

Lethality, Survivability, Mobility and Sustainment for America's Army

13-16 August, 2001 NDIA Small Arms Conference Little Rock, AR

MEMS Safety and Arming Device for OICW

US Army TACOM ARDEC Fuze Division, AMSTA-AR-CCF-A Adelphi, Maryland 301-394-0754 Briefer: Charles H. Robinson, ME <u>Co-Authors</u>: Robert H. Wood, ME Andrew Bayba, ME David Hollingsworth (NAWC-CL)

	Report Docum	entation Page								
Report Date 13Aug2001	Report Type N/A	Dates Covered (from to)								
Title and Subtitle		Contract Number								
MEMS Safety and Arming	Device for OICW	Grant Number								
		Program Element Number								
Author(s)		Project Number								
Robinson, Charles H.; Woo Andrew; Hollingsworth, D	-	Task Number								
		Work Unit Number								
	a Name(s) and Address(es) C Fuze Division, AMSTA- yland	Performing Organization Report Number								
Sponsoring/Monitoring A	sgency Name(s) and	Sponsor/Monitor's Acronym(s)								
Address(es) NDIA (National Defense In Wilson Blvd, STE. 400 Ar		Sponsor/Monitor's Report Number(s)								
Distribution/Availability Approved for public releas		/								
		Symposium, Exhibition & Firing Demonstration document contains color images.								
Abstract										
Subject Terms										
Report Classification unclassified		Classification of this page unclassified								
Classification of Abstract unclassified		Limitation of Abstract UU								
Number of Pages 21										

Insertion of MEMS Technology

Committed To Excellence

MEMS S&A Team

- PM Small Arms Customer
- JSSAP Program Sponsor

→ OICW System Enhancements STO (Tech Base Funding)

- Engineering Development
 - \rightarrow TACOM ARDEC Fuze Division, technical and project lead
 - \rightarrow China Lake, explosive train (MSF) development
 - \rightarrow WECAC, MSF producibility
 - \rightarrow ARL, engineering and test support
 - \rightarrow Alliant Technology, test hardware

- Goal Demonstrate the Feasibility of:
 - → MEMS mechanical S&A device for 20-mm OICW weapon system, with
 - \rightarrow <u>A compatible MEMS-scale firetrain (MSF)</u>

• Why OICW?

 \rightarrow Reduce <u>cost</u>, weight, volume of S&A (increase lethality)

Why MEMS? (micro-electro-mechanical systems)

- \rightarrow Robust in high-G environments---due to scaling laws
- \rightarrow Economies of high-volume production---via semiconductor industry
- \rightarrow High-accuracy miniaturization---feature resolution of 0.5 μ m (0.02 mil)
- \rightarrow Readily integrated with fuze electronics---sandwich CMOS with MEMS chip
- \rightarrow Similar mechanical S&A architecture for many weapon systems
- \rightarrow Implement design changes via optical mask versus retooling production line

Technical Approach

<u>Concept, design, analysis</u>

→ MEMS "inertial mechanical logic," two *inertial* locks, one *command* lock

 \rightarrow Map S&A functions to planar domain

→ Firetrain is offshoot of NAWC-CL 'smart detonator" technology

Fabricate MEMS test structures and S&A prototypes

 \rightarrow Inertial (zig-zag) delays, sliders, springs, locks, latches, anchors, rotors

 \rightarrow Need "high-aspect-ratio" to transport meaningful amount of energetics

- LIGA (Deep X-Ray Lithography), 50-200-micron, Nickel features
- DRIE (Deep Reactive Ion Etching), 80-300-micron, Silicon features

 \rightarrow Distinct from "low-aspect-ratio" multi-layer processes such as Sandia's

Demonstration Tests:

- \rightarrow Bench demonstration of a MEMS-scale firetrain
- \rightarrow Flight demonstration of MEMS S&A hardware in Sept '01

