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1    OVERVIEW 

The genomes of over 36 organisms (many of them simple unicellular 

prokaryotes) are now known. Among other applications, this information 

could be used to construct computer ("in silico") models of organisms. In- 

deed, efforts are already underway to model Mycoplasma genitalium (the 

smallest known genome of a free-living organism, with approximately 500 

genes) by a set of coupled nonlinear rate equations for the concentrations 

of various structural proteins, enzymes, genes and messenger RNA's [1]. A 

successful effort of this kind would allow predictions of the response of sim- 

ple organisms to drugs, changes in the environment or gene knockouts. Such 

models could also be an aid to rational drug design and could perhaps even 

guide biological research. Detailed models of specific biochemical networks 

(as opposed to whole cells) could aid in the design of cells which sense harm- 

ful factors in the environment or allow switching from one type of behavior 

to another. 

The goal of the 2000 JASON summer study on "Biofutures" was to 

explore prospects for computer modeling of cellular biochemical networks 

and to ask more generally about the role of modeling in biology. Indeed, it 

is far from clear that reductionist models from the physical sciences are the 

right paradigm - methodologies taken from operations research or electrical 

engineering may be more relevant [2]. Comments on modeling from biologists 

range from complaints about the lack of biological realism to categorical 

statements that groups who do not buy into these developments are going to 

be left behind. A majority of biologists are quite skeptical about the utility 

of models, notwithstanding the success of, for example, the Hodgkin-Huxley 

model of electrical impulses in nerve cells. 



There axe real questions about what constitutes a good model in bi- 

ology, and serious worries about "garbage in, garbage out" when one tries 

to represent a living cell as a system of hundreds of coupled nonlinear dif- 

ferential equations with thousands of poorly known rate constants. On the 

other hand, after efforts to incorporate important experimental facts, good 

modelers might be able put their finger on crucial parameters or nodes in bio- 

chemical pathways and identify less important ones. Although useful whole 

cell models are unlikely in the near future (even for prokaryotes), model- 

ing isolated biological "modules" [2] (such as the lysis/lysogenesis switch 

in lambda-phage or chemotaxis in E-coli) seems promising. Understanding 

such modules, especially if they are conserved across species, could lead to a 

biological "tool kit" for developing specialized designer cells in silico before 

realizing them in the laboratory. Such cells could ultimately serve as more 

efficient "canary sensors", specialized to particular diseases or toxins. Some- 

day, drug companies will surely want to design and test their products on 

cells in silico before going on to real animal models, just as airplane design- 

ers now simulate a new aircraft wing on a computer before subjecting it to 

wind tunnel experiments.  The complexity of general circulation models of 

the earth's climate rivals the problems faced by modelers of entire cells, espe- 

cially eukaryotes. Cellular modeling, however, has the advantage that it can 

be informed by experiments that probe the response of numerous genetically 

identical cells to different environmental stimulii. 

Future generations of models will have to find a way to properly in- 

corporate spatial variations in reactant concentrations, which are known to 

be important for certain processes, even in prokaryotic cells. For biochemi- 

cal pathways that involve small numbers of molecules, stochastic simulations 

instead of deterministic ones can also be important.   As a paradigm for 



modeling that includes spatial effects, we mention the SPICE program (Sim- 

ulated Program for Integrated Circuit Evaluation), developed for integrated 

circuit design in the 1970's. That program has played a key role in designing 

new generations of silicon chips. The hope is that independent SPICE-like 

programs will not be needed for each biological organism or specialized eu- 

karyotic cell. 

We will denote complex attempts to get all the details right, similar 

to the SPICE program, as "Type A" modeling. In solid state physics, Type 

A modeling is represented in solid state physics by ab initio electron band 

structure calculations. "Type B" modeling, where one tries to simplify and 

uncover general principles, is represented by tight binding models which il- 

lustrate the idea of energy bands and reveal distinction between metals and 

insulators. "Type B" modeling could also play an important role in biology. 

In "Type B" modeling, we set aside detailed analyses of biochemical net- 

works in real organisms, and pursue instead simplified models in an attempt 

to elucidate or discover important biological principles. For example, Leibler 

and Barkai have produced a pared down model of chemotaxis in E-coli [3]. 

Although their model has limited quantitative predictive value, they were 

able to demonstrate that this model could be designed to display the inter- 

esting feature of biological "robustness", in this case an insensitivity of the 

"adaptability" (to changes in ligand concentrations) of flagellar rotation rates 

to major variations in rate constants and/or the concentration of important 

protein intermediates. Biochemical networks with linkages that display "ro- 

bustness" may confer an evolutionary advantage as rate constants change 

due to genetic drift. See Sections 3.3 and 4.2 for detailed discussions of Type 

A and Type B modeling respectively. 



The Barkai-Leibler work suggested important conceptual follow-up ex- 

periments and provided an idea which could reappear in other biochemical 

networks or organisms. Unfortunately, others have used the "robustness" 

concept indiscriminately to excuse the lack of knowledge of rate constants 

in more quantitative Type A models! Robustness, if it does apppear in a 

given biological network, can actually be accompanied by extreme sensitivity 

of other properties to parameter changes [3,4]. For example, the adaption 

time to changes in nutrient concentration in the Barkai-Leibler model is quite 

sensitive to random factors of two changes in kinetic coefficients, even though 

other important parameters are not (see Section 4.3). Although "robustness" 

may appear in a real biological organism whose biochemical "circuits" have 

the appropriate topology, it is by no means guaranteed that an approximate 

model constructed from imperfectly known rate constants will display this 

property. Indeed, there is at least one example of a Type A model of chemo- 

taxis that failed to uncover the robustness property using a set of equations 

constructed with the best available experimental data [4]. 

"Type B" modeling has also been used to guide the top down synthe- 

sis of a switch involving a genetic network [5]. A pair of repressor genes, 

together with their promotors, was inserted into a plasmid appropriate for 

E-coli bacteria. The rate constants were then tuned (by varying that part of 

the repressor gene encoding for a ribosomal binding site) to produce a bio- 

logical analogue of a "flip-flop" circuit in digital electronics [6]. Although the 

switching time in response to external inducer signals is slow (of order hours), 

decades of work on genetic engineering allows relatively straightforward tun- 

ing of rate constants in genetic networks of this kind. Such fine tuning is not 

as easy for the protein networks in, e.g., conventional metabolic pathways. 



Using either Type A or Type B modeling, one could imagine biolog- 

ical research laboratories using computer simulations to test for the most 

promising avenues of research before going to a wet lab. In an ideal world, 

the experiments would lead to changes in the model that would, in turn, lead 

to more experiments. The possibility of a real ongoing dialog of this kind 

between theoretical modeling and experiments in the biological world is an 

exciting one. 

In Section 2, we discuss the role of models in science and special prob- 

lems associated with their application to biology. In Section 3, we describe 

attempts at quantitative "Type A" modeling, with an emphasis on models 

of Mycoplasm genitalium and of bacterial chemotaxis in E-coli. "Type B" 

modeling is discussed in Section 4, starting with the work of Hodgkin and 

Huxley on excitable biological media and moving on to simplified models of 

bacterial chemotaxis and of a biological switch in a genetic network. The 

concluding part of this section describes an interesting interpolation of an 

analog electronic circuit model of a lobster nerve cell into a network of real 

nerve cells. This report concludes with eight specific recommendations and 

conclusions in Section 5. It seems clear that biological models of cells will 

eventually need to deal with spatial variations in the constituents of various 

biochemical networks, even in prokayotes. Our recommendations include un- 

dertaking a survey of experimental techniques which could illuminate spatial 

and temporal variations with subcellular resolution. 
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2    BIOLOGICAL MODELS: WHAT, WHY 
and HOW? 

In this section, we provide an overall rationale for the use of mathemat- 

ical and computational models in biological systems. For several reasons, 

this concept is widely perceived as an idea whose time has come; these rea- 

sons include the vast flood of data being generated in a new generation of 

biological experiments, a general feeling that one will be able to get more 

useful information out of these data through quantitative approaches, and 

the perception that computational methods are lending useful insights into 

other complex systems, ranging from climate prediction to materials science. 

Before attempting to define the role of a mathematical model, we should 

acknowledge that biologists have been using models for a very long time. 

Most often, however, these models are explicitly non-mathematical and typ- 

ically amount to a set of connections that attempts to summarize the logical 

structure of a biological system. For example, Figure 2-1 taken from the work 

of Loomis and collaborators on the genetic network underlying development 

in the soil amoeba Dictyostelium discoideum is of this type. In this network 

"model", the pathway by which the receiving a signal (in the form of the 

chemical cAMP) leads to altered gene expression is laid out in logical, but 

not in mathematical/computational form; this model can be used for quali- 

tative predictions but is clearly not capable of any quantitative conclusions. 

