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Abstract 

The resampling of a signal involves the conversion from the initial sampling rate to a 
new and different one. This is often necessary in practical applications because the 
sampling rate is often fixed while the desired sampling rate may depend on the 
application or a signal parameter, such as the symbol rate or channel spacing. This 
problem often arises in software radios systems where the sampling rate is determined 
by hardware constraints. Although resampling algorithms have been developed and 
implemented in commercial software libraries, such as the Intel Signal Processing 
Library [2], these algorithms often have undesirable limitations. For example, a typical 
constraint is that the data blocks processed must be an integer multiple of the 
downsampling rate. This restriction simplifies the indexing in the code and reduces the 
complexity of the implementation. However, it decreases the flexibility and usefulness 
of the resulting program, since in some applications, the length of the input data blocks 
may not be an integer multiple of the downsampling rate. For such applications, there is 
a need for a resampling program that imposes no restriction on the length of the input 
data blocks. The MATLAB built-in function UPFIRDN.dll (or RESAMPLE.m) is 
designed for resampling only one block of input data. It does not provide information 
on the state variables of the filters and, therefore, cannot be used to resample a very 
large data file. 

This report describes a fairly general resampling algorithm useful in many practical 
signal processing applications. To obtain the desired flexibility, we have implemented 
the periodically time varying FIR filter structure in such a way that it keeps track of the 
state variables and also makes provisions for input blocks of arbitrary length. In 
addition to its flexibility, the algorithm achieves a relatively high processing throughput 
when implemented in software. 
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Resume  

Le reechantillonnage d'un signal implique la conversion du taux d'echantillonnage 
initial ä un taux different. C'est souvent une necessite dans certaines applications 
pratiques dont le taux d'echantillonnage est fixe, alors qu'il faudrait que ce taux 
d'echantillonnage varie selon l'application ou un parametre du signal, tels le debit des 
symboles ou l'espacement entre. C'est un probleme qui surgit frequemment pour les 
plates-formes radio logicielle pour lesquelles le taux d'echantillonnage est determine 
par des contraintes materielles. Bien qu'on ait developpe des algorithmes de 
reechantillonnage dans le commerce et qu'on les ait mis en application dans des 
bibliotheques de logiciels, comme la Intel Signal Processing Library, ces algorithmes 
sont souvent ä la merci de limitations indesirables. Une contrainte frequente est 
l'obligation que les blocs de donnees soient un multiple entier du taux de 
sous-echantillonnage. Une teile restriction facilite l'indexation du code et reduit la 
complexite de la mise en application. Cependant, le programme resultant est alors 
moins polyvalent et moins utile, car dans certaines applications, la longueur des blocs 
de donnees d'entree ne peut pas etre un multiple entier du taux de 
sous-echantillonnage. Pour ces applications, il faut recourir un programme de 
reechantillonnage qui n'impose aucune restriction quant ä la longueur des blocs de 
donnees d'entree. La fonction integree de MATLAB UPFIRDN.dll (ou 
RESAMPLE.m) a ete ecrite pour ne reechantillonner qu'un seul bloc d'entree de 
donnee. Elle ne fournit aucune information sur les variables d'etat des filtres et, par 
consequent, eile ne peut servir ä reechantillonner un tres grand fichier de donnees. 

Le present rapport decrit un algorithme de reechantillonnage suffisamment general qui 
pourra etre utile dans de nombreuses applications pratiques de traitement des signaux. 
Pour obtenir la souplesse souhaitee, nous avons applique la structure de filtre FIR 
variable de teile maniere qu'elle controle les variables d'etat et permet des blocs 
d'entree de longueur quelconque. En plus de cette souplesse, l'application logicielle de 
cet algorithme atteint un debit de traitement relativement eleve. 
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Executive summary 

The resampling of a signal involves the conversion from the initial sampling rate to a 
new and different one. This is necessary in many practical applications because the 
sampling rate is often fixed while the desired sampling rate may depend on the 
application or a signal parameter, such as the symbol rate or channel spacing. It is a 
particular issue in digital filter bank receivers used to detect the presence of narrowband 
signals occupying channels over a range of frequencies. To minimize computational 
cost, filter bank receivers often use frequency domain techniques based on the Fast 
Fourier Transform (FFT) algorithm. Since it is usually desirable to select FFTs to have 
a length that is a power of two, the channelization frequencies may not align with the 
channel spacings used in a certain frequency bands. The situation is complicated 
further by the introduction of new channel spacing standards, e.g., 8.33 kHz. An 
example of this problem occurs with the Agilent Blackbird signal analysis system. For 
the standard sampling rate of 20.48 megasamples/s, FFT bin sizes are constrained to the 
set... 1.25 kHz, 2.5 kHz, 5 kHz, 10 kHz,... with the result that a channelization such as 
8.33 kHz cannot be accommodated directly. 

Although resampling algorithms have been developed and implemented in commercial 
software libraries, such as the Intel Signal Processing Library [2], these algorithms 
often have undesirable limitations. For example, a typical constraint is that the data 
blocks processed must be an integer multiple of the downsampling rate. This restriction 
simplifies the indexing in the code and reduces the complexity of the implementation. 
However, it decreases the flexibility and usefulness of the resulting program, since in 
some applications, the length of the input data blocks may not be an integer multiple of 
the downsampling rate. Another implementation of a resampling algorithm, the 
MATLAB built-in function UPFIRDN.dll (or RESAMPLE.m) is designed for 
resampling only single blocks of input data. It does not provide information on the state 
variables of the filters and, therefore, cannot be used to resample a very large data file. 
Consequently, there is a need for a resampling program that imposes no restriction on 
the length of the input data blocks. To obtain a more flexible resampling program we 
have implemented the periodically time varying FIR filter structure in such a way that it 
keeps track of the state variables and also makes provisions for input blocks of arbitrary 
length. The implementation is carried out in MEX in the MATLAB environment with 
the core of the program written in C. In addition to utilizing the very efficient 
periodically time-varying FIR filter structure, an attempt is made to minimize data 
movement in the implementation. It turns out that the implementation is not only very 
flexible but also works approximately twice as fast as the Matlab built-in function 
UPFIRDN.dll for non-trivial resampling ratios (that is, L > 1 and M > 1, with L 
denoting the upsampling factor and M denoting the downsampling factor). 