Committed To Excellence

BAD Things About Conventional Mechanical High-G S&As

Micro-Scale Firetrain per MIL-STD-1316, and Material Selection

ARDEC

200- μ m Nickel

Inertially-Actuated

Committed To Excellence

Zig Zag Inertial Delay Slider Design

- Requirement: <u>40-ft Drop Safety</u>
- Integrates axial acceleration pulses (e.g. setback) $\rightarrow \Delta V$
- Removes first lock on MEMS arming slider
- Spring resets mass after small inputs
- Design variables:
 - \rightarrow slider mass
 - \rightarrow "throw" distance
 - \rightarrow number of zig-zag (stop/start) "stages"
 - \rightarrow rack parameters (pitch and depth)
 - \rightarrow spring stiffness and bias
- First prototype demonstrated in 1996 -
- Patent no. 5,705,767

Calculated Zig-Zag Slider Motion

(Spring Pre-Bias, 45kG OICW Launch Acceleration)

Calculated Zig-Zag Slider Arming Curve

DRIE-Fabricated Silicon Structures Used to Prove out Concepts and Generate Data

MEMS Mechanical S&A for OICW

MEMS Mechanical S&A for OICW: Armed

Technical Issues / Challenges

Micro-Scale Firetrain (MSF)

- \rightarrow Demonstrated MSF at NAWC-CL using MEMS S&A parts, June 2001
 - Test quantity was 24 units, four times that for the November '00 tests
 - Samples distributed between safe, armed, and partially armed
 - Obtained no detonations when in safe position
 - Armed units detonated
 - Partial-arming tests yielded a first cut on the 50% point (it is near 75% armed)
- \rightarrow Next steps
 - More firetrain demonstrations next month (Sept '01)
 - Will be in sufficient quantities for a statistical analysis
 - TACOM-ARDEC WECAC investigating economical explosive loading methods for MSF

 \rightarrow Environmental: MSF has 95% less lead-containing explosives than the M100

Microscale Firetrain (MSF) for MEMS S&A, Preliminary Testing, June 01

Committed To Excellence

Technical Issues / Challenges

MEMS Mechanical S&A for OICW: <u>GETTING PARTS</u>

A. Demonstrated concepts, designs, analyses, properties of structures in *silicon*

- Defining features and implementing 'mechanical logic" appears viable
- DRIE (silicon) parts delivery later this month, BUT...
 - a. Fabrication cycle time is long (~ 6 months) and yield is low (< 20%)

 \rightarrow Pursuing "massively parallel iterations," trying many approaches at once

- b. 'Stiction': parts don't release or they release and then re-adhere
 - \rightarrow Developed special process methods to avoid liquid immersion
- c. Impact testing showed silicon parts vulnerable at high strain rates
- d. Silicon for demonstrating concepts, need ductile material for functional parts

Test Patterns to Investigate Silicon Deep-Etch Process Variation

MEMS Mechanical S&A for OICW: <u>GETTING PARTS</u>, continued

- B. Next stage is move to nickel (LIGA) parts for ductility
- C. Anticipate improved MEMS fabrication methods in future
 - Manufacturability based on high-volume "printing" of nickel parts via LIGA "master"
 - With improved firetrain can resort to well-established HAR fabrication techniques

D. Doing a MEMS S&A cost study for OICW production

- Consulting high-throughput MEMS manufacturers
- "Assuming 10M parts using advanced MEMS technology five years from now..."
- Investigating breakthrough wafer-scale explosive loading techniques for MEMS

• MEMS - Enabling Technology for Fielding of OICW and OCSW

- \rightarrow Meet S&A cost and volume (lethality) targets
- \rightarrow Revolutionize fuzing for small arms
- Technology Barriers Remain:

 \rightarrow "MEMS is an emerging technology" (M. Huff, CNRI MEMS Exchange, July 2001)

- New fabrication technologies still coming on line
- Infrastructure is behind the demand curve...judicious prototyping
- \rightarrow We will continue to work out the feasibility...
- \rightarrow But the next major challenge will producibility.

MEMS S&A for OICW

(OICW System Enhancements STO)

	FY00			FY01			FY02				FY03				FY04					
Major Event	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Concept, Design, Eval Cost study MSF Fab and Demo MEMS Test Launch Design Iteration																				
MEMS S&A Test Lau Design Refinement	nch											\bigwedge								
Final Iteration System Level Test																				
ASFRB Assessment Transition to PM SA			 			 				 										\diamond
		1	C	om	mi	tted	To	Exc	elle	ence	2	,		• •		•	1	1	•	•

OICW System Enhancements Technology Readiness Level (TRL) Maturity

