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QUANTITATIVE VALIDATION OF A MODEL OF CHLORINATED 
ETHENE NATURAL ATTENUATION 

1.0    Introduction 

1.1   Motivation 

The contamination of groundwater by chlorinated solvents is a well-recognized 

problem (Mackay and Cherry, 1989; Adamson and Parkin, 2000). Two 

chemicals in particular pose a significant threat to human health and the 

environment: tetrachloroethylene (PCE), and trichloroethylene (TCE). This 

research will focus on the treatment of aquifers containing PCE and TCE. 

Both PCE and TCE are suspected carcinogens (Sturchio et al., 1998), making 

groundwater contaminated with these compounds a health hazard. People 

exposed to TCE have reported an excess number of adverse health effects, to 

include liver and kidney disease, diabetes, and stroke (ATSDR, 1996). 

Accordingly, the United States Environmental Protection Agency (USEPA) has 

set the Maximum Contaminant Level (MCL) for both PCE and TCE in drinking 

water at five parts per billion (CFR, 2000b) and the Maximum Contaminant Level 

Goal (MCLG) at zero parts per billion (CFR, 2000a). 

The health risk from PCE and TCE is based on exposure as well as toxicity. 

PCE and TCE are common industrial solvents, used mostly to degrease metal 

and to produce inks and paints. After years of intentional and unintentional 

releases, these solvents have infiltrated into the ground and contaminated 



underlying aquifers. The extent of contamination across the country is such that 

the EPA has declared TCE and its degradation products, cis-1,2-dichloroethylene 

(DCE) and vinyl chloride (VC), to be priority pollutants (Bloom et al., 2000). TCE 

is the most frequently detected groundwater contaminant at hazardous waste 

sites in the United States (Bloom et al., 2000). Of the nine Marine Corps facilities 

on the National Priorities List, eight of them have PCE or TCE contamination of 

soil or groundwater (USEPA, 2000). 

Remediating a contaminated aquifer is not a simple task. Both PCE and TCE 

are classified as dense non-aqueous phase liquids (DNAPLs). DNAPLs are 

denser than water, and tend to sink after reaching the water table. While doing 

so, some of the DNAPL partitions into the aqueous phase and is carried off by 

groundwater flow. Due to the relatively low solubility of PCE and TCE in water, a 

DNAPL source can persist for decades (Mackay and Cherry, 1989). While some 

experiments have had preliminary success (Ho et al., 1999), there is no 

conventional technology that effectively removes DNAPL sources (NRC, 1999). 

This research will focus on containment and removal of contaminants from the 

aqueous phase. At present, there are three strategies being implemented to deal 

with solvent-laden groundwater: conventional pump and treat, passive barriers, 

and natural attenuation. 

Conventional pump and treat is by far the most common approach to the 

containment and removal of TCE and PCE. In this strategy, water is pumped to 



the surface where contaminants are removed using an engineered treatment 

process. The treated water is then either returned to the subsurface to prevent 

aquifer dewatering and to sustain beneficial hydraulic gradients or discharged to 

surface water. The aboveground contaminant treatment technologies are well 

understood, as is the hydraulic containment achievable through the use of 

pumping wells.    While pump and treat poses an increased risk to receptors as 

contaminants are pumped to the surface, the largest drawback of this strategy is 

its high cost. Due to the fact that pump and treat systems must operate for many 

years to contain a contaminant plume, lifecycle costs for these systems are quite 

high. These high costs, as well as the increased risk to potential receptors, have 

prompted the development of alternative strategies such as passive barriers and 

natural attenuation to manage contaminated groundwater. 

Passive barriers have received increased attention as an effective, low-cost 

containment strategy. By constructing a trench filled with zero-valent iron filings, 

a barrier is formed that contaminated groundwater flows through. As PCE and 

TCE are transported through the barrier, they are reductively dechlorinated in the 

trench. While this technology is fairly well understood and cost effective, it has 

its limitations. The system is only appropriate for relatively shallow aquifers, as 

the technology is limited to the depth a trench can be placed. Also, the passive 

barrier may be bypassed due to fluctuations in groundwater flow, and the 

effective life of the iron filings is a major uncertainty (NRC, 1999). 



Another strategy that has gained acceptance over the years as a low-cost option 

is natural attenuation. The Environmental Protection Agency defines natural 

attenuation in the following manner: 

The term "monitored natural attenuation," as used in this Directive, refers to the 
reliance on natural attenuation processes (within the context of a carefully 
controlled and monitored clean-up approach) to achieve site-specific remedial 
objectives within a timeframe that is reasonable compared to that offered by 
other more active methods. The "natural attenuation processes" that are at work 
in such a remediation approach include a variety of physical, chemical, or 
biological processes that, under favorable conditions, act without human 
intervention to reduce the mass, toxicity, mobility, volume, or concentration of 
contaminants in soil and groundwater. These in-situ processes include 
biodegradation; dispersion; dilution; sorption; volatilization; radioactive decay; 
and chemical or biological stabilization, transformation, or destruction of 
contaminants (USEPA, 1999). 

While chlorinated solvents are resistant to biodegradation, they have been 

demonstrated to degrade to innocuous compounds, such as ethene, under 

appropriate conditions (Maymo-Gatell et. al., 1999). Natural attenuation of 

chlorinated compounds in an aquifer by indigenous microorganisms is typically 

very cost effective, with the main expenses being site characterization and 

monitoring. However, as MNA is dependent upon natural processes taking place 

in the subsurface (as compared to the engineered processes discussed above), 

the contaminant-removal mechanisms are the least understood. Recently, 

natural attenuation has come under criticism for being used in situations where 

its effectiveness has not been adequately demonstrated. According to a report 

from the National Research Council (NRC), "natural attenuation should only be 

accepted as a formal remedy for contamination only when the processes are 

documented to be working and are sustainable" (NRC, 2000). The EPA states 



natural attenuation "should be used with caution commensurate with the 

uncertainties associated with the particular applications," and that "the hydrologic 

and geochemical conditions favoring significant biodegradation of chlorinated 

solvents sufficient to achieve remediation objectives within a reasonable 

timeframe are anticipated to occur only in limited circumstances" (USEPA, 1999). 

One way to demonstrate that natural attenuation may be occurring in the 

subsurface is to apply a model. Several computer models have been presented 

that simulate the natural attenuation of PCE and TCE (Feng, 2000; Clement et 

al., 1999), but few have been validated using data from a contaminated site. 

Model validation could result in increased credibility for natural attenuation as a 

remediation strategy for chlorinated solvent contamination, with a subsequent 

rise in implementation and reduction in overall costs. 

The purpose of this research is to validate a computer model by comparing its 

output to data collected from the field. This research will be limited to PCE and 

TCE degradation in saturated groundwater systems. A review of current 

literature will focus on 1) important physico-chemical and biological processes 

thought to take place in the subsurface, 2) numerical models that can simulate 

those processes, 3) model validation strategies, 4) previous model validation 

efforts, and 5) a list of sites that could support future validation studies. After the 

literature review, a model will be selected and applied to a chosen site. A 

simulation will be run, and the model's prediction will be statistically evaluated 

against field data. It is hoped that this method of model validation will prove 



useful in the validation of other contaminant fate and transport models. It is also 

hoped that this effort will generate further understanding of the mechanisms of 

natural attenuation of chlorinated solvents in aquifer systems. 



2.0    Literature Review 

2.1 Overview 

The purpose of this literature review is to provide background information on 

validation methods as they may be applied to modeling natural attenuation of 

chlorinated solvents in an aquifer. To this end, this review covers three major 

areas.   First, models will be discussed, including the definition and importance of 

models in the study of contaminated aquifers, the natural attenuation processes 

thought to take place in the saturated zone, and the numerical models that 

simulate natural attenuation processes. Second, the concept of model validation 

will be introduced, and will include a discussion of model verification, calibration, 

and comparative analysis. Third, several cases involving model application to 

chlorinated ethene-contaminated sites will be reviewed to illustrate common 

model validation practices. 

2.2 Models 

2.2.1   Definition, Importance, and Uses 

A model may be defined as "a representation of a real system or process" 

(Konikow and Bredehoeft, 1992). Within this definition, there is a wide array of 

models that differ greatly in purpose, application, structure, and complexity. This 

research will focus on numerical models that represent the fate and transport of 

chlorinated ethenes in an aquifer. 



Numerical models are approximations of the exact mathematical solution of the 

governing equation(s) that describe real systems and processes. These models 

rely on fewer simplifying assumptions than analytical models that solve the 

governing equation(s) exactly, and are capable of addressing difficult problems 

such as heterogeneous conditions and complex initial and boundary conditions 

(Weaver, et al., 1989). The Environmental Protection Agency (EPA) uses 

numerical models in a predictive mode to make regulatory assessments and 

environmental decisions (Weaver, et al., 1989). Numerical models have also 

been used in courtroom litigation to establish liability (Bair, 1994). Perhaps more 

important than the predictive capability of a model is its explanatory power. 

According to Murphy and Ginn (2000), who specifically comment upon modeling 

the microbial processes that occur during natural attenuation, "progress in 

modeling microbial processes in porous media is essential to improving our 

understanding of how physical, chemical, and biological processes are coupled 

in groundwater and their effect on groundwater-chemistry evolution, 

bioremediation, and the reactive transport of contaminants and bacteria." The 

remainder of this section will be devoted to describing the processes thought to 

occur in chlorinated ethene-contaminated aquifers and the numerical models that 

simulate those processes. 

2.2.2    Processes Modeled 

Only the natural attenuation processes thought to be important to the fate and 

transport of chlorinated ethenes and their daughter products will be studied. 
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These processes can be divided into two major categories: physiochemical 

processes and biological processes. 

2.2.2.1 Physicochemical Processes 

The physicochemical processes of advection, dispersion, and sorption play a 

crucial role in the fate and transport of contaminants. Advection is the transport 

of mass due to the bulk flow of groundwater, and is "by far the most dominant 

mass transport processes" (Dominico and Schwartz, 1998). Dominico and 

Schwartz (1998) provide equations describing the advective transport of 

contaminants. 

In almost all cases, mass is transported beyond the region delineated solely by 

advective transport. This is due to dispersion, which is the spreading of mass 

due to fluid mixing. Dispersion is caused by molecular diffusion (Brownian 

motion) as well as mechanical mixing within a heterogeneous aquifer. 

Dispersion is often modeled as diffusion, as the outcome of each mechanism is 

similar (Dominico and Schwartz, 1998). Clark (1996) provides a detailed 

explanation of the equations used to describe dispersion. 

Contaminants, especially non-polar organic compounds such as PCE and TCE, 

typically do not move as quickly as predicted by advection and dispersion. This 

delayed contaminant movement, or retardation, is caused by several 

mechanisms that are collectively termed sorption. Sorption is defined as the 



partitioning of contaminant from the aqueous phase (i.e. dissolved in 

groundwater) to the aquifer solids. In this research, the dominant sorption 

process involves organic contaminants being sorbed to the organic material 

found on aquifer solids. The amount of sorption that takes place is dependent 

upon temperature, concentration of the contaminant, and the characteristics of 

both the contaminant and the aquifer solids. 

A set of experiments can be run to determine the relation at equilibrium between 

aqueous contaminant concentration (mass of contaminant per volume water) and 

sorbed concentration (mass of contaminant per mass of sorbent). As these 

experiments are performed at the same temperature, the relationship is referred 

to as a sorption isotherm. 

If sorption occurs quickly with respect to groundwater flow, then it is assumed 

that the rate at which mass is being sorbed to the solids is equal to the rate at 

which mass is being desorbed. This is called the local equilibrium assumption 

(LEA). In this case, the partitioning process is said to be in equilibrium and is best 

described as an equilibrium sorption isotherm. Equilibrium sorption isotherms 

may either be linear or non-linear. According to Fetter (1993), a linear isotherm 

can be described by the equation 

C* = KdC (2.1) 

where 

C* = mass of contaminant sorbed per dry unit weight of solid (M/M) 

10 



C = concentration of contaminant in solution (M/L3) 

Kd = distribution coefficient (L3/M) 

Figure 2.1 is an example of a linear isotherm. 

E, 
+ 
o 

Kd 

/      1 

C (mg/L) 

Figure 2.1  Linear Sorption Isotherm (after Fetter (1993)) 

As can be observed from Figure 2.1, the major drawback of describing sorption 

with a linear isotherm is that there is no apparent limit to the amount of 

contaminant that may be sorbed. As no real material can sorb an endless 

amount of mass, linear models are typically used only at relatively low 

concentration levels or within a small range of contaminant concentrations. 

When describing sorption over a wide range of contaminant concentrations, non- 

linear isotherms typically perform better than linear isotherms. Non-linear 

sorption isotherms describe a curvilinear relationship between sorbed 

contaminant concentration and dissolved concentration. The Freundlich 

11 



isotherm is a commonly used non-linear sorption isotherm, and is described by 

the following equation: 

C* = KCN (2.2) 

where 

C* = mass of contaminant sorbed per dry unit weight of solid (M/M) 

C = concentration of contaminant in solution (M/L3) 

K = constant 

N = constant (-) 

Figure 2.2 illustrates a Freundlich sorption isotherm with K = 28 and N = 0.62 
(Clark, 1996). 

C(mg/L) 

Figure 2.2 Freundlich Isotherm (after Fetter (1993)) 

Note that the Freundlich isotherm suffers from the same problem as the linear 

isotherm. That is, the amount of contaminant that can be sorbed by aquifer 

solids is essentially unlimited. This problem can be addressed through the use of 

the Langmuir sorption isotherm. 

