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Preface 

This volume contains the proceedings of the Fourth Workshop on Hybrid Sy- 
stems: Computation and Control (HSCC 2001) held in Rome, Italy on March 
28-30, 2001. The Workshop on Hybrid Systems attracts researchers from indu- 
stry and academia interested in modeling, analysis, synthesis, and implementa- 
tion of dynamic and reactive systems involving both discrete (integer, logical, 
symbolic) and continuous behaviors. It is a forum for the discussion of the la- 
test developments in all aspects of hybrid systems, including formal models and 
computational representations, algorithms and heuristics, computational tools, 
and new challenging applications. 

The Fourth HSCC International Workshop continues the series of workshops 
held in Grenoble, France (HART'97), Berkeley, California, USA (HSCC'98), Nij- 
megen, The Netherlands (HSCC'99), and Pittsburgh, Pennsylvania, USA (HSCC 
2000). Proceedings of these workshops have been published in the Lecture Notes 
in Computer Science (LNCS) series by Springer-Verlag. 

In line with the beautiful work that led to the design of the palace in which 
the workshop was held, Palazzo Lancellotti in Rome, resulting from the colla- 
boration of many artists and architects of different backgrounds, the challenge 
faced by the hybrid system community is to harmonize and extract the best from 
two main research areas: computer science and control theory. Terminology, ma- 
thematical tools, and abstractions are different, problems considered relevant by 
one community may be considered trivial by the other, yet it is this very diffe- 
rence that may bring new vistas to traditional research fields to escape the trap 
of routine. The steering committee of the workshop series has been appointed to 
guide the directions of the research in troubled water balancing the membership 
among computer scientists, control theorists, and application experts. The tech- 
nical program committee has been assembled following the same principle. The 
committee has done a wonderful job in reviewing and discussing 82 submissions 
(a record number since the inception of the workshop series). All requested re- 
views were received (a world-wide record among all workshops!). After extended 
and, at times, intense discussions, 36 papers were selected for presentation at the 
workshop and publication in this volume. While the technical quality of the pa- 
pers is excellent, we cannot underestimate the preponderance of control theory 
papers and the scarcity of application papers. The theory papers are mainly di- 
rected at the consolidation of the foundations of the field, a hardly unexpected 
outcome in an area that is approaching a new level of maturity. However, the 
lack of relevant application papers is somewhat worrisome. For this reason, we 
preferred to give emphasis to applications in the invited papers to the workshop: 
Manfred Morari (ETH Zurich), Costas Pantelides (Imperial College), and Janos 
Sztipanovits (Vanderbilt University) are all well known for their work in hybrid 
system applications and in embedded-system design. In addition, we included 
in the workshop a panel on applications of hybrid systems. The participants to 
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the panel addressed the challenges of using a richly expressive theory, being, as 
such, relatively poor in computationally affordable synthesis and analysis tools, 
to yield relevant results in the real-life world. They also addressed the issue of 
merging knowledge about tools and methods in control and computer science 
so that we may avoid the risk of re-inventing in one field results that are well 
known in the other. 

We believe that embedded systems will be the main application vehicle for 
our technology and as such deserve particular attention. Embedded systems will 
also be the main application domain for electronics in general. Since embedded 
systems require design methods that guarantee correct and efficient behavior in 
harsh environments, a strong theoretical approach to synthesis and verification 
is badly needed. They are hybrid in nature: continuous and discrete mix freely 
in a variety of application domains. Software and control will play a dominant 
role. Hence, we believe that our community will be an important constituency 
in founding the field of embedded system theory and design. 

We wish to thank the organizations (PARADES, Progetto Finalizzato Ma- 
dess II, Consiglio Nazionale delle Ricerche, Army Research Office, National 
Science Foundation) that financially supported the workshop. Moreover, we ack- 
nowledge the contribution of Magneti-Marelli, an automotive electronics com- 
pany that has put to good use hybrid system technology in its products. In 
particular, the support and continuous encouragement of Dr. Daniele Pecchini, 
President and General Manager of Magneti Marelli Powertrain Division, is ack- 
nowledged. We thank Prof. Richard Gerber for letting us use START, his soft- 
ware conference manager. 

The final remark is dedicated to the Organizing Committee, whose members 
spent long hours making sure everything was correctly handled, from call for pa- 
pers to hotel information, and paper submission. In particular, Andrea Balluchi 
and Luca Benvenuti have spent an inordinate amount of time coping with the 
software, trying to keep all the web material in synch and making sure authors 
submitted the correct versions of their papers and the appropriate documents 
that E-conomy bureaucracy imposes on us. 

March 2001 Maria Domenica Di Benedetto and 
Alberto Sangiovanni-Vincentelli 
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Control as an Embedded Technology 

Manfred Morari 

Automatic Control Laboratory 
Swiss Federal Institute of Technology (ETH) 

CH-8092 Zurich / Switzerland 
morariQaut.ee.ethz.ch, http://control.ethz.ch/"hybrid 

Based on work jointly with 
Alberto Bemporad, Francesco Borrelli, Francesco Cuzzola, Tobias Geyer, 

Domenico Mignone, Fabio Torrisi and Giancarlo Ferrari Trecate 

Abstract. We envision the role of control to expand rapidly in two di- 
rections. It will impact novel application areas, which have yet to benefit 
from the power of feedback, and, as an embedded technology, control 
will extend its reach far beyond the traditional narrow concept to in- 
clude higher level functions of operation. Our research program is built 
on this vision. Eventually, these ideas should also radically change what 
is taught in our class rooms, so that our students can transfer these 
techniques to industry effectively and reap its benefits. 
In all control applications the actual control algorithm is just one tiny 
part of the overall system designed to ensure safe, reliable and economi- 
cal operation. Success or failure of "operation" are attributable at least 
as much to "the rest" as to the control algorithm itself. At the lowest 
level the control algorithm is endowed with functionality to deal with op- 
erating constraints and to switch smoothly between different operating 
regimes. At the highest levels the control algorithm may be embedded 
in a scheduling system or even an Enterprise Resource Planning (ERP) 
system. At all levels this embedding creates a heterogeneous system com- 
prised of many interacting subsystems, typically referred to as a hybrid 
system. 
The integration should eventually lead to a safer, smoother, more re- 
sponsive and more competitive functioning of the entire system or or- 
ganization. About three years ago we embarked on a major research 
program toward this goal. Its objective is the development of new theo- 
retical tools to model, analyze, simulate and control such large complex 
hybrid systems involving continuous and discrete states, whose behavior 
is governed by dynamics, logical statements and constraints. In this talk 
we will summarize the highlights and try to put them in perspective. 
Modeling and Simulation: The models should facilitate the analysis and, 
at the same time, capture the complex behavior, that hybrid systems are 
known to exhibit. Based on these considerations, we introduced a discrete 
time description, combining linear dynamics with Boolean variables. This 
mixed logical dynamical form (MLD) form is capable to model a broad 
class of systems arising in many applications from the automotive, air- 
craft, chemical and information technology fields. Supply chains used in 

M.D. Di Benedetto, A. Sangiovanni-Vincentelli (Eds.): HSCC 2001, LNCS 2034, pp. 1-2, 2001. 
(c) Springer-Verlag Berlin Heidelberg 2001 
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business models can be conveniently modeled as MLD systems as well. 
We denned a new modelling language (HYSDEL) and wrote a compiler 
to assist the user in the formulation of MLD models. 
Controller Synthesis: For controller synthesis we formulate a finite hori- 
zon optimal control problem and apply the result in a moving horizon 
fashion. For MLD models the optimization problem is a mixed-integer 
linear program (MILP) which must be solved in real time at each sam- 
pling time. We have proven that the resulting state feedback control law 
is piece-wise linear over a polyhedral partition of the state space. As an 
alternative to on-line optimization, we can determine this control law 
explicitly by solving a multi-parametric MILP. 
State Estimation and Fault Detection: For application of the described 
control law the system states must be known. Estimation of the states 
of an MLD system is a complex nonlinear filtering problem. We have 
defined a moving horizon estimator, where at each time step a mixed in- 
teger quadratic program must be solved to arrive at the state estimates. 
We have proven the convergence of the estimator if certain observability 
properties are satisfied. Complex fault situations can be modeled accu- 
rately in the MLD framework. Fault detection is another application of 
the new estimator. 



Optimisation of Hybrid Processes and 
Hybrid Controllers 

Costas C. Pantelides1,2 

1  Centre for Process Systems Engineering 
Imperial College of Science, Technology and Medicine, London, UK 

2 Process Systems Enterprise Ltd., London, UK 

Abstract. Most processes of practical interest are hybrid in nature, ex- 
hibiting both continuous and discrete characteristics. In many cases, the 
hybrid behaviour is a result of intrinsic physical phenomena that lead 
to (practically) instantaneous events such as the appearance and disap- 
pearance of thermodynamic phases, changes in flow regimes, equipment 
failures etc. All such events effect qualitative changes in the underlying 
continuous dynamics, thereby leading to hybrid macroscopic behaviour. 
In other cases, the hybrid nature arises from external discrete actions 
imposed on the process by its control system. For example, the latter 
may apply quantisation to convert continuous process measurements into 
discrete ones and/or continuous control outputs into discrete actions. 
Hybrid processes and hybrid controllers, and their combination, can be 
modelled in terms of State-Transition Networks (STNs). The system be- 
haviour in each state is described by a different set of continuous equa- 
tions (typically a mixed system of partial and/or ordinary differential 
and algebraic equations). At any particular time during its operation, 
the system is in exactly one such state. An instantaneous transition to a 
different state may take place if a certain logical condition becomes true. 
Each transition is also characterised by a set of continuous relations that 
determine unique values for the system variables immediately following 
the transition in terms of their values immediately preceding it. 
In this presentation, we consider mathematical formulations and tech- 
niques for the optimisation of hybrid systems described by STNs. This 
generally seeks to determine the time variation of a set of controls and/or 
the values of a set of time-invariant parameters that optimise some as- 
pect of the dynamic behaviour of the system. The time horizon of interest 
may be fixed or variable, subject to specified lower and upper bounds. 
The equations that determine the system behaviour in each state may 
be augmented with additional inequality constraints imposing certain 
restrictions (related to safety or operability) on the acceptable system 
trajectories. The objective function to be minimised or maximised is usu- 
ally a combination of fixed contributions (depending on the values of the 
time-invariant parameters) and variable contributions (depending on the 
system trajectory, including the variation of the controls). 
As an illustration, we start with simple linear systems operating in the 
discrete time domain, possibly involving uncertain parameters. We then 
proceed to consider the more complex problem of the optimisation of 
nonlinear hybrid systems operating in the continuous time domain. 

M.D. Di Benedetto, A. Sangiovanni-Vincentelli (Eds.): HSCC 2001, LNCS 2034, p. 3, 2001. 
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Embedded Software and Systems: 
Challenges and Approaches 

Janos Sztipanovits 

Department of Electrical Engineering and Computer Science, 
Vanderbilt University, Nashville, TN, USA 

Abstract. One of the most pervasive applications of computing is infor- 
mation processing tightly integrated with physical processes. Embedded 
computing rapidly takes over the role of being a universal integrator for 
physical systems. This trend is based on a fundamental technical reason: 
digital information processing is uniquely suitable for controlling and 
implementing complex interactions among physical system components. 
The expanding integration role of computing challenges the state-of-the- 
art in both system and software design. First, the traditional separation 
of related design disciplines is not maintainable. Predictability of the 
design requires integrated modeling and analysis of physical processes 
and information processing. Second, the narrow focus of current software 
technology on functional composition is not sufficient. Essential physi- 
cal properties of embedded computing systems, such as timing, noise or 
fault behavior, cut across functional boundaries, which makes software 
design and implementation extremely hard and expensive. Third, design 
technologies, which are based on the modeling and analysis of systems 
with static structure, are becoming inadequate. Although networked em- 
bedded computing combined with inexpensive MEMS-based sensors and 
actuators make the construction of large physical systems with continu- 
ously changing structure and physical interactions feasible, their design 
is an open challenge. 
The first part of the talk provides an overview of the unique challenges 
and new research directions in embedded system and software design. 
The second part of the talk describes the Model-Integrated Computing 
(MIC) approach to address some of these challenges. Using the design 
of structurally adaptive embedded processing systems as example, the 
following three topics will be covered: 

1. Methods and tools for the specification and construction of multiple- 
view, domain-specific modeling languages and integrated design en- 
vironments. The MIC approach is based on the application of meta- 
modeling, meta-programmable modeling tools and model translators 
that form the foundation for composable design environments. 

2. Automated synthesis of processing architectures satisfying multiple 
functional and physical constraints. The method described is based 
on symbolic constraint satisfaction. 

3. Application of generative programming techniques with special em- 
phasis on model-based software generators. 

M.D. Di Benedetto, A. Sangiovanni-Vincentelli (Eds.): HSCC 2001, LNCS 2034, p. 4, 2001. 
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Hybrid systems are richly expressive models for a large variety of potential ap- 
plications. However, being so rich as to include continuous nonlinear dynamical 
systems, discrete-event systems and other models of computation (finite-state 
machines and data flow come to mind here), they are not amenable to com- 
putationally attractive techniques for synthesis and analysis and present hard 
numerical problems to simulation. Hence, applying the methods typical of this 
technology requires non trivial amount of approximation and abstraction. And 
approximation and abstraction are effective only if the domain of application 
is deeply understood. Thus, significant applications of hybrid systems require a 
great deal of work both to select the right abstraction level and to derive algo- 
rithms that exploit the particularities of the domain of application. In addition, 
one needs to motivate and document convincingly why using hybrid systems can 
yield better results than other techniques. In this respect, there has been an on- 
going debate as to what constitutes a meaningful result in applications: on one 
hand, novel languages for describing hybrid systems and capturing their prop- 
erties may be considered sophomoric exercises by experts in languages, on the 
other, formal verification tools that in general can handle small systems may be 
seen as toys for who is trying to tame entire chemical plants. On the simulation 
front, how to deal with discontinuities of trajectories is a major issue. Numerical 
analysts have been looking at these problems only recently and with a great deal 
of skepticism as to what can be proven rigorously. Hybrid system researchers are 
now getting seriously in the simulation arena exploiting what has been done in 
the numerical analysis arena. 

The goal of the panel is to bring experts from the two reference communi- 
ties of hybrid systems (computer science and control) to debate whether hybrid 
system applications can indeed be compelling and what can be done to prevent 
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naive work on both sides when straddling across competence domains. Simula- 
tion and verification in general will also be discussed in the frame of the work 
done in numerical analysis. Predicting the outcome of the panel, we would like 
to end with a positive note: hybrid system technology is relevant to important 
applications but it has to be handled with great care and pushing the cart all in 
the same directions will give the hybrid system community the relevance it has 
the right of aspiring to. 
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Abstract. An approach to estimation for a class of hybrid discrete-time 
linear systems using Luenberger observers is presented. The proposed 
Luenberger observer for such a kind of systems relies on the switching 
among different gains. Convergence conditions have been found to ensure 
the stability of the error dynamics and the related gains may be selected 
by solving a set of linear matrix inequalities (LMIs). Moreover, this ob- 
server may be improved by suitably updating the estimate using the last 
measures. This update enables one to reduce the norm of the estimation 
error and is based on the so-called projection method. Simulation results 
are reported to show the effectiveness of these methods in the estimation 
for hybrid discrete-time linear systems. 

1    Introduction 

Hybrid systems have recently gained a great attention and the research in this 
area has been devoted more to control problems. In this work, the subject is the 
state estimation for a class of hybrid systems described by switching discrete-time 
linear equations. Switching systems are well-suited to dealing with applications 
like, for example, gain scheduling, reconfigurable control, and fault diagnosis, 
which enable one to point out the importance of constructing observers for such 
systems. 

The problem of estimating the state of a switching system was originally 
stated in [1]. Later on, a lot of researches investigated the issues related to such 
a problem in a probabilistic framework, i.e., supposing that the transitions occur 
according to a model described by a first-order Markov chain. Difficulties may 
arise in the solution of optimal Bayesian estimation problems and the interested 
reader is referred, among others, to [2] and [3]. Another relevant topic concerns 
the so-called multi-model estimation. Such a subject is quite vast and involves 
many application-oriented problems (for an introduction, see [4]). Summing-up, 
all the above-mentioned approaches rely on a stochastic setting and the switching 
event is supposed unknown. Here, we focus on the problem of estimating the 
state of a switching system by assuming to know both time and mode of the 

M.D. Di Benedetto, A. Sangiovanni-Vincentelli (Eds.): HSCC 2001, LNCS 2034, pp. 7-18, 2001. 
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switching. Nevertheless, also in this context, the problem remains hard to solve 
for the difficulties of both guaranteeing the stability of the estimation error and 
devising a suitable, efficient observer design procedure. It is worth noting that 
we will make no assumption on the probabilistic description of the system mode 
transitions to derive the stability results of the proposed estimation methods. 

Gain switching observers for continuous-time nonlinear systems have been 
considered in [5], where stable switching laws are searched for with different 
Lyapunov functions for each gain. A different approach based on coprime factor- 
ization is proposed in [6] to construct an observer for switching continuous-time 
linear systems. In the present paper, the goal is to find an estimator with a 
stable estimation error in the presence of any switching in a given finite set of 
admissible system modes. Such a problem turns out to be more difficult than 
the standard design of Luenberger observers for time-invariant linear systems. 
In this case, a Luenberger observer provides a convergent error dynamics if and 
only if the gain is chosen such that the poles of the error dynamics are in the 
strictly stable region. This condition is not sufficient to ensure the stability of 
the estimation error for a switching linear system. The gain selection of a switch- 
ing observer is nontrivial as it involves the typical stability issues of the hybrid 
systems (for an introduction, see [7], [8], and [9]). In our case, the solution of 
this problem has been addressed by seeking a common Lyapunov function. This, 
in turn, can be reduced to the fulfillment of linear matrix inequalities (LMIs), 
which allow one to easily obtain a solution in a computationally feasible way. 

An improvement to this Luenberger observer has been made by applying a 
projection method [10,11] to update the current estimate using the last mea- 
sures. The resulting estimator exhibits a stable error dynamics if the same LMI 
relationships found for the first estimator are satisfied. In addition, the new ob- 
server results in higher performance, as this update provides a reduction of the 
estimation error. 

The paper is organized as follows. Section 2 is devoted to the problem of 
constructing a Luenberger observer for switching discrete-time linear systems, 
with a particular emphasis on the stability of the error dynamics and on the 
development of an LMI approach to synthesize such observers. In Section 3, 
a modified Luenberger observer with the related stability analysis is proposed 
that enables one to estimate the state of the system using also the last available 
measures. Simulation results are illustrated in Section 4 to show the performance 
of the proposed estimation methods. The conclusions are drawn in Section 5. 

2    Switching Observers for Discrete-Time Linear Systems 

Consider the discrete-time linear system 

where xt e R™  is the state vector, ut e Rp is the input vector,  yt e Rm 

is the measure vector, and  a : N —> {1,2, ...,&}  is a function that maps 
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the index time stage into an index set {1,2,..., k} . Each of the indices cor- 
responds to a different model of the system and measurement equations, i.e., 

Ar(t)   G  A =  {A1,A2,...,Ak},  Ba(t)   G  B =  {B1,B2,...,Bk},  Ca{t)   G 
A 

C = {Cj, C2,..., Cfc} , where At G Bi G R"xp, and d G for 
i = 1,2, , k. We assume that the matrices Cj G i = 1,2,.. .,k, are 
of full rank m < n and the output of the function a(-) is known at time t. 
Anyway, it is worth noting that the matrices Ba(t) and CCT(t) with time-varying 
dimensions in the number of columns and rows (i.e., of p and m, respectively) 
are allowed. A switching observer for (1) is the following: 

xt+i=ATit)Xt + BaWUt + La{t){yi-Ca{t)xt)     ,    t = 0,l,...       (2) 

where x0 = 50 is chosen "a priori" and LCT(t) is the observer gain at the time 

t, La{t) G C = {Li, L2,.. •, Lk), and U G 
representation of such an observer is shown in Fig. 1. 

i = 1,2,..., k. A pictorial 

Fig. 1. Scheme of a switching observer. 

Note that these gains may change in such a way that the dimension m will 
vary over time due, for example, to a variable number of available measures at 

time t. The dynamics of the estimation error (i.e., et = xt — xt) behaves like a 
switching dynamic system, thus a common Lyapunov function is searched for to 
ensure stability. Now, we can state the following theorem. 

Theorem 1. Consider the system (1) and assume that the pairs (At,Ci), i = 
1,2,..., k, are observable. If there exists a symmetric positive definite matrix P 
as the solution of the algebraic Lyapunov inequalities 

(Ai-LidfPiAi-LiCJ-PKO    ,    i = l,2,...,fc (3) 

then the observer (2) involves an estimation error asymptotically convergent to 
zero. 

D 
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Proof of Theorem 1. Let us prove the result stated in Theorem 1. The 
error dynamics may be computed by means of equations (1) and (2) 

et+1 = (Aa{t) - La(t) Ca{t)) et    ,    £ = 0,1,... 

If we consider the Lyapunov function Vt = ej Pet, where P is a symmetric 
positive definite matrix, we obtain Vt+1 < Vt, Vet e R

n , if 

(K«£i-La{t)Ca{t))
T P{Aa{t)-La{t)Ca{t))-P<0    ,    £ = 0,1,...     , 

and then (3) may be easily derived. 

■ 

It is important to recall that the assumption on the observabilty of the pairs 
(A4, Ci), i = 1,2,..., k, is necessary to guarantee that each inequality in (3) may 
admit a solution for a given positive definite matrix P, but the existence of a 
common P satisfying all the inequalities is required to ensure stability. As it is 
difficult to find a common Lyapunov function once the gains L,, i = 1,2,... ,k, 
have been selected, we will try to find the gains and the positive definite matrix 
P simultaneously. Thus, the goal is to solve the following problem. 

Problem 1. Find Li, i = l,2,...,k, such that there exists a symmetric positive 
definite matrix P solving the Lyapunov inequalities 

(Ai-LidfPiAi-LiCJ-PKO   ,    t = l,2,...,jb    . (4) 

D 

The above problem may be reduced to a simpler form that is well-suited 
to being solved by an LMI method. To this end, let us consider the following 
lemma. 

Lemma 1.  Given a symmetric positive definite matrix P, an inequality 

(Ai-LiCifPiAi-LiCJ-PKO (5) 

is equivalent to 

P PAi-YiCA 
(PAt-YiCif P J>° (ß) 

where Li = P-1Yi, i = l,2,...,k. 

a 

Proof of Lemma 1. Let us recall the well-known Schur complement 

\S
T
R) 

>0 ^ R>0,Q-SR~1ST>0 ^ Q>0,R-STQ~1S>0 
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where R, S, and Q are matrices of appropriate dimensions. If we apply this 
result by taking Q = P, S = P Ai — YiCi, and R = P, we can easily verify 
that (6) gives (5) if Li=P~1Yi. 

To sum up, the solution of Problem 1 can be obtained by solving the following 
LMI problem. 

Problem 2. Find P > 0 and Yt, i = 1,2,..., k, such that 

P PAi-YiCA 
T       * >0    ,    1 = 1,2,...,*    , (7) 

□ 

XPAi-Yid)1 P 

and take the observer gains L, = P~x Yi. 

Problem 2 is simpler than Problem 1, as the former is linear in the unknown 
parameters, whereas the latter is quadratic at the first glance. Moreover, the 
formulation of Problem 2 fits the so-called LMI framework [12], which enables 
one to solve it by means of convex programming algorithms. Efficient numerical 
methods for convex optimization are available, and the reader is referred to [13] 
for an introduction on this subject. 

3    An Enhanced Projection-Based Luenberger Observer 

The Luenberger observer (2) provides an estimate of the state at time t + 1 
using the measures available at time t by means of yt. As a matter of fact, we 
aim at determining the estimate xt+1 using also Vt+1 like a standard Kaiman 
filter. To this end, a method is proposed and consists in updating the estimate 
given by the Luenberger observer (2) by means of the projection method [10,11], 
which allows one to take into account the last measures. More specifically, this 
estimation method is performed as follows: 

£t+i 

4r(t) 2t+ + Ba{t) ut + La(t) (yt - Ca(t) x+)    ,    t = 0,1,... 

£t+l + P~1Ca(t+l) {Ca(t+l)P~1C<r(t+l))        (h+1 ~ C<r(t+1) %t+l ) 

(8) 

where  x$   = x0  is chosen "a priori",  £a(t)   is the observer gain at time  t, 

i.e., i,j(t) £ C- = {Li,L2,---,Lk}, and P is a positive definite matrix. The 
update that enables one to derive the new estimate x£+1 using xt+1 and the 
last measure vector Vt+1 is based on a simple geometrical idea we will illustrate 
in the following. 

For the sake of notational simplicity, let assume xt+1  is measured at time 
t + 1 by means of Vt+1 = Cxt+1 (i.e., C is used instead of Ca^t+1^). Moreover, 
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we regard xt+1  as an "a priori" estimate of xt+1  at time t + 1 and want to 

determine a new estimate xf+1 such that jje^_j_11 < ||et+1||, where e^+1 = 
xt+1 —xt+1. The state space can be decomposed into two orthogonal subspaces, 

like, for example, the null space of C (i.e., N (C) = {x£Rn : Cx = 0}) and its 

orthogonal space TV (C) using the scalar product < x, z >p= xT P z, x,z£ 
M™ (this scalar product is well-defined as the matrix P is positive definite). 
If P is taken equal to the identity matrix, it is easy to verify that N (C) is 
Rif^) (i-e., the space spanned by linear combinations of the columns of the 
matrix CT). 

R(C) 

Fig. 2. Sketch to explain the projection method (C replaces CCT(t+1)). 

The decomposition can be accomplished by means of the subspaces given by 
R(P_1 CT) and its orthogonal complement, instead of JV (C)'L and N (C). 
The reason for using this subspace decomposition concerns the stability of 
the estimation error as it will be clarified in the following. Fig. 2 pro- 
vides a meaningful geometrical interpretation of the projection method and 
enables one to illustrate the rationale for the proposed approach. As can 
be  noticed  in Fig.   2,  the  projection of   xt+l   on   fi(P_1 CT)   is  equal  to 

P~lCT (CP-1CT)     Cxt+1, i.e.,  p-1C7r(CP-1CT)~1 Vt+1. Note that the 
,-i 

projection matrix P~lCT {CP~lCT) * is well-defined as the matrices C, € 
Rmx" , i = 1,2, ...,k (i.e., C in this case) have been assumed of full rank 
m < n. In practice, the estimate of xt+l is obtained by projecting xt+1 on the 
subspace corresponding to the new measure Vt+l, which provides a new esti- 

mate xt+1  such that the corresponding estimation error e£+1  is smaller than 
A pictorial representation of ll^t+il < -*+i I that of the previous error, i.e. 

the observer (8) is shown in Fig. 3. 
As far as it concerns the stability of estimation error associated to (8), we 

can state the following result. 
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L A°«) 

B"M 

B<Ht) 

I— c, Ut+i 

d 

3H p-1 <1+1, (c0(1+1) P-> c^t) y i— 

+? c«m — 

*6— LaW 

Fig. 3. Scheme of a switching projection-based observer. 

Theorem 2. Consider the system (1) and assume that the pairs (Ai,Ci), i = 
1,2,... ,k, are observable. If there exists a symmetric positive definite matrix P 
as the solution of the algebraic Lyapunov inequalities 

(Ai-LidfPiAi-LiCJ-PKO    ,    z = l,2,...,fc (9) 

then the estimator (8) involves an estimation error asymptotically convergent to 
zero. 

Proof of Theorem 2. The estimation error before the projection update is 
given by 

et+1 = (Aa{t) - La{t) CaW) e+    ,    t = 0,1,...    . (10) 

As a consequence of the update based on the measure  Vt+1, the estimation 
-l 

I-P 1cJ(t+1)\clT{t+1)p 
1c^t+1)j   ca{t+1) error becomes e++1 

In order to prove that the resulting estimator is stable, consider the Lyapunov 
functions Vt = §J Pet and Vt

+ = efT Pef , where P is a symmetric positive 
definite matrix. The goal is to demonstrate that the estimation error ef con- 
verges asymptotically to zero by proving that Vt

+ is decreasing in t, Ve/' e M.n ■ 
To this end, it is sufficient to demonstrate that V^ < Vt+i, t — 0,1,... as, 
from (10), it is obvious that Vt+i < Vt

+ , Ve/" G M" if the Lyapunov inequalities 
(9) are satisfied (see also the proof of Theorem 1). Thus, let us consider 

vt\i =   et+1 - P~l Cl{t+l) \Ca(t+1) P
_1 <?J(t+1)J      CCT(t+1) et_, 

i) \Ca(t+i) P    Ccr(t+i)J      Cff(t+1)et+1 

Ca(t+l) \pa(t+l) P~   CCT(t+l)J        Ca(t+l)§t+l 

-p-1 cl 

= Vt+1  -e 
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and we can conclude since -ej+1 Cj(t+1) (ca(t+1) P"1 Cj(t+1))     Ca(t+1) et+1 < 0, 

Vef+1 e 

The design of the observer (8) can be accomplished by solving the related 
Problem 2 in order to satisfy (9) as the requirements to apply the projection 
update are only that P is a positive definite matrix and the matrices Cj G 
Rmx" , i = 1,2,..., k, are of full rank. 

The projection method has been successfully applied to the estimation 
of a class of continuous-time nonlinear systems with asynchronous measure- 
ments [14]. Moreover, the performance improvements provided by the projection 
method will be highlighted by means of the simulation results presented in the 
next section. 

4    Simulation Results 

In order to show the effectiveness of the proposed estimation methods and the 
feasibility of the related LMI design procedure, let us consider the simple me- 
chanical system depicted in Fig. 4. 

6, 

Fig. 4. Simple mechanical system. 

The continuous-time dynamics of the system is given by the following equa- 
tion: 

(x(t) = Ax(t)+Bu(t) 
\y(t) = Ca{t)x(t) (11) 

where x(t) = [xi{t),x-1(t),xz(t),xi{t)]T e R4 is the state vector and u(t) G R 
is the scalar input. More specifically, xi(t) is the position and of the mass mi, 
x2{t) is the speed of mi, x3(t) is the position of the mass m2 , and x4(t) is 
the speed of m2 . The matrices A and B are as follows: 

A 

/ 0 1 0 1      \ 
-(k\ + k2)/mi -bi/mi -k2/mi       0 

0 0 0 1 
\        k2/m2 0       -k2/m2 -b2/m2J 

Bt 1/mi 
0 

V    °    ) 
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where the parameters are kx = 0.0642 Kg/s2, k2 = 0.1925 Kg/s2, mj = 
5.1962 #3, m2 = 1.7321 Kg, h = 0.8660Kg/s, and b2 = 0.1732Kg/s. 
The system is switching in that the matrix Ca(t) 

can assume values in the set 
{Ci,C2,C3,C4} with Ci = (1,0,0,0,), C2 = (0,1,0,0), C3 = (0,0,1,0), and 
C4 = (0,0,0,1). The choice among the four candidate measurement equations is 
random, with the same probability of occurrence. The system is observable with 
any of the four measurement equations. The input u(t) was taken to be equal to 
a sinusoidal force, i.e., u(t) = ku sm{wt), where, for each simulation run, ku 

and w were randomly chosen in [0.0,4.0] N and [0.1,0.6] rad/s, respectively. 
Moreover, the initial states were randomly Gaussian distributed around 0 with 
standard deviations 5.0,2.0,5.0, and 2.0 for x\,x2,x3, and X4, respectively. 

A corresponding discrete-time model was obtained for the same system dis- 
cretizing equation (11) by means of a simple Euleur's approximation with a time 
step equal to 0.1s. In the discrete-time setting, the standard routines of the 
Matlab LMI Control Toolbox [15] provided the following solution to Problem 2: 

P=10 

Li 

(   0.1331    0.1175 
0.1175    1.4445 

-0.0873 -0.0371 
\-0.0159-0.1386 

/   1.0028 \ / 
-0.0623 

0.9016 
\-0.0280/ V 

-0.0873 
-0.0371 

0.0960 
0.0351 

-1.5816\ 
1.0246 

-1.1822 
0.1874/ 

-0.0159\ 
-0.1386 
0.0351 
0.8227/ 

/ 

La = 

V 

0.6846 \ 
-0.0325 

1.0065 
-0.0386/ 

/   0.4669 \ 
0.1131 
0.6561 
0.9940/ V 

The root mean square (RMS) error was considered as a performance index. This 
error for the scalar variable Xi(t) with respect to its estimate £i(t) at the time 
t for N different trials is defined as 

RMSi{t) 
A 

N 4(i)-xi(t) 
n2 

N 
(12) 

where x\ (t) is the value of the variable in the j'-th run, x\ (t) is the estimate of 
x{(t), and i = 1, 2, 3, and 4. In Fig. 5, the simulation results obtained with the 
two proposed observers using the above-written gains and with initial estimated 
state equal to 0 are shown as far as it regards the RMS estimation error on 
500 trials (i.e., N = 500) with different choices of ku , w, initial state vectors, 
and switching sequences. As can be noticed in Fig. 5, the enhanced Luenberger 
observer exhibits a faster convergence rate. The trajectories of the true and 
estimated state variables for a single random-chosen simulation run are shown 
in Fig. 6. 
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Fig. 6. True values and estimates of the switching observers for a single realization. 
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5    Conclusions 

In this paper, estimation for a class of hybrid systems has been considered. First, 
we have addressed the problem of designing a Luenberger observer for a class of 
switching discrete-time linear systems. Conditions ensuring the stability of the 
error dynamics for such an estimator have been found and an LMI formulation 
has been presented to synthesize the gains in a straightforward, efficient way. 
Second, an enhanced Luenberger observer has been proposed to perform esti- 
mation using also the last available measures. The stability of the estimation 
error for this modified Luenberger observer has been proved under conditions 
that can be ensured by solving the same LMI problem of the first estimator. The 
simulation results obtained with such observers for a simple mechanical system 
show both that, as expected, the proposed estimators are stable and that the 
enhanced Luenberger observer results in higher performance. 

Future work will concern the application of the proposed approach to real 
cases (see [14]), where conventional estimation methods based on Kaiman filter- 
ing may perform poorly. Moreover, further theoretical investigations will regard 
the extension of the switching observer to a more general framework, e.g., with 
noises acting on the system and measurement equations and nonlinearities af- 
fecting the dynamics. 
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Abstract. In a biological cell, cellular functions and the genetic regula- 
tory apparatus are implemented and controlled by a network of chemical 
reactions in which regulatory proteins can control genes that produce 
other regulators, which in turn control other genes. Further, the feed- 
back pathways appear to incorporate switches that result in changes in 
the dynamic behavior of the cell. This paper describes a hybrid systems 
approach to modeling the intra-cellular network using continuous differ- 
ential equations to model the feedback mechanisms and mode-switching 
to describe the changes in the underlying dynamics. We use two case 
studies to illustrate a modular approach to modeling such networks and 
describe the architectural and behavioral hierarchy in the underlying 
models. We describe these models using CHARON [2], a language that 
allows formal description of hybrid systems. We provide preliminary sim- 
ulation results that demonstrate how our approach can help biologists 
in their analysis of noisy genetic circuits. Finally we describe our agenda 
for future work that includes the development of models and simulation 
for stochastic hybrid systems.1 

1    Introduction 

In order to survive, organisms continuously monitor their surroundings and, if 
necessary, adjust traffic through simple or complex combinations of genetic and 
metabolic networks to respond to alterations in local conditions. Local condi- 
tions include both the physical environment, for example, temperature (the heat 
and cold shock response), nutrient and energy source concentrations (the strin- 
gent response), light (circadian rhythms), cell density (quorum sensing response) 
as well as the molecular environment of individual regulatory components. Ex- 
amples of the latter include intracellular concentrations of transcription factors 
and allosteric effectors. The availability of complete genomic information for a 
wide variety of organisms and the consequent attention on proteomics has dra- 
matically increased the number of systems and components of systems that are 
involved in these sensing and responding activities [4,10]. Understanding how 

1 This research was supported in part by DARPA/ITO Mobies project (grant number 
F33615-00-C-1707) and NSF grant CDS-97-03220. 

M.D. Di Benedetto, A. Sangiovanni-Vincentelli (Eds.): HSCC 2001, LNCS 2034, pp. 19-32, 2001. 
© Springer-Verlag Berlin Heidelberg 2001 
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these biological systems are integrated and regulated and how the regulation 
may be influenced, possibly for therapeutic purposes, remains a significant chal- 
lenge. 

In this paper we model and simulate examples of genetic and metabolic net- 
works using a hybrid systems approach that combines concepts and tools from 
control theory and computer science. First we analyze a previously published 
plasmid-based genetic network that was designed and synthesized using three 
repressor transcription factors where one repressor negatively regulates the pro- 
duction of a subsequent repressor [7]. Then we model a biologically important 
genetic network that controls the quorum sensing response, an adaptive response 
of certain gram negative bacteria to local population density [13,17]. The quorum 
sensing response controls the luminescent behavior in certain strains of Vibrio 
which has been linked to the normal development of the bacterial host [18] as 
well as to medically important phenomena such as biofilm formation by Pseu- 
domonas aerugenosa, an organism that can cause overwhelming pneumonia and 
septic shock [11,20]. 

2    Modeling 

The genetic circuits and biomolecular networks considered here and elsewhere 
are remarkably similar to hybrid systems encountered in engineering, for exam- 
ple embedded systems. In particular, it is worth noting the following three key 
features: 

Concurrency and communication. At the intra-cellular level, proteins and 
mRNAs are agents communicating with each other and influencing each 
other's behavior. At the inter-cellular level, cells can be viewed as networked 
agents interacting with each other via different communication mechanisms. 

Discrete and continuous behaviors. At the lowest level, the evolution of en- 
tities such as proteins can be described by differential equations. Discreteness 
arises in two ways. First, a certain activity may be triggered only when the 
concentration of enabling quantities is above the desired threshold. This leads 
to discrete switching between active and dormant states. Second, different 
models may be appropriate at different levels of concentration. 

Stochastic behavior. Evolution of entities is not deterministic, and is better 
captured by stochastic models that allow for uncertainty and noise. 

These characteristics are typical of high-level models of embedded software such 
as autonomous communicating mobile robots. For describing such systems, we 
have developed the language CHARON [2] which incorporates ideas from con- 
currency theory (languages such as CSP [12]), object-oriented software design 
notations (such as Statecharts [9] and UML [3]), and formal models for hybrid 
systems (such as hybrid automata [1] and hybrid I/O automata [15]). The key 
features of CHARON are: 

Architectural hierarchy. The building block for describing the system ar- 
chitecture is an agent that communicates with its environment via shared 
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variables. The language supports the operations of composition of agents to 
model concurrency, hiding of variables to restrict sharing of information, and 
instantiation of agents to support reuse. 

Behavior hierarchy. The building block for describing flow of control inside an 
atomic agent is a mode. A mode is basically a hierarchical state machine, that 
is, a mode can have submodes and transitions connecting them. Variables 
can be declared locally inside any mode with standard scoping rules for 
visibility. Modes can be connected to each other only via well-defined entry 
and exit points. We allow sharing of modes so that the same mode definition 
can be instantiated in multiple contexts. Finally, to support exceptions, the 
language allows group transitions from default exit points that are applicable 
to all enclosing modes. 

Discrete updates. Discrete updates are specified by guarded actions labeling 
transitions connecting the modes. Actions can have calls to externally defined 
Java functions which can be used to write complex data manipulations. It 
also allows us to mimic stochastic aspects through randomization. 

Continuous updates. Some of the variables in CHARON can be declared ana- 
log, and they flow continuously during continuous updates that model pas- 
sage of time. The evolution of analog variables can be constrained in three 
ways: differential constraints (e.g. by equations such as x = f(x,u)), alge- 
braic constraints (e.g. by equations such as y = g(x, u)), and invariants (e.g. 
|rc — 2/[ < e) which limit the allowed durations of flows. Such constraints can 
be declared at different levels of the mode hierarchy. 

Modular features of CHARON allow succinct and structured description of 
complex systems. Similar features are supported by the languages SHIFT [6] and 
STATEFLOW (see www.mathworks.com). In CHARON, modularity is not only ap- 
parent in syntax, but we are developing analysis tools (such as simulation) that 
exploit this modularity. Furthermore, CHARON has formal foundations support- 
ing compositional refinement calculus which allows relating different models of 
the system in mathematically precise manner. A formal mathematical descrip- 
tion allows us to develop tools for computing equilibria, for reachability analysis 
and for analyzing properties like stability and reachability. 

In the next two sections, we will briefly describe case studies that we have 
used to investigate the hybrid systems approach to modeling biological systems, 
and the applications of CHARON to these systems. We will also illustrate our 
approach by providing preliminary simulation results. 

3    A Repressilator Network 

As noted in [5], most biomolecular systems of interest involve many interactions 
connected through positive and negative feedback loops and an understanding of 
their dynamics is hard to obtain. In this section we will describe the modeling of 
a specific biomolecular network. We will model a repressilator system described 
in [7]. First we provide some biological background information and describe the 
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protein network used in [7], and then describe the models of the protein network, 
including examples of CHARON models.2 

3.1 The Basic Phenomena 

In the synthetic oscillatory network described in [7], networks of interacting 
biomolecules carry out many essential functions in living cells. But the design 
principles of the functioning of such networks still remain poorly understood- 
even in relatively simple systems [14]. The authors proposed the design and 
construction of a synthetic protein network implementing a particular function. 
Their motivation is that such "rational network design" may lead to the engi- 
neering of new cellular behaviors and to improved understanding of naturally 
occuring networks. 

The repressilator system described in [7] contains three proteins, namely 
lad, tetR, and cl. The protein lad represses the protein tetR, tetR represses cl, 
whereas cl represses lad, thus completing a feedback system called a repressi- 
lator system. The dynamics of the network depend on the transcription rates, 
translation rates, and decay rates of proteins and messenger RNAs. Depending 
on the values of the different parameters in the model, the system might converge 
to a stable limit cycle or become unstable. 

3.2 Approaches to Modeling 

It is well known in mechanics and thermodynamics that there are two different 
approaches to modeling systems such as the repressilator system. At reasonably 
high molecular concentrations, one can adopt continuum models which lend 
themselves to deterministic models involving ordinary and partial differential 
equations. At lower concentrations, the discrete molecular interactions become 
important and deterministic models are difficult to obtain [8]. 

The Deterministic, Continuous Approximation. We will consider the 
three repressor protein concentrations pi,i G P = {lad, tetR, cl} and their cor- 
responding mRNA concentrations m;,i £ P as continuous dynamic variables. 
The system kinetics are determined by the following six coupled first-order dif- 
ferential equations. 

drrii a 
—TT      =      -mi + T~, n + a0 at 1+P] 
dpt 

dt -ß(Pi - m) 

(i,j) <E {(lacI,cI),(tetR,lacI),(cI,tetR)} 
2 For   more   information   on   CHARON   or   sample   CHARON   code,   please   check 

http://www.cis.upenn.edu/mobies/charon/ or contact ivancic@seas.upenn.edu. 



Hybrid Modeling and Simulation of Biomolecular Networks 23 

The equations use various constants. The leakiness of the promoter a is the 
number of protein copies per cell produced from a given promoter type during 
continuous growth in the presence of saturating repressor amounts. During the 
absence of the repressor, we have a + c*o number of protein copies per cell. The 
ratio of the protein decay rate to the mRNA decay rate is denoted by ß, while 
n stands for the so called Hill coefficient. 

The Stochastic, Discrete Approximation. The continuous analysis neglects 
the discrete nature of molecular components and the stochastic character of their 
interaction [7]. Following [7], we adopt the stochastic approximation as described 
by Gillespie in [8]. The various proteins and mRNAs are modeled by discrete 
variables corresponding to the number of molecules measuring concentration, 
and are updated at discrete time intervals by stochastic rules. 

3.3    CHARON Model 

In this section we will present the repressilator system models as described in [7] 
using the CHARON language. We will present many of the advantages that the 
CHARON language has to offer for modeling such biomolecular models. 

Our model will define a generic protein model as an agent in CHARON. We will 
instantiate this agent model to obtain the three proteins lad, tetR, and cl. The 
approximation models will be implemented inside the modes of the protein agent. 
To present another feature of our language, we will also describe a combination 
of the discrete and the continuous model into one modeling system. 

The Protein Agent in the Continuous Approximation. In this section 
we will describe a CHARON model of a generic protein agent. We have a con- 
tinuous input variable which represents the repressor protein concentration PR. 

This means, that the environment of this protein agent supplies the value of this 
variable, and it cannot be changed by the protein agent. The protein agent has a 
continuous private variable representing the messenger RNA concentration. Pri- 
vate variables cannot be seen outside the agent and can be updated internally for 
internal use only. The output of the protein agent is a continuous variable rep- 
resenting the protein concentration. Output variables are updated by the agent, 
and can be used as input variables to other agents. The generic protein agent 
has parameters ao,a,ß, n,po, and mo. By instantiating these parameters with 
values, we can obtain instantiated protein agents representing a specific protein. 
The parameters po and mo will be used for initialization purposes and stand for 
the initial protein concentration and the initial messenger RNA concentration 
respectively. The following represents the corresponding CHARON code. 

agent contProtein  (real pO   ,  mO   ,  alphaO   ,   alpha  ,  beta  ,  n){ 
write analog real p = pO  ;   //protein concentration 
read analog real pR  ;   //repressor protein concentration 
private analog real m = mO   ;   //messenger RNA concentration 
mode cont = continuous   ( alphaO   ,   alpha  ,  beta  ,  n )   ;   } 
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protein agent 

local m 
parameters: p0,m0,alpha0,alpha,beta,n 

readpR 
P=PV( 5        continuous mode 

O 
d(m)=-m+alpha/( 1 +pR An)+alphaO 
d(p)=-beta*(p-m) 

write p 
m=mO 

Fig. 1. A generic protein agent for the continuous approximation model 

We still need to define the behavior of the agent. The behavior is described 
by the modes of the agent. The behavior of the generic protein agent is defined 
in cont, which is an instantiation of a generic continuous mode defined by the 
following code. A graphical version of the generic protein model can be found in 
Figure 1. 

mode continuous  (real alphaO  ,  alpha , beta , n){ 
write analog real p  ;  //protein concentration 
read analog real pR ;  //repressor protein concentration 
private analog real m  ;   //messenger RNA concentration 
diff mRNA { d(m)  = -m + alpha /  (l+pR"n)  + alphaO } 
diff proteinConcentration { d(p)  = -beta *  (p-m)  > } 

r lad 

Repre ssilatorS 

tetR 

ystem 

p2„ d 

1 
P3 

Fig. 2.   Composed repressilator system using the instantiated generic protein agent 

Instantiation and Concurrency. We defined a generic protein agent in the 
previous section. We have to instantiate this generic agent model to get the 
three proteins used in the system. We also want the three proteins lad, tetR, 
and cl to run in parallel and to influence each other. Notice the use of renaming 
of variables to couple the three instantiated protein agents to influence each 
other. A graphical version of the composed system is illustrated in Figure 2. The 
following represents the corresponding CHARON code using some values for the 
parameters. A simulation trace generated by the CHARON tool-set is given in 
Figure 3. 
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agent RepressilatorSystem (){ 

private analog real pi , p2 

agent lad = contProtein ( . 

agent tetR = contProtein ( . 

agent cl  = contProtein ( . 

p3  ; 
)   [ p  , pR := pi , p3 ] 
)   C P  , pR := p2 . pl ] 
)   [ P , pR := P3 ,  P2 ] 

00 !0.00 100.00 

Fig. 3. Simulation trace for the repressilator system showing stable oscillations for the 
three protein concentration pi,P2,P3 over time. 

The Protein Agent in the Discrete Approximation. In this section we 
will present a possible model for a discrete approximation of a protein agent. As 
we did it for the continuous case, we will again define a generic protein agent, 
that can be instantiated to build a system of proteins. Our model works as 
follows. We have an integer variable n that keeps track of the number of protein 
molecules which is the output of the agent. The input to the agent is the number 
of repressor protein molecules n#. Depending on various parameters, we want 
to increase or decrease the number of protein molecules by one at a time. The 
basic idea is to use stochastic simulation as described in [8]. The parameters 
that influence the stochastic simulation are binding and unbinding of proteins 
on two-sided promoters, the protein and mRNA decay rates, and translation. 
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readpR 

continuous mode 

Q Q, 
discreteTiming 

\0 

Fig. 4.   A generic protein agent for the combined framework using continuous and 
discrete approximation model 

Combining the two Models into one Framework. The two different models 
for the repressilator system can be combined into one framework. The basic idea 
is to use the deterministic continuous model whenever the concentration of the 
protein is high enough, whereas we would switch to the discrete, stochastic model 
if the concentration would fall below a certain threshold value. Figure 4 gives an 
intuitive graphical representation of the protein agent with both the continuous 
and discrete approximation. 

4    Quorum Sensing in Bacteria 

A good illustration of multicellular behavior in prokaryotes is the cell-density- 
dependent gene expression. In this process, a single cell is able to sense when 
a quorum of bacteria, a minimum population unit, is achieved. Under these 
conditions, certain behavior is efficiently performed by the quorum, such as bio- 
luminescence, which is the best known model for understanding the mechanism 
of cell-density-dependent gene expression. In this section, we will describe a hy- 
brid system model that captures the changes in dynamics of the biochemical 
reactions observed in the literature [13,16,17]. 

4.1    The Basic Phenomena 

Vibrio fischeri is a marine bacterium that can be found both as a free-living 
organism and as a symbiont of some marine fish and squid. As a free-living or- 
ganism, V. fisheri exists at low densities (less than 500 cells per ml of seawater) 
and appears to be non-luminescent. As a symbiont, the bacteria live at high 
densities and are, usually, luminescent. In a liquid culture, the bacteria's level of 
luminescence is low until the culture reaches mid to late exponential phase. A 
dramatic increase in luminescence is observed at that time due to the transcrip- 
tional activation of the lux genes. Once the bacteria reach stationary phase, the 
level of luminescence decreases. 

The tecregulon [17] contains two operons, OL and OR (see Figure 5). The left 
operon OL contains the luxR gene encoding the protein LuxR, a transcriptional 
activator of the system. The right operon OR contains seven genes luxICDABEG. 
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Fig. 5. A portion of DNA emphasizing luxR and luxICDABEG genes and the binding 
sites for LuxR complex and CRP 

Protein Luxl, the product of the luxl gene is required for endogenous production 
of autoinducer, a small molecule capable of diffusing in and out of the cell mem- 
brane. Genes luxA and luxB encode two subunits of luciferase. The trio luxC, 
luxD, and luxE code for the subunits of a protein complex which provides an 
aldehyde substrate for luciferase. The function of luxG is unknown. The autoin- 
ducer Ai binds to protein LuxR to form a complex Co. The two operons are 
separated by a regulatory region that contains a binding site for the cyclic AMP 
receptor protein CRP and a binding site for the complex Co. 

The transcription of luxR is regulated by both CRP and Co. We can distin- 
guish among the following three different cases: 

- Case OL-1 In the absence of the autoinducer, CRP activates OL expression 
by initiating two RNA transcripts. 

- Case OL-2 At low autoinducer concentrations, luxR transcription is stimu- 
lated by increasing CRP-dependent transcription and by Co-dependent tran- 
scription from another transcriptional start site. 

- Case OL-3 At high autoinducer concentrations, luxR transcription is re- 
pressed through a second, weaker Co binding site located in luxD. 

Likewise, transcription of OR is regulated by both CRP and Co. We distinguish 
two different cases: 

- Case OR-1 In the absence of autoinducer, CRP represses OR transcription. 
- Case OR-1 In the presence of autoinducer, Co activates transcription of OR. 

These cases will be interpreted as modes as seen later in the paper. 

4.2    Mathematical Model 

In this section, we develop a mathematical model for the luminescence phe- 
nomenon in one bacterium of V. fischeri, describing the concentrations of the 
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relevant mRNA's, proteins, and small molecules. As described in Section 4.1 the 
mechanism of transcription activation of both operons is highly dependent on 
the concentration of autoinducer, so the time evolution of the system cannot be 
described by one set of continuous differential equations.3 Combining cases for 
OL and OR given in the previous section, yields three modes, which we call OFF, 
POS and NEC The transitions between modes are governed by the level of inter- 
nal autoinducer which we represent by [Ai]. Mode OFF corresponds to very low 
or zero concentration of autoinducer ([Ai] < [Ai]_) within the bacterium and no 
luminescence is observed. The system is in mode POS when the concentration 
of internal autoinducer is low ([Ai]_ < [Ai] < [Ai]+). This mode corresponds 
to positive growth and increasing concentration of autoinducer. Luminescence 
is observed, as are higher concentrations of proteins LuxA, LuxB, LuxC, LuxD, 
and LuxE. The transition to mode NEG (negative growth) occurs at high levels 
of autoinducer ([Ai] > [Ai]+). 

We use the following rate equation to describe the concentration for any 
molecular species (mRNA, protein, protein complex, or small molecule) [19]: 

—j- = synthesis — decay ± transformation ± transport (1) 

The synthesis term represents transcription for mRNA and translation for pro- 
teins. The decay term represents a first order degradation process. The transfor- 
mation term describes reactions such as cleavage or ligand-binding that do not 
destroy the protein, but do remove its ability to participate in specific reactions. 
Finally, molecular species may participate in transport processes, like passive 
diffusion or active transport through a membrane. 

The biomolecular system can be described in a nine dimensional state space. 
The nine variables, xi,X2,...,xg, describe the concentrations of different mole- 
cules as follows: 

xi = mRNA transcribed from OL, 

#2 = mRNA transcribed from OR, 

xz = protein LuxR, 
x4 = protein Luxl, 
xs = protein LuxA, 
XQ = protein LuxB, 
x-j = autoinducer inside the bacterium Ai, 
x$ = LuxRrAi complex Co, 
xg = autoinducer outside the bacterium Aiea:, 

where Ai is the dimensionless version of [Ai]. 

For simplicity, we have assumed that the concentrations of CRP and of the 
substrate necessary for endogenous production of Ai are constant. Further, we 
have neglected the decay rates for chemical compounds. Finally, we assume that 

In [13], the differential equations for the low autoinducer concentration are described. 
The model presented here describes a wider range of operating conditions. 
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the concentrations of LuxC, LuxD, and LuxE are similar to those of Lux A and 
LuxB. 

The (continuous) differential equations for each mode are of the form 
x = p(x) where x = [xu x2, ...,x9]T e IR9, f = [f{, ft, ...,/J], and 
i G {OFF, POS, NEG}. The components of the vector fields are explicitly 
given by: 

eOFF 1 /r*   =  m[^c-Xl 

fPOS      _      Vl   (o     , X8S1 _ 4 

f?B°      =      -mXl 

fOFF      =      -V2X2 

fPOS _ fNEG _ „    / X8S2 _   \ 

\ K82   "T x8 / 

fl = m (Zl - x3) - r37,Aix3x7 

fl = Vi (x2 ~ xi) ~ Ux4 

fl = V5 (x2 ~ xs) 

fi = V6 (x2 ~ x6) 

fr = -mx7 + rix4 ~ rmem (x7 ~ x9>) ~ r37,RX3X7 

fl     =     -^sZs + r37,Aix3x7 

fl      =      -777Z9 + rmem(x7 - Xg) + U 
where, in the last seven equations /j is independent of the mode. All the quan- 
tities in the above model are non-dimensional. 77, = To/Hi where To is the 
characteristic time constant of the system and Hi is the half-life (inverse of the 
decay rate) of molecule xt. v^ is a cooperativity coefficient while Kij describes 
the potency of the regulation of the transcription of mRNA j by protein i. r de- 
notes transformation and transfer rates. For example rmem is the transfer rate of 
autoinducer through the membrane of the cell while r37tR and r37^i are transfor- 
mation rates obtained by non-dimensionalizing the binding rate of the reaction 
between Ai and LuxR in two different ways, c is dependent on the concentration 
of CRP and its affinity to the corresponding binding site, and, as stated ear- 
lier, is assumed to be constant. Finally, u emulates an external source of Ai and 
is used to simulate the sensitivity of the bacterium to changes of autoinducer 
concentration in the exterior. 

We regard u as an input to our system. Since proteins LuxA and LuxB are 
subunits of luciferase, which produces luminescence, it is reasonable to assume 
that the level of luminescence is proportional to the product of the concentrations 
of LuxA and LuxB, which we choose to be the output of the system. 

4.3    CHARON Model 

The behavioral hierarchy in CHARON (see Figure 6) is characterized by three 
different behaviors which are represented by three different modes, namely OFF, 
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POS, and NEC Many of the differential equations governing the dynamics of 
the system are shared between the modes. We will introduce the notion of mode 
hierarchy to extract the shared constraints. Through the notion of submodes 
and scoping, we can simplify the description of the respective modes OFF, POS, 
and NEC 

Bgent vibrio_[scheri 

',=!',<')■   is I OFF,POS,ONI,    j = 3,...<> 

?->9 
i,i'fT<*> 

modePOS-NEG *,=/,(*),   icIPOS.NEG) 

= /'"'(') 

j 
*,"/,""<*) 

Fig. 6. CHARON structure of the system 

Figure 7 illustrates the response (i.e., luminescence) of the bacterium to a 
perturbation in the concentration of external autoinducer that takes the form 
of a rectangular pulse. The magnitude of the step has been chosen to make 
the system go through all three modes. The results confirm the experimental 
observations [17]: luminescence increases during mode POS and decreases in 
mode NEG; there is no luminescence in mode OFF. The switch history and the 
time evolution of the concentrations of the significant molecules in the system 
are also shown. In mode OFF, all molecules decay to zero, except for mRNA 
OL and the corresponding protein R, as expected. For a short time, in mode 
POS, all the concentrations increase until the internal autoinducer reaches a high 
concentration, when the system is switched to mode NEC In this last mode, 
everything decays to zero, except for internal autoinducer which can reach a 
stable non-zero value dependent on the size of the step of external autoinducer. 

5    Conclusions 

In this paper we have shown that biological cellular networks can be natu- 
rally modeled as hybrid systems. In particular, the protein repressilator system 
switches between a continuous deterministic model at high concentrations, and 
a timed, discrete, stochastic model at low concentrations. Similarly, the lumi- 
nescence control of Vibrio fischeri is naturally modeled as a multi-modal hybrid 
system, resulting in simulations that are in accordance with experimental obser- 
vations. The hybrid nature of such protein networks can be very easily expressed 
and simulated in CHARON, which may offer us better and a more global under- 
standing of biological networks. 
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Fig. 7. Increase in external autoinducer produces luminescence: (a)input - external 
source of autoinducer; (b) switch history; (c) output (luminescence)- product of con- 
centrations of proteins A and B; (d) and (e) time - evolution of concentrations; 

The enormous complexity of large scale biological networks will present us 
with great challenges that we must face. Exploiting the structure of biological 
systems will be critical for scaling the applicability of the modeling, analysis, and 
simulation tools. It is therefore extremely encouraging that the two case studies 
presented in this paper exhibit the architectural paradigms of modern software 
engineering. 

We envision the link between hybrid systems technology, and biology to 
strengthen. The scalable nature of computational tools like CHARON will en- 
able the unified and improved modeling of biological cellular networks, leading 
to better understanding, as well as providing us with the opportunity to deter- 
mine how local biological changes can affect global behavior. Conversely, a good 
understanding of the robustness of noisy biological networks will lead to new 
approaches to designing networked embedded systems. 

The case studies also highlight the need for developing a theory of stochastic 
hybrid systems, for instance, for modeling rate equations of biochemical reac- 
tions. We believe that mathematical and computational tools for the analysis 
of such systems present a research challenge for the hybrid systems commu- 
nity, while presenting a significant potential for greatly impacting post genomics 

research. 
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Abstract. In this paper, we develop a theory of modular design and 
refinement of hierarchical hybrid systems. In particular, we present com- 
positional trace-based semantics for the language CHARON that allows 
modular specification of interacting hybrid systems. For hierarchical de- 
scription of the system architecture, CHARON supports building complex 
agents via the operations of instantiation, hiding, and parallel composi- 
tion. For hierarchical description of the behavior of atomic components, 
CHARON supports building complex modes via the operations of instan- 
tiation, scoping, and encapsulation. We develop an observational trace 
semantics for agents as well as for modes, and define a notion of refine- 
ment for both, based on trace inclusion. We show this semantics to be 
compositional with respect to the constructs in the language. 

1    Introduction 

Modern software design paradigms promote hierarchy as one of the key con- 
structs for structuring complex specifications. We are concerned with two dis- 
tinct notions of hierarchy. In architectural hierarchy, a system with a collection 
of communicating agents is constructed by parallel composition of atomic agents, 
and in behavioral hierarchy, the behavior of an individual agent is described by 
hierarchical sequential composition. The former hierarchy is present in almost all 
concurrency formalisms, and the latter, while present in all block-structured pro- 
gramming languages, was introduced for state-machine-based modeling in STAT- 

ECHARTS [9], and forms an integral part of modern notations such as UML [5]. 
A hybrid system typically consists of a collection of digital programs that 

interact with each other and with an analog environment. Specifications of hybrid 
systems integrate state-machine models of discrete behavior with differential 
equations for continuous behavior. This paper is about developing a formal and 
compositional semantics of hierarchical hybrid specifications. Formal semantics 
leads to definitions of semantic equivalence (or refinement) of specifications based 
on their observable behaviors, and compositionality means that semantics of a 
component can be constructed from the semantics of its subcomponents. Such 
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formal compositional semantics is a cornerstone of concurrency frameworks such 
as CSP [11] and CCS [14], and is a prerequisite for developing modular reasoning 
principles such as compositional model checking and systematic design principles 
such as stepwise refinement. 

The main contribution of the paper is a formal compositional semantics for 
the language CHARON [3] with an accompanying compositional refinement cal- 
culus. The building block for describing the system architecture is an agent that 
communicates with its environment via shared variables. The language supports 
the operations of composition of agents to model concurrency, hiding of variables 
to restrict sharing of information, and instantiation of agents to support reuse. 
The building block for describing flow of control inside an atomic agent is a 
mode. A mode is basically a hierarchical state machine, that is, a mode can have 
submodes and transitions connecting them. Variables can be declared locally in- 
side any mode with standard scoping rules for visibility. Modes can be connected 
to each other only via well-defined entry and exit points. We allow sharing of 
modes so that the same mode definition can be instantiated in multiple con- 
texts. To support exceptions, the language allows group transitions from default 
exit points that are applicable to all enclosing modes, and to support history 
retention, the language allows default entry transitions that restore the local 
state within a mode from the most recent exit. Discrete updates are specified by 
guarded actions labeling transitions connecting the modes. Some of the variables 
in CHARON can be declared analog, and they flow continuously during continu- 
ous updates that model passage of time. The evolution of analog variables can 
be constrained in three ways: differential constraints (e.g. by equations such as 
x = f(x,u)), algebraic constraints (e.g. by equations such as y = g(x,u)), and 
invariants (e.g. \x — y\ < e) which limit the allowed durations of flows. Such 
constraints can be declared at different levels of the mode hierarchy. 

To define the modular semantics for modes, with each mode we associate two 
relations, one capturing its discrete behavior and one capturing its continuous 
behavior. Defining the discrete relation is tricky in presence of features such 
as group transitions, exceptions, and history retention. Our solution relies on a 
closure construction, inspired by a similar construction for hierarchical discrete 
systems [2], which allows us to treat the transfer of control between a mode and 
its environment as a game. 

While discrete steps of a mode and its environment are interleaved, continu- 
ous steps need to be synchronized as time is a global parameter. In fact, during 
a flow, all active hierarchically nested modes must participate. To allow flexible 
and hierarchical specifications, in CHARON, flow constraints can be specified at 
all levels of the hierarchy. To formalize this feature in a consistent and modular 
manner, we require that a mode can participate in a flow only when the control 
is at its default exit point. Then, all applicable constraints are properly used to 
define permitted flows. 

The discrete and continuous relations of a mode allow us to define executions 
of a mode, and corresponding traces are obtained by projecting out the private 
variables. We show that the set of traces of a mode can be constructed from 
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the traces of its submodes. This compositionality result leads to a compositional 
notion of refinement for modes. A mode M refines a mode iV if they have 
the same interface in terms of entry/exit points and shared variables, and the 
traces of M is a subset of traces of N. This notion admits modular reasoning 
in the following manner. Suppose we obtain an implementation design I from 
a specification design S simply by locally replacing some submode N in S by a 
submode M. Then, to show I refines S, it suffices to show that M refines N. 
We illustrate this benefit by a simple example. 

Once we have the compositionality results for modes, analogous results for 
agents are relatively straightforward. We define an observational trace semantics 
for agents, a resulting notion of refinement, and show it to be compositional with 
respect to the operations of parallel composition, hiding, and instantiation. 

Related work. Early formal models for hybrid systems include phase tran- 
sition systems [13] and hybrid automata [1]. Models such as hybrid I/O au- 
tomata [12] and hybrid modules [4] allow compositional treatment of concurrent 
hybrid behaviors. The notion of hierarchical state machines was introduced in 
STATECHARTS [9], and is present in many software design paradigms such as 
UML [5]. Our treatment of hierarchy is closest to hierarchical reactive mod- 
ules [2] which shows how to define a modular semantics for hierarchical (dis- 
crete) modes. Tools such as SHIFT [7], PTOLEMY [6], and STATEFLOW (see 
www.mathworks.com) allow hierarchical specifications of hybrid behavior, but 
formal semantics has not been a concern. HYCHARTS [8] presents a hierarchical 
model with modular operational semantics, but does not consider refinement. 
Masaccio [10] is a formal model for hierarchical hybrid systems. While same in 
spirit, it differs from our model in many technically significant aspects: it allows 
nesting of sequential and parallel composition, and allows a more general form of 
synchronous communication, but disallows high-level features of CHARON modes 
such as exceptions, history retention, and specification of constraints at various 
levels. 

2    Motivational Example 

In this section, we present a simple example that outlines features, useful in 
a specification language for hybrid systems. We also point out the difficulties 
of defining semantics for such a language. Then we give the intuition for our 
approach to the semantics definition, which allows us to overcome the difficulties. 

Our example is a system that controls the level of liquid in a leaky tank. 
The level is controlled by infusing a flow of liquid into the tank. The level in the 
tank can be measured directly, but the rate of the leak has to be estimated. The 
controller has two goals: first, it must make sure that the level is within some 
critical bounds. If it is not, emergency measures are taken to make the level safe. 
When the level is safe, the controller should change the infusion rate according 
to instructions of the user. To do that, the controller periodically recomputes 
the desired rate of change for infusion and maintains the computed rate until 
the next update. 
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We now present a hierarchical description of the system in CHARON. The 
hierarchy in CHARON is twofold. The architectural hierarchy describes how the 
system agents interact with each other, hiding the details of interaction between 
sub-agents. The behavioral hierarchy describes behavior of each agent, hiding the 
low-level behavioral details. In our example, we have only one level of architecture 
description with agents Tank and Controller. There are two variables shared 
by the agents: level for the level of the liquid, and infusion for the infusion 
rate. 

Both agents are primitive, that is, without concurrent sub-agents. Behavior 
of a primitive agent is given by a mode, a hybrid state machine equipped with 
analog and discrete variables. While a mode stays in a state, its analog variables 
are updated continuously according to a set of constraints. Taking transitions 
from one state to another, the mode updates its discrete variables. States of the 
mode are submodes that can have their own behavior. A mode has a number 
of control points, through which control enters and exits the mode. That is, to 
perform a computation in one of its submodes, a mode takes a transition to an 
entry point of that submode. When the computation is complete, a transition 
from an exit point of the submode is taken. Before the computation of a mode 
is completed, it may be interrupted by a group transition, originating from a 
default exit point dx. After an interrupt, control is restored to the mode via a 
default entry point de. In our example, the behavior of Tank is represented by 
a single differential equation d(level) = infusion - leak, where leak is a local 
variable of Tank. Figure 1 shows the behavior of the agent Controller. The 
top-level mode of Controller has two submodes, Normal and Emergency. We 
do not show the details of the mode Emergency. It is activated when the level 
enters the critical region. 

'   Normal 
local analog real / 

local discrete real rale 

global analog real level, infusion 
level tl2,10] 

dx 

Compute 
local discrete real est 

global analog real level, infusion 
global discrete real rate 

d(t) = 1 
(level e 12.10]) 

level £ [4,8] 

ComputeHigh 
d[infusion) - est-l 

ComputeLow 

d(infusion) = est+I 

Fig. 1. Behavior of the controller 

The mode Normal has two submodes. Submode Maintain is used to maintain 
the current rate of change for infusion, represented by a local variable rate. Every 
10 seconds, measured by a local clock t, Maintain makes a call to Submode 
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Compute that computes a new value of rate. The details of the computation are 
irrelevant, but we assume that the computation is done differently depending on 
the level. We therefore introduce two submodes in Compute and show only the 
constraints for infusion in each submode. The exit transition of Compute assigns 
the computed value to the variable rate. 

Note that the mode Normal controls the value of the clock t, and its rate 
of change is the same in all its submodes. By contrast, infusion is updated 
differently in the two submodes. In this case, every submode must provide a 
constraint for infusion. Note also that rate is a discrete variable. It is updated 
only by transitions of Compute. 

We use invariants to force one of the outgoing transitions. Control can reside 
in a mode only as long as its invariant is satisfied. As soon as an invariant is 
violated, control has to leave the mode by taking one of the enabled outgoing 
transitions. In Figure 1, invariants of the modes are shown in braces. For exam- 
ple, ten time units after entering the mode Maintain the transition to Compute 
has to be taken. 

We distinguish between regular transitions and interrupts. For example, con- 
trol is transferred from Compute to Maintain only when the computation is com- 
plete. When it is time to perform another computation, it will start from the 
beginning. On the other hand, the transition from Normal to Emergency works 
as an interrupt. Regardless of which submode of Normal is operating when an 
interrupt occurs, control is transferred to Emergency. Upon return from the in- 
terrupt, the control state of Normal is restored. There is no priority between 
regular transitions and interrupts1. A mode can ignore an enabled interrupt and 
execute its internal transitions or let time elapse. We use invariants as described 
above to enforce interrupts (see the invariant of mode Normal). Invariants give 
the user finer control over interrupts. For example, a situation when an interrupt 
is optional for some time and then becomes urgent can be easily expressed. 

In addition to discrete steps described above, a mode can make continuous 
steps, when time progresses and the analog variables of the mode are updated 
according to a set of constraints. Because of the hierarchical structure of the 
mode, the set of applicable constraints consists of the constraints defined in the 
mode itself and those from the currently active submode. This implies that a 
mode can engage in a continuous step only when its control properly resides 
within one of its submodes. For example, we cannot allow time to pass at the 
control point e of Compute, between executing the transition from Maintain to 
Compute and a transition to enter ComputeHigh or ComputeLow. 

3    Modes 

Notation. We will represent modes and agents as tuples of components. If T is 
a tuple (ti,... ,tn), we identify the component U of T as T.tt. We extend this 

1 Other treatments of interrupts can be handled equally well within the proposed 
framework. For example, [2] discuss weak interrupts in a similar setting. 
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notation to sets of tuples. If ST is a set of tuples with the same structure, we 
write ST.ti to mean \JTeST T.ti. 

Given a set V of typed variables, a valuation for V is a function mapping 
variables to their values. We will assume that all valuations are type correct. 
The set of valuations over V is denoted Qv. We will use variables s,t, possibly 
primed or subscripted, to range over valuations. Given a valuation s over V, and 
a set W C V, s[W] denotes the restriction of s to the variables of W. 

A flow for a set V of variables is a differentiable function / from a closed 
interval of non-negative reals [0,6] to Qv. We refer to 5 as the duration of the 
flow. We assume that only constant functions are differentiable for non real- 
valued types. We denote a set of flows for V as Ty- 

3.1    Syntax 

Definition 1. (Mode) A mode M is a tuple {E,X,V,SM, Cons,T), where E 
is a set of entry control points, X is a set of exit control points, V is a set of 
variables, SM is a set of submodes, Cons is a set of constraints, and T is a set 
of transitions. 

Variables. A mode has a finite set of typed variables V, partitioned into subsets 
Va and Vd, the sets of analog and discrete variables, respectively. We also parition 
V into Vg and Vt, the sets of global and local variables2. We assume that there 
are no conflicts between the names of local variables of different modes. 
Submodes. SM is a finite set of submodes. We require that each global variable 
of a submode is a variable (either global or local) of its parent mode. That is, if 
N £ SM, then N.Vg C V. This induces a natural scoping rule for variables in a 
hierarchy of modes: a variable introduced as local in a mode is accessible in all 
its submodes but not in any other mode. 
Control points. E is the set of entry points; X is the set of exit points. There 
are two distinguished control points representing default entry and exit: de € E 
and dx G X. We use C for the set of all control points of the mode: C = 
E U X U SM.E U SM.X. 
Constraints. The finite set Cons of constraints defines the flows permitted by 
M3. Cons contains an invariant I, which defines when the mode can be active 
(see the definition of an active mode below). Further, for a variable x € Va, 
Cons can contain an algebraic constraint Ax, which defines the set of admissible 
values for x, or a differential constraint Dx, which defines admissible values 
for the derivative of x with respect to time. Every invariant and an algebraic 
constraint is a predicate c C Qv and a differential constraint Dx is a predicate 
on Qvud(V)- A flow / is permitted by the mode if for every t in the domain of /, 
every variable in f(t) satisfies all constraints in Cons. Examples of constraints 
are d(x) < f(x, y) and g(x, y) < 0. 

Charon refines the set of global variables further according to allowed read/write 
access, but we won't make such a distinction in this paper for clarity of presentation. 
The semantics does not depend on how sets of flows are specified. Here, we chose 
one of the possible ways. 
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Transitions. T is a finite set of transitions of the form (e,a,x), where e G 
E U SM.X, x G X U SM.E, and a, the octzon of the transition, is a relation 
from Qv to Qv if e G £ and from Qy to Qy otherwise. A transition connects 
control points of the mode or its submodes. When a transition is executed, it 
updates some variables of the mode. Every mode is assumed to have an identity 
transition from de to dx, but we disallow transitions from any non-default control 
point to dx. A transition that originates at a default exit point of a submode is 
called a group transition of that submode. A group transition can be executed 
to interrupt the execution of the submode. We require that if a submode has 
been exited by a group transition, it must be entered again through its default 
entry point to resume the interrupted execution. 

Furthermore, we require that the mode cannot be blocked at any of its non- 
default control points. Precisely, for every e of M that is not de in M or dx in one 
of the submodes of M, the union ae of all actions of the transitions originating 
at e is complete, that is, for every s there is t such that (s,t) G ae. 
Special modes. We distinguish two kinds of modes that play a special role in 
the semantic definitions. A mode M is a leaf mode if M.SM = 0. Leaf modes 
perform continuous steps according to their constraints. A top-level mode has 
a single non-default entry point init and no non-default exit points. Top-level 
modes are used to describe behavior of agents, as shown in Section 4. 

3.2    Semantics 

Intuition. A mode can engage in a discrete or continuous behavior. During 
an execution, the mode and its environment either take turns making discrete 
steps or take a continuous step together. Discrete and continuous steps of the 
mode alternate. During a continuous step, the mode follows a flow from the set 
of flows possible for the current state for the length of its duration, updating 
its variables according to the flow. Note that the set of flows permitted by the 
mode's constraints may be further restricted by the mode's environment. A 
discrete step of the mode is a finite sequence of discrete steps of the submodes 
and enabled transitions of the mode itself. A discrete step begins in the current 
state of the mode and ends when it reaches an exit point or when the mode 
decides to yield control to the environment and let it make the choice of the 
next step. Note that in the latter case, the decision to break a discrete step is 
made by the mode itself. Technically, when the mode ends its discrete step in 
one of its submodes, it returns control to the environment via its default exit 
point. The closure construction, described below, ensures that the mode can 
yield control at appropriate moments, and that the discrete control state of the 
mode is restored when the environment schedules the next discrete step. 
State of a mode. We define the state of a mode in terms of all variables of the 
mode and its submodes. We use V, = V U SM.V* for the set of all variables. 

The state of a mode M is a pair {c,s), where c is the location of discrete 
control in the mode and s € QM.V,- Whenever the mode has control, it resides 
in one of its control points. In this case, c G M.C. We use special symbol e to 
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denote the case when the mode does not have control. Given a state (c, s) of M, 
we refer to c as the control state of M and to s as the data state of M. 
Preemption. An execution of a mode can be preempted by a group transition. 
A group transition of a mode originates at the default exit of the mode. During 
any discrete step of the mode, control can be transferred to the default exit and 
an enabled group transition can be selected. There is no priority between the 
transitions of a mode and its group transitions. When an execution of a mode is 
preempted, the control state of the mode is recorded in a special history variable, 
a new local variable that we introduce into every mode. Then, when the mode is 
entered through the default entry point next time, the control state of the mode 
is restored according to the history variable. 
The history variable and active submodes. In order to record the location 
of discrete control during executions, we introduce a new local variable h into 
each mode that has submodes. The history variable h of a mode M can assume 
values from the set SMlle. A submode TV of M is called active when the history 
variable of M has the value TV. Every top-level mode is always active. 
Closure of a mode. Closure construction is a technical device to allow the mode 
to interrupt its execution, either to allow the environment to schedule another 
step or to provide for preemption of the mode execution by group transitions. 
Transitions of the mode are modified to update h after a transition is executed. 
In addition, default entry and exit transitions are added to the set of transi- 
tions of the mode. These default transitions do not affect the history variable 
and allow us to interrupt an execution and then resume it later from the same 
point. 

The closure modifies the transitions of M in such a way that, after each 
transition, h records the active submode. If a transition leads to a control point 
of a submode TV, the resulting state has h = TV. Otherwise, if the transition 
leads to a control point of M itself, the value of h after the transition will be 
e. For each submode TV of M, the closure adds a default exit transition from 
N.dx to M.dx. This transition does not change any variables of the mode and 
is always enabled. Default entry transitions are used to restore the local control 
state of M. A default entry transition leads from a default entry of the mode to 
the default entry of every submode TV and is enabled if h = TV. Furthermore, we 
make sure that the default entry transitions do not interfere with regular entry 
transitions originating from de. The closure changes each such transition so that 
it is enabled only if h = e. 

Formally, the closure c{M) of a mode M = (E, X, V, SM, Cons, T) is defined 
to be the mode (E, X, Vuh, c(SM), Cons, c{T)), where h 0 V is a new local vari- 
able, c(SM) = {c(m) | m G SM} is the set of closed submodes of M, and c(T) is 
the closed set of transitions obtained by extending T with transitions (a;, ax, dx) 
for every x G SM.dx and (de,ax,e) for every e G SM.de, and extending every 
transition in T such that 

- (s, s)£axiffx£ N.E for some TV G SM and s[h] = TV; 
- for every transition (e, a, x) G T, the respective closed transition is (e, a', x), 

where (s,t) G a' iff [s[V], t[V]) G a and 
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- if x € N.E for some N G SM, then t[h] = N, otherwise t[h] = e, 
- if e e iV.X for some N G SM, then s[/i] = AT, otherwise s[h] = e. 

The closure construction for the example introduced in Section 2 is illustrated 
in Figure 2. To avoid cluttering the figure, we omit the default transitions of the 
submode ComputeLow, and do not show the variables of the modes. 

Normal 

h=Compute 

jef      Compute 

h -*- Compute' 
t— 0 

h -*- Maintain 
h=Maintaitt^>(r       Maintain 

de dfinfiision) - rate 
IKIOI 

dft) = 1 
{level E 12,1011 

Fig. 2. Closed modes 

Before formally defining executions of a mode, we illustrate continuous and 
discrete steps using the example in Figure 2. Assume that the the controller 
is in the Maintain mode and none of the invariants is violated. Maintain can 
voluntarily relinquish control to the environment to let it take a step or advance 
time by taking the default exit transition to dx of Normal. There, the group 
transition is not enabled, and the default exit transition of the parent mode 
is taken. When the control arrives thus at the top level, the environment can 
schedule a continuous step. The analog variables of all agents are updated ac- 
cording to the constraints of the active modes. The active modes are Maintain, 
Normal, and Controller. Thus, the applicable constraints are d(t) = 1 and 
d(infusion) = rate. The global variable level is updated according to the con- 
straint in Tank. After the continuous step, control returns to Maintain via the 
chain of default entry transitions. Assume now that the invariant of Normal is vi- 
olated while control is inside a submode of Compute. Then, control is transferred 
to dx of Compute and then on to dx of Normal. There, the choice between the 
group transition to Emergency or the default exit transition is non-deterministic. 
But since the invariant is violated, a continuous step cannot be taken. 
Operational semantics. An operational view of a closed mode M with the set 
of variables V consists of a continuous relation Rc and, for each pair C\ G E, 
C2 G X, a discrete relation #^)C2- 

The relation Rc C Qv x Tv gives, for every data state of the mode, the set of 
flows from this state. By definition, if the control state of the mode is not at dx, 
the set of flows for the state is empty. We require that, whenever (s, f) G Rc, 
/(0) = s. In addition, for each s, the set of flows fs = {/ | (s,f) G Rc} is 



42 R. Alur et al. 

prefix-closed. That is, if the domain of / G Ts is [0,(5], then for every e < (5, a 
flow /' : [0,e] that coincides with / on [0,e] also belongs to Ts. R

c is obtained 
from the constraints of a mode and relations SM.RC of its submodes. Given a 
data state s of a mode M, (s, f) G Rc iff f is permitted by M and, if N is the 
active submode at s, (s[N.V],f[N.V\) G N.RC. 

For each Ci££u SM.X, c2 G X U SM.E, relation #£ C2 C Qv x Qy 
describes the discrete behavior in which control is transferred from cx to c2. 
The relation i?^ comprises macro-steps of a mode starting at e and ending 
at x. A macro step consists of a sequence of micro-steps. Each micro-step is 
either a transition of the mode or a macro-step of one of its submodes. Given 
the relations R^x,, e' G SM.E, x' G SM.X of macro-steps of the submodes of 
M, a micro-execution of a mode M = {E, X, V, SM, C, T) is a sequence of the 
form (e0,s0),(ei,si),... ,(en,sn) such that, for all i, et £ C and st G V, and 
for even i, {(ei,Si),(ei+1,si+1)) G T, while for odd i, (sj,si+1) G SM.#£e.+i. 
Given such a micro execution of M with e0 = e e E and e„ = x G X, we'have 
(S0,*n)ei^1. 

Definition 2. (Operational semantics) The operational semantics of the mode 
M consists of its control points E U X, its variables V and relations Rc and 

The operational semantics of a mode defines a transition system TZ over 
the states of the mode. We write (ei,s1)A(e2,82) if (slts2)  G  R° e . and 

(dx, si)^(dx, s2) if (si, /) G Rc, f is defined on the interval [0, t] and f(t) = s2. 
We extend TL to include environment steps. An environment step begins at an 
exit point of the mode and ends at an entry point. It represents changes to the 
global variables of the mode by other components while the mode is inactive. 
Private variables of the mode are unaffected by environment steps. Thus there 
is an environment step (x,s)A-(e,t) whenever x G X, e G E, and s[Vp] = t[Vp]. 
We let A range over Tv U {o, e}. An execution of a mode is now a path through 
the graph of 7£: 

(e0, soH(ei, si)-4 ... -4(en, sn). 

3.3    Trace Semantics 

To be able to define a refinement relation between modes, we consider a trace 
semantics for modes. A trace of the mode is a projection of its execution onto 
the global variables of the mode. That is, a trace is obtained from each execution 
by replacing every s{ with Si[Vg], and every / in transition labels with f[Vg}. We 
denote the set of traces of a mode M by LM. 

Definition 3. (Trace semantics for modes) The trace semantics for M is given 
by its control points E and X, its global variables V, and its set of its traces LM- 

In defining compositional and hierarchical semantics, one has to decide, what 
details of the behavior of lower-level components are observable at higher levels. 



Compositional Refinement for Hierarchical Hybrid Systems 43 

In our approach, the effect of a descrete step that updates only local variables 
of a mode is not observable by its environment, but stoppage of time introduced 
by such step is observable. For example, consider two systems, one of which is 
always idle, while the other updates a local variable every second. These two 
systems are different, since the second one does not have flows more than one 
second long. Defining a modular semantics in a way that such distinction is not 
made seems much more difficult. 

4    Agents 

4.1 Syntax 

Definition 4. (Agent) An agent (TM, V, I) consists of a set of variables V, a 
set of initial states, and a set of top-level modes TM. 

The top-level modes collectively define behavior of the agent. The set V 
is partitioned into local variables V; and global variables Vg. We require that 
TM.V C.V,VgC TM.Vg] that is, all global variables originate in some mode. 
The set of initial states / C Qy specifies possible initializations of the variables 
of the agent. A •primitive agent has a single top-level mode. Composite agents 
have many top-level modes and are constructed by parallel composition of other 
agents as described below. 

4.2 Semantics 

An execution of an agent follows a trajectory, which starts in one of the initial 
states and is a sequence of flows interleaved with discrete updates to the variables 
of the agent. An execution of A is constructed from the relations Rc and RD of 
its top-level modes. For a fixed initial state SQ, each mode M G TM starts out 
in the state (inÜM,SM), where inÜM is the non-default entry point of M and 
SofM.V] = SM- Note that as long as there is a mode M whose control state is at 
initM, no continuous steps are possible. However, any discrete step of such mode 
will come from R^itM dx and bring the control state of M to dx. Therefore, any 
execution of an agent' A = (TM,V,I) with \TM\ = k will start with exactly 
k discrete initialization steps. At that point, every top-level mode of A will be 
at its default exit point, allowing an alternation of continuous steps from R 
and discrete steps from Rde dx. The choice of a continuous step involving all 
modes or a discrete step in one of the modes is left to the environment. Before 
each discrete step, there is an environment step, which takes the control point 
of the chosen mode from dx to de and leaves all the private variables of all 
top-level modes intact. After that, a discrete step of the chosen mode happens, 
bringing control back to dx. Thus, an execution of A with \TM\ = k is a sequence 

so->si—> ■ ■ • Sfc—^-Sfc-f i-4 ... such that 

- for every 0 < i < k, there is M G TM such that (si[M.V],si+i[M.V]) G 
M.Rfnit   dx. That is, the first k steps initialize the top-level modes of A. 
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- for every i > k, one of the following holds: 

- Si^-si+i such that / is defined on [0,i] and f(t) = si+1, and for ev- 
ery mode M G TM, (si[M.V},f[M.V}) G M.RC; that is, the step is a 
continuous step, in which every mode takes part; 

- SiAsj+i such that for every mode M G TM, Si[M.Vp] = si+l[M.Vp]; 
that is, the step is an environment step; 

- SjAsi+i with i > k, there is M G TM such that (s;[M.V],si+1[M.V]) G 
M-Rde,dx'' that is, the step is a discrete step by one of the modes. 

Note that environment steps in agents and in modes are different. In an agent, 
an environment step may contain only discrete steps, since all agents participate 
in every continuous step. The environment of a mode can engage in a number 
of continuous steps while the mode is inactive. 

Definition 5. (Trace semantics for agents) A trace of A is an execution of A, 
projected onto the set of its global variables. The denotational semantics of an 
agent consists of its set of global variables and its set of traces. 

Let A be a primitive agent and (init, s0)-%(dx, si)^(c2, s2)^ • • • X^1{cn, sn) 

be a trace of its top-level mode. It is easy to see that s0A-s1^s2^ ... ^'sn is a 
trace of A. A similar statement is true for agents with multiple top-level modes. 

4.3    Operations on Agents 

Variable hiding. The hiding operator makes a set of agent variables private. 
Given an agent A = (TM,V,I), the agent A\{Vh} = (TM,V',I) with V{ = 
Vi U Vh, V'g =Vg- Vh. A trace of A, projected onto the set of global variables of 
A\{Vh}, is a trace of A\{Vh}. 
Variable renaming. Variable renaming replaces a set of variables in an agent 
A with another set of variables. Let Vi = {x1:... ,xn},V2 = {yi,... ,yn} be 
indexed sets of variables with Vx C A.V. Then, A\V^ := V2] is an agent with 
the set of global variables (A.Vg - Vi) U V2. Semantics of the variable renaming 
operator is given by renaming the variables in the traces of the agent. 
Parallel composition. The composition of the two agents Ai\\A2 is an agent 
A = (TM,V,I) defined as follows: ATM = Al.TM U A2.TM,A.Vg = Ax.Vg U 
A2.Vg, A.Vi = Ai.Vi U A2.Vh and if s e A.I then sL4i-V] G AXJ and s[A2.V] G 
A2.I. 

5    Compositionality Results 

We show that our semantics is compositional for both modes and agents. First, 
the set of traces of a mode can be computed from the definition of the mode 
itself and the semantics of its submodes. Second, the set of traces of a composite 
agent can be computed from the semantics of its sub-agents. For the lack of 
space, we omit the proofs and concentrate on intuitions for the results. 
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Fig. 3. Compositionality rules for modes 

5.1    Compositionality of Modes 

In order to show that our trace semantics for modes is compositional, we need 
to be able to define the semantics of a mode only in terms of the semantics of 
its submodes. 
Compositional Trace Construction. First, we show that every trace of a 
mode can be constructed using the traces of the submodes. 

Theorem 1. The set of traces of a mode M can be computed from the set of 
traces of its submodes, its closed transition relation c(T) and the set of con- 
straints Cons. 

Theorem 1 relies on the following observation. Given a submode N of M, we 
can "project" a trace a of M onto N and obtain a trace of N. This projection 
will 1) restrict all data states and flows to the global variables of N, 2) replace 
every subsequence of a where N is inactive into a single environment step, and 3) 
convert continuous steps of M into continuous steps of N by removing transitions 
from N.dx to M.dx and from M.de to N.de. The critical point in proving this 
observation is that, whenever the control state is at dx of M, and N is the 
active submode of M, N has its control state at N.dx, since only default exit 
transitions and the identity transition of the mode can end at dx. 
Mode Refinement. The trace semantics leads to a natural notion of refinement 
between modes: a mode M refines N if it has the same global variables and 
control points, and every trace of M is a trace of N. 

Definition 6. (Refinement) A mode M and a mode N are said to be compatible 
if M.Vg = N.Vg, M.E=N.E and M.X=N.X. Given two compatible modes M 
and N, M refines N, denoted M<N, if LMQLN- 

For a finite index set I, we write {Mi \ i e /} ■< {Ni \ i € 1} if Mi < N* 
for each i £ I. The refinement operator is compositional with respect to the 
encapsulation: 

Theorem 2. (Submode compositionality) Given a mode N, suppose SM ■< SN 
and let M = N[SM/SN}. Then M<N. 

The refinement rule is explained visually in Figure 3, left. If we consider a sub- 
mode N within a mode M, the remaining submodes of M and the transitions 
of M can be viewed as an environment or mode context for N. In other words, 
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a context for JVi... Nk is a mode M[Gi,... Gfe] with holes or most general sub- 
modes Gi, l<i<k that have the same interface as Ni, have no local variables and 
put no constraints on the update of global variables. Two contexts are said to 
be compatible if they are compatible as modes and they also are compatible on 
their holes. 

Definition 7. (Context traces) An execution of a mode context C with holes 
G\... Gk is a path 

(e0, s0)A(ex, si)-$ ... -4(e„, sn) 

through the graph of 71 of C with Aj = e for each ej,ei+1 such that et is in C.X 
and ei+i is in C.E or et is in Gj.E and ei+i is in Gj.X, for l<j<k. A trace 
of C is obtained by projecting an execution on its global variables. 

As with modes, the set of traces of a context C is denoted by Lc and refinement 
is defined by language inclusion. Given a context C with holes G^,. ..Gk and 
a set of modes Ni,...Nk such that N{ ■< Gt for l<i<fc, we write C[N1: ...Nk] 
the mode obtained by filling the holes Gt of C with JVj. Contexts are also com- 
positional. 

Theorem 3. (Context compositionality) Let C\ and C2 be compatible contexts 
with holes Gi ...Gk. IfCi < C2 then C^N^ ...,Nk]l C2[NU ... ,Nk] for any 
set Ni, l<i<k of modes compatible with the holes, i.e., Ni ■< Gi for all i. 

A visual representation of this rule is shown in Figure 3, right. The compo- 
sitionality rules allow us to decompose the proof obligation into refinement of 
submodes in the most general context, and refinement of contexts under the 
most general submode. 

Normal 

D 
1^0 

1=10 \dx     de 

d(t) = l 
{level  e 12,10]) 

-i 

Normal' 

r__ .    ) c t<10\dx ■v. dej 

(    ' °    ) 
m = i 
(level  € 12,10]) 

Fig. 4. Refinement example 

Consider mode Normal in Figure 1 as a two-place context. Let Normal' 
differ from Normal only by allowing rate computation to happen more often. 
The transition to Compute has a relaxed guard t < 10, as shown in Figure 4. 
By Theorem 3, Normal[Maintain,Compute] ^ Normal'[Maintain,Compute]. If 
Controller' is the agent in which Normal' replaces Normal, then by Theorem 2, 
Controller -< Controller'. 
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5.2    Compositionality of Agents 

An agent is, in essence, a set of top level modes that interleave their discrete 
transitions and synchronize their flows, the compositionality results for modes 
lift in a natural way to agents too. The operations on agents are compositional 
with respect to refinement. 

Definition 8. (Refinement) An agent A and an agent B are said to be com- 
patible if A.Vg = B.Vg. Agent A refines a compatible agent B, denoted A<B, if 

Theorem 4. (Agent compositionality) Given compatible agents such that 

A<B,Ai<Bi and A2<B2. Let Vi — {xi,... ,xn},V2 = {t/i,... ,yn} be in- 
dexed sets of variables with V\ C A.V and let Vh C A.V. Then A\{Vh] -< 

B\{Vfc},>4[Vi := V2] * B[V! := V2] and A±\\A2 < BX\\B2 

In our example, Tank||Controller -< Tank||Controller' by Theorem 4. 

6    Conclusions 

We have presented a hierarchical modular semantics for hybrid systems. The 
proposed semantics is compositional both with respect to the system architec- 
ture (parallel agents and their subagents) and the system behavior (modes and 
their submodes). We have introduced the notion of refinement between the sys- 
tem components - both modes and agents - and showed that, in the proposed 
semantics, composition of components preserves refinement. 

We are currently working to build upon the presented compositionality re- 
sults and provide assume-guarantee proof rules for hybrid systems, extending 
the results of [2]. The proposed semantics have been used in the modeling lan- 
guage Charon [3] and its toolkit, currently under development by the authors. 
For further details, see 
http://www.eis.upenn.edu/mobies/charon/. 
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Abstract. We consider an optimal-reachability problem for a timed au- 
tomaton with respect to a linear cost function which results in a weighted 
timed automaton. Our solution to this optimization problem consists of 
reducing it to a (parametric) shortest-path problem for a finite directed 
graph. The directed graph we construct is a refinement of the region au- 
tomaton due to Alur and Dill. We present an exponential time algorithm 
to solve the shortest-path problem for weighted timed automata starting 
from a single state, and a doubly-exponential time algorithm to solve 
this problem starting from a zone of the state space. 

1    Introduction 

Timed automata [AD94] are widely accepted as a formalism to model the be- 
haviour of real-time systems: a discrete transition graph is equipped with a finite 
set of clock variables which are used to express timing constraints. Automated 
analysis of timed automata relies on the construction of a finite quotient of the 
infinite space of clock valuations. In particular, this construction is suitable to 
perform reachability analysis. Given two states s and t of a timed automaton A, 
the reachability problem can be stated as the problem of determining if there 
exists a run of A from s to t. Reachability is a core problem in system verification 
and directly applies to the verification of safety properties. 

In the theory of timed automata there are many decision problems which are 
undecidable, and decidability is in general hard. In this paper we are interested in 
an optimal-reachability problem for timed automata. Time-optimal reachability 
was first considered in [CY91], where the problem of computing lower and upper 
bounds on time delays in timed automata was solved. Minimal-time reachability 
is also considered in [NTYOO]. In [ACH93], a weight w is associated with each 
location q such that w gives the cost of a unit of time spent in q. Then, given 
a cost interval I and two states s and t, the decision problem "is t reachable 
from s at a cost c € J?" (duration-bounded reachability) is addressed and solved. 

* This work is partially supported by the DARPA/ITO MoBIES grant F33615-00-C- 
1707, the NSF Career award CCR97-34115, the SRC award 99-TJ-688, the MURST 
grant TOSCA, the DARPA JFACC grant N66001-99-C-8510, and the University of 
Pennsylvania Research Foundation. 
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Here we solve a more general optimal-reachability problem, that has been inde- 
pendently solved also in [BHF+]. We consider weighted timed automata, that is 
timed automata with weights (different costs) on both locations and transitions. 
The cost of a run is given by the sum of costs of the taken switches plus the sum 
of the costs associated with the visited locations multiplied for the time spent in 
each of them. Our optimization problem, which we call optimal-run problem, can 
be formalized as a tuple containing a weighted timed automaton, a source zone 
and a target zone. If the source zone contains only a state of the automaton, we 
refer to this problem as the single-source optimal-run problem. 

Our solution to the optimal-run problem consists of two main steps: first we 
reduce the optimal-run problem to a shortest-path problem in directed graphs, 
then we solve the latter. The first step is obtained by constructing a finite graph 
which is a refinement of the region automaton [AD94]. Each clock region is split 
into several disjoint subregions relatively to a starting state and to sequences 
of resets that may occur in "potential" optimal runs. This construction is pa- 
rameterized on the differences of two consecutive fractional parts from the clock 
valuation of the starting state. When we consider a general source zone, we leave 
unspecified these parameters and the above construction reduces the optimal-run 
problem for weighted timed automata to a parametric shortest-path problem in 
directed graphs. We give a fix-point computation algorithm to solve this prob- 
lem, so obtaining a doubly-exponential time algorithm solving the optimal-run 
problem. In case the input automaton has only one clock variable, this result can 
be improved to a single exponential by adapting to our case the algorithm given 
in [K081,YT091] for solving a particular case of parametric shortest-path prob- 
lem. In case the source zone is a singleton we substitutes the parameters with 
the actual values from the starting state, and thus our optimization problem 
is reduced to a standard shortest-path problem. Using Dijkstra's algorithm, we 
obtain an exponential time algorithm for the single-source optimal-run problem. 

The optimal-reachability problem is strictly related to other decision prob- 
lems, and in particular to the problem of synthesizing an optimal controller. 
The optimal-control synthesis problem can be informally stated as the prob- 
lem of designing a control which is able to drive, at a minimum cost, the sys- 
tem into a given target zone. In the literature, control synthesis problems have 
been considered in the context of discrete automata [Chu62,Tho95], timed au- 
tomata [AMP95,MPS95,AM99], linear hybrid automata [WT97], and general 
hybrid systems [LTS99,SPS00]. The design of an optimal control for hybrid sys- 
tems is not trivial and in general is undecidable. The approach presented in 
this paper, can be adapted to solve the optimal-control synthesis problem for 
weighted timed automata. We observe that this generalizes the results obtained 
in [AM99] on the synthesis of a time-optimal controller for a timed automaton. 

The rest of the paper is organized as follows. In section 2, we define the 
optimal-run problems and we give some examples. In section 3, we introduce 
a graph construction to reduce the optimal-run problems to the corresponding 
shortest-path problems in directed graphs. In section 4, we present our solutions 
to the single-source optimal-run problem and to the general case. 
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2    Preliminaries 

In this section we define the single-source and the parametric optimal-run prob- 
lems. We start introducing some notation and the definition of timed automaton. 

Given a set C of n variables, a fc-zone is a subset of R™ that can be obtained 
as a boolean combination of inequalities of the form x <y + c, x <y + c, x < c, 
and x < c where x,y G C and c G {0,1,..., k}. We denote by TRUE the clock 
constraint which is true for any clock values. We denote by Z(C) the set of all 
the fc-zones, for all k G N. A function A : R™ —► R™ is called a reset function if 
it is equal to the identity on some of the coordinates and zero on the others. We 
denote by An the set of all reset functions over R™. A timed automaton1 A is a, 
tuple (Q, C, A, Inv) where: 

— Q is a finite set of locations; 
— C is a finite set of n clock variables; 
- A is a finite subset of Q x Z(C) x Anx Q; 
- Inv : Q —► Z(C) maps each location q to its invariant Inv(<7). 

A state is a tuple (q, v) where q G Q and v G Rn. We denote by 5 = QxRn the 
set of states for A. A discrete step is (q, v)-e->(q', u') where e = (q, 6, A, q') G A, 

v satisfies S, v' = X(v), and v' satisfies Inv(^'). A time step is (q,v) —> {q,v') 
where v' = v + t, t > 0, and v + t' satisfies Inv(g) for all 0 < t' < t. 

A step is {q,v)-^>{q',v') where (q,v) -^ (q,v") and (q, v")s->(q',i>'), for 
some v" G R™, that is a transition e taken after spending some time t in 
the current location. A run r of a timed automaton A is a finite sequence 

(go,^o)4r> (9i,^i)4|> ■■■tJBt(qk-i,Vk-i)^lL>(qk,Vk)- We say that r starts at 
(go, ^o) and ends at (%, i/fc). The definition of r allows time to be spent after tak- 
ing the last transition e^-i- A weighted timed automaton is a timed automaton 
A with the following cost functions: 

— Js : A —> N (switch cost), and 
— Jd '■ Q —> N (duration cost). 

Given a run r of A and cost functions Js, and Jd, we associate costs to r as 
follows: 

- Js(r) = J2i=i Js(ei), and 
- Jd(r) = Y!lZoti-Jd(qi)- 

The total cost associated to a run r is then J(r) = Js(r) + Jd(r)- We are inter- 
ested in determining optimal-cost runs for a timed automaton. In the following 
examples we informally introduce some notions that we will formalize in the rest 
of the section. 

1 The standard definition of timed automata requires also an acceptance condition 
and a symbol alphabet. Since we are not interested in studying languages accepted 
by timed automata we omit these features here. 
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Example 1. Consider the timed automaton defined in Figure 1 such that Jd(0) = 
3, J,i(l) = 1, and the switch costs are all 1. Suppose that we start from state 
s = (0,x,y) for 0 < x,y < 2 and we want to reach a state in location 2. 
Possible minimal-cost runs from s to a state s' = (2,x',y') are either ri = 

(0,*,»)-£> (l,a:i,!/i)4|» (2,z + 2-y,2),orr2 = (0,x,y)-|> (2,2,y + 2-ar) 
for ts = (2 - x) (obviously, staying in location 2 longer might only increase the 
overall cost). According to the cost function J, the cost of rj is J3{ri) + Jd{ri) = 
2+3ti+(2-2/-*i) = 4-y+2*i and the cost of r2 is Js(r2) +Jd(r2) = l+3(2-x) = 
7 —3a;. Clearly, J(ri) is minimized when ti = 0, that is the transition from 0 to 1 
is taken immediately. Moreover, assuming t\ = 0, J{r{) < J(r2) if y > 3(x — 1), 
and J{r{) > J{r2), otherwise. Thus, a minimal-cost run from s to a state in 
location 2 depends on the clock valuation of state s. 

Fig. 1. A timed automaton with more than an optimal run from a same location. 

Example 2. Consider the timed automaton defined in Figure 2 such that Jd(0) = 
1, Jd(l) = 2, and the switch costs are all 1. Suppose that we start from 
state s = (0,x) for 0 < x  < 2 and we want to reach a state in location 
2. Possible minimal-cost runs from s to a state s'   =   {2,x') are given by 

rt = (0,x)-g^ (l^i)-^ (2,2). Notice that rt is a run parameterized by t, 
where t is the time at which the first edge is taken. Thus J(rt) = Js{rt)+Jd(rt) = 
2+i + 2(2 — t — x) = 6 — t — 2x. Hence the cost of rt is minimized if t is maximized. 
Since t < (2 — x) must hold, the optimal cost for a run starting at s is (4 — x), 
but none of the runs starting at s has such a cost. In fact, for any actual run rt 

there exists a f > 0 such that t = (2-x-£), and J(rt) = (4-a; + £). Vice-versa, 
for any £ > 0 there exists a run r such that J{r) = (4 — x + £). Clearly, there 
is not a minimal-cost run but we can determine a run whose cost is arbitrarily 
close to the optimal one. 

Now we formalize the notion of optimal cost, optimal run, and approximation 
of an optimal run. Given a timed automaton A, a state s, and a target zone T, 
an optimal cost for a run from s to T is a J* such that J* < J(r) for any run r 
from s to a state in T, and for any £ > 0 there is a run r such that J(r) < J* +£. 
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x<2 f    x x = 2 

Fig. 2. A timed automaton with no optimal runs from a location. 

If there exists a run r* such that J{r*) = J*, then r* is said to be an optimal 
run. As shown in Example 2, sometimes an optimal run from a state s to a 
target zone T does not exist. In these cases, we are interested in a family R 
of runs such that all the runs coincide on the sequence of switches and for any 
£ 6 R+ there exists a run r e R such that J(r) < J* + £, where J* is the optimal 
cost over all runs from s to T. That is we can determine a sequence of runs in 
R whose costs are arbitrarily close to J*. We call such a family of runs R an 
approximation of an optimal run. Given a timed automaton A, a source zone S, 
and a target zone T, we consider the problem of determining an optimal run from 
a given state s G S to T, if one exists, or an approximation of an optimal run, 
otherwise. We call this problem a single-source optimal-run problem. We also 
consider a more general problem, a zone optimal-run problem, defined as the 
problem of determining a symbolic representation of the solution to the single- 
source optimal-run problem for all states in S. In Example 1, if we consider as 
target region all the states in location 2 and as only source state (0,0,0), then a 
solution to the corresponding instance of the single-source optimal-run problem 
is rj with t\ = 0. As observed in Example 1, if we consider as source zone the set 
of states (0,x,y) such that 0 < x,y < 1, then the solution of the corresponding 
instance of the zone optimal-run problem is r\ with ti = 0 if y > 3(x — 1), and 
T2, otherwise. 

We end this section with an example on an air-traffic control problem that 
we will use subsequently in the paper. 

Example 3. Consider the timed automaton in Figure 3. It models a scenario in 
which two aircraft send a landing request to an airport, and our goal is to allow 
both the aircraft to land safely and at minimum cost. Safety requires that only 
one aircraft at a time must be acknowledged for landing, thus there are two 
possible choices: aircraft 1 waits for the landing of aircraft 2 to be completed, 
or vice-versa. There are costs c\ and c2 to pay for forcing respectively aircraft 
1 and aircraft 2 to wait. Moreover, there is also a cost, expressed by Wi, which 
is related to the time spent waiting. Alternatively, aircraft i can make, at a cost 
c^, a maneuver that allows to spend w^ instead of Wj per each time unit. This 
maneuver takes at least time 1. Since it is realistic to reduce the time a runway 
stays unused, we penalize this event by a cost CQ per time unit. Finally, we 
assume that the landing of each aircraft takes at least time 1 since the related 
acknowledgement was issued by the control tower. 
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Fig. 3. An air-traffic control problem. 

3    The Graph Construction 

In this section we give the graph construction underlying the reduction of the 
single-source optimal-run problem to the shortest-path problem and the zone 
optimal-run problem to a parametric shortest-path problem. The obtained graph 
is a refinement of the region automaton [AD94] of a timed automaton, in the 
sense that each vertex v carries more information than a region. This additional 
information mainly concerns the sequence of resets needed to reach v from a 
starting vertex, and the construction preserves the transitions of the region au- 
tomaton. Via this construction we emphasize the states of the timed automaton 
that might be visited in some optimal runs. We start by recalling the concepts 
of labelled directed graph and region automaton, then we describe our graph 
construction. 

Let 0 be a set of real-valued parameters, we denote by D the set of linear 
expressions over 0. Given an alphabet E, a D-labelled directed graph G is a pair 
(V,E), where V is a set of vertices, and E C V x D x V is a set of D-labelled edges. 

A path 7T from v0 to vn in G is a sequence v0 —^ «i -^» ... -^ u„_i -^ vn 

such that Uj_! -^ Vi £ E for i = 1,..., n. For a path 7r, the cost of w is given by 
Si=i /»• A Path 7T from v to v' is a shortest path if 7r is the path with minimum 
cost among those connecting v to v'. Notice that varying the values of parameters 
in 0 the shortest path of a graph may change, that is to different valuations of 
parameters may correspond different sets of shortest paths in the graph. 

Consider now a timed automaton A. By definition its set of states is infinite. 
However, they can be partitioned in a finite number of equivalence classes, called 
regions, which are defined by a location and a clock region. Denoted by cx the 
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largest constant in clock constraints involving the clock variable x, a clock region 
is described by: 

- a constraint of type c — 1 < x < c, x > cx, or x = c for each clock variable 
x and c < cx; 

- the ordering of the fractional parts of the clock variables x such that x < cx. 

Thus a clock region denotes a set of clock valuations. Given a clock valuation 
v, [v] denotes the clock region containing v. A state (q, v) belongs to a region 
(q1, a) if q = q' and v £ a. A clock region a is said to be open if for any clock 
variable x and c < cx, x = c does not hold in a. Otherwise a is said to be 
a boundary clock region. These definitions apply to regions in an obvious way. 
The key property of this equivalence, is that all the valuations belonging to a 
region satisfy the same set of clock constraints from the given timed automaton. 
Consistently we say that a clock region a satisfies a constraint 6 if v satisfies S 
for any u £ a. A clock region a' is said to be a time-successor of a clock region 
a if and only if for any v £ a there is a d £ 9?+ such that v + d £ a'. The region 
automaton of A is a transition system defined by: 

- the set of states R(S) = {(q, a) \ q £ Q and a is a clock region for A}; 
- the transition rules R(A) such that: ((q,a),(q',a')) £ R{A) if and only if 

(q, A, S, q') £ A and there is a time-successor a" of a such that a" satisfies 8 
and a' = [A -» 0}a". 

We denote the region automaton corresponding to A as .R(J4). For the sake of 
simplicity, in the following when no confusion can arise we refer to the value of 
a clock variable x by x itself. With x we denote the fractional part of a clock 
variable x. Let s = (q, v) be a state of A and (0 «i x[ «2 • • • ~iV X'N ~iv+i 1) 
be the ordering of the fractional parts of the region containing a clock valuation 
v (notice that w; is either = or <). With i?(s) = ($1,... ,$JV+I) we denote the 
differences between consecutive values in the above ordering, that is $1 = x[, 
■&N+1 = 1 - x'N, and ■di = x[ - x\_x for i = 2,...,N. In the following we 
will use (i?i,... ,I9JV+I) to denote these differences in the starting state. The 
graph we are going to define is parameterized over (i?i,..., I9JV+I). Moreover, 
for i, j < N, we denote by I(i, j) the set of integers {i,...,j — 1}, if i < j, and 
{i,...,N}U{l,...,j- 1}, otherwise. 

The region automaton does not carry enough information to solve our op- 
timization problems. Thus we define a labelled directed graph whose vertices 
correspond to "sub-states" of the region automaton. For a given state (q, a') 
of the region automaton, a sub-state (q, a) is such that a is a convex region 
contained in a'. Denoted by (0 «1 x[ «2 • • ■ ~fc x'h ~h+i 1) the ordering of the 
fractional parts in a clock region a', we consider sub-regions a of a' such that 
for some of the «;'s which are equal to <, the difference between x^ and x\ is 
very close to 0. Thus we represent a by a' and specifying in the ordering of the 
fractional parts if a < is relative to a "small" difference (denoted by £) or to a 
"large" difference (denoted by <). We call each such sub-region a. a boundary 
sub-region. Intuitively, the reason we are interested in boundary sub-regions is 
that the cost functions we consider are linear, and their infimum over a given 
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region is reached on the boundary. Thus optimal runs leave open regions from 
states which are arbitrarily close to their boundaries. As a consequence optimal 
runs visit also states characterized by having clocks values either with arbitrarily 
close fractional parts or with fractional parts which reflects the starting state and 
the reset history of the computation. For this reason, we add to each boundary 
sub-region a tuple of indices (ii,...,ik) from {1,..., n + 1} such that: k is the 
number of large differences in the ordering of the fractional parts, ii corresponds 
to the l-th large difference in the ordering of the fractional parts, and there exists 
a d G {l,...,k} such that id+h < id+h+i for h = 0,..., k — 1, where the sums 
(d+h + 1) and (d + h) are modulo k. We call such tuples distance tuples, since 
they are used to store the difference between two consecutive fractional parts 
when this difference is "large" (i.e., they are not arbitrarily close). We define the 
set of vertices V as the set of tuples (q, a,(ii,..., ik)) where q is a location, a is 
a boundary sub-region, and (i1;..., ik) is a distance tuple from {l,...,n + l}. 
For a vertex (q, a, (i\,..., ik)), the sum J2iei(ik,h) ^l S^ves tne time to leave the 
region since this subregion is entered. 

The set of edges E contains three types of edges: immediate switches, time 
edges and delayed switches. Informally, immediate switches correspond to tran- 
sitions taken in the current state, time edges correspond to letting time elapse 
until the next region is reached, and delayed switches correspond to transitions 
taken at the "beginning" or at the "end" of the closest open region (this region 
if it is an open region, the next otherwise). 

Given two vertices v = (q,a,(ii,... ,ih)) and v' = {q',ß, (ji,... ,jk))), there 

is an immediate switch v -^ v' if there exists a transition e of R(A) from {q, a') 
to (q', ß'), where a1 and /?' are respectively the regions of R(A) containing a and 
ß, and the sequence (jx,.. .,jk) is obtained from (i\,... ,ih) by deleting all the 
indices i; such that all the clocks between the Z-th and the (I + l)-th large 
differences (in the ordering of the fractional parts of a') are reset in e. 

Consider a vertex v = (q, a, (ii,..., ih)) and let (0 «] ^ RJ2 ... «fc yk «fc+1 

1) be the ordering of the fractional parts in a. If we assume that a(yk) +1 is not 
larger than the largest constant in the timing constraints involving yk (i.e., when 
time elapses the first integer value reached by yk is at most this constant), we 
add to E a time edge v -^ v' for v' = (q, ß, (j1;..., jh,)) where ß is the closest 
time-successor of a such that the conditions expressed by one of the rows of the 
following Table 1 are satisfied (where (0 «i y\ w2 • • • ~Jt y'k ~fc+i 1) denotes 
the ordering of the fractional parts in ß, and I = 2,..., k): 

~i ~fc+i ~i ~2 0'i,-- ■Jh') c 
1. < < = < ~* (ih,i2,- ■■,ih-i) Jd(q) Eiei(ih,h)tii 
2. £ or = < = < ~; (h,ii,- ■■,ih-i) Jd{q) Eie/^.M)^ 
3. < < = < ~j (»lr ■,ih) 0 
4. % or = < = < ~i («b- ■,ih) 0 

In the other case, time edges are defined in the same way except for the 
fact that the clock yk does not appear in the ordering of the fractional parts of 
v' since it has reached its highest constant. To see an example of a time edge, 
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consider a vertex v = (q, 0<x<y<z<l, (1,2,3,4)). By row 1 of the above 
table we have a time edge from v to (q, 0<x<y<lAz = l, (4,2,3)). The 
distance tuple (4,2,3) captures the fact that time (1 - z) has elapsed and thus 
the distance in time from x to 0 is increased by (1 — z), the fractional part of z 
is now 0, and all the other distances stay unchanged. 

Given a vertex v G V as above, we add to E a delayed switch v —> v" for 
J (e) 

any vertex v" G V such that there exists an immediate switch v' -^-¥ v" and 
c = c' + Js(e), where v' = (q,ß, (ji,... ,jh')) and ß is the closest time-successor 
of a such that the conditions expressed by one of the rows of the following Table 
2 are satisfied (where (0 «i y[ «2 • • • ~'k V'k ~fc+i 1) denotes the ordering of the 
fractional parts in ß, and I = 2,..., k): 

~i ~fc+i ~fc+i (ii,-- ■,3h') c' 
1. < < < ~; < (h,h,- ■ •,h-i) Jd{q) T,ienih,h)'&l 

2. £ < < ~; < (ih,ii,- ■ -,ih-i) Jd{q) T,iei(ih,h)'dl 

3. = < < ~i < (h,- ■,ih) 0 
4. = < < ~; < (h,h,- ■ •Jh-i) Jd(q) Ej€/(tfc,i,)

tf' 
5. = < < ~; < (h,- -,ih) 0 

For a given tuple of parameters i? = (i?i,..., T?JV+I), we denote by GA{&) the 
£)-labelled directed graph (V, E). We recall that for our purposes ■& represents the 
differences between the fractional parts of two consecutive clocks in the ordering 
of the fractional parts in the starting state. The construction of GA{&) is general 
in the sense that it does not depend on the particular source and target zones of 
the problem, but only on the timed automaton. This allows us to use it for solving 
both the single-source optimal-run problem (for a fixed t?) and the zone optimal- 
run problem {-d belongs to a convex set). As an example of application of the 
above construction, we discuss a fragment of the graph GA{"&) for the weighted 
timed automaton modelling the air-traffic control problem from Example 3 (see 
Figure 4). For the sake of simplicity, we have marked with 1,..., 5 the vertices 
of CM(I9) in Figure 4, and we refer to them by these numbers. Consider vertex 
1. Since in the timed automaton from Figure 3 there is a transition from W\ to 
W[ resetting clock xx, we have in CM($) an immediate switch from 1 to 2. Edges 
from 1 to 3 and from 1 to 4 are delayed switches obtained by the same transition 
above and respectively rows 3 and 4 of Table 2. The edge from 1 to 5 is a time 
edge and is defined by row 2 of Table 1. Notice that for a given state s = (q, v), we 
have corresponding vertices of GA($(S)) of form (q, a, (ii,..., ik)), where v G a. 
Moreover, each edge is labelled by the actual cost of the corresponding "activity" 
in A, that is for immediate switches we have just the cost of the A transition, 
for time edges the cost of spending the time upto the end of the current region 
in the current A location, and for delayed switches the cost corresponding to the 
A transition plus the cost for the time spent in the current location before that 
the transition is taken. We have the following lemma. 

Lemma 1.  Given a timed automaton A, the size of GA{^) is exponential in the 
length of clock constraints of A. 



58 R. Alur, S. La Torre, and G.J. Pappas 

W, i      x2= 0 
0<x,< 1 

(1,2) 

w   (92+e3) 

0<x,<X;< 1 

(2,1) 

w; x,= 0 
x,= 0 

(1) 

w; x=0 
x25;0 

(1,2) 

WT x,= 0 
0<x2< 1 

(2,1) 

Fig. 4. A fragment of GA($) for the weighted timed automaton in Example 3. 

Proof. In [AD94] the authors proved that the size of the region automaton is 
0(\A\2^5(-A^), where \6(A)\ denotes the length of the clock constraints. A sim- 
ple counting argument gives that the number of ways to substitute < with < 
in the ordering of the fractional parts of a clock region is at most 2n+1 and 
the number of tuples of indices we use to represent the relative differences be- 
tween the fractional parts is at most n2". Thus the size of G^(i?) is at most 
0(\A\n22n+1 2^A^), and since n = 0(\5(A)\), it is exponential in the length of 
the clock constraints. 

4    Optimal-Runs in Weighted Timed Automata 

4.1     Single-Source Case 

In this section we prove that the single-source optimal-run problem in timed 
automata can be reduced to the shortest path problem in a weighted directed 
graph. To see this we introduce first some notation. Let s0 be a state (qo,^) 
of a weighted timed automaton A and $(s0) = (i?i,... ,$JV0+I), we denote by 
g(s0) the vertex (q0,a0, (i0,i,... ,io,N0)) of GA(I9(SO)) such that u0 € a0 and 
i0j is the j-th largest distance in the ordering of the fractional parts in a0. 

Given a positive real £  <<   1 and a path 7r =  (qo,ao, (z0)i,... ,io,N0))   —i* 

(qi,ai,(ii,i,...,ii:Nl)) -^ ... -^> {qh,ah,(ih,i,---,ih,Nh)) in G^(tf(s0)), we 
denote by #„•(£) the set of runs of A starting at s0 and obtained by replac- 

ing with (qj,Uj)^f (qk,Vk) each portion (q^otj^ij^,.. .,ijtN.)) 
{qk,Oik,(ik,i,- ■ -,ik,Nk)) of -K such that: 

cj+j 

(gi_i,ai_i,(ii_iil,...,ij_1)N;._1)) -?-4 fe,^, (i,-,!,... 
immediate or a delayed switch; 
for       l = j...,k     -     2,        (qi,ai,(iltl, 
(<H+i,<*i+i, (ii+i,i, ■ ■ -,ii+i,Nl+1)} is a time edge; 

,ij,Nj)) is either an 

■■,ii,Nt)) 
Ci + l 



Optimal Paths in Weighted Timed Automata 59 

- (g/._i,afc-i,(4-i,i,---,'ifc-i,wfc_1)) -^> (qk,otk,{i'k,iT--iik,Nk)) is either an 
immediate or a delayed switch. Let tj = r' + T" and IA,- + r' G ajt_i. In the 
case of an immediate switch r" = 0, while in the other case T" is such that: 
- if the delayed switch is obtained by rows 1 and 2 of Table 2, then i/j+tj £ 

ajt_i and the largest fractional part in Vj + tj is greater than (1 — £); 
— otherwise, denoted as a' the time-successor of a^-i which is first entered 

by letting time elapse from a valuation in o^-i, it holds that Vj+tj £ a', 
moreover if the delayed switch is obtained by rows 4 and 5 of Table 2, 
the largest meaningful fractional part in Vj + tj is greater than (1 - £), 
and if the delayed switch is obtained by rows 3 and 5 of Table 2, the 
smallest meaningful fractional part in Vj + tj is less than £; 

- ej is the transition corresponding to {qk-i,ak-i, (ü-i,i, ■ • • ^k-i^k-t)) —> 
{qk,CXk,{ik,l, ■ ■ ■ ,ik,Nk))- 

In the following we assume that £ is a positive real number such that £ « 1. 
By the definition of GA{$) and #*■(£), we have the following lemma. 

Lemma 2. Given a timed automaton A and a state s = (q, v) of A, if TT is a 
path ofGA('d(s)) from g(s) of cost c^ then Hn{^) is a set of runs of A such that 
for any £ > 0 there exists an r G R~K(£) such that c„- < J(r) < cn +£. 

To complete our reduction we need the following lemma. 

Lemma 3. Given a run r of A from a state s to a target zone T, there exists 
a path -K of GA($(S)) from g(s) to a vertex corresponding to a state in T such 
that the cost of n is not larger than J(r). 

Proof. The interesting case is when transitions in r are from states that do not 
belong to any of the subregions encoded by G^(i?(s)) vertices. Assume that A 
in run r takes a transition e from an open region a after spending some time in 
it, and e is the first transition in r with this property. Clearly, upto e, r has a 
corresponding path TT in Gyi(i?(s)) whose cost is not more than J(r). We observe 
that by definition there must be two delayed transitions e\ and e2 of G.A(#(S)) 

corresponding respectively to the cases e is taken as soon as a is entered and 
e is taken just before leaving a. Moreover, consider two A runs r\ and r2 that 
differ from r only for the fact that in r\ A takes e after an arbitrarily short time 
spent in a, while in r2 A takes e after an arbitrarily short time before leaving 
a. Clearly, J(r) > min{ J(ri), J(r2)} holds. Thus we can add to IT the transition 
corresponding to the run r, with the least cost between r\ and r2. Applying 
iteratively this argument, we determine a path 7r in G^(i?(s)) of cost c < J{r). 

As a direct consequence of Lemmas 2 and 3, we have the following theorems. 

Theorem 1. Given a timed automaton A, a state s of A, a target zone T, TT 

is a shortest path of G^(i?(s)) starting from g(s) to a vertex corresponding to a 
state in T if and only if Rv(^) is an approximation of an optimal run of A from 
s to T. 
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Theorem 2. Given a timed automaton A, a state s of A, a target zone T, there 
exists an optimal run of A from s to T if and only if for a shortest path n of 
G^(T?(S)) from g(s) to a vertex corresponding to a state in T there exists a run 
r G Rjr(0> such that the cost of n is equal to J(r). Moreover, r is an optimal 
run of A from s to T. 

Given a timed automaton A, a source state s, and a target zone T, the 
following algorithm solves the single-source optimal-run problem: 

1. Let G be the graph obtained from GA("&{S)) by collapsing all the vertices 
corresponding to a state in T in a single vertex vt. 

2. Solve the single-source shortest-path problem on G from g(s). 
3. Let 7T be a shortest path from vs to vt. Output2 #„-(£) and the cost of ir. 

Theorem 3. The single-source optimal-run problem can be solved in time ex- 
ponential in the size of the timed automaton. 

4.2    The Algorithm for the General Case 

In this section we consider the zone optimal-run problem. We give an exponential 
time algorithm to solve this problem for timed automata with at most 1 clock 
and a fix-point algorithm in doubly-exponential time, for the general case. 

We start considering the general case. Since we want to solve the problem 
of determining the optimal runs from any state of the source zone S to a state 
of a target zone T, for parameters -d in G^(i9) we consider only values given 
by i? = i?(s) for a state in s G S. Thus it holds that i?i + ... + ■dN+1 = 1 
and we can eliminate a parameter by the substitution I?AT+I = 1 — J2iLi^i- 
From now on, we will assume that d(s) is the tuple (i^,... ,tiN) and GA(ti(s)) 

is the graph obtained after the substitution ^N+I = 1 - 52iLi ^»- The algo- 
rithm that we are giving, labels the vertices of GA(ti) with sets of linear ex- 
pressions on d = ($!,... ,I?JV). The meaning of these expressions is that given 
a state s G S the minimum over these expressions gives the optimal cost of 
a run from s. An expression is a first-degree polynomial in i?i,... ,I9JV, and 
(1 - ]£»=i i?i) with integer coefficients. That is, an expression has the form 
f{d) = a0+ Mi + ... + aNtfN + ajv+i(l - J2iLi ^i). where o0,..., aN+1 are 
nonnegative integer constants. We denote expressions by (N + 2)-tuples of co- 
efficients and write (o0,..., ajv+i) for the above expression /($). We denote by 
-< the natural extension to tuples of the total ordering < over reals. Moreover, 
let /,/' be two expressions, and v,v' be two vertices of GA(0), (f,v) -< (f',vr) 
if and only if / -< /'. A set X of tuples of type (/, v), for an expression / and a 
vertex v, is said to be minimized (with respect to -<) if for any (/, v), (/', v') G X, 
(/, v) and (/', v') are not comparable with respect to -<. 

This step needs a further refinement to distinguish between an approximate solution 
and an optimal solution. It is not entirely straightforward, but it can be handled at 
the same complexity. We defer the reader to the full version of the paper. 
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The algorithm we present computes a labelling function I that maps any 
vertex u of GA{$) to a minimized set of pairs (/, v) for which there exist a path 
IT and a state s £ S such that: 

— -K is a shortest path of GA{^{S)) from u to a vertex corresponding to T, 
— the first edge e of IT connects u to v, and 
— the cost of 7T is given by /($(s)). 

We can summarize our algorithm in the following steps: 

1. Initialize / by assigning l(u) = {(0,..., 0, u)} for u corresponding to a state 
in T, and l(u) = 0 for all remaining vertices. 

2. repeat 
V «- J; i <- UPDATE(I') 

until /' = / 
3. Output I. 

We just need to specify the function UPDATE. Consider an edge e a vertex 
u = (q,a,(ii,...,ih)). We have the following cases: 

— e is an immediate switch from u to v. for (ao,- ■■ ,a^+i,v') € l'(v), define 
(a'0,...,a'N+1,v) such that a'Q = a0 + ce, and a'{ = a* for i = 1,..., (N + 1), 
where ce is the cost of e; 

— e is a time edge from u to u: for any (oo,...,ajv+i,v') € 2'(w), define 
(OQ, ..., a'N+1,v) such that if e is obtained by rows 1 and 2 of Table 1 and 
i e I(ih, h), then a[ = a^ + Jd{q), otherwise a't = a,; 

— the edge e is a delayed switch from u to v. for any (ao,..., ajv+i, v') E /'(u), 
define (a'0,..., a'N+1, v) such that if e is obtained by rows 1, 2 and 4 of Table 
2 and z € /(i^, ii), then a^ = a* + Jd(g), otherwise a\ = at. 

Let i"(w) be the set of all the tuples generated for u. After executing I <- 
UPDATE(Z'), l(u) contains the set obtained deleting from l'(u) U l"(u) all the 
tuples (f,v) such that f < f for some (/',*/) € /'(u) U /"(u). Moreover, once 
the function / is output, it is easy to determine the optimal cost and generate 
the corresponding solution from I and the graph G^(??), given d. We observe 
that each of the tuples (/, v) belonging to l(u) corresponds to a path from u to 
a target vertex. Thus the cardinality of l(u) is bounded above by the number of 
simple paths in GA($)- Hence we have the following theorem. 

Theorem 4.   The zone optimal-run problem can be solved in doubly-exponential 
time. 