So, what do we mean by a model? For physical science, a model is a 

set of mathematical relations that take some input variables, define a calcu- 

lation to be performed (depending explicitly upon some model parameters) 

and generates some number of output variables. A model is not merely the 
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summary of a given set of experiments in shorthand form. Instead, it repre- 

sents an extrapolation (based both on data and on an intuitive picture of the 

involved mechanism) from existing information to unknown realms of input 

space and parameter space. Since a model is not just a re-writing of the 

data, it can be - and often is - dead wrong. Thus, the useful models are the 

ones that have undergone repeated cycles of having their predictions com- 

pared to new experimental data and still remain valid, albeit with inevitable 

modifications having occurred in the validation process. 

A model as we have defined it is necessarily quantitative. Whatever the 

form of the output variables (Boolean, real numbers, probability distribu- 

tions for stochastic systems etc.), these are uniquely determined by comput- 

ing with the model. It may not be easy to do the necessary calculations as, 

for example, in the Navier-Stokes equation model for turbulent fluid flow, 

but in principle these can be carried out with zero uncertainty. (There is a 

caveat that a sensible model should have a match between the output and the 



dynamics. For example, it makes no sense to claim that the Navier-Stokes 

equations will predict the velocity at some specific time/space point, as this 

is so sensitive to every last detail that it is a useless exercise; instead, one 

should define the output as various correlation functions, probability distri- 

butions etc., which are computable.) This caveat accepted, we will assume 

that our model makes quantitative predictions for the system under study. 

But, this does not mean that we expect these quantitative predictions to 

agree to arbitrary accuracy with experiments performed on the actual sys- 

tem. That is because all models are, by their nature, incomplete. Even the 

hallowed incompressible flow equations will not agree with data from fluid 

experiments to arbitrary accuracy; for example, there are clearly corrections 

due to the finite compressibility of any real fluid. Any model should therefore 

come complete with an understanding of how much the left-out ingredients 

will affect the model predictions. In some cases (such as the aforementioned 

flow case), this will be calculably negligible - these are of course models that 

physicists like best, and most of the familiar physical models (Navier-Stokes 

equation, Schroedinger equation, Maxwell's equations) are obviously of this 

type. In almost all complex systems, however, this will never be completely 

possible. Nevertheless, certain classes of models try to put in all the interact- 

ing pieces of the system and aim for this physics-style reductionism, recogniz- 

ing of course that the results at any stage might only be semi-quantitatively 

accurate. In contrast, other models aim to get at the basic mechanisms with 

as simple a model as possible, and concede at the outset that only qualitative 

conclusions should be taken seriously. We will refer to these extremes as type 

A and type B models respectively, fully cognizant of the fact that there is no 

sharp dividing fine. 



Let us give some examples of these classes. In the model A genus are de- 

tailed climate models, ab initio band structure calculations, all-atom molec- 

ular dynamics simulations of biopolymer dynamics and large-scale compu- 

tations of the evolution of astrophysical structure. These models explicitly 

attempt to get enough of the details right so as to render their results quan- 

titatively reliable, with some implied accuracy level. As we will flesh out 

in more detail in the next section, there is some biological modeling that 

falls naturally into this class. This includes work on the E-cell simulation of 

Mycoplasma genitalium, the lysis-lysogeny switch in phage A, and the BCT 

approach to E. coli chemotaxis. In this report, our focus is on using genomic 

and proteomic data to build models of cellular function; it is clear that these 

cell biology models will require massive complexity to reach even limited 

quantitative accuracy. 

What use is a biological type A model? Essentially, one can substi- 

tute the model for the system and carry out computational experiments that 

might be impossible (or more difficult/costly etc.) to perform on the wet 

ware itself. This capability could have a large payoff; just imagine being 

able to design antibiotics without having to grow bacterial cultures in the 

lab. Even before complete replacement, type A models could guide experi- 

ments to the most effective regimes of parameter space; i.e., testing only a 

few drugs on bacterial cultures rather than having to do a full screening for 

every new hypothesis. Also, type A models can often be a stimulus for scien- 

tific advances, as a working model is prima facie evidence that the behavior 

of interest in some biological systems (say the ability of E. coli to detect 

chemical gradients on a wide range of background concentration levels) is 

indeed possible to accomplish with only the components used in the model 

10 



and no others. This, coupled with the ability to do extensive experiments, 

can rapidly spur increased understanding. 

Perhaps the most important thing that needs to be done with a type 

A model is for it to be repeatedly confronted with experimental challenges. 

Biological systems are quite a bit better off in this respect than, say, climate 

or astrophysical models, since one can do a variety of critical experiments 

and try to test or refine the model. 

This concept does not appear to be sufficiently ingrained in the biolog- 

ical modeling community. Again, an example from Dictyostelium can illus- 

trate this point. Laub and Loomis have constructed a type A model of the 

cAMP signaling system, based on data collected in liquid test-tube cultures 

of cells undergoing starvation. As the model is based on the data (related 

to temporally oscillating levels of cAMP and other chemical species), it has 

been claimed that it does a good job of capturing the dynamics of the sys- 

tem. But, there have been no attempts to disprove the model by comparing 

its predictions to experiments that it was not explicitly designed to match. 

Hence, we have at present no reason to believe that the model would be a 

reasonable predictor of any cell response that was not put in by hand. 

A similar problem underlies the use of learning algorithms to devise 

models whose only role is to fit experimental data - see, for example, models 

of gene expression in early Drosophila embryogenesis. Although exceptions 

exist, work to date can often be thought of as training a classifier with a train- 

ing set of data, obtaining good fits to that data, but never testing whether 

the resultant network is effective at generalization. 

At the other end of the modeling spectrum are type B models for 

which only the qualitative conclusions are claimed to have correspondence 

11 



with the actual system. Physicists sometimes refer to models of this type 

as "toy" models. Some examples of these include the models of nonlinear 

springs (which led to the notion of solitons), two component reaction-diffusion 

models of excitable media (such as the Oregonator model for the Belusov- 

Zhabotinsky reaction), lattice models of protein folding which utilize only 

two broad classes of amino acids (hydrophilic versus hydrophobic), the Bur- 

ridge block-spring model of earthquakes, simplified traffic simulations and 

interacting walker models of pattern formation in nutrient-limited Bacillus 

colonies. The most successful of these lead to an appreciation of new mech- 

anisms which turn out to be present in type A models as well, albeit hidden 

in the often more detailed equations. For example, solitons occur in type A 

models of oceanic internal waves and are quite important noise sources in 

the coastal region; study of these models has been greatly facilitated by a 

thorough understanding of similar mechanisms in simplified "toy" examples. 

Given that type B models cannot quantitatively predict anything about 

a system, [not quite true; very simple models of phase transitions can get 

critical exponents right] why is it useful to construct them in a biological 

context? One possibility is that one might be able to directly engineer these 

models into cells and thereby create a useful new "designer biology". An 

example of this is the creation of a genetic toggle switch by starting from 

a model of the same and building it into E. coli (see Section 4.3). At a 

deeper level, though, there is another purpose. Type B models can represent 

an idealized picture of a mechanism that enables more understanding to 

emerge. Of course, "understanding" is a difficult concept to quantify and is 

highly subjective. But, we all would admit that the concept of "feedback 

from the output allows for perfect adaptation" as put forth by Barkai and 

Leibler to help explain E.coli chemotatic response characteristics, is most 

12 



clearly exemplified by the simple type B model they construct (see Section 

4.2 for more details). Now, it may turn out that this concept is irrelevant 

to E. coli chemotaxis and hence their toy model offers no insight into how 

the system works and into how a type A model needs to be constrained. For 

example, decades worth of work on simple, "toy" reaction-diffusion models of 

morphogenesis, suggesting at their heart that Turing-type instabilities play 

the crucial role in organizing spatial patterns during biological development, 

now appear to be almost completely irrelevant. Here, basic biological facts, 

unknown at the time of Turing's work in 192, were left out of this example of 

Type B modeling. To reduce the chances of such pitfalls, it is again absolutely 

crucial that the model make predictions, even qualitative ones, that enable 

it to be falsified by experiment. 

The major pitfall for type B predictions is losing track of the real sys- 

tem in favor of a mathematically well-defined game that becomes decoupled 

from experiment. The major pitfall for type A predictions is wallowing in 

all the details and losing track of the fact that models must be more than 

just curve-fits. In what follows, we will study in more detail some exam- 

ples of biological models and try to understand the extent to which they 

have successfully escaped these traps and contributed to real scientific and 

technological progress. 

Before concluding this section, we would like to point out why we feel 

that, in general, the introduction of serious modeling efforts for biological pro- 

cesses is a good idea, even from the point of view of experimentalists. A model 

can be useful as a methodology for assimilating disparate measurements and 

drawing finks between them. In addition, models can provide useful frame- 

works for establishing a standard reporting protocol from disparate teams of 

investigators. For example, climate change models assimilate and integrate 

13 



inputs from oceanographers and atmospheric sciences, amongst others. Pa- 

rameters that are necessary and critical for detailed understanding of a local 

phenomenon (for example, seasonal rainfall trends in a specific location or an 

understanding of tidal structures in a particular continental/oceanic bound- 

ary) are not necessarily the parameters of utmost importance to a general 

circulation model; the existence of the model often forces a re-prioritization 

for experimental work and spurs efforts to measure those quantities that are 

needed to critically test and thereby improve the model, as opposed to those 

which are crucial to describe more local, fine grain descriptions of the system 

or to improve an understanding of a more local phenomenon of interest to 

one subdiscipline or the other. 