12 



The Langmuir isotherm is a non-linear isotherm that is based on the assumption 

that aquifer solids have a limited number of sites available for contaminant 

sorption. The Langmuir isotherm is given by 

1      C + — 
(2.3) C*    aß    ß 

where 

a = an absorption constant related to the binding energy (L3/M) 

ß = the maximum amount of solute that can be absorbed by the solid (M/M) 

Figure 2.3 is a graph of a Langmuir isotherm with a value of a of 0.9 and ß of 0.9. 

C(mg/L) 

Figure 2.3 Langmuir Isotherm (after Fetter (1993)) 

Not all groundwater systems can be described with equilibrium isotherms. In 

some aquifers, sorption takes place at approximately the same rate as the 

velocity of groundwater. In these systems, local equilibrium cannot be assumed. 

Such systems are more appropriately described by non-equilibrium, or rate- 

13 



limited, sorption models. These models are significantly more complicated than 

equilibrium isotherms, and are beyond the scope of this research. Fetter (1993) 

and Feng (2000) contain detailed discussions on commonly used rate-limited 

models. 

2.2.2.2 Biological Processes 

While the primary physicochemical processes either spread the contaminant 

(advection and dispersion) or temporarily sequester it (sorption), they do not 

reduce the overall mass of contaminant within the aquifer. Conversely, it has 

been demonstrated that microorganisms are capable of catalyzing chemical 

reactions that result in the degradation of chlorinated ethenes (Wilson and 

Wilson, 1985). This research will cover the microbially-mediated reductive and 

oxidative processes known to degrade chlorinated ethenes in contaminated 

aquifers. 

Oxidation-reduction (redox) reactions involve the transfer of an electron from an 

electron-rich chemical, or electron donor, to an electron-poor chemical, or 

electron acceptor (NRC, 2000). Microorganisms catalyze redox reactions with 

enzymes and cofactors in order to generate the adenosine triphosphate (ATP) 

needed to sustain metabolism and growth. The amount of ATP generated 

depends on the electron donor and electron acceptor used (NRC, 2000). The 

most common oxidation-reduction reactions that degrade chlorinated ethenes are 

discussed below. 

14 



2.2.2.2.1 Cometabolic Reductive Dehalogenation 

Some reactions do not contribute to microorganism growth or metabolism. Such 

reactions, termed cometabolic, may nevertheless result in the fortuitous 

degradation of contaminants. The cometabolic reductive dehalogenation of 

chlorinated ethenes is an important example of this type of reaction. In this 

anaerobic process, a non-specific enzyme acts upon a chlorinated ethene, 

replacing its chlorine substituent with a hydrogen ion and two electrons (NRC, 

2000). For example, PCE (with four chlorine substituents) would be reduced to 

TCE (with three chlorine substituents). As the transformation of chlorinated 

ethenes provide no energy to the microorganisms, metabolic electron acceptors 

such as nitrate or carbon dioxide are required for ATP production. 

Biodegradable organic materials, such as natural organic matter or petroleum 

hydrocarbons, act as the necessary electron donors (Wiedemeier, 1996). 

Cometabolic reductive dehalogenation often fails to completely reduce PCE and 

TCE to ethene. This is due to several factors. First, the chlorinated solvents 

must compete with the metabolic electron acceptors for available enzyme sites. 

This is referred to a competitive inhibition. As the solvents only gain a small 

share of the available electrons, a typical aquifer is depleted of electron donors 

well before the contaminants are reduced to ethene. Only aquifers co- 

contaminated with landfill leachate or petroleum hydrocarbons see significant 

reductive dehalogenation. Second, the solvents or their daughter products may 

be toxic to some organisms, thereby negatively affecting some microbe 

15 



populations (Azadpour-Keeley et al., 1999). Third, daughter products with fewer 

chlorine substituents are less oxidized, and therefore tend to be reduced less 

quickly, if at all. This results in the accumulation of cis-DCE and VC (Major et al., 

1991; Wilson et al., 1995), which is especially problematic in that VC is more 

toxic than PCE or TCE (Masters, 1997). For these reasons, cometabolic 

reductive dehalogenation is "considered ubiquitous in anaerobic systems but 

generally incapable of mediating complete reduction to non-toxic products like 

ethene" (Bradley, 2000). 

2.2.2.2.2 Reductive Dehalogenation Through Halorespiration 

It has been recently discovered that not all reductive dechlorination processes 

are cometabolic. A group of microorganisms, called halorespirers, have been 

found to generate ATP by using chlorinated ethenes as sole terminal electron 

acceptors (Holliger et al., 1993; Maymo-Gatell et al., 1997). As these 

microorganisms derive energy from the process, under the appropriate 

conditions they are capable of higher rates of dechlorination than cometabolizers 

(Bradley, 2000). Indeed, according to Wiedemeier et al. (1999), halorespiration 

"probably accounts for the majority of chlorinated solvent biodegradation at many 

of the sites where biodegradation is significantly attenuating the [chlorinated 

solvent] plume." However, the electron donors that are used by halorespirers are 

limited to hydrogen and possibly acetate and formate. As sulfate reducers, 

methanogens, and homoacetogens also compete for these electron donors, the 

ability of halorespirers to reduce VC to ethene may be significantly diminished 

(McCarty, 1996; Smatlaketal., 1996). 

16 



2.2.2.2.3 Cometabolic Oxidation 

As more chlorine substituents are removed and the compound becomes more 

reduced, the chlorinated ethene may be more easily oxidized. A number of 

microorganisms have been identified that can oxidize TCE and its daughters (but 

not PCE) to C02 cometabolically (McCarty and Semprini, 1994). This may be an 

important process when oxygen and the necessary carbon substrate (e.g. 

methane, ethylene, phenol, toluene) coexist, such as at the fringe of a 

contaminant plume (Dolan and McCarty, 1995; Anderson and McCarty, 1997). 

2.2.2.2.4 Aerobic Oxidation 

In some cases, DCE and VC may be oxidized directly in a process that is 

beneficial to the microorganisms. In aerobic oxidation, VC can be used as a sole 

carbon source for growth and metabolism, while DCE has been shown as a 

carbon substrate for metabolism only. As with cometabolic oxidation, aerobic 

oxidation may be important at the fringe of a plume (Bradley and Chapelle, 

1998b). 

2.2.2.2.5 Anaerobic Oxidation 

Anaerobic oxidation is another possible pathway for chlorinated ethene 

degradation. Microorganisms have been shown to oxidize VC to CO2 under Fe 

(III)—reducing conditions. DCE has been shown to oxidize directly to C02 under 

17 



Mn (IV)-reducing conditions (Bradley et al., 1998). As these processes can take 

place in an anaerobic environment in conjunction with reductive dehalogenation, 

this may prove to be a significant pathway for chlorinated ethene degradation. 

2.2.2.2.6 Mathematical Description of Contaminant Biodegradation 

If there is no shortage of necessary substrates (i.e. electron donors and 

acceptors) then contaminant degradation can be expressed as a first order 

decay.   That is, the rate at which the contaminant disappears is dependent only 

upon the contaminant concentration. This is modeled by the equation 

*=-kc 
dt 

where 

C is the concentration of dissolved contaminant (M/L3) 

k is the contaminant decay first order rate constant (T1) 

Figure 2.4 is an example of a first order process. 

t (sec) 

Figure 2.4 First Order Biodegradation 

(2.4) 
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Reductive dehalogenation is typically modeled as a first order process, with a 

separate decay constant for each reductive step (Clement et al., 2000). The 

direct oxidation of chlorinated hydrocarbons is also modeled as first order 

(Bradley and Chapelle, 1998a). 

In situations where one or more substrates limit the rate of biodegradation, it is 

necessary to use Monod kinetics to describe the rate of the reaction. Monod 

kinetics describe the growth of microorganisms on a limiting substrate (Suarez 

and Rifai, 1999) by the hyperbolic saturation function 

(     Q     ^ 
\i = JLL max vS + Ksy 

(2.5) 

where 

H     = microorganism growth rate (T1) 

Umax = maximum growth rate of microorganisms (T1) 

Ks  = half saturation constant (M/L3) 

S     = concentration of limiting substrate (M/L3) 

The half saturation constant is the concentration of limiting substrate at which the 

microorganisms grow at half the maximum growth rate (Wiedemeier et al., 1999). 

Dual - Monod kinetics have been used to describe aerobic cometabolism 

(Bouwer and McCarty, 1985), as the concentration of both electron acceptors 

and contaminants limit the rate of biodegradation. This model is expressed as 
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dC 
dt 

= -Xk 
VKS+C VKSA+

CA; 

where 

X = concentration of microorganisms active for cometabolism (M/L3) 

k = maximum utilization rate of cometabolism (M/M - T1) 

C = concentration of target contaminant (M/L3) 

Ks = half saturation constant of the target contaminant (M/L3) 

CA = concentration of electron acceptor (M/L3) 

KSA = half saturation constant of electron acceptor (M/L3) 

(2.6) 

The above model does not take into consideration the competitive inhibition 

between the electron donor and the contaminant for available enzyme sites. The 

following modification of (2.6) accounts for this competition (Semprini and 

McCarty, 1992): 

f \ 

dC 
dt 

= -Xk 

KC+C+^'CD 

K 
SD      ) 

Kc   +C, 
(2.7) 

where 

CD = electron donor concentration (M/L3) 

KSD = half saturation constant of electron donor (M/L3) 

Note that X, the concentration of microorganisms found in equations (2.6) and 

(2.7), also depends upon electron donor and acceptor concentrations. Monod 
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kinetics can be used to describe this relationship as well, as in the equation 

proposed by Semprini and McCarty (1991), where dual-Monod kinetics describes 

growth and Monod kinetics describes decay: 

dX 
dt 

-XkY 
Ks   +C DJ V

KsA+CA 

\        f 
bX 

Kc  + C, V,vs 
(2.8) 

where 

k = maximum utilization rate of cometabolism (M/M - T1) 

Y = yield coefficient of biomass produced per substrate used (M/M) 

b = microbial decay rate constant (T1) 

It is important to note that the above equations are general, and that the set of 

parameter values used will depend upon the specific oxidation-reduction reaction 

being modeled. For example, the parameters used to model the reductive 

dehalogenation of PCE to TCE with sulfate as an electron acceptor will differ 

from the parameters used to model the reduction of TCE to DCE under 

methanogenic conditions. Therefore, a model that simulates all relevant 

processes should be able to track the concentration of multiple electron donors, 

acceptors, and contaminants, then apply the appropriate parameters as required. 

Typically, simplifying assumptions are built into models, and multiple donors and 

acceptors are not tracked. Of the models discussed in the next section, only Bio- 

Redox accounts for reactions among multiple electron donors and acceptors. 
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2.2.3  Models Relevant to the Simulation of Chlorinated Ethene Natural 
Attenuation 

There are many models available that may be used to simulate chlorinated 

ethene fate and transport. To reduce the number of models to be considered in 

detail, an initial screening was accomplished using several criteria. Due to the 

time and money available for this research, only completed models that were 

readily available at little or no cost were considered. As discussed in Chapter 1, 

this research focuses on the natural attenuation of aqueous phase chlorinated 

solvents in an aquifer. Accordingly, models that simulated transport in the 

unsaturated zone, a combination of the saturated and unsaturated zone, or 

simulated dual-phase flow were rejected. Finally, only those models that were 

able to simulate the reactive step-wise degradation of chlorinated ethenes were 

investigated. After this initial screening, four models were examined in some 

detail: Biochlor, Bio-Redox, RT3D, and BR3D. 

2.2.3.1   Biochlor 

Biochlor is described as a "natural attenuation decision support system" (Aziz et 

al., 2000) for sites with dissolved chlorinated solvents. This computer code 

provides concentration data along the plume centerline by describing one- 

dimensional (1-D) advection, three-dimensional (3-D) dispersion, linear sorption, 

and biotransformation due to reductive dehalogenation (Aziz et al., 2000). The 

biotransformation process is modeled as a sequential first order decay, and two 

separate reaction zones can be simulated. 
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Biochlor is a screening model that assumes simple groundwater flow, uniform 

hydrogeologic and environmental conditions, and a constant vertical plane 

source (Aziz et al., 2000). The purpose of this model is to facilitate remediation 

planning, and it is not designed to accurately predict contaminant concentrations 

in a complex, real aquifer. 

2.2.3.2 Bio-Redox 

Bio-Redox is a comprehensive 3-D model used to simulate multiple oxidation- 

reduction reactions (Feng, 2000). The model describes 3-D advection and 

dispersion, linear and non-linear equilibrium sorption, but not rate-limited 

sorption. Bio-Redox can simulate contaminant biotransformation due to 

reductive dehalogenation, direct oxidation, or methanotrophic cometabolism by 

using either first order, Monod, Dual-Monod kinetics (with and without 

competitive inhibition). This computer code can simulate reactions among 

multiple electron donors and acceptors, and can track the accumulation of 

chloride ions released by reductive dehalogenation. As the application of Bio- 

Redox to a site does not require any modification of the FORTRAN source code, 

the program is relatively simple to use. 

2.2.3.3 RT3D 

Reactive Multi-species Transport in 3-Dimensions, otherwise known as RT3D, 

simulates multiple transport equations coupled with multiple biochemical kinetics 

(Clement, 2000). RT3D is a modular program, composed of subprograms that 

allow the modeler to describe 3-D advection and dispersion; sorption through 
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linear equilibrium, non-linear equilibrium, or rate limited reactions; and 

biodegradation through first order, Monod, or Dual-Monod kinetics. The modular 

design of RT3D makes it highly adaptable to a specific site; seven 

preprogrammed modules are available, and modelers can create their own 

module to run within the program. While RT3D's design allows for great flexibility 

and creativity in applying the model to a site, the level of effort required is 

considerable. The appropriate reaction module must be chosen (Clement, 1997) 

and correctly placed within the FORTRAN source code, a task that is difficult due 

to the code's complexity (Feng, 2000). The unintentional modification of source 

code is also of concern. 

