
»V. RO DEFENCE I *m I DEFENSE

Digital Sampling Rate Conversion:
Principles and Implementation

Sichun Wang
Intrinsix Corporation

Brian Kozminchuk
Defence Research Establishment Ottawa

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

Defence R&D Canada
DEFENCE RESEARCH ESTABLISHMENT OTTAWA

TECHNICAL MEMORANDUM
DREOTM 2001-032

February 2001

■ jfc| National Defense f oriOnSI ■ ▼■ Defence nationale V^CLl ldVld.

20010821 029

*\L no DEFENCE! * J DEFENSE

Digital Sampling Rate Conversion:
Principles and Implementation

Sichun Wang
Intrinsix Corporation

Brian Kozminchuk
EW Signal Processing Group
Electronic Support Measures Section

DEFENCE RESEARCH ESTABLISHMENT OTTAWA

TECHNICAL MEMORANDUM
DREO TM 2001-032

February 2001

Project
02KS11

Abstract

The resampling of a signal involves the conversion from the initial sampling rate to a
new and different one. This is often necessary in practical applications because the
sampling rate is often fixed while the desired sampling rate may depend on the
application or a signal parameter, such as the symbol rate or channel spacing. This
problem often arises in software radios systems where the sampling rate is determined
by hardware constraints. Although resampling algorithms have been developed and
implemented in commercial software libraries, such as the Intel Signal Processing
Library [2], these algorithms often have undesirable limitations. For example, a typical
constraint is that the data blocks processed must be an integer multiple of the
downsampling rate. This restriction simplifies the indexing in the code and reduces the
complexity of the implementation. However, it decreases the flexibility and usefulness
of the resulting program, since in some applications, the length of the input data blocks
may not be an integer multiple of the downsampling rate. For such applications, there is
a need for a resampling program that imposes no restriction on the length of the input
data blocks. The MATLAB built-in function UPFIRDN.dll (or RESAMPLE.m) is
designed for resampling only one block of input data. It does not provide information
on the state variables of the filters and, therefore, cannot be used to resample a very
large data file.

This report describes a fairly general resampling algorithm useful in many practical
signal processing applications. To obtain the desired flexibility, we have implemented
the periodically time varying FIR filter structure in such a way that it keeps track of the
state variables and also makes provisions for input blocks of arbitrary length. In
addition to its flexibility, the algorithm achieves a relatively high processing throughput
when implemented in software.

DREOTM 2001-032

Resume

Le reechantillonnage d'un signal implique la conversion du taux d'echantillonnage
initial ä un taux different. C'est souvent une necessite dans certaines applications
pratiques dont le taux d'echantillonnage est fixe, alors qu'il faudrait que ce taux
d'echantillonnage varie selon l'application ou un parametre du signal, tels le debit des
symboles ou l'espacement entre. C'est un probleme qui surgit frequemment pour les
plates-formes radio logicielle pour lesquelles le taux d'echantillonnage est determine
par des contraintes materielles. Bien qu'on ait developpe des algorithmes de
reechantillonnage dans le commerce et qu'on les ait mis en application dans des
bibliotheques de logiciels, comme la Intel Signal Processing Library, ces algorithmes
sont souvent ä la merci de limitations indesirables. Une contrainte frequente est
l'obligation que les blocs de donnees soient un multiple entier du taux de
sous-echantillonnage. Une teile restriction facilite l'indexation du code et reduit la
complexite de la mise en application. Cependant, le programme resultant est alors
moins polyvalent et moins utile, car dans certaines applications, la longueur des blocs
de donnees d'entree ne peut pas etre un multiple entier du taux de
sous-echantillonnage. Pour ces applications, il faut recourir un programme de
reechantillonnage qui n'impose aucune restriction quant ä la longueur des blocs de
donnees d'entree. La fonction integree de MATLAB UPFIRDN.dll (ou
RESAMPLE.m) a ete ecrite pour ne reechantillonner qu'un seul bloc d'entree de
donnee. Elle ne fournit aucune information sur les variables d'etat des filtres et, par
consequent, eile ne peut servir ä reechantillonner un tres grand fichier de donnees.

Le present rapport decrit un algorithme de reechantillonnage suffisamment general qui
pourra etre utile dans de nombreuses applications pratiques de traitement des signaux.
Pour obtenir la souplesse souhaitee, nous avons applique la structure de filtre FIR
variable de teile maniere qu'elle controle les variables d'etat et permet des blocs
d'entree de longueur quelconque. En plus de cette souplesse, l'application logicielle de
cet algorithme atteint un debit de traitement relativement eleve.

DREOTM 2001-032

Executive summary

The resampling of a signal involves the conversion from the initial sampling rate to a
new and different one. This is necessary in many practical applications because the
sampling rate is often fixed while the desired sampling rate may depend on the
application or a signal parameter, such as the symbol rate or channel spacing. It is a
particular issue in digital filter bank receivers used to detect the presence of narrowband
signals occupying channels over a range of frequencies. To minimize computational
cost, filter bank receivers often use frequency domain techniques based on the Fast
Fourier Transform (FFT) algorithm. Since it is usually desirable to select FFTs to have
a length that is a power of two, the channelization frequencies may not align with the
channel spacings used in a certain frequency bands. The situation is complicated
further by the introduction of new channel spacing standards, e.g., 8.33 kHz. An
example of this problem occurs with the Agilent Blackbird signal analysis system. For
the standard sampling rate of 20.48 megasamples/s, FFT bin sizes are constrained to the
set... 1.25 kHz, 2.5 kHz, 5 kHz, 10 kHz,... with the result that a channelization such as
8.33 kHz cannot be accommodated directly.

Although resampling algorithms have been developed and implemented in commercial
software libraries, such as the Intel Signal Processing Library [2], these algorithms
often have undesirable limitations. For example, a typical constraint is that the data
blocks processed must be an integer multiple of the downsampling rate. This restriction
simplifies the indexing in the code and reduces the complexity of the implementation.
However, it decreases the flexibility and usefulness of the resulting program, since in
some applications, the length of the input data blocks may not be an integer multiple of
the downsampling rate. Another implementation of a resampling algorithm, the
MATLAB built-in function UPFIRDN.dll (or RESAMPLE.m) is designed for
resampling only single blocks of input data. It does not provide information on the state
variables of the filters and, therefore, cannot be used to resample a very large data file.
Consequently, there is a need for a resampling program that imposes no restriction on
the length of the input data blocks. To obtain a more flexible resampling program we
have implemented the periodically time varying FIR filter structure in such a way that it
keeps track of the state variables and also makes provisions for input blocks of arbitrary
length. The implementation is carried out in MEX in the MATLAB environment with
the core of the program written in C. In addition to utilizing the very efficient
periodically time-varying FIR filter structure, an attempt is made to minimize data
movement in the implementation. It turns out that the implementation is not only very
flexible but also works approximately twice as fast as the Matlab built-in function
UPFIRDN.dll for non-trivial resampling ratios (that is, L > 1 and M > 1, with L
denoting the upsampling factor and M denoting the downsampling factor).

The new algorithm is particularly useful in digital receiver systems where a continuous
stream of signal data must be processed, for example, in the recovery of message
content from a signal of arbitrary duration.

DREOTM 2001-032

Sichun Wang, Brian Kozminchuk. 2001. DIGITAL SAMPLING RATE CONVERSION:
PRINCIPLES AND IMPLEMENTATION. DREO TM 2001-032. Defence Research
Establishment Ottawa.

IV DREO TM 2001-032

Sommaire

Le reechantillonnage d'un signal implique la conversion du taux d'echantillonnage
initial ä un taux different. C'est souvent une necessite dans les applications pratiques
dont le taux d'echantillonnage est fixe, alors qu'il faudrait que ce taux
d'echantillonnage varie selon l'application ou un parametre du signal, tel le debit des
symboles ou l'espacement entre. C'est un probleme bien precis dans les recepteurs ä
banque de filtres numeriques que Ton utilise pour detecter la presence de signaux ä
largeur de bände etroite qui occupent des dans une plage de frequences. Pour reduire au
minimum le coüt des calculs. les recepteurs ä banque de filtres font souvent appel des
techniques du domaine de la frequence fondees sur l'algorithme de la transformee
rapide de Fourier (TRF). Comme il est generalement souhaitable de selectionner des
TRF pour avoir une longueur qui soit une puissance de 2, la resoloution en frequence
de decoupage peut ne pas correspondre avec l'espacement tel des voies de certaines
bandes de frequences. La situation se complique du fait de l'introduction de nouvelles
normes d'ecartement de voies, tel 8,33 kHz. Un exemple de ce probleme se retrouve
dans le systeme d'analyse de signaux de Agilent Blackbird. Pour les taux
d'echantillonnage standard de 20.48 megaechantillons/s, les longueurs des intervalles
de la TRF sont restreintes ä 1.25 kHz, 2.5 kHz, 5 kHz, 10 kHz, de sorte qu'un
decoupage de voies comme 8.33 kHz ne peut etre decrit directement.

