over the 
sea and that over land: 
1) In the roughness sublayer over land, the time-averaged flow may vary horizontally on 

the scale of the roughness elements due to semi-stationary pressure perturbations 
anchored to individual roughness elements. Over the sea, the roughness elements 
(surface waves) propagate so that such microscale spatial variability of the 
time-averaged flow does not normally exist. 

2) Over the sea, the roughness length for momentum varies substantially with wave 
state. Over land, z0 is normally considered to be independent of time for a given wind 
direction. 

However, there is no obvious reason why these differences would reduce the 
applicability of Monin-Obukhov similarity theory over the sea, provided that the 
appropriate surface roughness lengths can be specified in a reasonably simple fashion. 
In fact, Monin-Obukhov similarity theory is more likely less applicable over land where 
the required assumption of homogeneity is normally violated to some degree. Even over 
apparently homogeneous land surfaces, microscale variations of soil - moisture can 
influence local eddy structure. Nonetheless, there are special processes in the coastal 
zone which violate assumptions required for Monin-Obukhov similarity theory. 
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10.2.4 THEORY BREAKDOWN IN THE COASTAL ZONE 

Existing similarity theory may break down in the coastal zone due to the following 
influences: 
1. Strong horizontal advection leads to significant vertical divergence of the flux. For 

example with steady-state temperature advection, «39/3* = - 3w'e /3z • Then me 

assumption of height-independent fluxes is not a good approximation and the vertical 
integration of the nondimensional gradients, <)>, to obtain the stability corrections for 
the transfer coefficients, \|/ (Eqs. (10-7)-(10-8)), is not valid. 

2. If the flux decreases to small values at the top of the thin internal boundary layers in 
offshore flow, then the vertical divergence of the flux is large. As a result, standard 
observational levels, such as 10 m, may be above the thin surface layer where one can 
neglect the height-dependence of the flux (Figure 10.1). The depth of the surface 
layer is bounded by some small fraction of the boundary-layer depth, sometimes 
chosen as 10%, such that the height-dependence of the flux can be neglected in the 
surface layer. For example, in an internal boundary layer of 50 m depth, the surface 
layer would theoretically be less than 5 m depth. Note that influences 1) and 2) are 
not independent. 

3. With offshore flow of warm air over cold water, the turbulence may be a top-down 
process where the primary source of turbulence is above the surface inversion 
(Section 10.4.2). It is not clear if Monin-Obukhov similarity theory is valid in this 
"upside-down boundary layer". 

4. The turbulence in offshore flow does not establish equilibrium with the rapidly 
evolving mean flow immediately downstream from the coast. 

5. With cold (warm) air advection in offshore flow, the wind vector tends to rotate to the 
right (left) with height and the surface stress vector is directed to the right (left) of the 
surface wind vector (Geernaert 1988). Integration of Monin-Obukhov similarity 
theory assumes that the wind and stress vectors are aligned and their 
height-dependence can be neglected. 

6. It may be that Monin-Obukhov similarity theory is valid but the stability functions, tym 

and tyh, are not correctly calibrated. 

If the internal boundary layer is sufficiently thin, yet the wave boundary layer is deep 
(large surface wavelength), the surface layer may be "squeezed out" as postulated by 
Mahrt et al. (1998) and shown in Figure 10.1 (right hand side). That is, there is no layer 
where the flux-gradient relationship depends only on z/L and the influence of 
boundary-layer depth, h, and surface wave dimension "k must be included as additional 
scaling variables. Grant (1992) suggests that <j>(z/L) for the near neutral boundary layer 
should be generalized to be of the form §(z/h, hIL, ujfli) where /is the Coriolis 
parameter. Khanna and Brasseur (1997) consider the form <t>(z/L, hIL). In the LES 
results of Khanna and Brasseur (1997), the nondimensional shear decreases above the 
surface layer, as is also observed by Smedman and Johannson (1997) in shallow 
offshore boundary layers. With a well-mixed interior of the boundary layer, the vertical 
gradient decreases faster with height than the flux. Mahrt et al. (1998) find that the thin 
depth of observed offshore internal boundary layers suppresses heat transfer by the large 
convective eddies which in turn implies that (j>4 is larger than predicted by 
Monin-Obukhov similarity theory and depends on zlh. 
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Davidson (1974) found that v^and the drag coefficient are both a function of 
stability and wave age and that these dependencies are difficult to sort out since the 
wave age and stability were significantly correlated for their data. Bergström and 
Smedman (1995) examined the functional dependence <|>M (z/L, CJu.) but found that the 
relationship to wave state was statistically insignificant, although they note that their 
data represents a relatively narrow range of conditions. Here, Cp is the phase speed of 
the dominant wave. 

