
AFRL-IF-RS-TR-2001-38
Final Technical Report
March 2001

'°<s$r.<-

A COST-BENEFIT APPROACH TO RESOURCE
ALLOCATION IN SCALABLE METACOMPUTERS

John Hopkins University

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. AOD985/02

zmw 057
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2001-38 has been reviewed and is approved for publication.

'> . /' \ ^- ' ^^_

APPROVED: MARK D. FORESTI
Project Engineer

-SP

FOR THE DIRECTOR: JAMES A. COLLINS, Acting Chief
Information Technology Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTD, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

A COST-BENEFIT APPROACH TO RESOURCE ALLOCATION IN SCALABLE
METACOMPUTERS

R. Sean Borgstrom
Baruch Awerbuch

Yair Amir

Contractor: John Hopkins University
Contract Number: F30602-96-1 -0293
Effective Date of Contract: 12 August 1996
Contract Expiration Date: 12 September 2000
Program Code Number: 623 01E
Short Title of Work: A Cost-Benefit Approach to Resource Allocation in

Scalable Metacomputers
Period of Work Covered: Aug 96 - Sep 00

Principal Investigator: Baruch Awerbuch
Phone: (410)516-8577

AFRL Project Engineer: Mark D. Foresti
Phone: (315)330-2233

Approved for public release; distribution unlimited.

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored
by Mark D. Foresti, AFRL/IFTD, 525 Brooks Road, Rome, NY.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden lor this cofltction of inform«™ is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing da a sources, gathering and maintammj| the date needed, and completmg and renewmg
ttoToEn ol Wormafion. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing thisburden,tr.'Washington Headquarters Serar.es. Directorate for Information
Operationsand Reports, 1215 Jefferson Denis Highwey, Suits 1204. Arlington. VA 22202-4302, and to the Office of Menegement and Budget, Paperwork Reduction Project 10704-01881, Washmgton, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March 2001

3. REPORT TYPE AND DATES COVERED

Final Aug96-Sep00
4. TITLE AND SUBTITLE

A COST-BENEFIT APPROACH TO RESOURCE ALLOCATION IN SCALABLE
METACOMPUTERS
6. AUTHOR(S)

R. Sean Borgstrom, Baruch Awerbuch, and Yair Amir

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

John Hopkins University
105 Ames Hall
3400 N. Charles Street
Baltimore. MO 21218-2686
9. SPONSORING/MONITORING AGENCY NAMEIS) AND ADDRESS(ES)

AFRL/IFTD
525 Brooks Road
Rome, NY 13441-4505

Advanced Research Projects Agency
3701 North Fairfax Drive
Arlington, VA 22203-1714

11. SUPPLEMENTARY NOTES

6. FUNDING NUMBERS

C - F30602-96-1-0293
PE -62301E
PR -D985
TA -01
WU-03

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2001-38

AFRL Project Engineer: Mark Foresti, IFTD, (315) 330-3577

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The work described in this report develops, tests, and implements several advanced strategies for resource management in a
network of machines. The Cost-Benefit Framework, developed in this work, offers a new approach to job assignment on
metacomputers. It smoothly handles heterogeneous resources by converting them into a unitless cost.

14. SUBJECT TERMS

Resource management, metacomputing, heterogeneous systems

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES
144

16. PRICE CODE

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89) {EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHSIDIOR, Oct 94

Abstract

A metacomputer is a set of machines networked together for increased computational

performance. To build an efficient metacomputer, one must assign jobs to the various

networked machines intelligently. A poor job assignment strategy can result in heavily

unbalanced loads and thrashing machines. This cripples the cluster's computational

power. A strong job assignment strategy helps a metacomputer complete all of its jobs

swiftly.

Resource heterogeneity makes job assignment more complex. Placing a job on one

machine might risk depleting its small memory. Another machine might have more free

memory but a heavily burdened CPU. Bin packing on memory protects the system

against thrashing. Load balancing protects the system against high CPU loads.

Combining the two approaches, however, gives an ad hoc heuristic algorithm with no

clear theoretical merit.

The Cost-Benefit Framework, developed in this work, offers a new approach to job

assignment on metacomputers. It smoothly handles heterogeneous resources by

converting them into a unitless cost. We assign (and possibly reassign) jobs to greedily

minimize this cost.

This approach gives us an online strategy provably competitive with the optimal

offline algorithm in the maximum usage of each resource. It has a weak competitive ratio

- logarithmic in the number of machines in the cluster - but even this weak ratio is

unprecedented in the literature. No other known method offers any competitive guarantee

on more than one resource.

i/ii

We present experimental evidence that this strategy performs extremely well in

practice, comparing it to two important benchmarks: the default round robin strategy of

the popular PVM metacomputing system, and the powerful adaptive strategy of the

Mosix system.

Metacomputing environments are not homogeneous. In some environments, the

scheduler has a great deal of information about submitted jobs. In other cases, it has very

little. Some systems can migrate jobs without interrupting their execution. Others cannot.

We develop variants of the basic "opportunity cost" strategy of the Cost-Benefit

Framework for various metacomputing environments, and prove all of them highly

efficient.

Finally, we provide two metacomputing systems - a prototype and a complete system

- based on these ideas. The Java Market prototype is a metacomputer built atop Java and

web technologies, able to integrate any consenting Internet-connected machine. The

Frugal System transforms any Jini network into a metacomputer.

This work was carried out under the supervision of Professor Yair Amir.

in

Contents

CHAPTER ONE: INTRODUCTION 1

1.1 OVERVIEW AND HIGHLIGHTS 1

1.2 BASIC CONCEPTS 3

1.3 EXPERIMENTAL METHODOLOGY 5

1.4 THESIS STRUCTURE 6

1.5 RELATED WORK 8

1.5.1 Shadow Objects 8

1.5.2 Matchmaking. p

1.5.3 Java, Jini, and Web Technology 9

1.5.4 MPI „....;;

1.5.5 PVM: Parallel Virtual Machine U

1.5.6 Mosix 13

1.5.7 SNIPE 15

1.5.8 Condor 75

1.5.9 Legion 77

1.5.10 Globus 19

1.5.11 HARNESS. 20

1.5.12 Javelin 21

1.5.13 MILAN 23

1.5.14 Popcorn 25

XV

1.5.15 IceT. 28

1.5.16 InfoSpheres 28

1.5.17 AppLeSandthe Network Weather Service 30

1.5.18 Bayanihan 31

1.5.19 Bond 32

1.5.20 Linda, Piranha, Paradise and JavaSpaces 33

1.5.21 SETI@Home 34

1.5.22 Economics in Computer Science.... 35

CHAPTER TWO: SUMMARY OF THE THEORY 37

2.1 INTRODUCTION AND DEFINITIONS 37

2.2 IDENTICAL AND RELATED MACHINES: THE GREEDY ALGORITHM 38

2.3 UNRELATED MACHINES: ASSIGN-U 40

2.4 ONLINE ROUTING OF VIRTUAL CIRCUITS 41

2.5 UNDERSTANDING THE THEORY: WHY ASSIGN-Ü WORKS 43

2.5.1 Definitions :.«. 43

2.5.2 Machine Matching 44

2.5.3 Multiple Jobs per Machine 45

2.5.4 Jobs of Unknown Size 46

CHAPTER THREE: STATIC STRATEGIES 48

3.1 THE MODEL 48

3.1.1 System Load 49

3.1.2 Jobs ". 50

3.1.3 Slowdown 51

V

3.2 FROM THEORY TO PRACTICE 51

3.3 THE SIMULATION TEST BED 56

3.3.1 Simulation Results 57

3.4 REAL SYSTEM EXECUTIONS 59

CHAPTER FOUR: DYNAMIC STRATEGIES 62

4.1 THE MODEL 62

4.2 FROM THEORY TO PRACTICE 62

4.3 THE SIMULATION TEST BED „.. 68

4.3.1 Simulation Results 68

4.4 REAL SYSTEM EXECUTIONS 71

CHAPTER FIVE: STRATEGIES WITH REDUCED INFORMATION 74

5.1 THE MODEL 74

5.2 FROM THEORY TO PRACTICE 75

5.3 EVALUATION 76

5.3.1 Simulation Results ;.. 77

CHAPTER SIX: THE JAVA MARKET 81

6.1 DESCRIPTION 81

6.1.1 Basic Concepts g]

6.1.2 The System 83

6.1.3 The Resource Manager 84

6.1.4. The Task Manager 85

6.1.5. The Market Manager 85

6.1.6. An Example Scenario 86

VI

6.2 JAVA MARKET DESIGN 87

6.2.1 Features of Web-Based Metacomputers 87

6.2.2 Features of the Java Market 90

6.3 LESSONS LEARNED 92

CHAPTER SEVEN: THE FRUGAL SYSTEM. 95

7.1 DESCRIPTION 95

7.1.1 Basic Concepts 97

7.1.2 Internal Structure 98

7.1.3 Frugal Resources "

7.1.4 Frugal Managers 100

7.1.5 Miscellaneous Components 101

7.1.6 Class Structure 102

12 FRUGAL SYSTEM DESIGN 1°5

7.2.1 Features of Jini-Based Metacomputers 105

7.2.2 Features of the Frugal System 107

7.3 LESSONS LEARNED 107

CHAPTER EIGHT: CONCLUSIONS HI

REFERENCES .-. 114

vii

LIST OF FIGURES

Page
Figure 3.1 Choosing the right machine becomes easy 54
Figure 3.2 E-PVM Pseudo code 55
Figure 3.3 PVM vs Enhanced PVM(simulations) 60
Figure 3.4 PVM vs Enhanced PVM(real expectations) 61
Figure 4.1 Choosing whether to reassign becomes easy 64
Figure 4.2.1 E-Mosix Pseduo Code Part 1 66
Figure 4.2.2 E-Mosix Pseduo Code Part 2 67
Figure 4.3 Mosix vs Enhanced Mosix 70
Figure 4.4 Mosix vs Enhanced PVM 70
Figure 4.5 Enhanced Mosix vs Enhanced PVM (Simulation) 71
Figure 4.6 Enhanced Mosix vs Enhanced PVM (Real Expectations) 73
Figure 5.1 Differential PVM Pseudo Code 76
Figure 5.2 Differential PVM vs PVM (Smiulation) 79
Figure 5.3 Differential PVM vs E-PVM 79
Figure 5.4 Differential PVM vs other Strategies 80
Figure 6.1 An internet wide metacomputer 82
Figure 6.2 Java Market Components 84
Figure 6.3 A sample Java market Scenario 87
Figure 7.1 Frugal System Layout 98
Figure 7.2 Frugal Object Hierarchy Part 1 103
Figure 7.3 Frugal Object Hierarchy Part 2 104
Figure 7.4 Frugal Object Hierarchy Part 3 104
Figure 7.5 Frugal Object Hierarchy Part 4 105

viii

Acknowledgements

I am indebted to and enormously appreciative of my advisor, Dr. Yair Amir, for his

selfless dedication to the development of my career and this work. His assistance and

contributions to every stage of the research process made this dissertation possible and

taught me a great deal. Thank you.