2.2.3.4   BR3D 

BR3D is a model developed at the Air Force Institute of Technology (AFIT) to 

simulate the degradation of chlorinated ethenes through the cometabolic 

processes of reductive dechlorination and aerobic oxidation. The capabilities of 

BR3D are similar to RT3D in that it can simulate 3-D advection and dispersion; 

sorption through linear equilibrium, non-linear equilibrium, or rate limited 

reactions; and biodegradation through first order, Monod, or Dual Monod kinetics. 

It cannot combine multiple electron acceptors and donors in oxidation-reduction 

processes (Feng, 2000). BR3D is relatively easy to use, as it does not require 

modification of the FORTRAN source code. 
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2.3 Model Validation 

There is no single definition of the term "validation" within the scientific 

community (Leijnse and Hassanizadeh, 1994). The International Atomic Energy 

Agency, an entity that supervises the development of many long-term predictive 

models, defines validation in the following manner (IAEA 1982): 

A conceptual model and the computer code derived from it are validated when it 
is confirmed that the conceptual model and the computer code provide a good 
representation of the actual processes occurring in the real system. 

Schlesinger (1979) provides a similar definition, stating that validation is 

Substantiation that a computerized model within its domain of applicability 
possesses a satisfactory range of accuracy consistent with the intended 
application of the model. 

A considerable number of arguments about model validation are centered on the 

scope of the validation effort. Sargent (1982) states that validation consists of 

three components: validation of the logic and consistency of the model 

(conceptual validation); determination of the model's ability to answer the 

question at hand (operational validation); and comparison of the simulation to the 

observed system (quantitative validation). Others argue that validation only 

consists of the comparison of model output to independent observations 

(McCombie and McKinley, 1998; ASTM, 1996; USEPA, 1989). For the purposes 

of this work, the overarching concept of building confidence in a model's 

predictive capability will be referred to as model validation, while the specific task 

of comparing model output to independent observations will be termed 

comparative analysis. 
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In a strict sense, no model can ever be considered true (i.e. valid) under all 

circumstances (Tsang, 1991). In accordance with the scientific method, a 

hypothesis can be proved 'false' or 'not false,' but may never be considered 

'true,' 'valid,' or 'substantiated' (Popper, 1959; Konikow, 1992; Bredehoeft and 

Konikow, 1993). However, Niederer argues that "it does not make sense to 

demand strict proof that a model is correct; it makes a lot of sense, however, to 

promote consensus by providing ample positive evidence for the correctness of 

the model. In this sense, validation is primarily a means to achieve consensus" 

(Niederer, 1990). In order to build consensus that a model accurately describes 

important processes, the structure of the model itself should be verified, and its 

application to a particular problem should be validated through model calibration 

and comparative analysis of model output to observed conditions. 

2.3.1   Model Verification 

A model's structure is verified through an extensive process of documentation 

and testing of the computer code. Documentation of a computer code begins 

with the development of the algorithms and procedures, and continues 

throughout the modeling process (ASTM, 1996). This allows others to check the 

accuracy of the code as well as understand the assumptions upon which the 

model is based. Computer code verification is "the process of demonstrating the 

consistency, completeness, correctness, and accuracy of a ground-water 

modeling code with respect to its design criteria by evaluating the functionality 
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and operational characteristics of the code and testing embedded algorithms and 

internal data transfers through execution of problems for which independent 

benchmarks are available" (ASTM, 1996). Analytical results or results from a 

known data set are common independent benchmarks used to ensure that the 

computer code is performing as expected (Clement et al., 2000). A computer 

code is verified when it is determined to be "mathematically correct in the 

formulation and solution" (Tsang, 1991). 

2.3.2  Model Calibration 

Model verification is no guarantee that the assumptions and processes simulated 

in a model are applicable to a given real system. To show that the model can 

represent such systems requires model calibration. Calibration is the process of 

adjusting model parameters, initial and boundaries conditions, and stresses so 

that the model approximates field-measured values (Levy, 1993). Calibration is 

an important step in model validation, as it can uncover flaws in the design and 

implementation of the model. According to the NRC, "if the model cannot 

capture the observed trends no matter how well it is calibrated, then its 

conceptual basis surely is wrong" (NRC, 2000). Calibration is particularly useful 

when necessary parameter values are unavailable or difficult to obtain. The 

standard calibration procedure seeks to minimize the differences between 

observed and predicted behavior, as measured by some goodness-of-fit statistic 

(Armstrong et al., 1996). Parameter values that optimize the goodness-of-fit 

statistic can be determined through the use of nonlinear regression analysis (Hill, 
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1998), or through a trial-and-error, forward process (Levy, 1993; Resele and Job, 

1990). Mean squared error (MSE) is a commonly used goodness-of-fit statistic, 

and will be discussed in later sections. Hill (1998) uses nonlinear regression in 

the computer program UCODE to optimize the parameter values (P'P) by 

minimizing the following statistic: 

ND NPR 

S(b) = 2>,[Q0I - QSi]
2 + 2>p[PP - P'p f (2.9) 

i=1 p=1 

where 

b        = a vector with values for each of the NP parameters being estimated 

ND     = number of observations 

NPR   = number of independently estimated parameter values 

NP     = number of estimated parameters (NP>NPR) 

Qoi     = ith observation 

Qsi (b) = simulated value corresponding to the ith observation 

Pp       = pth independently estimated parameter value 

Pp'     = pth fitted parameter value 

COJ        = weight for the ith observation 

(op       = weight for the pth independently estimated parameter 

Weighting performs two functions (Hill, 1998). First, the weights ensure that the 

weighted residuals have the same units so that they may be squared and 

summed as shown in equation (2.9). Second, the weights determine the amount 

of influence an observation or independently estimated parameter value has. As 
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the weights are based on the uncertainty of the measurement, more accurate 

estimates and observations will have greater influence on the overall statistic. 

The benefit of this statistic is that it penalizes those models whose fitted 

parameter values differ significantly from independently estimated values. 

Parameter values should be chosen carefully if such a penalty is not incurred, as 

it is possible to obtain an excellent fit between predicted and observed results 

using unrealistic parameter values (Bobba, 1993). To prevent this, parameter 

values used in a model are typically bounded to values that are deemed realistic 

based on sound judgment (Bobba, 1993) or by the literature (Clement et al., 

2000). 

Some models require no calibration, as they are used in a purely predictive 

manner (Eggleston, 2000; Bond, 1998; Armstrong, 1996). That is, the input 

parameter values are derived independently from field and lab experiments or 

from the relevant literature. These models tend to be relatively simple models, 

such as pesticide leaching models or simplified groundwater flow models, and 

can be difficult to use when parameters values cannot be easily obtained 

(Clement, 2000). According to the NRC (2000), any comprehensive reactive 

transport model must be calibrated. 

Not all parameter values used in a comprehensive model have to be determined 

exclusively by calibration. Through the use of geostatistical methods such as 
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kriging, parameter values such as hydraulic conductivity may be estimated. This 

method can provide a more independent representation of the real system. 

2.3.3  Comparative Analysis 

Once a model has been calibrated, simulations can be run and compared to 

additional laboratory or field data outside the calibration set. According to the 

EPA (1989), "field evaluations of models often lead to a better understanding of 

the processes taking place and point to additional research needs." This 

research will compare model results to field observations.   Comparing model 

results to field observations has been referred to as groundtruth model testing 

(Ababou et al., 1992) or model validation (McCombie and McKinley, 1998; 

ASTM, 1996; USEPA, 1989). For the purposes of this research, such an 

evaluation will be called a comparative analysis. Comparative analysis can be 

divided into two categories: qualitative comparative analysis and quantitative 

comparative analysis. 

2.3.3.1 Qualitative Comparative Analysis 

Qualitative comparative analysis is a common means to build consensus that a 

model is simulating the processes taking place in the field. In the realm of 

groundwater contaminant fate and transport modeling, model output is typically 

compared to field observations through the use of concentration plots. Examples 

of such comparisons include contaminant breakthrough curves and two- 

dimensional concentration contour plots. While this method allows for a concise 
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and informative study of the model's performance, it has its drawbacks. Most 

notably, qualitative methods are subjective in nature, which makes it difficult to 

compare results between two or more models. To overcome this drawback, it is 

recommended that qualitative methods be combined with quantitative methods to 

produce the most comprehensive description of model performance (Willmott, 

1984; Legates and McCabe, 1999). 

2.3.3.2 Quantitative Comparative Analysis 

Just as there is no one definition of validation, there is also no one best statistic 

to determine the goodness-of-fit between observations and model output 

(Weglarczyk, 1998; Imam et al., 1998). Accordingly, various combinations of 

statistical measures are used to evaluate models (Legates and McCabe, 1999; 

Imam et al., 1998). One of the main purposes of this research is to choose a 

combination of statistics that can be used to evaluate the goodness-of-fit of a 

model simulation. This section will discuss the residual-based and association- 

based statistics that may be suitable to measure model goodness-of-fit. 

One method of quantifying model performance is to calculate the summation of 

all the differences, or residuals, between the simulated values (Qs) and their 

corresponding observed values (Q0). Common residual-based statistics include 

bias (B), sum of squares error (SSE), and mean squared error (MSE). 

Bias is a measure of the systematic error associated with a model (Devore, 

1995). The amount that a model consistently overestimates or underestimates 
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the values of interest is reflected in the calculation of bias. Figure 2.5 illustrates 

the difference between biased and unbiased models. Unconditional bias (B), is 

defined as 

B = ms -m0 

where 

ms = average simulated value 

m0 = average observed value 

(2.10) 

- Simulated 
Values 

Observed 
Values 

Time (sec) Time (sec) 

Figure 2.5 Example of a Model a) with Bias, and b) without Bias 

If a nondimensional measure of bias is preferred, B'2 can be used (Weglarczyk, 

1998). B'2 is defined as 

B2 

B" = (2.11) 
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where 

so = standard deviation of the observed values 

Conditional bias (C2), another measure of model performance, is the measure of 

covariance between model residuals (Qs - Q0, or AQ) and simulated values (Qs), 

and is defined as 

C2 = cov(Qs -Q0JQs) = s| - Q0QS - m0
ms (2.12) 

where 

ss = standard deviation of the simulated values 

Note that the overline indicates the average of the quantities indicated. 

Covariance, an association-based statistic, will be discussed in detail later in this 

section. A completely unbiased model will have values of B, B'2, and C2 equal to 

zero. The relationship between the B'2, and C2, and other statistics will also be 

discussed in later paragraphs. 

A model may be perfectly unbiased but still be unacceptable in terms of matching 

simulated values to observed values. Large overestimates may be balanced by 

large underestimates, as shown in Figure 2.6. Statistics that sum the square of 

errors or the absolute errors are required to better assess overall model 

performance. Calculations of this nature include sum of squares error (SSE), 

mean absolute error (MAE), and mean squared error (MSE). 
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-Simulated Values 

Observed Values 

Time (sec) 

Figure 2.6 Unbiased Model that Fails to Match Observed Data 

Sum of squares error is defined as 

SSE=(Qo-Qs)2 (2.13) 

Mean absolute error is another familiar residual-based statistic, and is defined as 

MAE= Q0-Qs (2.14) 

Even more commonly used is the statistic mean squared error, which is shown 

as 

MSE = (Q0-QS)
2 

(2.15) 

Root mean square error (RMSE), the square root of MSE, is also used frequently 

as it has the same units as the residuals. RMSE has been used extensively as 

an objective function in model calibration (Sorooshian et al., 1983), while MSE is 

commonly used in meteorological forecast validation (Wilks, 1995). Fox (1981) 

and Willmott (1982) consider RMSE to be among the best residual-based 

performance measures. However, as both MSE and RMSE are calculated with 

squared differences, they are overly sensitive to extreme values (Legates and 

McCabe, 1999). Additionally, MSE and RMSE are cumbersome to use when 
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comparing the performance of different models, as their values are dependant 

upon the units of the observations and simulations. As a result of this 

dimensionality, the MSE of a model that is simulating data measured in 

milligrams per liter (mg/L) would differ significantly from a model that simulates 

data measured in moles per liter (mol/L). Non-dimensional statistics (discussed 

later in this section) should be used along with MSE and RMSE in order to 

quantify model goodness-of-fit (Legates and McCabe, 1999). 

