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Abstract 

The first completely physical electro-thermal model is presented that is capable of describing the 

large signal performance of MESFET- and HEMT-based, high power microwave and millimeter wave 

monolithic and hybrid ICs, on timescales suitable for CAD. The model includes the effects of self- 

heating and mutual thermal interaction on active device performance with full treatment of all thermal 

non linearities. The electrical description is provided by the rapid quasi-2D Leeds Physical Model 

and the steady-state global thermal description is provided by a highly accurate and computationally 

inexpensive analytical thermal resistance matrix approach. The order of the global thermal resistance 

matrix describing 3-dimensional heat flow in complex systems, is shown to be determined purely by 

the number of active device elements, not the level of internal device structure. Thermal updates 

in the necessarily iterative, fully coupled electro-thermal solution, therefore reduce to small matrix 

multiplications implying orders of magnitude speed-up compared to the use of full numerical thermal 

solutions capable of comparable levels of detail and accuracy. 

KEYWORDS: electrothermal, thermal, modelling, MMIC, power transistor. 

ACKNOWLEDGMENT: This work was supported by the U.S. Army Research Office through Clemson 

University as a Multidisciplinary Research Initiative on Quasi-Optics, agreement Number DAAG55-97- 

K-0132. 



1    Introduction 

The importance of thermal effects in the description of high power device and circuit performance has long 

been recognised, and much work has been done in modelling the effects of self-heating and mutual thermal 

interaction on device and circuit performance [l]-[48]. If electro-thermal models are to be of value for 

predictive electro-thermal design studies, based purely on specified material and structural information 

rather than on prior experimental characterisation, then fully physical (as opposed to equivalent circuit or 

physics-based) coupled models are required. However, although physical thermal simulations have been 

performed for complex device structures, relatively little work has been presented describing explicit 

coupling of physical thermal and large signal electrical models. The reason for the absence of such 

coupled calculations arises from three main sources. Firstly, fully physical device models with large 

signal electrical capability are still not commonplace. Secondly, although the basic thermal issues are 

well understood, thermal solvers available in other areas of study, such as mechanical engineering, are 

not readily adaptable to electronic engineering problems. Thirdly, the coupled electro-thermal problem 

is intrinsically non linear implying the need for iterative solutions, and existing physical thermal and 

electrical solvers are generally too slow to generate an iterative coupled solution sufficiently fast for 

electro-thermal design studies. 

Of the existing thermal models with the potential for coupled electro-thermal simulations, that of 

Bonani et al for steady-state simulation of heatsink mounted MMICs is most comprehensive [l]-[3]. 

This model describes arbitrary surface metallisation, vias and partial substrate thinning for multi-finger 

MMICs. Thermal solutions based on this hybrid Green's function finite element approach typically take 

~1 hour on a medium-sized workstation [3]. Webb has performed thermal simulations for both steady- 

state and thermal transient cases [4]-[8], and typical steady-state thermal simulations take ~l/2 hour 

[8] on a PC using an optimised finite difference scheme. Dorkel et al have performed steady-state and 

transient thermal simulations taking just a few minutes but these were for simplified multilayer structures, 

based on a 2-port network (or 2 x 2 transfer matrix) formulation [9]. All of these calculations assumed 

adiabatic surface boundary conditions. Newtonian boundary conditions have been imposed for use at 

the circuit board level where surface areas are large, for instance by Ellison who performed analytical 

Green's function calculations for simple multilayer structures [10, 11]. Electro-thermal simulations have 

been performed by Anholt for HBTs, MESFETs and HEMTs [12]-[15] and compared against simple 



analytical expressions for thermal resistances [15]. Ghione and Naldi performed fully physical, self- 

consistent electro-thermal calculations for MESFETs in MMICs [16]. The boundary conditions for their 

physical model were provided by a thermal resistance formulation, with the thermal resistances obtained 

approximately using a conformal mapping technique. 

It has been stated repeatedly [2, 9] that the thermal resistance method is unsuitable for accurate 

description of detailed device structures, but this assertion depends on a particular conception of the 

thermal resistance approach as being fundamentally approximate. This paper shows that the thermal 

resistance matrix concept [16]-[19] can be developed as an essentially analytically exact description of 

solutions of the heat diffusion equation at selected points within a complex 3-dimensional volume. Tem- 

perature updates in the necessarily iterative coupled electro-thermal solution, based on this resistance 

matrix approach, reduce to small matrix multiplications with the order of the matrices determined solely 

by the number of active device elements. Such solutions are therefore orders of magnitude faster than 

solutions based on finite element or finite difference thermal descriptions, whilst achieving the same levels 

of detail and accuracy. 

The thermal resistance matrix description presented here is applicable from individual MMICs through 

hybrid MICs, RFICs and MMIC grid arrays to circuit board level, where the number of active device 

elements is ~10 to several xlO3. Electro-thermal simulations for VLSI design have been presented 

previously [20]. However, use of the thermal resistance matrix approach presented here, in an unmodifed 

form, with the order of the dense thermal resistance matrix given by the number of individual active 

devices typical in VLSI or ULSI, would clearly be of no advantage compared to standard numerical 

solutions of the heat diffusion equation or to sparse matrix thermal network formulations. The thermal 

resistance matrix description given in this paper is therefore not intended to apply directly to the VLSI 

case. 

The global thermal resistance matrix model described here is given in the context of coupled electro- 

thermal modelling. However, it is applicable to any thermal problem that can be well described by the 

temperatures in the vicinities of a relatively small number of localised regions, rather than requiring 

temperature information throughout the whole body of a complex volume. Use of the Kirchhoff trans- 

formation, combined with use of the resistance matrix for (generally non linear) interface matching of 

analytical subsystem solutions, is more generally applicable to any physical system described by Laplace's 



equation 

v. [<?(V)VV] = o (i) 

providing the system can be sufficiently accurately represented by rectangular subsystems, with piecewise 

discretisation of ip and its derivative, V'', at the interfaces. 

The boundary element method replaces 3-dimensional numerical finite element or finite difference de- 

scriptions, given by large sparse matrices, with a 2-dimensional surface description given by smaller dense 

matrices, by using a Green's function technique. In a similar fashion the analytical thermal resistance 

matrix approach reduces the thermal description to that of very small dense matrices, describing only 

limited 2-dimensional regions at surfaces and discretised interfaces by direct solution of the heat diffusion 

equation. All explicit reference to redundant temperature information at discretised volume and surface 

nodes is eliminated. This thermal resistance matrix approach can equally be viewed as a generalised finite 

element or finite volume approach, in which the finite elements are not primitive volumes with tempera- 

tures between nodes described by low order polynomial interpolation, but complete thermal subsystems 

with internal temperatures given by full analytical solutions of the heat diffusion equation. Construction 

of a global thermal resistance matrix then consists of matrix manipulations on resistance matrices given 

by simple analytical expressions for thermal subsystems. 

A key feature of this thermal resistance matrix approach is that the global thermal resistance matrix 

only has to be evaluated once, for the thermal steady-state case treated here, prior to the coupled 

electro-thermal solution. Construction time for the thermal resistance matrices has no impact on coupled 

electro-thermal run time. The global thermal resistance matrix is itself constructed rapidly by simple 

matrix manipulations on analytical expressions for thermal subelements, such as MMIC dies or sections of 

surface metallisation, each evaluated purely in terms of subsystem layout and material parameters. The 

global resistance matrix describes totally arbitrary device layouts (based on simple rectangular structures) 

in 3 dimensions and once constructed can be used repeatedly in coupled electro-thermal simulations. 

Models containing descriptions of self-heating effects on the performance of a range of devices have 

been described previously, e.g. [17], [21]-[23]. The global thermal model presented here is intended to be 

readily compatible with any thermally self-consistent device model, without requiring core changes. It 

should then supply a fully physical and highly accurate description of mutual thermal interaction between 

active devices at chip level and above. 



The paper provides an overview of the analytical thermal resistance matrix approach, demonstrating 

how it can achieve the same level of accuracy and detail as finite element or finite difference descriptions 

such as those of Bonani or Webb, whilst reducing the global thermal description to small dense matrix 

multiplications. This reduction implies rapid temperature updates in the coupled electro-thermal model 

allowing fully physical solution on timescales suitable for CAD. The global thermal description combines 

analytical solutions of the heat diffusion equation for thermal subsystems with hierarchical interface 

matching of thermal resistance matrices for complex 3-dimensional systems. It is shown that this approach 

allows accurate treatment of all thermal non linearities arising from temperature dependent material 

constants and surface fluxes. 

The paper is structured as follows. The next section contains a brief outline of the Leeds Physical 

Model (LPM) which provides the large signal active device description required in the coupled electro- 

thermal model. This is followed by a statement of the coupled electro-thermal problem and an indication 

of the key issues in the global thermal description. The motivation for the thermal resistance matrix 

approach to the global thermal problem is then indicated. This is followed by description of the analytical 

thermal steady-state solutions for the MMIC and for other subsystem components. Simple analytical 

expressions are presented for the thermal resistance matrices of entire MMICs bearing several multi-finger 

power transistors. A linear 'radiation' boundary condition is imposed to describe convective and radiative 

surface losses from large area substrates. A hierarchical approach is presented for the resistance matrix 

description of multilayered structures such as MMICs with superstructure, e.g. surface metallisation and 

air bridges, or for multiple MMICs mounted on a common substrate. A double Fourier series finite element 

technique is outlined for the construction of the thermal resistance matrices of ICs with totally arbitrary 

surface metallisation and full 3-dimensional heat flow. An original analytical solution is presented for the 

3-dimensional temperature distribution and corresponding thermal resistance matrix in a hybrid MIC or 

MMIC with any number of arbitrarily placed vias of arbitrary cross-section, or with partial substrate 

thinning. Finally, the paper is summarised and conclusions drawn. 

2    The Leeds Physical Model 

The Leeds Physical Model [22],[49]-[51] is aquasi-2D physical model of MESFETs and HEMTs including 

the effects of self-heating. It is a sophisticated CAD tool and has been released commercially as part of 



HP-EEsof's MDS software. 

The quasi-2D approximation is based on the observation, from full 2-dimensional simulations, that 

carrier transport is essentially 1-dimensional and driven by the component of electric field along the device 

channel. The model solves a set of hydrodynamic equations obtained from moments of the Boltzmann 

equation: 

— + V-(n«)    = =  o, 

OV    ,           V7 =      q E        2    V{nw) +  * V(nv2) 
m*         3m*n    K     '     3n    K 

dw         _ 
— h V ■ VW     - 
at 

=   qv-E- —V • y             3n 
1          m*   2^ nv(w ——v ) 

1              w-wo 
n                  TW 

dT 
=   V-(«LVT) + J ■E, (2) 

or 

in the direction parallel to the heterointerface (suitably reduced for rapid solution) [49]. Here n is carrier 

density, v is velocity, w is energy, m* is effective mass, E is electric field, TP, TW are relaxation lifetimes, 

T is lattice temperature, cL is heat capacity, PL is density, t is time, KL is thermal conductivity and 

J is current density.   This energy transport model then consists of continuity, momentum and energy 

conservation, and heat diffusion equations. 