My gratitude to Dr. Rao Kosaraju, similarly, knows no bounds. His guidance, support,

and direction over the years have been invaluable.

I thank Dr. Baruch Awerbuch for bringing the theoretical basis for this work to my

attention and Yair's, inspiring the project, as well as for his theoretical work itself. Dr.

Amnon Barak's assistance and advice in evaluating our algorithms and ideas in the

context of dynamic systems made a significant portion of this work possible. Dr. Yossi

Azar and Arie Keren played important roles in developing the theory for use in a

practical context.

I thank Drs. John Cherniavsky and Michel Melkanoff for inspiring me to pursue

computer science. Their compassion and their dedication to the field revealed the best in

both computer science and humanity.

I appreciate the kindness and good nature shown by all of my associates in the CNDS

lab at the Johns Hopkins University. These include Jonathan Stanton, Jacob Green,

Cristina Nita-Rotaru, Theo Schlossnagle, Claudiu Danilov, John Schultz, and Tripurari

Singh. I regret that I did not have more opportunities to work with them on this project,

and have enjoyed the projects that we shared.

IX

My research would not have been possible without the Metacomputing grant from

DARPA/ITO (F30602-96-1-0293) to the Johns Hopkins University. Special thanks to Dr.

Gary Koob, our DARPA program manager, who had the vision to see that the Cost-

Benefit Framework could lead to superior performance in practice.

My parents, Karen and Karl, and my sister, Sonja Britt, have been steadfast supporters

through my doctoral studies (and for all my life before that). Thank you.

I am also grateful to Dr. David Allen, Cera Kruger, Trevor Placker, Gretchen

Shanrock, Brad Solberg, Geoff Grabowski, Bruce Baugh, Phyllis Rostykus, Cameron and

Jessica Banks, Stuart Lin, Margaret, Henry, Conrad Wong, Kit Murphy, Christofer

Bertani, Alexander Williams, Chrysoula Tzavelas, Bryant Durrell, Rich Dansky, and

Deirdre Brooks, among others, on general principles.

X

Chapter One: Introduction

1.1 Overview and Highlights

The work described in this thesis develops, tests, and implements several advanced

strategies for resource management in a network of machines. Each machine has a

number of resources associated with it, e.g. memory and CPU. If any one resource is

overused, the system's performance on some jobs plummets. Therefore, the strategies

developed here take multiple resources into account in a reasoned manner. These

strategies do not depend on any given model for incoming job flow. Nor do they depend

on any particulars regarding the strengths of the various machines in the network.

We measure the performance of these strategies in terms of job slowdown. If a job can

complete in time tbeSt while running alone on the most appropriate machine in the system,

and instead completes in time tacnu2i, the job's slowdown is tactual I tbest. The key

performance measure in our tests was the average slowdown over all jobs. In other

words, we evaluated our strategies and a selection of alternate strategies in terms of how

much the system load slowed the average job down.

The three new strategiesthat this thesis develops for managing a metacomputer have a

sound theoretical basis. We demonstrate that each of them improves on existing

strategies, first in a simulated environment and then in tests on a real system. In other

words, using our strategies reduces the average slowdown over all jobs. We explain how

to remove certain assumptions in the strategies that may not apply in real systems while

preserving most of the performance gain. We also develop two working metacompilers

based on these strategies.

The central idea behind our strategies is to convert all of a system's resources into a

homogeneous cost based on their percentile utilization. Historically, memory, CPU, and

other resources have been incomparable. One cannot even measure them in the same

units - megabytes of memory do not easily convert to seconds of CPU time. By

converting both of these resources into a unitless cost, however, we gain the ability to

compare them. The cost function used by our strategies is not based on heuristic ideas or

experiments, which have a bias towards the system on which they are developed or

performed. Rather, it derives from a theoretical framework with certain competitive

guarantees. These guarantees apply on any imaginable system and any possible stream of

jobs.

The key contributions of this Ph.D. research are:

• Developing a basic strategy for resource management on a metacomputer with a

solid theoretical basis and proven experimental validity.

• Developing variations on this strategy for metacomputers where reassignments are

possible.

• Developing an approximation technique that allows systems to use this strategy

even when they cannot provide the scheduler with the information it needs about

incomingjobs.

• Demonstrating, with experiments in simulated and real environments, that these

algorithms are effective in comparison to optimized heuristic methods.

• Developing a primitive metacomputer based on web technology as a test bed for

these strategies.

• Developing a complete and advanced metacomputer based on Sun's Jini system

that successfully implements several of these strategies.

1.2 Basic Concepts

The performance of any cluster of workstations improves when the system uses its

resources wisely. In particular, when the system can assign incoming jobs to any machine

in the cluster, and when it employs an intelligent strategy for doing so, it can keep system

loads low and prevent memory overutilization and thrashing. Developing strong

strategies for job assignment provides a direct payoff in terms of system efficiency.

System resources are heterogeneous. For example, the CPU resource completes a

certain number of computation cycles per second. It divides these cycles between its

various jobs. A computational task completes when it has received an appropriate amount

of computation. The memory resource, on the other hand, contains a certain number of

megabytes. The system does not divide available memory evenly among tasks. Rather,

each task determines its own memory requirements. When the memory becomes

overutilized, the machine begins to thrash and the system's performance degrades.

One cannot balance CPU cycles against megabytes or vice versa. Nor does either

resource convert naturally into communication bandwidth, the unit of measurement for

communication resources. In general, no two machine resources are directly comparable.

This makes finding the optimal location for a job difficult. Even implementing a greedy

strategy, balancing all the system resources across all the machines, is hard. With

incomparable resources, this strategy is not well defined.

This work's new opportunity cost approach, based on economic principles and

competitive analysis, provides a unified algorithmic framework for the allocation of

computation, memory, communication, and I/O resources. By converting heterogeneous

resources to a homogeneous cost, and then minimizing this cost, the system guarantees

near-optimal end-to-end performance on every single instance of job generation and

resource availability.

The algorithm derived from this approach is an online algorithm that knows nothing

about the future, assumes no correlation between past and future, and is only aware of the

current system state. Nevertheless, one can rigorously prove that its performance is

always comparable to that of the optimal prescient strategy. Unlike other methods, this

algorithm achieves this performance bound for every resource simultaneously.

Some systems have requirements, or abilities, which suggest or require adjustments to

the basic algorithm presented herein. Job migration, in which jobs move transparently

from one machine to another, offers the system a powerful additional tool for improving

performance. Our algorithm adapts easily to a dynamic environment that allows job

migration. Since the system cannot predict the arrival rate and resource demands of

incoming jobs, any online scheduler must inevitably make "mistakes," placing jobs on

non-optimal machines. Job migration gives the system an unlimited number of

opportunities to fix the mistakes it makes. The Mosix [Mos, BL98] system allows this

kind of transparent job migration, assigning and reassigning jobs using the heuristically

optimized Mosix strategy. Adapting our algorithm to perform job reassignments as well

as job assignments yields a large improvement over the single-assignment approach,

because it can fix mistakes. More importantly, however, our adapted algorithm yields a

significant improvement over the highly tuned Mosix strategy. Even on a powerful

system, able to reassign jobs, a carefully chosen strategy improves system performance.

Avoiding a mistake does the system more good than fixing it later.

A system might have less information about jobs than a competitive strategy requires.

For example, if the system cannot approximate a job's resource requirements upon its

arrival, its worst-case competitive ratio for maximum resource use depends on the

disparity between the power of the machines as well as the number of machines. In

practice, this work demonstrates that an adapted form of our algorithm can achieve

extremely good results with limited information.

1.3 Experimental Methodology

The opportunity cost approach offers good performance in practice. We evaluated

opportunity cost-based algorithms against a number of other algorithms, choosing two

alternatives as meaningful benchmarks. The first benchmark is PVM's default strategy

[PVM]. This is the simple round robin approach to job assignment used in PVM, a

dominant utility for job assignment and load balancing in computing clusters. The second

benchmark is the Mosix strategy. The Mosix strategy is the highly optimized heuristic

strategy used by Mosix, a system permitting dynamic job reassignment. Results for the

Mosix strategy always assume that the strategy is permitted to reassign jobs, even when

we compare it against a strategy that cannot.

Our primary test bed was a Java simulation of a computing cluster and a stream of

incoming jobs. Each execution of the simulation ran for at least 10,000 simulated

seconds. The simulated cluster had six machines with a realistic distribution of

computing power. We based the job flow on a study of the distribution of real jobs. We

compared all strategies against the PVM and Mosix strategies in at least 3,000 scenarios.

To validate the simulation, we performed a second series of tests on a real system.

This system consisted of a collection of Pentium 133, Pentium Pro 200 and Pentium II

machines with different memory capacity, connected by Fast Ethernet, running BSD/OS

[4]. The physical cluster and the simulated cluster were slightly different, but the

proportional performance of the various strategies was very close to that of the Java

simulation. This indicates that the simulation appropriately reflects events on a real

system.

Finally, to demonstrate that our strategies were applicable in the real world, we built a

complete metacomputer based on these strategies.

1.4 Thesis Structure

The rest of this thesis is organized as follows.

Section 1.5: Related Work describes relevant previous work in metacomputing.

Chapter Two: Summary of the Theory discusses the basic theoretical underpinnings

of this work.