Residual-based statistics such as MSE are often used in conjunction with 

association-based statistics to provide the modeler with a comprehensive 

measure of model quality. To best understand association-based statistics, 

consider the scatter plot in Figure 2.7.   Each point represents a measured and 

simulated value at a certain location or time. The x-coordinate of each point is 

determined by the observed value (Q0), while the simulated value (Qs) 

determines the y-coordinate. Association-based statistics quantify the 

correlation, or strength of the linear relationship, between the predicted and 

observed values. It should be pointed out that this is not the same as regression, 

which implies a causal relationship between independent and dependent 

variables. Covariance (cov), sample correlation coefficient (r), coefficient of 

determination (R2), and coefficient of efficiency (E), are commonly used 

association-based statistics. 
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♦ Location (i) 

Observed Value (Qo) 

Figure 2.7 Plot of Simulated and Observed Values 

Covariance measures the strength of the relationship between the observed and 

simulated values, and is defined as 

cov(Q0,Qs) = Q0Qs-m0ms (2.16) 

where 

Qo = observed values 

Qs = simulated values 

ms = average simulated value 

mo = average observed value 

As with MSE, covariance is unwieldy due to its dimensionality. To overcome this, 

the nondimensional measure of covariation, r, can be used, r, known as the 

Pearson's product-moment correlation coefficient (Legates and McCabe, 1999), 

is defined by Weglarczyk (1998) as 
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r^cov(Q0,Qs)_Q0Qs-m0ms 

s0ss s0ss 

where 

so = standard deviation of the observed values 

ss = standard deviation of the simulated values 

The Pearson's correlation coefficient is bounded from -1 (the largest negative 

correlation) to 1 (the largest positive correlation). A more common measure of 

correlation is R2, the coefficient of determination. R2 is calculated as the square 

of the sample correlation index (R2 = r2) and describes the total variance in the 

observed data that can be explained by a linear model of correlation. A value of 

R2 =1 is achieved when all points lie along a straight line (Devore, 1995). It is 

important to note that R2 "estimates the concentration of [(Q0, Qs)] points along 

an arbitrary line on the [(Q0,Qs)] plane, not along the 1:1 line which is of the only 

interest to the modeller" (Weglarczyk, 1998). This point is illustrated in Figure 

2.8, where two modeling results are displayed. The value of R2 is the same for 

both models, but Model 2 clearly overestimates the observed results, as denoted 

by the 1:1 line. Due to the insensitivity of r and R2 to bias, it has been argued 

that neither should be used as a measure of model performance (Legates and 

McCabe, 1999; Fox, 1981; Willmott, 1981; 1984). 
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Qo 

Figure 2.8 Insensitivity of Sample Correlation Coefficient to Bias 

One association-based statistic that does account for model bias is the Nash- 

Sutcliffe coefficient of efficiency, E. The coefficient of efficiency is an estimate of 

the concentration of (Qo.Qs) points along the 1:1 line, or line-of-perfect-fit. The 

coefficient of efficiency is also related to the coefficient of determination by the 

relationship 

E = Ft2-C2-B'2 (2.18) 

The coefficient of efficiency can also be calculated as a dimensionless 

transformation of MSE, and is defined by 

MSE 
E = 1 (2.19) 

The Nash-Sutcliffe coefficient has several desirable characteristics. First, this 

coefficient is nondimensional, making it easier to compare the performance of 

different models. Second, E is a measure of the departure of the (Qo,Qs) values 

from the line-of-perfect-fit, which is highly relevant to modelers. Finally, the 

coefficient of efficiency increases as model goodness-of-fit increases. A 
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maximum value of E = 1 suggests perfect model performance, while a negative 

value of E indicates that the model "introduces more ambiguity than that 

introduced by simply using the mean value of the observation as an estimator" 

(Imam et al., 1999). While E is a useful goodness-of-fit statistic, it is more difficult 

to interpret than R2. According to Legates and McCabe (1999), an E of 0.70 

means that the mean square error accounts for 30% of the variance in the 

observed data. Frankenberger et al. (1999) describe E in terms of mean 

observation values, such that an E of 0.70 indicates that the model performs 70% 

better than simply using the average value of the observation. In validating 

watershed prediction models that have been calibrated, Arnold et al. (1997) term 

values of E greater than 0.70 as "a reasonable fit," while Micovic and Quick 

relate that values of E greater than 0.80 are "quite satisfactory." For models that 

do not require major calibration, Frankenberger et al. (1999) considered values of 

E near 0.60 to be "good". 

While it is recognized that no one calculation is capable of quantifying model 

goodness-of-fit, a combination of the above statistics should be useful. Legates 

and McCabe (1999) suggest that a statistical assessment of model performance 

should include both absolute measures of error (e.g. B, RMSE) and relative 

measures of error (e.g. E, B'2). Previous use of statistics in the context of 

reactive transport model validation will be discussed in the following section. 

39 



2.4 Case Studies Using Models to Simulate the Natural 
Attenuation of Chlorinated Solvents 

Several recent field studies have focused on monitored natural attenuation as a 

viable containment technology for chlorinated solvent plumes. Almost all of 

these studies have incorporated reactive transport modeling in order to 

demonstrate that natural attenuation has taken place. These modeling efforts 

typically involve some level of model validation in order to convince regulators, 

scientists, and the general public that the application of the model was sound. 

This section will review field studies in the literature that include model 

calibration, quantitative comparative analysis, or qualitative comparative analysis 

as a means of model validation. 

Model calibration is the most oft-performed validation technique. One of the best 

examples of a reactive transport model calibration can be found in the study 

performed at the Area-6 site on Dover Air Force Base, Delaware (Clement et al., 

2000). RT3D was used in conjunction with the groundwater flow code 

MODFLOW to simulate chlorinated ethene fate and transport. Hydrogeologie 

parameter values were determined through tracer tests or from relevant 

literature, and contaminant source loading was quantified through model 

calibration. Model calibration was performed in a trial-and-error process to fit the 

concentration profiles observed in 1997 for PCE, TCE, cis-DCE, VC, ethene, and 

chloride. Similar calibration studies include those performed by Swanson (1999) 

at Site CCFTA-2 at Cape Canaveral, Florida using MODFLOW and MT3D; 

Moutoux and Hicks (1999) at Building 301 at Offutt Air Force Base, Nebraska 

40 



using MODFLOW and MT3D; Carey et al. (1999) at Site FT-002 at Plattsburgh 

Air Force Base, New York using MODFLOW and BIOREDOX; Barton et al. 

(2000) at site FTP at Naval Air Station Fallon, Nevada using MODFLOW and 

RT3D; Mason et al. (2000) at Naval Air Engineering Station Lakehurst, New 

Jersey using MODFLOW and RT3D. 

In many of the previously discussed studies, the calibrated model was used to 

predict future contaminant concentration profiles in order to support decisions on 

the use of monitored natural attenuation. The value of these predictions, 

however, is uncertain, as predictions were not tested against observations. 

Although the models were calibrated, there was no assurance that the models 

would perform adequately outside the calibration data set. Indeed, a study of 

groundwater flow model calibrations revealed that "good calibration does not lead 

to good prediction" (Freyberg, 1988). This reemphasizes the importance of 

performing comparative analysis between predictions to observations. While 

examples can be found in the realm of weather forecasting (Wilks, 1995), 

pesticide leaching modeling (Bond, 1998), and groundwater flow modeling (Lee 

and Ketelle, 1988; Anderson, 1992; Bobba, 1993; Osei, 1995; Eggleston and 

Rojstaczer, 2000), no documented studies involving chlorinated ethene fate and 

transport modeling were found that performed comparative analysis between 

simulations and observations beyond model calibration. If such an analysis were 

to be accomplished, sufficient data would be required to support both model 

calibration and comparative analysis. Field sites that could support such a 
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demand for data include Site FTP at Naval Air Station Fallon, Nevada (Barton et 

al., 2000) and Site LF-01 at Warren Air Force Base, Wyoming (Parsons 

Engineering Science, 1999). 
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3.0   Methodology 

3.1 Overview 

In this chapter, we present a methodology for validating a model that simulates 

natural attenuation of chlorinated ethenes. To demonstrate this methodology, we 

will first choose a fate and transport code that simulates the important aquifer 

processes thought to be occurring at Site LF-03 at F. E. Warren Air Force Base, 

Cheyenne, Wyoming. Second, the code will be calibrated to site data, and the 

calibrated fit will be evaluated through the inspection of concentration contour 

plots and goodness-of-fit statistics. Third, the calibrated site model will be used 

to perform a predictive simulation. Lastly, the simulation data will be compared 

to the data from Site LF-03 using the same evaluation tools (e.g. goodness-of-fit 

statistics) employed to evaluate calibration. It is hoped that this methodology will 

increase confidence in our ability to simulate natural attenuation of chlorinated 

ethenes, as well as provide a greater understanding of natural attenuation 

processes occurring at a particular site. 

3.2 Code Selection 

3.2.1   Characteristics of the Site 

In order to select an appropriate computer code to simulate conditions at Site LF- 

03, it is necessary to have a conceptual model of the site. In this section, we 

briefly characterize the site, to include a description of the military base, the 
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landfill under investigation, and the subsurface processes thought to be taking 

place near that landfill. 

F. E. Warren Air Force Base (Warren AFB), adjacent to the city limits of 

Cheyenne, Wyoming, has been a military post since 1867. The Air Force 

assumed control of the installation in 1947, and has used the base to support 

both training and operational commands. Warren AFB is currently the home of 

Air Force Space Command's 90th Space Wing, a unit responsible for the 

readiness and maintenance of intercontinental ballistic missiles (ICBMs). 

Landfill 03 (LF-03) was operational on Warren AFB from approximately the mid- 

1950's to the mid-1960's for the disposal of industrial and residential wastes 

generated by the base (Parsons Engineering Science, 1999). LF-03 is located in 

the southeast corner of the base, is approximately 7 acres in area, and contains 

a maximum of 15,400,000 cubic ft (ft3) of fill. In the mid 1980's it was determined 

that leachate from LF-03 could possibly pose a threat to human health and the 

environment. Groundwater monitoring wells were installed and sampled in 1987 

and 1988. After Warren AFB was placed on the National Priorities List (NPL) in 

February of 1990, a 1991 remedial investigation (Rl) revealed that TCE was the 

primary groundwater contaminant. It was hypothesized that TCE, used as a 

metal cleaner at base shops, had been disposed in LF-03 according to the 

standard industry practices of the day. A focused Rl was started for LF-03 in 

1995, and a treatability study to evaluate the use of monitored natural attenuation 
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(MNA) was conducted by Parsons Engineering Science and the USEPA National 

Risk Management Research Laboratory (NRMRL) in 1999. 

The treatability study indicated that several processes were taking place in the 

aquifer. First, it suggested that anaerobic conditions near the source area 

(caused by the degradation of co-contaminants) allowed for the reductive 

dechlorination of TCE. Several lines of evidence supported this claim, including 

the presence of cis-1,2-DCE. As DCE was not used in the base shops, the most 

likely source of this contaminant is from the reduction of TCE. Second, it was 

suggested that DCE and VC were being oxidized downgradient of the source. 

The most convincing evidence for this theory was the increasing ratio of TCE to 

DCE found downgradient of the landfill. This led to the hypothesis that "DCE is 

degraded through oxidation reactions, while TCE mass is relatively unaffected by 

destructive attenuation mechanisms" (Parsons Engineering Science, 1999). 

Oxygen, present in significant concentrations downgradient of the source, is 

assumed to be the electron acceptor in the oxidation reactions. Unfortunately, 

there are insufficient oxygen data to model direct oxidation of DCE and VC. As a 

result, it will be assumed that the attenuation of all chlorinated ethenes is the 

result of first-order reductive dehalogenation. 

Assumptions are also made about the sorption process. Following the treatability 

study (Parsons Engineering Science, 1999), sorption is assumed to be an 

equilibrium process. The linear sorption model is also deemed appropriate for 
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this site, as the concentration of contaminants is relatively low throughout the 

area under study. Based on these assumptions, any computer code chosen for 

this research should be able to simulate linear equilibrium sorption and reductive 

dehalogenation of chlorinated ethenes. 

3.2.2  Criteria for Code Selection 

When deciding which computer code to apply to a site, the most important 

consideration is that "the processes identified as being important at the site must 

correspond to those included in the model" (Weaver et al., 1987). The computer 

code's ability to model a relevant process is known as an essential code 

capability, in that "if a candidate code does not include the essential capabilities, 

it should be removed from consideration" (ASTM, 1997). Due to the complex 

flow characteristics found at Site LF-03 (Parsons Engineering Science, 1999), it 

was decided that a 3D transport model was necessary to represent the site. 3D 

representation is considered an essential code capability, as is the ability to 

represent linear equilibrium sorption and anaerobic reduction.   Table 3.1 

compares essential code capabilities against the capabilities of the candidate 

codes. 

Essential Code Capabilities Biochlor Bio-Redox BR3D RT3D 
Phvsicochemical Processes 
3-D Advection No Yes Yes Yes 
3-D Dispersion Yes Yes Yes Yes 
Linear Equilibrium Sorption Yes Yes Yes Yes 

Bioloaical Processes 
Anaerobic Reduction of chlorinated ethenes Yes Yes Yes Yes 

Table 3.1  Essential Capabilities of Candidate Codes 
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Based upon the essential code capabilities, only Bio-Redox, BR3D, and RT3D 

will be considered for further study. 

Model selection also depends upon non-essential code capabilities, such as 

ease of use and code credibility. These capabilities are subjectively ranked, in 

order of decreasing relative importance, by the modeler. This ranking process 

allows a balance to be struck between modeling effort and results obtained 

(ASTM, 1997). Table 3.2 contains a list of preferred attributes on which the 

candidate codes can be judged. The ability of each program to meet designated 

non-essential capability is ranked Good, Fair, or Poor. User Support and Ease of 

Use are relatively important in this effort due to the experience of the modeler 

and the time available in the study. As this research will attempt to build 

confidence in the code's application to the site, attributes such as Code 

Acceptance and Code Credibility are less important. 