If we restrict to timed automata with just one clock variable, it is possible to 
solve the zone optimal-run problem in singly exponential time. We consider the 
algorithm given in [K081,YT091] to solve a particular shortest-path problem 
with only a parameter ß and edge costs given by (c —19), for constants c. This 
algorithm runs in polynomial time and can be modified in order to obtain a 
polynomial time algorithm to solve the parametric shortest-path problem with 
edge costs given by a first-degree polynomial of ■& (■d G [0,1]). 

Theorem 5.   The zone optimal-run problem for automata with one clock vari- 
able can be solved in exponential time. 
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Abstract. Reach set computations are of fundamental importance in 
control theory. We consider the reach set problem for open-loop systems 
described by parametric inhomogeneous linear differential systems and 
use real quantifier elimination methods to get exact and approximate 
solutions. The method employs a reduction of the forward and back- 
ward reach set and control parameter set problems to the transcendental 
implicitization problems for the components of special solutions of sim- 
pler non-parametric systems. For simple elementary functions we give an 
exact calculation of the cases where exact semialgebraic transcendental 
implicitization is possible. For the negative cases we provide approximate 
alternating using discrete point checking or safe estimations of reach sets 
and control parameter sets. Examples are computed using the REDLOG 
and QEPCAD packages. 

1    Introduction 

Today integrated systems which combine physical processes with information 
systems (i.e. digital programs) are in great demand. In fact complex systems 
which have been designed recently incorporate both differential equations to 
model the continuous behavior and discrete event systems to model instanta- 
neous state changes in response to events. Systems that are finite state machines 
with differential equations at each discrete state are called Hybrid Systems. 

A lot of research effort has been devoted to develop mathematical models, 
specification formalisms, analysis/design/control methods and tools to help con- 
trol engineers in building such systems (see [18,30,26]). Most of the applications 
of hybrid systems are safety critical. Safety is usually encoded as avoidance of an 
undesirable region of the state space. Consequently, the most important prob- 
lems for analyzing hybrid systems are verification problems; these are essentially 
reachability problems, that ask whether trajectories of the hybrid systems reach 
certain undesirable (unsafe) regions from an initial region. 

Computing the reach set of hybrid systems is difficult because hybrid systems 
have an infinite state space. Due to the difficulty of computing the reach set for 
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systems of differential equations, formal verification methods and tools for hybrid 
systems have been developed [2,17]. These methods and tools, however, can deal 
with only very simple continuous models as, e.g. x = 1, Ax = b. What is actually 
required is to handle hybrid systems with more complicated continuous parts. 

Decidability of reachability problem for hybrid systems with linear differen- 
tial equation of the form y = Ay + Bu is discussed in [23,24]. This is a significant 
class of linear differential equations that is widely used in linear control theory. 
The results are based on the notion of "o-minimality" [16] from model theory 
and "quantifier elimination" [11]. O-minimality is used to define a class of hy- 
brid systems "o-minimal hybrid systems" and it is shown that all o-minimal 
hybrid systems admit finite bisimulations in [22]. To make the bisimulation al- 
gorithm computationally feasible, they utilize mathematical logic, in particular, 
real quantifier elimination, as main tool to represent and manipulate sets sym- 
bolically. Since quantifier elimination, in general, is possible for the polynomial 
theory of reals [11], they have found subclasses of o-minimal hybrid systems that 
are definable in the theory. 
Remark: There are many results that apply quantifier elimination to control theory [6, 
15,19,4]. In [28,3] quantifier elimination is used for verification problems (reachability 
and observability problems) of discrete-time polynomial systems. 

In this paper we study in particular reach set problems for continuous open- 
loop systems described by parametric systems of linear differential equations [21]. 
Roughly speaking reach set problems are concerned with the relations between 
possible values of the state variables at some initial time t0 and the corresponding 
values at later points in time. The specific problems studied in this paper are 
the following: 

1. Fix a set M of values of the state variables at t0; what are the possible 
corresponding values at later points t in time (up to some bound ti or oo). 
(Forward reach set) 

2. Fix a set N of "safe" values of the state variables. Find a set M as large 
as possible of initial values of the state variables at time t0 that guarantees 
that the values of the state variables will for all later time points t (up to 
some bound ti or oo) remain inside N. (Backward reach set) 

3. Fix a set M of values of the state variables at t0 and a set N of "safe" 
values of the state variables. Find a set P as large as possible of the control 
parameters such that all state variables with initial values at t0 in M will 
have values in N for all later time points t (up to some bound t\ or oo.) 
(Control parameter set) 

Our main tool is the method of real quantifier elimination in computer algebra. 
This approach was introduced into reach set computations in [29]. In a series of 
papers they showed how to get exact solutions of the forward reach set problem 
for certain homogeneous linear differential systems of special type with constant 
coefficients [23] and for associated inhomogeneous systems with very special 
right hand side [24]. The exact solutions are always obtained as semialgebraic 
sets described by a boolean combination of polynomial inequalities. 
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Here we extend this ad hoc approach for special types of differential systems 
to a systematic study of the type of results obtainable by an approach via real 
quantifier elimination. By reducing the approach to its bare essentials, we obtain 
a much wider systematic framework applicable to a considerably larger class 
of systems. The main observation is that all the problems mentioned above 
can be reduced by exact symbolic algorithms to an implicitization problem for 
certain basic transcendental functions associated with the given system. Exact 
solutions for implicitization problems with rational parametrizations are well- 
known [8,27]. Here we deal with the corresponding problem for transcendental 
parametrizations that has been studied only for special cases e.g. in [13,20]. 

Our main results are as follows: We associate with every parametric linear 
system of differential equations y = A(t)y + b(t,r) a finite system F of basic 
functions. Then for semialgebraic sets M, N all three problems can be solved 
exactly by real quantifier elimination relative to the implicitization problem for 
the components of the functions in F. Moreover the discrete point version of 
these problems require only finitely many evaluations of functions in F. We 
prove a theorem that determines the exact classes of vector-valued functions of 
the kind arising in linear differential systems with constant coefficients, where 
exact semialgebraic implicitization is possible. As a corollary we obtain the exact 
limitations of the approach of [23,24] for linear differential systems with constant 
coefficients and special right hand sides. 

We propose several ways to overcome these limitations by approximate com- 
putations: One way is to compute exact reach sets at a finite selection of discrete 
time points. This is always possible and practically quite efficient, but may lead 
to underestimation of the true forward reach set, depending on the selection of 
time points. Another approach separates the common time variable into differ- 
ent time variables. This leads to an overestimation in the implicitization problem 
resulting in an overestimation of the forward reach set and an underestimation 
of the backward reach set and the control parameter set: So all three approxi- 
mations are on the safe side. 

We illustrate some problems and solution methods by examples computed 
in the REDLOG-package of REDUCE [14] and QEPCAD [12]. We expect that our 
results can be extended to the hybrid systems with linear continuous parts. 

2    Reach Sets and Transcendental Implicitization Problem 

2.1    Problem Statement 

We consider parametric inhomogeneous systems S of linear differential systems 
of the form y = A(t)y + b(t,r) with an n x n matrix A(t) of real continuous 
functions a,ij(t) and a vector-valued real continuous function b(t,r) defined on 
some interval /. The inhomogeneous part is assumed to be a linear combination 
b(t,r) = X^i=i ri9i(t) with continuous functions <?j : / —> R™, and real parame- 
ters 7-j. Such a system can be viewed as an continuous open-loop control system 
with control parameters r = (r1;... ,?>). Let M be some subset of R™ and fix 
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an initial time point t0 £ I : Then we denote the set of all solution functions 
/ : / —> R™ of the given system with parameters r = (n,... , rfc), by Fr, and 
the set of all solution functions / G Fr with initial value f(to) G M by F = FM,V 

We consider the following forward reach set problems: 

discrete reach sets Compute for finitely many time points t\ < ... < tm in I 
the union of the sets {/(£,) | / G FM,T}- 

bounded reach set Compute for a given time ti > tQ in I the set {/(£) | / G 
FM,r,to < t < t\}. 

unbounded reach set Suppose I D [t0,oo), and compute the set {/(t) | / G 
^M,r,*0 < t}. 

All computations should be performed in explicit dependence on the control 
parameters r. Any solution of the discrete reach sets problem yields an lower 
estimate for the sets to be computed in the bounded and unbounded reach set 
problems. 

Of equal interest are the corresponding "backward" reach set problems that 
are a kind of "dual" to the corresponding "forward" problems. 

Some backward reach set problems are as follows: Let N be a subset of R™. 

backward discrete reach sets Compute for finitely many time points t\ < 
... < tm in I the sets {/(t0) |   /fa),..., f(tm) G N}. 

backward bounded reach set Compute for a given time t\ > t0 in I the set 
{/(*o) I /(*) G N for all *0 < t < tt}. 

backward unbounded reach set Suppose I D [i0,oo), and compute the set 
{/(*o) I fit) G N for all to < t). 

From the viewpoint of control theory these problems have still other vari- 
ants concerning the determination of suitable control parameter values r = 
(r1;... ,7-fe). Let M as before be a subset of R", and let ./V be another subset of 
Rra. Then we have the following natural control parameter set problems: 

discrete point control Compute for finitely many time points t\ < ... < tm 

in / the set {r G Rk | f{U) G N for all / G FM,r, l<i<m}. 
bounded interval control Compute for a given time ix > t0 in I the set 

{r G Rfc | f(t) G N for all / G FM,r,t0 < t < ti}. 
unbounded interval control Suppose ID [to,oo), and compute the set {r G 

Rfc | f(t) G N for all / G FM,r, *o < *}• 

In order to make these problems mathematically precise, we need to specify 
the way in which the input sets M and N, and the output sets should be de- 
scribed. For an approach using symbolic computations it is natural to consider 
semialgebraic sets as possible inputs. These are subsets of R™ described by a 
boolean combination tp(xi,..., xn) of real polynomial inequalities. If in addition 
all the polynomials involved in ip{x\,... ,xn) are linear, then the set described 
by ip is called semilinear [16,32]. 

Our goal is to solve the forward and backward reach set and control parame- 
ter set problems for semialgebraic input sets as far as possible with descriptions 
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of semialgebraic sets as outputs. This, however, is not always possible. Hence we 
consider also the computation of overestimating the forward reach sets and un- 
derestimating the backward reach set and the control parameter sets by suitable 
semialgebraic sets. 

Our main tool will be a reduction of reach set and control parameter set 
computations to corresponding implicitization problems for a fixed finite sys- 
tem of functions associated with 5, namely a fundamental system /i, ...,/„ for 
the homogeneous system 50 associated with S, and special solutions hi of the 
parameter-free inhomogeneous system Si given by y = A(t)y+gi(t) forl <i<k. 
We refer to {/i,..., /„, hx,..., hk} as a system of basic functions for S. 

Implicitization problems for rational parametrizations of algebraic varieties 
have been widely considered in computer algebra [8,27]. Here we have to study 
the corresponding problem for the vector-valued functions fi,...,fn,hi,...,hk, 
arising from the system S. As these functions will in general be transcendental, 
we refer to these problems as transcendental implicitization problems. 

More precisely, we consider the following transcendental implicitization prob- 
lems for given functions /; : I —> M" for 1 < i < k : 

discrete points implicitization Compute for finitely many time points tx < 
... < tm in I the values (fi{U),... fk(h)), regarded as points in Rnk. 

bounded implicitization Compute for a given time h  > t0 in I the set 

{(/i(t), ■■■/*(*)) eRnfc l*o < *<*i}- 
unbounded implicitization Suppose I D [io,°o), and compute the set 

{(AW, •••/*(*)) eRnfc l*o <*}■ 

The first problem amounts to simple evaluations of the given functions. No- 
tice that the unbounded and bounded implicitization problem for a single solu- 
tion of the differential system S is in fact a special case of the unbounded and 
bounded forward reach set problem for S, respectively, namely for the case of a 
singleton set M. 

2.2    Reduction to Implicitization Problems 

Next we show that all reach set computations and control parameter set com- 
putations listed above can for semialgebraic input sets M, N be reduced in an 
exact symbolic way to one of these implicitization problems. All these reductions 
require real quantifier elimination as fundamental tool. For the case of discrete 
points forward and backward reach set and control parameter set and semilinear 
input sets M, N we find moreover that the output sets are also semilinear. 

Let tp (x!,..., xn) and tp(xi,... ,xn) be quantifier-free formulas describing 
the semialgebraic input sets M and N, respectively. Let y = Ay + b(t,r) with 
b(t,r) = 2ri5i(0 be a parametric linear system S with control parameter r{. 
Let ft be a fundamental system of solutions of y = Ay. Let ht be a special 
solution of the system y = Ay + gi{t). Then by the superposition principle, a 

special solution of the system S is given by Y!1=I 
rihi- Note that nere ri's may 

be regarded as constants or as free parameters. Then it is straightforward to 



68 H. Anai and V. Weispfenning 

write down first-order formulas describing the respective forward and backward 
reach sets and control parameter sets in terms of evaluations of the basic func- 
tions h,...,fn,hi,...,hk, the given formulas <p{xu ..., xn), ip(xi,. ..,xn) and 
a quantifier-free formula fi(yn,..., yln,..., ynl,..., ynn) describing the com- 
bined range of (/j, ...,/„, h1:..., hk), as a semialgebraic set. All these formulas 
will involve several quantifiers over real numbers. By real quantifier elimination 
one can construct equivalent quantifier-free formulas, and thus get the desired 
semialgebraic descriptions. 

We will exhibit concrete first-order formulas for some reach set problems and 
control parameter set problem. The remaining cases are handled similarly in 
[5]. The forward discrete reach set problem can be described by the following 
formula and hence be solved by real quantifier elimination and evaluation of the 
basic functions at finitely many points. 

3*i... 3x„(¥>(EiXifi + Zi rihi)(t0) A [A?=1 Vj = (£\ Xiftj + E« r^-fa)) 
v • • • V A;=I Vj = (E< Xifu + Ei rihijXtm)]). 

Next suppose we have a quantifier-free formula ß(yn,..., yln,..., ynl,..., 
Vnn, zu, ■ ■ ■, zln, ...,zkl,..., zkn) describing the combined range of (fu ...,/„, 
hi,..., hk) on the interval [t0, oo) or [t0, t^. So fi(yn,..., zkn) holds for n(jfc+n)- 
tuple in !"(*+") if and only if this tuple is in the combined range of (flt..., /„, 
hi,...,hk) on the given interval. Then the forward bounded and unbounded 
reach set problem, respectively, can be described by the following formula and 
hence solved by real quantifier elimination: 

3a:i... 3x„[v?(£i Xift + £. r^Ofo) A 3j/n ... 3ynn3zn ... 3zkn(n(yn,..., zkn) 

With the same formula /x, the backward bounded and unbounded reach set 
problem, respectively, can be described by the following formula and hence solved 
by real quantifier elimination: 

3xx... 3x„[A;=1 VJ = (Ei Xifij + Ei rihijXto)) A Vyn ... Vj/nnVz„ ... Vzkn 

(Kvu, ■ • •, zkn) -» V(Ei XiVi + Hi rtZi)(t))]. 

Finally, the bounded interval control problem and the unbounded interval 
control problem, respectively, can be described by the following formula and 
hence solved by real quantifier elimination: 

3xi... 3x„[^(Ei x^ + E< nhiXto) A Vyn ... VynnVzn ... Vzkn 

(M(J/H, ■ • •, zkn) -> ^(Ei Xi}h + Ei nzi)(t))}. 

As a corollary to these semialgebraic parametric descriptions of reach sets 
we also obtain semialgebraic descriptions of the corresponding reach sets, where 
the control parameters range over a prescribed semialgebraic set C. 

Corollary 1. Let C C Rk be a semialgebraic sets of control parameters de- 
scribed by a quantifier-free formula 7(n ,...,rk). Let p(Vl,..., yn, n,..., rk) be 
a quantifier-free formula describing a forward/backward reach set relative to the 
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control parameters r. Then the corresponding reach set for arbitrary control pa- 
rameter values in C is described by the formula 3rx... 3rk(-y(r) A p(y,r)), and 
Wi... Vrfc(7(r)   -»   p(y,r)), respectively, and hence is also a semialgebraic set. 

Example 1. Consider the inhomogeneous system 1y = Ay + b with 

*=-(-W).'-ftM2 
Then the basic functions are ( ge-t J > ( ~« J , ( 1 °2t J , ( 5

Q J • A quantifier- 

free formula p{yn, y12,2/21,2/22, zn, Z12,221, z22) describing the combined range of 
these functions for t € [0,00) is obtained as follows: Notice that the range of e_t 

on [0,oo) is exactly (0,1], and that e* = (e"*)"1^4* = l/(e-')4,e2t = l/(e-*)2. 
So /i can be taken as the formula 

0 < 2/11 < 1  A 3j/i2 = 22/11  A 2/212/11 = -1  A 2/222/11 = 1 A 
zu = 0 A 3zi2j/?i = 1  A 2z2i2/u = 1  A z22 = 0. 

3    Exact Transcendental Implicitization 

Here we consider cases, where the unbounded and bounded transcendental im- 
plicitization problem for given functions fc : I —> W1 (1 < i < k) has an 
exact solution. Notice that the transcendental implicitization problem refers 
only to the component functions /„•(£) of /*(<); the grouping of these compo- 
nent functions into vector-valued functions is irrelevant here. So we may as- 
sume w.l.o.g. that k = 1 and that we deal with a single vector-valued function 
f(t) := (fi(t),..., fn(t)). Then the exact transcendental implicitization problem 
is to determine the range of f(t) on an unbounded interval [tQ, 00), or a compact 
interval [to,h] contained in I. Since the / is continuous, this range is always a 
connected subset of W1. 

In particular for n = 1 the range is a real interval J; moreover J is compact 
for the bounded implicitization case. In the unbounded implicitization case J is 
compact iff / is bounded on [t0, 00), otherwise it is a closed semiinfinite interval 
or all of M. In particular J is always a semialgebraic set that can computed 
explicitly from upper and lower bounds for /. In other words the unbounded 
and the bounded transcendental implicitization problem always has a positive 
solution for n = 1. 

For n = 2 there are two well-known cases, where exact unbounded and 
bounded implicitization is possible, namely the sin-cos-pair and the sinh-cosh- 
pair: If / has components /1 := cos(p(x)),/2 := sin(p(x)), where p(x) is a real 
polynomial of positive degree, then the range of p(x) on [t0,oo) includes an 
unbounded interval; consequently the range of / on [to, 00) is exactly the unit 
circle {(xi,x2) \x\ + x\ = 1}. On a bounded interval [t0,ti], the range of p(x) 

1 This is taken from [10] (p.586 example 3.13). 
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is again a compact interval, and so the range of / is a connected subset of the 
circle that can be easily computed as semialgebraic set from the range of p(x). 
For the hyperbolic case, where h := cosh(p(z)),/2 := sinh(p(a;)), the situa- 
tion is analogous, except that the role of the circle is replaces by the hyperbola 
{{xi,x2) \x\-x\ = 1}. 

The next theorem shows that exact transcendental implicitization is pre- 
served under composition of functions in a very general sense: 

Theorem 1. Let f(t) := {fx{t),.. .,fk(t)) be a vector valued Junction such that 
the range of f on every compact or unbounded closed interval I is a semialge- 
braic set described by a quantifier-free formula tpi{xi,.. .,xk). Let g be a con- 
tinuous real function defined on some compact or upper semiinfinite closed in- 
terval I'. Let hi (1 < i < n) be semialgebraic real functions defined on some 
subset o/Kn extending the range of f. Let pi{xx,... ,xn,y) be quantifier-free 
formulas defining the graph {{xu... ,xn,y) \ y = hi(xu ... ,xn)} of ht. Then 
the vector-valued function f*(t) := (fi(t),..., f*(t)) with components f*(t) := 
hi(fi(g(t)),..., fn(g(t))) for l <i <n has a semialgebraic range described by the 
formula iP(Xl,...,xn) := 3Vl... 3yn(<pj(yi,... ,yn) A A^1Pi(y1,...,yn,xi)), 
where J is the range of g(t) on I'. 

The proof is obvious. Notice that the algorithmic quantifier elimination for the 
ordered field of real numbers this formula is required in order to transform the 
formula ip into an equivalent quantifier-free formula that describes the range of 
/* as a semialgebraic set. Typical instances of g and hi are real polynomials or 
real rational functions. The method can in particular be applied to the situation, 
where / consists of a sin-cos-pair or a sinh-cosh-pair as described above. Other 
interesting examples are pairs (p,p'), where p{t) is a Weierstrass p-function 
[1]. Then the range of (p, p'), on a large enough interval is a real elliptic curve 
{(x, y)\y2 = 4z3 - g2x - g3}. See [5] for the more examples. 

4    Semialgebraic Implicitization for Simple Elementary 
Functions 

In this section we characterize those cases of linear differential systems S with 
constant coefficients and "simple right hand side", where an exact implicitiza- 
tion of the system of basic functions for S is possible. The condition on the right 
hand side b(t) of the system is as follows: All components bi(t) of b(t) are R-linear 
combinations of functions of the form tdieait cos(u^), tdiea''sin(wii), where di 
are non-negative integers and a;,^,^ are real numbers. Then it is well known 
that a special solution of the inhomogeneous system and the fundamental solu- 
tions of the homogeneous system are again real linear combinations of functions 
of this kind. We call linear systems of this form regular and functions of type 
t ea cos(ut), t eatsin(ujt), with a,u,a real numbers simple elementary func- 
tions. In some special cases of regular systems, it has been shown how to solve 
the reach set problem by an implicit semialgebraic implicitization of functions 
of the following type in [23,24,22] : (i) real polynomials Pi(t), (ii) exponential 
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functions eait with rational values of a», (iii) trigonometric functions cos(wjt), 
sin(wjt), for rational Wj. 

In the following we show that for simple elementary functions there are only 
few more cases which allow unbounded exact semialgebraic implicitization; all 
these cases are covered by Theorem 1 of the last section. In most of the re- 
maining cases the exact semialgebraic implicitization problem is unsolvable. In 
fact we provide a complete characterization of those cases, where unbounded 
semialgebraic implicitization is possible. 

Let f(t) := (/i(t), • • •, fn(t)) with non-constant, pairwise different component 
functions /<(*) := tdieait cos^t), or fi{t) := tdieaitsm(ojit), where <k are non- 
negative integers and ai,u)i are real numbers. Moreover we assume that the 
functions /, appear in cos-sin-pairs, whenever Wi ^ 0. 

Theorem 2. Let f : [t0, oo) —>• R" be as above and let n > 2. Then the range 
of f is a semialgebraic set iff one of the following holds: 

1. For all 1 <i<n, fi(t):=tdi. 
2. For alll <i <n, di = 0, /,(£) := eait and dim!i{span{au..., an)) < 1. 
3. For alll<i<n,di^ 0, a{ ^ 0, /*(*) := tdieai\ and 

dimq(span(ai,... ,an)) < 1, and -£ = ^-. 
4. For alll<i<n, fi(t) := cos(uit), or fi(t) := sin(w^), and 

dimq(span(u)i,... ,0Jn)) < 1- 

Moreover in these positive cases a quantifier-free formula describing the range 
of f can be computed algorithmically over the reals. 

Idea of the Proof. In the cases mentioned above the unbounded semialgebraic 
implicitization is always achieved by the methods of the previous section, in 
particular Theorem 1. It remains to show that in all other cases the range of / 
is not a semialgebraic set. This requires a case distinction. In each case we show 
that the assumption that the range of / is semialgebraic leads to a contradiction. 
Based on the assumption that the range of / is semialgebraic we construct new 
semialgebraic sets with impossible properties. Either this set is one dimensional 
such that neither the set nor its complement is a finite union of intervals or it 
describes the graph of a semialgebraic function with an impossible rate of growth 
(compare [9]). See [5] for details of the proof. 

This theorem clearly shows the limitations of the approach presented in [23, 
24]. In fact we have the following immediate corollary: 

Corollary 2. Let y = Ay with constant n x n-matrix A be a homogeneous 
system of linear differential equations. Then exact semialgebraic implicitization 
is possible for a fundamental system of solutions of the system iff one of the 
following cases holds: 

1. All eigenvalues of A are zero, i.e. A is a nilpotent matrix. 
2. All eigenvalues Ai,...,A„  of A are non-zero, pairwise distinct reals, and 

dimQ(span(Xi,..., A„)) < 1. 
3. All eigenvalues Ai,..., A„ of A are purely imaginary, say of the form A* = 

Pi-if—l with non-zero pairwise distinct reals fii, and dimq{span{ßi,..., /J,n)) < 1. 
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5    Approximate Solutions 

In this section we study the cases, where an exact semialgebraic unbounded or 
bounded implicitization is definitely not possible. In these cases we want to find 
a semialgebraic superset of the true forward reach set and a semialgebraic subset 
of the true backward reach set or the true control parameter set, both if possible 
such that the set difference to the true reach set or control parameter set is in 
some sense "small enough." Then an inspection of the reduction formulas shows 
that an overestimation of the implicitization problem leads to an overestimation 
of the forward reach set and an underestimation of the backward reach set and of 
the control parameter set i.e. for "safe" estimations. Hence we are reduced to the 
problem of finding a semialgebraic superset of the true range of a transcendental 
vector valued function on a compact or upper semiinfinite closed interval. 

One strategy to find overestimations of the range is separation of variables: 
It comes in two flavours: Separation of variables in different components, and 
separation of variables in products. 

Separation of variables in different components : Let f(t) = (fx(t) 
. •••»/n(*)) be defined on an interval I. Then separation of variables in dif- 
ferent components yields the function g(t) = (/i(«i),...,/„(*„)) defined on the 
cube In with range(ff) D range(/). The range of g is easily computed as a box 
•A x • - • x Jn, where Jt is the range of /*. Notice that this box is in fact the 
smallest box containing the range of /. 

Separation of variables in products : Suppose the component functions 
of the given functions are products ft(t) := fiA(t) ■ ■ ■ fi>m(t)t where each /< ,-(*) 
is defined on the interval /. Put 9j(t) := (fltj,.. .,fnJ)T. Then each 9j is also 
defined on the interval I. Let Bj be the range gjt and put C := Bx ■ ■ ■ Bm, 
where the multiplication is performed on the elements componentwise. Then C 
is obviously a superset of the range of /. 

Example 2. Let I be the upper semiinfinite interval [0, oo). 

1. Let fi := cos(t), f2 := sin(t). Then the true range of / is the unit circle. 
Separation of variables in different components yields as overestimation the 
closed unit square. 

2. Let A := cosh(t), /2 := sinh(t). Then the true range of / is the hyperbola 
{(x, y) | x2 - y2 = 1}. Separation of variables in different components yields 
as overestimation the "quadrant" {(x,y) \x,y> 1}. 

3. Let /i := e* cos(t), f2 := e* sin(t). Then the true range of / is an expanding 
exponential spiral. Separation of variables in different components yields as 
overestimation the full plane R2. Separation of variables in products yields 
as better overestimation the annulus {(x, y) | x2 + y2 > 1}. 

4. Let /j. := e_t cos(i), f2 := e_t sin(i). Then the true range of / is a contracting 
exponential spiral. Separation of variables in different components yields as 
overestimation a closed box {(x,y) | -e" < x < l,-e37r/2 < y < e71'/2}. 
Separation of variables in products yields as overestimation the closed disk 
{(x,y) | x + y2 < 1}. These approximations are incomparable. So their 
intersection is a common improvement of both. 
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6 Complexity 

In this section we briefly discuss the complexity of our algorithms. From the 
results on complexity of quantifier elimination in [7] we can give upper bounds 
for the asymptotic complexity of our approach: 

Discrete point reach set problems are described by purely existential formu- 
las. Hence the complexity of quantifier elimination is at most simply exponential 
in the dimension of the differential system. For fixed dimension it the compu- 
tation runs in a polynomial time. The complexity of bounded and unbounded 
reach set problems is the same as for the discrete reach set problem for a fixed 
number m of points. The backward discrete reach set problems can be solved in 
singly exponential time. The complexity of backward bounded and unbounded 
reach set computation is of type e"° 1 (generalized singly exponential). The up- 
per complexity bounds for the control parameter set problems are same as for 
the corresponding backward reach set problems. 

7 Computational Example in REDLOG and QEPCAD 

In this section we report on experimental results in reach set and control param- 
eter set computation. In [5] we have presented experimental results for numerous 
examples that illustrate the different problem types and solution methods. Here 
we display only one of these examples with non-constant coefficients to show 
the generality of the approach. All computations are performed in the REDLOG 
package [14] of REDUCE 3.7 and QEPCAD [12] 2 . The main algorithm employed is 
the linear and quadratic quantifier elimination [25,31] of REDLOG and quantifier 
elimination based on cylindrical algebraic decomposition [12] of QEPCAD. 

Example 3. Consider the inhomogeneous system y = Ay + b with 

/   0      2t\      , f2tcos(t2) 
A:={-2t     0)>   6:=riUsin(0 

Then basic functions are ( ^ ) , ( ™$2)) , ( sinf}). For this system we 

illustrate the computations in the forward/backward unbounded reach set and 
the control parameter set problems below (Note that we set t0 = 0): 

• Forward unbounded reach set: A quantifier-free formula M(2/II> 2/12,2/21,2/22, 
-zu, Z12) is obtained from the following first-order formula /J,0 

\x0 = 3u3v(u2+v2 = IA1/11 = vAy12 = uAy2i = uAy22 = -vAzn = vAzx2 = 0)) 

by using quantifier elimination. By using REDLOG we have 

/z := j/i! + 2/i2 - 1 = 0 A 2/11 + 2/22 = 0 A yu - zn = 0 A y12 - 2/21 = 0 A zl2 = 0 
2 All the computations are executed on a SUN SPARC station Ultra I (140MHz). 
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in 10 ms. Then we set r1 = 1 and moreover <p = (0 < x± < 1 A x2 = 0). 
Then forward unbounded reach set problem is solved by using real quantifier 
elimination for the following first-order formula f reach; 

freach = 3xi((p A freachaux) 
where 

freachaux = 3yn3y123y2iBy22^zn3zi2(n Ayi= xxyn + x2y21 + rxzlx 

Ay2 = X\V\i + x2y22 + nz12) 

By using QEPCAD for f reach we obtain as an answer for the forward unbounded 
reach set; y\ + 4y| - 4 <= 0 in 10 ms. 

• Backward unbounded reach set: /x is the same formula as in forward 
unbounded reach set. We also set n = 1 and ip(xi,x2) = (-± < xi < \ A -\ < 
xi < \)- Then the backward unbounded reach set problem is solved by using 
real quantifier elimination for the following first-order formula breach; 

breach = l\xi3x2{yi =x2Ay2=xiA breachaux) 
where 

breachaux = VynVy12\/y2lVy22\/Zll\/z12(iJ, -> (-i < Xlyn + x2y21 + r^zxl < \ 
A - i < xiy12 + x2y22 + rlZl2 < \) 

By using REDLOG for breach we obtain in 420 ms a semialgebraic description of 
the backward unbounded reach set consisting of 21 atomic formulas. 

• Control parameter set: The formula /x is the same as in the reach set cases. 
We also set ip = (0 < Xl < 1 A x2 = 0) and tp(x1,x2) = (-| < xx < \ A -\ < 
xi < ^). Then control parameter set problem is solved by using real quantifier 
elimination for the following first-order formula pcontrol; 

control = 3xi (ip A controlaux) 
where 

controlaux = VyiiVyi2Vy2iVy22Vzn\/z12(ii ->• (-i < Xlyn + x2y21 + rizn < \ 
A-\< xiyl2 + x2y22 + rxzl2 < \) 

By using REDLOG for control we obtain in 70 ms a semialgebraic description of 
control parameter set consisting of 12 atomic formulas. It can be simplified to 
the result -1 < n < \ by hand calculation. 

8    Conclusions 

In this paper we have studied forward and backward reach set and control pa- 
rameter set problems for continuous parametric open-loop systems described by 
a system of parametric linear differential equations with arbitrary coefficients. 

The approach using quantifier elimination was introduced into reach set com- 
putations in [29]. We extend their ad hoc approach for special types of differential 
systems to a systematic study of the type of results obtainable by an approach 
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via real quantifier elimination. Thus we obtain a much wider systematic frame- 
work applicable to a considerably larger class of systems. The main observation 
is that all the problems can be reduced by exact symbolic algorithms to an im- 
plicitization problem for certain basic transcendental functions associated with 

the given system. 
We have proved a theorem that determines the exact classes of vector-valued 

functions of the kind arising in linear differential systems with constant coeffi- 
cients, where exact semialgebraic implicitization is possible. As a corollary we 
have obtained the exact limitations of the approach of [23,24] for linear differ- 
ential systems with constant coefficients and simple elementary inhomogeneous 
part. We have also proposed several ways to overcome these limitations by ap- 
proximate computations. The problems have been illustrated by examples com- 
puted in the REDLOG-package of REDUCE and QEPCAD. 

Further research will be concerned with an extension of these results to hybrid 
systems. 
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Abstract. In this work we present a novel control design methodology 
for under-actuated mechanical systems. As part of the design process we 
use the reachability analysis tool d/dt [ABDM99,D00] to see whether 
there is a switching sequence which can drive the system to a desired 
periodic orbit. Much of the work in the design of the control law is done 
manually using classical control techniques (unlike the fully-automatic 
approach advocated in [ABD+00]), and d/dt is used to complement 
these techniques. We hope this work will contribute to the proliferation 
of reachability-based techniques to the control engineer's tool box. 

1    Introduction 

The algorithmic approach to the analysis of hybrid systems, first put forward 
explicitly in [ACH+95], is inspired by a computer science approach to verifica- 
tion of automata. The system under consideration is viewed as a generator of 
trajectories and the problem of verification consists of checking whether there 
is an individual trajectory which violates some specification, e.g. reaches a bad 
state. Likewise, the controller synthesis problem is phrased as restricting sys- 
tematically the set of all possible behaviors in order to satisfy a property. The 
algorithmic approach consists in making a brute-force search in the state-space, 
based only on the description of the system dynamics. Initially this approach 
has been applied to restricted classes of hybrid systems where the continuous 
dynamics has a constant derivative in every state, see e.g. [AD94] for timed 
automata, and [ACH+95,AMP95,HHW97] for hybrid automata. More recently 
attempts have been made to lift this approach to systems with non-trivial dy- 
namics. In particular, some of the authors were involved in the development of 
d/dt, a tool for verification and controller synthesis for hybrid systems with lin- 
ear continuous dynamics [ABDM99,D00]. The synthesis algorithm implemented 
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in d/dt [ABD+00,DOO] suggested a very idealistic scenario for switching-based 
control: the user defines the dynamics at the various modes, as well as the con- 
trol objective, and the tool automatically generates the appropriate conditions 
for mode switching. 

This approach attempts to obtain the general-purpose flavor of discrete veri- 
fication tools and it is still very remote from control engineering practice. In the 
continuous world, every class of systems has its own special character as well as 
its corresponding mathematical tricks which are used extensively by engineers 
during the controller design process. Coordinate transformations, dimensional- 
ity reduction, simplifying assumptions or linearization cannot be captured by 
straightforward reachability analysis. 

In this paper we show how reachability-based techniques can be combined 
with more "knowledge-based" methods in order to derive control strategies for a 
non-trivial class of dynamical systems, namely under-actuated mechanical sys- 
tems. We propose a general methodology for designing controllers for such sys- 
tems and demonstrate it on a double-pendulum example. The complexity of the 
system as given initially exceeds the current capabilities of reachability-based 
tools: its dynamics is non-linear and control is done using continuous actuation. 
Moreover, the system is of dimension n while the dimensionality of the available 
control is m < n. The proposed approach to control this system by switching is 
based on the following principles. 

1. The state-space can be transformed and partitioned via a diffeomorphism <f> 
into an m-dimensional part e\ and an (n — m)-dimensional part e^. 

2. Using standard control techniques, ex can be controlled to zero. Given this 
control, the remaining part is a closed system which defines the dynamics of 
e2 (called the Zero dynamics). 

3. Each diffeomorphism induces a different control law for its zero dynamics 
and hence a particular "mode" for the dynamics of the the uncontrolled 
part of the system. We use a parameterized family of diffeomorphisms which 
becomes finite after discretizing the parameters. 

4. The dynamics of e2 at each mode can be linearized around its equilibrium 
point. It is possible to choose the parameters so that the linearized system 
has periodic orbits in every mode. It should be kept in mind that the validity 
of the linear model is restricted to the neighborhood of the equilibrium. 

5. If our goal is to reach a specific periodic orbit, we can achieve it by a sequence 
of mode switchings. At each mode, however, a different quantity is controlled 
to zero. Hence, when we switch from controlling e\ to controlling e[, the 
latter should already be close to zero. This restricts the parts of the state- 
space of the e2 system where switching is allowed and leads to modeling 
the system as a hybrid automaton where the transition guards reflect these 
constraints. 

The role of d/dt is then to check whether, based on the hybrid automaton 
representation, it is possible to reach from one orbit to another by mode switching 
and how much time it takes. 
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2    Control of Under-Actuated Mechanical Systems 

2.1 Under-Actuated Mechanical Systems 

We consider the class of jointed mechanical systems without flexibilities, the 
dynamics of which is given by Lagrange equations: 

M(q)q + N(q,q) = Wr (1) 

where M is the symmetric positive definite matrix defining the kinetic en- 
ergy and N gathers generalized gravity, Coriolis and centrifugal forces; q is the 
n—dimensional vector of generalized (joint) coordinates; r includes all external 
generalized forces and W is a constant matrix. 

If we now assume that the generalized forces are only actuation torques/forces 
(i.e the system is friction-free and no other potential-based actions occur), then 
the system is called under-actuated if rank (W) < n. Without loss of generality, 

we can consider that W = ( „    m      | with m <n the number of actuators. 
\"n—rox 

2.2 Zero Dynamics 

Let us consider a diffeomorphism </>: 

«-««>-($) <2> 

where e\ is m-dimensional. Then, the dynamics (1) projected on the constraint 
e\ = 0 is called the zero dynamics associated with </>. It is given by: 

P(q)(M(q)q + N(q,q)) = 0 (3) 

with P = In - W(JiM_1W)_1JiM_1 the projection operator, in which 
Ji = ^p-. A control objective can therefore be to bring the system to this zero 
dynamics, specified by the goal task e\ = 0, and to stabilize it. Since dim (ei) = 
dim (r), all the available actuation forces/torques have to be used for that pur- 
pose. In fact, that can be done trough partial decoupling/feedback linearization: 
it can be easily seen that using the control 

r=(J1M-1W)-1(u-J1q + J1M-1N) (4) 

we obtain e\ = u, assumed that JiM~1W is nonsingular. It then remains to 
specify an adequate input u which stabilizes e\, asymptotically or in finite time, 
in order to drive the system to the zero dynamics. Once reached, its motion is 
then governed by eq. (3), which is free, since no more control is available. In 
many cases, this free motion is a periodic orbit. The idea now is to specify such 
a periodic orbit as a final goal, recalling that we can consider the choice of 4> 
as a way to modify it. The problem addressed in the following is then to study 
the reachability of this behavior starting from given initial conditions, using a 
sequence 4>i,<j>2-.., i.e successive jumps from an orbit to another one. 
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2.3    Handling the Periodic Orbits 

Let us consider the case where m = n-1, i.e. the zero dynamics can be expressed 
using a single coordinate denoted by xj. When the phase portrait of the system 
is a closed curve O, this periodic orbit, which characterizes the zero dynamics, 
can be uniquely specified by a pair (<j>, X°) where X° is a point on the orbit, for 
example the initial conditions. Let us assume (assumption A0) that the equation 
of O in the phase plane is of the form V{xi,x{) — V = 0, the invariance being 
expressed by V = 0. V is a so-called Lyapunov function. For a non-actuated 
conservative mechanical system, the natural V is the mechanical energy. Since 
it is not the case here, V can only be called by analogy the "energy" level of the 
orbit. 

Let us now consider the particular case where the set of fc consists of func- 
tions of given analytical form depending on a fc-dimensional vector of real param- 
eters p. Then p can be considered as an auxiliary control of the system. Giving 
some bounds to the parameters and the variables, so that they range over Dp 

and Dxo, respectively, the set of all possible orbits for the system is 

0 = {0(p,X°):pGDpX°€Dxo}. 

When V is known, the set can also be parameterized by p and V. 
The problem we address now is the following: let us define a desired behavior 

of the system as a goal orbit O*; then, given an initial orbit O0 ^ O*, can we 
reach O* by modifying pi We don't consider here related problems of automatic 
control: existence of the orbits, active stabilization, continuous control of p, which 
will be addressed in forthcoming papers. Instead, we focus our attention on 
a discrete approach, i.e. to the questions: is there a sequence of intersecting 
orbits allowing to reach O* through jumps on the parameters and how long 
time will it take? Assuming here that these jumps are instantaneous and don't 
disturb the overall behavior (assumption Al), we can therefore forget the effect 
of the control (4) and consider for the analysis the related set of zero dynamics 
uniquely. We are therefore led back to a problem of reachability analysis of 
a hybrid system: each discrete state is an homogeneous differential equation 
associated with given values of the parameters; transitions are allowed when 
orbits of different modes are compatible with each other, i.e. when continuous 
state variables reach some particular values. We will illustrate the approach on 
the double pendulum example. 

3    The Case of the Double Pendulum 

The considered testbed is the double pendulum depicted in Figure 1. The reader 
is referred to [EGP99] for details on experimental issues. Terms in eq. (1) write 
for this system as: 

■Mr      ("mil m\o\ , N M =        u     12 (5) \mu m22J 
v ' 



and: 

with: 
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N_ i'Ni{q1,q2,qi,q2)\ _ ('Cn C12\ (qA       ('Gx\ , . 
~ { N2(ql,q2:q1,q2)J ~ \c21 C22     \q2    

+ I G2} 
W 

mn = m\l\ + m2(l2 + L\ + 2L\l2c2) 
m\2 = m2(l2 + L\l2c2) 
m22 = m2l2 

Cn = — m2L\l2s2q2 

C12 = -m2Lil2s2{qi + q2) (7) 
C2\ = m2Lil2s2qi 
C22 = 0 
Gi = g((mili + m2Li)sl + m2l2sl2) 
G2 = gm2l2sl2 

where si := sin(qi) , ci := cos(qi) , sij := sin(qi + qj). We consider the case 

where only the hip is actuated. Therefore W = (,-.)• Let us now choose the 

diffeomorphism </> and the control JT such that 

ei = 9i - aq2 - b = 0 ; e2 = q2 (8) 

where a and b are two real parameters1. Therefore the zero dynamics we have 
to consider is simply: 

f (m22 + am12)q2 + (aC21 + C22)q2 + G2 = 0 ,g. 
\qi=aq2+b 

where it assumed that m22+ami2 / 0 (assumption A2, satisfied when — L 'j_; < 

a < L l^_[ ). This system can be expressed in the single coordinate q2. It is a 
second order nonlinear differential equation, for which the natural state vector 

is X = I    x 1 = I       .    2 1. In order to perform reachability analysis, we have to 
Kx2J       \     q2 

linearize the system. Its equilibrium points X* = I n ) are solutions oiG2{q2) = 

0, i.e, for a^-1 (assumption A3): 

* b + kir 
q2 = —r— (10) 1 + a 

We consider in the following only the case k = 0. The equation of the system 
linearized around the center q2 is: 

i = Ax=(QJ\x (11) 

1 Note that expression (8) specifies the desired spatial trajectory of the tip of the 
double pendulum, while the "energy" level will set the amplitude and the time 
profile of its motion along this trajectory 
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Fig. 1.  A double pendulum. 

where a = l2 + J^LICOS(J^). For ensuring the existence of periodic orbits, the 
eigenvalues of A have to be imaginary, which implies that a has to be strictly 
positive (assumption A4). The Lyapunov function associated with the system, 
i.e the energy level of an orbit is 

V=-{ax\+xl) (12) 

For the purpose of reachability analysis it is more comfortable to work with 
the same system of coordinates in every state, hence we transform the linear 
dynamics of equation (11) into an affine dynamics over y = (q2, g'2): 

y = Ay + u = 0   1 
-aO y + 

0 
a?2 

(13) 

Finally we have to remember that the system is submitted to physical bounds on 
the joints: q{ G [q™n,q™ax]- Introducing them in (8) leads to linear constraints 
on the parameters. 

When we switch from 4> to </>' there might be a transient period until the 
system settles in the new zero dynamics. In order to make assumption Al (tran- 
sitions are immediate) realistic we need to make sure that e[ and e[ be already 
close to their zero. For q\ this means 

|<7i - a'q2 - b'\ < a (14) 
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Since q\ = aq2 + b this reduces to 

a')q2 + (b-b')\<e1 (15) 

For q2 
we need: 

\e[\ = \(a-a')q2\ < e2 (16) 

These conditions, which form rectangles in the phase-space of the zero dynamics, 
will be used as transition guards in the hybrid automaton model. Note that these 
conditions are symmetric, i.e. they are the same, in terms of q2 and q2 for the 
transitions from (a',b') to (o, b). Of course, their global physical interpretation 
does depend on the source state of the transition. 

The system is modeled as a hybrid automaton with 7 states, each representing 
a pair (a, b) of parameters (Figure 2). At each state the dynamics is of the form 
x = Ax + u where A and u for the various states are: 

01 01 01 01 01 01 01 
-0.0479 0     -0.0878 0    -0.1167 0     -0.1982 0    —0.2326 0    —0.3143  0    —0.3555  0 

0.0011 0.0000 -0.0012 0.0000 -0.0039 -0.0090 -0.0140 

The transition guards are computed according to (15) and (16) with e\ = 0.05 
and e2 = 0.02. In addition, we restrict the transitions to happen between pairs 
of "close" states, i.e. \a - a'\ < 0.15 and \b - b'\ < 0.1. 

-3.75, -1.25]x 
[-0.5,0.5] 

-1.0, -0.333]x 
(-0.1333,0.1333] 

[0.0, l.OJx 
[-0.2,0.2] 

3.0, -1.0]x 
[-0.4,0.4] 

Fig. 2. The hybrid automaton for the double pendulum. The transition guards between 
pairs of states are written as products of intervals. 
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In order to facilitate the experimentation with d/dt we have augmented the 
input syntax to include parameters and formulae referring to them. For example, 
state s0 and its outgoing transition is specified as: 

state: 0; 

matrixA: 

0.0 1.0, 

[-12-(aO/(l+aO))*Ll*cos(bO/(l+aO))] 0.0; 
input: type convex_vert 

0.0 [(b0/(l+a0))*(-12-(a0/(l+a0))*Ll*cos(b0/(l+a0)))]; 
transition: 

label goOl: 

if in guard:  type rectangle 

[-(-epsl+(b0-bl))/(a0-al)]  [-(epsl+(b0-bl))/(a0-al)], 
[eps2/(a0-al)]  [-eps2/(a0-al)]; 

goto 1; 

4 Results 

The problem we solve with d/dt is the following: given some initial low-energy 
orbit (more precisely, a connected set of orbits) is there a sequence of switchings 
that brings the system to its target, a higher-energy set of orbits? This problem 
is essentially a controller synthesis problem for the eventuality specification, un- 
like the safety controller synthesis that we have treated in [ABD+00]. We are 
interested in reaching the desired orbit with the least number of mode switchings. 

We illustrate informally the synthesis procedure that we employ in order to 
derive the switching controller. Consider an initial set of orbits characterized by 
the rectangle (in the (q2, q2) space) P = [0.7 x 0.9] x [0.01,0.02] at state s3 and a 
goal orbit characterized by F = [1.05,1.3] x [0.01,0.02] at the same state. Starting 
from the inital set (s, P) we calculate, in a breadth-first manner, all its successors, 
i.e. continuous successors, and then, via intersection with the guards, the discrete 
successors. We continue until at some level k of the search tree, there is one or 
more paths having a leaf (s, Q) such that Q intersects F. The search graph of the 
first iteration is shown in Figure 3 and there are two intersections with the goal 
orbit after 4 transitions, along the paths s3, s2, s3, s2, s3 and s3, s2, si, s2, s3. For 
every such path we do backward reachability analysis to find the predecessors 
of the goal orbit at every node and, in particular, the subset of P from which 
the goal can be reached by taking the k transitions that correspond to the path. 
This information is also used to derive the controller by restricting the guards. 
In our example we conclude that points satisfying q2 G [0.7552,0.9] can reach 
the goal orbit by following the sequence s3, s2, s3, s2, s3 and those satisfying 
q2 G [0.7152,0.9] can do it following the sequence s3, s2, si, s2, s3. Note that 
from the interval [0.7552, 0.9] both sequences can be taken. 

If not all points in P are "covered" by the fc-length sequences found in the first 
iteration, we restart the procedure from (s, P') where P' C P is the subset of P 
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consisting of the points not covered yet. In our example P' consists of the points 
satisfying q2 £ [0.7,0.7152]. In the second iteration we find out that the goal orbit 
can be reached from any point in P' by either one of the three 6-transition se- 
quences S3,S2,S3,S2,S3,S2,S3,    S3,S2,S3,S2,Si,S2,S3 and 53,52,51,52,51,52,53, 
and this concludes the computation. The fact that q2 does not matter here is 
particular to this example — with other sets of parameters the partition of the 
initial set did involve conditions on q2. The reachable states which correspond 
to the discovery of the sequence S3, S2, si, S2, si, S2, S3 in the second iteration are 
depicted in Figure 4 and 5. 

Fig. 3.   The first iteration of the search tree. The goal orbits were first reached after 
4 transitions along two paths of the tree. 

5    Conclusion 

We have investigated a new methodology for designing hybrid controllers which 
is partially-supported by our reachability analysis tool d/dt. Like [ABD+00] and 
[TLS00] this work explores the contribution of the hybrid automaton model to 
the alternative formulation and solution of problems in switching-based control. 
In this paper we have treated an interesting and open problem in robot control 
and provided a partial solution. To improve the performance of the algorithm, we 
plan to investigate other search procedures (backward computation and heuristic 
search) and validate our results via simulation. 
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ET 
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S3 S3  -¥ S2 

92 

92 

92 

92 

S2 S2 -» Si 

92 

92 

92 

92 

Si si S2 

92 

92 

92 

92 

S2 S2 si 

Fig. 4. Computation of reachable states for the sequence S3,S2,si,S2. On the left we 
see the reachable set at mode s; while at the right we show the intersecion with the 
guard from s, to Sj. 
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92 92 

J2 92. 

si Sl -* S2 

92 

92 

92 

92. 

S2 S2 -> S3 

92 

S3 

Fig. 5. Computation of reachable states for the sequence S3, S2, si, S2, si, «2, S3 contin- 
ued from Figure 4. 
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Abstract. In this paper we develop an algorithm for solving the reach- 
ability problem of two-dimensional piece-wise rectangular differential in- 
clusions. Our procedure is not based on the computation of the reach-set 
but rather on the computation of the limit of individual trajectories. A 
key idea is the use of one-dimensional affine Poincare maps for which we 
can easily compute the fixpoints. As a first step, we show that between 
any two points linked by an arbitrary trajectory there always exists a 
trajectory without self-crossings. Thus, solving the reachability problem 
requires considering only those. We prove that, indeed, there are only 
finitely many "qualitative types" of those trajectories. The last step con- 
sists in giving a decision procedure for each of them. These procedures 
are essentially based on the analysis of the limits of extreme trajectories. 
We illustrate our algorithm on a simple model of a swimmer spinning 
around a whirlpool. 

1    Introduction 

One of the main research areas in hybrid systems is reachability analysis. It 
comprises two (closely related) issues, namely, the study of decidability and the 
development of algorithms. Most of the proved decidability results are based 
on the existence of a finite and computable partition of the state space into 
classes of states which are equivalent with respect to reachability. This is the 
case for timed automata [2], and classes of rectangular automata [12] and hybrid 
automata with linear vector fields [15]. Except for timed automata, these results 
rely on stringent hypothesis such as the resetting of variables along transitions. 

Although analysis techniques based on the construction of a finite partition 
have been proposed [7], mainly all implemented computational procedures resort 
to (forward or backward) propagation of constraints, typically (unions of convex) 
polyhedra or ellipsoids [1,3,6,9,11,14]. In general, these techniques provide semi- 
decision procedures, that is, if the given final set of states is reachable, they will 
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terminate, otherwise they may fail to. This is a property of the techniques, not 
of the problem, that is, it does not imply that the reachability problem itself is 
undecidable, but only that they do not implement a decision procedure for it. In 
other words, these algorithms may be unsuccessful (i.e., not terminate) for cer- 
tain classes of systems for which the reachability problem is indeed decidable (by 
other means). Nevertheless, they provide tools for computing (approximations 
of) the reach-set for large classes of hybrid systems with linear and non-linear 
vector fields. 

Maybe the major drawback of set-propagation, reach-set approximation pro- 
cedures is that they pay little attention to the geometric properties of the specific 
(class of) systems under analysis. To our knowledge, in the context of hybrid sys- 
tems there are two lines of work in the direction of developing more "geometric" 
approaches. One is based on the existence of (enough) integrals and the ability 
to compute them all [7,10]. These methods, however, do not necessarily result 
in decision procedures (they are actually not meant to). The other, applica- 
ble to two-dimensional dynamical systems, relies on the topological properties 
of the plane, and explicitly focuses on decidability issues. This approach has 
been proposed in [16]. There, it is shown that the reachability problem for two- 
dimensional systems with piece-wise constant derivatives (PCD) is decidable. 
This result has been extended in [8] for planar piece-wise Hamiltonian systems. 
In [4] it has been shown that the reachability problem for PCD is undecidable 
for dimensions higher than two. 

In this paper we develop an algorithm for solving the reachability problem 
of two-dimensional piece-wise rectangular differential inclusions. As in [16], our 
procedure is not based on the computation of the reach-set but rather on the 
computation of the limit of individual trajectories. A key idea is the use of one- 
dimensional affine Poincare maps for which we can easily compute the fixpoints. 
The decidability result of [16] fundamentally relies on the determinism of PCD 
which implies that planar trajectories do not intersect themselves. This property 
is no longer true for differential inclusions. As a first step, we show that between 
any two points linked by an arbitrary trajectory there always exists a trajectory 
without self-crossings. Thus, solving the reachability problem requires consider- 
ing only those. We prove that, indeed, there are only finitely many "qualitative 
types" of those trajectories. The last step consists in giving a decision procedure 
for each of them. These procedures are essentially based on the analysis of the 
limits of extreme trajectories (which do not cut themselves). 

2    Simple Planar Differential Inclusions 

A simple planar differential inclusion system (SPDI) consists of a partition of 
the plane into convex polygonal regions, together with a differential inclusion 
associated with each region. As an example consider the problem of a swimmer 
trying to escape from a whirlpool in a river. 

Example. The dynamics x of the swimmer around the whirlpool is approximated 
by the piece-wise differential inclusion defined as follows. The zone of the river 
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nearby the whirlpool is divided into 8 regions Ri,...,Rs- To each region Ri 
we associate a pair of vectors (aj,bj) meaning that x belongs to their positive 
hull: ai = bi = (1,5), a2 = b2 = (-1, §), a3 = (-1, ^) and b3 = (-l,-£), 
a4 = b4 = (-1,-1), a5 = b5 = (0,-1), a6 = b6 = (1,-1), a7 = b7 = (1,0), 
a8 = b8 = (1,1). The corresponding SPDI is illustrated in Fig. 1. G 

Fig. 1. The SPDI of the swimmer. 

More formally, a SPDI is a pair V. = (V, 4>), where V is a finite partition of 
the plane into convex polyhedral sets, and for each P G V, 4>(P)i also denoted 
by Zg£, is the set of all linear combinations x = a &p + ß bp, with a, ß > 0, 
and a + ß > 0, of two vectors ap and bp, such that äp • bp < 0, where • is the 
scalar product and äp = (02, —a\) is the clockwise rotation of ap by the angle 
^ (notice that äp ■ ap =0). 

Let E{P) be the set of edges of P, that is, the set of open segments forming 
the boundary of P, and V{P) be the set of vertices in the boundary of P. We 
say that e is an entry of P if for all x G e and for all c G <f>(P), x + ce G P 
for some e > 0. We say that e is an exit of P if the same condition holds for 
some e < 0. We denote by in(P) C E(P) the set of all entries of P and by 
out(P) C E(P) the set of all exits of P. In general, E(P) ± in(P) U out(P). 
We say that P is a good region iff all the edges in E(P) are entries or exits, 
that is, E{P) = in(P) U out(P). Notice that, if P is a good region, then for all 
e G E(P), the director vector of e does not belongs to 4>(P) (Fig. 2). Hereinafter, 
we assume that all regions are good regions. Let x G V(P) be a common vertex 
of two edges e and e'. x is an entry point to P if both e and e' are entry edges; 
it is an exit point if both e and e' are exit edges. In fact, vertices can be seen as 
a particular kind of edges, with exactly one point. In what follows the term edge 
will be understood as belonging to the set EV(P) = E(P) U V(P). If needed, 
the difference between edge and vertex will be explicitly specified. 

A trajectory in some interval [0,T] C R, with initial condition x = Xo, is a 
continuous and almost-everywhere (everywhere except on finitely many points) 
derivable function £(•) such that £(0) = x0 and for all t G (0,T), if £(£) G 
P \ EV(P), then £(t) is denned and £(t) G 4>{P). 

The point-to-point reachability problem for %, is the following: Given x, x' G 
E2, is there a trajectory £ and t > 0 such that £(0) = x and £(£) = x'?. If the 
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Fig. 2. a) A good region, b) A bad region (e5 0 in(P) U out(P)). 

answer is yes, we say that x' is reachable from x. The edge-to-edge reachability 
problem is the following: Given two edges e and e'ofH, is there x G e and x' £ e' 
such that x' is reachable from x? The region-to-region reachability problem is 
defined similarly 

3    Properties of Trajectories 

W.l.o.g. we will consider in what follows that £(0) £ e for some edge e. The 
trace of a trajectory £ is the sequence r(£) = x0Xi... of the intersection points 
of £ with the set of edges, that is, x* £ £ n |J EV{P) for all P £V. The edge 
signature of £ is the sequence cr(£) = e0ei... of traversed edges, that is, Xj e e;. 
The region signature of £ is the sequence p(f) = P0-Pi... of traversed regions, 
that is, e$ € in(Pi). 

Let £ be a trajectory whose trace is T(£) = x0.. .xfc. Let 0 = t0 < t\ < 
...< tk be such that f(t*) = Xj. Since £ is continuous and derivable in the 
interval (ti,ti+i), there exists a unique trajectory £' with £'(<») = £(**) for all 
i £ [0, fc-1], such that the derivative £' is constant in the interval (U, ti+i). That 
is, 

Proposition 1. For every trajectory £ there exists a trajectory £' with the same 
initial and final points, and edge and region signatures, such that for each Pt 

in the region signature, there exists ct £ (j>{Pi), such that £'(t) = ct for all 
t £ (ti,ti+i). 

Hence, in order to solve the reachability problem it is enough to consider trajec- 
tories having piecewise constant slopes. Notice that, however, such slopes need 
not be the same for each occurrence of the same region in the region signature. 
Hereinafter, we use the word "trajectory" to mean trajectories whose derivatives 
are piecewise constant. 

Consider a region P and let c £ <f>(P). The mapping Ü : R2 -> R, defined 
as J7(x) = x ■ c, assigns to every x £ R2 a value proportional to the length of 
the projection of the vector x on the right rotation of c (see [4]). Indeed, the 
ordering is given by the direction of c and one can easily see that the relation 
<, defined as xi ■< x2 if i?(xi) < ß(x2), is a dense linear order on in(P) and 
out(P) (Fig. 3). We use -< to denote the strict variant of ^ and say that ex -< e2 
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iff ei ^ e2 and xi < x2 for every Xi G ei,x2 G e2. For example, in Fig. 3 we 
have ex -< e2 -< e3. Notice that the order does not depend on the choice of c. 

Fig. 3. Ordering: xi r< x2. 

We say that a trajectory £ crosses itself if there exist t^t' such that £(£) = 
£(*')• If a trajectory does not cross itself, the sequence of consecutive intersection 
points with in(P) or out(P) is monotone with respect to < That is, for every 
three points xi, x2 and x3 (visited in this order), if xi -< x2 -< x3 the trajectory 
is a "counterclockwise expanding spiral"(Fig. 4(a)) or a "clockwise contracting 
spiral" (Fig. 4(b)) and if x3 -< x2 -< x1; the trajectory is a "counterclockwise 
contracting spiral" (Fig. 4(c)) or a "clockwise expanding spiral" (Fig. 4(d)). On 
the other hand, if the sequence of intersections points with in(P) or out(P) is 
monotone (both increasing or both decreasing), the trajectory does not cross 
itself. 

Lemma 1. For every trajectory £, if£ does not cross itself, then for every edge 
e, the sequence r(£) n e is monotone (with respect to -<). 

Fig. 4. Spirals. 

Now suppose that the trajectory £ with trace r(£) = x0 ... X/ crosses itself once 
inside the region P. Let ei,e2 G in(P) be the input edges and e[,e'2 G out(P) be 
the output ones. Let x = x, G ei and y = Xj G e2, with i < j, be the points in 
T(£) the first and the second times £ enters P, and let x' = xi+i G e2 and y' = 

G e[ be the corresponding output points. Let cT,cy G 4>{P) = ^a De the \?+i 
derivatives of £ in the time intervals (ti,ti+1) and (tj,tj+1), respectively. Indeed, 
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cx and cy are the director vectors of the segments xx' and yy', respectively 
(Fig. 5(a)). _ 

Consider now the segment xy'. Notice that the director vector c'x of this 
segment can be obtained as a positive combination of the vectors c^ and cy. 
Thus, c'x G 4>{P). Hence, there exists a trajectory £' that does not cross itself in 
P having a trace r(£') = x0 ... xy'... xf (Fig. 5(b)). Notice that the result also 
works for the degenerate case when the trajectory crosses itself at an edge (or 
vertex). 

(c) 

Fig. 5. Obtaining a non-crossing trajectory 

If the trajectory £ crosses itself more than once in region P, then the number 
of times the trajectory £', obtained by cutting away the loop (Fig. 5(c)), crosses 
itself in P is strictly smaller than the number of times £ does it (see Fig. 6). 
After replacing xx' and yy' by xy', the intersection q of xx7 and yy7 disappears. 
If the new segment of line xy' crosses another segment zz7 (say at a point t), 
then zz' necessarily crosses either xx' (at r) or yy7 (at s) -or both-, before the 
transformation. The above is due to the fact that if zz7 crosses one side of the 
triangle xy'q then it must also cross one of the other sides of the triangle, say 
at r. Thus, no new crossing can appear and the number of crossings in the new 
configuration is always less than in the old one. 

Fig. 6. The number of crossings decreases: (a) Before (3 crossings); (b) After (1 cross- 
ing). 
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Lemma 2. For every trajectory £ that crosses itself at least once, there exists 
a trajectory £' with the same initial and final points of £ having a number of 
self-crossings strictly smaller. 

The above result follows from a straightforward inductive reasoning, as well as 
the following one. 

Proposition 2. // there exists an arbitrary trajectory from points Xo G eo to 
Xf £ ef then there always exists a non-crossing trajectory between them. 

Hence, in order to solve the reachability problem we only need to consider non- 
crossing trajectories with piecewise constant derivatives. In what follows, we only 
deal with trajectories of this kind. 

4    Properties of Edge Signatures 

Let £ be a trajectory with trace r(£) = x0 ... xp, edge signature <r(£) = eo ... ep, 
and region signature />(£) = PQ...PP. An edge e is said to be abandoned by 
£ after position i, if e* = e and for some j, k, i < j < k, Pj ... Pk forms a 
region cycle and e ^ {ej+i, • • •, e/t}- Since trajectories are /müe we should add 
the trivial case when e ^ ej for all j > i. 

Lemma 3 (Claim 2 in [4]). For every trajectory £ and edge e, if e is abandoned 
by £ after position i, e will not appear in <r(£) at any position j > i. 

Given a sequence s, we use notations first(s) and last(s) for the first and last 
elements of the sequence respectively, e denotes the empty sequence An edge 
signature a(^) can be canonically expressed as a sequence of edges and cycles of 
the form crc(£) = ris\lr2s\2 • • • '"„«'"Vii where 

1. For all i € [1, n + 1], rj is a sequence of pairwise different edges; 
2. For all i G   [l,n], Si is a simple cycle (i.e., without repetition of edges) 

repeated ki times; 
3. For  all i   e   [l,n - l],/zrsi(ri+i)   ^   first(si)  if ri+i   ^   e,  otherwise 

first(si+i) ^ first(si); 
4. For all i G [1, n], if r» ^ e then last{ri) = last(si); 
5. r„+1   ^   £.   Moreover,  r„+i   =   first(sn)   if <r(£)   ends  in  a loop  and 

first(rn+i) ^ first(sn) otherwise. 

This canonical representation can be obtained as follows. Let <r(£) = e\... ep_iep 

be an edge signature. Starting from ep_i and traversing backwards, take the 
first edge that occurs the second time. If there is no such edge, then trivially 
the signature can be expressed in a canonical way and we are done. Otherwise, 
suppose that the edge ej occurs again at position i (i.e. e» = ej with i < j), 
thus (7C(£) = wsr, where w, s and r are obtained as follows, depending on the 
repeated edge: 

w = e0 ... et 

s = ei+x ...ej 
r = ej+i... ep_i 
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Clearly r is not a cycle and s is a simple cycle with no repeated edges. We 
continue the analysis with w. Let km = max{l \ sl is a suffix of w}. Thus, 
Cc(£) = w'skr with w' = e0... eh (a prefix of w) and A; = km + 1. We repeat 
recursively the procedure above with w'. Adding the edge ep to the last r (at the 
end) we obtain <7C(£) = risj1 . ..rns*nrn+i that is a canonical representation of 
signature a. 

Let us define the type of a signature a as type(a(£)) = ri: si,..., rn, sn, rn+i. 
Notice that the "preprocessing" (taking away the last edge ep) is done in order 
to differentiate edges signatures that end with a cycle from those that do not. 
There exists many other (maybe easier) ways of decomposing a signature a in a 
canonical form (in particular, traversing forward instead of backwards), but the 
one chosen here permits a clearer and simpler presentation of the reachability 
algorithm. In fact in this canonical form, the last visited edge in a cycle e\... e^ 
is always the last one (e/-). 

Example. Let us consider the following examples. Suppose that a = abcdbcefg 
efgefgefhi. Then, after applying once the above procedure we obtain that ac = 
w{s2)3n, with w = abcdbcef; s2 = gef; rx = h. Applying the procedure once 
more to w we obtain w = w'(sz)1r2 with w' = r3 = abc; s3 = dbc; r2 = ef. 
Putting all together and adding the last edge (i) gives ac = abc(dbc)1ef(gef)3hi 
with type type(a) = abc, dbc, ef, gef, hi. Suppose now, that the signature ends 
with a cycle: a = abcdbcef gef gef gef gef. In this case we apply the preprocessing 
obtaining ac — iü(s2)

4ri with w = abcdbce; s2 = fge; ri = e. Applying the 
procedure to w we finally obtain w = tü'(s3)1r2 with w' = r3 = abc; s3 = 
dbc; r2=e and that gives ac = abc(dbc)1 e(fge)4f (adding / to the end). D 

Lemma 4.  The type of a signature a, type{a), has the following properties: 

1. For every l<i^j<n + l, rt and rj are disjoint; 
2. For every 1 < i ^ j < n, st and Sj are different; 
3. If v is a vertex appearing in type{a), then it can only occur exactly once in 

ri for some l<i<n + l in a. Moreover, v £ last(ri) unless i = n + 1. 

Proposition 3.  The set of types of edge signatures is finite. 

Thus, to solve the reachability problem we can proceed by examining one by one 
the types of signatures. 

5    Affine Operators 

Before getting into the problem of analyzing types of edge signatures, we need 
to introduce some useful notions. 

An affine function f : R -> K is defined by a formula f{x) = ax + b with 
a > 0. An affine multivalued operator F : R ->■ 2R is determined by two affine 
functions fi(x) and fu(x) and maps x to the interval (fi(x), fu(x)), where (a,b) 
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means (a,b), [a,b], (a,b\ or [a,b) : F(x) = (fi(x),fu(x)). We use the nota- 
tion F = (/;,/«). Such an operator can be naturally extended to subsets of 
R: F(S) = \JxeSF(x). In particular, if S = (l,u): F((l,u)) = (fi(l),/„(«)). A 
truncated affine multi-valued operator G : R -» 2E is determined by an affine 
multi-valued operator F and an interval {L, U) as follows: G(x) = F(x) n (L, U). 
Such operators can be also extended to sets. We use notations G = F f) (L,U) 

and F = G. 

Lemma 5 (composition of affine operations). Affine functions, affine 
multi-valued operators, and truncated affine multi-valued operators are closed 
under composition. 

Example. Let G\{x) = (2x + 3, 3a:+ 5] and G2(x) = [5a;+ 2, 7a;+ 6] be two (non- 
truncated) affine multi-valued functions, Gi = Gifi(l, 6], and G<2 = <$2n[6, 10) 
their truncated versions. The truncated affine multi-valued operator G2 o G\ {x) 
is obtained as follows: 

G2 o Gi(x) = G2 o Gi(x) n G2((l, 6]) n [6, 10) 

= (5(2a; + 3) + 2, 7(3x + 5) + 6] n (5 • 1 + 2, 7 ■ 6 + 6] n [6, 10) 
= (10a; + 17, 21a; + 41] n (7, 48] n [6, 10) 
= (10a; + 17, 21a; + 41] n (7, 10). 

Notice also that for any interval (l,u) its image is G2 ° Gi((Z,u)) = (10/ + 
17, 21u + 41) n (7, 10). D 

Let / be an affine function, XQ be any initial point and xn = fn(x). Clearly, 
the sequence xn is monotonous, and it converges to a limit x* (finite or infinite). 
Indeed, x* can be effectively computed knowing a, 6 and a;o, as follows. If a < 1, 
x* is the unique fixpoint of /, that is, ax* + b = x*, which yields x* = 6/(1 — a). 
If a = 1, x* = —oo if b < 0, a;* = oo if b > 0, and x* = Xo, if b = 0. If a > 1, 
let x* = 6/(1 — a), then a;* = —oo if x0 < £*, x* = oo if x0 > a:,, x* = x0 = x„, 
otherwise. This result can be extended to multi-valued affine functions. 

Lemma 6. Let (lo,u0) be any initial interval and (ln,un) = Fn({lo,u0)). Then 

1. The sequences ln and un are monotonous; 
2. They converge to limits I* and u* (finite or infinite), which can be effectively 

computed. 

Proposition 4. Let F be truncated affine and I C (L,U). Then Fn(I) = 
Fn(I)f](L,U). 

6    Computing the Successor Function 

To solve the reachability problem for SPDI, the next step is to provide a pro- 
cedure for computing the successors of a point (and an interval), which requires 
having an effective representation of (rational) points and intervals on edges. 
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Let us first introduce a one-dimensional coordinate system on each edge. For 
each edge e we chose (1) a point on it (the origin) with radius-vector v, and 
(2) a director vector e going in the positive direction in the sense of the order 
-<. Now to characterize e we need the coordinates of its extreme points, namely, 
e',e" G Q>U {-00,00} suchthat e = {x = v + rre | el < x < eu}. That is, an edge 
e G E can be represented by a triplet (v,e, (el,eu)). If the edge is a vertex, the 
representation is simply (v, [0,0]). Now, every point x = v+xe G e is represented 
by the pair (e,x) (Fig.7(a)), and every interval (xj,X2) C e is represented as 
(e, (0:1,0:2)), where Xi — (e,xi) and x2 = (e,x2) (Fig.7(b)). Now, having fixed 

Fig. 7. (a) Representation of edges; (b) Representation of an interval; (c) One-step 
successor. 

a one-dimensional coordinate system to represent points, the question now is to 
take advantage of it to compute the successor of a point or an interval. 

Let e = {el,eu) G in(P) and e' = {e'\e'u) G out(P). For x = (e,x) and 
c G 4>{P), we denote by Succf e,(x) the unique x' = (e',x') such that x' = x + ci 
for some t > 0. The point (e', x') is the successor of (e, x) in the direction c (see 
Fig.7(c)). Expanding, v' + x'e' = v + xe + tc. Multiplying both expressions by c 
we obtain that (v'+a;'e')c = v-c + xec, i.e. x'(e'-c) = a:(e-c) + (v —v')-c. Thus, 
x' = Succ°e,(ar) = ^1 + ^ -c and x' G (en,e'u). Indeed, putting a(c) = ||, 
and /3(c) = ^^r ■ c we have the following result. 

Lemma 7. The function SucCge,(a:) = a(c)x + /3(c) n {e'\e'u) is truncated 
affine. 

SucCeie/(o:) will denote the non-truncated function a(c)x + /3(c). The notion 
of successor can be extended on all possible directions c G <j>{P) and it can be 
applied to any subset S C (e\eu) and in particular to intervals (l,u): 

Lemma 8. Let <f>{P) =/%,x = (e,x) and (l,u) C (el,eu). Then: 

(u))n(e'l,e'u) 

1. Succe,e,(x) = U^(P)Suc<e'(o:) = (Succe,e,(x),Succeie,(x)) n {e'\elU); 
 b  a 

2. Succeie'((/,u)) = (Succee,(/),Succe 

The successor operator will be used as a building block in the reachability al- 
gorithm. It can be naturally extended on edge signatures: for w = e\, e2,..., en 

let 
Succ„,(7) = Succeri_lje„ o ... o Succe2]e3 o Succei]e2(7) 
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that by Lemma 5 is truncated affine. Notice that since we use edge signatures 
the semi-group property takes the following form. 

Lemma 9. For any edge signatures w and v and an edge e, Succew o Succ^ = 
oUCCveW. 

Example. Let us come back to the example of the swimmer trying to escape 
from a whirlpool in a river (see Fig. 1). Suppose that the swimmer is following 
a trajectory with edge signature (ei... e8)*. It is not difficult to find a repre- 
sentation of the edges such that for each edge ei; (e\,ef) = (0,1). Besides, the 
truncated affine successor functions are: 

Succeie2(x) = [|, |] n (0,1) Succe2e3(x) = 

Succejei+1(z) = [x,x] n (0,1), for all i € [3,7] Succe8ei(x) = 

3 2 
X-lö'a:+15 

1 1 
x + --,x + - 

5 5 

n(o,i) 

n(o,i) 

The successor function for the loop s = ex... e8 is obtained by composition of 
the above functions as follows. Let us first compute 

SuCCeie2e3(/,u) = SuCCe2e3 O SuCCei62 (I, u) 

= [f-i.!+$]n(°-^i+^)n(0'1) 
= [I-it + a]n(0,l) 

Since Succeiei+1 for i G [3, 7] are the identity functions, we have that 

SuCCei...e8(Z,u) = SuCCesei oSuCCeie2e3G,u) 

By Lemma 6 we have that /* = j^f = -|, and u* = J±T = 5. D 

7    Reachability Analysis 

The algorithm for solving the reachability problem between two points x0 = 
{e0,x0) and X/ = (ef,xf) is depicted in Fig. 8. The proofs of soundness and 
termination are given in the extended version ([5]). It works as follows. 

Reach. From the section above we know that there exists a finite number of type 
signatures of the form rt, su ..., rn, sn,rn+i. Moreover, the type signatures are 
restricted to those with e0 = first{r{) and ef = last(rn+1). Given such a set of 
type signatures type(e0, ef), the algorithm Reach(-) is guaranteed to terminate, 
answering YES if xf is reachable from x0 or NO otherwise. Reachability from 
x0 to Xf with fixed signature w is tested by the function Reachtype(xo,Xf,w). 
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Reachtype. Let the type w have the form w = r1,s1,... ,rn,sn,rn+1. Put 
fi = first(si) and ex{ = first(ri+i) if ri+1 is non-empty and fi+1 otherwise 
(i.e. ex{ is the edge to which the trajectory exits from the loop s,). Let us say 
that a type signature w has a loopend property if rn+1 = first(sn), i.e. signa- 
tures of type w terminate by several repetitions of the last loop. This algorithm 
uses two functions: Test(S,s,x) that answers whether x is reachable from a set 
5 (represented as a finite union of intervals) in the loop s (formally, whether 
x G Succs+/i„t(s)(/)); and the function Exit(S,s,e) that for an initial set S, a 
loop s, and an edge e (not in this loop) finds all the points on e reachable by 
making s several times and then exiting to e (formally, it computes Succs+e(I), 
which is always a finite union of intervals ). Since we know how to calculate the 
successor of a given interval in one and in several steps (Succee>(-) and Succr(-)), 
in order to implement Test(-) and Exit(-) it remains to show how to analyze 
the (simple) cycles s* and eventually their continuation. Both algorithms Test(-) 
and Exit(-) start by qualitative analysis of the cycle implemented in the function 
Analyze(I,s). This analysis proceeds as follows. 

Analyze. The function Analyze(I, s) returns the kind of qualitative behavior of 
the interval I = (l,u) under the loop s. Let s be a simple cycle, / = first(s) its 

first edge, and I = (l,u) C / an initial interval and SuccS)/(x) = SuccsJ(x) n 
(L,U). The first thing to do is to determine the qualitative behavior of the 
leftmost and rightmost trajectories of the interval endpoints in the cycle. This 
can be done without iterating Succs/. Indeed, by Lemma 6, we can compute the 

limits (11,ul) = limn_>00SuccS]/((/,u)) (notice that those are limits only for the 

non-truncated operator Succ), not taking into account that the edges are possible 
bounded (we use Lemma 4) and compare these limit points corresponding to 
unrestricted dynamics with L and U. There are five possibilities: 

1. STAY The cycle is not abandoned by any of the two trajectories: L < I* < 
u* <U. 

function Reach(x0,x./) 
R = false 
for each w 6 type(eo, e/) 

R = RV Reachtype(xo,Xf,w) 
•f— R 

function   Exit(S, s, ex) 
E = <b 
for each   I € S such that SuccSi/(7) ^ 0 

E = E U ExitAnaiyze(SuccsJ(I), s, ex) 
-E 

function ReachtyPe(xo,Xf,w) : 
S = Succrifl(x0) 
for i = 1 to n — 1 

5 = Succri+l/i+1 (Exit(S, si, ext)) 
if loopend(u;) 
then i— Test(S, sn, Xf) 
else i— xf e SucCrn+1(Exit(S,sn,exn))l 
function   Test(S, s,x) 
R = false 
for each   I e S such that Succs,/(7) / 0 

R= RVTestAnalyze(SuCC3j(I),S,x) 
<r—R 

Fig. 8. Main algorithm. 



Decidability of the Reachability Problem for Planar Differential Inclusions        101 

2. DIE The right trajectory exits the cycle through the left (consequently the 
left one also exits) or the left trajectory exits the cycle through the right 
(consequently the right one also exits). In symbols, u* < tV/* >U. 

3. EXIT-BOTH Both trajectories exit the cycle (the left one through the left 
and the right one through the right): I* <LAu* >U. 

4. EXIT-LEFT The leftmost trajectory exits the cycle but not the other: I* < 
L < u* < U. 

5. EXIT-RIGHT The rightmost trajectory exits the cycle but not the other: 
L < I* < U < u*. 

Exit. The function Exit(S,s,ex) should return Succs+ei(S). Both the argu- 
ment S and the result are finite collections of intervals. The exploration is made 
for each initial interval separately. Notice that the call Succsj(I) ensures that 
I C (L,U). All the work for each initial interval I is done by the function 
ExitAnaiyze(I, s, ex) which launches the Analyze(-) procedure described above 
and last, according to the result of this analysis launches one of five special- 
ized procedures Exit STAY, Exit LEFT, Exit RIGHT, Exit BOTH, Exit DIE which 
calculates the exit set (Fig. 10). 

function   Found(I, x) 

function   Search(I, x) 
while Found(I,x) = NOTYET 

cases 
xel:            <— YES 
/ - 0 •            <— NO 

I = Succs,/(7) 
<— Found(I, x) 

x<I A 11:   <— NO 
i>/Au|:  <— NO 
else :              <— NOTYET 

Fig. 9. Search and Found. 

Test. The upper-level structure is the same as for EXIT: each initial interval 
is treated separately by Test Analyze, which makes one turn of the loop, calls 
Analyze and delegates all the remaining to one of the five specialized functions 
TestsTAY, TestLEFT, TestjuGHT, TestßOTH, TestDIE (Fig. 10). The five spe- 
cialized Test functions use the following two procedures (Fig. 9). The function 
Found(I,x) determines if the current interval / contains x (YES), does not con- 
tain x and moves in the opposite direction (NO), or none of both these cases 
(NOTYET). Found(I, x) uses the fact that the sequences ln and un are increas- 
ing or decreasing (which can be easily determined at the stage of the preliminary 
analysis of the loop): I t means that the sequence I, h,l2,... of successive suc- 
cessors of I is increasing whereas / 4- means that the sequence is decreasing, and 
similarly for u t and u ±. The function Search(I, x) iterates the loop s until the 
previous function Found gives a definite answer YES or NO (Fig. 9). It is used 
only when its convergence is guaranteed. 
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Exit Test 

STAY function Exit STAY {I, s, ex) 
<—0 

function TestSTAY{I,s,x) 
cases 

I* < x < u* : <— YES 
x < I* A 11 : <— NO 
x > u* Auf -A— NO 
else :              •<— Search(I,x) 

DIE 

function ExitDiE(I,s,ex) 
f = first(s) 
5 = 0 
repeat 

7 = Succs/(7) 
5 = 5|JSuccs,ex(7) 

until 7 = 0 
<—S 

function TestDiE{I,s,x) 
<— Search(I, x) 

BOTH function ExitBoTH(I,s,ex) 
^Succs,ex({L,U)) 

function TestBoTH{I,s,x) 
f-ie (L,u)? 

LEFT function ExitLEFT{I,s,ex) 
i— Succs>ex((L,u)) 

function TesttEFT{I,s,x) 
cases 

xe(L,u*):           -f—YES 
x<{L,u*):           <— NO 
(L,u*) <xAu-f :<— NO 
else :                        «— Search(I, x) 

RIGHT| Similar to the previous case. Similar to the previous case.          | 

Fig. 10. Exit and Test. 

Fig. 11. Example: x/ = (ei, |) is not reachable from x0 = (ei, \) (u* < |). 

Example. Consider again the swimmer. Let x0 = (e!, \) be her initial position. 
We want to decide whether she is able to escape from the whirlpool and reach 

the final position xf = (ex, |). Recall that I* = fij- = -I and u* = -K- = |. 

Thus, by the Analyze function we know that the cycle behaves as an Exit-LEFT 
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and applying the function TestLEFT we obtain that x/ = (ei, f) is not reachable 
from x0 = (ei, \) because we have that u | and u* < xf (f < f) (Fig. 11).     0 

From all the results above we have the following theorem. 

Theorem 1 (Point-to-Point  Reachability).   The point-to-point,  edge-to- 
edge and region-to-region reachability problems for SPDI systems are decidable. 

D 

8    Concluding Remarks 

We have presented an algorithm for solving the reachability problem for simple 
planar differential inclusions. The novelty of the approach for the domain of Hy- 
brid System is the combination of two techniques, namely, the representation of 
the two-dimensional continuous dynamics as a one-dimensional discrete system 
(due to Poincare), and the characterization of the set of qualitative behaviors of 
the latter as a finite set of types of signatures. 

One possible direction of future work is to try to apply the same method for 
solving the parameter synthesis problem for SPDFs, that is, for any two points, 
x0 and x/, assign a constant slope cP G </>(P) to every region P such that x/ is 
reachable from x0, or conclude that such an assignment does not exist. Clearly, 
the decidability of the reachability problem does not imply the decidability of 
the parameter synthesis one. 

Another question that naturally arises is decidability of the reachability prob- 
lem for hybrid automata whose locations are equipped with SPDFs. We can cer- 
tainly find (stringent) conditions, such as planarity of the automaton, "memory- 
less" resets, etc., under which decidability follows almost straightforwardly from 
the decidability of SPDFs. On the other hand, it is not difficult to see that 
this problem, without such conditions, is equivalent to deciding whether given 
a piece-wise linear map / on the unit interval and a point x in this interval, 
the sequence of iterates x, f(x), f(f(x)), and so on, reaches some point y. This 
last question is still open [13]. And last but not the least, another interesting 
issue is the complexity analysis of the algorithm. It should be based on counting 
all "feasible" types of signatures. Our finiteness argument of lemma 4 gives a 
doubly exponential estimation, which can certainly be improved. 
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Abstract. The behavior of the run of an impulse differential inclusion, 
and, in particular, of a hybrid control system, is "summarized" by the 
" initialization map" associating with each initial condition the set of 
new initialized conditions and more generally, by its "substratum", that 
is a set-valued map associating with a cadence and a state the next 
reinitialized state. These maps are characterized in several ways, and 
in particular, as "set-valued" solutions of a system of Hamilton-Jacobi 
partial differential inclusions, that play the same role than usual 
Hamilton-Jacobi-Bellman equations in optimal control. 

Keywords: hybrid control, impulse control, differential inclusion, vi- 
ability, run, execution, periodic, cadenced run, equilibrium, Kakutani 
Theorem, contingent cone, Marchaud map. 

1    Introduction 

Impulse differential inclusions, and in particular, hybrid control systems, are de- 
fined by a differential inclusion (or a control system) and a reset map. A run of an 
impulse differential inclusion is defined by a sequence of cadences, of reinitialized 
states and of motives describing the evolution along a given cadence between two 
distinct consecutive impulse times, the value of a motive at the end of a cadence 
being reset as the next reinitialized state of the next cadence. 

A first advantage of introducing impulse differential inclusions is to sum- 
marize the usually protracted description of an hybrid system1 by only two 
set-valued maps F — the right-hand side of the differential inclusion governing 
the continuous evolution of a hybrid system — and R, describing the reset map 
reinitializing the system when required and a constrained set K inside which 
the evolution of the "run" or "execution" must remain. Hence, for instance, the 
existence of a run of an hybrid system for every initial set becomes a viability 
problem of an adequate auxiliary subset under an impulse differential inclusion, 
that can be characterized elegantly end efficaciously. 

1 See for instance among many papers and books [13, Branicky, Borkar & Mitter], [12, 
Bensoussan & Menaldi], [17,18, Matveev & Savkin] and [20, Shaft & Schumacher]. 
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The behavior of the run is "summarized" by the " initialization map" U := 
U(F,R) associating with each initial condition x0 £ K the set of new initialized 
conditions xx £ R(x(~t1)) when x(-) ranges over the set of solutions to the 
differential inclusion x' £ F(x) viable in K until they reach R~l{K) at time 
h >0ata;(-i1) £ R-^K). 

Indeed, the sequence of successive initial conditions xn of a viable run x(-) 
of the impulse differential inclusion (F, R) — constituting the "discrete compo- 
nent of the run" — is governed by the discrete system xn £ l7(Fifl)(a;„_i) n K 
starting at x0. The knowledge of the sequence of initialized states xn allows us 
to reconstitute the "continuous component" of the run by solving the differen- 
tial inclusion x' £ F(x) starting at each reinitialized state xn and satisfying the 
end-point condition xn+1 £ R(x(-tn+1)), which exists thanks to the definition 
of the map Ufp ™. 

Assume for a while that the impulse differential inclusion is actually an im- 
pulse differential equation (/, r) where the maps / and r are single-valued and 
that the initialization map is single-valued and differentiable. Then we shall 
prove that the initialization map is a solution to the system of first-order partial 
differential inclusions 

Qli 
or, in a more compact form, 0 =  Tj~f(x), satisfying the "condition" 

Vx£Kr\r-1(K),   r(x) = u(x) 

Actually, we shall extend this result to general impulse differential inclusions by 
characterizing the initialization map U{F>R) as a generalized (set-valued) solu- 
tion — a Frankowska solution — to the system of first-order partial differential 
inclusions 

satisfying the "condition" 

Vx£KnR-1(K),   R(x)  c U(x) 

These are indeed really Dirichlet boundary condition whenever the reset map 
R is defined only on the boundary dK of a closed subset K and maps dK into 
the interior of K. In this case, resetting initial conditions happens only when 
the continuous evolution of the state governed by the differential inclusion or 
the control system is about to leave the domain K. Hence the reset map assigns 
new initialized states in the interior of K. 

We shall introduce more generally another set-valued map summarizing the 
behavior of an impulse differential inclusion, called the substratum, that is the 
topic of this paper. 
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Outline: We begin by giving our definition of impulse differential inclusions. 
We then recall the characterization of viable subsets under an impulse differential 
inclusion an derive from it a necessary and sufficient condition for the existence 
of solutions to hybrid differential inclusions. Then, we devote the next section to 
the graphical properties of the initialization map U and we derive its properties 
from the general properties of viable-capture basins of a target by a differential 
inclusion. 

In the last section, we translate the Prankowska characterization of viable- 
capture basins in terms of kinds of systems of first-order Hamilton-Jacobi partial 
differential equations characterizing the substratum the solutions of which are 
the initialization maps and the substratum. 

2    Impulse Differential Inclusions 

"Hybrid control systems", as they are called by engineers, or "multiple-phase 
dynamical economies", as they are called by economists (see for instance [16, 
Day]), or "Integrate and Fire" models in neurobiology (see for instance [14, 
Brette]) — may be regarded as impulse differential inclusions. 

Here, X := Rn and Y := Rm denote finite dimensional vector spaces. Let 
f : X x Y \-^ X be a, single-valued map describing the dynamics of a control 
system and P : X ^> Y the set-valued map describing the state-dependent 
constraints on the controls. 

First, any solution to a control system with state-dependent constraints on 
the controls 

(i)  x'(t) = f(x(t),u(t)) 
\ii)u(t)  G P{x(t)) 

can be regarded as a solution to the differential inclusion x'{t) G F(x(t)) where 
the right hand side is defined by F{x) := f(x,P(x)) := {f(x, u)}u€P(xy 

Therefore, from now on, as long as we do not need to implicate explicitly the 
controls in our study, we shall replace control problems by differential inclusions. 

We shall say that K is locally viable under F if from every x G K starts a 
solution x(-) to the differential inclusion x' G F(x) viable in K on the nonempty 
interval [0,TX[ in the sense 

Vi€[0,Ta[,   x(t)  eK 

and that K is viable if we can take Tx = +oo. It is locally backward invariant 
under F if for every *o G]0, +OO[, X G K, for all solutions x(-) to the differential 
inclusion x' G F(x) arriving at x at time to, there exists s G [0,£o[ such that x(-) 
is viable in K on the interval [s,*o]> and backward invariant if we can take s = 0. 

We denote by 

Graph(F) := {(x,y) eXeY\y€ F(x)} 

the graph of a set-valued map F : X ~> Y and Dom(F) := {x G X\F(x) ^ 0} 
its domain. 
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Let us set x(~t) :— limrM.(_ X(T) when x(-) is denned on some interval [t—rj, t[ 
where n > 0, and, for consistency purposes, x(s) = x(~t) if s — t. An impulse 
differential inclusion (and in particular, an impulse control system) is described by 
a pair (F,R), where the set-valued map F : X ~~> X mapping the state space 
X := Rn to itself governs the continuous evolution of the system in K and where 
R, the reset map, governs the discrete switches to new "initial conditions" when 
the continuous evolution is doomed to leave K. 

Such a hybrid evolution, mixing continuous evolution "punctuated" by dis- 
continuous impulses at impulse times is called in the "hybrid system" literature 
a "run" or an "execution". 

Definition 21 Let us consider a finite dimensional vector space X, a closed 
subset K C X, a set-valued map F : X ~* X and a set-valued map R : X ~» X, 
regarded as a reset map. We regard the pair (F, R) as the dynamics of an impulse 
differential inclusion. 

A run of the impulse differential inclusion is a map x(-) from [0, T] to X 
if T < +00 or from [0, +oo[ to X if T = +00 which is associated with a non 
decreasing sequence T{x(-)) := {tn}n>0 of impulse or switching times t0 := 0 < 
ti < ■ ■■ <tn < ■ ■ ■ <T (depending on the run x(-)) such that 

1. x(tn+1) G R(x(tn)) iftn+1 = tn, 
2. or else, on the interval [tn, tn+i[, x(-) is a solution to the differential inclusion 

x' G F(x) starting at x(tn) at time tn until time tn+\ at which we take 
x(tn+i) e R(x(~tn+1)). 

We denote by rn :=i„—t„_i the nth cadence of the run and by xn{-) :=x(- + tn) 
the nth motive of the run, a solution to the differential inclusion x' € F(x) 
starting at x(tn) on the interval [0,Tn] and satisfying the end-point condition 
xn(T„) G R~1(xn+i). The sequence of states x(tn) is called the sequence of ini- 
tialized states. 

We say that a run x{-) is viable in K if for any t >0, x(t) € K. 

At this stage, a run x(-) can just be a (discrete) sequence of states xn+i e 
R(xn) at a fixed time, or just a (continuous) solution x(-) to the differential 
inclusion x' G F(x), or an hybrid of these two modes, the discrete and the 
continuous. 

Hybrid systems can be regarded as instances of viable impulse differential 
inclusions: we refer to [2, Aubin] or [11, Aubin, Lygeros, Quincampoix, Sastry 
k, Seube] for more details on that topic. 

3    The Substratum and the Initialization and Impulse 
Maps 

We denote by S(x) c C(0,oo;X) the set of absolutely continuous functions t H-> 
x(t) G X satisfying 

for almost all t > 0,   x'{t)  G F(x(t)) 
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starting at time 0 at x: x(0) = x and by SK : K ~> C(0,oo,K) the viable 
solution map mapping an initial state x G K to the set SK(x) of solutions to the 
differential inclusion x' G F(x) starting at x G K and viable in K. 

The set-valued map <S : X ~> C(0, oo; X) is called the solution map associated 
with F. 

We next denote by 

dK{t,x)  :=        U      {*(*)} & 4K(t,C)  :=   \J $K{t,x) 
i(-)65K(x) xec 

the Ä"-viable reachable maps (or set-valued flow) of x G K and C c K respectively. 
We set $ := dx when viability constraints are absent. 

Definition 31 We associate with the dynamics (F,R) of the impulse differential 
inclusion its substratum FK := Fh? fi) : R+ x K ~» Ä", £/m£ is i/ie set-valued map 
associating with any (t, x) G R+ x K the subset 

r$tR){t,x) := R(#K(t,x))nK 

of the elements y G R(c) where c £ C := Kf\R~~l(K) through which the solutions 
to the differential inclusion x' G F{x) starting at x and viable in K until they 
reach Ü_1(Ü') at time t. 

Knowing the substratum rfp R-., we introduce 

1. the impulse map 

TfFR){x)  :=  {t>0    suchthat r^R){t,x) ^ 0} 

2. and the initialization map [//£, Rs : Ä"~> X 

teT(«FB)(z) 

First, we single out the following property: 

Proposition 32 Let (F,R) be an impulse differential inclusion defined on a 
subset K. Knowing the substratum F%?R-. of (K,F,R), and thus the impulse 

map T^fpji) and the initialization map UJp R^, we can reconstruct a viable run of 
the impulse differential inclusion (F, R) through the following algorithm: Given 
the cadence Tn and the initial state xn, we take 

' i)   the next cadence r„+i G TFFRJxn), 
ii) the next reinitialized state xn+i G r?pRJTn+i,xn) C UK?RAxn), 
iii) the next motive xn(-) := x(- + tn), a solution to x' G F(x) satisfying 

xn(0) = xn k I„(T„+I)  G R~x(xn+\) 

(1) 
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In other words, in terms of impulse times, given the impulse time tn and the 
initial state xn, we take 

' i)   the next impulse time i„+1 e tn + T^FRAxn), 
ii)  the next reinitialized state xn+i G F^,RJtn+i - tn,xn) C Ufp RJxn) 

Hi) Vie [in)*n+i], a solution x(-) to the differential inclusion x' G F(x) 
starting from xn at time tn viable in K until it reaches R~1(xn+\) 
at time in+i. 

(2) 

Proof — Take any run x(-) associated with a sequence T(x(-)) := {tn} 
of impulse times starting at x0 G K and viable in K. Then the sequence x : 
n —> x(tn) is a solution of the discrete dynamical system r& RJtn+i — tn,xn), 
obviously viable in K. 

Conversely, assume that the substratum rfp R-> is known. The above algo- 
rithm (2) starting at time 0 and state XQ G K provides a run x(-) associated 
with the sequence T(x(-)) := {tn} of impulse times of the impulse differential 
inclusion (F, R) viable in K. G 

Actually, if we are interested only in the sequence of reinitialized states and 
not necessarily in knowledge of the sequence of impulse times, the knowledge of 
the initialization map [//£, R-. is sufficient: 

Proposition 33 A subset K is viable under the impulse differential inclusion 
{F,R) if and only if the domain of the initialization map UFFR) is equal to K. 

Proof — Assume that K is viable under (F, R) and prove that for every 
x G K, U^FRAx) ^ 0. Take any x0 G K. By definition, there exists a run x(-) 
associated with a sequence T(x(-)) := {tn} of impulse times viable in K. Then 
the sequence x : n —> x(tn) is a solution of the discrete dynamical system Ufp R,, 
obviously viable in K. 

Conversely, assume that K is viable under the discrete system U^F>R), i.e., 
that for every x G K, Ufi,Rs{x) ^ 0. We shall prove that K is viable under the 
impulse differential inclusion (F, R). Let x0 given in K and a solution x : n —>• 
%n G UfpR^xn-{) n K to the discrete dynamical system Ufp Ry By definition 
of the initialization map Ufj? R-., we can associate with 

xn  S  tf&sjfcn-i)  := U I$iÄ)(t,a:n_i) 

some Tn_i G T^,RJxn_i) such that 

xn  := a;n(Tn_i)  G  i?(i?K(Tn_i,a:n_i)) 

where xn(-) is a solution to the differential inclusion x' G F(x) starting at time 
0 froma;n_i. Setting tn := in_i +r„_! and x(t) := xn(t + t„_i) if t G [tn-i,tn], 
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we have checked that x(-) is a run to the impulse differential inclusion (F,R) 
associated with the sequence {tn}n>o of impulse times tn starting from XQ and 
viable in K. n 

4    Some Prerequisite from Viability Theory 

Most of the results of viability theory are true whenever we assume that the 
dynamics is Marchaud: 

Definition 41 (Marchaud Map)   We shall say that F is a Marchaud map if 

' i)    the graph of F is closed 
ii)  the values F{x) of F are convex 
iii) the growth of F is linear: 3 c> 0 \V x £ X, 

11^(1)11 :=sup„6F(l)||t;||  < c(H+l) 

This covers the case of Marchaud control systems where (x,u) H-> f{x,u) is 
continuous, affine with respect to the controls u and with linear growth and 
when P is Marchaud. 

We recall the following version of the important Theorem 3.5.2 of Viability- 
Theory, [1, Aubin]: 

Theorem 42 Assume that F : X ~~> X is Marchaud. Then the solution map S 
is upper semicompact with nonempty values: This means that whenever xn £ X 
converge to x in X and xn{-) £ S(xn) is a solution to the differential inclusion 
x' £ F(x) starting at xn, there exists a subsequence (again denoted by) xn{-) 
converging to a solution x(-) £ S(x) uniformly on compact intervals. 

Our purpose is to characterize the viability of a subset K under an impulse 
differential inclusion: 

Definition 43 We shall say that a subset K is viable under an impulse differ- 
ential inclusion (F, R) if from any initial state x of K starts at least one run 
viable in K. 

The Viability Theorem2 and its consequences imply the following 

Theorem 44 Let (F, R) be an impulse differential inclusion and K C X be a 
closed subset. Assume that F is Marchaud and that R~l{K) is closed. Then the 
following statements are equivalent 

1. K is viable under (F,R), 
2. The subset? K\R~X(K) is locally viable under F, 
2 See for instance Theorems 3.2.4, 3.3.2 and 3.5.2 of [1, Aubin]. 
3 The subset K\C denotes the intersection of K and the complement of C, i.e., is the 

set of elements of K which do not belong to C. 



112        J.-P. Aubin 

3. K, F and R are linked through the tangential condition* 

VxeK\R-\K),  F(x)nTK(x)^<t) 

(see [2, Aubin] or [11, Aubin, Lygeros, Quincampoix, Sastry & Seube] for a 
proof.) 

We shall also need some other prerequisites from Viability Theory: 

Definition 45 Let C C K C X be two subsets, C being regarded as a target, 
K as a constrained set. The subset Capt^ (C) of initial states x0 € K such 
that C is reached in finite time before possibly leaving Kby at least one solution 
x(-) e S(x0) starting at x0 is called the viable-capture basin of C in K. A subset 
K is a repeller under F if all solutions starting from K leave K in finite time. 
A subset D is locally backward invariant relatively to K if all backward solutions 
starting from D viable in K are actually viable in K. 

We shall use the following characterization of capture basin (see [6, Aubin]): 

Theorem 46 Let us assume that F is Marchaud and that the subsets C c K 
and K are closed. If K\C is a repeller (this is the case when K itself is a 
repeller), then the viable-capture basin CaptAr(C) of the target C under S is the 
unique closed subset satisfying C C D C K and 

(3) 
f i)  D\C is locally viable under S 
\ ii) D is locally backward invariant relatively to K 

5    The Graph of the Substratum 

We begin by characterizing the graph of the substratum r^R): 

Theorem 51 Let us assume that F is Marchaud, that C C R is closed and that 
the graph of R : C ~> X is closed. 

Then the substratum r^p^ : K ~» K is the unique set-valued map with 
closed graph satisfying 

VxeK,   I$iB)(0,x)  := R(x)nK 

and, for any T > 0 

1. for any y e r^FfVj(T,x), there exists a solution x(-) to the differential inclu- 
sion x' e F(x) viable in K on [0, T] such that 

Vi€[0,T],   yer$tR)(T-t,x(t)) (4) 

4 The contingent cone TL(x) to L C -X" at x £ L is the set of directions v € X 
such that there exist sequences hn > 0 converging to 0 and vn converging to v 
satisfying x + hnvn € K for every n (see for instance [8, Aubin & Prankowska]) or 
[19, Rockafellar & Wets] for more details). 
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2. for any y G K\rfpR\(T,x), for every solution x(-) to the differential inclu- 

sion x1 G F(x) viable in K on [0,T], then 

vte[o,T], yeK\r{
K

FiR)(T-t,x(t)) 

As a consequence5, for any T > 0 and for any y G ÖKT^, RJT,x), for every 
solution x(-) to the differential inclusion x' G F(x) satisfying (4), then 

Vte[0,T],  yedKr{%R)(T-t,x(t)) 

For proving Theorem 51, we shall first observe that the graph of the substra- 
tum of (K, F, R) is a viable-capture basin and next, deduce the above results 
from the characterization of viable-capture basins. Let us recall that we denoted 
by R\K the graphical restriction of R to K x K defined by 

JJ\KM  ._(R(x)nKifx€K 
K\Kix)   — |0 Hx^K 

We observe that C := Dom(.ßJ£) = K f\ R~l{K), that   Im(flJ£) and that 

Graph(#|£) = Graph(#) n (K x K). 

Lemma 52  The graph of the substratum r& R-. of(K, F, R) is the viable-capture 

basin of {0} x Graph(i?L.) under the set-valued map {—1} x F x {0}: 

Graph(r£fl)) = CaptJ+^^j ({0} x Graph(i?j£)) 

and V x G C := K n R'^K),   r^R){0,x) = R(x) n K. 

Proof —    Indeed, to say (T, x, y) belongs to the viable-capture basin 

Captf^^oj ({0} x Graph(ÄJ£)) 

means that there exists a solution x(-) G S(x) and t G [0, T] such that 

(i) Vt€[0,t],   (T-t,x(t),y)GCapt^1
x

}^{0}({0}xGraph(JR|
1^) 

\ii)(T-t,y,x(t)) G {0} x Graph(ÄJ£) 

i.e., if and only if t = T and 

{ 
t) Vte[0,T[,   x(t)  G   K 
ii) y G R(x(T)) n K 

This is equivalent to say that y G ffp R, (T, x) PI K. 

The relative boundary 8K D to K of a subset £> C if is equal to D n K\X. 
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Consequently, to say that y belongs to r/£. fl) (0, x) means that y G R(x)C\K. 
a 

Proof of Theorem 51 — We observe first that the map {-1} x F x {0} : 
RxIxI-vtRxXxIis Marchaud and that R+ x K x K is a repeller under 
this map since any solution (T-t,x(t),y) starting at (T,x,y) leaves R+ xKxK 
at time T. Theorem 46 states that the viable-capture basin 

Graph(r&H))  = Captf^ j;f{0} ({0} x Graph(i?|£)) 

is the unique closed subset V C R x K x K containing {0} x Graph(ßj^) 
satisfying 

1. V\({0} x Graph(#j£)) is locally viable under {-1} x F x {0} 
2. and 

Captf^^ojCV) = V 

This states that whenever (T,x,y) G (R+ x K x K)\V, all solutions to the 
differential inclusion (t',x',y') G {-1} x F(x) x {0} leave (R+ x K x K) 
before possibly reaching the target {0} x Graph(i?L-). 

The first statement means that whenever (T, x, y) belongs to V, there exists 
a solution x(-) to the differential inclusion x' G F(x) such that (T — t,x(t),y) 

belongs to V until it reaches {0} x Graph(i?L). This is equivalent to saying that 

ViG[0,T],   yer{
K

FtR)(T-t,x(t)) 

The second statement means that whenever (T, x, y) does not belong to V, all 
solutions x(-) to the differential inclusion x' G F(x) are such that (T — t,x(t),y) 
do not belong to V whenever (T -1, x(t), y) G R+ x K x K, i.e., whenever x{-) 
is viable in K on the interval [0,T]. This is equivalent to saying that for all 
solutions to x' G F(x) viable in K on the interval [0,T], 

V*G[0,T], yeK\r«!R)(T-t,x(t)) 

Let us consider now y G dr^R^(T,x) where T > 0. This means that there 

exists a sequence yn G K such that yn G K\r^,RJT,x). Hence (T,x,yn) does 

not belong to the capture basin of {0} x Graph(iJJ^) viable in R+ x K x K. 
Therefore we know that for any solution x(-) G S(x) viable in K on [0,T], 
for any t G  [0,T], yn  G üf\r(^ifl)(T - t,a;(t)) and, in particular, that y„  G 

K\r(K(0,x(T)) = R(x(T)). Taking any solution ar(-) G 5(s) satisfying (4) 
and the limit when n —> +oo, we infer that 

VtG[0,T],   y€dKr(
K

FtR)(T-t,x(t)) 

and that 
y G dKR(x(T)) 
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6    Hamilton-Jacobi Characterization of the Substratum 

Before stating the general result characterizing the substratum as a solution to 
a system of first-order partial differential inclusions, let us consider the following 
particular case: 

Proposition 61 Let us assume that f : X i-> X is Lipschitz, r : X H-> X is 
single-valued and continuous, that T>J,K C\ is continuous, that K is viable under 

(/, r) and Ffi ^ is differentiate. Then it is the unique solution to the system 
of first-order partial differential equations 

i=l * 

or, in a more compact form, 

VxeK\c, -^ + ^/(*)=o 

satisfying the condition 

V x G C,   u(0,x) = r(x) 

We shall deduce from Theorem 63 below. Indeed, thanks to the concepts of 
contingent derivative, we shall show that the substratum r,pm is the unique 
(set-valued) solution in the "Prankowska sense" to the "Hamilton-Jacobi inclu- 
sion" 

at ox 

satisfying the condition 

VxeC,  V(0,x) = R(x)nK 

We refer to [5,7, Aubin], [9, Aubin & Frankowska] and their references for set- 
valued solutions to systems of Hamilton-Jacobi inclusions. For that purpose, 
we recall that the (graphical contingent) derivative of a set-valued map V : 
R_i_ x K ~> K may be defined by the relation 

Graph(W(7>,y))  := TGx&v^{V){T,x,y) 

Definition 62 We shall say that a set-valued map V : R+ x K ~» K is a 
Frankowska solution to the Hamilton-Jacobi system of first-order partial differen- 
tial inclusions (5) satisfying the initial condition V(0, x) = R(x) if its graph is 
closed, if 

Vt > 0, Vy G V(t,x), 3v€ F{x)   such that 0 G DV(t,x,y)(-l,v) 
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and if for every v G F(x) 

Vf >0, Vy€V(t,x),    OeDV(t,x,y)(l,-v) 

or 
i)  -v G TXXK(x) if x G dK 
ii) -v G TK\x) if y G 8K 

Theorem 63 Let us assume that F is Marchaud, that C := K n i?_1(/^) is 
closed and that the graph of R : C ~~» K is closed. 

1. The substratum /V£, R-> : K ~» K is the largest set-valued map V : R+ xK ~> 
K with closed graph contained in K x K satisfying 

V t > 0, ye V(t, x), 3 v G F(x)    SMC/I f/iot 0 G W(i, a;, j/)(-l, v) 

and the condition V(0, x) = iZ(x) PI /f, 
2. If furthermore, F is assumed to be Lipschitz, the substratum jVp, R-. : K ~> K 

is the unique Frankowska solution V : R+ xK~~> K to the Hamilton-Jacobi 
system of first-order differential inclusions (5) satisfying the initial condition 
V(0,x)=R(x). 

Proof —        When   F   is   Marchaud,   to   say   that   Graph(V)\({0}  x 

Graph (äL.) J is locally viable under {—1} x F x {0} means that 

V (t,x,y) G Graph(V)\({0} x Graph (ä|J)) , 

{-1} x F(x) x {0}nTGv&ph(v)(t,x,y) + 0 

We observe that (t,x,y) G Graph(F)\({0} x Graph(fi!^)) whenever t > 0 and 
we recall that 

rGraph(vo(t>a:>2') = Gra.ph(DV(t,x,y)) 

so that the above condition reads 

Vt>0,Vy€r^R)(t,x), 3v<=F(x)   suchthat 0 G DV(t,x,y)(-l,v) 

When F is assumed to be Lipschitz, to say that 

Captf^^o^GraphtV)) = Graph(F) 

means that 

1. for any (t,x,y) G Graph(^)) n Int(R+ x K x K), 

({1} x -F(x) x {0}) c rGraph(V)(t,x,j/) = Giaph(DV(t,x,y)) 

This is equivalent to say that for every v G F(x), 

Vi>0, x£lnt(K), y eV(t,x)Dlnt{K),   0 G DV(t,x,y)(l,-v)     (6) 
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2. and otherwise, for any (t,x, y) G Graph(V)) n d(R+ x K x K), 

({1} x -F(x) x {0})  C TGiaph{V)(t,x,y)l)T{RxxxX)\(R+xKxK)(t,x,y) 

This means that for every v G F(x), 

' i)    0 G DV(t,x,y)(l,-v) iit = 0,y £ R(x) 
ii)  0 G D(t, x, j/)(l, -v) or - u G T^\K if * > 0, i G dK, y G fi(or) 
m) 0 G D{t, x, y)(l, -v) or - v G TK if i > 0, y G J?(x) n ÖÄ" 

Indeed,  
(R x X x X)\(R+ x K x JQ = 

(R_ x K x ÜQ U (R+ x (X\K) xK)U(R+xKx (X\K)) 

Therefore, condition (1, —v, 0) belongs to the contingent cone to R_ xKxK 
at (0, x, y) is impossible, condition (1, — v,0) belongs to the contingent cone 
to R_ x (X\K) x K at (t,x,y) when x G dK means that — v belongs to 
TX\K(

X
) 

and condition (1, — v,0) belongs to the contingent cone to R_ x 
K x (X\K) at (t,x,y) when y G dK means that — v belongs to TK(X).    □ 

For the initialization map, we obtain the following Hamilton-Jacobi inclu- 
sion : 

Theorem 64 Let us assume that F is Marchaud, that C := K n R_1(K) is 
closed and that the graph of R : C ~> K is closed. 

1. The initialization map [//£, R, : K ^> K is the largest set-valued map V : 
R+ x K ~> K with closed graph contained in K x K satisfying 

V y G V(x), 3v£ F(x)   such that 0 G DV(x, y)(v) 

2. If furthermore, F is assumed to be Lipschitz, the initialization map U%? fls : 
K ~> K is the unique Frankowska solution V : R+ x K ~> K to the 
Hamilton-Jacobi system of first-order differential inclusions (5) satisfying 
the condition V x G C, V(x) = R(x). 
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Abstract. Path-dependent impulse differential inclusions, and in partic- 
ular, path-dependent hybrid control systems, are defined by a path- 
dependent differential inclusion (or path-dependent control system, or 
differential inclusion and control systems with memory) and a path- 
dependent reset map. 
In this paper, we characterize the viability property of a closed subset of 
paths under an impulse path-dependent differential inclusion using the 
Viability Theorems for path-dependent differential inclusions. 
Actually, one of the characterizations of the Characterization Theorem 
is valid for any general impulse evolutionary system that we shall defined 
in this paper. 

Keywords: hybrid control, impulse control, path-dependent differential 
inclusion, differential inclusion with memory, functional differential in- 
clusions, viability, run, execution, Kakutani Theorem, contingent cone, 
Marchaud map. 

Introduction 

In this paper, we characterize the viability property of a closed subset of paths 
under an impulse path-dependent differential inclusion using the method of 
[2, Aubin] or [8, Aubin, Lygeros, Quincampoix, Sastry & Seube], the Path- 
Dependent Viability Theorems of [12,13,14, Haddad]. 

Actually, one of the characterizations of the Characterization Theorem is true 
for any general impulse evolutionary system that we shall define in this paper, 
which is based on recent results of [5, Aubin]. 

We recall that hybrid control systems1 can be embedded in the framework 
of impulse differential inclusions; in the same way, path-dependent hybrid sys- 
tems can be regarded as instances of viable path-dependent impulse differential 
inclusions, and enjoy the same properties. 

1 See for instance among many papers and books [10, Branicky, Borkar & Mitter], [9, 
Bensoussan & Menaldi], [15,16, Matveev & Savkin] and [18, Shaft & Schumacher]. 
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1    Impulse Path-Dependent Differential Inclusions 

Let X := R" be a finite dimensional vector space. 

1.1    History Spaces 

We denote by 
U(X)  := C(-oo,0;X) 

the history (or memory, path) space . 
It is supplied with the compact convergence topology. We denote by 7i\(X) 

the subset of Lipschitz functions with Lipschitz constant A. 
If K C H{X), we set 

V re]-oo,0],   K(r)  :=  {^(T)}^K 

Observe that Ascoli's Theorem states that a closed subset K C T-L\{X) is 
compact if and only if K(0) := {<^(0)}¥,eK is bounded, since it is closed and 
equicontinuous (by assumption) and pointwise bounded because, for all ip € K 
and T < 0, 

IMr)|| < ||V(r) - -0(O)|| + ||V(0)|| < A|r| + ||K(0)|| 

Our study invlves a constrained subset K C H(X) made of paths or histories 
and of a target C C K. 

A first example of constrained subset of paths or histories and targets asso- 
ciated with subsets C C K C X of the vector space are given by 

C := { <p € H(X) | <p(Q) e C } c K := { if e U{X) \ <p(0) eK} 

where the constraints bear only on the present. 
Another class is given by Volterra sets defined through a "kernel" k :] — oo, 0] x 

X v-^Y and a set-valued map M : Y ^-» X by 

K := jp e H(X) | <p(0) e M(J   k(-s, <P(S)W(S)\ | 

where the constraints involve cumulated consequences of the history 
In the discrete case, 

K :=  \<p G n(X) | ^(0)  eM[j  K-JMßi)) 

involves discrete cumulated consequences of the history (delays). 
Associated targets can be asociated with set-valued maps PcMin the same 

fashion. 
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1.2    Histories or Paths 

We associate with any continuous function x(-) G C(—oo, +00; X) its history (or 
path)2 T(t)x up to time t defined by: 

V re]-oo,0],   T{t)x{r) := x{t + r) 

Then T(t) maps C(—oo,+oo;X) to ~H(X) and satisfies the semi-group property 

T(t + s)x = T(s)T{t)x 

We then observe that for any function x(-) G C(—00, +00; X), we have x(t) = 
(T(t)x)(0). 

In this continuous framework, we define the constraints of the history of the 
evolution through a closed subset K C %{X). Viable evolutions x(-) with 
memory are the ones that satisfy 

Vt>0,   T{t)x G K (1) 

and an evolution #(•) reach a target C at time s if T(s)x G C. 
For instance, an evolution is viable in K := {up G Ti(X) \ ip(0) G K} if and 

only if for every t G] — 00,0],   x(t) G K. If 

K :=  L e W(X) | y>(0)  G M(J    k{-3M*))M*)\\ 

then x(-) is viable in K if and only if 

Vt>0,   x{t)  G M( k(t-s,tp(s))dp(s) 

1.3    Path-Dependent Differential Inclusions 

Let us consider a set-valued map F : %{X) H-» X governing the continuous 
evolution of the state x(t) through the path-dependent differential inclusion 

for almost all t > 0,   x'(t)  G F(T(t)x) 

starting at a given <p G 11{X) in the sense that 

T(0)x = <f 

i.e., for every r G] — 00,0],   X(T) = <P(T). 

We denote by Tip : 1i(X) ~> C(0, 00; X) the map associating with any initial 
path tp G T-L(X) the set TZ,p(ip) of solutions £ 1—>■ a;(i) to the path-dependent 
differential inclusion x'(t) G F(T(t)x) starting at the initial path (p in the sense 
that T(0)x = ip. 
2 often denoted by xt := T(t)x 
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Actually, we shall need the properties of the associated set-valued map Sp 
H(X) ~» C(0, oo; U{X)) defined by 

SF(<P)  ■= {t^tp{t):=T(t)x}x{.)enF(ip) 

Definition 11 We shall say that this set-valued map Sp '■ 7~L{X) ~~> C(0, +00 ; 
~H(X)) is the solution map of F. 

The solution map Sp has the advantage of mapping the set 1t{X) into time- 
dependent functions t i-> ip(t) := T(t)x that belong to the same histoy space 
'H(X), even though the traditional view is to call a solution a function 11-> x{t), 
taking its values in X. 

This choice of Sp instead of Tip is justified by its following properties: 

1. the translation property: Let cp(-) G S(tp). Then for all s > 0, the function ip(-) 
defined by ip(t) := ip{t + s) is the history tp(-) := T(-)y G S(T(s)x) of the 
solution y(-) to the path-dependent differential inclusion starting at T(s)x, 

2. the concatenation property: Let <p(-) G Sp(ip) be the history of a solution to 
the path-dependent differential inclusion starting at the path ip and s > 0. 
Then for every history -ip(-) G Sp(T(s)x) of a solution y(-) to the path- 
dependent differential inclusion starting at the initial path T(s)x, the func- 
tion £(•) defined by 

,m   .= (<p(t):=T{t)x ifte[0,s] 
«W   ■     ^(t-s):=T(i-s)j/ift>s 

is the history of the solution z(-) defined by 

zm ._/^)       if«G[0,s] 
w "_\^(i-r)ift>s 

to the path-dependent differential inclusion starting at the initial path tp, 
and thus, belongs to Sp((p). 

These two properties to which we add the upper compactness of the solution 
map are enough to obtain relevant (and interesting) properties of path-dependent 
impulse differential inclusions, common to other dynamical systems. 

1.4    Runs of Impulse Path-Dependent Differential Inclusions 

We now introduce a constrained functional set K C 7-L(X), a functional target 
C c K and a path-dependent reset map R : C ~> K with nonempty values 
R(<p). 

The pair (F, R) governs the evolution of impulse systems in the following 
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Definition 12 Let us consider a finite dimensional vector space X, the space 
rl(X) of histories, a subset K C H(X), a target C C K, a set-valued map 
F : H(X) ~» X and a set-valued map R : C ~> % with nonempty values, regarded 
as a path-dependent reset map. We regard the pair (F,R) as the dynamics of a 
path-dependent impulse differential inclusion. 

A run of the path-dependent impulse differential inclusion (F, R) is defined 
by 

1. a finite or infinite sequence T(X(-)) := {r„}„ of nonnegative cadences T„ 6 
[0, oo[, 

2. a sequence of reinitialized paths ipn 6 H(X), 
3. a sequence of motives <pn(-) '■= T(-)xn G Spifn) where <pn G 7i(X) is the 

history of a solution xn(-) to the path-dependent differential inclusion x'(t) G 
F(T(t)x) starting at the initial path (pn and satisfying the end-point condition 
T(rn)xn G Ä-%„+i) 

by 
( i)  defining the sequence of impulse times tn+\ := tn+Tn, , . 
\ii) Vt G [tn,tn+1[,  x(t)  := xn(t-tn) 

If the sequence of cadences is finite3 and stops at T/v, we agree that the Nth 
motive is defined on [0, +oo[, i.e., that we take TJV+I = +oo. 

We say that a run x(-) is viable in K if for any t > 0, T(t)x G K and that 
K is locally viable under (F, R) if for any <p G K, there exists at least one run 
of the impulse path-dependent differential inclusion viable on a nonempty time 
interval and (globally) viable if it is viable on [0,+oo[. 

At this stage, a run x(-) can just be a (discrete) sequence of paths <£>„+i G 
R(ipn) at the initial time (case when for all n > 0, the cadences r„ = 0), or just 
a (continuous) solution x(-) to the path-dependent differential inclusion x'(t) G 
F(T(t)x) (case when T\ = +oo), or an hybrid of these two path-dependent 
modes, the discrete and the continuous. 

Path-dependent hybrid systems can be regarded as instances of viable path- 
dependent impulse differential inclusions as in the case of usual hybrid systems: 
we refer to [2, Aubin] or [8, Aubin, Lygeros, Quincampoix, Sastry &: Seube] for 
more details on this topic. 

2 Statement of the Impulse Path-Dependent Viability 
Theorem 

2.1    Marchaud Maps 

The Viability Theorems hold true whenever we assume that the dynamics gov- 
erning the path-dependent evolution is Marchaud: 
3 We shall see that  we can eliminate this situation by assuming that  fi(C) n 

ViabF(K) = 0. 
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Definition 21 (Marchaud Map) We shall say that F : ri{X) ~> X is a Mar- 
chaud map if 

' i)    F is upper semicontinuous 
ii)   the values F{<p) of F are convex 
iii) the growth of F is linear: 3 c> 0 | V ip G rl(X), 

11^)11 :=sup„6F(v)||t;||   < c(M0)||+l) 

This covers the case of Marchaud control systems where (y>, u) H-> f(ip, u) is 
continuous, affine with respect to the controls u and with linear growth and 
when P : H(X) ~> Z is Marchaud. 

We recall the following version of the important Haddad Theorem 12.4.1 of 
[1, Aubin]: 

Theorem 22 Assume that F : ri{X) ~» X is Marchaud. Then its solution 
map Sp is upper semicompact with nonempty values: This means that whenever 
ipn G H{X) converge uniformly on compact intervals to <p in rl(X) and any 
history </>„(•) := T(-)xn G SF((fn) associated to a solution xn{-) to the path- 
dependent differential inclusion x'(t) G F(T(t)x) starting at ipn, there exists a 
subsequence (again denoted by) <pn(-) converging uniformly on compact intervals 
to the history tp(-) := T(-)x of a solution x(-) to the path-dependent differential 
inclusion starting at ip. 

2.2    Contingent Directions 

In the case of path-dependent impulse differential inclusions, we shall charac- 
terize the viability of a functional constrained set K in terms of contingent 
directions to a K c Ti(X) be a subset of histories at a path tp €H. Let 

A(X)  := {x(-) GC(0,+oo;X)    suchthat x(0)  = 0} 

denote the "future space". We embed the state space X into A(X) by identifying 
a vector x with the function ipx(t) := tx. The image of the ball \BX of radius A 
under this embedding is contained in A\{X) of A-Lipschitz functions. 

Definition 23 Let h > 0 be given. The /i-concatenation (or concatenation when 
there are no ambiguities) (pOh4> is the bilinear form from W(X)xA(X) i-> H(X) 
defined by 

(<pOh4>)(T)  •=  l^T + V ifrG]-oo,-/i] 

As an example, the concatenation of ip G rt(X) and sGlis defined by 

(<POHX)(T) =  /^r + /l) ifT€]-oo,A] 
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We attach to a function ip G 1i{X) and a sequence v\,...,vn the Euler 
concatenation defined by 

<p0hVl<>hV2<>h ■ ■ ■ <>hVn 

which is piecewise linear function on the interval [—nh,0]. 

Lemma 24 For any Lipschitz constant A > 0, the h-concatenation maps 
■Hx(X) x Ax(X) to -Hx(X) 

Definition 25 We denote by VK(<P) the set of vectors v G X such that there 
exist a sequence hn > 0 converging to 0 and a sequence vn G X converging to v 
satisfying 

Vn>0,   <pOhnvn  G K 

2.3 The Impulse Path-Dependent Viability Theorem 

Theorem 26 Let (F, R) be a path-dependent impulse differential inclusion and 
K C rl(X) be a closed subset. Assume that F is Marchaud and that C C K is 
closed. Then the following statements are equivalent 

1. K is viable under (F,R), 
2. The subset K\C is locally viable under the path-dependent differential inclu- 

sion governed by F, 
3. K, C, F and R are linked through the tangential condition 

V^GK\C,  F(<p)nT>K(ip)^9 

Actually, both impulse differential inclusions and path-dependent impulse 
differential inclusions4 share the same properties at a higher abstraction level, 
the level of impulse evolutionary systems we are about to define. It is at this 
level that the two first statements are equivalent. 

The equivalence between the second and third statement is specific, and 
provided in our case by the Path-Dependent Viability Theorems of [12,13,14, 
Haddad]. 

2.4 Examples 

Take any path-dependent differential inclusion x'(t) G F(T(t)x) associated with 
a Marchaud right-hand side F. 

We refer to Chapter 12 of [1, Aubin] for examples of tangential conditions 
when the constrained set K and the constrained targets C C K are Volterra 
sets defined by kernels, by lack of space. Consider only the simple case when 
4 as well as parabolic (or reaction-diffusion type) partial differential inclusions and 

mutational equations governing the evolution of subset. 
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the constrained subset of paths or histories and the target are associated with 
subsets C C K C X of the vector space X by 

C := { y e H(X) | <p(0) eC}cK:={<pe H(X) | <p(0) e K} 

Assume that the reset map R is associated with an usual reset map RQ : C ' ~» 
K, where C c K by the formula 

VtpeH(X), V re]-oo,0],   (R(<P))(T)  := flo(^r)) 

In this case, a run of the path-dependent impulse differential inclusion (F, i?o) 
is defined by 

1. a finite or infinite sequence T(X(-)) := {Tn}„ of nonnegative cadences r„ G 
[0,oo[, 

2. a sequence of reinitialized states xn G K, 
3. a sequence of motives £„(•) that are solutions to the path-dependent differen- 

tial inclusion x'(t) G F{T{t)x) starting at the initial state xn and satisfying 
the end-point condition xn+i G R(xn(Tn)) 

by 
i)  defining the sequence of impulse times tn+i := tn+rn, 
ii)Vte{tn,tn+1[,   x(t)  := xn(t-tn) "> 

Theorem 27 Let F be a path-dependent Marchaud set-valued map, K and C C 
K and R® : C -^> K be a reset map. Then K is viable under (F, i?o) if and only 
if the tangential condition 

V<p£ H(X)    such that <p(0) G K\C,   F(<p) n TK(<p(0)) ^ 0 

2.5    Path-Dependent Hybrid Systems 

Definition 28 An path-dependent hybrid differential inclusion (K, F, RQ) is de- 
fined by 

1. a finite dimensional vector space E of states e called locations, 
2. a set-valued map K : E -^-> X associating with any location e a (possibly 

empty) subset K(e) C -X" and a set-valued map C : E ~» X associating with 
any location e a (possibly empty) subset C(e) C K(e), 

3. a set-valued map F : E x H(X) ~-> X with which we associate the path- 
dependent differential inclusion x'(t) G F(e,T(t)x), 

4- a set-valued map (reset map) R0 : Graph(C) ~> Graph(.ftT). 

A run of the path-dependent hybrid system is defined by 

1. a finite or infinite sequence r(e,x(-)) := {r„}„ of nonnegative cadences r„ G 
[0, oo[, 

2. a sequence of locations en and of reinitialized states xn G K{en), 
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3. a sequence of motives xn{-) that are solutions to the path-dependent dif- 
ferential inclusion x'(t) G F(en,T(t)x) starting at the initial state xn and 
satisfying the end-point condition xn+i G Ro{en,xn(Tn)) 

by (3). 

We observe right away that a map {e,x(-)) is a run of the hybrid differential 
inclusions if and only if (e(-),x(-)) is a run of 

t)  e'(t)  = 0 
ii)x'(t) G F(e(t),T(t)x) 

"viable" in Graph(^T) until it reaches the graph of the map C. Indeed the loca- 
tions remain constant in the intervals [tn,tn+i[ since their velocities are equal to 
0. 