Similarly, the existence of a model often spurs consistency in form and 

format of data reporting, so that such data can be readily extracted for use 

by the modelers. This has the added benefit that it also makes results in a 

subdiscipline more accessible to those outside the field or entering it for the 

first time. In Boston, for example, major streets have no street signs because 

"everybody knows what those streets are"; similarly, a close-knit community 

of experienced investigators in a particular subdiscipline can each readily 

sort through a complex, qualitative experimental report in the field to find a 

few critical rate constants and perhaps implicit descriptions of the conditions 

under which they were measured and are valid. However, transferring this 

type of anecdotal information to an outsider is very difficult without a formal 

data reporting structure that is consistently used and applied by workers in 

the field. A good model can spur such systemization. 

The development of widely accepted and used models in biology will face 

additional obstacles due to some special attributes of how biology has evolved 

as a discipline.  First, biology is largely qualitative or semi-quantitative in 

14 



character. Secondly, there is a general disregard for theory and modeling in 

biology. Thirdly, biology is largely information-rich (details almost always 

matter). Fourth, biology itself is disparate in its culture, in that what is 

important to a cell biologist does not overlap much, in general, with what is 

important to a protein crystallographer which in turn does not overlap much 

with what is important to a geneticist. 

A good model in biology thus should meet at least some of the following 

criteria: it should a) make a testable counterintuitive prediction, b) reveal 

a previously unknown general principle, c) allow experimentalists to manip- 

ulate a complex system in a predictable, useful fashion, and d) explain a 

heretofore poorly-understood phenomenon. Experimentalists will vote with 

their feet, so if a model makes an interesting and important prediction, ex- 

perimentalists will test it. Conversely, if the model is unimportant, no one 

will pay attention. The best way to insure that a model has impact is to have 

the modelers involve experimentalists from the initiation of the effort, so that 

the modelers can work on problems that are important and of high priority 

to the experimental community. As the model evolves it will of course require 

additional sustained interactions between both communities in order to be 

validated, refined, and ultimately widely used. 

15 



3    TYPE A MODELING 

3.1    E-Cell Program for Mycoplasma Genitalium 

Mycoplasm genitalium is one of a family of exceptionally small (diame- 

ters as small as 0.2 fim) bacteria that lack a cell wall, and possess genomes 

only 1/2 to 1/5 the size of other free living bacteria. With its DNA con- 

sisting of 580k base pairs (M. genitalium was sequenced in the mid 1990's), 

the bacteria sustains itself with only about 500 genes. The Virtual Cell 

model inspired by M. genitalium [1] has 127 genes, which are "transcribed" 

(via rate equation modeling) to produce messenger RNA's which are then 

"translated" (again via rate equation modeling) by ribosomal RNA to make 

various proteins. Over 4000 molecular species involved in almost 500 chem- 

ical reactions are tracked by the program, which integrates a set of coupled 

nonlinear ordinary differential equations using Eulerian finite difference or 

4th order Runge-Kutta techniques. Compared to real M. genitalium, the 

restricted gene set (127 "genes" in the model instead of ~ 470 in the actual 

organism) does not allow for functions such as DNA replication and cell di- 

vision. Instead, the network of chemical reactions defining the model takes 

glucose, fatty acids and glycerol and performs lipid synthesis and glycolysis, 

while carrying out the transcription, translation, and degradation of the pro- 

teins involved. The output of the glycolytic metabolic pathway is ATP, with 

lactate as a waste product. 

We believe that there are considerable difficulties at present in obtaining 

reliable results for whole prokayotic cells, even for an abbreviated model of 

something as simple as M. genitalium. Knowledge of rate constants is a par- 

17 



ticularly severe problem. The rate constants chararacterizing a biochemical 

reaction in prokaryotes or eukaryotes appear as parameters governing a set 

of ordinary differential equations, as in 

h 
- k2 

S + E    <-    SE   -►   P + E, 

k-i 

where S, E and P are the concentrations of substrate, enzyme and prod- 

uct molecules respectively. SE is the concentration of the substrate-enzyme 

complex. Even in the well-studied lysis/lysogeny switch of the phage lambda 

which infects bacteria, the rate constants are only known to within a fac- 

tor of 2, and often have to be inferred from a mixture of in vivo and in 

vitro experiments. Only three rate constants are required to parametrize the 

chemical reaction described above. However, ten unknown parameters are 

required to describe a more complicated bi-bi reversible enzymatic reaction 

with inhibitor and activator! 

The rate constants fc_i and k2 in the example cited above describe dif- 

ferent modes of dissociation of the substrate-enzyme complex, and may have 

similar in vivo and in vitro values. In contrast, the important rate constant 

hi, which describes the diffusive process by which substrate molecules and 

enzymes find each and dock, should depend sensitivly on the cytoplasmic 

environment. Indeed, a simple random walk argument shows that fci is given 

approximately by 

fci   ^  paeDe 

^  phBT/(3irri), 

where p < 1 is the docking efficiency and ae and De are the enzyme size and 

enzyme diffusion constant respectively. The last equality follows from the 

Stokes-Einstein equation, and shows that the product of the enzyme size and 
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diffusion constant drops out - what is crucial for fa is the viscosity 77 of the 

medium in which the chemical reaction takes place. This viscosity is a simple 

and relatively well understood parameter in many in vitro experiments. If 

one assumes a maximal docking efficiency p = 1 and inserts the viscosity of 

water, one obtains 

fa = 108 - 109/ sec-M, 

the well-known result for a "perfect" enzyme. However, the cytoplasm of a 

real cell is a complicated viscoelastic medium in which the lipid membrane 

and crumpled linear structures such as the bacterial chromosome can play 

an important role. It would not be at all surprising to have orders of mag- 

nitude differences in the effective in vitro and in vivo viscosities under some 

circumstances. Hence, lack of in vivo knowledge of fa for the many enzymati- 

cally catalyzed reactions in the E-cell model seems to us a particularly severe 

problem. The ratio of fa (in vivo) to fa (in vitro) should go as the ratio of 

the enzymatic diffusion constants in the two media. Thus, comparative mea- 

surements (using, say, green fluorescent protein tags) of De in vivo [2] and in 

vitro might allow in vitro measurements of fa to be converted to a number 

appropriate to an in vivo computer simulation. However, the viscoeleastic 

nature of the medium can still be a severe problem, especially in eukaryotes, 

where the apparent viscosity as inferred from particle diffusion is clearly a 

function of the particle size [3]. 

The difficulties sketched above would be far worse if one were to at- 

tempt a model of even more complex eukaryotic cells - the "circuit" that 

contains just the simple metabolic functions of eukaryotes (i.e., neglecting 

transcription, translation, regulation, etc.) is a complex network of about 

500 nodes representing intermediates requiring knowledge of 2000 rate con- 

stants to specify the various enzymatically catalyzed links between these 
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nodes [4]. One of the defining characteristics of eurkaryotes is the presence 

of multiple compartments as well as linear /planar/bulk structures such as 

the nucleus, mitochondria, the endoplasmic reticulum, actin filaments, mi- 

crotubules, the golgi apparatus, etc. Clearly, eukaryotes cannot be regarded 

as "well mixed chemical reactors", as may be the case for some prokaryotic 

functions. 

With so many adjustable parameters in the form of poorly known rate 

constants (and enzymatic concentrations), it would not be surprising if sim- 

ulations like E-cell could be fit to the exisiting experimental data. However, 

the choice of rate constants will certainly not be unique and one can question 

the value of this exercise for a system as complicated as an entire prokary- 

otic cell. As discussed elsewhere in this report, a handwaving appeal to the 

"robustness" of biochemical circuits is not an appropriate way out of this 

difficulty: "Robustness" of some quantities is accompanied by "sensitivity" 

in others. Here "robustness" of, say, the enzyme concentration in a partic- 

ular biochemical circuit means that this concentration remains essentially 

unchanged in the presence of random changes in rate constants caused by 

genetic mutations. However, whether robustness exists at all in a particu- 

lar organism is questionable in the absence of precise knowledge about the 

relevant biochemical circuits. 

Although the multiplicity of poorly known parameters is the most severe 

difficulty with the E-cell simulation, there are other problems as well. A 

coupled system of, say, 4000 ordinary differential equations with ~ 10000 rate 

constants describing a simple prokaryotic cell should in principle encompass 

seven orders of magnitude in time scale, from milliseconds to hours. Under 

these circumstances, one expects many nested time scales. We can represent 
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such a system of differential equations schematically as 

du/dt   =   /(u,t;,w,x,....), 

eidv/dt   =   g(u,v,w,x,.), 

e^dw/dt   =   h(u,v,w,x,.), 

where f,g, h,... are order unity nonlinear functions of the reactant concen- 

trations u,v,w,x.... Even for Michaelis-Menton kinetics, one typically finds 

(with appropriately rescaled variables) small parameters like ei (e.g., the 

initial ratio of enzyme to substrate concentration) multiplying time deriva- 

tives. For many coupled reactions involving multiple time scales, one expects 

ei < e2 <C ... < 1. Special methods are required for integrating such "stiff" 

systems of differential equations [5]. Eulerian finite difference or 4th order 

Runge-Kutta techniques [1] are inadequate. This problem is not insurmount- 

able, as systems equivalent to, say, 100,000 ordinary differential equations are 

routinely integrated by chemical engineers in efforts to model production lines 

in chemical factories. Another concern is that deterministic systems of ordi- 

nary differential equations must be modified when the number of molecules 

involved in a particular reaction is small. Fluctuations are then large and 

special stochastic simulation techniques are required [6]. 
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3.2    Lysis/Lysogeny Switch 

In a well-known paper McAdams and Shapiro [1] attempted to model 

the genetic switch by which phage lambda decides whether to lyse its host cell 

(lysis) or to instead incorporate its DNA into the bacterial genome (lysogeny). 