Since for offshore flow, there may be no level where <J>„ is a function of only z/L, it is 
useful to consider a more general formulation such as 

A      (dü/dz)(Kz)      ., ,_     ..   _.        ... (10-9) 
<|>m = ^—- = /(z/L, z/X, Cplu *, zlh) 

Note that the arguments z/L, z/k, CJu., zlh are not independent. Large et al. (1995) 
prefer to partition the nondimensional shear into two functions, the traditional tym 

(z/L) and a modifying function x(zfk), as also pursued by Vickers and Mahrt (1998). 
Specific forms of Eq. (10-9) based on actual eddy correlation data have not been 
established. 

Monin-Obukhov similarity theory is also complicated by the possible dependence of 
the von Karmen "constant" on the roughness Reynolds number, Re. defined as u. z„N. 
Generally, K(Re*) is found to decrease with increasing roughness Reynolds number 
(Tennekes, 1968). With this possibility, evaluation of tym(z/L) from data using Eq. (10-6) 
results in two unknowns, K(Re.) and §m(z/L). Oncley et al. (1996), Miller et al. (1997) 
and others eliminate tym(z/L) as an unknown by considering near neutral cases and 
assuming §m(z/L) =1. Then, x(/?e.) is estimated as 

«l,..)—^- (10-10) 
zdu/dz 

Since both Re. and z/L depend on u„ their dependencies are difficult to isolate from 
data. For example, failure to include the dependence K(Re.), if important, would alter 
the value of tyJz/L) computed from data. Conversely, if influences of z/L are not 
completely negligible, such influences could create an artificial dependence of K on the 
roughness Reynolds number. The problem becomes even more complex if the 
nondimensional shear is dependent on wave age (Eq. (10-9) since the wave age also 
depends on u.. 

10.3 Wave state 

In the coastal zone, the stress is influenced by shoaling processes and wave breaking as 
waves propagate into shallow water (Smith 1980; Freilich et al. 1990). For waves 
propagating toward the shore, wave modification first occurs when the depth of the 
water shallows to be about 1/4 of the dominate wavelength. At this point, the wave 
amplitude begins to increase, the wavelength and propagation speed begin to decrease 
and the spectral characteristics change. Closer to the shore where the depth becomes 
less than one wave height, dramatic wave steepening and breaking occur (Thornton, 
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Guza 1982, 1983; Holman, Sallenger 1985; Holland et al. 1995). Irregularities of the 
bottom topography along the coast and wave refraction lead to irregularities in the 
surface wave field along the coast (Munk, Traylor 1947). 

Information on wave state is necessary for modelling surface stress in the coastal 
zone. This information is included at three levels of approximation: 1) relating the drag 
coefficient or roughness length to the wave age is the most common approach (Section 
10.3.1), 2) relating the stress to different frequency bands of the wave field, such as 
swell and wind-driven modes, is more complete but requires more information on the 
wave field (Section 10.3.2) and 3) modelling the wave age in terms of fetch is less 
accurate but is useful when explicit information on wave state is not available (Section 
10.3.3). 

10.3.1 WAVE AGE DEPENDENCE 

With offshore flow, the wind driven waves are growing in the downstream direction 
which become evident seaward of the inner shoaling zone. A number of investigators 
have documented that the stress is greater over a young and developing wave field than 
over an older wave field, which is in near-equilibrium with the wind field (e.g. Donelan 
1990; Kitaigorodskii 1973; Nordeng 1991; Geernaert et al. 1987, 1988; Donelan 1990; 
Maat et al 1991). At least two mechanisms contribute to the dependence of stress on 
wave age: 1) younger waves propagate with slower phase speed relative to the wind and 
thus provide greater bulk shear, and 2) younger growing waves may be steeper, which 
can lead to enhanced flow separation from individual wave crests. Younger developing 
waves occur with changing wind vector as well as with fetch limited off-shore flow. 