The LPM solves Poisson and Schrodinger equations self-consistently in the direction normal to the 

heterointerface, to describe charge control, Figure 1. The charge control information is calculated prior 

to calculation of in-plane transport and is stored as a look-up table. 

The quasi-2D model includes a full description of the device cross-section, by describing charge con- 

servation in the vicinity of the device channel via a series of Gaussian boxes, Figure 2. 

The Leeds Physical Model incorporates the effects of temperature on device performance by use of a 

temperature dependent low field mobility, 

■a(£)". 
where T is the device channel temperature and n = 2.3 [52]. Velocity-field characteristics are obtained 

from Monte Carlo simulations and stored as a simple parameterisation. 

The LPM provides a physical large signal description of device performance, as illustrated by Figure 

3, which shows calculated time and frequency domain response to a sinusoidal large signal input [53]. 

Output waveform distortion and generation of harmonics differing from the fundamental are clear. 



The LPM forms the core of the coupled electro-thermal solution presented in this paper. The coupled 

electro-thermal problem is now described. 

3    The Coupled Electro-Thermal Problem 

The non linear coupled electro-thermal problem can be described by the equation 

ei(Pl,...,FM)-6i{Pi) = 0 for i=l,...,M (4) 

for self-consistent solution of active device temperatures 6i and power dissipations Pi, in device channels 

i = l,...,M. 

The first term states that the channel temperature of the ith active device is a (non linear) function 

of the power dissipations Pj of all heat dissipating elements, j = 1,...,M, as described by the global 

thermal model. The second term states that the ith channel temperature has a unique relation to the 

corresponding power dissipation P* of the ith active element as determined by the LPM. 

Simultaneous imposition of the non linear description of heat flow through the MMIC or hybrid MIC 

(with surface heat loss), and the non linear electrical description of transistor action, determine uniquely 

the temperatures and power dissipations in the vicinities of the active device channels. These in turn, 

determine full electrical solutions, DC or large signal RF. The above description applies equally well to 

both the thermal steady-state and to the time-dependent case in Laplace transform space. 

Details of time-dependent electrical behaviour are decoupled from thermal behaviour by the fact that 

the inverse lattice thermal time constant is orders of magnitude different from GHz electrical frequencies. 

The large signal RF case is therefore treated by time averaging the electrical signal (to describe effects such 

as AC cooling). Only the steady-state thermal case is treated here. Thermal resistance matrix treatment 

of thermal transients due to turn-on, or due to low frequency pulsed operation, will be described elsewhere 

[24]. 

3.1    Coupling the Leeds Physical Model 

The manner in which the LPM enters the coupled solution is easily illustrated for the DC case. The LPM 

is invoked as a simple subroutine call for each active device element 

IDS = IDS(VDS,VGS;T). (5) 



This device element will typically be a single source-gate-drain subunit, or a fraction of such a unit 

divided along the gate width. 

Supplying bias point (VDS, VGS), where VDs is drain-source voltage and VGS is gate-source voltage, 

and with active device channel temperature given by T (assumed uniform along the channel for simplicity 

of description), the LPM returns drain-source current IDS. The active device power dissipation P is then 

given by the approximate relation, 

P « IDSVDS. (6) 

P is the time average value in the time dependent case. 

A single, uniform channel temperature is assumed in the current coupled electro-thermal solution, 

but this is not a necessary condition for solution. The LPM returns the power dissipation P = E.J as 

a function of field, E, and current density, J, along the device channel. By subdividing the gate along 

its length the resistance matrix approach can describe a varying channel temperature, with consequent 

improvement in transistor breakdown modelling [23] and without the need to artificially displace the gate 

in order to describe correctly the position of the peak temperature in the vicinity of a gate finger. As 

the LPM returns E.J, the extent of the device heating is determined accurately by the physical model. 

No approximation is required to provide an effective gate length for comparison against experiment [16]. 

The position dependent power dissipation in the LPM is finely discretised, but the discretisation used 

for the thermal description, along the source-gate-drain length, can be much coarser [4]. The resulting 

temperature distribution obtained from the corresponding analytical thermal solution is continuous, with 

the only approximation being the averaging of the power densities over the source-gate-drain sublengths. 

The fully physical LPM makes this simple prediction of device performance, Eq. (5), based purely 

on specification of structural parameters, such as semiconductor layer compositions, widths and doping 

levels, and gate recess depth and width, without any prior experimental characterisation. The large-signal 

RF description makes a similar single subroutine call to the LPM, returning instantaneous drain-source 

voltage as a function of instantaneous values of source-gate voltage and source current. The main physical 

difference in the large-signal RF description is inclusion of a displacement contribution to the current, 

which provides a description of transistor capacitances. 



3.1.1    Low computational cost of the LPM 

The iterative solution of the electro-thermal equation, Eq. (4), requires repeated calls to the LPM via 

6i(Pi) for the active elements i = 1, ...,M. Despite the speed of the quasi-2D LPM this can still be a 

significant computational expense. However, this computational cost can be reduced by noting that many 

of the calls to the LPM can occur for the same bias point, (VDS, VGs), at similar values of the channel 

temperature, T. 

For illustration, assume the elements i to be identical, e.g. a MMIC grid array for spatial power 

combining [54], with transistor fingers of identical layer structure and design, repeated between identical 

transistors on a MMIC and between identical MMICs in the array, so that 6i(Pi) = 0(Pj) for all i. 

Then for a given bias, the LPM can be called for a range of power dissipations, Pi, sufficient to span 

the range of Pi generated in the iterative solution. By storing the resulting values 9(Pi) and making a 

simple interpolation between them, an essentially analytical description 6(P) can be generated for all 

P of interest, at the cost of a small amount of memory storage for each bias point. This approach 

avoids wasteful repeated calls to the LPM in the vicinity of the same ö,,Fi during iterative solution. 

These analytical 6(P) can be calculated prior to the fully-coupled electro-thermal solution. They will be 

generated rapidly, due to the speed of the LPM and provide the fully-coupled electro-thermal solution 

with all the physical predictive power and accuracy of the LPM, at the minimal computational cost 

of an essentially analytical function evaluation and small memory storage. The 6{P) will also provide 

essentially analytical derivatives for use in Newton-Raphson solution of the coupled non linear equation, 

Eq. (4). 

3.2    The global thermal description 

As the electrical part of this coupled model is fully described by the existing LPM, the rest of the 

paper concentrates on the description, construction and demonstration of the global thermal model. Key 

considerations in the construction of the global thermal model were as follows: 

1. It must provide rapid thermal updates in coupled electro-thermal solutions whilst providing a 

physical (hence predictive) and accurate description of steady-state heat flow. 

2. It must require no core changes to the LPM. 
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3. It must treat the non linearity due to the temperature dependence of material parameters. 

4. It must allow inclusion of radiative and convective surface fluxes in the description of large area 

systems. 

5. It must allow treatment of totally arbitrary layouts and layer structures, providing a flexible tool 

for electro-thermal CAD. 

To this end the analytical thermal resistance matrix approach was adopted. This approach is described 

by the key equation 

A9i = J2RTHijPj (7) 
j 

which states that temperature rise, A0*, at active device element i, is determined entirely by the power 

dissipations Pj at all active device elements, j = 1, ...,i, ...,N, with matrix £TH determined prior to the 

coupled electro-thermal calculation purely from structural information. The construction and demonstra- 

tion of the consequences of such a relation, Eq. (7), for arbitrary MMIC and hybrid MIC geometries, form 

the subject of the rest of this paper. Key features of the analytical thermal resistance matrix approach 

are indicated below. 

Firstly, as thermal updates in this description reduce to small matrix multiplications, the coupled 

electro-thermal solution is rapid. The thermal resistance matrix is obtained from analytical solutions of 

the heat diffusion equation with a linear 'radiation' boundary condition, so it treats both steady-state and 

time-dependent cases with surface radiation and convection. Non linearity due to temperature dependent 

thermal conductivity is treated by means of the Kirchhoff transformation [55]. Arbitrary 3-dimensional 

geometries are treated by interface matching of analytical solutions for thermal subelements (such as 

MMIC dies, air bridge legs and top, flip chips and solder bumps, and other surface metallisation). 

Use of the i?^,„ method means that no redundant temperature information is generated within the 

body of the device. Temperatures are only obtained at the active devices, as required for the coupled 

electro-thermal solution. (Though, as thermal solutions are analytical, once active device power dissipa- 

tions have been obtained self-consistently, temperatures can be obtained at any point within the volume 

to any degree of accuracy. This is of value, for instance, in model validation by thermal imaging of surface 

temperatures.) 

No surface or volume mesh is required in the analytical QTH method. Active elements and thermal 

subsystem interface discretisations are specified by the coordinates of the elementary area boundaries. 

11 



The thermal resistance matrix description RTH gives a one-to-one equivalent circuit model for the 

thermal interactions [17], Figure 4, which enables the immediate incorporation of the coupled electro- 

thermal description into general electrical network based solvers. 

The form of the equivalent circuit illustrated above [17, 18] lends itself readily to extension to arbi- 

trarily large numbers of nodes. This contrasts with some more conventional thermal equivalent circuit 

representations which attempt to identify directly circuit elements with obvious physical parameters, and 

which can grow rapidly more convoluted with increase in size [25]. The equivalent circuit description illus- 

trated above, and most immediately identified with the thermal resistance matrix formulation presented 

here, lends itself readily to circuit description of complex thermal problems. 

4    Construction of the Resistance Matrix 

Having presented the motivation for the analytical thermal resistance matrix approach, Eq. (7) is now 

derived for the thermal steady-state case and Ä obtained for the basic example of a homogeneous, 

heatsink mounted MMIC, bearing an arbitrary distribution of power transistor fingers. 

This is followed by discussion of RTH for a MMIC comprised of multi-layers of differing thermal 

conductivity, which includes the cases of uniform surface metallisation, metal coated MMIC base, and 

doping dependent thermal conductivities in MMIC layers. 

Treatment of MMIC superstructure is then presented followed by discussion of the construction of 

R using a double Fourier series finite element method for irregular surface metallisation. This is 

followed by construction oi R      for an inhomogeneous MMIC with vias or partial substrate thinning. 