From our overall perspective, this system is a good choice for the type A 

paradigm; this is because many years of detailed biological legwork have 

succeeded in identifying all the components of the switch and have even 

provided some details regarding component kinetics. On the other hand, 

the numbers of molecules involved in some of the genetic control elements is 

sufficiently small that one needs to think about stochastic effects. This latter 

point has been emphasized by Arkin and McAdams [2], as discussed below. 

The basic mechanism behind the switch depends on the competition 

between different promoters. The two basic genes, CRO and CI each try 

to lock in a transcription pattern which stabilizes its own production and 

suppresses the other's. If CRO "wins", the cell chooses the lysis pathway, 

whereas CI controls lysogeny. CI production is controlled partly by CII, 

where degradation is controlled by CIII; this process is affected by external 

conditions such as the state of nutrition and the number of infections per 

cell. These two competing pathways lead to bistability - either pathway can 
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stabilize itself and suppress its competition and it is just a matter of which 

chemical (CRO or CI) can accumulate more rapidly. 

The basic workings of the switch had been elucidated by molecular bi- 

ologists before the work of McAdams and Shapiro. Thereafter, these authors 

tried, in standard type A modeling style, to take a more or less known mecha- 

nism and transform it into a complete quantitatively predictive model. To do 

this, of course, requires knowledge of a whole variety of kinetic coefficients 

governing the basic reactions involved. There are at least 36 independent 

rate constants for the housekeeping/nongenomic reactions and the transcrip- 

tion/translation steps and around 10 more for the model of promoter control 

of transcription initiation. As is typical, one uses a variety of measurements 

plus a variety of desired network properties to guess at these parameters. 

Even in the simplest system, then, there is no real reason to trust the model 

quantitatively. This is especially true in that the typical tests of the model, 

the comparison of predicted time courses of important proteins with experi- 

mental measurements of the same are not carried out in a quantitative man- 

ner. Instead, one compares the trends produced in the model with the trends 

seen in the data. To the extent that these trends were already understood 

and the mechanism underlying them had been used to formulate the model 

in the first place, this is not sufficient to verify the modeling details. 

As mentioned, the small numbers of some of the molecules involved as 

well as the random delays in the initiation of transcription suggest that a fully 

realistic model must be stochastic. This line of reasoning led to a detailed 

stochastic model that replaced the traditional reaction-diffusion equation for 

the various reaction steps by a directly simulated Markov process for (dis- 

crete) numbers of molecules. The simplest estimate of the noise in a reaction 

proceeding at rate R is that the fluctuations are proportional to y/R; this 
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means that for either slow reactions or for small concentrations of reagents, 

noise is important. Not surprisingly, fluctuations will result in phenotypic 

diversity even for identical genomes and for identical initial conditions. In 

general, though, it will be very hard to disentangle intrinsic fluctuation effects 

from external variation in cell environment, changes in cell history etc. This 

has proven hard to accomplish even in the case of extremely well-controlled 

physical systems, and one should be wary of attributing phenotypic variation 

to stochastic effects without at least considering "other possibilities. 

In any event, stochastic models are much more complex and much more 

computationally expensive than are their deterministic counterparts. It is 

certainly interesting to use these models to estimate how much noise is actu- 

ally present in the switching process. This probably could be done in a much 

simpler model unless one suspects that somehow the complexity of the actual 

phage switch arose partly as a way of compensating for having to work with 

noisy components. This interesting idea, unfortunately, rarely goes past the 

idea stage, possibly because the needed computations are still very expensive. 

Perhaps this is really a task for a type B model in which one can directly 

phrase the issue of how redundancy increases fidelity even with fluctuations, 

without getting trapped in a morass of irrelevant additional details. 

In summary, then, the work of McAdams and collaborators represents a 

well-reasoned effect to formulate a type A model for the lysis-lysogeny switch. 

Their work is serious, their choice of system good and their rate of progress 

above almost all other similar efforts. So far, however, no great insights have 

been forthcoming, and, to the best of our knowledge, no counter intuitive pre- 

dictions have been made and subsequently tested experimentally. It remains 

to be seen if the model, as presented formulated, is capable of quantitative 
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predictions in new experimental circumstances without additional fine tuning 

of poorly constrained input parameters. 
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3.3    Bacterial Chemotaxis and the BCT Model 

The best-studied biological organism is the bacterium E. coli, and the 

best-studied sensory system is bacterial chemotaxis. E. coli are attracted to 

a wide variety of simple chemicals, such as sugars, amino acids, and peptides, 

which serve as sources of food. These compounds need not be metabolized 

(nor even internalized) to be sensed. Bacteria are also sensitive to such 

things as temperature, oxygen, and pH. Moreover, they are repelled by po- 

tentially toxic compounds, such as certain metal ions. When confronted with 

a non-uniform distribution of a chemical that is sensed as an attractant (or 

repellent) in its environment, a bacterium will manage to swim up (or down) 

the chemical gradient. This chemotactic behavior is remarkably efficient, as 

it must be: bacteria need to outrun the diffusion of the very chemicals they 

sense, if they are to be captured as food sources, or to outpace the diffusion 

of toxic repellents. The physics of this problem is well understood (Berg & 

Purcell, 1977). 

Bacteria swim by rotating their flagellar filaments, which are individ- 

ually powered at the base by a nanoscale electric motor driven by a flux 
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of protons. A single cell of E. coli typically bears 8 flagella arising from 

random points on the cell surface, which are swept together to form a ro- 

tating bundle that pushes the entire cell forward. This is called a run, and 

it typically lasts around 1 second. During a run, the flagellar filaments all 

rotate in the counterclockwise (CCW) direction, as seen looking down the 

bundle towards the cell body. They spin rapidly, at speeds around 100-300 

Hz. When one or more of the flagella reverses direction and rotates clockwise 

(CW), the bundle is observed to fly apart and the cell undergoes a tumble, 

randomizing its orientation. Tumbles typically last about 0.1 second. Both 

runs and tumbles are random processes, and their durations are governed by 

simple exponential distributions (Poisson statistics). In an isotropic environ- 

ment, a cell of E. coli swims in a random walk consisting of alternating runs 

and tumbles. When placed in a gradient of attractant, cells modify their 

swimming by lengthening those runs that have a component in the favor- 

able direction of the gradient. Runs that have an unfavorable component 

are unchanged, and governed by the usual baseline stochastic behavior. The 

same is true for tumbles. Overall, this results in a biased random walk, which 

can be modeled as diffusion with drift. For actual bacteria, the drift rate is 

roughly 10% of the raw swimming speed. The latter can be as high as ~35 

(Um/s (about 20 body-lengths per second). Bacteria sense spatial chemical 

gradients by swimming through these while monitoring the temporal rate of 

change of specialized chemoreceptors, called transducers, that bind to one or 

more kinds of ligand (e.g., an amino acide like aspartate). A cell of E. coli 

carries about 5,000 transducers in all, consisting of five basic varieties, each 

capable of responding to a given subset of all sensed chemicals. 

Bacterial sensory behavior can thus be viewed as an input-output sys- 

tem in which the input is the time-varying chemical concentration in the 
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cell's immediate environment, and the output is an internal signal that mod- 

ifies the chance that the rotary motor will switch back and forth between 

the CW and CCW directions. Bacteria therefore take a relatively noisy, 

analog variable (chemical concentration) and transduce it into a stochastic, 

binary variable (CW/CCW rotation). Bacteria are so sensitive that they 

can respond to a change in occupancy of only a single chemoreceptor (out 

of a thousand) over the time course of single run (~ 1 s): this amounts to 

extraordinary sensitivity. The sensory pathway of E. coli is quite evolved, 

and displays many of the same hallmarks of analogous sensory modalities in 

higher organisms. In addition to its sensitivity, it has a large dynamic range, 

and can respond to chemical concentrations ranging over nearly five orders 

of magnitude. It also adapts, so that permanent changes in concentration 

produce only transient responses of the sensory system. Put differently, E. 

coli can respond to the rate of change of chemical concentration (equivalent 

to a concentration gradient), and not to the concentration per se. 