Since the existence of solutions to path-dependent hybrid differential inclu- 
sions amounts to the viability of the graph of the set-valued map K under an 
associated auxiliary path-dependent impulse differential inclusion, we obtain a 
necessary and condition for the existence of solutions to hybrid differential in- 
clusions thanks to Theorem 27. For that purpose, we need the definition of the 
contingent derivative DK(e, x) : E ~> X of a set-valued map K : E ->-> X at a 
point (e, x) of its graph: It can be defined by 

Gr&vh{DK{e,x))  := TGl.aph(Ar)(e,x) 

Theorem 29 Let (K,F,Ro) be a path-dependent hybrid differential inclusion. 
Assume that F is Marchaud. Then the path-dependent hybrid differential inclu- 
sion has a solution for every initial state if and only if 

Ve£E,V(p£H{X)  such that 

p(0) G K(e)\K(e)\C(e),  F(e, <p) n DK(e, <p(0))(0) ± 0 

3    Impulse Evolutionary Systems 

Therefore, it costs nothing to prove the equivalence between the two first state- 
ments in the general case of impulse evolutionary systems: 

3.1    Impulse Evolutionary Systems 

Definition 31 An evolutionary system is a set-valued map S : X ~-* C(0, oo; X) 
satisfying 

1. the translation property: Let x(-) G S(x). Then for all T > 0, the function 
y(-) defined by y(t) := x(t + T) is a solution y(-) G S(x(T)) starting at x(T), 
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2. the concatenation property: Let x(-)  e S(x) and T > 0.  Then for every 
y(-) £ S(x(T)), the function z(-) defined by 

z(f) ._/*(*)        if*G[0,T] 
Z{1) -\y(t-T)itt>T 

belongs to S(x). 

We can define impulse evolutionary systems in the following way: 

Definition 32 Let K C X, C C K be two nonempty subsets and R : C ~> K 
a set-valued map5 with nonempty values, regarded as a reset map, and S : X ~> 
C(0, oo; X) be an evolutionary system. Then the pair (S, R) governs a run ar(-) 
of an impulse evolutionary system defined by 

1. a finite or infinite sequence T{X{-)) := {r„}„ of nonnegative cadences rn e 
[0,+oo[, 

2. a sequence of reinitialized states xn, 
3. a sequence of motives xn(-)   £   S(xn)  satisfying the end-point condition 

xn{Tn) e A
_1(x„+1) 

by 
(i)  defining the sequence of impulse times tn+1 := tn + rn, 
\«)Vte [*n,*n+l[.    X(t)    :=   Xn{t-tn) W 

If the sequence of cadences is finite6 and stops at rjv, we agree that the Nth 
motive XN(-) G S(XN) is taken on [0, +oo[, i.e., and we agree to set TJV+I = +oo. 

We say that a run x(-) is viable in K if for any t > 0, x(t) € K and that 
a closed subset K is viable under an impulse evolutionary system (S,R) if from 
any x £ K starts at least one run viable in K. 

In order to characterize the viability of K under an evolutionary system, we 
also need the following definitions: 

Definition 33 Let S : X ~> C(0,+oo;X) be a set-valued evolutionary system 
and K c X be a subset regarded as a constrained set. 

The subset K is said locally viable under S if from any initial state x £ K 
starts at least one solution viable in K on a nonempty interval and viable if this 
solution is viable on [0, +oo[. 

The viability kernel Viab(K) is the subset of initial states x0 € K such that 
one solution x(-) £ S(x0) starting at x0 is viable in K for all t > 0. A subset K 
is a repeller under S if its viability kernel is empty. 

When R : X ~» X is defined on X, we associate with it its "graphical restriction" 
to K x K (again denoted by) R where C := K n R-r(K) and R{x) is replaced by 
R(x) n K. 
We shall see that we can eliminate this situation by assuming that R(C) n 
ViabsW = 0- 
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3.2 Characterization of Impulse Evolutionary Systems Viability 

We can adapt the proof of [2, Aubin] or [8, Aubin, Lygeros, Quincampoix, Sastry 
& Seube] for characterizing the viability of a closed subset under an impulse 

evolutionary system: 

Theorem 34 Let (S,R) be an impulse evolutionary system and K C X and 
C C K be closed subsets. Assume that S is upper semicompact. Then the follow- 
ing statements are equivalent 

1. K is viable under (S,R), 

2. The subset K\C is locally viable under S, 

3.3 Prerequisites of Viability Theory 

For proving this characterization theorem, we need some results of viability 
theory. 

Definition 35 Let K C X be a subset. The functional TK '■ C(0,oo;X) H» 

R+ U {+00} associating with x(-) its exit time TK(X(-)) defined by 

TK{X{-))  := inf{te[0,oo[|x(t)gA-} := VOX\K(X(-)) 

is called the exit functional. 
Let C C K be a target. We introduce the (constrained) hitting functional 

W(K,c) defined by 

^(/c,c) (*(•)) := inf{* ^ ° I *(*) G C & Vs e [CM], x(s) £K} 

associating with x(-) its hitting time, introduced in [11, Cardaliaguet, Quincam- 
poix & Saint-Pierre]). 

Consider an evolutionary system S : X ~» C(0,+oo;X). Let C C K and K 
be two subsets. 

The function T*K : K i-> R+ U {+00} defined by 

T
K(

X
) '■=     SUP    TK(X(-)) 

*(-)es(x) 

is called the upper exit function. 
The function w°,K c, : K ^ R+ U {+00} defined by 

W
\K,C)(

X
)  ■■=       inf   ,«7(K,c)(:r(-)) 

is called the lower constrained hitting function. 

We shall need the following 
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Theorem 36 Let S : X ~> C(0, +00; X) be a strict upper semicompact map 
and C and K be two closed subsets such that C C K. Then the hitting function 
W(K,C) ^s l°wer semicontinuous and the exit function T*K is upper semicontinu- 

ous. Furthermore, for any x G Dom{w\KC-)), there exists at least one solution 

x (•) G S{x) which hits C as soon as possible before possibly leaving K 

™\K,C){
X

)   =   ™{K,C){X\-)) 

and for any x G Dom(r^), there exists at least one solution x^(-) G S(x) which 
remains viable in K as long as possible: 

4(X)   =   TK{X*{.)) 

(See [5, Aubin] for a proof and more details on evolutionary systems). 

3.4    Proof of the Characterization of Impulse Evolutionary Systems 
Viability 

Indeed, if K is viable under (S,R), then from any x0 G K\C starts at least a 
solution x(-) G S(x) viable in K 

1. either forever if x0 belongs to the viability kernel Viab(K) of K 
2. or until it reaches at some time t\ > 0 a state x(~ti) in C. 

This shows that K\C is locally viable. 
Conversely, let us assume that K\C is locally viable and take an initial state 

x0 G K. If x0 belongs to C, we may take r0 = 0 and x\ G R(x0). Consider now 
the case when x0 G K\C. 

lix0 belongs to Viab(.JQ, then at least one solution starting from x0 is viable 
in K, and thus, defines a run viable in K: We may take the cadence r0 = +00 
and for motive a solution x0(-) G S(xo). 

If x0 does not belong to Viab(if), all solutions leave K in finite time before 
(possibly) reaching the viability kernel. It is then enough to prove that at least 
one of them reaches C before leaving K. This is the case of a solution x^(-) G S(x) 
which maximizes TK{X{-)), i.e., which satisfies 

T
K(

X
)  '■=      SUP    TK{X{-))  = TK{X*{X)) 

leaves K\(Viab(K) U C) through C. This solution exists by Theorem 36 since 
K is closed and S is upper semicompact. Next, we claim that x^ := X\T\;:{X)) G 

K\Viab(K). Otherwise, if x" would belong to the viability kernel, it could be 
concatenated with a solution viable in K for ever, so that the initial state x0 

would belong the viability kernel, which is not the case. 
Furthermore, a;" belongs to C. If not, z" would belong to K\C which is 

assumed to be locally viable. Then one could associate with re" G K\(Viab(K) U 
C) a solution y{-) G S{xi) and T > 0 such that y(r) G K\(Viab(K) U C) for all 
r G [0, T). Concatenating this solution to x^(-), we obtain a solution viable in K 
on an interval [0, T^(X) + T], which contradicts the definition of x"(-). 

Therefore a;' belongs to K n C so that there exists x\ £ K n R(x$). □ 
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4    The Path-Dependent Viability Theorem 

Since the solution map of a Marchaud map F : rl(X) ~> X is upper semicompact 
by Theorem 22, the equivalence between the first and second statements of 
Theorem 34 holds true. 

The equivalence between the second and the third statement follow from the 
following Haddad's Path-Dependent Viability Theorem: 

Theorem 41 Assume that F is Marchaud and take A > 0. The two following 
statements hold true: 

1. If Kc rl\(X) is closed, then K is (globally) viable under F if and only if 

V^GK, F(<p)nVK(<p)^<!) 

2. If C C K is closed, then K\C is locally viable under F if and only if 

Vy>eK\C, F(y)nPK(p)^C 
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Abstract. In this paper, we consider the problem of stabilizing the kine- 
matic model of a car to a general path in the plane, subject to very mild 
restrictions. The car model, although rather simplified, contains some of 
the most relevant limitations that make application of existing results 
in the literature impossible: namely, the car can only move forward, and 
turn with a bounded steering radius; also, only limited sensory informa- 
tion is available. 
The approach we follow to stabilization is to adapt to the present gen- 
eral case an optimal synthesis approach successfully applied in our pre- 
vious work to tracking rectilinear paths. Due to both the nature of the 
problem, and the solution technique used, the analysis of the controlled 
system involves a rather complex switching logic. Hybrid formalism and 
verification techniques prove extremely useful in this context to formally 
proof stability of the resulting system, and are described in detail in the 
paper. 

1    Introduction 

In this paper we consider the design of a control law for path tracking by a 
so-called Dubins' model of a car. Dubins' cars are kinematic models of wheeled 
(nonholonomic) vehicles that move only forward in a plane, and possess a lower- 
bounded turning radius. The model is relevant to the kinematics of road vehicles 
as well as aircraft cruising at constant altitude, or sea vessels. 

Although the design of control techniques for nonholonomic vehicles has been 
the subject of extensive research recently (see e.g. [10,12,6]), the additional con- 
straint that the steering radius of the vehicle is lower bounded has not been 
explicitly considered. However, such a restriction appears to be crucial in mak- 
ing a kinematic model of a car relevant to real-world vehicles encountered in 

* The work has been conducted with partial support of PARADES, a Cadence, 
Magneti-Marelli and ST-microelectronics E.E.I.G, by CNR PF-MADESSII SP3.1.2. 

M.D. Di Benedetto, A. Sangiovanni-Vincentelli (Eds.): HSCC 2001, LNCS 2034, pp. 133-146, 2001. 
© Springer-Verlag Berlin Heidelberg 2001 



134        A. Balluchi, P. Soueres, and A. Bicchi 

most applications. Another important assumption often used in the literature is 
that the full state of the system is available for measurement, and that the path 
to be tracked is entirely known in advance. Instead, we consider in this paper 
the more realistic and less demanding case that the vehicle can only measure 
its current distance and heading angle error with respect to the closest point 
on the reference path in the plane, where only the sign of the path curvature is 
detected. 

The approach we follow to stabilization of Dubins' cars is to adapt to the 
present general case an optimal synthesis approach successfully applied in our 
previous work to tracking rectilinear paths [11]. Due to both the nature of the 
problem, the type of sensors, and the solution technique used, the analysis of the 
controlled system involves a rather complex switching logic. Hybrid formalism 
(see [5,14,2]) and verification techniques (see [8,7,1]) prove extremely useful in 
this context to formally proof stability of the resulting system, and are described 
in detail in the paper, which is organized as follows. 

In Section 2, a hybrid automaton that describes the motion of the vehicle 
with respect to the path is introduced, while in Section 3 the path-tracking con- 
troller is developed. Such controller, described in detail in Section 3.2, is obtained 
by considering a local approximation of the desired path with the tangent line, 
and by using a feedback controller designed for stabilization on straight paths 
(reported in Section 3.1). The advantages of the novel hybrid path-tracking 
formalization are exploited in Section 4, where the stability properties of the 
proposed controller are investigated. By a reachability analysis in the continu- 
ous state space, a finite state abstract representation of the hybrid closed-loop 
automaton is obtained. Though this representation is not a bisimulation, but 
rather a simulation, of the hybrid automaton ([5]), it suffices to prove the sta- 
bility properties of the proposed control. It is shown that the proposed hybrid 
feedback controller achieves stabilization of the Dubins' car on a generic reference 
path and sufficient conditions for global attractivity are derived. 

2    Hybrid Path Tracking Modeling Using Switching 
Frenet's Frames 

We consider the kinematic model of a car moving forward on a plane, which 
was introduced by Dubins in [4]. A configuration of the vehicle is defined by 
an ordered pair (M(x,y),6) € H2 x S1, where (x,y) are the coordinates of a 
reference point M in the plane and & is the angle made by the direction of the 
car with respect to the z-axis. The kinematics of the car are described by 

V 
with        H < -, (1) 

where V is the constant forward velocity, u the is turning speed and the input 
constraint models a lower bound R > 0 on the turning radius of the Dubins' car. 
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X, Xi X2    X2 

Fig. 1. Reference path and transformed coordinates. 

The problem we are concerned with is that of steering the vehicle to a given 
feasible path f, defined in the arclength parametrization by 

r = {(x,y) G R2 | (x,y) = g(ß) for ß G R} , (2) 

with the following conditions: 

A) £(•) is a class C1 mapping from R to R2 and the orientation of T is that 
induced by increasing, ß; 

B) Let K(/3) denote the extension by continuity from the left1 of the curvature 
of r, expressed as a function of the arclength ß. There exists a positive real 
Rr such that the normalized curvature k(s) = Rn(s) satisfies 

\k(ß)\=R\K(ß)\<jt=C<l. 

C) Considering the open neighborhood of the path 

Tr = {x G R2 : 3/3 G R, ||x - ö(/?)|| < Rr} C R2 

for all x G 7r there exists a unique nearest point on r. 

(3) 

(4) 

In order to describe the motion of the vehicle with respect to the reference path r 
a mobile Frenet's frame associated to the curve T is considered. Given a vehicle 
position M(x,y) G Tr, the Frenet's frame Sr(s)\3=ß is defined by the tangent, 
the principal normal and the binormal axes of the curve at the point (x(ß),y(ß)) 
of r, located at the minimum distance2 from M(x,y) (see Figure 1). As the 
vehicle moves with velocity V, the Frenet's frame ST(s) follows its motion so 

1 By definition, n(ß) = lim,,^- K(S), at points (x(ß),y(ß)) where the curvature of T 
is not defined. 

2 Note that, by A), B) and C) the Frenet's frame is well-defined along r. 
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downwards 
k(s) < 0 

upwards 

y~-y   0 := -V 

Fig. 2. Hybrid automaton PTHAg modeling the car in the transformed state space. 

as to keep it on the principal normal axis. The arclength abscissa s locates the 
current Prenet's frame. The tangent and the principal normal axes of ST{s) 
remain within the plane containing the curve, while the binormal axis points 
either upwards, if the local curvature of r is counterclockwise (i.e. K{S) > 0), 
or downwards, if the local curvature is clockwise (i.e. K(S) < 0). Introduce the 
transformated coordinates (s,y,§), where: 

- abscissa s defines the position of the Prenet's frame along the curve; 
- y denotes the position of the car along the principal normal of ST(s) (lateral 

distance) normalized with respect to the minimum turning radius R; 
- 6 denotes its orientation with respect to the tangent axis of ST(s) (heading 

angle error), with sign taken according to the local direction of the binormal 
axis (see Figure 1). 

It can be noticed that this coordinate system is similar to the one used by 
Samson [9], except for the switchings of the Prenet's frame. In fact, a change 
of curvature along the path produces a jump of the variables y and 6 to the 
symmetric point with respect to the origin in the (y, 0)-plane. The reason for 
introducing such discontinuity in the model is related to the different behaviors 
that a vehicle with bounded curvature has when it approaches a reference path. 
Indeed, the approach is apparently easier if the vehicle and the center of cur- 
vature of the path lie on the opposite sides of the curve3. This formulation will 
turn out to be useful in the verification of the proposed path tracking controller. 

The motion of the car in the transformed state (s, y, 6)T can be described by 
using the formalism of hybrid automata (see [5,3]). The discrete nature of the 
model arises from the fact that the Frenet's frame ST(s) changes its orientation 
during the motion, depending on the sign of the curvature k{s). The discrete 
state, referred to as bin , models the two possible orientations of the binormal 
axis of ST(s(t)) at time t and assumes either the value upwards or the value 

For instance, if the vehicle is required to approach a circle with curvature 1/R, then 
it can approach it only from outside. 
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upwards 
ar = switch 

Fig. 3. Hybrid automaton PTHAg of the vehicle in the reduced state space. 

downwards. Its initial value is: upwards, if k(s(0)) > 0; downwards, if k(s(0)) < 0; 
and any of those, otherwise. The dynamics the continuous states are subject 
to are obtained by geometric arguments. The complete Path-Tracking Hybrid 
Automaton, referred to as PTHA3 , is depicted in Figure 2. 

The specification for the design of a path tracking controller for the Dubins' 
car can be formulated using the hybrid automaton PTHAg , which captures the 
different behaviors of the bounded-curvature vehicle in approaching the path. 
For such hybrid model, the problem reduces to that one of steering (y, 8) to 
(0,0). 

Assuming that only the sign of k(s) is available but not its amplitude, a 
reduced hybrid automaton can be considered for the path tracking problem. 
The local curvature \k{s)\ is replaced by an unknown input disturbance d(t) the 
path tracking controller has to be robust to. By (3), disturbance d(t) satisfies 

0 < d(t) < C < 1. (5) 

The path tracking problem is described in the reduced continuous state space 
{y,6). Curvature sign switching conditions k{s) > 0 and k{s) < 0 are modeled 
by a discrete uncontrollable input oy, assuming either the value switch (when a 
change of curvature sign occurs) or the silent move e (otherwise). The reduced 
hybrid automaton, referred to as PTHA2 , is reported in Figure 3. 

In this case the path tracking problem is formulated as follows: 

Problem 1. Let T as in (2) be a feasible reference patL Given the hybrid au- 
tomaton PTHA2 , find a feedback control law uj{bin, (y,6)) satisfying curvature 
constraint (1) such that, from any initial state (bino,(y0,Ö0)) the trajectory 
(y(t),9(t)) converges to the origin under the action of any unknown disturbance 
d(t), bounded as in (5), and any sequence of uncontrollable events ar. 
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Table 1. Partition of domain V^-^ used to define the shortest path synthesis. 

O = {(0,0)} 

Q° = sr U si U O 
Ci~ = r U rsr U rsl U rl(1) U rl(2) 

ß+ = lUlsrUlslUlr(1'ulr<2) 

r = r(DUr(i)Ur(3) 
lr(i)=lr(i.i)ulr(i.2)ulr(1.3) 

lsr = lsr(1)Ulsr(2) 

rsr = rsr'1' Ursr'2' 
^lWuiWui'3) 

r](l)=rl(l.l)Url(1.2)Url(1.3) 

rsl = rsl(1)Ursl(2) 

lsl = lsl(1)Ulsl(2) 

<*N(y,Ö) = j/ + l + cos(0) 
ap(y,8) = y-l -cos(S) 
<nt(y, ej = y + i- cos(ö) 
OL{V,6) =y-\ + cos{9) 

1(1' = 
r(2) = 

J(2) = 

r(3) = 

1(3). 

lrd.l) = 

rl(l.l) = 

,r(1.2) = 

r,(1.2) = 

lr(1.3) = 

rl(1.3) = 

lr<2' = 
rl<2' = 
sr = 
si = 

lsr'1'; 
rsl'1' = 
lsr'2' = 
rsl'2' = 
rsr'1' = 
Isl'1'; 

rsr'2' = 
lsl'2' = 

{%ö)\öe 
{(y,o)\ee 
{(yJ)\ee 
{(y,e)\ee 

■■{(y,ö)\öe 
{(y,ö)\ee 
{(y,8)\ee 
{(yJ)\ee 
{(y,ö)\öe 
{(»,«)!* e 
{(y,ö)\ee 
{(0.9)1« e 
{(yJ)\öe 
i(y,ö)\0e 
{(y,m< 
{(y,ö)\y> 
i(yJ)\ee 
i(y,e)\ee 
{(yJ)\öe 
{(y,ö)\öe 
{(v,ö)\öe 
i(yJ)\ee 
{(W,Ö)|0€ 
{(y,ö)\öe 

z,0),<rL(y,8)=0} 

(0, 
(- 
[f,7r),o-Ä(t/,e) = 0} 
(-*,-§], trL(y,0)=O} 
[T,§T),<TR(J/.ö) = 0}U{(0,7r) 
{-l;Tr,-Tr],aL(y,§)=0} 
(0,%),<7N(y,6)>0,aL(y,e)<0} 
(-%,0),aL(y,6) > 0,ap(y,§) < 0} 
(-%,0],oN(y,e)>0,crR(y,e)<0} 
{Q,%),<rR(y,6)>0,<7p(y,6)<0} 
(-7r,-fW(jf,ö) > O,aR(y,0) < 0} 
[f-T)^Ä(y,ö) >0,<Tp(ji,ö) <0} 
[TT, §7r), CTä(ü, 0) > 0, aN(y, 0) < 0} 
(-§7r,-7T],<Tp(y,0) > 0,<7i,(j?,e) < 0} 
-i,e = f} 
+1,0" = -f} 
[o,|W(ä,0)<o} 
(-f,O],<xP(ä,0~)>O} 
l-%,0),aN(y,e)<0} 
(O,f],aP(ä,0)>O} 
(§>TW(2/,ä)<O} 

(-5r,-f),<Tt(s/,e)>0} 
[T.|T),^R(J/,ö)<O} 

(-§7r,-7r],(Ti(ä,ö)>0} 

3    Hybrid Path-Tracking Feedback Controller 

3.1    Optimal Feedback Control for Line Tracking 

In [11], the problem of driving the Dubins' car to a straight path has been 
considered. An optimal feedback control that minimizes the length travelled by 
the vehicle to reach the specified path was deviced. Define aN(y,9) = y + 1 + 
cos(ö) and aP(y,9) = y - 1 - cos(ö). The optimal feedback control presented 
in [11] is defined inside the region 

V(v,§) = < 

'(TN(y,§) < 0 A 9 € [TT, §TT)   V 
<rp(y,0)<0 A 0€(§,TT)  V 
öe[-f,f] v 
<TN(y,9)>0 A £e [-7r,-f) v 

Up(y,0)>O A £e(-§7r,-7r) 

(6) 

in the state space (y, 0), which, modulo 2ir angles on 0, corresponds to the whole 
space (see Figure 5).   The optimal controller is described by three modes, 
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• gostraight, where w = 0 
• turnjright,    where u> = — -g (7) 
• turn Je ft,      where w = +-g , 

which are chosen as follows 

[go.straight, if {y, 9) G Q°\ A [turn.right, if {y, 6) G Q~\ A [turnJeft, if {y, 6) G ß+] 
(8) 

where the partition 1?° U Q~ U ß+ of domain P(5e) is defined as in Table 1. 

In Figure 5 the boundaries between the subsets of the partition i?° U Q~ U Q+ 

are represented by dotted lines, and the direction of motion, when the reference 
path is a straight line i.e. d = 0, is represented by directed curves. 

3.2    Feedback Tracking Control for Generic Path 

In this section a hybrid feedback controller that solves Problem 1 is derived 
from the one reported in the previous section. The hybrid model of the vehicle 
PTHA2 is characterized by the two modes: upwards and downwards. In mode 
downwards input u) appears with opposite sign with respect to mode upwards. 
Since the controller modes in (8) has been set assuming an upwards binormal 
axis then, the controller modes turn-right and turnJeft have to be switched when 
the vehicle is in mode downwards. Hence, for a generic feasible path r, the full- 
state feedback controller is denned in {upwards, downwards} x T>^-^ by setting 
the controller modes as follows 

• go.straight, if {bin, {y,0)) G {upwards, downwards} x Q° 
• turnjright, if {bin, {$,§)) € {upwards x Q~) V {bin, {y,6)) G {downwards x i?+) 
• turnJeft,     if {bin, {y, 6)) G {upwards x J?+) V {bin, {y, 6)) G {downwards x Q~) 

(9) 
where Q°, Cl~~ and i?+ are as in Table 1. The closed-loop hybrid automaton 
CLHA obtained by applying the feedback (7),(9) to the vehicle hybrid automaton 
PTHA2 is depicted in Figure 4. According to (9) and (8), CLHA has a discrete 
state mode that assumes values in the set Ö = {zero, negative, positive}, as follows 

• mode = zero if {y, 6) G Q° 
• mode— negative if {y,6) G Q~ (10) 
• mode = positive   if {y, 6) G Q+. 

The initial state {mode0,{y0,60)) of the hybrid automaton CLHA has to sat- 
isfy (10). 

The coordinate transformation {x,y,6) ->■ {s,y,9) becomes singular when 
the vehicle lies on the center of the local osculating circle to the path J1. That is 
if, at some time t, y{i) \k{s{t))\ = 1, or equivalently y{t) d{t) = 1. For any initial 
configuration {M{x0,y0),6o), with M{x0,y0) G Tr as in (4), the corresponding 
state {yo,0~o) satisfies y0 < C_1. Further, since by (5) d < C, then y0d < 1 at 
the given initial condition. However, to ensure that 

yd<\   i.e.   l-yd>Q (11) 
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K = t (Mien"] 

Fig. 4. Hybrid model of the closed-loop system CLHA . 

will hold along all the trajectories of CLHA , we need to further restrict the 
admissible initial vehicle configurations, in terms of its initial orientation 80. 

Proposition 1. Let the continuous disturbance d be bounded to belong to the 
interval [0, C], with 

C < 0.5 . (12) 

Then, (11) is satisfied along all trajectories of CLHA provided that the initial 
configuration (modeo, (y~o,Qo)) is such that 

(jto, Äo) G X(S<S) = {(y, 9) e Vm | \y\ < C-1 - 1 + | cos(ö)|} .       (13) 

The proof of the above proposition is not reported due to space limitation. 
Note that, for initial configurations satisfying (13) we have M(x0, yo) G Tr as 

in (4). By Proposition 1, if a reference path r has minimum radius of curvature 
Rr greater than twice the minimum turning radius R of the vehicle, then for any 
initial configuration (M(x0,y0),90), with lateral position and orientation errors 
bounded to belong to I(- ^ as in (13), condition (11) is ensured. 
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4    Verification of the Hybrid Path-Tracking Controller 

In this section the behavior of the hybrid automaton CLHA is analyzed by in- 
troducing an equivalence relation ~ in the hybrid state space ö x T)^-^ and by 
computing the corresponding quotient system (see [5]). 

Consider the partition 77(~ ^ of the domain X>(-^ in (6) given by the 

24 subsets {rW.-.rlfV.-.lsl^.o}, defined in Table 1, with rl(2) and 

1(3) replaced by rl(2)l(3). We say that (modei^j/iÄ)), (mode2, (2/2, ö2)) are 
equivalent, i.e. (modei,(jii,0i)) ~ (mode2,(y2,02)), iff (jfiÄ) G p, for some 
p G !!,-§■,, implies (£2,^2) G p. We associate to the corresponding quotient 

space Q~ = {ö x r^, • ■ •, Ö x O} a nonderministic finite state machine, re- 
ferred to as FSMpic ' witn states corresponding to the equivalence classes in 
Q~ (labeled, with a slight abuse of notation, r^, • • •, O). The next-state func- 
tion of FSMpTc is defined as follows: for any Qi,Q2 G <9~, a transition from 
<3i to Q2 occurs iff there exists an arc of trajectory of the hybrid automoton 
CLHA from some {modex, (j/i, h)) G Qi to some (mode2, (y2, #2)) G <?2, for some 
discrete disturbance ar and some continuous disturbance d. 

Proposition 2. Given the hybrid system CLHA , if the discrete disturbance ar 

takes always the value e, then, for any initial hybrid state (mode,(y0,60)) G 
Ö x 1- j> as in (13), under the action of any disturbance d bounded as in (5) 

with C as in (12), we have: 

- the quotient system obtained from the equivalence relation ~ is the finite 
state machine FSMpj<Q depicted in Figure 5; 

- an upper bound for the space travelled by the origin of the Frenet's frame 
along the path r, when the hybrid state is in a given equivalence class is 
represented by the weight associated to exiting arc; 

- the quotient system FSMpj<Q remains in each equivalence class a bounded 

amount of time, except for the equivalent class O where (y,0) = (0,0). 

The proof of the above proposition, which is based on reachability analysis, is 
not reported due to space limitation. 

If the reference path 71 has curvature always of the same sign, the convergence 
of the Dubins' car to the path is guaranteed by: 

Corollary 1. If the reference path r has curvature always of the same sign and 
amplitude lower than ^R, the hybrid feedback control (7) and (9), ensures the 
tracking of T for any initial vehicle configuration in the domain 1^-^ as in (13). 
The origin of the Frenet's frame covers at most a distance of 

4 + 77r+£  ifCG[^,|) l    > 

along the reference path T before the vehicle approaches it with correct orienta- 
tion. 
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Fig. 5. On the left: shortest paths synthesis when d = 0. On the right: quotient system 
FSMpTC representing the behavior of the closed-loop hybrid system CLHA , when 
<rr = e. 

The proof of the above corollary is obtained by computing the longest path to 
the node O. 

By Proposition 2, if r is a straight line then the closed-loop system enforces 
sliding motions (see [13] for a tutorial) in the space (y,§) on the lines sr, si 
and the arcs i-W, 1(1), r^3\ 1(3) until the origin is reached. If the reference path 
r is not a straight line, sliding motions are enforced only on the lines sr, si, 
on the arcs r^, r^3' and on a piece of the arc 1(3). Under ideal sliding motion, 
around the origin the control w switches at infinite frequency between ^,0 and 

--£. The mean value of such control (i.e. the equivalent control) is the signal 
KV that makes the car follows the reference path T with velocity V. In the real 
implementation smoothing techniques are applied to avoid the chattering of the 
control signal between the three values ^,0 and — ^. 

The behavior of the closed-loop system CLHA under the action of the dis- 
crete disturbance oy is characterized by the following propositions. 

Proposition 3. Given an initial condition (i/o, An) in the open neighborhood of 
the origin 

M(v,9) = \ (£' ^) : \y\ < X> ~ arccos — ) < o < arccos H)} (15) 
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'K5ES= 

Fig. 6. On the left:quotient system FSMpTC representing the behavior of the closed- 
loop hybrid system CLHA , when the intial state belongs to O x N^gy On the right: 

regions in the domain f^e) where W > 0. 

(see Figure 6), the hybrid closed-loop system CLHA keeps the continuous-time 
trajectory (y(t),9(t)) inside N^jy under any disturbance d(t) bounded as in (5) 
and any sequence of events aT. 

Due to space limitation, the proof of the above proposition is not reported. 

Proposition 4. // the reference path T is such that changes in the curvature 
sign are at distance greater than (5 + |)i? along it, then the hybrid feedback 
control (7), with modes chosen according to (9) stabilizes the Dubins' car along 
the reference path r. 

Proof. The set Af^ft defined in (15) is such that 

Nm C O U r(D U 1« U lr'1-1* U lr*1'2) U rl*1"1' U rl<x-2> . 

Since, by Proposition 3, Af,- §•. is a robust invariant set for the closed-loop hy- 
brid system CLHA , then, if we restrict our attention to the domain N^ßy the 

transitions from lr(12)to lsr(2)and from rl(11)to rsl(1)in the quotient system 
FSMpTC should be removed. Furthermore, notice that, under the action of the 
discrete disturbance ar = switch, the reset y := —y and 9 := -9 introduces the 
mutual transitions r« ±>1(1), lr(1-1} ^rl(11), and lr(12) i^rl(12). Hence, in the 
presence of the discrete disturbance ar and for any disturbance d as in (5), when 
the initial state belongs to O x W^jy the quotient system FSMpTC obtained 
from the equivalent relation ~ is as in Figure 6. 

To analyse the convergence of the trajectories to O, introduce the function 

W(y,9) = -(y2 + 92). (16) 
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W(y,6) has the property that if, at time t = i,ar = switch then W(y(t), 6(F)) 
w(y(t~),6(t~))- The derivative with respect to time of W evaluates to 

W(y,~9) = 
- .  /■;«     ^cos(9)d     ~ 
ysm(9)-9 ^   v '   -9m 

1 -yd 

V 
(17) 

where w = 0, — 1, and 1 in mode zero, negative, and positive, respectively. The 
study of the sign of W(y,9) is extended to the entire domain V,- §y Under 

assumption (11), multiplying (17) by y(l - yd), we have 

W > 0 <=> p(y, 9) = d -y2 sin(ö) - 0cos(0) + wy6 + ysin(9) — w9 >0, 

for some disturbance d bounded as in (5). Hence, for any (y, 9) such that 

m(y^)=ysin(6)-w6>0, 

there exists d as in (5) such that fi(y, 9) > 0 and W > 0. Otherwise, if (y, 9) is 
such that 77i (y, 9) < 0, then there exists d as in (5) such that W > 0 if and only 
if fi(y, 9) is positive for d = 1. That is, if 

m(y, 0) = - sin(9)y2 + [sin(0) + too] y -   Äcos(ö) + w9 >0. 

The regions in the domain T>^-^ where function (16) locally increases are re- 

ported in Figure 6. Such regions are delimited by the curves r)i(y,9) = 0 and 
V2(y,6) = 0. By (17), the continuous disturbance d that maximizes W(t) is 

\0    i 
if 0cos(0) <0 
if 9cos(9) >0 

i.e. 0e(-f,O)U(f,|7r) 
i.e.ee(-k-f)u(o,f) (18) 

Consider an initial condition (y0,0O) in a neighborhood of the origin contained in 
N(y,e) n rl(1'2). At the initial time, the hybrid model CLHA is in mode negative. 
Let us assume that ar = e, for the moment, and let us analyse the evolution 
of the hybrid model CLHA (see Figure 6). Under the action of the worst dis- 
turbance (18), the trajectory (y(t),9(t)) originating from (y0,60) reaches the 
curves r^. First W(t) decreases (in rl(12)), then it increases (in rl(11)). Hence, 
mode switches to positive. W(t) decreases (in the first part of lr^1'2^), and it in- 
creases again later on (in lr(12) and lr(11)) until (y(t), 9(t)) reaches r(1>. Finally, 
following a sliding motion along the curve r^, (y(t), 9(t)) reaches the origin. 

Along this trajectory W(t) assume two local maxima, which correspond to 
the intersections of 1(1) and r^, and two local minima: the first on the line 0 = 0 
when y > 0, andthe second inside region rl(1'2). Let S = ||(yo,0o)||- Since the 
trajectory (y(t),9(t)) is continuous with respect to the initial condition (y0,6~o), 
then there exist two continuous functions Cmax, Cmin : K -> R such that 

max max || (j/(t), 9(t))\\ = (max(6),    minmin||(y(t),fl(i))|| = CminW-   (19) 
" t at 
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Further, since the local maximum and minimum points tend to the origin as 
||(j/o,#o)|| tends to zero, then rim^oCmaxW = 0 and limj_,.oCmin(<S) = 0. 

Suppose now that a discrete disturbance oy = switch occurs at the precise 
time i at which (y(i~),9(i~)) is opposite to (yo,90) with respect to the ori- 
gin. Then, the state (j/(t-),ff(t_)) is reset to (y{t),9{t)) =_(-j/(«~),-ö(f-)) G 
Affy§), which lies on the same line to the origin of (yo,9o)- If W(y0,9o) > 

W(y(i),9(t)) = W(—y(i~),—6(t~)) then the convergence is preserved. But, if 
W(y0,e0) < W(y(i),0(i)) = W(-y(t-),-9{i~J) then, under the action of the 
discrete disturbance ay = switch, the state (y, 9) is reset to a point farther away 
from the origin than the initial state {yo,9o) and convergence can be lost. 

However, if the reference path r is such that changes in the curvature sign 
are at a distance greater than (5+ ^)R along it, between to successive actions of 
the discrete disturbance oy, the state (y, 9) has enough time to reach the origin. 
In fact, assuming that, in the worst case, (y(t),9(F)) G JV(- ^ nrl(12), an upper 
bound on the length the arc of r spanned by the origin of the Frenet's frame as 
(y(t),9(t)) converges to the origin, is given by L(rl(12))+ L(rl(11))+ L(l(1))+ 
L(lr^12))+ L(lr(11))+ L(r(1)) that, according to the weights reported on the 
quotient system FSMpyC depicted in Figure 5, evaluates to (5 + |)ß. 

To prove the robust stabilization of the car along the reference path f we have 
to show that for any e > 0, there exists ö > 0 such that any trajectory (y(t), 9{t)) 
of the hybrid system CLHA , originating from any (yo,90) with ||(jfo,öo)|| <_S, 
we have ||(j/(t), 9(t))\\ < e. Given any e > 0, consider any initial condition (y0, #o) 
with 

\\(yo,9o)\\ < 6 = GlxCCiUCaxW))- (20) 

The trajectory (y(t),9(t)) evolves inside a ball of radius Cmin(CmL(e))- If a 

disturbance oy = switch occurs at some time t, then the state is reset to 
(y(t),9(P)) = (-y(i-),-9(i-)) G -A/^m- In the evolution for t > i the tra- 
jectory reaches the origin before a further discrete disturbance will show up. 
Morever, since ||(j/(«),ö(t)|| < QUCaxW) then, the trajectory (»(<),£(«)) for 
t > t does not exit a ball of radius Cmax(Cmax(e)) = e- Then, the hybrid feedback 
control (7), with modes chosen according to (9) robustly stabilizes the car along 
the reference path r. 

5    Conclusions 

In this paper, we have used modern techniques developed for hybrid systems 
simulation and verification to solve and prove stability of a control technique 
for an interesting problem, that is route tracking by nonholonomic vehicles with 
bounds on the curvature and limited sensory information. The proposed con- 
troller is reminiscent of a synthesis proposed elsewhere for an optimal control 
problem to track straight routes, whose generalization to generic routes turned 
out to be difficult to analyze otherwise. We believe that this case study, besides 
its intrinsic interest in applications, also has a value in showing the potential of 
hybrid systems analysis techniques as applied to complex control problems. 
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Abstract. This paper introduces the model of linearly priced timed 
automata as an extension of timed automata, with prices on both 
transitions and locations. For this model we consider the minimum-cost 
reachability problem: i.e. given a linearly priced timed automaton and a 
target state, determine the minimum cost of executions from the initial 
state to the target state. This problem generalizes the minimum-time 
reachability problem for ordinary timed automata. We prove decid- 
ability of this problem by offering an algorithmic solution, which is 
based on a combination of branch-and-bound techniques and a new 
notion of priced regions. The latter allows symbolic representation and 
manipulation of reachable states together with the cost of reaching them. 
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1    Introduction 

Recently, real-time verification tools such as UPPAAL [14], KRONOS [7] and 
HYTECH [11], have been applied to synthesize feasible solutions to static job- 
shop scheduling problems [9,13,18]. The basic common idea of these works is to 
reformulate the static scheduling problem as a reachability problem that can be 
solved by the verification tools. In this approach, the timed automata [3] based 
modeling languages of the verification tools serve as the basic input language 
in which the scheduling problem is described. These modeling languages have 
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proven particularly well-suited in this respect, as they allow for easy and flexible 
modeling of systems, consisting of several parallel components that interact in a 
time-critical manner and constrain each other's behavior in a multitude of ways. 

In this paper we introduce the model of linearly priced timed automata and 
offer an algorithmic solution to the problem of determining the minimum cost 
of reaching a designated set of target states. This result generalizes previous 
results on computation of minimum-time reachability and accumulated delays 
in timed automata, and should be viewed as laying a theoretical foundation for 
algorithmic treatments of more general optimization problems as encountered in 
static scheduling problems. 

As an example consider the very simple static scheduling problem repre- 
sented by the timed automaton in Fig. 1 from [17], which contains 5 'tasks' 
{A, B,C, D,E}. All tasks are to be performed precisely once, except task C, 
which should be performed at least once. The order of the tasks is given by the 
timed automaton, e.g. task B must not commence before task A has finished. In 
addition, the timed automaton specifies three timing requirements to be satis- 
fied: the delay between the start of the first execution of task C and the start of 
the execution of E should be at least 3 time units; the delay between the start of 
the last execution of C and the start of D should be no more than 1 time unit; 
and, the delay between the start of B and the start of D should be at least 2 
time units, each of these requirements are represented by a clock in the model. 
Using a standard timed model checker we are able to verify that location E of 

Fig. 1. Timed automata model of scheduling example. 

the timed automaton is reachable. This can be demonstrated by a trace leading 
to the location1: 

(A, 0,0,0) -^^4 (B, 1,1,1) ^^> (C.2,1,1) ^>^> (0,4,3,3) -A (£,4,3,3)  (1) 

The above trace may be viewed as a feasible solution to the original static 
scheduling problem. However, given an optimization problem, one is often not 
satisfied with an arbitrary feasible solution but insist on solutions which are opti- 
mal in some sense. When modeling a problem like this one using timed automata 
an obvious notion of optimality is that of minimum accumulated time. For the 

Here a quadruple (X, vx, vy,vz) denotes the state of the automaton in which the 
control location is X and where vx, vy and vz give the values of the three clocks 
x, y and z. The transitions labelled r are actual transitions in the model, and the 
transitions labelled e(d) represents a delay of d time units. 
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Fig. 2. A linearly priced timed automaton. 

timed automaton of Fig. 1 the trace of (1) has an accumulated time-duration of 
4. This, however, is not optimal as witnessed by the following alternative trace, 
which by exploiting the looping transition on C reaches E within a total of 3 
time-units2: 

(A, 0,0,0) A- 
6(2) 

(C.2,2,2) -A (C, 2,0,2) ^ (A3,l,3)4(£,3,l13)    (2) 

In [4] algorithmic solutions to the minimum-time reachability problem and the 
more general problem of controller synthesis has been given using a backward 
fix-point computation. In [17] an alternative solution based on forward reacha- 
bility analysis is given, and in [5] an algorithmic solution is offered, which applies 
branch-and-bound techniques to prune parts of the symbolic state-space which 
are guaranteed not to contain optimal solutions. In particular, by introducing 
an additional clock for accumulating time-elapses, the minimum-time reachabil- 
ity problem may be dealt with using the existing efficient data structures (e.g. 
DBMs [8], CDDs [15] and DDDs [16]) already used in the real-time verification 
tools UPPAAL and KRONOS for reachability. The results of the present paper 
also extends the work in [2] which provides an algorithm for computing the 
accumulated delay in a timed automata. 

In this paper, we provide the basis for dealing with more general optimiza- 
tion problems. In particular, we introduce the model of linearly priced timed 
automata, as an extension of timed automata with prices on both transitions 
and locations: the price of a transition gives the cost for taking it and the price 
on a location specifies the cost per time-unit for staying in that location. This 
model can capture not only the passage of time, but also the way that e.g. tasks 
with different prices for use per time unit, contributes to the total cost. Figure 2 
gives a linearly priced extension of the timed automaton from Fig. 1. Here, the 
price of location D is set to ß and the price on all other locations is set to 1 (thus 
simply accumulating time). The price of the looping transition on C is set to a, 
whereas all other transitions are free of cost (price 0). Now for (a,ß) = (1,3) 
the costs of the traces (1) and (2) are 8 and 6, respectively (thus it is cheaper 
to actually exploit the looping transition). For (a,ß) = (2,2) the costs of the 
two traces are both 6, thus in this case it is immaterial whether the looping 
transition is taken or not. In fact, the optimal cost of reaching E will in general 

2 In fact, 3 is the minimum time for reaching E. 
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be the minimum of 2 + 2 * ß and 3 + a, and the optimal trace will include the 
looping transition on C depending on the particular values of a and ß. 

In this paper we deal with the problem of determining the minimum cost 
of reaching a given location for linearly priced timed automata. In particular, 
we offer an algorithmic solution to this problem3. In contrast to minimum-time 
reachability for timed automata, the minimum-cost reachability problem for lin- 
early priced timed automata requires the development of new data structures 
for symbolic representation and the manipulation of reachable sets of states to- 
gether with the cost of reaching them. In this paper we put forward one such 
data structure, namely a priced extension of the fundamental notion of clock 
regions for timed automata [3]. 

The remainder of the paper is structured as follows: Section 2 formally intro- 
duces the model of linearly priced timed automata together with its semantics. 
Section 3 develops the notion of priced clock regions, together with a number of 
useful operations on these. The priced clock regions are then used in Section 4 to 
give a symbolic semantics capturing (sufficiently) precisely the cost of executions 
and used as a basis for an algorithm solution to the minimum-cost problem. Fi- 
nally, in Section 5 we give some concluding remarks. We refer the read to [6] for 
the proofs not included in this paper. 

2    Linearly Priced Timed Automata 

In this section, we introduce the model of linearly priced timed automata, which 
is an extension of timed automata [3] with prices on both locations and transi- 
tions. Dually, linearly priced timed automata may be seen as a special type of 
linear hybrid automata [10] or multirectangular automata [10] in which the ac- 
cumulation of prices (i.e. the cost) is represented by a single continuous variable. 
However, in contrast to known undecidability results for these classes, minimum- 
cost reachability is computable for linearly priced timed automata4. 

Let C be a finite set of clocks. Then B(C) is the set of formulas obtained 
as conjunctions of atomic constraints of the form x M n where x € C, n is 
natural number, and IXI € {<, <, =, >, >}. Elements of B{C) are called clock 
constraints over C. Note that for each timed automaton that has constraints of 
the form x — y txj c, there exists a strongly bisimilar timed automaton with only 
constraints of the form x ixi c. Therefore, the results in this paper are applicable 
to automata having constraints of the type x — y IXI c as well. 

Definition 1 (Linearly Priced Timed Automaton). A Linearly Priced 
Timed Automaton (LPTA) over clocks C and actions Act is a tuple 
(L,IQ,E,I,P) where L is a unite set of locations, IQ is the initial location, 
E C L x B(C) x Act x V(C) x L is the set of edges, I : L -> B{C) assigns 

Thus settling an open problem given in [4]. 
An intuitive explanation for this is that the additional (cost) variable does not in- 
fluence the behavior of the automata. 
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5     viy     1 

Fig. 3. An example LPTA. 

invariants to locations, and P : (L U E) —> N assigns prices to both locations 

and edges. In the case of (I, g, a, r, I') s E, we write I > /'. 

Formally, clock values are represented as functions called clock assignments 
from C to the non-negative reals R>o- We denote by Rc the set of clock assign- 
ments for C ranged over by u, u' etc. We define the operation «' = [r i-t 0]u 
to be the assignment such that u'(x) = 0 if x S r and u{x) otherwise, and the 
operation u' = u + d to be the assignment such that u'(x) = u{x) + d. Also, a 
clock valuation u satisfies a clock constraint g, u G g, if u(x) ix n for any atomic 
constraint x M n in g. Notice that the set of clock valuations satisfying a guard 
is always a convex set. 

The semantics of a LPTA A is defined as a transition system with the state- 
space L x Mc, with initial state (IO,UQ) (where UQ assigns zero to all clocks in 
C), and with the following transition relation: 

- (l,u) -^H (l,u + d) ifu + del(l), andp = P(l)*d. 
— (I, u) —'-+ (I', u') if there exists g, r such that / > /', u £ g, v! = [r H-> 0]U, 

u' e /(/') and p = P((l, g, a, r, I')). 

Note that the transitions are decorated with two labels: a delay-quantity or an 
action, together with the cost of the particular transition. For determining the 
cost, the price of a location gives the cost rate of staying in that location (per 
time unit), and the price of a transition gives the cost of taking that transition. 
In the remainder, states and executions of the transition system for LPTA A 
will be referred to as states and executions of A. 

Definition 2 (Cost). Let a = (lo,u0) °1,Pl> (li,ui)... °"'p"> (ln,un) be a 
unite execution of LPTA A. The cost of a, cost(a), is the sum ^eii,...,«}?»- 

For a given state (l,u), the minimal cost of reaching (l,u), mincost((Z,«)), 
is the inhmum of the costs of unite executions ending in (l,u). Similarly, the 
minimal cost of reaching a location I, mincost(Z), is the inßmum of the costs of 
unite executions ending in a state of the form (l,u). 

Example 1. Consider the LPTA of Fig. 3. The LPTA has a single clock x, and 
the locations and transitions are decorated with prices. A sample execution of 
this LPTA is for instance: 



152        G. Behrmann et al. 

The cost of this execution is 10.5. In fact, there are executions with cost arbitrar- 
ily close to the value 7, obtainable by avoiding delay in location A, and delaying 
just long enough in location B. Due to the infimum definition of mincost, it fol- 
lows that mincost(C) = 7. However, note that because of the strict comparison 
in the guard of the second transition, no execution actually achieves this cost. □ 

3    Priced Clock Regions 

For ordinary timed automata, the key to decidability results has been the valu- 
able notion of region [3]. In particular, regions provide a finite partitioning of 
the uncountable set of clock valuations, which is also stable with respect to the 
various operations needed for exploration of the behavior of timed automata (in 
particular the operations of delay and reset). 

In the setting of linearly priced timed automata, we put forward a new ex- 
tended notion of priced region. Besides providing a finite partitioning of the set 
of clock-valuations (as in the case of ordinary regions), priced regions also asso- 
ciate costs to each individual clock-valuation within the region. However, as we 
shall see in the following, priced regions may be presented and manipulated in 
a symbolic manner and are thus suitable as an algorithmic basis. 

Definition 3 (Priced Regions). Given set S, let Seq(S) be the set of finite 
sequences of elements of S. A priced clock region over a finite set of clocks C 

R= (h,[r0,... ,rk],[co,... ,cj]) 

is an element of (C -» N) x Seq(2c) x Seq(N), with k = I, C = Uie{0,...,fe}^t> 
n Drj = 0 when i ^ j, and i > 0 implies that r, ^ 0. 

Given a clock valuation u G Rc, and region R= (h,[r0,... , rk], [CQ, ... , Ck]), 
uGRiff 

1. h and u agree on the integer part of each clock in C, 
2. i£ro iff frac(u(x)) = 0, 
3. x,y G n => frac(u(a;)) = frac(u(y)), and 
4. x € Ti, y G TJ and i < j => frac(u(x)) < frac(u(j/)). 

For a priced region R = (h, [r0,... ,rk\, [c0,... , c/t]) the first two components 
of the triple constitute an ordinary (unpriced) region R = (h, [ro,... ,?>]). The 
naturals Co,... ,ck are the costs, which are associated with the vertices of the 
closure of the (unpriced) region, as follows. We start in the left-most lower vertex 
of the exterior of the region and associate cost Co with it, then move one time 
unit in the direction of set rk to the next vertex of the exterior, and associate 
cost C\ with that vertex, then move one unit in the direction of rk-i, etc. In this 
way, the costs Co,... , ck, span a linear cost plane on the fc-dimensional unpriced 
region. 
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The closure of the unpriced region R is the convex hull of the vertices. Each 
clock valuation u £ R is a (unique) convex combination5 of the vertices. There- 
fore the cost of u can be defined as the same convex combination of the cost in 
the vertices. This gives the following definition: 

Definition 4 (Cost inside Regions). Given priced region R = (h, [r0,. 
[CQ, ... , Cfc]) and clock valuation u £ R, the cost ofu in R is defined as: 

,rk\ 

fe-i 

cost(u, R) = CQ + y^ frac(w(xfe_i)) * (ci+1 - c») 
i=0 

where Xj is some clock in TJ . The minimal cost associated with R is mincost(i?) = 

min({co,... ,cfe}). 

In the symbolic state-space, constructed with the priced regions, the costs will 
be computed such that for each concrete state in a symbolic state, the cost 
associated with it is the minimal cost for reaching that state by the symbolic path 
that was followed. In this way, we always have the minimal cost of all concrete 
paths represented by that symbolic path, but there may be more symbolic paths 
leading to a symbolic state in which the costs are different. Note that the cost 
of a clock valuation in the region is computed by adding fractions of costs for 
equivalence sets of clocks, rather than for each clock. 

To prepare for the symbolic semantics, we define in the following a number 
of operations on priced regions. These operations are also the ones used in the 
algorithm for finding the optimal cost of reaching a location. 

The delay operation computes the time successor, which works exactly as in 
the classical (unpriced) regions. The changing dimensions of the regions cause 
the addition or deletion of vertices and thus of the associated cost. The price 

(5.2) 

[{*},{»}] 

[0,W,M] 

t9T 
c0+p 

[0,M,{y}] 

at.   H2t 
[«.Mi 

(6.2) 

(6.3) 

[0,{*,y}l 

\ZEL 
[0,W,M1 

y 

min\Cj,c2> 

[{*Uy}} 

Fig. 4. Delay and reset operations for two-dimensional priced regions. 

5 A linear expression Y^aiyi where Ylai = 1> and o,i>0. 
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argument will be instantiated to the price of the location in which time is passing; 
this is needed only when a vertex is added. The two cases in the operation are 
illustrated in Fig. 4 to the left (5.1) and (5.2). 

Definition 5 (Delay). Given a priced region R = (h, [r0,... , rk], [c0, ■ ■ ■ , ck]) 
and a price p, the function delay is defined as follows: 

1. If ro is not empty, then 

de\ay(R,p) = (h,[0,ro,... ,rk],[c0,... ,ck,c0+p]) 

2. Ifro is empty, then 

de\ay(R,p) = (ti,[rk,r1:... ,rfe_i], [ci,... ,ck]) 

where h! = h incremented for all clocks in rk 

When resetting a clock, a priced region may lose a dimension. If so, the two costs, 
associated with the vertices that are collapsed, are compared and the minimum 
is taken for the new vertex. Two of the three cases in the operation is illustrated 
in Fig. 4 to the right (6.2) and (6.3). 

Definition 6 (Reset). Given a priced region R = (h, [r0,... ,rk],[c0,... , ck]) 
and a clock x € rit the function reset is defined as follows: 

1. Ifi = 0 then reset(x, R) = (ti, [r0,... ,rk], [c0,... , ck}), where h' = h with x 
set to zero 

2. Ifi>0 and rt ^ {x}, then 

reset(a;,Ä) = (/i',[roU{a;},... ,ri\{x},... ,rk], [c0,... ,cfc]) 
where h' = h with x set to zero 

3. Ifi>0 and r^ = {x}, then 

reset(x,R) = (ti,[r0U {x},... ,ri_i,ri+i,... ,rk], 

[c0,...  ,Ck-i-l,d,Ck-i+2,---  , Cfc]) 

where c' = min(ck-i,ck-i+1) 

h' = h with x set to zero 

The reset operation on a set of clocks: reset(C U {x}, R) = reset(C, reset(x, R)), 
and reset(0, R) = R. 

The price argument in the increment operation will be instantiated to the price 
of the particular transition taken; all costs are updated accordingly. 

Definition 7 (Increment). Given a priced region R = (h, [r0,... ,rk], [c0,... , 
Ck]) and a price p, the increment of R with respect to p is the priced region 
R®p= (h,[r0,... ,rk],[c'0,... ,c'k]) where c^ = ct+p. 
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If in region R, no clock has fractional part 0, then time may pass in R, that 
is, each clock valuation in R has a time successor and predecessor in R. When 
changing location with R, we must choose for each clock valuation u'mR between 
delaying in the previous location until u is reached, followed by the change of 
location, or changing location immediately and delaying to u in the new location. 
This depends on the price of either location. For this the following operation self 
is useful. 

Definition 8 (Self). Given a priced region R = (h,[r0,... ,rk], [c0,... ,cfc]) 
and a price p, the function self is deßned as follows: 

1. Ifr0 is not empty, then self(.R,p) = R. 
2. If r0 is empty, then 

se\f(R,p) = (h,[r0,... ,rk],[c0,... ,ck-i,c']) 

where c' = min(cfc, CQ +p) 

Definition 9 (Comparison). Two priced regions may be compared only if 
their unpriced versions are equal: (h, [r0,... , rk], [c0,... , ck)) < (h1, [r'0,... , r'k,\, 
[CQ, ... , c'k,]) iff h = h', k = k', and for0<i< k: n = r[ and (%<<%. 

The operations delay and self satisfy the following useful properties: 

Proposition 1 (Interaction Properties). 

1. se\f(R,p) < R, 
2. self (self (R, p), p) = self (R,p), 
3. delay(self(R,p),p) <de\ay{R,p), 
4. self(delay(fi,p),p) =de\ay(R,p), 
5. se\f{R @q,p)= self(fi,p) 8 q, 
6. delay(R ®q,p) = de\ay(R,p) © q, 
7. For g e B{C), whenever i? e g then self(fi,p) G g. 

Stated in terms of the cost, cost(u, R), of an individual clock valuation, u, of a 
priced region, R, the symbolic operations behave as follows: 

Proposition 2 (Cost Relations). 

1. Let R = (h, [r0,... ,rk], [c0,... ,ck}). IfuGRandu + deR then cost(u + 
d, R) = cost(u, R) + d * (cfe - co). 

2. IfR = se\f{R,p), w£ R and u+d £ de\ay{R,p) then cost(u+d,de\ay(R,p)) = 
cost(u, R) + d * p. 

3. cost(w, reset(a:, R)) = inf{cost(v, R)\[xt-> 0]v = u}. 
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4    Symbolic Semantics and Algorithm 

In this section, we provide a symbolic semantics for linearly priced timed au- 
tomata based on the notion of priced regions and the associated operations 
presented in the previous section. As a main result we shown that the cost of 
an execution of the underlying automaton is captured sufficiently accurately. 
Finally, we present an algorithm based on priced regions. We refer the reader to 
the full version of this paper for the proofs not given here. 

Definition 10 (Symbolic Semantics). The symbolic semantics of a LPTA A 
is defined as a transition system with the state-space L x ((C -> N) x Seq(2c) x 
Seq(N)), with initial state (l0, (h0, [C], [0])) (where h0 assigns zero to the integer 
part of all clocks in C), and with the following transition relation: 

- (l,R) -* (I,delay(A,P(0)) if delay(R,P(I)) e 1(1). 

- (l,R) ->  (l',R') if there exists g, r such that I -^^ I', R e g, R' = 
reset(i?,r) ® P((l,g,a,r,l')) and R' € /(/')• 

- (l,R)^ (I, self(R,P(l))) 

In the remainder, states and executions of the symbolic transition system for 
LPTA A will be referred to as the symbolic states and executions of A. 

Lemma 1. Given LPTA A, for each execution a of A that ends in state (l,u), 
there is a symbolic execution ß of A, that ends in symbolic state (l,R), such 
that u G R, and cost(u, R) < cost(a). 

Lemma 2. Whenever (I, R) is a reachable symbolic state and u € R, then 
mincost((Z,u)) < cost(u, R). 

Combining the two lemmas we obtain as a main theorem that the symbolic 
semantics captures (sufficiently) accurately the cost of reaching states and loca- 
tions: 

Theorem 1. Let I be a location of a LPTA A. Then 

mincost(/) = min({ mincost(#) | (l,R) is reachable}) 

Example 2. We now return to the linearly priced timed automaton in Fig. 2 
where the value of both a and ß is two, and look at its symbolic state-space. 
The shaded area in Fig. 5(i) including the lines in and around the shaded area 
represents some of the reachable priced regions in location B after time has 
passed (a number of delay actions have been taken). Only priced regions with 
integer values up to 3 are shown. The numbers are the cost of the vertices. The 
shaded area in Fig. 5(ii) represents in a similar way some of the reachable priced 
regions in location C after, time has passed. D 
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Fig. 5. Two reachable sets of priced regions. 

The introduction of priced regions provides a first step towards an algorithmic 
solution for the minimum-cost reachability problem. However, in the present 
form both the integral part as well as the cost of vertices of priced regions 
may grow beyond any given bound during symbolic exploration. In the unpriced 
case, the growth of integral parts is often dealt with by suitable abstractions of 
(unpriced) regions, taking the maximal constant of the given timed automaton 
into account. Here we have chosen a very similar approach exploiting the fact, 
that any LPTA A may be transformed into an equivalent "bounded" LPTA A 
in the sense that A and Ä reaches the same locations with the exact same cost. 

Theorem 2. Let A — (L,l0,E,I,P) be a LPTA with maximal constant max. 
Then there exists a bounded time equivalent of A, A = (L,lQ,E',I',P'), satis- 
fying the following: 

1. Whenever (I, u) is reachable in Ä, then for all x G C, u(x) < max+2. 
2. For any location I € L, I is reachable with cost c in A if and only if I is 

reachable with cost c in A 

Now, we suggest in Fig. 6 a branch-and-bound algorithm for determining the 
minimum-cost of reaching a given target location lg from the initial state of a 
LPTA. All encountered states are stored in the two data structures PASSED and 
WAITING, divided into explored and unexplored states, respectively. The global 
variable COST stores the lowest cost for reaching the target location found so 
far. In each iteration, a state is taken from WAITING. If it matches the target 
location lg and has a lower cost than the previously lowest cost COST, then 
COST is updated. Then, only if the state has not been previously explored with 
a lower cost do we add it to PASSED and add the successors to WAITING. This 
bounding of the search in line 6 of Fig. 6 may be optimized even further by adding 
the constraint mincost(fi) < COST; i.e. we only need to continue exploration if 
the minimum cost of the current region is below the optimal cost computed so 
far. Due to Theorem 1, the algorithm of Fig. 6 does indeed yield the correct 
minimum-cost value. 

Theorem 3. 
mincost(Zg). 

When the algorithm in Fig. 6 terminates, the value of COST equals 



158        G. Behrmann et al. 

COST := oo, PASSED := 0, WAITING := {(l0,R0)} 
while WAITING ^ 0 do 

select (l,R) from WAITING 

if I = lg and mincost(R) < COST then 
COST := mincost(fi) 

if for all (I, R') in PASSED: R' % R then 
add (l,R) to PASSED 

for all (I', R') such that {I, R) -> (I', R'): add (I', R') to WAITING 
return COST 

Fig. 6. Branch-and-bound state-space exploration algorithm. 

Proof. First, notice that if (h,Ri) can reach (l2,R2), then a state (h,Ri), 
where R[ < Ri, can reach a state (l2,R'2), such that R!2 < R2. We prove that 
COST equals min{mincost(i?) | {lg,R) is reachable}. Assume that this does not 
hold. Then there exists a reachable state (lg,R) where mincost(i?) < COST. 
Thus the algorithm must at some point have discarded a state (I', R') on the 
path to {lg,R). This can only happen in line 6, but then there must exist a 
state (l',R") G PASSED, where R" < R', encountered in a prior iteration of 
the loop. Then, there must be a state (lg,R'") reachable from (l',R"), and 
COST < mincost(.R'") < mincost(ß), contradicting the assumption. The theo- 
rem now follows from Theorem 1. □ 

For bounded LPTA, application of Higman's Lemma [12] ensures termination. 
In short, Higman's Lemma says that under certain conditions the embedding 
order on strings is a well quasi-order. 

Theorem 4.  The algorithm in Fig. 6 terminates for any bounded LPTA. 

Proof. Even if A is bounded (and hence yields only finitely many unpriced re- 
gions), there are still infinitely many priced regions, due to the unbounded- 
ness of cost of vertices. However, since all costs are positive application of Hig- 
man's lemma ensures that one cannot have an infinite sequence ((c[,... , c^) : 
0 < i < 00) of cost-vectors (for any fixed length m) without q? < cf for all 
/ = 1,... ,m for some j < k. Consequently, due to the finiteness of the sets 
of locations and unpriced regions, it follows that one cannot have an infinite 
sequence ((h,Ri) : 0 < i < 00) of symbolic states without lj = lk and Rj < Rk 

for some j < k, thus ensuring termination of the algorithm. O 

Finally, combining Theorem 3 and 4, it follows, due to Theorem 2, that the 
minimum-cost reachability problem is decidable. 

Theorem 5.  The minimum-cost problem for LPTA is decidable. 

5    Conclusion 

In this paper, we have successfully extended the work on regions and their op- 
erations to a setting of timed automata with linear prices on both transitions 
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and locations. We have given the principle basis of a branch-and-bound algo- 
rithm for the minimum-cost reachability problem, which is based on an accurate 
symbolic semantics of timed automata with linear prices, and thus showing the 
minimum-cost reachability problem to be decidable. 

The algorithm is guaranteed to be rather inefficient and highly sensitive to 
the size of constants used in the guards of the automata — a characteristic 
inherited from the time regions used in the basic data-structure of the algorithm. 
An obvious continuation of this work is therefore to investigate if other more (in 
practice) efficient data structures can be found. Possible candidates include data 
structures used in reachability algorithms of timed automata, such as DBMs, 
extended with costs on the vertices of the represented zones (i.e. convex sets of 
clock assignments). In contrast to the priced extension of regions, operations on 
such a notion of priced zones6 can not be obtained as direct extensions of the 
corresponding operations on zones with suitable manipulation of cost of vertices. 

The need for infimum in the definition of minimum cost executions arises 
from linearly priced timed automata with strict bounds in the guards, such as 
the one shown in Fig. 3 and discussed in Example 1. Due to the use of infimum, 
a linearly priced timed automaton is not always able to realize an execution 
with the exact minimum cost of the automata, but will be able to realize one 
with a cost (infinitesimally) close to the minimum value. If all guards include 
only non-strict bounds, the minimum cost trace can always be realized by the 
automaton. This fact can be shown by defining the minimum-cost problem for 
executions covered by a given symbolic trace as a linear programming problem. 

In this paper we have presented an algorithm for computing minimum-costs 
for reachability of linearly priced timed automata, where prices are given as 
constants (natural numbers). However, a slight modification of our algorithm 
provides an extension to a parameterized setting, in which (some) prices may be 
parameters. In this setting, costs within priced regions will be finite collections, 
C, of linear expressions over the given parameters rather than simple natural 
numbers. Intuitively, C denotes for any given instantiation of the parameters the 
minimum of the concrete values denoted by the linear expressions within C. Now, 
two cost-expressions may be compared simply by comparing the sizes of corre- 
sponding parameters, and two collections C and D (both denoting minimums) 
are related if for any element of D there is a smaller element in C. In the mod- 
ified version of algorithm Fig. 6, COST will similarly be a collection of (linear) 
cost-expressions with which the goal-location has been reached (so far). From 
recent results in [1] (generalizing Higman's lemma) it follows that the ordering 
on (parameterized) symbolic states is again a well-quasi ordering, hence guaran- 
teeing termination of our algorithm. Also, we are currently working on extending 
the algorithmic solution offered here to synthesis of minimum-cost controllers in 
the sense of [4]. In this extension, a priced region will be given by a conven- 
tional unpriced region together with a min-max expression over cost vectors for 
the vertices of the region. In both the parametric and the controller synthesis 
case, it follows from recent results in [1] (generalizing Higman's lemma) that the 

In particular, the reset-operation. 
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orderings on symbolic states are again well-quasi orderings, hence guaranteeing 
termination of our algorithms. 

Acknowledgements. The authors would like to thank Lone Juul Hansen for 
her great, creative effort in making the figures of this paper. Also, the authors 
would like to thank Parosh Abdulla for sharing with us some of his expertise 
and knowledge on the world beyond well-quasi orderings. 

References 

1. Parosh Aziz Abdulla and Aletta Nylen. Better is better than well: On efficient 
verification of infinite-state systems. In Proc. of the Uth IEEE Symp. on Logic in 
Computer Science. IEEE, 2000. 

2. R. Alur, C. Courcoubetis, and T. A. Henzinger. Computing accumulated delays in 
real-time systems. In Proc. of the 5th Int. Conf. on Computer Aided Verification, 
number 697 in Lecture Notes in Computer Science, pages 181-193, 1993. 

3. R. Alur and D. Dill. Automata for Modelling Real-Time Systems. Theoretical 
Computer Science, 126(2):183-236, April 1994. 

4. E. Asarin and O. Maler. As soon as possible: Time optimal control for timed 
automata. In Hybrid Systems: Computation and Control, number 1569 in Lecture 
Notes in Computer Science, pages 19-30. Springer-Verlag, March 1999. 

5. Gerd Behrmann, Ansgar Pehnker, Thomas Hune, Kim Larsen, Paul Pettersson, 
and Judi Romijn. Efficient guiding towards cost-optimality in UPPAAL. Accepted 
for TACAS 2001. 

6. Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim Larsen, Paul Pettersson, 
Judi Romijn, and Frits Vaandrager. Minimum-cost reachability for priced timed 
automata. Technical Report RS-01-03, BRICS, January 2001. 

7. Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tripakis, and 
Sergio Yovine. Kronos: A Model-Checking Tool for Real-Time Systems. In Proc. 
of the 10th Int. Conf. on Computer Aided Verification, number 1427 in Lecture 
Notes in Computer Science, pages 546-550. Springer-Verlag, 1998. 

8. David Dill. Timing Assumptions and Verification of Finite-State Concurrent Sys- 
tems. In J. Sifakis, editor, Proc. of Automatic Verification Methods for Finite 
State Systems, number 407 in Lecture Notes in Computer Science, pages 197-212. 
Springer-Verlag, 1989. 

9. Ansgar Fehnker. Scheduling a steel plant with timed automata. In Proceedings of 
the 6th International Conference on Real-Time Computing Systems and Applica- 
tions (RTCSA99), pages 280-286. IEEE Computer Society, 1999. 

10. T. A. Henzinger. The theory of hybrid automata. In Proc. of 11th Annual Symp. 
on Logic in Computer Science (LICS 96), pages 278-292. IEEE Computer Society 
Press, 1996. 

11. Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HYTECH: A Model 
Checker for Hybird Systems. In Orna Grumberg, editor, Proc. of the 9th Int. 
Conf. on Computer Aided Verification, number 1254 in Lecture Notes in Computer 
Science, pages 460-463. Springer-Verlag, 1997. 

12. G. Higman. Ordering by divisibility in abstract algebras. Proc. of the London 
Math. Soc, 2:326-336, 1952. 



Minimum-Cost Reachability for Priced Timed Automata        161 

13. Thomas Hune, Kim G. Larsen, and Paul Pettersson. Guided Synthesis of Con- 
trol Programs Using UPPAAL. In Ten H. Lai, editor, Proc. of the IEEE ICDCS 
International Workshop on Distributed Systems Verification and Validation, pages 
E15-E22. IEEE Computer Society Press, April 2000. 

14. Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a Nutshell. Int. Journal 
on Software Tools for Technology Transfer, 1(1-2): 134-152, October 1997. 

15. Kim G. Larsen, Carsten Weise, Wang Yi, and Justin Pearson. Clock difference 
diagrams. Nordic Journal of Computing, 6(3):271-298, 1999. 

16. J. M0ller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard. Difference decision dia- 
grams. Technical Report IT-TR-1999-023, Department of Information Technology, 
Technical University of Denmark, February 1999. 

17. Peter Niebert, Stavros Tripakis, and Sergio Yovine. Minimum-time reachability 
for timed automata. In IEEE Mediteranean Control Conference, 2000. 

18. Peter Niebert and Sergio Yovine. Computing optimal operation schemes for multi 
batch operation of chemical plants. VHS deliverable, May 1999. Draft. 



A Hybrid Approach to Traction Control 

Francesco Borrelli1, Alberto Bemporad1,3, Michael Fodor2, and Davor Hrovat2 

1 Automatic Control Laboratory, ETH, CH-8092 Zurich, Switzerland 
Phone: +41 1 632-4158, Fax: +41 1 632-1211 

{borrelli,bemporad}Saut.ee.ethz.ch 
2 Ford Research Laboratories, 

Dearborn, MI 48124 
Phone: +1 313 594-2958, Fax: +1 313 322-5562 

{mf odor1,dhrovat}9f ord.com 
3 Dip. Ingegneria dell'Informazione, Universitä di Siena 

Phone: +39 0577 234-631, Fax: +39 0577 234-632 
bemporadQdii.unisi.it 

Abstract. In this paper we describe a hybrid model and an 
optimization-based control strategy for solving a traction control prob- 
lem currently under investigation at Ford Research Laboratories. We 
show through simulations on a model and a realistic set of parameters 
that good and robust performance is achieved. Furthermore, the result- 
ing optimal controller is a piecewise linear function of the measurements 
that can be implemented on low cost control hardware. 

1    Introduction 

For more than a decade advanced mechatronic systems controlling some aspects 
of vehicle dynamics have been investigated and implemented in production [13]. 
Among them, the class of traction control problems is one of the most studied. 
Traction controllers are used to improve a driver's ability to control a vehicle 
under adverse external conditions such as wet or icy roads. By maximizing the 
tractive force between the vehicle's tire and the road, a traction controller pre- 
vents the wheel from slipping and at the same time improves vehicle stability 
and steerability. In most control schemes the wheel slip, i.e., the difference be- 
tween the normalized vehicle speed and the speed of the wheel is chosen as the 
controlled variable. The objective of the controller is to maximize the tractive 
torque while preserving the stability of the system. The relation between the 
tractive force and the wheel slip is nonlinear and is a function of the road condi- 
tion [2]. Therefore, the overall control scheme is composed of two parts: a device 
that estimates the road surface condition, and a traction controller that regulates 
the wheel slip at any desired value. Regarding the second part, several control 
strategies have been proposed in the literature mainly based on sliding-mode con- 
trollers, fuzzy logic and adaptive schemes [5,14,4,19,20,17,2,18]. Such control 
schemes are motivated by the fact that the system is nonlinear and uncertain. 

The presence of nonlinearities and constraints on one hand, and the sim- 
plicity needed for real-time implementation on the other, have discouraged the 

M.D. Di Benedetto, A. Sangiovanni-Vincentelli (Eds.): HSCC 2001, LNCS 2034, pp. 162-174, 2001. 
© Springer-Verlag Berlin Heidelberg 2001 
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1 
Manifold/ 
Fueling 

Fig. 1. Simple vehicle model 

design of optimal control strategies for this kind of problem. Recently we pro- 
posed a new framework for modeling hybrid systems [8] and an algorithm to 
synthesize piecewise linear optimal controllers for such systems [6]. In this paper 
we describe how the hybrid framework [8] and the optimization-based control 
strategy [6] can be successfully applied for solving the traction control problem 
in a systematic way. We show, through simulations on a simplified model and for 
a set of parameters provided by Ford Research Laboratories, that good and ro- 
bust performance can be achieved. Furthermore, the resulting optimal controller 
consists of a piecewise linear function of the measurements, that can be easily 
implemented. 

A mathematical model of the vehicle/tire system is introduced in Section 2. 
The hybrid modeling and the optimal control strategy are discussed in Sec- 
tions 2.1 and 3, respectively. In Section 4 we derive the piecewise affine optimal 
control law for traction control and present some simulation results. 

2    Vehicle Model 

The model of the vehicle used for the design of the traction controller is depicted 
in Figure 1, and consists of the equations 

0    0 
TC + 

1 

1 Tt 

with 

(1) 

fc(t) = -kiTe(t) + kiTd{t - Tf) (2) 

where the involved physical quantities and parameters are described in Table 1. 
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Table 1. Physical quantities and parameters of the vehicle model 

"t Engine speed Tt Tire radius 
Vv Vehicle speed To Actual combustion torque 
J'c Combined engine/wheel inertia Td Desired combustion torque 
t>e Engine damping Tt Prictional torque on the tire 
9r Total driveline gear ratio between we and vv ß Road coefficient of friction 
mv Vehicle mass Tf Fueling to combustion pure delay period 
AUJ Wheel slip 

The factional torque rt is approximated as a piecewise linear function of the 
slip Aui and of the road coefficient of friction \i 

Tt(Z\w,/i) AUJ if Aw < Aojlb 
AuJiiAcv>AJ   for  /^/^*+i   i = 0,...,N     (3) 

as depicted in Figure 2(a). 
Model (1) contains two states for the mechanical system downstream of the 

manifold/fueling dynamics. The first equation represents the wheel dynamics 
under the effect of the combustion torque and of the traction torque, while 
the second one describes the longitudinal motion dynamics of the vehicle. In 
addition to the mechanical equations (1) the air intake and fueling model (2) 
also contributes to the dynamic behaviour of the overall system. For simplicity, 
the intake manifold dynamics is modeled as a first order filter and the fueling 
combustion delay is modeled as a pure delay. 

2.1    Discrete-Time Hybrid Model 

Hybrid systems provide a unified framework for describing processes evolving ac- 
cording to continuous dynamics, discrete dynamics, and logic rules [1,16,10,3]. 
The interest in hybrid systems is mainly motivated by the large variety of prac- 
tical situations, for instance real-time systems, where physical processes interact 
with digital controllers. Several modeling formalisms have been developed to de- 
scribe hybrid systems [12,15], among them the class of Mixed Logical Dynamical 
(MLD) systems introduced by Bemporad and Morari [8]. Examples of real-world 
applications that can be naturally modeled within the MLD framework are re- 
ported in [7,8,9]. The language HYSDEL (HYbrid Systems DEscription Lan- 
guage) was developed in [21] to obtain MLD models from of a high level textual 
description of the hybrid dynamics. 

The model obtained in Section 2 is transformed into an equivalent discrete- 
time MLD model through the following steps: 

1. Discretize the model (l)-(3) with sampling time Ts = 20 ms; 
2. Introduce an auxiliary logic variable 6i for each interval [yu;,/ii+1] whose 

value can be 1 or 0 depending on the value of the slip Aui, as shown in 
Figure 2(b). 



A Hybrid Approach to Traction Control        165 

T, (N| 

<^ 

0.05   ° 

(a) Pull model (b) Piecewise linear model of the 
tire torque n with ß e (fj,i,m+i) 

Fig. 2. Model of the tire torque n as a function of the slip Au and road coefficient 
adhesion /x 

Remark 1. In the sequel we will use a simplified model where the slopes k\ = 
jfc2 = ... = fef and fc| = k\ = ... = kg, while the breakpoints w£ in (3) are 
allowed to be different. In this case the number of auxiliary logic variables 5% 

reduces from log2 N to 1, at the price of a "rougher" model of the nonlinearity. 

The resultant MLD system is the following1: 

x(t + 1) = Ax{t) + Biu(t) + B2S(t) + B3z{t) (4a) 

y(t) = Cx(t) + Dxu{t) + D2S(t) + D3z(t) (4b) 

E25(t) + Ezz{i) < Eiu{t) + E4x(t) + E5 (4c) 

where x € M5, (xi = Awd, x2 = ve, x3 = vv, x4 = rt, x5 = TC), U&R, (U = Td), 
y g R (y = Au), 5 e {0,1} and z € R3. The variables S and z are auxiliary 
variables whose value is determined uniquely by the inequalities (4c) once x(t) 
and u(t) are fixed [8]. 

In Figure 4 we compare the evolution of the discrete-time MLD model (4) 
with the evolution of the continuous time model (l)-(3), depicted in Figure 3, 
when fi = .1, Awb = 2 rad/s and a pulse torque rd = 50 Nm is applied to the 
system. The MLD model (4) captures in discrete time the hybrid behavior of 
the system satisfactorily. 

3    Optimal Control 

It is clear from Figure 2(b) that if the slip increases beyond Awb, the driving force 
on the tire decreases considerably and the vehicle cannot speed up as desired. By 

1 The numerical values of the matrices in (4) are reported in the Appendix. 
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x' = Ax+Bu 

y = Cx+Du 
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Fig. 3. Simulink scheme of the vehicle model 
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Fig. 4. Continuous time simulation of the Matlab-Simulink block in Figure 3 (solid 
line), discrete-time simulation of the MLD model (dashed line) 

maximizing the tractive force between the vehicle's tire and the road, a traction 
controller prevents the wheel from slipping and at the same time improves vehicle 
stability and steerability. The overall control scheme is composed of two parts: a 
device that estimates the road surface condition, and a traction controller that 
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regulates the wheel slip at any desired value. In this paper we will focus only on 
the second part, as the first one is available at Ford Research Laboratories. 

Once the road coefficient of adhesion fi has been estimated, a desired wheel 
sleep Au\ is chosen corresponding to the breakpoints Au* in model (3), 
M S [fj.k-i,Hk], where the factional torque Tt(Au) on the tire is maximized. 
Alternatively, to increase the safety of the controller [18] we could avoid operat- 
ing in the region where the slope of the curve rt(Au) is negative, see Figure 2(b), 
by simply choosing Au^{p) < Au* (/z G [pk-i,Pk])- The control system takes 
the desired wheel slip Au\ and measured wheel speed as input and generates the 
desired engine torque. The following constraints on the torque and its variation 
need to be satisfied: 

- 20 Nm < Td < 176 Nm (5) 

fd(t) < 2000 Nm/s (6) 

In the sequel we describe how a Model Predictive Controller (MPC) can 
be designed for the posed traction control problem described. The main idea 
of MPC is to use the model of the plant to predict the future evolution of the 
system. Based on this prediction, at each time step t a certain performance 
index is optimized under operating constraints with respect to a sequence of 
future input moves. The first of such optimal moves is the control action applied 
to the plant at time t. At time t + 1, a new optimization is solved over a shifted 
prediction horizon. For the traction control problem, at each time step t the 
following finite horizon optimal control problem is solved: 

T-l 

min    V \Au>(t + k\t) - Aud(t)\ (7) 
M"1} k=0 

MLD dynamics (4) 
i  .    , I Tvnin SL 

u\t T K) Si T-maxi   fc = U, 1, . . .  , I   — 1 ,„. 
SU J'       < Armin < Su(t + k)< Armax, k = 0,1,... , T - 1      W 

where Au^"1 = {Su(t),... ,Su(t + T-l)}, and "(t + k\t)" denotes the predicted 
value at time t + k based on the state information available at time t. Note 
that the optimization variables are not the future inputs ut+k, but the variation 
Su(t + k) = u(t + k) — u(t + k — 1), which makes it necessary to increase the 
dimension of the state vector by one to include the previous torque Td(t — 1) as 
a an additional state Xßit) = Td(t — 1). 

Problem (7)-(8) can be translated into a mixed integer linear program 
(MILP) (the minimization of a linear cost function subject to linear constraints 
where variables can be binary and/or continuous) of the form: 

min     f?zc + fjzd 
Z={z-Zd} (9) 

subj. to Gczc + Gczd < S + Fx(t) 

where zc e R' and zd £ {0, l}m. 
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Given the measurement of the state x(t), problem (9) is solved at each time 
step, but only the first optimal input u*(t) = Td(t - 1) + SUQ is implemented as 
the new command torque Td{t). At the next time step the procedure is repeated 
starting with the new measurement of the state. 

The design of the controller is performed in two steps. First, the MPC con- 
troller (7)-(8) based on model (4) is tuned in simulation until the desired per- 
formance is achieved. The MPC controller is not directly implementable, as it 
would require the MILP (9) to be solved on-line, which is clearly prohibitive 
on standard automotive control hardware. Therefore, for implementation, in the 
second phase the explicit piecewise linear form of the MPC law (see Section 4.2) 
is computed off-line by using the multi-parametric mixed integer programming 
solver presented in [11]. Although the resulting piecewise linear control action 
is identical to the MPC designed in the first phase, the on-line complexity is 
reduced to the simple evaluation of a piecewise linear function. 

4    Controller Design 

The only parameter of the controller (7)-(8) to be tuned is the horizon length T. 
By increasing the prediction horizon the controller performance improves, but 
at the same time the number of constraints in (8) increases. As will be explained 
in Section 4.2 the complexity of the final piecewise linear controller increases 
with the number of constraints in (8). Therefore, tuning T amounts to finding 
the smallest T which leads to a satisfactory closed-loop behaviour. 

4.1    Simulations 

We simulate the closed-loop composed of the traction controller (7)-(8) and 
model (l)-(2), where the piecewise linear function modeling the factional torque 
on the tire rt (3) is replaced by a more accurate nonlinear model provided by 
Ford, see Figure 5. The actual combustion torque TC is estimated from the two 
measurements u>e and vv by using an extended Kaiman Filter designed for the 
PWA model. 

The controlled system is simulated with an initial vehicle speed of zero. The 
intake manifold state rc is set to a large torque value, namely rc(0) = 100 Nm, in 
order to approximate a wide-open throttle launch from a standstill. In Figure 6 
we simulate a straight-ahead driving with a transition at time t* = 2 s from a 
high coefficient of friction /u = 0.9, and Aud = 18 rad/s (cement pavement) to 
a low one // = 0.1, Au>d = 2 rad/s (dry ice). The simulations show the good 
performance of the controller despite the large mismatch between the nonlinear 
model of the frictional torque model and the piecewise linearized one. 

The following controllers are simulated: 

- Controller 1 (Figure 6(a)): T=3; 
- Controller 2 (Figure 6(b)): T=9; 

The Simulink control diagram used for simulation is shown in Figure 5. 
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|j (estimated) 

Fig. 5. Simulink diagram of the closed-loop control system 

4.2    Explicit Controller 

Once the controller has been tuned, the explicit piecewise linear form of the 
MPC law is computed off-line by using a multiparametric mixed integer linear 
programming (mp-MILP) solver, according to the approach of [6]. Rather than 
solving the MILP (9) on-line for the given current state x(t), the idea is to use 
the mp-MILP solver to compute off-line the solution of the MILP (9) for all the 
states x(t) within a given polyhedral set. 

As shown in [6], the explicit solution z*(x(t)) of (9) is a piecewise affine func- 
tion of x(t). Therefore, the model predictive controller is also available explicitly, 
as the optimal input 5u(t) consists simply of a component of z*(x(t)). As a re- 
sult, the state space is partitioned into polyhedral sets, where an affine control 
law is defined in each polyhedron. 

We remark that for any given state x(t) the on-line solution of MPC and 
the explicit off-line solution provide the same result. Therefore, a good design 
strategy consists of tuning the MPC controller using simulation and on-line 
optimization, and then to convert the controller to its piecewise affine explicit 
form. The explicit controller will behave in exactly the same way at much lower 
computation cost. 

The result of the mp-MILP solver is a list of N records. The i-th record 
contains the constraints defining the i-th polyhedral region H(i)x < K(i), 
H(i) G RmiXn, and the corresponding i-th gain Su = F{i)x + G(i). The con- 
trol law can be implemented on-line in the following simple way: (1) determine 
the i-th region that contains the actual vector state x{t) (measured and/or es- 
timated); (2) compute 6u(t) = F(i)x(t) + G(i), according to the corresponding 
i-th control law. 
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Fig. 6. Closed-loop simulation of Controller 1 and Controller 2. Straight-ahead driving 
with a transition at time t* = 2 s from a high coefficient of friction ju = 0.9, and 
Aojd = 18 rad/s (cement pavement) to a low one /u = 0.1, Au>d = 2 rad/s (dry ice) 

In Figure 6(a) we report the performance achieved with two explicit 
MPC controllers, obtained by solving the mp-MILP problem for the box 
Xmin < x(t) < Xmax, Xmin = [0,0,0,-20,-20,-40] and Xmax = 
[20,150,10,100,300,40]: 

Controller 1 : T=3, Number of regions N = 76, maximum number of con- 
straints per region M = maxi=ii... ^ im = 13; 

Controller 2: T=9, Number of regions N = 243, maximum number of con- 
straints per region M = 25. 
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As an example, we report only the first and last region of Controller 1: 

5u = < 

— 40.0000 

r    0.0 0.0 -0.0 0.0 0.0 -0.05 
0.0 0.01 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.01 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.02 

-1.0 0.0 0.0 0.0 0.0 0.0 
0.0 -1.0 0.0 0.0 0.0 0.0 

if 0.0 0.0 -1.0 0.0 0.0 0.0 
0.0 0.0 0.0 -0.05 0.0 0.0 

-6.13 0.47 -22.70 -0.02 0.14 0.02 
0.0 0.0 -0.0 0.0 0.0 -0.05 

15.83 -1.22 58.65 0.03 -0.24 -0.03 
-8.0 1.23 -59.26 -0.01 0.07 0.0 

-31.57 2.43 -116.94 -0.05 0.47 0.00 
.   12.25 -0.94 45.38 0.03 -0.26 -0.02 

(R egion #1) 

x< 

368.11 
-28.34 
1363.38 

0.85 
-7.13 
-1.00 

X +  11.59 

-1.0 
1.0 
1.0 
1.0 
1.0 
0.0 
0.0 
1.0 
1.0 

-1.0 
1.0 
0.0 

-1.0 
-1.0 

r 43.7456 -3.3676 162.0209 0.1011 -0.8468 -0.0 
-7.8681 0.6057 -29.1410 -0.0153 0.1391 0.0178 
-6.1306 0.4719 -22.7058 -0.0180 0.1364 0.0215 

-8.0 1.2317 -59.2593 -0.0068 0.0697 -0.0 
0.0 0.0067 0.0 0.0 0.0 0.0 

it 0.0 0.0 0.0 0.0100 0.0 0.0 
-1.0 0.0 0.0 0.0 0.0 0.0 
0.0 -1.0 0.0 0.0 0.0 0.0 
0.0 0.0 -1.0 0.0 0.0 0.0 
0.0 0.0 0.0 -0.0500 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 -0.05 

(R egion #76) 

(10) 

x< 

r l-o 
-1.0 
1.0 
0.0 
1.0 
1.0 
1.0 
0.0 
0.0 
1.0 
1.0 

In Figure 7 a zoomed section of the control law associated with Controller 1 
is shown. The section is obtained by fixing the torque rc = 20, the desired slip 
Aud = 2, the friction torque rt = 80, and the previous input Td(t — 1) = 20. Note 
that the southeast corner is not feasible because it corresponds to a negative slip. 

5    Conclusion 

In this paper we described a hybrid model and an optimization-based control 
strategy for a traction control problem. We showed, through simulations on a 
model and a realistic set of parameters from Ford Research Laboratories, that 
good and robust performance is achieved. Furthermore, the resulting optimal 
controller is a piecewise linear function of the measurements that can be easily 
implemented on low cost hardware. In order to ease the implementation of the 
controller, the number of regions in the piecewise linear law should be reduced. 
One possible way is to exploit reachability analysis for hybrid systems in order to 
remove regions which are never entered, for all the operating conditions within 
a realistic set. At the same time, for complex piecewise linear partitions, we 
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are developing efficient forms of implementation that greatly reduce the num- 
ber of regions to be stored by exploiting properties of multiparametric linear 
programming. 

Acknowledgments. We thank Manfred Morari for fruitful discussions and his 
helpful comments on the original manuscript. 

6    Appendix 

Below we report the numerical values of the matrices in (4) obtained by using the 
tool HYSDEL. See http: //www. aut. ee. ethz. ch/~hybrid/FordExample. html 

10 0 0     0 0 
0 0 0 0     0 0 
0 0 0 0     0 0 
0 0 0 0     0 0 
0 0 0 0 0.819 0.181 
0 0 0 0     0 1 

r   o   i rni ro o on 
0 0 1 0 0 

, £i = 0 
0 , B2 = 0 

0 , B3 = 0 10 
0 0 1 

0.18127 0 0 0 0 L     i    J LoJ Lo o oj 

C=[oooioo], Di = [o], D2 = [o], £>3 = [ooo] 

Ex 

1-0- r   100   -, r o   o   o -i 
n -700 0     0     0 
n 1400 -10     0 
n 200 0-10 
n 6000 0     0—1 
0 
0 
n , E2 = 

1400 
200 

6000 , E3 = 
10     0 
0     10 
0     0     1 
-10     0 0 -1400 

0 -200 0       10 0 -6000 0     0       1 u 
0 

L0J 

-1400 
-200 

- -6000 -1 

10     0 
0     10 

-001-1 

(11) 

E. 4 — 

4 
0 

-1 
0 
0 
1 
0 
0 
-1 
0 -1-10 
0 0 0 0 
10 0 0 
0     110 

E* 

100 
-0.0001 

1400 
200 

6000 
200 

6000 
0 
0 
0 
0 
0 
0 
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Abstract. We consider the synthesis of optimal controls for continuous 
feedback systems by recasting the problem to a hybrid optimal control 
problem which is to synthesize optimal enabling conditions for switching 
between locations in which the control is constant. We provide a single- 
pass algorithm to solve the dynamic programming problem that arises, 
with added constraints to ensure non-Zeno trajectories. 

1    Introduction 

In this paper we continue our investigation of the application of hybrid systems 
and bisimulation to optimal control problems. In the first paper [2] we devel- 
oped a discrete method for solving an optimal control problem based on hybrid 
systems and bisimulation. We showed that the value function of the discrete 
problem converges to the value function of the continuous problem as a dis- 
cretization parameter S tends to zero. In this paper we focus on the pragmatic 
question of how the discretized problem can be efficiently solved. 

Following the introduction of the concept of viscosity solution [10,4], 
Capuzzo-Dolcetta [3] introduced a method for obtaining approximations of vis- 
cosity solutions based on time discretization of the Hamilton-Jacobi-Bellman 
(HJB) equation. The approximations of the value function correspond to a dis- 
crete time optimal control problem, for which an optimal control can be syn- 
thesized that is piecewise constant. Finite difference approximations were also 
introduced in [5] and [13]. In general, the time discretized approximation of the 
HJB equation is solved by finite element methods. Gonzales and Rofman [9] 
introduced a discrete approximation by triangulating the domain of the finite 
horizon problem they considered, while the admissible control set is approxi- 
mated by a finite set. Gonzales and Rofman's approach is adapted in several 
papers, including [7]. The approach of [14] uses the special structure of an op- 
timal control problem to obtain a single-pass algorithm to solve the discrete 
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problem, thus bypassing the expensive iterations of a finite element method. 
The essential property needed to find a single pass algorithm is to obtain a par- 
tition of the domain so that the cost-to-go value from any equivalence class of 
the partition is determined from knowledge of the cost-to-go from those equiv- 
alence classes with strictly smaller cost-to-go values. In this paper we obtain a 
partition of the domain provided by a bisimulation partition. The combination 
of the structure of the bisimulation partition and the requirement of non-Zeno 
trajectories enables us reproduce the essential property of [14], so that we obtain 
a Dijkstra-like algorithmic solution. Our approach has complexity 0(N log N) 
if suitable data structures are used, where N is the number of locations of the 
finite automaton. 

While the objective is to solve a continuous optimal control problem, the 
method can be adapted to solve directly the problem of optimal synthesis of 
enabling conditions for hybrid systems. In that spirit, [11] investigates games on 
timed automata and obtains a dynamic programming formulation as well. 

2    Optimal Control Problem 

cl(A) denotes the closure of set A. || • || denotes the Euclidean norm. ,Y(IR™) 
denotes the sets of smooth vector fields on IR™. 4>t(x0,n) denotes the trajectory 
of x = f(x,fi) starting from x0 and using control /x(-). 

Let U be a compact subset of IRm, Q an open, bounded, connected subset 
of IR™, and Qf a compact subset of Q. Define Um to be the set of measurable 
functions mapping [0, T] to U. We define the minimum hitting time T : IR™ x 
Um -> IR+ by 

T(xu)-=(°° if {t|^t(x,/i)eß/} = 0 m v  ,H/J       \mm{t I 4>t(x,p) G fif} otherwise. ^' 

A control \i G Um specified on [0,T] is admissible for x G Q if 4>t{x,n) G ß for 
all t G [0, T\. The set of admissible controls for x is denoted Ux. Let H := { x G 
fi I 3ß G Ux. T(x,n) < 00 }. We consider the following optimal control problem. 
Given y G Q, 

/•T(2/,M) 

minimize J(y,/x) =  / L(x(s),fi(s))ds + h(x(T(y,n)))       (2) 
Jo 

subject to x = f(x, n), a.e. t G [0, T(y, fi)] (3) 

x(0) = y (4) 

among all admissible controls n G Uy. J : IR™ x Um -> IR is the cost-to-go 
function, h : IR" -> IR is the terminal cost, and L : IR™ x IRm ->• ]R is the 
instantaneous cost. At T{y,jj) the terminal cost h(x(T(y,p))) is incurred and 
the dynamics are stopped. The control objective is to reach Qf from y G Q with 
minimum cost. 

The value function or optimal cost-to-go function V : IR™ —> IR is given by 

V(y)=  inf J(j,,M) 
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for y e n\ Of, and by V(y) = h(y) for y G %. V satisfies the Hamilton-Jacobi- 
Bellman equation 

-mf{L(x,u) + ?ff(x,u)}=0 (5) 
uEU K OX ) 

at each point of 11 at which it is differentiable. The HJB equation is an infinites- 
imal version of the equivalent Dynamic Programming Principle (DPP) which 
says that 

V(x)=mifl€UJf*L(cj>s(x,fi),fi(s))ds + 7(^(i^))Uefl\% 

V(x) = h(x) i6fl/. 

Because the HJB equation may not have a C1 solution it has not been possible 
to obtain a rigorous foundation for solutions in the usual sense. The correct 
concept for solutions is that of viscosity solutions [10,4], which provide the unique 
solution of (5) without differentiability. We showed in [2] that under assumptions 
of Lipschitz continuity of f,L, and h, and non-Zenoness and transversality with 
Qf of e-optimal trajectories, that a particular discrete approximation V of the 
value function converges to the viscosity solution of HJB. 

3    From Hybrid Automata to Finite Automata 

In [2] we proposed a mapping from the continuous optimal control problem (2)- 
(4) to a hybrid optimal control problem. The first step is to restrict the class of 
controls over which the cost function is minimized to piecewise constant controls 
taking values in a set Es Q U. Es C U is a finite approximation of U having a 
mesh size 5 := supuG(7 minff6£ä ||u—cr||. Next we restrict the continuous behavior 
to the set of vector fields {f{x,o-)}a^ss- If we associate each vector field to a 
location of a hybrid automaton and, additionally, define a location reserved for 
when the target is reached, we obtain a hybrid automaton 

H := (E xJRn,E5,D,Eh,G,R) 

which has the following components: 

State set E x 1R" is a finite set E = Es U {07} of control locations and n 
continuous variables x £ IR™. oy is a terminal location when the continuous 
dynamics are stopped (in the same sense that the dynamics are stopped in 
the continuous optimal control problem). 

Events Es is a finite set of control event labels. 
Vector fields D : E -» A"(]R") is a function assigning an autonomous vector 

field to each location; namely D(a) = f(x,cr). 
Control switches Eh C E x E is a set of control switches, e = (a, a') is a 

directed edge between a source location a and a target location a'. If Eh{o~) 
denotes the set of edges that can be enabled at a G E, then Eh{o~) := 
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{{a, a') | a' G E \ a} for a G Eg and Eh(af) = 0. Thus, from a source 
location not equal to 07, there is an edge to every other location (but not 
itself), while location 07 has no outgoing edges. 

Enabling conditions G : Eh ->• {ge}eeEh is a function assigning to each edge 
e an enabling (or guard) condition ge c 1R". 

The enabling conditions are unknown and must be synthesized algorithmi- 
cally. (See [2] for how the enabling conditions are extracted once the discrete 
problem is solved.) Trajectories of H evolve in cr-steps and t-steps. <7-steps oc- 
cur when H changes locations (and the control changes value, since there are 
no self-loops) and i-steps occur when the continuous state evolves according to 
the dynamics of a location as time passes. The reader is referred to [2] for pre- 
cise statements. A hybrid trajectory is non-Zeno if between every two non-zero 
duration i-steps there are a finite number of cr-steps and zero duration f-steps. 

Let A represent an arbitrary time interval. A bisimulation of H is an equiva- 
lence relation ~c (^xR") x (Eg xß") such that for all states pi,p2 € EsxJRn, 
if pi ~ p2 and a G Eg U {A}, then if px A- p[, there exists p'2 such that p2 A p'2 

and pi ~p'2. 

One sees that ~ encodes cr-steps and i-steps of H in a time abstract form 
by partitioning Eg x IR™. If ~ has a finite number of equivalence classes, then 
they form the states of a finite automaton A. If q := [(a, x)] and q' := [(a', x')} 
are two different equivalence classes of ~, then A has an edge q -> q' if there 
exists (a, y) e q and (a',y') e q' such that (<r,y) ->• (a',y') is a <r-step or t-step 
of H. We define the set of interesting equivalence classes of ~, denoted Q, as 
those that intersect Eg x d(Q), and we identify a distinguished point (er,£) G q 
for each q G Q, denoted q = [(<x,£)]. 

Consider the class of non-deterministic automata with cost structure repre- 
sented by the tuple 

A=(Q,Es,E,obs,Qf,L,h). 

Q is the state set just defined, and Eg is the set of control labels as before. 
obs : E —> Eg is a map that assigns a control label to each edge and is given by 
obs(e) = a', where e = (q,q'), q = [(a,£)} and q' = [(cr',£')]. Qf is an over (or 
under) approximation of Qf, Qf = {q G Q \ 3a; G Q} . (a, x) G q }. E C Q x Q is 
the transition relation of A and is defined assuming that each enabling condition 
is initially the entire region Q. The identity map is implemented in A by an 
over-approximation in terms of equivalence classes of ~. That is, for a ^ a', 
([a,x)}, [(a',x')]) G E if the projections to ET of [a,x)] and [{a',x')} have non- 
empty intersection. This over-approximation introduces non-determinacy in A. 
Let 

sup      { t I y = 4>t(x,o) }. 
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Let e = (q,q') with q = [(<r,£,)} and q' = [(cr',f')]- L : E ^ JR. is the discrete 
instantaneous cost given by 

i(«):={f(M    \°-£. (6) 

/i : Q —> E. is the discrete terminal cost given by 

h{q) := /i(0- 

A transition or step of ^4 from q £ Q to q' £ Q with observation <r' € Es is 

denoted q ^> q'. H a ^= a' the transition is referred to as a control switch, and 
it is forced, a = a' the transition is referred to as a time step. If ^(q) is the 
set of edges that can be enabled from q G Q, then for a € Es, Ea(q) = {e£ 
£((?) | obs(e) = a}. If |.E<r((/)| > 1, then we say that e G £CT(<7) is unobservable in 
the sense that when control event a is issued, it is unknown which edge among 
Ea{q) is taken. (Note that unobservability of edges refers strictly to the discrete 
automaton A, whereas in H one may be able to reconstruct which edge was 
taken using continuous state information). If a = a', then \Ea(q)\ = 1, by the 
uniqueness of solutions of ODE's and by the definition of bisimulation. 

A control policy c : Q —> Eg is a map assigning a control event to each state; 
c[q) = a is the control event issued when the state is at q. A trajectory -n of A 
over c is a sequence 7r = q0 4 q\ -4 qi -4 ..., qi G Q. Let IIc{q) be the set of 
trajectories starting at q and applying control policy c, and let IJc(q) be the set 
of trajectories starting at q, applying control policy c, and eventually reaching 
Qf. If for every q G Q, 7r G IIc(q) is non-Zeno then we say c is an admissible 
control policy. The set of all admissible control policies for A is denoted C. 

A control policy c is said to have a loop if A has a trajectory go   —>•  <7i   ~> 

^f1   qm = q0, qi G Q. A control policy has a Zeno loop if it has a loop 
made up of control switches and/or zero duration time steps (i.e. Tq = 0) only. 

Lemma 1. A control policy c for non-deterministic automaton A is admissible 
if and only if it has no Zeno loops. 

Proof. First we show that a non-deterministic automaton with non-Zeno tra- 
jectories has a control policy without Zeno loops. For suppose not. Then a tra- 
jectory starting on a state belonging to the loop can take infinitely many steps 
around the loop before taking a non-zero duration time step. This trajectory is 
not non-Zeno, a contradiction. Second, we show that a control policy without 
Zeno loops implies non-Zeno trajectories. Suppose not. Consider a Zeno trajec- 
tory that takes an infinite number of control switches and/or zero duration time 
steps between two non-zero duration time steps. Because there are a finite num- 
ber of states in Q, by the Axiom of Choice, one of the states must be repeated in 
the sequence of states visited during the control switches and/or zero duration 
time steps. This implies the existence of a loop in the control policy. Either each 
step of the loop is a control switch, implying a Zeno loop; or the loop has one 
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or more zero duration time steps. But the bisimulation partition permits zero 
duration time steps only if Tq = 0, which implies a Zeno loop. D 

Fig. 1. Fragment of automaton with a zero duration time step. 

Example 1. Consider the automaton in Figure 1. If we are at qx and the control 

a'a'a is issued, then three possible trajectories are qi A q3 ^» qA A q2, qx ^> 

94 -»• 95 -» 92, or qi -» q3 A q4 A qx. The first trajectory has a zero duration 
time step. The control is inadmissible since the last trajectory has a Zeno loop. 

4    Dynamic Programming 

In this section we formulate the dynamic programming problem on A. This 
involves defining a cost-to-go function and a value function that minimizes it 
over control policies suitable for non-deterministic automata. 

Let 7T = q0 -4 qi... qN_t ^4 qN, where qi = [(o*, &)] and 7r takes the sequence 
of edges eie2 ... etf. We define a discrete cost-to-go J : Q x C -► IR by 

J((?JC) = / ™«»e/7c(,){E£:i Lifii) + h(9N,)} if  nc(q) = nc(q) 
[ co otherwise 

where JV„. = min{j > 0 | qj e Q/}. We take the maximum over Üc(q) because of 
the non-determinacy of A: it is uncertain which among the (multiple) trajectories 
allowed by c will be taken so we must assume the worst-case situation. The 
discrete value function V : Q —»IR is 

V(q) = min J(q,c) 
c£C 

for q G Q \ Qf and V(q) = h(q) for q&Qf.We showed in [2] that V satisfies a 
DPP that takes into account the non-determinacy of A and ensures that optimal 
control policies are admissible. Let Aq be the set of control assignments c(q) G Es 

at q such that c is admissible. 
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Proposition 1. V satisfies 

V(q)=   min    {        max        {1(e) + V (q')}\,    q£Q\Qf (7) 

V(q) = %), q £ Qf. (8) 

5    Non-deterministic Dijkstra Algorithm 

The dynamic programming solution (7)-(8) can be viewed as a shortest path 
problem on a non-deterministic graph subject to all optimal paths satisfying a 
non-Zeno condition. We propose an algorithm which is a modification of the 
Dijkstra algorithm for deterministic graphs [6]. First we define notation. Fn is 
the set of states that have been assigned a control and are deemed "finished" 
at iteration n, while Un are the unfinished states. At each n, Q = Un U Fn. 
En(q) C Es is the set of control events at iteration n that take state q to finished 
states exclusively. Ün is the set of states for which there exists a control event 
that can take them to finished states exclusively. Vn(q) is a tentative cost-to-go 
value at iteration n. Bn is the set of "best" states among Un. 

The non-deterministic Dijkstra (NDD) algorithm first determines Ün by 
checking if any q in Un can take a step to states belonging exclusively to Fn. 
For states belonging to Ün, an estimate of the value function V following the 
prescription of (7) is obtained: among the set of control events constituting a 
step into states in Fn, select the event with the lowest worst-case cost. Next, the 
algorithm determines Bn, the states with the lowest V among Un, and these are 
added to Fn+i- The iteration counter is incremented until it reaches TV = |Q|. 
It is assumed in the following description that initially V(q) = oo and c(q) = 0 
for all q &Q- 

We prove that algorithm NDD is optimal; that is, it synthesizes a control 
policy so that each q £ Q reaches Qf with the best worst-case cost. We observe 
a few properties of the algorithm. First, if all states of Q can reach Qf then 
Q — Qf = UnBn. Second, as in the deterministic case, the algorithm computes 
V in order of level sets of V. In particular, V(Bn) < V(Bn+i). Finally, we need 
the following property. 

Lemma 2. For all q £ Q and a' £ Es, 

V(q) < max        {1(e) + V(q')}. 
e=(q,q')€E<r,(q) 

Proof. Fix q £ Q and a' £ Es- There are two cases. 
Case 1. 

V(q) < max        {V(q')}. 
e={q,q')eE,,(q) 

In this case the result is obvious. 
Case 2. 

V(q) >        max       {V(q')}. (9) 
e=(q,q')eE<r,(q) 
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Procedure NDD: 

Fi = Qf; Ui = Q - Qf; 
for each q G Qf, V(q) = h(q); 

for n = 1 to N, do 
for each q eUn 

£n(q) 
Ü„ = {qeU„J 
for each q G Un 

= W G Es | 
^n(q) ± 0}; 

if q ^ q' , then q' G Fn}; 

V„(q) = 
Bn = argminqe0 

for each q G Bn 

= min<T/s£n(q){maxe=(q 

n{Vn(q)}; 
q')eE„ (q){L(e) + v(q')}}; 

V(q) = Vn(q); 
c(q) = 

endfor 
argmin^g^f^jmax^ (q,q')6E „,(q){L(e) + v(q')}}; 

Fn+1 = Fn U Bn 

endfor 
Un+i = Q - Fn+i; 

We observed above that q belongs to some Bn. Suppose w.l.o.g. that q G Bj. 

Together with (9) this implies q' G Fj for all q' such that q^q'. This, in turn, 
means that a' G Sj (q) and according to the algorithm 

V(q) = Vj{q)< max        {1(e) + V(q')} 

which proves the result. □ 

Theorem 1. Algorithm NDD is optimal and synthesizes a control policy with 
no Zeno loops. 

Proof. First we prove_optimality. Let V(q) be the optimal (best worst-case) cost- 
to-go for q G Q and Q = {q G Q | V(q) < V(q)}. Let l(nq) be the number of 
edges taken by the shortest optimal (best worst-case) trajectory nq from q. Define 
q = argmingeg{/(7rg)}. Suppose that the best worst-case trajectory starting at 

q is -rr-g = q —> q -> We showed in the previous lemma that 

%)< max    fÄL(e) + Vtf)}<L(e) + V®. 

Since -K-q is the best worst-case trajectory from q and by the optimality of V(q) 

V(q)= max        a(e) + V(q')} = L(e) + V®. 
e=(q,q')eEtT,(q) 

Since n-g is the shortest best worst-case trajectory, we know that ^ £ Q, so 
V(f) = V%. This implies V{q) < L(e) + V% = V(q), a contradiction. 
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To prove that the algorithm synthesizes a policy with no Zeno loops we argue 
by induction. The claim is obviously true for Fi. Suppose that the states of Fn 

have been assigned controls forming no Zeno loops. Consider Fn+i. Each state 
of Bn takes either a time step or a control switch to Fn so there cannot be a 
Zeno loop in Bn. The only possibility is for some q G Bn to close a Zeno loop 
with states in Fn. This implies there exists a control assignment that allows an 
edge from Fn to q to be taken; but this is not allowed by NDD. Thus, Fn+i has 
no Zeno loops. 0 

Remarks: 
1. It is intuitively reasonable that the algorithm cannot synthesize a controller 

with Zeno loops. This worst-case behavior would show up in the value func- 
tion, forcing it to be infinite for states that can reach the loop. 

2. When we say that the algorithm is optimal, we mean the algorithm de- 
termines the best worst-case cost to take each state to the target set. In 
fact, (see remark below) the hybrid system or continuous system using the 
synthesized controller may perform better than worst case. 

3. The non-deterministic automaton predicts more trajectories than what ei- 
ther the continuous system or the hybrid system can exhibit. Indeed, the 
automaton may exhibit a trajectory that reaches the target set using only 
control switches, and thus accruing zero cost. This is not of concern. Such 
a trajectory is an artifact of the non-determinacy of the automaton, and is 
not used in the determination of the value function, which accounts only for 
worst-case behavior, nor is it exhibited in either the hybrid system or the 
continuous system when the control policy synthesized by Algorithm NDD 
is used. 

4. Related to the previous remark is that the non-deterministic automaton may 
also predict worst-case behavior which is not exhibited by the continuous 
system. It would appear that a discrepancy will develop between the cost-to- 
go obtained by applying the synthesized controller to the continuous system 
and the cost-to-go predicted by the nondeterministic automaton. This error 
is incurred every time a control switch is taken and is effectively an error 
in predicting the state and has an upper bound of 5 at each iteration. This 
error was accounted for in our proof of convergence of the method, and the 
convergence result essentially depends on the fact that only a finite number 
of control switches occur [2]. 

6    Example 

We apply our method to the time optimal control problem of a double integrator 

X\ = X2 

X2 = U. 

Given the set of admissible controls U =  {u    :    \u\  <  1}, we select Q = 
(—1,1) x (—1,1) and Of — Be(0), the closed epsilon ball centered at 0. The 



184 M. Broucke et al. 

cost-to-go function is J(x, fi) = JQ 
(x'M) dt. The bang-bang solution obtained us- 

ing Pontryagin's maximum principle is well known to involve a single switching 
curve. The continuous value function V is shown in Figure 2(a). 

(a) V (b) V for A = 0.1. 

Fig. 2. Continuous and discrete value functions for double integrator 

xege3 

Fig. 3. Hybrid automaton for time optimal control of a double integrator system 

To construct the hybrid automaton H we select E$ = {—1,1}. H is show 
in Figure 3. The state space is {<r_1 = —l,o\ = 1,(7/} x H". ge_1 and gei are 
unknown and must be synthesized, while ge2 = ge3 = i?y. 
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A first integral for vector field xx = x2, x2 = 1 is xx — \x\ = cx, cx G IR. For 
xx = x2, ±2 = —1 a first integral is xx + \x\ = c2, c2 G IR. We select a transverse 
foliation (see [1]) for each vector field, given by x2 = c3. 

We define Q, Qf, E, L and h for automaton A derived from H in Figure 3. 
Q can be visualized using Figure 4. 

The states q G Q are of the form (a, [x]) with a G {CT_I,CTI}. For the case 
a = o\ with cx, C2 G IR, [x] is either an open subset of IR2 bounded by the leaves 
c\<x\ — \x\ < ci+A and c2 <x2 <c2 + A; or an open interval in a horizontal 
leaf xx — \x\ = cx, c2 < x2 < c2 + A; or an open interval in a vertical leaf 
cx <xx- \x\ < cx + A, x2 = c2; or a point xi — \x\ = ci, x2 = c2. Analogous 
expressions can be written for a = a_\. In Figure 4, A = 0.25, cx G [—1,1] 
and c2 G [—1,1]. If we identify equivalence classes (a, [x]) by their Euclidean 
coordinates (ci,c2) directly, then Qf, shown in Figure 4 as the regions inside the 
dotted lines, includes states (a, [x]), where [x] satisfies ci,c2 G (—A, A). 

-OS 0 02        04        06 -0.8      -0 6       -0.4 0.2        0.4        06        OS 

CTi o-l 

Fig. 4. Partitions for states <j\ and <r_i of the hybrid automaton of Figure 3 

Let us consider the edges corresponding to control switches of A. q = 
(ai, [x]) G Q has an outgoing edge to q' = (<r_i, [y]) G Q if [x] Cl[y] ± 0. For 
example, for q = (<Ti, [X]) and [x] satisfying cj G (—.25, —.5) and c2 = .25, there 
are three outgoing edges from q to q'{,i = 1,... ,3, with [y] satisfying C2 = .25 
and ci G (-.5,-.25), cx = -.25, and c\ G (-.25,0), respectively. Similarly, for 
q = (<7i, [a:]) and [x] satisfying Ci G (-.5, -.25) and c2 G (.75,1), there are five 
outgoing edges from q to q't,i = 1,... ,5, with [y] satisfying c2 G (.75,1) and 
ci G (-.25,0), Ci = 0, ci G (0, .25), ci = .25 and ci G (.25, .5), respectively. 
Edges corresponding to time steps of A can be determined from visual inspec- 
tion of Figure 4. For example, for q = (ax, [x]) with [x] satisfying cx G (-.25, -.5) 
and c2 = .25, there is an outgoing edge from q to q' = (ax, [y]) with [y] satisfying 
ci G (-.25, -.5) and c2 G (.25, .5). 

The results of algorithm NDD are shown in Figure 2(b) and Figure 5. In 
Figure 5 the dashed line is the smooth switching curve for the continuous prob- 
lem. The black dots identify equivalence classes where NDD assigns a control 
switch. Considering ge_1 we see that the boundary of the enabling condition in 
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the upper left corner is a jagged approximation using equivalence classes of the 
smooth switching curve. Initial conditions in the upper left corner just inside 
the enabling condition must switch to a control of u = -1, otherwise the trajec- 
tory will increase in the x2 direction and not reach the target. Initial conditions 
in the upper left corner just outside the enabling condition must allow time to 
pass until they reach the enabling condition, for if they switched to u = -1 
they would be unable to reach the target. Hence the upper left boundary of the 
enabling condition is crisp. The lower right side of the enabling condition which 
has islands of time steps shows the effect of the non-determinacy of automaton 
A. These additional time steps occur because it can be less expensive to take a 
time step than to incur the cost of the worst case control switch. Indeed consider 
an initial condition in Figure 5(a) which lies in an equivalence class that takes a 
time step but should take a control switch according to the continuous optimal 
control. Such a point will move up and to the left before it takes a control switch. 
By moving slightly closer to the target, the worst-case cost-to-go incurred in a 
control switch is reduced. Notice that all such initial conditions eventually take 
a control switch. This phenomenon of extra time steps is a function of the mesh 
size 6: as 5 decreases there are fewer extra time steps. Finally we note that 
the two enabling conditions have an empty intersection, as expected in order to 
ensure non-Zeno trajectories. 

EnsWing eondiwi Q    ( 

"'SsÄtP^ ; ; '• ''• '•■ ,';-:;|i|P' 

* •*v.'*v.v/'.v^ 

,     ■<  .•.•^.:.,:;:;;:;;^::-:;; 

X^ • = .•:. •:.•: = !:'•::/:'■, 

ErwWing eon<*W>n g 

(a) <?e_, (b) gei 

Fig. 5. Enabling conditions 

Figure 6 shows trajectories of the closed-loop system using the controller 
synthesized by NDD. The bold lines are the trajectories, the central hatched 
region is an enlarged target region, and the shaded areas are the equivalence 
classes visited during the simulation. 
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Fig. 6. Trajectories of the closed-loop system 

7    Conclusion 

In this paper we developed an efficient single-pass algorithm to solve a dynamic 
programming problem on a non-deterministic graph that arises in the solution of 
a continuous optimal control problem using hybrid systems and bisimulation. We 
have seen that the single-pass nature of the solution depends on the partitioning 
method. An area for future investigation is exploring other partition methods in 
relation to the efficiency of the algorithmic solution of the dynamic programming 
problem. This would include partitions that are not bisimulations, especially 
when analytical expressions for first integrals are difficult to obtain. 

We have developed a prototype tool for the synthesis of hybrid optimal con- 
trols based on bisimulation. The algorithm has complexity 0(N log N) where N 
is the number of states of the automaton. The number of states is exponential 
in the dimension of the continuous state space. In the "vanilla" version of our 
approach, the automaton is constructed before running the Djikstra-like algo- 
rithm. To improve the speed and the memory usage of the algorithm, we plan to 
build the automaton on the fly while algorithm NDD is executing. In addition, 
we plan to apply the approach to solving a number of optimal control problems 

arising in automotive engine control. 
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Abstract. In this paper we investigate some analysis and control prob- 
lems for discrete-time hybrid systems in the piece-wise affine form. By 
using arguments from the dissipativity theory for nonlinear systems, we 
show that Hoc analysis and synthesis problems can be formulated and 
solved via Linear Matrix Inequalities by taking into account the switching 
structure of the considered system. In this paper we address the gener- 
alized problem of controlling hybrid systems whose switching structure 
does not depend only on the state but also on the control input. 

1    Introduction 

Piece-Wise Affine (PWA) systems have been receiving increasing attention 
by the control community because they provide a useful modeling framework 
for hybrid systems. In fact, discrete-time PWA systems are equivalent to 
interconnections of linear systems and finite automata [17], to complementarity 
systems [9] and also hybrid systems in the Mixed Logic Dynamical (MLD) form 
[1]. In particular, the MLD form is capable to model a large class of hybrid 
systems including linear hybrid dynamical systems, hybrid automata, some 
classes of discrete-event systems, and systems with qualitative inputs/outputs 
[1,3]. The algorithm to obtain the discrete-time PWA representation of an 
MLD system and vice-versa is reported in [3]. In order to stress the importance 
of PWA systems it is worth recalling that in [2] the explicit form of Model 
Predictive Control (MPC) for linear constrained systems was derived and, 
besides providing an algorithm for its computation, it was shown that the 
closed-loop system has a PWA structure. Also in this case the closed-loop 
system turns out to be a PWA model. 
An important feature of a PWA model is that the state-update map can be 
discontinuous along the boundary of the regions. For instance, when considering 
PWA systems stemming from hybrid systems in the MLD form, discontinuities 
can arise from the representation of logic conditions. 
The control synthesis problem for MLD systems and consequently PWA systems 
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is computationally difficult: in [1] a Mixed Integer Quadratic Programming 
(MIQP) approach is proposed in order to solve the control problem of MLD 
systems by means of MPC techniques. Needless to say, the computational 
complexity of this approach may increase exponentially with the prediction 
horizon considered. The use of Linear Matrix Inequalities (LMI) techniques, for 
which computationally advantageous and numerically reliable algorithms as well 
as toolboxes are available (see [8]) would seem to be a promising alternative. 
Concerning the stability analysis of PWA systems, the authors presented various 
algorithms with different degrees of conservativeness in [15]. Similarly to [12, 
13], where a particular class of continuous-time PWA systems was considered, 
such procedures exploit Piece-Wise Quadratic (PWQ) Lyapunov functions that 
can be computed as the solution of a set of LMIs. For the sake of completeness, 
the main stability test of [15] is reported in Section 2 in a suitable form. 
In this work, we consider both analysis and synthesis problems for the general 
class of PWA models whose switching sequence depends on both state and input 
trajectories. As pointed out in [3] the dependence of the switching sequence 
on the input can be met by translating an MLD system into a PWA form. 
Moreover, the dependence of the switching sequence on the input signal is 
common in real systems: for example, it could be caused by saturation effects 
or limitations on the control signal. 
It is worthwhile emphasizing that this type of PWA models is more general 
than that considered in [12,13] and [15]: indeed, in these works the switching 
structure depended on the state only. Furthermore, we generalize the results of 
[15] by considering analysis and synthesis problems with performance for PWA 
systems. 
We focus on the H^ norm showing that the /^-analysis and the iJoo-synthesis 
of a piecewise linear state-feedback can be addressed by resorting to LMI-based 
algorithms. The rationale of our derivation hinges on the use of passivity theory 
for nonlinear systems [14]. We point out that a significant application of the 
#oo analysis test is the possibility of checking a posteriori the performance of 
MPC for both linear and MLD systems. As mentioned before this can be done 
by exploiting the explicit PWA form of the closed-loop system. 
The results are presented in Sections 3 and 4. An illustrative example is 
provided in Section 5. 

Notation: The symbol * will be used in some matrix expressions to in- 
duce a symmetric structure. For example, if L and R are symmetric matrices, 
then 

L + M + * * 
AT        R 

Moreover, we define 

N 

IM^o.JVj^^fafca*}*- (2) 
fc=0 

L + M + MT NT 

N R (1) 
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2    Stability and State-Feedback Stabilization of PWA 
Systems 

A linear discrete-time piecewise affine system is defined by the state-space equa- 
tion 

Zfc+i = AiXk + BiUk + di, for Xk 

Uk 
e» (3) 

where xk G Hn is the state and uk G !Rm is the control input. The set X C R"+m 

of every possible vector [xj u£ ] is either HT+m or a polyhedron containing the 
origin, {Xi}f=i is a polyhedral partition 1 of X and a, G HT\ are constant vectors. 
We refer to each Xi as a ce^- Moreover, in order to simplify the exposition, we 
assume that our cells are polyhedra defined by matrices Ff, F?, f? and ft as 
follows 

Xi := {[xT uT]T such that F?x > ff and F?u >/?*}. (4) 

The results presented in this paper can be extended to systems whose cells Xi 
have a more complicate structure. 
Moreover, it is worth introducing the following notation: 

Xi := {x such that F*x > /*} 

and 

Sj := It such that 3x,u with i € Xj> [ xT uT]    &Xi\- 

(5) 

(6) 

In a nutshell, Sj is the set of all indices i such that Xi is a cell containing a 

vector [xT uT] for which the condition x G Xj is satisfied. We denote with 1 = 
{1,... , s} the set of indices of the cells Xi whereas the symbol J = {1,... ,t} 
will be used to denote the set of indices of the cells Xj- It is important to observe 
that: 

\JSi=1- (7) 
j=i 

Furthermore, if cells Xi nave tne structure pointed out in eq. (4) then the sets 
Sj are disjoint whereas if cells Xi have a more complicate structure (for instance 
when mixed state-input constraints are used to define each cell Xi) then the sets 
Sj could be overlapping. In the latter case the results we are going to present 
could become more conservative. 

When  we  focus  on  the  stability  of the  origin,   we  consider   autonomous 
1 Each set Xi is a (not necessarily closed) convex polyhedron s.t. Xif]Xj = 0, Vi 7^ j, 
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PWA systems and we assume that x = 0 is an equilibrium point. To begin with 
it is necessary to observe that an autonomous system can be obtained from 
system (3) by applying a suitable control law. In the following we consider a 
piecewise linear state feedback with the structure 

uk = KiXk, for Xk 

Uk 
&Xi- (8) 

By applying the controller (8) to the system (3) we achieve the following closed- 
loop dynamic system 

Xk+i = AiXk + a,i, for Xk 

Uk 
SXi (9) 

where A* = At + BiK{ and uk = KiXk. We note that the the evolution of 
closed-loop system (9) depends on the "hidden" variable uk since it influences 
the index i of the current cell Xi- 
As customary for constrained systems, we assume that the state trajectories 
[xju"^ ■T -%]    generated by the control law (8) satisfy [a£ ulf e X, Vk € IN. 

In [15] the stability of the origin of PWA system was characterized by 
using Piece-Wise Quadratic (PWQ) Lyapunov functions. In the following 
theorem we report the main result of [15] valid for the case a, = 0, Mi e I and 
adapted to the closed loop system (9). 

Theorem 1. Consider the system (9). If there exist matrices Pi = P[ > 0, 

Vi el such that the positive-definite function V(x, u) = xTPiX, V [ x^ u[ 1T e Xi 
satisfies V(xk+i,uk+i) -V{xk,uk) < 0, then the origin of the PWA systems (9) 
is exponentially stable and\im.k^+00 \\xk\\ = 0 for all system trajectories fulfilling 
K«[]T6X, VfceiN. D 

The Lyapunov function appearing in Theorem 1 can be computed by solving the 
LMIs 

AjPiAj-PjKO,    V(i,j)eS 

Pi = pj > o,    Vi e 1 

where 

H (i,j) -i,j el and 3k G N0,3 Xk 

uk 

Xk+l 
uk+i 

such that xk 

uk 
G Xj and xk+i 

uk+i €Xi|- 

(10) 

(11) 

(12) 

In other words, the set S contains all the ordered pairs of indices denoting the 
possible switches from cell j to cell i and it can be computed via reachability 
analysis for MLD systems [4]. Then, the inequalities (10) take into account all the 
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admissible switches between different regions and guarantee that the Lyapunov 
function is decreasing along all possible state trajectories. When there exist 
matrices Pt such that the LMIs (10) and (11) are satisfied, the PWA system 
and the corresponding controller (eq. (8)) are termed PWQ-stable and PWQ- 
stabilizing respectively. We refer the interested reader to [15] for further details. 

Remark 1.  Conservativeness. 
The conservativeness of the LMIs conditions for stability analysis can be reduced 
by exploiting the so-called S-Procedure [20] in order to avoid imposing xTPiX > 0 

for [xTwT] e Xji J ^ ' [15]- This modification was proposed in [12] for 
continuous-time PWA systems and can be easily generalized to the discrete- 
time case. We point out that similar modifications can be applied to all the 
analysis LMIs we derive in the following. 
It is important to highlight that with respect to the continuous-time case (see 
[12]) in the discrete-time case there is no need to guarantee the continuity of 
the Lyapunov function over the whole state-space. This fact can determine a 
reduced degree of conservativeness of the results that we are going to present 
with respect to those presented in [12]. 
Finally, following the lead given in [11], the authors proposed in [7] discrete-time 
performance analysis results with a notably reduced degree of conservativeness. 

D 

Remark 2. Extension of Theorem 1. 
Theorem 1 can be extended to the case a, ^ 0 as done in [12,13] by introducing 
the extended state xk = [xj. 1]T and rewriting the system (3) as follows: 

xk+1 = Atxk + BiUk for Xk 

Uk 
&Xi (13) 

where 

At o  1 Bi = (14) 

D 

When designing the controller i. e. when the controller gains Ki appearing in 
the inequalities (10) are unknown, the set of all possible switches is generally not 
known in advance, and it could be necessary to consider all the pairs of indices 
in 

Snu :=lxl 

instead of S. 

Furthermore, we note that the design of a controller of type (8) could be 
a very hard task because,  at each time instant,  the vector uk  has to be 
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calculated by means of a control gain Kj whose index i is found on the basis of 
the admissibility condition 

Uk 
G XV (15) 

This implies that in general it is not possible to calculate uk since the index 1 for 
which the condition (15) is satisfied, is difficult to know in advance. Therefore, we 
turn our problem into one of designing a controller with the following structure 

uk = KjXk,    xkGXj- (16) 

Thus we consider a different control gain not for all the cells Xi with i G I but 
for all cells Xj with j G J. Despite this restricted controller structure, in order to 
design a control law of type (16) one must exploit a different Lyapunov matrix 
Pi for each cell Xi with i G I (see the corresponding analysis result of Theorem 
1) to reduce the conservativeness. 