Bien qu'on ait developpe des algorithmes de reechantillonnage dans le commerce et
qu'on les ait mis en application dans des bibliotheques de logiciels, comme la Intel
Signal Processing Library, ces algorithmes sont souvent ä la merci de limitations
indesirables. Une contrainte frequente est 1'obligation que les blocs de donnees soit un
multiple entier du taux de sous-echantillonnage. Une teile restriction facilite
l'indexation du code et reduit la complexite de la mise en application. Cependant, le
programme resultant est alors moins polyvalent et moins utile, car dans certaines
applications, la longueur des blocs de donnees d'entree ne peut pas etre un multiple
entier du taux de sous-echantillonnage. La fonction integree de MATLAB
UPFIRDN.dll (ou RESAMPLE.m) a ete ecrite pour ne reechantillonner qu'un seul bloc
d'entree de donnee. Elle ne fournit aucune information sur les variables d'etat des
filtres et, par consequent, eile ne peut servir reechantillonner un tres grand fichier de
donnees. Un programme de reechantillonnage qui n' impose aucune restriction quant la
longueur des blocs d'entree est done justifie. Pour realiser tel programme plus
polyvalent, nous avons applique une structure de filtre FIR temporelle ä variation
periodique qui controle les variables d'etat et permet des blocs d'entree de longueur
variable. La mise en application est realised en MEX dans un environnement
MATLAB, le noyau du programme etant redige en C. En plus d'exploiter la structure
de filtre FIR temporelle ä variation periodique tres performante, nous avons tente de
reduire au minimum le mouvement des donnees dans cette mise en application. Cette
mise en application s'est revelee moins souple que prevu, mais quand meme deux fois
plus rapide que la fonction integree MatLab UPFIRDN.dll pour des rapports de
reechantillonnage non triviaux (soit L > 1 et M > 1 o L est le facteur de
sur-echantillonnage et M, le facteur de sous-echantillonnage).

DREOTM 2001-032

Ce nouvel algorithme est particulierement utile pour les recepteurs numeriques dans
lesquels le flot continu de donnees numerique doit etre traite, par exemple, lors de la
recuperation du contenu d'un message dans un signal de duree quelconque.

Sichun Wang, Brian Kozminchuk. 2001. DIGITAL SAMPLING RATE CONVERSION:
PRINCIPLES AND IMPLEMENTATION. DREO TM 2001-032. Centre de recherches pour
la defense, Ottawa.

VI DREO TM 2001-032

Table of contents

Abstract u

Resume 1U

Executive summary v

Sommaire vu

Table of contents 1X

List of figures x

1. INTRODUCTION 1

2. BASIC CONCEPTS OF DIGITAL SAMPLING RATE CONVERSION 2

2.1 Downsampling by an Integer Factor of M 2

2.2 Upsampling by an Integer Factor of L 5

2.3 Resampling by a Rational Factor of ^ 7

2.4 The Periodically Time-varying FIR Filter Structure for Implementing Dig-
ital Sampling Rate Conversion 8

3. IMPLEMENTATION OF THE PERIODICALLY TIME-VARYING FIR
FILTER STRUCTURE IN MEX 13

4. USAGE OF THE FUNCTIONS UPDNM6.m AND RESAM6.m 17

4.1 Usage of UPDNM6.m 19

4.2 Usage of RESAM6.m 20

5. PERFORMANCE COMPARISON 21

6. CONCLUDING REMARKS 21

References 45

DREOTM 2001-032 VM

List of figures

1 Downsampler by a factor of M and prototype lowpass filter. 4

2 Spectrum of w(n) with L - 1 zeroes inserted between samples 6

3 Upsampler by factor of L followed by lowpass filter to remove harmonics 6

4 The process of resampling a signal by a factor of L/M by upsampling, filtering,
and downsampling 7

5 The process of resampling a signal with a single prototype lowpass filter. 8

6 Array of subfilters 14

7 The three steps of processing in the program 16

8 Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling
factor L = 5, downsampling factor M = 1, and filter length = 20 22

9 Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling
factor L = 5, downsampling factor M = 1, and filter length = 40 23

10 Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling
factor L = 25, downsampling factor M = 1, and filter length =160 24

11 Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling
factor L = 25, downsampling factor M = 1, and filter length = 125 25

12 Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling
factor!, = 25, downsampling factor M = 1, and filter length = 250 26

13 Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling
factor L = 25, downsampling factor M = 1, and filter length = 1000 27

14 Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling
factor L = 1, downsampling factor M = 5, and filter length = 20 28

15 Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling
factor L = 1, downsampling factor M = 5, and filter length = 100 29

16 Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling
factor L=l, downsampling factor M = 5, and filter length = 500 30

17 Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling
factor L = 1, downsampling factor M = 25, and filter length = 200 31

VIII DREOTM 2001-032

18 Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling
factor L = l, downsampling factor M = 25, and filter length = 600 32

19 Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling
factor L = 1, downsampling factor M = 25, and filter length = 1000 33

20 Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling
factor L - 5, downsampling factor M = 4, and filter length = 50 34

21 Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling
factor L = 5, downsampling factor M = 4, and filter length = 100. . 35

22 Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling
factor L — 5, downsampling factor M = 4, and filter length = 200 36

23 Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling
factor L = 25, downsampling factor M = 24, and filter length = 125 37

24 Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling
factor L = 25, downsampling factor M = 24, and filter length = 500 38

25 Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling
factor L = 25, downsampling factor M - 24, and filter length = 1500 39

26 Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling
factor L - 25, downsampling factor M = 24, and filter length = 3000 40

27 Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling
factor L = 24, downsampling factor M — 25, and filter length = 192 41

28 Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling
factor L = 24, downsampling factor M = 25, and filter length = 480 42

29 Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling
factor L = 24, downsampling factor M = 25, and filter length = 960 43

30 Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling
factor L = 24, downsampling factor M = 25, and filter length = 2400 44

DREOTM 2001-032 IX

This page intentionally left blank.

DREOTM 2001-032

1. INTRODUCTION

The resampling of a signal involves the conversion from the initial sampling rate to a
new and different one. This is often necessary in practical applications because the
sampling rate is often fixed while the desired sampling rate may depend on the
application or a signal parameter, such as the symbol rate or channel spacing. It is a
particular issue in digital filter bank receivers used to detect the presence of narrowband
signals occupying channels over a range of frequencies. To minimize computational
cost, filter bank receivers often use frequency domain techniques based on the Fast
Fourier Transform (FFT) algorithm. Since it is usually desirable to select FFTs to have
a length that is a power of two, the channelization frequencies may not align with the
channel spacings used in a certain frequency bands. The situation is complicated
further by the introduction of new channel spacing standards, e.g., 8.33 kHz. An
example of this problem occurs with the Agilent Blackbird signal analysis system. For
the standard sampling rate of 20.48 megasamples/s, FFT bin sizes are constrained to the
set... 1.25 kHz, 2.5 kHz, 5 kHz, 10 kHz,... with the result that a channelization such as
8.33 kHz cannot be accommodated directly.

Although resampling algorithms have been developed and implemented in commercial
software libraries, such as the Intel Signal Processing Library [2], these algorithms
often have undesirable limitations. For example, a typical constraint is that the data
blocks processed must be an integer multiple of the downsampling rate. This restriction
simplifies the indexing in the code and reduces the complexity of the implementation.
However, it decreases the flexibility and usefulness of the resulting program, since in
some applications, the length of the input data blocks may not be an integer multiple of
the downsampling rate. Another implementation of a resampling algorithm, the
MATLAB built-in function UPFIRDN.dll (or RESAMPLE.m) is designed for
resampling only single blocks of input data. It does not provide information on the state
variables of the filters and, therefore, cannot be used to resample a very large data file.
Consequently, there is a need for a resampling program that imposes no restriction on
the length of the input data blocks.

To obtain a more flexible resampling program than the ones currently available, we
have implemented the periodically time varying FIR filter structure in such a way that it
keeps track of the state variables and also makes provisions for input blocks of arbitrary
length. The implementation is carried out in MEX in the MATLAB environment with
the core of the program written in C. In addition to utilizing the very efficient
periodically time-varying FIR filter structure, an attempt is made to minimize data
movement in the implementation. It turns out that the implementation is not only very
flexible but also works approximately twice as fast as the Matlab built-in function
UPFIRDN.dll for non-trivial resampling ratios (that is, L > 1 and M > 1, with L
denoting the upsampling factor and M denoting the downsampling factor).