Previous studies suggest that the drag coefficient is a maximum for a wave age of 10 
(Nordeng 1991) and 7 (Geernaert, Smith 1996). Kitaigorodskii et al. (1995) similarly 
find maximum roughness length at an intermediate wave age. In the absence of swell 
(inland seas), the drag coefficient may be immeasurably small immediately downstream 
from the shore where waves have not yet developed or are very small amplitude. The 
subsequent wave growth in the downstream direction leads to larger stress, as sketched 
in Figure 10.2. The wave growth in the downwind direction can be further enhanced by 
acceleration of the offshore wind resulting from the smaller surface roughness over the 
sea than over land. However, at some point, the increasing phase speed of the waves 
and resulting reduction of the relative flow of the wind over the waves becomes more 
important than the effect of increasing wave amplitude and any increase of slope. Then 
the stress and drag coefficient begin to decrease further downstream. Consequently, the 
drag coefficient reaches a maximum at an intermediate wave age and decreases with 
further increase of wave age. Similar effects appear in the model of Hansen and Larsen 
(1997) where the Charnock constant reaches a maximum at a wave age of about 5. Most 
observations occur at wave ages greater than this intermediate wave age so that the drag 
coefficient is generally considered to decrease with increasing wave age, as in the 
studies surveyed below. 

Vickers and Mahrt (1997) find that onshore flow with shoaling, can also occur with 
small values of the wave age. The shoaling reduces the wave phase speed and decreases 
the numerical value of the wave age. Consequently, shoaling complicates the physical 
interpretation of wave age in the coastal zone. The corresponding drag coefficient may 
increase by more than 50% with such shoaling. As a result, Kitaigorodskii et al. (1995) 
related the momentum roughness length to wave breaking characteristics. Mahrt et al. 
(1998) found no detectable increase in the transfer coefficients for heat and moisture 
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with wave breaking. Relative insensitivity of the transfer coefficients for heat and 
moisture to wave state and wind speed was also found in Smith (1980), Makin and 
Mastenbroek (1996) and references therein. 

Since the stress appears to be related to the relative flow of the air with respect to the 
phase speed of the dominate waves (Kitaigorodskii 1973), one is tempted to re-define 
the drag coefficient in terms of the relative flow u-Cp  where c    is ideally the 

component of the phase speed of the dominant wave in the wind direction. However, 
the stress does not necessarily vanish as ü-Cp approaches zero, since waves with 

frequencies different from the dominant wave contribute to the stress and propagate 
with different phase velocities. For example, with mature waves, much of the stress is 
thought to be associated with capillary waves and therefore not related to the phase 
speed of the dominant waves. As a result of the stress from capillary waves, the 
alternate drag coefficient, defined as the ratio of the stress to M - cp> approaches infinity 

as «- Cp approaches zero. 

However the traditional drag coefficient computed from (Eq. (10.1)) may be better 
related to U- Cp than U  alone. To examine this problem, we computed the drag 

coefficient from eddy correlation data collected at a tower 2 km off the Danish coast in 
the Ris0 Air Sea Experiment (RASEX, Barthelmie 1994; H0jstrup et al. 1994; Mahrt et 
al. 1996). The drag coefficient reaches a minimum value near « - cp = 0 m/s and a 

regression model of the drag coefficient based on U- Cp explains more variance than 

that based on w. However, the drag coefficient is more closely related to wave age than 

M- Cp probably because wave age implicitly accounts for the relative flow over the 

waves as well as implicitly includes the effect of wave amplitude and steepness. 
Geernaert et al. (1987) proposed a model of the dependence of the neutral drag 

coefficient on wave age of the form 

Cdn=b{Cplu*)-m (10-11) 

where b\s on the order of 10'2. Vickers and Mahrt (1997) found that this model 
performed well in the coastal zone even after accounting for the role of self-correlation. 
They found that -2/3 was indeed the best fit to the exponent while the best fit value of 
b was approximately 7 xlO'3. 

The drag coefficient can also be computed directly from Monin-Obukhov similarity 
theory in which case the roughness length is a function of wave state. The Charnock 
(1955) prediction of the roughness length, 0.019 (u.21 g), is often generalized to include 
a dependence on inverse wave age (Toba, Koga 1986; Maat et al. 1991; Donelan 1990; 
Smith et al. 1992). If we also incorporate the smooth flow contribution to the roughness 
length (Donelan 1990; Fairall et al. 1996), then the full relationship is of the form 

Zo=K(ul/g)(u*/Cp)
P + 0.Uv/u* (10-12) 
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Figure 10.2 Plausible schematic evolution of the internal boundary layer for unstable and very stable 
offshore flows. In the unstable case, the x-axis can also be qualitatively interpreted as the 
downstream distance. 
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where typically K=OAS and p =1 (Smith et al. 1992), and v is the viscosity of air. Wu 
(1968) suggested an additional term due to parameterized surface tension which was 
recently applied in Alam and Curry (1997). 