4.1    Homogeneous MMIC 

The steady-state heat diffusion equation, in the absence of volume heat sources or sinks, is given by 

V. [K(T)VT] = 0, (8) 

where T is physical temperature and K(T) is temperature dependent thermal conductivity. This equation 

is non linear through n(T). The equation can be linearised by the Kirchhoff transformation [55] 

6 = TS + — f   K{T)dT, (9) 
KS JTS 

12 



where Ks = K(TS). This gives the linearised steady-state heat diffusion equation 

V20 = 0. (10) 

Then obtaining the analytical solution for linearised temperature 6, physical temperature T is imme- 

diately given by T = T{6), where function T(6) is determined from the Kirchhoff transformation, Eq. 

(9). For K{T) of the form 
rp \  — b 

K(T) = KS ( Ts )     , (11) 

appropriate to GaAs in temperature ranges of interest [56], T(6) is given by [26] 

T(6) = Ts 
■    (b-i)(e-Ts) (12) 

To generate a solution of Eq.(10), the physical system must be specified and surface boundary condi- 

tions must be imposed. Eq. (10) can be solved for general linear boundary conditions, but for simplicity 

adiabatic boundary conditions are assumed on the side faces of the MMIC. Active device power dissipa- 

tion and heatsink mounting are described by a generalised 'radiation' boundary condition on the MMIC 

top and bottom surfaces. For illustration of the coordinate system, the structure of Figure 5 is considered. 

This consists of a GaAs MMIC, 0 < x < L,0 < y < W,0 < z < D, bearing an arbitrary number of 

surface heating elements, areas A, dissipating (surface average) power densities, Pi (corresponding to 

both active and passive devices). 

Solving the linearised steady-state heat diffusion equation subject to adiabatic flux boundary condi- 

tions on the MMIC side faces, and the generalised linear radiation boundary condition, 

88 
ao,DKs-z- + H0tD[6 -60,D(x,y)]+Po,D(x>y) = °> (i3) 

az 

on the MMIC top and bottom surfaces, the full solution for the linearised temperature by separation of 

variables is 

i 

0   =   A + Bz + y^ cos Xmx cos fj,ny 
mn 

x (Cmn cosh7mn,z + Smn sinh7mnz), 

(14) 

where J2mn means the sum over m, n = 0,1,2,... excluding (m, n) = (0,0), 

Am    =    -j-, (15) 
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im 
ßn (16) 

W 

iLn     =     >?m + ßl, (17) 
■1 PL,       PW 

HDA   =    -— /     /    pD(x,y) - HD6D(x,y)dxdy 

-{aDKS + HDD)B, (18) 

KSa0B    =    -TTT7 /     /    Po(x>y) ~ H0e0(x,y)dxdy 

-H0A, (19) 

HoCmn     — —JmnSmn&oKS 

So S™cos*™xcos^bo(x>y)-ffpflofo»2/)]<fa<fy 

(20) 

and 

Cmn [ao«s7mn sinh.7mnD + HD cosh7mnL»] 

+    Smn [ctDKslmn cosh fmnD + HD sinh7m„r>] 

J"   J*    cos\mXcosnny\pD(x,y)-HD0D(x,y)]dxdy 
=  ~ _a_Q ^(l+«m0)(l+*no) ' ^        ' 

Choosing a0 = 1, aD = 0, H0 = 0, HD = 1, p0(z,2/) = T,iSi(x>v)pi> PD(X,V) = 0, 0o(z,y) = 0, 

6D(X,V) = Ts describes a homogeneous, heatsink mounted MMIC at base temperature Ts with imposed 

surface flux po(x, y) due to active device elements, and no surface convective or radiative losses. Here 

Si(x,y) equals 1 in elementary areas Di dissipating uniform power densities Pi, and 0 otherwise. 

This gives the explicit form for the linearised temperature throughout the MMIC, 

i 
I 

2_\ cos \mx cos finy 
mn 

x (sinh "fmnz - tanh ^mnD cosh7mn;z) 

x 'A vr p- 
' KSI/W(1 + 5m0)(l + ^no)7n 

(22) 

where elementary area integral i^„n is defined by 
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r 
and the standard result, 

L 

I cos Xmx cos Xm>x dx = —Smm> (1 + Sm0Sm>0), (24) 
o 

has been used (and similarly for the corresponding y integral) with 5mn the Kronecker delta function. 

To construct the thermal resistance matrix, surface averaged temperature rises, A9i, are evaluated as 

f /„ 6-Tsdxdy 
M> =        n    /A        ■ (25) JJDidxdy 

Then Eq. (7) is obtained immediately with 

1 
K^LW RTHij    =    ^[^oo + 

■A 4tanh7mnD PmnIj 
t~f 7mn(l + Sm0)(l + 6n0)       I'i 00 

(26) 

This expression illustrates the main points of the analytical thermal resistance matrix approach. The 

thermal resistance matrix is evaluated just once, prior to coupled electro-thermal calculation, purely in 

terms of structural parameters. As it is obtained for linearised temperature, it is independent of both 

temperature and power, and hence independent of electrical bias point. With the non linear relation 

ABi = AOiiPi), (27) 

from the physical active device model, combination with the global thermal description, Eq. (7), gives 

Aei(Pi) = J2RTHijPj (28) 
3 

which is a small, simple, non linear system to be solved self-consistently for the power densities, Pj. 

Having obtained the Pj from solution of the coupled electro-thermal problem, for instance by Newton 

methods, the full electrical solution is obtained. Also, the temperature at any point within the MMIC is 

then given, if required, by Eq. (22). 

As an illustration, the surface temperature distribution calculated using the coupled electro-thermal 

HEMT model is shown in Figure 6 for a power HEMT with 60 fingers. Total power dissipated is 2.8 W, 

Ts — 300 K, and plot temperature varies from below 36 °C to 53 °C. Calculation of a full set of I-V 

curves for this device took some 10's of minutes based on a non optimised relaxation algorithm. 

The simple expression, Eq (26), represents a full 3-dimensional. solution of the heat diffusion equation 

for a MMIC with an arbitrary surface distribution of power transistors (and heat dissipating passive 

15 



elements), each power transistor having an arbitrary grouping and arrangement of transistor fingers. It 

includes fully, finite length and end effects for heat diffusion from the active layers, and treats the finite 

volume effects of the die without any need for the simplifying assumption of an infinite or semi-infinite 

substrate. The extension to other realisations of the radiation boundary condition, Eq. (13), for instance 

deriving simple resistance matrix expressions for large area substrates with convective and radiative 

surface losses, is immediate. 

Use of the expression, Eq. (26), in coupled electro-thermal simulations of power FETs and MMICs, 

neglects the effects of surface metallisation and resulting heat spreading. It will therefore generally 

overestimate the magnitude of R , producing simulated device temperatures higher than those realised 

experimentally. Simple use of Eq. (26) can, therefore, only to be expected to produce a safe upper limit on 

temperature rises. It will give correct order of magnitude estimates for temperature rises, and demonstrate 

correct trends in temperature variation with changes in parameters, but accurate prediction of RTH 

based purely on the physical thermal model will typically require description of metallic superstructure, 

as described in the sections following. 

4.2    Generalisation of RTH 

In Eq. (25) of the previous section, surface average temperature rises were calculated for the elementary 

areas, Di, over which the active device power densities, Pi, were dissipated. As temperature rises in a 

multi-finger device will typically be highest in the immediate vicinities of peak power dissipations, the 

thermal resistance matrix of Eq. (26) will return peak temperatures. 

For use in the coupled electro-thermal formulation, with the LPM employing a uniform channel 

temperature approximation, the active device temperature that is fed into the electrical model should 

be the average temperature over the whole source-gate-drain area. This means that the construction of 

surface average temperature rises, as in Eq. (25), should be modified so that temperatures are averaged 

over source-gate-drain areas, D[, corresponding to each active device power dissipating area, D^. 

This gives immediately for the generalised thermal resistance matrix, 

KSLW 

4tanh7mn£> I'^nP„ mnmn 

7mn(l + <5mo)(l + <5n0)       IQO 

(29) 
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where elementary area integrals I'^,n,Ioo are sti11 of the form> E(l- (23)> but now integrations are over 

areas D[. 

More generally, having obtained an analytical solution of the form, Eq. (22), temperature rises can 

be calculated at any point, or averaged over any area or volume, irrespective of any correlation to power 

dissipating areas. Thermal resistance matrices so constructed will generally be of a different explicit form 

to Eqns. (26) and (29) and will not generally be square. 

Use of source-gate-drain areas, D't, in the thermal resistance matrix, is to be distinguished from use of 

an effective 'hot strip' width much wider than the dimensions of the physical power dissipating area, as in 

[16]. In [16], a wide active power dissipating area was assumed to obtain agreement with low resolution 

thermal measurements. In the formulation presented here, the extents of the power dissipating regions, 

Di, are physical and are obtained from the LPM. The use of source-gate-drain averaged temperature 

rises over areas, D[, is required for physical consistency with the uniform channel temperature version 

of the LPM. The effects of low resolution in thermal measurements can be simulated by averaging the 

analytical result, Eq. (22), over pixel sized areas, after generation of the self-consistent electro-thermal 

solution. 

4.3    Multilayer MMIC 

The simple description of the homogeneous MMIC, presented above, is readily generalised to treat multi- 

layer systems by use of a transfer matrix, or two-port network, approach [9]. This is based on matching 

of Fourier components at interfaces, and corresponds to use of the double cosine transform to convert the 

3-dimensional partial differential equation, Eq. (10), into a 1-dimensional ordinary differential equation 

for the ^-dependent double Fourier series coefficients. Matching of linearised temperature and flux at 

the interfaces of a multi-layer structure can then be imposed by use of a 2 x 2 transfer matrix on the 

Fourier series coefficients and their derivatives. Arbitrary N-level structures can be treated. Different 

thermal conductivities can be assumed in each layer allowing treatment of composites like Cu on A1N 

(both having temperature independent thermal conductivities) and MMICs with conductivities varying 

from layer to layer due to differences in doping levels (all layers having the same functional form for 

the temperature dependence of the conductivity). The method can be generalised further, by imposing 

specified flux discontinuities at the interfaces.  The solution then represents, for instance, the case of a 
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MMIC with active device channel buried by a thin layer of semiconductor. 