This report is organized as follows. Section 2 summarizes the theoretical basis of
digital sampling rate conversion and derives the periodically time-varying FIR filter

DREOTM 2001-032

structure. Section 3 discusses the special implementation of the periodically
time-varying FIR filter structure in MEX (named UPDNC6.c). Section 4 demonstrates
the usage of two MATLAB functions UPDNM6.m and RESAM6.m based on
UPDNC6.dll. Section 5 presents a comparison of the performance of our
implementation UPDNC6.dll with that of the MATLAB implementation UPFIRDn.dll.
Finally, section 6 presents some concluding remarks.

2. BASIC CONCEPTS OF DIGITAL SAMPLING RATE
CONVERSION

Let L > 0 and M > 0 be two arbitrary positive integers which are relatively prime, that
is, the greatest common divisor of L and M is 1. A baseband digital signal x(n), with
sampling rate Fo, can be upsampled by a factor of L and then downsampled by a factor
of M to obtain another digital signal y(m) with sampling rate Fi = F0 (^). In theory,
upsampling (also called interpolation) and downsampling (also called decimation) are
two separate processes and upsampling must precede downsampling in order to
preserve the spectrum of the signal. In practice, the upsampling and downsampling
processes are combined as one and can be implemented efficiently via the periodically
time-varying FIR filter structure as discussed in the classical survey paper [1]. In this
section, the main concepts of digital sampling rate conversion are discussed and the
periodically time-varying FIR filter structure is derived.

2.1 Downsampling by an Integer Factor of M.

Let x(n) be a baseband digital signal with sampling rate Fo. The sampling rate of x{n)
can be decreased by a factor of M by retaining only one sample in every M samples in
x(n). Specifically, if the sequence y(m) is defined by y(m) = x(mM), we say that
y(m) is obtained by downsampling x(n) by a factor of M (or by decimating x(n) by a
factor M). Direct decimation of the signal x(n) without first passing it through an
appropriately designed low-pass filter will in general lead to aliasing in the resultant
signal y(m). To demonstrate this, one can calculate the z transform of y(m). Let the
sequence x'(n) be defined by

„. it __ \ x(n), n is an integer multiple of M,
X ^n' ~ 1 0, otherwise

It can be verified that

An)=x(n){±Y,ei™n/M) (2)
I 1VI

1=0
M^" J

and

(3) y(m) = x'(mM)

DREOTM 2001-032

Hence, Y(z), the z transform of y(m), can be calculated as follows:
oo

Y(Z)= E y(m)z~m

m=—oo
oo
y^ x'(mM)z

n=—oo
oo

- E *'(
n=-oo

oo I -. m — i 1

= E ^) iEeiWm/Mh"m/M
m=-oo I (=0 J

M-i r oo
= _ J2 E z(m)e^m/Mz-m/M

1=0 L"i=-oo
, M-l

= J_ £ X{e-^l'Mzl>M)

m=—oo
oo

(m)z-m/M

m=—oo
oo (., M-l

(4)
1V1

1=0

where X(z) is the z transform of x(n). Evaluating Y(z) on the unit circle, z = eja\

w € [-7T, 7r], yields the Fourier transform of y(m), i.e.,

M-l

(5) y(e*") = jj^ E X(e>lu-WM)
1=0

^From Eq. 5 it can be seen that in general y(m) is an aliased version of the original

signal x(n).

To avoid aliasing in y(m), it is necessary to first low-pass filter x(n) and then perform
decimation. In fact, let hd{n) be the impulse response of a low-pass FIR filter(called
the prototype downsampling filter) and Hd(z) be its z transform. Let the signal w{n) be
the output of the filter Hd(z) with input x(n) and let y(m) be the signal obtained by
decimating w(n) by a factor of M (that is, y(m) = w(Mm)). Let X(z), W(z) and
Y(z) be the z transforms of x(n), tu(n) and y(m) respectively. It follows that

(6) W(z) = Hd(z)X(z)

and (see Eq. 4, with W{z) replacing X(z))

M-l

Y(z) = — E W{e-*M'Mz1/M) (7)

Hence

M
(=0

(8)

DREOTM 2001 -032

. M — I

1=0
, M-l

= _L J2 Hd{e-^l'MzllM)X{e-^llMzllM)
M

1=0

x(n) Low Pass
Filter
Hd(z)

w(m) Decimator y(m) = w(mM)
 ►

-t -t/M 0 n/M

Figure 1: Downsampler by a factor of M and prototype lowpass filter.

Evaluating Y(z) on the unit circle z = eiu, w € [-IT, ir], yields the result

1 M-l

y(e^) = 77 53 -ffd(ej(w-2,r/)/M)A:(eJ'(u'-2'r')/M)

(9) = -^ [/Jd(e^/M)Z(^/M) + Hd(e><r-**VM)X(e'lu-2"VM) + ■■■

If the prototype downsampling filter H,t(z) is designed in such a way that

(io) WW J' t1?,^'
then the terms with I ^ 0 in Eq. 9 are removed and y(eJ'"') becomes

(11) y(e*") S 1-X(e?"/M)

Hence by passing x(n) through an appropriately designed FIR prototype downsampling
filter Hd(z) and then performing decimation, aliasing in y(m) is eliminated. The
process of downsampling a digital signal by a factor of M is illustrated in Fig. 1.

The time domain relationship among x(n),y(m), hd(k) is

oo

(12) y(m) = w(mM) = 53 hd{k)x(mM - k)
k=—oo

DREOTM 2001-032

2.2 Upsampling by an Integer Factor of L.

Upsampling is the dual operation of downsampling. Suppose it is desired to increase
the sampling rate of x(n) by an integer factor of L. This can be accomplished by
inserting L - 1 zeros between each pair of samples in x(n) and then low-pass filtering
the resultant sequence. In fact, let the digital signal u;(n) be defined by

/ % f X(T), n is an integer multiple of L,
(13) W^ = \ 0, otherwise

The signal w(n) is obtained by inserting L - 1 zeros between each pair of samples of
x(n). Its z transform W(z) is given by

00

W(z)= J2 w(n)z~"
n=—oo

oo

= Yl *(n)z-nl

n=—oo

(14) = X{zL)

where X(z) is the z transform of x(n). Evaluating W(z) on the unit circle , z = eju,
u e [-7T, 7r], gives the Fourier transform of w(n)

(15) W(e>u) = X(ej"L)

Clearly, the spectrum of w(n) preserves that of the original signal x(n) on the interval
[0, j] but also contains harmonic images of the spectrum of x(n) on the intervals
[^ 3 7r])..., [ikzD.ni „-], which must be removed. This is illustrated in Figure 2 for the
case L = 4.

To eliminate the unwanted harmonic images of the spectrum of x{n), it is necessary to
filter the signal w(n) with a low-pass filter Hu(z) (called the prototype upsampling
filter) which approximates the ideal frequency response

(1Ö) fl"(e ^ _ \ 0, I < \u\ < 7T

where G = i is a necessary scaling factor (see Eq. 33 [1]). The process of upsampling
a digital signal x{n) by a factor of L is illustrated in Fig. 3.

The time domain relationship among x(n), y(m), hu(k), where hu{k) is the impulse
response of the prototype upsampling filter Hu(z), is given by

oo

y(m) = X/ hu(m - k)w(k)
k=—oo

— Y^ hu(m - k)x(k/L)

£ is an integer
oo

(17) = 5Z hu{m - kL)x{k)
k=—oo

DREOTM 2001 -032

X(Ja)

W(J°)

-% -3JI/4 -nil -rc/4 0 n/4 nil 3JC/4 jr

Figure 2: Spectrum ofw(n) with L — 1 zeroes inserted between samples.

x(n)

Interpolator
w(m) Low Pass

Filter
Hu<z)

y(m)

H^)

•7i -ic/L 0 JC/L

Figure 3: Upsampler by factor of L followed by lowpass filter to remove harmonics.