Introduction to the Chemotaxis Pathway 

How are E. coli able to do this? The sensory transduction system in 

E. coli is remarkably simple: it consists only of the five kinds of chemical 

transducer (named tar, tsr, trg, tap, and aer) plus exactly six kinds of ehe 

(chemotaxis) proteins, so named because a loss of any one of these genes 

leads to a generally-nonchemotactic phenotype. The genes are named ehe 

A, B, R, W, Y and Z. Together, the ehe genes form a compact signaling 

pathway, with both feedthrough and feedback, that acts stochastically to 

throw the flagellar motor switch, which in turn consists of a complex of three 

flagellar genes, fli G, M, and N, which form a portion of the motor itself. In 

its simplist form, the entire pathway is therefore comprised of eight distinct 

components: a transducer, 6 ehe proteins, and a switch. However, the appar- 
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ently simple composition of this system belies an astonishing sophistication 

and complexity. 

A detailed characterization of this pathway has been gained by about 

35 years of hard work in this system by many scientists, dating back to the 

seminal work of Julius Adler (Wisconsin) in the mid-1960s. Thanks to the 

completion of the E. coli genome project, all chemotaxis and nagellar genes 

were exhaustively identified and sequenced (in fact, all but one gene, coding 

for the aer oxygen sensor, had been found by other means, long before the 

completion of the bacterial genome). A multitude of mutants is presently 

available from any of several dozen labs working worldwide on chemotaxis. 

Protein structures have now been solved for at least three of the chemotaxis- 

pathway polypeptides, cheA, cheR, and cheY, and also for the transducer, 

tar. In addition to the genetics, a great deal is known about the biochemistry 

and physiology of E. coli chemotaxis. The study of E. coli physiology has 

been advanced by the development of the tethered cell assay. In this assay, 

a bacterial cell is affixed to the glass surface of a microscope coverslip by 

means of a single nagellar filament (the other 6-7 flagella are first broken 

off or otherwise removed). When the cell attempts to rotate its attached 

flagellum, the cell body is forced instead to turn round and round. Using the 

tethered cell assay, it is possible to monitor the output of a single nagellar 

motor on a cell. It is also possible to challenge the cell with gradients of 

chemicals and see the effect of these on motor directional switching, and 

readily to characterize mutants of various sorts. In this fashion, the 'black 

box' response (system function) of E. coli was well characterized in the 1980's, 

so that a quantitative mapping of time-varying receptor occupancy to motor 

switching probability is known. 
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Chemotaxis Biochemistry 

To begin the process of modeling bacterial chemotaxis, it is first nec- 

essary - but not sufficient - to understand the overall connectivity of the 

chemotaxis biochemical pathway. When a simple chemical (say, the ammo 

acid aspartate) binds to or unbinds from a transmembrane transducer (say, 

tar), this change in state triggers a series of biochemical events. The trans- 

ducer is bound on the cellular side of the membrane to two other proteins, 

the products of the c/ieW and cheA genes, in a ternary complex. (A compli- 

cation: often, this ternary complex is itself dimerized, or present as an even 

higher-order multimer, so that there are multiple copies of tar, cheW, and 

cheA.) The cheW protein serves as an adapter to hold cheA. CheA is a special 

type of histidine kinase, and it is capable of self-phosphorylation at a rate 

that depends on several things, including, importantly, the receptor occu- 

pancy of the transducer. Once auto-phosphorylated, cheA-P can transfer its 

phosphate to one of two other proteins: cheY or cheB. CheY is a small soluble 

protein (~ 12,000MW) that can diffuse across the volume of the bacterial cell 

in milliseconds. In its phosphorylated form, cheY-P can bind to the flagellar 

motor switch and induce CW (tumble direction) rotation: it therefore acts 

as a "tumble signal". The cheA-cheY phospho-relay combination acts as a 

feedthrough, or excitation, pathway. Bacterial excitation is fast, and occurs 

within a fraction of a second (< 100 ms) of the time a sensed chemical binds 

or unbinds from the receptor. CheY-induced excitation is not permanent: it 

is eventually turned off by the activity of a specific phosphatase, cheZ, which 

returns cheY-P (signaling) to the cheY (non-signaling) state. But cheA can 

also transfer its phosphate to cheB. CheB-P acts more slowly, over a period 
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of about four seconds, to modulate the baseline activity of cheA-P. This 

constitutes the feedback, or adaptation, pathway. It works in a somewhat 

more complicated fashion, as follows. 

The activity of cheA bound to its transducer not only depends upon 

the amount of chemical ligand bound, but also upon the methylation state 

of the transducers, which are also known as "methyl-accepting chemotaxis 

proteins", or MCPs. Transducers have at least four sites (glutamine residues) 

that can be reversibly methylated by an enzyme that is the product of the 

cheR gene (a methyl transferase). CheR activity does not appear to be 

regulated. But the steady-state level of methylation of any given transducer 

depends on the balance between its methylation rate and demethylation rate. 

Methyl groups are removed by the product of the cheB gene (a methyl es- 

terase). When phosphorylated, cheB-P becomes a more active esterase than 

unmodified cheB, so that methyl groups are removed more efficiently and 

the steady-state level of the transducer methylation falls. Thus, feedback 

generated by cheA-P, acting through cheB-P, leads to the removal of methyl 

groups from the transducer. This, in turn, lowers the autophosphorylation 

rate of cheA in the transducer-cheW-cheA complex, thereby turning off the 

phosphorylation signal initiated by ligand binding itself. The level of methyla- 

tion therefore acts as a kind of "scratchpad memory" for chemicals, reflecting 

inside the cell what's happening on the outside. The higher the level of chem- 

ical in the environment, the higher the level of methylation. 

To recap: the binding of chemical ligand leads to autophosphorylation 

of cheA. CheA-P sends its fast excitation signal immediately to the motor, 

via a cheY-P phospho-relay. CheY-P is then eventually degraded by cheZ. 

CheA-P also sends a slower feedback signal to the trandsucer, via a cheB-P 

phospho-relay, which removes methyl groups from the transducer and lowers 
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the activity of the attached cheA kinase. One last complication is that the 

whole chemotaxis pathway is wired up for negative regulation, in the sense 

that it is the loss of bound ligand that leads to an increase in cheA activity 

and thereby an increase in tumbling. The suppression of tumbles during runs 

that have a component up the gradient of an attractant leads to chemotaxis, 

as stated before. Put differently, the system seems to act as though it re- 

sponds to the loss of attractant by tumbling, rather than gain of attractant 

by swimming smoothly. Incidentally, the bacterial response to the addition 

of a chemical repellent is identical to the response to the loss of an attractant 

(and vice versa). 

Complications 

The description presented above was a simplified version of the full 

biochemical pathway, as it is currently understood. There are quite a few 

additional phenomena known to complicate matters. First, the ternary 

transducer-cheW-cheA complex can form dimers and multimers, with varying 

numbers of protein constituents and therefore many possible levels of activity. 

Second, the activity of these complexes may depend in complicated ways on 

the ligand occupancy. Third, the number of glutamate residues that are po- 

tentially methylated on the transducers may vary. Fourth, the enzyme cheB 

fulfills another role in addition to its function as a methyesterase: it can also 

transform glutamine residues on unprocessed transducers thereby rendering 

them capable of methylation by cheR. Fifth, there are actually two forms 

of cheA polypeptide made in bacterial cells, one somewhat longer than the 

other, known as cheAL and cheAS. The biochemical roles served by these two 

different forms are not known. Sixth, the activity of cheZ may be regulated 

in ways that are incompletely characterized, for the present. Seventh, there 

may be interactions among the five different classes of transducer, known 
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as "crosstalk". Finally, there are several unresolved questions surrounding 

motor switch cooperativity and mechanical feedback. Therefore, even in a 

pathway of just 8 components, there are a multitude of complications. 

The BCT Program 

The bacterial chemotaxis (BCT) Program evolved from initial attempts 

by Dennis Bray and colleagues (Cambridge University, UK) to develop a 

more-or-less complete, computer-based model of the bacterial chemotaxis 

signal transduction pathway. This pathway represented a likely choice, given 

the tremendous body of literature in this field, consisting of well over 200 

papers, and the fact that all protein components were identified, all genes 

were sequenced, and much of the basic biochemistry was established. Early 

attempts at simulation were based on solving numerically a series of coupled, 

deterministic rate equations which represented a subset of the known chem- 

ical reactions. The original efforts were written in a version of BASIC and 

employed Runge-Kutta integration methods, but produced unsatisfactory re- 

sults for a variety of reasons. The present version is written in C++ and no 

longer solves deterministic rate equations. Instead, it is based on a kernel 

called StochSim that represents each molecule in the simulation as a separate 

program object: this proved feasible because there are only on the order of 

a few thousand molecules involved in the complete chemotaxis process. The 

StochSim engine represents each reaction as a stochastic (MonteCarlo) pro- 

cess, and therefore (at least in principle) faithfully captures the chemistry of 

the system, even when the number of molecules involved is small. 

BCT, as currently constituted, does not attempt to simulate the com- 

plete bacterial chemotaxis pathway: it represents a 'stripped-down' version. 

For simplicity, BCT models only a single type of transducer protein, tar, the 

receptor responsible for binding aspartate. The solitary input to the system is 
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therefore the time-varying concentration of aspartate in the virtual medium, 

which is assumed to be in instantaneous equilibrium with the tar transducer. 