Non-Essential Code Capabilities Bio-Redox BR3D RT3D 
User Support Poor Good Poor 
Ease of Use (data input/output) Poor Poor Poor 
Code Documentation Poor Poor Good 
Code Availability Good Good Good 
Code Acceptance Good Poor Good 

Code Credibility Good Poor Good 

Table 3.2 Non-Essential Capabilities of Candidate Codes 

3.2.3  Code Selected to Represent Site LF-03 

Of the codes inventoried in Chapter 2, BIOREDOX, RT3D, and BR3D are able to 

perform the essential calculations required to represent the physicochemical and 

biological processes thought to be occurring at Site LF-03. This results in 
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choosing a computer code based on the non-essential capabilities listed in the 

previous paragraph. Of these capabilities, the most important is the availability of 

technical support to the modeler. Based on these criteria, it was decided to use 

BR3D in the validation studies performed in this research. 

3.3 Code Application to Site LF-03 

The application of BR3D to Site LF-03 is based upon the treatability study (TS) of 

MNA performed by Parsons Engineering Science (1999). In the TS, the 

computer code MT3D was used in conjunction with MODFLOW (a groundwater 

flow model) to depict the fate and transport of TCE. A 220-cell by 125-cell by 

three layer model domain was created (see Figure 3.1), with each cell measuring 

20 feet by 20 feet. MODFLOW and MT3D were calibrated using data collected 

from 27 monitoring wells. Simulations were then performed to ascertain the 

effectiveness of different remedial alternatives. While this modeling study proved 

informative to decision-makers at Warren AFB, it had several shortcomings. 

First, TCE was the only contaminant studied, even though DCE and VC were 

also detected at the site. Second, the study did not involve any effort, outside of 

model calibration, to validate the application of the model to the site. This 

research will address these two points specifically by using BR3D to predict TCE, 

DCE, and VC concentrations, then compare those values to values observed at 

the site. The remainder of this section will discuss how the groundwater flow 

model created in the TS was adapted for use in this research, and will describe 

how the contaminant fate and transport code BR3D was applied to LF-03. 
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3.3.1   Groundwater Flow Model 

Like MT3D, BR3D requires the use of MODFLOW, a groundwater flow code 

developed by the U.S. Geological Survey (Harbaugh and McDonald, 1996). 

MODFLOW calculates hydraulic heads and groundwater fluxes, which are then 

used by fate and transport codes such as MT3D and BR3D to calculate 

contaminant concentrations. MODFLOW is a highly regarded program, and its 

extensive use in the study of hydrogeology and contaminant transport bears 

witness to its usefulness. This research does not attempt to validate the 

application of MODFLOW to Site LF-03. Instead, the Visual MODFLOW (Version 

2.8.2.0) flow model of Site LF-03 (Parsons Engineering Science, 1999) is 

assumed to be valid for the purposes of this research. The site flow model is 

based upon reasonable assumptions and a thorough conceptual understanding 

of the site (Parsons Engineering Science, 1999). Figure 3.2 depicts hydraulic 

head contours at the site based on measurements taken May 1999. The 

reported hydraulic mass balance bolsters the assumption of flow model validity; 

the discrepancy between incoming and outgoing hydraulic flux for the steady- 

state calibrated flow model was calculated as 0.0 percent (Parsons Engineering 

Science, 1999). Groundwater flow parameter values that apply to the entire 

model domain are listed in Table 3.3, while individual cell values can be found in 

the flow model itself (Parsons Engineering Science, 1999). The average value of 

hydraulic conductivity depends upon which of the three zones (ungradient, 

downgradient, or Crow Creek) is under consideration (Table 3.3 and Figure 3.2). 

As it is assumed that the groundwater flow portion of the model will perform 
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Variable Value 
Estimated Effective Porosity 0.2 
Bulk Density of Aquifer Solids 1.65 kg/I 
Average Hydraulic Gradient 0.02 ft/ft 
Average Hydraulic Conductivity 

Range 0.03 - 4.46 ft/day 
Upgradient Lithology (see Figure 3.2) 4.0 ft/day 
Downgradient Lithology (see Figure 3.2) 0.8 ft/day 
Crow Creek Zone (see Figure 3.2) 2.0 ft/day 

Average Groundwater Velocity 
Range 1.1 -163 f t/yr 
Geometric Average 6.9 ft/yr 

Table 3.3 Groundwater Flow Parameter Values 

adequately, this research will focus on the application of the contaminant 

transport model to the site. 

3.3.2  Contaminant Fate and Transport Model 

This research will model the natural attenuation TCE, DCE, and VC due to 

reductive dehalogenation. This section will discuss how BR3D will be applied to 

the site, to include fate and transport processes modeled and initial and 

boundary conditions assumed. 

3.3.2.1 Processes Modeled 

BR3D can model 3D advection, 3D dispersion, equilibrium or rate-limited 

sorption, and several biodegradation processes. Assuming steady state 

groundwater flow, linear sorption, and constant porosity (both spatially and 

temporally), these processes can be incorporated into the general transport 

equation for a single contaminant (Charbeneau, 2000; Domenico and Schwartz, 

1998): 
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R^ = _v.vC + V.(D.VC)±rbi0 (3.1) 
dt ~ 

where 

C = concentration of contaminant in aqueous phase [M/L3] 

t    = time [T] 

y  = average linear velocity vector (in the x,y, and z direction) [L/T] 

D = dispersion coefficient matrix [L2/T] 

rbio = source/sink term for contaminant production/destruction in aqueous phase 

[M/L3-T] 

R   = retardation factor of contaminant due to sorption [-] 

On the right hand side of the equation, the first term represents advection, the 

second dispersion, and the third biological reactions. Linear equilibrium sorption 

is included on the left side of the equation in the R term. The remainder of this 

section will describe the specific sorption and reaction equations used in BR3D to 

solve the general transport equation. 

Retardation due to linear equilibrium sorption can be described using the 

equation 

R=1 + KD-^- (3.2) 

where 

R = retardation factor of contaminant [-] 

KD = distribution coefficient of contaminant (L3/M) 
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0   = porosity (-) 

pb = bulk density of aquifer solids (M/L3) 

The distribution coefficient of the contaminant, KD , can be determined by 

(Domenico and Schwartz, 1998): 

Kd = K0cfoc (3-3) 

where 

Koc = partition coefficient of a contaminant between organic carbon and 

water (L3/M) 

foe = weight fraction of organic carbon in the aquifer solids (-) 

As Koc values were not experimentally determined at Site LF-03, they may be 

estimated using the relationship (Domenico and Schwartz, 1998) 

logKoc=-0.21 + logKow (3.4) 

where 

Kow = partition coefficient of a contaminant between octanol and water (-) 

BR3D also models the biodegradation processes at Site LF-03. Reductive 

dehalogenation of chlorinated ethenes is assumed to be the dominant process, 

and is described using first order kinetics: 

rbi0=^=-kC (3.5) 

where 

C concentration of dissolved contaminant (M/L3) 
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k = contaminant decay first order rate constant (T1) 

3.3.2.2 Initial and Boundary Conditions 

It is assumed that TCE started leaching into the groundwater in 1960, and that no 

contamination was present before that time. TCE is the only contaminant 

infiltrating into the groundwater; DCE and VC are assumed to be present from 

the reduction of aqueous phase TCE. It is also assumed that TCE infiltrates from 

cells in three designated source zones, as shown in Figure 3.3. The mass 

loading rate of TCE entering the aquifer is listed in Table 3.4. 

Time Source Zone 1 Source Zone 2 Source Zone 3 

1960-1965 0.0028 0 0 
1965-1970 0.0028 0 0 
1970-1975 0.0028 0 0 
1975-1980 0.0019 0.0094 0 
1980-1985 0.0013 0.0047 0.0094 

1985-1990 0.0009 0.0024 0 
1990-1995 0.0006 0.0094 0 
1995-1999 0.0004 0.0047 0 

Table 3.4 TCE Mass Loading per Cell (in kg/yr) (after Parsons Engineering 
Science, 1999) 

3.4 Site Model Validation 

In this research, model calibration will be performed using data collected in 1993, 

while a predictive simulation will be compared to observations made in 1999. 

Both calibration and validation will include concentration contour plots and 

goodness-of-fit statistics in order to evaluate model performance. 
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3.4.1   Calibration 

BR3D will be calibrated using concentrations of TCE, DCE, and VC observed in 

1993 (see Table 3.5) through the use of RMSE. 

Site 
Well* 

Corresponding Model Location 
Obs Pt    Row   Col    Layer       X         Y 

Observed Concentrations 
TCE      cis-1,2DCE       VC 

62 1 46 87 1736 1588 2.00E-05 1.22E-05 0.00E+00 
147 2 45 104 2065 1611 1.50E-05 8.20E-06 0.00E+00 

198 3 32 103 2045 1866 0.00E+00 0.00E+00 0.00E+00 

199 4 48 161 3210 1553 1.20E-06 0.00E+00 0.00E+00 

201 6 69 132 2639 1139 1.30E-06 0.00E+00 0.00E+00 

203 7 70 119 2375 1108 8.80E-06 0.00E+00 0.00E+00 

206 8 69 90 1797 1139 6.40E-06 1.00E-06 0.00E+00 
207 9 57 75 1490 1365 1.10E-05 5.00E-06 0.00E+00 
208 10 50 72 1436 1509 2.00E-05 1.60E-05 0.00E+00 
209 11 55 83 1652 1402 3.40E-05 2.80E-05 0.00E+00 
210 13 53 105 2100 1450 4.40E-05 2.40E-05 9.00E-07 

211 15 51 118 2349 1500 1.90E-05 9.10E-06 9.00E-07 
232 16 36 155 3088 1786 0.00E+00 0.00E+00 0.00E+00 

233 17 56 50 989 1393 0.00E+00 0.00E+00 0.00E+00 

236 18 64 150 2998 1227 0.00E+00 0.00E+00 0.00E+00 

Table 3.5 Observed Chlorinated Ethene Concentrations for 1993 (after 
Parsons Engineering Science (1999)) 

By inspecting the values observed in 1993, it can be seen that chlorinated ethene 

concentrations are much larger at some observation points than at others. For 

example, the concentration of TCE at Observation Point 13 is over 35 times 

greater than TCE concentration at Observation Point 4. If we fit the raw data, 

these large values will exert an undue influence on the calibration by masking the 

contribution of other observation points to the overall model fit. In order to 

dampen the effect of these extreme values on the goodness-of-fit statistics, it 

was decided to perform a log transformation on the concentration values. As the 

data values themselves are of interest (as opposed to the difference in values 
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being important) and due to the large range of the values, logs of base 10 will be 

used (Cole, 2000). The transformed data will then be analyzed using RMSE. 

The parameters to be varied in the calibration are listed in Table 3.6, while 

parameters held constant are listed in Table 3.7. 

Parameter Svmbol Ranae of Values Source 

First order rate constant for TCE KTCE 0 - 0.023 d'1 Suarez and Rifai, 1999 

First order rate constant for DCE I<DCE 0-0.130 d"1 Suarezand Rifai, 1999 

First order rate constant for VC kvc 0 - 0.007 d'1 Suarez and Rifai, 1999 

Table 3.6 Model Parameters Varied During Calibration 

Parameter Svmbol Value Source 

Longitudinal Dispersivity CtL 25 ft Parsons Engineering Science, 1999 

Transverse Dispersivity CtT 2.5 ft Parsons Engineering Science, 1999 

Vertical Dispersivity av 0.9 ft Parsons Engineering Science, 1999 

Retardation factor for TCE RTCE 1.33 CRC Press, 1997; Equations 3.2 - 3.4 

Retardation factor for DCE RDCE 1.28 CRC Press, 1997; Equations 3.2 - 3.4 

Retardation factor for VC Rvc 1.22 CRC Press, 1997; Equations 3.2 - 3.4 

Table 3.7 Model Parameters Held Constant During Calibration 

The first order decay rate constants for TCE, DCE, and VC will be varied to 

minimize the RMSE of all three contaminants. Observed and calibrated 

contaminant contour plots and optimized RMSE, bias(B) and coefficient of 

efficiency (E) will be reported for each contaminant as a measure of model 

calibration. 
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3.4.2  Quantitative Comparative Analysis 

After BR3D is calibrated to 1993 data, a predictive simulation will be performed. 

The model will be run from 1960 to 1999, and results will be compared to the 

1999 observed concentrations of TCE, DCE, and VC. As with the model 

calibration, observed and calibrated contaminant contour plots and RMSE, bias 

(B) and coefficient of efficiency (E) will be reported for each contaminant. 
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4.0   Analysis 

4.1  Calibration Results 

Chlorinated ethene decay rate constants were estimated using a forward, trial- 

and-error process. Using the sum of the three chlorinated ethene RMSEs as the 

objective function, the decay rates for DCE and VC were held constant while the 

decay rate for TCE was varied to minimize the RMSE sum (see Figure 4.1). 

q 
O 

u c 
o 
Ü 
D) 
O                        ' 

"B (/> 
UJ 
CO 
2 1   - 
o 
£ 
3 </) n i u 

1.00E-05 1 .OOE-04 
kTCE(d'1) 

1.00E-03 

Figure 4.1 Calibration of TCE First Order Decay Constant 
for kDCE=1x10-5 d"1, kvc = 1X10-6 d"1 

Once a kTCEwas found that minimized the objective function (sum of RMSE), 

kDcE was varied while kTCE and kVc were held constant. This process was 

repeated until kTCE, kDcE, and kVc each converged to a value that produced the 

(hopefully) global minimum objective function. The calibrated decay rates are 

listed in Table 4.1. 
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First Order Rate Constant, k 
(d-1) 

TCE 2.3x10-4 
DCE 1.8x10-4 
VC 0 

Table 4.1 Calibrated Model Parameters 

The fit values for first order decay are reasonable, in that they fall within the 

range of values reported in the literature (Suarez and Rifai, 1999). It can also be 

seen that the greater number of chlorine substituents a contaminant has, the 

greater the rate of decay (kTcE>l<DCE>kvc)- These two facts support the 

assumption that the aquifer is anaerobic, and that reductive dehalogenation is an 

important process at the site. 