DREOTM 2001-032

2.3 Resampling by a Rational Factor of -fa.

Changing the sampling rate of a digital signal by an arbitrary rational factor of JJ,

where L and M are relatively prime positive integers, is accomplished by first
increasing the sampling rate by a factor of L and then decreasing the sampling rate of
the resultant signal by a factor of M. As demonstrated in the preceding two
subsections, for the upsampling stage, the prototype upsampling filter Hu{z) should
approximate the frequency response characteristic

(18)
_ f L, M < I,

H^Z> " \ 0, I < M < 7T

and for the downsampling stage, the prototype downsampling filter Hd{z) should
approximate the frequency response characteristic

(19) Hd(z]
- \ 0, § < M < 7T

The complete resampling process is carried out by first inserting L - 1 zeros between
each pair of samples of the input signal x(n), low-pass filtering the resultant signal by
the filter Hu(z), then low-pass filtering the output signal of Hu(z) by the filter Hd(z)
and finally decimating the output signal of Hd(z) by a factor of M. This is
demonstrated in Fig. 4. This process can be further simplified by replacing the cascade
of the prototype filters Hu{z) and Hd(z) by one low-pass filter H(z) - Hu{z)Hd{z),
which has the frequency response characteristic

(20) H(z) = Hu(z)Hd(z) <*
max(M,L)'

< M < IT

The low-pass filter H[z) is called the prototype resampling filter. Conceptually,
resampling is now reduced to three steps: first padding L - 1 zeros between each pair
of samples of the input signal x(n), then low-pass filtering the resultant signal by the
resampling filter H(z), and finally decimating the output signal of H(z) by a factor M.
This is demonstrated in Fig. 5.

x(n)
Interpolator

w(m) Low Pass
Filter
Hu(z)

Low Pass
Filter
Hd(z)

v(m)
Decimator

y(m) = v(mM)
 ►

Figure 4: The process of resampling a signal by a factor of L/M by upsampling, filtering, and downsampling.

Let h{k) be the impulse response of the prototype resampling filter H(z) defined by
Eq. 20. The time domain relationship among x(n), h(k) and y(m) is

(21) y{m) — v(mM)

DREOTM 2001 -032

x(n) U
Interpolator

w(m) Low Pass
Filter
H(z)

Decimator y(m) = v(mM)
 ►

-ji -n/max(L,M) 0 7t/max(L.M) jt

Figure 5: The process of resampling a signal with a single prototype lowpass filter.

where v(n) is the output of the filter H(z) and
oo

(22) v(m)= J2 h(m-kL)x(k)
k——oo

Therefore
oo

(23) y(m) =]T h{mM - kL)x(k)
k=-oo

Equation 23 is the mathematical basis for implementing digital sampling rate
conversion.

2.4 The Periodically Time-varying FIR Filter Structure for
Implementing Digital Sampling Rate Conversion.

Equation 23 can be put in a form more amenable to hardware or software
implementation. Making the change of variables

(24) k = floor (——-) — n

where floor (2^) denotes the largest integer less than or equal to the rational number
m^-, one can write

mM - kL = mM - floor n)L

nL + mM - (floor
mM

(25) = nL + mM © L

DREOTM 2001-032

where mM © L = mM - (floor (^)) L denotes the remainder of mM after being
divided by L (value of mM modulo L). Substituting Eqs. 24 and 25 in 23, we obtain

(26) y{m) = ^ /i(nL + mM © L)x f floor f ^- j - n J
n=-oo

This is the actual resampling equation that is implemented in hardware or software.

In the practical implementation of Eq. 26, the prototype resampling filter h(k) is
assumed to be a linear phase FIR filter with length LQ , where Q > 1 is a positive
integer. That is, the length of h(k) is constrained to be an integer multiple of the
upsampling rate L. Under this constraint, the algorithm Eq. 26 leads naturally to the
periodically time-varying FIR filter structure for sampling rate conversion.

Some new notation will now be introduced. The prototype resampling filter h(k),
where 0 < k < LQ - 1, can be partitioned into L polyphase filters hm(ri)
(0 < m < L - 1), each of length Q, i.e.,

(27) hm(n) = h(nL + m), 0<n<Q - 1

In other words, hm(n) is obtained by decimating the sequence h(k) by a factor of L.
To visualize the relationship between the prototype filter h(k) (with length N = LQ)
and the polyphase filters hm(n) (each with length Q), the Q x L matrix H is
constructed, i.e.,

H =

/ Mo)
h(L)

h{nL)

Ml)
h(L +1)

h(nL + 1)

M2)
h(L + 2)

h(nL + 2)

V h((Q - 1)L) h{{Q - l)L + 1) h((Q - l)L + 2)

(28)

h{L - 1)
h(2L-l)

h{{n + l)L-l)

h(QL - 1)

H has L columns, the first column consisting of the taps of the polyphase filter h0(n),
the second column consisting of the taps of the polyphase filter hi(n) and so on. On the
other hand, the filter taps h(k) can be recovered from H by concatenating the row
vectors of H from the first to the last row. Define two integer sequences p(m) and q(m)
by setting

(29)
, x „ (mM\

p(m) = mM © L, q{m) = floor I —— 1

It can be verified that p(m) is a periodic sequence with period L and q(m) has the
simple property that q(m + kL) = kM + q{m), i.e.,

(30) p{m + kL) = p(m) = p(m © L), q{m + kL) = kM + q{m),

DREOTM 2001-032

n

Using this new notation, Eq. 26 can be rewritten as

y(m) = XI h(nL + mM ® L)x (floor (~j~)

= Yl hp(m)(n)x{q(m) - n)

Q-i
(31) = Y2 hp(m®L)(n)x(q(m) - n)

n=0

Let

(32) gm(n) = hp{m(BL)(n), 1 <m < L , 0 <n < Q - I

It follows from Eqs. 31 and 32 that

O-i
(33) y(kL + m) = ^2 9m(n)x(kM + q(m) - n)

71=0

where 1 < m < L and k > 0. The equation (33) can be interpreted as representing a
periodically time-varying FIR filter. To illustrate this, write out Eq. 33 for 1 < m < L,
k = 0,1, as follows:

y(l) = 5i(0)a;(g(l))+Si(l)x(5(l)-l) + -"+fl1(Q-l)x(g(l)-(Q-l))

y(2) = 92(0)x(q(2)) + g2(l)x(q(2) - I) + ■ ■ ■ + g2(Q - l)x(q(2) - (Q - 1))

y{m) - 9m(0)x(q(m)) + gm{l)x{q{m) -!) + •••+ gm(Q - l)x(q(m) - (Q - 1))

y(L) = 9L(0)x(q(L))+gL(l)x(q(L)-l) + ...+gL(Q-l)x(q(L)-(Q-l))

- gL(0)x(M) + gL(l)x(M - 1) + • • • + gL{Q - l)x(M - {Q - 1))

y(L + l) = gi(0)x(M + q(l)) + -.-+gi(Q-l)x(M + q(l)-(Q-l))

y(L + 2) = g2(0)x(M + q(2)) + ■ ■ ■ + g2(Q - l)x(M + q(2) - (Q - 1))

y(L + m) = 9m{0)x(M + q(m)) + ■ ■ ■ + gm(Q - l)x(M + q(m) - (Q - 1))

y(2L) = gL(0)x(2M)+gL(l)x(2M-l) + .--+gL{Q-l)x(2M-(Q-l))
(34)

The first equation in 34 shows that j/(l) is obtained as a weighted sum of Q sequential
samples of x(n) starting at the sample x(q(l)) and going backwards in n sequentially.
The weighting coefficients are the taps of the polyphase filter gi(n), 0 < n < Q - 1.
Similarly, y(2) is obtained as a weighted sum of Q sequential samples of x(n) starting

10 DREOTM 2001 -032

at the sample x(q(2)) and going backwards in n sequentially. The weighting
coefficients are the taps of a different polyphase filter, namely g2{n). This pattern
continues until the sample y(L), with y(L) computed as a weighted sum of Q
sequential samples of x(n) starting at the sample x{q{L)) = x(M) and going
backwards in n sequentially. The weighting coefficients in the computation of y(L) are
the taps of the polyphase filter 51, (n). It is clear that different sets of filter coefficients
(namely, gm(n)) are used in the computation of the samples y(m), m = 1,2, • • •, L .
Now let us look at the computational procedure for the next L samples,
y(L + 1), y(L + 2), • • ■, y{2L). It can be observed from the equations in 34 that
y(L + 1) is computed using the same polyphase filter as y(l) (that is, 51(71)). Also
y(L + 2) is generated using the same polyphase filter as y{2) (that is, 52(71)). etc.
Hence the sample sequence y{m) is the output of a periodically time-varying FIR filter

with period L.