(By omitting receptors of the tsr, trg, tap, and aer classes, BCT bypasses 

a number of currently unresolved experimental issues surrounding receptor 

'balance' and crosstalk among parallel signaling pathways.) BCT models all 

six of the ehe proteins, as well as all phosphorylated and methylated deriva- 

tives of these. The running output of the BCT model is the instantaneous 

probability that a single flagellar motor will spin either CW or CCW: this 

is computed directly, by using an assumed nonlinear functional form, from 

the concentration of CheY-P in the simulation. The BCT chemical "com- 

puter" therefore maps an external aspartate concentration to an intracellular 

cheY-P concentration. 

Despite the small number of enzymes involved in the chemotaxis path- 

way, there is a 'combinatorial explosion' of possible reactions and correspond- 

ing rates. In BCT, for example, over 60 different chemical reactions are 

directly simulated. This proved necessary because the minimal signaling 

complex that leads to cheA phosphorylation consists of at least three pro- 

teins (tar, cheW, and cheA), which must come together to form a ternary 

complex before binding the attractant, aspartate. Because these three pro- 

teins can associate together in various alternative sequences, and because of 

the propensity of tar to dimerize (creating tar-cheA-cheW hexamers), and 

because there exist multiple methylated forms of tar (every tar receptor car- 

ries from 0 to 4 methyl groups), each with different activity, enumeration of 

all possibilities leads to a formidable number of equations. 

BCT Model Evaluation 

The BCT model can lay claim to a number of successes in modeling 

the chemotaxis system.   In simulations of 65 known deletion and/or over- 
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expression mutants in the chemotaxis pathway, BCT was able to 'postdict' 

60 of these correctly, as well as to predict the behavior of a number of pre- 

viously unexamined genotypes. Robert Bourret (Univ. North Carolina) is 

currently attempting the construction of some of the latter strains, and so 

more stringent tests should soon become available. The ~ 10% of all strains 

that were incorrectly predicted were attributed, in part, to incompleteness of 

the model, e.g., from effects arising from other transducer pathways (Levin 

et al., 1999). 

Here are some future challenges for the BCT system: 

• Selected rate constants don't agree with experiment in a significant num- 

ber of cases: 

Many of the ~60 rate constants selected as input parameters to the 

BCT model are set, where possible, to actual values reported in the lit- 

erature. The experimental numbers typically differ from lab to lab (by 

factors of two to five; more in some cases), necessitating the choice of a 

compromise value. However, in a number of instances, BCT parameter 

values used for 'successful' runs differed by several orders of magnitude 

from experimental values. This raises the question of whether the rele- 

vant experimental values were incorrect or inappropriate (e.g., that the 

circumstances of the measurement in vitro did not reflect the activity 

in the cell in vivo), or whether the BCT simulation explores the wrong 

region of parameter space. 

• Modeled cells don't adapt fully: 

To get complete adaptation in the model to permanent changes in the 

ambient concentration of aspartate, certain rate constants must be ad- 

justed and maintained at rather precise values, a process referred to 
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as "fine tuning" - something that is thought to be unachievable in 

real-world cells. Barkai and Leibler (1997) have argued that reaction 

pathways often need to be robust against perturbations in concentra- 

tions and reaction rates, and proposed a general mechanism to accom- 

plish this using a reaction circuit employing selective feedback. If the 

Barkai and Leibler mechanism is incorporated ad hoc into BCT, it does 

achieve more-or-less complete adaptation. However, doing so requires 

setting certain rate constants to zero that were thought to be other- 

wise, i.e., altering the connectivity of the reaction pathways. So there 

are unresolved issues here that remain to be addressed. 

• The bacterial impulse response function has the wrong shape: 

This is somewhat related to the previous discussion. Again, unless 

the fine-tuning of rates constants is invoked, the overall kinetics of the 

BCT response to an impulse of aspartate (this is the system response 

function, in the language of engineering) does not correctly reproduce 

the experimentally-determined function. 

• Modeled cells don't respond over the full dynamic range: 

Bacteria can respond to chemical concentrations over a dynamic range 

of roughly five orders of magnitude. However, computer simulations 

fail to achieve responsiveness over this range. A related issue is the 

astonishing sensitivity of the chemotactic apparatus (see below). 

• BCT doesn't get 3D chemotaxis right: 

The BCT simulation is, by construction, incomplete, because it only 

computes chemotaxis to the level of the cheY-P concentration. With 

some additional assumptions, one can map cheY-P concentration onto 

the probability that a single motor will spin CW or CCW. However, it 
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is not understood how the rotary behavior of a single flagellum maps 

onto run/tumble behavior of a bundle of flagella powering a swimming 

cell. For example, the average CW period of an unstimulated motor 

in a tethered cell is about ~1 s, whereas free-swimming cells tumble 

for just ~0.1 s, on average. The source of this discrepancy is not 

well established, and may be due to mechanical interactions among the 

flagella within a bundle. It may also be due to hydrodynamic forces, 

mechanical feedback, the differences in load between tethered and free- 

swimming cells, the statistics of reversals, etc. 

A second difficulty is the experimental asymmetry of responses in gra- 

dients. Although real cells running up a gradient of attractant lengthen 

their runs, cells running down the same gradient revert to baseline be- 

havior, and do not shorten their runs. This 'rectification' phenomenon 

is also reflected in studies of tethered cells in gradients, which show 

differing thresholds in responses to up- and down-ramps of attractant. 

The BCT simulation has not been reported to predict either of these 

phenomena. 

Of course, these are not failings of the model per se, which is known to 

be incomplete, but they prevent detailed simulations of the BCT type 

from predicting quantitatively the behavior of actual bacteria swim- 

ming in real-world gradients. 

• Modeled cells don't manifest the observed sensitivity to chemical gradi- 

ents: 

In addition to a large dynamic range, it has been shown experimen- 

tally that E. coli can respond to the change in occupancy of a single 

receptor over the course of a single run. This poses a problem for sim- 

ulations, which thus far do not have enough intrinsic gain to display 
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single-receptor sensitivity. The gain problem, however, has stimulated 

additonal thinking and a healthy dialog between modeling and experi- 

ment. It can be fixed, in principle, but most attempts to do so sacrifice 

dynamic range and are therefore unsatisfactory. It has been suggested 

that models may need a different kind of amplification. Among the pro- 

posals currently under consideration are variations of the 'zero-order 

ultrasensitivity' mechanism of Goldbeter & Koshland (1981), or cer- 

tain types of motor cooperativity (H.C. Berg and S. Leibler groups). A 

recent proposal by the Cambridge BCT group (Bray, Levin, Morton- 

Firth, 1998) has advanced the idea that chemoreceptors can form het- 

erogeneous clusters of varying size, ranging from a few chemoreceptors 

up to several thousand. If receptor clusters are capable of signaling 

in a cooperative fashion, this mechanism is purported to show both 

large gain and dynamic range. It has not yet been incorporated as an 

integral part of BCT. 

Conclusion 

The BCT program is a casebook example of the astounding complex- 

ity that can quickly develop from attempts to model "simple" examples of 

biological networks. Even with just 6 pathway enzymes, there are well over 

60 reaction rates and about 10 concentrations that need to be considered, 

leading to an enormous number of degrees of freedom. Unless a number 

of additional features are imposed on the underlying model ad hoc, such as 

the 'robust' feedback control of adaptation, chemoreceptor clustering and 

cooperative signaling, motor switch cooperativity and rectification, etc., it 

is difficult to reconcile detailed simulations with all the known features of 

chemotaxis. Its always possible of course, that important connections in 

the biochemical network of chemotaxis are left out, even in a detailed Type 
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A model. The bacterial chemotaxis system supplies an excellent test case, 

however, since it is one of the few systems where quantitative, as well as 

qualitative, data are available for the physiology, where the genetics is com- 

pletely established, and where the biochemistry is fairly complete. In light 

of the experience already gleaned here, it seems reasonable to suppose that 

any difficulties in modeling this superbly well-established system will be ex- 

perienced in even greater measure when confronting metabolic pathways, 

developmental pathways, gene regulatory pathways, sensory modalities, and 

other systems of interest in higher organisms. 
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4    TYPE B MODELING 

4.1    The Hodgkin-Huxley Model 

One of the best known examples of biological modeling is afforded by the 

Nobel Prize winning work of Hodgkin and Huxley (HH) on action potential 

propagation down the squid axon. The biophysics of this problem concerns 

the fact that the conductance of the cell membrane is governed by voltage- 

sensitive ion channels. Typically, the concentration of sodium is much higher 

outside the cell, the reverse being true for potassium; the resting potential is 

roughly -80 mV, set mainly by the Nernst equilibrium voltage for potassium. 

When the membrane is depolarized to, say, -40 mV, sodium channels open 

and, via the above concentration gradient, there is a large influx of Na ions 

leading to further depolarization. The channel kinetics lead to a time scale of 

milliseconds for this voltage change. Afterwards, the sodium channels close, 

the potassium ones open and the resting voltage is restored. 

