

Demonstrate a leap-ahead EM Gun armament system that proves the maturity of the technology for future combat systems

Report Documentation Page		
Report Date 26032001	Report Type N/A	Dates Covered (from to)
Title and Subtitle Demonstrate a leap-ahead EM Gun armament system that proves the maturity of the technology for future combat systems		Contract Number
		Grant Number
		Program Element Number
Author(s)		Project Number
		Task Number
		Work Unit Number
Performing Organization Name(s) and Address(es) Army Research Laboratory		Performing Organization Report Number
Sponsoring/Monitoring Agency Name(s) and Address(es) NDIA (National Defense Industrial Association 2111 Wilson Blvd., Ste. 400 Arlington, VA 22201-3061		Sponsor/Monitor's Acronym(s)
		Sponsor/Monitor's Report Number(s)
Distribution/Availability Approved for public releas		
Supplementary Notes Proceedings from National 26-30 March 2001 sponsor		icy: Acquisition, Research, Test and Evaluation,
Abstract		
Subject Terms		
Report Classification unclassified		Classification of this page unclassified
Classification of Abstract unclassified		Limitation of Abstract UU
Number of Pages 11		I

Army EM Gun Program Challenges

Significant Engineering Challenges - Physics Works

- Improved lethality from adjustable velocity (including hypervelocity)
- Stealth launch
- Reduced logistics eliminate chemical propellant; smaller weight/volume rounds
- Improved survivability eliminate chemical propellants
- Synergism with system: electric protection, electric propulsion, electric weapon
- Shorter time of flight accuracy
- Lethal from muzzle to extended ranges

A lethal armament for future combat systems

Pulsed Power Research Program

The Pulsed Power research effort is focusing on the following critical tasks:

Analysis and simulation of pulsed alternator topologies (disk, drum, cup, ...).

Synchronization and control of pulsed alternator pairs.

Alternative (Non-rotating) pulsed power systems.

Advanced switching concepts:

- Silicon Carbide
- Optical Triggering
- Opening Switches

The University of Texas at Austin

Hypervelocity Lethality Accomplishments

IAT Novel Kinetic Energy Penetrator (NKEP) Defeated Target at Low Impact Energy

IAT has Developed Analytic and Experimental Methodology to Solve Ablation Problem

Extending Penetrators

New geometries and optimization studies.

Guidance & Control

The University of Texas at Austin

Progress with Hypervelocity Launch

- <u>Hypervelocity Gouging:</u> A major show stopper identified in 1995 has been resolved.
 - We now have a scientific understanding of the phenomenon and predictive capability.
 - Robust engineering solutions involve use of hard cladding.
 - Gouge-free railgun operation demonstrated to 2.85 km/s.
- <u>Muzzle Signature Suppression</u> can be performed effectively using an Inductive Muzzle Shunt.
 - Three generations of shunts tested at IAT.
 - EM Spectral measurements demonstrated the possibility of operation EML in ultra-low signature mode.
 - Significantly less EM than conventional guns.
 - Current research at IAT
 - Use of Inductive Shunt to recover energy from EML
 - Shunt armature interactior to stabilize armature.
- Transition to Arcing Contact is a difficult problem is within reach (~2years).
 - We understand the phenomenon (multiple cause identified) Modeling capabilities being developed.
 - Actively exploring design solution.

The University of Texas at Austin

Muzzle radiograph from experiments to measure gouging threshold velocities of various materials.

(Transition Side) (-) Rail

vg 6945

Progress with Hypervelocity Launch

- Integrated Launch Package Development
 - Tungsten Rods successfully launched from our EM launcher.

- Thermal Structural Modeling
 - EMAP3D

- (1995) Only program to solve Coupled EM-Thermal diffusion w/sliding electrical contact.
- (1997) One way coupling to DYNA3D allows large deformation thermo elastic plastic.
- 1999 -2001 Paralelization of EMAP3D on Beowolf PC Cluster made it a comprehensive design and detail analysis tool.
- 2001 Plasticity Module expand EMAP3D application further.
- Hybrid BE PE Formulation facilitates strong mechanical electromagnetic
- Experimental Facilities
 - Largest operational EM research facility, 13MJ Power Supply
 - Over 250 test supporting EML research
 - Upgrade planned for 2001 with double the muzzle energy and add two new launcher The University of Texas at Austin

Systems & Technology Integration

EM Gun System Performance Analysis – Software Development

TRAJ

Vehicle Performance – POWERSIM Model validated with Hybrid Electric HMMWV tests *

DARPA Support*

- CHPS IMPACT Toolbox completed & made available to government and industry
- **RSTV** Provided modeling and technical analysis to PM_

The University of Texas at Austin

* DARPA Funding

Army EM Gun Program

- Basic 6.1 Research
- Integral Member of ARL Program Office/Team

- Program Management
- Technical Support

- Technology Development
- Technology Component Development
- Technology Integration

Summary

- Major Leap Ahead Technology for the Future
- Offers Enhanced Lethality & Survivability for Future Combat Systems
- Technology is sufficiently mature to move forward with a demonstration program
- May not meet timeline for FUE but should be a key technology for Block I upgrade