Significant insight can be gained through qualitative evaluation of the calibrated 

fit. To this end, simulated and observed concentration contour plots for TCE 

(Figures 4.2 and 4.3, respectively), DCE (Figures 4.4 and 4.5), and VC (Figures 

4.6 and 4.7) were generated using the linear interpolation option of Surfer 

(Version 5.03), a surface mapping program. 

In comparing the concentration contour plots, we found that simulated 

concentrations matched observed concentrations reasonably well for TCE and 

VC, while the DCE concentration data were less well matched. Specifically, it is 

apparent that the calibrated model slightly underestimates the observed 

concentration of DCE found at Site LF-03. 
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Figure 4.2 Calibrated TCE Concentration Contour Plot, Layer 1 (g/L) 
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Figure 4.3 1993 Observed TCE Concentration Contour Plot, Layer 1 (g/L) 
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Figure 4.4 Calibrated DCE Concentration Contour Plot, Layer 1 (g/L) 
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Figure 4.6 Calibrated VC Concentration Contour Plot, Layer 1 (g/L) 
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Figure 4.7 1993 Observed VC Concentration Contour Plot, Layer 1 (g/L) 
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Goodness-of-fit statistics were also used to evaluate the calibrated fit. Table 4.2 

contains statistics that describe the absolute magnitude of errors (RMSE), 

relative magnitude of errors (E), and direction and magnitude of the model's 

tendency for over- or under-prediction (B, B'2) for each chlorinated ethene. 

RMSE 
(log(ppm)) 

E 
(-) 

B 
(log(ppm)) 

B'2 

(-) 
TCE 0.55 0.71 -0.27 0.069 

DCE 0.74 0.51 -0.42 0.16 

VC 0.21 0.60 -0.030 0.008 

Table 4.2 Goodness-of-Fit Statistics for Model Calibration 

The model bias (B) of each contaminant reveals that concentrations for all three 

are being under-estimated, with DCE having the greatest magnitude of bias (B'2). 

This under-estimation could have significant implications if the model is to be 

used to predict chlorinated ethene fate and transport. However, the coefficient of 

efficiency for the three contaminants (E), while less than the ideal value of 1, is 

greater than zero. Using E as a gauge of model performance is relatively new to 

contaminant transport modeling. Accordingly, there is no consensus of what 

value of E indicates an acceptable fate and transport model, especially when the 

data have been log transformed. However, as this model did not require a major 

calibration (only three parameters varied), it may be possible to follow the 

example given by Frankenberger et al. (1999) for the validation of a hydrology 

model. If this example is applicable, values in the range of E = 0.60 can be 

considered good, as is the case for TCE and DCE fit. Values of E < 0.5, as in the 

case for VC fit, tend to indicate poor model performance. However, it should be 
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noted that the VC fit was based on only two quantifiable data points (wells 210 

and 211 in Table 3.5), and that the kVc is essentially zero. This essentially 

means that only two fitting parameters (kTcE and kDcE) were used to calibrate the 

model to TCE and DCE data. This fact was taken into consideration along with 

the evaluation of concentration contour plots and the goodness-of-fit statistics. 

After a review of the information, we concluded that the calibrated model 

provided a good fit to the TCE and DCE data, and an acceptable fit to the VC 

data. The fact that the model can be reasonably calibrated with minimal fitting 

parameters suggests that the modeling assumptions of linear equilibrium sorption 

and first order decay are not invalid. 

4.2 Predictive Simulation and Comparative Analysis 

After the decay rate constants were calibrated, a predictive simulation was run 

from 1960 to 1999. Simulation values were then compared to values observed at 

Site LF-03 in 1999 (Table 4.3). Figures 4.8, 4.9, and 4.10 show the simulated 

and observed chlorinated ethene concentrations. 

Inspection of the 4x10"5 contour lines in Figure 4.8 indicates that simulated TCE 

concentration matches well to observed data, while an inspection of Figure 4.9 

shows that DCE is considerably underestimated in the simulation. In contrast, 

the model overestimates VC concentrations (see Figure 4.10). It should be 

noted, however, that the simulated VC concentration are nearly equal to the VC 

detectable limit of 1x10"7 g/L, such that the overestimation is relatively small. 

66 



Site 
Well# 

Corresponding Model Location 
Obs Pt   Row  Col   Layer     X        Y 

Observed Concentrations (g/L) 
TCE     Cis-1,2DCE       VC 

62 1 46 87 1736 1588 5.00E-07 5.00E-07 0.00E+00 

147 2 45 104 2065 1611 1.04E-05 5.90E-06 0.00E+00 

198 3 32 103 2045 1866 0.00E+00 0.00E+00 0.00E+00 

199 4 48 161 3210 1553 0.00E+00 0.00E+00 0.00E+00 

199M1 5 48 161 3 3210 1553 0.00E+00 0.00E+00 0.00E+00 

201 6 69 132 2639 1139 5.00E-07 0.00E+00 0.00E+00 
203 7 70 119 2375 1108 1.28E-05 5.10E-06 0.00E+00 

206 8 69 90 1797 1139 2.60E-06 1.20E-06 0.00E+00 

207 9 57 75 1490 1365 3.31 E-05 3.66E-05 0.00E+00 

208 10 50 72 1436 1509 2.30E-05 2.28E-05 0.00E+00 
209 11 55 83 1652 1402 9.31 E-05 1.29E-04 0.00E+00 

209M1 12 55 83 2 1652 1402 7.71 E-05 5.11 E-05 0.00E+00 

210 13 53 105 2100 1450 2.67E-05 1.59E-05 0.00E+00 
210M1 14 53 105 3 2100 1450 1.83E-05 6.90E-06 0.00E+00 

211 15 51 118 2349 1500 7.50E-06 3.30E-06 0.00E+00 
232 16 36 155 3088 1786 0.00E+00 0.00E+00 0.00E+00 
233 17 56 50 989 1393 5.00E-07 0.00E+00 0.00E+00 
236 18 64 150 2998 1227 5.00E-07 0.00E+00 0.00E+00 
237 19 81 113 2246 895 0.00E+00 0.00E+00 0.00E+00 
238 20 77 133 2655 971 1.12E-06 0.00E+00 0.00E+00 

PES-1S 21 53 74 1473 1442 3.39E-05 3.35E-05 0.00E+00 

PES-2D 22 46 88 3 1759 1591 4.30E-06 2.30E-06 0.00E+00 
PES-3D 23 68 90 3 1786 1143 5.00E-07 0.00E+00 0.00E+00 
PES-4D 24 45 105 3 2090 1615 1.23E-05 3.00E-06 0.00E+00 
PES-5D 25 69 120 3 2387 1122 3.30E-06 1.30E-06 0.00E+00 

PES-6S 26 51 139 2 2782 1485 1.10E-05 2.50E-06 0.00E+00 

PES-6D 27 51 140 3 2771 1485 0.00E+00 0.00E+00 0.00E+00 

Table 4.3 Observed Chlorinated Ethene Concentrations for 1999 (after 
Parsons Engineering Science (1999)) 
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Figure 4.8 Simulated (a) and Observed(b) TCE Concentrations for 1999 
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Figure 4.10 Simulated (a) and Observed (b) VC Concentrations for 1999 
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To complete the evaluation of model performance, goodness-of-fit statistics for 

the predictive simulation (summarized in Table 4.4) were calculated. 

RMSE 
(log(ppm)) 

E 
(-) 

B 
(log(ppm)) 

B'2 

(-) 
TCE 0.50 0.77 -0.09 0.009 

DCE 0.77 0.47 -0.39 0.14 

VC 0.24 - 0.13 - 

Table 4.4 Goodness-of-Fit Statistics for 1999 Data 

As VC was not observed at Site LF-03 in 1999, the observed variance of VC 

concentrations equals zero. This prevents the calculation of the Nash-Sutcliffe 

coefficient of efficiency (E) and the non-dimensional bias (B/2) for this data set. 

Regardless, interesting observations can be made from the statistics. First, the 

magnitude of non-dimensional bias (B'2) for TCE decreased from 0.069 in 1993 

to 0.009 in 1999. It is hypothesized that the TCE loading rate in the first few time 

steps (see Table 3.4) may have been insufficient, resulting in the underestimation 

of TCE concentration later in the simulation. This reduction in the magnitude of 

bias has implications for another goodness-of-fit statistic, as E is related to B'2 by 

equation 2.18: 

E = R2-C2-B'2 (2.18) 

The decrease in B'2 could account for the unusual circumstance that the model 

fits the observed data better when in the predictive mode than when the fit was 

calibrated, as shown by the increase in E from 0.71 to 0.77. The value of E for 

TCE suggests that the TCE concentration fit is good (Frankenberger et al., 

1999). Second, the value of E for DCE is relatively low (below 0.50), indicating 

that the fit of simulated DCE to the observed values is relatively poor 
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(Frankenberger et al., 1999). Lastly, the positive value of VC bias (B) indicates 

that VC is being over-predicted. As no VC was observed at Site LF-03 in 1999, 

any model prediction over 1x10"7 g/L (the detection limit for VC) would result in 

over-prediction. 

While chlorinated ethene advection is relatively slow, and only six additional 

years have been simulated, we found that BR3D provided good predictions of 

TCE concentrations and fair predictions of DCE concentration, while lack of 

quantifiable data precludes the evaluation of VC prediction. From these 

observations of model performance, we inferred that the assumptions of linear 

equilibrium sorption and reductive dehalogenation were not invalid when 

describing TCE and DCE fate and transport. 
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5.0    Conclusion 

5.1 Summary 

In this thesis, the contaminant fate and transport model BR3D was applied to Site 

LF-03 on F.E. Warren Air Force Base to simulate the natural attenuation of TCE, 

DCE, and VC through reductive dehalogenation. Reductive dehalogenation was 

modeled as a first order process, with decay rate constants being calibrated 

through a forward, trial-and-error process. After model calibration, a predictive 

simulation was performed. Simulated values for chlorinated ethene 

concentrations were compared to observed values using concentration contour 

plots and goodness-of-fit statistics. 

5.2 Calibration 

The calibrated values for first order decay were found to be reasonable, in that 

they fell within the range of values reported in the literature (Suarez and Rifai, 

1999).    Contaminants with greater number of chlorine substituents had greater 

rates of decay (kTcE>kDCE>kvc), as would be expected in an anaerobic aquifer 

where reductive dehalogenation is taking place. After a simulation was run using 

the fit decay rates, a comparison of the concentration contour plots revealed that 

simulated concentrations matched observed concentrations reasonably well for 

TCE and VC, while the simulated DCE concentration tended to underestimate 

the observed data. It should be noted that choosing other decay rates could 
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have improved DCE fit, but this would have resulted in the degeneration of TCE 

and VC fit such that the overall fit of the model would have suffered. 

The model bias for each contaminant revealed that TCE, DCE, and VC were 

being under-estimated, with DCE having the greatest magnitude of bias. 

However, the coefficient of efficiency for the three contaminants (E), showed that 

the model performed better than the mean value at estimating chlorinated ethene 

concentrations. Specifically, values of E were judged as good for TCE and DCE 

but poor for VC. As BR3D is minimally calibrated (essentially only two fitting 

parameters) we concluded that the calibrated model provided a good fit to the 

TCE and DCE data, and an acceptable fit to the VC data. The fact that the 

model can be reasonably calibrated with minimal fitting parameters suggests that 

the modeling assumptions of linear equilibrium sorption and first order decay are 

not invalid. 

5.3 Predictive Simulation and Comparative Analysis 

After BR3D was calibrated, a predictive simulation was run, with results 

compared to observations made in 1999. Inspection of simulated and observed 

contour plots revealed that simulated TCE concentrations matched well to 

observed data, while simulated DCE concentrations were underestimated and 

simulated VC concentrations overestimated. The value of E for TCE (0.77) 

suggests that the TCE concentration fit is good, while the value of E for DCE 

(0.47) indicated that fit of simulated DCE to observed values was relatively poor 
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(Frankenberger et al., 1999). While E could not be calculated for VC, the positive 

value of VC bias (B) indicated that VC was being over-estimated. 

While chlorinated ethene advection is relatively slow, and only six additional 

years were simulated, we found that BR3D provided good predictions of TCE 

concentrations and fair predictions of DCE concentrations. Due to a lack of 

quantifiable data, no conclusions were drawn regarding VC predictions. From 

these conclusions regarding model performance, we made the inference that 

TCE and DCE fate and transport could be simulated by an advection/dispersion 

model that assumes linear equilibrium sorption and first order decay. 

5.4 Areas for Further Research 

1.  In Chapter 3, sorption was assumed to be a linear equilibrium process. To 

test this assumption, the Damköhler number was calculated for the site. 

The Damköhler number I (Dai), defined as the ratio between advection 

and reaction time scales, can be used to indicate if sorption is rate-limited 

or in equilibrium. If the Da, is large, then advection is slow in comparison 

to sorption, suggesting that sorption can be modeled as an equilibrium 

process. Conversely, a small Dai indicates advection is fast compared to 

sorption, and that sorption would be best modeled as a rate-limited 

process. The value of Dai depends on the groundwater velocity, length 

scale (typically, diameter of the porous material), and the sorption rate 

constant. Using site values for average groundwater velocity and 
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literature values for the diameter of sand (the predominant aquifer material 

found during the treatability study) and a sorption rate constant, we 

calculated Dai = 1.4x10"3. Since Da, «1, sorption at the site may best be 

modeled as a rate-limited process instead of an equilibrium process. 