Alternatively, the model of Kitaigorodskii (1970) is of the form, 

Zo= Kaexp( -KCp/u*) (10-13) 

where K= 0.3, O is the root mean square amplitude of the waves and K is von Karman's 
constant. The Kitaigorodskii representation follows from explicitly including the shear 
between the wind and the wave velocity and integrating over the full wave spectrum. 

A significant fraction of the variance explained by these models is due to 
self-correlation since the drag coefficient and roughness length are both defined in 
terms of the surface friction velocity and are both formulated in terms of the surface 
friction velocity on the right hand sides of Eqs. (10-11)-(10-13) (e.g. Smith et al. 1992; 
Vickers, Mahrt 1997). To avoid self-correlation, the wave age is sometimes expressed 
in terms of Cp/U where ü is the wind speed at a standard level or at a fixed height 

relative to the surface wavelength (Donelan 1990). 
The roughness length is sometimes related to other characteristics of the wave field. 

For example, Anctil and Donelan (1996) relate the spatial variation of the roughness 
length in the shoaling zone to the wave age, root mean squared displacement height of 
the waves and root mean square wave slope. Kitaigorodskii et al. (1995) relate the 
roughness length to the effective wave height. 

10.3.2 MULTI-MODE MODELS 

The need for models based on multiple wave modes is motivated by the fact that the 
wind driven waves and swell often propagate in different directions. The swell modifies 
the stress direction so that it may be different from the wind direction (Geernaert et al. 
1995). A family of parameterizations of the roughness length as a weighted integral of 
the wave spectra have been formed from the original framework of Kitaigorodskii 
(1973) as in Hansen and Larsen (1997). See also Chalikov and Belevich (1993) and 
papers surveyed in Geernaert (1990). Kitaigorodskii et al. (1995) focus on the width of 
the wave dissipation regime in an effort to understand the variability of surface 
roughness. The most complete description of the wave field can be obtained from 
explicit wave models such as the "WAM" model (WAMDI group, 1988). The 
advantage of relating the surface roughness to the wave spectra avoids the 
parameterized coupling between the surface roughness and with the wind field or stress 
field itself that occurs with the approaches in the preceding section. At the same time, 
complete information on the full wave spectra is normally not available. 

Simplified models which allow some information of differences between wave 
modes include the two band model of Donelan (1982) which distinguishes between the 
drag associated with short and long waves. Vickers and Mahrt (1997) develop a crude 
indicator of the wave state based on that band width of the spectra which accounts for 
50% of the wave energy. Narrow band spectra are associated with near-equilibrium 
single mode waves and smaller drag coefficient while broad band spectra are more 
associated with multi-peaked spectra, confused seas and/or non-equilibrium wave state, 
all leading to larger drag coefficients. 



258 L. m/\riKi 

10.3.3 FETCH DEPENDENT MODELS 

For many applications, the wave phase speed and wave age are not known. As an 
alternative simpler approach, the inverse wave age can be parameterized in terms of 
either F., based on the friction velocity (Perrie, Toulany 1990, Geernaert, Smith 1996), 
or F„, based on the 10 m wind speed. These parameterizations are of the form: 

a (10-14) 
u * iCp = wo + — F F* 

a (10-15) 
w*/C„ = w0+— v 

ru 

where based on dimensional arguments: 

gX (10-16) 
F,B(—)1/3 

u% 

gX    3 (10-17) 

U2 

Here X is the upwind fetch distance and w0 and a are determined empirically. Eq. (10- 
14) explains more variance than Eq. (10-15) but is characterized by self-correlation. 
Vickers and Mahrt (1997) find that Eq. (10-15) is a reasonable approximation for 
offshore flow in the coastal zone flow, although errors are larger compared to 
formulations based on wave state information. 

Direct relationship of the roughness length to the fetch can be found in Geernaert 
(1988b). More complete models first describe the dependence of the wave field on fetch 
and then link the drag to the fetch-dependent wave field (Geernaert 1990). 