For instance, consider a 2-layer structure of the general form of Figure 5, but with top layer 0 < 

z < Di, thermal conductivity «i and bottom layer Di < z < D2, thermal conductivity K2. With 

power dissipations Pi over elementary areas A at the interface, z = D±, the (linearised) temperature 

distributions 0^ and 6&\ in the top and bottom layers respectively, are given by 

where, 

and 

0(J)    =    4(1) + ^2 cos xm,x cos ixny CW cosh -ymnz, 
ran 

e&  = TS + BW[Z-{D1 + D2)} + 

^2 cos \mx cos nny Sf£l X 
ran 

[sinh7mnz - tanh7mn(I>i + D2)cosh.^mnz], 

AW    =   TS-BWD*, 

C£l   =   5W[tanh7mnr>i-tanh7mn(£>i+£>2)]) 

BW 
-1 

7 JIQQPJI 

5(2) 

K2LW ^ 

4 cosech7mn-Di 
LW(1 + <5m0)(l + 5„o)7mn /- 

1 

7 j *mn"i 

K\ [tanh7mnDi - tanh7mn(Di + D2)) 

-K2 [coth7mnDi - tanh7mn(Di + D2)] 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

The expression for the corresponding thermal resistance matrix, describing the temperature rises of the 
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power dissipating elements at the interface, is 

RTHij = -^zw [-D2-?oo+ 

El        4  
mn (l+«m0)(l+«no)7i 

H„IL 

tanh7m„(Di+g2)-tanh7mnDi 

(36) 

l-^tanha7mnA 

- (1 - fA tanh7mn(Di + D2) tanh7mnDi 

Adopting an effective value for m, to allow for the different functional forms of temperature dependent 

thermal conductivity in metal and GaAs, this expression can be used to provide a simple approximation 

to the thermal resistance matrix of a heavily metallised power FET or MMIC. 

4.4    MMIC superstructure 

It has been demonstrated that inclusion of surface metallisation is essential for accurate description of 

thermal effects in power devices [4, 5, 7]. Comparison with experiment for multi-finger power HBTs 

shows that the simple thermal description corresponding to the resistance matrix of Eq. (26) is highly 

accurate when combined with a simple model of heat shunting by an air bridge [17]. The extension of 

the analytical thermal resistance matrix approach to include descriptions of surface metallisation and air 

bridges, and other vertical geometries such as flip chips and solder bumps, is now presented. 

The extension to include surface superstructure is achieved by solving the heat diffusion equation 

analytically for thermal sub elements, then combining thermal resistance matrices for subsystems by 

matching of temperature and flux at discretised interfaces. In the case discussed below, the multi-layer 

problem is solved for discretised temperatures at thermal sub element interfaces. However, the matching 

problem can equally be cast in terms of solution for discretised interface fluxes. The former method 

is described here, as the latter produces a more complicated formulation for the system of equations 

to be solved for the interface unknowns. (This is because specification of flux boundary conditions on 

top and bottom surfaces of a thermal sub element only defines temperature upto an arbitrary constant, 

and imposes a subsidiary energy conservation constraint on total flux into and out of the volume. When 

matching sub elements at interfaces, these energy conservation constraints serve to determine the arbitrary 

constants in the temperatures, but require moderately complicated manipulation of the simultaneous 
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equations for the interface unknowns, to cast them in terms of only independent fluxes and the related 

arbitrary temperature constants.) 

To generate analytical solutions allowing interface matching of thermal sub elements, ao, «£>, HQ, 

HD, Po{x,y), PD{X,V), 6o(x,y) and 6o(x,y) of Eq. (13) are specified as in Section 4.1, but withpo(x,y) 

written po(x,y) = Yli Soi(x,y)Poi and the uniform MMIC base temperature replaced by the discretised 

temperature distribution 6D (x,y) = £ ■ SDJ {X, y)0nj ■ Similarly for thermal sub element surface temper- 

ature, 6oi, and base flux, PDJ- Then following the procedure of Section 4.1, specifying either discretised 

base temperature or base flux, the following relations are obtained: 

V 3 

PDJ     =     2-j ^THji Poi + 2^ Tjj'6Dji, 

(37) 

(38) 

where RTHH, is given by Eq. (26) and 

Zij    ~    LW 

1 

LW 

TDJ , \p      4sech7mra£>      I^jSl 

^a + WKi + M   igg 
7-oi , V^      4sech7mn£)      4iym» 

xmri 

LW^(l + öm0)(l + 6n0)l$ 

E( jDk _ Imn ho   \  fo-l  \ 

fe=1V l6°oN   )\=DD)kr' 

with 

-RDD,,, 

SNJ' +a(l - SNJ') ■ 
1 

/ 

£ 
mn 

4coth7m„£> 

KSLW ±-f (1 + Sm0)(l + Sn0) 7« 

iDj 

i00 

TDN jDj' 
*-rnn  *r\r\ mn   |  jDj'   ±jmn ^OO 

TDN 
-"OO 

(39) 

I^n and I%„ are the area integrals of Eq. (23) evaluated over elementary areas Di on the surface, z = 0, 

and over elementary areas Dj on the base, z — D, respectively. N is the number of discretised base 

elementary areas, Dj, and a takes any value with dimensions W/(K.m2). 

To illustrate the interface matching approach, the global thermal resistance matrix is now constructed 

for the case of N pieces of rectangular, but otherwise arbitrary, metallisation on the surface of an otherwise 
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homogeneous heatsink mounted MMIC. For simplicity of illustration, only a single metal layer is consid- 

ered (though each individual piece of surface metal can be of any required thickness). The generalisation 

of the this approach to multilayer structures such as air bridges and flip chips is immediate. 

For a single metal layer, surface flux terms, P0i, in Eqns. (37) and (38) are identically zero. As the 

surface temperature of the metal, 60i, is not required for the coupled electro-thermal solution, only Eq. 

(38) is required. Written in matrix notation this becomes simply 

p(n) = £(n)£(n) (40) 

for each piece of surface metallisation, n, with n = 1,..., N. The thermal conductivity KS in 2](n), Eq. (39), 

for each piece of metallisation, n, can be chosen at a different representative Kirchhoff transformation 

temperature, Ts- Such a choice allows more accurate treatment of the difference in functional form 

between conductivity in GaAs and metal [57]. This technique is described in more detail in Section 4.5 

for the inhomogeneous MMIC with vias. 

In matrix notation, Eq. (7) for the MMIC die becomes 

is-Ts_s nss T)Si 

Rtrr Hi 

(ps\ 

yr j 
(41) 

where 2V and Js* are constant vectors with all elements equal to Ts, and the matrix equation has been 

partitioned by active device elementary surface areas, s, and interface elementary areas between MMIC 

die and metal, i. 

Matching flux and (linearised) temperature at the interface between metal and MMIC die, the fol- 

lowing relation is obtained 

M
$
=R

9
THP

S
, (42) 

where Pf is the vector of MMIC active device power dissipations, R3^ is the global thermal resistance 

matrix for the coupled GaAs and metal system, and A0S is the vector of MMIC active device temperature 

rises. 

The global resistance matrix is given explicitly by 

where 

E   =   diag(T«,...,1W ....lW) 
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xfr-^diag^1),.. „I'»),. ..,g{N))y\ 

(44) 

P is the identity matrix, and temperature rises A6S are now denned by 

MS = 6S- (ls + E%HR) Ts_s, (45) 

where, again, If is the identity matrix. 

Eq. (42) illustrates the main points of the hierarchical construction of global thermal resistance 

matrices for complex systems. Firstly, the order of the global thermal resistance matrix, &g£%, is small, 

determined only by the number of active device elements, not the level of internal discretisation. This 

implies rapid temperature updates in the iterative coupled electro-thermal solution. Secondly, i£^ is 

constructed purely from simple matrix manipulations on elementary matrices given by simple analytical 

expressions for thermal subsystems. The global resistance matrix is constructed just once, prior to 

the coupled electro-thermal solution, so its construction has no impact on coupled run time. The only 

significant approximation in construction of E^ is the level of interface discretisation. This is determined 

only by available computing power and required accuracy, and description by Q9
T°H becomes exact in the 

limit of infinitely fine interface discretisation. Bonani et al have typically found 1000 - 2000 nodes to be 

sufficient in their hybrid finite element Green's function description of MMIC surface metallisation [2, 3]. 

4.4.1    Non linear interface matching 

In the hierarchical treatment of MMIC superstructure just presented, linearised temperatures were 

matched at subsystem interfaces. This is only strictly justified when the functional form of the temper- 

ature dependence of the thermal conductivity is the same in both matched layers. When the functional 

forms are different, matching of physical temperature, T, imposes a non linear relation on the linearised 

temperatures, 6, in the two subsystems. This arises as a result of the different relations T = T(6) obtained 

from the respective Kirchhoff transformations, Eqns. (9), (11) and (12). For GaAs, exponent b in Eq. 

(11) is typically equal to 1.22 [56] whereas for metal b equals 0, i.e. the thermal conductivity of metal is 

essentially temperature independent. This difference means that matching of linearised temperatures at 

the GaAs/metal interfaces implies a non linear matching relation. (Matching of fluxes, however, remains 

linear after differing Kirchhoff transformations.) 
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This non linear interface matching can be avoided to a good approximation, by assuming the same 

functional form for the temperature dependent thermal conductivity of the metal and of the GaAs. The 

resulting error in surface temperatures is calculated to be typically a few per cent [7, 57]. This error can be 

reduced further in multi-component metal on GaAs systems, by assuming a different Kirchhoff transfor- 

mation temperature, Ts, for each piece of surface metallisation. Choosing these Kirchhoff transformation 

temperatures to give a thermal conductivity KS close to the metal thermal conductivity, minimises the 

errors introduced by adoption of an incorrect functional form for the temperature dependence. 

In cases where the non linear interface matching cannot be neglected, the thermal resistance matrix 

approach allows formulation of a non linear system of equations for the correctly matched temperatures 

[19]. For the case of a grid array of identical GaAs MMICs on an A1N substrate (with essentially 

temperature independent thermal conductivity), arguments similar to those of Section 4.4 give rise to 

the non linear system for interface temperatures 6p of MMICs n = 1,..., M, 

NWtf) = J2äSTHnm ißrn£om) + U^) , (46) 
771 

in terms of the MMIC surface flux densities PQ"^. NL(6) represents the non linear relation between tem- 

peratures matched at the interfaces. The substrate thermal resistance matrix E™^ ^las ^een partitioned 

into submatrices R™* , with n, m = 1,..., M running over the individual MMICs, and S and T are 

defined as in Eqns. (39). Solving self-consistently for the interface temperatures, Eq. (37) provides a non 

linear relation between surface temperatures 8 ft1  and surfaces fluxes PQ     for the MMIC grid array. 

This non linear problem for the interface temperatures can again be solved by Newton methods. 

The number of unknowns is determined by the level of discretisation of the MMIC bases, and can be 

minimised by choosing the shapes of the elementary areas to reflect the expected behaviour of the MMIC 

base temperature profiles. 