It is also important to understand how the input data samples x(ri) enter into the
computation in Eq. 33. Writing out Eq. 33 for y(m) and y(m + 1), where
1 < m < L - 1, yields

y(m) = gm(0)x(q(m)) + gm(l)x{q(m) - 1) +

(35) • • • + gm{Q - l)x{q{m) - (Q - 1))

and

y{m + 1) = 5(m+i)(0)x(g(m + 1)) + s(ro+i)(l)a:(g(m + 1) - 1) +

(36) • ■ • + g{m+X){Q - l)x(q(m + 1) - (Q - 1))

One can see that y(m) is the weighted sum of Q sequential samples of x(n) starting at
the sample x(q(m)) and going backwards sequentially. The samples from the input
sequence x(n) which are involved in the weighted sum are

(37) S = \x(q(m)), x{q(m) - 1), • • •, x(q{m) - (Q - 2)), x{q(m) - (Q - 1))]

The samples x{q{m)), x{q(m) - 1), • • •,x(q{m) - (Q - 2)), x{q{m) - (Q - 1)) are
called the state variables of the time-varying FIR filter in Eq. 33 and the vector S is
called the state variable buffer corresponding to the output sample y(m). In the
computation of y(m + 1), the state variable buffer has changed to

(38) S = [x(q(m + l)),x(q{m + 1) - 1), ■ • • ,x{q(m + 1) - (Q - 1))]

If q(m + 1) = floor (») > q(m) = floor(^), there are q(m + 1) - q(m)

new samples shifted into and q(m + 1) - q{m) old samples shifted out of the state
variable buffer S. On the other hand, if q{m + 1) = <?(m), then the state variable buffer
S remains unchanged. It should be noted that the sequence q(m) is non-decreasing and
it is q(m) that determines the input samples x(n) entering into the computation of the
output sample y(m). Recall that q(m + kL) = kM + q{m) (see Eq. 30), hence for
l<m<L-l,k>0,

(39) q{m + 1 + kL) - q{m + kL) = kM + q(m + 1) - (kM + q{m))

- q(m + 1) -q{m)

DREOTM 2001 -032 11

Equation 39 implies that the pattern in which the data samples x(n) are shifted into and
out of the state variable buffer S also repeats itself periodically. Let us examine in some
detail how the state variable buffer S is updated for the first L samples
2/(1), 1/(2), • • •, y{L). Denoting the contents of the state variable buffer S
corresponding to the samples 2/(1), y(2), ■■■, y(L) by Si, • ■ •, SL, respectively, we have

Si = [x(q(l)),x(q(l)-l),...,x(q(l)-(Q-l))}

52 = [x(q(2)),x(q(2)-l),...,x(q(2)-(Q-l))}

53 = [x(q(3)),x(q(3)-l),-..,x(q(3)-(Q-l))}

SL = [x(q(L)),x(q(L)-l),...,x(q(L)-(Q-l))}

= [x(M),x(M-l),..-,x(M-(Q-l))\

(40)

There are three cases to be considered: (1) q(l) > Q, (2) 1 < q(l) < Q, and (3)
q(l) < 1. It is assumed that 1 < q(l) < Q, i.e., 1 < M/L < Q. The other two cases
are different but very similar. The input samples
x(M),x(M - l),x(M - 2), • • • ,x(2),x(l),x(0),x(-l), • • • ,x(9(l) - (Q - 1)) are
involved in the computation of the first L output samples 2/(1), y(2), • • •, y{L). If it is
assumed that the input samples x(n) start at the sample x(l), then the samples
x(0), ■ • •, x(q(l) - (Q - 1)) in the first state variable buffer Si are not available and
have to assume certain given values (usually zeros). Thus to compute 2/(1), the state
variable buffer S is first initialized to be an all-zero vector and then q(l) samples
x(q(l),x(q(l) - 1), x(l) are shifted into it. The samples in the buffer S are then
weighted with the coefficients of the polyphase filter ffi(n). The most recent sample in
the state variable buffer is x(q(l)). To compute y{2), q(2) - q(l) new samples from
x(n) are shifted into S and q(2) - q(l) old samples are shifted out of S. The samples
in the updated buffer are weighted with the coefficients of the polyphase filter g2(n).
The most recent sample in the state variable buffer has become x(q(2)). In general, to
compute y{m), 3 < m < L - 1, q{m) - q(m - 1) new samples are shifted into the
buffer S and q(m) - q(m - 1) old samples are shifted out of the buffer S. The samples
in the buffer are weighted with the coefficients of the polyphase filter gm(n). To
compute the last sample y(L) in the first block of L output samples,
q(L) - q(L - 1) = M - q(L - 1) samples are shifted into and out of the buffer S and
the samples in the state variable büffer are weighted with the coefficients of the
polyphase filter gL{n). The most recent sample in the buffer has become x(M). Note
that the first M input samples x(M),x(M - 1), • • •, x(l) have passed into the buffer S
during the computation of the first L output samples y(L), y(L - 1), • • •, 2/(1).

The pattern in which the data samples x(n) are shifted into the state variable buffer S
during the computation of the next block of L output samples
y(L + 1), y(L + 2), ■ • •, y(2L) will now be examined. Denoting the contents of the
state variable buffer S corresponding to the samples y(L + 1), y(L + 2), ■ • ■, y(2L) by
SL+I, • ■ •, S2L, respectively , we have

SL+1 = [x(M + q(l)),x(M + q(l)-l),...,x(M + q(l)-(Q-l))}

12 DREOTM 2001-032

SL+2 = [x(M + q(2)),x(M + q(2)-l),---,x(M + q(2)-(Q-l))}

SL+3 = [x(M + q(3)),x(M + q(3)-l),---,x(M + q(3)-(Q-l))}

S2L = [x(M + q(L)),x(M + q(L)-l),---,x(M + q(L)-(Q-l))}

= [x(2M),x(2M - 1), • • •, z(2M - (Q - 1))]

(41)

After the computation of y(L) and before the computation of y(L + 1), the state
variable buffer S is

SL = [x(q(L)),x(q(L) - 1), • • •, x(q(L) - (Q - 1))]

(42) = \x(M),x(M-l),---,x(M-(Q-l))}

To compute y(L + 1), g(l) new samples are shifted into S and q(l) old samples are
shifted out of S. The samples in the buffer are weighted with the same set of
coefficients as in the computation of y(l), namely, the polyphase filter 51 (n). To
compute y(L + 2), q(2) - q(l) new samples are shifted into S and out of S. The
samples in the buffer are weighted with the same set of coefficients as in the
computation of y(2), namely, the polyphase filter g2(n). It is now apparent that just as
the polyphase filters enter into the computation of the output samples y(m)
periodically, the input data samples x(n) are shifted into the state variable buffer in a
manner that also repeats itself periodically. Thus the computation of the output samples
y(m) can be done most conveniently on a block by block basis. For each block of input
samples of length M, a block of output samples of length L can be computed. This is
illustrated in the diagram of Fig. 6.

IMPLEMENTATION OF THE PERIODICALLY
TIME-VARYING FIR FILTER STRUCTURE IN MEX

Implementation of the periodically time varying FIR filter structure (Eq. 33) in some
software packages, including the Intel Signal Processing Library [2], requires that the
length of each input data block from the sequence x(n) be an integer multiple of the
downsampling factor M. On the one hand, this restriction considerably simplifies the
indexing in the code and reduces the complexity of implementation. On the other hand,
it also, to a certain degree, unnecessarily limits the flexibility and usefulness of the
resulting program, since in certain applications the length of the input data blocks may
not be an integer multiple of the downsampling factor M. For such applications, there
is a need for an implementation of the resampling algorithm (Eq. 33) that imposes no
restriction on the length of the input data blocks. The MATLAB built-in function
UPFIRDN.dll (or RESAMPLE.m) is designed for resampling only one block of input
data. It does not provide information on the state variables and cannot be used to
resample a huge data file. To obtain a more flexible resampling program than the ones
currently available, we have implemented the periodically time varying FIR filter

DREOTM 2001 -032 13

Array of Subfilters

g,(n) gL(n:

, A > A A

iß 8,(0-1) HMIII tß tin gm(Q-D sL(°) *0) gL(Q-D

\ Current Subfilter
to Compute y(m)

Input sample

array of size M
Current state

variable buffers

■
A

m

x(M) x(M-l) x(q(m+l)) x(q(m)) x(q(m)-l) x(q(m)-(Q-l)) x(2) x(l) x(0)

^ Y
;

V Next state variable buffers

Output Sample

Array of Size L
■ Sample being computed

yd) y(L-l) y(L-2) y(m+l) y(m) y(m-l) y(m-2)

Samples to be computed Samples already computed

y(3) y(2) yd)

Figure 6: Array of subfilters.

14 DREOTM 2001-032

structure of Eq. 33 in such a way that it keeps track of the state variables and also
makes provisions for input blocks of arbitrary length. The implementation is carried out
in MEX in the MATLAB environment with the core of the program written in C. In
addition to utilizing the very efficient periodically time-varying FIR filter structure, we
also strive to minimize data movement in our implementation. It turns out that our
implementation is not only very flexible but also works almost twice as fast as the
Matlab built-in function UPFIRDN.dll if the resampling ratio jj is non-trivial (that is,
L > 1 and M > 1).