The new algorithm is particularly useful in digital receiver systems where a continuous 
stream of signal data must be processed, for example, in the recovery of message 
content from a signal of arbitrary duration. 
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Sommaire 

Le reechantillonnage d'un signal implique la conversion du taux d'echantillonnage 
initial ä un taux different. C'est souvent une necessite dans les applications pratiques 
dont le taux d'echantillonnage est fixe, alors qu'il faudrait que ce taux 
d'echantillonnage varie selon l'application ou un parametre du signal, tel le debit des 
symboles ou l'espacement entre. C'est un probleme bien precis dans les recepteurs ä 
banque de filtres numeriques que Ton utilise pour detecter la presence de signaux ä 
largeur de bände etroite qui occupent des dans une plage de frequences. Pour reduire au 
minimum le coüt des calculs. les recepteurs ä banque de filtres font souvent appel des 
techniques du domaine de la frequence fondees sur l'algorithme de la transformee 
rapide de Fourier (TRF). Comme il est generalement souhaitable de selectionner des 
TRF pour avoir une longueur qui soit une puissance de 2, la resoloution en frequence 
de decoupage peut ne pas correspondre avec l'espacement tel des voies de certaines 
bandes de frequences. La situation se complique du fait de l'introduction de nouvelles 
normes d'ecartement de voies, tel 8,33 kHz. Un exemple de ce probleme se retrouve 
dans le systeme d'analyse de signaux de Agilent Blackbird. Pour les taux 
d'echantillonnage standard de 20.48 megaechantillons/s, les longueurs des intervalles 
de la TRF sont restreintes ä 1.25 kHz, 2.5 kHz, 5 kHz, 10 kHz, de sorte qu'un 
decoupage de voies comme 8.33 kHz ne peut etre decrit directement. 

Bien qu'on ait developpe des algorithmes de reechantillonnage dans le commerce et 
qu'on les ait mis en application dans des bibliotheques de logiciels, comme la Intel 
Signal Processing Library, ces algorithmes sont souvent ä la merci de limitations 
indesirables. Une contrainte frequente est 1'obligation que les blocs de donnees soit un 
multiple entier du taux de sous-echantillonnage. Une teile restriction facilite 
l'indexation du code et reduit la complexite de la mise en application. Cependant, le 
programme resultant est alors moins polyvalent et moins utile, car dans certaines 
applications, la longueur des blocs de donnees d'entree ne peut pas etre un multiple 
entier du taux de sous-echantillonnage. La fonction integree de MATLAB 
UPFIRDN.dll (ou RESAMPLE.m) a ete ecrite pour ne reechantillonner qu'un seul bloc 
d'entree de donnee. Elle ne fournit aucune information sur les variables d'etat des 
filtres et, par consequent, eile ne peut servir reechantillonner un tres grand fichier de 
donnees. Un programme de reechantillonnage qui n' impose aucune restriction quant la 
longueur des blocs d'entree est done justifie. Pour realiser tel programme plus 
polyvalent, nous avons applique une structure de filtre FIR temporelle ä variation 
periodique qui controle les variables d'etat et permet des blocs d'entree de longueur 
variable. La mise en application est realised en MEX dans un environnement 
MATLAB, le noyau du programme etant redige en C. En plus d'exploiter la structure 
de filtre FIR temporelle ä variation periodique tres performante, nous avons tente de 
reduire au minimum le mouvement des donnees dans cette mise en application. Cette 
mise en application s'est revelee moins souple que prevu, mais quand meme deux fois 
plus rapide que la fonction integree MatLab UPFIRDN.dll pour des rapports de 
reechantillonnage non triviaux (soit L > 1 et M > 1 o L est le facteur de 
sur-echantillonnage et M, le facteur de sous-echantillonnage). 
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Ce nouvel algorithme est particulierement utile pour les recepteurs numeriques dans 
lesquels le flot continu de donnees numerique doit etre traite, par exemple, lors de la 
recuperation du contenu d'un message dans un signal de duree quelconque. 

Sichun Wang, Brian Kozminchuk. 2001. DIGITAL SAMPLING RATE CONVERSION: 
PRINCIPLES AND IMPLEMENTATION. DREO TM 2001-032. Centre de recherches pour 
la defense, Ottawa. 
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1.    INTRODUCTION 

The resampling of a signal involves the conversion from the initial sampling rate to a 
new and different one. This is often necessary in practical applications because the 
sampling rate is often fixed while the desired sampling rate may depend on the 
application or a signal parameter, such as the symbol rate or channel spacing. It is a 
particular issue in digital filter bank receivers used to detect the presence of narrowband 
signals occupying channels over a range of frequencies. To minimize computational 
cost, filter bank receivers often use frequency domain techniques based on the Fast 
Fourier Transform (FFT) algorithm. Since it is usually desirable to select FFTs to have 
a length that is a power of two, the channelization frequencies may not align with the 
channel spacings used in a certain frequency bands. The situation is complicated 
further by the introduction of new channel spacing standards, e.g., 8.33 kHz. An 
example of this problem occurs with the Agilent Blackbird signal analysis system. For 
the standard sampling rate of 20.48 megasamples/s, FFT bin sizes are constrained to the 
set... 1.25 kHz, 2.5 kHz, 5 kHz, 10 kHz,... with the result that a channelization such as 
8.33 kHz cannot be accommodated directly. 

Although resampling algorithms have been developed and implemented in commercial 
software libraries, such as the Intel Signal Processing Library [2], these algorithms 
often have undesirable limitations. For example, a typical constraint is that the data 
blocks processed must be an integer multiple of the downsampling rate. This restriction 
simplifies the indexing in the code and reduces the complexity of the implementation. 
However, it decreases the flexibility and usefulness of the resulting program, since in 
some applications, the length of the input data blocks may not be an integer multiple of 
the downsampling rate. Another implementation of a resampling algorithm, the 
MATLAB built-in function UPFIRDN.dll (or RESAMPLE.m) is designed for 
resampling only single blocks of input data. It does not provide information on the state 
variables of the filters and, therefore, cannot be used to resample a very large data file. 
Consequently, there is a need for a resampling program that imposes no restriction on 
the length of the input data blocks. 

To obtain a more flexible resampling program than the ones currently available, we 
have implemented the periodically time varying FIR filter structure in such a way that it 
keeps track of the state variables and also makes provisions for input blocks of arbitrary 
length. The implementation is carried out in MEX in the MATLAB environment with 
the core of the program written in C. In addition to utilizing the very efficient 
periodically time-varying FIR filter structure, an attempt is made to minimize data 
movement in the implementation. It turns out that the implementation is not only very 
flexible but also works approximately twice as fast as the Matlab built-in function 
UPFIRDN.dll for non-trivial resampling ratios (that is, L > 1 and M > 1, with L 
denoting the upsampling factor and M denoting the downsampling factor). 