Figures 7 and 8 illustrate the simulation of a 5 x 5 power FET array, with explicit non linear matching 

of MMIC/substrate interface temperatures. The MMIC array substrate was heatsink mounted and 

adiabatic surface boundary conditions were assumed. Single surface averaged MMIC base temperatures 

were matched at the MMIC-substrate interfaces. The coupled electro-thermal simulation assumed non 

linear matching of linearised temperatures at the interfaces, due to the different functional forms of the 

temperature dependences in GaAs MMICs and A1N substrate. Coupled electro-thermal simulation time 

for 1 DC bias point was ~10 minutes (after construction of the respective thermal resistance matrices). 
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This was based on a simple non optimised relaxation algorithm and repeated calls to the LPM in the 

iterative coupled solution. Use of Newton methods, combined with prior calculation and interpolation for 

the LPM temperature dependence, is expected to produce significant further speed-up up in simulation 

run time which was dominated by calls to the LPM. 

4.4.2    Non linear surface fluxes 

Surface radiative fluxes are unimportant for the small areas of heatsink mounted MMICs and even hybrid 

MICs. Convective fluxes are non trivial to calculate for small areas and fine surface structure. However, 

for large area substrates, from MMIC grid arrays upto circuit board level, convective and radiative losses 

are known to become significant and at high powers and temperatures surface flux non linearities need 

to be considered. The linear thermal resistance matrix approach allows treatment of non linear surface 

fluxes by discretising the whole substrate surface (not just the active device elements) and treating the 

radiative and convective surface fluxes as unknown imposed fluxes to be obtained self-consistently. 

Adopting this approach, Eq. (7) gives immediately the following non linear relation for the surface 

temperature rises Mi [19], 

3 r 

X>H<.nl(0T). (47) 
s 

in terms of the imposed surface fluxes Pj. nl{6) is the surface flux non linearity, 9r the substrate surface 

temperature on the front surface, and 6r
s
ev substrate temperature on the reverse surface. QxHiT and 

VrHis are thermal resistance matrices. 

This relation leads immediately to an iterative solution for treatment of surface flux non linearity. As 

the non linear contribution to the surface flux is obtained as a perturbation about the linear radiation 

boundary condition, and as the linear case can be solved to provide a good first guess in the iterative 

non linear solution, the problem is expected to be rapidly convergent and stable. 

The required level of surface discretisation and hence the number of unknowns, Mi, in the non linear 

system, will depend on the magnitude of the substrate thermal conductivity and the corresponding level 

of uniformity of the substrate temperature. 

Where the non linearity is too strong to allow rapid solution via the iteration of the linear thermal 

resistance matrix, direct solution of the heat diffusion equation for arbitrary non linear boundary condi- 
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tions can be achieved by a combination of the double Fourier series expansion solution, Eq. (14), and a 

collocation technique. This solution is exact to the extent that the double Fourier series has converged. 

This approach produces a non linear thermal resistance function RTH(PI, ■••>Fi, ■■■>FN)- The solution is 

computationally much more expensive than simple linear matrix construction, but possibly of value for 

high accuracy at high power dissipations and temperatures. The linear thermal resistance matrix solution 

requires surface discretisation and corresponding thermal terminals in a thermal network solution for non 

linear surface fluxes. By contrast, the non linear thermal resistance function provides a description of 

arbitrary surface flux non linearity without introducing additional surface terminals in the non linear 

thermal network. 

4.4.3    Ä_„ from finite element or finite difference schemes 

The generation of the thermal resistance matrix has so far been described on the basis of analytical 

solutions of the heat diffusion equation. However, RTH can also be generated experimentally or by 

numerical simulation. Direct construction of R _ „ based on physical temperatures obtained from non 

linear experiment or simulation, only allows linearisation in a small signal sense, and is of very limited 

applicability. However, if the system non linearity can be attributed almost totally to temperature 

dependent conductivity, i.e. if surface flux non linearities are negligible, then physical temperatures 

can be converted to linearised temperatures via the Kirchhoff transformation, Eq. (9), and a thermal 

resistance matrix for linearised temperature can be constructed. The thermal description so obtained is 

independent of temperature and power dissipation, and so of device bias point. It is not restricted to 

small temperature variations. 

Numerical simulations offer an increased degree of flexibility beyond that obtainable by experiment. 

Where a system is composed of subsystems with different functional forms for the thermal conductivity, 

each subsystem can be simulated separately, and a thermal resistance matrix constructed for linearised 

temperature in each case. Solving a system of non linear equations for matched interface temperatures 

again gives a thermal description valid for all temperatures and power densities and not limited to small 

temperature swings. 

To generate RTH experimentally or numerically, Eq. (7) gives the definition 

RrHij = -p^|pr=o,r^-. (48) 
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Generation of a thermal resistance matrix of order N x N, corresponding to N active device elements, 

therefore requires JV individual measurements or simulations, dissipating power in just once active device 

at a time, and measuring the resulting temperature rises at all active devices. (The number of measure- 

ments can be reduced if the system is symmetrical.) However, to generate experimentally or numerically, 

a thermal resistance matrix giving comparable accuracy to a matrix obtained from analytical expres- 

sions, can be prohibitively time consuming. For example, to construct R.TH for a power MESFET with 

10 fingers, each divided into active device elements 5 times along both length and width, would require 

250 individual simulations. At ~l/2 hour per simulation for a finite difference calculation [8], the time 

demands are heavy, even making full use of symmetry. 

4.4.4    Double Fourier series finite element method 

To treat surface metallisation on a MMIC die, vertical matching of rectangular surface elements was 

described in Section 4.4. However, there is an approximation inherent in this approach, due to the 

imposition of adiabatic side wall boundary conditions on the surface elements. These conditions mean 

that no direct heat flow will occur between adjoining surface metal areas. Generally this is not expected 

to have much impact on calculated thermal resistance matrices, as the heat flow through the much greater 

cross sectional area of the MMIC die itself is unaffected by the adiabatic side wall boundary conditions 

on the metal elements. Also, any adjoining areas of metallisation can always be chosen to lie in low 

temperature regions away from centres of the active devices, so that the impact on heat flow of artificial 

adiabatic barriers will be small. 

However, at the expense of increased algebraic complexity, the analytical thermal resistance matrix 

approach immediately generalises to remove this approximation. The thermal description of a cuboid 

with arbitrary fluxes defined on all 6 faces is given by the general solution 

9   =   c0 + cxx + cyy + czz + cxxx
2+Cyyy

2+czzz
2 
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+ £ 

cos Xmx cos finy 

x (Amn cosh imnZ + Bmn sinh^mnz) 

+     COSßmyCOSJnZ 

x (Cm„ cosh Arona; + Dmn sinh Amnx) 

+    cosAma;cos7nz 

x (Emn cosh /zm„y + Fmn sinh /xmny) 

(49) 

where 

Cxx "T Cyy T" Czz        —       ") 

_   n7r n7T _ rvK 

W 7" = TT' 
\2      _ ..2     .  ~2 2 _      \2     ,      2 2      = ^2     ,      2 
«mn — Mm   '  Ini     Imn     ~     ^m T «i    Fmn       ^m ^   in- 

(50) 

(51) 

(52) 

Constructing this solution explicitly, interface matching can then be implemented not just vertically but 

also horizontally, avoiding the construction of artificial adiabatic barriers between adjoining sections of 

surface metal. 

For simple cuboids with uniform surface fluxes Pi,F2,--,F6 the solution reduces to just x,y,z and 

x2, y2, z2 terms, which gives a simple formulation of a finite element approach based on interface matching 

of primitive cuboids. This allows ready treatment of MMICs and of hybrid MICs with arbitrarily detailed 

surface metallisation. 

4.5    MMIC with vias 

In Section 4.1, a simple analytical expression was derived for the thermal resistance matrix of a homo- 

geneous MMIC. In this section it is shown how to derive the thermal resistance matrix for a MMIC 

containing an arbitrary distribution of full or partial thickness vias, or with partial substrate thinning. 

Analytical solution for a single via has been presented previously [58], but this solution assumed a 

periodic distributions of vias, so that simple adiabatic boundary conditions could be imposed on a surface 

enclosing each via. For the MMIC and hybrid MIC case considered here, no such periodicity will generally 

exist. 
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Bonani et al have presented approximations both for vias and for partial substrate thinning. Their 

description of vias is particularly simple and effective, and represents the MMIC with vias by means 

of the thermal resistance matrix for the corresponding homogeneous MMIC, with parallel resistances 

constructed for stand-alone metal vias, to take account of the greatly increased thermal conductivity of 

the via metal compared to the GaAs die [l]-[3]. 

Though vias have been shown to be largely unimportant in thermal simulations [4], (but not totally 

insignificant [1]), it may be the case that the thermal effects of vias could become particularly relevant 

with joint developments in via technology and development of accurate design tools. Partial substrate 

thinning, by contrast, is known to have a major impact on calculated MMIC temperatures [l]-[3]. 

Increases in available computer memory and processor speed mean that it is now possible to construct 

and utilise analytical solutions which would previously have been of no practical value. The analytical 

solutions presented here require inversion and diagonalisation of large matrices (of order up to several x 103 

squared). Such solutions are therefore vastly more computationally expensive than the simple resistance 

matrix approximations of Bonani et al, but they represent an analytical solution that is numerically exact 

when fully converged, and that becomes increasingly more tractable with increased computing power. 

The computational time required to construct such accurate thermal resistance matrix descriptions has 

no impact on coupled electro-thermal run times, as the resistance matrices are calculated prior to coupled 

electro-thermal solution. The analytical solution for full thickness vias generalises to provide a solution for 

partial thickness vias or partial substrate thinning. These solutions, and construction of the corresponding 

thermal resistance matrices, are now described. 

To the authors' best knowledge, this section presents the first analytical solution for the 3-dimensional 

temperature distribution in a cuboid MMIC with an arbitrary distribution of vias of arbitrary cross-section 

(full or partial thickness). 

4.5.1    Formulation of the linearised problem 

By expressing the total thermal conductivity as the sum of GaAs MMIC conductivity, plus an additional 

contribution in the vicinity of each via, j = 1,..., JV, the steady-state heat diffusion equation for a MMIC 

containing JV vias can be written 

V. K(T) +YJHj{x,y) [AKJ(T) + 6Kj{T)) \ VT = 0 (53) 
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where T is physical temperature; K(T) is the temperature dependent thermal conductivity of the GaAs 

MMIC; AKJ(T) for j = 1,...,N are the (large) differences between the thermal conductivities of the 

metal vias and the GaAs MMIC, assuming the same functional form for temperature dependence as 

K(T); 6KJ(T) for j = 1,..., N are the small perturbations on AKJ(T) due to the difference in temperature 

dependence of the via metal thermal conductivity from K(T); and 

Hj(x,y)= < 
1    in the region of via j 

0   otherwise 

Then neglecting the small quantities SKJ(T), this equation can be written 

(54) 

V. [K{T)VT\ = -V. X^foyjAK^rjvr (55) 

So the heat diffusion equation for the MMIC with vias has been converted into an equation with uniform 

GaAs MMIC thermal conductivity K(T), but with a temperature dependent volume heat sink term, 

described by the right-hand side of Eq. (55). 