3    Synthesis of a Stabilizing State Feedback 

In this section we consider the problem of finding a state feedback control law 
of type (16) for the system (3). For this purpose we start from the analysis 
condition (10) rewritten for the closed-loop system: 

xk+1 = AijXk, for 
Uk 

^Xi,xkexj (17) 

where Atj = At + BiKj and uk = KjXk. More precisely, eq. (10) rewritten for 
the closed loop system (17) assumes the following form 

AjjPiAij - Pi < 0   Vj G J,Vi G Sj,Vl such that (l,i) G SaU,        (18) 

Pi = P?>0,    VZGI. (19) 

Inequalities (18)-(19) represent a closed-loop stability condition. For each cell 
Xj (with j G J) we want to calculate a state feedback control law represented 
by the gain matrix Kj. The control gain Kj is used when [xj uj] belongs 
to any cell Xi such that i G Sj or, equivalently, if xk G Xj- Furthermore, this 

controller is applied independently of the subcell xi in which [x%+1 «j[+1]
T 

is contained (obviously, the pair (I, i) has to belong to the set of all possible 
switches i.e. Sau). Clearly, in view of eq. (7) these inequalities are exhaustive 
stability conditions since they cover all possible transitions of the set Sau. 

Because each matrix Pi is positive definite we can rewrite (18) by resort- 
ing to the Schur lemma as follows: 

-Qi QiAl 
< 0,    Vj ej,\/ie Sj, VZ such that (I, i) G SaU (20) 
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where Qi := P^1. We will show that (20) is guaranteed if there exist matrices Gj 
with j G J of suitable dimensions such that the following alternative inequalities 

are satisfied 

Qi — Gj — GJ GJ^i3 
-Qi 

<0,    Vj ej,\/i£ Sj,\/l such that (l,i)€ Saii   (21) 

where Gj, j G J are matrices of suitable dimensions. In order to demonstrate 
that (21) implies inequalities (20) we first observe that matrices Gj are nonsin- 
gular since we have assumed Qt > 0 Vi G 1 whereas the element {1,1} of (21) 
implies that Gj+Gj > Qt. Secondly, if Qi > 0 the matrix (Gj-Q^Qr^Gj-Qi) 

is nonnegative definite and consequently: 

(XGj + Gj-Qt^GjQ^Gj. (22) 

Moreover, because of (22) inequalities (21) imply 

<0,    \/j eJ,Vi£Sjyi such that (I, i)£SaU.    (23) -GjQT'Gj GjÄfj 
-Qi 

Finally, recalling that the matrices Gj are nonsingular we can obtain (20) from 
(23) by multiplying (23) from the right by diag {QiGjT', 1} and from the left 

by diag{Gj1Qi,l}. 
These considerations lead to the following algorithm to calculate a stabilizing 
state-feedback control law. Indeed, in the following theorem we propose calculat- 
ing a state-feedback controller of type (16) by exploiting a Piece-Wise Quadratic 
(PWQ) Lyapunov function defined by s matrices Pi with i € 1: 

Theorem 2. Consider the PWA system (3). There exists a state feedback con- 
trol law of type (16) guaranteeing PWQ stability if there exist matrices Qi = 
Qj > 0 with i G 1 and matrices Gj,Yj with j € J, such that Vj € J\Vi G Sj 

andMl with (l,i) G Saii 

Q 
AiGj + BiYj 

The feedback gains Kj are given by: 

Gj-GjGjAj + YfBT 
-Qi 

<o. 

Kj:=YjGj\jeJ. 

(24) 

(25) 

□ 

4    Hoc Performance of Piecewise Affine Systems 

Consider the PWA system 

xk+i = AiXk + BiUk + Bfwk + ai 
zk = CiXk + Dtuk + D™wk, 

xk 

uk 
G Xi,xk G Xj (26) 
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where wk e IRr is a disturbance signal and zk e Is is a performance output 
that can model, for instance, tracking errors or the cost of the input. First, to 
simplify the exposition we consider the case a* = 0,Vi e I (Subsection 4.1). 
Then, we extend our results to the case m ^ 0 (Subsection 4.2). In any case, we 
assume that the system (26) admits x = 0 as an equilibrium point. 
As customary in control of nonlinear systems [14] we consider performance in- 
dices defined over a finite time horizon. In this section we focus on the distur- 
bance attenuation problem in an Hoo framework: given a real number 7 > 0, 
the exogenous signal w is attenuated by 7 if, assuming x0 = 0, for each integer 
N > 0 and for every w e l2 ([0, N], W) 

ElWI2<72f>*||2. (27) 
k=0 k=0 

The control problem of discrete-time nonlinear systems can be very difficult due 
to the lack of geometric properties [14]. We will show that for PWA systems 
this task turns out to be less impervious provided the use of some fundamental 
LMI techniques [16,6]. 

To begin with, we present some analysis results for the following closed- 
loop system obtained by applying a feedback control law of type (16) to system 

xk+1 = AijXk + Bfwk 

zk = Cijxk + D™wk, 
xk 

uk 
&Xi,xkGXj (28) 

where Aij = Ai + BiKj, Ctj = Ci + DiKj and uk = KjXk. We observe again that 
the evolution of the closed-loop system (28) depends on the "hidden" variable 
uk since it influences the index i of the cell \i- 
A discrete-time nonlinear system (as the PWA system (28)) is strictly dissipative 
with supply rate W : Rs x W -> JR. if there exists a non-negative function 
V : Rn x IRm -» IR termed storage function such that 

VweIRr,Vfc>0,    V(xk+1,uk+1)-V(xk,uk)<W(zk,wk) (29) 

and V(0,u) = 0, Vu [5]. Condition (29), is the so-called dissipation inequality 
that can be equivalently represented through the condition [14,19] 

N 

Vwk,VN>0,Vxo,    V(xN+1,uN+1)-V(x0,u0)<J2W(zk,wk).        (30) 
k=0 

Hereafter we concentrate on finite gain dissipative PWA systems with the fol- 
lowing supply rate 

Woo(*,«>) = (72|M|2 - ||z||2), 7 > 0. (31) 

As will be shown, the supply rate W^z,™) is related to the H^ performance 
of the PWA system. 
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4.1    Hoo Analysis and Synthesis for PWA Systems without 
Displacement Terms 

The rationale presented in this section hinges on the assumption that the pair 
(Ai, Bi), i G I is PWQ stabilizable: that is, we assume that there exists Kj,j G J 
and Pi = P? > 0 with i G I such that Vj G J,Vi G Sj,Vl with (/, i) G SaU 

AlPAj-PiKO (32) 

where Atj =At + BiKj if i G 5,- and <Sa« is the set of all possible switches. 
The next Lemma, which is a generalization of the classical Bounded Real Lemma 
[18,14] to PWA systems, allows to analyze the H^ performance. 

Lemma 1. Consider the system (28) with zero initial condition x0 = 0. If there 

exists a function V(x, u) = xTPiX for [xTuT] G Xi with Pi = Pj > 0 satisfy- 
ing the dissipativity inequality (29) with supply rate (31), i.e. 

Vfc, V(xk+1, ufe+i) - V(xk, uk) < (7
2|Kf - IMI2)> (33) 

then, the H^ performance condition (21) is satisfied. 
Furthermore, condition (33) is fulfilled if the following matrix inequalities are 
satisfied 

Vj G J, Vt G Sj,Vl with (I,i) G S, Mj,y < 0. (34) 

where 

Mitij := 
AfjPAii-Pi+Cffij 

DfCij + BjPtAij     BfpBi + DfDi - 7
2/ 

(35) 

In this last case the system (28) is PWQ stable. 

Proof. By recalling that x0 = 0, from (33) it follows that, ViV > 0 

JV 

V(xN+1,uN+1) < J2 (72|KU2 - INI2) ■ (36) 
k=0 

Since V(xN+1,uN+i) is well defined and positive it follows that condition (27) 
is met. 
Moreover, if we as: 
inequality (33) as: 

is met. T T 

Moreover, if we assume [x£ u[]    G x% and [xj+1 uj+1]    G xi we can write 

yWk,[xlWl]MlAj[xlwl]T<Q. (37) 

Obviously, inequality (37) is satisfied if condition (34) is met. On the other hand, 
it holds that Cjf^ > 0. Consequently by considering the element (1,1) of (34) 
we can state that 

Vj eJ,Vi£ Sj, VZ with (I, i) G S, AjjPiAij -Pt<0. (38) 



198 F.A. Cuzzola and M. Morari 

This implies that the system (28) is PWQ stable. □ 
Next we focus on finding a state-feedback control law of the type (16) for the 

system (26) satisfying a suitable H^ requirement. The main result is summarized 
in the following theorem. 

Theorem 3. Consider the PWA system (26). There exists a state feedback 
control law of type (16) guaranteeing PWQ Lyapunov stability and fulfilling 
the dissipativity constraint (29) with supply rate (31) if there exist matrices 
Qi = Qf > 0 with i e 1 and matrices GhYj with j e J, such that 
Vj G J,Vi G Sj,Vl with (l,i)G Sall 

Qi - Gj -Gj    *      * 
AiGj + BiYj   -Qi    * 
CiGj + DiYj     0 

0 BfT DfT -72/ 

<0. (39) 

The feedback gains Kj with j £ J are given by: 

K, YJGJ
1
. (40) 

□ 
The proof of this theorem can be achieved form the results reported in Lemma 
1 by applying the same line of reasoning used to demonstrate Theorem 2. 

4.2    Extension to PWA Systems with Displacement Terms 

Some analysis results have been extended to the case a, ^ 0 by considering 
an extended state space (see eq. (13)) [12,13]. Unfortunately, this approach is 
very restrictive for synthesis problems because the extended dynamic matrix 
Ai is never a stability matrix (At contains an unreachable eigenvalue at 1) and 
consequently it is never possible to find P = PT > 0 satisfying the Lyapunov 
stability condition 

AfPAi - P < 0. (41) 

On the other hand, the set Salt of all possible transitions contains also the 
transitions of type (i,i) i.e. from region i to the same region. This implies that 
the synthesis approach proposed in the previous part of this section can never 
be applied to a system obtained by extending the state vector as proposed in 
[12,13]. 
Therefore we consider a different approach based on the extension of the input 
signal Wk as follows: 

Wk ■ = 
wk 

a*. (42) 
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Thus, the system (26) can be rewritten as: 

xk+i = AiXk + BiUk + Bfwk 

zk = CiXk + DiUk + Dfwk, 
xk 

&Xi,xk &Xj 

where 

Bf = [B? I] t)X = [Df 0] 

199 

(43) 

(44) 

The Hoo framework considered here, is based on a finite horizon definition of 
the h gain and, consequently, the proposed extension of the disturbance input 
is sensible. 
Clearly, it is possible to apply the control approach proposed in Theorem 3 di- 
rectly to the extended system (43). This can be conservative because a* is not an 
unknown disturbance but a known term. Unfortunately, in general, a* is known 
only when the control signal uk has already been calculated. Notwithstanding 
this, under the standard assumption 

a» = a,j, Vi € Sj, Vj € J, (45) 

an alternative control strategy can be proposed. More precisely, the control is 
assumed to have the following structure: 

*k = [K}Kj] xk xk exj- (46) 

In this way the controller can take into account also the displacement term 
a,i = Dwk where 

D:=[0 I]. 

By applying the control law (46) to the PWA system (43) we obtain the closed- 
loop PWA system: 

xk+i = AijXk +_BfjWk 

zk =CijXk +T>%Wk, 

Xk 

Uk 
G Xi,Xk e Xi 

where 

Aij =Ai + BiKj Bl = B? + BiKP 
Ci5 = Ci + DiKj PJ5 = Df + DiKjD. 

(47) 

(48) 

Now, we can apply the HOQ result of Lemma 1 to the closed-loop PWA system 
(47) to arrive at the synthesis procedure summarized in the subsequent theorem. 
In this case, the controller gain is composed of two different parts, Kj and Kj, 
that constitute two unknowns of a suitable LMI problem: 
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Theorem 4. Consider the PWA system (26). There exists a state feedback con- 
trol law of type (46) guaranteeing PWQ Lyapunov stability and fulfilling the 
dissipativity constraint (29) with supply rate 

Woo^fc.Wfc) = (72 w T „T «f]J I2       IU   l|2\ - \\zk\\   ) 

= (72(IKII2 + IK||2)-|kfc||
2),7>o, 

Uk 
exi 

(49) 

(50) 

if there exist matrices Qt = Qj > 0 with i £ 1 and matrices Gj,Yj,K? with 
j e J, such that Vj G J,\/i £ Sj,Vl with (l,i) £ Sau 

Qi - Gj - Gj * * * 
AiGj + BiYj -Qi * * 
GjGj + DiYj 0 -I * 

0 (ö? + BiK]D)    (pr + DiK^D)    -7
2/ 

The feedback gain matrices Kj with j £ J are given by: 

Kj-^YjGj1. 

<0. (51) 

(52) 

□ 

5    Numerical Example: The Tank Case 

The example we consider here is inspired by the three-tank benchmark described 
in [10] that will be the subject of future investigation. It consists of a single tank 
with cross section section A. It is filled by means of a pump whose mass flow 

Pump 

\T-&             1 

■I 
Tank 

K.r 

K,i 

T 
t -+* 

m 

Fig. 1. Tank configuration 

rate is given by the control variable u (see Figure 1). Obviously, we suppose that 
0 < u < umax. The tank level is denoted by x. At the heights xi and x2 we 
assume there are two pipes through which we have the output mass flow rates 
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K\x and K2x respectively. Finally, at the bottom we have a constant output 
mass flow rate /. In our case we have chosen the following numerical values with 
suitable dimensions: 

A = \,   ^=0.2,^2 = 0.1, 
xx = 0.3, x2 = 0.6, / = 0.01, umax = 0.019. 

(53) 

In order to introduce the tank model we adopt the following notation. Let b be 
a boolean expression, then we denote with | • | the function 

\b\ = 
1   iib = TRUE 
0 if 6 = FALSE 

(54) 

Then, a possible continuous-time model for the tank of Figure 1 is given as 
follows: 

Ax =u\{u > 0) A (u < umax)\ + umax\u > umax\ + 

— f - Kix\x > xi\ - K2x\x > x2\. 
(55) 

In this model we have neglected the obvious physical condition x > 0. Moreover, 
it is very simple to obtain from (55) the following PWA continuous-time model: 

Ax = < 

-/ 
u-f 

-i -Kxx 
u — / — K\x 

Umax  — f — K\X 
-f-(K1 + K2)x 

u-f-(K1+ K2)x 
max ~ f ~ (Kl + Kl)x 

f u < 0, 
f 0 < u < «„ 
f U > Uma 

f u < 0, 
f 0 < u < «„ 

f u < 0, 
I 0 < u < umaJS 
f u > umax, 

X < Xl 
, X < S-i 

X < Xl 
Xl   < X < X2 

,  äi   < X < X2 
Xl   < X < X2 

X > x2 

X > X2 
X > X2. 

(56) 

This model can be reduced to a discrete-time PWA system of type (26) by 
discretization (employing the implicit Euler's rule with a discretization time 
equal to 0.5 sec). Finally, the PWA discrete-time model has 9 cells Xi and 3 
cells Xj. Furthermore, we do not consider any disturbance inputs of type w and 
we consider the problem of regulating the level z := x around 0.1. For this 

7 ■• .... ■ ■     

p- ■ ' : ' ■  j" 
|s  
i* ■ ■    ■   

2.;       .#.;.■;      ■ •   ■    >    - -•     .#....» 

, ■; i I * ; ; 1 ■ '•- 

Fig. 2. Closed Loop simulation - (a) State, (b) Control Input, (c) Switching history 
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purpose we have applied to the discretized model an Hoo regulator obtained by 
means of the synthesis procedure of Theorems 3 and 4. In Figures 2.(a)-2.(b) we 
report the time-histories of the state variable and of the control input (the initial 
state considered is x0 = 0.7). Finally, in Figure 2.(c) we show the corresponding 
switching history (we recall that we have 9 cells of type Xi and in this picture 

we report the index of the cell x% m which the vector [x[ u[ ]    is contained). 

6    Conclusions 

In this paper we derived LMIs-based procedures to solve H^ analysis and syn- 
thesis problems for PWA systems whose switching sequence depends on the state 
and on the control input. These PWA systems can be found by translating an 
MLD system into PWA form. The analysis tests can be applied to assess the 
performance of MPC control schemes applied both to linear and hybrid systems. 
Moreover, the state-feedback design methodologies provide an alternative way 
to synthesize controllers with a prescribed degree of performance. All the pro- 
posed synthesis procedures are clearly only sufficient i.e. nothing can be said 
if the LMIs are infeasible. A thorough analysis of their conservativeness will be 
subject of further investigations. 
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Abstract. It has been observed that there are a variety of situations 
in which the most popular hybrid simulation methods can fail to prop- 
erly detect the occurrence of discrete events. In this paper, we present 
a method for detecting discrete which, using techniques borrowed from 
control theory, selects integration step sizes in such a way that the sim- 
ulation slows down as the state approaches a set which triggers an event 
(a guard set). Our method guarantees that the state will approach the 
boundary of this set exponentially; and in the case of linear or polyno- 
mial guard descriptions, terminating on it, without entering it. Given 
that any system with a nonlinear guard description can be transformed 
to an equivalent system with a linear guard description, this technique is 
applicable to a broad class of systems. Even in situations where nonlinear 
guards have not been transformed to the canonical form, the method is 
still increases the chances of detecting and event in practice. We show 
how to extend the method to guard sets which are constructed from many 
simple sets using boolean operators {e.g. polyhedral or semi-algebraic 
sets) . The technique is easily used in combination with existing numer- 
ical integration methods and does not adversely affect the underlying 
accuracy or stability of the algorithms. 

1    Motivation and Previous Work 

Numerical simulation is an important tool for designing and analyzing hybrid 
systems. In addition to simulation, numerical approximation techniques are in- 
creasingly being used in approximate reachability computations, verification and 
other forms of automated analysis [5], [6], [13]. It is well known that when sim- 
ulating hybrid systems failure to detect an event can have disastrous results on 
the global solution due to the discontinuous nature of the problem. Several docu- 
ments detailing requirements for hybrid simulators list accurate event detection 
as one primary concern [14], [11]. 

Figure la illustrates graphically the behavior of a generic hybrid system 
model. At the initial time t0, the mode qx is active and the continuous system 
flows according to the differential equation x = fx(x) with initial condition 
x0 — a;(t0). Once the condition Guard is true the transition from q1 to q2 is 
enabled; the state may be reset instantaneously and the system enters mode q2 

where it then flows according to x = f2(x). The problem we are concerned with 

M.D. Di Benedetto, A. Sangiovanni-Vincentelli (Eds.): HSCC 2001, LNCS 2034, pp. 204-217  2001 
© Springer-Verlag Berlin Heidelberg 2001 ' 
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r 
Fig. 1. (a) Conceptual model of a generic Hybrid System, (b) three situations for which 
popular simulators fail to properly detect or localize events. 

is correctly detecting the discrete transitions. More formally: problem Given 
/ : Rn -> Rn, x0 = x(t0) G Rn and g : Rn -> R such that g(x0) < 0, simulate 
x = f(x), for the time interval [t0,t*\ where t* must be computed as the first 
time instant such that g(x(t)) > 0. problem We assume the guard set has a 
non-empty interior and is described as Guard = {x : g(x) > 0} where g(x) is 
a continuously differentiable. See [12] for an interesting discussion of the unique 
difficulties associated with solving such problems. It is well known that systems 
of differential equations with nonlinear guards can be transformed to a equivalent 
systems with linear guards by appending a new state variable z = g(x) then the 
new system is 

x 

g(x) > 0 

f(x) & x = /(*), i = || ■ f(x) 

z>0. (1) 

Most hybrid system simulators( [1], [9], [18]) divide the task into an event 
detection phase followed by an event localization phase. They proceed with the 
detection phase by checking if g(x(t0)) > 0. If the condition is false, numerically 
integrate the differential equation through one time step, to t\ — t0 + h and 
check if g(x(ti)) > 0. This procedure is repeated until a step is taken for which 
g(x(tk)) > 0 is true, at which point an event is assumed to have occured in the 
interval (tfc_l5 tfc]. Note that the step size h is selected without considering the 
guard dynamics. Some tools then activate a localization phase to determine the 
time of occurrence more precisely, but some simply assume the event occured at 
tk- The localization phase is typically a variant on the bisection or bracketing 
algorithms found in the classical numerical analysis literature. Once the event is 
localized the integration is stopped, and the transitions occur. 

Although this basic technique, first introduced in [4], seems to work well for 
many problems there are several situations in which it is prone to failure. The 
situations, discussed below, are illustrated in Figure lb. The first case is when 
the trajectory is sufficiently oscullatory that the guard has an even number of 
roots in the interval t* G (tfc,tfc+i]. A similar situation occurs when the guard 
set is "thin" or has sharp corners. These two cases are essentially equivalent. 
Both are situations in which many of the most common detection methods can 
fail. As second class of problems for which the standard technique fails, consider 
the case when the right hand side of the differential equation is ill-defined for 
some x such that g(x) > 0. Perhaps the nature of the system is such that model 
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is only valid in certain regions of the state space. Since the right hand side of 
the ODE cannot be evaluated at the new point, bisection methods cannot be 
used to locate the root more precisely. In this situation, almost all common event 
localization methods fail. 

Cellier [4] was the first to note that state events warrant special treatment 
and advocated the discontinuity locking approach still used today. Gear [8] 
demonstrated the inefficiencies that can result if special techniques are not used. 
Carver [3] was the first person to notice that the rate of change of the event 
function along the flow field (i.e. the Lie derivative) was a critical quantity in 
event detection. The idea of differentiating the guard and appending it as an ex- 
tra state variable to be integrated was introduced there as well. In each of these 
cases events were detected by simply looking for sign changes in the guard after 
integrating through one step. As a result they fail to detect an event when there 
are multiple transitions in a single step. Building on this work, Shampine and his 
colleagues [12] exploit the fact that interpolation polynomials can be generated 
for the guard dynamics and are able to correctly identify event occurrences using 
Strum sequences when the guards are of polynomial expressions but do not use 
this information to select step sizes. Several similar algorithms for event detec- 
tion in differential algebraic equations were evaluated in [15]. These techniques 
are able to detect multiple transition however they tend to be expensive. Most 
recently, Park and Barton [17] combine some of these ideas and uses methods 
from interval arithmetic to create efficient tests to determine intervals where it 
is possible an event had occured. This event detection method seems to be the 
most reliable technique in the literature, it is streamlined and well suited to stiff 
problems. However since all of the techniques use the discontinuity locking ap- 
proach, none of these provides a methodology to select step sizes to ensure that 
the state never crosses the event surface; thus all fail to localize and event which 
occurs in the neighborhood of a model singularity. 

The idea in this paper is to develop an event detection technique that is 
not vulnerable to these pitfalls. Using an analogy to control theory we treat 
the simulated system as a control system, the integration step size as an input, 
and the guard as the output. The problem is the to select a "feedback law" (a 
rule for selecting step sizes) such that as the simulation proceeds the system 
approaches the event surface (g(x) = 0) asymptotically, without overshoot ( 
g(x) < 0 always). Since the state approaches the guard asymptotically there 
is a better chance events are detected and since there is no overshoot there is 
no risk of crossing a model singularity. In Section 2 we review Linear Multistep 
numerical integration techniques and introduce the control theoretic concept of 
input/output linearization which our algorithm is inspired by; in Section 3 we 
develop in detail the ideas used in the method, culminating in a conceptual 
algorithm; in Section 4 we successfully solve two example problems which can 
be problematic for other methods and discuss some of the limitations of the 
proposed algorithm; finally in Section 5 we summarize our results and comment 
on future directions. 
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2    Key Concepts 

In this section we review numerical integration of ordinary differential equations 
using Linear Multistep Methods, our prefered integration method. We also in- 
troduce the key idea behind our algorithm which draws on the control theoretic 
concept of input-output linearization. 

2.1 Review: Numerical Integration with Linear Multistep Methods 

Given the system x = f(x,t) and x(0) = x0, it is customary to denote the 
approximate solution at the discrete time tk as xk = x(tk), and then the value 
of the time derivative may be written as fk = f(xk). It is also convention to 
define the time step as hk = tk - tk-i- The most general form of a m-step linear 
multistep method (LMSM) is T,T=oaiXk-i+1 = ^X^loß/k-J+i. where ai 
and ßj are the coefficients of the method. Particular LMSM's differ in how a 
and ß are selected. LMSM's can be broadly divided into two categories: if ß0 = 0 
the method is called explicit, otherwise if ß0 ^ 0 the method is called implicit. 
Although the techniques presented here can be applied to the entire class of 
explicit LMSM's, the explicit Adams family is by far the most popular and will 
be used for the purposes of illustration. In such a method, a0 = l,ai = —1, and 
CYJ = 0 for j > 1. The ßj's are then selected such that the difference equation 

m 

xk+i = xk + /ifc+i 22ßjfk-j+i, (2) 

would exactly reproduce the analytical solution x(t) if it were a polynomial of 
order m or lower. In general the accuracy of the method is proportional to 
(hk)m. The Adams family of methods is very popular due to their large region 
of stability and efficiency. See any numerical analysis text for further details [10]. 
Often in text books, values of ß will be supplied as constants; however this is 
only the case when the step size is constant. In general, ß is a rational polynomial 
function of the previous m step sizes, ßj{hk,..., hk^m). Multistep methods, as 
opposed to Runge-Kutta methods, are a natural choice for simulating hybrid 
systems because the polynomial expressions for ßj can be used as interpolants 
to approximate the solution at off-mesh points. 

2.2 Feedback Linearization Analogy in Continuous Time 

One feature of explicit LMSM's, not present in some other methods, is the fact 
that xk+i is defined by a difference equation which is affine in the step size 
hk. This property allows one to draw comparison with nonlinear control systems 
which often are affine in the input. Following this analogy the difference equation 
of the numerical method would be the system dynamics, the step size is viewed 
as the input and the guard function is considered to be the output equation. 

For the purposes of illustrating our method, let us imagine for a moment 
that, instead of belonging to the set of positive integers, we let the step number, 
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k, take on a continuum of values, k G [0, oo). Further suppose that tk is then a 
continuous function of the real variable k, denoted by t(k). Naturally it follows 
that we would then write x(t(k)), and g(x(t(k))). Analogous to the discrete case 
we then find that the "step size", which is our input variable, can be viewed as 
h(ty = %:■ The dynamics of the event function (our output function) are then 

dg      ( da dx\ dt 
-  ' * (3) 

dk      \dx dt ) dk' 

since by definition ^f = f(x) this can be rewritten as, 

% = (Lf9)h(k). (4) 

Note that the Lie derivative, Lfg = ff • /, has a geometric interpretation here 
as the time derivative of g(x) along trajectories of the ODE. 

We would like to select h(k) in such a way as to ensure that g(x) ->• 0 as 
k -» oo. This may be accomplished by a technique from nonlinear control theory 
called feedback linearization (see for example [2]). Assuming the Lie derivative 
is non-zero, selecting 

and substituting into eq.(4) results in 

dg 
dk = -19 (6) 

where 7 is some positive constant to be selected by the user. The solution to the 
ODE is then g{k) = g(0) exp_7fc; which implies g(k) -» 0 exponentially, as k ->• 
00. Thus, by judicious selection of the input, one may cancel the nonlinearities 
and stabilize the guard dynamics. In terms of simulation, by selecting the step 
size appropriately using eq.(5) we are able to re-parameterize time in order to 
make the guard (as a function of the step number) behave as a linear differential 
equation which has a stable equilibrium point on the surface g{x) = 0. 

3    Simulation Algorithm 

In this section we describe the ideas used in our simulation algorithm: methods 
for computing step sizes depending on the form of the guards (Sect. 3.1- 3.3), 
computation of candidate step sizes (Sect. 3.4), dealing with boolean combina- 
tions of guards (Sect. 3.5), merging the candidate step size for event detection 
with the ideal step sizes computed for integration accuracy and other implemen- 
tation details (Sect. 3.6 and 3.7). Finally, in Section 3.8 these ideas are presented 
as a concrete algorithm. 
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While Sect. 2.2 contains a useful way of thinking of such systems, the simu- 
lated system evolves in discrete time. For a linear multistep method the dynamics 
are 

m 

x{tk + hk+i) = xk+i = xk + /ifc+il^J/Jj/fc-j+i} (7) 

which implies the guard dynamics are 

m 

g(x(tk + hk+i)) =gk+i = g{xk + hk+i{^2ßjfk-j+i})- (8) 
3 = 1 

Selecting hk+\ to produce the desired behavior is somewhat more difficult in 
discrete time. 

3.1 Symbolic Inverse 

In theory, provided the guard is an invertible function (with respect to time 
along a given integral curve), we can select 

, -Sfc + g-^TgQcfc)) ccn 
"fc+i = j  (yJ 

Iß 

where the vector fß = Y^=ißjfk-j+u yielding the difference equation gk+i = 
jgk, which has the solution gk = go"fk and converges exponentially to g = 0 
provided 0 < 7 < 1. This naturally assumes one can compute the symbolic 
inverse of the guard, g~1(hk+i), which is an unrealistic assumption in practice. 

3.2 Exact Linearization 

While it is unlikely that one would have a symbolic expression for the inverse of 
g(x(t)), exact linearization is possible for all guards with Taylor series expansions 
of finite length (i.e polynomial or linear guards). We illustrate this idea with 
linear guards, since they can be used to model a wide class of systems either 
through approximation or by transforming nonlinear guards to linear ones using 
eq.(l). If our event function is of the form g{x) = a • x + b, where a € Rn and 
b £ R are constant eq.(4) becomes 

9k+i(hk+i) = gk + hk+ig-fß (10) 

which is essentially a Taylor series expansion in hk+i about xk. Since gf ^3 is 
simply the Lie derivative Lrgg, select 

hk+i = —f -• (11) 

Polynomial guards can be handled in a similar manner, by calculating and in- 
verting their Taylor series expansions in hk+\. 
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3.3 Approximate Linearization 

If nonlinear guards with a Taylor series expansion of infinite length are not 
transformed to linear guards, an approximate linearization technique can be 
used. Approximations using a Taylor series expansion gives 

9k+i(hk+i) = g(xk) + Lfßghk+i + -L2
fßgh2

k+1 + ... (12) 

It is possible to compute the inverse of g as a function of h for the Taylor series 
expansion using a result due to Grobner often referred to as the Lie series 

B'» = E ^w-fdh}Phlu=x*' h=° •[(7 ~1)9k]?-       <13) 
p—0 dx    J 

While the result is defined as an infinite series, a finite number of terms can 
be used to compute an approximate linearization. One sided convergence is no 
longer guaranteed since uncanceled terms act as forcing functions, but by se- 
lecting a small value of 7 the state still approaches the event surface slowly, 
increasing the likelihood that the event will be detected. This method seems to 
work well in practice since h is typically small implying that the higher order 
terms are usually correspondingly small 

3.4 Computation of Step Sizes 

As mentioned earlier, the ß's for the Adams Method are only constant in the 
special case of constant step size. Since we are proposing to adjust the step 
size dynamically, the ß's in the above discussion are not constant, but rather 
are rational polynomial functions of hk+i- Computing the correct step size with 
eq.(ll), for example, then entails finding the roots of a polynomial in hk+i. For 
example in the case of two step Adams method ßx = (2hk)/hk+i and ß2 = 
1 - {2hk)/hk+\. Substituting the expressions for ß into eq.(ll) and rearranging 
gives 

z = Roots[ah2
k+1 + bhk+1 + c] (14) 

where a = 1/2 ■ hk[dg/dx ■ (fk + fk_x)}, b = dg/dx ■ fk and c = -(7 - l)g{xk). 
Eq.(14) must be solved for hk+i at every time step. Similar polynomials can be 
constructed using eq.(9) or eq.(13). Various algorithms for computing the roots 
of polynomials exist, most involve constructing the companion matrix and com- 
puting its eigenvalues. In general the polynomial equation determining hk+i will 
have m roots (for an m-step multistep method), however only positive real roots 
should be considered as candidates for event times, since negative roots corre- 
spond to past events, while complex roots are physically meaningless. Assume the 
positive real roots have been ordered from smallest to largest {n, r2,..., rp} C z, 
then in the simplest case of a single guard, rx corresponds to the first event 
and hence is the proper choice for hk+1. If there are no positive real roots set 
hk+l = 00. 
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3.5 Boolean Combinations of Guards 

In many realistic system models, complex guards may be composed of several 
algebraic inequalities joined or modified by boolean operators (e.g. polyhedrals 
or semi-algebraic sets). If the guard is (ga(x) > 0) \J(gb(x) > 0), the situation 
is accommodated by computing r" and r\, the smallest positive real roots for 
eq.(14) using ga(x) and gb(x), and selecting hk+1 - min[rf,r\]. 

In the case of (ga(x) > 0) f\(gb(x) > 0), we compute at time tk the sets of 
positive ordered real roots {rf, r£,...,} and {r\,r\,...,} using eq.(14). Then 

1. if ga(xk) < 0 but gb(xk) > 0; and if r? < r\, let hk+1 = r?. 
2. if gb(xk) < 0 but ga(xk) > 0; and if r\ < r?, let hk+1 = r\. 
3. if both ga(x) < 0 and gb(x) < 0; and if either r$<r\< r% or r\<r\< r\; 

let hk+i = r\ or rg respectively. 

Guards prefaced with a -> operator can be converted to the standard form by 
changing their sign, that is by using —g(x) > 0 rather than g(x) > 0. 

3.6 Final Selection 

In practice, event considerations are not the only criteria which determine the 
appropriate step size to be used in simulation. Often the simulation will specify 
some minimum step size, /im;n , below which roundoff errors affect the stability 
of the computation. In addition, most modern numerical integrators estimate 
an ideal step size based on truncation error considerations, herr. The resulting 
step size selected by our algorithm based on event detection, hk+\, can be easily 
incorporated into existing integration algorithms by selecting the actual step size 
as 

h = max[/imin, mm(hk+i, herr)}. (15) 

In this way the original accuracy and stability properties of the integration al- 
gorithm are preserved. 

3.7 Termination Criteria 

In cases where the guards have a Taylor series expansion of finite length, 7 = 0 
will yield exact and rapid convergence to the event surface; therefore the algo- 
rithm should be terminated when g(xk+i) = 0 If the guards are more general 
nonlinear functions , exact convergence is not guaranteed. In such situations, 
conservatively selecting 0 < 7 < 1 will cause the simulator to take successively 
smaller steps toward the surface. However, selecting 7 too large results in slow 
convergence rate and a very small 7 can risk overshooting the guard, in practice 
we have found 0.05 < 7 < 0.5 to be a good selection. Slowing down the sim- 
ulation in this manner has the effect of dramatically increasing the chances an 
event will be properly detected and may event be useful when exact lineariza- 
tion is possible. Since steps are taken in such a way that the value of the guard 
approaches zero asymptotically, it may take an infinite number of steps to reach 
zero exactly. Therefore the user must set a small threshold e > 0 such that the 
procedure is terminated when g(x) > —e. Alternatively one could choose to stop 
the procedure once the computed time step is smaller than hmin. 



212        J.M. Esposito, V. Kumar, and G.J. Pappas 

3.8    Algorithm 

All of these ideas are assembled into an algorithm and implemented in Matlab. 
Given by the user upon initialization: 

- A set of atomic propositions of the form ga(x) < 0, gb(x) < 0, gc(x) < 0, 
... joined or modified using the operators V, A> and ~>- 

- the gain, 0 < 7 < 1; and termination tolerance e > 0. 

Preprocessing 

1. convert any guards of the form ~^g(x) < 0 to -g(x) < 0. 
2. if desired, convert any nonlinear guards to linear guards, using the transfor- 

mation described in eq.(l), by appending an extra state variable. 

Repeat until termination 
Get from the integration algorithm at each iteration: 

- m previous derivatives used in the multistep integration method, fk,fk-i, 
• • •   > Jk—m 

- ideal step size for controlling the truncation errov,herr and minimum allow- 
able step size, hmin 

Main Algorithm 

1. for each atomic proposition ga, gb, ..., g\ ... compute a candidate step size 
using the appropriate method: 
a) symbolic inverse o{g%(x))~l given by user- 

Roots [hfß(h) +xk- (5
i)-1(79i(^))] = z< 

b) g%{x) is linear or has been converted to linear form and Lj g ^ 0 - 

Roots [hLj^g* - (7 - l)0*(xfc)] = z* 

c) g'(x) is a polynomial of order N- 

N 

Roots [J2Ll(h)g'--(1-l)g\xk)]=Z
i 

P=I 

d) nonlinear gl(x) - compute roots, zi, using Lie series (eq. 13). 
2. for each set of roots from the previous step za, zb, etc. discard any negative 

or complex roots. If there are no positive real roots for a given zl set /i* = 00; 
otherwise sort the positive real roots in ascending order r' = {ri,r2,... }. 

3. Using ra,rb,..., recursively compute a composite step size,r* for each 
boolean conjunction using the rules in section 3.5. 

4. combine this result with the step size computed in the integration algorithm 
using h = max[/imin, min(r*, herr)\ 

5. integrate through one step of size h. If g(xk+1) > -e terminate; else, repeat 
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Fig. 2. Two examples: (1) an autonomous robot navigating a corridor; (2) a planar 
two link manipulator with workspace limitations. 
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4    Examples and Discussion 

In this section we illustrate the effectiveness of our algorithm using the two 
examples shown in Figure 2. The first, controlling a car-like robot, represents 
a situation in which other event detection methods fail, because the guard set 
possesses "sharp" corners. The second, a planar manipulator with workspace 
limitations, illustrates a situation in which many event localization methods fail 
due to a model singularity. We also discuss some shortcomings of the proposed 
algorithm. 

Example 1. Consider the nonholonomic cart trying to navigate an indoor envi- 
ronment as shown in Figure 2. The kinematic equations are 

(16) 

where the inputs U\ and U2 are the forward velocity and turning rate. The details 
of the robot control problem and the history of u\ and «2 are omitted here, but 
it is assumed to be provided by a controller. The goal here is to verify the efficacy 
of the controller and in particular, to verify that the robot does not collide with 
the obstacles. For the sake of simplicity, we ignore the physical size of the robot 
and simply think of it as a point. Thus the guard(s) for the simulation are given 
by the equations of the walls 

{{y - 0.5 > 0) \J{x - 3.5 > 0)) \/((-y - 0.4 > 0) /\(2.8 -x> 0)).        (17) 

Figure 3a displays a situation for which the standard algorithm fails. Inte- 
gration points are computed which happen to land just outside the guard region. 
Thus the simulator detects no collision when in fact the robot has collided with 
the walls, near the corner (x = 2.8, y = —0.4). Figure 3b illustrates the method 
presented in this paper. Observe how the integrator slows down as it approaches 
the event surface. Note that in this example the gain was selected in such a 
way as to produce a very gradual slow down, for the purposes of illustrating the 
technique. In practice, since the guards are linear, a gain of 7 = 0 could have 
been used to force fast convergence. 
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Fig. 3. Simulations of the mobile robot in example 1: (a) standard simulation technique 
fails to detect the collision; (b) our method slows down as it approaches the event 
surface. 

Example 2.  Consider the planar two link manipulator, as shown in Figure 2, 
with the kinematic equations 

U!2 
(18) 

desired (x, y) positions for the end point are fed to the controller from a high 
level planner and the model is required to calculate 6i and 62 to achieve these 
positions. If the length of the proximal link is h and the distal link is l2, the 
appropriate inverse kinematics relation to compute 8±, 62 as a function of (x, y) 
are 

#i = arctan 2 

62 = arctan 2 

-y 
y/x2 + y2 ' y/x2 + y2 

y — lisin(di)   x — licos(6i) 

± cos 
-(x2+y2 + l2-l2) 

2lly/x2 + y2 (19) 

(20) 

Note that it is possible for the high level planner to be unaware of the specifics of 
the manipulator and specify (x, y) points which are outside the set of reachable 
positions of the manipulator, in such cases the arguments of the cos-1 function 
would fall outside of the range of [-1,1] and the right hand side of the differential 
equation becomes ill-defined. In this case, given Zt > l2 the guard would be 

W{*2 + y2) < (h + h)) A(\/(*2 + ?/2) > (h - h)) (21) 

with x = li cos 0i +12 cos(6>i + 62),y = h sin 0i +12 sin(6'1 + Q2). 
Figure 4a displays a simulation of the two link manipulator attempting to 

track a reference trajectory, which is a straight line in Cartesian space. In this 
case the reference trajectory eventually falls outside the workspace of the manip- 
ulator, where the right hand side of the differential equation becomes complex. 
The traditional integrator generates a point near the edge of the workspace and 
its next point falls outside the workspace. Because the vector field is ill-defined 
there, it is unable to correctly compute this new point, nor is it able to activate 
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b) 

Fig. 4. Simulations of the two link manipulator from example 2: (a) root bracketing 
methods cannot be used since the vector field is ill-defined out side the workspace; (b) 
our method approaches the surface asymptotically without every requiring a function 
evaluation outside the workspace. 

its root finding algorithm (bracketing technique) since it requires an initial point 
on each side of the guard. The output of our algorithm is shown in Figure 4b. 
Successively smaller steps are taken as the state approaches the boundary of the 
workspace. 

Discussion. It should be said that, although our method is capable of termi- 
nating the simulation at tk such that g(xk) = 0 exactly, in some situations, or 
coming arbitrarily close to it in others, it can only be considered accurate insofar 
as the underlying integration method accurately reproduces the exact solution to 
the differential equation. That is to say that while g(xk) will equal zero exactly, 
Xk itself is not exact since it is generated through an approximation algorithm, 
as in all numerical analysis. Other limitations include: 

- In eq.(ll), which determines the step size, one must divide by the quantity 
Lj g. Obviously the method is not applicable when this quantity is zero. 
Infact, by the inverse function theorem, Ljßg = 0 implies that the inverse 
of g(t) used in eq.(9) does not exist. Geometrically, the differential equation 
is flowing purely tangential to the boundary of the guard set, an alternative 
method is required. 

- The method requires solving for roots of eq.(14) at every step, despite the 
fact that that specialized algorithms exist, this computation can be a bit 
time consuming for higher order methods (higher order polynomials). We feel 
that given the importance of discrete event detection in accurate simulation 
this additional effort is worthwhile although an efficient exclusion test would 
improve the performance. 

5    Conclusions and Future Work 

It has been observed that there are a variety of situations in which one of the 
most popular hybrid simulation methods can fail to properly detect or localize 
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the occurrence of discrete events: either due to a multiple number of zero cross- 
ings within a single step or because of model singularities. We present a method 
for detecting discrete events which, using techniques borrowed from control the- 
ory, selects integration step sizes in such a way that the simulation slows down 
as it approaches a guard. Our method guarantees that the simulation will land 
exactly on the event surface for any guard which has a Taylor series expansion 
of finite length. Given that any nonlinear guard can be transformed to a linear 
form, this technique is applicable to a broad class of systems. Even in situations 
where nonlinear guards have not been transformed to the canonical form, the 
method is still quite useful in practice. We show how to extend the method 
to complex guards which are built up from many simple algebraic inequalities 
using the boolean operators and, or and not. In this way polyhedral or semi- 
algebraic guards sets can be handled. The technique is easily used in combination 
with existing integration algorithms and does not adversely affect the underly- 
ing accuracy or stability of the numerical integration technique. Ultimately the 
framework presented here will be coded in Java (presently written in Matlab) 
and incorporated into the CHARON [16] simulation suite. 

While our method requires a variable step size integration method, it has 
been observed that when simulating large systems such as Automated Highway 
Systems with 1000+ vehicles, traditional variable step size schemes are unac- 
ceptable since they require all components to be simulated at the same rate. 
Thus if only two of the vehicles actually necessitate a step size reduction, the 
entire system must be slowed down to the smallest common step size, creat- 
ing gross inefficiencies. To address this problem, we are currently considering 
using the techniques presented here in conjunction with multirate integration 
methods such as those presented in [7]. When integrating a systems of ODEs, 
multirate methods use a different step size for each component. Thus, when a 
particular component of the set of equations is changing rapidly a small step size 
may be used without unnecessarily slowing down the integration rate for other 
slowly changing components. Multirate implementation would prevent agents 
not involved in the event from being simulated at an unnecessarily slow rate. 
We believe that these two techniques complement each other and can be used 
to develop a powerful simulation tool for multiagent and hierarchical hybrid 
systems. 
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Abstract. We propose a new technique for the identification of discrete- 
time hybrid systems in the Piece-Wise Affine (PWA) form. The identifi- 
cation algorithm proposed in [10] is first considered and then improved 
under various aspects. Measures of confidence on the samples are intro- 
duced and exploited in order to improve the performance of both the 
clustering algorithm used for classifying the data and the final linear 
regression procedure. Moreover, clustering is performed in a suitably de- 
fined space that allows also to reconstruct different submodels that share 
the same coefficients but are defined on different regions. 

1    Introduction 

In this paper we address the problem of identifying discrete-time hybrid sys- 
tems in the Piece-Wise Affine (PWA) form. The class of systems admitting a 
PWA description is broad since PWA systems provide an equivalent represen- 
tation for interconnections of linear systems and finite automata [23], linear 
complementarity systems [14] and hybrid systems in the Mixed Logic Dynami- 
cal (MLB) form [1]. In particular, the MLD representation is suitable to solve, 
via optimization techniques, many analysis and synthesis problems like model 
predictive control [2], state estimation [9], formal verification [3], observability, 
controllability and stability tests [1,19]. 

In Section 2 we introduce the class of Piece-Wise AutoRegressive eXogenous 
(PWARX) models that provide an input-output description of PWA systems. 
PWARX models are obtained by partitioning the space of the regressors in 
a finite number of polyhedral region and by considering an affine submodel 
on each region. Therefore, the identification problem can be formulated as the 
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© Springer-Verlag Berlin Heidelberg 2001 
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reconstruction of a possibly discontinuous PWA map with a multi-dimensional 

domain. 
In the last few years, the Neural Network community developed algorithms to 

solve regression problems with PWA maps. Among them, one may cite Breiman's 
hinging Hyperplanes [7] and multilayer neural networks with PWA activation 
functions [13]. However all such algorithms focus on the estimation of a continu- 
ous PWA function. A key feature of PWARX models is that the output-update 
map can be discontinuous along the boundary of the regions. This is due to the 
fact that many logic conditions can be represented through discontinuities in 
the state-update and output maps of a PWA system. To the authors' knowl- 
edge, regression with discontinuous PWA maps received very little attention so 
far. In [22] an algorithm based both on adaptive and competitive learning for the 
on-line identification of PWARX models was proposed. However, its performance 
strongly depends on the initialization and the choice of the learning parameters. 
Off-line procedure for the reconstruction of special classes of PWARX models 
can be found in [16] and [4]. In a very recent work [12] a regression problem 
with monodimensional PWA maps was considered whereas a multilayer neural 
networks with logic gates was proposed in [21]. 

An off-line procedure for the identification of general PWA systems was de- 
rived by the authors of the present paper in [10]. The main difficulty in re- 
constructing PWA maps is that estimation of the linear submodels cannot be 
separated from the problem of classifying the data, i.e. of assigning each dat- 
apoint to the submodel that more likely generated it. In order to accomplish 
both tasks, an algorithm that exploits the combined use of clustering and linear 
identification techniques was derived in [10]. The key idea of this algorithm lies 
in a procedure that reduces the problem of classifying the data to an optimal 
clustering problem. 

Optimal clustering is known to be computationally prohibitive [8], and the 
common practice is to resort to suboptimal but efficient algorithms like if-means 
(see [8,11] for comprehensive reviews of various clustering techniques). However, 
all the classical procedures suffer from two drawbacks: first, poor initialization 
allows the algorithms to be trapped in local minima, second, their performance 
may be compromised by the presence of outliers. In this paper, we propose a aK- 
means"-like algorithm that exploits confidence measures on the points that have 
to be clustered in order to reduce the influence of outliers and poor initializations. 
Moreover, differently from [10], clustering is not performed in the space of the 
model coefficients, but in an extended space that takes also into account the 
spatial localization of the models. This allows to distinguish between submodels 
that share the same coefficients but are defined on different regions. 

Once the data have been classified, linear regression can be used to compute 
the final submodels. However, pure least squares are not the optimal choice since 
they are sensitive to outliers [15] that may be present because of classification 
errors. In order to alleviate this shortcoming, we employ weighted least squares, 
using as weights suitably defined confidence measures on the datapoints. Finally, 
in order to find the shape of the regions, we use, as in [10], linear support vector 
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machines [24] that find the optimal separating hyperplanes between the classified 
datapoints. 

The various steps of the main algorithm and two illustrative examples are 
reported in Section 3. Moreover, in Section 4 we discuss the proposed procedure 
highlighting future research directions and possible modifications in order to 
estimate also the number of submodels and the model orders from the data set. 

2    Problem Statement 

We consider the problem of identifying Piecewise AutoRegressive eXogenous 
(PWARX) systems that are defined relying on the s submodels 

y(k) 

'ahly(k - 1) + ali2y(k - 2) + ... + ahrlay(k - na) + b[ lU(k - 1) + 
+ b'h2u(k - 2) + ... + b'hnbu(k - nb) + h + ek 

s,i2/(fc - 1) + asay{k - 2) + ... + as,nay(k - na) + b's lU(k - 1) + 
+ K^{k - 2) + • • • + b'Stnbu(k - nb) + fs + ek 

(1) 

where u G Rq and y G R are the inputs and the output respectively, /* are 
displacements and ek are noise samples. We consider a simple noise model by 
assuming that ek are Gaussian, independent and identically distributed random 
variables with zero mean and variance a2. The n-dimensional vector of the re- 
gressors is denoted by 

x(k) 4 [y(k - 1) y(k - 2) ... y(k - n0) u'(k - 1) u'(k - 2)... u'(k - nb)}' 

and we assume that the regressors lie in a bounded polyhedron, called regressor 
set and denoted by X. In order to specify a PWARX model completely, a poly- 
hedral partition {Xi}s

i=1 of X is given and the switching law between the models 
is specified by the rule: if x{k) G Xu the z-th dynamic of (1) is active. When 
an input/output pair (x(k),y(k)) is such that x(k) G Xt we say that the pair 
belongs to the i-th submodel. As discussed in [10], one advantage of PWARX 
models is that it is possible to map them into the standard state-space form of 
PWA systems by using classical realization theory. Therefore, all the tools for 
analysis and synthesis for hybrid systems in the MLD/PWA form can be directly 
applied to the identified model. 

Throughout this paper we assume that N input/output points (y(k),u(k)), 
k = 0,... , N, have been collected in the dataset S. These are the data available 
for the identification of the PWARX model. 

Assumption 1 The data are generated from the PWARX model (1) specified 
by the orders na, nb, the number of submodels s, the parameter vectors 

6i - [Oi,! Oii2 ■ • • Oi^b'i,! b'i,2 ■ ■ ■  K,nji 

and the sets X, Xi; i = I,... ,s, 

(2) 
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Remark 1. If the data are generated according to Assumption 1 and na, nb, 
s, X and Xi, i = 1,... , s, are known, the identification problem amounts to 
reconstruct the s ARX submodels in (1) and this can be done by using standard 
algorithms for the identification of linear models [17]. In fact, since the sets Xt are 
known, we can classify the points (x(k), y(k)), i.e., collect together the datapoints 
belonging to the i-th affine submodel and use them for its identification. 

The identification problem becomes non-trivial if we do not know all the 
quantities mentioned in Remark 1. As discussed in [10] a fair scenario for the 
identification of PWARX models is given by the following Assumption. 

Assumption 2 Assumption 1 holds and the number of submodels s, the orders 
na, üb and the regressor set X are known. Moreover, s = s, na = na, nb = üb 
and X = X. 

The number of models depends on the number of operative conditions in which 
the data are collected. For instance one can know in advance that the systems 
may only switch between a normal and a faulty operating condition, i.e., s = 2. 
The assumption that the model orders na and nb are known is less realistic but 
will allow us to concentrate on the peculiarities of the identification of PWARX 
models without introducing the difficulties due to the estimation of the model 
orders. The shape of the set X describes the physical constraints on the inputs 
and the output of the system. In practice, constraints are often specified on each 
input/output sample or on each input/output increment and from these bounds 
it is easy to derive the set X once the orders na and nb have been chosen [10]. 

3    The Main Algorithm 

Based on the previous discussion, the identification problem we consider reads 
as 

Problem 1. Assume that the data (y(k),u(k)), k = 0,... , N, are generated ac- 
cording to Assumption 1 and that Assumption 2 holds. Estimate the partition 
Xi, i = 1,... , s, and the parameter vectors 

Q'i =     »1,1 ßi,2 • • •   ai,nA,l bi,2 ■ ■ ■  bi,nji (3) 

characterizing the PWARX model (1). 

The main difficulty in solving Problem 1 is that the estimation of the re- 
gions Xi cannot be decoupled from the identification of each submodel. A first 
algorithm to solve Problem 1 was proposed in [10]. Hereafter we summarize this 
procedure and propose modifications that improve the identification results. The 
underlying rationale will be illustrated by using the following simple example. 
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Fig. 1. The PWARX system (4) (-) and the dataset (crosses) 

Example 1. The data are generated by the PWARX system 

y(k) = < 

12 

-10 

12 

u(k - 1) 1J   + e(k) if u(k - 1) = x(k) £X1 = [-4, -1] 

u(k-1)1    + e{k) if u(k - 1) = x{k) G X2 = (-1,2)      (4) 

u(k - 1) 11  + e{k) if u(fc - 1) = x(k) eX3 = [2,4] 

where s = 3, na = 0, nb = 1, X = [-4,4], and the input samples u(k) G M are 
generated randomly according to the uniform distribution on X. 

The system and a data set of 50 samples with noise variance a2 = 0.05 are 
depicted in Figure 1. 

The first step of the identification algorithm is to cluster the datapoints 
(x(k),y(k)) in a suitable way [10]. In fact, a PWA map is locally linear. Thus, 
small subsets of points x(k) that are close to each other are likely to belong to 
the same region Xt [20]. For each datapoint (x(j), y(j)), j = 1,... , N, we build 
a cluster Cj collecting (x(j),y(j)) and the c - 1 distinct datapoints (x,y) that 
satisfy 

V(i, j/) G Cj,     \\x(j) - if < \\x(j) - xf,    V(x,y) G S\Cj (5) 

Note that each cluster Cj can be labeled with the point x(j) so having a bijective 
map between datapoints and clusters. The parameter c has to be fixed by the 
user and this is a knob of our algorithm that can be adjusted. Some clusters will 
collect only data belonging to a single submodel (for instance the cluster Ct in 
Figure 1). Those clusters will be referred to as pure clusters. Clusters collecting 
data generated by different submodels will be called mixed clusters (see the 
cluster C2 in Figure 1). 

We assume that c > n so that we can identify an affine model by using 
the samples contained in each cluster. For this purpose every linear regression 
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technique can be used and we adopt least squares estimation. The vector of 
coefficients 6LS'j estimated from the data in Cj is then computed through the 
well-known formula 

^^(^j)-1^,   #,• = 
X\ x2 

1   1 (6) 

where xt are the vectors of regressors belonging to Cj and yCj is the vector of the 
output samples in Cj. A classical result in least squares theory ensures that the 
estimated vectors of coefficients are Gaussian random vectors with mean 6 'J. 
Moreover, their empirical covariance matrix can be computed as [17] 

Vj = -^-(^j)-\    SSRj = y'Cj (I - ^(^j)-^'j) yCj        (7) 
c — n+1    J 

Differently from the rationale described in [10], we also introduce the scatter 
matrices [8] 

Qj=    Y,   (x-m^x-mj)',    TUJ = \    £    x>   3 = h---,N     (8) 

that measure the sparsity of the Af-points in the clusters Cj. 
Both V'1 and Q~l are related to the confidence we should have in the fact 

that 0j is derived by using data belonging to a single submodel. In fact, the 
covariance of the 6LS'j based on pure clusters depends only on the noise level 
and is expected to be smaller than the covariance of the 6LS<j based on mixed 
clusters [10]. The reason is that, in the latter case, we are fitting with a single 
hyperplane datapoints generated by at least two hyperplanes: If they do not 
coincide, Vj will also take into account the model mismatch that increases the 
sum of the squared residual SSRj. On the other hand, the confidence level on 
9j should also depend on the sparsity of the A'-points in the cluster Cj. Indeed, 
scattered clouds of Af-points are more likely to belong to different submodels 
than dense clouds. Therefore the confidence level should be also proportional to 
the "magnitude" of Qj1. In order to illustrate this point, consider the scenario 
depicted in Figure 2 where a two dimensional set X (partitioned in three regions) 
is shown together with the collected A"-datapoints. 

If the true coefficient vectors 6X and 03 coincide (i.e., the same model is 
defined on the regions A\ and X3) it is impossible to assign a lower confidence 
to 9LS'2 than to 6LS'1 on the basis of the matrices Vx and V2 alone. Indeed, even 
if C2 is a mixed cluster, there is no model mismatch. However it is expected that 
Qil will be "larger" than Q2

X and this indicate that is more likely that QLS^ 
is based on a pure cluster than QLS'2. 

Consider now the vectors & = [(0LSJy,m'j]'1 Vj = 1,... ,N. Following the 
previous discussion we can approximatively model £,■ as the realization of Gaus- 
sian random vectors with mean £, and variance 

}ij 
Vj  0 
0 Qj (9) 
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Fig. 2. Clusters in a two-dimensional region X. Crosses: sampled points. 

A scalar measure of the confidence level we assign to the point £,• is then given 
by 

to,- 

V/(27r)(2"<.+2^+i)det(fii)' 
(10) 

that is the peak of the Gaussian centered in £,• and with covariance Rj. 
If the data are corrupted by a small amount of noise, if c is small enough 

and if the sampling schedule is "fair" (see the discussion in Section 4), then 
a picture of the vectors £,-, j = 1,... ,N, should show s major clusters and 
some isolated points hereafter referred to as outliers. In fact we observe that if 
two clusters Ch and Ch are pure and collect datapoints belonging to the same 
submodel, then 6LS'^ and 6LS^ should be similar (in the limit case of noiseless 
data all such vectors coincide). The outliers correspond to £,■ points computed 
from mixed clusters. However, the information provided by the 0-vectors alone 
may be misleading, since it can also happen that the same vector of coefficients 
6 characterize submodels defined on different regions (see the first and the third 
submodels in the Example 1). In this case the estimated 9-vectors collapse into a 
single cluster. The separation of the corresponding ^-points is achieved because 
of the vectors rrij that measure the spatial localization of the models based on 
different clusters Cj. Since the models are defined in different regions, the m.j 
vectors will be different even if the coefficients 6LS<j are not. This fact can be 
noticed by looking at the plot in Figure 3(a) of the vectors £,- obtained for 
Example 1 with c = 6. 

Remark 2. The parameter c should be suitably chosen in order to obtain non- 
overlapping clusters in the £-space. The optimal value of c is always a trade-off 
between two phenomena. Increasing c improves the estimation of the 0j coeffi- 
cients based on pure clusters yielding noise rejection benefits. However, at the 
same time, a large c increases also the number of mixed-clusters (in fact, for 
c = N all the clusters become mixed) and of the outliers in the £-space. For a 
thorough discussion on the role of the parameter c we defer the reader to [10]. 
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The next step of the algorithm amounts to clustering the ^-points into s 
disjoint subsets Pj. For this purpose, in principle, any clustering algorithm can be 
used (see [8,11] for comprehensive reviews) but the accuracy of the results can be 
spoiled either by a poor initialization (that lets the algorithm be trapped in local 
minima) or by the presence of outliers. In our case we can exploit the measures 
of the confidence on each £-point in order to alleviate these shortcomings. 

The clustering technique we propose is a variation of the batch K-means 
algorithm [18,6,11]. 

Algorithm 1 

Initialize the centers /Xj, i   = 1,... ,s,  and fix a threshold 

e>0 

1. compute the clusters T>i  of ^-points that minimize 

2. update the centers according to the formula 

Mi = 
^y.Zj€ViWi 

(12) 

3.   if max ||/ii -/ii || < e, Mi = l,...,s,  exit, else set ^ = ßi 

and go to 1. 

The main differences between Algorithm 1 and the classical if-means are the 
rule (11) for assigning the vectors £,• to the clusters T>i and the formula (12) for 
updating the centers fn of the clusters. However, it is important to note that 
these modifications do not spoil the computational efficiency of X-means. 

The use of the norms || • ||fi-i in (11) allows assigning little influence to the 
^-points based on mixed clusters. Similar considerations justify the use of the 
weights Wj in (12). Then, it is expected that the centers fij will mainly depend 
on the ^-points based on pure clusters. We can exploit the confidence weights 
also to provide a good initialization of the centers in Algorithm 1. We suggest 
to randomly assign the £, vectors to s sets X>° (in a way such that each set 
collects approximatively N/s samples) and to compute the initial centers fit as 
the weighted means of the elements in T>° (i.e. analogously to formula (12)). If 
the number of ^-points based on pure clusters is much larger than the number of 
outliers, it is expected that, because of the averaging procedure, the centers will 
be little influenced by the outliers. In practice, we noticed that this initialization 
procedure gives very good results compared to other common strategies like 
choosing the centers randomly from the Appoints in <S. The result of Algorithm 1 
applied to Example 1 is plotted in Figure 3(b). 
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(0""), 

(a) The vectors £,- for the Exam- 
ple 1. 

(b) Clustering of the vectors £,■ 
with Algorithm 1. Clusters: trian- 
gle, diamonds, circles. The crosses 
are the centers of each cluster. 

Fig. 3. Clustering of the vectors £,-, j = 1,... ,50 

Clustering in the £-space allows to classify the original datapoints with the 
procedure reported in [10]. In fact, each point £, is associated to a single cluster 
Cj that is labeled with the datapoint (x(j),y(j)). Therefore we can form disjoint 
subsets Ti, i = 1,... , s, of S according the following rule: if £,■ e Dj, then 
(x{j),y(j)) G ?%• The classified datapoints for the Example 1 are shown in 
Figure 4. 

Since the original data are now classified, it is possible to identify the final 
s ARX submodels. More precisely the i-th submodel is estimated on the basis 
of the datapoints collected in the set Ti. Again one can use least squares to 
accomplish this task. This allows also checking the goodness of each submodel by 
estimating the covariance of the final parameters 9t and using standard criteria 
like confidence intervals. However one of the main drawbacks of least squares 
lies in the sensitivity of the method to outliers [15] that may be present due to 
classification errors. We can reduce the harmful effect of the outliers by using 
once more the confidence levels Wj in the weighted least squares algorithm [17]. 
Therefore, each vector 6i is computed as the minimizer of 

E   ^iiyü)-ö;[x'ü)i]'ir (i3) 

For Example 1 we obtained the following estimates 

6[ = [0.9659 1.9100] ,    6'2 = [-0.9873 -0.0240] ,    9'3 = [0.9580 2.2596] 

that provide a good approximation of the PWARX system (4). 
So far we have obtained an estimate of each affine submodel of the PWARX 

representation. The final step is to look for the shape of the polyhedral regions 
Xi. To accomplish this task we used the pattern recognition procedure proposed 
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in [10] based on linear support vector machines and linear programming. Since 
the data have been classified, the problem of estimating the sets Xi amounts to 
a pattern recognition problem [6]. Note that there is a hyperplane that separates 
the set Xi from the set Xj, Vj ^ i because all the sets Xt are polyhedral and 
convex. We can estimate such hyperplanes by applying a linear pattern recogni- 
tion algorithm that separates the rr-points in Ti from the x-points in Tj, Vj ^ i. 
The equation of the estimated hyperplane separating T% from Fj is denoted with 
MijX = rriij where My and my are matrices of suitable dimensions. Moreover, 
we assume that the points in Xi belong to the half-space M^x < my . 

Due to errors in clustering, it may not be possible to find all the separating 
hyperplanes. Therefore, the classification algorithm should look for the hyper- 
planes that minimize the number of misclassified samples. For the classification 
we used linear Support Vector Machines [24] because they are appealing from a 
computational point of view (they can be solved through Linear or Quadratic 
Programming) and they isolate, as a byproduct, the misclassified samples. 

Remark 3. Note that classification errors arise only when the sets Ti and Tj 
with j ^ i are not linearly separable. Since Assumption 1 holds, this means that 
there were errors in the clustering of the ^-vectors. In other words, the fact that 
the sets Xt are polyhedral and convex allows detecting a posteriori clustering 
errors (that are likely to be caused by the ^-points based on mixed clusters Cfc). 
Then, in order to improve the overall performance of the algorithm, it is possible 
to remove the misclassified points (x(k),y(k)) from the dataset and repeat the 
overall identification procedure on the reduced set of datapoints. 

In order to obtain a description of the set Xi in terms of linear inequalities, 
it is then enough to consider the bounded polyhedron 

[Ml,... M'iSM'}'x<[m'iX... m'ism'}'. (14) 

where Mx < m are the linear inequalities describing X. In (14) there may be 
redundant constraints that can be eliminated by using standard linear program- 
ming techniques. 

For Example 1, the following estimated sets were obtained 

#! = [-4,-0.68],    X2 = [-0.68,2.1],    X3 = [2.1,4]. (15) 

The error in detecting the boundary at —1 between X\ and X2 is due to the fact 
that the datapoint (-0.994,0.608) was misclassified. However, as can be noticed 
by visual inspection in Figure 1, it is really hard to decide if the datapoint 
belongs to the first or the second submodel because the boundary is a point of 
continuity for the PWARX system. The results of the identification algorithm 
are shown in Figure 4. 

We conclude the section by reporting the identification results for a more 
complex PWARX system. 
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Fig. 4. Classified datapoints (triangles, diamonds, circles) and estimated model (-). 

Example 2. The data are generated by the PWARX system 

0.9 0.2 o] [j/(fc - 1) u(fc - 1) l]   + c(jfc) if x(k) G «?! 

0.3 -0.3 -5] [y(k - 1) u(k - 1) l]   + e(jfc) if x(jfc) e X2        (16) y(fc) = < 

0.5 0.4 2 [y(k - 1) u(A - 1) 1 ]   + e(fc) if a:(jb) G X3 

where x(k) = [y(k - 1) u(k -_1)]'_, s = 3, na = 1, n6 = 1, X = [-30,40] x 
[-40,40] and the regions Xu X2, X3 are shown in Figure 5(a). The input sam- 
ples u(k) G K are generated randomly according to the uniform distribution on 
[-30,40] and the variance of the noise affecting the output is a2 = 0.2. The 
model and the dataset of 100 samples are depicted in Figure 5(a). 

The final results were computed (with a non-optimized code) in 11.88 s on a 
Pentium II 400 running Matlab 5.3. The identified submodels and the classified 
datapoints for c = 9 are shown in Figure 5(b). The estimated coefficients are 

6[= [0.9108 0.1839 0.4301], 

0'2 = [0.2926 -0.2489 -4.001: 

03= [0.4826 0.3834 2.2510] . 

4    Discussion and Concluding Remarks 

The proposed algorithm is composed of six steps: build small clusters of the 
original data; identify a parameter vector based on each cluster; partition the 



A Clustering Technique for the Identification of Piecewise Affine Systems        229 

(a) The true model and the data- 
point (crosses) 

(b) Classified datapoints (trian- 
gles, diamonds, circles) and esti- 
mated model. 

Fig. 5. The PWARX system (16) and the identification results 

parameter vectors in s clusters; classify the original data; estimate the s sub- 
models; estimate the partition Xu i = 1,... ,s, by using a linear classification 
algorithm. 

For the clustering in the £-space, we propose a modified K-m.ea.ns algorithm, 
although other procedures can be considered to cope with the problem of end- 
ing in local minima. For instance, one can resort to soft competitive clustering 
algorithms that are less sensitive to initialization [11]. In order to improve the 
performance of the clustering algorithm, it is also possible to exploit the mea- 
sures of confidence on the ^-points in order to detect the outliers in the £-space, 
eliminate them from the set of the ^-points and eliminate the corresponding dat- 
apoints from the clusters ft. In fact, the clusterization of the outliers may have 
a high degree of uncertainty and classification errors may spoil the accuracy of 
the final classification procedure. 

The proposed algorithm gives good results under the implicit assumption 
that the sampling in the -Y-space is "fair", i.e. that the input is persistently 
exciting and that the z-points are not all concentrated around the boundary of 
the sets X{. In fact, in the latter case it may happen that all the clusters C,- 
become mixed even if a large number of samples belonging to each submodel 
has been collected. We point out that the problem of input design for hybrid 
systems is quite difficult because all reachable modes have to be sufficiently 
excited. A thorough characterization of such conditions will be the subject of 
further research. 

In the previous Sections we assumed that the number of models s is given. 
If it is unknown it should be estimated from the dataset. This can be done by 
replacing the modified if-means algorithm with a clustering algorithm where 
the number of clusters is not fixed a priori such as the Growing Neural Gas [11] 
or the MDL-based procedure proposed in [5]. In such methods the number of 
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clusters is automatically detected. It is apparent that once the ^-points have 
been classified, the remaining steps of our procedure can be applied without 
modifications. 

If the orders na and nb are unknown, we expect that their under/over estima- 
tion can be detected from a picture of the coefficients in the dual space (i.e. the 
clusters do not have a clear boundary). Under/over parametrization can also be 
detected by comparing the magnitude of the final parameter vectors with their 
standard deviation. 

Finally, it would be desirable to have bounds on the errors affecting the 
algorithm both in identifying the submodels and in detecting the regions. 

Acknowledgments. The research of G. Ferrari-Trecate has been supported by 
the Swiss National Science Foundation. D. Liberati and M. Muselli have been 
supported by the Italian National Research Council. 

References 

1. A. Bemporad, G. Ferrari-Trecate, and M. Morari. Observability and controllabil- 
ity of piecewise affine and hybrid systems. IEEE Trans, on Automatic Control, 
45(10):1864-1876, 2000. 

2. A. Bemporad and M. Morari. Control of systems integrating logic, dynamics, and 
constraints. Automatica, 35(3):407-428, March 1999. 

3. A. Bemporad and M. Morari. Verification of hybrid systems via mathematical pro- 
gramming. In F.W. Vaandrager and J.H. van Schuppen, editors, Hybrid Systems: 
Computation and Control, volume 1569 of Lecture Notes in Computer Science, 
pages 31-45. Springer Verlag, 1999. 

4. A. Bemporad, J. Roll, and L. Ljung. Identification of hybrid systems via mixed- 
integer programming. Technical Report AUT00-28, Automatic Control Laboratory 
http://control.ethz.ch/, 2000. 

5. H. Bischof, A. Leonardis, and A. Selb. MLD principle for robust vector quantisa- 
tion. Pattern Analysis & Applications, 2:59-72, 1995. 

6. CM. Bishop. Neural networks for pattern recognition. Clarendon press, Oxford 
1995. 

7. L. Breiman. Hinging hyperplanes for regression, classification, and function ap- 
proximation. IEEE Trans. Inform. Theory, 39(3):999-1013, 1993. 

8. R.O. Duda and P.E. Hart. Pattern Classification and Scene Analysis. Wiley, 1973. 
9. G. Ferrari-Trecate, D. Mignone, and M. Morari. Moving Horizon Estimation for 

Piecewise Affine Systems. Proceedings of the American Control Conference, 2000. 
10. G. Ferrari-Trecate, M. Muselli, D. Liberati, and M. Morari. Identification of piece- 

wise affine and hybrid systems. Technical Report AUT00-21, 
http://control.ethz.ch, ETH Zürich, 2000. 

11. B. Fritzke.   Some competitive learning methods.   Technical report, Institute for 
Neural Computation. Ruhr-Universit at Bochum., 1997. 

http://www.neuroinformatik.ruhr-uni-bochum.de/ini/VDM/research/gsn/Java%Paper/. 
12. R.E. Groff, D.E. Koditschek, and P.P. Khargonekar. Piecewise linear homeomor- 

phisms: The scalar case. Proc. Int. Joint Conf. on Neural Networks, 2000. 
13. S. Haykin. Neural networks - a comprehensive foundation. Macmillan, Englewood 

Cliffs, 1994. 



A Clustering Technique for the Identification of Piecewise Affine Systems        231 

14. W.P.M.H. Heemels and B. De Schutter. On the equivalence of classes of hybrid 
systems: Mixed logical dynamical and complementarity systems. Technical Report 
00 1/04, Dept. of Electrical Engineering, Technische Universiteit Eindhoven, June 
2000. 

15. P.J. Huber. Robust Statistics. Wiley, 1981. 
16. T.A. Johansen and B.A. Foss. Identification of non-linear system structure and 

parameters using regime decomposition. Automatica, 31(2):321-326, 1995. 
17. L. Ljung. System Identification - Theory For the User. Prentice Hall, Upper Saddle 

River, N.J., 1999. 2nd ed. 
18. J. MacQueen. On convergence of K-means and partitions with minimum average 

variance. Ann. Math. Statist, 36:1084, 1965. Abstract. 
19. D. Mignone, G. Ferrari-Trecate, and M. Morari. Stability and Stabilization of 

Piecewise Affine and Hybrid Systems: An LMI Approach. Conference on Decision 
and Control, 2000. 12-15 December, Sydney, Australia. 

20. M. Muselli and D. Liberati. Training digital circuits with Hamming clustering. 
IEEE Trans. Circuits and Systems - Part I, 47(4):513-527, 2000. 

21. K. Nakayama, A. Hirano, and A. Kanbe. A structure trainable neural network 
with embedded gating units and its learning algorithm. Proc. Int. Joint Conf. on 
Neural Networks, 2000. 

22. A. Skeppstedt, L. Ljung, and M. Millnert. Construction of composite models from 
observed data. Int. J. Control, 55(1):141-152, 1992. 

23. E.D. Sontag. Interconnected automata and linear systems: A theoretical framework 
in discrete-time. In R. Alur, T.A. Henzinger, and E.D. Sontag, editors, Hybrid 
Systems III - Verification and Control, number 1066 in Lecture Notes in Computer 
Science, pages 436-448. Springer-Verlag, 1996. 

24. V. Vapnik. Statistical Learning Theory. John Wiley, NY, 1998. 



Lateral Inhibition through Delta-Notch 
Signaling: A Piecewise Affine Hybrid Model* 

Ronojoy Ghosh and Claire J. Tomlin 

Stanford University, Stanford, CA 94305, USA 
ronoj oy,tomlinQstanford.edu 

Abstract. Biological cell networks exhibit complex combinations of 
both discrete and continuous behaviors: indeed, the dynamics that gov- 
ern the spatial and temporal increase or decrease of protein concentra- 
tion inside a single cell are continuous differential equations, while the 
activation or deactivation of these continuous dynamics are triggered 
by discrete switches which encode protein concentrations reaching given 
thresholds. In this paper, we model as a hybrid system a striking example 
of this behavior in a biological mechanism called Delta-Notch signaling, 
which is thought to be the primary mechanism of cell differentiation 
in a variety of cell networks. We present results in both simulation and 
reachability analysis of this hybrid system. We emphasize how the hybrid 
system model is computationally superior (for both simulation and anal- 
ysis) to other nonlinear models in the literature, without compromising 
faithful modeling of the biological phenomena. 

1    Introduction 

1.1    Lateral Inhibition and Developmental Biology 

The emergence of differentiated cell types from an initially homogeneous popula- 
tion is a well-studied phenomenon. Differentiation occurs in all animal and plant 
embryonic tissue, particularly such species as Drosophila melanogaster (fruit fly) 
and Xenopus laevis (South African claw-toed frog) have been extensively stud- 
ied. Genes control cell fate by controlling the type and amount of proteins made 
in a cell. Proteins in turn affect gene activity by turning "on" or "off" gene 
expression thereby affecting the production of proteins themselves. Hence differ- 
ential gene activity is considered the key to cell differentiation (Wolpert [1]) and 
protein concentrations in a cell are a good measure of gene activity. The idea 
that lateral signaling between cells through the Delta-Notch protein pathway is 
responsible for some cell fate decisions has gained wide acceptance. 

A concise description of the biological background follows (Lewis [2]): Delta 
is a transmembrane protein that binds and activates its receptor, the transmem- 
brane protein Notch, in neighboring cells. The activation of Notch has a "direct 
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and immediate" effect on gene expression. Hence Notch signaling directly con- 
trols switching in genetic networks and cascades. The activation of Notch in 
a cell affects the production of Notch ligands (i.e. Delta) both in itself and its 
neighbors. In the classical lateral inhibition case, high Notch levels inhibit ligand 
production in the cell and thus a cell producing more ligands forces its neigh- 
boring cells to produce less. However, Notch signaling can also be responsible 
for a phenomenon called lateral induction where activation of Notch promotes 
ligand production and thus a group of cells cooperate to produce uniformly high 
amounts of ligand and Notch, causing all-or-none behavior that promotes sharp 
gene expression boundaries. 

Inter and intra cellular signaling has been postulated to be the mechanism 
for pattern formation in an incredibly wide range of organisms: emergence of 
ciliated cells in Xenopus embryonic skin (Marnellos et al[3]), neurogenesis in 
Drosophila (Luthi et al[4] and Marnellos et al[5]), sensory cell differentiation in 
the zebrafish ear (Haddon et al[6]), chick feather array (Crowe et al[7]), wing vein 
morphogenesis in Drosophila (Huppert et al[8]), etc. An example of the distinc- 
tive "salt-and-pepper" pattern formed due to lateral inhibition is the Xenopus 
epidermal layer where a regular set of ciliated cells form within a matrix of 
smooth epidermal cells as seen in Fig. 1. Apart from pattern formation, Delta 
and its homologues (Fringe, for example, proposed by Moloney et al[9]) inter- 
act with Notch (and its homologues) to produce other phenomenon like lineage 
decisions and boundary formation (Bray[10]), as well as stem cell function and 
formation of skin appendages (Lewis [2]). 

Fig. 1. Xenopus embryo labeled by a-tubulin, a marker for ciliated cell precursors seen 
as black dots. Photograph courtesy of P. D. Vize (The Xenopus Molecular Marker 
Resource, http: //vize222. zo.utexas. edu) 

1.2    Previous Work: Mathematical Models 

Most classical models (including Turing's[ll] seminal work on morphogenesis) 
depend on the phenomenon of local autocatalysis with lateral inhibition (LALI). 
These are grouped (Oster[12]) as neural models, diffusion-reaction models and 
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mechanical models and produce very similar results in spite of widely differ- 
ent internal mechanics. Though successful in predicting pattern formation, they 
suffer from two main drawbacks: (a) they are phenomenological models which 
usually do not replicate the low-level protein dynamics and (b) analysis is usu- 
ally intractable because nonlinear differential (or partial differential) equations 
are involved. Hence they are restricted to numerical solutions and predictions 
through simulation. 

Previous work on Delta-Notch lateral inhibitory networks focus on nonlin- 
ear mathematical models of the protein concentration dynamics. Both Collier 
et al[13] and Marnellos et al[3,5] have coupled first order nonlinear differential 
equations which govern protein production and decay. The nonlinearities of both 
their models derive from the fact that the Delta-Notch protein production in a 
cell is controlled by a switching function which depends on the weighted sum of 
Delta-Notch protein levels. The necessity of including nonlinear sigmoid func- 
tions to capture this switching phenomenon makes analytical proofs of stability 
intractable. This issue has been addressed by Collier [13] by analyzing the sys- 
tem for either a small number of cells (actually a pair of cells) or linearizing the 
system about an equilibrium. 

Marnellos et al[3,5] do not focus on mathematical analysis but stress the 
experimental validation of their model. The model proposed by Mjolsness[14], 
and used by Marnellos, is an attractive starting point for a hybrid model because 
of the fairly sharp sigmoid switching function and the introduction of switching 
thresholds (not used by Collier). Weighted interconnections are crucial to their 
model and the crux of their method is to train the weights in a network to 
obtain specific patterns. This is a very time-consuming task and convergence 
is not guaranteed. For completeness, the cellular automata model developed by 
Luthi et al[4] must be mentioned. However this model has discretized dynamics 
and no stability or convergence analysis has been done for it. 

1.3    Motivation for Hybrid Model 

A wide range of cell regulatory and signaling mechanisms seem to be ideal candi- 
dates for hybrid systems models. The physical reasons behind this include: gene 
expressions are represented by the existence (or absence) of certain proteins; 
protein concentration dynamics are described by constant exponential growth 
and decay rates coupled with discrete switches; protein production is switched 
on or off depending on the expression of other genes, i.e. presence or absence 
of other proteins in sufficient concentrations; complexity is introduced by the 
massive interconnections in the discrete switching circuit and logic (it is not un- 
common to find complicated repressive and promoter feedback channels forming 
genetic circuits, e.g. McAdams and Arkin[15]). These observations suggest that 
a piecewise affine hybrid model would be a very good choice for modeling these 
systems. Using simple continuous dynamics and lumping the complexity into the 
discrete inputs gives us the capability (current and future) to: analyze the model 
mathematically and prove reachability and convergence for a wide set of initial 
conditions, extract important parameters and predict their effects on the system 
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evolution without simulation, and suggest biological experiments to validate the 
model as well as refine it. 

The validity of our assumptions in developing the hybrid model are, of course, 
open to question and we will justify them as we go deeper into model develop- 
ment, analysis and verification. Our current research demonstrates the applica- 
bility of hybrid systems modeling and analysis to a potentially limitless field, 
that of cell cycle regulation and control. This paper describes our first steps in 
defining the hybrid automata for Delta-Notch signaling and the analysis of some 
simpler cases which show how certain parameters critically affect the steady 
state behavior of the system. It also contains simulation results and comparison 
with previous nonlinear continuous models which clearly show that our hybrid 
models faithfully replicate the physical phenomena. 

2    Model 

The hybrid system model that we develop models the effect of intercellular Delta- 
Notch signaling on the intracellular concentrations of those proteins. The follow- 
ing properties, based on experimental data, are incorporated in the model: (a) 
direct contact between cells is a prerequisite for Delta-Notch signaling to occur. 
Thus only neighboring cells (in addition to feedback from the cell itself) affect 
the protein concentration dynamics of a cell, (b) Notch production is triggered 
by high Delta levels in neighboring cells, (c) Delta production is triggered by 
low Notch concentrations in the same cell, (d) high Delta concentrations lead 
to differentiated cells and low Delta levels to undifferentiated cells and (e) both 
proteins decay exponentially. 

These properties are fairly orthodox (Lewis[2]) and are used in the model de- 
veloped by Collier et al[13]. Our model, presented in the next section, is similar 
to that of Marnellos[3], with the exception that we replace his continuous sig- 
moid switching curve for protein production (and gene expression) by a discrete 
switch or signum function. While experimentally, the gene expression switch is 
determined to be a fairly steep sigmoid, as shown in Fig. 2(b), we will show by 
comparison with the nonlinear model that the signum function is justified. The 
signum allows us to model the system as a piecewise affine hybrid system since, 
in the absence of switching, the continuous dynamics are affine and consistent 
with the simple constant production and exponential decay postulated (a more 
accurate model of the continuous dynamics can be derived from chemical kinet- 
ics as outlined by Tyson et al[16]). The "direct contact" assumption restricts the 
discrete inputs of the automaton to be a function of chemical concentrations in 
neighboring cells and in the cell itself. 

For a more biologically faithful model, we have approximated the sigmoid by 
a piecewise linear switching function (of which the signum is a limiting case). 
Preliminary analysis shows that the parameter constraints are modified from 
those derived with the signum switch by a term related to the slope of the 
switch. In the limiting case, when the slope of the switch tends to infinity, the 
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constraints converge to those for the signum. However, these results are not 
discussed here and will be the subject of a future publication. 

The spatial layout of the embryonic cell epidermal layer is two dimensional 
(planar), in which the cells are arranged in a hexagonal close-packed lattice as 
shown in Fig. 2(a). The indexing scheme for each cell and its six nearest neighbors 
is also given in Fig. 2(a). 

Hexagonal close-packed lattice 

(a) Labeling scheme for cells in two di- 
mensional arrays 

(b) Sigmoid switching curve 

Fig. 2. Spatial layout and switching curve of the model 

A note regarding notation: the variable naming convention follows Marnellos 
et al[3] and the formal definition of the hybrid automata strictly follows the 
conventions given by Tomlin[17]. 

2.1    Model of a Single Cell, Two Cell and N X N Cell Network 

Each biological cell is modeled as a four state piecewise affine hybrid automaton. 
The four states capture the property that Notch and Delta protein production 
can be individually switched on or off at any given time. It is assumed that there 
is no command-actuation delay in the mode switching. The formal definition of 
the hybrid automaton is given by: 

Hi = (Qi, Xi, Ei,Vi, Initi, fi,Invi, Rx) 

Qi = {91,92,93,94} 

Xi = (vD,vNf em2 

£1 = { UD,UN : UD = -Ujv,ujv T,»D 
i=l 

VI = 0 
Initi = Qi x {Xi € IR2 : vD,vN > 0} 

[-XDVD; -^NVN] if 9 = 91 

y/„ x) = I ^
RD

 ~ ^DVD
' ~

X
NVN}

T if 9 = 92 
[-\DVD',RN — ^NVN] if 9 = 93 
[RD — \DVD',RN — ^NVN] if 9 = 94 
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Invi = {qi,{uD < hD, uN < hN}} U {92, {uD > hD, 

U {93, {UD <hD,uN> hN}} U {94, {uD > h, 

~T).(n.    /->,„  ^>  h r,  A n»,  ^  h *r\\  C nn  Y TR2 

Rx 

Ri(q 
Ri(qi, 
Ri(qi, 
Ri (92, 

Ri (92, 
Ri (92, 
■Ri (93, 
■Ri (93, 
Ri (93, 
RI (94, 

-Ri (94, 

«D > /l£) A Upf < /ijv 

■U£) < h]j A ujv > /ijv 

"D > /lD A U/V > /liV 

WD < ho A Ujv < ^iV 

«D < ^D A uiV > ^Af 

U£) > /lD A tijv > /l./V 

UD < h,£> /\ ujv < /ijv 

UD > HD A UJV < ftjv 

UD > ^D A UJV > /ijv 
UD < /ID A ujv < fojv 
MB > ho A WJV < hpj -n-l 1,94 > \™D ^ n-o i\ wjv <~ «W 

Rl (?4, {«D < ^D A UN > h,N 

t~^ _  -^,uN < hN}} 

U,{UD > ho,UN > tlN}} 

■)€g2x]R2n 

) £ ?3 x Et2 

) e 94 x IR2 

)e?ixE2 

) G 93 x IR2 

■) e 94 x R2 

■) e ?i x m2 

■) G 92 x IR2 

) S 94 x IR2 

) G 91 x IR2 

) G 92 x IR2 

) G 93 x IR2 

where, VD and VN'- Delta and Notch protein concentrations, respectively, in a 

cell; vD: Delta protein concentration in ith neighboring cell; XD and XN: Delta 
and Notch protein decay constants respectively; RD and RN'- constant Delta and 
Notch protein production rates, respectively; ho and HN- switching thresholds 
for Delta and Notch protein production, respectively. RD, RN, XD and XN are 
experimentally-determined constants. The switching thresholds ho and /ijv are 
unknown and we derive possible ranges for them which are biologically consis- 
tent. In the single cell, vD = 0,Vi G {1....6}. The inputs uD and uN are the 
physical realization of properties (b) and (c) of the model outlined before. Fig. 
3(a) shows the transition diagram for the hybrid automaton Hi, in which the 
transition labels have been omitted for figure clarity. 

The two cell hybrid automaton Hi is the composition of two single cell au- 
tomata, to form a model with four continuous states and 16 discrete modes. 

(a) Transition diagram for a single cell (b) Hybrid automaton for a 3 x 3 array: 
automaton: 4 discrete modes. ^9 terete modes. 

Fig. 3. Hybrid systems model of a single cell and a planar array. 
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Here, vlD ^ 0 for each of the two cells, and thus the Delta level of each cell is 
communicated to its neighbor to control Notch production. Modeling the full two 
dimensional layer of cells involves composing N x N single cell hybrid automata 
with interconnections as shown in Fig. 3(b). The simulation results which follow 
are from this planar cell array model. 

3    Simulation Results 

Using the model defined in the previous section, extensive simulations were car- 
ried out for different size cell arrays. In a biological sample, it is usually assumed 
that the initial conditions on protein concentrations are nearly homogeneous, 
thus in our simulation the initial protein concentrations in the cells are taken 
randomly from a normal distribution with unity mean and a variance of 0.05. 
We assume that the protein concentrations at the boundary cells are initially 
at zero (though periodic protein concentrations at the boundary have also been 
simulated). The rate constants RD, RN, \D and AJV are set to unity (the equa- 
tions are assumed to be normalized) and the switching thresholds are ho = -0.5 
and /ijv = 0.2 which are in the range which produces sensible biological results; 
these we derive in the next section. 

The emergent steady state behavior of a 20 x 20 network is shown in Fig. 
4(a)and a 50 cell loop in Fig. 4(b). The grey cells are differentiated cells with high 
Delta and low Notch concentrations while the white ones have high Notch and 
low Delta concentrations. The model accurately captures the salt-and-pepper 
pattern of the real biological event. 

Undifferentiated Cells 

A 

Differentiated Cell 

(a) 400 cell array 
(b) 50 cell loop 

Fig. 4. Simulation results showing the steady state of each cell. Grey indicates a dif- 
ferentiated cell and white indicates an undifferentiated cell. 

The key results from the simulation runs are: (a) near-regular pattern for- 
mation emerges, especially for larger array sizes, (b) each cell hybrid automaton 
Hi is bistable, i.e. it converges to the equilibrium in either state q2 or q3 and 
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stays locked there. No oscillations were encountered in the simulations (with one 
exception, discussed later). This nicely models the fact that cells eventually pro- 
duce either Delta or Notch proteins but not both, (c) the emergent patterns are 
very sensitive to the initial conditions for small array sizes. But this sensitivity 
decreases as the array size increases. This result is similar to that reported by 
Collier et al[13], (d) the steady state patterns for the cell network follow the rules 
that: no two differentiated cells lie next to each other and no undifferentiated 
cell can be completely surrounded by other undifferentiated cells. This result is 
important from the biological point of view as experiments show that this is the 
preferred steady state in organisms. We show later that this result is dependent 
on the switching threshold values hr> and h^ and (e) another interesting result 
which emerges from the simulations is the following phenomenon: the cell differ- 
entiation seems to start at the boundary and propagates inwards in the network. 
This might have biological significance and is also reported by Collier et al[13]. 

4    Analysis 

In this section we will analyze the equilibria for a single cell and a two cell 
network by performing an existence and reachability (convergence) analysis for 
the hybrid automaton in each case. From now on, we define boundary conditions 
to be the discrete inputs of the automaton (the Notch protein concentration from 
the same cell, and Delta protein concentrations from neighboring cells). 

4.1    Single Cell Hybrid Automaton 

Proposition 1 (Existence of equilibria of Hi). The equilibria {v*D,v*N) of 
H\ depend on the switching threshold ho, and are as given in Table 1. 

Proof. We prove this by constructing an algebraic test for the existence of equi- 
libria in each mode. The equilibrium point exists if and only if it satisfies the 
constraints defining the mode, given by Invi. We substitute the equilibrium 
for each mode into the corresponding invariant for each mode which gives the 
condition for its existence. For example, for mode qi the equilibrium is given 
by {v*D = Q,v*N = 0). The invariant for the mode is {UD < ho,UN < hjv}. 
Since urj = —vjv, we substitute UD = 0 in the invariant to derive the condi- 
tion 0 < ho A UN < /ijv- Similarly, we perform the computation on <Z2,<73,<74 to 
give the conditions in Table 1. □ 

Table 1. Existence conditions for equilibrium points of Hi 

Mode Equilibrium Existence condition Label 

9i V*D = 0, v*N = 0 0 < ho A MJV < fojv dead cell 

92 vh =  %£,VN=0 0 > hn A UN < hN differentiated cell 

93 vh=0,v*N=
Rf -f^ <hDAuN>hN undifferentiated cell 

94 ,.*   _ Rp   .,*   _ "jy -T^ > hD AuN > hN "confused" cell 
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Note from Table 1 that the existence of equilibria can be directly influenced only 
through manipulating ho, since uN is an external input over which the cell has 
no direct control. Another important observation is that the constraints on hr> 
are mutually exclusive for modes (qi,q2) and (g3,g4). From the biological point 
of view, a dead (no proteins being produced) or confused (both proteins are 
being produced) steady state should be excluded from the model. By restricting 
the switching threshold hD : -f^ < hD < 0, we can eliminate the equilibria for 
modes qi and q4. This ensures that the cell can only converge to a differentiated 
or undifferentiated steady state depending on the environment (acting through 
uN). 

In the following, recall that O means "eventually". 

Proposition 2 (Reachability and convergence of Hi). If 0(uN < hN) V 
0(ujv > h^r), then H\ converges to an equilibrium in either mode q2 or mode 
93- 

Proof. We first construct the pruned transition diagram by eliminating from 
the full transition diagram of Fig. 3(a) the transitions for each model which are 
never enabled. For example, in mode q2, Notch protein concentration vN is ex- 
ponentially decaying and the invariant implies -vN > hD. Hence the transitions 
R\ (?2, {UD < hD A uN < hN}) € qi x IR2 and Rx (q2, {uD < hD A uN > hN}) € 
93 x 1R are never enabled because the condition UD(= -WJV) < ho is always 
false, where hD is a given negative constant. Repeating this across all qt, the 
pruned transition map is given by: 

Ri: 

Ri (<II,{
U

D 

■Ri (<7i, {UD 

Rl (ll,{uD 
Ri (q2,{uD 
Ri (q3,{uD 
Ri(q4,{uD 
Ri (q4,{uD 
Ri(q4,{uD 

>hD 

< hD 

>hD 

>hD 

< hD 

< hD 

>hD 

< hD 

A uN < hN}) €q2xTR2 

A uN > hN}) e q3 x IR2 

A«jv> hN}) G qA x IR2 

AWJV > hN}) e qA x IR
2 

AUJV < hN}) e qx x IR2 

A uN < hN}) e qi x IR2 

AuN < hN}) eq2xM2 

AuN > hN}) £ g3 x IR2, 

The transition diagram drawn in Fig. 6(a) represents this pruned transition 
diagram, and reachability and convergence can be deduced by tracing executions 
through it. We analyze the case in which after finite time the boundary condition 
UN either always stays less than hN or always stays greater than or equal to 
hN. The continuous dynamics of Hi is exponentially stable and will converge 
to the equilibrium in mode q2 or mode q3 depending on whether UN < hN or 
uN > hN, respectively, as shown by the phase portraits given in Fig. 5. Note 
that the phase portraits show that the natural tendency for an isolated cell in 
vacuo is to become differentiated. D 

When the environment is time-varying with variation outside bounds on h^, 
there is no guarantee of global convergence to a particular equilibrium. Since 
there is no equilibrium common to both phase portraits when uN < hN and 
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Fig. 5.   Phase portrait for a single cell hybrid automaton 

UN > h?j, by varying M/V the environment can force the system out of an equi- 
librium point. A particularly diabolic environment could keep the automaton 
cycling through the modes indefinitely. For example, from Fig. 6(a) we can 
identify the cyclic sub-graph • • • ->• qi -> qi —> <?4 -> <?3 -> q\ —> • • • which 
the environment might force the automaton to take for an indefinite interval of 
time. The reason for this behavior lies in the reductionism involved in the model. 
By isolating the cell from a larger system we have made it reactive to external 
inputs but removed its ability to influence the environment. Given that the en- 
vironment is largely made up of cells like itself, the lack of two-way signaling 
clearly hampers analysis. If more cells are explicitly included in the model, as we 
shall see in subsequent sections, the behavior of the cells are more predictable 
and can be shown to be globally stable. A more elegant solution is to try to 
model the environment as a "super-cell" which is reactive to external inputs and 
replicates, at a higher level of abstraction, the dynamics of a large population 
of cells. Another approach might be to eliminate the continuous dynamics alto- 
gether and work with a discrete transition system. Both of these solutions are 
subjects of ongoing and future research. 

4.2    Two Cell Hybrid Automaton 

Proposition 3 (Existence of equilibria of i^)- Existence of equilibria of 
the continuous dynamics of H2 depends on the switching thresholds ho and h^, 
and is given in Table 2 for zero boundary conditions. 

Proof. The proof is similar to that for the single cell automaton. Each equi- 
librium must satisfy its modal invariant which provides an algebraic test for 
existence: we solve for the equilibrium of each mode and substitute it into 
the modal invariant. For example, in mode q-j the equilibrium is given by 
[x\ = ^-,x*i =0,2:3 = 0,0:4 = j^-). We substitute this into the invariant for 
qi'- {%i > ^iv, —%2 >hn,xz< /ijv, —2:4 < hrj}. This gives the required condition 
for existence of the equilibrium in q-;: hjv < j0- A ftu <0A/IJV >0A/iß > — -^. 
This is performed for all 16 modes and the constraints are given in Table 2.    D 
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Table 2. Existence conditions for equilibrium points of iJ2 (the composition of two 
single-cell hybrid automata). Note: xx and x2 are Delta and Notch levels in cell 1 and 
Xi and Xi are Delta and Notch levels in cell 2 

Equilibrium 
-*   K*   „*   _* 

X2'*,VX4 

Existence condition 

91 

92 

93 

94 

97 

98 

99 

910 

911 

912 

913 

914 

915 

916 

0, 0, 0,0 

o,o, £a,o 
0,0,0,%*. 

RD     %N 

■N 
0, 0, 

^0,0 

^E-,0,^2.,0 

£E.,O,O,>L 
AX? AAf 

.5l>.,o, *£.,*£. 
A£>      _ XD     XN 

o,^v,o,o 
A/\T 

o,5a>,o 
o, ZlL,o,^- \N Ajy 

Aw    An    A;v 

4' " A7V 
RN     RL 

hN  > 0 A hD  > 0 

hN  > 0 A h       -"•■        -     ß 
hD   >  0 A h^-   >   —2-  , 

^AT   < 0 A hD   >  0 A hN   >  0 A h 

-r—-  A hn < 0 
Ar) u ~ 

AT  >  x^ A /*£>  < 0 A hw  > 0 A hD > 0 

•JV >  xf?" A,lD <» 

hjv  < 0 A hD  > 0 
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i^r  > 0 A hD   >  - j-£L A h^r  < 0 A hD  > 0 
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»<0MiD> 

hjy  < 0 A h R 

ftjV 

l>l»<»AI»D>-sf 
0 A£D > -£* A k„ < £fl. A „D < - «Ä. 

>X§-A''D<-xS-A',JV<0A/1D>0 

£D    £w    An 

^J2 AW      An  '   Ajy 

ÄAkj,   <   ^ß 

'D > 0 

A hD  < 0 

A hD  ^  — X^" A hN  < 0 A /i£,  > 
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-An        v -     \N 

AJV 

unsatisfiable 

unsatisfiable 

unsatisfiable 

unsatisfiable 

unsatisfiable 

unsatisfiable 

unsatisfiable 

unsatisfiable 

unsatisfiable 

unsatisfiable 

It can be seen that 10 out of the 16 equilibria cannot exist because the associated 
constraints on hD and hN are unsatisfiable. In addition, the constraints are 
mutually exclusive for all except the equilibria for modes q7 and qw. These 
equilibria represent one differentiated and one undifferentiated cell exactly and 
are inseparable due to symmetry. Hence, if the thresholds are selected such that 
the equilibria in q7 and qw exist, all other equilibrium points are unreachable. 
The constraints so chosen are given by, 

hD, hN : --r-^ </JO<0A0</JJV<-^ 
*N ÄD 

An analysis of the automaton H2 was done regarding the effect of bound- 
ary conditions on the reachable equilibria. Using the same equilibrium analysis 
methods used in previous sections it was determined that the set of reachable 
equilibria depend critically on the boundary conditions, i.e. levels of protein con- 
centration in the environment. If the switching thresholds hD and hN are chosen 
so as to give a biologically consistent equilibrium for zero boundary conditions, 
then some interesting results were observed. If the Delta protein boundary condi- 
tions for both cells were below the chosen hN value, then the automaton evolves 
as if the cells were in vacuo. However, if any one of the neighboring Delta levels 
exceeds the chosen hN then the automaton admits only one reachable equilib- 
rium which is that in which the cell next to the high Delta boundary condition 
becomes undifferentiated and the other cell becomes differentiated. However, if 
both boundary conditions have high Delta level then H2 has only one reachable 
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equilibrium which is that in which both cells have high Notch and low Delta 
level, i.e. both cells are undifferentiated. This is consistent with the patterns 
observed in simulations. 

Proposition 4 (Existence of Zeno state). For the hybrid automaton Hi, all 
executions with Init2 = Qi~x {-^2 € 1R4 : x\ = x3,x2 = £4} are Zeno executions 

and (q,x:q = qie,x = [ftjv   — hu /ijv   — ho]   ) is a Zeno state. 

We prove that the state is Zeno by computing the execution of the automaton 
with the given initial states and show that it is a cyclic transition (•••-» <h -» 
<?6 —> 9i6 —>• <Zn -» «fi —► ■ • •) with infinite transitions in finite time. The proof has 
to be omitted due to space constraints. Note that the Zeno state is a vestige of 
the mathematical model and not observable in nature due to noise. Interestingly, 
this Zeno state corresponds to a saddle equilibrium in the nonlinear model. 

Proposition 5 (Reachability and convergence of Hi). For zero boundary 
conditions, all executions, except the Zeno execution, of the two cell hybrid au- 
tomaton Hi eventually converge to the equilibrium in mode q-j or mode qio- 

Proof. The construction of the pruned transition diagram follows the same pro- 
cedure as that for the single cell automaton. Due to space constraints the explicit 
pruning procedure is omitted. Figure 6(b) gives the transition map for Hi. Con- 
vergence is deduced by tracing executions through the map. The equilibrium- 
containing modes are invariant under continuous flow and hence have no escape 
transitions (modes q7 and qio in Fig. 6(b)). It can be shown that all executions 
(except the Zeno execution indicated by the dashed grey transitions in Fig. 6(b)) 
reach one of the two equilibria. Thus the automaton is bistable. Note: the proof 
can be extended to include boundary conditions by constructing the pruned 
transition maps for those cases. O 
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(a) Pruned transition diagram for a sin- (b) Transition diagram for two cell äu- 
gle cell hybrid automaton tomaton with zero boundary conditions. 

Fig. 6. Pruned transition diagrams 



244 R. Ghosh and C.J. Tomlin 

4.3    N X N Cell Hybrid Automaton 

While we performed the equilibrium and reachability analysis for the single and 
two-cell networks by hand (by enumerating the vector fields over the discrete 
modes), as we analyze larger networks of cells this becomes difficult. However, 
because the continuous dynamics are affine, time-invariant, with diagonal A ma- 
trices (which admit analytic solutions), the equilibrium and reachability analysis 
may be automated. We are currently designing a "model checker" based on these 
principles for this specialized system, to automate these analyses. 

5    Comparison with Nonlinear Model 

The steady state behavior of the hybrid model and the nonlinear models are 
similar in simulation. To establish our model on a firmer base it is necessary to 
compare it with one of the benchmark nonlinear models, that developed by Col- 
lier et al[13]. The nonlinear model uses nonlinear differential equations coupled 
through sigmoid switching functions. Collier proves convergence of the model by 
determining the equilibria of the system and then using a set of "instantaneous" 
phase portrait projections showing the flow field around those equilibria. Figure 
7(a) displays the flow field in the di (Delta of cell l)-d2(Delta of cell 2)-plane 
with two sinks and a saddle point. The hybrid model successfully captures this 
phase portrait, as shown in Fig. 7(b), with an exception: the saddle point is con- 
verted to a Zeno state. The hybrid model similarly approximates the dynamics 
of the nonlinear model in all projections of the state space. Hence this model 
is as expressive in simulation as the benchmark nonlinear model, yet it admits 
simpler analysis. 

(a) Nonlinear model (b) Hybrid systems model 

Fig. 7. Phase plane projections for two cell system showing equilibria. Labels di and 
di are the Delta protein concentrations in cell 1 and 2 respectively. 
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6    Conclusion 

The research presented in this paper gives a glimpse of the immense opportunities 
for hybrid modeling in biological systems. It presents work done to systemati- 
cally model a well-known intercellular signaling pathway with some success. The 
faithful replication of biological events is demonstrated through simulation and 
the validity of the model is emphasized by comparison to a benchmark nonlinear 
model. The preliminary analysis of the model is promising and has resulted in 
the identification of the threshold parameters as an important and direct arbiter 
of cell fate, which might suggest possible experiments in the future. 

Future work will concentrate on the development of an automated tool for 
equilibrium and convergence analysis using the specific geometric properties of 
this system, which we anticipate will lead to the development of a mathemat- 
ically correct discrete abstraction of the hybrid model. The first step in this 
direction has been taken by mapping out the transition diagram for the two cell 
automata. The next is to convert it to a pure finite automata. If that analysis is 
extended to higher dimensional systems, we may reap enormous computational 
and analytical benefits without losing sight of the underlying biology. 

We are hopeful that these techniques will not only apply to the specific 
example presented here, but also to a wide range of systems in which protein 
growth and decay, and protein interaction, is the key to the development of the 
biological system. 
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Abstract. This paper presents a formulation and solution of a super- 
visory control problem for a class of hybrid systems in which threshold- 
crossing events in the continuous state space force discrete-state tran- 
sitions. The continuous dynamics are in turn determined by a discrete 
condition determined by the current discrete state of the system. The 
problem is to construct a supervisor that restricts the discrete-state tran- 
sitions in the hybrid system so that the possible sequences of threshold 
events are contained in a given set of sequences (the desired threshold 
event language of the closed-loop system). Formally, the hybrid system 
supervisor can be synthesized using the theory of supervisor synthesis for 
discrete event systems. This procedure is described, and a computational 
approach to solve the problem is illustrated with an example. 

1    Introduction 

Several types of control problems can be formulated for hybrid systems. In this 
paper, we consider the problem of synthesizing a supervisor that restricts the 
selection of the continuous dynamics in the hybrid system so that the sequence 
of output events (generated when the continuous state crosses specified thresh- 
olds) is contained within a given set of sequences (the desired threshold event 
language). This is a generalization of the problem considered in [1] where the hy- 
brid plant contained only continuous-state dynamics. Similar supervisory control 
problems were also considered in [2,3] for systems with discrete-time continuous- 
state dynamics, and in [4] for synthesis of discrete event supervisors for contin- 
uous and discrete time systems. In this paper, the hybrid plant to be controlled 
includes both continuous-state and discrete-state dynamics in continuous time. 

The presentation of this paper is organized as follows. The problem is de- 
veloped in Sect. 2 using the formalism of condition/event (C/E) systems [5]. 
C/E systems provide a framework for defining continuous-time systems as the 
interconnection of subsystems with discrete-valued input and output signals. 
Condition signals are piecewise constant, whereas event signals assume non-null 

M.D. Di Benedetto, A. Sangiovanni-Vincentelli (Eds.): HSCC 2001, LNCS 2034, pp. 247-260, 2001. 
(c) Springer-Verlag Berlin Heidelberg 2001 
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values only at isolated instants of time. The language for a C/E system is de- 
fined by the sequences of the values of the input-output signals recorded at their 
points of discontinuity. 

Section 3 describes how the supervisor synthesis problem for the hybrid sys- 
tem can be solved, at least formally, using the theory of supervisory control 
for discrete event systems (DESs). The difficulty in computing and constructing 
the supervisor arises from the fact that in general there may not be finite-state 
generators for languages derived from C/E systems. This problem can be dealt 
with using a finite-state generator for conservative (outer) approximations to the 
language for the DES plant, as described in Sect. 4. The procedure is illustrated 
by an example in Sect. 5. The concluding section summarizes the contribution 
of this paper. 

2    Problem Formulation 

Consider the class of hybrid systems illustrated by Fig. 1. The hybrid plant H 
is composed by interconnection of a continuous dynamic subsystem Hc and a 
discrete dynamic subsystem Hd- The input signal to the continuous subsystem 

Discrete 
Dynamic 

n 
nd 

Continuous 
Dynamic 

y_ 

U 

Zero 
Detector V^ 

Fig. 1. Hybrid plant. 

1-LC is a piecewise constant, right continuous, condition signal «(•), taking on 
values on a finite set of conditions U [5]. The space of all condition signals u(-) 
for [0, oo) is denoted by U. The continuous dynamic is defined by the continuous 
state trajectory x(-) that evolves in X = Rn. At each instant t, the continuous 
state trajectory satisfies the differential equation x(t) = fu(t)(x(t)) selected by 

the input condition u(t), where /„:#"-» Rn for all u€U. The set of possible 
initial values of the state trajectory is XQ C Rn. The set of all possible trajec- 
tories for a given input signal u(-) 6W starting from any state in a set X' C X 
is denoted by XU^(X'). The function g : X -> Rm generates the continuous 
output signal y(-) from the state trajectory. Each component of y(-) is compared 
to a threshold defined by a threshold vector T £ Rm, and the event output signal 
is generated by a zero detector, defined for each component of the output signal 
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y(-) as v(0) = VQ and for t > 0 and 1 < i < m: 

m _ / 1. !/*(*) - T, = 0 A (3Z\ > 0)(V(J € (0, A)) : y4(t - S) - Tt < 0 
WiW_ \0, otherwise V ; 

For each instant where any v(t) ^ 0 it is said that a threshold event occurs, oth- 
erwise it is assumed a null event occurrence. Let VQ be the initialization event, an 
event which occurs only once at t = 0, and is associated to the nondeterministic 
choice of the initial state x(0). Thus, the threshold event signal v(-) assumes 
values over the set V = {0, l}m U {vo} at isolated points of time, and the space 
of all threshold event signals v(-) in [0, oo) is denoted by V. 

The input signal to Hc is determined by the discrete subsystem "Hd- The 
system Hd is a purely discrete dynamic system which maps nondeterministically 
event signals v(-) € V into condition signals u(-) € U. The feedback of event 
signals from %c to Hd models physical constraints of the continuous subsystem 
which restricts the range of allowable input signals. It is assumed that lid can 
change the input signal if and only if a threshold event is observed. It is also 
assumed that the feedback on Fig. 1 doesn't lead to chattering, which means 
that on any finite interval of time there are at most a finite number of threshold 
events. 

The hybrid plant is modeled as a Condition/Event (C/E) system in the sense 
of [5] as follows. The continuous subsystem Hc is defined as a subset of V <g> U, 
the time synchronous cross product of V and U, the set of all pairs (v(-),u(-)) 
such that discontinuities in u(-) occur only at instants when v(-) is nonzero. The 
pair (v(-),u(-)) G Hc if and only if there exists a state trajectory x(-) £ XU^(X0) 
such that the resulting event signal is v(-). 

We introduce the discrete trace representation for Tic as the 4-tuple 
(W, f, h, WQ) described as follows. A piecewise constant, right continuous, condi- 
tion signal w(-) taking on values on W = Rn, and with initial values in Wo = -^o, 
records the value of the corresponding state trajectory at instants of discontinu- 
ity in (v(-),u(-)) e He- The transition function / : W x U -> W for w(-) is such 
that 

f(w(t-),u(n) = 

' $„(t-)(£, w(t  )) if for some i, 1 < i < m 
9i($u(t-)(t,w{t-)))-Ti = 0 and 
(3A>0)(V5£(0,A)): (2) 
&(#„(«-)(«-W)))-i;<o 

w(t~) otherwise. 

where <Pu(t, x(t0)) is the solution of the differential equation x = fu(x) for u eU, 
t > t0 and initial value x(t0). The event output function h : W x W -> V is 
defined as 

v(t) = h(w(t-),w(t)) (3) 

which outputs the corresponding threshold event at the instant of the state 
transition of w(-), and is null at any other time. This discrete trace model is 
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similar to the discrete state model of [5] except for the existence of an infinite 
and uncountable set of states. 

Similarly, V.d C V®W, and its discrete state model is (Q,5,cj),q0), where Q 
is the discrete state set, countable and possibly infinite, q0 = g(0~) is the initial 
state, and 

q(t) G S(q(t-),v(t)) 
u(t) = <f>(q(t)) (4) 

are the state transition and condition output functions [5]. 
The hybrid plant U C V ® U is obtained by the cascade and feedback con- 

nection of i-Ld and %c following [5]. 
Consider now the supervisory control scheme for the hybrid plant shown in 

Fig. 2. The supervisor S applies a control input to the discrete subsystem Ud 

TTT: 

nc -V- 

Fig. 2. Supervisory Control scheme for Hybrid Plant. 

of the hybrid plant % to restrict the range of possible input conditions to the 
continuous subsystem %c. The control input to the controlled discrete subsystem 
is an event signal m(-) G M taking on values on M = 2U, and is interpreted 
as the set of allowed conditions to be chosen by %d. It is assumed that the 
supervisor applies a control input if and only if a threshold event is observed, 
which makes the discontinuities in m(-) and v(-) synchronous. At the occurrence 
of the event v(t) £ V, a control input m(t) C U is applied by the supervisor, and 
if T-Ld is at state q{t~), the set of next possible input conditions is constrained 
to m(t) n cß(6(q(t-),v(t))). It is assumed that any input condition to Ud can be 
disabled, but the supervisor control action cannot disable all possible conditions 
for a given event v. 

The controlled discrete subsystem is now defined as Hd Q V® M <8>U, where 
the only difference in the discrete state model from the uncontrolled version is 
the transition function, defined as: 

6(q(t-),v(t),m(t)) = {q(t) G S(q(t-),v(t)) : <f>(q(t)) G m(t)} (5) 

The controlled hybrid plant is also given byWCV®M®M obtained by 
interconnection of Uc and Wd, which incorporates the influence of m in H. 
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The C/E supervisor is a deterministic C/E system S C\> ®M®U, whose 
discrete state model is (Z,£,il),z0), where Z is the discrete state set of the su- 
pervisor, z0 = z(0~) is the initial state, and 

z(t)=£(z(t-),u(t-),v(t)) (6) 

m(t)=iP(z(t-),z(t)) W 

are the state transition and event output functions. 
The closed loop C/E system is S/H C V, built by cascade and feedback 

connection of S and V., following [5]. 
In order to introduce our supervisory control problem, we express the 

discrete behavior of the systems in terms of a language. Given the C/E system 
V the language of V, denoted by £(£>), is the prefix closure over the finite 
length strings of records of the values of the input/output signals at the point 
of discontinuities. We consider the following problem. 

Supervisor Synthesis for Hybrid Systems (SSHS). Given U (controlled 
hybrid plant) and A,E CV* (specifications), find a C/E supervisor S such that 
A C C{S/U) C E. 

3    DES Approach 

In this section, the SSHS is translated to a purely discrete event control frame- 
work, and a solution is proposed. The procedure of this section is purely formal 
and conceptual, since the state space of the models may be infinite. Finite-state 
practical approaches will be subject of the next section. 

The DES model for the hybrid plant is a prefix closed language L and a 
control structure T. The language is defined as L = C(fi.) C(Fx U)*. The 
control structure is a map r : L ->• 22V*U, such that for all s G L, T(s) C 2VxU, 
and 7 G T(s) is such that Vv G VL{s) = {v G V : (3u G U)s o vu G L}, it is 
always true that 0 C {u G U : vu G 7} C {u G U : s o vu G L}. The control 
structure captures the idea that for each active event v G V the supervisor may 
enable any nonempty possibility of u G U that can be selected by the discrete 
subsystem for a give event v G V. The following proposition states the logical 
equivalence of the controlled hybrid plant and the DES model. 

Proposition 1. The DES model for the hybrid plant (L, T) and the C/E model 
H QV <S> M.®U are logically equivalent, in the sense that: 

1. Vu> = vxmiui o ... o vkmkuk G (V x M x U)*, w G C{U), if and only if 
s = v\Ui o ... o vkuk G L, and 

2. Vw = vimiui o ... o vkmkuk G C(H) and a = vmu eV x M xU, woa £ 
C(U) if and only if for s = v\u^ o ... o vkuk £ L, 3j £ T(s) such that 
m = {u £U : vu G 7}. 

The DES supervisor for the hybrid plant is a map / : L ->■ 2VxU, such 
that for s G L, f(s) G JT(s). The DES supervisor is represented by a state 
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machine F = (P,V x U,p,p0) where P is the set of states, p0 is the initial 
state, and the transition function p : P x V x U -+ P is such that for p G P 
and a G V x U, p(p, a) is defined if and only if a = f(s) and s G (V x £/)* 
is such that p(p0,s) = p, where ,3 stands for the extension of the transition 
function to strings in (V x U)*. Thus, the supervisor control action is implicit 
in the machine transitions. We introduce a formal procedure to get the C/E 
supervisor S, given by (Z,£,<4>,z0), logically equivalent to the DES supervisor. 
The procedure exploits the state machine representation of the C/E supervisor, 
given by {{Z x U) U {z0},V x M x U,£D,z0), where the transition function 
tD : ((Zx U)U{z0}) x(VxMxU)^ ((ZxU)l){z0}) is such that L(S) = £(S) 
[5]. 

Consider the state machines representing the DES supervisor and the corre- 
sponding C/E supervisor in Fig. 3. Assume that each state in the DES supervisor 

Fig. 3. Sample correspondence between DES supervisor (right) and C/E supervisor 

has a unique value for the input condition signal associated with it on p's incom- 
ing arcs in the DES supervisor, such that for a DES state p, let u(p) denote such 
value. Each state z in the C/E supervisor is associated with a set of states in 
the DES supervisor, let's denote the set by P(z). Let V(p) be the set of events 
on arcs leaving state p, and for v € V(p), let U(v,p) be the set of all condition 
values on the arcs labeled vu. 

It can be proved that the previous algorithm terminates in a finite number 
of steps, and the following proposition states the logical equivalence of the DES 
supervisor and C/E supervisor. 

Proposition 2. The C/E supervisor S C V ® M®U obtained by Alg. 1 is 
logically equivalent to the DES supervisor f in the sense that Vs = vim o ... o 
vkuk G (V x U)* and a = vu € V xU, a G f(s) if and only if 3w = ^mim o 
...ovkmkuk G {VxMxUy anda = vmu eVxMxU such thatwoa G £(<S) 
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Algorithm 1 Recursion to construct a C/E supervisor from the DES supervisor 

Z ir- {zo}; P(Zo)«- {po}; Z'^Z 
£ = 0; ^ <_ 0; {Sets to store the state transition and output information} 

while Z' ^ 0 do 
Select and remove z from Z' 
for p e P(z) Ave V(p) do 

m <— U(p,v); 
P' <— Up(p, vu), u €m; {Set of states reached by arcs with v} 
if For all z € Z, P' ^ P{z) then 

Add new state z' to Z and Z' with P(z') = P' 
end if 
Select z' from Z such that P(z') = P' 
£(z,u{p),v) <-z'j 
ijj(z,z') <— m; 

end for 
end while   

The closed behavior in the DES framework Lf C V* is defined recursively 

as: 

1. e G Z/, and 
2. Wt = vi o ... o vk G V"* and Vu G V, t o v £ Lf if and only if t G Lf A 

3s = wiui o ... owfcufc G (V x U)* and 3cr = vu G V^ x C/ such that soa £ L 

and cr G f(s). 

Proposition 3. V = C(S/H). 

Proposition 3 indicates that the SSHS can be solved by solving an equivalent 

DES supervisory control problem. 

SCP Given a hybrid plant with control input represented by a pair (L, f) and 
A,E CV* (specification languages), find a supervisor / such that AC Lf CE. 

Given the language LC(VxU)* and the language ECV*,E is said to be 
controllable with respect to L, or just controllable, if for alH = v\ o... o vk G E, 
exists s = v\Ui o ... o VkUk G L, where U\ o ... o uk G U*, such that 

VE{t) = VL(s) (7) 

A threshold crossing event language is controllable if the plant can follow its 
prefix by applying determined sequences of conditions. This definition of con- 
trollable language is consistent with the existence of a control structure T as 
defined above. For example, consider the language L = [v\Ui o (v2ui + v2u3)} + 
[viu2 o (v3ui + v2u2)]. The language Ei=vio v2 is controllable with respect L 

and the language E2 = «i ° v3 is not controllable with respect to L. 
Since it can be proved that the control structure T for L is closed for the 

union for each s G L, then for E CV*, the class of controllable sublanguages 



254        J.M.E. Gonzalez et al. 

C(E) is nonempty and closed for the union, and has a unique supremal element, 
the maximal controllable language sup C(E). Thus, the following results bring 
a formal solution for the SCP [6]. 

Theorem 1. Given a hybrid plant with control input represented by (L, T) and 
a specification language E C V*, there is a supervisor f such that Lf = E if 
and only if E is controllable and prefix closed. 

Theorem 2. SCP is solvable if and only if sup C(E) D A. 

The supervisor which implements sup C{E) is the optimal solution of the 
SCP, in the sense of being minimally restrictive. Finally, from the development 
of this section, we state a solution for the SSHS as follows. 

Corollary 1. The SSHS is solvable if and only if the equivalent SCP is solv- 
able. Furthermore, given the DES supervisor f as a solution for SCP, the C/E 
supervisor S obtained by Alg. 1 is the corresponding solution for the SSHS. 

4    Finite State Approximations for the HS DES Plant 

In this section, finite state approximations are proposed to find a computable 
solution for the SSHS. 

Suppose there is a finite state machine H describing the logical behavior of 
the hybrid plant % i.e., L(H) C (V x U)*. Then, for a specification language 
E C V*, the language sup C(E) can be computed in a finite set of steps by an 
algorithm of polynomial complexity in the number of states of both H and the 
corresponding representation for E [6]. 

The state space of the state machine H is possibly infinite. This is one of 
the main problems in hybrid systems theory since, in general, the convergence of 
algorithms involving state models is only guaranteed over finite spaces. Recent 
approaches, e.g. [7], propose the use of finite conservative approximations for the 
behavior of the hybrid system to solve verification problems. In the context of 
synthesis of supervisors Cury et al. [1,8] show that, given a conservative (finite) 
approximation H' of H, i.e., such that L{H) C L(H'), it is verified L(H')f C 
E then also holds L(H)f C /. In other words, a supervisor solution for the 
approximation H', is also a solution for the original problem, since the desired 
containment relation L(H)f C E is preserved. Thus, a supervisor solution for 
the approximation H', is also a solution for the original problem. 

Given a conservative approximation H' of the behavior of a plant H with in- 
finite state space, and a language specifying the target behavior E, the synthesis 
procedure is applied over A and E. If there is no solution for this problem this 
means that the approximation H' is too coarse or that the specification E is too 
restrictive (it can not be satisfied no matter how accurate the approximation is) 
and needs to be relaxed. Assuming the specification can be met, a refinement of 
the approximation is indicated in [8], such that another conservative approxima- 
tion can be computed and the process can be repeated repeated until a solution 
is found. 
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5    Example 

This section presents an example of the class of hybrid systems under consider- 
ation. By this example, the computational approach for the supervisor synthesis 
for hybrid systems will be illustrated. 

Fig. 4. Trains example. 

The system consists of two trains over cyclic tracks sharing a piece of track 
(Fig. 4). The trains can travel at two speeds: fast or slow. There are sensors over 
the tracks that register the crossing of the trains at the locations A, B, C and D 
which, in turn, correspond to the events associated to train 1; similarly, E, F and 
G are the events indicating crossings of train 2. At the instant of the occurrence 
of any event, each train can accept speed change commands. The slow mode can 
only be issued between the locations C-D (for train 1) and G-E (for train 2), 
as indicated by the gray shade in Fig. 4. The problem is to guarantee mutual 
exclusion on the shared track, between the locations A-B and E-F. 

In order to solve this supervisory control problem, the following procedure 
was applied, whose steps are detailed in the following. 

1. Build the Hybrid System model in CheckMate; 
2. Generation of the finite state machine approximation by CheckMate, and 
3. Synthesis of the Supervisor. 

We first model the open-loop hybrid system using CheckMate. CheckMate is 
a verification tool for event-driven hybrid systems for Matlab/Simulink environ- 
ment, recently developed at Carnegie Mellon University[7]. The resulting model 
is illustrated in figure 5. 

The middle box of figure 5, named trains, corresponds to a Switched Con- 
tinuous Block (SCSB) modeling the continuous subsystem. The state vector x 
models the position of the trains, the measured distances over the track to pre- 
defined origins set to D and G respectively. The continuous dynamic is defined, 
for the input signal u, as satisfying x = fu{x) for x £ R2. The input signal is 
a multiplexed vector u with four signals, each one assuming a positive integer 
value associated to certain speed mode of operation. In this 4-tuple, two signals 
take values on the modes of operation fast and slow; the other two signals take 
values on the up and down modes. The later, are two artificial modes introduced 
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Fig. 5. CheckMate model of the open-loop hybrid system. 

for modeling the position variable in such a manner that it assumes values only 
in certain range [0, max] without introducing jumps in the trajectory. For a given 
position value of maximal position, max, we associate to each component of the 
position vector a positive (up) mode in the range [0, max/2] and a negative 
(down) mode in the range [max/2, max]. The switching function which returns 
the derivative of the state vector for each values of u is specified in a m-file that 
basically associates to each values of the 4-tuple an specific clock dynamic, see 
[7], given by x = [±Vl ±v2]T, where Vl,v2 G {vfast,vslow} and vfast and vsiow 

are the possible trains' speeds. 

The seven boxes aligned at the right of the SCSB in Fig. 5 correspond to 
Polyhedral Threshold Blocks (PTHBs). Each PTHB represents a convex poly- 
hedron parameterized by the matrix pair (C,d). The output of the block is a 
boolean signal that indicates whether the continuous state vector x (the block 
input signal) lies within the polyhedron defined by Cx < d. In this example, 
each convex polyhedron defines just a line restriction associated to each position 
of the sensors over the tracks. As a consequence, the continuous space is divided 
in regions. For instance, considering x = [xx x2]T the polyhedron defined by 
the pair (C,d), where C = [-1 0] and D = [-A 0]T, defines the line constraint 
-xx < -A or xi > A. For this example of PTHB, the output signal is true only 
for values xx > A. Observe that each PTHB of the figure is labeled according to 
this criterion. 

The four boxes aligned at the left of Fig. 5 correspond to Finite State Machine 
Blocks (FSMB) modeling the discrete subsystem. The input events of these 
blocks are multiplexed signals with the events from the PTHBs. The triggering 
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criterion adopted for all events is rising edge. The two upper FSMBs represent 
the up/down logic. In particular, we model the behavior of the system in such a 
way that the occurrence of event D (G) forces the up mode, turns positive the 
variable related to the position of train 1 (2). Also, the occurrence of event B (F) 
forces the down mode, i.e., turns negative the variable related to the position of 
train 1 (2). For convenience, locations B and F are also associated to the middle 
of the trajectory of each train. Figure 6 shows two FSMBs representing up/down 
logic for each train. 

A: li 
up 

entry: q = 3 

down 

entry: q =1 

down 

entry: q = 1 

G f 
F 

up 

^ 

Fig. 6. FSMBs representing the up/down logic of each train. 

In Figure 7 the two FSMBs represent a nondeterministic logic for the 
slow/fast modes. Note, for instance, that when event C (G) happens there is 
a nondeterministic choice of the next mode, fast or slow, for train 1 (2). At the 
other hand the occurrence of event D (E) forces the retaking of the fast mode 
of train 1 (2). The occurrence of other events leads to nondeterministic choices. 
Note that the representation of the discrete part of the hybrid system through 
four FSMBs simplifies enormously and results in a more intuitive model. 

I start    r~ 

fast 

entry: q = 3 

slow 

entry: q = 2 

<D _tx 
fast 

entry: q = ! 

slow 

entry: q = 2 

^ 

W^l in-fast 

entry: q =1 
in-fast 

entry: q =1 

^ 

Fig. 7. FSMBs representing the slow/fast logic of each train. 

The model in CheckMate can be simulated according to the rules of Matlab's 
Simulink environment. For simulation purposes, we set up the following values 
to the hybrid plant model: Sensors: xi = 20m (A), xx = 40m (B), xt = 10m 
(C), Xi = 0m (D); x2 = 30m (E), x2 = 50m (F) and x2 = 0m (G); Modes 
fast/slow: 1.0m/s and 0.2m/s; and Initial Conditions: Train 1 at x\ = 0m 
and Train 2 at x2 = 40m, in down mode. Note that the values assigned to 
the sensors are consistent with the up/down modes of the position variable. 
Not considering these artificial modes results in an extended model, with sensors 
values given by xi = 20m (A), x1 = 40m (B), xx = 70m (C), xx = 80(0)m (D); 
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x2 = 30m (E), x2 = 50m (F) and x2 = 100(0)m (G). The extended model is 
useful for visualization of simulation results. For instance, Fig. 9 shows in the 
extended model some results for a simulation time t = 450s and under the above 
parameters, where the possibility of train collision is clearly pointed. Obviously, 
in this case the order of events causing nondeterminism was defined so that the 
fast mode was forced to be the preferred choice. 