Chapter Three: Static Strategies presents our strategy in the context of a static

cluster of workstations. Static systems cannot reassign jobs. The key idea in this chapter

is our cost function, which measures the cost to the system for using up any portion of

any kind of heterogeneous resource. Our strategy assigns jobs to machines in order to

minimize the global cost. The experimental results contained in this chapter demonstrate

that this strategy performs extremely well in practice. It dramatically outperforms the

PVM strategy.

Chapter Four: Dynamic Strategies presents a variant of our strategy in the context

of a dynamic cluster of workstations. Dynamic systems can reassign jobs. Our algorithm

makes both assignments and reassignments to greedily minimize our cost function.

Again, experimental results demonstrate that our strategy performs extremely well in

practice, outperforming the highly tuned heuristic strategy used by Mosix. This chapter

further compares our static strategy, which makes a single intelligent assignment, with

the Mosix strategy and its ability to perform reassignments. Our static strategy performs

well in this regard, indicating that using our user-level opportunity cost approach is a

viable alternative to implementing the Mosix kernel modifications.

Chapter Five: Strategies with Reduced Information presents a variant of our

strategy that does not know the resource requirements of jobs upon their arrival.

Experimental results show that this strategy variant performs well despite the adverse

conditions under which it operates.

Chapter Six: The Java Market discusses our first metacomputer prototype built

around these strategies. This work was successful but ultimately impractical due to

factors outside our control (see Section 6.2.1: Features of Web-Based

Metacompilers.) Our desire to build a more practical system led directly to the work in

Chapter Seven.

Chapter Seven: The Frugal System discusses the Frugal System package for Jini

networks. This package transforms any Jini network into a fully functional

metacomputer, using our strategies as its decision algorithm.

Chapter Eight: Conclusions summarizes this research.

1.5 Related Work

1.5.1 Shadow Objects

Metacomputing systems contain a number of objects. These include system resources,

worker processes that perform jobs, work objects encapsulating jobs that the system must

perform, and data objects representing job input and output. Metacomputers obfuscate

but cannot presently erase the distinction between local and remote objects. Many jobs

have logical relationships with a fixed machine. They are tied, in one manner or another,

to that machine's file systems, input and output channels, and physical computing

resources. In addition, implementing communication between the elements of a

metacomputing system often depends strongly on the underlying hardware and operating

system.

To make metacomputing feasible, many systems implement "shadow objects," which

serve as proxies for a remote object. Condor's shadow daemons [Con] and Mosix's

deputies [Mos] act as proxy representatives for system resources. When a job uses

Condor or Mosix's migration facilities to move to a remote machine, it performs most

system calls through a shadow of its originating system. Bond [BHJM99] uses shadows

of remote code objects; in Bond, they facilitate communication between components of a

distributed computing system.

1.5.2 Matchmaking

System resources are heterogeneous. This thesis assumes that the difference between

machines is purely a performance issue. For example, one CPU might accomplish jobs

twice as quickly as another. One memory resource might begin thrashing at 32 Megs

when another would be scarcely an eighth full. In some contexts, however, it is more

important to realize that certain machines simply cannot run certain jobs. Others may be

inherently undesirable matches, regardless of system state.

The common solution to this problem is matchmaking. System resources advertise

their properties. Clients advertise their needs and preferences. Some component of the

distributed system then matches resources to clients. In Condor [Con], the centralized

scheduler performs matchmaking. In Legion [Leg], object wrappers for system resources

push their properties into a "Collection" object, which clients can search for appropriate

resources. In Bond [BHJM99], object wrappers for system resources - metaobjects - and

properties of the clients serve as a "lock and key" system. This system ensures an

appropriate match.

1.5.3 Java, Jini, and Web Technology

The Java [Java] programming language uses the idea of a "virtual machine" to

overcome the architecture-specific nature of traditional machine code. Programmers write

Java programs to run on the architecture of the Java virtual machine. Java interpreters,

written for many real systems, translate this program into instructions for their specific

machine. Assuming the correctness of the Java interpreters, a program that runs correctly

on any machine will run correctly on every machine. In combination with Java's

widespread popularity and acceptance, this makes Java a very useful metacomputing tool.

Many of the problems of machine heterogeneity disappear when only a handful of

programs (Java interpreters, operating systems, and specialized native code optimized for

high performance) depend on the specific machine whereon they run. Projects using Java

include ATLAS [BBB96] and JPVM [Fer98].

Java is integrated with the World Wide Web, a technology with a huge population of

users. Through an interface these users understand and use regularly, the web browser,

Java code can move from machine to machine. This makes web technology another very

appealing metacomputing tool. A number of projects [CCINSW97, SPS97, AABOO,

Kar98, BKKK97, RN98, Sar98], including our own Java Market, take advantage of web

and Java technology to seamlessly distribute code across wide-area networks. The Java

"sandbox" gives these research efforts automatic security against malicious code.

Jini [Jin] builds on Java in a different direction. The Java 1.1 API gave Java programs

the ability to execute the methods of Java objects from remote machines. Jini builds a

lookup service and a suite of tools for distributed computing on top of this technology.

Modular services can interact with one another through the lookup service and using

these tools. This simplifies the construction of network-aware applications and

metacomputing systems.

10

1.5.4 MPI

MPI [MPI] is a popular architecture-independent parallel programming system. This

"Message-Passing Interface" defines a system for building parallel programs whose

components interact by exchanging messages. MPI "Communicator" objects provide a

scalable context for message exchange and a scope for group communication. MPI

programmers can enhance these objects to build virtual network topologies for the

processes participating in a given group - conceptually organizing them in a grid, tree, or

other graph.

Many software packages have implemented the MPI standard for many different

platforms. Several of these platforms are metacomputers as well as parallel programming

environments (e.g. Hector [RRFH96] and Globus [IK97].) Its various implementations in

Java [Java, MG97] also offer possibilities for wide-area network metacomputing.

1.5.5 PVM: Parallel Virtual Machine

PVM [PVM] is a metacomputing environment designed for use on a cluster of

workstations. PVM automatically distributes jobs and their subtasks to appropriate

machines according to a policy instantiated in a Resource Manager. This allows static

load balancing using algorithms of arbitrary complexity.

PVM is designed to support a variety of distributed computing paradigms. This

includes programs that make a fixed division of their workload among a fixed number of

processors, adaptive programs that split their workload between multiple machines as

11

needed, programs divided into multiple objects that interact with one another, and

programs that divide up their input but not their functionality.

Most of PVM's functionality resides within a set of libraries that programmers can use

to parallelize and distribute their jobs. Through these libraries, PVM provides process

control, allowing tasks (and subtasks) to discover their unique identifier, spawn subtasks,

and stop execution. It provides informational utilities that tasks can use to evaluate the

system state. It permits restructuring of the metacomputer, adding hardware to or

removing it from the collection of machines the metacomputer uses for tasks. It allows

signaling and message passing between tasks, as well as an advanced group-based

communication paradigm. PVM also provides a console that users can use to monitor

tasks.

PVM daemons running on each host enable this functionality. Each daemon is

equipped to start up tasks that the Resource Manager forwards to it, as well as passing

messages on behalf of those tasks. Although a PVM daemon must run on each machine

for PVM to function, programs can start PVM daemons automatically on authorized

hosts.

Since version 3.3, PVM has used a scheduler known as the Resource Manager to make

resource allocation decisions. This Resource Manager is just another PVM task, so it can

theoretically implement any policy. The default policy for PVM is a straightforward

round robin assignment to available machines.

PVM sets a metacomputing standard, with stable code and a large user base. Its

simplicity and power appeal to many programmers. Programmers have created variants

of PVM designed to work with Java, perl, tcl/tk, Matlab, python, and C++. We often

12

compare our decision-making strategies against the default round robin strategy of PVM.

This shows the resource gain from implementing a policy like ours in a standard

metacomputing system like PVM.

1.5.6 MOSIX

The Mosix [Mos] system offers a flexible approach to metacomputing. It can adapt to

changing resource conditions on the cluster by transparently migrating jobs from one

machine to another. Where the decisions of PVM's Resource Manager are fixed and

cannot be changed, Mosix dynamically responds to load conditions by reassigning jobs to

new machines. Combined with its carefully optimized algorithm for making load

decisions, Mosix's transparent process migration facility almost invariably outperforms

any online static strategy.

Mosix can move jobs from one machine to another without logically interrupting their

execution. The Mosix kernel modifications to the Linux operating system allow the

system to perform this transparent migration on ordinary Linux jobs. They also offer

additional migration-related tools for programmers developing programs with Mosix in

mind. Previous incarnations of Mosix have performed the same function for other Unix-

like operating systems.

In this respect - the ability to migrate ordinary jobs - Mosix stands out. Most

metacomputing systems require programmers to specifically design programs with the

metacomputing system in mind. Legacy code must be adapted to the metacomputer. In

Mosix, however, there is no concept of legacy code. Programs written for Linux become

Mosix programs automatically.

13

Mosix is designed to preserve a job's state as it moves from machine to machine. To

make this possible, Mosix redirects many system calls sent by a job to the machine where

the job originated. There, a shadow object called the job's deputy performs the system

call and returns the result. Thus, for example, jobs can read and write files only accessible

from their home machine, even when migrated to remote hosts. Current research efforts

seek to rmnimize the number of calls that must go through this deputy. For example, the

Mosix team is alpha testing a revision of Mosix that allows local I/O. If the machine a job

runs on shares a file system with the machine of its origin, this revision allows the job to

access files directly. The Mosix team is also developing migratable sockets that allow

migrated processes to communicate without going through their deputies.

Mosix uses a very scalable algorithm for job reassignment decisions. Machines do not

attempt to discover the overall system state. Rather, at regular intervals, each machine

contacts a random subset of the other machines. If it detects a load imbalance, and the

higher load is above a certain level, it reassigns jobs to even the load ratio. Further, like

our decision-making strategies, Mosix also attempts to minimize the incidence of

thrashing. When a machine starts paging due to a shortage of free memory, a "memory

ushering" algorithm takes over the reassignment decisions, overriding the load balancing

strategy and migrating a job to a node that has sufficient spare memory.

Mosix is complete, functional, and stable. It has seen many years of use as a

production system. We have chosen Mosix as our second major benchmark. In a context

where our strategy can migrate jobs, Mosix's optimized if heuristic scheduler serves as

fair competition against ours. In a context where our strategy cannot migrate jobs,

Mosix's performance offers a rough upper limit for what an ideal strategy could achieve.