This report is organized as follows. Section 2 summarizes the theoretical basis of 
digital sampling rate conversion and derives the periodically time-varying FIR filter 
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structure. Section 3 discusses the special implementation of the periodically 
time-varying FIR filter structure in MEX (named UPDNC6.c). Section 4 demonstrates 
the usage of two MATLAB functions UPDNM6.m and RESAM6.m based on 
UPDNC6.dll. Section 5 presents a comparison of the performance of our 
implementation UPDNC6.dll with that of the MATLAB implementation UPFIRDn.dll. 
Finally, section 6 presents some concluding remarks. 

2.    BASIC CONCEPTS OF DIGITAL SAMPLING RATE 
CONVERSION  

Let L > 0 and M > 0 be two arbitrary positive integers which are relatively prime, that 
is, the greatest common divisor of L and M is 1. A baseband digital signal x(n), with 
sampling rate Fo, can be upsampled by a factor of L and then downsampled by a factor 
of M to obtain another digital signal y(m) with sampling rate Fi = F0 (^). In theory, 
upsampling (also called interpolation) and downsampling (also called decimation) are 
two separate processes and upsampling must precede downsampling in order to 
preserve the spectrum of the signal. In practice, the upsampling and downsampling 
processes are combined as one and can be implemented efficiently via the periodically 
time-varying FIR filter structure as discussed in the classical survey paper [1]. In this 
section, the main concepts of digital sampling rate conversion are discussed and the 
periodically time-varying FIR filter structure is derived. 

2.1    Downsampling by an Integer Factor of M. 

Let x(n) be a baseband digital signal with sampling rate Fo. The sampling rate of x{n) 
can be decreased by a factor of M by retaining only one sample in every M samples in 
x(n). Specifically, if the sequence y(m) is defined by y(m) = x(mM), we say that 
y(m) is obtained by downsampling x(n) by a factor of M (or by decimating x(n) by a 
factor M). Direct decimation of the signal x(n) without first passing it through an 
appropriately designed low-pass filter will in general lead to aliasing in the resultant 
signal y(m). To demonstrate this, one can calculate the z transform of y(m). Let the 
sequence x'(n) be defined by 

„. it \__ \ x(n), n is an integer multiple of M, 
X ^n' ~ 1   0,  otherwise 

It can be verified that 

An)=x(n){±Y,ei™n/M) (2) 
I    1VI 

1=0 
M^" J 

and 

(3) y(m) = x'(mM) 
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Hence, Y(z), the z transform of y(m), can be calculated as follows: 
oo 

Y(Z)= E y(m)z~m 

m=—oo 
oo 
y^   x'(mM)z 

n=—oo 
oo 

- E *'( 
n=-oo 

oo I    -.    m — i 1 

= E ^) iEeiWm/Mh"m/M 
m=-oo I (=0 J 

M-i r   oo 
= _ J2     E   z(m)e^m/Mz-m/M 

1=0   L"i=-oo 
,    M-l 

= J_ £ X{e-^l'Mzl>M) 

m=—oo 
oo 

(m)z-m/M 

m=—oo 
oo (  .,   M-l 

(4) 
1V1 

1=0 

where X(z) is the z transform of x(n). Evaluating Y(z) on the unit circle, z = eja\ 

w € [-7T, 7r], yields the Fourier transform of y(m), i.e., 

M-l 

(5) y(e*") = jj^ E X(e>lu-WM) 
1=0 

^From Eq. 5 it can be seen that in general y(m) is an aliased version of the original 

signal x(n). 

To avoid aliasing in y(m), it is necessary to first low-pass filter x(n) and then perform 
decimation. In fact, let hd{n) be the impulse response of a low-pass FIR filter(called 
the prototype downsampling filter) and Hd(z) be its z transform. Let the signal w{n) be 
the output of the filter Hd(z) with input x(n) and let y(m) be the signal obtained by 
decimating w(n) by a factor of M (that is, y(m) = w(Mm)). Let X(z), W(z) and 
Y(z) be the z transforms of x(n), tu(n) and y(m) respectively. It follows that 

(6) W(z) = Hd(z)X(z) 

and (see Eq. 4, with W{z) replacing X(z)) 

M-l 

Y(z) = — E W{e-*M'Mz1/M) (7) 

Hence 

M 
(=0 

(8) 
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1=0 
,    M-l 

= _L J2 Hd{e-^l'MzllM)X{e-^llMzllM) 
M 

1=0 



x(n) Low Pass 
Filter 
Hd(z) 

w(m) Decimator y(m) = w(mM) 
 ► 

-t -t/M 0 n/M 

Figure 1: Downsampler by a factor of M and prototype lowpass filter. 

Evaluating Y(z) on the unit circle z = eiu, w € [-IT, ir], yields the result 

1   M-l 

y(e^) =  77 53 -ffd(ej(w-2,r/)/M)A:(eJ'(u'-2'r')/M) 

(9) = -^ [/Jd(e^/M)Z(^/M) + Hd(e><r-**VM)X(e'lu-2"VM) + ■■■ 

If the prototype downsampling filter H,t(z) is designed in such a way that 

(io) WW J' t1?,^' 
then the terms with I ^ 0 in Eq. 9 are removed and y(eJ'"') becomes 

(11) y(e*") S 1-X(e?"/M) 

Hence by passing x(n) through an appropriately designed FIR prototype downsampling 
filter Hd(z) and then performing decimation, aliasing in y(m) is eliminated. The 
process of downsampling a digital signal by a factor of M is illustrated in Fig. 1. 

The time domain relationship among x(n),y(m), hd(k) is 

oo 

(12) y(m) = w(mM) =   53   hd{k)x(mM - k) 
k=—oo 
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2.2     Upsampling by an Integer Factor of L. 