10.4 Internal boundary layers 

With any wind component perpendicular to the coast, internal boundary layers form due 
to the temperature and surface roughness contrast between the water and land surfaces. 
The internal boundary layer is the layer of air adjacent to the surface which is 
influenced by the new surface (e.g. Garratt 1990). 

10.4.1 UNSTABLE CASE 

With offshore flow of cold air over warmer water, a convectively driven internal 
boundary layer forms in response to the upward buoyancy flux over the water. This 
layer thickens in the downstream direction (Figure 10.2). These internal boundary layers 
are sometimes found to be well defined by a sharp change of properties between the 
convectively driven turbulence and fluid, at least in terms of instantaneous observations 
(Raynor et al. 1979; Sun et al. 1998b). It is not known if such sharply defined tops of 
the internal boundary layer are normal nor is it known if the internal boundary layer top 
for time-averaged flow is thick due to vacillation of the boundary-layer top. 
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Figure 10.3 shows the averaged vertical structure for a nine-hour period of 
stationary offshore advection of cold air observed in RASEX (Section 10.3.1). Several 
features occur in Figure 10.3 which are not typical of the "textbook" unstable internal 
boundary layer: 
1) For the averaged flow, the "entrainment zone" with downward heat flux is thicker 

than the convective layer of upward buoyancy flux. 
2) The total buoyancy-destruction of turbulence in the entrainment zone is greater than 

the buoyancy-generation of turbulence in the surface-based convective layer. 
Therefore, turbulence near the top of the internal boundary layer must be maintained 
by local shear-generation, as observed in Sun et al. (1998b). 

3) The turbulence and stress are a maximum near the top of the convective layer. 
4) The mean shear increases with height corresponding to convex curvature. This 

curvature implies inflection points near the surface and somewhere above the 45 m 
tower layer. 

Unstable Internal Boundary Layer 

0.2 0.3 

u, (ms-1) 

0.4 ■0.02 0 0.02 

WT (K ms-1) 

0.04 

5 6 7 

wind speed (ms*1) 

0(C) 
Figure 10.3 The 5-hour averaged vertical structure of relative stationary offshore flow of cool air over 

warmer water observed in RASEX. Fluxes are based on pertuibations from a 10-minute 
simple mean. 
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Is this structure unique to these data or does the traditional concept of internal boundary 
layers not apply immediately downstream from the coast? The RASEX data set is the 
first data set with detailed vertical resolution of the time-averaged structure in offshore 
flow. . 

Källstrand and Smedman (1997) compare various models of growth of the internal 
boundary layer against aircraft data collected in a developing internal boundary layer 
over land with onshore flow. Although most of the models have been developed for the 
unstable internal boundary layer over land (e.g., Melas, Kambezidis 1992; Grymng, 
Batchevarova 1990), they should in principal apply over the sea in the coastal zone. The 
internal boundary layer is traditionally modelled on two separate scales (Garratt 1990): 
small scales on the order of a kilometer or less and the mesoscale on a horizontal scale 
of tens of kilometers or more. On the scale of a kilometer or less, the heated internal 
boundary layer entrains upward through the old boundary layer (Vugts, Businger 1977). 
On this scale, the initial growth rate of the convective internal boundary layer is thought 
to be linearly proportional to the strength of the turbulence in the convective internal 
boundary layer such that (H0strup 1981; Brutsaert 1982; Garratt 1990) 

dx       C U 

where hIBL is the depth of the internal boundary layer and cw is the standard deviation of 
the turbulent fluctuations of vertical velocity, often parameterized in terms of the 
surface friction velocity and the convective velocity scale. The wind speed (/is 
evaluated at the top of the internal boundary layer. Since stratification of the overlying 
fluid is neglected, no additional velocity scales are included. The value of C is thought 
to be order of unity (Mahrt 1996). 

Some investigators have formulated analytical expressions for the small scale 
growth of the internal boundary-layer depth. For example, Andreas et al. (1979, 1981) 
model the depth in terms of the fetch. Observations of such internal boundary-layer 
growth are summarized in Andreas and Cash (1998). 

Further downstream, on the mesoscale, the convective internal boundary layer 
completes its growth through the old boundary layer (Figure 10.2) and begins entraining 
nonturbulent fluid, as occurs in flow of cold air over warm water studied in Chang and 
Braham (1991), Smith and MacPherson (1987), Rogers et. al. (1995) and Briimmer 
(1996). A well-defined capping inversion usually develops and information on the 
stratification of the overlying fluid is required to predict further growth of the 
convective internal boundary layer. Models for this case are surveyed in Garratt (1990) 
and Källstrand and Smedman (1997). 