We regard the Hodgkin Huxley work as an example of "Type B" mod- 

eling, in part because a number of important physical processes involved in 

nerve conduction were simply not known at the time of its creation in 1952. [1] 

This model, nevertheless, gets the basic physics and biochemistry right and 

has stood the test of time. It can also be regarded as a bridge between sim- 

pler, more analytically tractable Type B models and Type A versions which 

attempt to add more details (see below). 

The key to action potential propagation is that neighboring parts of the 

membrane are coupled.   The voltage at one point will cause a current to 
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flow to neighboring sites, leading to their excitation. This system was then 

modeled as a (one-dimensional) partial differential equation for the voltage 

which is coupled to several (for HH-three) ordinary differential equations 

governing channel response and resultant conductivity charges. A Type A 

version of this model would work up from a molecular scale description to 

create an ab initio model of how this physics occurs. In fact, the molecules 

involved (the ion channels) were not even identified at the time of the HH 

work, and instead the currents were modeled phenomenologically. It was 

(and is) a great success story, in that the basic mechanism of membrane 

excitability has remained the key to electric wave propagation ever since, 

even as many molecular constituents were discovered experimentally and 

added to the repertoire of any given cell type generating an action potential. 

It is interesting to note what has happened since the HH model of 

almost half-century vintage. One research direction has pushed this work 

further into the model B camp by finding more analytically tractable equa- 

tions with the same basic excitability mechanism. The most notable of these 

is the Fitzhugh-Nagumo two component reaction-diffusion model [2] which 

serves as the simplest exemplar of nonlinear waves in excitable media. This 

further idealization has proven crucial in efforts to understand phenomena 

more complex than Id waves, notably spiral waves in two dimensions and 

the possibility of spatio-temporal chaotic states. 

Conversely, there has also been a push towards type A versions. For 

example, the Luo-Rudy model of electrical waves in heart tissue [3] tries 

to incorporate all available data on a multitude of ion channels as well as 

keep track of complex internal calcium dynamics, in an attempt to explain 

quantitatively details of the action potential. There is even a push to include 

the stochastic effects arising from channel openings and closing (see Section 

40 



3.2). The model suffers from all the usual type A problems; for example, data 

are not available for all channels in a specific organism and thus experimental 

findings from rabbit, dog and other organisms are blithely combined. Again, 

it is not clear if the attempted faithfulness to the molecular basis of ion 

conductivity is worth the price of having a large unwieldy set of equations of 

unknown reliability. 
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4.2    Analysis of Protein Networks 

Let us return to the E. coli chemotaxis system, which as discussed ear- 

lier, is one of the best characterized molecular systems in biology. Two 

papers [1,2] on this subject appeared at about the same time 3 years ago, 

both addressing the issue of "adaptation", i.e., bacteria's ability to respond 

only to transient changes in the level of external stimuli (see below). How- 

ever, the objectives of these studies, as well as the methodology used and 

the conclusions reached, could hardly be more different. In the following, we 

contrast these two studies in some detail to illustrate the two different types 

of modeling and their respective strengths and weaknesses. 
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By "adaption", we mean an important aspect of the complex chemotaxis 

signalling pathway discussed in Section 3.3. Adaptation insures that bacteria 

such as E. coli are sensitive to gradients of nutrients like aspartate and not 

to absolute concentrations. When the food supply is constant in space and 

time, the flagellar motor "idles" with a mixture of runs and tumbles which 

mimics unbiased diffusion. If a bacterium is then subjected to a step function 

change in the background aspartate concentration I of, say, Al = ±lß M, the 

intervals between tumbles will temporarily lengthen or shorten in response 

to this sudden temporal change. This is the mechanism by which bacteria 

respond to small spatial gradients by sensing a temporal change in the con- 

centration of attractant. However, after an adaption time r, the bacteria 

//m adjusts to the new uniform concentration embodied in the step function 

and the motor reverts to idle. The adaptation precision is the accuracy with 

which a motor reverts back to its initial idle "speed" or switching rate. As 

discussed in Section 3.3, bacteria respond readily to nutrient gradients over 

many orders of magnitude of nutrient concentration. Adaptation precision 

allows this insensitivity to the background nutrient concentration and is a 

desirable property for any mathematical model of bacterial chemotaxis. The 

presence of aspartate gradients, a useful model should also lead to diffusion 

with drift. 

The work of Spiro et al. [1] is the classic example of type-A modeling: as 

declared in their abstract, the study "incorporated recent biochemical data 

into a mathematical model that can reproduce many of the major features 

of the intracellular response, including the change in the level of chemo- 

tactic proteins to step and ramp stimuli such as those used in experimental 

protocols." Thus, the aim of modeling here is to reproduce experiments quan- 

titatively, taking the existing biochemical data as constraints.  In order to 
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accomplish this goal, Spiro et al. found that a minimal model must have 

three (methylation) states. And to achieve adaptation, the rate constants in 

the system need to be "tuned by trial and error". It turns out that despite 35 

years of extensive biochemical studies of the chemotactic system, a great deal 

of freedom (i.e., unknowns) remains, and many aspects of the experiments 

can be reproduced by a sufficiently complicated model only after fine-tuning 

their parameters. The situation here is similar to another Type A theory of 

bacterial chemotaxis, the BCT model discussed extensively in Section 3.3. 

Barkai and Leibler instead address "the issue of the sensitivity of the 

networks to variations in their biochemical parameters". They started from 

a qualüative demand on the system, that the ability of the cell to adapt 

to external enviroment should be "robust", e.g., insensitive to intracellular 

enzyme concentration, and challenged the models to reproduce this property. 

Barkai and Leibler show how the topology of a biochemical network 

can insure robustness in the context of simplified Type B model.   Their 

chemotaxis network tracks only 3 enzyme concentrations and requires only 

9 rate constants as input parameters, in contrast to the 7 proteins and 50 

rate constants used, for example, in the BCT model discussed in Section 3.3. 

Despite its simplicity, the model parameters can be chosen to mimic diffusion 

and drift in the presence of concentration gradients and to display adaptation 

to sudden changes in the background nutrient concentration. These authors 

then study the response of their system of differential equations to a series of 

random factor of two variations in the parameters. These variations, which 

simulate the effect of genetic mutations, lead to an ensemble of models defined 

by over 6,000 different parameter sets. Remarkably, the adaptation precision 

to sudden changes in the nutrient concentration remains extremely high for 

a very large fraction of these models. Robustness of the adaptation precision 
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to parameter changes arises from the network topology, and does not require 

additional fine tuning of parameters. In contrast, the adaption time, initially 

of order 10 minutes, varied greatly from 1 to 100 minutes over the space of 

6,000 different models. Thus the adaptation time is not robust, in contrast 

to the adaptation precision. A chemotaxis network with the topology of the 

simplified Barkai-Leibler model might arise if evolutionary pressures favored 

developing biochemical networks with robustness in the adaptation precision 

and the adaptation time were less important. The simplicity of this model 

allows a clear identification of a simple biochemical network whose topology 

leads to robustness. The property of robustness, uncovered by this analysis, 

could be more general, with realizations in the biochemical circuits of other 

organisms. 

The demand for robustness is reasonable to most biologists, as adapta- 

tion is a critical property for the survivial of bacteria. However, none of the 

existing quantitative models (e.g., refs [1],[3] and [4]) are robust in the sense 

defined by Barkai &; Leibler. A detailed inspection of these models reveals 

that the connectivity of the networks in the models simply does not allow 

robustness. Barkai and Leibler demonstrate instead that a simple network 

with different topology (two internal states of the receptor-kinase complex, 

with demethylation acting only on those in the "activated" state) can attain 

robustness without any fine tuning. The essential ingredient of this model 

is the direct feedback of only the quantity being regulated, in this case, the 

fraction of activated receptor-kinase complex. 

The Barkai-Leibler work is an example of Type B modeling. As dis- 

cussed above, the goal is not to get all the quantitative details right, but 

rather, to demonstrate some qualitative principle, which can easily be missed 

from the detail-laden bottom-up approach typical of type-A modeling. Crit- 
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ics of the Barkai-Leibler model (and more generally type-B modeling) may 

justifiably charge that this approach lacks quantitative predictive value, leaves 

out the robustness of other important quantities, and relies on some hith- 

erto unsubstantiated interaction pathway (in this case, the specificity of the 

demethylase on the hypothesized "activated" form of the receptor-kinase 

complex.) Nevertheless, the qualitative analysis of the Barkai-Leibler work, 

along with evidence from the follow-up experimental work supporting the 

hypothesis of the robustness of adaptaion [5], rules out practically all of 

the pre-existing quantitative models, suggests new experiments to probe the 

network topology, and perhaps most importantly, presents a plausible sim- 

ple mode of feedback regulation which can occur in a much wider range of 

systems than the bacteria chemotactic system it is proposed for.1 Thus, ap- 

propriate type-B modeling complements type-A modeling and can be very 

beneficial in getting the "big picture" right. Unfortunately for historical 

and social reasons, type-B modeling seems under-appreciated in the biology 

community. 