Upsampling is the dual operation of downsampling. Suppose it is desired to increase 
the sampling rate of x(n) by an integer factor of L. This can be accomplished by 
inserting L - 1 zeros between each pair of samples in x(n) and then low-pass filtering 
the resultant sequence. In fact, let the digital signal u;(n) be defined by 

/ %      f X(T),  n is an integer multiple of L, 
(13) W^ = \ 0,  otherwise 

The signal w(n) is obtained by inserting L - 1 zeros between each pair of samples of 
x(n). Its z transform W(z) is given by 

00 

W(z)=    J2 w(n)z~" 
n=—oo 

oo 

=    Yl  *(n)z-nl 

n=—oo 

(14) = X{zL) 

where X(z) is the z transform of x(n). Evaluating W(z) on the unit circle , z = eju, 
u e [-7T, 7r], gives the Fourier transform of w(n) 

(15) W(e>u) = X(ej"L) 

Clearly, the spectrum of w(n) preserves that of the original signal x(n) on the interval 
[0, j] but also contains harmonic images of the spectrum of x(n) on the intervals 
[^ 3 7r])..., [ikzD.ni „-], which must be removed. This is illustrated in Figure 2 for the 
case L = 4. 

To eliminate the unwanted harmonic images of the spectrum of x{n), it is necessary to 
filter the signal w(n) with a low-pass filter Hu(z) (called the prototype upsampling 
filter) which approximates the ideal frequency response 

(1Ö) fl"(e     ^ _ \   0,    I < \u\ < 7T 

where G = i is a necessary scaling factor (see Eq. 33 [1]). The process of upsampling 
a digital signal x{n) by a factor of L is illustrated in Fig. 3. 

The time domain relationship among x(n), y(m), hu(k), where hu{k) is the impulse 
response of the prototype upsampling filter Hu(z), is given by 

oo 

y(m) =    X/  hu(m - k)w(k) 
k=—oo 

— Y^ hu(m - k)x(k/L) 

£ is an integer 
oo 

(17) =    5Z  hu{m - kL)x{k) 
k=—oo 
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X(Ja) 

W(J°) 

-%    -3JI/4     -nil    -rc/4      0       n/4      nil      3JC/4       jr 

Figure 2: Spectrum ofw(n) with L — 1 zeroes inserted between samples. 

x(n) 

Interpolator 
w(m) Low Pass 

Filter 
Hu<z) 

y(m) 

H^) 
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Figure 3: Upsampler by factor of L followed by lowpass filter to remove harmonics. 
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2.3    Resampling by a Rational Factor of -fa. 

Changing the sampling rate of a digital signal by an arbitrary rational factor of JJ, 

where L and M are relatively prime positive integers, is accomplished by first 
increasing the sampling rate by a factor of L and then decreasing the sampling rate of 
the resultant signal by a factor of M. As demonstrated in the preceding two 
subsections, for the upsampling stage, the prototype upsampling filter Hu{z) should 
approximate the frequency response characteristic 

(18) 
_ f L,   M < I, 

H^Z> " \ 0,   I < M < 7T 

and for the downsampling stage, the prototype downsampling filter Hd{z) should 
approximate the frequency response characteristic 

(19) Hd(z] 
-  \   0,    §  <  M  < 7T 

The complete resampling process is carried out by first inserting L - 1 zeros between 
each pair of samples of the input signal x(n), low-pass filtering the resultant signal by 
the filter Hu(z), then low-pass filtering the output signal of Hu(z) by the filter Hd(z) 
and finally decimating the output signal of Hd(z) by a factor of M. This is 
demonstrated in Fig. 4. This process can be further simplified by replacing the cascade 
of the prototype filters Hu{z) and Hd(z) by one low-pass filter H(z) - Hu{z)Hd{z), 
which has the frequency response characteristic 

(20) H(z) = Hu(z)Hd(z) <* 
max(M,L)' 

< M < IT 

The low-pass filter H[z) is called the prototype resampling filter. Conceptually, 
resampling is now reduced to three steps: first padding L - 1 zeros between each pair 
of samples of the input signal x(n), then low-pass filtering the resultant signal by the 
resampling filter H(z), and finally decimating the output signal of H(z) by a factor M. 
This is demonstrated in Fig. 5. 

x(n) 
Interpolator 

w(m) Low Pass 
Filter 
Hu(z) 

Low Pass 
Filter 
Hd(z) 

v(m) 
Decimator 

y(m) = v(mM) 
 ► 

Figure 4: The process of resampling a signal by a factor of L/M by upsampling, filtering, and downsampling. 

Let h{k) be the impulse response of the prototype resampling filter H(z) defined by 
Eq. 20. The time domain relationship among x(n), h(k) and y(m) is 

(21) y{m) — v(mM) 
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x(n) U 
Interpolator 

w(m) Low Pass 
Filter 
H(z) 

Decimator y(m) = v(mM) 
 ► 

-ji -n/max(L,M) 0 7t/max(L.M) jt 

Figure 5: The process of resampling a signal with a single prototype lowpass filter. 

where v(n) is the output of the filter H(z) and 
oo 

(22) v(m)=   J2  h(m-kL)x(k) 
k——oo 

Therefore 
oo 

(23) y(m) =   ]T  h{mM - kL)x(k) 
k=-oo 

Equation 23 is the mathematical basis for implementing digital sampling rate 
conversion. 

2.4   The Periodically Time-varying FIR Filter Structure for 
Implementing Digital Sampling Rate Conversion. 

Equation 23 can be put in a form more amenable to hardware or software 
implementation. Making the change of variables 

(24) k = floor ( ——- ) — n 

where floor (2^) denotes the largest integer less than or equal to the rational number 
m^-, one can write 

mM - kL = mM -   floor n)L 

nL + mM - ( floor 
mM 

(25) = nL + mM © L 
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where mM © L = mM - (floor (^)) L denotes the remainder of mM after being 
divided by L (value of mM modulo L). Substituting Eqs. 24 and 25 in 23, we obtain 

(26) y{m) =   ^  /i(nL + mM © L)x f floor f ^- j - n J 
n=-oo 

This is the actual resampling equation that is implemented in hardware or software. 

In the practical implementation of Eq. 26, the prototype resampling filter h(k) is 
assumed to be a linear phase FIR filter with length LQ , where Q > 1 is a positive 
integer. That is, the length of h(k) is constrained to be an integer multiple of the 
upsampling rate L. Under this constraint, the algorithm Eq. 26 leads naturally to the 
periodically time-varying FIR filter structure for sampling rate conversion. 