The calculation of a finite state approximation for the hybrid plant is ac- 
complished by running a verification procedure in CheckMate. In the case of the 
trains example, after two iterations of approximation and refinement, a finite 
state machine with 817 states and 936 transitions is obtained. The approxi- 
mation obtained in CheckMate must be treated before the application of the 
supervisor synthesis procedure, since it is nondeterministic, non minimal, and 
has spurious transitions. A set of basic functions of a C++ Library for manipu- 
lation of state machines called Grail [9] was extended and applied for it. A finite 
state deterministic and minimal machine representing the system of trains with 
44 states and 92 transitions is obtained for the example. 

The specification of the desired mutual exclusion (shown in Fig. 8) simply 
states that the trains are not allowed to enter the shared piece of track at the 
same time. This specification is given over the output alphabet V. 

Fig. 8. Specification of the desired behavior. 

By application of supervisor synthesis procedure described in [6], imple- 
mented also in a Grail function, a supervisor with 18 states and 27 transitions 
is found. The resulting supervisor represents the DES supervisor of Sec. 3, and 
by application of Alg. 1, the C/E supervisor can be found. 

After the succeeding synthesis of the supervisor for the hybrid system, it is 
possible to simulate the closed loop behavior in CheckMate. The C/E supervisor, 
as defined in Sec. 2, cannot be implemented directly in CheckMate due to the 
assumption of synchronicity of signals that is not respected in the simulation 
of two interconnected FSMB. Substitution of the original discrete subsystem by 
the synthesized supervisor would be a valid simulation option, if the synthesis 
procedure had not been based in approximations of the plant, since approxima- 
tions include additional sequences in the original and closed-loop system. The 
synchronous composition of supervisor and discrete subsystem, connected to the 
continuous subsystem is, in general, a correct simulation option, due to the syn- 
chronicity assumption of Sec. 2. Figure 9 shows a simulation case for the closed 
loop of last case, putting in evidence the speed changes (fast to slow mode) of 
train 1 in order to avoid collisions. 
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Fig. 9. Sample simulation of the open-loop and closed-loop system. 

6    Discussion 

This paper presents the solution to a class of supervisory control problems for 
hybrid systems with both continuous and discrete dynamics. The approach is 
illustrated with an in example which, to our knowledge, is the first published ex- 
ample of the computation of a discrete-state supervisor directly from a computer 

model of a hybrid system. 
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Abstract. A necessary and sufficient condition for the reachability of 
a piecewise-linear hybrid system is formulated in terms of reachability 
of a finite-state discrete-event system and of a finite family of affine 
systems on a polyhedral set. As a subproblem, the reachability of an 
affine system on a polytope is considered, with the control objective of 
reaching a particular facet of the polytope. If the polytope is a simplex, 
necessary and sufficient conditions for the solvability of this problem by 
affine state feedback are described. If the polytope is a multi-dimensional 
rectangle, then a solution is obtained using continuous piecewise-affine 
state feedback. 

Keywords and Phrases: Piecewise-linear hybrid systems, polyhedral 
set, simplex, multi-dimensional rectangle, facet, reachability, control law. 

1    Introduction 

The purpose of this paper is to present results on the reachability and control 
synthesis of piecewise-linear hybrid systems. 

Many engineering systems can in a first approximation be described by a 
piecewise-linear hybrid system. The computational and complexity issues of this 
class of systems seem comparatively simple. Therefore this class merits attention 
for the development of control theory. 

Hybrid systems have been investigated since the 1980's, see [5] for references. 
The class of piecewise-linear hybrid systems studied in this paper may be consid- 
ered as a subclass of the class of piecewise-linear systems, introduced by Sontag 
in [14] (see also [16]). Piecewise-linear hybrid systems are, in regard to the geom- 
etry of the spaces, based on polyhedral sets. The fact that polyhedral sets can be 
described by finite-dimensional parameters, makes these sets a suitable class of 
objects for control and system theory of hybrid systems. The class of piecewise- 
linear hybrid systems is therefore useful both because many engineering systems 
can be modelled by it and because of its mathematical properties. 
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Although control synthesis for hybrid systems has been investigated by many 
researchers (e.g. by S. Sastry and co-workers), it is fair to say that the current 
status of control theory for hybrid systems is far from satisfactory. No review 
of the available literature will be presented here. The reader is referred to the 
proceedings of workshops [17,12]. 

The results of the paper concern reachability of piecewise-linear hybrid sys- 
tems. First, the approach of [19] is used to show that reachability of a hybrid 
system is equivalent to reachability of a discrete-event system and of a family 
of continuous-space affine systems. The result is based on a natural decompo- 
sition of a hybrid system involving the concepts of arrival set, departure set, 
and of a discrete-event system for the switches from departure sets to arrival 
sets. Motivated by this result, the reachability problem for a continuous-space 
affine system is formulated as whether there exists a control law such that the 
closed-loop system reaches from an arbitrary initial state a particular facet of the 
polyhedral set, without reaching other facets first. Particular attention is payed 
to the situations, where the state set is a simplex or a multi-dimensional rect- 
angle. On a simplex, the solvability of the continuous-state reachability problem 
using affine state feedback is equivalent to the existence of a solution of a set of 
linear inequalities corresponding to input vectors at the vertices of the simplex. 
This solution is treated in full detail in a separate paper, see [7]; it is a nice 
application of linear system theory and of convex analysis. Reachability of affine 
systems on multi-dimensional rectangles can be handled similarly, provided that 
continuous piecewise-affine state feedback is allowed. The proof is based on the 
fact that any polytope admits a triangulation in terms of simplices. 

This paper is organized as follows. Section 2 contains a definition of a continu- 
ous-time piecewise-linear hybrid system and the formulation of the reachability 
problem. Concepts and a theorem on the reachability of a hybrid system are 
stated in Section 3. In Section 4 reachability and control of affine systems on 
simplices and multi-dimensional rectangles is considered. Conclusions are stated 
in Section 5. 

2    Problem Formulation 

In this section a definition of a piecewise-linear hybrid system is stated and the 
problem of reachability of such a system is formulated. 

Throughout the paper, the notion of polyhedral sets plays a prominent role. 
Polyhedral sets are subsets of JRN, (N e IN), described by a finite number of 
linear equalities and inequalities. A polyhedral set that is bounded is a polytope, 
and is characterized as the convex hull of a finite number of points: the vertices 
of the polytope. A facet of a polyhedral set PN c IR^ is the intersection of 
PN with a supporting hyperplane, such that the dimension of the intersection is 
N-l. For further terminology on polyhedral sets see [13,15,21]. 

Definition 2.1. A (time-invariant continuous-time) piecewise-linear hybrid sys- 
tem (PLHS) consists of an automaton {Q,EinU Ecd,f), in combination with a 
\Q\-tuple of affine systems (A(q),B(q),C(q),D(q),a(q),c(q)), (q G Q), interact- 
ing in the following way. 
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Given a mode q G Q, the continuous state xq evolves according to the affine 
differential equation 

xg(t) = A{q)xq(t) + B{q)u(t) + a(q), xg(t0) = x+, (1) 

y(t) = C(q)xq(t)+D(q)u(t) + c(q), 

with xq G Xq and u&U. The state set Xq and the input set U are assumed to be 
polyhedral sets. As soon as a discrete input event e G Ein is applied, or an event 
e G Ecd (i.e. an event generated by the continuous dynamics) occurs, because the 
continuous state has reached the guard Gq(e) C dXq, a discrete transition takes 
place according to the transition map f: 

ifx~_ = lirrvft xq- (s) G Gq-{e) or if e G Ein occurs, then 

q+ = f(q~,xq-,e). 

In the new discrete mode q+, the evolution of the new continuous state xq+ is 
described by differential equation (1), with q replaced by q+, and with initial value 
x+

+ determined by the affine reset map 

Z++ =Ar{q-,e,q+)x-_ +br(q-,e,q+). 

In order to make the system well defined, we assume that: 

1. At any fixed time only a finite number of discrete transitions can occur. 
2. On any finite interval only a finite number of discrete transitions can occur 

(non-Zenoness). 

In the definition of a PLHS the input set U and the state sets Xq C ]R ", 
(q G Q), are polyhedral sets. In Section 4 attention is first restricted to state 
sets that are simplices and later on multi-dimensional rectangles are considered. 

Control problems for hybrid systems require conditions for their solvability. A 
condition that is required for the solution of many such problems is that the sys- 
tem is reachable, according to the definition provided below. Before computing 
a control law one often determines whether the considered system is reachable, 
although in the approach of the present paper, checking reachability and con- 
struction of a control law may be combined. However, verification of reachability 
of a PLHS is theoretically and practically difficult, because of the extent of the 
external behavior of a PLHS and because of the complexity of computations for 
this class of systems. 

Definition 2.2.  Consider a PLHS. 

(a) The state (<?i,zqi,i) G Q x X is said to be reachable from the initial state 
(qo,xqofi) G Q x X if there exist two finite sequences, 

{{ti,ei) ETxEin\i = l,...,m}, {Ui : [U,ti+1) -» U\i = 1,... ,m}, 

such that the PLHS, starting at state {qo,xqofi) and with discrete and contin- 
uous input functions the sequences above, moves to state (qi,xqiti) G Q x X 
at time tm+i, or, stated differently, at time tm+i,q = <?i and xgi(tm+i) = 
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(b) The PLHS is said to be reachable from the initial state (q0,xqofi) GQ x X 
if every (quxqui) G Q x X is reachable from the initial state. 

Problem 2.1. Consider a PLHS. Determine necessary and sufficient conditions 
on this system such that it is reachable from the initial state. 

Problem 2.1 is motivated by, for example, path planning for robots and by 
chemical process control. Because the class of PLHS has a large extent, an ana- 
lytic solution is likely to be intractable. Thus, the reachability problem may be 
undecidable or, if decidable, of large complexity. 

A major contribution to the reachability problem for hybrid systems was pre- 
sented by G. Lafferriere, G. Pappas, and S. Sastry in [9,10]. That approach uses 
the notion of O-minimality in combination with the concept of bisimulation. It 
is shown that the reachability problem is decidable if the hybrid system satisfies 
certain conditions. The approach of the present paper differs from that using 
the O-minimality approach in several respects: (1) The approach concerns only 
piecewise-linear hybrid systems. (2) The reset map is an affine map. (3) A par- 
ticular decomposition method is used that is not considered in the O-minimality 
approach. The work is inspired by examples of hybrid systems that are models 
of engineering systems. 

The problem of reachability of PLHS or closely related systems has also 
been investigated by other researchers. O. Maler, T. Dang, and co-workers have 
developed an approach to approximate reachability (see [1]), based on over ap- 
proximating the reachable set by an orthogonal polyhedron. A. Bemporad, M. 
Morari, and F. Torrisi have developed a computational approach to determine 
reachability of discrete-time PLHS (see e.g. [2], [3]). For a polyhedral set of initial 
states they numerically approximate the subset of reachable states at subsequent 
times. This method is effective for a comparatively small number of time steps 
and for PLHS with state sets of relatively low dimension. 

3    Reachability of Hybrid Systems 

The approach to the reachability problem discussed in this paper is to decompose 
it into a reachability problem for an automaton on the one hand, and a finite 
set of reachability problems for continuous-time polyhedral linear systems on 
the other. The reachability problem for the automaton is easily solved by direct 
computation. The resulting reachability problem for affine systems requires some 
analysis and will be discussed in the next section. 

The approach to the reachability problem presented in this section was first 
described by the second author in [19] but, compared with that reference, several 
definitions have been sharpened and the theorem strengthened. 

Definition 3.1. Consider a PLHS. 

(a) A departure set (or exit set) of this system is defined to be either a guard, 
Gg(e) C dXq, Ve € Ecd, qeQ, or a set of the form 

D(q-,e,q+,A++) 
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j x~_ G X,- |q+ = f(q~,x~_,e), 1 
| Ar(q~, e, q+)x~_ + br(q~ ,e,q+) G A++ j ' 

Ve G £i„, A++ C Xq+ a polyhedral set, Vq~,q+ G Q, q~ + q+■ 

(b) An arrival set (or entry set) is defined to be a set of the form 

AR(q-,e,q+,D-) 

_ j x++ G Xq+ \3x~_ G D- C X,- «JCä toot, 1 
|^=/(f,V-4  <+ =Ar{q-,e,q+)x-_+br(q-,e,q+)j ' 

Vg", 9+ G Q, q~ ^q+, Ve G £irl U Ecd, VLT C X,- a polyhedral set. 

A departure set in Xq may be interpreted as a set from which the state 
trajectory may leave the state set X,. Such a departure takes place either at 
a guard by a continuous-dynamics event e G Ed or from a departure set by 
application of an input event e G Ein. An arrival set is a subset in which the 
state trajectory will enter the state set Xq directly after a transition. 

Definition 3.2. Consider a PLHS. The controllability set for (q, arg,i) £QxX 
is defined to be the set of all states xqfi G Xq from which xqti can be reached 
without leaving Xq: 

Conset((g,a;g>i)) 

_ f (9>z9,o) 6Qx Xq\3t0,h eT, t0< h,3u : [t0,h) -» U, such that, 1 
_ \xq(t0) = xqfi, xq\tx) = xq,i, Vt G («o,*i), xq(t) eXq J 

T/ie controllability set o/ a subset Sq C Xq is defined to be the set 

Conset((q, Sq)) = UXqi€SgConset((q,xqil)) 

Definition 3.3. Consider a PLHS. Assume there exists a finite collection of 
disjoint sets of the form 

A = {A(q, k) C Xq\k G {1,..., n,}, q G Q}. 

Assume further that for every arrival set AR(q~~,e,q+,Xq-), for q~,q+ G Q, 
and e G Ein U Ecd, there exists a subset of the A-sets such that 

AR(q-,e,q+,Xq-) C Uke{K..,ng+}A(q+, k). (2) 

The collection is called a collection of A-sets. Define the corresponding A-auto- 
maton as a possibly non-deterministic finite automaton (A,Ein U Ecd,fA,Ao), 
with initial state A0 G A, and partial function fA: Ax (Ein U Ecd) -» A, defined 
by 

'A(q+,m), if 
either A(q~,k) C Conset(D(q~,e,q+, A(q+,m))), 
or A(q~, k) C Conset(Gg- (e)) A (3) 

Ar(q-,e,q+)x-_ +br{q-,e,q+) €A{q+,m), 

for all x~   G Gq-(e). 

fA{A(q-,k),e)= < 



266        L.C.G.J.M. Habets and J.H. van Schuppen 

In the case of a piecewise-linear hybrid system, boundaries of departure sets 
and guards are assumed to be facets of the relevant polyhedral state set. Oth- 
erwise the polyhedral state set must be further decomposed into smaller poly- 
hedral sets such that boundaries of departure sets and guards are facets. The 
question is thus: how to determine the controllability set of a facet of a polyhe- 
dral set? In Section 4 this problem is studied for state sets that are simplices or 
multi-dimensional rectangles. A condition is formulated that is equivalent to the 
controllability set of a facet being the full state set. In this situation, condition 
(3) in Definition 3.3 of the A-automaton is always satisfied. This implies that an 
^-automaton exists, but its state set may be infinite. Definition 3.3 imposes a 
restriction because the state set is assumed to be finite. This is discussed again 
below. 

Theorem 3.1.  Consider a PLHS. Assume that there exists a finite collection 
of sets of the form 

A = {A(q,k)<ZXq\k£{l,...,nq}, qeQ}, 

such that the conditions of Definition 3.3 hold. Then the PLHS is reachable from 
any initial state if and only if: 

1. The A-automaton is reachable (every state A1 e A is reachable from any 
initial state A0 € A); 

2. forany(qi,xqiil) €QxX there exists a set A{quk) eAsuchthat(q!,xqul) 
is reachable from all initial states in A(qi,k) without leaving Xqi; equiva- 
lent^, for any (qi,xqiA) sQx! there exists a set A(quk) G A such that 
A(q1,k) C Conset((g1;a:giil)). 

Theorem 3.1 is a strengthened version of [19, Th. 8]. It provides a necessary 
and sufficient condition for reachability of a piecewise-linear hybrid system in 
terms of conditions and calculations. The main assumption for this result is 
the existence of a finite collection of A-sets. It is related to the concept of O- 
minimality and the approach to reachability developed by G. Lafferriere, G. 
Pappas, and S. Sastry, see [9,10]. The first condition for reachability of the PLHS, 
reachability of the A-automaton, is simple to check by a computer program. 
The second condition is a new problem. The problem is whether there exists 
an input that transfers the system from an A-set to a final state. This problem 
has been investigated in control theory in some generality but not for piecewise- 
linear systems on polyhedral sets as far as the authors know. An approach to 
this problem is to construct a Lyapunov function that assures convergence to 
a point. For an affine system on a simplex, further inspiration for tackling this 
problem may be taken from the discussion in Section 4. 

Example 3.1. Control of a conveyor belt system. This example has been de- 
scribed in detail in [18]. There, a conveyor belt system was modelled as a 
piecewise-linear hybrid system. The arrival sets are simple to formulate because 
they correspond mostly to the arrival of a tray with manufacturing parts at either 
the front end of the belt or at the mid-point of the belt. The A-automaton based 
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on arrival sets as A-sets has about 26 states and 84 transitions, and was checked 
to be reachable, using the computer program UMDES, developed by S. Lafor- 
tune at the University of Michigan. Reachability of any of the continuous-time 
systems is also easily verified: the guards can be reached by switching on the 
motor that drives the belt and the departure sets equal the full state set. 

A first approach for constructing the A-sets is to take them equal to the full 
arrival sets, 

A(q,r) = AR(q~,e,q,Xg-), for r G IN an index, and q",q G Q, e G E. 

In some examples, like Example 3.1, this choice suffices, but in general it is too 
restrictive. Recall from Definition 3.3 that a transition between A-sets is not 
defined if an arrival set is not fully contained in a corresponding controllability 
set. Hence it seems useful to split an arrival set into two or more subsets and to 
take these subsets as new A-sets. This approach is formulated in Algorithm 3.1 
below. The construction of A-sets is similar to the bisimulation algorithm, see 
[9], except that it refers to the splitting of arrival sets only. 

Algorithm 3.1.  Consider a PLHS and the collection of arrival sets 

(AR(q-,e,q+,D)CXq+\q-,q+£Q,  q~ + q+, 
AR = < and either {e G Ein and D = D(q~~,e, q+, Xq+)} 

\ or {e G Ecd and D = Gq- (e)} 

Consider further a terminal state (qf,xqfj) G Q x X to be reached. 

1. Initialization set 

Ao{qf, k) = AR(q~,e, q/,D)n Conset{(qf,xqfJ)), 

for q~ G Q, e G Ein U Ecd, 

D = Gq-(e) orD = D(q-,e,qf,Xqf), 

A0(q,k) = AR{q~,e,q,D), 

ifq~,q£Q, q^q/, <C + 1, e G Ein u Ecd, 
D = Gq-(e) orD = D(q-,e,q,Xq). 

2. Backward recursion. Construct the sets, 

Bk+i(q, m) = Ak{q~,m1) n Conset(D(q~,e, q, Ak(q, m2))), 

q,q~ GQ, e£Einl)Ecd, m,mi,m2G IN. 

Then produce a disjoint collection of the collection of Bk+i sets and denote 
these by 

Ak+i = {Ak+1(q,rn) C Xq\m G {1,... ,nk+i},q G Q}. 

Define the map, 

h : Pwrset(Pwrset(Q x X)) -> Pwrset(Pwrset(Q x X)), Ak+1 = h{Ak). 
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Two questions for the above algorithm require further study: 

1. Does the algorithm terminate in a finite number of steps? 
2. If the algorithm terminates (thus AK = h(AK) for some K G IN), is the 

resulting collection AK finite, i.e. does there exist mA G IN such that 

AK = {AK(q, m) C Xq\m G {1,..., mA}, q G Q}? 

If both questions have been answered affirmatively, Theorem 3.1 provides an 
equivalent condition for reachability. Note however that for the construction of 
A-sets, the computation of controllability sets is required. In the next section 
we will consider this issue, in case the set to be reached is a facet of the state 
set. Often the state set can be partitioned in such a way that reachability of a 
polyhedral subset can be reformulated as reachability of a facet. In these situa- 
tions the discussion of Section 4 facilitates the construction of A-sets. As soon 
as Algorithm 3.1 terminates, and the required collection of A-sets is obtained, 
the reachability of a piecewise-linear hybrid system may be verified by checking 
(1) the reachability of the A-automaton and (2) the reachability of a finite set 
of systems. 

4    Reaching Departure Sets Using Feedback Control 

In this section we focus our attention on one particular discrete mode of a 
piecewise-linear hybrid system, and study the continuous dynamics at that spe- 
cific mode. There the continuous evolution of the system is described by an affine 
differential equation 

±{t) = Ax(t) + Bu(t) + a, (4) 

with A G JRNxN, B G WLNxm and a G IR". We assume that the state set X is a 
(full-dimensional) convex polytope PN in IR^. Also the choice of inputs u G Mm 

is restricted to a polyhedral set U. 
As soon as the state x crosses one of the facets of PN, a discrete-event occurs, 

transferring the system to a different mode with different continuous dynamics! 
So the facets of PN completely consist of departure sets. We will assume that 
every facet of PN consists of exactly one departure set, meaning that the discrete 
transition to another mode only depends on the facet of PN through which 
the state x leaves the polytope PN. So, to steer the overall hybrid system to 
a particular state, using the approach of Section 3, we first have to answer 
the question whether it is possible to steer the affine system (4) to a specific 
facet/departure set. Preferably, this steering should be implemented by a static 
state feedback. So, in this section we will study the following problem: 

Problem 4.1. Consider the system (4) with x G PN, and let Fi be a facet of PN, 
with normal vector nu pointing out of PN. For any initial state x0 G PN, find 
a time-instant T0 > 0 and an input function u : [0, T0] —> U, such that at time 
T0 the state x leaves PN through the facet Fi, i.e. 
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(i)   Vt€[0,To]: x{t)ePN, 
(ii) x(T0) G -Fi, and T0 is the smallest time-instant in the interval [0,T0] for 

which x(t) G Fi, 
(Hi) nJx(T0) > 0, i.e. the velocity vector x(T0) at the point x(T0) € Fi has a 

positive component in the direction of n\. 

Furthermore, this input function u should be realized by the application of a 
continuous feedback law u = f(x), with / independent of the initial state x0. 

Problem 4.1 is related to, but different from the existence of a control law 
for an affine system, such that the closed-loop system is invariant on a polytope, 
see [4,6,20]. 

Since the class of all continuous feedback laws is very large, we will focus 
on solutions of Problem 4.1, using affine feedback (if PN is a simplex) or con- 
tinuous piecewise-affine feedback (if PN is a multi-dimensional rectangle). This 
restriction enables us to construct feedback solutions, by making extensive use 
of the convexity of the problem. First however, we formulate a set of necessary 
conditions for the solvability of Control Problem 4.1. 

Proposition 4.1. Let PN be a full-dimensional polytope in TRN with ver- 
tices vi,...,vM) (M > N + 1). Let Fi,...,FL denote the facets of PN, with 
normal vectors ni,...,nL, respectively, pointing out of the polytope PN. For 
i G {1,...,L}, let Vi C {1,...,M} be the index set such that {VJ | j € V,} 
is the set of vertices of the facet Fi. Conversely, for every j G {1,..., M}, the 
set Wj C {1,... ,L} contains the indices of all facets of which Vj is a vertex. 
Assume that Fx is the exit facet of PN. If Control Problem 4.1 is solvable by a 
continuous state feedback f, i.e. if irrespective of the initial state x0 G PN, the 
closed-loop system 

x = Ax + Bf(x)+a, x{0)=x0, 

has a solution x, satisfying conditions (i)-(iii) of Problem 4.1, then there exist 
inputs u\,..., UM £ U such that 

(1) Vj G Vi; nfiAvj + BUj + a) > 0, 
(2) Vi G {2,..., L} Vj G Vi: nf(Avi+ BUj + a) < 0, 
(3) Vj G {1,..., M}\Vi 3i G WJ: nJ(Avj + BUJ + a) < 0. 

Proof. Suppose that the continuous feedback f : PN —> U solves Problem 4.1. 
Then the inputs Uj = f(Vj), (j = 1,..., M) satisfy (1), (2), and (3). 

Indeed, at the exit facet Fi the velocity vector field of the closed-loop system 
has a positive component in the nj-direction, hence (1) holds. Furthermore, the 
state of the closed-loop system cannot leave PN through any of the other facets, 
irrespective of the initial state x0. This implies that on these facets the velocity 
vector field of the closed-loop system has to point into the polytope PN. This 
condition remains valid at the vertices of a facet, and therefore (2) holds. Finally, 
the state of the closed-loop system should reach the exit facet Fi in finite time. 
If (3) would not hold, then there would exist a vertex v of PN, not belonging to 
Fi, such that the velocity vector field of the closed-loop system in v is equal to 
0. Hence x(t) = v would be a solution of the closed-loop system, never reaching 
the exit-facet F\. This leads to a contradiction. □ 
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Our next goal is to derive sufficient conditions for the solvability of Problem 
4.1. For this purpose, we first consider the case where the convex polytope PN 

is a simplex SN, i.e. a full-dimensional polytope in IR^, with exactly N + 1 
vertices. In this situation, the necessary conditions of Proposition 4.1 turn out 
to be sufficient for the construction of an affine feedback solution to Problem 
4.1. 

Lemma 4.1. Let SN be a full-dimensional simplex in JRN with affinely inde- 
pendent vertices vi,... ,vN+1, and let 

N+l 

TN+1 := {(X1,...,XN+1) G [0,1]^ \J2XJ = !}• 
J=I 

For every x G SN there exists a unique (Ai,..., XN+i) e TN+1 such that x = 
S?=i  hvi- Moreover, the corresponding mapping ip : SN —> TN+1 is affine, 
and thus continuous. 

Proposition 4.2. Consider the dynamical system x(t) = Ax(t) + Bu(t) + a, 
with x e SN and u G U, and assume that there exist inputs ux,.. .,uN+1 G U, 
such that at the vertices v1:.. .,vN+1 of the simplex SN, conditions (l)—(3) of 
Proposition 4.1 are satisfied. Define the affine mapping 

N+l 

ip : TN+1 —► U : V(Ai,..., A^+i) = J^ XjUj. 
3=1 

Then the mapping f : SN —> U, defined by f = ijj o <p, is an affine feedback 
solution of Control Problem 4.1. 

Proof. For notational convenience we assume that the vertices V!,...,vN+1 of 
SN are numbered in such a way, that for i = 1,..., N + 1, vt is the only vertex 
of SN, not belonging to the facet Fi. 

First we prove that the state x of the closed-loop system x = Ax + Bf{x) + a 
cannot leave the simplex SN through any of the facets F2,.. -,FN+i. Let i G 
{2,...,JV + 1}, and consider the facet Ft with normal vector n{. Let p G Ft 

and (A1(..., AAT+I) = ip(p), with A» = 0. Then condition (2) of Proposition 4.1 
guarantees that 

nfx |p = nf(Ap + Bf{p) + a) 

(N+l N+l N+l ^ 

A J2 ^vj+B Yl Ai%+ E v 
J'=I>J¥» J=I,JVI J=I,J¥» 

N+l 

=    ^   XjnfiAvj + BUJ + a) < 0. 

Hence, on every facet F2,..., FN+1, the velocity vector field of the closed-loop 
system is pointing into the simplex SN, so the state x cannot escape from SN 
through any of these facets. 
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Next we show that the exit facet Fi is reached within finite time. For this 
proof we need the fact that the normal vector ni can be written as a negative 
linear combination of n2,... ,nN+i (see e.g. [7, Lemma A.3]). Let p € Sjy with 
tp(p) = (Ai,..., AJV+I). Then conditions (1), (2), and (3) of Proposition 4.1 and 
an argument imply that 

(JV+l JV+l JV+l 

A J2 xJvo +BY1 Xiui + J2 XJa 

JV+l 

= \in\{Avi + Bui + a) + ^ Aj-nf (Au, + BUJ + a) > 0. 

Moreover, the simplex SN is compact, so min{nf x \p\ p G S^} exists and is 
positive. Therefore the state x reaches the exit facet F\ in finite time. D 

Remark 4.1. Given inputs ui,... ,UJV+I € U at the vertices vi,... ,vN+i of the 
simplex SN, satisfying conditions (1)—(3) of Proposition 4.1, an affine feedback 
law u = Fx + g with F € TRmxN and g € lRm that solves Control Problem 
4.1, can be computed directly by solving the linear equations Uj = FVJ + g, 
(j = l,...,JV + l), for Fand g. 

Example 4.1. Control to a facet. Let S2 be the triangle in IR2, with vertices 
vi = (-1,0)T, v2 = (1,1)T, and v3 = (1, -1)T, and consider the affine system 

with state x £ S2 and scalar input -1 < u < 1. Consider Control Problem 4.1, 
with Fi, the facet between v2 and v3, as exit-facet. This problem is solvable if 
and only if there exist inputs «i, u2, u3 at the vertices Vi, v2, v3, respectively, such 
that condition (1), (2), and (3) of Proposition 4.1 are satisfied. In this example 
these inequalities become |<ui<l,-g<«2<l, and -1 < u3 < -\. Upon 
choosing «i = |, u2 =0, and u3 = -|, an affine feedback solution of Problem 
4.1 is given by 

(-Äi)( x2 I       16 

The idea of the proof of Proposition 4.2 can be extended to multi-dimensional 
rectangles, if we also allow continuous piecewise-affine functions / : P/v —> U 
as possible feedback solutions. 

Proposition 4.3. Let P/v be a full-dimensional convex polytope in IR    with 
vertices v1,... ,vM, {M > N + 1), and define 

M 

TM:={(A1,...,AM)e[0,l]M|^Ai = l}. 
j=i 
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Then there exists a continuous and piecewise-affine mapping <p : PN —► TM 

such that for all x £ P^: 
M 

x = ^2iP(x)jvj. (5) 
3 = 1 

The fact that any point x £ PN may be written as a convex combination of 
the vertices of PN is obvious. Note however that such a convex combination is 
in general not unique, unless Af = JV + 1. If M > N + 1, one may construct 
<P '■ PN —> TM, satisfying (5), by subdividing PN in simplices (triangulation, see 
e.g. [11]). Then every x G PN is uniquely represented as a convex combination of 
those vertices, that are vertices of all the simplices of which x is an element. This 
representation yields a continuous and piecewise-affine mapping tp, satisfying (5). 

Proposition 4.4. Let RN be the multi-dimensional rectangle defined by 

RN := {x G m.N | Vi = 1,..., N : a* < Xi < &*}, 

and consider the dynamical system x(t) = Ax(t) + Bu(t) + a, with x 6 RN 

and u £U. Let Fx := RN n {x e IR^ | xx = h} be the exit facet of RN with 
normal vector e\. The normal vectors on the other facets are -ex and ±eit (i — 
2,...,N). Denote M = 2N, and let ip : RN —»• TM be a continuous and piecewise- 
affine mapping, satisfying (5). Assume that there exist inputs UX,...,UM G U, 
such that at the vertices Vi,...,vM of RN, conditions (l)—(3) of Proposition 
4-1 are satisfied, and additionally 

(4) Vj = l,...,M: e\{Avj + BUj + a) > 0. 

Define the affine mapping 

M 

tp:TM —► U : ip(Xi,..., XM) = ^2xjuj. 
3 = 1 

Then the mapping f : RN —>■ U, defined by f = ip o <p, is a continuous and 
piecewise-affine feedback law, solving Control Problem 4.1. 

The proof of Proposition 4.4 is analogous to the proof of Proposition 4.2. 
Condition (4) is required to guarantee that the state of the closed-loop system 
reaches the exit-facet Fi in finite time. However, for multi-dimensional rectangles 
condition (4) is almost implied by conditions (1) and (2); at the vertices of the 
exit facet conditions (1) and (4) are the same, and at the other vertices (the 
vertices of the facet RNn{x e IR^ | xx = ax} with normal vector -ei), condition 
(2) states that e[(Avj + BUJ + a) > 0. The only difference with condition (4) 
is a >-sign instead of a >-sign. So the necessary and sufficient conditions of 
Propositions 4.1 and 4.4 are almost equivalent. Furthermore, in Proposition 4.4 
condition (3) may be omitted, because it is implied by (4). 

Remark 4.2. The design method of Proposition 4.4 for the construction of a 
continuous piecewise-affine feedback solving Problem 4.1 is applicable to arbi- 
trary full-dimensional convex polytopes PN. However, if PN is not a simplex or 
a multi-dimensional rectangle, the sufficient condition (4) becomes restrictive. 
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Propositions 4.1, 4.2, and 4.4 yield necessary and sufficient conditions for 
the solution of Control Problem 4.1 for simplices and rectangles. So, if for a 
hybrid system the state-set at each discrete mode belongs to this class, the 
question of reachability of a departure set may be translated into the solvability 
of a system of linear inequalities. Therefore, the verification may be carried out, 
using existing software packages, e.g. [8]. 

5    Conclusions 

The contribution of this paper to control of hybrid systems concerns reachability 
and control law synthesis. First, an equivalent condition for reachability of a 
piecewise-linear hybrid system was formulated in terms of reachability of a finite- 
state discrete-event system and of a finite family of affine systems on a polyhedral 
set. Next, an equivalent condition for reachability of an affine system on a simplex 
was derived, for the control objective of reaching a particular facet of the simplex. 
This result was extended to multi-dimensional rectangles. The solution is based 
on the construction of a continuous (piecewise) affine control law. 

Further research is required into the reachability of an affine system on a 
general polytope. Computational aspects of the construction of a control law 
should be studied. For this, triangulation of polyhedral sets is needed, involving 
concepts of discrete and computational geometry. Symbolic computation seems 
well suited for this operation. Application of the results to engineering systems 
also requires attention. 
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Abstract. The assume-guarantee paradigm is a powerful divide-and- 
conquer mechanism for decomposing a verification task about a system 
into subtasks about the individual components of the system. The key 
to assume-guarantee reasoning is to consider each component not in iso- 
lation, but in conjunction with assumptions about the context of the 
component. Assume-guarantee principles are known for purely concur- 
rent contexts, which constrain the input data of a component, as well as 
for purely sequential contexts, which constrain the entry configurations of 
a component. We present a model for hierarchical system design which 
permits the arbitrary nesting of parallel as well as serial composition, 
and which supports an assume-guarantee principle for mixed parallel- 
serial contexts. Our model also supports both discrete and continuous 
processes, and is therefore well-suited for the modeling and analysis of 
embedded software systems which interact with real-world environments. 
Using an example of two cooperating robots, we show refinement between 
a high-level model which specifies continuous timing constraints and an 
implementation which relies on discrete sampling. 

1    Introduction 

In the automatic verification of systems with very large state spaces, the model- 
checking task needs to be decomposed into subtasks of manageable complexity. 
It is natural to decompose the verification task following the component struc- 
ture of the design. However, an individual component often does not satisfy its 
requirements unless the component is put into the right context. Thus, in or- 
der to verify each component individually, we need to make assumptions about 
its context, namely, about the other components of the design. This reasoning 
is circular: component A is verified under the assumption that context B be- 
haves correctly, and symmetrically, B is verified assuming the correctness of A. 
The assume-guarantee paradigm provides a systematic theory and methodology 
for ensuring the soundness of the circular style of postulating and discharging 
assumptions in component-based reasoning. 
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When components are composed in parallel, context assumptions constrain 
the inputs to a component. Assume-guarantee principles for parallel composition 
are advocated, among others, by [MC81,AL95,McM97,AH99], and by [TAKB96, 
AH97] in a real-time setting. If components are composed in series, context 
assumptions constrain the entry configurations of a component. An assume- 
guarantee principle for serial composition is given in [AGOO]. In hierarchical 
design, it is often useful to nest parallel and serial composition. This is espe- 
cially true for embedded software, where serial composition occurs at multiple 
levels of granularity (e.g., software procedures; modes of operation; exception 
handling), and so does parallel composition (e.g., hardware modules; software 
threads; environment interaction). We provide an assume-guarantee principle 
for the case where a context can contain both parallel and serial components, 
arbitrarily nested. 

For this purpose, we use a formal model which is called Masaccio, in honor of 
the Italian fresco painter who is credited with inventing perspective. The Masac- 
cio language was defined in [HenOO]; we modify it slightly in order to obtain a 
general assume-guarantee principle. Masaccio is a formal model for hybrid dy- 
namical systems which are built from atomic discrete components (difference 
equations) and atomic continuous components (differential equations) by paral- 
lel and serial composition, arbitrarily nested. Data is represented by variables; 
control by locations. The syntax of components includes six operations: besides 
parallel and sequential composition, data connections are built by variable re- 
naming, control connections by location renaming, data abstractions by variable 
hiding, and control abstractions by location hiding. The formal semantics of each 
component consists of an interface, which determines the possible ways of using 
the component, and a set of executions, which define the possible behaviors of 
the component in real time. The intended use of Masaccio is to provide a for- 
mal, structured model for software and hardware that interacts with a physical 
environment in real time. Parallel composition is conjunctive: it typically com- 
bines actors (software threads, sensors, actuators, etc.); serial composition is 
disjunctive: it typically combines modes of operation (time-triggered and event- 
triggered mode switching, degraded and fault modes, etc.). Masaccio conserva- 
tively extends Reactive Modules [AH99,AH97], which provide parallel but no 
serial composition, and it inherits the mixing of discrete and continuous behav- 
ior from Hybrid Automata [ACH+95,Hen96], which are not hierarchical. The 
parallel composition of Masaccio is synchronous; asynchronicity can be modeled 
as in [AH99]. 

We demonstrate that Masaccio supports hierarchical, component-based de- 
sign and analysis. In particular, we prove the soundness of (noncircular) compo- 
sitional proof rules for both parallel and serial composition, and the soundness 
of a (circular) assume-guarantee proof rule, which permits assumptions about 
mixed parallel-serial contexts. Several key insights are necessary to enable the 
assume-guarantee principle. First, assume-guarantee reasoning is sound only for 
components that cannot deadlock internally. We therefore equip the interface 
of a component with entry conditions and insist that a location can be hidden 
only if the corresponding entry condition is valid. Second, if two components A 
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and B are composed in series, the assume-guarantee principle is sound only if 
each trace of the composite system A + B can be assigned uniquely to either 
AorR This can be achieved by requiring that for all locations common to A 
and B, the entry conditions are disjoint. Third, if A and B are composed in par- 
allel, we wish to model the fact that either component may preempt the other 
on termination, causing A\\B to terminate. Therefore, in refinement, B is more 
specific than C not only if every trace of B is a trace of C, but also if every 
trace of B has a prefix (possibly generated if B is preempted) which is a trace of 
C. This novel notion of refinement is consistent with sequential composition: a 
trace may terminate at an exit location of a component, and the serial addition 
of another component can then provide it with a continuation. Thus, a prefix of 
a trace is more general than the trace itself, since it potentially allows several 
different continuations. It will follow that both parallel and serial composition 
are congruences with respect to refinement. 

We illustrate our formalism by modeling at different levels of detail a sys- 
tem of two cooperating robots, one of which is always following the other. The 
specification requires that a request by one robot to lead is honored within a 
certain time bound by the other robot starting to follow. We give an imple- 
mentation that relies on periodic sampling of the robot states, and show how 
assume-guarantee reasoning simplifies the task of refinement checking between 
implementation and specification. 

Related work. Concurrent and sequential hierarchies have long been nested in 
informal and semiformal ways (for instance, Statecharts [Har87], UML [BRJ98], 
Ptolemy [DGH+99]). While these languages enjoy considerable acceptance as 
good engineering practice, the most widely used versions of these languages do 
not support compositional formal analysis. For Statecharts, variants with compo- 
sitional semantics have been defined (see, e.g., [US94]), but an assume-guarantee 
paradigm is not known. Hierarchic Modules [AGOO] provide an assume-guarantee 
principle for serial composition, and parallel composition is reduced to serial com- 
position. No continuous behaviors are considered. The languages Shift [DGV97] 
and Charon [AGH+00] support the hierarchical design of hybrid systems, but its 
emphasis is on simulation, and serial and parallel composition cannot be nested 
arbitrarily. The model of Hybrid I/O Automata [LSVW96] offers composition- 
ality in a setting without serial composition. 

2    The Masaccio Model for Embedded Components 

In Masaccio, a system model is built out of components. We illustrate Masaccio 
by modeling parts of a system with two communicating robots, which will be 
used in Section 4; the formal definition of Masaccio is given in the appendix. 
The semantics of a component is defined by its interface ("structure") and its 
set of executions ("behavior"). The executions are hybrid: the state of a compo- 
nent may evolve by any sequence of discrete transitions (so-called jumps) and 
continuous evolutions (flows). 
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The interface of a component. The interface of a component determines 
how the component can be composed (i.e., can interact) with other components. 
In Masaccio, control and data are handled separately. The interface of a com- 
ponent A contains a set VA of variables partitioned into input variables and 
output variables, and a set LA of interface locations, through which control can 
enter and/or exit the component. All variables are typed, with domains such as 
the booleans B, the natural numbers N, and the reals R. While control resides 
inside a component, the input variables are updated by the environment (such 
as another component put in parallel), and the output variables are updated 
by the component. The component interface specifies a dependency relation -<A 

between I/O variables and output variables. If x -<A y, then the value of y can 
depend without delay on the value of x. Specifically, with each jump, the new 
value of output y can depend on the new value of (say) input x, and during a 
flow, the derivative of output y can depend on the simultaneous derivative of 
input x. The dependency relation must be acyclic, in order to guarantee the 
existence of suitable output values and output curves. 

An I/O state of the component is a value assignment to the variables in VA. 
The component interface specifies for each location a £ LA a jump entry con- 
dition ipA

ump(a) and a flow entry condition ipA°w(a). The component can be 
entered by a jump iff the jump entry condition is satisfied by the current I/O 
state, and by the new values of the input variables; the component can be en- 
tered by a flow iff the flow entry condition is satisfied by the current I/O state. 
The length of a flow may be constrained by the component, but whenever the 
flow entry condition is satisfied, at least a flow of duration 0 is possible. Control 
can exit the component at every location. In typical designs, the exit points are 
the locations with unsatisfiable entry conditions. 

As an example, we portray a scenario in which two similar robots, structured 
as in Figure 1, move around in an environment with obstacles. The robots jointly 
choose the strategy of one leading and the other following, and their roles can 
switch. The interface of robot A consists of five input and six output variables. It 
contains a unique location eR, with jump entry condition true (not represented). 
Once entered, the robot will react and execute forever, without control exiting. 
The inputs leads and switchß indicate whether robot B is in the lead mode, or 
about to switch from follow to lead. The input obstA indicates if an obstacle is 
encountered. The component Motor^, shown in Figure 2, controls the motion of 
the two wheels based on the signals leftA and rightA, which allow the robot to 
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go straight, halt, or turn in either direction. The outputs XA and ?M give the 
position of the robot. 

The executions of a component. The behavior of a component A is described 
by a set EA of finite executions; the treatment of infinite behaviors for the study 
of liveness issues, such as nonzenoness [Hen96], is deferred for now. An execution 
is either a triple (a,w,b) or a pair {a,w) defined by an origin location a € LA, 

a nonempty finite sequence w of execution steps and, possibly, a destination 
location b S LA- An execution step is either a jump or a flow. A jump consists 
of a source I/O state and a sink I/O state; a flow consists of a real duration 
S > 0 together with a differentiable curve / that maps every real time in the 
compact interval [0,5] to an I/O state. For types other than R., we assume that 
only constant functions are differentiable. The source of the flow is the I/O 
state /(0), and the sink is f(S). For any two successive execution steps, the sink 
of the first must coincide with the source of the second. In figures, arrows with 
double tips denote flows, whereas normal arrows represent jumps. 

The set EA of executions is prefix-closed. Indeed, if a component permits a 
flow of a certain duration, then all restrictions of the flow to shorter durations, 
including the restriction to duration 0, are also permitted. Every component is 
deadlock-free, in the sense that (1) if the jump entry condition of a location a 
is satisfiable at an I/O state q, then there is an execution with origin a which 
starts with a jump with source q, (2) if the flow entry condition of location a is 
true at q, then there is an execution with origin a which starts with a flow with 
source q, and (3) every execution that does not end in a destination location can 
be prolonged by either a destination or a jump. Indeed, the stronger condition of 
input-permissiveness holds, which asserts that a component cannot deadlock no 
matter how the environment decides to change the inputs, by either jumping or 
flowing. Prefix-closure, deadlock-freedom, and input-permissiveness are formally 
defined and proved in the full version of this paper. They are essential properties 
of every component, because the environment (another component) may decide 
to interrupt a flow at any time to perform a jump, in which case the component 
must be prepared to match the environment jump by a local jump. 

Atomic components. Every component in Masaccio is built from two kinds 
of atomic components, with discrete and continuous behavior, respectively. An 
atomic component has an arbitrary number of input and output variables, but 
only two locations, which serve as origin and destination, respectively, for its 
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executions, all of which contain a single step. For an atomic discrete compo- 
nent, that step is a jump; for an atomic continuous component, a flow. The legal 
jumps of an atomic discrete component are defined by a jump predicate, which 
constrains the output values of the sink depending on the source I/O state and 
on input values of the sink. Such a predicate is typically specified by a differ- 
ence equation. The legal flows of an atomic continuous component are defined 
by a flow predicate, which constrains the time derivatives of output variables 
depending on the current I/O state and on the current time derivatives of input 
variables. Such a predicate is typically specified by a differential equation, as in 
Figure 2. A flow predicate may also constrain the values of output variables, so 
that a flow must not go on for any duration that would violate this "invariant" 
condition. Both jump predicates and flow predicates may allow nondeterminism. 

Operations on components. Discrete components are built from atomic dis- 
crete components using the six operations of parallel and serial composition, vari- 
able and location renaming, and variable and location hiding, arbitrarily nested. 
The discrete components conservatively extend Reactive Modules [AH99] by se- 
rial composition. Hybrid components are built from both discrete and continuous 
atomic components using the same six operations. 

Parallel composition is defined synchronously, as conjunction, with static await 
dependencies between outputs and inputs preventing circularity. For two compo- 
nents A and B, an execution of the parallel composition J4||.B starts at a common 
location in LA n LB- The execution is synchronous in both components: each 
jump of A must be matched by a concurrent jump of B, and each flow of A 
must be matched by a concurrent flow of B with the same duration. Control 
exits the parallel composition when it exits any one of the two components. If 
the execution of A reaches a destination location, then the concurrent execution 
of B is preempted and terminated; if B reaches a destination location, then the 
concurrent execution of A is terminated; if both A and B simultaneously reach 
destination locations, then the result is nondeterministic. When constructing a 
parallel composition A\\B, inputs of A can be identified with outputs of B, and 
vice versa, by renaming variables. Such identifications are depicted by solid lines 
in the figures. Similarly, locations of A can be identified with locations of B by 
renaming locations; these identifications are depicted by dotted lines. We write 
A[x := y] for the component that results from renaming the variable x in A to y, 
and A[a := b] for the component that results from renaming the location a in A 
to b. 

In Figure 1, the component Robots is the parallel composition of the com- 
ponents Control^ and Motor A- Before composition, the two entry locations ec 
and ejvfT are renamed to a common location en. 

Serial composition and location hiding can be used to achieve the sequencing of 
components. Serial composition represents disjunctive choice between the exe- 
cutions of two components. For two components A and B, an execution of the 
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serial composition A + B is either an execution of A or an execution of B. Hiding 
renders a location internal to a component, and inaccessible (invisible) from the 
outside. The executions of the resulting component are obtained by stringing 
together at that location any finite number of executions of the original com- 
ponent. To avoid internal deadlock, a location a can be hidden only if its jump 
entry condition is valid, so that it can always take another jump at a. We write 
A\a for the component that results from hiding a in A. 

Figure 3 shows how a sequential component (representing the straight move- 
ment of the robot in the lead mode) is obtained by the serial composition of sev- 
eral components, followed by location hiding. Let Straight^ = (SI + S2 + S3)\a, 
where SI and S3 are atomic discrete components, and S2 is obtained from an 
atomic continuous component by renaming destination location to origin loca- 
tion. The resulting component initializes its output variables by a jump, flows 
(without output changes) for any amount of time as long as the input obstA 

remains false, and nondeterministically exits with a jump. In the same way, 
any "automaton structure" can be built from individual "edges" (i.e., atomic 
components) using serial composition, location renaming, and location hiding. 

Variable hiding builds an abstract component by turning some outputs of a 
component into internal state. Hidden variables, however, do not maintain their 
values from one exit of a component to a subsequent entry, but they are nonde- 
terministically reinitialized upon every entry to the component so as to satisfy 
the applicable entry condition. We write A\x for the component that results 
from hiding the output variable x of the component A. 

3    Assume-Guarantee Refinement between Components 

If component A refines component B, then B can be viewed as a more abstract 
(permissive) version of A, with some details (constraints) left out in B which 
are spelled out in A. In particular, in the trace-based semantics of concurrent 
systems, refinement is taken to be the containment relation on trace sets. If A 
refines B, then A is a more specific description of system behavior than B in 
the sense that A may be equivalent to B\\C for some parallel context C which 
constrains the inputs to B. In analogy, in the trace-based semantics of sequential 
systems, refinement ought to be interpreted as prefix relation on trace sets. If 
A refines B, then A is a more specific description of system behavior than B in 
the sense that A may be equivalent to B + C for some serial context C which 
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constrains the continuations of B. Consequently, in Masaccio, if A refines B, 
then A may specify fewer traces and longer traces than B. 

The refinement relation. Component A refines component B if the following 
two conditions are satisfied: 

1. Every output variable of B is an output variable of A, every input variable 
of B is an I/O variable of A, and the dependency relation of B is a subset 
of the dependency relation of A. 

2. For every execution (a,w) (or (a,w,b), respectively) of A, either (a,w[VB]) 
(or (a,w[Vß],b), respectively, where w[VB] is the projection of w to the 
variables of B) is an execution of B, or there exist a proper, nonempty 
prefix w' of w and an interface location c G LB such that (a,w'[VB],c) is 
an execution of B. 

Note that the second condition implies that every interface location of A is an 
interface location of B. Furthermore, by input-permissiveness, if A refines B, 
then for every location a of A, the jump entry condition of a in A implies the 
jump entry condition of a in B, and the flow entry condition of a in A implies 
the flow entry condition of a in B. 

Compositionality. All six operations on components are compositional. 

Theorem 1. Let A and B be components, let x and y be variables, and let a 
and b be locations so that the following expressions are all well-defined. If A 
refines B, then A\\C refines B\\C; and A + C refines B + C; and A[x := y] 
refines B[x := y); and A[a := b] refines B[a := b]; and A\x refines B\x; and 
A\a refines B\a. 

More generally, define a context to be a component expression that can take a 
component as a parameter. For instance, if (A + B)\\D is well-defined, we can 
regard C[] = ([•] + B)\\D as a context for component A. 

Corollary 1. Let C[\ be a context for both Ax and A2. If Ai refines A2, then 
C[Ai], refines C[A2]. 

Assume-guarantee reasoning. Our assume-guarantee rule states that for dis- 
crete components, if two components can be individually replaced in a context 
while maintaining refinement, then both can be replaced simultaneously. There- 
fore, in order to show that a complex component C[Ai,Bi] (the "implementa- 
tion") refines a simpler component C[A2,B2] (the "specification"), it suffices to 
look at simplified versions of the implementation one at a time. First, we prove 
that Ai refines its specification Bi, under the "assumption" B2; then, we prove 
that A2 refines its specification B2, under the "assumption" Bx. This reason- 
ing is inherently circular. A special case is the assume-guarantee rule for the 
parallel composition of Reactive Modules [AH99]: take the context C[o, •] in the 
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following theorem to be o| |». The proof relies on the deadlock-freedom and input- 
permissiveness of components. It also requires that each execution of a serial com- 
position can be uniquely assigned to one of the components. This can be achieved 
by disjoint entry conditions. We say that the serial composition A + B is jump- 
deterministic if for all common interface locations ßGL^n LB, the conjunction 
ipA

ump(a) AV>iT"p(a) is unsatisfiable, and flow-deterministic ifipA
low (a) A^fB

low {a) 
is unsatisfiable for all a G L^nLß. The serial composition A+B is deterministic 
if it is both jump-deterministic and flow-deterministic. 

For hybrid modules, we need to break the circularity of the rule, by relaxing 
one assumption, say, B2, to allow arbitrary flows at all hidden locations. We 
write rlax(B2) for the component that results from B2 by (1) replacing every 
flow predicate in B2 by true, and (2) serially composing every hidden location 
a of B2 which is not the origin location of any flow, with an atomic continuous 
component that permits all flows from origin a to destination a. 

Theorem 2. Let C[o,»] be a context whose arguments are not in the scope of 
any variable or location hiding. Suppose that all input variables ofC[A2,B2] are 
variables ofC[Ai,Bi], and that within C[A2,B2] the context arguments are not 
within the scope of any nondeterministic serial composition. If C[A\, rlax{B2)\ 
refines C[A2,rlax(B2)], andC\A2,Bx] refines C[A2,B2], thenC[A!,Bi] refines 
C[A2,B2\. 

Linear components. If all flows are specified by linear differential equations, 
and no degenerate flows of 0 duration can be enforced, then the existence of 
unique solutions allows us to strengthen the assume-guarantee rule. In this case, 
we can make circular assumptions about the flows. An open linear condition on a 
set V of real-valued variables is a conjunction of boolean variables and strict (< 
or >) comparisons between linear combinations of the variables in V. Consider 
a flow action F (consult the appendix for a definition). The atomic continuous 
component A(F) is linear if (1) all variables in VA(F) have the type R, and 

(2) the flow predicate (pp0W has the form a{XF) A (ZF = ß(XF, YF)), where a is 
an open linear condition, called invariant, on the source variables XF, and ß is a 
set of linear combinations, one for the derivative z € ZF of each controlled flow 
variable, of the source variables XF and the derivatives YF of the uncontrolled 
flow variables. A component is linear if (1) all its atomic continuous components 
are linear, and (2) all its serial compositions are flow-deterministic. Let rlax' be 
defined like rlax, with the difference that only the invariants rather than the 
flow predicates are replaced with true. 

Theorem 3. Let C[o, •] be a context whose arguments are not in the scope of 
any variable or location hiding. Suppose that C[Ai,Bi] and C[A2,B2] are linear 
components, that all input variables of C[A2,B2] are variables of C[Ai,Bi], 
and that within C[A2, B2] the context arguments are not within the scope of any 
nondeterministic serial composition. IfC[Ai, rlax'(B2)} refines C\A2, rlax (B2)], 
and C[J42,-BI] refines C[A2,B2], then C^ßi] refines C\A2,B2\. 
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4    A Two-Robot Example 

We continue the presentation of the two-robot system whose overall view was 
given in Section 2. Robot A (Figure 1) starts out as the leader. After a while 
it may move from Lead^ to Follow^, as indicated by the dotted line connecting 
location xL (with an unsatisfiable entry condition, which is not shown) and lo- 
cation eF. It may then move back to lead mode (line xF-eL2). Robot B has the 
same structure, except that it starts out in follow mode. Within the subcom- 
ponent Move,! (Figure 4), the robot can execute in Straight^ arbitrarily long 
while there is no obstacle. Upon sensing an obstacle, control is passed to the 
component Turru, which commands the robot to rotate for an amount of time 
given by timer variable clktA. Control then returns to the component Straight^. 
The sequence of straight moves and turns continues until robot B switches to 
leading status. This event is modeled by the boolean signal switchB, which is 
monitored by the component Switcher^. We require the switcher unit to preempt 
execution of the lead mode within a specified amount of time Tsw after the other 
robot has signaled its intention to lead. Once Lead^ is exited, control enters the 
component Follow^, which samples the values of leftB and rightB and drives 
its own motor signals leftA and rightA. The robot may stay in the follow mode 
arbitrarily long, provided that obstA is false. At any time it may also issue the 
signal switchA, exit the component Follow^ and switch back to lead mode. 

We now present a robot implementation that contains a modified component 
Lead^, which does not continuously observe the switch signal (Figure 7). Instead, 
the implementation samples the leading indicators of both robots with a period 
Ted, as measured by the global clock elk. If both robots are leading, a correction 
is made by the component Errordetect^. The new state depends on the last 
sampled values of the leading signals: the robot that had been leading before 
now switches to follow mode. 

We wish to show that when composed together, two robot implementations 
refine the parallel composition of two robot specifications, provided that Ted < 
Tsw. The specification of robot A is Control^ Motor,4, and the implementation 
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of robot A is Control^ || Motors, where ControU = (Lead^ + Follow^V^W and 

Control^ = (Lead^ + FolloWA)\eL2\eF- Robot B is specified and implemented 
symmetrically. Denoting the parallel composition with the motor by the context 
CA[] = -\|Motors, and similarly for CB, we wish to prove that 

CA[Control^]||CB[Controlß]   refines  CA[ControU]||Cß[Controlß]. 

Note that CA[Control^] does not refine CA[ControlA], because a robot imple- 
mentation meets the specification only when composed with a symmetric robot. 
This is where assume-guarantee reasoning helps. All continuous components in 
the system are linear. Hence by Theorem 3, it suffices to discharge the simpler 
assertions 

CU[Control^]||Cß[Control'ß]   refines  CA[ControU]||Cß[Controlß] 
CA[ControU]||Cß[Controlß]   refines  CA[ControU]||C'ß[Controlß], 

where Control'B = rZaa:'(Controlß). We simplify further using compositionality 
(Theorem 1), and are left to prove that 

Control^ || Control'ß  refines  ControU || Control'B 

ControU || Controlg refines ControU || Controlß, 
two proof obligations that involve simpler components than the original one. 
The power of the assume-guarantee rules of Theorems 2 and 3 stems from the 
fact that they can be applied to components arbitrarily deep in the design hier- 
archy, creating proof obligations which have smaller differences between the two 
components which are supposed to refine each other. 

Acknowledgments. We thank Rajeev Alur, Radu Grosu, and Edward Lee for 
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Appendix: Formal Definition of Masaccio 

Let V be a set of typed variables. For a variable x £V, denote by x' its primed 
version, and denote by x its dotted version. The type of x' is the same as the 
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type of x. The type of x is R if the type of x is R, and {0} otherwise. This 
is because on types other than R, we assume that only the constant functions 
are differentiable. Let V = {x' \ x G V} be the set of primed versions of the 
variables in V, and let V = {x \ x G V} be the set of dotted versions of the 
variables in V. Let [V] be the set of type-conforming value assignments to the 
variables in V: if x G V and q G [V], let q(x) be the value assigned by q to x. 

The interface of a component. The interface of a component A consists of: 

- A finite set VA of typed input variables. 
- A finite set V£ of typed output variables, such that V\ n V% = 0. Let VA = 

V\ U V£ be the set of I/O variables. The value assignments in [VA] are called 
I/O states. 

- An dependency relation -<A Q VA X VA between I/O variables and output 
variables, such that the transitive closure <*A is asymmetric. A set U C VA 

of I/O variables is dependency-closed if x <A y and y G U implies x G U. 
- A finite set LA of interface locations. t 

- For each location a G LA, a predicate iljA
ump(a) on the variables in V^UVJ, 

called jump entry condition, and a predicate V^ °w(a) on the variables in VA, 
called flow entry condition. 

The executions of a component. A jump of a component A is a pair (p, q) G 
[VA]2 of I/O states. The I/O state p is the source of the jump, and q is the 
sink. A /Zow of A is a pair (6, /) consisting of a nonnegative real 5 G R>o, and a 
function /: R ->• [VA] from the reals to I/O states which is differentiable, with 
time derivative /', on the compact interval [0, S] C R. The real S is the duration 
of the flow, the I/O state /(0) is the source, and f(6) is the sink A step of J4 is 
either a jump or a flow of A. The step u; is successive to the step v if the sink of 
v is equal to the source of w. An execution of A is either a pair (a, tt>) or a triple 
(a, tu,6), where a,b £ LA are interface locations, and w = u>0 • • • wn is a finite, 
nonempty sequence of steps of A such that (1) every step tu*, for 1 < i < n, is 
successive to the preceding step wt-i, and (2) the first step w0 satisfies the entry 
conditions of location o: if w0 = (p,q) is a jump, then tl;A

ump(a) is true if each 
I/O variable x G VA is assigned the value p(z), and each primed input variable 
y' G V£ is assigned the value q(y); if w0 = (S, f) is a flow, then ipfA

low(a) is true 
if each I/O variable x G V^ is assigned the value /(0)(x). The location a is the 
origin of the execution, the sequence w is the trace, and the location b (when 
present) is the destination. Given a trace w and a set £/ C VA of I/O variables, 
we write w[U] for the projection of w to the variables in U, 

Atomic discrete components. An atomic discrete component is specified by 
a jump action. A jump action J consists of a finite set Xj of source variables, 
a finite set Yj of uncontrolled sink variables, a finite set Zj of controlled sink 
variables disjoint from Yj, and a predicate ipjjTnp on the variables in XjUYjöZj, 
called jump predicate. The jump action J specifies the component A(J). The 
interface of the component A{J) is defined as follows: 
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Yj. -V\{J)=(XJ\ZJ)UYJ 

-
V

°A{J) = ZJ. 
—   V -< A I T\   Z \ 

rA(J) - "J- 

- y -<A(J) z iff y G Yj and z G Zj. 
- LA{J) = {from, to}. 

- ^(Ififrom) = PZ'J) <#"* and ^(from) = Me. 

-<7r(to) = ^(to)=/Bbe. 

The executions of the component A(J) are defined as follows. The pair (a, w) is 
an execution of A(J) iff a = from and the trace w consists of a single jump (p, q) 
such that (fPjmp is true if each source variable x G Xj is assigned the value p(x), 
and each primed sink variable y' £ Yj U Z^ is assigned the value q(y). The triple 
(a, w, 6) is an execution of A(J) iff the pair (a, w) is an execution of A(J), and 
b = to. 

Atomic continuous components. An atomic continuous component is spec- 
ified by a flow action. A flow action F consists of a finite set XF of source 
variables, a finite set YF of uncontrolled flow variables, a finite set ZF of con- 
trolled flow variables disjoint from YF, and a predicate (ppOW on the variables 
in XF UYFU ZF, called flow predicate. The flow action F specifies the compo- 
nent A(F). The interface of the component A(F) is defined as follows: 

- V\(F) = (XF\ZF)UYF. 
~ VA(F) = ZF- 

- y -<A(F) z i&y £YF and z £ ZF. 
~ ^A{F) = {from, to}. 

~ itf™?(from) = false and ^^(from) = (3YF, Z>) <pfw. 

-^)(t°)=TpfA?F)(to)= false. 

The executions of the component A(F) are defined as follows. The pair (a, w) 
is an execution of A(F) iff a = from and the trace w consists of a single flow 
(S,f) such that the following holds: if S = 0, then (3YF, Z»ipf

F
ow is true if 

each source variable x <E XF is assigned the value f(0)(x); if 5 > 0, then for 
all e G [0,5], the flow predicate (p^ow is true if each source variable x G XF is 
assigned the value f(e)(x), and each dotted flow variable y G Y"FUZF is assigned 
the value f'(e)(y). The triple (a, w, b) is an execution of A(F) iff the pair (a, w) 
is an execution of A(F), and b = to. 

Parallel composition. Two components A and B can be composed in parallel 
if their interfaces satisfy the following conditions: 

- VI n V§ = 0. 
- There are no two variables x G V% and y G Vg such that both x -<*B y and 
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- For all a € LA, if ^A
mp(a) or ^A°W(a) is satisfiable, then a G LB. For 

all a G LB, if ^B
ump{a) or ipfB°

w(a) is satisfiable, then a G LA. For all 
a G LA n LB, the projections of the entry conditions of a in A and f? to 
the common variables are equivalent: (3VA \ VB)(3VA \ VQ^A"™^0

) is 
equivalent to (3VB \ VA)(3VB' \ V%)1%mp(a), and (WA \ VB)^A

low{a) is 

equivalent to (3Vg \ VA)ipB
ow(a). 

The interface of ^4||5 is defined from the interfaces of A and B: 

-vA]\B = (vX\Vß)u(vB\V2). 

 <A||B = <A U ^ß. 

- If a G LA n LB, then V^fs» = ^ump(a) A 1%mp{a) and V^n» = 

V>i/o» A V>£°». If a G LA \ LB or a G LB \ LA, then ^B
p{a) = 

i>fA\°B(a) = false. 

The executions of ^4||-B are defined from the executions of A and B. The 
pair (a, w) is an execution of A\\B iff (a,Iü[VA]) is an execution of A and 
(a,w[VB}) is an execution of B. The triple (a,w,6) is an execution of A\\B 
iff either (a, IU[VA], &) is an execution of A and (a, w[Vg]) is an execution of B, 
or (a,w[VB], b) is an execution of B and (a, U>[VA]) is an execution of A. 

Serial composition. Two components A and B can be composed in series if 
V% = VB. The interface of .A + ß is defined from the interfaces of A and B: 

-v\+B = vxuvB. 
- y°A+B = V°A = vs. 
 <A+B = ^U -<B. 

- LA+B = LA ULß. 
- If a G LA n LB, then ^A

u^(a) = i>A
ump(a) V i#TO» and VA+B(«) = 

iPfA
low(a) V ^'"""(o). If a G LA \ LB, then VA+"B («) = V#mp(a) and 

VÖ«)  = V>A'°»- If a G LB \ LA, then ^u
+"£(a) = ViT» and 

V>A+B(«)=<0tU(«)- 

The executions of A + B are defined from the executions of A and 5. The pair 
(a,w) is an execution of A + B iff either (a,«;^]) is an execution of A, or 
(a, iu[VB]) is an execution of B. The triple (a, iu, 6) is an execution of A + B iff 
either (a, UJ[VA], 6) is an execution of A, or (a, U;[VB], &) is an execution of B. 

Variable renaming. The variable x £VA can be renamed to y in component 
A if y has the same type as x, and either y is not an I/O variable of A, or x 
and y are both input variables; that is, if y G VA, then x,y €V\. The interface 
of the component A[x := j/] is defined from the interface of A. If x G VA, then 
^[x==y] = (n\{*»UM and V°[x:=y] = V°A; if x G V% then V^[i:=y] = Vj and 
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VX\x~y\ = (VA \ ix}) u M- In either case, let LA[x,=y] = LA, and let -<A[x:=y] 

and V^j™^] and i>A™_y} result from renaming x to y, and x' to 3/', in -<A and 

V>^"mp and Vv™ > respectively. The executions of the component A[x := y] result 
from renaming x to y in the traces of the executions of A. 

Location renaming. The interface location a G LA can be renamed to b in 
component A if either b is not an interface location of A, or the entry conditions 
of a and b are disjoint; that is, if 6 £ LA, then both tpA

ump{a) A ifämp(b) and 
ipfA

low (a) A if)fA
low (b) are unsatisfiable. The interface of the component A[a := b] 

is defined from the interface of A: let V\[a:=b] = V\; let V°[a:=b] = V£; let 

^[a:=6] = -<A; let LA[a:=6] = (LA \ {a}) U {6}; let 1%£!Lb](b) = i>A
ump(a) V 

tfr'W and ^r=t](6) = ^°» V ^{b) if 6 G LA, let 0^,(6) = 
V^mp(a) and ^=b]{b) = ^» if fe £ L^, and let ^6J(c) = ^™(c) 
and ^A[^=b] (c) = ^A°

W
{

C
) 

for all locations ceiA\ {a, 6}. The executions of the 
component A[a := b) result from renaming a to 6 in the origins and destinations 
of the executions of A. 

Variable hiding. The variable x G VA can be hidden in the component A if 
x&V%. The interface of the component A\x is defined from the interface of A: 
let VA\X = VA, 

iet V^ = VX\{x}; let -<A\X be the intersection of the transitive 

closure <A with V^\x x V™ T; let LANl = LA; let iPA\™p(a) = (3x) ^"""(a) 

and ipA°™{a) = (3x) ipA
low (a) for all locations a G L^. The executions of the 

component A\x are defined from the executions of A. The pair (a, w) is an 
execution of A\x iff {a,w[VA\x}) is an execution of A. The triple (a,w,b) is an 
execution of A\x iff (o, u>[V^\x]> b) is an execution of A. 

Location hiding. The interface location c e LA can be hidden in the compo- 
nent A if the jump entry condition ipA

mp(c) is equivalent to true. The interface 
of the component A\c is defined from the interface of A: let Vt    = V\; let 
VX\c = VA, let -<A\C = <A\ let LAV = LA \ {c}; let i/%™p(a) = ^A

ump{a) and 

^>4\T(a) = ^A°W(a) f°r all locations a G ZM.\C- The executions of the component 
A\c are defined from the executions of A. The pair (a, u>) is an execution of 
A\c iff c ^ a and either (a, w) is an execution of A, or there is a finite sequence 
wi,...,wn of traces, n > 2, such that to = Wi ■ ■ ■ wn and the following are 
executions of A: the triple (a,Wi,c), the triples (c,Wi,c) for 1 < i < n, and 
the pair (c,wn). The triple (a,w,b) is an execution of A\c iff c £ {a, 6} and 
(a, tu, 6) is an execution of A, or there is a finite sequence w1,...,wn of traces, 
n > 2, such that u; = Wi ■ ■ ■ wn and the following are executions of A: the triple 
(a,u>i,c), the triples (0,^,0) for 1 < i < n, and the triple (c,wn,b). 
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Abstract. In this paper we propose a hybrid model for TCP's conges- 
tion control mechanism operating under drop-tail queuing policy. Using 
this model we confirmed the standard formula T := R^r- use(l by 

TCP-friendly congestion control algorithms, which relates the average 
packet drop rate p, the average round-trip time RTT, and the average 
throughput T. The hybrid model also allows us to understand the tran- 
sient behavior and theoretically predict the flow synchronization phe- 
nomena that have been observed in simulations and in real networks 
but, to the best of our knowledge, have not been theoretically justified. 
This model can also be used to detect abnormalities in TCP traffic flows, 
which has important applications in network security. 

1    Introduction 

Consider the computer network shown in Figure 1. In this topology, n TCP flows 
are generated at a source node ni and are directed towards a sink node n2. All 
the flows compete for the finite bandwidth B that characterizes the link £ that 
connects the nodes. This configuration is known as a dumbbell topology and is 
typically used to analyze TCP's congestion control. In more realistic networks, 
a path of several links (and intermediate nodes) would connect the source and 
destination nodes. However, to analyze congestion control mechanisms, one of- 
ten ignores the existence of all the intermediate links, except for the bottleneck 
link, i.e., the link that has the smallest bandwidth. In the dumbbell topology, I 
represents precisely this link. 

The basic problem in congestion control is to determine sending rates for each 
of the n flows that result in an optimal utilization of the available bandwidth, 
avoiding a catastrophic collapse under very heavy load. The transport layer of 
the TCP/IP protocol stack is responsible for solving this problem and the send- 
ing rates are determined by n congestion controllers. Each congestion controller 
adjusts the sending rate of one particular flow, based on the number of packet 
drops that this flow is suffering. Packet drops occur when the sending rates of 
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iow„ 

Fig. 1. Dumbbell topology 

the flows are too large and the source node nx is unable to process all the packets 
received. The congestion controller becomes aware of packet drops because, each 
time a packet is received by the destination node, it sends an acknowledgment 
packet back to the source node. When a data packet is dropped, its acknowledg- 
ment is never received and the congestion controller should take some action. 
The congestion control problem is nontrivial because of the following: 

1. The bandwidth B associated with the link £ and the total number of flows n 
competing for this bandwidth are not known by the congestion controllers. 
Moreover, these parameters are likely to change over time. 

2. The exchange of information among congestion controllers and between the 
congestion controllers and the nodes is undesirable. This is because the con- 
trol information would compete with the data for the available bandwidth. 

Every computer connected to the Internet runs some version of TCP con- 
gestion control. It is therefore not surprising to find that a significant body of 
literature is devoted to this topic. However, many basic questions remain poorly 
understood. These include: 

1. Does TCP congestion control work? In particular, is it able to prevent a 
catastrophic collapse of the network under very heavy load. 

2. Is TCP congestion control fair? In particular, does it result in approximately 
equal throughput for all competing flows. 

3. Is TCP optimal or close to optimal? This question is particularly difficult 
because there is no universally accepted notion of optimality. Small drops 
rates, small delays, approximately constant flow rates, and fast adaptation 
to changes in the network are certainly desirable properties. However, these 
criteria are self-contradictory and therefore trade-off solutions are required. 

In this paper we provide a hybrid model for Reno congestion control [1,2,3] that 
sheds light in some of the questions formulated above. Reno is one of the more 
popular versions of TCP congestion control and is generally accepted to perform 
well. The model proposed also applies to more recent variations on Reno such 
as New Reno, Sack [4], and general AIMD [5]. 

The model proposed provides a new derivation for the now fairly standard 
formula 

1.23 
T =  (i) 

RTT^p y ' 
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that relates the average packet drop rate p, the average round-trip time RTT, 
and the average throughput T [6,7,8,9]. Formulas such as (1) have been used 
to design congestion control mechanisms that are TCP-friendly but produce 
more constant sending rates, making them more suitable, e.g., for streaming 
multimedia over the Internet [10]. Unlike previous derivations, ours considers 
the effect of queuing and the coupling between the competing flows. 

The hybrid model presented here also predicts that the dumbbell topology 
in Figure 1, with drop-tail queuing at node m, leads to flow synchronization, 
i.e., the sending rates of all the flows exhibit in-phase periodic variations. This 
produces undesirably large variations of the round-trip time and poor utilization 
of the queue. This type of behavior has been observed before [11] and actually 
led to the development of Random Early Detection/Drop active queuing [12, 
13]. To the best of our knowledge, this is the first time that the synchronization 
phenomena are theoretically explained. 

2    Hybrid Model for Congestion Control 

In this paper, we consider Reno congestion control. We describe next a simplified 
version of this algorithm that is sufficient for the purposes of this paper. Each 
congestion controller possesses an internal state known as the window size. We 
denote by w)i; i € {1,2, ...,n}, the window size of the congestion controller 
associated with the ith flow. The window size determines the maximum number 
of unacknowledged packets for that flow. E.g., if Wi = 3, then the congestion 
controller can send 3 packets immediately, but must wait for one acknowledgment 
to arrive before a 4th packet can be sent. The algorithm to update the window 
size Wi is as follows: While no drops occur, the window size is incremented by 
a fixed constant a > 1 for each w{ acknowledgments received (typically a = 1). 
This is known as additive increase. When it is detected that a drop occurred 
(because an acknowledgment packet is missing) the window size is multiplied 
by a constant m € (0,1) (typically m = 1/2). This is known as multiplicative 
decrease. We are ignoring Reno's initial adjustment of the window size—known as 
slow start—because it has little impact on the system after a brief initial period. 
The reader is referred to [1,2,3] for a detailed description of Reno congestion 
control. 

Although the window size takes discrete values, it is convenient to regard 
it as a continuously varying variable. Let us call round-trip time, denoted by 
RTT, the time interval measured from the moment a packet is sent until an 
acknowledgment for that packet is received. As we will see below, the round-trip 
time is a time-varying quantity. Suppose that at some time t, the congestion 
controller for the ith flow sends one packet and fills its window. This means that 
Wi packets are now unacknowledged for. Assuming that there are no drops, after 
one round-trip time the acknowledgment for this packet is received, as well as 
the acknowledgments for the previous Wi-1 packets. Since w» acknowledgments 
were received, the window size must have increased by a. On average, each w^ 



294        J.P. Hespanha et al. 

thus increases at a rate of j^ packets per second. The following hybrid model 
provides a good approximation of the ith window size dynamics: While the ith 
flow suffers no drops we have 

Wi = 
RTT' (2) 

and, if a drop is detected on this flow at time t, we have Wi(t) = mw~(t), where 
w~(t) denotes the limit from below of Wi(s) as s 11. 

We proceed to determine the evolution of the round-trip time RTT(t). Typi- 
cally, the round trip time has two components: a fixed propagation time Tp that 
is determined by the physical length of the link £ and the speed of light, and 
a variable service time Ts that accounts for the time the nodes take to process 
the packet. The service time is usually dominated by the queue time Tq, i.e., the 
time a packet stays in the output queue of node m before it is sent to the link. 
Denoting by q(t) the size of this queue at time t, and by B the bandwidth of 
link £ in packets per second, the queuing time is given by 

Tq(t) = f, 

because q(t) packets need to be transmitted (each taking 1/J5 seconds) before a 
new packet can also be transmitted. We assume here that the bandwidth B is 
measured in packets per second. The round-trip time is then given by 

RTT(t) =TP + ^-. (3) 

In this formula, we incorporated in Tp any fixed component of the service time. 

As mentioned above, the ith flow receives wt acknowledgment packets in 
one round-trip time. Therefore, in average, it sends tu* packets per round-trip 
time. This means that the output queue at node nx receives a total of ^jgff- 
packets per second and is able to send B packets to the link in the same period. 
The difference between these two quantities determines the evolution of q(t). In 
particular, 

(0 q = 0,%ft<B   or   q = qmax,^>B 
q      lEi^_ß    otherwise (4) 

RTT 

The first branch in (4) takes into account that the queue size cannot become 
negative nor should it exceed the maximum queue size qmax. When q(t) reaches 
<7max drops occur. These will be detected by the congestion controllers some time 
later. 

To complete our model it remains to understand how many drops occur and 
in which flows. As mentioned above, drops will occur whenever q reaches the 
maximum queue size gmax and the rate of incoming packets to the queue 5^ 
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exceeds the rate B of outgoing packets. Since a drop will only be detected after 
one round-trip time, the rate of incoming packets will not change for a period 
of length RTT and multiple drops are expected. It turns out that, in most 
operating conditions, exactly one drop per flow will occur [11]. To understand 
why, we must recall that in every round-trip time the window size of each flow will 
increase because each flow will receive as many acknowledgments as its window 
size. When the acknowledgment that triggers the increase of the window size by 
a > 1 arrives, the congestion controller will attempt to send two packets back- 
to-back. The first packet is sent because the acknowledgment that just arrived 
decreased the number of unacknowledged packets and therefore a new packet 
can be sent. The second packet is sent because the window size just increased, 
allowing the controller to have an extra unacknowledged packet. However, at 
this point there is a very fragile balance between the number of packets that 
are getting in and out of the queue, so two packets will not fit in the queue 
and the second packet is dropped. This, of course, assumes a drop-tail queuing 
policy. Although this behavior is essentially caused by the discreteness of the 
queue mechanism, we can incorporate it in our hybrid model by considering two 
modes for the system: One mode corresponds to the situation when the queue 
is not full and therefore the system evolves according to (2), (3), (4). The other 
mode of operation corresponds to the situation where the queue is full and one 
drop will occur in each flow. This mode of operation is active for RTT seconds. 
When the system leaves this mode all window sizes are multiplied by m because 
of the multiplicative decrease caused by the drops. In reality, the multiplicative 
decrease of all flows does not occur exactly at the same time instant. However, 
this model provides a very good approximation for the time scales considered 
here. 

Figure 2 contains a graphical representation of the overall hybrid system. In 
this figure, each node represents one of the two discrete states: queue-full and 
queue-not-full. The continuous state of the hybrid system consists of the queue 
size q, the window sizes Wi, i £ {1,2, • • • ,n}, and a timing variable tr used to 
enforce that the system remains in the queue-full state for RTT seconds. The 
differential equations for these variables in each discrete state are shown inside 
the corresponding nodes. The links in the figure represent discrete transitions, 
which are labeled with their enabling conditions and any necessary reset of the 
continuous state that must take place when the transition occurs. We assume 
here that a jump always occurs when the transition condition is enabled. This 
model falls in several of the general hybrid systems frameworks proposed in the 
literature [14,15,16,17,18,19,20,21,22]. For simplicity we assume here that the 
queue size q never reaches zero. 

Remark 1. For a very large number of flows, a single drop per flow may not be 
sufficient to produce the decrease in the window size required to make the queue 
size drop below <7max after the multiplicative decrease. In this case, the model in 
Figure 2 is not valid. However, we shall see in Section 4 that, for most operating 
conditions, this model accurately matches packet-level simulations performed 
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q > 9max and -^—!_ > i 
rllp + q 

tT :=0 

Fig. 2. Hybrid model for Reno congestion control 

using the ns-2 network simulator [23]. In fact, this hybrid model only fails when 
the number of flows is so large that the drop rates take unusually large values. 

3    Dynamics in Normalized Time 

The dynamics for the hybrid system in Figure 2 are nonlinear essentially because 
of the dependence of RTT on q. However, it is possible to make them linear by 
normalizing the time variable. To this effect we introduce a new time variable r, 
called the normalized time1, defined by 

£.=HTT = Tp + ± r(0) = 0. (5) 

This means that an interval with duration dr in the variable r corresponds to 
an interval of duration dt = RTTdr in the variable t. We can think of r as a 
time variable normalized so that one unit of r corresponds to one round-trip 
time. Figure 3 shows the dynamics of the hybrid system in normalized time. 
In this figure, ' denotes the derivative ^r with respect to the normalized time 
r. In Figure 3, we also used the fact that in the queue-full state, q = qmax 

and therefore, waiting until tT reaches Tp + 3^ from zero with t'T = RTT = 
Tp + 2^21; is equivalent to waiting until rT reaches 1 from zero with T'T = 1. 

Formally, there is a bijective function / that maps normalized time r into real time 
t. This function is actually defined by (5). With some abuse of notation, when we 
write q(r) for some normalized time T, we really mean g(/(r)). Similar notation is 
used for the remaining time-dependent variables. 
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q > gmax and ^2Wi> BT
P 

+ 9 

i 

TT :=0 

Fig. 3. Hybrid model for Reno congestion control in normalized time. 

It is interesting to note that the equation that models the queue dynamics 
in the queue-not-full state is stable. This is an important property of window- 
based congestion control, as opposed to other congestion control mechanisms 
that adapt the packets sending rates directly (instead of indirectly through the 
window size). 

Let us denote by {rk : rk < rk+i,k > 1} the set of normalized times at 
which the system leaves the queue-full mode. Using the fact that the system 
dynamics is essentially linear at each discrete mode, it is somewhat tedious but 
nevertheless straightforward to show that 

n+i-Tk = r1(sk) + i, k>i, (6) 

where 

«max + BTP - Er=iw'(Tfc) l7\ 
sk := , (I) 

an 

and / : [0, oo) -> [0, oo) denotes the smooth bijection 

The reader is referred to [24] for the detailed derivation of (6). We proceed to 
analyze the evolution of the Wj(rfc). To this effect, suppose that the system left 
the queue-full mode at some normalized time Tk, k>\. Since it takes f~1(sk) + l 
units of normalized time until the system leaves the queue-full state again and 
during this time wJ = o,«e{l,2,..., n}, we conclude that 

w~(Tk+1) =wi{Tk) + af~1(sk)+a, i € {1,2,... ,n}, 
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and therefore 

Wi{Tk+i)=m(wi(Tk)+af-1(sk) + a), i G {1,2,... ,n}. (8) 

From (7) and (8) we then conclude that 

sk+1 = m(sk - /_1(«fc)) + -^(qmzx + BTP) - m. (9) 
an F v ' 

It turns out that, as long as 

__        2ma 
9max + Blp > n, 

1 — m 

the map g : [0, oo) -> [0, oo), defined by 

s ^ m(s - r\s)) + -Z^(gmax + BTP) - m, 

is a contraction. In particular, 

\9{s)-g(s)\=m\s~s-f-1(s) + f-1(ss)\ <m\s-s\,      s,s>Q.       (10) 

Since (9) can also be written as sk+1 = g(sk), using the Contraction Mapping 
Theorem [25, p. 126] we conclude that the sk converges to the unique fixed point 
Soo of g, which is the unique solution to 

Soo = m(Soo - /-1(Soo)) + —^(qmzx + BTp) - m. (11) 

The convergence is as fast as mk. From this and (8) we conclude that the fol- 
lowing theorem holds: 

Theorem 1. Let {tk : tk < tk+1,k > 1} be the set of times at which the system 
leaves the queue-full. For qmax + BTp > f^n, all the w{(tk), i € {1,2,..., n} 
converge exponentially fast to 

ma   ,*   i/ 
«'oo:=rr^(r1(*oo) + l), 

as k —> co and the convergence is as fast as mk. 

The condition 9max + BTp > %^n essentially limits the maximum number of 
flows under which the one-drop-per-flow is valid. When this condition is violated, 
i.e., when n > ~^(qmax + BTp), a single drop per flow may not be sufficient 
to produce a decrease in the sending rates that would make q drop below qmaK 

after the multiplicative decrease. 

A straightforward conclusion of Theorem 1 is that all the flows become syn- 
chronized as time goes to infinity. This is because the window sizes of all the 
flows asymptotically converge to the same limit cycle. This limit cycle corre- 
sponds to an increase of the window size from tu«, to ^wx, lasting /_1(soo) + 1 
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units of normalized time, followed by an instantaneous decrease back to u>oo due 
to drops. 

Window size synchronization had been observed in [11] for Tahoe congestion 
control [4]. In [11], the authors defend that synchronization is closely related to 
the packet loss synchronization that we also use in our model. In fact, they pro- 
vide an informal explanation—supported by packet-level simulations—of how 
synchronization is a self-sustained phenomenon. Although [11] only deals with 
Tahoe, the arguments used there also apply to Reno congestion control. Theo- 
rem 1 goes further because it demonstrates that the limit cycle that corresponds 
to flow synchronization is globally exponential stable. This means that synchro- 
nization will occur even if the flows start unsynchronized or lose synchronization 
because of some temporary disturbance. Moreover, the convergence to the limit 
cycle is very fast and is reduced by at least m (typically 1/2) on each cycle. In 
fact, initially the convergence is even faster because the upper bound in (10) is 
conservative for large |s — s\. 

4    Steady-State Behavior 

We proceed now to derive steady-state formulas—such as the ones found in 
[6,7,8,9]—that relate the average throughput, the average drop rate (i.e., the 
percentage of dropped packets), and the average round-trip time. In this section 
we concentrate on the case where Soo is much larger than one and therefore 

r1(soo)«s00 + i. (i2) 

This approximation is valid when 

-,,,,       2man .    . 
<7max + BTP >  (13) 

1 — TO 

and results in the system remaining in the state queue-not-full for, at least, a 
few round-trip times2. In practice, this is quite common and a deviation from 
(13) results in very large drop rates. 

Suppose then that the steady-state has been reached and let us consider an 
interval [tfc, *fc+i] between two consecutive time instants at which the system 
enters the queue-not-full state. Somewhere in this interval lies the time instant 
ik at which the system enters the queue-full state and drops occur. During the 
interval [tk,tk+i], the instantaneous rate r at which the nodes are successfully 
transmitting packets is given by 

r(t) = I ^^    l G ^'^ (14) 
\B te[ik,tk+i] 

2 When the system remains in the queue-not-full for at least 4 round-trip times, (12) 
already yields an error smaller than 2%. 
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The total number of packets Nk sent during the interval [tk,tk+1] can then be 
computed by 

/•'fc+i rTk+i 

Nk :=  /        r(t)dt =  /        r{T)RTT{r)dT (15) 

1 — m2 . „ „ 
«    2an   (gmax + £TP + 2on)2. 

We used here the change of integration variable defined by (5) to work with 
quantities in normalized time. Details on the computation of the integrals in 
(15) and in (17) below are given in [24]. Since n drops occur in the interval 
[*fc>*fc+i]> the average drop rate p is then equal to 

P-    Nk*l-m? \qmax + BTp + 2an)   ' (16) 

Another quantity of interest is the average round-trip time RTT. We consider 
here a packet-average, rather than a time-average, because the former is the 
one usually measured in real networks. This distinction is important since the 
sending rate r is not constant. In fact, when the sending rate is higher, the 
queue is more likely to be full and the round-trip time is larger. This results 
in the packet-average being larger than the time-average. The packet-average 
round-trip time can then be computed as 

_ _ Jt[
k+1 r(t)RTT(t)dt      ff+' r{r)RTT{rfdT 

Nk Nk 

_ 1 /21-m3 qmax + BTP + 2an       l-m\ 

~fUi^ n airW'       (17) 

where T := f is the average throughput of each flow. We recall that, because 
the queue never empties, the total throughput is precisely the bandwidth B of 
the bottleneck link. 

It is interesting to note that the average drop rate p can provide an estimate 
for the quantity gmax+gTp+2a„ • In particular, we conclude from (16) that 

9max + BTp + Ian _    /       la 

n ~ y (l-m2y (18) 

This, in turn, can be used together with (17) to estimate the average throughput 
T. In fact, from (17) and (18) we conclude that 

T_     1     /2 1-m3    /       2o 1  

~RTT ^31- m2y(l-m2)p     "l+mj (19) 

For a = 1 and m = 1/2, (19) becomes T » =i= (±21 + £). For reasonable 

drop rates, the term ±^l dominates over 1/3 and (19) matches closely similar 
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formulas derived in [6,7,8,9]. It should be emphasized that the derivations in 
these references do not take queuing into account nor its effect in the varia- 
tion of the round-trip time. The coupling between the n competing flows is also 
ignored and therefore no theoretically-supported claim is made to the extent 
that the steady-state solution is actually reached in an asymptotic sense. The 
hybrid model introduced here also leads to a more complete description of the 
steady-state behavior of TCP through the explicit formulas (16) and (17) for the 
average round-trip time RTT and the drop rate p as a function of the number 
of flows n. It is important to emphasize that RTT in (17) denotes the aver- 
age round-trip time. It turns out that the actual round-trip-time RTT varies 
quite significantly around this average because of fluctuations on the queue size. 
These large variations in the queue size (which are amplified by synchronization) 
produce a large delay jitter. These phenomena, which have significant implica- 
tions in the design of congestion control mechanisms for applications that require 
stricter service guarantees from the network, have not been accurately captured 
in most existing models [9,26,27,10,28]. 

To verify the formulas derived above, we simulated the dumbbell of Figure 1 
using the ns-2 network simulator [23]. Figure 4 summarizes the results obtained 

for a network with the following parameters: B = 8 bits/cWx ^Tar/packet = 
1250 packets/sec, Tp = .04 sec, qma.x = 250 packets, a = 1 packet/RTT, 
m = 1/2. As seen in the Figure 4, the theoretical predictions given by (16), 
(17), (19) match the simulation results quite accurately. Some mismatch can 
be observed for large number of flows. However, this mismatch only starts to 
become significant when the drop rates are around 1%, which is an unusually 
large value. This mismatch is mainly due to two factors: the quantization of the 
window size and a crude modeling of the fast-recovery algorithm [2]. We are 
now in the process of incorporating these two features into our hybrid model to 
obtain formulas that are accurate also in very congested networks. 

5    Conclusion 

In this paper we proposed a hybrid model for Reno congestion control. Using 
this model, we analyzed both the transient and the steady-state behavior of n 
TCP flows competing for the available bandwidth on a dumbbell network topol- 
ogy. Our model confirmed formulas for the steady-state behavior that can be 
found in the literature and also derive new relationships between the several 
quantities of interest. We were also able to explain the flow synchronization phe- 
nomena that have been observed in simulations and in real networks but, to 
the best of our knowledge, have not been theoretically justified. We were also 
able to demonstrate that the limit cycle that corresponds to flow synchroniza- 
tion is globally exponential stable. This means that synchronization will occur 
even if the flows start unsynchronized or lose synchronization because of some 
temporary disturbance. 
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Fig. 4. Comparison between the predictions obtained from the hybrid model and the 
results from ns-2 simulations. 

We are now in the process of generalizing the analysis presented here to dif- 
ferent network topologies; other congestion control mechanisms (such as Tahoe, 
Vegas, and Equation-Based); and different queuing policies (such as drop-head, 
Random Drop, RED, and SRED). We are also exploring mechanisms that can 
be used to avoid the undesirable synchronization. Another application of the 
hybrid model derived here is the detection of abnormalities in TCP traffic flows. 
This has important applications in network security. 

Appendix 

To derive equation (6), suppose that drops occurred at some normalized time Tk 

at which the system entered the queue-not-full state and therefore that q(rk) = 
<?max- Denoting by fk the normalized time at which the next drop occurs, for 
T £ \Tk,Tk), we have 

Wi(r) = Wi(Tk) + a(r - rfc), i £ {1,2,..., n}, 
. n 

<?(r) = e-(T"Tt) (9max + BTP + an - ^^(rfc)) + 
i=\ 

n 

+ an{r - Tk) + Y^ wi(Tk) - BTp - an. 
i=i 
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We assumed here that q remains positive during the whole interval. Since a new 
drop occurs at the normalized time fk, we must have q(fk) = «max- Because of 
q>'s continuity, we must then have 

_ e-(-nc-Tfc) 
n 

(«max + BTP + an~Y^ Wifa)) + 
i=l 

+ an{rk - Tk) + ^ Wj(rfc) - BTP - an. 
i=l 

We can then solve this equation to compute the normalized time interval fk - rk 

and obtain 

gmax + BTp - Y^=l Wijn)  = fk - Tk ^ 

an 1 - e-(^-Tk) 

which is equivalent to fk - rk = /-1(sfc). Equation (6) is a consequence of 
this and the fact that the system enters the queue-not-fu# state again at time 

Tfc+i := fk + 1. □ 
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Abstract. In this paper we address the problem of designing energy 
minimizing collision-free maneuvers for multiple agents moving on a 
plane. We show that the problem is equivalent to that of finding the 
shortest geodesic in a certain manifold with nonsmooth boundary. This 
allows us to prove that the optimal maneuvers are C1 by introducing 
the concept of u-convex manifolds. Moreover, due to the nature of the 
optimal maneuvers, the problem can be formulated as an optimal con- 
trol problem for a certain hybrid system whose discrete states consist 
of different "contact graphs". We determine the analytic expression for 
the optimal maneuvers in the two agents case. For the three agents case, 
we derive the dynamics of the optimal maneuvers within each discrete 
state. This together with the fact that an optimal maneuver is a C1 con- 
catenation of segments associated with different discrete states gives a 
characterization of the optimal solutions in the three agents case. 

1    Introduction and Background 

Many problems arising in practical situations have boundary constraints and can 
be described in the setting of manifolds with boundary. Here we are interested 
in certain geometric aspects of such manifolds, specifically those concerning the 
properties of geodesies, i.e., locally distance minimizing curves. It is intuitively 
clear that when the boundary consists of cells of various dimensions pieced to- 
gether, a geodesic is in general "hybrid" in the sense that it is a concatenation 
of different segments, each one of which being a geodesic of a particular cell (in 
its own geometry). Thus in the hybrid systems terminology ([16]) , the geodesies 
can be naturally described as the executions of an underlying hybrid system. 
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Note that our interpretation of a manifold with boundary as the domain for 
the continuous state of a hybrid system is the inverse of the procedure adopted 
in [21], where the concept of hybrifold is introduced by piecing together the do- 
mains corresponding to all the discrete modes of a hybrid system to form a single 
topological manifold. Another difference is that, in addition to the topological 
properties of the hybrid systems such as stability, zenoness, ergodicity, etc., we 
are also interested in their metric properties such as distance, curve length, an- 
gle, etc. Therefore when piecing domains together, isometries instead of merely 
diffeomorphisms are required as the identifying maps of the boundaries. 

To be precise, let M be a connected m-dimensional C°° Riemannian man- 
ifold with boundary. The boundary of M can be either smooth or nonsmooth. 
Consider only those curves in M which are piecewise C1, i.e., curves which can 
be partitioned into a countable number of C1 segments. For such curves the arc 
length is well defined. The distance between two points in M is then defined as 
the infimum of the arc length of all the piecewise C1 curves connecting them. A 
geodesic in M is a locally distance minimizing curve. More precisely, the curve 
7 : (*o, */) -> M is a geodesic if and only if for each t G (to, tf), 7 is the shortest 
curve between ~/(ti) and 7(^2) for every tlt t2 belonging to a neighborhood of t 
with ti < t < t2. Given two arbitrary points in M, the (globally) shortest curve 
connecting them is automatically a geodesic. However, it is well known that the 
converse is not true: a geodesic is not necessarily distance minimizing between 
its end points. In fact, even for manifolds without boundary, a geodesic is no 
longer distance minimizing after its first conjugate point ([5]). 

Due to the presence of the boundary, regularity of geodesies in M is an 
issue. The special case of geodesies in manifolds with smooth boundary is dealt 
with in [2,3], to name a few. We now review briefly some of the results in these 
papers relevant to our study in the nonsmooth boundary case. For manifolds 
with smooth boundary, it is shown in [3] that geodesies are in general C1 but 
not C2. The simplest example is R2 with a unit disk removed. Two points across 
the disk and "invisible" to each other are connected by at most two shortest 
geodesies, which are C1 everywhere but fail to be C2 at exactly the points where 
geodesies switch from a line segment to a boundary arcs or vice versa. In [3] it is 
further suggested that a geodesic in a manifold M with smooth boundary can be 
decomposed into: (1) interior segments, which are geodesic segments belonging to 
the interior of M; (2) boundary segments, which are geodesic segments belonging 
to the boundary dM of M; (3) switch points, which are points where the geodesic 
switches from a boundary segment to an interior segment or vice versa; (4) 
intermittent points, which are accumulation points of the set of switch points. It is 
proved in [1] that when the boundary dM is locally analytic, a geodesic can have 
only a finite number of switch points in any segment of finite arc length, hence 
no intermittent points at all. In our interpretation of geodesies as the executions 
of an underlying hybrid system, switch points correspond to transitions between 
discrete states, and the existence of intermittent points in a geodesic implies that 
the corresponding execution, hence the hybrid system, is Zeno ([16]). Therefore 
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the result in [1] can be rephrased by saying that a hybrid system whose executions 
correspond to geodesies in a manifold with locally analytic boundary is non-Zeno. 

In this paper we study the problem of optimal collision-free motion planning 
for multiple agents moving on a plane, where a collision is the event that any two 
agents get closer than a minimum allowed distance. We show that each collision- 
free joint maneuver has a natural representation as a curve in a certain manifold 
with boundary, and among all such joint maneuvers the one with the least energy 
corresponds to a geodesic parameterized proportionally to arc length. Geodesies 
satisfying this property are called normalized. Unless otherwise stated, we assume 
throughout the paper that all geodesies are normalized. 

The problem which inspired this work originally is the development of algo- 
rithms for aircraft conflict resolution. Aircraft flying at the same altitude must 
maintain a horizontal separation of at least 3 nautical miles (nmi) inside the ter- 
minal radar approach control facilities and 5 nmi in the en-route airspace ([20]). 
Moreover, the energy of an aircraft maneuver is closely related to practical as- 
pects such as travel distance, fuel consumption, passenger comfort, etc. Numer- 
ous approaches have been suggested in the literature to deal with aircraft conflict 
resolution (see the survey paper [13]). Some of them ([6,8,11,17]) actually pose 
the problem as a constrained optimization problem. In particular, in [11] the 
geometric interpretation of aircraft motions as a braid is used in performing the 
optimality analysis. Optimal multi-agent coordination also finds applications in 
other transportation systems, for example [18]. Another related field is the mo- 
tion planning for mobile robots. Most of the papers in this field focus on the 
feasibility and the algorithmic complexity aspect of the problem ([7,9,14,22]). 
Among those dealing with optimal coordination, [15] considers the case when 
each robot minimizes its own independent goal by using techniques from multi- 
objective optimization and game theory. [4] studies the problem of time-optimal 
control of multiple vehicles moving on a plane with constant speed and bounded 
curvature. 

The rest of the paper is organized as follows. In Sect. 2, we describe the opti- 
mal collision-free motion planning problem and show how it can be reformulated 
as the problem of finding the shortest geodesic in a manifold M with nonsmooth 
boundary. Using the fact that M is a u-convex manifold, we are able to prove 
in Sect. 2.2 that the optimal motions for the agents are C1. We then introduce 
in Sect. 3 the notion of "contact graph", which leads to a natural interpretation 
of the problem in the framework of optimal control for a certain hybrid system. 
The C1 property implies that the reset maps of the hybrid system are all identity 
maps. The shortest geodesic can be obtained by appropriately piecing together 
geodesic segments in different discrete modes, and is the optimal execution for 
the hybrid system. In Sect. 3.1 necessary conditions are introduced to simplify 
the determination of such geodesies, which are then used in Sect. 3.2 and 3.3 
to characterize the optimal collision-free motions for the two agents and three 
agents case respectively. Finally some concluding remarks are given in Sect. 4. 
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2    Problem Formulation 

Consider the situation when n agents, numbered from 1 to n, are moving 
on a common plane R2. The n agents are required to start from positions 
o-i, ■ ■ ■ ,an G K2 at time t0 and reach positions b\,... , bn £ R2 at a fixed time 
tf. We assume that each one of the two sets {aJ7=1 and {bi}?=1 satisfies the r- 
separation condition for some positive r, in the sense that the minimum pairwise 
Euclidean distance in each set is at least r. 

A maneuver for agent i, 1 < i < n, is defined to be a piecewise C1 map 
a» : [to,tf] -> R2 satisfying ai(t0) = at and ai(tf) = 6*. The set of all maneuvers 
for agent i is denoted as Vi. Then V = rj"=i Pi is the set oi joint maneuvers for 
the ra-agent system. Here we are interested in the subset V(r) of V consisting of 
all the collision-free maneuvers, i.e., those joint maneuvers a = («i,... , an) e V 
such that {ai(t)}"=1 satisfies the r-separation condition at each time t,t € [t0, tf}. 

The energy of a joint maneuver a = (ai,... , an) G V is defined as 

J(tt)^£f'll<*(i)ll2<fc- 
z i=i Jt» 

The goal is to find the collision-free maneuver a e T'(r) with minimal energy. 
This leads to the following formulation of the problem: 

Minimize J(a) subject to a € V(r). (1) 

Notice that in formulating problem (1), we make the restrictive assumption 
that all the agents involved in the encounter reach their destinations at the same 
known time instant tf. This is important in time-critical applications such as air 
traffic management. The issue of choosing tf is not dealt with in this paper. 

Remark 1. Problem (1) can be alternatively formulated as an optimal control 
problem with state constraints, and approached by using the corresponding tech- 
niques from optimal control theory. In this paper, however, we adopt a geometric 
point of view. The geometric method not only yields elegant results and proofs, 
but more importantly, by using information on the curvature of the domains, it 
also allows us to obtain deeper results concerning the global uniqueness of the 
optimal solutions under certain conditions (see [12]). 

2.1    A Geometric Interpretation 

Each joint maneuver a = (a1:... ,an) in V can be re-interpreted as a curve 
in R2™ denned by a(t) = (a^t),... ,an(t)), t € [t0,tf], which starts from a = 
(ai,... ,an) and ends at b= (h,... ,bn). If we use (xi,yi,... ,xn,yn) to denote 
the coordinates of a generic point in R2", then the collision-free constraint on 
the joint maneuver a translates into the condition that a viewed as a curve in 
R2" is strictly contained in M, a manifold with boundary obtained by removing 
from R2" the "static obstacle" W given by 

W {P € R2n : yJ{xi-xjy + {yi-yJY < r   for some 1 < i < j < n}.    (2) 
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In other words, M = R2"\W. Thus there is a one-to-one correspondence between 
maneuvers in V(r) and piecewise C1 curves in M connecting a and b. Moreover, 
the energy of a joint maneuver a = (ai,... ,a„) € V can be expressed as 

J(<*) = 2 £"=i Ito ll«<(*)ll2 dt=\ fto l|ä(*)ll2 *> which coincides with the usual 
definition of the energy of a viewed as a curve in E2". Hence (1) is equivalent 
to the following geometric problem: 

Find the energy minimizing curve a in M joining point a to point b.       (3) 

It is a standard result (see, e.g., [19]) that solutions to (3) are shortest curves 
in M from a to 6 parameterized proportionally to arc length, i.e., minimizing 
geodesies in M connecting a to b. We shall henceforth study problem (3) instead 
of (1) with the understanding that all the curves connecting a to b in M are 
parameterized so that they start from a at t0 and end at b at tf. 

Notice that W defined in (2) is the union of n(n —1)/2 convex open cylinders, 
each one of the form {(xi,yi,... ,xn,yn) : y/(xi - Xj)2 + (yt - yj)2 < r} for 
some (i,j), with i ^ j. Therefore M obtained by removing W from R2n is an 
instance of the following class of manifolds with boundary: 

Definition 1 (u-convex manifolds). A manifold with boundary is called u- 
convex if it is obtained by removing from some Euclidean space W™ a finite union 
of open convex subsets, each one of which has a smooth boundary. 

We will show in the next section that geodesies in u-convex manifolds are 
C1, which implies that solutions to problem (3), hence (1), are C1. 

2.2    Geodesies in u-Convex Manifolds 

In this section we study the properties of geodesies in u-convex manifolds. Many 
technicalities encountered in the general case can be avoided when analyzing this 
special case. For example, when the boundary of M is nonsmooth, geodesies in 
M are in general not C1 since they can bend into sharp corners of the boundary 
However, we next show that this is not the case for u-convex manifolds. 

Suppose M is u-convex, i.e., M = Km \ U^=1Di is the complement in Mm 

of the union of open convex bodies D\,..., Dk C Rm, whose boundary dDi is 
smooth for each i = 1,..., k. Then at each point x G M, we can define the visible 
cone of x to be the cone V(x) with vertex x and consisting of all the rays which 
start from x and lie inside M within a sufficiently small distance. In other words, 
V(x) is the region a viewer sitting at x can see if only local obstacles around x 
are considered. V(x) can be obtained in the following way. If x G M lies on the 
boundary of Di for exactly those i belonging to a subset I of {1,..., k}, then the 
obstacles 1);, i 6 I, are called the active obstacles at x. For each active obstacle 
Di, let Tx(dDi) be the plane tangent to dDi at x and n, be the unit normal 
vector of dDi at x pointing outside of Di. Tx{dDi) separates W1 into two open 

half spaces. We denote the one containing nt as P^x and its closure as P*x. The 
convexity of Di implies that Pfx and Di are disjoint sets. Then V(x) is given by 
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Fig. 1. Examples of visible cones. On the right a degenerate case. 

V(x) = C\iexP£x- V(x) is a closed convex cone since it is the finite intersection 
of closed convex sets (half spaces), and it can have an arbitrary dimension lower 
than m. Figure 1 shows examples of visible cones in M3. In the case when x is 
in the interior of M, V{x) = Rm since there are no active obstacles at x. 

By using the notion of visible cone, one can prove the following result. 

Theorem 1. Suppose that M is u-convex. Then any geodesic in M is C1. 

Proof. Let 7 : I —> M be a geodesic of M, where I is an open interval in 1R. For 
each s £ I, the one-sided derivatives 7'(s_) and "f'(s+) of 7 at s exist since 7 
is piecewise C1. By using a reparameterization if necessary, we can assume that 
both of them are unit vectors. Construct the visible cone V(x) of x = 7(s). By 
definition, both j'(s+) and — 7'(s~) based at x lie inside V(x) and they span an 
angle 9 G [0, ir]. Suppose by contradiction that j'(s~) / 7'(s+), then 6 <ir. 

Fix a neighborhood U of x small enough so that only the active obstacles 
at x intersect U. Choose e such that 7|[s_<! s+e] C U. For each t € [s — e,s], 
let -y(£) be the projection of 7(f) onto the line through x and along the direc- 
tion —7;(s_); for each t € [s,s + e], let 7(4) be the projection of 7(4) onto the 
line through x and along the direction j'(s+). Notice that j\[s-ctS+e] is a curve 
through x contained completely within M. By choosing e small enough, one 
can ensure that the line segments 7(s — e)^(s — e) and j(s + e)j(s + e) both lie 
completely inside M. Therefore by replacing the arc 7|[s_e>s+e] with the con- 

catenation of 7(s - e)j(s - e), the arc 7|[s_eiS+e], and -y(s + e)j(s + e), the to- 
tal arc length is increased by at most o(e). Notice further that we can short- 
cut 7|[s_£iS+e] by the line segment -y(s — e)-y(s + e), which lies completely inside 
V(x) (hence M) by the convexity of V(x). Doing so can reduce the arc length of 
7|[s_£,s+e] by at least 2e(l - sin(0/2)) + o(e), where we use the fact that 7'(s~) 
and j'(s+) are unit vectors. Therefore the concatenation of the line segments 
7(s - e)7(s - e), 7(5 - e)-y(s + e), and j(s + e)"/(s + e) is a curve in M shorter 
than the arc 7|[s_es+e] for e small enough. This contradicts the fact that 7 is 
locally distance minimizing. Thus 9 = IT and 7 is C1 everywhere. 

To show the necessity of u-convexity in proving Theorem 1, we plot in Fig. 2 
an example in which M is obtained by removing from R3 a nonconvex obstacle 
given by the exterior D\ of a cylinder with axis l\ and a convex obstacle given by 
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Fig. 2. Geodesic in a manifold with boundary that is not u-convex. 

the interior £>2 of a cylinder with the same radius and with axis li intersecting 
l\ at a right angle. Hence M consists of all those points in R3 which lie inside 
the cylinder with axis l\ but outside the cylinder with axis I2, with the points 
on their boundaries included. The heavy-weighted curve in Fig. 2 is a geodesic 
in M with end points a and b, which is clearly not C1 at x. 

3    Hybrid System Solution 

Now we go back to the discussion of the optimization problem (3) proposed in 
Sect. 2, where M = R2n\W with W defined in (2). 

Consider a curve a = (ai,... , a„) from a to b in M corresponding a collision- 
free maneuver in V(r). Fix a time instant t £ [to,tf]. We say that agent i and 
agent j contact at time t if and only if ||aj(<) — <*j(£)ll = r. A graph can be 
associated to a at time t in the following way. The graph has n vertices, numbered 
from 1 to n, each one corresponding to an agent, and an edge exists between 
vertex i and vertex j if and only if agent i and agent j contact at time t. We 
call this graph the contact graph of a at time t. 

Let a* be a curve from a to b in M that is a solution to problem (3). Suppose 
that there is a finite subdivision of [to,tj): t$ <t\< ... < tk-\ < tfc = */> sucn 

that the contact graph of a* over the subinterval (th-i,th) (which we denote as 
Gh) remains constant for all h = 1,... , k, while contiguous subintervals have 
distinct contact graphs. In each subinterval, say (th-i,th), a* moves on a certain 
part of M determined by Gh- If Gh has no edges, then a* restricted to (th-i,th) 
is a straight line segment in the interior of M. If Gh has at least one edge, 
then a* restricted to (th-i,th) moves on a portion of the boundary of M, which 
is a lower dimensional smooth submanifold of R2n consisting of all the points 
(xi,y\,... ,!„,!/„) in R2" such that y/(xi — Xj)2 + (yi — yj)2 is equal to r for 
(i,j) such that there is an edge between vertices i and j in Gh, and greater than 
r for all others (i, j), i ^ j. Moreover, a* restricted to (th-i,th) is a minimizing 
geodesic in this submanifold. In this way we can associate to each type of contact 
graph a domain, i.e., the submanifold of M to which a* belongs when its contact 
graph is of that type. 
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Based on the above analysis, a* can be viewed as an execution of a certain 
hybrid system, whose continuous variable takes values in M, and whose discrete 
modes have a one-to-one correspondence with the different contact graphs for 
the n-agent system. For each discrete mode, the invariant set is the domain of 
the corresponding contact graph, and the dynamics is governed by the geodesic 
equation on that domain, which is a second-order ordinary differential equation. 
By Theorem 1, when a transition occurs between discrete modes, the position a 
and the velocity ä are reset by identity maps, a is an optimal solution to this 
hybrid system if it satisfies a(t0) = a and a(tf) = b, and has minimal energy. 
The problem is to determine the initial velocity a(t0) and the time and sequence 
of the discrete switchings so that the corresponding execution of this hybrid 
system will generate the optimal solution. 

3.1    Necessary Conditions for Optimality 

We now derive some necessary conditions for a to be an optimal solution to 
problem (3), which can then be used to simplify the determination of optimal 
maneuvers for the two-agent and three-agent cases. 

Proposition 1. Suppose that a* is a minimizing geodesic from a to b in M. 
Fix an arbitrary weR2. Then ß* = (ß{,... , ß*n) defined by 

ß*(t)=a*(t)+w±^-,     te[to,tf],     i = l,...,n, (4) 
If — to 

is a minimizing geodesic from a to V = (6j + w,... ,bn + w) in M. 

Proof. For each curve ß from a to W in M, define curve a = (a1;... ,a„) = 
T-W{ß) in R2" as <*(*) = ßt{t) - wi|, for t G [t0,tf] and i = 1,... ,n. Then 
it is easily verified that a is a curve in M from a to b with energy 

J(a) = J(ß)+wT^^ai-b^-nW/2\ (5) 
tf —t0 

The second term of the right hand side of (5) is a constant independent of 
ß, which we shall denote as C. From (5) and the optimality of a*, we have 
J{ß) = J(a) - C > J(a*) - C = J(ß*), where the last equality follows by 
noticing that a* = T-W{ß*). This is true for arbitrary /?, hence the conclusion. 

One important implication of Proposition 1 is that it suffices to solve prob- 
lem (3) only for those a and b that are aligned, i.e., a and b with the same 
centroid \ YTi=\ ai = \ YTi=\ h G R2. In fact for non-aligned a and b, by choos- 
ing w = Ü)"=1 at - J27=i hi, one can ensure that a and b' = (bi + w,... , bn + w) 
are aligned. Hence by Proposition 1, minimizing geodesies from a to 6 can be 
obtained from minimizing geodesies from a to b' by applying the inverse of the 
transformation (4). 
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Proposition 2. Assume that a* is a minimizing geodesic from a to b in M. 
Then 

£«,*(*) 
i=l 

tf — t0 

Proof. Consider first the case when a and b are aligned. Define a piecewise C1 

map 3 : [t0,tf] -»• 1R2 by 5(t) = £?=1 a*(*) - E?=i °*. * e [*o>*/]. which satisfies 
g(t0) = g(tf) = 0. For each A £ R, let /3A = (/?A,I,--- ,ßx,n) be given by 
Ä,i(*) = <x*(t) + Xg(t), t £ [t0, */], i = 1, • • ■ , «• Note that /?>, is a piecewise C1 

curve from a to b in M with energy 

J(ßx) = J(a*) + ?f [tf\\J2ä*(t)\\2dt + \ f'WEWW2*. 

The difference J{ß\) — J(a*) is a quadratic function of A which, by the optimality 

of a*, must be nonnegative for all A. Hence we have / ' || J27=i "iWII2^* = ^, 
implying that X)?=i"i(*) = 0 f°r almost au * S [to,*/]- After integration, this 
leads to the desired conclusion for the aligned case. In the case when a and b are 
not aligned, the result follows from Proposition 1 by considering a minimizing 
geodesic in M from a to b' = (bi + w,... ,bn + w) with w = £)?=1 at — YH=I h 
and noticing that a and b' are aligned. 

A geometric interpretation of the above results is as follows. Let N be 
the two dimensional subspace of R2n spanned by vectors (0,1,... ,0,1) and 
(1,0,... ,1,0), and V be the orthogonal complement of iV in E2™ such that 
R2n = V © N. Then the condition that a and b are aligned is equivalent to the 
condition that b - a belongs to V. Denote with Va the (n - 2)-plane through a 
and parallel to V. Then if a and b are aligned, they both belong to Va, and by 
Proposition 2, a minimizing geodesic a* in M from a to b lies in Va completely. 
For non-aligned a and b, let b' be the orthogonal projection of b onto Va. Then 
Proposition 1 and Proposition 2 say that a minimizing geodesic a* between a 
and b in M can be decomposed into two parts: its projection onto Va, which is a 
minimizing geodesic from a to b' in Va n M; and its projection onto N, which is 
a straight line. These conclusions become evident under the following important 
observation: the obstacle W defined in (2) is cylindrical in the direction of N, 
i.e., x € W if and only if x + N C W. 

As a result of the above analysis, we can focus on the case when a and b are 
aligned. Without loss of generality, we assume that a and b both belong to V. 
Since any minimizing geodesic between such a and b is contained in V, we can 
effectively reduce our space of consideration from M to Mo = V DM, which is a 
cross section of M and two dimensions lower than M. This will make a difference 
when n is relatively small. 

Remark 2. Optimal maneuvers for the n-agent system can be alternatively 
viewed as the outcomes of a mechanical experiment, in which n particles of 
unit mass move from positions ai,... ,an on a plane with certain initial veloc- 
ities and no external force acting on them. In this interpretation, the result in 
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P. 

Fig. 3. Optimal al for two agents case. 

Proposition 2 becomes the law of conservation of momentum. See [10] for further 
details. 

3.2 Two Agents Case 

Consider the simplest case when n = 2 with aligned a = {aua2) and b= (bi,b2) 
such that ai+a2 = h+b2 = 0. If a* = (aj,a^) is a solution to problem (3), 
then Proposition 2 implies that al(t) and a2(t) are symmetric with respect to 
the origin for all t e [to,tf]. Hence specifying one of them, say aj, is sufficient for 
describing a*. Moreover, the r-separation constraint can be formulated as the 
condition that a\ can never enter the open ball B(0,r/2) of radius r/2 around 
the origin. By noting that a| and a2 give identical contributions to the total 
energy, we finally have a simplified but equivalent version of problem (3): 

Find the energy minimizing curve ax in R2 \ 5(0, r/2) joining a2 to b±.    (6) 

Figure 3 shows the geometric construction of a solution a* to problem (6), 
which is a geodesic of R2 \ B(0, r/2) and, depending on the positions of ai and 
bi, may contain up to three segments: first a line segment from ai to pi tangent 
to dB(0,r/2) at pi; next from pi to q± along dB(0,r/2); and finally the line 
segment from qx to br tangent to dB(0,r/2) at qx. The case when &i is "visible" 
from ai is trivial. 

3.3 Three Agents Case 

The case n = 3 is more complicated. Figure 4 shows all the possible contact 
graphs and the transitions between them, with the "ground" symbol indicating 
that there is a transition relation with state 1. We now determine the geodesies 
in each one of the discrete states. 

Geodesies in state 1. State 1 corresponds to the contact graph of three isolated 
vertices, hence its domain Xi corresponds to int(M), the interior of M. By the 
discussion in Sect. 3.1, we only consider Xt = Vnint(M), which has dimension 
4. Geodesies in X\ are straight lines. 

Geodesies in state 2, 3, and 4. States 2, 3 and 4 correspond to contact graphs 
where two vertices are connected to each other and the third one is isolated. Let 
us consider state 2. Its domain X2 is: 

X-2 = {(x1,y1,x2,y2,x3,y3) : d12 = r, dl3 > r, d23 > r} n V 
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Fig. 4. State diagram. 

where dy = y/{xt - Xj)2 + (Vi ~ Vj)2 denotes the distance between agent i and 
agent j. X2 has dimension 3. As long as the boundary of X2 is not reached, 
a geodesic in X2 consists of a constant velocity motion for agent 3 since it is 
"free", while the motions for agents 1 and 2 are determined as in Sect. 3.2 for 
the two agents case, followed by a possible application of Proposition 1 if their 
starting and destination positions are not aligned. Similarly for X3 and X4. 

Geodesies in state 5, 6, and 7. In states 5, 6 and 7, one agent, called the pivotal 
agent, contacts with both the other two agents, which do not contact each other 
themselves. The domain for state 5 is: 

Xs = {(x1,y1,x2,y2,x3,y3) ■ du = r, d13 = r, d23 > r} D V. 

XB is a 2-dimensional submanifold with global coordinates (#i2,013) defined by 

y2 ~ vi 2/3— 2/1 012 = arctan ,     #13 = arctan . 
x2 -xi x3- Xi 

(012,013) takes values in [0,27r] X [0,27T] with opposite edges identified, i.e., the 
2-torus T2. In order to satisfy the constraint d23 > r, the shaded region (see 
Fig. 5) has to be removed from T2, resulting in a subset X5 homeomorphic 
to S1 x (0,1). So topologically X5 (hence Xs) is an untwisted ribbon whose 
boundary consists of two disjoint circles. 

Each (012,013) € ^5 determines a unique point /(0i2,0i3) in X5 by 

/(012,013) =-(-cos0i2 -cos013,-sin0i2 -sin 0i3,2cos0i2 - cos0i3, 
ö 

2 sin 0i2 - sin0i3, -cos012 + 2cos0i3, -sin0i2 + 2sin0i3)T, 

which is an embedding of X5 into R6. The standard metric on E6 induces by / 
isometrically a metric on X5. A curve (0i2(*),0i3(*)) is a geodesic in X5 under 
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Fig. 5. The domain X& of discrete state 5. 

the induced metric if and only if j(t) = f(612(t),613{t)) is a geodesic in X5. 
Using the fact that 7 is a geodesic in X5 if and only if its acceleration as a curve 
in R6 at each point is orthogonal to the tangent space of X5 ([5]), we obtain 
after some calculations the geodesic equation on X5 as (see [11] for details) 

2Ä12 - cos(012 - 0l3)013 = sin(012 - 0i3)(013)
2 

2fl'i3 - cos(012 - 013)912 = -sin(012 - 013)(<?12)
2. (7) 

There are certain symmetries in equation (7), which become evident by writ- 
ing (7) in the new coordinates f = 012 + 613 and 77 = 012 - 013, leading to: 

(8) 
f (2 - cos 77)^ = -£77 sin 77 

t(2 + cos77)T7=i((Ö2 + (77)2)sin77. 

Integrating the first equation in (8), we have 

£(2-cos77) = C2, (9) 

for some constant C2. On the other hand, since geodesies have constant speed, 
there exists another constant Cx such that ([11]) 

(2 - COST7)(£)
2
 + (2 + cos77)(?7)2 = 4Ci. 

Substitution of (9) into the above equation leads to 

,. N 2 _ SC1! — C2 — 4Ci cos 77 
4 — cos2 77 ' 

which together with (9) governs the dynamics of 77 and £ respectively. 
Geodesies in X6 and X7 can be obtained similarly. 

(10) 

Geodesies in state 8 and 9. Domains X5, X6 and X7 share a common boundary 
consisting of two disjoint circles, which form the domains of state 8 and state 9 
respectively. In both states, the three agents form an equilateral triangle centered 
at the origin. The only difference is their orientation. Agents 1, 2 and 3 are 
numbered counterclockwise in state 8 and clockwise in state 9. 

Consider state 8 and its domain Xs. X8 is a one dimensional circle and can 
be parameterized by a, which is the angle between the line segment joining the 
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Fig. 6. Concatenation of geodesic segments. 

origin to agent 1 and the positive x-axis. A geodesic in Xs in this coordinate 
must then be of the form a(t) = ut for some constant angular velocity u>. 

In summary, we have characterized geodesic segments in each one of the 
discrete states. By Theorem 1, the minimizing geodesies corresponding to the 
optimal collision-free maneuvers for the three agents are C1 concatenation of 
such segments. One example of such concatenations is shown in Fig. 6, where 
the starting and destination positions of the three agents are marked with stars 
and diamonds respectively. A rod exists between two agents if and only their 
distance at the corresponding positions is r. However, it should be pointed out 
that the problem of finding when and where the switches between geodesic seg- 
ments occur remains an open issue. In [11], we propose a numerical procedure to 
approximate the minimizing geodesies based on the successive optimization of 
piecewise linear curves in M. At each iteration a convex optimization problem 
is solved. By choosing a small step size for the piecewise linear curves, we can 
obtain a reasonably good approximation. 

4    Conclusions 

The problem of optimal collision-free maneuvers for multiple agents is formulated 
and shown to be equivalent to the problem of finding minimizing geodesies in a 
certain manifold with boundary, which can in turn be interpreted as an optimal 
control problem for a hybrid system. The solution is given for the two agents case. 
For the three agents system we derive the dynamics of the segment of optimal 
maneuver associated to each discrete state. The overall optimal maneuver is 
shown to be a C1 concatenation of such segments. 
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Abstract. A multiple model based observer/estimator for the estima- 
tion of parameters is used to reset the parameter estimation in a con- 
ventional Lyapunov based nonlinear adaptive controller. The advantage 
of combining both approaches is that the performance of the controller 
with respect to disturbances can be considerably improved while a re- 
duced controller gain will increase the robustness of the approach with 
respect to noise and unmodeled dynamics. Several alternative resetting 
criteria are developed based on a control Lyapunov function. 

1    Introduction 

The use of multiple models to switch or reset parameter estimators has been 
proposed in order to speed up the convergence rate of certainty equivalence 
adaptive control of linear systems [1,2,3,4,5,6,7,8]. 

In this paper we present a hybrid approach to speed up transients in con- 
tinuous Lyapunov based nonlinear adaptive control systems. Hereby, a multiple 
model observer (MMO) is used to reset the parameter estimation in a nonlin- 
ear adaptive controller. The advantage of combining both approaches is that 
transients due to adaptation can be damped out while the performance of the 
controller with respect to disturbances can be improved. As a consequence the 
gain of the continuous adaptive controller can be considerably lowered thus, in- 
creasing the robustness of the approach with respect to noise and unmodeled 
dynamics. The parameter resetting is based on a Control Lyapunov function 
and can guarantee asymptotic stability. The main contributions of the paper are 

- an extension of multiple model based adaptive control to the class of para- 
metric strict feedback nonlinear systems, 

- the formulation of a set of sufficient closed loop stability conditions for re- 
setting tuning function based nonlinear adaptive controllers, 

- the introduction of a fast multiple model observer, from which even under 
transient conditions an accurate parameter estimate can be obtained. 
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The paper is organised as follows: In Section 2 some results of constructive 
nonlinear adaptive control are briefly reviewed and a motivation for discontin- 
uous parameter resetting is given. This is followed by an analysis of the closed 
loop stability implications of resetting parameter estimates (Section 3) where a 
first order and a second order example are used to illustrate the results. Sec- 
tion 4 describes the concept of multiple model observers and gives for a special 
plant structure sufficient conditions for stability of parameter resetting. At the 
end discussions of a first order system as an application of the method and some 
simulation results are given. 

2    Nonlinear Adaptive Backstepping 

Consider the adaptive tracking problem for a parametric strict-feedback sys- 
tem [9] 

±i=x2 + <pi(xi)T9 (1) 

x„_i =xn + (pn-i(xi,X2,... ,Xn-i)
T0 

Xn = ß(x)u + <pn(x)T9 

y = xi 

where 0 G W is a vector of unknown constant parameters, ß and F = 
[vii • ■ • ,<Pn] are smooth nonlinear functions taking arguments in R™. It has been 
shown that in a tuning function adaptive controller for such a system the adap- 
tive control law and the parameter update law take the following form 

W=^)h(a;^'^n~1))+^n)] w 
9 = rTn{x,0,yln-») (3) 

where yr is the reference signal to be tracked by the output y 

0 = {yr,yr,...,y^). (4) 

The control law and the tuning functions are given recursively by 

zi=xi-y^-vi -ai_i (5) 

ai{xJ,y^) = -Zi_1-cizi-wJe + Yj(^^xk+l + -^i^W 
fc=i dXk      ~K^      '       Qyf-lV 

.    ,9 9a;_i ^—\ 9a;t_i 
-«'M2* + -^^i + £—^ru,<z* (6) 

dB fc=2    dB 

Ti{Xi, 6, ^i-1)) = Ti_! + WiZi (7) 

Wi(Xi,6,y<r
i-V) = <Pi-Y;^1yk (8) 

fc=i     Xfc 

i = 1... n (9) 
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where xt = (xi,... ,Xi), a0 = 0, r0 = 0, d > 0. The control law together with 
the parameter update law render the time derivative of the Lyapunov function 

Vn = lzTz + hTr-iQ with 0 = 9-9 (io) 

negative semidefinite along trajectories of the closed loop system: 

n n 

Vn = -^2ckz\ - Y^Ki\wi\2zf < -c0 \z\2    where    Co =  min^        (n) 
k=l k=i 

Our main objective is to improve the transient performance of the closed loop 
system, in particular with respect to the unknown parameter vector 9 which is 
assumed to be constant with respect to time. 

It is a well known fact that for this adaptive control schemes the transient 
performance can be improved by increasing any of the design parameters c,, 
Ki and r. The higher the gain the faster the transient response of the control 
systems. In practical applications however, high gain should be avoided as there 
are always unmodelled dynamics or even time delays (related to computer im- 
plementation) in the system which may lead to instability if the loop gain is too 
high. Thus, other strategies of counteracting uncertainties are highly desirable. 

Such a strategy is provided by the multiple model switching and tuning 
approach, where the estimates are taken from a finite set 

9U    i = l,...,N. 

The multiple model observer provides additional information on parameter un- 
certainies which can then be used to instanteneously reset the parameter esti- 
mate 9. Suppose the best estimate of the multiple model observer with respect 
to prediction performance is 

9+ =9 j- 

Then a decision has to be made whether or not to use this additional information. 
In the case when the multiple model estimate is used the current continuous 
estimate 9~ will be discarded and the continuous update law reset to the new 
value. This resetting decision should not be based on the modelling performance 
alone. It should also be guaranteed that the control performance and in particular 
the transient behaviour is improved via resetting. 