14

1.5.6.1 Similar Projects

Some projects similar to Mosix include MIST [APMOW97] and Hector [RRFH96].

MIST enhances PVM with transparent job migration capabilities. This uses a more exact

but less scalable load balancing algorithm than Mosix. Hector is an MPI system capable

of transparent job migration, making decisions through a central scheduler.

1.5.7 SNIPE

The SNIPE [FDG97] project seeks to build an advanced metacomputer atop PVM

technology. They hope to increase PVM's scalability and security while adding a global

name space, process migration, and checkpointing. They also plan to eliminate PVM's

dependence on a single centralized scheduler.

At the heart of the SNIPE project's strategy lies the RCDS - the Resource Cataloging

and Distribution System. This is a global fault-tolerant data space that contains replicated

resources and metadata regarding those resources. The information in this data space is

available via a Uniform Resource Name system. SNIPE stores processes, hosts, and data

in the RCDS. If an error in communication during process or data migration results in

some process losing track of a collaborator or its data, it rediscovers the necessary

information using the relevant URN. As part of SNIPE's general replicated approach to

fault tolerance, the Resource Manager itself is replicated to multiple hosts.

SNIPE hosts can execute mobile code inside "playgrounds," which, like Java

sandboxes, limit the damage that code can do to the local system. This provides tunable

security when running a SNIPE system over the entire Internet.

15

1.5.8 Condor

Condor [Con, LLM88] is a metacomputing system designed to harvest the otherwise

unused CPU cycles on an Intranet. Condor is a mature system. Its first version appeared

in the 1980s. It has demonstrated its efficiency on clusters of hundreds of machines.

Since Condor uses a single central scheduler, its success demonstrates that such

schedulers can scale to very large clusters.

Condor provides a set of libraries that ordinary jobs can link to. By linking to the

Condor libraries rather than the standard C libraries, jobs gain the ability to checkpoint

themselves and perform remote system calls.

When a job checkpoints itself, it converts its enure state into a "checkpoint file." If the

job crashes, it can use this file to restart itself at the last checkpoint. If the system needs to

transfer the job to a new machine, it can checkpoint the job and use this file to recreate

the job's state on that machine. The job can logically continue execution uninterrupted

since no state information has been lost.

The process of job migration is time-independent - jobs can exist in the form of

checkpoint files indefinitely. Users of a Condor system define criteria that establish their

machine as idle. Condor checkpoints remote jobs when the system they run on becomes

unidle. It places jobs on a machine when that machine becomes idle.

Condor is designed for use with distributively owned machines; that is, machines with

a variety of different owners, many of which may not share file systems. Since it does not

assume a common file system, Condor must use a shadow object to represent the system

a given job originated from. Jobs perform most system calls through this shadow, using

16

the resources of their originating machine. The only system resources they access on the

remote machine where they actually run are CPU and memory.

Jobs in Condor come with a list of "requirements" and "preferences" in terms of the

hardware the system should execute them on. Condor does not migrate jobs to machines

that do not meet their requirements. It also attempts to choose machines that meet the

job's preferences.

Condor is a system of proven value. Installing Condor on a cluster of relatively

homogeneous machines can improve computational throughput by one or two orders of

magnitude.

1.5.9 Legion

Traditional operating systems mitigate the complexity of computer hardware and low-

level software by providing an abstract representation of these resources that functions

similarly or identically regardless of the underlying implementation. The high-level

components of distributed systems now possess even more complexity and interface

diversity than the low-level elements of individual systems. The Legion [GWLt97, Leg]

project argues that distributed systems require a second-order operating system to

simplify the management and interaction of diverse high-level components. Legion is one

such "wide area operating system."

Legion takes an object-oriented approach to distributed system management. Each

system resource has an object encapsulating it, providing a uniform interface by which

Legion programmers can manipulate that resource. CPU resource objects ("host objects")

support various features such as reservations. By extending a CPU resource object, a host

17

can enforce a desired policy for the use of its resources. Legion uses matchmaking to find

the correct host object for a given code object.

One of Legion's interesting properties is the full persistence of its objects. As in

Condor [Con], the system can checkpoint objects, storing them in "vault objects"

(persistent storage). This permits Legion to deactivate objects and then activate them

later, possibly on different hosts. A scheduler running on a Legion system could use a

migration-based strategy like E-Mosix (see Chapter Four: Dynamic Strategies.)

Legion's control over code objects relies on "Class Manager" objects, each of which

governs a number of Legion objects. Using Class Manager objects, Legion can perform

task monitoring and task management. Class Manager objects also implement more

specific program controls. Legion can assemble Class Managers into hierarchies,

allowing natural scalability.

Legion provides a global namespace for objects. Each object has a unique identifier

that encapsulates its public key. An object's identifier is therefore sufficient information

to establish secure communication with that object. Objects can also have Unix-style

string pathnames, built atop the underlying identifier structure.

Legion has been fully implemented and is running on a number of sites. Distributed

operating systems such as Legion offer an excellent interface to networks of system

resources, and accordingly make rich environments for the deployment of intelligent

decision-making strategies.

18

1.5.10 Globus

The Globus project [Glo, IK97] seeks to create a toolkit for building metacomputers.

Using the Globus toolkit simplifies the design of metacomputing services and higher-

order metacomputing systems. On the whole, Globus focuses on more flexible but lower-

level mechanisms than does Legion.

Globus identifies the major issues facing a metacomputing system as:

• The need for scalability - matching jobs to resources must remain feasible

even in environments with many machines;

• The problem of heterogeneity - computing resources and network resources

vary widely;

• The problem of unpredictability - large-scale networks do not remain static,

either in the short term or in the long term; and

• Distributed ownership - the components of a metacomputer can have many

different owners. These components can have different individual access

policies, and can relate to one another in different ways.

Globus includes several components. Globus' communications toolkit provides an

abstraction for communications and network behavior. Developers can build higher-level

communications models atop this abstraction. For example, metacomputing systems can

build a message passing architecture or a remote method invocation structure atop

Globus' communications component.

19

In Globus, a metacomputing directory service (MDS) fills some of the roles of

Legion's global object namespace and SNIPE's RCDS. This service lists pertinent

information about a service or resource as a series of attribute-value pairs. (These entries

also resemble those used in Jini [Jin].)

Globus provides an authentication model that unifies various security models into a

single abstraction. It also includes a remote I/O interface for file operations. Together

with the communications toolkit and the MDS, these services provide a basic abstraction

for a virtual metacomputer composed, in actuality, of many diverse machines.

On top of this basic abstraction, the Globus team also seeks to develop "middleware,"

such as parallel programming tools and a high-level security architecture. The Globus

team has ported MPI [MPI], Compositional C++ [CK93], and other parallel environments

to Globus.

Full implementations of Globus are in use on a number of sites, as with Legion. If

Globus becomes the standard bottom layer for metacomputing applications, it would be

worthwhile to port this work's decision-making strategies to that environment.

1.5.11 HARNESS

The Harness [Har] project, from the creators of PVM, has not yet completed its

prototype. Nevertheless, some of the ideas developed for this system are worth

mentioning.

Many metacomputing projects simulate a single virtual parallel machine on which

users run their jobs. Harness abandons this paradigm, proposing a new kind of structure,

20

wherein the network decomposes into an arbitrary number of virtual machines. These

virtual machines can join together to perform large tasks or split apart to adopt an agent

model.

Most of Harness' functionality is not native, but rather comes in the form of plug-ins.

Like browser plug-ins, Harness loads these plug-ins dynamically to provide the extended

or adapted functionality that currently running programs need or expect. For example, a

metacomputer could implement a particular shared-memory paradigm using a plug-in. It

could also turn on intelligent resource allocation by replacing the resource allocation

module with a new plug-in component.

Harness' default plug-ins for communications, resource management, and process

control will be designed with the uncertain character of distributed computing networks

in mind. The system will tolerate machine failures and network partitions. Finally, it will

offer group communication semantics to add expressive power to the process

management and communications modules.

1.5.12 Javelin

The Javelin [CCEMSW97] project, like our Java Market, builds a metacomputer atop

web browser and Java technologies. Producer machines, offering computational services

to the Javelin system, need only connect to a web page. Javelin can then automatically

download work, in the form of Java applets, to their system. This offers a simple interface

for producers.

In Javelin, the Java sandbox protects the security of producer machines. It also limits

the capabilities of code objects running on those machines. In particular, they cannot

21

write to disk or communicate with machines other than the server that forwarded the code

object to that particular producer machine. To overcome these problems, the Javelin

project provides libraries that mimic the native Java communication package in interface

but (behind the scenes) forward network messages through the server. The results

returned by the code, similarly, are stored on the server. While this can produce heavy

network loads at the server, it permits applications programmers to create arbitrarily

complex parallel applications using Javelin.

Javelin has a native distributed load balancing strategy. The system has three

components:

• Clients - consumers of computational resources;

• Hosts - producers of computational resources; and

• Brokers - matchmakers who forward work to hosts.

Client applications use the Javelin libraries to push units of work onto a queue of tasks

that the system must accomplish. Brokers manage a pool of hosts and a task queue. If the

broker's pool of hosts cannot perform the work in its queue, it randomly forwards a

request through the broker network to find a host that can. If its hosts are idle and its task

queue empty, it opportunistically steals work from other brokers.

Despite the limitations of Java and web browser technologies, Javelin demonstrates

good performance in practice, achieving speedup factors of at least 75% the number of

processors used. The possible benefits of adapting their framework to use an opportunity

cost strategy are unknown.

22

1.5.12.1 Similar Projects

Some projects that resemble Javelin include JET [SPS97], ATLAS [BBB96], and

NetSolve [CPBDOO].

JET focuses on web-based metacomputing. JET's tasks decompose into a number of

stateless worker processes that communicate with a master process.

ATLAS uses Java (but not web technology) as the backbone for a work-stealing

metacomputer. ATLAS' work-stealing algorithm is particularly interesting in that

machines steal work first from other machines in their local cluster, then from sibling

clusters, then from siblings of their parents* cluster, and so forth. This gives participants

preferential use of the machines they contribute.

NetSolve uses a client, server, and broker model (much like Javelin's) to simplify the

world of high-performance scientific applications. This division allows client applications

to focus on specifying the problem they wish to solve. Server applications can focus on

high performance problem solving. The brokers take full responsibility for resource

management. NetSolve can use a Condor system as a "server" to provide checkpointing

and migration facilities.