Some new notation will now be introduced. The prototype resampling filter h(k), 
where 0 < k < LQ - 1, can be partitioned into L polyphase filters hm(ri) 
(0 < m < L - 1), each of length Q, i.e., 

(27) hm(n) = h(nL + m),  0<n<Q - 1 

In other words, hm(n) is obtained by decimating the sequence h(k) by a factor of L. 
To visualize the relationship between the prototype filter h(k) (with length N = LQ) 
and the polyphase filters hm(n) (each with length Q), the Q x L matrix H is 
constructed, i.e., 

H = 

/ Mo) 
h(L) 

h{nL) 

Ml) 
h(L +1) 

h(nL + 1) 

M2) 
h(L + 2) 

h(nL + 2) 

V h((Q - 1)L)   h{{Q - l)L + 1)   h((Q - l)L + 2) 

(28) 

h{L - 1) 
h(2L-l) 

h{{n + l)L-l) 

h(QL - 1) 

H has L columns, the first column consisting of the taps of the polyphase filter h0(n), 
the second column consisting of the taps of the polyphase filter hi(n) and so on. On the 
other hand, the filter taps h(k) can be recovered from H by concatenating the row 
vectors of H from the first to the last row. Define two integer sequences p(m) and q(m) 
by setting 

(29) 
,   x     „       (mM\ 

p(m) = mM © L,  q{m) = floor I —— 1 

It can be verified that p(m) is a periodic sequence with period L and q(m) has the 
simple property that q(m + kL) = kM + q{m), i.e., 

(30) p{m + kL) = p(m) = p(m © L),  q{m + kL) = kM + q{m), 
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n 

Using this new notation, Eq. 26 can be rewritten as 

y(m) = XI h(nL + mM ® L)x (floor (~j~) 

= Yl hp(m)(n)x{q(m) - n) 

Q-i 
(31) = Y2 hp(m®L)(n)x(q(m) - n) 

n=0 

Let 

(32) gm(n) = hp{m(BL)(n), 1 <m < L , 0 <n < Q - I 

It follows from Eqs. 31 and 32 that 

O-i 
(33) y(kL + m) = ^2 9m(n)x(kM + q(m) - n) 

71=0 

where 1 < m < L and k > 0. The equation (33) can be interpreted as representing a 
periodically time-varying FIR filter. To illustrate this, write out Eq. 33 for 1 < m < L, 
k = 0,1, as follows: 

y(l)    =     5i(0)a;(g(l))+Si(l)x(5(l)-l) + -"+fl1(Q-l)x(g(l)-(Q-l)) 

y(2)     =     92(0)x(q(2)) + g2(l)x(q(2) - I) + ■ ■ ■ + g2(Q - l)x(q(2) - (Q - 1)) 

y{m)    -     9m(0)x(q(m)) + gm{l)x{q{m) -!) + •••+ gm(Q - l)x(q(m) - (Q - 1)) 

y(L)     = 9L(0)x(q(L))+gL(l)x(q(L)-l) + ...+gL(Q-l)x(q(L)-(Q-l)) 

- gL(0)x(M) + gL(l)x(M - 1) + • • • + gL{Q - l)x(M - {Q - 1)) 

y(L + l)    = gi(0)x(M + q(l)) + -.-+gi(Q-l)x(M + q(l)-(Q-l)) 

y(L + 2)    = g2(0)x(M + q(2)) + ■ ■ ■ + g2(Q - l)x(M + q(2) - (Q - 1)) 

y(L + m)    =     9m{0)x(M + q(m)) + ■ ■ ■ + gm(Q - l)x(M + q(m) - (Q - 1)) 

y(2L)     =     gL(0)x(2M)+gL(l)x(2M-l) + .--+gL{Q-l)x(2M-(Q-l)) 
(34) 

The first equation in 34 shows that j/(l) is obtained as a weighted sum of Q sequential 
samples of x(n) starting at the sample x(q(l)) and going backwards in n sequentially. 
The weighting coefficients are the taps of the polyphase filter gi(n), 0 < n < Q - 1. 
Similarly, y(2) is obtained as a weighted sum of Q sequential samples of x(n) starting 
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at the sample x(q(2)) and going backwards in n sequentially. The weighting 
coefficients are the taps of a different polyphase filter, namely g2{n). This pattern 
continues until the sample y(L), with y(L) computed as a weighted sum of Q 
sequential samples of x(n) starting at the sample x{q{L)) = x(M) and going 
backwards in n sequentially. The weighting coefficients in the computation of y(L) are 
the taps of the polyphase filter 51, (n). It is clear that different sets of filter coefficients 
(namely, gm(n)) are used in the computation of the samples y(m), m = 1,2, • • •, L . 
Now let us look at the computational procedure for the next L samples, 
y(L + 1), y(L + 2), • • ■, y{2L). It can be observed from the equations in 34 that 
y(L + 1) is computed using the same polyphase filter as y(l) (that is, 51(71)). Also 
y(L + 2) is generated using the same polyphase filter as y{2) (that is, 52(71)). etc. 
Hence the sample sequence y{m) is the output of a periodically time-varying FIR filter 

with period L. 

It is also important to understand how the input data samples x(ri) enter into the 
computation in Eq. 33. Writing out Eq. 33 for y(m) and y(m + 1), where 
1 < m < L - 1, yields 

y(m) = gm(0)x(q(m)) + gm(l)x{q(m) - 1) + 

(35) • • • + gm{Q - l)x{q{m) - (Q - 1)) 

and 

y{m + 1) = 5(m+i)(0)x(g(m + 1)) + s(ro+i)(l)a:(g(m + 1) - 1) + 

(36) • ■ • + g{m+X){Q - l)x(q(m + 1) - (Q - 1)) 

One can see that y(m) is the weighted sum of Q sequential samples of x(n) starting at 
the sample x(q(m)) and going backwards sequentially. The samples from the input 
sequence x(n) which are involved in the weighted sum are 

(37) S = \x(q(m)), x{q(m) - 1), • • •, x(q{m) - (Q - 2)), x{q(m) - (Q - 1))] 

The samples x{q{m)), x{q(m) - 1), • • •,x(q{m) - (Q - 2)), x{q{m) - (Q - 1)) are 
called the state variables of the time-varying FIR filter in Eq. 33 and the vector S is 
called the state variable buffer corresponding to the output sample y(m). In the 
computation of y(m + 1), the state variable buffer has changed to 

(38) S = [x(q(m + l)),x(q{m + 1) - 1), ■ • • ,x{q(m + 1) - (Q - 1))] 