10.4.2 STABLE CASE 

The growth of the stable internal boundary layer due to flow of warm air over cooler 
water is expected to be slower because of buoyancy destruction of turbulence associated 
with the downward heat flux. For example, based on temperature profiles in Gryning 
(1985), the growth rate dhIBLldx in the stable internal boundary layer in the coastal zone 
is less than 1%. A thick residual layer of decaying turbulence extends from the top of 
the thin stable internal boundary layer to the top of the advected continental boundary 
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layer (Rogers et al. 1995). The growth of the internal boundary layer for stable 
conditions is also described by Mulhearn (1981) and Garratt (1990). 

The vertical structure of the stable internal boundary layer may be well defined in 
offshore flow (e.g. Garratt, Ryan 1989) where turbulence quantities monotonically 
decrease with height. However, if the water temperature is much cooler than the 
advected air, the turbulence at the surface may collapse resulting in decoupling of the 
overlying advected turbulence from the surface (Figure 10.2). Such collapse cannot be 
predicted with existing similarity theory which is the basis for surface fluxes in 
numerical models. Above the surface inversion over the water, the advected turbulence 
from land decays in the downstream distance. Since the change of surface heat flux, 
viewed by a moving Lagrangian column, is almost instantaneous as it crosses the 
land-sea boundary, the forcing time scale due to the change of surface flux is small 
compared to the internal time scale of the turbulence (turbulent length scale/turbulent 
velocity scale). Then the turbulence decays in a self-similar fashion leading to a square 
root dependence on time (Sorbjan 1997). 

In addition to the decaying turbulence above the surface inversion, elevated 
shear-generation of turbulence is observed further downstream. The flow above the 
surface inversion, which was part of the boundary layer over land, accelerates and forms 
a low level jet (Smedman et al. 1995), analogous to formation of a low-level jet above 
the nocturnal surface inversion (Figure 10.2). Further downstream, the shear on the 
underside of the jet eventually generates turbulence and re-establishes a surface-based 
boundary layer. Still further downstream, the flow may become near neutral as the air 
finally cools to the value of the sea surface temperature (Smedman et al. 1997). 

The RASEX data for offshore flow of warm air over cooler water (Figure 10.4) also 
indicate that the classical concept of an internal boundary layer does not apply. The 
stress, heat and turbulence energy are smaller near the surface and reach maximum 
values at higher levels in the tower layer. Note that the strength of the turbulence for the 
stable case is comparable to that for the unstable case (Figure 10.3) because the wind 
speeds for the stable case are larger. For shorter periods, the stress and turbulence in the 
stable case may temporarily collapse near the surface in that the stress is zero within 
measurement error. Then the elevated turbulence is semi-detached from the surface 
corresponding to an upside-down boundary layer. 

10.4.3 ROUGHNESS CHANGE 

Internal boundary layers may also form due to spatial variation of the surface roughness 
between the land, shoaling zone and open ocean. With offshore flow, the smaller 
roughness over the sea compared to over the land leads to flow acceleration and 
decreased turbulence strength in the downstream direction, as observed in Smith and 
MacPherson (1987). Although the roughness increases in the downstream direction 
(Figure 10.2), it remains much smaller than the roughness over land. 

Normally, at least some surface temperature discontinuity occurs at the coast so that 
internal boundary layers result as combination of surface roughness and surface heat 
flux changes. For example, Barthelmie et al. (1996) find that in unstable boundary 
layers associated with flow of cool nocturnal air over warmer water, winds accelerate 
due to smaller roughness over the water. However with stable internal boundary layers 
associated with daytime flow of warmer air over the water, the reduction of downward 



262 L. MAHRT 

Stable Internal Boundary Layer 

z(m) 

0.1 0.2 0.3 

u, (ms-1) 

-0.04 -0.02 0 0.02 

wT (K ms-1) 

10 

z(m) 

50 

40 

30 

20 

10 

0 

0.04 

11 

I—^H 
I       ■       I i L 

0.4       0.5 10 11 

rjw (ms-1) wind speed (ms- 
Figure 10.4 The 9-hour averaged vertical structure of relative stationary offshore flow of warm air over 

cooler water observed in RASEX. Fluxes are based on perturbations from a 10 minute 
simple mean. 

mixing of momentum due to stable stratification counteracts the effect of decreased 
surface roughness on the wind speed. As a result, acceleration over the water was not 
normally observed in the daytime. 