1.5.13 MILAN

MILAN [Mil] is a significant metacomputing initiative. At present, it consists of three

major projects: Charlotte, Calypso, and KnittingFactory.

Charlotte [Kar98] is a programming environment for parallel computing built on top

of the Java [Java] progiamming language. Programs using Charlotte run on a virtual

23

parallel machine with infinitely many processors and a common namespace. Charlotte

provides the translation between this virtual machine and the heterogeneous, failure-

prone, ever-changing collection of web-connected machines that serve as the program's

real underlying hardware.

Charlotte programs alternate between serial and parallel steps. On parallel steps,

multiple routines can execute simultaneously. Read operations during a parallel step

return the object as instantiated when parallel step began. Write operations become

visible at the end of the parallel step, and must write the same value. This yields

Concurrent Read, Concurrent Write Common (CRCW-Common) semantics.

Charlotte's shared memory exists in user space, and is not dependent on the

underlying operating system. Shared data objects maintain their state:

• notvalid - the object is not instantiated locally;

• readable - the object is instantiated locally; or

• dirty - the object has been modified locally during this parallel step.

Charlotte updates data using a two-phase idempotent execution strategy. Manager

objects buffer the changed data associated with a routine's execution and then update

data at the end of a parallel step. This ensures that any number of executions of a code

segment is equivalent to executing it exactly once.

Charlotte's eager scheduling uses this exactly-once semantics to enable efficient load

balancing and fault tolerance. Any worker can download and execute a parallel routine

that the program needs to execute and has not yet completed, whether or not some other

worker is already performing that computation. In consequence, the system need not

24

distinguish between very slow machines and crashed machines. This provides intrinsic

fault tolerance.

Calypso [Caly] provides a C/C++ programming environment for metacomputing on a

network of workstations. Its basic purpose and techniques resemble those of Charlotte: it

uses eager scheduling and a two-phase idempotent execution strategy to realize a virtual

parallel machine independent of the failures and performance abilities of the actual

machines in the network.

KnittingFactory [BKKK97] is an infrastructure for collaborative systems over the

web. Like Javelin and our Java Market, it relies upon Java and browser technology to

provide security and simplicity. Unlike these projects, however, KnittingFactory uses

Java Remote Method Invocation to circumvent specific portions of the Java sandbox.

Applets that use KnittingFactory can communicate directly with one another, rather than

routing their requests through the server through which they came. This yields a scalable

solution for web-based metacomputing, direcfly relevant to future efforts in the Java

Market mold.

1.5.14 Popcorn

The Popcorn [RN98] project, developed at the Hebrew University of Israel, sought to

create an Internet-wide market for computing services. The goal was to realize the

computational potential of the Internet by converting machine cycles into abstract

currency ("Popcorns.") Contributors obtained Popcoins by leasing their machine to the

system, and then spent Popcoins to buy cycles on remote machines. As with Javelin and

the Java Market, Popcorn built on web browser and Java technologies.

25

Popcorn's computational model required that programmers develop their programs for

use with Popcorn, breaking them down into a series of "computelets" that can run

independently. This paradigm permits the use of extensive parallelism, as long as the

individual parallel chunks perform enough work to overcome the communication

overhead.

The core of Popcorn was the decision-making algorithms that the "markets'*

implemented for matching computelets to producers of computational resources. Popcorn

offered three different algorithms that producers and consumers could employ, drawing

on economic theory.

The first decision algorithm used by Popcorn is the "repeated Vickrey auction." In a

Vickrey auction, each computational resource is auctioned to the highest bidder, but that

bidder pays the second-highest price. This removes the incentive for buyers to underbid.

The dominant strategy is to bid exactly what a resource is worth. The motivation to hack

one's Popcorn code to alter its bidding strategy disappears. A repeated Vickrey auction

sells multiple resources in separate auctions. This undermines the Vickrey auction's

guarantee. It potentially allows bidders to strategize based on their knowledge that some

combinations of resources are more valuable to other consumers than others. However,

practical strategies for abusing Popcorn's repeated Vickrey auction do not currently exist.

Popcorn's second approach was conceptually simpler but more strategically complex.

Each bidder gave their minimum price and their maximum price, as well as a rate of

change. The seller did the same. Bids continued until a buyer's price met or exceeded a

seller's price.

26

Finally, Popcorn could compute market equilibria from the current demand and supply

curves. The market then performed computelet/resource matchmaking based on these

equilibria.

As the Popcorn project shows, many ideas from economics can prove valuable for

managing decisions and collections of agents in the metacomputing world. The project's

tests show that computing market equilibria is particularly useful in providing a high

level of service to both buyers and sellers of computational resources.

1.5.14.1 Similar Projects

Nimrod/G [ABGOO] also uses an economic paradigm to make scheduling decisions. It

uses a strategy superficially similar to Popcorn's market and our Cost-Benefit

Framework. Resources assign themselves costs. Clients who wish to perform

computation provide a benefit function stating how much they will pay for work

completing within a given length of time.

Nimrod/G's computational economy is not fully developed at this time. It lacks a

comprehensive strategy for assigning resource costs and does not have sophisticated

negotiation algorithms like Popcorn's. However, this is a subject of current research.

Nimrod/G is a narrower but more powerful system than Popcorn, designed for quickly

carrying out parameterized simulations on metacomputers. It is built atop the Globus

[IK97] toolkit. It does not take advantage of Java or web technology, which limits its

potential cluster size but improves its efficiency.

27

1.5.15 IceT

IceT [GS99] offers a metacomputing paradigm with several unusual features. These

include dynamically merging and splitting virtual machines, as in Harness, and the use of

architecture-independent native code.

The insjpiration for the IceT project is the observation that data, code, and virtual

machines, as purely abstract concepts, need not be tied to any given physical machine.

IceT provides a message-passing architecture for the transfer of data, an "agent" structure

for mobile code, and a system whereby researchers wishing to collaborate can merge

their virtual machines. This gives increased computational efficiency and makes shared

access to various computations possible.

IceT is designed to execute programs on any machine architecture. Its scheduler can

place a given job on various dramatically different machines. Naturally, automatically

porting native code across architectures is outside the scope of modern systems; what

IceT can do is find the version of a given program compiled for the architecture where it

wishes to place the job. Executing a matrix multiplication subprogram on a Linux box, it

can automatically locate the Linux source for that program.

IceT, unlike such projects as Mosix and like such projects as Legion, requires that the

programmer build their programs within the IceT paradigm.

1.5.16 InfoSpheres

InfoSpheres [Inf] is an exciting project from Caltech. Like Legion, it seeks to build a

virtual infrastructure of distributed objects atop the real network. What distinguishes the

28

two projects is not so much the infrastructure model as the paradigm used in its

construction. In InfoSpheres, projects and individuals have a loose collection of objects

that, in some sense, serves as their network identity. Objects are not anonymous pieces of

code owned by various users, but an "InfoSphere" representation of the users themselves.

This purely conceptual distinction influences the low-level decisions made by the

InfoSpheres team on a number of levels.

The InfoSpheres project seeks to develop a highly composable architecture, where the

global behavior of the system emerges from standard interactions between objects.

Initiating a collaborative task, such as project development by human users or automated

calendar management, requires that the system quickly assemble a virtual network of

objects from the relevant InfoSpheres. The project identifies the major problems facing

such a system as follows:

• The system must adapt rapidly when the components of the virtual network

change;

• The infrastructure must easily extend over any geographical distance, to

account for new participants in a collaboration;

• It must scale to billions of active objects, each with multiple interfaces; and

• It must be able to create a logical workflow for collaborative tasks ("virtual

organizations.")

To help overcome these difficulties, InfoSpheres objects have a number of important

properties. The underlying hardware and software system does not need to support all of

the InfoSpheres objects continuously - objects can be "frozen" and moved to persistent

29

storage, then "thawed" when needed. InfoSpheres is a message-passing architecture:

objects have a number of "inboxes" and "outboxes." They use these mailboxes to

exchange asynchronous peer-to-peer authenticated messages. The InfoSpheres project

explicitly studies the algorithms and conceptual structures necessary to build composable

objects with minimal programmer effort.

An InfoSpheres network resembles a Jini network in many ways. For example, Jini

also uses composable services as a standard programming paradigm and includes support

for object mailboxes.

InfoSpheres, as designed, does not need or use resource allocation. It concerns itself

only with connecting the objects the system already knows must join together to create a

virtual organization. If physical resources were encapsulated in objects, however, as in

Legion, then a resource manager could choose which computational resources would

participate in a given virtual organization.

1.5.17 AppLeS and the Network Weather Service

AppLeS' [BW97] offers a metacomputing paradigm where resource schedulers are

application-specific. An application's scheduler takes into account:

• The resources available in the metacomputer;

• The application's resource needs;

• The formula that connects an application's performance to the performance of

those resources; and

• A predictive picture of the network's future usage.

30

From this information, it generates a plan for resource utilization, makes reservations

if possible, and schedules the application.

AppLeS schedulers break down into four components.

• The Resource Selector runs on top of a standard metacomputing system such

as Globus or Legion. It uses that system's facilities to locate appropriate

collections of resources.

• The Planner uses these resources to compute a possible schedule.

• The Performance Estimator uses predictive techniques (such as those in the

Network Weather Service [NetW]) to determine the application's performance

under a given plan.

• Finally, the Actuator implements the best schedule.

The Performance Estimator's predictive picture of the network's future use is both

more and less sophisticated than the predictive techniques used in this paper. Rather than

competitively preparing for all future possibilities, it draws on numerical models,

continuous observations of network resource availability, and feedback techniques. With

this information, it makes a reasonably precise guess as to what the future will hold.

1.5.18 Bayanihan

The Bayanihan project [Sar98] studies volunteer computing, where users on the

Internet cooperate in solving large problems. Bayanihan focuses on building a browser-

based Java interface for a metacomputer so that volunteers from the Internet or an

Intranet can easily donate their computer's time.

31

The developers of the Bayanihan project identify the major research issues in

volunteer computing as follows.