It is important to point out what we view as strength in the Barkai- 

Leibler work is not so much the property of robustness itself. Rather, it is the 

recognition that certain properties of the system are robust while others are 

not. The opposite of robustness is "sensitivity", which may be as important 

(or even more important) to biology than robustness. [In the context of 

engineering, it is often recognized that as one makes certain aspects of a 

system more robust, other aspects become more sensitive [7].] A modeler 

ought to be able to identify in his model some components which are robust 

and others which are sensitive, and understand why they are so. These 

identifications then generate falsifiable predictions which can be tested by 

^his particular mode of feedback regulation is in fact very well known in engineering 
and control theory [6]. 
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experiments. Solid progress in knowledge will only come after close dialogue 

between modeling and experiments. The best way to facilitate such dialogue 

is to encourage both modeling and experimental efforts in the same group. 

Short of direct synergy, it should be the responsibility of the modelers 

to make sufficiently clear predictions (e.g., which properties are sensitive and 

which are robust) to facilitate and stimulate new experiments. 

4.3    Analysis of Gene Networks 

An example of type-B modeling at the level of gene regulation is the 

recent study of the Drosophila segment polarity network by von Dassow et 

al. [8]. As in the Barkai-Leibler work discussed above, von Dassow et al. 

pointed out that the topology of the pre-existing network was insufficient to 

generate the desired output, in their case, the stable, periodic but asymmetric 

expression of the constituent genes wg and en. They noted that by adding 

a few more interactions (consistent with experimental facts) to the network, 

one can obtain the desired output with a wide range of parameters. They thus 

identified the segment polarity network as a robust developmental module. 

While the von Dassow work is a rare example of type-B modeling at 

the multicellular gene network level (with spatial coupling), it falls short in 

terms of analysis, as the only "analysis" in the paper consisted of random 

sampling in the vast parameter space. Consequently, this work can only be 

regarded as suggestive of the existence of some robust module; they in fact 

never identified the underlying module. The failure to identify the underlying 

module and the sensitive nodes in this biochemical network makes the model 

lack predictive value and possible universal transportability to other related 

systems. Thus by the criterion we stated above for type-B models, the work 
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of von Dassow et al. represents an exciting beginning - future efforts to 

extract the underlying module and identify the robust/sensitive components 

are needed to turn it into a mature type-B model.2 

One particular attractive feature of the gene network is that it is much 

more convenient to design and synthesize than the protein network - one can 

choose from the vast number of known DNA-binding proteins, and adjust var- 

ious kinetic coefficients "simply" by modifying the binding sequences. Thus 

qualitative understanding gained from type-B can be tested in vivo using 

appropriately constructed gene networks.3 

Gardner, Cantor and Collins [9] constructed a simple gene "network", 

a 2-state toggle switch similar to that controlling the lysis/lysogeny network 

discussed in Section 3.2. Their biochemical switch is the genetic analogue 

of a flip-flop circuit in digital electronics. Although the natural parameters 

of the genes inserted into E. coli led to a monostable steady state, bistabil- 

ity was achieved by fine tuning promoter sequences. The switching time was 

quite long, of order several hours. Nevertheless, one can imagine applications 

such as sensors and changing gene expression in plants in time of drought. 

Encouraged by their initial success, Canter et al. plan to go on with the mul- 

tiplexing of toggle switches to design more complicated logic functions. An 

interesting theoretical question which arises in this context is the integrity of 

the computation carried out by a network of chemical reactions, which are 

subject to much stronger fluctuations than conventional logic circuits (e.g., 

2 A brief inspection of the model indicates that the key component is a 3-state switch 
which remembers/rectifies a range of initial conditions. The periodicity and asymmetry 
of the segmentation patterns are put by hand into the initial conditions, i.e., they are fine 
tuned. 

3For applications, the down side of gene network is its slow temporal response, order 
of minutes to hours, whereas the protein response time is much faster. It was suggested 
by Charles Zuker that gene networks may be used as storage devices which record various 
encounters by a cell. 
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sensitive temperature dependence of individual rate constants, stochastic ef- 

fects in the presence of a small number of molecules, etc.) These effects make 

biochemical computations much harder to design than their electronic coun- 

terparts. One way to learn is by characterizing simple biological systems, as 

was done in a recent comparative study of the "life" of the phage T-7 [10]. 

The modelers may then be challenged to design different types of artificial 

phages or even more complicated circuits. Modeling in such contexts is nec- 

essarily of type B, since the goal is not to reproduce existing circuits, but to 

"inspire" new circuits from studying products of evolution. The combination 

of type-B modeling and gene network synthesis is in our opinion the most 

fruitful direction to take in the forseeable future, for both the understanding 

of molecular networks in living cells and the application of these networks to 

bioengineering (biosensors, environmental detoxification, etc.). 
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4.4    Hybrid Neural Network Circuit 

As we have indicated, the analysis of genetic circuits is likely to be 

quite fruitful. There is, of course, a well-developed field devoted to modeling 

neural networks. We note the following example [1] in the analysis of a neural 

network in biology which illustrates nicely how modeling and simulation can 

constructively interfere. The system here is actually a neural circuit: the 

pyloric central pattern generator (CPG) of the lobster whose nervous system 

is well understood. 

The relevant assembly of neurons consists of 14 neurons of which a sub- 

assembly consisting of 4 neurons was identified. This subassembly is the crit- 

ical component of the larger system. The 4 neurons are the anterior burster 

(AB), two pyloric dilators (PD) and the VD neuron. The methodology was 

to first measure the activity (intracellular membrane voltage measurements) 

of the neurons in the assembly, focusing on the neurons of the assembly 

together with the LP neuron. 

Analysis of the data indicted that the neural activity could accurately be 

described by a dynamical system involving only 3 or 4 dimensions; a detailed 

13 dimensional Hodgkin-Huxley model for the neuron was also analyzed to 

confirm this conclusion. This simplification enabled the actual construction 

of the electrical neuron (EN). 

The AB neuron plays a role in the activity of this neural circuit. Inacti- 
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vation of this particular neuron destabilized the bursting patterns of the two 

PD neurons (and so adversely affecting the entire assembly of 14 neurons). 

Validation of the EN was achieved by electrically "splicing" the EN into the 

biological circuit (in place of the AB neuron) and demonstrating that in the 

resulting chimera the bursting patterns of the PD neurons were stabilized, 

yielding an overall oscillation quite similar to the original pyloric rhythm. 

In slightly different situations, neurons have been created "in silico" 

based on the Hodgkin-Huxley models, however an analog implementation of 

the AB neuron based on Hodgkin-Huxley models would probably not have 

been possible with the available resources. 

It seems quite plausible that with a library of suitably validated elec- 

trical neurons one could explore the possibilities for neural circuits in ways 

that would not otherwise be possible. 
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5    RECOMMENDATIONS AND CONCLU- 
SIONS 

1. A mix of Type A models, aimed at detailed, quantitative predictions, 

and Type B models, aimed at abstractions away from details to under- 

cover general principles, is appropriate for modeling of cells. Type B 

models are more likely to have an impact in the near future, but Type 

A models have long term prospects for utility in drug testing and as a 

guide to biological experiments. 

2. Modeling efforts should at present concentrate on prokaryotes rather 

than eukaryotes. Modeling of specific pathways or "modules" is more 

promising than whole cell modeling even for prokaryotes at the present 

time. 

3. An adequate knowledge of rate constants is a severe problem for Type 

A modeling. The rate constant fa in particular (which describes the 

diffusive processes by which enzymes and substrates meet and dock) 

is strongly dependent on the cytoplasmic environment. Comparison of 

the enzyme diffusion constant De in vivo vs. in vitro would be a quick 

test of whether in vitro measurements of fa are appropriate to in vivo 

models of cells. Further studies of the properties of the cytoplasm are 

clearly needed to address these issues. 

4. Models with spatial resolution are required for eukaryotes and even for 

some prokaryotes. The development of such models in turn requires 

development of experimental methods that can reveal the spatial and 

temporal biochemical dynamics inside the cell, both to provide input 

for, and to validate or challenge the models.   Such methods might 
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include CT (computed tomography) scans of cells with soft X-rays, 

NMR microscopes and standing wave fluoresence microscopy. 

5. Dialog and/or collaborations between modelers and the experimental 

community is critical. Experimentalists are needed to provide meaning- 

ful challenges to model builders. Modelers should generate nontrivial 

falsifiable predictions. 

6. Standardized conventions (similar to IUPAC protocols for naming chem- 

ical compounds) should be promoted for reporting research on bio- 

chemical pathways, especially for representing topology of modules or 

"circuits". 

7. Standardized tests or competitions should be established for "Type A" 

models. Good models should predict (not "postdict") experimental 

outcomes, (e.g., results of gene knockouts). The test should be tuned 

to the organism of interest. 

8. "Biochemical circuitry by design" (e.g., toggle switches) via manipula- 

tions of gene networks is a particularly interesting area. The time scales 

are slow (~ hours) but such experiments are feasible now. Addition- 

ally, this kind of technology could be used in principle to bioengineer 

better "canary" sensors or to program a cell death switch for bacteria 

after environmental remediation is finished. It is easier to fine tune rate 

constants in genetic networks than in purely proteomic ones, which is 

one of the advantages of this approach. 
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