2. While it is hypothesized that DCE and VC are aerobically oxidized 

downgradient of the source, the lack of oxygen data for the site precludes 

modeling this process. Validation of a site with more comprehensive 

geochemical data might instill more confidence in the model's ability to 

simulate complex biological processes. 

3. The calibration of the contaminant transport model was accomplished 

through a trial-and-error, forward process. While this method was 

adequate for the purposes of this research, it may be possible to obtain a 

better fit to the observed concentrations using a nonlinear simulation- 

regression code, such as UCODE (Hill, 1998; Gandhi et al., in review), to 

estimate model parameters. 

4. This research modeled the natural attenuation of chlorinated ethenes by 

reductive dehalogenation. As additional models are developed to 

describe the processes thought to be taking place at Site LF-03, the 

methodology developed in this thesis can be used to measure the 

predictive ability of each new model. The resulting best-fit statistics can 
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then be compared. Hill (1998) provides an introduction to model 

comparison, and specifically discusses comparison between models with 

different numbers of input parameters, while Legates and McCabe (1999) 

discuss the necessary methods to determine the statistical significance of 

the coefficient of efficiency. 

5.  RMSE and E are overly sensitive to extreme values due to the squared 

differences used in their calculation. Legates and McCabe (1999) discuss 

the use of nonparametric or rank correlation methods, as well as 

goodness-of-fit statistics that rely on the absolute error rather than the 

squared error. Such methods could prove useful in further model 

validation efforts. 

75 



6.0    Bibliography 

Ababou, R., B. Sagar, and G. Wittmeyer. Testing procedures for spatially 
distributed flow models, Advances in Water Resources, 15: 181-198, 1992 

Adamson, D.T. and G.F. Parkin. Impact of mixtures of chlorinated aliphatic 
hydrocarbons on high-rate, tetrachloroethene-dechlorinating enrichment 
culture, Environmental Science and Technology, 34(10):1959-1965, 2000 

Agency for Toxic Substances and Disease Registry (ATSDR). 1996. National 
Exposure Registry: Trichloroethvlene (TCE) Subreqistrv Followup 1 
Report., U.S. Public Health Service, Department of Health and Human 
Services, Atlanta, GA, 1996 
http://www.atsdr.cdc.gov/NER/tech.html 

American Society for Testing and Materials (ASTM). Standard Guide for 
Developing and Evaluating Ground-Water Modeling Codes. D6025—96e. 
West Conshohocken, PA, 1996 

American Society for Testing and Materials (ASTM). Standard Guide for 
Selecting a Ground-Water Modeling Code. D6170-9781. West 
Conshohocken, PA, 1997 

Anderson, J.E. and P.L. McCarty. Transformation yields of chlorinated ethenes 
by a methanotrophic mixed culture expressing particulate methane 
monooxygenase, Applied Environmental Microbiology, 63: 687-693, 1997 

Armstrong, A.C., A.M. Portwood, P.B. Leeds-Harrison, G.L Harris, and J.A. Catt. 
The Validation of Pesticide Leaching Models, Pesticide Science, 48: 47- 
55, 1996 

Arnold, J.G., J.R. Williams, R. Srinivasan, and K.W. King. Soil and Water 
Assessment Tool User Manual. Texas A&M Blackland Research Center, 
Temple, TX, 1997 
http://www.brc.tamus.edu/swat/usermanual/modelvalidation.html 

Azadpour-Keeley, A., H.H. Russell, and G.W. Sewell. Microbial Processes 
Affecting Monitored Natural Attenuation of Contaminants in the 
Subsurface, EPA/540/S-99/001, USEPA, Ada, OK, 1999 
http://www.epa.gov/ada/download/issue/microbial.pdf 

Aziz, C.E., C.J. Newell, J.R. Gonzales, P. Haas, T.P. Clement, and Y.Sun. 
BIOCHLOR: Natural Attenuation Decision Support System User's Manual 
Version 1.0. EPA/600/R-00/008, USEPA, Washington, D.C., 2000 

76 



Bair, E.S. Model (In)Validation - A View from the Courtroom, Ground Water, 
32(4): 530-531, 1994 

Barton, A., M. Kelley, and A. Fisher. Modeling Chloroethene Behavior in 
Groundwater in Support of Natural Attenuation. In: Natural Attenuation 
Considerations and Case Studies: Remediation of Chlorinated and 
Recalcitrant Compounds. G.B. Wickramanayake, A.R. Gavaskar, and 
M.E. Kelley, eds. Battelle Press, Columbus, pp. 89-96, 2000 

Bloom, Y., R. Aravena, D. Hunkeler, E. Edwards, and S.K. Frape. Carbon 
Isotope Fractionation during Microbial Dechlorination of Trichloroethene, 
cis-1,2-Dichloroethene, and Vinyl Chloride: Implications for Assessment 
of Natural Attenuation, Environmental Science and Technology, 
34(13):2768-2772, 2000 

Bradley, P.M. Microbial degradation of chloroethenes in groundwater systems, 
Hvdroqeoloqy Journal, 8: 104-111, 2000 

Bradley, P.M. and F.H. Chapelle. Effect of contaminant concentration on aerobic 
microbial mineralization of DCE and VC in stream-bed sediments, 
Environmental Science and Technology, 32(5): 553-557, 1998a 

Bradley, P.M. and F.H. Chapelle. Microbial mineralization of VC and DCE under 
different terminal electron accepting conditions, Anaerobe, 4: 81-87, 
1998b 

Bradley, P.M., J.E. Landmeyer, and R.S. Dinicola. Anaerobic oxidation of [1-2- 
14C] dichloroethene under Mn(IV)-reducing conditions, Applied 
Environmental Microbiology, 64: 1560-1562, 1998 

Bredehoeft, J.D. and L.F. Konikow. Ground-water Models: Validate or 
Invalidate, Ground Water, 31(2): 178-179, 1993 

Bobba, A.G. Field Validation of 'SUTRA' Groundwater Flow Model to Lambton 
County, Ontario, Canada, Water Resources Management, 7: 289-310, 
1993 

Bond, W.J, C.J. Smith, and P.J. Ross. Field validation of a water and solute 
transport model. In: International Association of Hvdrooeolooists: 
Shallow groundwater systems, International Association of 
Hydrogeologists, Rotterdam, 1998 

Bouwer, E.J. and P.L. McCarty. Utilization rates of trace halogenated organic 
compounds in acetate-supported biofilms, Biotechnology and 
Bioengineering, 27: 1564-1571, 1985 

77 



Carey, G.R., P.J. Van Geel, J.R. Murphy, E.A. McBean, and F.A. Rovers. 
Modeling Natural Attenuation at the Pittsburgh Air Force Base. In: 
Natural Attenuation of Chlorinated Solvents, Petroleum Hydrocarbons, 
and Other Organic Compounds. B.C. Alleman and A. Leeson, eds. 
Battelle Press, Columbus, pp. 77-82, 1999 

Charbeneau, R.J. Groundwater Hydraulics and Pollutant Transport. Prentice- 
Hall, New Jersey, 2000 

Code of Federal Regulations (CFR). 40CFR141.50: Maximum contaminant level 
goals for organic contaminants. GPO, Washington, D.C., 2000 
http://www.access.gpo.gov/nara/cfr/waisidx_00/40cfr141_00.html 

Code of Federal Regulations (CFR). 40CFR141.61: Maximum contaminant 
levels for organic contaminants. GPO, Washington, D.C., 2000 
http://www.access.gpo.gov/nara/cfr/waisidx_00/40cfr141_00.html 

Cole, T.J. Sympercents: symmetric percentage differences on the 100 loge scale 
simplify the presentation of log transformed data, Statistics in Medicine, 
19:3109-3125,2000 

Clark, M.M. Transport Modeling for Environmental Engineers and Scientists. 
Wiley & Sons, New York, 1996 

Clement, T.P., CD. Johnson, Y. Sun, G.M. Klecka, C. Bartlett. Natural 
attenuation of chlorinated ethene compounds: model development and 
field-scale application at the Dover site, Journal of Contaminant 
Hydrology, 42: 113-140, 2000 

CRC Press. Handbook of Physical Properties of Organic Chemicals. P.H. 
Howard and W.M. Meylan, eds. Lewis Publishers, Boca Raton, FL, 1997 

Devore, J.L. Probability and Statistics for Engineering and the Sciences. 4th ed. 
Duxbury Press, Pacific Grove, CA, 1995 

Dolan, M.E., and P.L. McCarty. Small-column microcosm for assessing 
methane-stimulated vinyl chloride transformation in aquifer samples, 
Environmental Science and Technology, 29: 1892-1897, 1995 

Dominico, P.A. and F.W. Schwartz. Physical and Chemical Hvdrogeology. 2nd 

Ed. Wiley & Sons, New York, 1998 

Eggleston, J.R., and S.A. Rojstaczer. Can We Predict Subsurface Mass 
Transport?, Environmental Science and Technology, 34(10): 4010-4017, 
2000 

78 



Frankenberger, J.R., E.S. Brooks, M.T. Walter, M.F. Walter, and T.S. Steenhuis. 
A GIS-based variable source area hydrology model, Hvdroloqical 
Processes, 13: 805-822, 1999 

Feng, P.P. Modeling the Effect of Nonlinear and Rate-Limited Sorption on the 
Natural Attenuation of Chlorinated Ethenes. MS thesis, 
AFIT/GEE/ENV/00M-04. School of Engineering and Management, Air 
Force Institute of Technology (AU), Wright-Patterson AFB OH, March 
2000 

Fetter, C.W. Contaminant Hvdroqeoloqy. Macmillan, New York, 1993 

Fox, D.G. Judging air quality model performance: A summary of the AMS 
workshop on dispersion model performance, Bulletin of the American 
Meteorological Society, 62: 599-609, 1981 

Freyberg, D.L. An Exercise in Ground-Water Model Calibration and Prediction, 
Ground Water, 26(2): 350-360, 1988 

Gandhi, R.K., G.D. Hopkins, M.N. Goltz, S.M. Gorelick, and P.L McCarty. Full- 
scale demonstration of in situ cometabolic biodegradation of 
trichloroethylene in groundwater, 2: Comprehensive analysis of field data 
using reactive transport modeling, Water Resources Research, in review 

Garrick, M., C. Cunnane, and J.E. Nash. A criterion of efficincy for rainfall-runoff 
models, Journal of Hydrology, 36:375-381,1978 

Harbaugh, A.W., and M.G. McDonald. User's documentation for MODFLOW-96, 
an update to the U.S. Geological Survey Modular Finite-Difference 
Ground-Water Flow Model. U.S. Geological Survey Open-File Report 96- 
485. U.S. Geological Survey, Denver, 1996 

Hill, M.C. Methods and Guidelines for Effective Model Calibration. U.S. 
Geological Survey Water-Resources Investigations Report 98-4005. U.S. 
Geological Survey, Denver, 1998 

Ho, S.V., C. Athmer, P.W. Sheridan, B.M. Hughes, R. Orth, D. McKensie, P.H. 
Brodsky, A.M. Shapiro, T. M. Sivavec, J. Salvo, D. Schultz, R. Landis, R. 
Griffith, and S. Shoemaker. The Lasagna Technology for In Situ Soil 
Remediation. 2. Large Field Test, Environmental Science and Technology, 
33(7): 1092-1099, 1999 

Holliger, G.D., G. Schraa, A.J.M. Stams, and A.J.B. Zehnder. A highly purified 
enrichment culture couples the reductive dechlorination of 
tetrachloroethene to growth, Applied Environmental Microbiology, 59: 
2991-2997, 1993 

79 



Imam, B., S. Sorooshian, T. Mayr, M. Schaap, H. Wosten, and B. Scholes. 
IGBP-DIS Working Paper #22: Comparison of Pedotransfer Function to 
Compute Water Holding Capacity Using the van Genuchten Model in 
Inorganic Soils. May 1999, Report to IGBP-DIS Soil Data Tasks. National 
Geophysical Data Center, Colorado 1999 
http://www.ngdc.noaa.gov/paleo/igbp- 
dis/frame/publications/wp_22/sc_wp_22.html 

International Atomic Energy Agency (IAEA). Radioactive waste management 
glossary. Report IAEA-TECDOC-264, Vienna, Austria, 1982 

Konikow, L.F., and J.D. Bredeheoft. Ground-water models cannot be validated, 
Advances in Water Resources, 15: 75-83, 1992 

Konikow, L.F.   Discussion of "The Modeling Process and Model Validation," by 
Chin-Fu Tsang, November-December 1991 issue, v. 29, no. 6, pp. 825- 
831, Ground Water, 30(4): 622-624, 1992 

Lee, R.R., and R.H. Ketelle. Contaminant Transport Model Validation: The Oak 
Ridge Reservation. Oak Ridge National Laboratory, TN, 1988 

Legates, D.R. and G.J. McCabe. Evaluating the use of "goodness-of-fit" 
measures in hydrologic and hydroclimatic model validation, Water 
Resources Research, 35(1): 233-241, 1999 

Leijnse, A. and S.M. Hassanizadeh. Model definition and model validation, 
Advances in Water Resources, 17:197-200, 1994 

Levy, J. A Field and Modeling Study of Atrazine Transport and Fate in 
Groundwater. PhD dissertation. University of Wisconsin-Madison, 1993 