How the program works will now be explained. It is assumed that the input signal
sequence is fed into the computer memory on a block by block basis. To make the
program general enough, the individual input data blocks are not assumed to have equal
length. Hence each individual input data block can be of any length. Once a data block
is fed into the computer memory, it is resampled and the resampled data is then stored
in the computer memory for further processing or output to a disk for storage. Since the
algorithm in Eq. 33 is much easier to implement for an input data block whose size is
an integer multiple of the downsampling factor M, we divide each input data block into
two segments. The length of the first segment is an integer multiple of M(in some
extreme cases it may be empty) and the second segment consists of less than M
samples (it may also be empty). The samples in the first segment are processed in
blocks of M samples each according to the scheme discussed in the preceding section
(see Fig. 6). The remaining samples at the end of the input data block, which number
less than M, are not processed. They are returned in an array called REMAINDER.
The program will add the samples in the REMAINDER array to the beginning of the
next input data block to form a new elongated array. This new input data block is again
divided into two segments. The length of the first segment is an integer multiple of M
and the second segment consists of less than M samples. Again the first segment is
processed and the second segment is returned in the REMAINDER array.

More specifically, the processing in the program is carried out in three steps which are
depicted in the diagram in Fig. 7. The first step in the program is to append the old
remainder array of length LQ (if it is not empty) to the beginning of the input data array.
This step results in an elongated input data array. It is emphasized that this is
accomplished via pointer manipulation and no data are really moved in the process.
After this is done, the elongated input data array is partitioned into two segments. The
length of the first segment is an integer multiple of M and there are t such blocks each
of size M (t may be zero). The second segment consists of less than M samples {L\
samples). The first segment is processed on a block by block basis as explained earlier
and the results are returned, which make up an output array of length tL consisting of t
blocks each of size L. The second segment is returned as the new remainder array. The
contents of the state variable buffer right after processing the t input blocks of size M
are returned as the new state variable buffer samples.

In the program, there is an interface component (named the MexFunction) that connects
the MATLAB environment with the actual data processing performed in C. A large

DREOTM 2001-032 15

s(Q) s(Q-l) s(2) s(D

ROT) R(L0-1) R(2) R(D

Old State Variable Buffer i

Old Remainder Array

x(n) x(3) x(2) x(l)

h(QL-l) l#) h(2) WD h(0)

Input Sample Array

Prototype Filter H

L = Upsampling Factor

M = Downsampling Factor

Step 1: Append old remainder array R to input array x to produce an elongated array.

Input Parameters for
Algorithm

x(n) x(3) x(2) x(l) RO,) R(L0-1) R(2) R(!) Elongated Array

Input Sample Array Old Remainder Array

Step 2: Partition the elongated array into two segments. The length of the first segment is a
multiple of M, and the length of the second segment is less than M.

M M
I \ 1 \

rO-,) rO-,-1) r(D

Second segment = new remainder array First segment consisting of t blocks of size M

Step 3: Process first segment from Step 2, resulting in an output array of length tL consisting of t
blocks of length L.

L

rft.,) iU.,-1) X2) r(D New remainder array

New state variable buffer >

Output array
consisting oft
blocks of size L

Figure 7: The three steps of processing in the program.

16 DREOTM 2001-032

portion of indexing management is done in this interface component. As pointed out in
the preceding section, for each of the three separate cases, q(l) > Q, or 1 < q(l) < Q
or 9(1) < 1, the manner in which data are shifted into and out of the state variable
buffer is different and the subscripting of the data arrays has to be managed in the
program accordingly. To simplify the indexing and reduce the complexity of the code,
three C functions, RESAMP1, RESAMP2 and RESAMP3, which, respectively,
correspond to the three separate cases, q(l) > Q, or 1 < q(m) < Q, or q(m) < 1, are
written in the program. Since the data processing procedure is exactly the same for both
the real and imaginary parts of the data sample blocks, the input data sample blocks are
separated into the real and imaginary parts and the C functions RESAMP1, RESAMP2
and RESAMP3 are written to accept double precision real data arrays and to return
double precision real data arrays. The C function RESAMP2 is discussed in some
detail here. The other two functions are very similar. The prototype for the function
RESAMP2 is shown below, and the parameters for this function are defined in Table 3.

RESAMP2(double Input[], long InputLen,
double Outputf], long OutputLen,
double State[], int StateLen,
double Filtert], int FilterLen,
double Remainderf], int RemainderLen,
double Newremainder[], int NewremainderLen,
int L, int M);

In the C function RESAMP2, the prototype filter array Filterf] is rearranged to result in
a new filter array named firfilter[], which corresponds to the array of polyphase filters
in the upper row in Fig. 6. Two arrays, named yindxmodL[] and newyindxmodL[]
respectively, are defined to hold the control sequences q(m) and p(m), 1 < m < L.
The program completes the processing of data blocks of size M in the for loops,
returns the remainder samples and updates the state variable samples. The complete
MEX file is named UPDNC6.C After compilation, UPDNC6.dll can be invoked
directly in the MATLAB environment. The usage 0fUPDNC6.dll and two related
MATLAB functions is discussed in the next section. For details of the C functions,
RESAMP1, RESAMP2 and RESAMP3, the reader is referred to the file UPDNC6.C

4. USAGE OF THE FUNCTIONS UPDNM6.m AND
RESAM6.m

Although the program UPDNC6.dll can be used directly in the MATLAB environment,
we have written another two MATLAB functions named UPDNM6.m and RESAM6.m
respectively, which are more convenient to apply in certain situations. The function
UPDNM6.IT1 calls UPDNC6.dll and the function RESAM6.m in turn calls

DREOTM 2001-032 17

Table 1: Parameters for Resampler Program

Parameter Description

Inputf] Input data array

InputLen Input data array length, integer multiple of M

Output[] Output array

OutputLen Output array length, integer multiple of L

Statef] Old state variable buffer from earlier input data block

StateLen State variable buffer length Q =length(Filter[])/L

Filter[] Taps of prototype filter, h(k), 0 < k < LQ - 1

FilterLen Length of prototype resampling filter

Remainderf] Old remainder array

RemainderLen Length of old remainder

Newremainder[] New remainder array

NewremainderLen Length of new remainder array

L Upsampling factor

M Downsampling factor

18 DREOTM 2001-032

UPDNM6.m. Their usage is explained here.

4.1 Usage of UPDNM6.m.

The MATLAB function UPDNM6.m is called with the syntax:

[Y,NEWSTATE,NEWREMAINDER,NEWYINDEX] =

(43) updnm6(X,H,L,M,STATE,REMAINDER,YINDEX)

where the inputs are:

1. X: input signal with arbitrary length, where X can be real or complex;

2. H: prototype resampling filter designed by the user;

3. L: upsampling factor, where L must be a positive integer;

4. M: downsampling factor, M a positive integer; L and M relatively prime;

5. STATE: old state variables, length(STATE)=length(H)/L;

6. REMAINDER: samples left over from the preceding block of input data;

7. YINDEX: length of the resampled data obtained by resampling the input data
before the current input block X;

The outputs are:

1. Y: the resampled data from processing all the data blocks of size M contained in X;

2. NEWSTATE: updated state variables;

3. NEWREMAINDER: samples left over from the current block X;

4. NEWYINDEX: length of the resampled data obtained by resampling input data up
to and including the current block X;

When using UPDNM6.m, it is necessary for the user to supply the prototype
resampling filter H. It should be emphasized that there is one restriction on the length
of H, namely, the length of H must be an integer multiple of the upsampling factor L. If
the user does not want to design the prototype resampling filter H, we have written
another MATLAB function which designs a prototype resampling filter for the user.
This program is named RESAM6.m. Its usage is explained next.