If q(m + 1) = floor (») > q(m) = floor(^), there are q(m + 1) - q(m) 

new samples shifted into and q(m + 1) - q{m) old samples shifted out of the state 
variable buffer S. On the other hand, if q{m + 1) = <?(m), then the state variable buffer 
S remains unchanged. It should be noted that the sequence q(m) is non-decreasing and 
it is q(m) that determines the input samples x(n) entering into the computation of the 
output sample y(m). Recall that q(m + kL) = kM + q{m) (see Eq. 30), hence for 
l<m<L-l,k>0, 

(39) q{m + 1 + kL) - q{m + kL) = kM + q(m + 1) - (kM + q{m)) 

- q(m + 1) -q{m) 
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Equation 39 implies that the pattern in which the data samples x(n) are shifted into and 
out of the state variable buffer S also repeats itself periodically. Let us examine in some 
detail how the state variable buffer S is updated for the first L samples 
2/(1), 1/(2), • • •, y{L). Denoting the contents of the state variable buffer S 
corresponding to the samples 2/(1), y(2), ■■■, y(L) by Si, • ■ •, SL, respectively, we have 

Si     =      [x(q(l)),x(q(l)-l),...,x(q(l)-(Q-l))} 

52 =     [x(q(2)),x(q(2)-l),...,x(q(2)-(Q-l))} 

53 =      [x(q(3)),x(q(3)-l),-..,x(q(3)-(Q-l))} 

SL    =     [x(q(L)),x(q(L)-l),...,x(q(L)-(Q-l))} 

=     [x(M),x(M-l),..-,x(M-(Q-l))\ 

(40) 

There are three cases to be considered: (1) q(l) > Q, (2) 1 < q(l) < Q, and (3) 
q(l) < 1. It is assumed that 1 < q(l) < Q, i.e., 1 < M/L < Q. The other two cases 
are different but very similar. The input samples 
x(M),x(M - l),x(M - 2), • • • ,x(2),x(l),x(0),x(-l), • • • ,x(9(l) - (Q - 1)) are 
involved in the computation of the first L output samples 2/(1), y(2), • • •, y{L). If it is 
assumed that the input samples x(n) start at the sample x(l), then the samples 
x(0), ■ • •, x(q(l) - (Q - 1)) in the first state variable buffer Si are not available and 
have to assume certain given values (usually zeros). Thus to compute 2/(1), the state 
variable buffer S is first initialized to be an all-zero vector and then q(l) samples 
x(q(l),x(q(l) - 1), x(l) are shifted into it. The samples in the buffer S are then 
weighted with the coefficients of the polyphase filter ffi(n). The most recent sample in 
the state variable buffer is x(q(l)). To compute y{2), q(2) - q(l) new samples from 
x(n) are shifted into S and q(2) - q(l) old samples are shifted out of S. The samples 
in the updated buffer are weighted with the coefficients of the polyphase filter g2(n). 
The most recent sample in the state variable buffer has become x(q(2)). In general, to 
compute y{m), 3 < m < L - 1, q{m) - q(m - 1) new samples are shifted into the 
buffer S and q(m) - q(m - 1) old samples are shifted out of the buffer S. The samples 
in the buffer are weighted with the coefficients of the polyphase filter gm(n). To 
compute the last sample y(L) in the first block of L output samples, 
q(L) - q(L - 1) = M - q(L - 1) samples are shifted into and out of the buffer S and 
the samples in the state variable büffer are weighted with the coefficients of the 
polyphase filter gL{n). The most recent sample in the buffer has become x(M). Note 
that the first M input samples x(M),x(M - 1), • • •, x(l) have passed into the buffer S 
during the computation of the first L output samples y(L), y(L - 1), • • •, 2/(1). 

The pattern in which the data samples x(n) are shifted into the state variable buffer S 
during the computation of the next block of L output samples 
y(L + 1), y(L + 2), ■ • •, y(2L) will now be examined. Denoting the contents of the 
state variable buffer S corresponding to the samples y(L + 1), y(L + 2), ■ • ■, y(2L) by 
SL+I, • ■ •, S2L, respectively , we have 

SL+1    =     [x(M + q(l)),x(M + q(l)-l),...,x(M + q(l)-(Q-l))} 
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SL+2     =      [x(M + q(2)),x(M + q(2)-l),---,x(M + q(2)-(Q-l))} 

SL+3     =      [x(M + q(3)),x(M + q(3)-l),---,x(M + q(3)-(Q-l))} 

S2L    =     [x(M + q(L)),x(M + q(L)-l),---,x(M + q(L)-(Q-l))} 

=     [x(2M),x(2M - 1), • • •, z(2M - (Q - 1))] 

(41) 

After the computation of y(L) and before the computation of y(L + 1), the state 
variable buffer S is 

SL =  [x(q(L)),x(q(L) - 1), • • •, x(q(L) - (Q - 1))] 

(42) = \x(M),x(M-l),---,x(M-(Q-l))} 

To compute y(L + 1), g(l) new samples are shifted into S and q(l) old samples are 
shifted out of S. The samples in the buffer are weighted with the same set of 
coefficients as in the computation of y(l), namely, the polyphase filter 51 (n). To 
compute y(L + 2), q(2) - q(l) new samples are shifted into S and out of S. The 
samples in the buffer are weighted with the same set of coefficients as in the 
computation of y(2), namely, the polyphase filter g2(n). It is now apparent that just as 
the polyphase filters enter into the computation of the output samples y(m) 
periodically, the input data samples x(n) are shifted into the state variable buffer in a 
manner that also repeats itself periodically. Thus the computation of the output samples 
y(m) can be done most conveniently on a block by block basis. For each block of input 
samples of length M, a block of output samples of length L can be computed. This is 
illustrated in the diagram of Fig. 6. 

IMPLEMENTATION OF THE PERIODICALLY 
TIME-VARYING FIR FILTER STRUCTURE IN MEX 

Implementation of the periodically time varying FIR filter structure (Eq. 33) in some 
software packages, including the Intel Signal Processing Library [2], requires that the 
length of each input data block from the sequence x(n) be an integer multiple of the 
downsampling factor M. On the one hand, this restriction considerably simplifies the 
indexing in the code and reduces the complexity of implementation. On the other hand, 
it also, to a certain degree, unnecessarily limits the flexibility and usefulness of the 
resulting program, since in certain applications the length of the input data blocks may 
not be an integer multiple of the downsampling factor M. For such applications, there 
is a need for an implementation of the resampling algorithm (Eq. 33) that imposes no 
restriction on the length of the input data blocks. The MATLAB built-in function 
UPFIRDN.dll (or RESAMPLE.m) is designed for resampling only one block of input 
data. It does not provide information on the state variables and cannot be used to 
resample a huge data file. To obtain a more flexible resampling program than the ones 
currently available, we have implemented the periodically time varying FIR filter 
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Figure 6: Array of subfilters. 