The justification for dropping the terms 5KJ(T) is discussed in subsection 4.5.5 below. 

Eq. (55) is non linear in T. To linearise the equation, the Kirchhoff transformation is performed [55] 

giving 

V20 = -V. X) &#*(*. l/) ve (56) 

with the £j defined in subsection 4.5.5 below. 

In terms of linearised temperature, 6, the boundary conditions become 

ae, 
dx 

dyl 

=O,L   =   0, 

y=0,W      =     0, 

6(z=D)    -   Ts, 

ae, 
oz Sr Si(x,y) 

where 

Si(x,y) = < 

+ ZitJHj(x,y) 

1    for (x, y) 6 A 

0   otherwise 

Pi, 

(57) 

(58) 

(59) 

(60) 

(61) 
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4.5.2    Double cosine transform 

To solve this problem the double Fourier series solution of Eq. (14) is generalised to 

0 = Y^ COS XmX COS fJ.nyZmn (z), (62) 
mn 

where 

Am    =    -j-, (63) 

On    =    W (64) 

and m, n = 0,1,2,.... 

It is apparent that Eq. (62) immediately satisfies the adiabatic x- and j/-flux boundary conditions 

given by Eqns. (57) and (58). Substituting the z-direction boundary conditions, Eqns. (59) and (60), 

into solution Eq. (62) provides conditions on the Zmn, 

Zmn\z=D = Ts <5om <W (65) 

and 

2=0 ■££mP*- (66) dz   |2-u     KSLW{l+6m0)(l + Sn0) 

Eqns. (66) and (23) assume that no elementary heating element, D», ever lies totally or partially over 

a via.  For semiconductor active device channels and full thickness metal vias this will always be true, 

but the extension to more general surface heating elements, partial thickness vias and partial substrate 

thinning is immediate. 

Finally, performing a double cosine transformation of Eq. (56) [9] gives 

d2Z(, 
"■(m'n')(mn 

(mn) 
0 =  2J V»')M T~2 £(m'n')(mn)^(mn)> (67) 

where 

LW 
A(m'n')(mn) = "T- (1 + <Wo) (1 + Sn'o) SmmiSnn' 

+ £fc#*A (68) 

and 

^(m'n')(mn) — 

LW 
(1 + 6m'o) (1 + Sn'o) Smm'Snn' (Am/ + £*„/ 
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+£& 

(,\n "+" Vn) '■mm1 *nri 

(cos \m> xf sin Am xf - cos Xm> xf sin Amrcj1) 

(cos fin>yf sin /in?/^ - cos ^yf sin Mn?/f ) 

(69) 

and where, for simplicity, the vias have been assumed to have uniform rectangular cross-section with 

faces parallel to the faces of the MMIC. xf, xf are the a;—coordinates of the edges of via j parallel to the 

y—axis, and yf, y^ are the y—coordinates of the edges of via j parallel to the a;—axis. The generalisation 

to vias of arbitrary uniform cross-section is immediate. 

Elementary integrals I^m,, P^n, have been denned as 

P mm' ""'     ~     Li 
cos Xmx cos Xm' x dx, 

IV      =      I 

Jv? 
cos ßny cos fin>y dy 

(70) 

(71) 

and are simple to evaluate analytically. 

The linearised partial differential equation for the GaAs MMIC with vias, Eq. (56), with boundary 

conditions Eqns. (57)-(60), has thus been converted to a system of coupled, linear, 2nd order, ordinary 

differential equations, Eq. (67), for the Zmn of Eq. (62), with boundary conditions given by Eqns. (65) 

and (66). 

For the special case of £,■ = 0 for all j, corresponding to a MMIC with no vias, this system of equations 

just reduces to 

W2Z__        2 
= Imn^mnt ('2) 

dz2 

where j^n — tfn + Pn> wit*1 general solution 

A + Bz,   for (m, n) = (0,0) 

Cmn cosh7mnz + Smn sinh7mnz,   otherwise 

corresponding to the usual separation of variables solution. 

(73) 

31 



4.5.3    Solution of the coupled linear system 

In matrix notation, the coupled system of equations, Eq. (67) can be expressed 

g-4-M-«- (74) 

Examination of Eqns. (68) and (69) shows that, in general, all elements of matrix A_ will be non zero. 

For the case of a MMIC with no vias, A will be diagonal with all diagonal elements non zero. However, 

although the matrix elements of matrix B_ are mostly non zero in the general case, putting (m, n) = (0,0) 

in Eq. (69) means that S(m'n')(oo) is seen to be zero for all (m',n'). For the case of a MMIC with no 

vias, B_ is diagonal with one diagonal element equal to zero. 

Writing A"1, B and Z_ in partitioned form, with (double) index (m',n') = (0,0) corresponding to the 

first row and (m, n) = (0,0) corresponding to the first column, 

(75) 

B 

(   A- ä 12 

A-1         A-1 

\ ^—21     i=22   / 

0    B 12 

\o   ä 22   / 

( Z    \ 

U'i 

(76) 

(77) 

Then partitioning A    B in the same way as above 

d2Z00/dz2 

(Pg/dz2   j 

0   A~XBT 
12 \(z   ^ 

v fl d^ä22 j 
(78) 

\Z-   ) 

This gives rise to the closed set of equations for Z', i.e. for all the Zmn except Zoo, 

d2Z' 

subject to the boundary conditions 

d,2-^2^' = Q, 

z'u=D = o 

(79) 

(80) 

and Eq. (66) for all m, n excluding (m, n) = (0,0). 

Solving the homogeneous linear system for Z' then gives the inhomogeneous equation for Zoo, 

d2Z0o .--i-r^T 

dz2 = ATlB[2Z, (81) 
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subject to the boundary conditions 

Zoo\z=D 

dZoo | 

Ts, 

Tw^PooPi- 

(82) 

(83) 
dz KSLW 

The coupled system for Z7, Eq. (79), can be solved by following the standard procedure for systems 

of second order linear differential equations with constant coefficients [59]. Define 

G = [  -   ) 
,   dZ!/dz   , 

then it is immediately obvious that, 

where 

dz     — 

M = 

Writing 

where from the definition of Eq. (84) 

^M22 2/ 

G = e""u, 

(   ..i   \ 

(84) 

(85) 

(86) 

(87) 

(88) 

\1U    ) 

and u1 is independent of z, Eq. (85) gives the eigenvalue problem 

(89) 

For the zero via case, the 72 are pure real and positive definite, going as A^ + \Pn with (m, n) ^ (0,0). 

However, the eigenproblem of Eq. (89) is constructed for a non symmetric real matrix, A^1B00, so the 

eigenvalues can be complex. Although not obvious for the most general case, consideration of the terms 

of the matrices A and §_ of Eqns. (68) and (69) shows that typically the additional terms due to vias will 

be a small perturbation on the positive definite diagonal terms of A~lB22 corresponding to A^ + ß„. It 

is therefore to be expected that the modified eigenvalues of A_1B22 will remain real and positive in the 

presence of vias. This is found to be the case for all calculations performed so far. In the general case 

det(A~1B    ) will be non zero, so that 7 is never zero (for non trivial solutions u1). 
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Solving Eq. (89) by standard numerical techniques, to obtain eigenvalues 7? and eigenvectors uj, the 

general solution to Eq. (85) can be written 

Z' = J2 {cfe+v* + cje->'z) 4. (90) 
3 

To obtain the unknown coefficients cf, the boundary conditions given by Eqns. (66) and (80) are imposed. 

The vectors c* of components cf are then seen to satisfy 

U^{c+-c~)    =   p, (91) 

C7+C+ + DLC-    =   Q, (92) 

where the columns, C/7 ., of matrix ?77 are given by 

similarly 

U+ .    =    e+^Du\, (94) 
—3 J 

U- .    =   e~','DuI
j (95) 

and p is the vector with components 

-4 
P<mn) - KSLW(1 + 5m0)(l + Sn0) Er-«Pi 

for (m,n)/(0,0). (96) 

Having constructed the solution for Z' the solution for Z0o is immediately obtained as 

Zoo = A + Bz + J2 \ (S+e+7'z + c^e-w«), (97) 
3   ^ 

where 

£f =^Ali£?Uj (98) 

and arbitrary constants A, B are determined by imposing boundary conditions, Eqns. (82) and (83). 

This gives a complete analytical solution for the case of a cuboid MMIC with an arbitrary distribution 

of vias. The major computational limitation on this approach is the order of the matrix problems required 

for full convergence of the double Fourier series expansion, Eq. (62). For a MMIC with no vias, adequate 

convergence is typically found to be obtained for m, n = 0,..., ~ 50, dependent on the size of the smallest 
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feature to be resolved relative to the die size [10, 11]. The inclusion of vias is often found to be a small 

perturbation on the MMIC solution [1, 4], so similar convergence rates might be expected for the solution 

with vias. However, the effects of discontinuities in thermal conductivities is to introduce discontinuities 

into thermal gradients at the via interfaces. These gradient discontinuities could require larger number 

of terms for an accurately converged solution. 

Assuming adequate convergence of Eq. (62) with m2 +n2 < 502 for the system under consideration, 

the size of the matrices to be constructed is of order ~ 2000 x 2000, requiring ~32 MB of real double 

precision storage for each matrix. Inversion, diagonalisation and multiplication of matrices of this size 

typically takes ~1 hour to ~10 hours. 

4.5.4    Thermal resistance matrix 

To construct the thermal resistance matrix, analytical expressions are required for the average tempera- 

tures over elementary heating elements A- From Eqns. (62) and (23) these are given by 

6«    '        SJmdxdy    ' (99) 

=     Yt^Zmn^, (100) 
•'nn 

or in matrix notation, 

where 

Prom Eqns. (90), (91) and (92), 

where 

0^ = Zoo|o+fV|o, (101) 

I(mn) = Ijr>   (m,n)^(0,0). (102) 
-'oo 

z'|o = nP, (io3) 

B=E(I-^_1^±) (l+^_1^±) 1ik~1 (104) 

and where U is the matrix with columns Uj = yjj ■ Hence, 

9iv = Z00\o + tJÜP (105) 

and 

6iv-Zoo\o = ^2RTHikPk, (106) 
fc 
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where the thermal resistance matrix Q^    is given by 

RTBik=Li7ül, (107) 

with 

~~k _4 k 
I(mn) = KSLW(l + 6m0)(l + Sn0)

Imn- (108) 

As for the homogeneous case, the thermal resistance matrix is seen to be obtained purely in terms 

of material parameters, and the geometry of the MMIC. As it is derived for the linearised temperature, 

it is independent of both temperature and power density, and hence of electrical bias point (though 

parameters £,• must be chosen to represent typical operating conditions). The matrix only has to be 

constructed once, for repeated use in coupled electro-thermal simulations, and whatever the complexity 

of the MMIC internal structure the order of the thermal resistance matrix is determined purely by the 

(small) number of surface heating elements, £>». 