• The system must implement adaptive parallelism to handle a dynamically

changing collection of volunteer machines;

• It must be fault-tolerant, since machines can crash or lose their network

connection to the server while still performing work. Moreover, Byzantine

errors are possible;

• It must be secure, since hackers can attempt to subvert the system;

• It must be scalable, since the potential benefits of metacomputing increase

with the size of the machine pool. Scalability is particularly difficult in a Java-

based web environment, which encourages star network configurations. (But

see [BKKK97].)

The Bayanihan prototype does not provide a fixed answer to any of these problems,

although [Sar98] lists several possible solutions to each issue above. Instead, it provides a

general architecture based on pools of data/work objects that allows programmers to

implement their own solutions.

1.5.19 Bond

The Bond project [BHJM99] explores an economic approach to metacomputing based

on the stock market [MBHJ98]. This uses the principle that a large collection of agents

intent on maximizing personal "profit" can produce intelligent emergent resource

management behavior.

32

Bond creates an object- and agent-oriented world for distributed computing. It wraps

system resources (including processors, communication links, sensors, and software

resources like libraries and services) in a special class of objects called metaobjects.

Communicating with these objects allows software objects to find appropriate resources.

In Bond, all objects use KQML [Fin93] message passing to communicate. This allows

Bond to support agents as ordinary members of its object hierarchy. Shadow objects

serve as local interfaces for remote objects. All communication passes through them. The

only system-dependent elements of Bond's design reside in the object-shadow object

communication module.

The Bond system draws on economic and biological processes for its inspiration. In

[MBHJ98], it suggests that an efficient model for high-level computation on top of Bond

middleware - and other systems - derives the "price" of a resource, and thus a process or

sub-process' ability to use that resource, from market consensus. In essence, the past

performance of a resource, plus the system's demand for that resource, helps set its cost.

In this model, agents buy and sell both resources and options on those resources, much as

human agents buy and sell stocks and options.

1.5.20 Linda, Piranha, Paradise and JavaSpaces

Linda [Lin] is a distributed programming environment built around the idea of a "tuple

space" - a shared memory occupied by logically grouped collections of data ("tuples.")

Parallel and distributed programs read tuples destructively, read tuples non-destructively,

and write tuples into the space. This serves as a generalization of interprocess

33

communication. With tuples serving as the "output" of completed tasks and the "input" of

new tasks, it allows interprocess coordination.

Piranha [Pir] extends the Linda framework to create a metacomputer. Like Condor,

Piranha monitors workstations to determine whether they are idle. When they become

idle, a Piranha task moves to that machine and begins to compute. When the machine

becomes active again, the Piranha task retreats. Communication and coordination uses

the tuple space.

JavaSpaces [JavSp] creates a similar tuple space for Java and Jini. This tuple space can

store code and data objects, allowing very complex system behavior to emerge from

simple and easy-to-understand system components. Augmented with instrumentation to

detect and respond to system load conditions, a JavaSpace can become a functional

metacomputer.

1.5.21 SETI@Home

SETI@Home [Seti] uses the resources of Internet-connected computers to perform a

very large-scale data analysis project: the Search for Extra-Terrestrial Intelligence. This

project searches for patterns in the electromagnetic noise radiating to Earth from space -

noise that includes universal background radiation, transmissions originating from Earth

or its satellites, and, possibly, signals originating from alien worlds.

The SETI@Home phase of the project analyzes data received at the Arecibo telescope

in Puerto Rico. The Arecibo telescope has generated 51,166,215 units of data for the

project, each unit approximately VA of a Megabyte in size. SETI@Home distributes this

34

data to Internet users running the SETI@Home software, which then searches for patterns

indicative of alien signal. So far, users have returned 142,250,182 results.

The SETI@Home project has not yet detected extraterrestrial signal. The project will

continue another two years, at which point SETI will move on to new approaches to

finding extraterrestrial intelligence.

SETI@Home's users performed work voluntarily, with the SETI@Home software

functioning as a Screensaver. SETI@Home's success therefore demonstrates the

feasibility of volunteer computing as a method for building efficient metacomputers.

1.5.22 Economics in Computer Science

Spawn [WHHKS92] is an early project integrating economic principles with computer

science. Spawn, like Condor, sets out to efficiently use otherwise-idle resources in a

computational cluster. It makes resource allocation decisions using a Vickrey auction

where processes compete for time slices on various CPUs.

A number of works draw on the idea that intelligent behavior emerges from a market

for computational resources [Clear96]. In many cases, as outlined in [WW98], this takes

the form of an abstract market where a number of mobile agents bid for raw resources

and the services provided by other agents. Such systems can draw on the large body of

economic principles to achieve various forms of optimal behavior.

Economic resource allocation in agentless environments is also a significant topic of

research. For example, the lottery scheduler for the VINO operating system [SHS99] uses

a currency-based negotiation system for resource allocation decisions. This scheduler

35

distributes single-system resource access fairly by handing out numbered "tickets" and

holding a drawing to determine who can next access a given resource. Through this

probabilistic lottery, each process receives resource access roughly proportional to the

number of tickets they possess.

Using the lottery scheduler, individual users can create "currency" backed by these

tickets. The total value of their currency equals the total value of their tickets, but the

users can distribute currency to their processes as they like. Thus, if every user receives

an equal share S of a system resource, a process with currency amounting to 2/3 of a

user's tickets receives about 2/3 S of that resource. Processes can exchange tickets and

currency through brokers. A heavily CPU-bound process might sell off some I/O tickets

in exchange for extra CPU tickets. Market forces produce intelligent behavior, while the

stable number of tickets in the system enforces fairness.

Awerbuch et al. study resource allocation in networks using economic principles

[AAP93]. This work produced routing algorithms competitive in their throughput with

the optimal algorithm, and is an ancestor of many of this thesis' ideas.

36

Chapter Two: Summary of the Theory

This section discusses the theoretical basis for the Cost-Benefit framework and more

primitive algorithms for load balancing on a metacomputer. This work measures the

effectiveness of online load balancing algorithms using their competitive ratio, measured

against the performance of an optimal offline algorithm. An online algorithm ALG is c-

competitive if for any input sequence I, ALG(/) < c OPT(i) + a, where ALG(i) measures

ALG's performance, OPT is the optimal offline algorithm, OPT(i) measures OPT's

performance, and a is a constant.

This chapter expands the theoretical summary found in [AABBK98], a joint work with

Dr. Yair Amir, Dr. Baruch Awerbuch, Dr. Amnon Barak, and Dr. Arie Keren. With the

exception of the algorithm described in section 2.5.4, the algorithms summarized in this

chapter appear in [BFKV92], [AAFPW97], and [AAPW94] and are not part of this

thesis' contributions.

2.1 Introduction and Definitions

The problem at hand is minimizing the maximum usage of the various resources on a

system. In other words, the various algorithms below seek to balance a system's load.

Various practical studies described elsewhere in this work indicate that one algorithm for

balancing a system's load also achieves a far more important goal -- producing good

performance for the average job. However, the theory itself does not say anything about

performance save that the maximum resource usage is competitive.

37

Previous work in this area has identified three relevant machine models and two kinds

of jobs. The three machine models are:

1. Identical Machines. All of the machines are identical. The speed of a job on a given

machine is determined only by the machine's load.

2. Related Machines. The machines are identical except that some of them have

different speeds. Effectively, we divide the load on each machine m by some constant

rc(m), an indicator of machine speed.

3. Unrelated Machines. Many different factors can influence the effective load of the

machine and the completion times of jobs running there. Job allocation strategies

understand these factors. They know the load a given job adds to a given machine,

but that load does not need to have any relationship to the load the job would add to

another machine.

The two possible kinds of jobs are:

1. Permanent Jobs. Once a job arrives, it executes forever without leaving the system.

2. Temporary Jobs. Each job leaves the system when it has received a certain amount

of CPU time.

2.2 Identical and Related Machines: the Greedy

Algorithm

Assume that reassignments are not possible. The only resource is CPU time, and

therefore we seek to minimize the maximum CPU load.

38

For identical machines and permanent jobs, the greedy algorithm performs well. It

assigns the next job to the machine with the minimum current CPU load.

Normalize the loads so that the optimal algorithm places at most one point of load on

each machine. The total load imposed by all jobs cannot exceed n, the number of

machines. Consider the first time greedy achieves its maximum CPU load, when it places

a job with load ä. The minimum CPU load on the system before placing the job is I™«.

The maximum CPU load on the system after placing the job is L^ = Lmin + ä. Since

every machine has a load at least equal to Lmin, we know that (n * IWö,) + ä < n. Since n

1, we maximize Lmn = I^m + ä in this equation by maximizing ä. All jobs have load 1,

by the pigeonhole principle. So Lmax = Lmin + ä < (((n-l)/n) + 1) = 2 - 1/n.

When the machines are related but not identical, the greedy algorithm can give a

competitive ratio of O(log n). To see this, consider a set of machines with speeds as

follows:

• The fastest machine, with normalized speed 1;

• [2°*21] Two slower machines with speed 1/2;

• [2!*22] Eight machines with speed 1/4;

• [22*23] Thirty-two machines with speed 1/8; all the way to

• [22kl] machines with speed l/2k.

A stream of jobs comes in: first 22kl jobs l/2k in size. Assuming that faster machines

are preferred, greedy uses these jobs to bring every machine faster than l/2k up to a load

of 1. Then come 22(kl)1 jobs l/2kl in size. This brings every machine faster than l/2kl to

a load of 2. This continues. Ultimately, the fastest machine achieves a load of k, even

39

though OPT could place these jobs to achieve a maximum load of 1. The best possible

competitive ratio is equal to 0(log n). The worst-case competitive ratio for greedy on

related machines is also 0(log n).

2.3 Unrelated Machines: ASSIGN-U

ASSIGN-U is an algorithm for unrelated machines and permanent job assignments. It

employs an exponential function to measure the 'cost' of a machine with a given load

[AAFPW97]. This algorithm assigns each job to a machine to minimize the total cost of

all of the machines in the cluster. More precisely, let:

• a be a constant, 1 <a< 2,

• l(m,j) be the load of machine m before assigning job j, and

• P(mJ) be the load joby will add to machine m.

The online algorithm assigns j to the machine m that minimizes the marginal cost,

shown in equation 2.1.

H.(j) = al{mJ)+p[m'j)-al{mJ),

Equation 2.1: Marginal Cost

This algorithm is 0(log n) competitive for unrelated machines and permanent jobs.