14 DREOTM 2001-032 



structure of Eq. 33 in such a way that it keeps track of the state variables and also 
makes provisions for input blocks of arbitrary length. The implementation is carried out 
in MEX in the MATLAB environment with the core of the program written in C. In 
addition to utilizing the very efficient periodically time-varying FIR filter structure, we 
also strive to minimize data movement in our implementation. It turns out that our 
implementation is not only very flexible but also works almost twice as fast as the 
Matlab built-in function UPFIRDN.dll if the resampling ratio jj is non-trivial (that is, 
L > 1 and M > 1). 

How the program works will now be explained. It is assumed that the input signal 
sequence is fed into the computer memory on a block by block basis. To make the 
program general enough, the individual input data blocks are not assumed to have equal 
length. Hence each individual input data block can be of any length. Once a data block 
is fed into the computer memory, it is resampled and the resampled data is then stored 
in the computer memory for further processing or output to a disk for storage. Since the 
algorithm in Eq. 33 is much easier to implement for an input data block whose size is 
an integer multiple of the downsampling factor M, we divide each input data block into 
two segments. The length of the first segment is an integer multiple of M(in some 
extreme cases it may be empty) and the second segment consists of less than M 
samples (it may also be empty). The samples in the first segment are processed in 
blocks of M samples each according to the scheme discussed in the preceding section 
(see Fig. 6). The remaining samples at the end of the input data block, which number 
less than M, are not processed. They are returned in an array called REMAINDER. 
The program will add the samples in the REMAINDER array to the beginning of the 
next input data block to form a new elongated array. This new input data block is again 
divided into two segments. The length of the first segment is an integer multiple of M 
and the second segment consists of less than M samples. Again the first segment is 
processed and the second segment is returned in the REMAINDER array. 

More specifically, the processing in the program is carried out in three steps which are 
depicted in the diagram in Fig. 7. The first step in the program is to append the old 
remainder array of length LQ (if it is not empty) to the beginning of the input data array. 
This step results in an elongated input data array. It is emphasized that this is 
accomplished via pointer manipulation and no data are really moved in the process. 
After this is done, the elongated input data array is partitioned into two segments. The 
length of the first segment is an integer multiple of M and there are t such blocks each 
of size M (t may be zero). The second segment consists of less than M samples {L\ 
samples). The first segment is processed on a block by block basis as explained earlier 
and the results are returned, which make up an output array of length tL consisting of t 
blocks each of size L. The second segment is returned as the new remainder array. The 
contents of the state variable buffer right after processing the t input blocks of size M 
are returned as the new state variable buffer samples. 

In the program, there is an interface component (named the MexFunction) that connects 
the MATLAB environment with the actual data processing performed in C. A large 
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Figure 7: The three steps of processing in the program. 
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portion of indexing management is done in this interface component. As pointed out in 
the preceding section, for each of the three separate cases, q(l) > Q, or 1 < q(l) < Q 
or 9(1) < 1, the manner in which data are shifted into and out of the state variable 
buffer is different and the subscripting of the data arrays has to be managed in the 
program accordingly. To simplify the indexing and reduce the complexity of the code, 
three C functions, RESAMP1, RESAMP2 and RESAMP3, which, respectively, 
correspond to the three separate cases, q(l) > Q, or 1 < q(m) < Q, or q(m) < 1, are 
written in the program. Since the data processing procedure is exactly the same for both 
the real and imaginary parts of the data sample blocks, the input data sample blocks are 
separated into the real and imaginary parts and the C functions RESAMP1, RESAMP2 
and RESAMP3 are written to accept double precision real data arrays and to return 
double precision real data arrays. The C function RESAMP2 is discussed in some 
detail here. The other two functions are very similar. The prototype for the function 
RESAMP2 is shown below, and the parameters for this function are defined in Table 3. 

RESAMP2( double Input[ ], long InputLen, 
double Outputf ], long OutputLen, 
double State[ ], int StateLen, 
double Filtert ], int FilterLen, 
double Remainderf ], int RemainderLen, 
double Newremainder[ ], int NewremainderLen, 
int L, int M ); 

In the C function RESAMP2, the prototype filter array Filterf ] is rearranged to result in 
a new filter array named firfilter[ ], which corresponds to the array of polyphase filters 
in the upper row in Fig. 6. Two arrays, named yindxmodL[ ] and newyindxmodL[ ] 
respectively, are defined to hold the control sequences q(m) and p(m), 1 < m < L. 
The program completes the processing of data blocks of size M in the for loops, 
returns the remainder samples and updates the state variable samples. The complete 
MEX file is named UPDNC6.C After compilation, UPDNC6.dll can be invoked 
directly in the MATLAB environment. The usage 0fUPDNC6.dll and two related 
MATLAB functions is discussed in the next section. For details of the C functions, 
RESAMP1, RESAMP2 and RESAMP3, the reader is referred to the file UPDNC6.C 

4.    USAGE OF THE FUNCTIONS UPDNM6.m AND 
RESAM6.m 

Although the program UPDNC6.dll can be used directly in the MATLAB environment, 
we have written another two MATLAB functions named UPDNM6.m and RESAM6.m 
respectively, which are more convenient to apply in certain situations. The function 
UPDNM6.IT1 calls UPDNC6.dll and the function RESAM6.m in turn calls 
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Table 1: Parameters for Resampler Program 

Parameter Description 

Inputf ] Input data array 

InputLen Input data array length, integer multiple of M 

Output[ ] Output array 

OutputLen Output array length, integer multiple of L 

Statef ] Old state variable buffer from earlier input data block 

StateLen State variable buffer length Q =length(Filter[])/L 

Filter[ ] Taps of prototype filter, h(k), 0 < k < LQ - 1 

FilterLen Length of prototype resampling filter 

Remainderf ] Old remainder array 

RemainderLen Length of old remainder 

Newremainder[ ] New remainder array 

NewremainderLen Length of new remainder array 

L Upsampling factor 

M Downsampling factor 
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UPDNM6.m. Their usage is explained here. 