DREOTM 2001 -032 19

4.2 Usage of RESAM6.m.

The MATLAB function UPDNM6.m is called with the syntax

[Y,NEWSTATE,NEWREMAINDER,NEWYINDEX,H]

(44) = resam6(X,L,M, STATE, REMAINDER,YINDEX)

where the inputs are:

1. X: Current input signal with arbitrary length;

2. L: Upsapling rate, L must be a positive integer;

3. M: Downsampling rate, M must be a positive integer; L and M must be relatively
prime;

4. STATE: Old state variables after processing the input data block which precedes
the current input block X;

5. REMAINDER: Input samples left over from the input data block which precedes
the current input block X;

The outputs are:

1. Y: The resampled data from processing all the input data blocks of size M
contained in X;

2. NEWSTATE: updated state variables;

3. NEWREMAINDER: input samples left over from the input block X;

4. NEWYINDEX: length of the resampled data Y.

5. H: FIR filter designed and used in the resampling operation;

The function RESAM6.m does the following:

1. Creates a prototype resampling filter H, where H is designed using the following
MATLAB parameters:

rp = 1 (dB);—passband ripple
rs = 60 (dB);—stopband ripple
Fs = 2 (Hz);—normalized sampling frequency
/ = [l/max(L, M), 1.5/max(L,M)];—normalized cutoff frequencies
a = [1, 0];—desired amplitudes

dev = [i—rj~ ', 10'~2o)]; —deviations from the ideal response
(10(*'+1)

[n, /o, a0, w] = remezord(/, a, dev, Fs); —filter order estimation
n = ceil(n/L) * L — 1; —choosing filter length
H = L * remez(n, /0, ao, w); —design filter with the REMEZ function
H = H(:);

2. Resample the data block X using the filter H by calling the function UPDNM6.m.

20 DREOTM2001-032

5. PERFORMANCE COMPARISON

To obtain an idea of how our function UPDNC6.dll compares with the MATLAB
built-in function UPFIRDN.dll in performance, we tested them for various resampling
ratios JJ and various input block lengths. The personal computer used in the
simulations has a clock rate of 200 MHz. The computer processing time (in seconds) is
plotted as a function of the length of the input block in Figs. 8 to 30. It can be observed
from Fig. 8 to 13 that if the downsampling rate M = 1, our function UPDNC6.dll
outperforms the MATLAB implementation UPFIRDN.dll for shorter filter lengths and
has roughly the same performance as UPDFIRDN.dll for longer filter lengths. If the
upsampling rate L = 1, the MATLAB implementation UPFIRDN.dll outperforms our
implementation UPDNC6.dll for shorter filter lengths but has roughly the same
performance as ours for longer filter lengths. This is demonstrated in Figs. 14 to 19. If
the resampling ratio -^ is non-trivial, that is, if L > 1 and M > 1, then our
implementation UPDNC6.dll outperforms the MATLAB implementation UPFIRDN.dll
by a factor of about 2 for all filter lengths. This is demonstrated in Figs. 20 to 30.

6. CONCLUDING REMARKS

We have successfully implemented in software the periodically time-varying FIR filter
structure in digital sampling rate conversion and obtained a very flexible resampling
function UPDNC6.dll. This program outperforms the MATLAB built-in function
UPFIRDN.dll by a factor of about 2 for non-trivial resampling ratios -jft (that is, L and
M are relatively prime and L > 1 and M > 1).

DREOTM 2001-032 21

0.7

0.6

0.5

® 0.4

8 0.3

0.2

0.1

I I

Upsampling Rate L = 5

Downsampling Rate M = 1

1 i

Prototype Filter Le ngth LQ = 20

UPRRDN.dll (Matlab)

<C-} 1 :
UPDNC6.dll

i i i

5 6 7
Number of Samples

9 10

x104

Figure 8: Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling factor L = 5, downsampling

factor M — 1, and filter length = 20.

22 DREOTM 2001 -032

1.2-

5 0.8 -

8 0.6-

0.4-

0.2-

 1 i 1— i

Upsampling Rale L = 5

Downsampling Rate M = 1 ;

Prototype Filter Length LQ=:40

 1 i

o-o-o-o-o-o-: UPDNC6.dll :

i i i i i i

5 6 7
Number of Samples x10

Figure 9: Comparison ofMATLAB function UPFIRDNand UPDNC6, for upsampling factor L = 5, downsampling

factor M = 1, and filter length = 40.

DREOTM 2001-032 23

1.4

1.2

S0.8

8 0.6

0.4-

0.2-

1 1 1

Upsampling Rate L = 5

i I I

Downsatnpling Rate M = 1

Prototype Filter Length LQ = 160

O-0-O-0-O-O-: UPDNC6.dll

 -

i i i i i i

4 5 6 7
Number of Samples

10

x10

Figure 10: Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling factor L = 25, downsampling

factor M = 1, and filter length = 160.

24 DREOTM 2001 -032

1.6

1.4-

-1.2-

» 1 ■
o I
f0.8h

•0.6-

0.4-

02-

0.5

 1 1 F 1 1 1 I I

Upsampling Rate L=25 : /

Downsampiing Rate M=1 S

Prototype Filter Length LQ = 125 : : : : /

UPFIRDN.dll (Matiab) : /':

\ \ y.j :
*/ ; UPDNCfedll J

1 1.5 2 2.5 3 3.5
Number of Samples

4.5 5

x10*

Figure 11: Comparison ofMATLAB function UPFIRDNand UPDNC6, for upsampling factor L = 25, downsampiing

factor M = 1, and filter length = 125.

DREOTM 2001 -032 25

Upsampling Rate L = 25

DownsamplingRate:M = 1

Prototyp« Filter Length !Q = 250.

Figure 12: Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling factor L = 25, downsampling
factor M = 1, and filter length = 250.

26 DREOTM 2001-032

3.5

2.5-

5 2-

!1.5-

0.5-

 1 1 I

Upsampling Rate L = 25

Downsampling Rate M = 1

i

Prototype Filter Length LQ = 1000

o-o-o-o-o-o-: UPDNC6.dll!

•-•-•-•-•-•-•_; UPFIRDN.dlf(Matlab)

i i i i

0.5 1 1.5 2 2.5 3 3.5
Number of Samples

4.5 5

x104

Figure 13: Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling factor L = 25, downsampling

factor M = 1, and filter length = 1000.

DREOTM 2001 -032 27

0.35

0.3

0.25 -

8 0.2-

3 0.15 -

0.1 -■

0.05 -

1

Upsampling Rate L

..Downsampling.Rat

i

=1

e.M.=5...:

1 1 1

Prototype Filter Le igth IQ = 20

■ UPDNC6.dll : s^

>* y
: UPFIRDN.dll (Matlab)

' I i i i

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Number of Samples x10

Figure 14: Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling factor L = 1, downsampling

factor M = 5, and filter length = 20.

28 DREOTM 2001-032

0.7

0.6-

0.5-

g 0.4 h
"a I
I 0.3 h

0.2-

0.1

 1 1

Upsampling Rate L = 1

i l i i i

Downsatnpling Rats

Prototype Filter Len

M = 5 : /

gthLQ = 100 JS J

UPDNC6.dll ; /^ s*

/ '. \ : UPFIRDN.dll (Matlab)

< i > i i i >

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Number of Samples x jg

5

Figure 15: Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling factor L = 1, downsampling

factor M = 5, and filter length = 100.

DREOTM 2001-032 29

2 2.5 3 3.5
Number of Samples

4.5 5

x105

Figure 16: Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling factor L = 1, downsampling

factor M = 5, and filter length = 500.

30 DREOTM 2001-032

0.7

0.6

0.5

1?

gO A

I
a
I 0.3
a u
o

0.2

0.1

Upsampling Rate L=1

Pqwnsampfing Rate M= 25

Prototype Filter Length LQ= 200

6. 8
Number of Samples x10

Figure 17: Comparison ofMATLAB function UPFIRDNand UPDNC6, for upsampling factor L = 1, downsampling

factor M = 25, and filter length = 200.

DREOTM 2001-032 31

1.6

1.4

1.2

S 0.6 -
0.

0.4-

0.2-

1 1

Upsampling Rate L=1

I

Downsampling Rate M = 25

Prototype Filter Length LQ = 600

UPDNCMI

\ \
UPFIRDN.dll

' ' i i

Number of Samples x10

Figure 18: Comparison ofMATLAB function UPFIRDNand UPDNC6, for upsampling factor L = 1, downsampling

factor M — 25, and filter length = 600.

32 DREOTM 2001-032

2.5

_ 2

i 1.5

0.5

 1 1 " 1 1

Upsampling Rate

DownsamplingRateM=25 : UPFIRDN.ail (Matlab)

1

Prototype Filter length LQ= 1000 \. jp :

! X\ I
- /^ ■ ' ;

; JS \ UPDNC6.dll;

1 1 1 ' - —1 1

Number of Samples x10

Figure 19: Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling factor L = 1, downsampling

factor M = 25, and filter length = 1000.

DREOTM 2001 -032 33

0.9-

0.8-

0.7-

I 0.6 -
©
V)

"ffl
|0.5-
CD
C
(A
(A
g0.4-
o
a.

0.3-

0.2-

1 1 1 1 1 1

Upsampling Rate L = 5

Downsampling Rate M = 4

Prototype Filter Length LQ = 50 : : j/

UPFIRDN.dll (Mattab) ; Jf \

- ; - ■/ #/?■

/ <?r upc

:

NC6.dll

J i i i i i
0.5 1 1.5 2.5

Number of Samples
3.5

x10

Figure 20: Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling factor L = 5, downsampling

factor M = 4, and filter length = 50.