4.5.5    Non linear thermal conductivity perturbation 

In subsection 4.5.1, terms SK,J(T) were dropped from the heat diffusion equation on the grounds that 

they were a small perturbation on terms AKJ(T). This assertion is now justified. Also, in the linearised 

Eq. (56), the constants £j were introduced; these are now defined. 

If the thermal conductivity in the GaAs MMIC body, region i", is K/(T), and the thermal conductivity 

in the metal vias, region II, is Kn(T), (and for simplicity all vias are assumed to be made of identical 

material, though this is not a necessary restriction), total thermal conductivity throughout the whole 

MMIC, Ktot(T), can be written 

Ktot(T) = K/(T) + Y^Hj(x,y) [KH(T) - Kl(T)]. (109) 
i 

To a good approximation, the thermal conductivity of GaAs can be assumed to have a simple power law 

dependence on physical temperature over temperature ranges of interest for device operation [56], and 

the thermal conductivity of via metal can be assumed independent of temperature [7], 

Kl(T)    =   Ki[7jr)      & = 1.22 for GaAs, (110) 

KniT)    =    Ku for via metal. (HI) 

Then the AKJ(T) and SKJ(T) for each via, j = 1,..., N, can be defined by the relations, 

KU(T) - KI(T) = AKj(T) + SKj(T), (112) 

36 



where 

which defines the £,, and 

AKJ(T) = (rijKn -K/) (*r- WT)> 

(JKi(r)=/ei/-(l + ^)/t/(T). 

(113) 

(114) 

AKJ(T) of Eq. (113) equals the difference, nn{T) - K/(T), assuming the same functional form for the 

temperature dependences of KH(T) and K^T). Eq. (114) then gives the small perturbation on AKJ(T) 

resulting from the fact that the temperature dependences of K//(T) and Ki(T) are actually of different 

functional form. This separation of AKJ(T) and 5KJ(T) contributions to KH{T) - K/(T) is necessary to 

allow linearisation of Eq. (55) by use of the Kirchhoff transformation, Eq. (9). 

The constants rjj (and hence &) in Eq. (113) are introduced to allow minimisation of the errors 

introduced by dropping terms 5KJ(T) from Eq. (53). Although Kn(T) - KI(T) is the same in each via, 

these constants are given different values in each via, rjj (and so £,) j = 1,..., JV, to allow for the fact 

that the temperature distribution will differ from via to via. The use of the £,■, in minimisation of the 

error due to neglect of differences between the functional forms of the temperature dependences of the 

thermal conductivities, is now discussed. The same general approach applies to hierarchical construction 

of thermal resistance matrices for metal on MMIC structures, as described in Section 4.4. 

The magnitude of the perturbation SKJ(T) on AKJ(T) is given by 

6KJ{T) _ 1_ 

AKJ(T) ~ & 

K-II 

Kl (0- (1 + 6) (115) 

This is seen to be exactly zero for the case that the square bracket on the right hand side of Eq. (115) 

goes to zero. So defining the £,■ by 

1 + 6 
&II  I 1-viaj (116) 
KI   \  Ts 

for typical vias temperatures Tviaj, and writing the temperature variation over via j as T — Tviai ± A3), 

(117) *«iCO 1 

J'-1] AKj(T) 1    m. ( TS \b 

KII   VT»*»j/ 

which is given approximately by 

for a typical ratio KJ/KH of ~l/8. 

JKJ(T) 

AKj(T) 
±1.4- 

AT, 
(118) 
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For a variation across a via of ±10 K, from a typical via temperature of ~300 K, this error is 

SKJ(T)/AKJ(T) » ±5%. The impact on calculated active device temperatures, due to neglect of errors 

of this magnitude in the via thermal conductivities, is expected to be small. 

Clearly, mean via temperatures Tviaj are not known a priori, so they have to be obtained self- 

consistently, for instance by relaxation starting with temperature values obtained from the simple ana- 

lytical solution for the MMIC without vias. This self-consistent solution for the £,• then gives an approxi- 

mate treatment of the non linear perturbation arising from the difference in functional form between the 

temperature dependences of the thermal conductivities in the GaAs MMIC and in the metal vias. 

As the metal vias are of small cross-sectional area, and have high thermal conductivities, the greatest 

variation in temperature is expected to be along the z-axis, corresponding to the heat flux from the active 

devices at the MMIC surface to the heat sink mount at the MMIC base. The accuracy of the solution can 

therefore be improved further, by subdividing the vias in the z-direction. By generalising the mean via 

•temperature description, Tviaj, and solving self-consistently for mean via temperatures, Tviajk, in each 

vertical element, k, of any given via, j, typical temperature variations across via elements, ATjk, can be 

reduced. The description of the vias, j = 1,..., N, already allows for the possibility that the cross-section 

of each physical via can be constructed from mathematical sub-vias of smaller cross-section. Combined 

with the generalisation to vertical subelements, k, described by mean temperatures Tviajk, this means 

that the variation of temperatures across elementary via volumes, ATjk, can be made arbitrarily small 

giving an essentially numerically exact self-consistent solution to the full non linear problem of a MMIC 

with vias. However, this full solution is very computationally demanding and generally not warranted by 

the degree of inaccuracy due to the non linear perturbation. 

In a fully coupled electro-thermal solution, it would be impractical to obtain the fully non linear 

solution for the MMIC thermal resistance matrix at each iteration of a global electro-thermal solution. 

However, by obtaining the thermal resistance matrix for a typical operating point, the resulting linear 

description of the MMIC should be sufficiently accurate for description of the global system over a 

satisfactory range of operation. 

Figure 9 shows the calculated temperature distribution of a GaAs MMIC bearing two, 6-finger, power 

transistors. Figure 10 shows the same die with a central via. For speed of calculation, these illustrative 

simulations used just a small number of basis states given by the relation m2 + n2 < 202.  The details 

38 



of the individual device fingers are therefore not resolved, but the impact of the centrally placed via is 

clear, reducing central temperature and modifying the temperatures in the vicinity of the active device 

fingers. 

4.5.6    Partial thickness vias and substrate thinning 

To treat the case of partial thickness vias and partial substrate thinning, and to allow more accurate 

minimisation of non linear perturbations, 6KJ (T), the extension to vias discretised along the z-axis is now 

presented. The linearised heat diffusion equation, Eq. (56), becomes 

V28. 

where 

Hk(z) = { 
1,    within MMIC layer k 

0,    otherwise 

Then the coupled system for the Zmn of Eq. (67) becomes 

(119) 

(120) 

dz 
A(z. 

dg_ 
dz 

■B{z)Z = 0, (121) 

where A and B are now piecewise constant and have the same form as previously within each MMIC 

layer, Eqns. (68) and (69), but with JV& -> Y,jk£ikHk(z). Integrating Eq. (121) across an interface, 

it is seen to reduce to the original Eq. (67) within each layer, with continuity of J[ and AdZ_/dz across 

each interface. This problem can then be treated by a transfer matrix approach. 

The above formulation can also, in principle, treat the case of totally arbitrary surface metallisation 

considered as an effective partial thickness via of complicated cross-section. However, treatment of surface 

detail that is too fine will generally produce convergence difficulties. Also, this approach is more limited 

in its description of non linear interface matching between metal and GaAs. 

4.5.7    Alternative formulation 

After some manipulation, Eq. (56) can be written in the equivalent form, 

V20 = £ln(l + O)V^(zl2/).V0, (122) 

as long as £,• > -1 for all j. This form again gives rise to Eq. (67) with matrix J| of similar form to Eq. 

(69), but now matrix A is diagonal and is trivial to invert.  This represents a significant saving in the 
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construction of A lB_ when the order of matrix A is large. A 1B is given by 

A     JB(m/„')(mn) —   (Am/ + IV) Smm'Snni + 

?ln (1 + ^ LW(l + 8m,o)(l + ön,0) 

(\n + fJ-n) ■'mm'-'nn' 

(cos Am'xj' sin Ami^ - cos \m>xf sin Ami^) 

{cas ^yf sin n„yf - cos ßn>yV sin fj,nyf) 

(123) 

4.5.8    Approximate treatment of vias 

The double Fourier series solutions for the treatment of vias, presented above, are computationally 

demanding. However, the simple equivalence principle approach of Bonani et al [l]-[3] is conceptually 

simple and is cheap to implement. It is described here within the framework of the resistance matrix 

formulation. 

Partitioning the thermal resistance matrix equation, Eq.  (7), by elementary surface elements corre- 

sponding to active devices, Aga,f a and via holes, A6V,£_V, gives 

\   /  „    \ A0. 

A0. 

\ / 

R Rl ^-v   ) \ äTH     äTH   /    \ -»   / 

with 

(124) 

(125) Mv = R&(-Pv) 

describing the fluxes through the parallel equivalent via thermal resistances, R^H- 

All vias are assumed identical for simplicity. The negative sign in Eq. (125) reflects the fact that 

the parallel resistances, corresponding to the greater thermal conductivity of the metal compared to 

GaAs and applying the equivalence principle, are all effectively external to the GaAs die. (This means 

that although the parallel resistances describe increased heat flow through via metal in an approximate 

fashion, they do not correctly include the effects of increased heat flow through the side walls of the via 

metal in the GaAs.) 
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Combining Eqns. (124) and (125), the global thermal resistance matrix relating active device tem- 

perature rises to active device power dissipations is given by, 

Ma=R^Pa, (126) 

with 

g™ = Ra*H - R%H (fi™H +IRp^y1^. (127) 

For a via of uniform cross-section, passing through a GaAs die of thickness, D, with difference between 

metal and GaAs thermal conductivity given by, An, the via thermal resistance is given simply by 

Ä3& = ^- (128) 

To describe more accurately the thermal non linearity due to the difference in functional form between 

the temperature dependent thermal conductivities of metal and GaAs, AK can be ascribed a different 

value in each via, corresponding to respective mean temperature. 

Combining this approach with a simple generalisation of the 2-layer thermal resistance matrix solu- 

tion of Section 4.3 provides a straightforward description of partial thickness vias and partial substrate 

thinning. In the case of partial substrate thinning or 'bathtubs' [1], flux at the surface of the partial 

thickness bathtub metallisation is assumed piecewise constant, rather than completely uniform. 