4.1    Usage of UPDNM6.m. 

The MATLAB function UPDNM6.m is called with the syntax: 

[Y,NEWSTATE,NEWREMAINDER,NEWYINDEX] = 

(43) updnm6(X,H,L,M,STATE,REMAINDER,YINDEX) 

where the inputs are: 

1. X: input signal with arbitrary length, where X can be real or complex; 

2. H: prototype resampling filter designed by the user; 

3. L: upsampling factor, where L must be a positive integer; 

4. M: downsampling factor, M a positive integer; L and M relatively prime; 

5. STATE: old state variables, length(STATE)=length(H)/L; 

6. REMAINDER: samples left over from the preceding block of input data; 

7. YINDEX: length of the resampled data obtained by resampling the input data 
before the current input block X; 

The outputs are: 

1. Y: the resampled data from processing all the data blocks of size M contained in X; 

2. NEWSTATE: updated state variables; 

3. NEWREMAINDER: samples left over from the current block X; 

4. NEWYINDEX: length of the resampled data obtained by resampling input data up 
to and including the current block X; 

When using UPDNM6.m, it is necessary for the user to supply the prototype 
resampling filter H. It should be emphasized that there is one restriction on the length 
of H, namely, the length of H must be an integer multiple of the upsampling factor L. If 
the user does not want to design the prototype resampling filter H, we have written 
another MATLAB function which designs a prototype resampling filter for the user. 
This program is named RESAM6.m. Its usage is explained next. 
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4.2    Usage of RESAM6.m. 

The MATLAB function UPDNM6.m is called with the syntax 

[Y,NEWSTATE,NEWREMAINDER,NEWYINDEX,H] 

(44) = resam6(X,L,M, STATE, REMAINDER,YINDEX) 

where the inputs are: 

1. X: Current input signal with arbitrary length; 

2. L: Upsapling rate, L must be a positive integer; 

3. M: Downsampling rate, M must be a positive integer; L and M must be relatively 
prime; 

4. STATE: Old state variables after processing the input data block which precedes 
the current input block X; 

5. REMAINDER: Input samples left over from the input data block which precedes 
the current input block X; 

The outputs are: 

1. Y: The resampled data from processing all the input data blocks of size M 
contained in X; 

2. NEWSTATE: updated state variables; 

3. NEWREMAINDER: input samples left over from the input block X; 

4. NEWYINDEX: length of the resampled data Y. 

5. H: FIR filter designed and used in the resampling operation; 

The function RESAM6.m does the following: 

1. Creates a prototype resampling filter H, where H is designed using the following 
MATLAB parameters: 

rp = 1 (dB);—passband ripple 
rs = 60 (dB);—stopband ripple 
Fs = 2 (Hz);—normalized sampling frequency 
/ = [ l/max(L, M),   1.5/max(L,M)];—normalized cutoff frequencies 
a = [1,   0];—desired amplitudes 

dev   =    [i—rj~ ', 10'~2o)]; —deviations from the ideal response 
(10(*'+1) 

[n, /o, a0, w] = remezord(/, a, dev, Fs); —filter order estimation 
n = ceil(n/L) * L — 1; —choosing filter length 
H = L * remez(n, /0, ao, w); —design filter with the REMEZ function 
H = H(:); 

2. Resample the data block X using the filter H by calling the function UPDNM6.m. 
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5.     PERFORMANCE COMPARISON 

To obtain an idea of how our function UPDNC6.dll compares with the MATLAB 
built-in function UPFIRDN.dll in performance, we tested them for various resampling 
ratios JJ and various input block lengths. The personal computer used in the 
simulations has a clock rate of 200 MHz. The computer processing time (in seconds) is 
plotted as a function of the length of the input block in Figs. 8 to 30. It can be observed 
from Fig. 8 to 13 that if the downsampling rate M = 1, our function UPDNC6.dll 
outperforms the MATLAB implementation UPFIRDN.dll for shorter filter lengths and 
has roughly the same performance as UPDFIRDN.dll for longer filter lengths. If the 
upsampling rate L = 1, the MATLAB implementation UPFIRDN.dll outperforms our 
implementation UPDNC6.dll for shorter filter lengths but has roughly the same 
performance as ours for longer filter lengths. This is demonstrated in Figs. 14 to 19. If 
the resampling ratio -^ is non-trivial, that is, if L > 1 and M > 1, then our 
implementation UPDNC6.dll outperforms the MATLAB implementation UPFIRDN.dll 
by a factor of about 2 for all filter lengths. This is demonstrated in Figs. 20 to 30. 

6.    CONCLUDING REMARKS 

We have successfully implemented in software the periodically time-varying FIR filter 
structure in digital sampling rate conversion and obtained a very flexible resampling 
function UPDNC6.dll. This program outperforms the MATLAB built-in function 
UPFIRDN.dll by a factor of about 2 for non-trivial resampling ratios -jft (that is, L and 
M are relatively prime and L > 1 and M > 1). 
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Figure 8: Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling factor L = 5, downsampling 

factor M — 1, and filter length = 20. 
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Figure 10: Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling factor L = 25, downsampling 

factor M = 1, and filter length = 160. 
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Figure 12: Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling factor L = 25, downsampling 
factor M = 1, and filter length = 250. 
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Figure 13: Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling factor L = 25, downsampling 

factor M = 1, and filter length = 1000. 
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Figure 15: Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling factor L = 1, downsampling 

factor M = 5, and filter length = 100. 
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Figure 16: Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling factor L = 1, downsampling 

factor M = 5, and filter length = 500. 
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Figure 19: Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling factor L = 1, downsampling 

factor M = 25, and filter length = 1000. 
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Figure 20: Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling factor L = 5, downsampling 

factor M = 4, and filter length = 50. 
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Figure 21: Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling factor L = 5, downsampling 

factor M = 4, and filter length = 100. 
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Figure 22: Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling factor L = 5, downsampling 

factor M = 4, and filter length = 200. 
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Figure 23: Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling factor L = 25, downsampling 
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Figure 24: Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling factor L = 25, downsampling 

factor M = 24, and filter length = 500. 
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Figure 25: Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling factor L = 25, downsampling 
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Figure 26: Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling factor L = 25, downsampling 

factor M = 24, and filter length = 3000. 
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Figure 27: Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling factor L = 24, downsampling 

factor M = 25, and filter length =192. 
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Figure 28: Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling factor L = 24, downsampling 

factor M = 25, and filter length = 480. 
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Figure 29: Comparison ofMATLAB function UPFIRDN and UPDNC6, for upsampling factor L = 24, downsampling 

factor M - 25, and filter length = 960. 
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