34 DREOTM 2001-032

1.4

1.2--

5 0.8-

8 0.6-

0.4

02-

 1 i

Upsampling Rate L = 5

—i - 1 i

Downsampling Rate M = 4

Prototype: Filter Length LQ = 100

UPF.IRDN.dll
■j/^\------y/^-

- -y /A
UPDNCf •ÖH

' i i t 1

0.5 1.5 2 2.5
Number ol Samples

3.5 4

x105

Figure 21: Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling factor L = 5, downsampling

factor M = 4, and filter length = 100.

DREOTM 2001 -032 35

Figure 22: Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling factor L = 5, downsampling

factor M = 4, and filter length = 200.

36 DREOTM 2001-032

1.8

1.6

1.4

S1.2

8 0.8
S
a.

0.6

0.4

0.2

UpsamplingRate;L = 25 ;

Downsampling Rate M = 24

Prototype" Filter length LQ = 125

4 5 6
Number of Samples x10

Figure 23: Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling factor L = 25, downsampling

factor M = 24, and filter length =125.

DREOTM 2001 -032 37

4 5 6 7
Number of Samples

Figure 24: Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling factor L = 25, downsampling

factor M = 24, and filter length = 500.

38 DREOTM 2001-032

_4-

l3h

 1 1— 111,11

UpsamplingRate:L = 25 . .

Downsampling Rate M = 24

Prototype Filler Length LQ= 1500 : . : : J*

UPFIRDN.dll (Matlab) : X s

: / y^ : UPDNC6.dll :

i i .1 1 i i i

4 5 6 7
Number ot Samples

10

x10

Figure 25: Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling factor L = 25, downsampling

factor M - 24, and filter length = 1500.

DREOTM 2001-032 39

4 5 6 7
Number of Samples

Figure 26: Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling factor L = 25, downsampling

factor M = 24, and filter length = 3000.

40 DREOTM 2001-032

4 5 6 7
Number of Samples x10

Figure 27: Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling factor L = 24, downsampling

factor M = 25, and filter length =192.

DREOTM 2001 -032 41

3.5

2.5-

5 2 -

M.5-

0.5-

1 1 1 I

Upsampling Rate L = 24

_DownsamplingRate:M.= 25. .:

1 1 J

Prototype Filter Length LQ = 480

UPFIRDN:dll (MaBabj

. \^y

yO^%
'^~^ ■ UPDNC

i i i i

6.dii

I I

4 5 6 7
Number of Samples x10

Figure 28: Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling factor L = 24, downsampling

factor M = 25, and filter length = 480.

42 DREOTM 2001-032

3 4 5 6 7
Number of Samples

9 10

x105

Figure 29: Comparison ofMATLAB function UPFIRDN and UPDNC6, for upsampling factor L = 24, downsampling

factor M - 25, and filter length = 960.

DREOTM 2001-032 43

5-

.4-

(till

Upsampling Rate 1 = 24

1

Downsampling Rale M = 25

Prototype Filter Length LQ = 2400

UPFIRDN.dll (Matlab) /

 : V. X yX

 /C^x y/* \
/ ST UPDNC6.dll

 i i i i i i

2-

1 -

5 6 7
Number of Samples x10

Figure 30: Comparison of MATLAB function UPFIRDN and UPDNC6, for upsampling factor L = 24, downsampling

factor M = 25, and filter length = 2400.

44 DREOTM 2001-032

References

1. Crochiere, R. E., Rabiner, L. R., "Interpolation and Decimation of Digital Signals:
A Tutorial Review," Proceedings of IEEE, vol. 69, No. 3, March 1981, pp.300-331.

2. Intel Signal Processing Library, version 4.2, Intel Corporation, 2000.

3. Vaidyanathan, P. P., "Multirate Systems and Filter Banks," Prentice Hall Signal
Processing Series, Prentice-Hall Inc., 1993.

DREOTM 2001-032 45

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM

(highest classification of Title, Abstract, Keywords)

DOCUMENT CONTROL DATA
(Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified)

1. ORIGINATOR (the name and address of the organization preparing the document.
Organizations for whom the document was prepared, e.g. Establishment sponsoring
a contractor's report, or tasking agency, are entered in section 8.)

Defence Research Establishment Ottawa
Department of National Defence
Ottawa, Ontario Canada K1A0Z4

2. SECURITY CLASSIFICATION
(overall security classification of the document
including special warning terms if applicable)

UNCLASSIFIED

3. TITLE (the complete document title as indicated on the title page. Its classification should be indicated by the appropriate
abbreviation (S,C or U) in parentheses after the title.)

DIGITAL SAMPLING RATE CONVERSION: PRINCIPLES AND IMPLEMENTATION (U)

4. AUTHORS (Last name, first name, middle initial)

KOZMINCHUK, BRIAN W., AND WANG, SICHUN

5. DATE OF PUBLICATION (month and year of publication of
document)

FEBRUARY 2001

6a. NO. OF PAGES (total
containing information. Include
Annexes, Appendices, etc.)

45

6b. NO. OF REFS (total cited in
document)

7. DESCRIPTIVE NOTES (the category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type
of report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.

DREO TECHNICAL MEMORANDUM

8. SPONSORING ACTIVITY (the name of the department project office or laboratory sponsoring the research and development. Include the

address.
Defence Research Establishment Ottawa
Department of National Defence
Ottawa, Ontario Canada K1A0Z4

9a. PROJECT OR GRANT NO. (if appropriate, the applicable
research and development project or grant number under which the
document was written. Please specify whether project or grant)

2KS11

10a. ORIGINATOR'S DOCUMENT NUMBER (the official
document number by which the document is identified by the
originating activity. This number must be unique to this document.)

 -T/n Jnrj/-ö2 2 -

9b. CONTRACT NO. (if appropriate, the applicable number under
which the document was written)

10b. OTHER DOCUMENT NOS. (Any other numbers which may
be assigned this document either by the originator or by the
sponsor)

11. DOCUMENT AVAILABILITY (any limitations on further dissemination of the document, other than those imposed by security

classification)
(X) Unlimited distribution

) Distribution limited to defence departments and defence contractors; further distribution only as approved
) Distribution limited to defence departments and Canadian defence contractors; further distribution only as approved
) Distribution limited to government departments and agencies; further distribution only as approved
) Distribution limited to defence departments; further distribution only as approved
) Other (please specify):. - ';- .

12. DOCUMENT ANNOUNCEMENT (any limitation to the bibliographic announcement of this document. This will normally correspond to
the Document Availability (11). however, where further distribution (beyond the audience specified in 11) is possible, a wider announcement

audience may be selected.) KM LI fl I TETD

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM

47

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM

13. ABSTRACT (a brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly
desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the
security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), or (U).
It is not necessary to include here abstracts in both official languages unless the text is bilingual).

(U) The resampling of a signal involves the conversion from the initial sampling rate to a new
and different one. This is often necessary in practical applications because the sampling rate is
often fixed while the desired sampling rate may depend on the application or a signal parameter,
such as the symbol rate or channel spacing. This problem often arises in software radios systems
where the sampling rate is determined by hardware constraints. Although resampling algorithms
have been developed and implemented in commercial software libraries, such as the Intel Signal
Processing Library \cite{lntel}, these algorithms often have undesirable limitations. For example, a
typical constraint is that the data blocks processed must be an integer multiple of the
downsampling rate. This restriction simplifies the indexing in the code and reduces the complexity
of the implementation. However, it decreases the flexibility and usefulness of the resulting
program, since in some applications, the length of the input data blocks may not be an integer
multiple of the downsampling rate. For such applications, there is a need for a resampling
program that imposes no restriction on the length of the input data blocks. The MATLAB built-in
function UPFIRDN.dll (or RESAMPLE.m) is designed for resampling only one block of input data.
It does not provide information on the state variables of the filters and, therefore, cannot be used
to resample a very large data file.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize a document and could
be helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment
model designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected
from a published thesaurus, e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus-identified. If it is not possible to
select indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

RESAMPLE
INTERPOLATION
DECIMATION
SIGNAL PROCESSING

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM

48

Defence R&D Canada

is the national authority for providing

Science and Technology (S&T) leadership

in the advancement and maintenance

of Canada's defence capabilities.

R et D pour la defense Canada

est responsable, au niveau national, pour

les sciences et la technologie (S et T)

au service de l'avancement et du maintien des

capacites de defense du Canada.

DEFENCE I € ■ m DEFENSE

www.drdc-rddc.dnd.ca

«