Mackay, D.M., and J.A. Cherry. Groundwater Contamination: Pump-and-Treat 
Remediation, Environmental Science and Technology, 23(8): 630-636, 
1989 

Mason, A.R., T.J. Franz, M.R. Harkness, and M. Figura. Modeling Natural 
Attenuation of Chlorinated Solvent Plumes. In: Natural Attenuation 
Considerations and Case Studies: Remediation of Chlorinated and 
Recalcitrant Compounds. G.B. Wickramanayake, A.R. Gavaskar, and 
M.E. Keliey, eds. Battelle Press, Columbus, pp. 113-120, 2000 

Masters, G.M. Introduction to Environmental Engineering and Science. 2nd ed. 
Prentice-Hall, New Jersey, 1997 

80 



Maymo-Gatell, X., Y-T Chien, J.M. Gossett, and S.H. Zinder. Isolation of a 
bacterium that reductively dechlorinates tetrachloroethene to ethene, 
Science, 276: 1568-1571, 1997 

Maymo-Gatell, X., T. Anguish, and S.H. Zinder. Reductive Dechlorination of 
Chlorinated Ethenes and 1,2-Dichloroethane by "Dehalococcoides 
ethenogenes!' 195, Applied and Environmental Microbiology, 64(7): 3108- 
3113, 1999 

McCarty, P.L. Biotic and abiotic transformations of chlorinated solvents in 
groundwater. In: Symposium on Natural Attenuation of Chlorinated 
Orqanics in Ground Water, EPA/540/R-96/509. USEPA, Washington, 
D.C, pp 5-9,1996 

McCarty, P.L., and L. Semprini. Groundwater treatment for chlorinated solvents. 
In: Handbook of Remediation. R.D. Norris and others, eds. Lewis 
Publishers, Boca Raton, pp 17-24, 1994 

McCombie, C, and I. McKinley. Validation—Another Perspective, Ground 
Water, 31(4): 530-531, 1998 

Micovic, Z. and M.C. Quick. A rainfall and snowmelt runoff modeling approach to 
flow estimation at ungauged sites in British Columbia, Journal of 
Hydrology, 226: 101-120, 1999 

Moutoux, D. and J. Hicks. Natural Attenuation of the Building 301 
Trichloroethene Plume at Offutt Air Force Base, Nebraska. In: Natural 
Attenuation of Fuels and Chlorinated Solvents in the Subsurface. 
Wiedemeier, T.H., H.S. Rifai, C.J. Newell, and J.T. Wilson, eds. Wiley & 
Sons, New York, pp. 535-551, 1999 

Murphy, E.M., and T.R. Ginn. Modeling microbial processes in porous media, 
Hvdroqeoloqy Journal, 8: 142-158, 2000 

National Research Council. Ground Water Models: Scientific and Regulatory 
Applications. National Academy Press, Washington, D.C, 1990 

National Research Council. Groundwater & Soil Cleanup: Improving 
Management of Persistent Contaminants. National Academy Press, 
Washington, D.C, 1999 

National Research Council. Natural Attenuation for Groundwater Remediation. 
National Academy Press, Washington, D.C, 2000 

81 



Niederer, U. In Search of Truth: The Regulatory Necessity of Validation. In: 
Safety Assessment of Radioactive Waste Repositories: Validation of 
Geosphere Flow and Transport Models GEOVAL-1990. Swedish Nuclear 
Power Inspectorate (SKI) and the OECD Nuclear Energy Agency, 
Stockholm, 1990 

Osei, D.N. Field-Scale Testing and Validation of a Numerical Model Code for 
Modelling Groundwater Flow and Contaminant Transport in a Porous 
Media. MS Thesis, University of Regina, Regina, Saskatchewan, 1995 

Parsons Engineering Science, Inc. Treatabilitv Study in Support of Monitored 
Natural Attenuation at Landfill 3 (Site LF-03), F.E. Warren Air Force Base, 
Cheyenne, Wyoming. STINET Accession Number ADA381632. Denver, 
1999 
http://www.stinet.dtic.mil 

Popper, K. The Logic of Scientific Discovery. Harper and Row, New York, 1959 

Resele, G., and D. Job. Calibration, Validation and Uncertainty Analysis of a 
Numerical Groundwater Model. In: Memoires of the 22nd Congress of 
IAH, Vol. XXII, Lausanne, 1990 

Sargent, R.G. Verification and validation of simulation models. In: Progress in 
Modeling and Simulation. F.E. Cellier, ed. Academic Press, London, 159- 
169, 1982 

Schlesinger, S., R.E. Crosbie, R.E. Gagne, G.S. Innis, C.S. Lalwani, J. Loch, R.J. 
Sylvester, R.D. Wright, N. Kheir, and D. Bartos. Terminology for model 
credibility, Simulation, 32: 103-104, 1979 

Semprini, L., and P.L. McCarty. Comparison between model simulations and 
field results for in-situ biorestoration of chlorinated aliphatics: part 1. Co- 
metabolic transformations, Ground Water, 29(4): 475-487, 1991 

Semprini, L., and P.L. McCarty. Comparison between model simulations and 
field results for in-situ biorestoration of chlorinated aliphatics: part 2. Co- 
metabolic transformations, Ground Water, 30(1): 37-44, 1992 

Smatlak, C.R., Ü.M. Gossett, and S.H. Zinder. Comparative kinetic of hydrogen 
utilization for reductive dechlorination of tetrachloroethene and 
methanogenesis in an enrichment culture, Environmental Science and 
Technology, 30: 2850-2858, 1996 

82 



Sorooshian, S., V.K. Gupta, J.L. Fulton. Evaluation of maximum likelihood 
parameter estimation techniques for conceptual rainfall runoff models: 
influence of calibration data variability and length of model credibility, 
Water Resources Research, 19(1): 251-259,1983 

Sturchio, N.C., J.L. Clausen, L.J. Heraty, L. Huang, B.D. Holt, and T.A. Abrajano, 
Jr. Chlorine Isotope Investigation of Natural Attenuation of 
Trichloroethene in an Aerobic Aquifer, Environmental Science and 
Technology, 32(20): 3037-3042, 1998 

Suarez, M.P. and H.S. Rifai. Biodegradation Rates for Fuel Hydrocarbons and 
Chlorinated Solvents in Groundwater, Bioremediation Journal, 3(4): 337- 
362, 1999 

Swanson, M. Natural Attenuation of Chlorinated Solvents: FT-17, Cape 
Canaveral, Florida. In: Natural Attenuation of Fuels and Chlorinated 
Solvents in the Subsurface. Wiedemeier, T.H., H.S. Rifai, C.J. Newell, 
and J.T. Wilson, eds. Wiley & Sons, New York, pp. 516-528, 1999 

Tsang, C-F. The Modeling Process and Model Validation, Ground Water, 29(6): 
825-831, 1991 

United States Environmental Protection Agency (USEPA). Use of Monitored 
Natural Attenuation at Superfund, RCRA Corrective Action, and 
Underground Storage Tank Sites. Office of Solid Waste and Emergency 
Response Directive 9200.4-17P, 1999 

United States Environmental Protection Agency (USEPA). National Priorities List 
(NPL) in the United States, Washington, D.C., 2000 
http://www.epa.gov/superfund/sites/npl/npl.htm 

Weaver, J., CG. Enfield, S. Yates, D. Kreamer, and D. White. Predicting 
Subsurface Contaminant Transport and Transformation: Considerations 
for Model Selection and Field Validation, EPA/600/2-89/045. USEPA, 
Ada, OK, 1989 

Weglarczyk, S. The interdependence and applicability of some statistical quality 
measures for hydrological models, Journal of Hydrology. 206: 98-103, 
1998 

Wiedemeier, T.H., M.A. Swanson, D.E. Moutoux, J.T. Wilson, D.H. Kampbell, 
J.E. Hansen, P. Haas. Overview of the Technical Protocol for Natural 
Attenuation of Chlorinated Aliphatic Hydrocarbons in Ground Water Under 
Development for the U.S. Air Force Center for Environmental Excellence. 
In: Symposium on Natural Attenuation of Chlorinated Organics in Ground 
Water, EPA/540/R-96/509. USEPA, Washington, D.C, pp 35-59,1996 

83 



Wiedemeier, T.H., H.S. Rifai, C.J. Newell, and J.T. Wilson. Natural Attenuation 
of Fuels and Chlorinated Solvents in the Subsurface. Wiley & Sons, New 
York, 1999 

Wilks, D.S. Statistical Methods in the Atmospheric Sciences: An Introduction. 
Academic Press, San Diego, 1995 

Willmott, C.J. On the Validation of Models, Physical Geography, 2: 184-194, 
1981 

Willmott, C.J. Some comments on the evaluation of model performance, Bulletin 
of the American Meteorological Society, 63: 599-609, 1982 

Willmott, C.J. On the Evaluation of Model Performance. In: Physical Geography 
in Spatial Statistics and Models, G.L. Gaile and C.J. Wilmott, eds. D 
Riedel Publishing, Dordercht, pp. 443-460, 1984 

Willmott, C.J., S.G. Ackleson, R.E. Davis, J.J. Feddema, K.M. Klink, D.R. 
Legates, J. O'Donnell, and CM. Rowe. Statistics for the evaluation and 
comparison of models, Journal of Geophysical Research, 90:8995-9005, 
1985 

Wilson, J.T. and B.H. Wilson. Biotransformation of trichloroethylene in soil, 
Applied Environmental Microbiology, 49: 242-243, 1985 

Zar, J.H. Biostatistical Analysis. 4th ed. Prentice Hall, Upper Saddle River, NJ, 
1999 

84 



Vita 

Harold C. Young enlisted in the United States Navy in 1988 to work in the Naval 

Nuclear Propulsion Program. He was selected to attend the United States Naval 

Academy in 1991, from which he graduated with a degree in physics. 

Commissioned as a second lieutenant in the United States Marine Corps, 

Lieutenant Young was assigned to 1st Force Service Support Group (1st FSSG) 

as a combat engineer, where he worked for 7th Engineer Support Battalion and 

MEU Service Support Group-15. After a promotion, Captain Young attended the 

Air Force Institute of Technology, where he obtained his Master's Degree in 

Engineering and Environmental Management. Captain Young is currently 

assigned to Camp Pendleton, CA as the Environmental Compliance Manager for 

1st FSSG. 

85 



REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including 
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, 
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of 
information if it does not display a currently valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.   

1. REPORT DATE (DD-MM-YYYY) 
20-03-2001 

2. REPORT TYPE 
Master's Thesis 

3. DATES COVERED (From - To) 
Aug 1999-Mar 2001 

4.     TITLE AND SUBTITLE 

QUANTITATIVE VALIDATION OF A MODEL OF CHLORINATED ETHENE NATURAL 
ATTENUATION 

Sa. CONTRACT NUMBER 

Sb. GRANT NUMBER 

Sc. PROGRAM ELEMENT NUMBER 

6.     AUTHOR(S) 

Young, Harold C, Captain, USMC 

5d. PROJECT NUMBER 
If funded, enter ENR# 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 

Air Force Institute of Technology 
Graduate School of Engineering and Management (AFIT/EN) 
2950 P Street, Building 640 
WPAFB OH 45433-7765 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

AFIT/GEE/ENV/01M-25 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

Air Force Center for Environmental Excellence/Technology Transfer Division 
Attn: Maj Jeff S. Cornell 
3207 North Road, Building 532 
Brooks AFB TX 78235-5357 (210) 536-4329 

10. SPONSOR/MONITOR'S ACRONYM(S) 
AFCEE/ERT 

11. SPONSOR/MONITOR'S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT Chlorinated ethenes are among the most prevalent groundwater contaminants at hazardous waste sites nationwide. In an attempt to 
manage the risks posed by these contaminants, while controlling costs, monitored natural attenuation (MNA) is being considered as a remediation 
strategy at many sites. MNA relies on naturally occurring physical, chemical, and biological processes in the subsurface to reduce the risk posed by the 
contamination. The implementation of MNA, however, requires a detailed understanding of these processes, and how they impact contamination at a 
particular site.   One way to gain this understanding is through contaminant fate and transport modeling. In this study, a deterministic model that 
includes relevant fate and transport processes was applied to a chlorinated ethene-contaminated field site, at which spatial and temporal data had been 
collected. Parameters used for model input were obtained from the literature, experimental data, and by calibrating the model using concentration data 
from 1993. The model was then run in a predictive mode, and simulation results were compared to field data from 1999. Model performance was 
measured by comparison of observed and simulated concentration contour plots and evaluation of goodness-of-fit statistics. Over the six years the 
model was run in a predictive mode, the model was found to predict contaminant concentrations reasonably well for the three contaminants that were 
monitored. 

15. SUBJECT TERMS 
Contaminant Fate and Transport, Monitored Natural Attenuation, Quantitative Validation, Field Validation, Groundwater Modeling, Chlorinated 

Ethenes, Trichloroethylene, Dichloroethylene, Vinyl Chloride, Reductive Dehalogenation, Aquifer Remediation, Goodness-of-Fit Statistics, Linear 
Equilibrium Sorption 

16. SECURITY CLASSIFICATION OF: 

REPOR 
T 

ABSTR 
ACT 

c. THIS PAGE 

17. LIMITATION OF 
ABSTRACT 

UU 

18. NUMBER 
OF 
PAGES 

95 

19a. NAME OF RESPONSIBLE PERSON 
Professor Mark N. Goltz, ENV 

19b. TELEPHONE NUMBER (Include area code) 
(937) 255-3636, ext 4638 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39-18 

Form Approved 
OMB No. 074-0188 