In between the resetting events the parameter estimate will still be governed 
by the adaptation law and it will thus be piecewise continuous. This will result 
in discontinuous control and adaptation laws. Since the state transformation in 
Eq. (5) is parameterised by 9 the states z2,... ,zn will be discontinuous in time. 

In the remainder of the paper the implications of such a resetting strategy 
will be studied. 
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3    Stability Analysis of Parameter Resetting 

3.1    Sufficient Conditions for Stability 

Stability results for discontinuous Lyapunov functions exist, e.g. [10]. For stabil- 
ity it is sufficient that 

1. V(x) be continuous with respect to its arguments 
2. V(x) is non-increasing along trajectories in between switching events, 
3. V(x+) < V(x~) whenever there is a jump from x~ = lim^. x(i) to x+ = 

limtff x(t) at some time instant t*. 

Consider the Lyapunov function (10) of the tuning function approach 

Vn{z,6,6) = )-zTz + \öTr-x6   with   9 = 9-9. (12) 

For the tuning function approach it can be easily shown that properties 1 and 2 
hold due to the stability of the closed loop system when no resetting is applied. 
When the parameter estimate 0 is reset, the state variable z depending on 0 
changes discontinuously with time. Then, to obtain a sufficient condition for 
stability it remains to be analysed whether 

AVn = Vn(z(9+),9,9+) - Vn(z(0-),0,9-) < 0 (13) 

holds. If this is the case then a resetting of 9 from 9~ to 9+ is admissible. In 
general the state vector z will depend on 9 in a nonlinear way. In order to develop 
some stability criteria the following assumption may be made (it will be shown 
in later sections how this can be replaced by other assumptions): 

Assumption 3.1. Set the step change in parameter 

A9 = 9+-0-. (14) 

There exist a matrix-valued function M(z~,§~,yr~^) such that 

(z+f (z+) < (z~ + MA9)    (z~ + MA§) (15) 

for all Ad G DCRP. 

Under assumption 3.1 the following bound on the step change of the Lyapunov 
function (10) can be given: 

Avn = (z+f (z+) + (e- 9+yr-1 (e - ö+) 

- (z~f (*-) - (ö - 9-)Tr-1 (e - §-) (is) 

AVn<2 M
T

Z~ - r~x9~- A9 + A9T [MTM + r~1} A9 (17) 
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§- =0-0- 

For positive definite MTM+r^1 > 0 the sufficient condition for stability AVn < 
0 is satisfied inside the hyper-ellipse 

MTZ~ - r-rö A0 + A0T [MTM + r~l] A0 = 0 (18) 

It can be easily verified that even in the case when 0 steps from 0~ to the 
correct parameter value 0+ = 0 the condition for stability is not necessarily 
satisfied because in this case the requirement would be: 

2(z-)TM6»- + {0-)T{MTM - r-x)0- < 0. (19) 

It has been shown above that the set of admissible parameter changes AO 
depends on the state z and on the parameter error 0. While z~ and z+ can be 
computed, additional information on the estimation error is necessary to check 
the admissibility of A0. In the remainder of the paper two ways of obtaining the 
required knowledge of 0 will be presented. The first approach is by exploiting 
properties of the closed loop system while the second approach uses additional 
information supplied by an multiple observer. 

3.2    Reference Trajectory Resetting 

The condition (13) on AV can be considerably simplified when resetting of the 
reference trajectory yr is used in combination with the parameter resetting. 

Reference trajectory resetting can be applied most easily in the case where yr 

and its derivative are generated by a linear reference model which is driven by 
some external reference input signal r(t). For the following calculations we as- 
sume the existence of a reference model since the states of such a system can 
be reset directly. In the other case where yr and its derivatives are generated 
externally the reset is accomplished by modification of the reference signal us- 
ing the output ö,8^,... ,<5(™_1) of an additional linear asymptotically stable 

autonomous system 2/„nod = Vr   + ^ ■ 
Reference trajectory initialisation is originally a tool for improving the tran- 

sients in adaptive tuning function control systems [9]. In fact, by resetting the n 

values yr(t
+),yr(t

+),... , 2/r"_1) (t+) an additional degree of freedom is obtained 
which enables us to set z+ = 0. From Eq. (5) it can be seen that z+ = 0 requires 
the solution of set of equations 

j,('-1)(t+) =Xi- ai_i(Si, • • • ,xi_1,0
+,yr(t

+),... ,yt2\t+)),    i = 1,... ,n 
(20) 

It can be shown [9] that the solution to these equations does not depend on the 
controller parameters. 
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The step change in the Lyapunov function with reference trajectory resetting 
is 

AVn = (e- e+fr-1 (e - 0+) - (z-f (z~) -(e- §-f r~l (e - <r) 

- A6Tr-lA6 - 2 (§-y r~lA§ - (z-f (z-) (21) 

for which we can obtain a controller independent upper bound 

AVn < A^r^Ae - 2 (e~) r~lAe (22) 

When trajectory resetting is used, the Lipschitz assumption 3.1 (where M might 
be difficult to compute) is no longer required because z+ = 0 in Eq. (16). 

3.3    Application to a First Order System 

Consider the tracking control of the first order system 

±i =<fii(x1)6 + u (23) 

An adaptive tuning function controller is simply 

u =-^(x^O - CiZi -yr (24) 

Q = lziVi{x{) =7Ti (25) 

*i = zi - yr 

This controller based on the control Lyapunov function 

v=¥+h^-')2 (26) 

renders the derivative of the Lyapunov function negative semi-definite 

V = -ciz\ < 0. 

The closed loop system is given by 

zi = -cizi +<pi(xi)6 (27) 

The time derivative of the squared error along the solution of (27) is 

-(- dt\2 \2Z*) = Zlil = ~ClZi + Zl^Xl^ (28) 

For the rest of the discussion of the first order case we assume that (pi(xi) > 0. 
This assumption is not necessary for the approach in general but it simplifies 
the switching law considerably. 
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For the first order system (23) and the Lyapunov function (26) we obtain by 
use of Eq. (16) the following sufficient stability condition: 

AV = V+ - V~ = i- (§+ - 9~Y - - ((& - 0~) (9+ - 0-)) < 0      (29) 

This gives the following bounds on the step change in the parameter estimate: 

sgn (zl<9) = sgn (0-) (30) 

U0|<2|flH (31) 

In general, condition (31) cannot be verified without additional information 
on the parameter estimate. However a switching law S(z\,A9) can be designed 
such that condition (30) holds. 

Using this switching law the parameter resetting law is constructed in the 
following way 

0 = 0- + (0+ - 0-) S(zu A9) =§- + A9 S{zuA9) (32) 

where S assumes the values 1 or 0 according to the following set of inequalities 

(z1 > £1   A  A6 > e2 

V 
z\ < -£1 A A9 < -e2 

5 = 0   elsewhere (33) 

Condition (32) states that resetting occurs whenever the magnitude of the 
control error z\ exceeds some threshold and at the same time there is a signif- 
icant discrepancy between continuous parameter estimate and multiple model 
parameter estimate having the same sign as the control error. 

Note that due to the assumption that <p is always positive we obtain from 
the closed loop error equation (27): 

ii-zi > 0    implies    sgn(ii) = sgn(0) (34) 

Thus, provided that \z\\ is increasing while it crosses the threshold £1 the sign 
of ii is a direct indicator of the sign of the parameter error 0. In the general case, 
the sign of tp will be known and the resetting law can be modified accordingly. 

This leads us to the following theorem 

Theorem 3.2. 1. Consider the first order system (23) together with the con- 
tinuous control law (24) and the update law (25). Assuming <fii{xi) > 0, 
7 > 0 and C\ > 0. If the parameter 9 is reset under the condition 

zisga(zi) = £1 f\z1A9 > £i£2,    £1 > 0, £2 > 0 (35) 

then, the sign condition (30) is satisfied. 
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2. Provided the sign condition is satisfied, then a decrease ofV in Equation (26) 
at the switching instant is obtained provided that 

A9 <2 0- 

holds. Thus a sufficient condition for stability is satisfied. 
3. If to the contrary 

A8 >2 8 

(36) 

(37) 

holds then the control error z\ is driven towards zero as long as \z\\ > e\ 
despite of the increase in value ofV. 

Proof. The first and second part of the Theorem has been proven above. 
If the assumptions of the third part of the theorem hold then, outside \zi\ > e\ 

we have along the solutions of the closed loop equation: 

d_ 

dt (H ZiZx 

= -Cizf +ZHp!(xi) \§     - 

< -cizi + \z1tp1(xi)\ Mo" (38) 

A6S(y,A0) 

\-\M] <0 
due to (37) which implies that z\ is driven towards the origin. ■ 
As a remark, one might note, that case 3 of Theorem 3.2 implies stability but 
possibly with reduced transient performance and chattering. 

The negative jump in the Lyapunov function could be interpreted as im- 
proved transient performance. This follows from the dependency of transient 
performance of the tuning function approach on the initial conditions which has 
been analysed in [9]. 

3.4    Application to a Second Order System 

Consider the second order system with one parameter 

±i = x2 + <p(xi)8 

±2 = u. (39) 

Designing the tuning function controller (2) for such a system requires one 
backstep. Assuming that the parameter estimate 6 can vary discontinuously with 
time we will thus have also discontinuous changes with time in a\ and z2 and in 
the corresponding Lyapunov function V = \z\ + \z\ + ±§2. The step change 
in the Lyapunov function can be expressed as 

AV = V+ - V- = z^Vl(Xl)A9 + -<p\(x1)A§2 

i + ^))z^-(V 
-9-A6+— AO2 

7 27 

-2£<P(XI))AO      (40) 
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This corresponds with Assumption 3.1 and Eq. (15) where 

z+ = z~ + MAO 

The reset conditions discussed in sections 3.3 and 3.4 require the information 
whether the states of z\ and z2 cross some threshold from above or below. No 
explicit knowledge of the derivatives of the states is required. In case of noisy- 
state measurement multiple crossing of the threshold may occur, however, by 
imposing an additional threshold on AO a hysteresis is introduced and chattering 
cannot occur. 

4    Multiple Model Observer (MMO) 

As explained above a multiple observer approach can be used to avoid large 
transient errors in continuous adaptive control. Quite similar to the multiple 
model estimation described in [2,3,4,7], the idea is to construct a finite set of 
parallel observers each of which is designed for a fixed parameter value. In its 
simplest form the MMO constists of a set O of N individual observers ot each 
parameterised with a fixed parameter value 0j. All N observer cover the range of 
admissible parameter values. Figure (1) shows the structure of a multi-observer 
parameter estimation. Each of the N observer estimates the states of the system 
and is driven by the residual en = x\ - xU- Since any mismatch between a 
single observer and the physical system will in general lead to a steady-state 
estimation error, this error can be used to determine the best observer for the 
actual system. 

Using discontinuous output injection functions is common in sliding mode 
observers [11]. A hybrid observer using convergence information to switch be- 
tween several discontinuous output injection functions for nonlinear systems has 
been reported in [12]. Here, we propose instead to use a set of observers with 
fixed output injection functions which can have considerably faster transients. 

A performance index Qi(xi,y) is defined for each observer of the set O. The 
performance index weighs the output error of the observer, thus quantifies the 
mismatch between the plant and the individual observer. A switching logic L 
is used to determine the estimate 6i of the multi-observer O. L satisfies two 
purposes: 

1. selecting the coefficient 0j corresponding to the observer o, with the best 
performance. 

2. providing a mechanism that ensures a convergence of the estimator after a 
finite number of switches. 

In order to prevent chattering, two different approaches have been suggested 
in literature 
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Fig. 1. Multiple model observer parameter estimation 

- Dwell time switching [5] where after each switch for a certain period of time 
switching is prohibited. 

- Hysteresis switching [1,13]: Let op be the valid observer at time t" then a 
switch to. a new observer o* occurs only if Qi(t+) (1 + h) < Qp(t

+) where 
QP(t+) is the current performance of the observer op and h > 0 is the 
hysteresis. Otherwise no switching will occur and op will remain valid. 

4.1    Construction of the Individual Observers in the First Order 
Case 

Consider the system (23) where the parameter 6 is treated as an augmented 
state 

&i =<Pi(y)0 + u 

6 = 0 

(41) 

It is assumed that ip\(y) > 0 and that the parameter 6 is contained in a closed 
interval [9min,6max]. The interval is discretised using a set of N parameter val- 
ues 9min <6i <62 < ... < 9N < 9max. Each of the N individual observers of the 
multiple model observer will be centered around one of the discrete parameter 
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values 6i. For this purpose Eq. (41) is rewritten into 

xi = <Pi(y)8i + 9i{y)x2i + u 

x2i = 0 (42) 

where x2i = 0 - 6t. Following the Lyapunov based observer design in [14] we 
propose to use the following individual nonlinear observer 

xu = <Pi(y)0i + 2w^i(2/)(2/ - xu) +u + <pi(y)x2i 

x2i=w2ip1(y){y-xli),        w>0. (43) 

Defining the error e{ = [en, e2i]
T = [y - xu,x2i - x2if the observer will result 

in the bilinear error dynamics 

e< = v(y)(I^J)ci- (44) 

where the matrix A is Hurwitz and <p(y) represents the nonlinearity in the system 
output. The observer design renders the derivative of the Lyapunov function 

^)=k(L°-Oe* (45) 

negative definite Vi = -2unp(y)eli < 0. 
An important property of the error differential equation (44) is that its so- 

lution can be explicitly given. Knowing the measurable output error eu(t - T) 
and eu(t) at some time instant t the parameter estimation error 

e2i(t) = -L [(1 + uy*) eu(t) - e~^'eu(t - T) (46) 

can be determined, where y*(t-T,t) = /t
t_ryi(2/(r))dr > 0. Thus, even under 

observer transients a parameter estimate 

9i = 0i + x2i(t) + en® (47) 

can be computed. 
Anti-windup is introduced for the observer state x2i by defining the local 

bounds 6i. The state equation x2i is set to zero if x2i + 9t £ [0j_i,0j] and 
{y - xii)x2i > 0. Hence, only one individual observer will have an output error 
converging to zero and consequently a cost index Qi converging to zero indepen- 
dently of the particular cost index that is used. 

The properties of the MMO can be used to derive the following resetting law: 

Theorem 4.1. Consider the control system (23) together with the control 
law (24), the parameter update law (25) and the MMO (43). Suppose that ot 

is the observer that has been selected according to the cost index. Then, set- 
ting 9+ = 6i will result in a negative step of the Lyapunov function (26) if 
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1. X2i(r) does not saturate within the time Intervall r G [t — T,t\. 
2. 0i_1<Bi<9i. 
3. either (a) 8~ - 0t > 04 - 0< or (b) 0^ -§~ >6i-6i_1. 

Proof. If condition 1 of the theorem holds, according to Eqs. (46) and (47) we 
have 

9i = 0i + x2i(t) + e2i{y*(t,t- T),eu(t),eu(t - T)). (48) 

If in addition to this, condition 2 is satisfied, then it can be implied that the real 
parameter is contained in 

fli_i <0<§i. (49) 

From condition 3 it follows that either 3a is satisfied in which case we obtain by 
adding 0 to both sides, rearranging and employing (49) 

-AB = 0- - 0i < 2(0 - 9i) < 2(0" - 0) = -20- (50) 

If on the other hand 3b is satisfied then by subtracting 0 from both sides and 
employing (49) 

A0 = Bi - 0- < 2(0i_1 - 0-) < 2(0 - §-) = 20-. (51) 

Consequently, conditions (30) and (31) are satisfied which is sufficient for sta- 
bility ■ 

Note that the MMO approach does not rely on assumption 3.1. 

5    First Order System 

Consider the first order system (41) where yifa) = x\ together with the control 
law (24) and the update law (25). The design of the MMO (43) is done by using 
five parameter hypotheses Bt £ {-10,-5,0,5,10}. The parameter estimate 0 is 
reset if the Theorem 4.1 together with (32) hold. The simulation results with 
and without parameter resetting are depicted in Figure (2). Consider the sim- 
ulation scenario where the system should follow a ramp signal with the slope 
O.lsec-1. The parameter 0 jumps at time t = 4sec from 0 = 9 to 0 = -8 and 
at time t = 7sec to 0 = 4. White noise is distributed to the system's output. 
Note that the scenario differs slightly from the above theoretical considerations 
where the parameter 0 is assumed to be time invariant. The upper left picture 
in Figure (2) shows the control error for both cases with (fat black line) and 
without (gray line) using the MMO. The upper right picture shows the control 
signal respectively. The lower left picture depicts the real parameter value 0 (dot- 
ted), the estimate of the MMO 0t (dashed gray), the estimate 0 with parameter 
resetting (solid fat)and 0 without resetting (dashed fat line). Using the MMO 
estimation, 0 converges faster to the real parameter value and the control error is 
removed faster. The lower right picture of Figure (2) shows the faster decrease of 
the Lyapunov function (26) and the performance enhancement. The simulation 
shows an improved performance even for step disturbances in the parameter. 
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Fig. 2. First order example 

6    Conclusions 

The presented paper provided an extension of multiple model based adaptive 
control to the class of parametric strict feedback nonlinear systems. As a main 
contribution a set of sufficient closed loop stability conditions for resetting tuning 
function based nonlinear adaptive controllers was given. Also, a fast multiple 
model observer was introduced, from which even under transient conditions a 
parameter estimate can be obtained. A first order control example showed that 
recovering of the control error can be improved after instantaneous changes of 

the parameter. 
Future work will be dedicated to the application of multiple observers in au- 

tomotive wheel slip control where a fast recovery of wheel slip after instantaneous 
changes of the tyre/road friction coefficient is required. 
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Abstract. In many control applications, a specific set of output tracking 
controllers of satisfactory performance have already been designed and 
must be used. When such a collection of control modes is available, an 
important problem is to be able to accomplish a variety of high level tasks 
by appropriately switching between the low-level control modes. In this 
paper, we define a concept of control modes, and propose a framework for 
determining the sequence of control modes that will satisfy reachability 
tasks. Our framework exploits the structure of output tracking controllers 
in order to extract a finite graph where the mode switching problem 
can be efficiently solved, and then implement it using the continuous 
controllers. Our approach is illustrated on a helicopter example, where 
we determine the mode switching logic that achieves the high-altitude 
takeoff task from a hover mode. 

1    Introduction 

Large scale systems like automated highway systems, air traffic management 
systems, unmanned aerial vehicles are multi-agent, multi-objective systems that 
operate in many modes of operation. This results in systems of very high com- 
plexity which may dramatically limit the applicability of current analysis and 
design methods. A natural way to reduce the complexity of system design uses 
compositional methods which solve a complex problem by decomposing it into 
a sequence of smaller problems of manageable complexity. For example, in so- 
phisticated flight management systems [3], modern aircraft fly from origin to 
destination while satisfying a large number of aerodynamic, scheduling, and air 
traffic constraints by switching among a finite set of flight modes, where each 
flight mode essentially corresponds to a different output tracking controller. 

More generally, given a continuous control system, a control mode is defined 
as the operation of the system under a controller that is guaranteed to track a 
certain class of output trajectories. Different outputs of interest correspond to 
different control modes. Given a set of control modes, the mode switching prob- 
lem attempts to find a finite sequence of the control modes as well as switching 
conditions in order to satisfy various tasks. In this paper, we focus on reachability 

tasks. 
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Problem 1. Given a control system and a finite set of control modes for the 
system, determine whether there exists a finite sequence of modes that will steer 
the system from an initial control mode to a desired final control mode. If such 
a sequence exists, then determine the switching conditions. 

Clearly, in this setup, many more interesting problems can be formulated. For 
example one can ask what are the optimal switching conditions, where optimality 
can mean minimum time, or minimum number of switchings. Furthermore, one 
can ask whether a set of modes is sufficient for performing a reachability, or 
more general, task. In this paper, we focus on Problem 1, while setting up the 
framework for considering these more general questions in the future. 

In its full generality, Problem 1 can be tackled using controller synthesis 
methods for hybrid systems [1,7,12,14]. However, termination conditions for such 
synthesis procedures are limited [6], and the computational complexity of such 
procedures could be prohibitive due to nested reachability computations. It is 
therefore evident that in order to scale our methods to real-life examples, struc- 
ture must be imposed on the system, and subsequently exploited in our analysis 
and synthesis methods. 

In order to reduce the complexity of the mode switching problem, we start 
by assuming that output tracking control laws have been designed for each con- 
trol mode. Feedback greatly simplifies the continuous models in each discrete 
location since the complexity of the continuous behavior is now reduced to the 
complexity of the trajectories we design. Therefore, many reachability compu- 
tations that are required in our approach can be greatly simplified by properly 
designing the desired trajectories. Even though feedback control simplifies the 
continuous complexity, the problem of having nested reachability computations 
is still present. In order to avoid such expensive computations, we place a con- 
sistency condition in our mode switching logic which is reminiscent of the notion 
of bisimulation. We propose an algorithm which given an initial set of control 
modes, constructs a control mode graph which refines the initial control modes 
but is consistent. Construction of the mode graph can be done off-line or every 
time a new control mode is designed, allowing the mode switching problem to 
be efficiently solved on-line, in real time. 

2    Problem Formulation 

Throughout this paper, we consider a nonlinear system modeled by differential 
equations of the form 

±{t) = f(x{t))+g(x(t))u(t),    x{t0)=x0,     t>t0 (2.1) 

where z e R™, M € RP, f{x) : Rn -> R" and g(x) : Rn -> Rn x RP. The system is 
assumed to be as smooth as needed. We now define a concept of control mode. 

Definition 1 (Control Modes). A control mode, labeled by qt where i G 
{1,...,N}, is the operation of the nonlinear system (2.1) under a closed-loop 
feedback controller of the form 
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u(t) = ki(x(t),ri(t)) (2.2) 

associated with an output y^t) = hi{x(t)) such that y^i) shall track rt(t) where 
?/.(i)) r.{t) e Mmi, hnW1 -+ Rmi, h : R™ x Rm> -> Rp /or eac/i * G {1,..., N}. 
We assume that n G 7?.,, i/ie c/ass of output trajectories associated with the 
control mode qit when the initial condition of the system (2.1) starts in the set 
Si{ri) C Xi, output tracking is guaranteed and the state satisfies a set of state 
constraints Xi C R". 

The trajectory rt(t) is the desired output trajectory, and yi(t) is the output 
vector which shall track r-j(t). Notice that in general the initial set may be 
a function of the trajectory ru thus we denote it as 5j(rj). This is because 
even though trajectory tracking controllers are guaranteed to converge for any 
initial condition, trajectory tracking in the presence of state constraints or input 
constraints can be guaranteed only if the initial tracking error is sufficiently 
small. In this paper we are interested in switching between controllers, rather 
than the design of output tracking controllers. We therefore make the following 
assumption. 

Assumption 1 For each control mode qit i G {1,...,N}, we assume that a 
controller of the form (2.2) has been designed which achieves output tracking 
such that yi(t) shall track n(t) where r, G K ^ 0, while the state satisfies the 
set of state constraints x{t) G Xt C R", when the initial condition of the system 
(2.1) starts in the set S^n) CljCE". 

The above assumption is justified given the maturity of output tracking con- 
trollers for large classes of linear and nonlinear systems [15]. Based on different 
design methodologies, the notion of output tracking could be different as it could 
be uniform asymptotic, exponential, etc. Depending on the complexity on the 
computation, one may choose a specific notion of tracking for solving Problem 
1. In order to motivate the discussion, we present a planar helicopter model 
and a set of controllers in which each controller satisfies Assumption 1 but with 
different output functions and state constraints. 

Example 1. Multi-Modal Control of a Planar Helicopter Model. In this 
example, a helicopter model [4] described in longitudinal and vertical axes with 
simplified force and moment generation processes is considered. The x, z-axes of 
the spatial frame are pointing to north and down directions. The body z-axis 
is defined from the center of gravity to the nose of the helicopter, and body 
x-axis is pointing down from the center of gravity. The motion of the helicopter 
is controlled by main rotor thrust, TM and longitudinal tilt path angle, aM- The 
pitch angle is defined by 6. The equations of motion can be expressed as: 

Px(t) 
Pz(t) 

cos 6(t)    sin 6{t) 
- sin 9)(t) cos 6(t) 

-TM(t) sin aM(t) 
-TM(t) cos aM(t) 

+ (2.3) 

9{t) = -i-(MMaM(0 +hMTM{t)sinaM{t)) (2-4) 
111 
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The state vector and input vector are denned as x = \px,Px,Pz,Pz,0,6\J 

and u = [TM,O,M}
T
 G R2, respectively. 

Control Mode Output Reference Constraint 
gi: Hover 2/1 = \Px,Pz]T r\ Xx 
q2'- Cruise 2/2 = \px,Pz}T r2 x2 
q3: Ascend 2/3 = \Px,Pz]T r3 x3 

94: Descend 2/4 = [Pz.PzF ri Xi 

Define Xx = X2 = K x (^ü*) x R x (vz,ü2) x (-TT/2,TT/2) xl,I3=Ix 
(yx

r,vx)xRx(vz,v
a

z
s) x (-7r/2,7r/2) xl, and X4 = Ex (uf ,«x) xEx (vf ,vz) x 

(-7T/2, TT/2) x R where vx < 0 < r£r < vx and vz < vf < 0 < v"/ < vz. To sat- 
isfy Assumption 1, several control design methodologies can be used to design a 
controller for each discrete control mode qt where % e {1,2,3,4}. Each controller 
implementation can be specified as u = ki(x,ri) with r* € 7^» where "^i defines 
the class of admissible output trajectories in mode qu and the performance of the 
closed-loop system can be specified by initial set, S^n), and flow, M^ri^o) 
where x0 G Sifri). 

Given two control modes, one cannot simply switch from one control mode 
to another due to incompatible constraints. A natural question is then whether 
this mode reachability task can be achieved by a finite sequence of modes. Based 
on the above example, we can now define the mode switching problem that we 
will address in this paper. 

Problem 2 (Mode Switching Problem). Given an initial control mode qs with 
desired reference rs, does there exist a sequence of control modes such that the 
system can reach a desired mode qF with reference rF1 If so, then determine 
a mode sequence qs ->■ • • -qi -> qj ■ ■ ■ -> qF along with trajectories n for each 
control mode qu as well as conditions for switching between the control modes. 

For the control modes defined in Example 1, one can define a task of having 
the Hover mode q\ as an initial mode and ask for a finite control mode sequence 
to reach the Ascend mode q3. Any solution to this problem leads to a feasible 
execution of the task called high-altitude takeoff according to flight instruction for 
helicopter pilots. Note that Problem 2 is a reachability problem. More generally, 
one can envision more complicated tasks that can be specified in temporal logic, 
but in this paper we restrict our attention to reachability specifications. 

3    A Mode Switching Condition 

In its full generality, Problem 2 can be posed as a controller synthesis problem 
for hybrid systems [7,12]. Such synthesis methods involve nested, and possibly 
cyclic reachability computations, where each reachability computation involves 
computing the capture set of a differential game. Furthermore, termination guar- 
antees for controller synthesis methods are rather limited [6]. 
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In our mode switching problem, however, there is enough structure to take 
advantage of in order to simplify the complexity of the synthesis task. First of all, 
the continuous controllers are assumed to have been designed, and therefore we 
do not have to design the continuous part of the system, but simply determine 
the mode switching conditions. Furthermore, by imposing certain conditions on 
the allowable mode switches, we reduce the complexity of the synthesis problem, 
by maximally decoupling the discrete and continuous aspects of the synthesis. 

To address the problem, we have to characterize the reachable set of each 
mode and switching condition among them. Let <f>i(t,ri,xo) denote the flow of 
system (2.1) operating in mode qi with the controller defined by (2.2) for initial 
condition xo, and desired output trajectory r*. 

Definition 2 (Predecessor set). Given a set P C Xi} a trajectory ri G Hi, 
the reach set Prei[P,ri) in mode qi is defined by 

Prei(P,n) = { xo G Xi  | 3t > 0 3x G P such that x = 4>i(t,rux0) }   (3.1) 

Therefore Prei(P,ri) consists of all states that can reach the set P in mode qi 
for a given output trajectory rt, at some future time. Furthermore, because of 
Assumption 1, we have a guarantee that throughout the whole trajectory, the 
state constraints are satisfied, that is 4>i{t,r,,xo) G Xi for all t > 0. 

Given control modes qt, and qj, one would typically allow a switch from mode 
qi to qj if during the operation of the system under mode qt for some ^ e 7?;, 
the state reaches the allowable set of initial conditions Sj(rj) for some r\, € TZj, 
i.e.  there exist rj G TZt and rj G TZj such that 

5i(ri)nPrei(5j(rj),ri)^0. (3.2) 

If one allows this type of mode switching, then reachability critically depends on 
the particular choice of initial conditions since some initial conditions in 5t(r;) 
may reach the set Sj(rj) of mode qj while others may not. If this is the case, 
then nested reachability computations seem necessary for the solution of the 
mode switching problem. However, such nested computations can be avoided if 
one places the following condition on mode switching. 

Definition 3 (Consistent mode switching). Assume that control mode qt 
satisfies Assumption 1, that is (j>i(t,ri,Xo) G Xi for all t > 0 with initial condi- 
tions starting from ^(r,) where ri &1Zi. A transition from mode qi to mode qj 
is allowed only if there exist ri G TZi and rj G TZj such that 

Situ) C PreiiSiir&n) (3.3) 

«• Vx0 G Si(ri) 3i > 0 3a; G Sj(rj)  such that x = (f>i(t,ri,x0)     (3.4) 

Therefore, if there exist trajectories r, (in mode qi) and rj (in mode qj) such 
that, if the system starts at any xo G Si(ri), then switching from mode qi to qj 
can occur at some time t such that 4>i(t,ri,xo) G Sj(rj). The consistent mode 
switching condition is shown in Figure 1. The condition expressed in Definition 3 
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Fig. 1. Visualization of consistent mode switching condition 

is a consistency condition that guarantees that our ability to get from mode 
qi to mode qi for the particular trajectory pair (r^r^ is independent of the 
choice of initial condition in S^n). The condition is reminiscent of the time- 
abstract bisimulation property from formal verification [8]. In this case, however, 
Definition 3 is quite different since no partitioning of the state space is involved. 
Now define 

1lij = {(rt, Tj) eTZiX TZj | condition (3.3) is satisfied } (3.5) 

Hence, if TV3 ^ 0, then mode switching from q{ to q, is possible since there exists 
a trajectory r* G ft; that will steer the system state to an initial set Sj(rj) with 
TJ G TZj independently of where we start in S^n). Therefore, every trajectory 
pair {rurj) G TV3 will steer the system from mode qt to mode q$. For each 
(ri,rj) G TV3, the only thing that depends on the initial condition is when the 
state will reach Sjfa), but not if the state will reach Sjfa). 

To test the mode switching condition (3.3), and compute the sets Tlij, one 
needs to compute the predecessor set Prei(P,n). Even though there is exten- 
sive research in computing exactly, or approximately such reachable sets [7,9,12, 
11,13], there is limited research for parametric reachability computations [10]. 
Furthermore, in our problem we take advantage of the fact that in each control 
mode, the output is tracking a reference trajectory r,. Therefore, by designing 
trajectories we design part of the reachable space whereas the part of the state 
is not reflected in the output remains within the set Xt. Choosing simple, or 
better computable, classes of trajectories ft; will allow us to efficiently perform 
reachability computations for Prei(P,n) with parameters r* G ft*. To continue 
discussion, we assume that the Prei operators are available to us, and defer this 
important issue to Section 5. 

4    Mode Sequence Synthesis 

The mode switching condition (3.3) makes the mode switching problem much 
more tractable since we can ignore the initial sets and focus on the trajectory 
sets Tl13. Furthermore, the construction presented in this section will abstract 
the mode switching logic into a purely discrete graph. Therefore one can first 
determine the sequence of modes using standard algorithms for discrete graph 
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reachability, and then determine the continuous parameters r, for each mode. 
This will decouple the discrete from the continuous aspects of the problem, and 
allow continuous techniques for continuous problems, and discrete techniques for 
discrete problems. 

Given a collection of control modes Q = {qi,... , <?JV}, the first attempt at 
solving the mode switching would construct a graph as (Q, —>•) where the vertices 
of the graph would be the set of control modes Q, and we would define the 
transition relation —S-C Q x Q as 

(li,Qj) e-> nij ^ (4.1) 

In other words, there would be a transition qi —> qj, if there exist trajectory pairs 
(ri,rj) G TV3 that can transfer the system from mode qi to qj. This approach, 
however, leads immediately to problems because if g» —> qj and qj —> qk there 
may not exists a trajectory TJ, which will take a point x € Si(rj) to Sk(rk) 
via Sj(rj), if TV3 n TVk = 0. Hence, transitivity fails, and our mode switching 
graph is not a consistent abstraction as the high level mode switching logic is 
not implementable at the lower level by the continuous controllers. 

In order to obtain a consistent control mode graph, denoted as (Qc, —>c), that 
has feasible low level implementations, our original attempt must be refined. In 
particular, each control mode qt gets refined to 2N submodes, where N submodes 
stand for entering mode qi from any other mode qj, and TV more copies for exiting 
mode qt towards any other mode qj. This refinement is illustrated in Figure 2, 
where mode qi has two submodes, q{2 which is the operation of the system in 
mode qi on the way to mode qi, whereas q\l is the operation of the system under 
mode <7i after being in mode q^. Therefore, this control mode graph has some 
discrete memory, in the sense that each state represents not only which mode 
the system is in, but also which mode will either precede it or has preceded it. 

r^1        <r II12-- = ft}2 x ft'2 'i2 ft^nft21^1' 

Mode <7i Mode q2 

K21-- = ft21 x ft21 

Fig. 2. Refining the mode switching logic by introducing submodes in order to obtain 
a consistent control mode graph 

The N2 pairwise reachability computations in order to compute the sets Hli, 
can immediately be embedded in the graph (Qc,—>c)- The computed sets TZ^ 
can be used to go from submode q%? to q%?. After this initial step, the graph 
contains only isolated transition pairs between different modes as no transitions 
between submodes are considered. 

If the set IV* can be expressed as a decoupled product of the form 1¥i = 
TC? x TC? where TV? = {n e ft* | (n,rj) £ TV?} and TV? = {rj G Tlj | (n,rj) G 

TV3}, then the choice of trajectory rt G TV? in mode qi would work for any 
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trajectory r^ G TV? in mode Qj, i.e. 

Vn G TCP Vrj G TV?      condition (3.3) is satisfied. 

This decoupling allows us to consider switching via submodes. In Figure 2, if 
Ti-l2 nfög1 is non emPty, then that means that there exists a trajectory r2 which 
is common for both submodes. Notice that in this case, we do not have to do any 
reachability computations, we simply have to compute intersections of trajectory 
sets. Therefore, within each mode, we can check for submode consistency by sim- 
ply performing set intersections. Since there are maximally 2N submodes of N 
modes, a total of N(N)2 = iV3 intesections must be computed. We now summa- 
rize the ideas and present an algorithm for constructing the consistent control 
mode garph. The algorithm starts with the pairwise reachability computations 
(3.3,3.5), and performs the submode interconnections. 

Algorithm 1 : (Consistent Control Mode Graph) 
Input Control Modes Q — fa,...,qN} 
Output Control Mode Graph (Qc,->c) 
Initialize Qc := 0, ->c= 0 

Determine Mode Interconnections 
for i = 1 : N 

for j = 1 : TV 
Compute sets TV3 using (3.3) and (3.5) 
ifft« =ftV xTV?; 
ij ij 

Qi -=Qi, if -=qj, 
Qc:=QcU {#,#'}, 
->c:=->cU{(g«#)} 
end if 

end for 
end for 

Determine Submode Interconnections 
for j = 1 : N 

for all q*' G {9f G Qcßn s.t.   (q$,q?) G->J 

for all qf   G   {qf   G   Qc\3m     s.t.      fof\Öe-*c} 
if TV* n IZf ± 0; 
^c:=-^cU{(^,gf)} 
end if 

end for 
end for 

end for 
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Overall, Algorithm 1 requires iV2 reachability computations for the mode 
interconnections, and TV3 set intersections for the submode interconnections. 
After applying Algorithm 1, we obtain a finite control mode graph (Qc,-^c) 
which, as the following proposition shows, is consistent. 

Proposition 1. For any j G {!,..., |Q|}, if 3q%? G {q/3 € Qc\ 3n such that 
„jm G Qc\ 3m such that (q3jm, qi//1) G—>c}   

and 
?jk such 

täj,q?) e^c}, 3gf G {q3 

TV? n Tlf ^ 0, then there exists n G TV?, rj G TV3 n TV* and rk G Tlj/ 
that 

Siin) C Prei(Prej(Sk,rk),rj). 

Proof: Given (q1?, q%?) G—>c, we can pick any r, G TV? and since TV?nTZ?   ^ 0 we 

can pick any rj G TV3 DTZ3, , SO that Vrro G Si(ri) 3t > 0 3x G Sj(rj)  such that 

-■c, rj G ftj* n 7ef a; = 4>i(t,ri,x0). Then, pick any rk efc3
k , since (gj ,gj ) G-> 

and the switching occurs whenever <f>i(t,ri,xo) G Sj(rj), it can be easily seen 
that 3s > 0 3y G Sk(rk) such that y = <f>j(s,rj,(f>i(t,ri,xo)) = <f>j(s,rj,x). 
The choice on the trajectories is illustrated in Figure 3. Since by Assumption 1, 
0i(£) •>') £ Xi and ^j(si •> ■) G Xj for the choice of initial conditions and reference 
trajectories, by directly applying the definition we have shown the result. Ü 

Mode q. 

n £ TV? 

Mode 

Mode qk 

rj e TV/Mlf 

Fig. 3. Graphical illustration of feasible trajectories between control modes. 

Without loss of generality, in the following discussion, we assume that the 
given initial and final control mode in Q can be represented by qs G Qc and 
qF G Qc respectively. Given an initial control mode qs G Qc, the problem of 
whether we can reach control mode qp G Qc, can be efficiently solved using 
standard reachability algorithms. Furthermore, one can determine the shortest 
path (minimum number of mode switches) between mode qs and qp, in the con- 
trol mode graph. The structure that we have imposed on our control mode graph, 
immediately results in the following solution to the mode switching problem. 

Theorem 1 (Mode Switching Solution). Given a collection of control modes 
Q, consider the mode switching Problem 2. Construct the consistent control mode 
graph (Qc, —>c) as described in Algorithm 1. If there exists a path in the consistent 
control mode graph between qs and qp with feasible trajectories rs and rp, then 
Problem 2 is solvable. 

Having determined the sequence of modes that can steer our system from 
qs to qp, we are left with the problem of determining the parameters r^ for 
each mode of the sequence. By construction, such parameters exist and may 
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be selected from the computed sets. Furthermore, it is reasonable to pose the 
problem of choosing r* within mode qi as an optimization or an optimal control 
problem. A key issue for this approach (as well as for most controller synthesis 
approaches for hybrid systems), is to be able to compute Prei(Sj,ri) in order 
to check condition 3. This is the focus of the following section of this paper. 

5    Reachability Computations 

There has been a growing interest recently in computing reachable sets for var- 
ious classes of systems [9,11,7,13]. In particular, the approach of [9] has been 
extended to classes of parametric linear control systems [10], which is highly 
relevant for computing the operator (3.1). 

In our case, however, the continuous dynamics are those of output-tracking, 
closed-loop systems. Therefore part of the state is forced to converge to a tra- 
jectory that we get to design, and part of the trajectory is guaranteed to satisfy 
state constraints. This gives us the opportunity to obtain very reasonable approx- 
imations of the reachable sets, and even design reachable sets by appropriately 
designing output trajectories. The following example illustrates how continuous 
controller design results in reachability computations which are very easy to 
check. 

Example 2. Multi-Modal Control of a Helicopter Model(Continued) Re- 
consider the four control modes shown in Example 1. We first present the con- 
troller design to illustrate how to compute the reachable sets, then we show 
how to check the consistent mode switching condition between control modes. 
In this example, we assume that all output trajectories are constant trajectories, 
therefore, all controllers are setpoint regulators. Choosing computable classes of 
trajectories makes the reachability computations simpler. 

Given the specifications for the control modes, a nonlinear control scheme 
[5] based on outer flatness is applied for the design of the controllers. 
For each mode, the closed-loop dynamics with states defined by xex = 
\PX,PX,PZ,PZ,Q,6,TM,O.M]

T
 £ R8 can be decoupled into an inner system and 

two outer subsystems which specify the dynamics in x and z directions. In the 
following presentation, the Hover mode is presented to illustrate how the reach- 
able set can be computed. 

For qi, the output tracking controller is designed such that yx (t) shall track 
ri = [rix,riz]T and the output tracking error is uniformly ultimately bounded. 
Furthermore, because of satisfying Assumption 1, the controller is designed with 
initial set Si(ri) = Bx{[rix,0]T,elx)xB([rlz,0]T, elz)xSin where r1eTl1= M2, 
eix,£iz > 0 and Sin C (-7r/2,7r/2) X E3 such that for x(t0) € Si(r%) then 

|eix(«)|| < Mlxexp(-alxt){\\elx(t0)\\ +Slinx), ( \\elx(t)\\ < 5lx, 
|eiz(*)ll < Mlzexp(-alzt)(\\elz(t0)\\ + Slinz),   and I \\elz(t)\\ < 6lz, 

xin € Xin, \/t0 < t < t0 + Ti; [ xin e Sin, Vt > t0 + Ti 
(5.1) 

1
JB(r,6) = {77|||^-r||<6}. 
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for some T\ M\x, Miz, aix, al2, 8linx, 5u„z, 8ix, 5\z > 0. In above, e\x = 
\Px - rix,px]T, eiz = \pz- rlz,Pz}T, and xin = [0,0,TM,aM]T- Equation (5.1) 
explicitly over specifies the reachable set of the mode q± by examing the stability 
property. For other modes, although the control designs are slightly modified 
for tracking different outputs, the reachable sets of other modes are similarly 
computed. In Figure 4, we show the inital sets of all the control modes by 

Fig. 4. Projection of £1(7-1), $2 fa), S^rs), and 54(7-4) onto: (a) px — px plane; (b) 
Pz — Pz plane 

projecting them onto px — px plane and pz — pz plane where the projection 
operator is defined as 77, : xex i-> (pi,fti) for i € {x, z}. In summary, the control 
modes can be specified by 

Control Mode Trajectory Set Initial Set 

9i 
92 

93 

94 

7e2 = [-3,3]x{0} 
K3 = [2,4] x [-3,0] 

72.4 = [2,4] x [0,3] 

51=5(0,4)xß(0,4)x5in 

S2=lx (-3.5,3.5) x (-3.5,3.5) x Sin 

53 = R x (1.5,4.5) x (-3.5,0.5) x Sin 

54 = R x (1.5,4.5) x (-0.5,3.5) x Sin 

where 5j„ = B(0,0.2), Xin = (—TT/2,TT/2) X R3 and the associated parameters 
are defined as vx — —6, vcr = l,vx = 6, vz = —6, vz

s = 1, v^e = —1, vz = 6. 
Given the set of control modes, we generated the consistent control mode 

graph by applying Algorithm 1. In Figure 5, we illustrate the idea of computing 
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the reachable sets on px — px plan. One can easily see the advantage of using 
feedback, since it is straight forward not only to check the consistent mode 
switching condition but also to determine the feasible range of trajectory, that 
is compute the sets TllK In particular consider the pair (91,92), that is the 
transition from hover to cruise. As can be seen from the left side of Figure 5, the 
consistency condition is trivially satisfied since the ball S\(ri) will eventually 
shrink towards the setpoint (rix,0), and as a result, will be totally contained 
inside 5,

2(r2) for any r2. Therefore, in this case 1Z12 = TZi x H2- Therefore, 

Fig. 5. Graphical illustration of performing reachability computation for checking con- 
sistent mode switching condition on px — px plane: (a) q\ —)■ 92; (b) 92 —> 93 

feedback allows us to check very easily the consistency condition and compute 
the sets 7£y'. The right side of Figure 5 shows the similar graphical computation 
for the mode transition (92,93), from cruise to ascend. In a similar manner, we 
have checked the following pairs, 

{(91,92), (92,92), (92,93), (92,94), (93,92), (93,93), (93,94), (?4,92), (?4,93), (94,94)} 

All of the above reachability computations were extremely simple to check. The 
result of applying Algorithm 1 is summarized in the control mode graph that is 
shown in Figure 2. 

Fig. 6. Consistent control mode graph for the multi-modal helicopter control example 

Recall the high-altitude takeoff task, which is the task of having the Hover 
mode 91 as an initial mode and ask for a finite control mode sequence to reach 
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the Ascend mode q3. We can now see that from Figure 2 that qx has {q\2} as 
a submode, and q3 = {qf, qf, qf, qf) 

,23 
{933>933>932!<?34}, and there exit many paths which are 

feasible for achieving the task. However, gP^2«?23^23 gives a solution to the 
task with the minimum number of mode switches, i.e., qi -> q2 ->■ q3. Given a 
cost function with respect to the continuous variables, the performance of the 
sequence can now be optimized with respect to the feasible trajectories. We have 
therefore decoupled the problem in a purely discrete graph search problem, and 
a collection of continuous designs within each mode. 

Simulation results of the controlled system based on the selected sequence 
are shown in Figure 2. In the simulation, we can choose rx = [0 0]T £ U\2, 
r2 = [2 Of G 11? n Tlf and r3 = [3 - if e Tlf. The initial conditions of the 
outer system are px(0) = -2, px(0) = -0.2, pz(0) = 1, pz(0) = 0.5. The initial 
condition of the inner system, xin(0) e Sin. Mode switchings occur at t = 20 for 
9i —> <l2 and at t = 45 for q2 -> q3. 

Fig. 7. Projected trajectories of the helicopter along with the initial sets of the next 
control modes from different view angles are shown. Notice that immediate transition 
92 -> 93 after qi ->• <j2 is not allowed until x(t) enters the initial set S3(r3). 

6    Conclusion 

In this paper, we have considered the mode switching problem among a collection 
of output tracking controllers for nonlinear systems. Our approach consists of 
extracting a finite graph which refines the original collections of modes, but is 
consistent with the physical system. Extracting a finite graph critically depends 
on the fact the closed loop, output tracking controllers reduce the complexity of 
the model to the complexity of the output trajectories. 

Even though, our framework reduces the continuous complexity so that many 
of the computations can be done by hand, obtaining a consistent mode graph 
for a large scale helicopter or aircraft (a Boeing 747 has approximately 500 
modes) will clearly require the development of a computational tool. Such a 
mode switching tool can be used off-line for synthesizing the mode switching 
logic every time a new mode is designed. The control mode graph can then be 
used on-line for efficient and dependable real-time mode switching. 
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Abstract. In this paper, the stability of switched linear systems is inves- 
tigated using piecewise linear Lyapunov functions. Given a switched lin- 
ear system, we present a systematic methodology for computing switch- 
ing laws that guarantee stability based on the matrices of the system. 
We assume that each individual subsystem is stable and admits a piece- 
wise linear Lyapunov function. Based on these Lyapunov functions, we 
compose "global" Lyapunov functions that guarantee stability of the 
switched linear system. A large class of stabilizing switching sequences 
for switched linear systems is characterized by computing conic parti- 
tions of the state space. The approach is applied to both discrete-time 
and continuous-time switched linear systems. 

1    Introduction 

In this paper, we study the stability of continuous and discrete-time switched 
linear systems using piecewise linear Lyapunov functions and we identify classes 
of switching sequences that result in stable trajectories. The main motivation 
behind this problem is that it is often easier to find switching controllers than to 
find a fixed controller. In the case when we have multiple control objectives, we 
may design a continuous controller for each control objective, and control the 
behavior of the plant by switching between different controllers. For example, 
in the control of the longitudinal dynamics of an aircraft with constrained angle 
of attack, the control objective is twofold: track the pilot's reference normal 
acceleration while maintaining a safety constraint in the angle of attack [8]. A 
continuous feedback control law can be easily designed for each control objective 
resulting in two asymptotically stable subsystems and a switching mechanism 
can be used to simultaneously achieve both objectives. Such a switching system 
might become unstable for certain switching sequences, even if all the individual 
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subsystem are stable (see for example [8]). For such problems, it is important to 
characterize switching sequences that result in stable trajectories. 

Stability of switched systems has been studied extensively in the literature; 
see for example [8,16,17] and the references therein. Sufficient conditions for uni- 
form stability, uniform asymptotic stability, exponential stability and instability 
were established in [22]. Necessary conditions (converse theorems) for some of 
the above stability results have also been established. Analysis tools for switched 
and hybrid systems based on multiple Lyapunov functions were presented in [5]. 
Stability analysis of switched systems is usually carried out using a Lyapunov-like 
function for each subsystem [8]. These Lyapunov functions are pieced together 
in some manner in order to compose a Lyapunov function that guarantees that 
the energy of the overall system decreases to zero along the state trajectories 
of the system. The application of the theoretical results to practical hybrid sys- 
tems is accomplished usually using a linear matrix inequality (LMI) problem 
formulation for constructing a set of quadratic Lyapunov-like functions [12,21]. 
Existence of a solution to the LMI problem guarantees that the hybrid system is 
stable. However, in order to formulate the LMI problem, a partition of the state 
space and therefore a switching law must be known a priori. Usually, such a 
partition consists of a set of ellipsoidal regions derived by exploiting the physical 
insight for the particular application. Although, the LMI approach for hybrid 
system stability is computationally efficient, it is based only on sufficient con- 
ditions and more importantly, it relies on a particular partition chosen by the 
designer. 

In order to investigate the stability properties of practical hybrid systems, 
there is an important need to characterize partitions of the state space that 
lead to stable trajectories based on the system parameters. Such partitions can 
be used very efficiently for the design of switching control laws that guarantee 
stability of the overall system. In our approach, we characterize a large class 
of switching sequences that result in stable trajectories. Given a switched lin- 
ear system, we present a systematic methodology for computing switching laws 
based on the system parameters that guarantee stability. We assume that each 
individual subsystem is stable and admits a piecewise linear Lyapunov function. 
Based on these Lyapunov functions, we compose "global" Lyapunov functions 
that guarantee stability of the switched linear system. The main contribution of 
this work is that based on the piecewise linear Lyapunov functions we construct 
a conic partition of the state space that is used to characterize a large class of 
switching laws that result in stable trajectories. 

It should be noted that the problem considered in this paper has been 
addressed using multiple Lyapunov function tools under the assumption that 
switching among stable systems is slow enough [8,16]. Here, we consider piecewise 
linear Lyapunov functions and we develop a systematic approach to character- 
ize stabilizing switching sequence that offers a significant advantage. Individual 
piecewise linear Lyapunov functions are "pieced together" in a systematic way 
and they result in a conic partition of the state space that can be used very 
efficiently for the design of the switching control law. Note that the paper re- 
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ports results from [14] and that early results for the discrete-time case have been 
reported in [15]. 

The paper is organized as follows. In Section 2, the problem of identifying 
stabilizing switching sequences is described. Section 3 presents the necessary 
background for piecewise linear Lyapunov functions. The emphasis is put on 
computational methods for constructing such Lyapunov functions. The technical 
results for the characterization of stabilizing switching sequences are presented in 
Section 4. The application of the methodology to continuous-time switched linear 
systems is presented in Section 5. Finally, concluding remarks are presented in 
Section 6. 

2 Problem Statement 

In this section, we consider discrete-time switched linear systems described by 

x(t + l)=Aqx(t),  q€Q = {l,...,N} (1) 

where x{t) G 3Jn,£ G Z+ (the set of nonnegative integers) and Aq G 5Rnxn. 
The mathematical model described by (1) represents the continuous (state) 

portion of a piecewise linear hybrid dynamical system. The particular mode q 
at any given time instant may be selected by a decision-making process. In this 
paper, we represent such a decision-making process by a switching law of the 
form 

q(t + l) = S(q(t),x(t)). (2) 

Given x(t), the next state is computed using the mode q(t), that is x(t + 1) = 
Aq(t)x{t). The function 5 : Q x 3?n -> W1 is discontinuous with respect to x. A 
switching law is defined here using a partition of the state space. 

Our objective is to investigate the stability of the switched linear system (1) 
under the switching law (2). Note that the origin xe = 0 is an equilibrium for 
the system (1). Furthermore, for a particular switching law, the switched system 
(1) can be viewed as a special case of a time-varying linear system, and therefore 
the usual definitions of stability can be used; see for example [1]. 

3 Piecewise Linear Lyapunov Functions 

In this section, we briefly present some background material necessary for the 
stability analysis of switched linear systems presented later in this paper. We 
consider the discrete-time linear system 

x(t + 1) = Ax(t) (3) 

where x(t) G Kn and A G 5R"xn. 

Definition 1. A nonempty set P C 3?" is said to be ^positively,) invariant for 
the system (3) if x(0) G P implies that x(t) G P for every t G (Z+) Z. 
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In the case when the system admits a positively invariant polyhedral set 
P containing the origin a Lyapunov function can be constructed by consider- 
ing the Minkowski functional (gauge function) of P; see for example [3]. For 
bounded invariant polyhedral sets this is accomplished as follows (the extension 
to unbounded polyhedral sets is straightforward): 

Let Fi be a face of a polytope and consider the corresponding hyperplane Hi 
as shown in Fig. 1. The hyperplane can be described (perhaps after normaliza- 
tion) by Hi = {x G 3?" : (x,Wi) = 1}. where wt G 3?" is the gradient vector of 
the hyper plane and (•, •) denotes the inner product. 

Fig. 1. A polytope P, a face Fi and its corresponding hyperplane Hi. 

Since the set P includes an open neighborhood of the origin, K™ can be 
partitioned into a finite number of cones defined as follows. Each face F of the 
polytope can be described as the convex hull of its extreme points /,• G 3?n, j = 
1,..., r. A finitely generated cone can be defined for the face F by 

r 

cone(F) = {x G 3?" : x = £arfj, aj > 0, j = 1,...,r}. (4) 
j'-i 

Consider a polytope P c 3?" and assume that 0 G int(P). The Minkowski 
functional of P is defined by 

V{x) = inf{p > 0|z G pP} (5) 

where pP = {px\x G P}. Consider a particular face Ft and the corresponding 
cone. Since Ft G dP there exist unique p > 0 and x G Ft such that for any 
x G cone(Fi) we have x = px and the Minkowski functional can be computed by 

V{-X) = S =P = P(x,wi) = {x,wi) (6) 

since (x,Wi) = 1. Therefore, for x G cone(Fi), the Lyapunov function induced 
by the set P can be written as V(x) = (x,Wi). Consequently, the Lyapunov 
function induced by P can be computed for x G 3?" by 

V"(a:)=max (x,Wi). (7) 
Kz<m v   ' 
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A special case of piecewise linear Lyapunov functions arise when the posi- 
tively invariant set P of Definition 1 is centrally symmetric. In this case, the 
Lyapunov function V(x) can be represented using the infinity norm. Further- 
more, there exists a class of linear systems for which such a Lyapunov function 
can be computed very efficiently. Consider the following Lyapunov function can- 
didate V(x) = \\Wx\loo where W G 5Rmx" and || • W^ denotes the infinity norm 
defined by ||x||oo = maxi<i<„ \xi\. 

Theorem 1. [2] V(x) = ||Wx||oo is a Lyapunov function for the system (3) 
if and only if there exist a matrix Q G SJmxm such that WA - QW = 0 and 

IIQIloo < 1. 

It should be noted that similar results have been established for differential 
and difference inclusions in [19]. 

3.1    Computation of Piecewise Linear Lyapunov Functions 

In order to study the stability properties of the switched linear system (1) we 
assume that each individual subsystem admits such a piecewise linear Lyapunov 
function. The efficient computation of each Lyapunov function is very important 
for the application of the proposed methodology to practical hybrid systems. In 
the previous section, we described a class of piecewise linear functions induced by 
polyhedral sets that contain the origin. A Lyapunov function for each individual 
subsystem can be defined by computing a positively invariant polyhedral set for 
the subsystem. In the following, we briefly give the necessary background for 
the computation of these piecewise linear Lyapunov functions. First, we briefly 
describe an important class of systems for which positively invariant polyhedral 
sets and the corresponding Lyapunov functions can be computed by a similarity 
transformation [2]. In this case, the Lyapunov functions can be described using 
the infinity norm. Second, we outline an algorithm [6,7] which can be used for 
the computation of general positively invariant polyhedral sets. 

A class of linear systems for which such a Lyapunov function can be computed 
very efficiently is presented in [2]. Consider the system x(t+l) = Ax(t) where the 
eigenvalues of the matrix A are located in the complex plane within the square 
defined by the vertices (1,0), (0, i), (-1,0), and (0, -i). Then, the following result 
is shown. 

Corollary 1. [2]. If all the eigenvalues \t = & ± Oi of the nth order linear 
system x(t + 1) = Ax(t) are in the open square |^| + |oi| < 1, then there exists 
a matrix W G 3£™xn with rankW = n such that the polyhedral set P = {x G K™ : 
|| W:E||OO < 1} is a positively invariant set for the system. 

The matrix W can be computed as the solution to the matrix equation 

WA-QW = Q (8) 

with the condition ||Qa;||oo < 1- It is well known [10] that if the matrices A and 
Q do not have common eigenvalues then (8) has only the trivial solution W = 0. 
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The important assumption in Corollary 1 is that W G Knx" with rankW = n. In 
this case, W can be computed as the similarity transformation matrix by which 
A is transformed to the Real Jordan Canonical Form [10]. 

We presented a class of discrete-time linear systems for which positively in- 
variant polyhedral sets are described by the Lyapunov function V(x) = || WxW^ 
and can be computed very efficiently. However, it should be noted that in our sta- 
bility analysis for switched linear systems, it is not necessary for the individual 
invariant polyhedral sets to be centrally symmetric. Positively invariant poly- 
hedral sets for stable discrete-time systems can be determined using computer 
generated Lyapunov functions [6]. The class of computer generated Lyapunov 
functions has been used for stability analysis of nonlinear systems in [6,7,18,20]. 
The main idea is to construct a Lyapunov function that guarantees the stability 
of a set of matrices that is determined by applying Euler's discretization method 
to a system of nonlinear differential equations. 

Our approach here is to use a computer generated Lyapunov function for 
each individual subsystem. Consider the matrix A G 5ft"x™ and let P0 c 9?" be 
a bounded polyhedral region of the origin. We denote the convex hull of P by 
conv(P). Following [6] we define 

conv I 
\i=0 
UAip*-i) (9) 

and 
oo 

P* = {JPi. (10) 
i=0 

The following results may be found in [6]: First, the matrix A is stable if and 
only if P* is bounded. Second, if A is stable then each set Pk can be computed 
by Pfc_! using finitely many iterations. Furthermore, it is shown in [7] that if 
there exists constant ifeK such that the eigenvalues of A satisfy the condition 
|Aj| < K < 1, then the set P* is finitely computable. In this case the set P* 
is polyhedral as the convex hull of finitely many points. Furthermore, P* is a 
positively invariant set of the system. Then, a piecewise linear Lypunov function 
can be defined as the Lypunov function induced by the set P*. 

4    Stabilizing Switching Sequences 

In this section, we present an approach based on multiple Lyapunov functions 
for the stability analysis of the switched system (1). The main contribution is 
an efficient characterization of a class of switching laws of the form (2) which 
guarantee the stability of the system. We assume that each individual subsystem 
admits a positively invariant polyhedral set that contains the origin which is 
described by 

Pq = {x G SR" : Wx < 1} (11) 

where W G *Rm*x" and 1 = [1,..., 1]T G 3?". In view of the above results, such 
a polyhedral set can be computed if the there exists constant K £ $i such that 
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the eigenvalues of Aq satisfy the condition \\\ < K < 1. We denote the rows of 
the matrix If9 by w? € S", i = l,...,mq. The Lyapunov function induced by 
the set Pq can be described by 

Vq(x)=   max (x,wl). (12) 
Ki<m, 

We consider a class S of switching sequences that can be described by s = 
(<Zo,*o), (<?i,*i), • • •, (Qjitj), • • • > x(*o) = x0. It is assumed that if s is finite then 
tj+i = oo and that qj ^ qj+i. Such a sequence can be generated by the switching 
law qj(tj + 1) = %.,_i(t,),:r(t,)), j = 1,2,.... 

Proposition 1. Consider a switching sequence s G S. If Vqj[x(tj + 1)] < 
Vq ^[x{tj)\, j = 1,2,..., then the switched system x{t + 1) = Aqx(t) is sta- 
ble in the sense of Lyapunov. 

Proof. Consider the multiple Lyapunov function defined by 

V[x(t)] = Vqi[x(t)],   tj<t<tj+1 (13) 

then by the definition of Vqj we have that for every t > t0, teZ+ 

DV{x) = V[x{t + 1)] - V[x(t)} < 0. (14) 

Note that the switched system for a fixed switching sequence s can be viewed as 
a time-varying system. Since V{x) is positive definite and radially unbounded, 
and DV negative semidefinite, the system is stable in the sense of Lyapunov; see 
for example [1]. 

A multiple Lyapunov function composed by piecewise linear Lyapunov func- 
tions of the individual subsystems offers a significant advantage. It allows the 
characterization of the switching sequences that satisfy the condition of Propo- 
sition 1 by computing a conic partition of the state space. 

First, we briefly describe the necessary notions and notation from convex 
analysis in order to construct the conic partition. Given a polytope P € 5ft", then 
a face of dimension k is denoted as fc-face F. The hyperplane that corresponds 
to a fc-face F is defined by the affine hull of F and is denoted by aff(F). Each 
(n - l)-face corresponds to a hyperplane that is defined by aff(Fi) = {x € 
5ft" : (x,Wi) = 1} where Wi G 5ft" is the corresponding gradient vector. The set 
of vertices of F can be found as vert(F) = vert(P) D aff(F) where vert(P) is 
the set of vertices of the polytope P. Finally, we denote the cone generated by 
the vertices of F by cone(F). Consider a pair of subsystems with matrices Aqi 

and Aq2. We want to compute the region ß|J = {x 6 5ft" : Vq2(x) < Vqi{x)}. 
Consider the faces F?1 and F% of the polytopes Pqi and Pq2 respectively and 
assume that C = cone(Fi

g
i
1) n cone(F?2) ^ 0. Next, we define the halfspace 

#92 = {x e SR" • (X) w92 _wqi j < o} and the set Q = Cf)H^. It is shown in the 
following lemma that the multiple Lyapunov function defined in Proposition 1 
is decreasing if the system switches from qi to q2 while i£fl. 

Lemma 1. For every x G O we have that Vq2(x) < Vqi(x). 
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Proof. For every x G C the Lyapunov functions for the subsystems are given 
by Vgi(x) = {x,w^) and Vq2(x) = (x,wq^) respectively If x G ß we have that 
{x,wf2 - wll) < 0 since x G H%, and therefore Vq2(x) < Vqi{x). 

Since 0 G H^, the set ß is a clearly a polyhedral cone as the intersection 
of cones with a common apex (x = 0) as shown in Fig. 2. The set ß«2 can be 
computed as the union of polyhedral cones by repeating the above procedure 
for all the pairs {F^,FP) of (n - 1)-faces of the polytope P as shown in the 
following algorithm. 

Fig. 2. The conic partition of the state space. 

Algorithm for the computation of ß|* 

INPUT: Wi,Wte; 
for ii = l,...,mqi 

for i2 = 1,.. . ,m,2 

C = cone(i^)ncone(i^); 
if C ^ 0 then 

#£ = {XG3?":  (*,«,£-«,£)<<)} 
fl = cnJJ«; 
ß« = ß£ U ß; 

end 
end 

end 

The above procedure can be repeated for every pair of subsystems to iden- 
tify a class of stabilizing switching signals for the switched linear system. The 
class of switching sequences is characterized by the following result. Note that a 
numerical example that illustrates the approach may be found in [15]. 

Theorem 2.  Consider the class of switching sequences S defined by 

qjitj + l) 

*(*j) e ß£ 

%j-l(*j),z(t;)) 

^0 
(15) 

(16) 
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for j = 1,2,.... The switched linear system x(t + 1) — Aqx(t) is stable in the 
sense of Lyapunov for every switching sequence s G S. 

Proof. By induction, we have that if s = (<?o,*o) then the system is stable 
since Aqo is stable. Assume that the switched system is stable for the switch- 
ing sequence s  =  (g-o,<o), (9i.*i). ■ • •. (9j-i.*i-i) and consider the sequence 

s' = (9o,*o).(9i.*i).-"»(9j-i.*i-i).(9i''i)- Since *&) e ß«i-i' we have that 

Vgj[x(tj)} < Vqj^lxfc)]. Therefore, the multiple Lyapunov function defined by 
V[x{t)\ = Vqi[x{t)\,   tj <t < tj+i is decreasing for every t and the system is 
stable in the sense of Lyapunov. 

5    Continuous-Time Switched Linear Systems 

In this section, a characterization of stabilizing switching sequences for 
continuous-time switched linear systems is presented. The set of stabilizing 
switching sequences is characterized by computing a conic partition of the state 
space similarly to the discrete-time case. We consider the switched linear system 

x(t) = Aqx(t),   q€Q{l,...,N} (17) 

where x(t) G 3?" and Aq£$inxn. The switching law is described by 

q(t+) = S(q(t),x(t))- (18) 

where t+ = limr_».t, r>t T. The problem is to identify classes of switching signals 
generated by (18) for which the system (17) is stable. Note that in the following it 
is assumed that only finitely many switchings can occur in a finite time interval. 

5.1    Background Material 

In order to study the stability properties of the switched linear system (17), 
we assume that each individual subsystem admits a piecewise linear Lyapunov 
function induced by a positively invariant polyhedral set. Next, we summarize 
some results from [13] for the computation of piecewise linear Lyapunov functions 
for a class of continuous-time linear systems. Consider the continuous-time linear 
system x{t) = Ax(t) where x(t) G 3ft" and A G 5?nx". 

Similarly to the discrete-time case, there exists a class of continuous lin- 
ear systems for which a positively invariant polyhedral set can be computed 
very efficiently. If the eigenvalues Aj of the linear system satisfy the condition 
|Im{Ai}| < |Re{AJ| then a Lyapunov function V(x) = H^Hoo can be con- 
structed using a similarity transformation [13]. 

The use of piecewise linear Lyapunov functions for the stability of linear 
systems is based on the following result [11]. Assume that there exists a function 
V(x) such that V is positive definite and radially unbounded, and the upper 
right Dini derivative [4] of V satisfies the condition 

w=UmsupW±if^W!>l<o^ p., 
At->0 At 

Then, the equilibrium x = 0 is globally asymptotically stable. 
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The conditions for V{x) = || War^ to be a Lyapunov function for the system 
±{t) = Ax{t) can be stated using the logarithmic norm induced by the infinity 
norm. The logarithmic norm ^ of a matrix Q e 5ft™ x™ is defined as [9] 

||7 - aQUoo - 1 
Moo =   hm  ^ -^  (20) 

= mÄx{g«+    5^   |gy|}. (21) 

Theorem 3. [13] V(x) = || WarH^ is a Lyapunov function for the system x = 
Ax(t) if and only if there exists Q e K"x" such that WA - QW = 0 and 
Moo(Q) < 0. 

Corollary 2. /i5/ If all the eigenvalues Xt = pn ± o^ O/ the nth order system 
x = Ax(t) satisfy the condition |/x»| < |o-;|, i/ien </iere exists W € 5ft"Xn wzi/i 
rankW = n suc/i tfia* the polyhedral set P = {x e 5R" : ||Wx||oo < 1} «5 a 
positively invariant set for the system. 

The above corollary is a consequence of the fact that the matrix equation 
WA - QA = 0 has a solution W with ran kW = n if and only if the eigenvalues 
of A are identical with the eigenvalues of Q [10]. The matrix W can be computed 
as the similarity transformation matrix by which A is transformed to the real 
Jordan canonical form similar to the discrete-time case. 

5.2    Stabilizing Switching Sequences 

In this section, we present an approach based on multiple Lyapunov functions 
for the stability analysis of the switched system (17). We assume that each indi- 
vidual subsystem admits a piecewise linear Lyapunov function described by the 
infinity norm. The main contribution is an efficient characterization of a class 
of switching laws of the form (2) which guarantee the stability of the system. 
Similar results can be developed for more general piecewise linear Lyapunov 
functions as in the discrete-time case in Section 4. We assume that each indi- 
vidual subsystem admits a positively invariant polyhedral set that contains the 
origin which is described by 

Pg = {xe 5ft" :   ll^xll«, < 1} (22) 

where W e 5ftnx". We denote the rows of the matrix W by w\ e 5R", i = 
l,...,n. We consider a class S of switching sequences that are described by 
s = (?o,to), (gi,<i), • • -, (qj,tj),..., x(t0) = x0 where i, € 5ft", j = 0,1,.... It is 
assumed that the sequence of switching instants t0, ti,..., tj,... is divergent in 
the sense that there are no infinitely many switchings in a finite time interval. 
Similarly to the discrete-time case, it is assumed that qj ^ qj+1. A sequence s 
can be generated by the switching law q^tf) = J^-^^),!^)), j = 1,2,.... 
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Proposition 2. Consider a switching sequence s £ S. If V^.fx^.)] < 
Vq.^[x{tj)\, j = 1,2,..., then the switched system x = Aqx{t) is stable in the 
sense of Lyapunov. 

Proof. Consider the multiple Lyapunov function defined by 

V[x(t)] = Vq.[x{t)],  tj<t<tj+l. (23) 

Then, we have 

nv      v           V[x{t + At))-V[x(t)) 
DV —  lim sup T- < 0. 

At^-0 At 
(24) 

for every t € 5ft" and therefore, the equilibrium x = 0 is stable in the sense of 
Lyapunov; see for example [11]. 

A conic partition of the state space can be used to characterize a class of 
switching sequences that satisfy the condition of Proposition 2. Consider a pair 
of subsystems with matrices Aqi and Aq2. The region J?«* = {x&Un : Vg2{x) < 
Vqi(x)} can be computed as a union of finitely generated cones and can be 
computed by the algorithm presented in Section 4 similarly to the discrete-time 
case. The class of stabilizing switching sequences is characterized by the following 
result. 

Theorem 4.  Consider the class of switching sequences S defined by 

qj(tj)=S(qj-i(tj),x(tj)) (25) 

x{tj) € Q\]_x + 0 (26) 

for j = 1,2,.... The switched linear system x = Aqx(t) is stable in the sense of 
Lyapunov for every switching sequence s € S. 

Proof. Similar to the proof of Theorem 2. 

Example 1. Consider the switched discrete-time linear system 

x = Aqx(t),   9 €{1,2} 

where 

Ax = 
1.7    1.8 

-4.5 -3.7 
and Ai 

0.7  -1 
1.6-1.7 

(27) 

(28) 

The eigenvalues of the matrices A\ and A2 are A = -1 ± .9? amd A = -.5 ± Aj. 
The real Jordan canonical form can be computed by the following similarity 
transformations. 

Q1 = W1A1(W
1)~1 = 

-1  0.9 
-0.9 -1 

where W1 = 
2 1 
11 

and 

Q2 = W2A2(W
2) 2\-l -0.5   0.4 

-0.4 -0.5 
where W 

-1     1 
1   -0.5 

(29) 

(30) 
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We have that ß^Qi) = -0.1 < 0 and therefore, Vx(x) = HW^x)!«, is a 
Lyapunov function for the subsystem Ax. Similarly, \ioo{Q<i) = -0.1 < 0 and 
V2(x) = \\W2x\\OQ is a Lyapunov function for the subsystem A2. The functions 
Vi and V2 correspond to the positively invariant polyhedral sets 

Pi = {xGU2:   WW^Woo < 1} and P2 = {xG»2:   ||W2x||oo < 1}        (31) 

shown in Fig. 3(i). 

\        X\ r V ~ ~ r ~ 7~ ~ T ~yf—' ~s 
~ ~^\~ T - "X;-\- - r/i—y/- r -J^-- 

l \ i       i^i\    i/    i/1/     I/I 
—i--x--i-mA-/-7f^-/-^--i— 

I     i \i   ^^u>< i  '■/\/\      i 

 1 - - - - -i- - /f^^ky- - + --I  

—i—•"-7'V'*-^BL\—i—1-- 
I        l /1/    j / ix'^'k     I \ )        i 

 |-_^J^^_J^l_ZV3|fc.j._^L_._)  

c-A--J/__\__v___\ 1\ IYSJ _j_^ 

m& 
-J             -!             -J             -1 1           :          3          i          i 

Fig. 3. (i) Positively invariant polyhedral sets, (ii) The region Q. 

Consider the faces F1 and F2 shown in Fig. 3(ii). For every x G cone(F1) n 
cone(F2) we have that V^x) = (x,wl) and V2(x) = (x,w2) with w1 = [2,1] and 
w2 = [-1,1] respectively. We consider the halfspace 

= {x G 3?2 : xi > 0}. 
(32) 

(33) 

Therefore, for every x G ß = cone(F1) n cone(F2) U H\ we have that V2(x) < 
Vi{x). 

By repeating the procedure for all the pairs of faces for the polytopes Px and 
Pi the we compute the region 

ß£={xG3?2:  Vq2(x)<Vqi(x)} (34) 

= {x G 3?2 : i! > 0}. (35) 

Similarly we have that 

ß£={zG*R2: Vqi(x)<Vq2(x)} (36) 

= {x G 9?2 : X! < 0}. (37) 

Therefore, for any switching sequence s given by the switching law 

Q2(t+)=S(qi(t),x(t)) 

x(t) G on 
(38) 

(39) 
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and 

qi(t+) = S(q2(t),x(t)) 

x(t) G n% 

the switched system is stable. A stable trajectory is shown in Fig. 4(i). 

(40) 

(41) 

- 1        1        1        1        1        1 
1        1        1        1        1        1 

^.     i       i       T       r     ~i       i 

- r\i        Till' 

1           J            1            L-S^         s£p—' 

_l          J           L           L       _KX/ 
1            1            1            1            1            1 
1            1            1            1            1            1 
I            i            I            >            I            1 

Fig. 4. (i) A stable trajectory, (ii) An unstable trajectory. 

The characterization of the stabilizing switching sequences is based on suffi- 
cient conditions. Therefore, for a switching sequence s that does not satisfy the 
formulated conditions, the switched system is not necessarily unstable. How- 
ever, the switched system (27) can generate unstable trajectories as shown in 
Fig. 4(ii). An unstable trajectory can be generated by requiring that the system 
will keep switching indefinitely and that the Lyapunov function is increasing at 
every switching. 

6    Conclusions 

In this paper, a class of stabilizing switching sequences for switched linear sys- 
tems is characterized by computing conic partitions of the state space. The main 
advantage of the approach is that the methodology for computing switching laws 
that guarantee stability is based on the parameters of the system and so, trajec- 
tories for particular initial conditions do not need to be calculated. Therefore, 
the proposed approach can be used very efficiently to investigate the stability 
properties of practical hybrid systems. 
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Abstract. Our study is concerned with a particular class of hybrid 
dynamical systems, namely systems with discontinuous vector fields. 
We will show that such systems can exhibit a novel class of bifurcations 
which are not observed in smooth dynamical systems. Particularly, 
we concentrate on bifurcations which arise due to the existence of 
so-called sliding motion. Using appropriate discrete mappings we show 
the possible existence of complex transitions which we term sliding, 
multisliding and grazing-sliding bifurcations. Relay feedback systems 
are used as a representative example. 

Keywords: Hybrid Systems, Bifurcations, Sliding motion 

1    Overview 

Hybrid control strategies are increasingly used in applications. The resulting 
dynamical systems are characterised by a combination of continuous and discrete 
dynamics which can give rise to a unique class of phase space transitions. A 
particularly interesting class of hybrid systems of relevance in applications is 
that of switched dynamical systems. Examples include systems with dry friction 
[1][2], systems with impacts (impact oscillators, vibroimpact systems) [3] and 

relay feedback systems [4]. 
Under certain conditions these systems can exhibit solutions lying within 

their discontinuity set or sliding. Numerical and experimental evidence of dy- 
namical transitions involving sliding was recently reported in the literature. Ex- 
amples include the formation of "chattering orbits" in parallel resonant power 
electronics converters [5], the onset of stick-slip motion in friction oscillators 
[6] and the the occurence of fast switching periodic solutions in relay feedback 
systems [4]. These transitions can be consistently classified in terms of the bi- 
furcation scenarios introduced in this paper. Their occurrence can be explained 
in terms of the interaction between the system ß-limit set and the phase-space 

manifold where sliding is possible,. 
In what follows, we will focus our attention on linear systems with a relay 

feedback element. Although, systems with a relay feedback have been studied for 
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a long time [7], [8] the dynamics of these systems is not fully understood. Even 
low-order relay feedback systems can exhibit complex self oscillations, which 
include periodic solutions with segments of sliding motion [9], [10], [11]. The aim 
of this paper is to use relay feedback systems as a representative example to 
describe a novel class of bifurcations involving sliding which can be observed in 
a wider class of switched and hybrid dynamical systems [12]. 

The outline of the paper is the following. The general form of systems with 
a relay feedback under investigation is introduced in section 2 and appropriate 
maps used for numerical investigation are defined. Section 3 illustrates the four 
possible cases of novel bifurcations caused by the interaction of the system Q- 
limit set with the region where sliding is possible. Then, in section 4 the detailed 
analysis of a third-order representative example is presented. Evidence of chaotic 
attractors are given and appropriate one-dimensional mappings are derived to 
study their nature. Finally, in section 5 after drawing some conclusions, we give 
suggestions for further work. 

2    Background 

In what follows, we consider a class of systems with discontinuous vector field 
corresponding to single-input, single-output, linear time-invariant (LTI) systems 
with unit negative feedback of the output variable. The systems under investi- 
gation have the following general form: 

x = Ax + Bu, 

y = Cx, 

u = -sgn(y), 

(1) 

(2) 

(3) 

where A e RnXn,B € i?nxland C € i?lxnare constant matrices. The input u 
and output y of the linear part are scalar functions, while x, the state vector, 
has n > 1 components. The " sgn" function (which is the non-linear term in the 
system equations) is defined as sgn(y) = 1, if y > 0, sgn(y) = -1, if y < 0 and 
sgn(y)G(-l,l),if j/ = 0. 
It is assumed that the system matrices are given in observer canonical form, i.e.: 

/   -ai    1 0-- 0\ 
-a2   0 1 • • • 0 

-a„_i 00   0   1 
\   -an   0 0   0   0/ 

B = 
b2 

b4 

C 

/1\ 
0 

0 
(4) 

The above matrices correspond to the following transfer function: 

G(s) = C(sl - A)^B 
sn + ais"-1 + a2s

n~2 + ■■■+ a„_lS + an ' (5) 
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The system trajectory generated by the vector field characterized by equations 
(l)-(3) is smooth and continuous in the two subspaces, Hi and H2 defined as: 

Fi = {x G Rn : Cx > 0}, (6) 

H2 = {xGRn :Cx< 0}. (7) 

System (l)-(3) switches from one (LTI) region (Hi or H2) to the other whenever 
the system trajectory crosses the switching hyperplane S defined as: 

S = {x G Rn : Cx = 0}. (8) 

For all initial conditions outside S, the system trajectory will ultimately cross 
S assuming positive and stable steady-state gain G(0) [9]. Note that the system 
under investigation is symmetric with respect to the origin. 

2.1    Sliding Motion 

Systems such as (l)-(3) can exhibit a very peculiar type of motion termed slid- 
ing. This corresponds to a solution lying within the system discontinuity set 
S. Heuristically, sliding can be seen as characterised by an infinite number of 
switchings between the two subspaces Hi and H2. Sliding motion is only possible 
when the vector field points towards the switching manifold S in both regions 
Hi and H2 (see fig. 1). Thus by studying the direction of the vector field in a 
neighborhood of the switching manifold, it is possible to identify a set S3 C S 
where sliding is possible. We term 53 as the sliding region. Any trajectory hitting 
the switching manifold in 53 is constrained to evolve on it until the trajectory 
reaches the point where the vector field changes its direction on the boundary of 
the sliding region (see figure 1). Using the equivalent control method presented 
in [13], we can obtain the dynamical system describing the motion of a trajectory 
within the region S3. The equivalent control input ueq G (—1,1) is defined as the 

direction of the 
vector field above 

Fig. 1. Schematic representation of the phase space topology in the case n = 3 
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controller that keeps the trajectory on the switching hyperplane, i.e. the control 
input that guarantees y = 0 and y = 0. Using (l)-(3), it can be shown that for 
the system under investigation such control input is given by: 

= -(CB)~lCAx. (9) Ueq 

By substituting (9) into (1) we obtain the set of equations describing the system 
dynamics within the sliding region, which is given by: 

x = Äx, (10) 

where A = [I - (CB^BCjA and I denotes the n x n identity matrix. 
According to the direction of the vector field, we can define regions on the 

hypersurface S where y = 0, y > 0 and y < 0 respectively. Namely, we define 
Si = {x G Rn : CAx > CB}, S2 = {x G Rn : CAx < -CB}, S3 = {x G Rn : 
\CAx\ < CB}. 

Additionally, we define the boundary between S3 and Si which we denote 
as dS3i, and the boundary between 53 and S2 which we denote as dS32, as: 
9S31 = {x G Rn : CAx = CB}, dS32 = {x G Rn : CAx = -CB}. Note that 
sliding is only possible when the sliding set S3 is non-empty i.e. when CB > 0, 
in (13). 

2.2    Self Oscillations and Poincare Maps 

Typically, a system with relay feedback has self-oscillations [14]. This corre- 
sponds to the periodic switching of the system trajectory between Hi and H2 

(an example for a third-order system is presented in figure 2). The dark region in 
the figure indicates the region on the switching manifold S where the trajectory 
of the system slides (the region denoted as S3 in figure 1). 
As shown, in [10] using the system explicit solutions we can characterise the 

system evolution by using an appropriate set of discrete-time maps. Namely we 
can define, the upper switching map i7+ : §i (->■ S as the mapping which de- 
scribes the dynamics from x0 G 5X to xx G S (see figure 3). We also define the 
lower switching map n~ : S2 : S2 i-+ S as the map which describes the system 
dynamics from a point xi G S2 to x2 G S. Finally, we define the overall switching 
map II as the composition of 77+ and II~: 77 = 77+ o JJ~. The map 77 can be 
used to analyze simple periodic orbits. 

As discussed in [10] sliding sections can become part of an orbit. To in- 
vestigate the behaviour of orbits with a section lying in the sliding surface 
we introduce a map E which maps the points in region S3 to its bound- 
ary dS3 := 8S3iUdS32. Once the trajectory reaches the boundary of the 
sliding section, it leaves the switching region. We define E as the mapping 
which takes a point, x, from region S3 to a point xx on its boundary, i.e. 
£ : R -» R1 : S3 H> dS3. The simplest symmetric orbit with sliding is de- 
picted in figure 3. Note the existence of two sliding segments per period (the 
orbit is symmetric). Stable asymmetric orbits are also possible [16]. 
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Fig. 2. Typical trajectory (corresponding to the self-oscillations) of the system with 
relay feedback (l)-(3) 

Fig. 3. The simple symmetric orbit with two sliding segments 

The orbit depicted in figure 3 can be described by the composition of mappings 
II+, II~ and E. Orbits with higher number of sliding sections and asymmetric 
orbits can be defined by an appropriate composition of the mappings 7T+, i7~ 
and E (see [10] for further details). 

3    Bifurcation Scenarios Involving Sliding Section 

We now introduce the possible bifurcation scenarios involving the interaction 
between trajectories of the system and the sliding region 53. These scenarios were 
identified after careful numerical and analytical investigation and were partly 
reported independently for the first time in [10] and [15]. 
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We distinguish four possible cases of such bifurcations involving sliding, which 
we will term generically as sliding bifurcations (see figure 4). Without loss of 
generality, we assume that such local bifurcations involve sections of trajectories 
belonging to some periodic orbit of the system. Figure 4(a) depicts the so-called 

(a) (b) 

(c) (d) 

Fig. 4. The four possible bifurcation scenarios involving collision of a segment of the 
trajectory with the boundary of the sliding region dS3 

sliding bifurcation of type A. This corresponds to the following scenario. 
When a control parameter is varied the trajectory hits transversally the bound- 
ary of the sliding strip dS3 (trajectory 2 in figure 4(a)). Further variation of 
the parameter, make the trajectory enter the sliding region S3, thus causing 
the onset of sliding motion. Note, that the trajectory leaves the sliding strip 
tangentially (i.e y = 0). 

In the case presented in figure 4(b), instead, the trajectory grazes tangentially 
the boundary of the sliding strip, dS3, from the subspace Hi (or H2). Again, 
this causes the formation of a section of sliding motion. We term this transition 
as a grazing-sliding bifurcation. 

The third scenario depicted in figure 4(c) is somehow similar to a sliding bi- 
furcation (case 4(a)). In case 4(a), though, the trajectory zooms off the switching 
manifold S at the bifurcation point while in case 4(c) it stays within the slid- 
ing region. Specifically, these two bifurcation events differ by the sign of y at 
the boundary of the sliding strip (dS3). We call case 4(c), a switching-sliding 
bifurcation, or sliding bifurcation type B. 
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The last case is termed a multisliding bifurcation and is depicted in fig- 
ure 4(d). It differs from the scenarios presented above since the segment of the 
trajectory which undergoes the bifurcation lies entirely in the sliding region 53. 
Namely, through the variation of some parameters, a sliding segment hits tan- 
gentially the boundary of the sliding strip. Further variations of the parameter, 
cause such sliding segment to "fall" off the sliding region causing the formation 
of an additional segment of the trajectory lying in the Hi or H2 subspace. 

We now give analytical conditions for each of these bifurcations in terms of 
the properties of the system output, y, at the bifurcation point, say, x. Similar 
conditions were also reported independently in the Russian Literature in [15]. 

3.1    Analytical Conditions for Sliding Bifurcations 

For each case of the four scenarios reported above, the following conditions must 
hold at the bifurcation point, say x: 

1. Cx = 0, 
2. CAx = CB. 

Condition 1 ensures that at the bifurcation point the trajectory lies on the 
switching manifold. Condition 2 corresponds to the fact that the bifurcation 
point belongs to the boundary of the sliding strip. Note, that condition 2 also 
implies that y = CAx - CB = 0 i.e. the trajectory must leave S3 tangentially. 
Additional conditions involiving higher order derivatives of y can be given for 
each of the scenarios. Namely we have the following extra conditions. 

Sliding bifurcation type A. (figure 4(a)) 
In addition to conditions 1 and 2 we note that in this case the trajectory moves 
toward the boundary of S3 at the bifurcation point x. Thus, we have y > 0, i.e. 

CA2x - CAB > 0. (11) 

Grazing while sliding bifurcation, (figure 4(b)) 
As in the previous case, the trajectory moves away from the sliding region 53 
at a grazing-sliding bifurcation point, x. Hence, in addition to the two general 
conditions 1 and 2, we also require condition (11) to hold. 

Multisliding bifurcation, (figure 4(c)) 
In this case the bifurcating trajectory hits the boundary of the sliding strip 
tangentially. Thus, at x we must have y = 0, y > 0, i.e. 

CA2x - CAB = 0 (12) 

CA3x - CA2B > 0 (13) 
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Switching sliding, sliding type B bifurcation, (figure 4(d)) 
Finally, in this case, the trajectory moves towards the interior of S3 (away from 
dS3l) at the bifurcation point, x, thus y < 0 and we have 

CA2x - CAB < 0. (14) 

Similar conditions can be given if intersections with 9532 are considered. A 
generalization of these conditions to the case of n-dimensional PWS systems of 
the form: 

±=(F1{x)   if   H(x)>0, 

\F2(x)   if   H{x)<0 

where x e Rn, Fu F2 : Rn <->■ Rn are sufficiently smooth in the region ofinterest 
and H : Rn H» R is a scalar function of the system states, can be found in [12]. 

4    Numerical Analysis of a Third Order Representative 
Example 

The state space representation of the third-order relay feedback system, which 
will serve as a representative example is characterised by the matrices: 

/   -(2<W + A)   10\ /   k   \ /l\r 

A =     -(2Co;A + a;2) 0 1,    B=\ 2kpa        C =     0       . (15) 
V        -Aw2        0 0/ \kp2J \o) 

The above state-space representation corresponds to the following transfer func- 
tion: 

, . s2 + 2aps + p2 

G(S) = V + 2C^ + ^)(S + A)- (16) 

The parameters u> and < denote the natural frequency and the damping of the 
complex pair of poles while p and a represent the corresponding quantities for 
the complex pair of zeros, -A is the location of the real pole and ^ is the 
steady-state gain. 

4.1    Sliding Bifurcation 

As mentioned in the previous section, we can observe the transition from a 
generic orbit to an orbit with sliding by varying the system parameters. We 
present examples of these "sliding bifurcations" for the third order relay system 
(15) according to the four distinct scenarios introduced above. 

Figure 5(a) represents a stable symmetric orbit (before its transition to an 
orbit with sliding) for the following values of the parameters, £ = w = A = -cr = 
k = 1. Here p is varied in a neighborhood of pQ = 3. 
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(a) (b) 

(d) 

Fig. 5. The scenario of sliding bifurcations of the simple orbit for the parameter values: 
—a = A = k = £o; = 1, p is a varied parameter with subsequent values p = 3 fig.(a), 
p = 2.1 fig.(b) and p = 1 for fig(c), (d) projection of the trajectory on the xi, x2 plane 
showing that the orbit does intersect the boundary of the sliding strip at the bifurcation 
point 

As the parameter p is decreased, this simple orbit hits the boundary of the 
sliding segment dS3 transversally (see figures 5-(a) and (b)). Through this slid- 
ing bifurcation of type A, variation of the parameter p , cause the formation of 
a sliding orbit. To investigate the stability of the orbits which undergo sliding 
bifurcation the eigenvalues of a the point mappings 77+ and E o n+ were com- 
puted. The orbits presented in figures 4(a) - 4(d) are symmetric orbits. Thus, 
it suffices to compute the eigenvalues of the fixed points associated to these 
solutions using either the lower or the upper switching map, II~ or 77+ (appro- 
priately composed with E when sliding orbits are considered). Figs. 6(a) and 
6(b) show the two significant eigenvalues of a fixed point (corresponding to a 
symmetric orbit). 

The region denoted as 2 in figures 6(a), 6(b) corresponds to the fixed point 
associated with a simple symmetric orbit. The region labeled as 1 in figures 6(a), 
6(b) corresponds to the fixed point associated with a sliding orbit. Note the 
apparent piecewise smoothness in the value of eigenvalues of the fixed points of 
orbits before and after the sliding bifurcation. One eigenvalue becomes identically 
zero at the sliding bifurcation point (fig. 6(b)). Hence, there is only one significant 
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(a) (b) 

' • ' / 

Fig. 6. absolute values of eigenvalues of a map 77+ and 77+ o E before (part of graph 
6(a), 6(b) denoted as 2 and after sliding bifurcations part of the graph 6(a), 6(b) 
denoted by 1 

eigenvalue characterising sliding orbits in these three-dimensional system. These 
orbits can be analyzed using the map 0 : dS3 i-> dS3 defined above which in 
this case is indeed one-dimensional. 

4.2    Multisliding Bifurcation 

In this subsection, we consider the bifurcation scenario which we termed mul- 
tisliding (see figure 4(a)). Let us denote, by A an orbit before the multisliding 
bifurcation and B an orbit after its occurience (thus both orbits differ by the 
number of sliding segments). We also assume that upper case denotes stable 
orbits and lower case unstable ones. Close to a multisliding bifurcation point 
(fig. 4(d)) we can observe two type of transitions A -» B or A,b -> {</>}. The 
transition A-¥ B corresponds to a transcritical-like bifurcation scenario where 
a new sliding orbit with a different number of sliding segments is born at the 
bifurcation point. The other case A, b ->• {$} corresponds to the case when two 
orbits, one stable and the other unstable, collide and disappear on the boundary. 
The transcritical-like transition, A -> B, of a multisliding orbit is shown in figure 
7. The parameters have the following values: £ = 0.05, p = —a = k = X = 1. 
The parameter UJ is varied and takes the value 10.14 in fig. 7(a), 10.24 in fig. 
7(b) and 10.74 in figure 7(c). It was mentioned in section 2 that the orbits with 
sliding section(s) can be analyzed using appropriate one-dimensional mappings 
from the line dS3 back to itself. Fig. 7(d) shows the one-dimensional map ob- 
tained by varying the x3 coordinate on the line x2 = 1 (xi = 0) and applying 
the maps 77+, £ and 77~. The proper composition of these maps drives the 
point from the line x2 = l(xi = 0) back to itself. Note, the existence of a kink 
in figure 7(d). This is the effect of the multisliding bifurcation. The multisliding 
transition of type 0 -> A, b and the corresponding one-dimensional map from 
the line dS3 back to itself is shown in fig. 8. Here, the orbit was obtained for the 
following parameter values:-a = p = k = l,X = 0.05,u = 10; while ( is varied 
in a neighborhood of Co = 0.0395. 
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(a) (b) 

(c) 

Fig. 7. Figures 7(a)-7(c) represent the scenario of multisliding bifurcation. Note the 
tangency of the orbit 7(b) to the boundary of the sliding segment ÖS3. Figure 7(d) rep- 
resents the map from the line ÖS31 back to itself for the parameter values corresponding 
to the orbit depicted in figure 7(b) 

(a) 

Fig. 8. Symmetric orbit with multiple amount of sliding sections (a) and corresponding 
1-dimensional map (b) 

4.3    Grazing while Sliding Bifurcation 

We now present numerical evidence for the so-called grazing-sliding bifurcation - 
figure 4(b). A trajectory undergoes the grazing-sliding transition when a segment 
of the trajectory touches tangentially the boundary dS3 of the sliding segment 
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(c) (d) 

Fig. 9. Symmetric orbit with multiple amount of sliding sections before (a) and af- 
ter (b) grazing while sliding bifurcations, (c)(d) close up of the region where part of 
the trajectory graze the boundary of the sliding strip - accordingly before and after 
bifurcation 

from the subspace Hi or H2. After this bifurcation, the trajectory contains an 
additional sliding segment (figures 4(a)-4(c)). In the case presented here, as the 
parameter < is increased, one of the loops making up the orbit (figure 9(a)) 
changes its shape. This in turn causes (with further variation of the control 
parameter Q the loop to touch the boundary of the sliding strip from above 
(and below - note the symmetry of the transition scenario) and enter the sliding 
strip, (figure 9(b)). The parameter values for which the transition described was 
detected take the following values:A = 0.05, k = -a = p = l,w = 10. C, is varied 
between 0.025 and 0.032. 

4.4    Switching Sliding Bifurcation, Sliding Type B 

Despite several attempts switching-sliding bifurcations of stable periodic solu- 
tions were not detected for the third-order system under investigation. Evidence 
of their occurence in a second-order friction oscillator can be found in [15]. 

4.5    Chaos 

The seemingly simple system which serves us as an example is also found to 
exhibit chaotic behaviour. The chaotic attractor depicted in fig. 10 is obtained 
for the following parameter values: C, = -0.08, w = 10, k = p = —a = 1 and 
A = 0.05. Applying the idea of 1-dimensional point mappings from the line 
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(a) (b)   -l 

Fig. 10. Chaotic attractor and corresponding 1-dimensional map 

9531 back to itself one can study this chaotic evolution by considering the one- 
dimensional map which presented in figure 10(b). Note the characteristic shape 
of the kinks of the map due to near-multisliding events in the trajectory. 

The map shown in figure 10(b) has interesting dynamics, similar to those 
of the double iteration of the tent map [17]. Thus, the occurence of chaos in 
the system can be explained as resulting from the merging of two asymmetric 
chaotic attractors. It is relevant to point out that the formation of the attractor 
is organized by the occurence of the sliding bifurcations presented in the paper 
(see [16]). 

5    Conclusions and Future Work 

It has been shown by means of a representative example that very complex 
dynamics can be observed in systems with discontinuous vector field. Evidence 
of novel bifurcations was given , namely sliding, multisliding and grazing-sliding 
bifurcations. Our numerical analysis details their occurrence in a third-order 
relay feedback system. We show that these novel transitions lead to the formation 
of the chaotic attractor presented in fig. 10. 

All these novel bifurcations can be studied analytically by means of the 
Poincare maps we introduced. Current work to be presented elsewhere [12] is 
aimed at carrying out the analytical investigation of these transitions for a gen- 
eral class of n-dimensional PWS systems while deriving appropriate normal form 
maps in a neighborhood of the bifurcation point. This will allow a classification 
of all possible bifurcation scenarios following one of the transitions presented in 
this paper. 

We conjecture that the bifurcations described in this paper are common in 
applications involving a wider class of switched dynamical systems with sliding. 
Moreover, we anticipate that they are an important mechanism leading to the 
formation of deterministic chaos and other complex behaviour in hybrid dynam- 
ical systems. 
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Abstract. In this paper we investigate the question of the global con- 
trollability posed for control hybrid systems with autounomous and con- 
trolled swithchings. The main tool for our analysis is the notion of the 
controlled hybrifold. New sufficient conditions for the global controllabil- 
ity are obtained in terms of the so-called hybrid fountains. 

1    Introduction 

In this paper we consider systems which have a hybrid nature, in the sense that 
the dynamics of the system combines continuous and discrete components. We 
model control hybrid systems as a tuple consisting of a state space, a set of 
admissible continuous and discrete controls, a family of controlled vector fields 
assigned to each discrete state, a collection of autonomous and controlled switch- 
ing surfaces, and a collection of the correspondint reset maps. 

The main question investigated in the paper is the controllability of control 
hybrid systems. This issue has been addressed in [1,5,12,13]. In particular, in 
[12], the notion of controllability for hybrid systems is formalized by continuity 
of system functions. In [1], the authors derive a necessary and sufficient algebraic 
condition for a certain subclass of piecewise affine hybrid systems. In [13], a 
sufficient condition for controllability of hybrid systems is formulated in terms 
of the so-called arrival sets. 

Because of the complexity of the problem of the global controllability, its 
unlikely to find uniform sufficient conditions for general hybrid systems. Thus, 
we restrict our study to a special subclass of control hybrid systems, namely, 
the systems that can be represented as hybrifolds. The notion of the hybrifold 
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was originally introduced in [14] and extended to control hybrid systems with 
autonomous switchings in [9] (see also [6], where the hybrifold notion is used in 
problems of optimal control for hybrid systems). In this paper we generalize the 
results formulated in [9] to systems that admit both autonomous and controlled 
switchings. New sufficient conditions for the global controllability are obtained in 
terms of the so called hybrid fountains. The advantage of the approach proposed 
in this paper is in the fact, that the fountain property can be verified at each 
particular state and, hence, there is no need to invoke a dynamic programming- 
like procedure to determine arrival sets of the system. 

The paper is organized as follows. In Section 2, we formally define the class 
of control hybrid systems H under our consideration and specify the standard 
assumptions on the continuous and discrete parts of the dynamics of H. In Sec- 
tion 3, we generalize the notion of the hybrifold to control hybrid systems with 
controlled and autonomous switchings and define a controlled flow on the hybri- 
fold. Section 4 relates the global controllability of H to the global controllability 
of the associated controlled hybrifold. In Section 5, we introduce the notion of 
a hybrid fountain and provide new sufficient conditions for the global controlla- 
bility of control hybrid systems. 

2    Regular Control Hybrid Systems: Standing 
Assumptions 

We consider control hybrid systems which in this paper are taken to be of the 
following form. 

Definition 1. An n-dimensional control hybrid systems H is a 6-tuple 

H = {Q,V,S,K,Z,F}, (1) 

where 

Q = {1, • • •, k} , 1 < k < oo, is a set of discrete states (which are called control 
locations); 

T> = {Di; i e Q, Di c R"} is a collection of domains of H; 
S = Sa U Sc is a collection of autonomous and controlled switching surfaces; 
TZ = TZaUTZc is a collection of autonomous and control resets. 
S = £CL) Ed is the set of admissible continuous and discrete controls; 
T — {ft; ieQ,fi: DiX IT" -> Rn} is a collection of control vector fields as- 

signed to each location; 
D 

Each of these components shall be further specified in the next part of the 
section. 

The collections of autonomous swithching surfaces (called guards) and au- 
tonomous resets 

Sa = {SiJ;   (i,j)eEa} ft«, = {/#';   (i,j)eEa}, 
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where Ea C Q x Q, are such that each guard SlJ is a subset of I?» and each 
autonomous reset RlJ is a continuous injective map acting from Sl

a
J to Dj. 

Similarly, for controlled switching surfaces and resets we have: 

Sc = {S?;   (i,j)eEc} nc = {Rj;   (i,j) e Ec), 

where Ec C Q x Q, each controlled switching surface SlJ is a subset of A, and 
each controlled reset RlJ is a continuous injective map acting from SlJ to Dj. 

The set of discrete controls Ed is taken to be {cr».,-; (i, j) e Ec}, where each 
Oij is a discrete control that can be applied at (and only at) states x e SZJ. 

Take an arbitrary initial state (i, XQ) which does not lie on any of the switch- 
ing surfaces. Then, for any control u e Ec, the systems evolves according to the 
ODE 

x = fi(x,u), x(0)=xo 

until it hits (at some point x) either (i) a guard Sl
a
j or (ii) a controlled switching 

surface Sl
c
k. 

In the former case (i), the system necessarily switches to the discrete location 
j and the continuous component of the states resets to RlJ(x). Next, the system 
evolves according to the dynamics fj in the domain Dj. 

In the latter case (ii), we distinguish two possibilities. 

(ii.a) The discrete control aik is applied at x; then the system switches to the 
location k and the continuous component of the state resets to Rl

c (x). 
Next, the system evolves according to fk in Dk. 

(ii.b) The discrete control aik is not applied; the system continues evolving ac- 
cording to fi in Di. 

The following definition of a hybrid time trajectory is based on [10,11]. 

Definition 2 (Forward Hybrid Time Trajectory). 
A (forward) hybrid time trajectory is a sequence of semi-closed intervals 

T = {[n,Ti+i); l<i<N<oo,n< ri+i}. 

We shall use the symbol N(T) to denote the size of the time trajectory (i.e. the 
number of semi-intervals in the sequence T), the symbol (r) to denote the set 
{1,2, • • ■, N(T)}, and the symbol T^ to denote the execution time, which, for a 
finite N(T), is defined to be r^ A rw(r)+1 — T\. □ 

Based on the above description of the evolution of H, for any control pair (u, a), 
where u is a continuous control in Ec and a is a sequence of discrete controls 
{ui,W2,- • • ,Vk\ Vi e Ed}, we can define the notion of the control execution 
X = {r, q, (j)} of H starting at the initial state p e D, where 

(i)    r is a hybrid time trajectory that contains the sequence of the switching 
times; 

(ii)   q : (r) —» Q is a map that contains the sequence of discrete locations visited 
by the hybrid trajectory; 
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(iii) 4> = {(ßj',3 e (T)} is the collection of continuously differentiable maps of 
t that satisfies the corresponding ODEs and the switching conditions as 
described above. 

As in [14], we shall restrict ourselves to the study of hybrid systems that are 
subject to the following assumptions. 

Al The control hybrid system Hw is deterministic and non-blocking, for any 
control pair w = (w, a). 

A2 For each i e Q, Dt is assumed to be a non-empty, closed, contractible n- 
dimensional sub-manifold of R", with a piecewise smooth boundary. 

A3 For each e e Ea and e e Ec, the guard S* and the controlled switching 
surface S* are closed (n - 1)-dimensional submanifolds with a piecewise 
smooth boundary. These sets have finite number of connected components. 

A4 All resets maps are continuous and injective. 
A5 None of the autonomous transition sets (i.e. {S*,Rl(S*); e e Ea}\ de- 

noted ATrans) have intersections with the controlled transition sets (i.e. 
{S*, R%{Sl); e e Ec}; denoted CTrans). Further, for any two (autonomous 
or controlled) transition sets Bi,B2 (denoted Trans), we have 

BlnB2^$^B1 = Sl
c
h =B2 = S^, 

for some i,ji,j2 e Q- 

Remark 1. We note that the restriction S« n Sf = 0 comes from the fact that 
H is assumed to be deterministic. The rest of the restrictions of A5 can be 
somewhat relaxed. We impose A5 to avoid cumbersome technical details, while 
illustrating the point that certain hybrid systems can be represented as manifolds 
(termed hybrifolds), and thus, results on the global controllability formulated for 
manifolds can be transformed to hybrid systems. D 

Next we list the assumptions on the continuous part of the dynamics of H. 

Bl For each i e Q, Xt e Cr{Di x U; IT), r e {1,2, • • •, oo, w}, where C" denotes 
the class of analytic functions. 

B2 The set of admissible control functions 

I7c = rc
s(]R;lR""),Se{l,2,---,oo}, 

is the set of all Rn"-valued bounded piecewise CS(R; R"u) functions of time 
with limits from the right. Hence any u e Ec, defined on some [T1,T2), 
T2 < oo, is Cs on [T\, T2) with the exception of a finite number of points. 

For the results formulated in this paper we shall need r = 1, s = 1. 

Definition 3. A control hybrid system satisfying assumptions A1-A5 and Bl- 
B2 is called a regular control hybrid system with controlled and autonomous 
switchings. □ 
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Finally, it shall be assumed that the system H is non-Zeno in the sense that in 
finite time only a finite number of discrete transitions may be generated. 

Lemma 1. Let H be a regular control hybrid system. For any control pair (u, a) 
and any p e D, there exists a unique control execution of H starting at p.       □ 

3    Controlled Hybrifold 

In [14], a set MH (called the hybrifold) is constructed from a hybrid system with 
autonomous switchings H. In this section we generalize this procedure to hybrid 
systems with autonomous and controlled switchings, prove that the resulting set 
MH is a manifold and, finally, define the controlled hybrid flow on MR- 

The basic idea in the construction of the hybrifold is to glue together each 
switching surface to the image of the corresponding reset map by identifying any 
state pe Se

s, where e e Es, s = a,c, with the corresponding image Rt{p). So an 
IIQII 

equivalence relation ~ on D A (J A is generated by 

P~ReM, 

for all ee Es and peSe
s. This relation gives rise to the quotient space 

MH = D/ ~, 

where each equivalence class is collapsed to a point. 
Let IT be the natural projection map 

■K : D -> MH 

which assigns to each p its equivalence class. We put the quotient topology 
on MH, i-e. the smallest topology in which V C MH is open if and only if 
7r-1(y) C D is open (in the relative topology of D). 

Definition 4. The set MH with the quotient topology defined on it is called 
the controlled hybrifold associated with H. n 

The following result is based on [14]. 

Theorem 1. MH is a topological n-manifold with boundary. □ 

Henceforth we shall deal not with the original domains A but rather with the 
hybrifold MH- We shall assume, without loss of generality, that MH is embedded 
in Rm, for some n < m < oo. 

Definition 5 (Hybrid Control Flow). Take an arbitrary continuous control 
u e Ec defined on some [T1,T2), T2 < oo, a sequence of discrete controls a, and 
a state x e MH- Let p e ir~1(x). 
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As follows from Lemma 1, there exists a unique control execution \ = 
{T, q, 0} of H starting at p which corresponds to the control pair (u, a). 

We shall use the symbol &H(t,x,u,a), t e \TUT2), to denote the controlled 
hybrid flow on MH. &H(t, x, u, a) is denned as follows: 

$H(t,x,u,a) ATr(4>i(t)), for any i e (r) and t e [Ti,Ti+1). 

In particular, we have ^H{rux,u,a) = ^{^{TI)) = n(p) = x. D 

Remark 2. We note that, as follows from the Assumption A5, the definition of 
the control flow on MH does not depend on the choice of the representative p in 
the equivalence class x. □ 

Lemma 2. For any control u, the controlled hybrid flow &H(-,x, u,a) is con- 
tinuous on MH with respect to the argument t. 

Proof: This follows from the fact that all points of discontinuity of the control 
hybrid execution are removed by identifying them with their images under the 
corresponding reset maps. □ 

4    The Global Controllability of Hybrid Systems 

Let H be an arbitrary regular control hybrid system and MH its controlled 
hybrifold. In this section we relate the global controllability of the total domain 
D of H with the global controllability of MH. 

Definition 6 (Accessible sets of the control hybrid system H). 
Let p e D. We shall say that a state p' e D is accessible from p (with respect to 
V C D) if there exists a continuous control u e Uc, defined on some [Ti,T2), 
T2 < oo, and a sequence of discrete controls a = {vi,---,vk} such that the 
corresponding control execution x = (r, q, <f>) of H starting at p satisfies 

(i)   4>N{T){T) =p', for some T e \TN{T);TN{T)+1); and 
(ii   for any j e (r) and t e [TJ;TJ+1), ^(t) e V. 

The set of all states in D accessible from p (with respect to V) shall be denoted 
by AD(P)- In the case V = D, we shall write AD(p). D 

Thus we assumed that an accessible state p' can be reached from p in finite time 
using a finite number of switching (or jumps) between control locations. 

Remark 3. We observe that, as follows from the definition of the control execu- 
tion of H, Re

s(p) e AD(p), for any state p e Se
s, e e Es,s = a,c. D 

Similarly, we can define the accessible states using the dynamics of the controlled 
hybrifold MH. 



Global Controllability of Hybrid Systems        381 

Definition 7 (Accessible sets of the controlled hybrifold MH). 
Let x e MH C Rm. We shall say that a state x' e MH is accessible from x (with 
respect to V C MH) if there exists a continuous control ue Ec defined on some 
[Ti,T2), T2 < oo, and a sequence of discrete controls a = {vx, ■ ■ ■ ,vk} such that 

(i)   x' = #H(T,x, u, a), for some T e [Ii,T2); and 
(ii) for any Tx<t<T, &H(t, x, u, tr) e V. 

The set of all states in MH accessible from x (with respect to V) shall be denoted 
by Av(x). In the case V = MH, we shall write A(x). □ 

The set of all states co-accessible top (to x), with respect to V C D (with respect 
to V C MH), in H (in M#) is defined dually and shall be denoted as CA%(p) 
(as CAw{x)). 

Remark 4. We observe that for any p e D and any neighborhood V of p in £>, 
we have 

ir(Av
D(p)) C A^v\-K(p)), (2) 

where IT : £> —s- MH is the natural projection map. This is because any orbit in 
D is projected by IT onto an orbit in MH- 

On the other hand, let p,p' e D and let n(p') e Av(n(p)). Then there exist some 

y,y' eD such that (i) p ~ y, p' ~ y' and (ii) y' e A*D 
{V) (y). In other words, the 

existence of a trajectory from 7r(p) to 7r(p') in M# does not necessarily imply the 
existence of a control execution connecting p to p'\ it only implies the existence 
of a control execution from some y e D to some y' eD, where y ~ p and y' ~ p'■ 

This is particularly easy to see in the situation, where at some controlled 
switching surface S'J' at least two discrete controlled 0-^, CTi:,-2 can be applied. 
Take x e SlJ and consider yx = Rih{x) and y2 = Rth(x)- Tnen *, 2/1,1/2 he in 
the same equivalence class (they are glued together in MH) and, hence, n(yi) 
and 7r(y2) are mutually accessible in MH- At the same time yi and y2 are not 
necessarily mutually accessible in D. 

Hence in general, we do not have the reverse to (2) inclusion and we can only 
guarantee that for any x e MH and V c MH, 

Av(x)cJ    U     AS"1(v)(p)l. (3) 
(PC1T-l(x) ) 

D 

Definition 8. We say that a set D\ C D is controllable with respect to Did D 
for the control hybrid system H if Ap2(p) = £>i, for all pe Di- 

In the particular case when Dx = D, D2 = D, and AD(p) = D, for all peD,we 
shall say that the total domain D is globally controllable for H. 

Similarly, we shall say that a set C\ C MH is controllable with respect to C2 C 
MH if A°2(x) = Ci, for all x e Cx. MH is globally controllable if ^4(x) = M#, 
for all x e MH- D 
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Theorem 2. Let H be a regular control hybrid system. Then the total domain 
D is globally controllable if and only if the associated hybrifold MH is globally 
controllable. 

Proof: 
=> Let D be globally controllable. Then, using Remark 4 (2), we obtain for any 
xeMH, 

MH = ir(D) = n(AD(p)) c A^
D

\TT(P)) = A(x) c MH, 

where p is an arbitrary point in the set TT
-1

(X) C D. Hence A(x) = MH, for any 
x e MH, and MH is globally controllable. 

<^= Conversely let MH be globally controllable. Take any p,p' e D. Each of 
them could lie in any of the sets 

CTrans, ATrans, DAD- Trans, 

i.e. there are 9 possible cases. 
Consider, for instance, the case when p e Re

c{S
e

c) and p' e Re
c'(S*'), for some 

e = (ij),e' = (i,f) e Ec. Take the inverse image y' = {i?^'}-1^'). As follows 
from the description of the hybrid executions given in Section 2, there exist 
states z e DjDD and z' e A n D such that z is accessible from y and z' is 
co-accessible to y'. Next note, that since z,z' e D - Trans and n is 1 to 1 on 
D, from the existence of an orbit connecting n(z) to w(z') in MH follows the 
existence of a control execution that drives z to z'. Finally, combining all the 
accessibility relations for p, z, z',y',p' we conclude that p' e AD(p). 

The rest of the cases can be considered in an analogous manner. Thus 
AD{p) = D, for any peD, and D is globally controllable. D 
The above result allows us to use the hybrifold and the continuous controlled 
hybrid flow defined on it in order to study the global controllability of the orig- 
inal control hybrid system. The advantage of this approach is in the fact that 
the controllability results formulated for differential control systems acting on 
subsets or sub-manifolds of Rn can be transformed to control hybrid systems. 
This shall be demonstrated in the next section. 

5    Hybrid Fountains 

In this section we introduce the notion of a hybrid fountain which we shall use as 
the main hypothesis in our controllability result. Henceforth the symbol B5(x), 
where ieMjj,0<if£]R1, shall denote the m-dimensional ball with the center 
x and the radius 5. The sets AB^{p) and CA

B
^P\P) shall be denoted as As(p) 

and CAs(p), respectively. 

Definition 9. A state x e MH is called a hybrid fountain if 

3/z>OV<5, 0<o<(i, A5(x) - {x} and CAs(x) - {x} 
are non-empty, open sets. ^ ' 
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If the function p A sup{/i; such that the condition (4) holds} is continuous at 
x, we shall say that x is a continuous hybrid fountain. If p is unbounded at x we 
consider it to be continuous at x. D 

The reader is referred to [2,3,7] for applications of the fountain condition to the 
study of ordinary differential systems acting on subsets of Rn. See also [8], where 
a set of algebraic conditions for verification of the fountain property is presented, 
and [4] where applications to hierarchical hybrid control theory are outlined. 

Henceforth we shall use the term controlled closed orbit in the sense of con- 
trolled loop. 

Theorem 3. Let each x e MH be a continuous hybrid fountain and let for 
each x e MH there exist a control u e Sc such that x lies on a nontrivial 
(controlled under u) closed orbit in MH- Then each connected component of 
[MH}° is controllable with respect to My. 

Proof: Let C denote one of (the finite number of) the connected components 
of [MH]°- For any two states x,x' in C we define a relation ~0 in such a way 
that x ~0 x' if and only if there exists a (controlled) nontrivial closed orbit in 
Mu passing through both x and x', i.e. there exists a control pair u, a defined 
on some [Ti,T2), T2 < oo, such that 

(i)   3 T, Ti < T < T2,    V{TX,x,u, a) = V(T,x,u, a); and 
(ii)   3 i, Tx<i< T,    $(i, p, u, <T)=P'. 

Clearly, the relation ~0 is reflexive (since each state in MH lies on a nontrivial 
orbit), symmetric and transitive. Hence there exists a partition of C on the 
equivalence classes of ~0. Let [x], for an arbitrary xeC, denote the equivalence 
class containing x. We claim that [x] is an open subset in C. 

Indeed, take any z e [x\. Let u and 0 < t < oo be such that z = &(t,x,u,cr). 
Define a = &(t - A,x,u,a) and b = &(t + A,x,u,a), A > 0. Then, since a 
and b are hybrid fountains, the sets As(a) - {a} and CAs(b) - {b} are open, for 
sufficiently small S > 0. Choose A so small that z e A5{a) and z e CA5(b) (this 
is possible since a, b are continuous hybrid fountains). Then there exists an open 
neighborhood N(z) of z which lie in the intersection (As(a) - {a}) n (CA5(b) - 
{b}). Each state z' e N(z) is accessible from a and co-accessible to b. Moreover, 
since a, b e [x], we conclude that z' lies on a non-trivial orbit passing through x. 
This is true for all z' e N(z), hence N(z) C [x] and [x] is open, as claimed. 

For any x,x' eC we have [x] n \x'] ^ 0 => [x] = [x'\, so any two equivalence 
classes are either disjoint or coincide. Thus the set C can be represented as the 
disjoint union C = AliB, where A A [x], for some xeC, and B A   [J [x'). 

•sUC 

A and B are open and disjoint. Since C is connected, we conclude that B is 
empty, i.e. any x' e C is such that x ~0 x'. In other words, any two states in 
C lie on a nontrivial controlled orbit in MH and hence, C is controllable with 
respect to MH- n 
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Remark 5. We note at this point that weaker recurrence conditions can be used 
instead of the existence of closed orbits. Also, for the proof of the above result, 
the continuous hybrid fountain condition (4) can be relaxed to 

p(x) A sup{/x > 0; A»(x) - {x}, CA»{x) - {x} are non-empty, open sets} 
is continuous, for all x e MH- □ 

Theorem 4. Assume that the hybrifold MH is connected and the conditions of 
Theorem 3 are satisfied. Then MH is globally controllable. 

Proof: As has been shown in [14], MH is n-dimensional manifold (possibly with 
boundary). This implies, by definition, that for any boundary state in dMH 

there exists a neighborhood which is homeomorphic to R". Hence [MH}° and 
MH have the same number of connected components; in particular, [MH\° is 
connected if and only if MR is connected. 

Take any boundary state x e dMH. Then, since a; is a hybrid fountain, the 
sets As{x) - {x} and CA5(x) - {x} are non-empty and open, for sufficiently small 
S > 0. Hence there exist a e (A5(x)-{x})n[MH}° and b e (CA*(x)-{x})n[MH]°. 

For any state p' e [MH]° we can find a control u e Ec which would drive a 
p' and a control u' e Sc which would drive p' to b. This is because a, b,p' lie in 
[MH]° and, as follows from Theorem 3, [MH}° is controllable. We conclude that 
arbitrary p e dMH and p' e [MH}°, and thus arbitrary p,p' e MH, are mutually 
accessible. Hence MH is globally controllable. □ 
Consider the directed graph r of H which has vertices Q and edges E. We can 
treat it as a finite state machine, by defining the transition function $:Q^Q 
in such a way that for any i, j e Q, ${i) = j if and only if (i,j) eEori=j. 

Theorem 5. Assume that the conditions of Theorem 3 are satisfied. Then MH 

is globally controllable if and only if the graph r = {Q,E} is controllable as a 
finite state machine. 

Proof: 
=> Assume that MH is globally controllable. Then for any i,j e Q, i ^ j, 
take some states peA and p' e Dj. There exists a trajectory rp from p to p' 
in MH. Let the sequence % = n,r2, ■ ■ ■ ,re = j, I > 1, be such that V switches 
consecutively from the domain DTs to the domain Drs+1, where s = 1,2, • • •, l-\, 
using the corresponding guards and the images of the reset maps. Hence each 
consecutive pair (rs, rs+1) belongs to E and hence, there exists a trajectory from 
the state i to the state j in the graph f. Since this holds for an arbitrary pair 
(i,j) e Q, we conclude that r is controllable as a finite state machine. 

<= Conversely, assume that T is controllable as a finite state machine. Then 
for any two states p,p' e D take i and j such that p e A and p' e Dj. If 
i ^ j, find a trajectory i = n,r2, • • ■, re = j, I > 1, in the graph T. Since each 
consecutive pair (rs,rs+l) belongs to E, there exists a guard G(rsiT. 0 in the 
domain Drs which is identified with the image of the reset map R{°'s r++,) in the 
domain Dr,+l. Hence the domains DTs and Dr,+1, and thus D{ and''Dj, lie in 
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one connected component of MH. This can be shown for alii, j e Q. Hence MH 

is connected and, as follows from Theorem 4, MH is globally controllable. □ 
An application of the obtained results can be illustrated on a two water tank 

system example, which, for the lack of space, shall be described briefly. The water 
can be added to the system at some rate w > 0 (where we treat the parameter 
w as control) in two different modes: 

1: the water is added (exclusively) via tank 1; 
2: the water is added (exclusively) via tank 2. 

In addition to that, the water is removed from tank i, i = 1,2, at some constant 
rate vt > 0. The two tank system can be modeled as a control hybrid system in 
the following way We shall distinguish two control locations - each corresponds 
to one of the modes, i.e. Q = {1,2}. The continuous dynamics at the locations 
are as: 

q = l:   {*2Z~Vl   (x,y)tDiA{lh,oo)x[l2,oo)}, 

9 = 2:   {j2ZV-v2   (
x^)eD2 4{[Zi,<x>)x[Z2,oo)}, 

where x, y denote the levels of water in the tanks 1 and 2, respectively 
The class of control functions is taken to be the set of all functions taking values 
in 0£ and satisfying B2. 
The guards are defined as 

G(i,2) = 1 x {(x,y) eöi; y = h},   G(2,i) = 2 x {(x,y) e D2; x = h}. 

The resets are defined in such a way that when hitting a guard in one domain the 
system switches to the other control location, without changing the continuous 
part of the state, i.e. 

R(i,2)(l;x,h) = {2;x,l2),  Ä(2,i)(2;Ji,y) = (i;Ji,y). 

Furthermore, assume that for some level y = I, I > l2, in the first tank, a 
discrete switching to the second tank is allowed. 
To construct the corresponding controlled hybrifold we identify (via the identity 
reset maps) the x = h, y = l2, y = I axes of D\ with the x = h, y = Z2, y = / 
axes of D2, respectively. 

Using the obtained results, it can be verified that each state of the hybrifold 
is a hybrid fountain lying on a closed orbit. Hence, the two water tank system 
can be shown to be globally controllable. 

Remark 6. In conclusion we note that algebraic conditions for verification of the 
fountain property at each state x e MH shall be presented in a future version of 
the paper. 
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Abstract. Models of industrial processes often contain discrete phe- 
nomena superimposed on the continuous system behavior. Simulation 
of batch processes, start-up and shutdown procedures, fault diagnosis 
and alarms fall under this category. Models for such processes require a 
mathematical framework for both its continuous and discrete state tran- 
sitions. A key problem in hybrid simulation lies in the detection and ex- 
act location of discontinuities that delineate state changes. Hence, hybrid 
systems require special numerical procedures, which are not available in 
conventional integration methods. In this paper, important issues per- 
taining to the numerical aspects in hybrid simulation will be discussed. 
We will demonstrate a new approach to event handling. The main target 
of this new approach is enhanced computational performance without 
loss of rigor. The authors anticipate the significance of high speed in the 
advent of new challenges in optimal control and dynamic optimization 
problems. The improvements are due to the exploiting local monotonicity 
and smooth function properties observed in varaible step-size integration 
algorithms. 

1    Introduction 

The mathematical model for a physical process expresses mass, energy and mo- 
mentum balances by means of differential equations. These solutions to the con- 
servation equations lead to continuous trajectories of the state variables. In in- 
dustrially relevant process models, however, discrete actions or discontinuities 
may interrupt the continuous evolution of state variables. As an example, con- 
sider the cyclic operation of a batch unit under logical control. Each batch cycle 
is composed of different stages or steps, e.g. fill, heat, react, etc. The system 
dynamics in each state is governed by differential equations, and switching con- 
ditions that cause the transition from one stage to the next. The state transitions 
of a process model could reflect physical discontinuities such as hysteresis or sat- 
uration. Otherwise, they may be externally imposed on the process by logical 
controller actions or forcing function. Systems with discontinuities superimposed 
on the continuous system behavior are termed continuous-discrete or hybrid sys- 
tems. The dynamics of hybrid systems falls between two extremes: (i) Systems 
are driven by continuous dynamics, if the number of discontinuities is small, 
e.g. batch operations, (ii) In event-driven systems, discontinuities dominate the 

M.D. Di Benedetto, A. Sangiovanni-Vincentelli (Eds.): HSCC 2001, LNCS 2034, pp. 387-402, 2001. 
© Springer-Verlag Berlin Heidelberg 2001 
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process dynamics, e.g. digital control system (DCS). Hence, continuous and the 
discrete sub-models could be viewed as either super-systems or sub-systems of 
each other. Standard numerical treatment of hybrid systems via 'continuous' 
integration methods breaks down at sufficiently abrupt discontinuities. Equally, 
discrete simulation techniques such as Petri-Nets fail to express continuous dy- 
namics. Hence, a mathematical framework for addressing both continuous as 
well as discrete process dynamics effectively is needed. Recently, new challenges 
in optimal control and dynamic optimization involve discrete-continuous models 
for constraints in non-linear optimization functions [1]. The sensitivity function 
evaluations of gradient-based search techniques require repeated calls to the hy- 
brid system equations. In the light of these repeated computations, the efficiency 
of the hybrid algorithm is crucial [2]. 

A concise presentation of effective algorithms for hybrid systems simulation, 
their strengths and weaknesses is the main goal of this article. Section 2 reviews 
and assesses prior work in hybrid simulation. Section 3 develops the mathemat- 
ical framework for a new approach to efficient continuous-discrete simulation. It 
will present a hierarchical procedure based on statistical observations, yielding 
a desired performance increase. Section 4 discusses some of the advanced topic 
issues in hybrid simulation, e.g. multiple and simultaneous discontinuities in an 
interval. It also analyzes step-size control and recommends solver tolerances for 
the algorithm. Finally, an application in section 5 quantifies the performance of 
the new algorithm using benchmark case studies, and compares the proposed 
methodology with existing approaches. 

2    Background 

A hybrid system is characterized by three important elements (i) a continuous 
part (ii) a discrete part and (iii) state transitions [3]. The continuous dynamics 
of a physical process can be modeled by sets of differential equations. Transient 
balance equations lead to time-dependent trajectories of the state variables, i.e. 
the continuous part. The evolution of state variables may be interrupted by a 
discrete-time discontinuity called 'events' , i.e. the discrete part. Events may 
involve discontinuous changes in the state variable values or their derivatives, 
a switch in the underlying model equation or both. After an event, the system 
traverses into a new state, i.e. state transition. 

Each state of a continuous-discrete process can be associated to distinct 
mode, £. The 'continuous' dynamics of each mode, £, involves a set of differ- 
ential equations given by equation (1). 

ft(x,y,y,u(t),t) = 0,t£[tn,tn+1] (1) 

In (1), /€ : Rm( x Rn( x Rnt x Rlz x R H> R^+m+i), is a vector function; 

x e 5Rm« and y e 3?™« denote the algebraic and differential variables respectively. 
u(t) e 9?'« are the known system inputs. The number and the type of model 
equations, /{, are specific to the current mode £. 
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The cause for a transition into a new mode can be expressed mathematically 
by an event function. More precisely a switch occurs when the function, z^, 
crosses a threshold value of zero. The customary normalization to the right- 
hand-side zero explains its alias as z-function as given by equation (2). 

z^(,x,y,y,t) = 0 (2) 

In equation (2), z^, is termed the event function associated with the transi- 
tion of mode £ to mode ip. It is a function of the state variable and the indepen- 
dent variable time. The state transition takes place at the exact time instant, 
t*, at which the conditional, z^, becomes zero. This time, t*, terminates the 
validity of the old mode £. The new mode tp starts exactly at this same instant, 
giving rise to two sets of state variables values associated with time t*. Each set 
corresponds to one mode £ and ip respectively. 

In principle, hybrid systems of equation (1) and switching function (2) can 
be numerically integrated via integration routines combined with logical if- 
statements to check for transitions [4]. Gear [5], has shown that such a brute force 
approach with multi-step integration methods leads to gross losses in speed and 
accuracy. In the worst case, discontinuities may cause floating-point errors and a 
subsequent crash of the solver algorithm. A robust hybrid simulation algorithm 
should first identify whether events have occurred, locate their exact time, and 
execute the appropriate actions pertaining to the event. This approach usually 
involves a technique called discontinuity locking. 

2.1    Discontinuity Locking 

Multi-step integration routines solve systems of differential equations via re- 
peated computations executed in small intervals with step-size h. In disconti- 
nuity locking, the validity of current state £ is enforced throughout the entire 
length of the current integration step with a small step-size. Hence, the state 
variable trajectories are computed smoothly throughout the small interval using 
equations (1). Then, the trajectories of z-functions (equation 2) are examined for 
any possible zero-crossings in the current interval. This first phase is called event 
detection. A zero penetration, which must necessarily he within the bounds of 
the current interval, h, indicate the occurrence of an event. This changeover is 
triggered for a zero penetration from both the negative or the positive side. The 
event with the earliest zero-crossing t* is called the active event. The precise 
value of this event time, t*, the corresponding values of all state variable values 
must be computed by adequate means such as interpolation. This second phase 
is termed event location. After locating the event time, the system switches into 
the new state as directed by the actions associated with the state transition. 
Possible conflicts among multiple and competing events have to be handled here 
also. Therefore this last stage is called step completion. 