The work presented in [AAPW94] extends this algorithm and competitive ratio to

temporary jobs, using up to 0(log n) reassignments per job. A reassignment moves a job

from its previously assigned machine to a new machine. In the presence of

reassignments, let

40

h(m,j) be the load of machine m just before./ was last assigned to m.

When any job is terminated, the algorithm of [AAPW94] checks a 'stability

condition' for each job 7 and each machine M. This stability condition, with m denoting

the machine on whichy currently resides, is shown in equation 2.2.

If this stability condition is not satisfied by some job/, the algorithm reassigns j to

machine M that minimizes HMQ).

ah{m,j)+p{mJ) _aHm,j) <2* (a
l{MJ)+p{MJ) ~al(MJ)),

Equation 2.2 Stability Condition

For unrelated machines and temporary jobs, without job reassignment, there is no

known algorithm with a competitive ratio better than n.

2.4 Online routing of virtual circuits

The ASSIGN-U algorithm above miriimizes the maximum usage of a single resource. A

related algorithm for online routing of virtual circuits can extend ASSIGN-ITS competitive

ratio to environments with multiple resources. In the online routing problem, the

scheduler is given:

• A graph G(V,E), with a capacity cap(e) on each edge e,

• A maximum load mx, and

• A sequence of independent requests (s,, t,, p.Eti [0,/nx]) arriving at arbitrary times, s,

and tj are the source and destination nodes, and p(j) is the required bandwidth. A

41

request that is assigned to some path P from a source to a destination increases the

previous load l(e,j) on each edge ee P by the amount p(e,j) =p(j)/cap(e).

The scheduler's goal is to minimize the maximum link congestion, which is the ratio

between the bandwidth allocated on a link and its capacity.

AssiGN-U is extended further in [AAFPW97] to address the online routing problem.

The algorithm computes the marginal cost for each possible path P from sj to tj as per

equation 2.3:

#,(/)=£(a",J>+',,J,-«'M}-
eeP

Equation 23: Marginal Cost on a Network

and assigns request./ to a path P that yields a minimum marginal cost.

This algorithm is 0(log n) competitive [AAFPW97].

Minimizing the maximum usage of CPU and memory, measuring memory usage in

terms of the fraction of memory consumed, can be reduced to the online routing problem.

This reduction works as follows: create two nodes, {s, t} and n non-overlapping two-edge

paths from s to /. Machine m is represented by one of these paths, with a memory edge

with capacity rm(m) and a CPU edge with capacity rc(m). Eachjoby is a request with s as

the source, t as the sink, and p a function that maps memory edges to the memory

requirements of the job and CPU edges to 1. The maximum link congestion is the larger

of the maximum CPU load and the maximum memory (over) usage.

Using this reduction, the algorithm above can manage heterogeneous resources and

remain OQog n) competitive in its maximum usage of each resource.

42

2.5 Understanding the Theory: WhyAssiGN-U Works

2.5.1 Definitions

We have n machines, each with R resources. Imagine that each atomic unit of each

resource has a price. We set these prices so that the first (1 / log 2«*)* of each resource

has a total price of one dollar, the second (1 / log 2nR)üi of each resource has a total price

of two dollars, the third a total price of four dollars, and so forth. Resources have an

initial cost of $1 when unused, so the price for a resource is always less than or equal to

the cost incurred for its utilization. The last (1 / log 2nR)üi of a resource costs nR dollars.

We make a simpler version of AssiGN-U which chooses the machine with the lowest

cost for any given job, using this price structure. We also assume for simplicity that each

job requires at most (1 / log 2nR)üi of any resource. For a competitive ratio of log 2nR, we

assume that the optimal algorithm uses at most one (1 / log 2nR) sUce of each resource all

told, while our algorithm uses up to 100% thereof.

The special assignment a0 puts load 0 and cost $1 on each resource. Our algorithm

then makes assignments at ... ak. The optimal algorithm instead makes assignments at

... OfcEach assignment at goes to machine m (a/).

We define a utilization function, 0 wr(4 1. such that auses ur{^l log 2nR of

m(#s resource r. In other words, Misrepresents the portion of OPT's (1 / log 2nR)

slice of that resource that OPT uses when assigning the i* job.

43

We define a cost function, cr(a]), as the cost for resource r in assignment at assuming

that our algorithm made all previous assignments. We define c{a) = Ö cr{aij. Since our

algorithm is greedy, cfo) c(4

We define a machine cost function, C(M,i) = Ö c{a]) | (j i & m{aj) = M), as the sum

of the costs on a machine M after the z*th assignment.

2.5.2 Machine Matching

Suppose that we have exactly «jobs, which OPT assigns to one machine each. When

we must make assignment a„ we have the option of making the same assignment OPT

does. This adds at most 1 / log 2nR to the load of and at most doubles the cost of any

given resource on machine m(4 so c{aj c(4 C(ro(4 /)•

After assignment a0, each machine Mhas cost C(M,0) = R. Suppose that after making

assignment a,, machine m{a) has cost C{m{a^,i). Consider each assignment a, previously

made to machine wfo). Using our exponential cost function, the corresponding

assignment ohad a total cost less than the cost C{m(4 j). So c{aj) c% C(m(4 j).

This yields equation 2.4, below.

C(m(a,),;)< £c(i»(fl;).y)
ßrn(aj)=m{a,)&j&

Equation 2.4: Bound on Machine Cost after Assignment "i"

Consider the series of assignments made to each machine m(4 before assignment a,.

Each such assignment ak has a unique corresponding assignment ^by our assumption

that OPT places at most one job on each machine. This yields equation 2.5.

44

C(m(a,),i)< £c(m(a;.),y) S ^C{m{ak),k)
j\m {aj)=m (a,) & j< i k\m (ak)=m (a)) &m (a,) =m (a,) &*</'</

Equation 2.5: Looser Bound on Machine Cost after Assignment Mi*

Continuing in this manner, we find equation 2.6:

C{m{ai),i)< £C(M,0) = H/?
Machine M

Equation 2.6: Final Bound on Machine Cost after Assignment "i"

In other words, the maximum total cost for all the jobs on any machine is nR, which

gives us a competitive ratio of log nR.

2.5.3 Multiple Jobs per Machine

Now suppose that we have any number of jobs and that the optimal algorithm can

assign more than one job to a machine.

Due to our exponential pricing function, we can bound the cost function as per

equation 2.7:

c(at) < X ur(a,)*i Scr(a,)|7<i&m(ay) = m(a:))
Resource r Assignmenls a7

Equation 2.7: Cost Function Bound

45

Resource r Assignments a •

g(a,)< J c, («,)*(5»;) |j >*&«(<.;) = !»(«,))
Resource r Assignments ay

g(a0) = wi? ($1 per resource)

Equation 2.8: Functions Limiting Machine Cost

That is, the cost to use the same resource that the optimal algorithm does is at most

uptimes the sum of the costs of the jobs already on that resource on machine /w(4

We define yfa) as this "cap" on the price of assignment au and g(a) as the amount

assignment a, contributes to the cap of other assignments. See equation 2.8.

Imagine a flow, where f[a^ is the input to assignment at and gfo) is its output. The

source of this flow is g{a0). Since the optimal algorithm uses at most (1 / log 2nR) of each

resource, cfa) gfo). This means that/fo) g{a,). Since the flow out of an assignment is

always greater than the flow into that assignment, it logically follows that the maximum

flow into any set of assignments {/fo)}, not counting internal flow, is at most g{a0) = nR.

The set of jobs our strategy assigns to a machine but the optimal algorithm does not

has a maximum cost of nR. If we also assign every job to that machine that the optimal

algorithm does, we spend 2nR on that machine. Our maximum utilization on any resource

is exactly 100%, giving a competitive ratio of log 2nR = lognR+\.

2.5.4 Jobs of Unknown Size

In Chapter Five: Strategies with Reduced Information, this work develops a

variant on ASSIGN-U for environments where the system does not know the size of a job

46

until it has been placed. It makes assignment a, to the machine Mwith the minimum cost

C{M,i-l).

No algorithm can have an OQog nR) competitive bound without knowledge regarding

the size of the incoming job. However, suppose that the ratio between a job's usage of a

given resource on one machine and its usage on the optimal machine is always less than a

resource size constant S. Then cfo) < 2S * c(4 If we give our algorithm a further 2 S

times as much of each resource, c(aä yfo) still holds, yielding a competitive ratio of ZS

* log nR. A continuous pricing structure tightens this to S * log nR.

47

Chapter Three: Static Strategies

This chapter expands on the work found in [AABBK98], a joint work with Dr. Yair

Amir, Dr. Baruch Awerbuch, Dr. Amnon Barak, and Dr. Arie Keren.

3.1 The Model

We must assign each job in an incoming stream of jobs// ...jk to one of« machines.

We define each machine m as a collection of resources. These include rjm), the CPU

resource, measured in cycles per second, and rm(m), the memory resource, measured in

bytes. Note that these resources are incomparable by ordinary standards. Although this

work can extend to handle other resources, such as network bandwidth and I/O, we will

limit ourselves to CPU and memory. Thus, we define machine mas{ rc(m), rm(m) }.

Each job/, has the following properties:

• a(/V, the job's arrival time;

• tOi), the number of CPU cycles (the "CPU time") required by the job;

• m(ji,m), the memory load the job imposes on machine m\

• l(ji,m), the CPU load the job imposes on machine m; and

• cQi), the job's completion time, which varies depending on system load and the

system scheduler's decisions.

Of these properties, a(ji), m(jhm), and l(jhm) are known when a job arrives, while tQj)

and cflj) are known upon job completion.

48

3.1.1 System Load

Let J(t,m) be the set of jobs in machine m at time t. Then we define the CPU load

lc{f,m) and the memory load lm(t,m) of machine m at time t as per equation 3.1.

K ('•m) = X'O',•m) =l J(t,m} Ifor constant' W = !•
y,a/(f,m)

and

L (*•*")= X w (■/*'m) • resPectivety-
7(a/(*^i)

Equation 3.1: Machine Load

We assume that when a machine runs out of main memory, disk paging slows the

machine down by a multiplicative factor of x. We therefore define the effective CPU load

of machine m at time /, L(t,m), as per equation 3.2:

L(t,m) = le(t.m) if /.(t,m) < rm(m),

and

L (t, m)=lc(t,m)*t, otherwise.