4.6    Large area substrates 

For large area substrates, from MMIC grid arrays up to circuit board level, surface fluxes due to convection 

and radiation must be included in the solution of the heat diffusion equation. (The same would hold for 

small area substrates under any circumstances in which convection became important.) For moderately 

low power densities and temperatures these fluxes can be described by the linear radiation boundary- 

condition, Eq. (13) [19]. Putting a0,D = 1, HQiD ^ 0 the steady-state heat diffusion equation, Eq. (10), 

can be solved to obtain the corresponding thermal resistance matrix for a substrate with radiative and 

convective surface losses. Figures 11-13 show the results of electro-thermal simulations performed using 

such a thermal resistance matrix. 

Putting a0 = OLD = 1,-H0 = HD = H,0o(x,y) = 6D{x,y) = 60,pD{x,y) = 0 and p0(x,y) = 

J2i Si(x> y)pi> tne analytical solution Eq. (14) is obtained with coefficients 

A   =   e0-(— + l)^B, (129) 
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B    =    -._}     ,      !,WEW. (130) 
(ER _L 2^\ KQLW 

H tanh7mwD + KQ7„ 
1H + Ko7mn tanh7mnJD' 

H+Kofmn tanh7mn£) 

o _ 2HK07mn +(KoTmn +ff2) tanh 7mn £> (132) 

v =4 v^   ri     p. 
* £W(l+(5mo)(l+«no) ^i1mnJr^' 

where Ko is the thermal conductivity of the substrate. 

The corresponding expression for the thermal resistance matrix, describing the temperature rise of 

the surface heating elements above 6Q , is given by 

R      (g + 0   i 
iJ      (HD + 2\ HLW 

\   KO 

 H tanh7mTOZ? + K0fmn  

2HKojmn + i^hmn + H2) tanh7m„Z? 

4 P   P 

--.-. ivy iiiiii   ■   \*"(j imn   '   —   / ""— mm,— 

A Ti      T3 
(133) *"mnJ-mn 

LW{l + 6mo){l + Sno)      P00 

Based on these expressions, the simulation of Figure 11 shows the simulated reverse side of a Cu/FR-4 

mount bearing a 3-stage balanced amplifier MMIC. The simulation used a two-level structure with thermal 

resistance matrices constructed for the partial Cu layer and the FR-4 mount and matched at the interface. 

(This construction was for illustrative purposes only. An analytical solution can be constructed directly 

for this configuration, consisting of a double Fourier series in each layer, with Fourier components fully 

matched by solution of a corresponding linear system.) Two-layer solutions of this type require imposition 

of the radiation boundary condition on the surfaces of both layers, so as to produce exact cancellation of 

'fictitious' radiative and convective fluxes at the matched interfaces. 

As the electro-thermal model currently contains no explicit description of external fluid flow, the 

surface flux parameters H0>D in the radiation boundary condition, Eq. (13), were used as a fitting 

parameter to experimental data (setting - H0 = HD = H) [19]. Only the average temperature on the 

back of the Cu layer was matched to the substrate. 

Figures 12 and 13 show the impact of parameter variation on the calculated solution. Removing the 

partial Cu layer, Figure 12, leads to pronounced localisation of the temperature profile. The 2 /jm thick 

Cu layer therefore acts as an efficient heat spreader on FR-4. Figure 13 shows the effect of altering the 

value of the FR-4 thermal conductivity to that of A1N (three orders of magnitude higher). The high A1N 

conductivity produces an almost uniform temperature across the surface of the mount. 
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4.6.1    External fluid flow 

The need to use the heat transfer coefficient H0,D as a free parameter, limits the physicality of the 

description provided by the coupled electro-thermal model in the case of large area surface losses. For 

larger area substrates HQ,D can be obtained using standard convection correlations from the literature 

[11]. However, for the description to be fully physical ff0,D must be obtained from a physical model. The 

full 3-dimensional coupled conduction-convection problem is complex, e.g. [60], however for simple cases 

of interest, such as laminar flow over a vertical plate, analytical solutions can be obtained for temperature 

distributions along the plate [61]. This offers the possibility of fully physical thermal resistance matrix 

calculations to make preliminary studies of external convection on device and circuit performance. 

4.7    Time dependent temperature 

The thermal resistance matrix approach described so far applies only to the temperature steady-state. 

However, the method generalises readily to treat the thermal time-dependent case in Laplace transform 

s-space [19, 24]. Analytically generated thermal impedance matrices, describing thermal transients and 

capacitances, can be used directly in s-space, for instance in harmonic balance simulation, or in the 

time-domain where they correspond to the impulse response of the thermal system. 

In coupled electro-thermal simulations thermal impedance matrices have to be calculated at a small 

number of points in s-space. A modest amount of precomputation then determines all thermal time 

evolution information. The coupled electro-thermal solution requires generalisation of the double Fourier 

series approach to treat arbitrary initial conditions, allowing repeated resetting of initial conditions in 

a time-stepping solution. (This generalisation also provides a double Fourier series treatment of volume 

heat sources and sinks, without the use of Green's function techniques.) The time-dependent coupled 

electro-thermal solution then reduces to a series of small non linear problems with order given by a small 

multiple of the number of active device elements. 

The resulting formulation provides a fully coupled, physical electro-thermal solution in which the main 

approximations are flux and temperature discretisation at interfaces, interpolation of electrical power 

dissipation between discrete time-points, and numerical inversion of Laplace transforms. All surface and 

material non linearities, including temperature dependent diffusivity, are fully treated. This solution 

scheme compares favourably with time-stepping finite difference or finite element solutions, capable of 
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comparable levels of detail and accuracy, which must iterate physical electrical and thermal solutions at 

each time step. 

5    Summary and Conclusions 

The problem of physical, coupled electro-thermal modelling for electro-thermal design of high power 

devices and circuits has been introduced. The combination of the quasi-2D Leeds Physical Model with 

the analytical thermal resistance matrix approach has been proposed as a viable solution. The Leeds 

Physical Model has been described and the details of the coupled electro-thermal problem outlined. 

The motivation for the thermal resistance matrix approach to the thermal steady-state case has been 

presented. 

The most general formulation of the resistance matrix approach offers a potentially competitive so- 

lution scheme for any physical system, described by an equation in some complex volume, which can 

be resolved into subsystems allowing linear analytical solution with specified boundary conditions. The 

resistance matrix approach then amounts to matching of field, ip, and its derivative, ip', at subsystem 

interfaces, with the resistance matrix relating linearly ip and tp' at distinct interfaces of any given sub- 

volume. This approach produces a minimal system to be solved for (discretised) interface unknowns, 

thus providing full 3-dimensional solutions for the whole complex volume. It is of particular value for 

describing distinct physical systems coupled in a relatively small number of isolated regions. 

Applying this approach to the coupled electro-thermal system, the construction of thermal resistance 

matrices has been described for the case of the homogeneous MMIC, bearing an arbitrary distribution of 

power transistor fingers. It was shown that this construction leads to a small non linear problem for the 

coupled electrical description, readily soluble by Newton methods. Construction of resistance matrices 

was then outlined for multi-layer MMICs and MMICs with superstructure such as surface metallisation 

and air bridges. Constructions were presented for MMICs with vias and with partial substrate thinning, 

and the application of the radiation boundary condition for larger area substrates was described. 

The steady-state thermal resistance matrix approach described here, only requires construction of the 

global thermal resistance matrix for a complex 3-dimensional system once, prior to the coupled electro- 

thermal simulation. Precomputation to construct the thermal resistance matrices is modest, as matrices 

for thermal subsystems are given by simple analytical expressions. The global thermal resistance matrix 
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is obtained by simple matrix manipulations on the subsystem matrices, to impose temperature and flux 

matching. Construction time for the thermal resistance matrices has no impact on coupled electro-thermal 

run time. The magnitude of the non linear coupled electrical problems to be solved self-consistently is 

typically given by the number of active device elements, not determined by the internal complexity of 

the device structure. 

Pull treatment of thermal non linearities has been described, including treatment of temperature 

dependent conductivity (perhaps requiring non linear interface matching) and non linear surface fluxes. 

Full treatment of interface matching and surface flux non linearities, based on the linear thermal resistance 

matrix approach, alters the size of the corresponding coupled problem, but the size of the non linear 

system to be solved can be minimised by careful choice of surface elementary areas, to take full account 

of expected temperature distributions and minimise the degree of surface discretisation. 

The combination of the Leeds Physical Model and the analytical thermal resistance matrix approach 

offers order of magnitude speed up on coupled electro-thermal solutions based on intensive numerical 

electrical and thermal solutions, capable of comparable levels of detail and accuracy. The fully physical 

model will provide a predictive tool for electro-thermal design studies on CAD timescales. 
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7    Captions 

Figure 1: Self-consistent Schrodinger-Poisson solution from the LPM for HEMT band-edge profile, sub- 

band structure, and carrier density normal to the heterointerface [51]. 

Figure 2: Typical FET cross-section and layer structure illustrating Gaussian boxes used in the LPM to 

model the 2-dimensional profile [22]. 

Figure 3: LPM time and frequency domain response to a sinusoidal 5 GHz, 0.45 V input signal [53]. 
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Figure 4: Thermal equivalent circuit corresponding to resistance matrix Rij [18]. 

Figure 5: Illustrative GaAs MMIC for generation of RTH- 

Figure 6: Coupled electro-thermal calculation of surface temperature distribution for a 60-fmger power 

HEMT. 

Figure 7: Illustration of 5x5 power FET array simulated electro-thermally. 

Figure 8: Electro-thermal simulation of the central power FET of a 5x5 power FET array. Non linear 

temperature matching was used at MMIC-substrate interfaces. 

Figure 9: Simulation of a 500 /im x 250 /im GaAs MMIC bearing two 6-finger power transistors dissipating 

0.3 W total. 

Figure 10: Simulation of same MMIC as Figure 9 but with a 50 /im x 50 /im central via. 15°C above 

heat sink mount (peak) to 5°C above mount (edge). 

Figure 11: Electro-thermal simulation of Cu/FR-4 mount reverse bearing a balanced amplifier MMIC. 

Cooling entirely by radiation and convection (no heatsink). 46° C above ambient (centre) to ambient 

(edge) [18],[19]. 

Figure 12: Simulated temperature of the FR-4 mount reverse side of Figure 11 neglecting Cu layer. 96°C 

above ambient (centre) to ambient (edge) [19]. 

Figure 13: Simulated temperature of the FR-4 mount reverse side of Figure 11 assuming A1N parameters. 

10°C above ambient (centre) to 9°C above ambient (edge). 
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