Discintinuity locking requires the ability to extrapolate into the undefined 
region smoothly. Therefore discontinuity locking may fail for systems bordering 
a numerical singularity such as logarithmic functions. Nevertheless, this approach 
has been incorporated in most of the algorithms ([6], [7], [8]). 
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2.2    Review of Existing Algorithms 

Several algorithms have been developed earlier for detecting and locating discon- 
tinuities in a dynamic simulation problem. The algorithms vary in their approach 
to the event detection and location phases. 

Carver [6] developed an event-handling algorithm for systems of ordinary 
differential equations. State transitions were modeled via algebraic discontinuity 
or event functions, cf. equation (2). Their differentials were appended to the 
systems' set of differential equations. The combined augmented system of dif- 
ferential equations was integrated using a modified Hindmarsh-Gear method. 
Events were identified by tracking sign changes of the event function in each in- 
tegration step. Events were located by solving a qth order polynomial for a zero 
crossing. Hay and Griffin [9] used a similar approach based on an augmented 
system including the derivatives of the discontinuity functions, and sign changes 
of the event function. For event location, they deployed linear and quadratic 
interpolation with a reduced step size. 

Joglekar and Reklaitis [7] detected events by checking for threshold crossing 
of event function. The event time was found by solving a qth order interpolation 
polynomial by means of a Newton's iteration scheme. However, their approach 
did not explicitly solve for the exact event time and was therefore prone to 
inaccuracy. 

Birta et. al [10] approximated the event conditional by a cubic polynomial 
and considered all possible configurations of the polynomial for event detection. 
Events were located by a Regula-Falsi method and a Newton's iteration scheme. 
Shampine et al. [11] uses a Sturm sequence to determine the zero of a linear 
event conditional and locates the event time by using a bisection method in 
conjunction with a Sturm sequence. 

Pantelides [12] directly integrated the algebraic event functions alongside the 
system differential equations. Zero crossings in the trajectories of this differential- 
algebraic system indicated events. Events were located using bisection method. 
Preston and Berzins [13] developed an event-handling algorithm for a particular 
class of dynamic simulation problems pertaining to valve operations. A disconti- 
nuity was detected through the use of a switch function that changed sign when 
the valve opens or closes. To find the time at which a discontinuity occurred, 
backward interpolation on the switch function was used. 

Park [8] developed a rigorous event-handling algorithm with superior perfor- 
mance of the root exclusion than the one proposed by Shampine. It employed 
an interval arithmetic technique for event detection. The root finding procedure 
consisted of two steps (i) a root exclusion test and (ii) Newton's method with 
recursive interval bisection. The root exclusion test used interval arithmetic to 
obtain an interval enclosure. An interval enclosure of a function with one argu- 
ment captures the largest and lowest values the function can assume. Functions 
with enclosures not containing zero cannot have a root in the interval of interest. 
Enclosures with zero may or may not exhibit a real root. Consequently, an in- 
terval Newton Method combined with interval bisection was deployed to analyze 
intervals with enclosures containing a zero. 
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The algorithms discussed above broadly fall into two categories: Type I algo- 
rithms only detect events that have a single zero crossing within the integration 
step. Type II algorithms can identify most events with multiple zero-crossings. 
The first category of algorithms is based on the conventional approach to event 
handling and detect a discontinuity by checking for a sign change in the event 
function ([6],[7],[9],[13]). While type I algorithms are fast, they are unreliable 
since they may miss situations with multiple roots in the interval. Many of the 
algorithms of this category also suffer from a phenomenon termed discontinuity 
sticking, first described by Park and Barton [8]. Small inaccuracies in the event 
function cause repeated firing of the same event in the subsequent integration 
steps. This undesirable effect is due to renewed zero crossing caused by small 
time drifts due to the double precision arithmetic of event location. Neverthe- 
less, they are adequate for modeling physical systems with linear discontinuity 
functions. 

Type II algorithms deploy more rigorous root exclusion tests for detection of 
discontinuities ([8], [11]). The root exclusion test eliminates state variable tra- 
jectories without zeros in the interval. The algorithms belonging to this category 
consume more manipulations than type I algorithms. In [8], a root exclusion test 
is based on a Sturm sequence [8]. In this approach, it is necessary to construct 
a Sturm sequence for an nth order polynomial which required (n+l)(n+2)/2 
multiplications. On the other hand, Barton's root exclusion test uses a clev- 
erly normalized interval arithmetic (IA) technique requiring just n evaluations 
[8]. However, the IA fails to identify a zero with multiplicity greater than one, 
because of singularity in the Interval Jacobian matrix. Moreover, the interval 
arithmetic is typically twice as expensive as conventional algebra. While IA 
methods are excellent for systems with a small number of events, they may not 
be optimal for event-driven systems. 

In the following section a new algorithm with a more efficient root exclusion 
test is presented. A hierarchical approach to event detection based on the sta- 
tistical evidence of event occurrence will be discussed. The improvements are 
mainly targeted at improved performance as required in the context of dynamic 
optimization ([1],[2]). A detailed discussion of the algorithm follows. 

3    Hierarchical Approach to Discontinuity Handling in 
Event-Driven Processes 

The main thrust of the new algorithm lies in providing a simple and yet rig- 
orous root exclusion test for high-order numerical multi-step integrators with 
adaptable step-size control. Two avenues for performance improvements will be 
offered. Numerical experiments show that within an integration step, most vari- 
able trajectories are locally monotonic. This observation can be attributed to the 
step-size control mechanism, which discards trajectories with infliction points or 
non-smooth behavior. This property holds specifically true for most event con- 
ditionals of physical processes. A second issue exploits the fact that in most 
intervals no events occur. We will show in the next section how these two prop- 
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erties can be used advantageously for developing an efficient hybrid simulation 
algorithm. 

Fig. 1 outlines the information flow of the variable step-size integrator with 
event-handling. White boxes demarcate the stages of standard high-order in- 
tegrators; grayed fields underscore additional steps required for event handling. 
The event handling part traverses through the usual three stages: (i) event detec- 
tion (ii) event location and (iii) step completion. The objective of event detection 
phase aims at examining whether any event function in the present mode had 
become zero in the current integration step. Step completion executes the actions 
associated with the state transition. 

Compute the local error estimate, e 

Reduce step-size 
reset integration 

Event Detection 
Evaluate z,=0 (True/False) V events 

Event Location 
Locate ti*  V events with zeros 

Find t*= min^for the active event 

Step Completion 
Execute state transition 

Compute new step size, h 

Continue integration 

Fig. 1. Information flow diagram for integration with event-handling 

3.1    Event Detection 

For event detection, the event functions in equation (2) are examined. Statistical 
observations on monotonicity as well as events frequency led us to conceive a 
hierarchical procedure composed of three layers depicted in Figure 2. The top 
layer handles intervals with the highest likelihood of occurrence. Lower layers are 
necessary to safeguard rigor with increasing effort. Typically the lowest nesting 
levels are only reached in rare occasions such as the tough benchmark case studies 
in section 5. 

Locally monotonic intervals. Local montonicity follows from same-signed 
gradients at the support points in high-order integrators. In case of a fifth order 
Runge-Kutta (RK) method [14], there are four gradients available at no addi- 
tional effort. Hence, the montonicity test costs but a simple boolean operations 
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for a sign change in the first derivatives. In most integration steps no events 
occur, and those with a zero crossing are likely to exhibit monotonic trajectory. 
For locally monotonic event functions, a sign-change corresponding to the be- 
ginning and the end of the integration interval, suffices for detecting an event. 
The adverse outcome of the monotonicity test indicates a rare non-monotonic 
interval. 

Support points from the regular integration 

Fig. 2. Information flow diagram for hierarchical event detection 

Locally non-monotonic intervals. For locally non-monotonic trajectories the 
second level of Fig. 2 is reached. We are especially interested in cheaply excluding 
non-monotonic intervals without zeros to avoid rigorous root search. For most 
intervals, a simple over-estimator or under-estimator to the event function is 
adequate, see figure 3 (i) and 3 (ii). The first order estimator, zou, requires the 
initial function and its gradients information as indicated by equation (3). Note 
that this test applies only for non-monotonic intervals where there is at least 
one zero in the first order. Therefore, the interval has to exhibit at least one 
extremal point. Hence zou should enclose the maxima or minima (see figure 3(i) 
and 3(ii)) 

z° + (z X h) (3) 

In the above equation, z° is the event conditional at the initial point in the 
interval, z its derivative, and h is current step size. Figure 3(iii) shows an instance 
in which the over/under-estimator envelope fails. Although these situations are 
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possible in theory, the step-size control mechanism of figure 1 rejects such trajec- 
tories. A formal proof of this property based on principles of flexibility analysis 
is being developed, and will be discusses in [16]. 

Fig. 3. estimators to the true function (i) under-estimator (ii) over-estimator to the 
function and (iii) case where root exclusion fails 

Simple Root Exclusion Test. The simple root exclusion test, i.e. zouz° > 0, 
excludes the possibility of zero crossing in an integration step. In this case, the 
integration is continued without a state transition. 

Advanced Root Exclusion Test. zou and z° lying on opposite sides of the 
abscissa, i.e. zouz° < 0 , indicates a necessary, but not a sufficient criterion for 
an event. This branch leads to level three analysis in figure 2. Two stages are 
involved: 

Examine Support Points: In each integration step, the discrete support 
points, ki,i = 2,3, ...,5 are examined for a sign change. If two support points 
have an opposite sign, then a zero crossing has been identified (figure 3(ii)). 

Exact Interpolation using Lagrangian Polynomials: If the is no sign change 
between two support points kt and ki+1, then there may be a zero crossing as 
shown in figure 4(iii). In that situation, a Lagrangian polynomial is constructed 
using the support points of the current interval. The extreme point, zex, cor- 
responds to a maximum or minumum with zero in its first dervative, dz/dt = 
0. The assocaited time instant, t*, is found using a Newton's Raphson method. 
The extremum, zex and the initial value z° are again checked for a sign change. 

It should be noted that decisions high the hierarchy are less expensive than 
the tests performed in subsequent lower layers. In most physical systems, simple 
root exclusions suffices for most of the integration steps. Typically 99.9 % of the 
intervals have no discontinuities at all. Hence, the performance of root exclusion 
test often determines the speed of the entire algorithm. 
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Fig. 4. Different types of non-monotonic event functions (i) no zero crossing (ii) zero 
crossing with a sign change in the value between the support points (iii) zero crossing 
with no change in sign of the gradients for support points 

3.2    Event Location 

For every event function with a root in the interval, the exact event time needs to 
be computed in the event location phase. Since time is the independent variable, 
exact points of the discontinuity cannot be obtained directly from equation (4) 
and (5). 

ft{x,y,y,u(t),t) = 0,t£[tn,tn+i] 

z^(x*,y*,t*) ± £eVent = ° 

(4) 

(5) 

In the above equations (4) and (5), x are the algebraic variable values, y are 
the differential variable values and u(t) are known forcing functions. The star 
indicated their value at the event time, t*. 

Event Location via implicit Euler's method and function evaluation 
(method 1): In order to compute the exact event time, the differential equa- 
tions in (4) are discretised using a first-order implicit Euler's method. Discretiza- 
tion renders algebraic equations parameterized in the formerly independent time, 
t, see Equation (6). Together with the event condition of equation (5), the sys- 
tem can be solved for the unknown event time. A small tolerance, eevent, added 
to the event function in equation (6) ensures sufficient zero penetration. For a 
positive approach to a root, the value of the tolerance is positive. The discretized 
system is solved simultaneously using Newton's method to obtain the unknown 
event time. In addition, we obtain the corresponding state variable values at the 
event time (x*, y*, u*). The iteration converges rapidly due to extremely good 
guesses of the initial values. This methodology also offers an opportunity for 
controlling the sign and precision of the event conditionals, which is paramount 
for general-purpose hybrid simulation. 

y*=y° + h*(y\t=t.) (6) 

High-order approximations:  Simulations using higher order implicit dis- 
cretization techniques were examined in order to assess the precision of event 
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location. The second-order semi-implicit method leads to the set of equation (7). 
Note that the Jacobian is computed only once using the values at the beginning 
of the interval. 

y*=y° + (Riki + R2k2) (7) 

Where, 
k1 = h[I-haJ(y°)}-lf(y'') 
k2 = h[I - ÄaJ(y°)]-1/(y° + b2kx) 
a = 0.435, b2 = 3/4, Rx = 1.0358, R2 = 0.8349 

This second-order semi-implicit approach requires more than twice the num- 
ber of unknowns and more function evaluations as compared to first order Euler's 
method. In our experience and in the simulation runs for Craver's benchmark 
case studies, the event location times obtained using first and second order dis- 
cretisation were almost identical. We conclude from these experiments that first 
order implicit Euler's method is acceptable for most practical cases. 

Event Location via interpolation (method 2): The second methodology 
avoids repeated function re-evaluations altogether by interpolation of the all 
trajectories between the discrete support points. This approach was proposed 
by Barton [8] for differential algebraic systems (DAE). An interpolation in time 
for the state and event functions, e.g. zj(t), can be obtained advantageously via 
Lagrangian polynomials, Zf(£) given in equation (8). It is worth mentioning that 
the interpolation completely decouples the variables in the system described by 
equation (1). Hence, the event time can be computed using a one-dimensional 
Newton Raphson method to solve for time t* only. With the exact event time, 
the computation of the state variable value reduces to a mere function evaluation 
of its corresponding interpolation polynomial, one at a time. 

n+l n+1 

zI(t) = '£ziii(t),ii= n rzr- (8) 

zi(t") ± £event = 0 (9) 

Although method 1 assures accurate event location, repeated function calls to 
compute the derivative of the state variables can be less effective. This situation 
holds especially true in large systems with a small number of event conditionals. 
For process models loaded with involved physical property procedures, method 2 
for event location is superior to method 1. However, method 1 tends to be more 
accurate since it maintains variable dependencies in the local neighborhood of 
an event. Method 1 may also be superior in event-driven systems that involve 
large numbers of event functions. 

3.3    Step Completion 

After a discontinuity has been located precisely, the consistent state transition 
must be implemented. Hence, step completion executes all actions consequent to 
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the active event. The actions may entail: (a) discontinuous changes in the state 
variables (b) a changeover to a new set of describing equations or (c) triggering of 
another event. After step completion, control returns to the regular drive routine 
of the integrator. Integration resumes involving a new cycle of event handling in 
subsequent intervals. 

4    Advanced Issues in Hybrid Simulation 

4.1 Multiple/Simultaneous Discontinuities in Integration Step 

Note that there maybe more than one z-function that has a root in the interval. 
In this situation, the exact location of the event times, t*, allows to deduce 
the active event. The active event is characterized by the earliest event time, 
t*active, which is the smallest of all event times t*. Therefore, for each candidate 
event, the exact location of roots must be found. Only the state transition of the 
active event is executed. After firing the active event, integration resumes. The 
handling of all other events is delegated to subsequent integration steps. 

A situation often omitted in hybrid simulation deals with synchronous events. 
It concerns models with two or more events occurring with little or no time delay. 
In a practice, this occurs frequently when modeling multiple digital controllers, 
which samples at same time instant. Without special treatment, closeness of the 
two events could lead to singularity in the integration method or failure to detect 
the events at all [15]. Our algorithm handles such types of events by examining 
for simultaneity or near simultaneity of the events. The approach considers all 
events occurring within a time interval, Ah3im, as simultaneous. All instances 
of simultaneous events fire. 

4.2 Step Size Selection after a Discontinuity 

Smoothness of the trajectories is ensured by the step-size control mechanism. 
Therefore, it is important that step acceptance is performed prior to event han- 
dling. After location of a discontinuity, the integration should move away from 
the discontinuity with large strides in the interest of the overall efficiency. This 
goal is antagonistic to the objective of small integration error. Three options 
for selecting an appropriate step size, hnext, after location of a discontinuity are 
discussed. 

One choice of the new step could be derived from the step size, hevent, ob- 
tained in the event location phase. It corresponds to arbitrary location of an 
event time vis-ä-vis the bounds of the associated integration step. Consequently, 
the value of hevent could be arbitrarily small. Since it does not correlate with 
the system time constants at all, it is an infeasible choice for a new step-size. 

A better option is to maintain the step size, hcurrent, before an event was 
detected. This approach is suitable for systems where the time constants remain 
unaltered between states. If the describing equations change, the new initial 
value problem may commence with multiple step-size reduction. This behavior 
is certainly undesirable. 
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A third approach deploys a fixed initial step-size, hinitiai, adopted at the 
start time of the integration. Usually this choice involves very small values con- 
stituting a very conservative approach. However, this option gives users direct 
control allowing them to adopt a problem-specific trade-off between economy 
and computational accuracy. The latter method was used in the case studies of 
section 5. 

4.3    Selection of Tolerances 

State-of-the-art algorithms avert error propagation in numerical integration by 
means of adaptive step-size control. This technique compares the differences 
in numerical solutions obtained by variable orders to achieve a fixed relative 
accuracy, SRK ■ The step-size is increased rapidly when entering a smooth region. 
If the local truncation error leaves the desired tolerance limits, the step-size is 
reduced in the subsequent step. If the truncation error violates its limit, the step 
is rejected and re-evaluated with a smaller step-size. Event detection involves a 
set of new tolerances and adjustable parameters. For optimal performance of the 
entire procedure, the tolerances of the integrator and the event handling must 
be concerted. 

The tolerance ±eevent ensures sufficient zero penetration as given by equa- 
tions (5) and (9). Its magnitude is chosen large enough to avoid discontinuity 
sticking, while avoiding unacceptable offsets from the exact event boundary. 
The value of ±eevent must be chosen larger than the tolerance, TOLMIN, which 
bounds the residual equations in the Newton Raphson (NR) Method. The second 
tolerance in NR gauges the break-off for function evaluation, TOLF, is set to 
2£event- Ahsim is the tolerance for delineating simultaneous events. The selected 
tolerance values are shown in Table 1. 

Table 1. Solver parameters for the algorithm 

Solver parameter Value 
£RK 1.0e-b 

Eevent WBRK 

TOLMIN £RK 

TOLF 2SRK 

^initial WeRK 

^i^sim £RK 

5    Application and Results 

The efficiency of the new algorithm was tested against benchmark case studies. 
Specifics and problem descriptions can be found in [6]. A more detailed discus- 
sion of the third benchmark example is presented in subsection 5.1. Section 5.2 
summarizes the results of the performance tests. 
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5.1    A Rectifier Circuit - Carvers Example 3 

This example concerns a rectifier circuit as depicted in figure 5(i). It consists of 
two diodes Dl and D2, two AC sources Ul and U2, three resistances Rl - R3 
and three inductors LI - L3. The balances for currents and voltages are given 
by equations (10) and (11). 

h = h + *2 

v3 = R3(ii + i2) + Ls{ii + i2) 

(10) 

(11) 

J 
R2L, 

R,L3 

Fig. 5. Curcuit and state transition diagrams for Carver's example 3 

Table 2. States for the rectifier circuit 

State State transitions Differential Equations 

Di conducting (ii > 0 or vi > V3) and 

(i2 = 0 and v2 < V3) 

H = (vi — Hai)/a2 

i2=i2 = 0 

Both Di and D2 conducting (ii > 0 or vi > V3) and 

(i2 > 0 and v2 > v3) 

ii = (051)1 + aev2) + a-ji\ + agi2) 

i2 = (09^1 -1- aiov2) + auii + 012^2) 

Only D2 conducting (i2 > 0 or v2 > V3) and 

(ii = 0 and v\ < V3) 

i\ = h = 0 
12 = (^2 - i"2.a,3) 1 an 

The constants are given as: 
R1 = R2 = 2,R3 = 10, Li = L2 = 0.04, L3 = 0.2, vi = -v2 = lOOsm(lOOTrt) 
ai = (12,0.24,12,0.24,13.64, -11.64, -50,0, -11.64,13.64,0, -50 

The values for i\ and i2 differ depending upon three distinct states: (i) diode 
Di is conducting, (ii) diode D2 is conducting, and (iii) both D\ and D2 are 
conducting. In effect, the system toggles between three states as prescribed in 
table 2. The three states correspond to four event functions depicted in Fig. 
5(ii). Equations (12) describes the four event functions that actually cause state 
transitions. The event-triggering state transitions can be obtained by careful ex- 
amination of the expressions in the second column of table 2. Complex nested 
event conditionals required in this case study could be expressed by means of 
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a high-level modeling language. A description of the hybrid simulation environ- 
ment and its high-level language is beyond the scope of this paper and has been 
described elsewhere [16]. Figure 6 (i) shows the current profiles obtained while 
figure 6(ii) shows the voltage changes for vl, v2 and v3 in time. 

0.02 0.03 
Time 

Fig. 6. (i) current profiles and (ii) voltage variations in the circuit problem 

5.2    Discussion of the Performance Results 

Table 4 shows the performance evaluation for the new algorithm applied to 
three Carvers benchmark case studies. The three examples clearly illustrate the 
strength of the new root exclusion test. It detected all events in strict time 
order without discontinuity sticking. It can also be seen that in most integration 
intervals we have no root at all (92.80-99.95 %). Hence, the overall efficiency of 
the algorithm is governed by the afRcacy of the root exclusion test. The ratio 
of non-monotonic intervals to monotonic intervals is typically small. This holds 
especially true for most of the physical systems with discontinuities. In Carver's 
example 2 4.65 % of the intervals were non-monotonic. This number is high since 
Carver deployed periodic functions with atleast two non-montonic intervals per 
period. The algorithm successfully eliminated all the non-monotonic intervals 
without a root. 

The performance of the algorithm was also compared to a Type I algorithms, 
see Table 4. Our implementation of a type I algorithm deployed quadratic inter- 
polation for event location. The experiments further show that Type I algorithms 
failed to detect all the events for Carver's example 3. This drastic breakdown 
can be explained by the reliance of type I algorithms on function evaluation 
performed at the bounds of each step. Hence, zero-crossings in the middle of an 
interval are lost. In terms of function evaluations, type I and our new method 
is equivalent. However, only the new algorithm proved robust on all examples 
with an execution speed comparable to the fast type I algorithms. 

The performance of the algorithm was also compared to the interval arith- 
metic techniques. The results are shown in table 5. Our root exclusion test is 
slightly better than the one involving the interval arithmetic techniques. How- 
ever, there is a substantial improvement in the rigorous root finding phase of 
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Table 3. Performance Evaluation of the new algorithm 

401 

Case Study Monotonie 
intervals 

Non-monotonic 
intervals 

Intervals with 
no events 

Intervals 
excluded 

Events Evaluations 
for root excl. 

Carvers example 1 39 3 92.80 3 3 6 
Carvers example 2 164 8 95.90 8 7 16 
Carvers example 3 22157 23 99.95 23 10 46 

Table 4. Performance comparison of the new approach with a Type I algorithm 

Example Problem parameters Type I algorithm New algorithm 
Equations Events Functions Residuals Functions Residuals 

Carvers example 1 2 1 739 2217 589 1898 
Carvers example 2 3 2 883 2649 914 2930 
Carvers example 3 6 4 fails fails 1753 4888 

Table 5. Comparison of the event detection phase of the new approach with interval 
arithmetic 

Event Detection Algebraic evaluations 
(New Algorithm) 

Algebraic evaluations 
(Interval Arithmetic) 

Root exclusion test 3 5 
Rigorous event detection phase 19 56 

event detection. This enhanced improvement in performance is essential for 
event-driven hybrid systems such as simulation of digital regulatory control of a 
physical process. 

6    Conclusions 

A fast and simple method for hybrid system integration by means of a multi- 
step integration algorithm with step-size control was presented. Our approach is 
statistically motivated leading to a hierarchical event detection procedure. The 
improvements are due to the exploiting local monotonicity and smooth function 
properties observed in algorithms with step-size control. A three-layered hierar- 
chy of event exclusion tests with increasing complexity safeguards the rigor of the 
method, while upholding the performance. A cheap root exclusion test excludes 
roots of event functions fast. Even the most expensive test in the inner nesting 
level is faster than existing approach based on interval arithmetic. Phenomena 
not detected by popular bisection methods such as same-signed non-monotonic 
event functions with zero crossing are handled effectively. The method lays the 
foundation for rapid simulation algorithms as required in new types of dynamic 
optimization and optimal control problems. 
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Abstract. In earlier work, we developed a mathematical hybrid I/O 
automaton (HIOA) modeling framework, capable of describing both dis- 
crete and continuous behavior. This framework has been used to analyze 
examples of automated transportation systems, intelligent vehicle high- 
way systems, air traffic control systems, and consumer electronics appli- 
cations. Here, we reconsider the basic definitions of the HIOA framework, 
in particular, the dual use of external variables for discrete and contin- 
uous communication. We present a new HIOA model that is simpler 
than the earlier model, due to a clearer separation between discrete and 
continuous activity. 

1    Introduction 

Recent years have seen a rapid growth of interest in hybrid systems—systems 
that contain both discrete and continuous components, typically computers in- 
teracting with the physical world. Such systems are used in many application 
domains, including automated transportation, avionics, automotive control, pro- 
cess control, robotics, and consumer electronics. Motivated by a desire to describe 
and reason carefully about such applications, we are continuing our efforts to 
adapt techniques from computer science to the setting of hybrid systems. 

In our previous work in this area, we developed a mathematical hybrid I/O 
automaton modeling framework [15,16]. This framework supports description 
and analysis of hybrid systems using powerful methods of parallel composition 
and levels of abstraction. We also proved sufficient conditions for hybrid I/O 
automata to be receptive, which means that they allow time to advance to infinity 
independently of the input provided by the environment. We and others have 
used this framework to analyze examples of automated transportation systems 
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In this paper, we present a new hybrid I/O automaton model that is con- 
siderably simpler than the earlier model, yet supports similar description and 
analysis methods and similar receptivity theorems. The main simplification is a 
clearer separation between the notions of discrete and continuous communica- 
tion. We arrived at this separation as a result of reconsidering the relationship 
between the computer science notion of shared variable communication and the 
control theory notion of continuous flow across component boundaries. 

Levels of abstraction, compositionality, and receptiveness for hybrid systems 
have also been addressed by Alur and Henzinger [2,3] in their work on reactive 
modules. However, reactive modules communicate only via shared variables, and 
not via shared actions. In [3], a definition of receptiveness similar to the one in 
[15,16] is proposed, and is shown to be preserved by composition. However, in [3], 
no circular dependencies ("feedback loops") are allowed among the continuous 
variables of the components, a restriction that greatly simplifies the analysis. 

The rest of this paper is organized as follows. Section 2 defines notions that 
are useful for describing the behavior of hybrid systems: trajectories and hy- 
brid sequences. Section 3 contains the theory for the hybrid automaton (HA) 
model, which has all of the structure of the HIOA model except for the division 
of external actions and variables into inputs and outputs. Section 4 introduces 
inputs and outputs, and presents the basic theory for HIOAs. Section 5 presents 
the new theory of receptiveness, including the main theorem, Theorem 7, stating 
that receptiveness is preserved by composition under certain compatibility condi- 
tions. Section 6 describes sufficient conditions for these compatibility conditions 
to hold, and in particular, describes Lipschitz automata. 

2    Describing Hybrid Behavior 

In this section, we give basic definitions that are useful for describing discrete and 
continuous system behavior, including discrete and continuous state changes, 
and discrete and continuous flow of information over component boundaries. 
Throughout this paper, we fix a time axis T, which is a compact subgroup of 
(R, +), the real numbers with addition. 

2.1     Static and Dynamic Types 

We assume a universal set V of variables. A variable represents either a location 
within the state of a system component, or a location where information flows 
from one system component to another. For each variable, we assume both a 
(static) type, which gives the set of values it may assume, and a dynamic type, 
which gives the set of trajectories it may follow. Our motivation for introducing 
dynamic types is that this allows us to define input enabling for hybrid I/O 
automata: if v is an input variable of HIOA A then, roughly speaking, we require 
that A accepts each input signal on v, as long as it respects the dynamic type 
of v. Since we are in a hybrid setting where discrete transitions may change the 
state at any time, elements of a dynamic type may contain (countably many) 
"discontinuities". Formally, we assume for each variable v. 
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— type(v), the (static) type of v. This is a set of values. 
— dtype(v), the dynamic type of v. This is a set of functions from left-closed 

intervals of T to type(v) that is closed under the following operations: 
1. (Time shift) For each / G dtype(v) and t G T, / +1 G dtype(v). Here 

/ +1 is the function given by (/ +1) («') = /(*' -i). 
2. (Subinterval) For each / G dtype(v) and each left-closed interval J C 

dom(f), f \ J £ dtype(v). Here f \ J is the function obtained by 
restricting the domain of / to J. 

3. (Pasting) For each sequence /o, A, /2, ■ • • of functions in dtype(v) such 
that (a) the domain of each /*, except possibly for the last one, is right- 
closed, (b) for each nonfinal index i, max(dom(/j)) = mm(dom(fi+i)), 
the function / given by f(t) = fi(t), where i is the smallest index with 
t G dom(fi), is in dtype(v). 

Example 1. For any variable v, the set C of constant functions from a left-closed 
interval to type(v) is closed under time shift and subintervals. If the dynamic 
type of v is obtained by closing C under the pasting operation, then v is called 
a discrete variable, as in [19]. If we take T = R and type(v) — R, then other 
examples of dynamic types can be obtained by taking the pasting closure of the 
set of continuous or smooth functions, the set of integrable functions, or the set 
of measurable locally essentially bounded functions. The set of all functions from 
left-closed intervals of R to R is also a dynamic type. 

In practice, dynamic types are often denned via pasting closure of a class of 
continuous functions. In these cases the elements of dynamic types are continuous 
from the left. Elsewhere in the literature on hybrid systems one often encounters 
functions that are continuous from the right (see, e.g., [8]). To some extent, 
the choice of how to define function values at discontinuities is arbitrary. An 
advantage of our choice is a nice correspondence between concatenation and 
prefix ordering of trajectories (see Lemma 2). In the rest of this paper, when we 
say that the dynamic type of a variable v equals S, we actually mean that the 
dynamic type of v is obtained by applying the above closure operations to S. 

2.2    Trajectories 

In this subsection, we define the notion of a trajectory, define operations on 
trajectories, and prove simple properties of trajectories and their operations. A 
trajectory is used to model the evolution of a collection of variables over an 
interval of time. 

Basic Definitions. Let V be a set of variables, that is, a subset of V. A valuation 
v for V is a function that associates to each variable v G V a value in type(v). 
We write val(V) for the set of valuations for V. Let J be a left-closed interval 
of T with left endpoint equal to 0. Then a J -trajectory for V is a function 
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T : J -* val(V), such that for each v £ V, T I v £ dtype(v). Here T | V is the 
function with domain J defined by (r 4- v)(t) = T(t)(v). 

We say that a J-trajectory is finite if J is a finite interval, closed if J is a 
(finite) closed interval, and full if J = T-°. A trajectory for V is a J-trajectory 
for V, for any J. We write trajs(V) for the set of all trajectories for V. For 
T a set of trajectories, finite(T), closed(T) and full(T) denote the subsets of 
finite, closed and full trajectories in T, respectively. A trajectory with domain 
[0,0] is called a point trajectory. If v is a valuation then p(v) denotes the point 
trajectory that maps 0 to v. 

If T is a trajectory then T.ltime, the limit time of r, is the supremum of 
dom(r). Similarly, we define r.fval, the first valuation of r, to be T(0), and if 
r is closed, we define T.lval, the last valuation of r, to be T(T.ltime). For r a 
trajectory and t G T-°, we define T <t = r \ [0,t], r <\ t = r f [0,£), and 
7" !> * = (T [ [t, oo)) — i. Note that the result of applying the above operations is 
always a trajectory, except when the result is a function with an empty domain. 
By convention, r < oo = r and r < oo = r. 

Prefix Ordering. Trajectory r is a prefix of trajectory u, denoted by r < -u, 
if T can be obtained by restricting v to a non-empty, downward closed subset 
of its domain. Formally, T < v iS T = v \ dom{r). For T a set of trajectories 
for V, pref(T) denotes the prefix closure of T. We say that T is prefix closed if 
T = pref(T). 

The following lemma gives a simple domain theoretic characterization of the 
set of trajectories over a given set V. (See [7] for basic definitions and results on 
complete partially ordered sets, (cpo's)). 

Lemma 1. Let V be a set of variables. Then the set trajs(V) of trajectories 
for V, together with the prefix ordering <, is an algebraic cpo whose compact 
elements are the closed trajectories. 

Concatenation. The concatenation of two trajectories is obtained by taking 
the union of the first trajectory and the function obtained by shifting the domain 
of the second trajectory until the start time agrees with the limit time of the 
first trajectory; the last valuation of the first trajectory, which may not be the 
same as the first valuation of the second trajectory, is the one that appears in 
the concatenation. Formally, let T,V be trajectories, with r closed. Then the 
concatenation is the function given by r "" v = TL)(V \ (0,oo) + T.ltime). Using 
the closure of dynamic types under time shift and pasting, it follows that r "" v 
is a trajectory. Observe that r " v is finite (resp. closed, full) iff v is finite (resp. 
closed, full). Observe also that concatenation is associative. 

The following lemma, which is easy to prove, shows the close connection 
between concatenation and the prefix ordering. 

Lemma 2. Let T,V be trajectories with r closed. Then r < v iff there exists a 
trajectory r' such that r ^ T''. 
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Note that if r < v, then the trajectory r' such that v = r "" r' is unique except 
that it has an arbitrary value for r'.fval. Note also that the "<=" implication 
would not hold if the first valuation of the second argument, rather than the last 
valuation of the first argument, were used in the concatenation. 

Using a limit construction, we can generalize the definition of concatenation 
for any (finite or countably infinite) number of arguments. Let r0, n, T2, ... be a 
(finite or infinite) sequence of trajectories, such that T; is closed for each nonfinal 
index i. Define trajectories TQ, T[, T'2, ... by r[ = r0 " n ~ • • • ^ Tj. We define 
the concatenation r0 "" T\ ^ T2 ... to be lim^oo T[. It is easy to prove that 
To ^ T\ "^ T2 ■ ■ ■ is a trajectory. 

2.3    Hybrid Sequences 

In this subsection, we introduce the notion of a hybrid sequence, which is used 
to model a combination of changes that occur instantaneously and changes that 
occur over intervals of time. Our definition is parameterized by a set A of actions, 
which are used to model instantaneous changes and instantaneous synchroniza- 
tion with the environment, and a set V of variables, which are used to model 
changes over intervals and continuous interaction. We also define some special 
kinds of hybrid sequences and operations on hybrid sequences. 

Basic Definitions. An (A, V)-sequence is a finite or infinite alternating se- 
quence a = To a\ T\ a2T2-- •, where (1) each n is a trajectory in trajs( V), (2) 
each ßj is an action in A, (3) if a is a finite sequence then it ends with a tra- 
jectory, and (4) if rt is not the last trajectory in a then domfa) is closed. We 
define a hybrid sequence to be an (A, V)-sequence for some A and V. 

Since the trajectories in a hybrid sequence can be point trajectories, our 
notion of hybrid sequence allows a sequence of discrete actions to occur at the 
same real time, with corresponding changes of state. 

If a is a hybrid sequence, with notation as above, then we define the first 
valuation of a, a.fval, to be To-fval, and we define the limit time of a, a.ltime, 
to be 'Y^,iTi.ltime. A hybrid sequence a is defined to be: 

— time-bounded if a.ltime is finite. 
— admissible if a.ltime = oo. 
- closed if a is a finite sequence and the domain of its final trajectory is a 

closed interval. In this case we define the last valuation of a, a.lval, to be 
last(a).lval. 

- Zeno if a is neither closed nor admissible, that is, if a is time-bounded and is 
either an infinite sequence, or else a finite sequence ending with a trajectory 
whose domain is right-open. 

Prefix Ordering. We say that (A, V)-sequence a = r0 a\ T\... is a prefix of 
(A, V)-sequence a' = TQ a[ r{..., denoted by a < a', if either a = a', or a is a 
finite sequence ending in some r^; r» = T[, and ai+1 = a'i+1 for every i, 0 < i < k; 
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and Tfc < r'k. Like the set of trajectories over V, the set of (A, V)-sequences is a 
cpo. 

Lemma 3.  The set of (A,V)-sequences together with the prefix ordering < is 
an algebraic cpo with as compact elements the set of closed (A,V) -sequences. 

Restriction. Let A,A' be sets of actions and V,V sets of variables. The 
(A1, V)-restriction of an (A, IQ-sequence is obtained by projecting the trajecto- 
ries on the variables in V, removing the actions not in A', and concatenating 
the adjacent trajectories. 

Lemma 4. Restriction is a continuous operation with respect to prefix ordering. 

Concatenation. Suppose a and a' are (A, ^-sequences, with a closed. Then 
the concatenation is the (A, V)-sequence given by 

a.^ öL = init(a) (last(a) """ head{a')) tail(a'). 

(If a is a nonempty sequence then head(a) denotes the first element of a and 
tail(o) denotes a with its first element removed; if a is finite, then last(a) denotes 
the last element of a and init(a) denotes a with its last element removed.) 

Lemma 5. Let a, a' be (A, V)-sequences with a closed. Then a < a' iff there 
exists and (A, V)-sequence a" such that a' = a ^ a". 

Note that if a < a', then the (A, ^-sequence a" such that a' = ct^ct" is unique 
except that it has an arbitrary value in val(V) for a".fval. 

Based on Lemma 5 and Lemma 3, we can extend concatenation to infinitely 
many (^4, ^-sequences as follows. Let ai, a2,... be an infinite sequence of closed 
(A, ^-sequences. Then define the concatenation ot\ """ cti ~~~ ■ ■ ■ to be lim^oo a[, 
where a\ = c*i " a^ "* ■ ■ ■ "" a,. 

3    Hybrid Automata 

As a preliminary step toward denning hybrid I/O automata, we first define a 
slightly more general hybrid automaton model. Hybrid automata classify actions 
as external and internal, but do not further subdivide the external actions into 
input and output actions. Likewise, they classify variables as external and inter- 
nal. The input/output distinction is added in Section 4. In addition to defining 
hybrid automata, we here define an implementation relation between hybrid 
automata and a composition operation. 
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3.1    Definition of Hybrid Automata 

A hybrid automaton (HA) A = (W, X, 0, E, H, V, T) consists of: 

— A set W of external variables and a set X of internal variables, disjoint from 
each other. We call a valuation x for X a state, and we refer to val(X) as 
the set of states of A. We write V = Wli X. Given a valuation v for V, we 
denote by state(v) the state v \ X. 

— A nonempty set 0 C val(X) of start states. 
— A set E of external actions and a set H of internal actions, disjoint from 

each other. We write A = E U H and let a, b,... range over A. 
— A set V C val(X) x A x val(X) of discrete transitions. We use x —».4 x' 

as shorthand for (x, a, x') G P. We sometimes drop the subscript, and write 
x A x', when A should be clear from the context. 

— A set T of trajectories for V. Given a trajectory r G T we denote T./vaZ [ X 
by T.fstate, and, if r is closed, T.lval \ X by T.lstate. We require that the 
following axioms hold: 
Tl (Prefix closure) For every T G T and every r' <T,T'G T. 
T2 (Suffix closure) For every r € 7" and every f £ dom(r), T>t&T- 
T3 (Concatenation closure) Let TO,TI,T2,... be a sequence of trajectories 

in T such that, for each nonfinal index i, Ti is closed and Ti.lstate = 
Ti+i.fstate. Then r0 ^ TI " T^ ■ ■ ■ G 7". 

Axioms Tl-3 express some natural closure properties on the set of trajectories 
that we need for our results about parallel composition. In a composed system, 
any trajectory of any component may be interrupted at any moment by a dis- 
crete transition of another component. Axiom Tl ensures that the part of the 
trajectory up to the discrete transition is a trajectory, and axiom T2 ensures 
the remainder is a trajectory. Axiom T3 is required because the environment of 
a hybrid automaton, as a result of internal discrete transitions, may change its 
continuous dynamics repeatedly, and the automaton must be able to follow this 
behavior. Even without performing discrete transitions itself, a hybrid automa- 
ton must be able to follow this type of behavior of its environment. In the earlier 
definition of hybrid automata presented in [15,16], we used a special stuttering 
action e in place of axiom T3; this gave rise to technical complications. 

Another major difference between our new definition and the earlier one is 
that the external variables are no longer considered to be part of the state; thus, 
for instance, the discrete transitions do not depend on the values of these vari- 
ables. Analogous to the way in which external actions can be used to model 
synchronization of discrete transitions of different components, external vari- 
ables allow us to model synchronization of continuous activity ("flow") between 
components. Because the external actions and external variables are not part of 
the state, we think of them as "ephemeral". 

We often denote the components of a HA A by W^, X4, G_A, EA, etc, and 
the components of a HA A\ by Wi, Xi, 0j, Ei, etc. We sometimes omit these 
subscripts, where no confusion seems likely. 
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3.2    Executions and Traces 

We now define execution fragments, executions, trace fragments, and traces, 
which are used to describe automaton behavior. 

An execution fragment of a HA A is an (A, V)-sequence a = TQ a\ T\ a<i T2 ■ ■ •, 
where (1) each r, is a trajectory in T, and (2) if r^ is not the last trajectory in 

a then Ti.lstate -^> Ti+i.fstate. An execution fragment records all the instanta- 
neous, discrete state changes that occur during a specific evolution of a system, 
as well as the state changes and external variable changes that occur while time 
advances. We write fragsA for the set of all execution fragments of A. 

If a is an execution fragment, with notation as above, then we define the first 
state of a, a.fstate, to be state(a.fval), or equivalently, To.fstate. An execution 
fragment a is defined to be an execution if a.fstate is a start state, that is, is in 
0. We write execs_A for the set of all executions of A. 

If a is a closed execution fragment then we define the last state of a, a.lstate, 
to be state(a.lval), or equivalently, last(a).Istate. A state of A is reachable if it 
is the last state of some closed execution of A. 

Lemma 6. Let a and a' be execution fragments of A with a closed, and such 
that a.lstate = a!.fstate. Then a"~ a' is an execution fragment of A. 

Lemma 7. Let a and a' be execution fragments of A with a closed. Then a < a' 
iff there is an execution fragment a" such that a' = a^ a". 

The trace of an execution fragment records the external actions and the 
evolution of external variables. Formally, if a is an execution fragment, then the 
trace of a, denoted by trace(a), is the (E, W)-restriction of a. A trace fragment 
of a hybrid automaton A from a state x of A is a trace that arises from an 
execution fragment of .4 whose first state is x. We write tracefrags A{x) for the 
set of trace fragments of A from x. Also, we define a trace of A to be a trace 
fragment from an initial state, that is, a trace that arises from an execution of 
A, and write tracesA for the set of traces of A. 

Hybrid automata A\ and A2 are comparable if they have the same external 
actions and variables, that is, if W\ = W2 and E± = E2. If A\ and A2 are 
comparable then we say that A\ implements A2, denoted by Ai < A2, if the 
traces of A\ are included among those of A2, that is, if traces Al C traces^. 

3.3    Simulation Relations 

Let A and B be comparable HAs. A simulation from A to B is a relation R C 
val(X^) x val(Xß) satisfying the following conditions, for all states x^ and xg 
of A and B, respectively: 

1. If x^ € G>A then there exists a state Xß £ OB such that x^ RXB- 

2. If xA R xB, XA -?A 
X

'A 
ari^ r = trace(p(xA) a p(x'A)), then B has a 

closed execution fragment a with a.fstate = xg, trace(a) = trace(r), and 
x'A R a.lstate. 
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3. If xA R xB and r is a closed trajectory of A with xA = T.fstate and x^ = 
r.lstate, then B has a closed execution fragment a with a.fstate = Xs, 
trace(a) = trace(r), and x^ Ra.lstate. 

Lemma 8. Let A and B be comparable HAs, and let R be a simulation from 
A to B. Let xA and XB be states of A and B, respectively, such that xA RxB- 
Then tracefrags A(xA) Q tracefrags B(XB)- 

Theorem 1. Let A and B be comparable HAs, and let R be a simulation from 
A to B. Then tracesA C traces&. 

3.4    Composition 

We now introduce the operation of composition for hybrid automata, which 
allows an automaton representing a complex system to be constructed by com- 
posing automata representing individual system components. We prove that the 
composition operation respects our implementation relationship (inclusion of sets 
of traces). Our composition operation identifies actions and variables with the 
same name in different component automata. When any component automaton 
performs a step involving an action a, so do all component automata that have 
a in their signatures. Common variables are shared among the components. 

We define composition as a partial, binary operation on hybrid automata. 
Since internal actions of an automaton Ai are intended to be unobservable by 
any other automaton A2, we do not allow Ai to be composed with A2 unless 
the internal actions of A\ are disjoint from the actions of A2. Also, we require 
disjointness of the internal variables of A\ and the variables of Ai- Formally, 
we say that hybrid automata A\ and A2 are compatible if for i ^ j, Xi n Vj = 
Hi n Aj = 0. If .Ai and A2 are compatible then their composition A\\\A2 is 
defined to be the structure A = (W, X, 0, E, H, V, T) where 

- W = Wx U W2, X = Xi U X2, E = Ex U E2, H = Hx U H2. 
- 0 = {xe val(X) I x f Xx e ©i A x r X2 G 02}. 
- For each x,x' € val(X) and each a e A, x -4A x' iff for i = 1,2, either (1) 

a G Ai and x [ Xt 4, x' [ Xit or (2) a £ At and x [ X{ = x' [ X». 
- T Q trajs( V) is given byrGT<=>T4.ViG7i  A T \rV2eT2. 

Proposition 1. -4i||.Ä2 is a hybrid automaton. 

Theorem 2. Suppose Ai,A2 and B are HAs with Ai < A2, and suppose that 
each of Ai and A2 is compatible with B. Then A\\\B < A2\\B. 

In the full version of this paper, we define two natural hiding operations on 
HAs, which hide external actions and external variables, respectively, and prove 
that these operations also respect the implementation preorder. 
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4    Hybrid I/O Automata 

In this section we specialize the hybrid automaton model of Section 3 by adding 
a distinction between input and output. 

4.1    Definition of Hybrid I/O Automata 

A hybrid I/O automaton (HIOA) A is a, tuple (H, U, Y, I, O) where 

-H = {W, X, O, E, H, V, T) is a hybrid automaton. 
- U and Y partition W into input and output variables, respectively. Variables 

in Z = X U Y are called locally controlled; as before we write V = W U X. 
- I and O partition E into input and output actions, respectively. Actions in 

L = H U O are called locally controlled; as before we write A = E U H. 
- The following additional axioms are satisfied: 

El (Input action enabling) 

For all x G val(X) and all a € I there exists x' such that x A x'. 
E2 (Input flow enabling) 

For all x e val(X) and v € trajs(U), there exists r G 7" such that 
T.fstate = x, T 4 ?7 < v, and either 

1. T IU = V, OT 

2. there exist t e dom(r) and / e L such that / is enabled from r(t). 

Input action enabling is the input enabling condition of ordinary I/O automata. 
Input flow enabling is a new corresponding condition for continuous interaction. 
It says that an HIOA should be able to accept any continuous input flow, either 
by letting time advance for the entire duration of the input flow, or by reacting 
with a locally controlled action after some part of the input flow has occurred. 

An execution of an HIOA A is an execution of UA- Similarly, a trace of A 
is a trace of V.A- Two HIOAs Ai and A2 are comparable if their inputs and 
outputs coincide, that is, if h = h, Ox = 02, Ux = U2, and Yx = Y2. If Ax and 
A2 are comparable, then Ai < A2 is defined to mean that the traces of Ai are 
included among those of A2: Ai < A2 = tracesAl C tracesA2. If Ai and A2 are 
comparable HIOAs then Hi and H2 are comparable and Ai < A2 iff U\ < U2. 

The definition of simulation for HIOAs is the same as for HAs, and the 
soundness result carries over immediately to the enriched setting. 

4.2    Composition 

The definition of composition for HIOAs builds on the corresponding definition 
for HAs, but also takes the input/output structure into account. Just as in the 
definition of compatibility for HAs, we do not allow an HIOA A\ to be composed 
with an HIOA A2 unless the internal actions and variables of Ai are disjoint 
from the actions and variables, respectively, of A2. In addition, in order that 
the composition operation might satisfy nice properties (such as Theorem 7), we 
require that at most one component automaton "controls" any given action or 
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variable; that is, we do not allow A\ and Ai to be composed unless the sets of 
output actions of A\ and A2 are disjoint and the sets of output variables of A\ 
and A2 

are disjoint. 
If A\ and A2 axe compatible then their composition -4i||.42 is defined to be 

the tuple A = (H,U,Y,I,0) where U = fti||H2, U = {Ux U U2) - (Yi U Y2), 
Y = Y-i. U Y2, / = (/1 U /2) - (Oi U 02), and O = Oi U 02. 

The definition of compatibility given above is not quite strong enough to 
imply that the composition of two HIOAs is actually an HIOA. Thus, we de- 
fine a stronger notion and say that compatible HIOAs A\ and A2 are strongly 
compatible if ^i||^2 satisfies axiom E2. Strong compatibility implies that the 
reaction of the composed automaton to any input flow v must be the result of a 
deliberate reaction by either Ai or .42. That is, either both A\ and A2 accept v 
in its entirety, or one of the two reacts with a locally controlled action. No "time 
deadlock" is allowed due to incompatible reactions of A\ and A2. 

Proposition 2.  The composition of two strongly compatible HIOAs is an HIOA. 

Theorem 3. Suppose Ai,A2 and B are HIOAs with A\ < A2, and each of A\ 
and A2 is strongly compatible with B. Then Ai^B < A2\\B. 

5    Receptive Hybrid I/O Automata 

In this section we adapt the notion of receptiveness [20] to our new framework. 
Informally speaking, a system is receptive provided that it admits a strategy for 
resolving its nondeterministic choices that never generates infinitely many locally 
controlled actions in finite time. An important consequence of this definition is 
that a receptive HIOA has some response defined for any sequence of discrete 
and continuous input. We show that receptiveness is closed under composition. 
Because of the improvements in our new model, the treatment of receptiveness 
in this paper is simpler than that in [20]; however, we only address admissibility 
here, and not general liveness properties as in [20]. 

An execution fragment of an HIOA is locally-Zeno if it is Zeno and contains 
infinitely many locally controlled actions. An HIOA A is locally-Zeno if it has 
at least one locally-Zeno execution fragment. In the rest of the paper we will be 
interested mainly in non-locally-Zeno HIOAs, that is, HIOAs that are not locally- 
Zeno. We use non-locally-Zeno HIOAs as the basis for defining receptiveness. 

Theorem 4. Let A\, A2 be strongly compatible non-locally-Zeno HIOAs. Then 
Ai \\A2 is also non-locally-Zeno. 

Theorem 5. Let Abe a non-locally-Zeno HIOA. Then, for each (I, U)-sequence 
ß and each state x, there is an execution fragment a of A such that (1) a.fstate = 
x, (2)a\(I,U) = ß. 
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The property stated in Theorem 5 is known in the literature as I/O feasi- 
bility [17]; it implies that any finite execution can be extended to an admissible 
execution, no matter what the environment does. 

A strategy for an HIOA A is an HIOA A' that differs from A only in that V C 
V and V C T. A strategy A' for an HIOA A can be viewed as a nondeterministic 
memoryless strategy in the sense of [5,20] that chooses some of the evolutions 
that are possible from each of the states of A. The fact that the states of A and 
A1 are the same ensures that A' chooses evolutions for every state x of A. 

We say that an HIOA is receptive if it has a non-locally-Zeno strategy. 

Theorem 6. A receptive HIOA is I/O feasible. 

Theorem 7. Let A\ and A2 be two compatible receptive HIOAs with two 
strongly compatible non-locally-Zeno strategies A[ and A'2, respectively. Then 
Ai\\A2 is a receptive HIOA with non-locally-Zeno strategy A'^A^. 

6    Sufficient Conditions for Strong Compatibility 

In order to apply Theorem 7, one has to establish that two strategies are strongly 
compatible. This is difficult in general since it requires checking compatibility 
between the continuous dynamics of two systems. However, for certain restricted 
classes of HIOAs, strong compatibility follows directly from compatibility. 

6.1 HIOAs with Restrictions on Input Variables 

Our first example is the class of HIOAs without input variables. It is routine to 
verify that two HIOAs without input variables are strongly compatible iff they 
are compatible. From the perspective of classical control theory a system without 
input variables is uninteresting because it cannot be controlled; in a hybrid 
setting, however, a system without input variables can still interact with its 
environment via discrete input actions. Linear hybrid automata [1], for instance, 
have no input variables. 

Another example is the class of autistic HIOAs—those for which the values 
of output variables do not depend on the values of input variables. Formally, 
an HIOA A is called autistic if for all r € T and all v € trajs(U) such that 
dom(r) = dom(v) there exists T' eT such that r' | U = v and r' I Y = T I Y. 

6.2 Lipschitz HIOAs 

In this section, we define Lipschitz HIOAs, based on systems of differential equa- 
tions using Lipschitz functions. We give examples of conditions on classes of 
Lipschitz HIOAs that imply strong compatibility. The ideas are derived from 
methods in the literature on control theory [21]. In control theory, continuous 
system behavior is typically defined using differential equations of the form: 

D= fx = f(x>u) 
\y = g(x) 
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where u, y, and x are the vectors of input, output, and state variables, respec- 
tively, together with a starting condition of the form x(0) = x0. 

To ensure that the system's behavior is defined, the differential equations 
must admit a solution for each possible starting condition. The following theorem 
from calculus gives sufficient conditions for a solution to exist. 

Theorem 8 (Local existence). /// is globally Lipschitz and uisC1, then for 
each starting condition x(0) = x0 there is a unique solution to the equations of 
D, defined on a maximal neighborhood ofO, such that x(Q) = x0. 

Observe that, since the set of globally Lipschitz functions is closed under com- 
position, the local existence theorem is valid also when the variables u are the 
result of a globally Lipschitz function applied to a C1 function. 

Suppose two interacting systems are described by sets of equations D\ and 
.D2 of the form given above. Then their combined behavior can be described by 
the union of the sets of equations Di and D2- It is easy to show that, if the 
functions occurring in D\ and D2 are globally Lipschitz, and D± and D2 do 
not have any common output and state variables, then the union of these two 
sets of equations is expressible in the same form with functions that are globally 
Lipschitz. Thus, in this case no additional machinery is needed to prove that 
the behavior of the interacting systems is well defined. We define a set D of 
equations to be Lipschitz if functions / and g are globally Lipschitz. 

To extend the above ideas to the hybrid case we define the notion of a Lips- 
chitz HIOA. An HIOA A is Lipschitz if there is a subset M of its state variables 
(we call these the mode variables) such that: 

LI The dynamic type of each variable in M is piecewise constant. 
L2 The dynamic type of each variable not in M is a subset of the set of real- 

valued functions defined on left-closed intervals of the reals that can be 
expressed in the form h(c(-)) where h is a globally Lipschitz function and c 
is a C1 function, closed under pasting. 

L3 The values of the M variables are constant in each trajectory of T. 
L4 For each valuation m of M there is a Lipschitz system of equations Dm 

with input variables U, output variables Y, and state variables X — M such 
that the following holds: If trajectory r of T starts from a state x with 
x I" M — m, then r [ V — M is expressible as the concatenation of countably 
many trajectories T0,TI, ..., where each r* is a solution to Dm. 

Define a Lipschitz HIOA to be input bounded if for each input variable u 
there exists a positive real value B such that every function in the dynamic type 
of u has range in [-B,B\. 

Lemma 9.  Compatible input-bounded Lipschitz HIOAs are strongly compatible. 

Theorem 9. The composition of two compatible input-bounded Lipschitz HIOAs 
is a Lipschitz HIOA. 
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Theorem 10. Let Ai and A2 be compatible receptive HIOAs with non-locally- 
Zeno, input-bounded, Lipschitz strategies. Then Ai\\A2 is a receptive HIOA with 
a non-locally-Zeno input-bounded Lipschitz strategy. 

Theorem 11. The composition of two compatible receptive input-bounded Lip- 
schitz HIOAs is a receptive input-bounded Lipschitz HIOA. 

The conclusion that we derive from Theorem 11 is that compatibility implies 
strong compatibility if we describe the continuous behaviors of HIOAs by means 
of differential equations of the form of D with functions / and g globally Lip- 
schitz. In general, any choice of conditions on /, g, and u that guarantees local 
existence of unique solutions, continuity of solutions, and that is preserved by 
interaction between systems, can be used to define a class of automata for which 
strong compatibility follows from compatibility. 
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Abstract. We develop a general framework for solving the hybrid sys- 
tem reachability problem, and indicate how several published techniques 
fit into this framework. The key unresolved need of any hybrid system 
reachability algorithm is the computation of continuous reachable sets; 
consequently, we present new results on techniques for calculating nu- 
merical approximations of such sets evolving under general nonlinear 
dynamics with inputs. Our tool is based on a local level set procedure 
for boundary propagation in continuous state space, and has been im- 
plemented using numerical schemes of varying orders of accuracy. We 
demonstrate the numerical convergence of these schemes to the viscosity 
solution of the Hamilton-Jacobi equation, which was shown in earlier 
work to be the exact representation of the boundary of the reachable 
set. We then describe and solve a new benchmark example in nonlinear 
hybrid systems: an auto-lander for a commercial aircraft in which the 
switching logic and continuous control laws are designed to maximize 
the safe operating region across the hybrid state space. 

1    Introduction 

The focus of this paper is the development and numerical validation of a compu- 
tational tool to perform as exact as possible reachability computation and con- 
troller synthesis for nonlinear hybrid systems. As such, we draw on our previous 
work in which we characterized the boundary of the reachable set of a hybrid 
system as the zero level set of the viscosity solution of a particular Hamilton- 
Jacobi equation [1], and in which we showed that it was feasible to compute this 
zero level set using so-called "level set methods" [2]. The current paper reflects 
our progress in the development of a general purpose tool for this reachable 
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set computation—the core of which is a new variant of a "local level set" al- 
gorithm that more efficiently computes a more accurate representation of the 
reachable set boundary. In addition, we demonstrate the numerical convergence 
of our computation by analyzing the results as the continuous state space grid 
is made finer, a standard method of validation for scientific computing codes. In 
this way, we show that high accuracy can be achieved at the cost of increased 
computational time and space. We illustrate our tool on a single mode aircraft 
conflict resolution example [2,3], as well as on a new benchmark example of a 
six mode commercial aircraft auto-lander, which exhibits nondeterminism and 
cycles in its discrete behavior. 

Our motivation for this project stems from the belief that for many applica- 
tions of hybrid systems, it is important to be able to accurately represent the 
reachable set. We have dealt primarily in the safety verification of avionic sys- 
tems, where accurate representation of the safe region of operation translates 
into the ability to operate the system closer to the boundaries of that region, at 
a higher performance level than previously allowed. For very high dimensional 
state spaces, additional logic (such as projection operators) or new techniques 
(such as convex overapproximations) will be needed; however, our results in this 
paper show that it is feasible to do exacting computation for hybrid systems 
with nonlinear continuous dynamics in three continuous state dimensions and 
six discrete modes, and we believe it will be feasible to extend this up to five 
continuous dimensions and large numbers of discrete modes. 

2    Reachability for Hybrid Systems 

Assuming that tools for discrete and continuous reachability are available—we 
postpone to subsequent sections the problems of creating such tools—computing 
reachable sets for hybrid systems requires keeping track of the interplay between 
these discrete and continuous tools. In this section we summarize the general 
framework for handling this interaction (following [1]), and we show how various 
hybrid system reachability algorithms described in the literature fit into this 
framework. 

Fundamentally, reachability analysis in discrete, continuous or hybrid sys- 
tems seeks to partition states into two categories: those that are reachable from 
the initial conditions, and those that are not. We will label these two sets of 
states G and E = Gc respectively. 

Any inputs to the hybrid automata are assumed to lie in bounded sets and to 
have the goal of locally maximizing or minimizing the reachable set: at each iter- 
ation, the reachability algorithm chooses values for inputs £G that maximize the 
size of G and values for inputs £E that minimize the size of G (and hence maxi- 
mize the size of E). Any nondeterminism in the transition relation is also utilized 
to consistently maximize or minimize G, depending on the goal of the reacha- 
bility computation. For hybrid automata, the discrete inputs a and continuous 
inputs v can be assigned to the two categories £G = {OQ,VQ) and £E = (O"E,^E) 

according to whether they seek to maximize or minimize G. 
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Fig. 1. Iterative Reachability Algorithm: Showing detail of iteration for discrete mode 
k at iteration i. 

The reachability computation follows an iterative, two stage algorithm shown 
graphically in Figure 1. The outer iteration computes reachability over the dis- 
crete switches, producing iterates Gi and Et at iteration i = 1,2,.... The inner 
iteration runs a separate continuous reachability problem in each of the discrete 
modes j = 1,2,... K to compute the estimates G{ and E{. We define the "switch" 
sets 

- G^ contains all states in mode j from which a discrete transition to a state 
in Gi_i (typically a state in another mode) can be forced to occur through 
the application of a discrete input <TG; these states will be defined by the 
invariant of mode j and the guards of the transitions from mode j. 

- E\ contains all states from which a discrete transition to a state in Ej_i can 
be forced to occur through the application of a discrete input CTE; these states 
are also denned by the invariant of mode j and the guards of transitions from 
mode j. 

Then the goal of the continuous reachability tool is to identify the "flow" sets 

- G?(i) contains states from which for all vE there exists vQ that will force the 

resulting trajectory to flow into G\_x U Gj within time t. 

- Ej(t) contains states from which there exists i/E that for all j/G will force 

the resulting trajectories to flow into E\ within time t or to stay outside of 
G^_j U G^ for at least time t. 

Note that in some problems the order of the existential and universal quantifiers 
in the definition above must be reversed. Given these sets 

Gj=tonGfr), 

EKümEfr), 

G< = U G*> 

E< = Ü E<> 
j=l 

G = lim Gj, 
i—>oo 

E = lim Ej 
i—>oo 
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where G3
0 is the set of initial conditions of the reachability problem and £J

0 = 
(GJ)C. Simple modifications of this algorithm suffice to solve finite time reacha- 
bility problems. 

The procedure described above, developed in [1,3], was motivated by the 
work of [4,5] for reachability computation and controller synthesis on timed 
automata, and that of [6] for controller synthesis on linear hybrid automata. In 
that development the reachability problem's objective was to determine E—the 
largest controllable invariant subset of the state space—by computing the set 
of states G which were reachable in backwards time from the set of predefined 
unsafe states. In terms of the definitions above, control inputs from this problem 
lie in £E and disturbance inputs in £G- For safety, any model nondeterminism 
would be used to maximize the unsafe set G. 

Other hybrid system reachability algorithms fall within this framework; the 
differences lie in their discrete and continuous reachability solvers and the types 
of initial conditions, inputs, invariants and guards that they admit. Most are 
described as running forwards in time from a set of safe initial conditions, in 
which case G is computed as the smallest controllable invariant set. For exam- 
ple, in [7,8] reachability is run with £G as the controlled inputs and £E as the 
disturbance inputs with the resulting safe set as G. The CheckMate tool [9] deals 
with threshold event-driven hybrid systems—meaning that switches are both 
enabled and forced only at hyperplanes in the continuous state space—so there 
is no equivalent to CTE and thus E] = 0. Because VeriSHIFTs algorithm [10] 
is designed for bounded time, decidability can be proven for certain hybrid au- 
tomata. If we are willing to forgo decidability then its extension to infinite time 
is straightforward and produces a reachability procedure similar in expressive 
capacity to CheckMate, albeit for different continuous representations. 

3    Continuous Reachability with Level Sets 

While practical algorithms for computing discrete reachability over many thou- 
sands of states have been designed and implemented, determination of continu- 
ous reachability for even low dimensional systems is still an open problem. The 
continuous portion of a hybrid reachability problem requires methods of per- 
forming four key operations on sets: unions, intersections, tests of equality, and 
evolution according to the discrete mode's continuous flow field. The choice of 
representation for sets dictates the complexity and accuracy of these operations; 
consequently, continuous reachability algorithms can be classified according to 
how they represent sets. 

Polygonal representations have proven the most popular. The tool d/dt [7, 
11] tracks the motion of convex polyhedra under linear flow, collecting the non- 
convex union of this result into "orthogonal polyhedra" [12]. The developers 
of CheckMate describe optimization based methods of tracking convex poly- 
hedra under general flows, including specializations for the affine case [13,14]. 
Projectagons [15] is the term used to describe the idea of storing nonconvex 
high dimensional polyhedra as the intersection of two dimensional projections, 
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which are evolved under affine overapproximations of general flows using linear 
programming. VeriSHIFT [10] uses ellipsoidal representation of reach sets for 
linear flows with linear input; it implements techniques developed in [16]. 

3.1    The Hamilton-Jacobi Partial Differential Equation 

For our representation scheme, we characterize the set being tracked implicitly 
by defining a "level set function" J(x, t) throughout the continuous state space 
which is negative inside the set, zero on its boundary, and positive outside, and 
which encodes the initial data in J(x,0). The intersection of two such sets is 
simply the maximum of their level set functions at each point in state space, 
and the union is the minimum; a variety of easily implemented equality tests are 
possible. Evolution of a level set under a nonlinear flow field is governed by the 
Hamilton-Jacobi (HJ) partial differential equation (PDE) (see, for example, [2]) 

dJ(x, t) „ 
 ^1— =maxmin/(a;,i/mill,i/max)J VJ(i,t), (1) 

C/fc "min   "max 

= H{x,VJ(x,t)). (2) 

where i/min are those continuous inputs trying to minimize the size of the set 
being tracked, and vmaK are those inputs trying to maximize its size. The order 
of the optimization must be chosen appropriately for the situation. The implicit 
representation has a number of advantages when compared with the explicit 
representations that other researchers are pursuing, including a conceptually 
simple representation of very general sets and a size which is independent of 
the complexity of the set (although it grows exponentially with dimension). In 
addition, a set of sophisticated numerical techniques to accurately solve PDEs 
may be drawn upon for computation. In the remainder of this section, we focus on 
the representation (2), and assume that the modeler can compute the appropriate 
optimization over inputs in (1) if given x and VJ(x,t). 

3.2    Solving the Hamilton-Jacobi PDE 

The HJ PDE (2) is well known to have complex behavior. Even with smooth 
initial data J(x,0) and continuous Hamiltonian H(x,VJ), the solution J{x,t) 
can develop discontinuous derivatives in finite time; consequently, classical in- 
finite time solutions to the PDE are generally not possible. In the quest for a 
unique weak solution Crandall and Lions introduced the concept of the viscosity 
solution [17], which has since been shown to be the appropriate weak solution 
for Hamilton-Jacobi-Bellman type control problems such as (1) (see, for exam- 
ple, [18]). For most problems of interest, finding the analytic viscosity solution 
is not possible, and so we seek a numerical solution. 

Floating point arithmetic and the truncation required by finite series expan- 
sions conspire to ensure that any numerical approximation of the solution of a 
differential equation will contain errors. The algorithms presented in [7]-[16] seek 
guaranteed overapproximations (and in some cases, underapproximations) of the 
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system's reachable sets. Numerical methods for solving PDEs, on the other hand, 
have traditionally aimed for convergent approximations: those approximations 
that will become exact as some parameter of the method—the grid spacing Ax, 
for example—goes to zero. While guaranteed overapproximation has its pros and 
cons for use in reachability applications, we have decided to focus first on con- 
vergent approximations of (2) in order to take advantage of existing schemes and 
numerical analyses [19,20,21,22,23]. We can develop confidence in a convergent 
approximation's accuracy by successive refinement of Ax. 

If we are willing to pursue convergent numerical approximations of (2), a 
reasonable question is whether it would be simpler and as reliable to solve for 
the optimal trajectories starting from points on the boundary of the initial set, 
and thereby approximate the boundary of the reachable set. This technique, 
however, is equivalent to solving the PDE by the characteristic method, and 
the characteristics of the Hamilton-Jacobi equation are known to collide and/or 
separate [18], which would make for an incorrectly represented reachable set.1 

Returning to methods of solving (2) numerically, the state space over which 
we compute reachability is topologically simple, and so we approximate the 
solution of (2) on a Cartesian grid of nodes. Three terms in the equation must 
be approximated at each node, based on the values of the level set function at 
that node and its neighbors: the gradient V J, the Hamiltonian H, and the time 
derivative dJ^ • We discuss each of these separately. 

In each dimension at each grid point there exist both left and right approxi- 
mations of the gradient VJ, depending on which neighboring grid points' values 
are used in the finite difference calculation. We label the vector of left approxi- 
mations VJ~, the vector of right approximations VJ+, and will see below that 
VJ~, VJ+ or some combination of the two will be used to compute the numer- 
ical Hamiltonian H. The accuracy of a derivative approximation is measured 
in terms of the order of its local truncation error; an order p method has er- 
ror ||VJ - VJ^H = ö(Axp). At the current time, we have implemented the 
basic first order accurate approximation for speed [21] and a weighted, essen- 
tially non-oscillatory fifth order accurate approximation for high fidelity [20,22]. 
"Non-oscillatory" in this context indicates that near discontinuities in the level 
set derivative, a scheme may revert to lower order accuracy so as to avoid intro- 
ducing spurious numerical oscillations into the solution. Technically, therefore, 
all schemes are globally first order accurate, but in practice the higher order 
accuracy in the smooth parts of the solution produces better global results. This 
property is sometimes called "high resolution" to distinguish it from true high 
order accuracy. 

We have chosen to use the well studied Lax-Friedrichs numerical Hamiltonian 
approximation H [20,24] 

H(x, VJ-,VJ+) = H(x, VJ"+VJ+) - ±aT(VJ+ - VJ"), (3) 

1 For example, it turns out that much of the helical bulge of the reach set computed 
in Section 3.4 lies on a collection of optimal trajectories fanning out from a single 
point on the boundary of the problem's initial conditions. 
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where H(x, V J) is given by (2) and the term containing the vector coefficient a 
is a high order numerical dissipation added to damp out spurious oscillations in 
the solution. Upwinded numerical Hamiltonians were considered; but although 
they do not require the artificial dissipation of Lax-Friedrichs, they cannot easily 
deal with the VJ dependent flow appearing in (2). 

The time derivative of the PDE is handled by the method of lines: the value 
of the level set function J at each node is treated as an ODE ^ = H, with 

/v at ' 

H given by (3). General ODE solvers, such as Runge-Kutta (RK) schemes, can 
then be applied. The explicit nature of these techniques, however, limits the size 
of the timestep to some flow speed dependent multiple of the grid spacing— 
typically a small fraction—called the Courant-Friedrichs-Lewy (CFL) number. 
Standard RK iterations lead to very small CFL values and can introduce spurious 
oscillations into a numerical Hamilton-Jacobi solution; therefore, we use total 
variation diminishing (TVD) versions of Runge-Kutta (see, for example, [19,23]). 
We have currently implemented TVD RK schemes which are first and second 
order accurate in time. Due to CFL restrictions the timestep is usually much 
smaller than the grid spacing, so it is possible to use lower order accuracy in 
time than in space without noticeable loss of solution quality. 

3.3 Localizing Computation 

The Hamilton-Jacobi equation (2) describes the evolution of the level set func- 
tion over all of space. But we are only interested in its zero level set; thus, we 
can restrict our computational updates to nodes near the boundary between 
positive and negative J(x, t)—an idea variously called "local level sets" [25] or 
"narrowbanding" [21]. We have implemented a new variant of this method in 
our code. 

Because the boundary is of one dimension less than the state space, consider- 
able savings are available for two and three dimensional problems. If the number 
of nodes in each dimension is n (proportional to Ax~l) and the dimension d, the 
total number of nodes is 0{nd); the CFL restriction on timestep means that total 
computational cost is ö(nd+1). With local level sets, we reduce computational 
costs back down to ö(nd). 

3.4 Numerical Validation of Aircraft Collision Avoidance 

The numerical schemes mentioned above for solving the Hamilton-Jacobi equa- 
tion are complicated; therefore, it is not surprising that theoretical proofs of 
convergence to the viscosity solution are available for only the very simplest low 
order accuracy methods [24]. High resolution methods have instead been sub- 
jected to "numerical validation": comparison to known analytic solutions and 
lower order accurate approximations of an extensive collection of examples for a 
broad range of grid sizes [20], from which can be drawn encouraging conclusions 
regarding their accuracy. 

In this section we present a similar validation of our implementation on the 
single mode, three dimensional aircraft collision avoidance example (see [3,2] for 
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(1,1) scheme on 503 (inner), 1003 (middle) 
and 2003 (outer) grids 

(5,2) scheme on 1003 grid 

Fig. 2. Reachable Set for Aircraft Collision Avoidance Example 

details). The example features a control aircraft trying to avoid collision with 
a disturbance aircraft, where both aircraft have fixed and equal altitude, speed 
and turning radius—they may only choose which direction they will turn: 

-vu +Vd cos Vv + uyr,        yr = Vd sin tpr — uxr Vv = d — u, 

where vu = Vd — 5 are the aircraft speeds, xr and yr are the relative planar 
location of the aircraft and ipr is their relative heading. The inputs \u\ < 1 
and \d\ < 1 are the control's and disturbance's respective turn rates. The initial 
unsafe set J(x, 0) is the interior of the radius five cylinder centered on the ipr axis. 
Choosing optimal inputs according to (1) with VQ = vmaK = d and V£ = vm{n — u, 
we get the optimal Hamiltonian: 

H(x,p) = -pxVu + piVd COS 1pr + p2Vd Sill Ipr + \pxyr ~ PlXr - p3\ ~ |J>3 |- 

Using our new C++ implementation, grid sizes corresponding to 50, 70, 100, 
140, and 200 nodes in each dimension were tried with a low order accurate 
scheme (first order space and time, hereafter referred to as the "(1,1)" scheme) 
and a high resolution scheme (fifth order space and second order time, hereafter 
the "(5,2)" scheme). On the eight million node finest grid—only around 10% 
of which is being actively updated on any one timestep by the local level set 
algorithm—execution time for the (5,2) scheme was about eighteen hours on a 
Sun UltraSparc II with lots of memory. Reducing the grid size in half results 
in the expected eightfold savings in memory and time; hence, the coarsest grid 
takes only fifteen minutes with the (5,2) scheme. 
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Fig. 3. Convergence of (5,2) Scheme to Finest Grid Solution (J„ is the solution J(x, t) 
on a grid size of n) 

Results are visualized2 by the zero level isosurface of the unsafe reachable set 
G, shown in Figure 2. On the left is a head-on view of the (5,2) solution. On the 
right is a zoomed overhead view of the point of the bulge computed by the (1,1) 
scheme for several grid sizes. The fact that the solutions grow closer together as 
the grid is refined provides visual evidence of convergence. 

The solutions produced by the (5,2) scheme are visually identical for all 
grids, and to show quantitative convergence as the grid is refined we require 
a suitable error metric. Comparing the value of J(x, t) over the entire domain 
is inappropriate, since our algorithms assume that we seek only an accurate 
computation of its zero level set. Instead, we consider just the nodes neighboring 
the zero level set—those nodes which have at least one adjacent node whose J 
value is of opposite sign. We compare solutions on the four coarser grids to 
the solution on the finest grid, using linear interpolation on the finest grid if 
necessary. Figure 3 demonstrates that the scheme is converging to the finest grid's 
solution of (2) at approximately a linear rate in both average error and pointwise 
maximum error. We cannot expect to show a higher order convergence rate 
because of the linear interpolation used to evaluate the error and, as explained 
in Section 3.2, the scheme is truly high order accurate only in smooth portions 
of the solution. 

Two conclusions can be drawn from Figures 2 and 3. First, low order schemes 
are not at all competitive in terms of accuracy with the (5,2) scheme. Thus, while 
our previously reported best results [2] took only an hour to run in Matlab, 
because they used a (slightly different) first order scheme, our new (5,2) imple- 
mentation can produce more accurate results in about fifteen minutes using only 
the coarsest grid. Second, the pointwise maximum error of the (5,2) scheme is 
always less than the grid spacing, so if a 50_1 = 2% error is tolerable for this 
application, only this fastest, coarsest grid need ever be run. 

Figure 2 and Figure 6 visualize some level set surfaces as triangular meshes; these 
are not the meshes on which the Hamilton-Jacobi PDE was solved, but rather an 
artifact of three dimensional Matlab visualization techniques. 
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4    Aircraft Landing Example 

Once a method of determining continuous reachability is available, the discrete 
iteration of the algorithm described in Section 2 is relatively straightforward. 
In fact, for discrete transition graphs with no cycles it is possible to order the 
continuous reachability problems such that no discrete iteration is required (e.g. 
the three mode example presented in [2]). In order to examine the complications 
induced by discrete cycles—such as how to avoid zenoness, in what order to exe- 
cute the continuous reachability problems, and how to determine which switches 
are active—a new example has been developed, which exhibits those difficulties 
and has real life applications: the landing of a civilian airliner. 

Physical model: A simple point mass model for aircraft vertical navigation 
is used, which accounts for lift L, drag D, thrust T, and gravity mg (see [3] and 
references therein). State variables are aircraft height z, horizontal position x, 
velocity V = \/z2 + z2 and flight path angle 7 = tan_1(f). Inputs are thrust 
T and angle of attack a, where aircraft pitch 9 = 7 + a (see the left side of 
Figure 4). The equations of motion can be expressed as follows: 

dt 

r ^ [T cos a - D(a, V) - mg sin 7] 
^y [T sin a + L(a, V) — mg cos 7] 

V cos 7 
Vsin7 

(4) 

The functions L(a, V) and D(a, V) are modelled based on empirical data [26] 
and Prandtl's lifting line theory [27]: 

L(a, V) = \pSV2CL{a),        D(a, V) = \pSV2CD{a), 

where p is the density of air, S is wing area, and CL(a) and CD(a) are the 
dimensionless lift and drag coefficients. 

In determining CL {a) we will follow standard auto-lander design and assume 
that the aircraft switches between three fixed flap deflections 6 = 0°, 8 = 25° 
and 6 = 50° (with slats either extended or retracted), thus constituting a hybrid 
system with different nonlinear dynamics in each mode. This model is represen- 
tative of current aircraft technology; for example, in Airbus cockpits the pilot 
uses a lever to select among four predefined flap deflection settings. We assume a 
linear form for the lift coefficient CL{a) = hs+A.2a, where parameters /i0° = 0.2, 
/i25o = 0.8 and h50o =1.2 are determined from experimental data for a DC9- 
30 [26]. The value of a at which the vehicle stalls decreases with increasing flap 
deflection: agiax = 16°, a^ = 13°, afj? = 11°; slat deflection adds 7° to the 
amax in eacn mode. The right side of Figure 4 gives a graphical summary of the 
possible configurations. The drag coefficient is computed from the lift coefficient 
as [27] CD(a) = 0.041 + 0.045C£(a) and includes flap deflection, slat extension 
and gear deployment corrections. So for a DC9-30 landing at sea level and for 
all a € [-5°,ajpax], the lift and drag terms in (4) are given by 

L(a, V) = 68.6 (hs + 4.2a)V2        D{a, V) = (2.81 + 3.09 (hs + 4.2a)2)V2 (5) 
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N (lap deflection S=50! 
^ flap deflection S=25 

lN clean wing 5=0      ■ 

angle of attack a (deg) 

Fig. 4. Left: Force diagram for the point mass approximation of the aircraft. Right: 
lift coefficient CL(a) model for the DC9-30 [26]. Circles located at (af&x,CL(afax)) 
indicate the stall angle and the corresponding lift coefficient in each mode. 

Flap deflection dynamics model: In reality, the decision to move from 
one deflection setting to another can occur at any time, but approximately 10 
seconds are required for a 25° degree change in flap deflection. A five state model 
of this situation is shown on the left side of Figure 5, where the system is in state 
R if the flaps are retracting and state D if the flaps are deflecting. The system 
is zeno because instantaneous switches are allowed between any modes. 

Current implementation: For our preliminary implementation, we have 
chosen to ignore the continuous dynamics associated with discrete mode switch- 
ing, allowing the flaps and slats to move instantly to their commanded positions. 
However, if such instantaneous controlled switches were always enabled then the 
system would be zeno; therefore, we introduce transition modes Ot, 25* and 50i, 
which use the envelopes and flight dynamics of the regular modes Ott, 25d and 
50d (the discrete automaton is shown on the right side of Figure 5). A regular 
mode may make a controlled switch to a transition mode, so flight dynamics can 
be changed instantly Transition modes have only a timed switch at t = idelay, so 
controlled switches will be separated by at least £deiay time units and the system 
is nonzeno. For the executions shown below, idelay = 0.5 seconds. 

Landing: Extensive descriptions of the final stage of landing, when aircraft 
height is below 50 feet, exist (see, for example, [26,28]). Restrictions on the flight 
path angle, aircraft velocity and touchdown (TD) speed are used to determine 
the initial safe set EQ." 

Z <-\J landing or has landed 

*    >  Vg faster than stall speed 

V < V slower than limit speed   U < 

V Sin 7 > i0 limited TD speed 

"7 S 0 monotonic descent 

Z > 0 aircraft in the air 

V ~> Vg faster than stall speed 

V < V slower than limit speed 

7 > ~~ 3 limited descent flight path 

7 S 0 monotonic descent 

(6) 

We again draw on numerical values for a DC9-30 [26]: stall speeds V^ail = 78 
m/s> visdl = 61 m/s, Kfof = 58 m/s, maximal touchdown speed i0 = 0.9144 
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Fig. 5. Discrete transition graph of slat and flap settings. The left graph shows the 
model with flap deflection dynamics and the right graph shows the currently imple- 
mented model. Solid lines are controlled switches (UE in this version of the reachability 
problem) and dashed lines are uncontrolled switches (CTG)- 

m/s, and maximal velocity Vmax = 83 m/s. For passenger comfort, the aircraft's 
input range is restricted to T € [0 kN, 160 kN] and a £ [0°, 10°]. 

The interior of the surface shown in the first row of Figure 6 represents E0 

for each mode. The second row of the figure shows the safe envelope E when 
there is no mode switching. Portions of E0 are excluded from E for two reasons. 
States near z = 0 correspond to low altitudes and are too close to the ground at 
steep flight path angles to allow control inputs time to prevent the plane from 
crashing. States close to the stall velocity correspond to low speeds where there 
is insufficient lift and the flight path angle becomes steeper than that allowed 
by the flight envelope. This latter condition holds throughout the very narrow 
range of speeds allowed in mode Ou, with the result that only post-touchdown 
states (z < 0) are controllable in this mode. The third row shows how E can be 
increased if switches are permitted (for example, mode Ou becomes completely 
controllable). Mode 50d is the best to be in for landing and there is no difference 
in E with or without switching enabled. The fourth row shows slices of the set 
in the third row, taken at z = 3 meters. The light grey regions are unsafe G and 
the dark grey are safe E. The figure shows that modes 0« and 25c? are safe only 
because there exists a discrete switch to a safe state in another mode. 

We have presented and numerically validated a tool for determining accurate 
approximations of reachable sets for hybrid systems with nonlinear continuous 
dynamics and adversarial continuous and discrete inputs. By developing conver- 
gent approximations of such complex systems, we will be better able to synthesize 
aggressive but safe controllers. As an example, the six mode auto-lander shows 
that for envelope protection purposes the safest control decisions are to switch 
directly to full flap deflection, but to maintain airspeed until touchdown. With 
the summary data from the reachability analysis, such decisions can be made 
based on local state information; without it the auto-lander may not detect that 
low speeds—while still within the flight envelope—lead inevitably to unsafe flight 
path angles. 
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Our current work includes further validation of our numeric algorithm, ex- 
tending our implementation to four continuous dimensions in order to capture 
the full landing example dynamics, projections to capture higher dimensional dy- 
namics, schemes for overapproximating the solution of the HJ PDE, automation 
of the discrete algorithm, and parallel implementations. 

Acknowledgements. We would like to thank Professors Ron Fedkiw and Stan- 
ley Osher for extensive discussions about the details of numerical schemes for 
solving the Hamilton-Jacobi PDE. Professor Fedkiw is also responsible for some 
key ideas in our new variant for localizing the level set computation. In addition, 
we would like to thank Professor Ilan Kroo for discussions about flight dynamics 
and for his help in the design of the auto-lander example. 

References 

1. C. Tomlin, J. Lygeros, and S. Sastry, "Controller design for hybrid systems," Pro- 
ceedings of the IEEE, vol. 88, no. 7, July 2000.     , 

2. I. Mitchell and C. Tomlin, "Level set methods for computation in hybrid systems," 
in Hybrid Systems: Computation and Control (B. Krogh and N. Lynch, eds.), LNCS 
1790, pp. 310-323, Springer Verlag, 2000. 

3. C. J. Tomlin, Hybrid Control of Air Traffic Management Systems. PhD thesis, 
Department of Electrical Engineering, University of California, Berkeley, 1998. 

4. O. Maler, A. Pnueli, and J. Sifakis, "On the synthesis of discrete controllers for 
timed systems," in STACS 95: Theoretical Aspects of Computer Science (E. W. 
Mayr and C. Puech, eds.), no. 900 in LNCS, pp. 229-242, Munich: Springer Verlag, 
1995. 

5. E. Asarin, O. Maler, and A. Pnueli, "Symbolic controller synthesis for discrete 
and timed systems," in Proceedings of Hybrid Systems II, Volume 999 of LNCS 
(P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, eds.), Cambridge: Springer 
Verlag, 1995. 

6. H. Wong-Toi, "The synthesis of controllers for linear hybrid automata," in Pro- 
ceedings of the IEEE Conference on Decision and Control, (San Diego, CA), 1997. 

7. T. Dang, Verification et synthese des systemes hybrides. PhD thesis, Institut Na- 
tional Poly technique de Grenoble (Verimag), 2000. 

8. E. Asarin, O. Bournez, T. Dang, O. Maler, and A. Pnueli, "Effective synthesis of 
switching controllers for linear systems," Proceedings of the IEEE, vol. 88, no. 7, 
pp. 1011-1025, July 2000. 

9. B. Silva and B. H. Krogh, "Formal verification of hybrid systems using CheckMate: 
A case study," in Proceedings of the American Control Conference, (Chicago, IL), 
pp. 1679-1683, 2000. 

10. O. Botchkarev and S. Tripakis, "Verification of hybrid systems with linear differen- 
tial inclusions using ellipsoidal approximations," in Hybrid Systems: Computation 
and Control (B. Krogh and N. Lynch, eds.), LNCS 1790, pp. 73-88, Springer Ver- 
lag, 2000. 

11. E. Asarin, O. Bournez, T. Dang, and O. Maler, "Approximate reachability anal- 
ysis of piecewise-linear dynamical systems," in Hybrid Systems: Computation and 
Control (N. Lynch and B. Krogh, eds.), no. 1790 in LNCS, pp. 21-31, Springer 
Verlag, 2000. 



432        I. Mitchell, A.M. Bayen, and C.J. Tomlin 

12. O. Bournez, O. Maler, and A. Pnueli, "Orthogonal polyhedra: Representation and 
computation," in Hybrid Systems: Computation and Control (F. Vaandrager and 
J. van Schuppen, eds.), no. 1569 in LNCS, pp. 46-60, Springer Verlag, 1999. 

13. A. Chutinan and B. H. Krogh, "Verification of polyhedral-invariant hybrid au- 
tomata using polygonal flow pipe approximations," in Hybrid Systems: Computa- 
tion and Control (F. Vaandrager and J. H. van Schuppen, eds.), no. 1569 in LNCS, 
pp. 76-90, New York: Springer Verlag, 1999. 

14. A. Chutinan and B. H. Krogh, "Approximating quotient transition systems for 
hybrid systems," in Proceedings of the American Control Conference, (Chicago, 
IL), pp. 1689-1693, 2000. 

15. M. Greenstreet and I. Mitchell, "Reachability analysis using polygonal projec- 
tions," in Hybrid Systems: Computation and Control (F. Vaandrager and J. van 
Schuppen, eds.), no. 1569 in LNCS, pp. 103-116, Springer Verlag, 1999. 

16. A. B. Kurzhanski and P. Varaiya, "Ellipsoidal techniques for reachability analysis," 
in Hybrid Systems: Computation and Control (B. Krogh and N. Lynch, eds.), LNCS 
1790, pp. 202-214, Springer Verlag, 2000. 

17. M. G. Crandall, L. C. Evans, and P.-L. Lions, "Some properties of viscosity solu- 
tions of Hamilton-Jacobi equations," Transactions of the American Mathematical 
Society, vol. 282, no. 2, pp. 487-502, 1984. 

18. L. Evans, Partial Differential Equations. Providence, Rhode Island: American 
Mathematical Society, 1998. 

19. C.-W. Shu and S. Osher, "Efficient implementation of essentially non-oscillatory 
shock-capturing schemes," Journal of Computational Physics, vol. 77, pp. 439-471, 
1988. 

20. S. Osher and C.-W. Shu, "High-order essentially nonoscillatory schemes for 
Hamilton-Jacobi equations," SIAM Journal on Numerical Analysis, vol. 28, no. 4, 
pp. 907-922, 1991. 

21. J. A. Sethian, Level Set Methods and Fast Marching Methods. New York: Cam- 
bridge University Press, 1999. 

22. R. Fedkiw, T. Aslam, B. Merriman, and S. Osher, "A non-oscillatory Eulerian 
approach to interfaces in multimaterial flows (the ghost fluid method)," Journal 
of Computational Physics, vol. 152, pp. 457-492, 1999. 

23. M. Kang, R. Fedkiw, and X.-D. Liu, "A boundary condition capturing method for 
multiphase incompressible flow," Journal of Computational Physics, 2000. Sub- 
mitted. 

24. M. G. Crandall and P.-L. Lions, "Two approximations of solutions of Hamilton- 
Jacobi equations," Mathematics of Computation, vol. 43, no. 167, pp. 1-19, 1984. 

25. D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang, "A PDE based fast local 
level set method," Journal of Computational Physics, vol. 165, pp. 410-438, 1999. 

26. I. M. Kroo, Aircraft Design: Synthesis and Analysis. Stanford, California: Desktop 
Aeronautics Inc., 1999. 

27. J. Anderson, Fundamentals of Aerodynamics. New York: McGraw Hill Inc., 1991. 
28. United States Federal Aviation Administration, Federal Aviation Regulations, 1990. 

Section 25.125 (landing). 



Robust Controller Synthesis for Hybrid Systems 
Using Modal Logic* 

Thomas Moor and J.M. Davoren 

Research School of Information Sciences and Engineering 
Australian National University 

Canberra ACT 0200 AUSTRALIA 
{thomas.moor,  j.m.davoren}Qanu.edu.au 

Abstract. In this paper, we formulate and robustly solve a quite gen- 
eral class of hybrid controller synthesis problems. The type of controller 
we investigate is the switching control mechanism of a hybrid automaton 
(via guard and mode invariant sets), and the robustness result is with 
respect to variations in the right hand sides of the differential equations 
that depend continuously on a parameter. We present a novel method- 
ology for controller design and synthesis which uses modal logic as a 
formalism for reasoning about sets of plant states, and various operators 
on sets arising from the differential equations and from metric tolerance 
relations on the state space. 

1    Introduction 

In general terms, a hybrid system H can be said to satisfy a performance spec- 
ification robustly if every system H' in some nominated variation class around 
H also satisfies that specification. Likewise, a synthesis procedure for a class 
of control problems can be called robust if the nominal closed-loop hybrid sys- 
tem obtained from the solution controller can be shown to robustly satisfy each 
of the specifications of the problem, with respect to some nominated variation 
class. Robustness in hybrid control systems is an under-explored topic. A start- 
ing point is given in [10], which proposes a range of variation classes for hybrid 
automata, including near relatives of those in the present work and its predeces- 
sor [6]. Robustness issues for hybrid controller design, for a variety of different 
control settings and problems, are also investigated in [3,8,19,21]. 

In this paper we find a robust solution to a rather general switching control 
problem for hybrid systems. The plant consists of a finite number of continuous 
systems, given by differential equations over a common state space; the con- 
troller steers the plant state by determining when to discretely switch between 
the various differential equations; and the closed-loop trajectories correspond 
to those of (a subclass of) the widely accepted hybrid automaton model. In 
addition to the well-studied classes of safety (reachability or invariance) and 
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0535. 

M.D. Di Benedetto, A. Sangiovanni-Vincentelli (Eds.): HSCC 2001, LNCS 2034, pp. 433-446, 2001. 
© Springer-Verlag Berlin Heidelberg 2001 



434        T. Moor and J. M. Davoren 

liveness (non-blocking and non-Zeno) performance specifications, we deal with 
a class of event sequence specifications, requiring that trajectories traverse in 
prescribed sequences through the blocks of a given finite partition of the plant 
state space. This gives a general-purpose way of specifying the attainment of 
local goals along hybrid trajectories, and integrating the type of event sequence 
specifications examined in DES approaches to hybrid systems [5,12,17]. 

In [6], we develop an abstract algorithm which solves this controller synthesis 
problem for arbitrary differential equations with unique solutions, with a proof 
of finite termination derived from an assumption of compactness of the sets given 
in the data of the specifications. In that work, we consider one type of variation 
class that is motivated by considerations of sensor and actuator imprecision, and 
is obtained by allowing a metric tolerance or "margin of error" around the guard 
sets and in the reset relations; we have shown that our synthesis procedure is 
robust with respect to that class. In the present paper, we turn our attention 
to the more traditional control-theoretic perspective on robustness in terms of 
parameter uncertainty; i.e. variations in the right hand sides of the differential 
equations that depend continuously on a parameter. While these two variation 
classes are quite distinct, a key technical tool for both cases are metric tolerance 
relations, which are put to use in different ways. 

This paper also demonstrates the flexibility and adaptability of our novel 
methodology for hybrid controller synthesis based on modal logic, first developed 
in [6,7]. For our purposes, modal logic is best viewed as a formalism for reasoning 
about sets of states and operators on sets arising from relations on the state 
space. Considered as a family of logics, modal logic includes the temporal logics 
more commonly used in formal verification of hybrid systems. More precisely, 
we work with a polymodal fusion of several normal monomodal logics [20]. The 
main benefits our methodology are the following. 

• Modal logic provides us with a uniform framework for investigating not only 
the widely used pre- and post-image operators induced by continuous flows, 
but also operators induced by metric tolerance relations, and the latter are 
essential in the context of robustness. As distinct from temporal logics, we 
reason about the component parts of hybrid trajectories, and this is essential 
for synthesis as opposed to analysis of hybrid systems. 

• We use modal logic not merely as a convenient notation, but also draw on 
the power of deductive proof systems. In the course of proving the correctness 
of our synthesis algorithm, we show that certain key modal formulas are for- 
mally deducible from the statement of the algorithm together with explicit 
assumptions; this appeals to the soundness of a suitable Hubert proof system 
w.r.t. the Kripke (transition system) semantics. In future work we will employ 
automated reasoning tools based on the decidability of the logical consequence 
and validity problems for modal logics, utilising tableaux proof systems [9]. 

• In our use of modal logic, we make a clean separation between (i) determining 
what sets need to be computed in order to solve the synthesis problem, and 
(ii) how and when such computations can be performed effectively. Issue (i) 
is resolved by the our synthesis algorithm below. Issue (ii) is essentially the 
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Standard model checking problem for hybrid systems, and any model checking 
tools — either exact [1,2,14,15] or approximate [4,13,16] — can be used to 
implement our synthesis algorithm. 

In this short paper, we restrict our focus to the core ingredients, and to those 
aspects of the work that are crucial for plant parameter robustness. Consult [6] 
for a more detailed account of our framework based on modal logic. 

The body of the paper is organised as follows. In Section 2, we briefly review 
hybrid automata, define plant parameter variation classes, and give a key result 
on parameterised vector fields. In Section 3, we formally state the controller 
synthesis problem. Section 4 is a terse review of modal logic applied to hybrid 
systems, and in Section 5, we give our abstract synthesis algorithm, formalised 
in the language of modal logic. In Section 6, we outline the proof of the main 
result of robust correctness. The concluding Section 7 includes a brief discussion 
of effective implementations of the procedure. 

2    Hybrid Automata 

We work with the standard and widely accepted hybrid automaton model of 
Alur, Henzinger et al. [1,2]. 

Definition 1. A hybrid automaton is a system 

H = (Q,E,X, {Fq,Invq}q£Q, {rq,q>,Grdq^}M)€E), (1) 

where: Q is a finite set of discrete control modes; E C Q x Q is the discrete 
transition relation; X CW1 is the continuous state space; for each q s Q, 
Fq : X —> R™ is a vector field, and Invq C X; and for each (q, q') € E, 
fq,q' C X x X is a reset relation, and Grdqtqi = dom(rg]g<). 

In order to ensure that closed-loop trajectories are well-defined, we assume 
that the vector fields Fq are locally Lipschitz continuous, and the state space 
X is open. Then from each initial condition XQ £ X, each differential equation 
x = Fq(x) has a unique maximal integral curve in X on a well defined maximal 
interval of time [0, Tq(xo)), where Tq(xo) € R+ U {oo}. We denote this maximal 
curve by 

$q(x0,-):[0,Tq(xo))^X. (2) 

In the case of Tq(xo) < oo, it is well known that <t>q(xo, •) escapes from any 
bounded subset of X at some time less than or equal to Tq(xo). For the scope 
of this paper, we can restrict attention to bounded invariant sets Invq. Then 
maximal curves from XQ £ Invq either leave Invq within finite time or stay 
within Invq forever with Tq(xo) = oo. Closed-loop trajectories are then defined 
as follows. 

Definition 2. A trajectory of a hybrid automaton H is a finite or infinite se- 
quence j] = (Ai,qi,~fi)iei such that for each i £ i": 
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• the duration Ai G R+ U {oo}, with At = oo only if I is finite and i = max(7); 

• the discrete state qi G Q; 

• the continuous curve ^ : [0, Ai] -+ X satisfies -y^t) = #,.(7^0),*) and^t) G 
Invqt for all t G [0, Ai], with the convention that [0, Ai] is [0, oo) if Ai = oo; 

• ifi < sup(7), then (qi,qi+i) G E and ^i(Ai)   "^1 7i+i(0). 

A trajectory will be called: step-infinite if it makes infinitely many switches; 
time-infinite if the sum over all durations is unbounded; and full if it is either 
step-infinite or time-infinite or else it is blocked, in the sense that it cannot be 
extended to reach any further guard region. 

A broad framework of variation classes for hybrid automata is proposed in 
[10]. Our interest here is in parameter variations in the vector fields. 

Definition 3. Given a hybrid automaton H as in Eq. (1), let Fq: X ->■ Rn 

be a family of vector fields parameterised by the discrete modes q G Q and an 
uncertainty parameter v G V C Rm, where 0 G V and F° = Fq. Then 

Hv = (Q,E,X,{F^Invq}q€Q,{rq,q,,Grdq,q,}{q!q,)eE), (3) 

H£ = {HV\ \\v\\<e} (4) 

defines a parameterised variation class around the nominal model H° = H with 
variation bound e. 

In correspondence with the nominal model, we denote the maximal integral 
curves of the vector field Fv

q by $v
q(x0, ■): [0, T"(x0)) -> X where T*(x0) G 

R+ U {oo}. The following assumptions on the vector fields are to ensure that the 
flow $q(x0, t) is continuous in v and x0. 
(AO) The parameter set V is open. The vector field F%(x) is continuous in both 

x and v. Furthermore, Fq (x) is locally Lipschitz continuous in x uniformly 
in v; i.e. there exists a Lipschitz constant which may depend on x but not 
on v. 

In particular, assumption (AO) ensures that for any given finite time interval 
and any given open tube around the nominal integral curve $q(x0,t), all varia- 
tions $q(x0,t) evolve within that tube - provided that the variation is sufficiently 
small; e.g. [11], Theorem 2.6. In the hybrid setting, we need to examine contin- 
uous parameter dependency w.r.t. a given domain D in the state space, rather 
than w.r.t. a given interval on the time axis. That is, we are interested in the 
dependency of $q(x0, t) in v as long as that curve evolves within an invariant 
set Invq. We formalise these ideas in terms of metric tolerance relations, and in 
so doing, set up the link to modal logics. 

Definition 4. Given a metric d on the state space X, the J-ball Bs(x) of radius 
S > 0 with centre x G X is defined by 

B5{x)dä {yeX\d{x,y)<5}. (5) 
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For a set A C X, we call the set BS(A) = {x £ X\ Bs(x) n A j- 0} the 6- 
expansion of A. We also call the (reflexive and symmetric) relation B$ C X x X 
a metric tolerance relation. For the scope of this paper, d is assumed to be a 
metric that induces the standard Euclidean topology on X. 

For a set A C X, let 

T^A,so) = sup{r < T^(x0) | (Vs e [0,r)) $v
q(x0, s) £ A} (6) 

denote the time at which $q(x0, ■) escapes from A, so Tq (x0) = Tq(X,x0). 

Proposition 1. Let D be a compact set with Big(D) C X for a given metric 
tolerance 5 > 0. Furthermore, assume Tq{Bzs{D),xo) < oo for allxo € D. Then 
there exits a variation bound £ > 0 such that Tq(D,Xo) < Tq(B2s(D),Xo) < 
3^(x0) and #;(x0, *) G ß25(^(x0, t)) f

or al1 * ^ T,(B2«(I>),a:o), all x0 £ D 
and all v, \\v\\ < e. 

Proof. Apply [11], Theorem 2.6, together with a standard compactness argu- 
ment. 

BAD) 

Fig. 1. Illustration of Proposition 1 

Figure 1 illustrates a perturbed integral curve lying within a 2J-tube around 
the nominal curve from a point XQ € D, as given by Proposition 1. When a hybrid 
automaton with bounded invariant sets is designed so that when an integral 
curve leaves its invariant set, it does so by some uniform minimum distance, 
Proposition 1 provides an elementary robustness property for this continuous 
evolution in between any two successive discrete control switches. However, even 
small variations in the parameter may have the effect that a perturbed trajectory 
runs into a different guard set than the corresponding nominal trajectory. In 
turn, such a perturbed trajectory may switch to a different vector field and thus 
may potentially stray far away from the nominal trajectory. The avoidance of 
this phenomenon motivates several of the design choices in formulating a robust 
solution to our target control problem. 
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3    Control Problem Statement 

A hybrid automaton can be seen as the closed-loop feedback system resulting 
from the inter-connection of a switched continuous plant and a discrete switching 
controller. See [6] for a more detailed analysis of this control-theoretic content 
of a hybrid automaton. For the controller synthesis problem under investigation, 
the plant is given by a finite family of vector fields Fc: X -> Rn indexed by a 
control alphabet c G C. We then ask for a synthesis procedure that constructs a 
closed-loop hybrid automaton H by building the missing entities that form the 
switching control mechanism, namely Q, E, Invq, and GrdqAi, where the reset 
relation is required to be elementary; i.e. 

rg,q> = test.Grdq>q>    =f   { (x,x') G X x X \ x € Grdq>q,   and  x' = x } .     (7) 

As Q is not known in advance, the synthesis procedure also needs to allocate a 
particular control c G C (indexing a vector field) to each discrete mode q G Q. 

The control goal is to satisfy the following closed-loop performance specifi- 
cations. 
(51) Safety: given a proscribed set Bad C X, construct a set Good Cl- Bad 

with the property that every .^-trajectory starting in Good always remains 
outside Bad. 

(52) Event sequence behaviour with 5-overlaps: given a finite partition {Ek}keK 
of X — Bad, a relation next C K x K, and a metric parameter S > 0, 
let Ak = Bs(Ek) be the 5-expansion of the partition block Ek, for each 
k G K; the requirement is that for every full H-trajectory starting in Good, 
whenever it enters one of the sets Ak, it remains there until it crosses into 
Ak' — Ak, for some k' G next(k). 

(53) Liveness I: every full iJ-trajectory starting in Good shall be step-infinite. 
(54) Liveness II: every full .^-trajectory starting in Good shall be time-infinite. 

The specification (SI) is the classic form of a safety property, while (S3) and 
(S4) are, respectively, the non-blocking and the non-Zeno forms of liveness prop- 
erties. The specification (S2) prescribes an order of traversal through the 5- 
expanded partition blocks. Formally, switches from one such block to another 
are identified as events from the finite alphabet K and (S2) requires the closed- 
loop to generate a sublanguage of {(fc»)ie/ | Vi < sup(7) : ki+l e nextfc)}. The 
metric tolerance S ensures that the event sequence specification refers to over- 
lapping regions Ak n A& rather than the common boundaries bd(Ek) n bd(Ek') 
of partition blocks. In particular, the overlaps are full dimensional and allow for 
some "wiggle room" which is essential for our robustness results. A more detailed 
motivation of (S2) is given in [6]. 

Our synthesis procedure is subject to the following further assumptions. 
(Al) The set X — Bad is compact (with respect to the standard Euclidean 

topology). 
(A2) The map next C K x K is total, so for each k € K, there is at least one 

k' G next(k). 
(A3) For all k,k' G K such that kn-^f k', the partition blocks Ek and Ek' are 

contiguous in the sense that bd(Ek) D bd(Ek') ^ 0- 
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(A4) For each k £ K, the block Ek has a non-empty 6-contraction; i.e. the set 
{x & X \ Bs(x) C Eu) is non-empty. 

(A5) For all Jfc, k', k" G K such that kn-^k'n-^ k", the infimum of the metric 
distance between points in the set bd(Ek) n bd(Ek') and points in the set 
bd(Ek') n bd{Ek") is at least 3S. 

By (Al), the relevant portion of the state space is required to be compact; 
this is used in applying Proposition 1 and in proving finite termination of our 
algorithm. Assumptions (A2), (A3) and (A4) are non-triviality conditions. The 
assumption (A5) gives a foundation for non-Zeno-ness by ensuring that closed- 
loop trajectories must traverse some minimum spatial distance when fulfilling 
the event sequence specification. 

4    Modal Logics for Hybrid Systems 

This section sets out only the bare details of modal logics and their application 
to hybrid systems. For a more substantial account, the reader is referred to [7] 
and also to [6]. The handbook chapter [18] gives a broader introduction to the 
family of modal and temporal logics. 

A modal signature is a pair (Rel, Prp), where Rel is an alphabet of atomic re- 
lation labels, and Prp is an alphabet of atomic propositions. The set £(Rel, Prp) 
of modal formulas <p of signature (Rel, Prp) is generated by the grammar: 

(p ::=   p\-><p\<PiV<P2\{a)<p (8) 

where p G Prp and a G Rel. The other Boolean connectives are definable, e.g. 
(p1 A (f2 —■ -,(_,<£>i V -1(^2)) fi -> <f2 — (~"Pi v ¥>2)> as are the dual modal 
operators: [a]tp = ->(a)-«p. 

The formal semantics of modal (and temporal) logics are given with respect to 
labeled transition systems, also called LTS models or generalized Kripke models. 
An LTS model of signature (Rel, Prp) is a structure: 

OT=(5,{aOT}aeRel,{[p]OT}p6Prp). (9) 

where: 5 ^ 0 is the state space, of arbitrary cardinality; for each a G Rel, 
am C S x S is a relation; and for each p G Prp, [p]OT C 5 is a subset of 
states. For formulas ip G £(Rel,Prp), the denotation set [y]OT C S is defined 
by induction, starting with the sets lp}m denoting atomic propositions p G Prp. 
For compound formulas: 

l-ipf" d±!s-Mm, (io) 
l(a)tp}m d^Pre3(a

ffll)([¥>]an)     for a G Rel, (11) 

biVrf1  d^fbiru[<p2]OT, (12) 

where the existential pre-image operator Pre3(r) : V(S) —> V(S) of a relation 
rCSxSis: 

Pre3(r)(,4) d=§f {x G S | (3y G S)[x -£» y A y G A}} . (13) 
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For formulas ip G £(Rel, Prp) and models Wl of signature (Rel, Prp), we say: (p 
is satisfied at state s in ffl, written 9Jt, s \= (p, if s G |</?1OT; and <p is irwe in 
OT, or Tl satisfies ip, written Wl\=ip,  if [<^|OT = 5. 

In encoding the control problem and input data in modal logic, we work in 
an LTS model 9Jlo over the plant state space S :— X C Rn. The set of atomic 
proposition symbols is Prp0 = {Bad} U {Ek | k G K}, with the self-evident 
denotation sets. The alphabet Relo of relation symbols will grow dynamically 
in the course of the synthesis algorithm (but will still be finite, due to finite 
termination). The relation symbols divide into four sorts, which we indicate by 
consistently using the same letters, adorned with subscripts and superscripts 
when needed. We will have relation symbols e for evolution relations and f for 
flow (or orbit) relations; symbols r for reset relations; and symbols S for metric 
tolerance relations. 

Definition 5. Given a flow $ : X x R+ —» X (possibly a partial function) and 
any set A C X C Rn, define a relation e(A,$) C X x X of evolution along <P 
restricted within A, by: 

The unrestricted orbit relation /(<£) C XxX is the special case: /(<£) = e(X,$). 

This precisely captures the notion of a hybrid trajectory segment, taking 
A = Invq and $ = $q for each control mode q G Q. For em° = e(A,<P), a 
formula (e)ip denotes the subset of states in A from which there is a curve along 
# that reaches some ip-st&te, and stays within A at all intermediate points; this 
is the standard notion of backwards reachability extensively used in the hybrid 
systems literature. The dual [e] operator expresses invariance, since [e]ip denotes 
the set of points all of whose e-successors are y-states. The compound AA[e\(e)<p 
denotes the set of states in A all of whose e-successors have a further e-successor 
which satisfies ip, and so captures the notion of inevitably reaching a y>-state. 
This compound construct is an essential ingredient of our synthesis algorithm, 
where in addressing the event sequence requirement (S2), we need to identify 
states that are inevitably driven to certain local goal regions. Figure 2 illustrates 
the difference between the inevitability formula A A [e](e)G and the backwards 
reachability formula (e)G, where G denotes a local goal. 

The reset relations under study are elementary, so (rq!q<)m° = test.Grdq^q>. 
In this case, the modal operators (rg>q/) and [rgtg/] can be eliminated: 

(rq,q>)(p   -H-   (Grdqtq,A<p)       and       [rq,q>]ip   <-»    (Grdgigl-xp) .       (15) 

For metric tolerance relations 8m° = Bs, a formula (8)<p denotes the 5- 
expansion of the set of (^-states, since BS(A) = Pre3(BS){A). The dual box 
formula [S]ip denotes the <5-contraction of the set of y-states, meaning the set of 
points in [v?]2"0 around which one can fit a 5-ball wholly inside [</?]OT°. 

An axiomatic Hilbert-style proof system capturing basic properties of the 
modal operators of evolution, flow and metric tolerance relations is given in 
[6], Section 5. These axioms also may form a basis for employing automated 
reasoning tools, e.g. tableaux proof systems [9]. 
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Fig. 2. Denotation of inevitability and backwards reachability formulas 

5    Abstract Algorithm of Synthesis Procedure 

Our solution to the control problem consists of two parts. First, we strategically 
construct a finite number of subsets of X, defined in terms of the input data Fc, 
Bad, Ek, next and S. Formally, this construction is given as an abstract algorithm 
where the sets of states are defined by modal logic formulas. The algorithm is a 
fine-tuned variation of the one presented in [6]. In particular, the proof of finite 
termination as given in [6] carries over without change. The algorithm may either 
terminate with failure or indicating success. In the former case it produces some 
diagnostic output, as described below. In the case of successful termination, 
the second part of our solution procedure uses the constructed sets of states to 
assemble our nominal closed-loop hybrid automaton H and the set Good. The 
pair (H, Good) then is guaranteed to fulfill the performance specifications (Sl)- 
(S4). It is in this second part that the present work departs essentially from [6] 
and extends the scope of our method to the plant parameter variation class He. 

The first part of our procedure is given in Algorithm 1; see [6] for a more 
detailed exposition including graphical output for a nontrivial example. Given 
the page constraints on this short paper, we are restricted to a brief discussion 
of the individual steps of the algorithm. We begin by taking the given metric 
parameter 5 and decomposing it as a sum S = 2<5i + 2^2, with <5i > 82 > 0. 
Roughly speaking, 5i is used as "wiggle room" in order to cope with parameter 
variations in the vector fields, while 82 gives some extra allowance required for 
an implementation based on approximated evaluation of the modal operators. 
In the initialisation phase, the formula Danger fc denotes the states that are 
dangerous from the viewpoint of the block Ek'- the outright Bad states and the 
relative bad states in blocks Ek> with k' not next-related to k. The formula 
Afeo denotes Ak, the initial (5-expansion of Ek- The formula Goalj. Q denotes 
the states that are well inside Ek>, in the (S — (^-contraction of E^, for some 
k' € next(k). 

The main routine consists of an outer j-iteration which runs the core routine 
for successive j and each k e K. The purpose of the core routine is to identify 

,ü) 0) states in Ak:'Q that can be safely driven into the Goal^. The iteration in i is 
with respect to the number of control switches required to achieve this local 
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Algorithm 1 Abstract algorithm for computing sets for synthesis procedure 

1: % INITIALISATION % 

2: j := 0 and i := 0 

3: FOR ALL fc e K DO 

4:      Danger,  ^ (^)Bad V V^„«t(fc)u{fc} ^ Al0»  d^f (*> Efc 

5:      Goal<°>   ^ V*6ne!rtW [*" fc] Et, Drop<°>  d^f A<°> A Goal<°> 

6 

7 

8: 

9 

10 

11 

12 

13 

14 

15 

16 

17: 

18 

19 

20 

21 

22 

23 

24 

25 

26; 

27 

28 

29; 

30 

31 

32 

33 

34 

35 

36 

% MAIN-ROUTINE % 

REPEAT  % FOR j = 0,1,... % 

% CORE-ROUTINE^,:/) for fc e K % 

FOR ALL fc 6 if DO 

REPEAT  % FOR i = 0,1,... % 

FOR ALL ceCDO 

SureM,c   =f   A« A [e« J ^Danger, 

Success« c 
d^f A« A [e«J(e«c>(A«AGoal«) A <feM*i>A«> 

Fine« c 
d^f   Sure« c A Success« c 

Goal«+1  
d^f   Goal«] V (Vc£C [25, + S2] Fine« c) 

A$+1  
d=f   A«A-[2*1+«S2]Goal«+1 

UNTIL     3R0 |= -, [S2] (Goal« A -Goal«^) 

last(k,j) := i — 1 

% j-th ATTEMPT AT next COMPATIBILITY % 

FOR ALL fc e if DO 

Pick« « Vk,€next(k) (ASAG4'MI)J)) 
Drop«+1)  M   Drop« A -, <52) (Drop« A -Pick«) 
A 0 + 1)    def      .(0) „ ,0 + 1)    def   T^ 0 + 1) 
Afc,0 -      Ak,0 Goalfc,0 =    DroPfc 

j := j + 1 and i := 0 

UNTIL     3tto N   AfceK (Drop«-*> -». Pick«-1') 

% FINAL CLEAN-UP % 

IF  [Drop0'-1']]9710 = 0    for some fc € if THEN 

terminate & report incompatibility between fc and its next-successors 

ELSE 

final :— j — 1 

FOR ALL fc 6 if and i e h =f {0, • • • , last(k, final)} and c e C DO 

Afcii  & A«71"" (efc^.c)3"0   =f (e^™00)3"» 

Goal*,« d=if Goal£w) FineM,c ^ Finej^"0 

terminate with success 
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goal. In the iteration, Goalj^] accumulates the states that can be driven to the 
initial Goalj^ by at most i switches, while AJj?J+1 denotes states which have 
been not resolved so far. The formula FineiJjiC identifies the states in AJfj which 
can be driven to Goalj^ using control c, and done so safely by being kept out 
of Danger*.. Note that the recursive definition of Ak

j}+1 in line 17 involves the 
terms A[

J
] and Goaljjf] within the scope of an odd number of negations. Thus it 

cannot be coded as a /z-calculus formula, and in particular the inner i-iteration 
is essentially different from fixed point iterations of maximal invariant sets as 
used in game-theoretic approaches to safety problems for hybrid systems [19]. 

While the core routine works on solving the problem locally, within the in- 
dividual Ak, the outer j-loop checks that these local solutions can be merged 
to form a global controller. Within each Ak, the region where the local solu- 
tion finally "drops-off" states is denoted by Dropj^. The region where such 
states can be "picked-up" by adjacent local solutions is identified by Pick£ ; for 
compatibility between local solutions, Pickj^ is required to contain Drop^ . 
If this is not the case, local goals are suitably reduced. 

Suppose Algorithm 1 terminates with success. Then, the nominal closed-loop 
system H and initial states Good are defined as: 

• Q := { {k,i,c) G K x N x C \ i G Ik and [FineM,cl
OT° ^ 0 } 

• F{k>itC) := Fc ioi all (k,i,c)£Q 

• for each q = (k, i, c) G Q, set 
Invq := [(«OAfc.il5*0 nmt([-.(*i)(Afc,4 AGoalM)]OTo) 

• E:={((k,i,c),(k',i',c'))eQxQ \ k'£ next(k)  or  ( k' = k  and  i'<i)} 

• for each (q, q') = {(k, i, c), (k', i', c')) G E set 
Grdq,q, := Invq n [(2*i>(Afcl< A Goalfe,i) A Finefc^i^c]3"0 

*-q,q'   ■— mvq > 

test.Grdq^gi. 

Good = U(fcii)C)6Q(/nu(fciiiC) n [Finefc.i.cp0) 
'9,9 

6    Correctness and Robustness of Synthesis Procedure 

Theorem 1. Let F? : X -» Rn, c G C, v G V C M.m be a finite family of 
parameter dependent vector fields, where the nominal case is denoted by Fc = F°, 
c G C. For given specification data Bad C X, {Ek}keK, next C K x K and 
5 > 0, subject to assumptions (A0)-(A5), suppose Algorithm 1 terminates with 
success, and H is the nominal closed-loop hybrid automaton as above. Then there 
exists a parameter bound e > 0 such that for every Hv in the variation class ri£, 
the pair (Hv,Good) satisfies each of the performance specifications (S1)-(S4). 

The proof of Theorem 1 follows the same general line of argumentation as in 
[6]. In this outline, we focus on the extra challenges of the variation class W. 

We begin by choosing a variation bound e > 0 such that perturbed integral 
curves must remain within a <5i-tube around the nominal curve. This is done by 
applying Proposition 1 for each q = (k, i, c) G Q, with D = d([Fine, Alnvg]OT°) 
and a metric tolerance of \&i. From the construction of Success, (see Alg. 1, 
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line 14) we conclude that any nominal curve starting in Fine, leaves (Si) Afc)i 

via Ak,i A Goalfc,». Then, by the definition of Invq, each nominal curve starting 
in D leaves B5l (D). The requirements of Proposition 1 are fulfilled and we get a 
variation bound e(q) > 0 dependent on q. We choose e := mm{e(q) \ q e Q} as 
a witness of the bound claimed by Theorem 1. In what follows, fix an arbitrary 
Hv e W. 

The high level strategy is to identify a list of modal logic formulas whose 
truth in 9Jl0 provides sufficient conditions for the specifications (S1)-(S4) to be 
satisfied by any Hv in H£. The crucial modal formulas (T1)-(T4) are analogs 
of those in [6], and are required for each q = (k, i, c) € Q, (q, q') e E and for the 
perturbed flow relations eq := e(Invq,$

v
c), for q e Q. 

-9 (Tl) (Inv,AFine,) -> [ev
q] (Si) Fine, 

(T2) (Inv, AFine,) -> [test.Grd,,,,] Fine,, 

(T3) (Inv, A Fine,) -+ [e^] (e^) (V,,e£(g)   Grd,,,,) 

(T4) (lnv,AFineg) -> (f?)-.Inv, 

In [6], the corresponding formulas are derived directly from the statement of 
the algorithm together with the explicit assumptions. Here, we are proving cor- 
rectness of a variant Hv and therefore need to exploit the relationship between 
the perturbed modal operators and their nominal counterparts in which the 
algorithm is formalised; that is, (e£) and its relationship to (eg). 

From Proposition 1 and our choice of e, we can derive the following relational 
inclusion: 

test.lnvq o test.Fineq o eq    C   eq o Bs1 , (16) 

where o is relational composition, which we write in left-to-right word order. 
This in turn implies the truth in ÜJl0 of the formula: 

(Inv,AFine,A[e,][*i]y>)    ->    [e°]<p (17) 

for any <p G £(Rel0, Prp0). Then, (Tl) can be deduced from Fine, -> [e9]Fine, 
(see [6], Lemma 7.2) together with formula (17), while (T2) is an immediate 
consequence of the definitions. Formulas (Tl) and (T2) are used to establish 
the safety specification. 

From Proposition 1 and assumption (AO), we can derive the more sophisti- 
cated modal fact: 

(Inv, A Fine,)    ->    ([<%] (ev
q) (2Si) Goal, A (£) -nlnv,).        (18) 

Formula (18) expresses the essential properties of the construct Success, (Alg. 1, 
fine 14) but now referring to the perturbed relations ev

q rather than the nominal 
eq. In particular, we use (18) to deduce (T3), and (T4) is an immediate con- 
sequence. Formulas (T3) and (T4) are used to verify step-infinite liveness and 
the event sequence specification. 
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Having deduced the modal conditions (T1)-(T4), from this point on, we 
can largely mimic the proof in [6] to establish that Hv and Good satisfy each of 
the specifications (S1)-(S4). 

7    Discussion and Conclusion 

This paper addresses a basic hybrid control problem, namely the design of 
a switching control mechanism via guard and invariant sets. We use a novel 
methodology based on modal logic to solve this problem for a significant list 
of performance specifications, and we do so in a manner that is robust w.r.t. 
parameter uncertainty in the differential equations. 

A significant issue to be investigated in future work is the question of com- 
pleteness of the algorithm; i.e. whether there exists a parameterised plant and 
specification data such that there is a robust solution to the control problem 
but the algorithm terminates with failure due to next incompatibility. In gen- 
eral one may expect such incompleteness to occur. So the question arises as to 
what additional conditions on the input data could ensure completeness. A full 
treatment of this issue necessitates the development of more mathematical tools 
for analysing the space of all possible solutions to our control problem, leading 
to an appropriate notion of switching controllability. 

As discussed in the introduction, our synthesis algorithm can be implemented 
on any available model checking tool. There are two main approaches: exact 
symbolic computation, representing sets of states by first-order logic formulas 
(e.g. [1,2,14,15]), and approximated representation, whereby sets are under- or 
over-approximated as finite unions of cells (e.g. [4,13,16]). We have developed 
a prototype software implementation of our synthesis algorithm based on an 
approximation using boxes generated by a regular grid, and it is applicable to 
arbitrary linear differential equations. The software runs on a massively parallel 
cluster effectively employing 96 CPUs, and has been tested on several non-trivial 
examples. This work on approximation based model checking is to be presented 
in a separate paper. 
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Abstract. Efficient algorithms exist for fault detection and isolation of 
physical systems based on functional redundancy. In a qualitative ap- 
proach, this redundancy can be captured by a temporal causal graph 
(TCG), a directed graph that may include temporal information. How- 
ever, in a detailed continuous model, time constants may be present 
that are beyond the bandwidth of the data acquisition system, which 
leads to incorrect fault isolation because of a difference in observed and 
modeled behavior. To solve this, the modeled time constants can be 
taken to be infinitely small, which results in a model with mixed con- 
tinuous/discrete, hybrid behavior that is difficult to analyze because the 
causality of the directed graph may change. In this paper, to avoid the 
combinatorial explosion when using a bank of TCGs in parallel, causal 
paths are parametrized by the state of local switches. The result is a hy- 
brid model that produces parametrized predictions that can be efficiently 
matched against observed behavior. 

1    Introduction 

To reduce cost, improve performance, and to manage the complexity of large 
engineered systems, functional redundancy can be employed in fault detection 
and isolation (FDI). In this approach, a system model links measured variables 
by their functional relations, facilitating the computation of redundant values for 
selected system variables. In general, the system model can be of a continuous 
or discrete nature. In case of a continuous model, often parameter and state 
estimation techniques based on a state space model of the system are used for 
FDI [1,4]. In case of a discrete event approach, models that capture failure modes 
and transition sequences are applied [5,15,16]. Both these methods have proven 
themselves successful in their respective applications. 

Previous work [8,9] has focused on qualitative parameter estimation of con- 
tinuous system models. These models are represented by a temporal causal graph 
(TCG) that is automatically derived from a bond graph model of a physical sys- 
tem [8,11]. This work revealed the importance to design the model in harmony 
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with the data acquisition system, i.e., behavior that is beyond the bandwidth of 
the data acquisition system should not be included in the model as it leads to 
incorrect fault isolation [2]. 

Removing large and small parameters from the system model causes the 
following model characteristics that complicate the FDI task: 

- Algebraic loops may emerge. Because of the passive behavior of physical 
processes, these algebraic loops have negative gain, and, therefore, any qual- 
itative ± deviation is reversed when propagated around the loop. This, in 
turn, leads to many unknown values of system variables in a qualitative 
sense. 

- In case of abrupt faults that cause mode changes, higher index systems 
may arise with algebraic constraints between time derivative behavior. These 
systems may exhibit impulsive behavior. 

- The direction of the computational causality in the model may change. When 
abrupt faults cause component parameter changes to values that are taken 
to be infinitely large or small, they are effectively removed from the model, 
which changes the model configuration, and, in effect, the model becomes of 
a switched continuous, hybrid, nature. 

Other work [3,12], addresses the first two issues whereas this paper focuses on 
the hybrid diagnosis problem. 

In order to deal with the change of causality, the TCG can be derived for each 
possible system configuration or mode. However, in case of many locally acting 
switches, the combinatorial explosion quickly leads to an intractable problem. 
These problems can be mitigated to some extent by dynamically generating the 
TCG of each possible system mode in response to a failure. This may still result 
in a problem with large computational complexity which can be further reduced 
by measuring system variables that indicate specifically which local switches 
may have occurred [13] and predictions for each of the variables that determine 
different causal assignments are required to be made and analyzed. Once a set 
of possible TCGs is available, Gaussian decision techniques have been applied 
to compute the most likely mode of continuous behavior [7]. 

Recent attention to hybrid diagnosis [7,14] concentrates on efficiently pro- 
cessing a set of TCGs. This paper describes how a hybrid model can be made 
amenable to the diagnosis algorithms that were developed in previous work [8,9] 
by systematically generating one parametrized TCG. In this graph, the directed 
links are enabled by conditionals that correspond to the mode in which these 
links are present. The result is a set of predictions that are parametrized by 
the state of the local switches and the diagnosis problem then becomes one of 
constraint satisfaction [17]. The solution to this constraint satisfaction problem 
contains the possible parameter changes (i.e., the faults) and the effect on the 
system mode that this is required to have. 
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2    Preliminaries 

This section reviews the qualitative FDI approach developed in previous work [8, 
9]. Instead of a temporal causal graph, though, the model representation format 
and processing will be in qualitative matrix algebra, which is easier to represent 
and to extend with the required notions. 

Consider the one-tank hydraulic system in Fig. 1. The functional relation 
for flow, fR, through the outflow pipe is given by /R = ^, where pR is the 
pressure drop across the pipe and R is the pipe resistance to flow. The pressure 
Pu depends on the pressure at the bottom of the tank, pc, according to PR = pc 
(i.e., the ambient pressure is assumed to be 0). The rate of change in the pressure, 
pc, at the bottom of the tank is given by pc = ^fc, where fc — fin - IR and 
fin is the flow into the tank and C is the tank capacity. 

Fig. 1. A tank with in- and outflow. 

To derive qualitative predictions, the system is written as a directed graph 
that captures the causal (directed) relations between system variables. For the 
one-tank system, the preferred (integral) causality model description is 

rioooi [Pel 
0 10 0 fc 
0 0 10 fR 

Lo 0 0 lj .PR. 

o y 
o 
o 
l 

1c~ 
0 
0 
0 

0      0 
-1     0 
o fl-1 

0      0 

[Pel [   °   1 
fc 
fR + fir. 

0 
.PR. L o J 

(1) 

where A represents the time differentiation operator and A J indicates integra- 
tion over time. The corresponding temporal causal graph (TCG) is given in 
Fig. 2. 

The TCG can be represented by a weighted adjacency matrix where the 
columns are cause and rows are the effect variables and the entries capture the 
parameters on the graph edges. This is called the temporal causal matrix (TCM), 
that is 

l x-'c-' 0      0 [PC 
0        1 -1     0 fc 
0        0 1   R-1 fR 
1        0 0      1 I PR 

(2) 

for the TCG in Fig. 2. 
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Fig. 2. TCG of the one-tank system. 

Our diagnosis engine TRANSCEND [6] relies on qualitative information to 
achieve diagnosis. In this framework, only the three values -, 0, + are used to 
indicate values that are too low, normal, and too high, with respect to some 
nominal value, respectively. For example, a value of a model variable that is 
measured to be above its nominal value is marked +. In case the outflow of the 
tank system in Fig. 1 is too high, this is represented by f£. 