10.5 Local circulations 

10.5.1 SEA/LAND BREEZES 

The land-sea interface not only leads to development of internal boundary layers but 
also modifies the low level pressure field through differential surface heating. On sunny 
days, surface heat flux from the heated land surface warms the atmosphere and lowers 
the surface hydrostatic pressure over the land. Simultaneous heating does not occur over 
the water surface since: a) the heat capacity of the water is large, b) the solar radiation is 
absorbed over the first few meters instead of at the surface, as occurs over land, and c) 
heat from absorbed solar radiation is mixed downward by oceanic turbulence which is 
much more efficient than thermal conduction in the soil. As a result, a horizontal 
pressure gradient force develops directed toward the land surface. In the absence of 
significant opposing  horizontal pressure gradient on  the synoptic scale, the local 
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horizontal pressure gradient drives flow inland over the heated land surface, referred to 
as the sea breeze (Pielke 1984; Simpson 1994). 

At night, surface cooling and associated downward heat flux cools the atmosphere 
leading to higher atmospheric pressure over the land surface. The resulting horizontal 
pressure gradient drives the land breeze over the sea. The nocturnal land breeze is 
thinner and weaker than the daytime sea breeze and is easily prevented by significant 
synoptic scale flow. The land breeze is rapidly eliminated by convective mixing as it 
flows over the warmer water (Sun et al. 1998b). 

10.5.2 COASTAL TERRAIN SLOPES 

Most coasts are characterized by sloping land surface. These slopes exert two 
independent influences on local circulations: 1) modification of the pressure field 
through surface heating on the sloped terrain and 2) pressure adjustments associated 
with topographically forced vertical motions in a stratified atmosphere. With sunny 
conditions, surface heating over the sloped land surface causes upslope flow in the 
daytime and downslope at night which augments the sea/land breeze circulation system. 
The slope flows may be non-hydrostatic for steep small scale slopes and approximately 
hydrostatic for larger scale weak slopes (Mahrt 1982). 

Rising motion forced by onshore flow and sloped terrain corresponds to adiabatic 
cooling in the stratified atmosphere which in turn increases the underlying hydrostatic 
pressure. Much of this pressure increase can be associated with thickening of a cool 
surface marine layer capped by an inversion. The resulting local pressure gradient acts 
to reduce onshore flow. As a result, onshore flow decelerates before reaching the coast 
and the local winds at the coast are mainly parallel to the shore with rising terrain at the 
coast. The parallel flow may assume the form of a low level jet (Zemba, Friehe 1987). 

Even flow approximately parallel to the coast experiences mesoscale disturbances 
induced by irregularities of the coastline. Circulations include supercritical flow 
(Winant et al. 1988; Samelson, Lentz 1994), coastal-trapped disturbances (Holland, 
Leslie 1986; Samelson, Rogerson 1996; Mass, Albright 1987), gravity currents 
(Dorman 1987) and a variety of other mesoscale flows (Beardsley et al. 1987). These 
mesoscale perturbations may be modulated by diurnal variations associated with 
differential surface heating, discussed above. In addition, atmospheric and oceanic 
circulations are coupled in the coastal zone. As one example, Zembe and Friehe (1987) 
examine the influence of wind acceleration and increased stress, resulting upwelling and 
reduction of surface temperature. The resulting increased atmospheric stability acts to 
reduce the stress. 

10.6 Conclusions 

Airflow in the coastal zone is complex due to formation of internal boundary layers, 
diurnally varying horizontal pressure gradients and strong spatial variation of the wave 
field. Assumptions required by Monin-Obukhov similarity theory may not be met due to 
surface heterogeneity, advection and strong vertical divergence of the flux. The surface 
airflow is not only coupled to the spatially varying wave field but also coupled to 
oceanic circulations through the sea surface temperature. Complex topography at the 
coast further complicate the total flow system. The above interpretive survey did not 
include a number of important topics such coastal zone cloud systems and special 
effects of bottom bathymetry. Improved understanding of fluxes in the coastal zone 
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must begin with observations of spatial variation of the flux with simple bathymetry, 
straight coast line and no significant topography. 
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