Note that in a qualitative representation, the parameters R and C correspond 
to direct relations between variables, and, therefore, they can be replaced by 
value 1. This results in a qualitative system where 1 and -1 represent direct and 
reverse relations, respectively. 

To find parameter deviations, in previous work a backpropagation algorithm 
is used. In qualitative matrix algebra this is equivalent to repeated multiplication 
of the initial deviation with the transpose TCM. Here, for /£ this results in the 
sequence of vectors 

roi r   o   -1 rn r   l   -| PI HI r?" r?-i 
0 0 0 c-1 

l i l 7 

l 5 l 7 l i l ) ? > ? ? ? ) 7 

0 R-1 1 l i 7 7 7 
(3) 

The parameters R'1 and C"1 are fault hypotheses and replaced by 1 after 
they are generated because R and C are positive parameters, and, therefore, 
in a qualitative framework they represent direct relations. Also, qualitatively 
1 - 1 is unknown, "?". Once all variables are unknown, no further parameter 
deviations can be hypothesized (the remaining candidates that are not generated 
in Eq. (3) are -R'1 and -C"1). The resulting set of possible faults is, therefore, 
R'1 or C-1 too high, i.e., {R~,C~} (the remaining candidates are {R+,C+}). 
Physically, these fault candidates correspond to, e.g., leakage in the outflow pipe 
(R~) or an object that has fallen into the tank (C~). 

Next, predictions of future system behavior are generated for each of the pos- 
sible parameter deviations, R~ and C~. From the TCM, their initial deviations 
are found to be 

R- -» 

"0" "1" 
0 ,c~ —► 

0 
1 u 
0 0 

(4) 

To achieve a suffiently high order prediction for the measured variable, fR, the 
initial deviation is repeatedly multiplied with the TCM. Here, a second order 
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prediction requires eight such multiplications and for R    this yields 

Pel ri A-1 0 0"j ro 
fc 0 1 -1 0 0 
fn 0 0 1 1 1 
PRj Li o 0 lj Lo 

-A-' + A-2 

-1 + A"1 

-A^+A-2 

-A-x + A"2 

(5) 

The TCM raised to the power 8 can be computed off-line to be 

i x-1 0 01 8 ["l-A^+A-2  A"1-A"2 

0 1 -1 0 -1 + A-1  l-A^ + A-2 

0 0 1 1 1-A"1    A"1-A"2  1 
1 0 0 lj 1-A-1    A"1-A"2 

-A-x+A"2 

-1 + A"1 

-A"a+A-: 

-A-x + A-2 

-A^ + A"2 

-1 + A"1 

1-A"1 

l-A-^A"2 

(6) 

and can be used for efficiently generating predictions for other fault candidates. 
The polynomials in A are equal to the qualitative signatures generated in 

previous work [8,9]. For this example, the signature for the measured variable is 
/+_+, where the superscripts indicate the qualitative values of the time deriva- 
tive behavior with increasing order from left to right, i.e., there is a positive 
discontinuous change with negative slope that increases. For the pressure at 
the bottom of the tank, the prediction is p°J+, i.e., no discontinuous change in 
pressure occurs and the pressure is decreasing. 

This method works well if the system of equations that describes continuous 
behavior is fixed. However, in case discrete switches cause changes in the continu- 
ous model, signatures for each mode have to be generated. This quickly becomes 
intractable, and, therefore, for these system models a parametrized formulation 
is advantageous. 

3    Hybrid Models for FDI 

For the qualitative FDI approach to be effective, it is imperative that the modeled 
time constants are observable, i.e., within the bandwidth of the data acquisition 
system. If a parameter that models an abrupt fault changes to a very large or 
small value, it may correspond to a time constant that cannot be observed, and, 
therefore, this behavior needs to be abstracted from the model. This causes the 
model to be of a switched continuous, hybrid nature. 

In general, modeled discontinuities result in causal changes. Therefore, the 
TCM may take several different forms and so do the corresponding predictions 
of future behavior, depending on whether a mode change occurs. Consider for 
example a valve that controls the outflow in Fig. 1 in a binary manner, i.e., either 
there is an outflow determined by the Bernoulli resistance (c*i = 1) or there is 
no outflow (ai = 0). When the switch is modeled as a discontinuous change, 
the corresponding model includes a change in causality when the control valve 
switches its state. If it is open, the pressure pc determines the outflow fR and 
if it is closed, JR = 0, which determines the pressure drop across the pipe to 
be pR = fRR = 0. To handle the change in TCM, the causal relations can be 
parametrized to make them dependent on the mode of operation. 
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To this end, first the system is described in a noncausal form by using implicit 
equations. An implicit model of the one tank consists of the following equations 

0 = Cpc - fc 

0 = fc-fin + IR 

0 = RfR-pR 

0 = ai(pR - Pc) + (1 <*i)/ü 

(7) 

(8) 

(9) 
(10) 

1   A^C- 0       <*! \Pa 
AC        1 -1     0 fa 
0        -1 1   R-1 fn 
ai         0 R     1 IV R 

From Eq. (10), in case the control valve is open, «i = 1, and PR=PC, when the 
control valve is closed, o^ = 0, and fR = 0. 

The TCM for this system of equations contains the relations between each 
of the variables. For example, Eq. (7) embodies a temporal relation between pc 

and fc and Eq. (10) a direct relation between pc and pR that is only active 
when ai ^ 0. The TCM then becomes 

(11) 

and causal links from pc to pR and from pR to pc are only active when the system 
is in mode at. A special case arises for c*i = 0 which implies fR = 0. This effect is 
not present in the TCM because it is not a relation between variables. However, 
it contains essential diagnostic information about system behavior that can be 
included by an input vector 

o 

-(i-«i) (12) 
o 

where the - sign is because the flow, fR, is positive during normal operation, 
and, therefore, its deviation is - when the valve closes (possibly inadvertently). 

Diagnosis now proceeds to predict future behavior, yf, for each hypothesized 
fault, /, and both possible configurations (c*i = 0 and ax = 1). To this end, the 
TCM, A, raised to a sufficiently high power, n, operates on the sum of the input 
vector, u, and each of the initial deviations, df, generated from the hypothesized 
faults, 

yf = An(df + u) (13) 

These predictions are then compared against actual observations to prune the 
fault hypotheses and find the correct fault. 

Note that, to facilitate a qualitative algebra, the (1 - a) construct with 
a e {0,1} cannot be used to (de) activate relations because in a qualitative sense 
(1 - a) is unknown instead of 0. Therefore, -.a is used to indicate a quantitative 
evaluation of (1 - a) so that -<a produces a value {0,1}. 

For the initial deviation that corresponds to R~ in Eq. (4) and the input 
vector in Eq. (12), after multiplying with the TCM five times, the prediction 
becomes 

ai - A"1 

axA — 1 + <*iA~ 
— c«iA + 1 — QiA" 
— e*iA + 1 — ajA" 

(l--**l) (14) 
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Compared with the prediction derived from the explicit system in Section 2 this 
shows impulsive behavior because of the positive powers of A and other spurious 
behavior because all possible relations are present in the TCM. In other words, 
for a given causal assignment all other relations are present as well even though 
these may not be consistent with the given causal assignment. 

To demonstrate that such an extensive set of relations quickly leads to con- 
tradiction, consider an implicit relation 0 = xx + x2 + x3 with TCM 

(15) 

Because in a qualitative sense 1-1 is unknown, this leads to unknown predictions 
as soon as the TCM is raised to a power > 1 (e.g., xf ->• x2 -> x£ -> x\, 
and xx is unknown). This problem can be circumvented by committing to one 
causal assignment only. In matrix form, this is achieved by using binary selection 
variables, ki e {0,1}, 

1 -fcifc2     -kik2 ] 
-fci-.fc2      l      -fci->fc2 (ID) 
-fc2-ifci —fea-ifci        1 

and the matrix is invariant under multiplication. 
In summary, to design an approach for diagnosis based on hybrid models, the 

TCM is derived from an implicit model formulation that includes mode selection 
parameters, ah to switch between equations. The possible causal assignments of 
ternary and higher relations are then made mutually exclusive by introducing 
selection parameters, fcj. If possible, the parameters a, can be related to fcj and 
the TCM contains only mode selection parameters, ah and, therefore, produces 
fault hypotheses and predictions that are parametrized by a, only. 

4    A Case Study 

To make the implicit approach suitable for diagnosis, it must deal with additional 
causal paths and the possible conflicts. Consider the two tank system in Fig. 3 
with externally controlled outflow valves on the left and right and a pressure 
controlled valve between the left and right tank. An implicit quantitative model 
of this system could look like 

0 = -fin + fCi + /fibi + /fii2 

0 = ai(-pci +PR12 +Pc2) + (1 - "I)/R12 

0 = a2(pd - PRbl) + (1 - <*2)/flbl 

0 = a3(pc2 - PRb2) + (1 - a3)fRb2 

0 = fc2 + /ßb2 ~ /RI2 (17) 
0 = CipCl-/Cl 

0 = C2pc2 - fc2 
0 =PRbi - RblfRbl 
0 = PRb2 - Rb2fRb2 
0 = PR12 ~ R-nfRu 
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where at are mode selection parameters and a:, a2, and a3 correspond to the 
state of the middle, left, and right valves in Fig. 3, respectively, where at = 0 
implies the valve is closed and a, = 1 that the valve is open. 

'  RblHp^   R12   Mp^Rb2 

Fig. 3. Two tanks with outflow valves and a pressure controlled connecting valve. 

This model contains a number of ternary relations (input variables are not 
considered as fault candidates) and when a deviation is propagated, multiple 
possible paths are taken. To prevent this, the paths can be parametrized as 
demonstrated in Section 3 (the binary relations are mutually consistent), 
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(18) 

For this model, the causality of some of the binary relations is fixed for each 
possible mode and incorporating this a priori knowledge leads to a more con- 
strained model. For example, the relation 0 = a2(pc1 ~PRbl) leads to two entries 
in the TCM, one for pCl ^ PRbl and one for pRbl ^ pCl. Analysis reveals that 
the latter causal relation is never used for any configuration of valve states, and, 
therefore, the corresponding entry in the TCM can be removed. The matrix en- 
tries in Eq. (18) that vanish because of pre-processing are marked by a bounding 
box. 

The causality of the ternary relations can be analyzed exhaustively because 
it only involves a limited number of local constraints. Causal analysis of the 
system of equations shows that although the causality of the ternary equations 
may change, the changed causality corresponds to the vanishing (deactivating) 
of an edge. For example, the causality of 0 = ax (-pCl +pRl2 +pC2) changes when 
«i changes its value. But, for the state -.a1; the equation is not active anymore. 
Therefore, this need not be explicitly modeled, and the relation between the a* 
and hi degrades to the fixed values kx = 1, k2 = 1, k3 = 1, k4 = 0, k5 = 0, and 
fc6 = l- 
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Fig. 4. The temporal causal graph of the two-tank system. 

In Fig. 4 the temporal graph of the TCM is shown to clarify the relations 
between system variables. The dashed edges are those that are present in the 
original implicit formulation because of ternary relations but that are removed 
based on a mode dependent causal analysis. The undirected edges are implicit 
binary relations and can be decomposed into two edges with opposite direction 
(corresponding to the two entries in the TCM) to be compatible with the tem- 
poral causal graph format used in previous work [8,9]. Note that in many cases, 
graph propagation is more efficient than matrix multiplication, especially in case 
of sparse matrices. 

After replacing the parameters with their qualitative equivalent, the resulting 
TCM is given by 
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(19) 

where the boxed entries are those that correspond to bidirectional, non-causal, 
edges (in this particular case, these could still be made mode-dependent, where 
the entries above the diagonal become a, and below become -la»). 

The predictions of the TCM are parametrized by the active mode. This leads 
to more efficient diagnosis compared to the use of a bank of TCMs, which, in this 
case of three switches, would consist of eight TCMs that need to be processed 
separately. For example, in case of a measurement /R   , R^ 1S one °ftne fault 
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hypotheses that results in the prediction 
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0 
0 ,-"23 -> 

-1 
0 

0 0 0 
0 0 0 
0 0 0 
0 . . 0 0 

(20) 

(21) 

and their effect is propagated as well. For ->ai, this leads to the prediction for pcx 

to be -IO^A
-1

 — -iaia2A~2 — -laiaiA-2, or -^aiX~1 — -laia^A-2. The combined 
prediction for pcx becomes 

-laiA -laiOL^X     — c*iA -2 (22) 

The parametrized predictions can be matched against further measurements 
(e.g., Pc~, where the second order derivative is not measured). In case a^, i.e., 
the pressure controlled connecting valve remains open, the prediction for pc\ is 
—A-2, a falling level of liquid in C\ with second order behavior. This is incon- 
sistent with the pQQ observation and the fault R^ [a\] is rejected as a possible 
explanation of the anomalous system behavior. If the new pressure in C2 causes 
the connecting valve to close, the predicted behavior of pcx changes. This can 
be derived by evaluating the prediction with -iccj, which yields A-1 — a2A-2, 
i.e., the liquid level in C\ rises. In case the left outflow valve remains open, a2, 
the rate of increase decreases but if this outflow valve closes, the level contin- 
ues to rise. It is easily verified that the predictions of both fault hypotheses 
(fi^[-iQia2] and fi^[-iai-!a!2]) are consistent with the p0^ measurement, and, 
therefore, possible causes of the observed anomalous behavior. Further mea- 
surements are needed to prune this set of candidates, as described in detail 
elsewhere [8,9]. 

5    Conclusions 

Algorithms and hybrid models for diagnosis of physical systems are required to 
deal with configuration changes between modes of operation but the combinato- 
rial explosion prohibits a global enumeration approach. This papers shows that 
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mode changes can be modeled by locally activating and deactivating relations 
between system variables. When relations are (de)activated, the causal effect 
between system variables may change. This is handled by including all possi- 
ble relations between system variables. Because of the presence of relations not 
describing system behavior in a given mode, the model may foster conflicting 
relations, which is solved by introducing parameters to enforce mutual exclusion 
between different causal assignments on individual relations. Performing local 
analyses establishes the relation between these parameters and mode selection 
parameters. The resulting method generates conditional predictions that depend 
on the mode of the system which allows for efficient execution of the diagnosis 
algorithms. 

The presented method allows for a declarative prediction of future system 
behavior. It has not taken yet taken into account imperative mode switching 
functionality (e.g., a switching constraint such as pi > P2 causes a2 = 1). In- 
cluding this may constrain possible mode changes, and, therefore, further prune 
the set of hypothesized candidates. 

Note that the analysis of interacting local switches is automated in HYBR- 

SIM [10] based on analysis of causal areas in a bond graph. This forms the basis 
for future research into automatically performing the pre-processing of the re- 
lations between mode selection parameters and those that ensure mutual exclu- 
sion of different causal assignments. This should facilitate scaling the approach, 
because the complexity increases exponentially only with interacting switches 
within one causal area. So, e.g., for k causal areas with m switches, instead of 
2fcm mo(jeS) jfc2m modes have to be analyzed, and typically if a hybrid bond graph 
modeling approach is useful, the number of switches that interact directly, i.e., 
without dynamic behavior, is low. 
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Abstract. We address systems which have multiple objectives: broadly 
speaking, these objectives can be thought of as safety and performance 
goals. Guaranteeing safety is our first priority, satisfying performance 
criteria our second. In this paper, we compute the system's safe operat- 
ing space and represent it in closed form, and then, within this space, 
we compute solutions which optimize a given performance criterion. We 
describe the methodology and illustrate it with two examples of systems 
in which safety is paramount: a two-aircraft collision avoidance scenario 
and the flight management system of a VSTOL aircraft. In these ex- 
amples, performance criteria are met using mixed-integer nonlinear pro- 
gramming (MINLP) and nonlinear programming (NLP), respectively. 
Optimized trajectories for both systems demonstrate the effectiveness of 
this methodology on systems whose safety is critical. 

1    Introduction 

Aircraft collision avoidance maneuvers and flight management systems are safety 
critical systems for which one would like to guarantee a certain level of perfor- 
mance: controllers for such systems must address potentially conflicting goals of 
hierarchical importance [1]. The safety of a system is determined by its ability 
to remain within an allowable subset of the state space. For example, in colli- 
sion avoidance maneuvers, the aircraft must remain separated by a minimum 
distance, while in flight management systems, the state of the aircraft must re- 
main inside its aerodynamic flight envelope. Performance goals can be specified 
in terms of costs of deviations from desired routes, or in minimizing fuel us- 
age. Combining controllers to meet these objectives is an important and difficult 
problem: conflicting objectives can result in chattering and other undesirable 
effects [2]. In [1], the authors proposed a scheme for combining multiobjective 
controllers for systems with safety and performance objectives. The safe region 
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of operation and the controller necessary to guarantee that the system remain 
within the safe region is first determined, and the designer is given the freedom to 
choose a controller that satisfies performance constraints within this safe region. 
This controller must be overridden whenever the system reaches the boundary of 
the safe space. In this paper, we address the design of the performance controller 
under the restrictions of the safety controller. Our methodology combines the 
Hamilton-Jacobi approach of [3] (for systems in which we can find closed-form 
representations of the safe space) and nonlinear optimization techniques [4,5], by 
viewing the restrictions necessary for safety as inequality constraints in a nonlin- 
ear optimization problem. A similar problem of incorporating state and control 
restrictions has been addressed for linear hybrid systems with linear constraints 
by using a model predictive control framework [6,7]. 

By designing our controller in two steps, we assure that the most important 
criteria, safety, is always met, and that the controller optimizes the performance 
of the system over the safe region of operation for any specified time horizon. 
This two-step process assumes that the analytical solution for the safe region is 
known; however, in cases for which there is no analytical solution, an analytical 
under approximation can be used. By contrast, a one-step method in which safety 
and performance are optimized in a single cost function over a fixed time horizon 
guarantees safety only over that time horizon - although the system will remain 
outside of the unsafe set for the time over which performance is optimized, it 
could potentially enter unsafe set at the next time-step. 

We demonstrate our method to generate safe, yet optimal, trajectories on two 
nonlinear, safety-critical systems. The collision avoidance scenario involves the 
lateral dynamics of two cooperative aircraft in free flight [8]. Collision avoidance 
has been an active area of research for contributors who have approached the 
problem in a variety of ways, including probabilistic [9,10], optimal [11,12,13], 
and hybrid [14,1] frameworks. The focus of the probabilistic and hybrid work has 
been on the computation of safe operating regions for groups of aircraft, while 
the focus of the optimal work has been to optimize performance criteria over 
a finite horizon while maintaining a 5 nmi radial separation between aircraft. 
The safety of the latter solution depends on appropriate choice of time horizon. 
The flight management system presented involves the longitudinal dynamics 
of a Vertical and/or Short Take-Off and Landing (VSTOL) aircraft. The safe 
region of operation for each mode of the hybrid system was derived in [2], and 
the stability of switched feedback linearizing control laws analyzed in [15]. The 
naive combination of these two controllers results in chattering and large tracking 
errors. 

In this paper, we compute optimal control laws which smoothly guide the 
system through the safe region of operation. Our methodology for multiobjec- 
tive controller synthesis involves three steps: analyzing the safety of the system, 
representing the safe region of operation in a form suitable for a nonlinear pro- 
gram, and then optimizing a desired performance goal constrained to lie within 
the safe region of operation. We demonstrate our methodology for each of the 
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above steps with the collision avoidance and VSTOL examples. We then discuss 
our optimization results and conclude with directions for further research. 

2    Problem Description 

We address the problem of combining safety and performance goals for a hybrid 
system in a single discrete mode, that is, for the nonlinear continuous dynamics: 

x = f{x,u) (1) 

with state x G X, and control input u &U. Given an initial unsafe region G C X, 
we follow the method of [3] to compute the maximal controlled invariant set 
contained in Gc, which is denoted W* C X. W* represents those states from 
which there exists a control input u G U such that the system can remain in 
W* for all future time. We also compute the set valued feedback control law 
^safe(z) which guarantees that the system remains in W*. Next, we determine a 
closed-form representation for the safety constraints x G W*, which we represent 
as cw{x) < 0. We then optimize the desired performance goal by minimizing 
Jperf(x,u) over x G W* subject to discretized dynamics. 

Minimize Jperf (£*>"*) 
subject to: Xk+i = fd(xk,Uk) /2) 

-Xmin ^ xk fl Amax, Umm S uk S. t^max 

cw(xh) <0 

The control law which results from this optimization will, by construction, keep 
the discretized system within the safe region W* for the time horizon over which 
it is optimized. As with any discretization process, the discretized model does dif- 
fer from the continuous model, allowing for unaccounted-for discrepancies in the 
performance of these controllers on the actual continuous system. Discretization 
in hybrid systems is further complicated due to the interaction of the continuous 
dynamics with transitions. In this paper we use a forward Euler discretization 
method and neglect any discrepancies. 

2.1     Collision Avoidance 

We consider the lateral dynamics of a two-aircraft scenario with full coopera- 
tion between aircraft (safety concerns arise due to finite control input). The two 
aircraft travel at a constant speed V in the (x, y) plane with heading angles i/>i 
and ^2, respectively. The lateral dynamics of the two aircraft are x = f(x,u), 
where x = [xx j/i V>i x2 yi 4>2)T and u = [«i u2]T, the roll angles of the two 
vehicles. For i G {1,2}, ±i = Vsinipi, & = Vcosipi, fa = f tanu,, and 
Ui G [-</>max,<Amax], where </>max = 2TT/9 due to allowable aircraft roll. Since 
the relative orientation of the aircraft is of main interest, we transform the 
inertial two-aircraft system into a right-handed relative frame of reference by 
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defining the relative position and heading of aircraft 2 with respect to the in- 
ertial position and heading of aircraft 1: (xr,yr,0r), where 9r = y>i - tp2 and 
[xr yr]

T = RT
(TT/2 - ^i)[{x2 - xx) (y2 - yi)}T, R(ß) a standard rotation ma- 

trix through the angle ß. The relative dynamics are therefore xr = fr(xr,u), 
where 

ir = -V + V cos 9r - ^yr tan ux 

yr = VsinOr + ^xrtanux 
0r — —^(tanu2 — tanui) 

(3) 

with xr = [xr yr 6r]
T. The minimum aircraft separation is defined as 5 nautical 

miles. To be safe, therefore, the state must remain in Gc, where 

{(xr,yr,er):xl + y?>52} . (4) Gc 

2.2    VSTOL FMS 

Consider the longitudinal axis dynamics of the VSTOL aircraft in the TRAN- 
SITION mode, or the mode in which the thrust can be vectored from the body 
axis through 90°, resulting in a wide range of dynamic behaviors [2]. The iner- 
tial coordinates of the aircraft's center of mass are (x, z) along the horizontal 
and vertical axes, respectively, and the pitch angle 0 is the angle between the 
aircraft body axis and the inertial x axis. The flight path angle 7, the angle of 
attack a, and the ground speed V are defined as 7 = tan_:L(l), a = 0 - 7, and 
V = \/x2 + i2, respectively The aerodynamic equations for lift (L) and drag 
(D) are given by L = aLV2(l + ca), D = aDV2(l + 6(1 + ca)2), with constants 
b = 0.02, c = 11.42, aL = 2.72, aD = 2.54 determined from actual Harrier flight 
data [16] as well as our own estimates. Further details on the model development 
are available in [2]. The aircraft nozzles rotate from the body axis through the 
angle 6 with rate 5. We assume that the autopilot has direct control over both 
the forward thrust «i = T, the pitch acceleration u2 = JÖ (through the eleva- 
tors), and the nozzle acceleration u3 = S. We obtain the longitudinal dynamics 
from the Newton-Euler equations 

M R(9) (RT(a) 
-D 
L + ux cos 5 

ux sin 5 — eu2 

0 
Mg (5) 

where e is a small positive constant. The aircraft has mass M = 162801b and mo- 
ment of inertia about the pitch axis J = 32000 slug-ft2. Safety regulations for the 
aircraft dictate that the aircraft state must remain within specified limits, called 
the aerodynamic flight envelope, given by V £ [Vmir},Vm?x], 7 e [7min,7max], 
Ö G [9min, 0max], 9 G [0mln, 0max], 5 G [<Jmln, Smax], and 5 G [<jmin, 5max]. The set G 
includes all states which are not inside these bounds. 

3    Safety Analysis 

We obtain the maximal controlled invariant set by first specifying a cost function 
•4rfe(z,*) whose initial condition Jsafe(a;,0)  = l(x) encodes the boundary of 
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the allowable states dG. (The function l(x) is negative inside G, zero on dG, 
and positive outside G). We pose the problem as an optimal control problem 
and solve two coupled Hamilton-Jacobi equations as in [3,17], whose solution 
describes the boundary of the maximal controlled invariant set W* and the safe 
set of control inputs Usa.fe(x). For the collision avoidance scenario, we can find 
a closed-form solution for the representation of W*. In the flight management 
system, due to the system's high dimension, we analyze the safety of the system 
by projecting the system onto two-dimensional subspaces and then analyzing 
the safety of the system within each projection. The safety of the entire system 
is guaranteed by specifying that the aircraft remain within the intersection of 
these two-dimensional safe regions, which is a subset of the maximal controlled 
invariant set. 

3.1    Collision Avoidance 

Due to finite control input, there are certain initial configurations of the two 
aircraft for which, despite their best efforts, the aircraft will eventually violate 
G. To find this region, we use the method of [14], but obtain an analytical solution 
due to the cooperation between aircraft. An analytic solution arises because the 
computation of the safe control law results in usa.fe(xr) = [usafei,usafe2} where 
wSafei = usafe2; meanmS that, along optimal trajectories 6r = 9rsafe is constant 
and thus (3) becomes an affine system: 

xr = 
0 — £ tan WSafe i 0 

^ tan Wsafe i 0 0 
0 0 0 

xr + 
-V + Vcos6rsa,k 

Vsm6rsafe 

0 
(6) 

The boundary of the usable part on dG is given by BUP = {(xp, yp), (-xp, —yp)}, 
' =, 6r ^ 0 and yp = 4f\/l -cos0r. Integrating (6) directly where xp = \-j£&- r V2 VI—COS 

from the BUP, and eliminating time: 

(xr(t) + csin0r)
2 + (yr(t) + c(l - cos0r))

2 = (ö + Cy/2(1 - cos0r)) 
)  x2 (7) 

(xr(t) - csmOrf + (yr(t) - c(l - cos0r))
2 = (5 + cy/2(l - cos6r)J 

The maximal controlled invariant set W* = {(Xf U X| U where c = -T—-T—. g tan <pmax 
Xf) n X%} is a function of xr, where the sets Xj = {xr | hj(xr) < 0}, and 

hi(xr) = (xr + csin0r)
2 + (yr + c(l - cosÖr))

2 - (5 + cV2(l-cosÖr)) 

h2{xr) = {xr - csin6r)
2 + (yr - c(l - cos0r))

2 - (5 + C>/2(1-cosflr)) 

h3{xr) = -xr(l -cos9r) +yrsm6r 

h4{xr) = x2
r + y* - 25 

h<s{xr) = xrsm6r+yr{l-cos6r) . 

These sets are depicted in Figure 1 (projected onto {xr,yr) for a given 6r) and 
Figure 2. The control law on the boundary of W* is given by 

(8) 



464 M. Oishi et al. 

Fig. 1. Unsafe region for a given 9r    Fig. 2. Maximal Controlled Invariant Set W* 

«safefe.) = < 

4>: 

-4>: 

max 

max 

max 

max 

fer I pilfer) = 0 A h3(xr) < 0 A h5(xr) < 0)} 

fer | (h2(xr) = 0 A h3(xr) < 0 A h5(xr) > 0)} 
•   (9) 

Details of this analysis are presented in [18]. 

3.2    VSTOL FMS Model 

The safety analysis for the VSTOL FMS in TRANSITION mode follows [2]. Due 
to the high dimensionality of the system, we analyze the safety of the system 
in two-dimensional projections onto the (V,~/), (9,9), and (6,6) spaces. We then 
intersect these results to form the controlled invariant set W* = {W(y,7) n 
W(e,e)nW(s,8)}> where 

WV,7) = {x | (Vmin < V < Vmax) A (7min < 7 < 7max)} 

W(9t6) = [x | (9min <9< 0max) A (0min < 9 < 0max) A 

(-V2(fl - 0min)u2max/J < 9 < y/2(9 - Ömax)U2min/j) } 

W^ = |x | (6min <6< <5max) A (jmin < 6 < <jmax) A 

(—V/2((J - <5min)M3max < 6 < yj2(6 - <W)«3min)}    • 

(10) 

The set valued control law Usafe(x) restricts the control along certain boundaries 

of W*. With 6>! el 
2«2min 

£ 1" #max> #2 2u 2 
+ *1 = 2«3 + <5max, and 

5t, 
2u3 

^ + 6m-m, Usaie(x) is defined as: 
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(u1=T(a,S,Vmin,1)    s.t.   {Tcos(a + S)>aDVmm
2(l+b(l+ca)2) 

+mg sin 7) 
ui=T(a,5,Vr

inax,7)    s.t.   (Tcos(a +5) <aDVmax
2{l+ b(l + ca)2) 

+mg sin 7) 
Ul=T(a,6,V,lmin)    s.t.   (Tsm(9-lmin + 5)>-aLV2(l+c(9-lmin)) 

+mgcos7min) 
ui = T(a, S, V, 7max)    s.t.   (Tsin(0 - 7max + S) < -aLV2(l + c(9 - 7max)) 

+mpcos7max) 

U2 = «2 min 

"2 = W2max 

u2<0 
W2>0 

W3 = «3 min 
u3 = "3max 
W3<0 

lu3>0 

when (0 = -y/2(9 - 9min)u2max/J) A (9 > 9{) 
when (0 = y/2(0 - ömax)u2min/7) A (Ö < 02) 
when (0 = 0max) A (0 < 0i) 
when (0 = flmin) A (0 > 6>2) 
When (j = — A/2(J - Smin)u3max) 

A ((J > <$l) 
when (j = y/2(* - <5max)M3min) A (6 < 52) 
when (S = Jmax) A (S < 5i) 
when (j = <5min) A (<5 > £2)  . 

(11) 

4    Nonlinear Constrained Optimization 

We now seek to solve the nonlinear constrained optimization problem (2). In the 
case of the flight management system, this is fairly straightforward, as the con- 
trolled invariant set is already written as an intersection of inequality constraints. 
The collision avoidance scenario, however, results in an expression for the maxi- 
mal controlled invariant set which is represented as a combination (not just the 
intersection) of many inequalities. In order to use the optimization framework 
above, we introduce a mixed-integer programming framework to represent the 
maximal controlled invariant set as an intersection of inequality constraints. 

4.1    Collision Avoidance 

Binary variables S\, S2, £3 are introduced for each of the regions X\, X2 and X3 

(see Figure 1) [6]. By adding constraints which involve the binary variables, we 
can reformulate the inequalities which express W* as c\v(xr) < 0 from (2). 

h(xr) = 1 «■ /lifer) < 0.   »M1&.) < 'lifer) < A*l(l ~ tflfer)) 
h(xr) = 1 «• h2{xr) < 0, m2S2(xr) < h2{xr) < M2(l - 52{xr)) 
S2(xr) = 1 & h3{xr) < 0, m3S3(xr) < h3(xr) < M3(l - S3(xr)) 

(12) 

Si(xr)+52(xr) + 63(xr)<2 (13) 

Inequalities (12) express the sets Xi,X2,X3 with rrij = min^Xj and M,- = 
maxIr Xj. Figure 3 shows the possible {5i,52,S3) for a given 9r. Thus (13) in 
conjunction with the constraint that the system remain outside of G [x2 +y2 > 
25) can be used to represent W*. The continuous system is now a differential 
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Fig. 3. Possible (Si,S2,S3) combi- 
nations for a given 6r 

Fig. 4.  Optimization without safety con- 
straints over a shortened time horizon 

algebraic system, with nonlinear dynamics subject to algebraic inequality con- 
straints involving the states and control. 

The continuous dynamics in inertial coordinates are discretized with the ex- 
plicit Euler formula over N time-steps of size At. We wish to minimize the cost 
function 

N 

Jperf = J2 ((^!.fe ~ ^.o)2 + (^2,fc ~ ^2,o)2 + "?,* + u\k) (14) 
fc=l 

which penalizes deviations from the aircrafts' original headings while minimizing 
control effort. This minimization is subject to the following constraints, which 
involve the inertial and relative equations of motion, safety constraints, and final 
state constraints which return both aircraft to their original headings. 

%i,k = £i,fc-i + V At siwpi^ 
Vi,k = 2/i,fc—l + VAt cos ipltle 

^l.fc = V'l.fc-i + yAtta.nulik 

X2,k = x2,k-i + VAt sin ip2,k 
V2,k = V2,k-1 + VAtcosip2,k 

i>i,k = ip2,k-i + ^Attanu2,k 

+ cosipitk(y2,k -yi,k) 
yr,k = -costpltk(x2,k -a=i,fc) 

+ sin^iife(y2ifc -2/i,fc) 

&r,k = i>i,k ~ fafc  
rk = 5 + Cy/2{l-cos6r) 

miSitk < hitk < Mi(l - (5i>fc) 

(15) 

hi,k = (xr,k +cs'm6r:k)2 

+(yr,k + c(l - cos 9Ttk))
2 - r\ 

h2,k = (xr,k - csin^fc)2 m252M < h%k < M2(l - <52,fc) 
+(yr,k - c(l - cosör)fc))

2 - r\ 

h3,k = -Xrtk(l - cos 9rtk) + yrM sin 0r>fe    m383<k < h3ik < M3(l - S3tk) 
2 > <5l,fc + ^2,fc + <^3,fc 

(16) 

25 < x\k + y2
Tk     Vi,W = V'l.o     ip2,N = ip2,o (17) 
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4.2    VSTOL FMS 

Unlike the collision avoidance scenario, the restrictions for safety in the VSTOL 
FMS are already represented as the intersection of inequalities. We discretize the 
continuous system (5) through an explicit Euler formulation over N time steps 
of length /Ü. We wish to minimize the cost function 

-'perf (18) 

which penalizes large control inputs. This minimization is subject to the equa- 
tions of motion, initial, and final constraints. The initial state constraints fix 
inertial positions and velocities at XQ, XQ, ZQ, ZQ. Final constraints force the air- 
craft to reach a minimum desired velocity V} and desired altitude zj by the final 
time ijv- Additionally, final state constraints on 5 and 5 maintain continuity of 
the hybrid system across the switch from TRANSITION mode to CTOL (Con- 
ventional Take-Off and Landing) mode. (The system's continued trajectory in 
CTOL mode is not presented here). 

xk = xk-i + £t±k 
zk = zk-i +^tzk 

ek = 6k-i + ^tdk 
ek = ek-i + Au2tk/J 
h = 4-i + AtSk 
fa = fa-i + Äuzk 

Vk = yfä+% VN > Vf 

7fc = tan  1(ifc/ifc) zN > zf 

OLk = Qk-lk 5N =0 
Dk=aDVk

2(l + b{l + cak)
2) SN=0 

Lk =aLVk
2(l + cak) 

(19) 

Xk 

Zk 
= Xk-1 

Zk-1 
+ § (fl(7*-i) 

'-Dk-i 
Lk-i 

+ 

R( Öfc-i) 
Ul,k- 

uiifc_isin 
icosSk-i 
5k-i - ev '2,fc-l_ 

- 
u 

Mg 

(20) 

■y/2(0k-9kndn)u2,kmax/J <6k< y/2(ek - 0fcmaxKfcmin/J 
-y/2(Sk ~ famin)u3,kmax < 4 < y/2(5k ~ 4max)w3,fcmin 

(21) 

5    Results 

We modeled both examples in GAMS, a programming environment which in- 
vokes prescribed solvers for mixed-integer nonlinear programs (MINLPs) and 
nonlinear programs (NLPs) [19]. The MINLP solver, DICOPT [20], successively 
solves NLPs and mixed-integer linear programs (MIPs) until the solution con- 
verges to its optimum value. DICOPT used two nonlinear solvers, CONOPT [21] 
and rSQP [22], as well as the MIP solver CPLEX [23]. The plain NLP problems 
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used the nonlinear solver CONOPT. The three collision avoidance scenarios all 
begin at the same initial state x0 — [0 0 TT/2 8 7 n]T, but utilize different con- 
trollers to address (1) optimization with safety restrictions, (2) tracking with 
safety restrictions (no optimization), and (3) optimization without safety re- 
strictions. The two optimizations were computed in approximately 140 seconds 
and 4809 iterations, and 1 second and 3 iterations, respectively, on a Dell 400 
MHz single processor with 128MB RAM. The two VSTOL scenarios compare 
optimization with safety restrictions and tracking with safety restrictions. The 
nonlinear optimization completed in 330 seconds and 2356 iterations on a SunUl- 
tra60Creator3D with 384MB RAM. 

5.1    Collision Avoidance 

Optimization with Safety Constraints. The entire system (14)-(17) was 
optimized, constraining the optimal solution to lie within the range of allowable 
controls Usafe as well as within W* at each time point. The optimal trajectory 
smoothly navigates both aircraft in W*, and the resultant control does not 
chatter (Figure 5). This method produces a well-behaved control law and smooth 
trajectories for the aircraft. 

0 10 20 30 40 50 60 70 90 100 

40 50 80 70 SO 90 100 

time in seconds 

Fig. 5. Optimization with safety constraints: Trajectory in relative coordinates and 
control history 

Tracking with Safety Override. We contrast the results from the above 
method with a simple method used in [2] for longitudinal envelope protection. In 
this method, a tracking control law is overridden when necessary with the control 
law to enforce safety. The continuous system is subject to actuator saturation, 
and the state of the system is continually examined, enabling the safety controller 
(9) to override the tracking controller when the system encounters the boundary 
of W*. 
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Uperf{x) = 

tan-H-A^i-ViCO))) 
tan-H-Afcfe-iMO))). 

xGW* 

otherwise 
(22) 

The nonlinear inversion tracking control law places the poles of the error dy- 
namics on the negative real axis at —A = —1.5. While this approach is appealing 
in its simplicity, in practice it is problematic due to the chattering in the control 
law when the system switches from the tracking control law to the safety control 
law (Figure 6). The chattering results from the fact that the control law chosen 
for tracking is often completely contradictory to the control law necessary for 
safety. 
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Fig. 6. Tracking with safety override: Trajectory in relative frame and control history 

Optimization Without Safety Constraints. For completeness, the system 
is also compared to the one-step nonlinear optimization method used in [12]. The 
system (14,15,17) is optimized, maintaining aircraft separation and constrain- 
ing u € U. This requires only an NLP (not MINLP) solver since the maximal 
controlled invariant set is ignored. 

For generic initial conditions and time horizons, there is no guarantee of 
safety, of remaining within W*. As shown in Figure 4, the optimal control law 
leads the aircraft right to the boundary of G. While maintaining aircraft sepa- 
ration for the time over which the system is optimized, the aircraft are left in an 
orientation which will inevitably result in a violation of the minimum aircraft 
separation (4), demonstrating the advantage of two-step controller synthesis. 
Separating the safety and performance goals into a two-stage optimization prob- 
lem enforces safety over any time horizon. 

The computational difficulties associated with MINLPs make the NLP sce- 
nario, with minimum separation inequality (4) but no safety restrictions W*, 
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appealing for cases in which we know ahead of time that the time horizon we 
optimize over is "long enough" to complete the conflict avoidance maneuver. For 
a time horizon of 100 seconds CONOPT solved the system in 23 seconds and 
676 iterations, considerably less than the MINLP solver used in the optimization 
with safety constraints. 

5.2    VSTOL FMS 

We perform a similar comparison of two multiobjective methods for the flight 
management system. The aircraft begins at [xo if, z0 z0]T = [0 40 18 0}T in 
both cases. We compare the two-step controller synthesis, optimizing perfor- 
mance within the safety restrictions, with the method used in [2], overriding a 
tracking control law with the safety control law when necessary. 

The system (18)-(21) is optimized and plotted (solid) against the trajectory 
obtained from tracking (dashed) in Figures 7 through 10. The optimized trajec- 
tory is smoother than the tracking trajectory, does not cause pitch oscillations 
(as the tracking trajectory tends to do), and does not chatter despite reaching 
saturation in the thrust input. The considerable difference in nozzle angle tra- 
jectories (Figure 8) could result from the fact that our model does not account 
for interactions with the ground. 
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Fig. 7. Trajectories in longitudinal plane   Fig. 8. Nozzle angle and thrust time his- 
tories 

6    Conclusion 

The results of this paper serve to motivate the problem of developing computa- 
tionally efficient methods for multiobjective controller synthesis in hybrid sys- 
tems. We have shown that for nonlinear continuous state systems, it is feasible to 
combine safe set computation with constrained nonlinear programming in order 
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e [rad] 

Fig. 9. Trajectories in (V,7) Projection    Fig. 10. Trajectories in (0,6) Projection 

to compute solutions which satisfy both safety and performance goals. However, 
there are a number of issues which need to be addressed. The current solvers are 
very sensitive to the initial values of the state and control trajectories, so if these 
solvers were to be used in practice today, good intuition is needed to provide an 
initial iterate. Our results from the collision avoidance scenario could be readily 
extended to a higher number of aircraft by examining the relative separation 
between each aircraft pair. However, for this to be a feasible method to obtain 
optimal trajectories, solving a mixed-integer nonlinear program for nonlinear, 
trigonometric functions needs to become a simpler process. The representation 
of the maximal controlled invariant set in closed form is also required: currently, 
we can do this only for systems for which we can solve Hamilton's equations 
analytically. For more complicated systems, an underapproximation of the safe 
set with a simpler representation is required. Finally, we are now extending these 
techniques to systems with multiple discrete modes (the full hybrid model of the 
VSTOL aircraft), which requires optimization across the mode switch as well as 
within each mode. 
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Abstract. The paper concerns the representation of continuous-variable 
discrete-time systems with quantised input and state. It shows that the 
autonomous quantised system is represented by the Frobenius-Perron 
operator and the non-autonomous by the Foias operator. A finite and 
complete approximation of the Frobenius-Perron operator is given by 
an automaton which turns out to be identical to the discrete abstrac- 
tion of the quantised system that is currently studied in the literature 
on verification or diagnosis of hybrid systems. Hence, the paper shows 
a connection between the mathematical literature and hybrid systems 
research. As a result of this connection it is shown that the abstraction 
converges to the continuous system for finer quantisation. The paper 
ends with presenting a method for the computation of abstractions that 
guarantees the completeness of the resulting model. 

1    Introduction 

This paper concerns quantised systems (Figure 1), which are a specific type of 
hybrid systems. The injector and the quantiser are interfaces between the nu- 
merical signals of the continuous-variable system and the symbolical values that 
serve as input or output of the quantised system. The motivation for consid- 
ering such systems comes from process supervision, where the controller of a 
continuous system has only access to discrete input and outputs. 

Quantised system 
[u] 

Injector 
u 

—■=» 

Continuous- 
variable 
system    x 

X 
—5* Quantiser w 

Fig. 1. Quantised system. 

Quantised systems have been studied recently in the literature on verifica- 
tion of discrete control algorithms or on process diagnosis where the quantised 

M.D. Di Benedetto, A. Sangiovanni-Vincentelli (Eds.): HSCC 2001, LNCS 2034, pp. 473-486, 2001. 
(c) Springer-Verlag Berlin Heidelberg 2001 
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system is replaces by a discrete-event model, which refers only to the symbolic 
signals [u] and [a;] but does no longer include continuous-variable elements. This 
model is called a qualitative model of the continuous-variable system or a discrete 
abstraction of the quantised system. 

The main aim of this paper is to show that quantised systems can also be 
dealt with as a nonlinear system and studied by means of methods that have 
been developed in mathematical systems theory. The main idea is to consider 
the set of all states x of the continuous-variable system that have the same 
quantised value [x] and to follow the ensemble of all trajectories that start from 
this set. Such trajectory ensembles can be described by the Probenius-Perron 
operator (FPO), which has been introduced in the analysis of chaotic systems. 
This paper shows that autonomous quantised systems can be represented by the 
FPO. Hence, results from mathematical systems theory can be directly applied 
to quantised systems. First, it is shown that discrete-event models of quantised 
systems that are used in the hybrid system literature are discrete approximations 
of the FPO. Hence, well-known properties of discrete approximations of the FPO 
can be used to prove the convergence of the discrete abstraction for increasing 
resolution of the quantiser. Second, a method for computing complete qualitative 
models is derived by using the idea of hyperbox cell-to-cell mapping. 

Relevant literature. There are two lines of research relevant for this study. 
The first concerns the modelling of hybrid systems and their application to con- 
trol tasks. In order to overcome the difficulties brought about by the complexity 
of hybrid systems automata-theoretic descriptions have been proposed in [9] 
and [11] for quantised discrete-time continuous systems and [2], [5] or [10] for 
discrete-event quantised systems. The other line of research concerns the math- 
ematical study of nonlinear and chaotic systems. The FPO has been studied to 
analyse the evolution of densities of nonlinear transformations throughout the 
last decades. About 40 years ago a finite approximation method for the FPO 
has been suggested in [13]. Several years later it was shown in [7] for scalar 
systems and in [1] for multi-dimensional systems that the approximate operator 
converges to the FPO. 

This paper combines both lines of research and applies results on the FPO 
to the quantised system. 

Structure of the paper. The main idea of the presented approaches is to 
consider probability density functions in the state-space rather than single states. 
In Section 2 the temporal evolution of such density functions is considered. It 
is shown that this evolution is precisely described by the FPO. Section 3 deals 
with the approximation of the behaviour of the quantised system. The resulting 
qualitative model is a stochastic automaton given in Section 4. It is shown that 
this automaton is the result of a discretisation of the FPO. Section 5 deals 
with computational aspects of this discretisation. A fundamental requirement 
in process supervision is to obtain a complete model, which requires a sound 
approximation of the FPO. A method is presented that guarantees soundness 
for Lipschitz-constrained systems. 
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2    Evolution of Probability Densities in the State-Space 

2.1 Results from Measure Theory 

For a ^description of the behaviour of the quantised system essential concepts 
from measure theory are needed. For a more detailed introduction the reader is 
referred to the textbook [6]. 

Consider a set Q, which is usually the IR™, and a family er(ß) of subsets of 
Q. This family is called a <r-algebra, if 

1. fl€ CT(J2), and A G a{Q) => Q\A G cr(J?), 
2. for every sequence {Ak}, Ak G cr(ß)  =» [}kAk€ a{Q) 

hold. A measure is a function /x: Q -» IR+ that satisfies /x(0) = 0 and: 

The triple (i?,o-(ß),/u) is called a measure space and all A € <r(J?) measurable 
sets. A commonly used measure space is the Borel measure space (IR, B, fi), 
where the Borel c-algebra is by definition the smallest cr-algebra containing all 
intervals [a,b] on IR and the Borel measure is given by fj,([a,b]) = b — a. Its 
extension to higher dimension yields the space (\Rn,Bn,(in), which contains all 
hypercubes with their hypervolume as measure. For Q C IR" the corresponding 
Borel (T-algebra is denoted as B(Q). 

Given a measure space (ß,cr(ß),/x), afunctionp:/?-> IR satisfying p~l{£) G 
a{Q) or equivalently {A : p(A) G A] G a(Q) for every interval A C IR is called 
measurable. The Lebesgue integral is defined for every measurable function and 
is denoted by Jnp(uj)fi(du). For a set A G cr{fi) the Lebesgue integral is defined 
as fAp(u)(i(du>) = fnlA(u>)p(u)ii(du>) with the indicator function l^(cc) that 
is 1 for x G A and 0 otherwise. The Borel measure of every Borel measurable 
set A can be expressed as the Lebesgue integral: fx(A) = JA /i(rfw). 

In a measure space (ü,a(Q),fi) the family of all measurable functions p : 
Q -> IR for which ||p||i = fn \p(u)\fi(du) < oo holds, is called L1{Q,a(Q)^) 
(abbreviated as L1 space). A sub-space of L1 is the space 

D(Ü,a(Q),ti) = {p€L1  : p > 0, \\p\U = 1} 

of all density functions, i.e. those L1 functions that satisfy the properties of 
density functions in probability theory. 

2.2 Problem Statement 

For simplicity of presentation, the theory is developed now for autonomous quan- 
tised systems and extended to non-autonomous systems in Section 2.5. The 
continuous-variable system is described for a given measure space (ü,a(ü),ß) 

by 
x(k+l) = f(x(k)) (1) 
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with x e H and / : Q -> Q. The initial state x(0) is unknown. Instead only an 
initial density function p0{x) G D{ü,a(Q),p) is given. 

The aim is to find the probability with which the symbols [x(k)} describing 
the quantised state appear at the output of the quantised system in two steps: 

1. The evolution of the initial density function is described as sequence p(x, k) 
of density functions over the discrete time k, with p(x,0) = p0(x) and 
p(x, k) G D, Vfc. This problem will be solved in in Section 2.3. 

2. Prom the sequence of density functions p(x, k) the discrete conditional prob- 
ability distribution Prob([x(k)]\p0(x)) of the state symbols for given quan- 
tiser is derived. This problem will be investigated in Section 2.4. 

2.3    The Frobenius-Perron Operator 

Definition 1. Given a measure space (Q, a(Q),p) and a non-singular measure- 
able transformation f : Q -> Q, for which for every A G a(Q) with p,(A) = 0 the 
relation p(f-1(A)) = 0 holds. Then the Frobenius-Perron operator P : L1 -> L1 

associated with f is defined by: 

/ Pp(uj)p(du>) = / p(w)/i(dw) , for all A G a(Q) 
JA Jf~HA) 

(2) 

Note that P is implicitly defined by eqn. (2) as an operator which p € L1 into 
Pp G L1. 

If / : IR" -> IR" in (\Rn,Bn,pn) is a diffeomorphism, i.e. if / is bijective and 
both / and /_1 are differentiable, the FPO is explicitly given by 

Pp(x)=p(f-\x))     (df  X 

dx (3) 

where |(ö/_1/öa;)l denotes the determinant of the Jacobian of /_1 [6]. 
The FPO P is a linear operator. One of its most important properties is 

that it is a density operator, i.e. Pp(x) G D, whenever p(x) G D. Hence, the 
FPO solves the first problem given in Section 2.2. With p(x,0) = p0{x) G D 
eqn. (3) is used to determine the evolution of this density function recursively 
by: p(x, k + 1) = Pp(x, k). 

Examples. From eqn. (3) the FPO of / : IR+ -> IR+, f(x) = x2 is given 
by Pp(x) = p(y/x)/(2y/x). For the initial density p0(x) = 5 • l[0.6,o.8], which 
describes a uniform distribution of the system state in the interval [(16, 0.8], the 
FPO yields 

5 
p{x, 1) = Pp(x,0) = — • 1(0 62> 082]   and 

P(X, k) = Pkp{x, 0) = • lp.62», 0.82,, . 

As another example the FPO of a linear system x(k+l) = Ax with non-singular 
matrix A is given by Pp(x) = p{A~lx) ■ \ det^4_1|. 
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2.4    Representation of the Autonomous Quantised Systems 

In the following the measure space (Q,B(Q),nn), Q C \Rn is considered. The 
quantiser introduces a partition of Q into N regions Qx(l),..-,QX{N) such 
that nn{Qx{i)) > 0, i = l,..., N holds. According to this partition the quantiser 
assigns to each value x(k) a discrete value [x(k)} £ Afx with Nx = {1,2,..., N} 
such that x(k) e Qx(i) <=*> [x(k)\ = i holds. 

In terms of a L1 function p(x) the quantiser defines a projection to the subset 

/W = {P(*) : P(*) = X> • &'(*)> "i 6 IRK i1,    b\x) = J:^{))    (4) 

of all L1 functions that can be written as finite sum of some L1 functions bl(x). 

Definition 2. A projector is an operator QM '■ L1 -> AN with: 

N 

\ibl ,    Xi = 
i=1 JQ*d) 

N - 

QNP = Y/\ib
i ,    Xi= p(u)ßn(du) , (5) 

~1 JQx«) 

According to this definition, the projection is such that the weight Xi/fJ,n(Qx(i)) 
of each simple function lQx(i) is the mean value of p(x) in the region Qx(i). 

A discretiser is associated with the projector which maps a density function 
p(x) to an AT-dimensional discrete probability distribution Prob([x(k)}) £ WN 

with WN = {PD G [0, 1]* : ESLIPD = 1}. where PD 
is the uh element of the 

N-vector pn- 

Definition 3. The operator DN : D -> WN, DNp = (Ai,..., XN)' with A4 given 
by eqn. (5) is called (density) discretiser. 

Hence, the autonomous quantised system is described by 

p{x,k+l) = Pp{x,k),    p{x,0)=p0(x) (6) 

Prob(Hfc)] | Po(aO) = DNP(x, k) , (7) 

with initial density function p0(x). That is, it is represented by the FPO P of 
the continuous-variable system and by the discretiser DN associated with the 
quantiser. 

Example. Consider again f(x) = x2 in (IR+,B,/i) with p0(x) = 5 • 1[0.6, o.8] 
and the partition QX{1) = [0, 0.5), Qx{2) = [0.5, 1), ßx(3) = [1, oo). Then 
eqns. (6) and (7) yields (Figure 2): 

DNp(x, 0) = (0 1 0)'    DNp{x, 0) = (0.4645 0.5355 0)'    etc. 
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Fig. 2. Sequence of density functions. 
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Fig. 3. Explanation of Ulam's method. 

2.5    Extension to Non-autonomous Systems 

The aim of this section is to define an operator similar to the FPO for non- 
autonomous systems. As this operator is formulated as an operator acting on 
measures, first the FPO on measures is given. 

In Section 2.1 the Borel measure has been written as fi(A) = JAfi(du>). An 
important result of measure theory, the Radon-Nikodym theorem, says that for 
any measure v in {Q,a{Q),ß) satisfying n(A) = 0 => is(A) = 0 there exists a 
non-negative, integrable function p : Ü ->• IR such that 

v{A) fp(u 
JA 

>)fi(dw) (8) 

Such a measure v is said to be absolute continuous to /i. This result means that 
in a certain sense a density corresponds to a measure and vice-versa. Not every 
measure can be represented by a density function, but every density leads to a 
measure that is absolute continuous to the Borel measure. As a consequence, the 
FPO can be formulated as an operator transforming one measure into another 
instead of an operator transforming one density into another as done in the 
previous sections. 

Consider all finite measures on (ß,<r(J?)), i.e. all measures for which fi{A) < 
oo holds for all A G a(O), and denote the space of all these measures by M. 
Then the FPO P : M -> M on measures is given by 

Pv{A) [ M/( 
Jn 

u))v{dw) (9) 

For measures in the form (8) and non-singular transformations / the FPO on 
measures becomes the FPO in the form of eqn. (2) [6]. 

Consider now the non-autonomous system 

x(k + l) = f(x(k),u(k)) (10) 
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with x G Q, u G ^ and / : Q x $ -» Q together with the quantiser and injector 
as shown in Figure 1. In the following it is assumed that Q C IR", & C IRm and 
both Q and $ are closed and Borel measurable. Furthermore, for every fixed 
u G & the transformation f(x,u) is assumed to be continuous in x and for 
every fixed x G Q measurable in u. Borel measures used in the following are 
denoted by /j,n for B[Q) and \im for B(#). 

The injector is defined similar to the quantiser by a partition of & into M 
regions Qu(l),..., QU(M) such that fim(Qu(l)) > 0, I = l,...,M holds. For 
given discrete input I G Afu with JV„ = {1,...,M} the injector chooses a value 
u(k) from Qu(l) randomly according to a given time-invariant distribution. That 
is, for every I G Nu a probability measure 

V\B) =  f j?(il>)iim(dtl>)    for B G B(Qu(l)) (11) 
./B 

is given which is the same for all k. 
Under the assumption that the random vectors x(0), u(0), «(1),... are inde- 

pendent of each other, for each I G Afu the following operator can be defined: 

Definition 4. [6] The operator Pl : M -> M associated with the system (10) 
for given measure ul is defined by 

Pl
ß(A) = J[J U(/(W,-0))^W)}M(^) (12) 

with p G M and A G B{fl). This operator is called Foias operator. 

Remark. In controlled systems the independence assumption concerning 
the initial states and the inputs is usually not satisfied. It has not yet been 
investigated whether the Foias operator can be extended avoiding the use of a 
product of measures as in eqn. (12) requiring the independence assumption. 

By means of the Foias operator the non-autonomous quantised system with 
initial state measure Ho(A) = fApo(u>)fJ.n(.du>) is described by 

»k+1{A) = p["<fcVfcW>    MA) = / p(«, k)fin(du) (13) 
JA 

Prob([»(fe)] |po(a:), [«(0)], -, [«(*)]) = DNp(x, k) , (14) 

for any A G B{Q) assuming that the transformation f(x,u) is such that all 
measures obtained by application of eqn. (13) are absolute continuous to the 
Borel measure \in. According to eqns. (13), (14) the non-autonomous quantised 
system is represented by the set of Foias operators PM obtained for [u] G Mu 

each depending on the corresponding measure i/M introduced by the injector 
and the discretiser DN associated with the quantiser. 

The difficulty is that the representation of the non-autonomous system (13)- 
(14) is described by a transformation of measures rather than by a transfor- 
mation of densities. The Foias operator can be transformed into an operator 
on densities similar to the FPO in eqn. (3) but, in contrast to the FPO, this 
representation still depends upon the given densities. 
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3    Approximate Representation of Quantised Systems 

3.1    Approximation of the FPO 

In the previous section the FPO and the Foias operator as representations of the 
quantised system were introduced. However, a closed form of the FPO as given 
in the examples in Sections 2.3 and 2.4 can only be found for simple systems, 
and the Foias operator cannot even for simple systems be given explicitly. 

Hence, if the FPO should be used to solve process supervision tasks, an 
approximation of the FPO is needed that can be found explicitly for arbitrary 
transformation /. The approximation presented in this section is based on the 
restriction that the FPO should not be applicable to all L1 functions but only to 
those which can be represented by a finite sum of indicator functions (so-called 
simple functions). More precisely, as before, the measure space (ß,ß(/?),/un), 
Q C IR" is considered with a partition of fi into N regions Qx(l),..., QX(N) 
and the subset AN of all L1 functions as in eqn. (4) is used. In order to apply the 
FPO to the quantised system, this partition is set to the partition introduced 
by the quantiser (cf. Section 2.4). 

Definition 5. The quantised Frobenius-Perron operator with respect to f is 
defined as the operator P^ '■ AN —> AN with: 

N 

P^(x) = ^Prob(i|j).bi(x),    Prob(i|j) = ^n(/"1(f^^Q^j)),   (15) 

The quantised FPO has been introduced in [13] and is also called Ulam's piece- 
wise constant approximation of the FPO. The conditional probabilities Prob(i\j) 
define a Markov chain with the state set {1,... N} or, in terms of qualitative 
modelling, an autonomous stochastic automaton (cf. [9], Section 4.2). 

Figure 3 explains the meaning of eqn. (15). The conditional probability 
Prob(i|j) describes the probability that the successor state of the continuous- 
variable system (1) is in Qx(i) if it is known that the system state is currently in 
Qx(j). It is given by the ratio between the measures of the set /"1(öa:(j))nQx(j) 
and of the entire region Qx(j). 

The following theorem describes the relation between the FPO and the quan- 
tised FPO using the projector QN of Definition 2. 

Theorem 1. [1] For allp{x) <s AN the relation PNp(x) = QNPp(x) holds. 

According to this theorem, the map PNp(x) of any function p(x) 6 AN deter- 
mined with the quantised FPO PN is the same as the projection of the precise 
map Pp(x) by the continuous FPO to AN. Note that the theorem only holds in 
terms of the projection to AN. Hence, the theorem means that the weights of 
the bl{x) determined by PN are the same as the A* obtained by application of 
eqn. (5) to Pp(x). 

Theorem 2. [7] For allp(x) e AN the relation PNp(x) j^^Ppix) holds. 

This important result means that for increasingly finer partition the quantised 
FPO converges to the FPO, for any transformation /. 
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3.2    Extension to Non-autonomous Systems 

As before the measure spaces (Ü, B{0),/J.n) with Q C IRn and (#, B(&), //") with 
\P C IRm are considered. In addition to the partition introduced in the previous 
section, further partitions of each Ql

u could be introduced to approximate the 
Foias operators. Instead, as the input set ^ is already partitioned, each input 
distribution pl(u) as introduced in eqn. (11) is approximated by a single indicator 
function using the projector of Definition 2: 

n  i, ,    JQ„(0P'WM"W)       lew 
QiPW = - - 

After partitioning the state set J? as before the following operator can be defined: 

Definition 6. The quantised Foias operator with respect to the transformation 
f is defined as the operator Pjy : AN —> ^JV with: 

PifVfa) = }^Prob(i\j,l) ■ b (x), Prob(z|j,0 = ti
n+m(Qxu(j,l))  

(16) 

and Qxu(j,l) ■= Qx{j) x Q«(0- 

Figure 3 can also be used to explain the quantised Foias operator. /_1(QX(*)) 
defines a set of states and inputs in the compound state and input set J? x $. 
Eqn. (16) is the relation of the measures of the subset of /_1(Qx(i)) lying in 
Qxu(j,l) and the entire region Qxu(j,l). 

Theorems 1 and 2 seem to hold for the quantised Foias operator, although 
this has not yet been proved in literature. 

4    Qualitative Modelling 

4.1    Modelling Aim 

The methods described in the previous section were developed in the literature on 
nonlinear, especially chaotic systems. Hence, they were applied with partitions 
as fine as necessary for obtaining numerically precise solutions for stationary 
densities etc. (cf. e.g. [3], [12]). 

In contrast to this, the aim of this paper is to obtain a model for process 
supervision purposes while leaving the partition as rough as possible or by using 
partitions that are given by measurement devices. Nonetheless, the models used 
in this section turn out to be identical to the quantised FPO for autonomous 
systems or to the set of quantised Foias operators for non-autonomous systems. 
Hence, the results of the previous sections show the connection between the 
qualitative modelling approach and nonlinear systems theory though the field of 
application is completely different. The main difference is that the application 
to process supervision requires completeness: 
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Definition 7. Denote the variable of the qualitative model corresponding to 
[x(k)] by z(k). A qualitative model is complete if 

Prob([aj(fc)]|p0(aj),[«(0)],...)[u(fc)])>0 

=>     Prob(z(fc)|po(aj),[ti(0)],...,[«(fc)])>0 (17) 

holds for any input symbol sequence and for any initial density po{x). 

4.2    Qualitative Model of the Quantised System 

A stochastic automaton S(Nz,Mv,F,pz(ti)) is used as qualitative model of the 
system (13)-(14). The set Afz = {1,...,N} is the finite set of automaton states, 
Afv = {1,.. • ,M} the set of input symbols, and p2(0) G WN the initial state 
probability distribution. The transition relation F 

F : Nz x Afz x Mv -> [0, 1],    F(z', z, v) = Prob(z'|z, v) 

describes the conditional probability that the automaton state changes from z 
to the successor state z' for input symbol v. 

In order to approximate the quantised system, the automaton S is used with 
■A4 = A4 and Mv = A4- The stochastic automaton defines the set of operators 
pv .WN _^ WN giyen by 

N N 

Pvp = Y^(PZPVSZ),  with Pvöz = Y, FW, z, v) ■ Sz' , (18) 
2 = 1 Z' = \ 

where 8Z G WN denotes the unit vector (0... 1... 0) whose z-th element is equal 
to one, and pz the z-th component of the vector p G WN. 

The set of all quantised states i that can be reached by the quantised system 
from the quantised state j for the quantised input / is denoted by 

7~QSC?,0 = {*  :  Prob(t|j,J)>0} (19) 

with Prob(i|j, I) defined by eqn. (16). Similarly, 7>(z,w) denotes the set of states 
reached from automaton state z for input v. TF(z,v) = {z' : F(z',z,v) > 0}. 

Definition 8. A stochastic automaton S(Afz,Afv,F,pz(0)) is called sound with 
respect to a given quantised system, if the following relations hold: 

TF(z, V) D Tqs(J = z,l=v)        Vz G Mz, v G Afv (20) 

DNPO(X) > 0 =>pz(0) > 0    (componentwise) (21) 

Theorem 3. A stochastic automaton is a complete model of the quantised sys- 
tem if and only if it is sound. 

Proof. The necessity is obvious because if the automaton is not sound there is 
at least one transition occurring in the quantised system that cannot occur in 
the automaton, which violates the completeness (17) for k = 1. The proof that 
soundness is sufficient is given in [8]. D 
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According to this result, eqns. (13)-(14) representing the non-autonomous 
quantised system can be approximated by the simpler equations 

pz{k + l) = P{u{k)]Pz{k) (22) 
Prob(*(fc) | po(x), [«(0)],..., \u(k)}) = pi (23) 

where the operators pM contains a transition relation F fulfilling condition (20), 
and pi fulfils condition (21). Eqns. (22) and (23) approximate the quantised 
system and fulfil the modelling aim (17). 

Remark. The best sound model is obtained, if the transition relation is set 
according to the transition probabilities of the quantised Foias operator 

F(z'z'u) = /*»+"«W*,tO) ( } 

(cf. eqn. (16)) and, if the initial probability distribution pz
0 = DNp0{x) is used. 

F* is the best transition relation, i.e. it contains the smallest possible set of 
transitions necessary for soundness. 

5    Sound Abstraction of Qualitative Models 

Whereas it is easy to fulfil the soundness condition (21) it is difficult to prac- 
tically compute a transition relation F for given quantised system such that 
condition (20) is satisfied. In this section a method for computing F is presented 
that guarantees soundness and converges to F* for increasing approximation 
accuracy. Furthermore it is explained why the "classical" point mapping does 
not guarantee that the resulting models are sound and, hence, cannot be used 
to compute qualitative models for process supervision. 

Both methods presented in this section use a "forward" way to determine 
the transition probabilities (16): 

r>    u/-,-n      M"+m(((g,") € Qxu(j,l) ■ f(x,u) € Qx(i)}) 
Prob(l|j'° = A*-+m(e»(i,0) ' 

The set described in the numerator of this fraction is the same as in eqn. (16) 
but it is described by using the transformation f{x,u) instead of its inverse. 

5.1    Point-Based Cell-to-Cell Mapping 

The classical method to compute transition probabilities from one cell of a parti- 
tioned space to another is point mapping [4]. It is widely used for the analysis of 
nonlinear dynamical systems and originally formulated only for autonomous sys- 
tems. In the following the method is briefly summarised and applied to compute 
an estimate of the transition relation. 

The main idea is to take a selection of points of each region Qxu(j, 0 

Qxu(j,l) = {(xi,u1),{x2,u2),...,{xK,uK)}, 

with    (xK,uK) G Qxu(j, 1),K=1,...,K , 
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such that they are uniformly distributed over Qxu(j,l). For each point {xK,uK) 
of Qxu(j, I) eqn. (10) is used to compute the map f(xK, uK). The partition of Q 
is used to determine the successor state i. Doing this for all points K = 1,...,K 
the sets 

Qxu(%J,l) = {(x,u) \ (x,u) e Qxu(j,l),f(x,u) £ Qx(i)},    i = l,...,JV   (25) 

can be constructed. Then the transition relation is approximated by 

F-(z>,z,v)=A^Z'>Z>V»,    i = l,...,N 
A(Qxu(z,v))    ' '    ' 

where A(-) denotes the number of points contained in the set and F~ denotes the 
obtained transition relation. According to the law of large numbers this estimate 
of the transition probabilities converges to F* for K -» oo. 

This method can directly be implemented on a computer. As the sets Qxu(j, I) 
are finite and, therefore, a finite number of mappings with eqn. (10) leads to 
Qxu(i,j,l), all sets can be stored in a computer memory. Furthermore the im- 
plementation is very simple as only partition and mapping functions are required. 
However, the problem of point mapping is that the soundness of the obtained 
model cannot be guaranteed. More precisely, for F~ the relation 

7>- (z, v) c 7>. (z, v)   V (z, v) e Mz x Mv (26) 

rather than the soundness condition (20) holds. This means that only in the ideal 
case that TF- (z, v) = TF- (Z, V) holds for all z, v a complete model is obtained. 
Practically the number of points to be mapped must be so high that with rea- 
sonable computational effort even for simple systems only an incomplete model 
with Tp- {z, v) c TF' {Z, V) can be obtained. 

5.2    Hyperbox Cell-to-Cell Mapping 

In this section a method is presented that guarantees soundness. It is assumed 
that / satisfies a Lipschitz condition, i.e. a number <f> £ IR+ exists such that 

\\(f(x1,u1)-f(x2,u2))\\00<^- Xi -x2 

«1 -M2 
(27) 

holds where the infinity norm || • H^ is used. For simplicity reasons it is as- 
sumed that all partitions are orthogonal resulting in hyperboxes Qx and Qu 

(cf. Figure 4). 
The idea will be described by using Figure 4. On the left-hand side of the 

figure the state-input-space Q x & is shown. The dashed lines symbolise the 
partition bounds and the cell Qxu(j,l) to be mapped, depicted in light gray, is 
assumed to be quadratic with a sidelength of 2r°. Initially only the black centre 
point (a:0,«0) is positioned used. The cell can be described by: 

QxuO'.O = {(«,«) I H(aJ,«)-(aj' 
0 u°) <r0}. (28) 
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Fig. 4. Hyperbox mapping. 

The point (x°,u°) is mapped to the state-space Q by eqn. (10) resulting in 
the black point f{x°,u°) depicted on the right-hand side of Figure 4 (for s = 
0). Due to the Lipschitz constraint (27) the map of the box Qxu(j,l) can be 
overapproximated by the box 

gapprox = {x | ^ _ /(a;°, W°)||oc < r° . <f>} . 

which degenerates to an interval in Figure 4. If, as in the figure the set Q*PProx 

overlaps with more than one partition of Q, it is not known whether this overlap 
results from the overapproximation of the map of Qxu. Therefore, the box in the 
state-input-space Q x ^ is subdivided into 3"+m = 9 boxes. The additional grey 
points are mapped, resulting in grey intervals in Figure 4, for s = 1 with length 
r°(j)/3. A corner check reveals whether or not the boxes lie completely within 
one region i of the partitioned state set. Mapped boxes that cover more than 
one partition region of Q have to be further subdivided in the state-input-space. 
The subdivision can be stopped when the size of the mapped approximation 
boxes with radius r°^>/3s became smaller than the partition of Q, where s is 
the number of subdivisions. Then the quantisation of the corners of the mapped 
boxes cover all possible successor states i that could possibly be reached by 
the map of Qxu(j,l)- This guarantees soundness. The subdivision can also be 
continued to further increase the accuracy of the approximation. In Figure 4 
the subdivision can be stopped at s = 1 to guarantee soundness. However it is 
continued to determine the areas of Qxu{h,j,l) and Qxu(i2,3,l) more precisely. 

Theorem 4. The hyperbox cell-to-cell mapping yields a sound automaton. The 
estimate of the transition probabilities converges to F*(z', z, v) for all z', z, v for 
increasing number of subdivisions. 

Due to space limitations the method cannot be formally introduced and 
proved in this paper. However, the soundness becomes clear from the Lipschitz 
condition, as the map of each box is conservatively approximated and the whole 
partition region Qxu(j,l) of the state-input space is covered by boxes. Figure 4 
shows that the relevant Borel measures in the state-input-space are approxi- 
mated with increasing accuracy if more and more subdivisions of the boxes are 
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used. Simultaneously the estimate of the transition probabilities converges to 
the corresponding value of F*. 

6    Conclusions 

It has been shown that quantised systems can be represented by the Frobenius- 

Perron operator for autonomous or the Foias operator for non-autonomous sys- 
tems. As a consequence, results of the FPO theory can be applied to quantised 
systems. It is shown that a finite approximation of the FPO is identical to the 
abstraction of the quantised system in form of a stochastic automaton. With this 
it has been shown that the abstraction converges to the FPO with finer quan- 
tisation. Furthermore, methods have been presented to compute abstractions of 
the quantised system. A hyperbox cell mapping method has been presented to 
guarantee the completeness of the abstraction. 
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Abstract. The algorithmic design of least restrictive controllers for hy- 
brid systems that satisfy reachability specifications has received much 
attention recently. Despite the importance of algorithmic approaches to 
controller design for hybrid systems, results that guarantee termination 
of the algorithms have been limited. In this paper, we extend recent 
decidability results on controller synthesis for classes of linear hybrid 
systems to semi-decision procedures for triangular hybrid systems which 
can be used to model nonholonomic systems after a transformation. Our 
results are then applied to verification of a conflict resolution maneuver 
from air traffic control. 

1    Introduction 

Safety criticality in motivating applications [13] of hybrid systems has resulted in 
much research on computing reachable sets for hybrid systems in order to ensure 
that these systems avoid unsafe regions of the state space [2,3,4]. Furthermore, 
much research has recently focused on controller synthesis of hybrid systems 
where the safety property is ensured by design [1,6,7,12]. 

The complexity of the motivating applications makes algorithmic approaches 
to controller synthesis very desirable, whenever possible. However, termination 
guarantees for algorithmic approaches to synthesis have been limited. In partic- 
ular, the game theoretic framework for controller synthesis introduced in [6] was 
only recently shown to result in decision procedures for various classes of linear 
systems [9], and semi-decision procedures for classes of linear hybrid systems [10]. 

In this paper, we proceed along the same spirit of [9,10] but we increase the 
complexity of the continuous dynamics to capture triangular hybrid systems, 
which are defined as hybrid control systems whose continuous dynamics in each 
discrete state are nonlinear with a triangular structure. Triangular nonlinear 
systems is a rich class of nonlinear systems that capture the so-called chained 
systems, which can be used to model nonholonomic systems after a state trans- 
formation. Nonholonomic systems have been very useful kinematic models of 
aircraft, robots, space robots, etc [5]. In this paper, we consider the follow- 
ing controller synthesis problem: Given a triangular hybrid system, compute the 
maximal control invariant set of initial conditions and least restrictive controller 
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© Springer-Verlag Berlin Heidelberg 2001 
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such that for all disturbances the state will avoid an unsafe set. In particular, 
we present a semi-decision procedure which, if it terminates, exactly solves the 
above problem. 

The solution of the above problem depends critically on state of the art 
techniques from controller synthesis of hybrid systems. In particular, we adopt 
the general framework for controller synthesis of nonlinear hybrid systems [6], 
while we follow in spirit the approach taken in [9]. In particular, we focus on 
continuous games for triangular nonlinear systems. Application of the maximum 
principle leads to bang-bang optimal controls and a triangular structure in the 
co-state equations. Rather than solving the Hamilton-Jacobi partial differential 
equations for reachability computations, we abstract the bang-bang nature of the 
optimal control to a hybrid system. The piece-wise constant nature of the optimal 
inputs and disturbances, and the triangular structure of the state and co-state 
dynamics leads to polynomial flows for the states and co-states. This allows us to 
use quantifier elimination in each discrete state of the abstracted game to perform 
reachability computations. The above sequence of steps results in a semi-decision 
procedure for controller synthesis for triangular hybrid systems. However, unlike 
classes of linear systems where the number of switchings is uniformly finite [9], 
no such guarantee exists for triangular systems, making very difficult any claims 
for a decision procedure. 

The structure of this paper is as follows: In Section 2 we review the synthesis 
framework of [6]. In Section 3 we present a semi-decision procedure for reach 
set computation in triangular nonlinear systems, which is lifted in Section 4 
to triangular hybrid systems. These results are then applied in Section 5 to a 
verification of a conflict resolution maneuver from air traffic control. 

2    Controller Synthesis for Nonlinear Hybrid Systems 

In this section we review the framework for computing the maximum controlled 
invariant safe set for general nonlinear hybrid systems [6,12]. 

Definition 1 (Hybrid system). 
A hybrid system H is a collection (X,V,I,f,E,<f>), with: 

- State and input variables: X and V are disjoint collections of state and 
input variables. We assume that X = XQ U XQ and V = Vp U Vc, where Xc 
and Vc contain continuous, and Xu and VD discrete variables. We refer to 
valuations ieX and v €V as the state and the input of the hybrid system. 

- Initial states: I C X is a set of initial valuations of the state variables. 
- Continuous evolution: /:XxV-> TXC is a vector field. 
- Discrete transitions: E C X x V x X is a set of discrete transitions. 
- Admissible inputs: 4> : X ->• 2V gives the set of admissible inputs at a 

given state a: £ X. 

It is customary to use the notation (q,x) = (X\XD,X\XC) G X. The meaning of 
the variable x will be clear from the context. 
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For any input v = (u, d) G V, define the set: 

Inv{v) = {x G X | v G <f>(x) A (x,v,x) G E}. 

For a state i£X and input u = (u,d), define: 

Inv(v) is the set of states from which continuous evolution is possible under 
input u, while Next(x, v) is the set of states that can be reached from x under 
input v through a discrete transition. For any set K C X and input v = (u, d) 
the successor of K under v is given by Next(K,v) = \Jx€K Next(x,v). 

For any set K C X define the controllable predecessor of K, Preu{K), and 
the uncontrollable predecessor of Ä', Pre^K), by: 

iJre„(JK') = {x6X|3iieUVrfeDi^ /««(i;) A Next(K, v)CK}f\ K, 

Pred{K) = {x G X | Vu G U 3d G D iVe:rt(.ftT, v) n Üfc ^ 0} U Kc. 

where u = (u,d). Preu(K) contains all states in K for which u can force a 
transition back into K. Pred(K) contains all states outside K together with 
those states for which it is possible to transition outside K regardless of the 
action of u. Whereas Preu and Prej capture information about regions of the 
state space that can be reached through discrete transitions of the system, the 
following operator [12] captures continuous reachability information. 

Definition 2 (Reach-A void). Given a hybrid system H and disjoint sets K, 
GCX, the operator Reach : 2X x 2X -> 2X is defined as: 

Reach(K, G) = {x0 \ Vu G U3d eV3t>0: x(t) G K A Vs G [0, t] x(s) <£ G}, 

were U, V denote the set of piecewise continuous functions from the H to U, D 
respectively, and x(-) is the unique state trajectory starting from initial condition 
x(0) = xo under the input (u,d). 

The set Reach(K, G) contains the states from which for all controls there exists 
a disturbance such that the state trajectory can be driven to K while avoiding 
the escape set G. The following algorithm uses the Reach operator to compute 
the maximal controlled invariant subset of F (see [12]). 

Algorithm 1 (Maximum Controlled Invariant Safe Set) 
initialize 

W° = F;    W-1 = 0;    * = 0 
while Wi ^ Wl~l 

Wi-i =wi\ ReachiPreaiW1), Preu(W*)) 
i = i — l 

end while 
W* := Wi 

end 
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Algorithm 1 iteratively removes from the safe set F all states for which 
there is a disturbance which either through continuous evolution or discrete 
transition can bring the system outside F regardless of the control action. In 
order to implement Algorithm 1, one needs to encode sets of states, perform 
set intersection, union, test for emptiness, and exactly compute Reach(-, •). If all 
these conditions hold for a class of systems, then the problem is semi-decidable 
for that class of systems. Even though there is no guarantee of termination, if the 
algorithm terminates, then it exactly computes the unique maximal controlled 
invariant set W*. If in addition, Algorithm 1 is guaranteed to terminate after 
a finite number of iterations for a class of systems, then we say the problem is 
decidable for that class. 

The main difficulty in the implementation of Algorithm 1 is the computation 
of the Reach operator. For general nonlinear hybrid systems, the computation 
of Reach relies on the numerical solution of a pair of coupled Hamilton-Jacobi 
partial differential equations [7,12]. In this paper, we show that for a certain 
class of nonlinear hybrid systems with triangular continuous dynamics each step 
of Algorithm 1 is symbolically computable. This class is rich enough to capture 
hybrid systems with chained nonlinear dynamics, which model nonholonomic 
kinematics for aircraft, cars, and robots. 

3    Computing Safe Sets for Triangular Nonlinear Systems 

In this section, we address the problem of computing maximal controlled invari- 
ant safe sets for a class of nonlinear control systems subject to disturbances. The 
computation of maximal safe sets is a fundamental step in the least restrictive 
controller synthesis problem [6]. In this section, we extend the methodology of 
symbolic controller synthesis for classes linear systems described in [9] to a class 
of nonlinear systems. 

For a differential game x = f(x, u, d) between inputs u€U C M"u and dis- 
turbances de D C Hnd, the solution to the controller synthesis problem requires 
the computation of the set of initial states for which there exists a disturbance 
that can eventually drive the system to some unsafe set regardless of the ac- 
tions of the control. Therefore the controller synthesis problem for continuous 
time system requires the computation of the continuous system version of the 
Reach-Avoid set. 

Definition 3 (Reach-Avoid). Given a differential game x = f(x,u,d) and 
disjoint sets K,G C M™, the operator Reach : 2R" x 2R" -> 2R" is defined as: 

Reach(K, G) ± {x0 | W e U 3d e V 3t > 0  :  x(t) G K A Vs e [0, t] x(s) <£ G}, 

where U, V denote the set of piecewise continuous functions from the R to U, D 
respectively, and x(-) is the unique state trajectory of x = f(x,u,d) starting from 
initial condition x(0) = x0 under the input (u, d). 

The set Reach(K,G), which is graphically depicted in Figure 1, contains the 
states from which for all controls there exists a disturbance such that the state 
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Fig. 1. Showing a graphical depiction of Reach(K, G). 

trajectory can be driven to K while avoiding the escape set G. It was shown 
recently that the computation of Reach is decidable for certain classes of linear 
systems [10]. Here we extend the result to a class of nonlinear systems. As a 
motivating example, consider the following nonlinear system in so-called chain 
form: 

x®   = Uj 

: XlUj 

-fc-1. 

j = 1,... , m and i < j (1) 
xij *ui      J = 1) • • • !m and i < j and k = 2,... 

Control systems of the class shown in equation (1) are quite important because 
they can be used to model many types of nonholonomic and under-actuated 
systems including unicycles, cars, multi-steering trucks with iV-trailers, space 
robots, etc. [8]. We now apply the symbolic controller synthesis methodology 
described in [9,10] to this chain form system. 

3.1    Computation of Optimal Control 

For the chain form system (1), suppose we wish to compute the set of initial 
conditions W C IR" for which there exists a control «(•), constrained to a com- 
pact rectangular feasible control set U C ]Rm, that can steer the state to the 
goal G c IR" while avoiding states B c IR". This problem is closely related to 
the problem of nonholonomic motion planning in the presence of obstacles [5] 
and is equivalent to computing W = Reach(G,B). 

To solve the reachability problem, we first introduce the co-state p £ M" and 
construct the Hamiltonian: 

H(x,P,u) = pTf(x,u) = Er=1 (P° + JXl (pfcs? + TZUpIrff1)) uj. 
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The Hamiltonian satisfies the state and co-state differential equations x  = 
dH 
dp ' P = 

.n 
p 

-^. Prom the Hamiltonian, we compute the co-state dynamics: 

n 

j.0        _ 
-Pijuj 

•0 \-^.m 
Pi    = - Ej= :lPijU3 

j = 1,... , m and i < j 

,7 = 1,... , m and i < j and k = 2, 

i = 1,... , m. 

Notice that the chain structure of the system dynamics is inherited by the co- 
state dynamics. Next, we initialize the co-state as the inward-pointing normal 
on the boundary of G and apply the Pontryagin Maximum Principle to compute 
the optimal control u* = argmaxu6(/ H(x,p, u). Since the feasible control set is a 
compact rectangle U = T\^Li\Uj,Uj] C Hm, we may decompose the Maximum 
Principle for each component of the input: 

u* = argmax„je[Ej ^ (p° + £ti (p^° + E^P^1)) «,-• (2) 

3.2    Construction of Hybrid System 

The Maximum Principle calls for bang-bang controls: the optimal controls will 
always lie on the vertices on the feasible control set U. From equation (2), it is 
direct to see that u*j is either Uj or Uj depending on the sign of the "switching 
function" of the state and co-state which multiplies Uj. Thus, as proposed in [9, 
10] we can construct a hybrid system which has 2m + 1 discrete states: One 
discrete state for each vertex of the rectangle U, and one discrete state for stop- 
ping the reachability computation on the obstacle set B (see [10]). The guards 
and invariants for the constructed hybrid system are defined by the "switching 
functions" in the optimal control shown in equation (2). 

3.3    Reach Set Computation 

For each discrete state of the constructed hybrid system we need to solve a 
reachability computation for a system of the form: 

*? = «; 

*b = *?«; 
**i = xk~lu* 

Pij = 0 

*r = -Piju*j 

p° lPy«i 

,m 

, m and i < j 

, m and i < j and k = 2,... , rij 

, m and i < j. 

, m and i < j and k = 2,... , rij 

, m, 

(3) 

where Uj is a constant rational number. It is easily shown that the problem of 
computing the reachable set of this system is decidable. Indeed, due to the chain 
form of the state and co-state dynamics, we may iteratively compute the flow 
of the system by symbolic integration and substitution starting from x® and 
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proceeding down the chain. By symbolic integration the flow of this system is 
computed to be: 

x°(i)   = x°i(0) + u*t i = l,...,m 

4W = 4-(°) + x°i (°K* + 5<«i*2 

P^(*)=P«(0) j = l,...,mandi<j 

P%{t) = E?iok ^^^'(O) j = 1, • • • ,m and t < j and fc = 1,... ,n, 

P?W =p?(o) + Erii_liz¥l!Pi(o) i = l,...,m. 

We use the notation x(t) = cf>(x0, u, t) to denote the state x(t) which is a result 
of flowing for t seconds along the dynamics of the system with input u starting 
at the initial condition x(0) = x0. Since the flow of this system is polynomial, it 
admits quantifier elimination [11], and hence the computation of the set of points 
which can reach a semi-algebraic set K, {xo € It™ \3t > 0 : <j)(x<j,u*j,t) G K} 
for each discrete state of the constructed hybrid system is decidable. 

The only remaining condition of interest for the constructed hybrid system 
is an upper bound on the number of switchings between the discrete states. 
For the case of linear systems with dynamic matrices that are either nilpotent or 
diagonalizable with real rational eigenvalues, a result of Pontryagin provides that 
the number of switchings of the optimal control is no greater than the dimension 
of the system. For these classes of systems, we are able to show decidability of 
the least restrictive controller synthesis problem [9]. We can make no such claim 
in the case of chain form systems of the type in equation (1). In general there 
is no upper bound on the number of switchings on the optimal control defined 
in (2). Hence we conclude that controller synthesis problem for the class of chain 
form systems is semi-decidable. 

3.4    Triangular Systems 

Upon examination, we realize that there are essentially two features in the struc- 
ture of chain form systems that allow the above methodology to work: 

1. The vector field has linear terms in u. 
- Thus the Hamiltonian has linear terms in u, and applying the Maximum 

Principle, we see that the optimal input u* is piecewise constant on the 
vertices of the feasible control set. 

- This allows us to construct a hybrid system out of the switching logic of 
the optimal control, where for each discrete state there is a constant u*. 

2. The time derivative of each state is a polynomial in the input and the pre- 
ceding states of the chain. 
- For a constant u* the flow can be computed iteratively by symbolic 

integration and substitution starting from the beginning of the chain. 
- Since u* is constant and the vector field depends polynomially in states, 

the flow of the system is polynomial in u*, t and the state. 
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- This structure is inherited by the co-state dynamics and hence the flow 
of the co-state can also be symbolically integrated. 

The observation above suggests that the methodology for symbolic reach- 
ability computation will also work on the following larger class of triangular 
nonlinear systems. 

Definition 4 (Triangular nonlinear system). 
A nonlinear system x = f(x, u) is called triangular if it can be written as: 

x0 = a + jyjLi °jui 
x\ = /i(zo) + EJLi 9ij(x0)uj 

X2 = h(X0, Xi) + YJjLl 92j(X0, Xi)Uj 

in = fn(x0,... ,Xn-i) + Y^=l9nj(xo,-..  ,Xn-{)Uj, 

where a, bj £ Q and fu gtj € Q[x0,... , x^j] fori = l,...,nandj = l,...,m. 

Moreover, it is direct to see that the methodology is also applicable to the class of 
triangular differential games between inputs u € R"" and disturbances d € TRnd. 

Definition 5 (Triangular differential game). 
A differential game x = f(x, u, d) is called triangular if it can be written as: 

Xoj = Oj + Efc=l bjkUk + Y2U cJkdk 

iij = fij(xoi,... , x0L) + Efc=i 9ijk{xoi, ■■■ , X0L)UJ + 

J2kii hijkdk{xo\,... ,X0L) 

Xij  = fij(x0i,... ,X0L,... ,X(i_i)i,...X(i_i)L)  + 

J2k=l9ijk(Xoi,--- ,XQL,... iX^i)!,. . .X(i_i)L)uj  + 

12kilhiJk(X01,--- ,X0L,...  ,X(i_i)i,...X(i_1)L)4 

for j = 1,... ,L, and i = 1,... ,njt and where ajt bjk, cjk £ Q and 
fij, 9ijk, hijk are polynomials with rational coefficients. 

Theorem 1 (Semi-decidable reach for triangular differential games). 
For a triangular differential game x = f(x,u,d), if the inputs and disturbances 
are constrained to compact rectangles with rational coefficients, then for any 
disjoint semi-algebraic sets K,G C R™, the problem of computing Reach(K, G) 
is semi-decidable. 

Proof. We need to show that the methodology for symbolic reach set computa- 
tion proposed in [9,10] can be applied to triangular differential games and that 
each step in the methodology is computable. 
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1. Compute Optimal Control. Since the vector field can be written as x = 
fi(x,u) + f2(x,d), the Hamiltonian H = pTf(x,u,d) is separable, which 
implies that there exists a saddle solution (u*,d*) of optimal control and 
disturbance: 

u* = argmaxpTfi{x,u),        d* = argminpr/2(a;,d). (4) 

Moreover, since the Hamiltonian has linear terms in u and d, and the 
sets of feasible controls and disturbances are compact rectangles U — 
UZilUj'Üj] C Mn", D = UZilB-j^i] c JR"d> we may decompose equa- 
tion (4) to get: 

u* = arg     max_   s^{x,p) u,-,        d* = arg     max_   sd(x,p) dj,      (5) 

where s^(-) and sd(-) are "switching functions" which are polynomial in 
the state and co-state (x,p). The Maximum Principle calls for bang-bang 
optimal controls and disturbances: Depending on the signs of the switching 
functions, the optimal controls and disturbances will always lie on a vertex 
of the feasible control and disturbance set. 

2. Construct Hybrid System. Construct a hybrid system with 2"u discrete 
states for each possible optimal control, 2nd discrete states for each possible 
disturbance, and one discrete state for stopping the reachability computation 
on the avoid set G (see [10]). The switching functions s" (•), sj(•) determine 
the discrete transitions of the constructed hybrid system, and continuous 
dynamics are the co-state dynamics p = — ^ appended to x = f(x,u*,d*) 
where (u*,d*) are constant. 

3. Calculate Reach Set. In each discrete state, the triangular structure of the 
state dynamics and the fact that the optimal control and disturbance (u*,d*) 
are constant allows the flow of the state dynamics to can be computed by 
symbolic integration. Moreover, it is direct to check that the co-state dy- 
namics inherit the triangular structure of the state dynamics and that the 
flow of the co-state dynamics can also be integrated symbolically. Since the 
flow in each discrete state of the constructed hybrid system is polynomial, 
we may perform quantifier elimination to compute the reachable set for each 
discrete state of the hybrid system. 

We have constructed a hybrid system for which the problem of computing the 
reach set of each discrete state is decidable. By initializing the hybrid system with 
the usable part of the unsafe set K (see [9]), we have a semi-decision procedure 
for computing Reach(K, G). However, since in general there is no bound on the 
number of times the switching functions change sign, there is no bound on the 
number of discrete transitions the hybrid system takes, and hence we cannot 
guarantee that the reach set computation will terminate. □ 
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4    Controller Synthesis for Triangular Hybrid Systems 

The results of the previous section naturally inspire the following definition. 

Definition 6 (Triangular hybrid system). 
A hybrid system H = (X, V, I, /, E, <j>) is called a triangular hybrid system if 
Vg e Xo the set of feasible inputs <j>{q,x)\vc — Ug x ~Dq, where JJq and Dq 

are compact rectangles with rational vertices, the reset relation £CXxVxX 
is semi-algebraic, and for each discrete state q the vector field f(q, x, u, d) is 
triangular with rational coefficients. 

The results of the previous section provide that for each discrete state of the 
hybrid system, the computation of Reach is semi-decidable. Hence if the discrete 
transition Prej, and Preu are computable (they are when the reset relation E C 
X x V x X is semi-algebraic), then each iteration of Algorithm 1 is computable, 
and hence we conclude that the problem of computing the maximum controlled 
invariant set is semi-decidable. 

Theorem 2 (Semi-decidable controller synthesis for triangular hybrid 
systems). For a triangular hybrid system H and a semi-algebraic safe set F, 
the problem of computing the maximum controlled invariant set W* C F is 
semi-decidable. 

If the computation of maximal safe set W* terminates, we would like to 
provide a least restrictive controller that renders W* invariant. Since the con- 
tinuous dynamics of triangular hybrid systems are polynomial, the definition of 
the least restrictive controller can be written as a quantified first order formula 
in the theory of reals. Hence the least restrictive controller can be computed by 
quantifier elimination and is given in the following proposition [10]. 

Proposition 1 (Least restrictive controller). Given a triangular hybrid sys- 
tem H and a semi-algebraic maximal controlled invariant set 

W* = {x € R" | Vf=1 (A*ii hJh (x)  <  O) } , 

the least restrictive controller g(x) : X —> 2U that renders W* invariant is 
computable and is given by: 

' {u G <j>{x)\u | W G 4>{x)\D : Next(x, (u,d)) C W*} if x G (W*)° 

{u G 4>(x)\u | [VjLi(Afcii(M*) = 0) =* W G 4>{x)\D : 

g{x) = I      {2hhM)Tf{Xj (U| d)) < o) A rr G Inv(u, d)}V 

[W G 4>(x)\D : Next(x, (u, d)) C W* A x $ Inv(u, d)}},  if x G dW* 

J(x)\u, iixe(W*)c. 

Triangular hybrid systems is the first known class of nonlinear hybrid sys- 
tems which has a semi-decidable controller synthesis problem. In the following 
section we apply our methodology to a conflict resolution example from air traffic 
control. 
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5    Conflict Resolution Example 

In this section we present an application of our methodology towards verification 
of maneuvers for multi-agent hybrid systems. As an example application we 
verify a conflict resolution maneuver for air traffic control similar to the one 
described in [13]. Consider the following conflict resolution maneuver for two 
aircraft: 

1. Cruise until aircraft are oti miles apart; 
2. Change heading by Acj>; fly until lateral displacement of d miles achieved; 
3. Change to original heading; fly until aircraft are a2 miles apart; 
4. Change heading by — A<f>; fly until lateral displacement of — d miles achieved; 
5. Change to original heading. 

$=6 
^2 = <h + A4» 

m* + V2 < a, 

X = x 

y1 = y 

tf ^0, 
& = <fc + A^ 
t< -- = 0 

-A<£ 

Fig. 2. Hybrid system model of aircraft conflict resolution maneuver. 

The hybrid automaton modeling this maneuver has discrete states {CRUISE, 
LEFT, STRAIGHT, RIGHT} and is depicted in Figure 2. The continuous dy- 
namics in each discrete state is the relative flow of the aircraft given a fixed veloc- 
ity and heading, (vi is the velocity and cj>i is the heading of aircraft i). The aircraft 
are considered to be at a safe distance if they are at least 5 miles apart. In the 
relative coordinate frame, the unsafe set is given by {(x,y) G H2 x2+y2 < 5}. 
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Aircraft 1 is assumed to fly at a fixed velocity Vi and heading fa, while aircraft 
2 can switch "modes" and rotate left or right a fixed angle of ±A<f>. It is clear 
that the hybrid automaton modeling the conflict resolution maneuver belongs 
to the class of triangular hybrid systems described in the previous sections. 

Using the quantifier elimination package of JVlATHEMATICA 4.0, we computed 
the minimal unsafe sets for each discrete state of the automaton for the scenario 
where two aircraft are approaching each other with velocities vi = 4, v2 = 5, 
with initial heading difference of fa - fa = §, and aircraft 2 allowed to change 

directions at an angle of ±A<j> such that sm{±A<t>) = ±|. Equations (6)-(8) show 
the results of the computation. 

vi = 4;v2 = 5; A = 0 
unsafeCruise = Resolve [3t > 0 A (a: - vit + \v2t)

2 + (y + y/1 - \2v2t)
2 < 25] 

= (y<-^rA-v/4T-f <^<ViT-^)v 

(y = —JR A -v/41 -f<x<v/4T-f)v 

(y = JT 
A
 -x/äs^V < x < ViT- f) v 

(Jj < V < 5 A -V25-2/2 < x< ^25 - y2) V 

(-7H < y < JrA -v/^F < x < ViT - f) 

(6) 

«i =4;«2 = 5;A = 
unsaf eLeft = Resolve [3t > 0 A (a; - vxt + \v2t)

2 + (y + Vl - A2u2i)
2 < 25] 

= (3/<--B?A-^II-!<:E<^IZ_!)V 

(» = 71? A -N/25
3
^ < * < ^f- ~ \) V 

(^ < y < 5 A -A/25-j/2 < a, < ^25 - j/2) V 

(-7B<v<7n*-V™=vs<*<!¥1-i) 

(7) 

«l = 4;v2 = 5;A= -| 
unsaf eRight = Resolve [3t > 0 A (x - Vlt + \v2t)

2 + (y + Vl - A2i>2t)
2 < 25] 

= {y < -7yß A -^ -7J<x<5-^-7-?)v 
{y = -7\/¥A -^ -^<x<^i-^)v 

(» = 7\/^ A
 " x/25^2" < x < ^ - 7-f) V 

(7\/^ < y < 5 A -\/25-j/2 < x < ^25 - y2) V 

(~V& < ?/ < 7/IA -^25^2 < x < 5^5 _ a) 

(8) 

Since the relative heading and velocity of the two aircraft is same for the 
CRUISE and STRAIGHT flight modes, then unsaf eCruise=unsaf eStraight. 



Semi-decidable Synthesis for Triangular Hybrid Systems        499 

The result of the symbolic computation of the minimal unsafe sets is shown in 
Figure 3. The set unsaf eCruise\unsaf eLef t contains the set of states which are 
made safe by the aircraft turning left, and the set unsaf eCruise \ unsaf eRight 
contains the set of states which are made safe by the aircraft turning right. 
The set unsaf eCruise \ (unsaf eLef t U unsaf eRight) contains the states which 
are made safe by turning either left or right, and the set unsafeCruise n 
unsaf eLef t D unsaf eRight shown in Figure 3(d) is the set of states which is 
unsafe regardless of the action the aircraft takes. 

(a) unsafeCruise (b) unsaf eLef t 

(c) unsaf eRight (d) unsafeCruise A unsaf eLeft A unsaf eRight 

Fig. 3. Showing minimal unsafe sets for each discrete state of maneuver automaton. 

6    Conclusion 

In this paper, we have presented the first class of nonlinear hybrid systems with 
a semi-decidable controller synthesis problem. This class of triangular hybrid 
systems is rich enough to capture hybrid models that include kinematic models 
of aircraft, robots, and cars. Our results were illustrated on a conflict resolution 
example from air traffic control. 
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Abstract. In this paper we consider the problem of extracting an ab- 
straction from a hybrid control system while preserving timed languages. 
Such consistent abstractions are clearly useful as the abstracted, higher 
level model could be used for controller synthesis or verification of the 
more complicated lower level model. The class of abstracting maps we 
consider in this paper compress only the continuous states without aggre- 
gating any discrete states. Given such an abstracting map, we determine 
natural conditions that determine when trajectories of the original hybrid 
system can be generated by the abstracted hybrid system. Conversely, 
we determine conditions under which the two hybrid systems generate 
exactly the same timed language. 

1    Introduction 

The analysis and synthesis of hybrid control systems has received tremendous 
attention recently. The scale of the motivating applications, such as air traf- 
fic management systems [15] or automotive engine control systems [4], require 
that the resulting analysis and control methodologies scale up efficiently, in or- 
der to facilitate the realistic application of computational methods to real-scale 
examples. 

One of the fundamental approaches to reducing the complexity of large scale 
system analysis and design is the process of abstraction. From an analysis per- 
spective, given a model and a property of interest, one tries to extract a simpler 
model, an abstraction, that preserves the property of interest while ignoring ir- 
relevant details. This approach has been used successfully in extracting discrete 
abstractions of hybrid systems while preserving many properties that can be 
expressed in various temporal logics [3]. 

From a design perspective, given a hybrid control system, one would like 
to extract an abstracted hybrid system, perform the design at the higher level 
abstraction, and then refine the design at the lower level. In this hierarchical 
setting, a methodology which extracts a hierarchy of hybrid system models at 
various levels of abstraction is critical. 

Due to the complexity of combinatorial problems, the notion of abstraction is 
more mature in theoretical computer science than control theory. For purely dis- 
crete systems, the notions of language equivalence, simulation, and bisimulation 
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are established [10]. For purely continuous systems, however, these concepts are 
only recently beginning to emerge. In particular, in [12], a notion of abstraction 
for continuous systems was formalized. In [11] reachability preserving abstrac- 
tions of continuous linear systems were characterized, leading to hierarchical 
reachability algorithms for linear control systems. In [13], these results where 
generalized for nonlinear analytic systems. A general theory of abstraction for 
hybrid systems will clearly merge the continuous and discrete approaches. 

In this paper, we address the problem of extracting a hybrid abstraction from 
a hybrid control model while preserving timed languages. Given a hybrid system, 
the timed language is simply the timed trajectory of the discrete states. There- 
fore, the timed language maintains the discrete state the system is in as well as 
relevant timing information. 

This problem is important for a variety for reasons. For scheduling multiple 
physical processes (such as air traffic management systems), the higher level may 
be simply interested in which discrete mode each process is in (landing, holding, 
etc.) and when. Therefore the higher level (air traffic control) would like then to 
use the simplest possible model of an aircraft that is compatible with the original 
aircraft dynamics but also with the scheduling operation. Furthermore, the re- 
sults of this paper can be easily adapted to properly extract hybrid abstractions 
from purely continuous systems [14]. Finally, the results of the paper are the fist 
steps towards a more general abstraction methodology for hybrid systems. 

In order for the abstracted model to generate the same discrete symbols, 
we consider aggregating only the continuous dynamics. Abstracting the con- 
tinuous dynamics while preserving the timed language requires the abstraction 
process to be done in manner that allows us to detect all the discrete transi- 
tions. This places a natural condition between the abstracting maps, guards and 
invariants of the discrete transitions. Assuming that our aggregating maps sat- 
isfy these conditions, we show that hybrid trajectories of the original model can 
be simulated by the abstracted model. Consequently, the abstracted model also 
generates the same timed language. In general, the abstracted system is not a 
timed automaton [2], as we may need to preserve richer continuous dynamics in 
order to properly detect the discrete transitions. 

In order to ensure that timed trajectories of the abstracted model are feasible 
by the original hybrid model, we rely heavily on the abstraction results for con- 
tinuous systems [13]. These results give us constructive methods for extracting 
hierarchies of nonlinear control systems while preserving exact time controllabil- 
ity. Exact time controllability allows us to preserve a form of timed reachability. 
Using these results, we can place additional conditions on our abstracting maps 
in order to ensure that in each discrete location, the ability to reach a certain 
guard at the same time can be done at both levels of abstraction. This allows us 
to show that the timed language generated at the high level can be implemented 
at the lower level. 

This paper is organized as follows : In Section 2, we review the continuous 
abstraction methodology as presented in [11,13]. In Section 3, we define hybrid 
systems, and determine conditions under which the hybrid abstraction and the 
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original hybrid system model can generate the same timed language. Our con- 
structions are briefly illustrated by a simple example in Section 4, but the reader 
is referred to a more detailed application in [14]. Section 5 contains interesting 
issues for further research. 

2    Abstractions of Continuous Systems 

Contrary to differential equations whose abstractions are characterized by very 
strict conditions, abstractions of control systems involve only moderate con- 
ditions due to the nondeterministic nature of control systems. In subsequent 
discussion, we assume the reader is familiar with differential geometric concepts 
at the level presented in [1]. 

2.1    Abstractions of Control Systems 

We begin with an abstract definition of a control system: 

Definition 1 (Control System). A control system S = (U,F) consists of a 
fiber bundle ir : U —> M called the control bundle and a smooth map F : U 
—> TM which is fiber preserving, that is TT' o F = TT where n' : TM —> M is 
the tangent bundle projection. Given a control system S = (U,F), the control 
distribution T> of control system S, is naturally defined pointwise by T>(x) = 
F(7T~1(x)) for all x G M. 

The control space U is modeled as a fiber bundle since in general the con- 
trol inputs available may depend on the current state of the system. On a local 
coordinate chart, Definition 1 can be read as -^x = f(x,u) with u G ir~1(x), 
therefore recovering the traditional form of the control system. Before intro- 
ducing the notion of abstraction for continuous control systems, the concept of 
trajectories of control systems is required: 

Definition 2 (Trajectories of Control Systems). A curve c : I —> M, 
I C M.Q is called a trajectory of control system S = (U, F) if there exists a curve 
cu : / —> U satisfying: 

■K O C     = C 

|c(i)=c,(|) = c,(l) = F(cc/) 

Again in local coordinates, the above definition simply says that x(t) is a 
solution to a control system if there exists an input u(t) G U(x(t)) = n~1(x(t)) 
satisfying -§[x{t) = f(x(t),u(t)). Our goal is to construct a map </>: M —> N, 
the abstraction map or aggregation map, that will induce a new control sys- 
tem (UN,FN) on the lower dimensional manifold N having as trajectories <f>(c), 
where c are S trajectories. The concept of abstraction map for continuous control 
systems is defined as follows: 
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Definition 3 (Abstraction Map). Let SM = {UM,FM) and SN = (UN,FN) 

be two control systems on manifolds M and N, respectively. A map «/>: M —> N 
is called an abstraction or aggregation map iff for every trajectory cM of SM , 
4>{cM) is a trajectory of S^. Control system S^ is called a «/>-abstraction of SM- 

The above definition is clearly inspired from the notions of language equiva- 
lence and simulation of transition systems [10]. From Definition 3, it is clear that 
an abstraction captures all the trajectories of the original system, but may also 
contain redundant trajectories. These redundant trajectories are not feasible by 
the original system and are therefore undesired. 

Since Definition 3 defines abstractions at the level of trajectories, it is difficult 
to determine whether a control system is an abstraction of another one, since 
this would require integration of the control systems. One is then interested in 
a characterization of abstractions which is equivalent to Definition 3 but easily 
checkable. To pursue this, one needs to introduce the notion of ^»-related control 
systems. 

Definition 4 («/»-related control systems). Let SM = (UM,FM) and SM = 
(Bjy, F/V) be two control systems defined on manifolds M and N, respectively. Let 
</> : M —> N be a smooth map. Then control systems SM and SN are cf>-related 
iff for every x s M 

<1>*(FM(*M(X)))£FN(*N(<KX))) (1) 

The notion of «/»-related control systems is a generalization of «/»-related vector 
fields commonly found in differential geometry as explained in [11]. It is evident 
that given two systems that are «/»-related to a control system their intersec- 
tion is also «/»-related. This immediately suggests that given a control system 
and a map (f>, there is a minimal (/»-related control system, in which case the 
inclusion (1) can be replaced by equality1. We can now provide the connection 
between abstractions and (/»-related control systems: 

Theorem 1 ([12,11]). Let SM and Spj be control systems on manifolds M and 
N, respectively, and </>: M —> N a smooth map. Then SM and Spj are ^-related 
if and only if SN is a cß-abstraction of SM- 

The control system S^ is called the minimal (/»-abstraction of a control system 
SM iff Spf is the minimal system that is «/»-related to SM- 

For analytic control systems there is a constructive method which given a 
control system SM and a map </>: M —> N, generates a «/»-abstraction SN- This 
construction, which generalizes the construction for linear systems described 
in [11], is now briefly reviewed. The reader is referred to [13] for more details. 

Given two distributions A and B on manifold M, define a distribution [A, B] 
by declaring [A, B] (p) to be the subspace of TPM generated by vectors of the form 
[X, Y}(p), where X,Y are any two analytic vector fields in A and B respectively, 

Note that this minimal element is unique up to a change of coordinates. 
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and [X, Y] is their Lie bracket. By resorting to this constructive method, define 
the distribution T>u as: 

VM = K U VM U [K,VM] U \K, [K,VM)\ U... (2) 

where K is the integrable distribution Ker(<f>*), <j>* is the push forward map oiJ>, 
and T>M the distribution associated with control system SM- Distribution T>M 

allows us to construct the minimal (/»-abstraction on N as: 

VN{y) = 4>*(vM{x)) (3) 

for any x G cf>^1(y). If SN is extracted from SM using this canonical construction, 
then control system 5jv will be referred to as canonically ^-related to SM- 

2.2    Controllability Equivalence 

In general, since the abstracted system is less constrained, the abstracted model 
may allow evolutions that might not be implementable on the original system. 
However the original system and its abstraction can still be rendered equivalent 
regarding some properties of interest. In this paper, we will focus on exact time 
controllability which is defined using the reachable sets of control system SM- 

Definition 5 (Reachable set [7]). For each T > 0, and each x in M, the set 
of points reachable from x at time T, denoted by Reach(x,T), is equal to the set 
of terminal points cM(T) of SM trajectories that originate at x. 

Definition 6 (Exact Time Controllability). A control system is said to be 
exact time controllable if for any T > 0, Reach(x,T) = M for any x G M. 

Consider two systems SM and SN and a surjective map <j>: M —>■ N. Control 
systems SM and 5jv are equivalent from an exact time controllability point of 
view if the following property holds: there exists an SM trajectory connecting 
xi G M to x2 G M in time T if and only if there exists a SN trajectory connecting 
(f>(xi) G N to 4>(x2) G N also in time T. This property is clearly reminiscent of 
timed-bisimulations [10]. 

If we assume that the control system is affine in the control, that is, on local 
charts it can be written as: 

k 

F(x, u) = f{x) + Y^ 9i{x)ui (4) 
»=i 

then we can characterize exact time controllability through the Lie algebra gen- 
erated by {gi(x),g2(x),.. .,gk(x)} and denoted by Lieg(SM)- 

Theorem 2 ([7]). An analytic control system SM affine in control, as defined 
in (4), is exact time controllable if Lieg(SM(x)) = TXM for every x G M. 
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We defer the reader to [6,7] for further details regarding the various notions and 
concepts of controllability. The main theorem regarding controllability equiva- 
lence of abstractions (see [13]) can now be restated as follows: 

Theorem 3 (Exact Time Controllability Equivalence). Let SM and SN 

be two analytic control systems on analytic manifolds M and N, respectively, 
and let N be an embedded submanifold of M. Let <j> : M —» N be an analytic 
surjective submersion. If 5JV is canonically ^-related to SM and 

Ker(<j>t) C Lieg{SM) (5) 

then SN is exact time controllable iff SM is. 

Equations (2,3) and Theorem 3 provide a constructive way of building con- 
tinuous abstractions that propagate reachable sets, and in particular exact time 
controllability. When additional properties must be propagated, additional con- 
straints must be imposed on the abstracting maps. 

3    Hybrid Control Abstractions 

Although hybrid abstractions follow the same conceptual ideas of discrete and 
continuous abstractions, their study is somewhat more involved due to the com- 
plicated nature of hybrid trajectories. We start with a hybrid system model that 
allows different continuous spaces in each discrete location. 

Definition 7 (Hybrid Control System). A hybrid control system is a tuple 
H = (X, XQ, S, Inv, R) with the following components: 

— X is the state space of the hybrid control system and is given by a family of 
smooth manifolds X = {Mq}q€Q indexed2 by a finite set Q. Each state thus 
has the form (x,q), where x G Mq is the continuous part of the state, and 
q G Q is the discrete part. 

— XQ = {Mg}q£Q0 C X is the set of initial states. 
— S: Q —> {(Uq,Fq) : (Uq,Fq) is a control system on Mq} assigns to each 

discrete state q £ Q a control system (Uq,Fq) which governs the evolution of 
the continuous part of the state. Thus in discrete location q, the continuous 
part of the state satisfies JjZ = f(x,q,u) with u G -ir~1(x,q). 

— Inv: Q —» 2X assigns to each location q G Q an invariant set Inv(q) C M, 
— R C. X x X is a relation capturing the discrete jumps. 

q. 

Hybrid systems are typically represented as finite graphs with vertices Q, 
and edges E defined by 

E = {(q, q')eQxQ\ ({x, q), (x', q')) G R for x G Inv{q) and x' G Inv(q')}. 

2 When all the manifolds Mq are equal, then the state space X is X = M x Q. 
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With each edge e = (q, q') € E we associate a guard set defined as 

Guard(e) ={i£ Inv(q) \ {(x,q), {x',q')) € R for some x' £ Inv(q')} 

and a set-valued reset map 

Reset(e,x) = {x' £ Inv{q') \ {(x,q), (x',q')) £ R}. 

Trajectories of the hybrid system H originate at any initial state (x, q) £ X0 and 
consist of concatenations of continuous flows and discrete jumps. Continuous 
flows keep the discrete part of the state constant at q, and the continuous part 
evolves over time according to the control system £x = f(x,q,u), as long as x 
remains inside the invariant set Inv(q). If during the continuous flow, it happens 
that x £ Guard(e) for some e = (q, q') £ E, then the edge e becomes enabled. 
The state of the hybrid system may then instantaneously jump from (x, q) to 
any (x',q') with x' £ Reset(e,x). Then the process repeats, and the continuous 
part of the state evolves according to the control system ^x = f(x,q',u). We 
shall therefore assume that a trajectory of an hybrid control system is a map3 £ 
from a time set T to the state space X = {Mq}q€Q of H, that is: 

£ : T -> {Mq}qeQ 

T H-S- (x(r),g(r)) (6) 

An abstracting map for hybrid systems can now be defined in the same way it 
was defined for continuous systems. 

Deflnition8 (Abstraction Map). Let Hx = (X,XQ,Sx,Invx,Rx) and 
Hy = (Y,Y0, Sy, Invy, Ry) be two hybrid control systems with X = {Mq}q&Q 
and Y = {Np}p&p. A map <f> : X —> Y is called an abstraction or aggregation 
map iff for every trajectory cHx of Hx, <j>{cHx) is a trajectory of Hy. 

Even though, we are interested in general abstracting maps, we now focus on 
a subclass of abstracting maps that are suitable for preserving timed languages. 

3.1    Timed Language Generated by a Hybrid System 

In this paper we shall focus on abstractions that render the original system 
and its abstraction equivalent regarding the timed language they can generate. 
The timed string corresponding to a trajectory £(r) = (x(T),q(T)) of an hybrid 
control system is simply given by q(t). Naturally q(t) can be regarded as a timed 
string4 since it can be written in the more usual form {(t, q{t))}teR+. The timed 
language generated by an hybrid control system is therefore defined as: 
3 When multiple discrete jumps in zero time are allowed, a more complex notion of 

time is required to regard an hybrid trajectory as a map, see for example [9]. 
4 The string s = q(t) can be transformed to retain only the discrete states, and the 

first instance of time at which the system has changed discrete state. The results 
presented in this paper are however independent of that transformation. 
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Definition 9 (Timed language of a hybrid system). Let H be a hybrid 
control system. The timed language generated by H and denoted by EH is given 
by all the strings q(t), where q(t) is the discrete part of an hybrid trajectory 
£(r) = (x(r),9(T)) ofH. 

With this notion of timed language, timed language equivalence between two 
hybrid system requires the discrete behavior of the hybrid abstraction to be equal 
to the discrete behavior of the original system. Therefore aggregation can only 
happen on the continuous part of the hybrid system. We will therefore restrict 
the class of abstracting maps to the following form: 

</> = {Mq}qeQ -> {Nq}qeQ 

4>{x,q) = {<ß(x),q) (7) 

that is, if (j> is written as <f> = (<f>M, </>Q), then <t>Q is the identity map on Q = P. 
Even though for continuous systems we can always extract abstractions that 

preserve trajectories, for hybrid control systems additional constraints must be 
imposed on the abstracting map to ensure timed language equivalence. This is 
because the discrete dynamics rely heavily on certain sets, such as the guards 
and the invariants, and we have to ensure that these sets are abstracted correctly 
at the higher level. 

3.2    Propagating Guards and Invariants 

Let us zoom into a discrete state and consider the relevant sets which trigger 
the discrete dynamics, namely the guards and the invariants. Timed language 
equivalence requires that these sets must be aggregated in a consistent way. 

Figure 1 represents the state space of the original system with the guard 
defined by a relation of the type x2 > const. When performing an abstraction 
using the map <p(xi,x2) = x2, in the abstracted system it is still possible to 
determine if the continuous part of the trajectory belongs or not on the guard. 
No information required by the discrete dynamics was lost in the abstracting 
process. However if the abstracting map is <t>{xi,x2) = xi it is no longer possible 
to determine if the continuous part of the trajectory belongs or not to the guard, 
therefore it is not possible to generate the same timed language. 

The essential property to be propagated is therefore the ability to distinguish 
between sets <j>(A) and <j>(B) in the abstracted system if and only if it is possible 
to distinguish between relevant sets A and B in the original system. The relevant 
sets can be encoded in a partition of the state space, where each equivalence class 
of the partition corresponds to a possible combination of guards and invariants. 
The required partition can be modeled as a map $>M defined as: 

&M:M->D (8) 

where D is a finite set. We assume that the map \PM results in a topologically 
well behaved partition5. Partition propagation can now be defined as: 

For example, the partition can be a subanalytic stratification [8]. 
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Fig. 1. Detecting a guard. 

Definition 10 (Partition Propagation). An abstracting map (j> : M —> N 
propagates a partition $M iff there exists a partition on N defined by a map 
#jv : N —* D such that the following diagram commutes. 

(9) 

or equivalently iff&M(x) = &N ° 4>{x)- 

Note that propagating the partitions is stronger than preserving the partition 
which only requires that &M(xi) = &M{X2) => $N ° Hxi) = &N ° <P(X2) and 

allows, for example, merging two $M equivalence classes into a single equivalence 
class in #>. This is not a desirable situation since the ability to distinguish 
between the two equivalence classes is lost. 

Although Definition 10 captures the fundamental property that the abstract- 
ing map should possess it does not characterize it directly. A characterization is 
given in the following proposition: 

Proposition 1. An abstracting map <j> : M —» N propagates a partition &M 

iff the preimage under <j> of a point y G N is totally contained in a single $M 

equivalence class, equivalently, if for all y G N there exists one and only one 

de D such that <?M ° </>_1(y) = W- 

Proof. (Sufficiency) We proceed by contradiction. Suppose that &M(X) = &N ° 
<j>{x) and there exist two different elements a,b G M that belong to two different 
#M equivalence classes, that is $M{O) ¥" #M(&)- Admit further that they are 
mapped into the same point in N, cf>(a) = <f>(b). We have that $M{O) = &N°<l>{a), 
but since 0(a) = <f>(b), $Nocf)(a) = #W(6) = «M&)- Therefore &M(a) = &M(b), 
a contradiction. 
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(Necessity) We define explicitly the map &N as H/N{y) = &M(x) for all x G 4>~l{y) 
which is well defined since </>_1(y) is contained in a single &M equivalence class. 

D 

Proposition 1 states partition propagation conditions explicity on the ab- 
stracting map </>, but they are very difficult to check in general. However it is 
rather intuitive that a sufficient condition for partition propagation is symmetry, 
as expressed in the next proposition. 

Proposition 2. Suppose that the partition $M on manifold M is invariant un- 
der the action of a group G, then the abstracting map <j> defined as the projection 
from the manifold M to the orbit space M/G propagates the partition $>M- 

Proof. If the &M equivalence classes are invariant under G action, then the orbit 
through the point x0, namely 0Xo = {x G M : x = gx0 VseG} is contained in 
a &M equivalence class. Since the preimages under <f> are precisely the sets Oxo 

the conditions of Proposition 1 are satisfied. □ 

In fact, symmetry is also a necessary condition when more structure is im- 
posed on the set M and the map <j>. To study general nonlinear abstracting maps 
we consider that M and N are smooth manifolds and that the abstracting map 
<t> is a smooth surjective submersion. Resorting to this differentiable structure, 
Proposition 1 specializes to: 

Proposition 3. A smooth surjective submersion <f> : M —> N between smooth 
manifolds propagates a partition &M if and only if the partition equivalence 
classes are invariant under Ker((j)*). 

Proof. (Sufficiency) The vectors in Ker(4>*) span an involuntive distribution 
which has constant rank at every x G M since the map <f> is a submersion. By 
Frobenius theorem [1] there exists an integrating manifold that can be described 
as the action of W, with p = dim(JC), on M given by 7 = <f>i(ti) o <f>2(t2) o ... o 
4>p{tp). Each 4>i{U) is the flow of the vector field Zl from the generators of/C, that 
is K. = Span{Z1,Z2,...,Zp}. The partition equivalence classes are therefore 
invariant under this action and by Proposition 2 the partition is propagated. 

(Necessity) The preimage of a point y e N by <j> is a smooth submanifold of M 
when the derivative of cf>, is surjective, which is the case since <j> is an submersion. 
The tangent space of the submanifold 4>~l{y) is given by the vectors X e TM 
that belong to Ker(cf>t). Since the partition is propagated the preimage of a 
point y G N by cf> is totally contained inside a partition equivalence class and 
therefore the partition equivalence classes are invariant under Ker(</>*). D 

The above characterizations of the abstracting maps are critical in order to 
propagate discrete trajectories from the original hybrid control system to the 
abstracted one while ensuring timed language equivalence. 
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3.3    Hybrid Abstractions 

Given a hybrid system, Hx and an abstracting map <$>, we now present a con- 
struction that generates an hybrid abstraction Hy ■ The abstraction process de- 
pends on the observation that the continuous dynamics in a particular discrete 
state is essentially decoupled from the continuous dynamics in the other discrete 
state, the only link being given by the Reset map. It is therefore possible to use 
a different abstracting map <f>q in each discrete state q £ Q of the hybrid system 
Hx- More formally: 

Definition 11 (Construction of hybrid abstractions). Consider hybrid 
control system Hx = (X, Xo, Sx, Invx, Rx) with X = {Mq}q£Q and consider 
the collection of maps $ = {(t>q}qeQ> <f>q ■ Mq —> Nq. The resulting hybrid ab- 
straction Hy = (Y,YQ, Sy, Invy, Ry) is a tuple consisting of: 

— For all q £ Q, Nq = (f>q(Mq), therefore the state space isY = {Nq}q(=Q. 
-Yo = {N°}q€Qo where N° = 4>q{M°q). 
— Sy is a function that maps each q £ Q to the minimal (j>q-abstraction of the 

corresponding control system Sx(q) using the canonical construction (2,3). 
- InvY(q) = (j}q(Invx{q)). 
- Ry = {((y,q),(y',q'))eYxY :  (y,q) = <j>q(x,q) A (y',q') = 4>q,(x',q') A 

((x,q),(x',q')) £ Rx}- More specifically we have 
— Guardy(e) = <f>qi(Guardx(e)) 
— Resety(e,Xi) = <f>qj oResetx{e,<j>q^{xi)) for alle = {qt,qj) G E, x £ M. 

Therefore the discrete state space remains unaltered and only the continuous 
state space is aggregated from Mq to Nq is each discrete location q £ Q, and 
similarly for the set of initial conditions. The continuous control system Sx(q) 
is replaced by its minimal ^-abstraction. The new invariant on each location 
q £ Q is the image of the initial invariant under <f>q, that is <f>q(Invx(q))- The 
reset relation Ry is the image of the reset relation Rx by the abstracting map 
resulting in the new guards being the image of the initial guards by the abstract- 
ing map. The reset maps Resety are given by the image under <f>qj of the reset 
maps Resetx evaluated at every point of the set valued map <^~1. The main 
result relating hybrid abstraction constructed through Definition 11 and timed 
language equivalence can now be stated as follows: 

Theorem 4 (Timed language equivalent hybrid abstractions). Let Hx 
and Hy be hybrid control systems and suppose Hy is obtained from Hx using 
Definition 11. If the family of maps <P = {(f>q}qeQ is such that the invariants and 
guards in each discrete location q £ Q are invariant under Ker((f>qf) then Hy is 
a (^-abstraction of Hx- 

If furthermore Ker((pqt,) C Lieg(SM(q)) for each q £ Q then Hx and Hy 
generate the same timed language. 

Proof. To show that Hy is a (^-abstraction of Hx we need to show that for every 
trajectory cHx = (:T(T),(/(T)), $(C

HX
) is a trajectory of Hy. For any trajectory 

(X(TU(T)) of Hx, (x(0),q(0)) £ X0, therefore $(x(0),q{0)) = (<^(o),<?(0)) £ Y0 
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X\X2 > 0 

xi := - 1 - |iCi| 
Xi '.= Xi 

xx >0 
x, — - 1 - |x:| 
x2 := 1 + |x2| 

Fig. 2. Hybrid control system Hx- 

since N° = <f>g(Mq). As long as the trajectory ctIx flows continuously on a 
state q € Q, X(T) is a trajectory of Sx{q), therefore y(r) is a trajectory of 
Sy(q) since Sy(p) is ^-related to Sx(q) and X(T) € Invx(q) implies y(r) e 
Invy{q) by construction and partition propagation. When x(r) enters a guard 
Guardx(e), y(r) enters Guardy(e) by construction and partition propagation. 
If the hybrid control system Hx jumps from location q{ to location qj then Hy 
can also take the same transition since the finite graphs of Hy and Hx are equal 
and the corresponding transitions become enabled at the same time. After the 
jump X(T) e Resetx(e,x') and therefore y(r) € Resety(e,y') by construction 
of Resety. Since the trajectory cHx is composed of continuous flows and jumps 
and Hy simulates both, a finite induction argument on the number of jumps 
concludes the proof. 

To show timed language equivalence it suffices to show that hybrid control 
system Hx is capable of simulating the continuous part of every Hy trajectory 
since both systems have the same finite graph. This is now a direct consequence 
of using the minimal control abstraction Sx{q) of control system SM(q) in each 
discrete location q s Q as Theorem 3 asserts that both control systems are exact 
time controllability equivalent. D 

4    Example 

We illustrate our results by a simple example. Consider the hybrid control system 
Hx displayed in Figure 2. Using as abstracting maps <f>qi = £1X2 and <pq2 = x\ 
we extract the timed language equivalent abstraction presented in Figure 3. Due 
to space restrictions, we shall present the details regarding state q%. We start by 
noting that Inv(q2) is invariant under jRTer(</>92*) = K = ^f- since K is every- 
where tangent to the surfaces Xi = const. The guard is given by the complement 
of the invariant and is, therefore, also invariant under K. The next step is to 
determine if <j>q2 satisfies Theorem 3 conditions, but this is automatically true 
since K = gi{x), and therefore K e Lieg{gi(x)} = {gi(x)}. The new dynamics 
in each location can be determined through the construction (2, 3). Writing the 
dynamics as x = f(x) + g(x)u we compute [K, f] = Xi = ■£- + 2xix2-£r and 
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i'>0 
x' :=] - oo, - lj 

x'>0 
x' :=] - oo, - 1 - x' 

Fig. 3. Hybrid abstraction Hy of the hybrid control system Hx- 

[K,Xi] = X2 = 2xlg|^. However X2 in linearly dependent on g so that: 

Computing the pushforward by cf>q2 of VM{x) we get: 

K*(PM{X))={{X2+X\) — ,—} 

(10) 

(11) 

In N coordinates, (given by x'), xi equals x' and x2 is now regarded as a control 
input v. The new dynamics is then given by x' = l+x'2+v and after introducing a 
new control input given by u' = v+l+x'2 we get finally x' = u'. The invariant on 
JV becames xi = x' < 0 and the guard reads x' > 0. To determine the new reset 
map one computes <f>-^{x') = {{xx,x2) € M : xx = x'Ax2 € R}. Using this data 
the reset map of the hybrid automaton Hx isxi := -l-|a;'| = -1-a;' (since the 
guard is only enable for xi > 0) and x2 := 1 + [0, +oo[= [1, +oo[. Aplying <j)qi to 
this reset maps gives the new reset map x' := (-l-x')([l, +oo[) =] -oo, -l-i']. 

Note how in this case the nonlinear dynamics could be simplified in such a 
way that HYTECH [5] or other similar tool can be used to analyze the resulting 
abstraction. For a more complicated example which extracts a hybrid abstraction 
from a purely continuous system, the reader is referred to [14]. 

5    Conclusions 

In this paper, we have considered the problem of extracting hybrid abstractions 
from hybrid control systems while preserving timed languages. Generalizing the 
results of this paper to more general abstracting maps and more general prop- 
erties is clearly important. Different properties may require different conditions 
on the abstracting maps, as well as different compatibility conditions between 
the abstracting maps and the guards, invariants, and continuous dynamics. 
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