Equation 3.2: Effective CPU Load

For simplicity, we assume that all machines schedule jobs fairly. At time t, each job on

machine m receives \IL(t,m) of the CPU resource. A job's completion time, c(ji),

therefore satisfies equation 3.3.

ecu) rc[m) _ ^ ^ j ^ where m iS the machine where we assigned job jf.
ia (;") Tit rri\ >U)L{t,m)

Equation 3.3: Completion Time of a Job

49

3.1.2 Jobs

For purposes of building test beds for our various strategies, we also modeled the

characteristics of a stream of jobs. Jobs arrived according to a Poisson distribution and

had independently-generated CPU time and memory requirements. See equations 3.4 and

3.5. We based this model of incoming jobs on the observations of real-life processes

found in [HD96].

<*Ui) = a C/M)
+ac. where

a is a constant,
0 < b < 1 is a constant, and

c = positive integer z with probability (1 - b) * (bz_1).

Equation 3.4: Job Arrival Time

/t//.ifi)=x*i.*^Ö.i
h rc{m)

™{Ji>™) =5*-* m; ' >and
I r(m)

/(/,) = 1, where / is the fastest machine, b has the most memory,
x, S are constants and

0 < h, I < 1 are uniformly distributed random variables.

Equation 3.5: Job Characteristics

Since this work is specifically concerned with metacomputing clusters, each job also

had a 5% chance of being a large parallel batch job. Such batches contained a random

number of jobs, uniformly distributed between one and twenty, each with ten times the

50

CPU time requirement the job would otherwise have required. The jobs in a parallel

batch arrived simultaneously.

3.1.3 Slowdown

The "slowdown" for a job is conceptually the degree to which system load and the

choice of machine assignments slows a job down. If a job requires 10 CPU seconds on

the fastest machine, and completes in 50 seconds, it suffers a slowdown of 5. (See

equation 3.6.)

(c(/) a(J))*rc(j) h ,. ^ fastestmacjline-

t(j)
Equation 3.6: Job Slowdown

We evaluated the effectiveness of various job assignment strategies in terms of their

average slowdown over all jobs in a given scenario. The lower the average slowdown, the

better the strategy performed.

Our goal in this chapter is to develop a method for job assignment that will minimize

the average slowdown over all jobs.

3.2 From Theory to Practice

For each machine in a cluster of n machines, with resources ri ... rk, we define that

machine's cost as per equation 3.7.

51

]£/(«, utilization of rt) Generic Cost
i=l

or

X« load on resource/ ,\<a<2
»=i

Using ASSIGN-U

Equation 3.7: Machine Cost

The load on a given resource equals its usage divided by its capacity. We assume for

convenience that our algorithm has resources 0(log n) times greater than the optimal

algorithm's, so that the two have identical maximum loads. This changes our machine

loads, but should not change how we apply the cost function. Accordingly, we rewrite the

cost function as shown in equation 3.8.

* 0(logn)*utilizedr!

I« max usage of r,

i=l

or, with properly chosen a,

k utilized rt/
\? n /maxusageofri

/=1

Equation 3.8: Machine Cost

The marginal cost of assigning a job to a given machine is the amount by which this

sum increases when the job is assigned there. Our "opportunity cost" approach to

52

resource allocation assigns jobs to machines in a way that minimizes this marginal cost.

AssiGN-U uses an opportunity cost approach.

In this chapter, we are interested in only two resources, CPU and memory, and we will

ignore other considerations. Hence, the above theory implies that given logarithmically

more memory than an optimal offline algorithm, ASSIGN-U will achieve a maximum

slowdown within 0(log n) of the optimal algorithm's maximum slowdown.

This does not guarantee that an algorithm based on ASSIGN-U will be competitive in

its average slowdown over all processes. It also does not guarantee that such an

algorithm will improve over existing techniques. Our next step was to verify that such an

algorithm does, in fact, improve over existing techniques in practice.

The memory resource easily translates into ASSIGN-U's resource model. The cost for a

certain amount of memory usage on a machine is n", where u is the proportional memory

utilization (used memory / total memory.) For the CPU resource, we must know the

maximum possible load. Drawing on the theory, we will assume that I, the smallest

integer power of two greater than the largest load we have seen at any given time, is the

maximum possible load. This assumption, while inaccurate, does not change the

competitive ratio of ASSIGN-U.

The final cost for a given machine's CPU and memory load, using our method, is

shown in equation 3.9.

used memory CPU load

total memory _j_ ^ i

Equation 3.9: Final Machine Cost

53

&

o

Preferred
Scenario

Costs for
Scenario 1

ifgg
tj Costs for
8Scenario 2

Memory Cost CPU Cost Total Cost

Figure 3.1: Choosing the Right Machine Becomes Easy!

In general, we assign jobs so as to minimize the sum of the costs of all the machines in

the cluster. (See Figure 3.1.)

To examine the behavior of this "opportunity cost" approach, we evaluated two

different methods for job assignment. PVM is a standard system. E-PVM is a scheduler

of our own design, using this algorithm to assign and reassign jobs.

1. The PVM Strategy assigns jobs to machines in strict round robin order. PVM

(for "Parallel Virtual Machine") is a popular metacomputing environment for

systems without preemptive process migration. Unless the user of the system

specifically intervenes, PVM assigns jobs to machines using this strategy. It does

not reassign jobs once they begin execution. Since round robin is not the strongest

54

job assignment strategy, we will compare our opportunity cost approach against

more powerful strategies later in this work.

2. The Enhanced PVM Strategy is our modified version of the PVM Strategy. It

uses the opportunity cost-based approach to assign each job as it arrives to the

machine where the job has the smallest marginal cost at that time. No other factors

come into play, so using this strategy is very easy. As with PVM, initial

assignments are permanent. We sometimes abbreviate the Enhanced PVM Strategy

as E-PVM.

We can describe E-PVM using pseudo-code as:

max jobs = 1;

while 0 {

cost = MAX_COST;

when a new job/" arrives:

for (each machine m) {

marginal_cost = power(n, percentage memory utilization on m if/ was added) +

power(n, (jobs on m + 1) / max Jobs) - power(n, memory use on m) -

power(n, jobs on m / max jobs);

if (marginal_cost < cost) {machine_pick = m; }

}

assign job to machine_pick;

if (jobs on machine_pick > max jobs) max jobs = max jobs * 2;

}

}

Figure 3.2: E-PVM Pseudo-code

55

Note the simplicity of the pseudo-code. Implementing the E-PVM decision algorithm

on a real system requires as little as 20-30 lines of code.

3.3 The Simulation Test Bed

The first test bed for our opportunity cost approach was a simulated cluster of six

machines, matching a set of six machines then available in the Center for Networking and

Distributed Systems laboratory. Certain assumptions made in this simulated cluster will

be reexamined and altered later in the work, but the simulation has remained an accurate

predictor of an opportunity cost scheduler's behavior throughout. These machines are

described in Table 3.1.

Jobs arrived at about one per ten seconds for ten thousand simulated seconds, which

gave a variety of load conditions to each of our methods.

In each execution of the simulation, both methods were provided with an identical

scenario, where the same jobs arrived at the same rate.

We picked our simulation parameters, and miscellaneous factors such as the thrashing

constant ö (10), conservatively. Our goal was to provide our algorithm with a harsh

testing environment less favorable to it than the real world.

Machine Type # of these Machines Processing Speed Installed Memory

Pentium Pro 3 200 MHz. 64 MB of RAM

Pentium 2 133 MHz. 32 MB of RAM

Laptop w/ Ethernet 1 90 MHz. 24 MB of RAM

Table 3.1: The Simulated Cluster

56

3.3.1 Simulation Results

We evaluated the results of the simulations in two different ways:

• An important concern is the overall slowdown experienced using each method. The

average slowdown by execution is an unweighted average of all of the simulation

results, regardless of the number of jobs in each execution. The average slowdown by

job is the average slowdown over all of the jobs in all of the executions of the

simulation. The average slowdown by jobs gives more weight to scenarios with many

jobs. The difference between these two averages therefore indicates the trend in

system performance as scenarios grow harder. These average results, incorporating

3000 executions, are given in Table 3.2.

• The behavior of Enhanced PVM is significantly different in lightly loaded and

heavily loaded scenarios. This behavior is illustrated in Figure 3.3, detailing the first

1000 executions of the simulation.

Slowdown PVM E-PVM

Jobs 15.404 10.701

Executions 14.334 9.795

Table 3.2: Average slowdown in the Java simulation for the different methods.

Comparison graphs like the figures below will appear with most of the results in this

work. In Figure 3.3, the X axis is the average slowdown for the PVM Strategy. The Y

axis is the average slowdown for the Enhanced PVM Strategy. The light line is defined

by 'x = y'. Above this line, the unenhanced algorithm does better than the enhanced

57

algorithm. Below this line, the enhanced algorithm does better than the unenhanced

algorithm.

Enhanced PVM, as Table 3.2 has already shown, does significantly better than straight

PVM in almost every circumstance. More interesting, however, is its behavior as the

average slowdown for the PVM Strategy increases. The larger PVM's average slowdown

was on a given execution, the more improvement our enhancement gave. Intuitively,

when an execution was hard for all four models, Enhanced PVM did much better than

unenhanced PVM. If a given execution was relatively easy, and the system was not

heavily loaded, the enhancement had less of a positive effect. The dark line in Figure 3.3

is a linear trend line for the data points, illustrating this effect.

The reason for this phenomenon runs as follows. When a machine becomes heavily

loaded or starts thrashing, it does not just affect the completion time for jobs already

submitted to the system. If the machine does not become unloaded before the next set of

large jobs is submitted to the system, it is effectively unavailable to them, increasing the

load on all other machines. If many machines start thrashing or become heavily loaded,

this effect will build on itself. Every incoming job will take up system resources for a

much longer span of time, increasing the slowdown experienced by jobs that arrive while

it computes. Because of this pyramid effect, a 'wise' initial assignment of jobs and

careful re-balancing can result (in the extreme cases) in a vast improvement over standard

PVM, as shown in some of the executions in Figure 3.3.

58

Figure 3.3: PVM vs. Enhanced PVM
(Simulation)

3.4 Real System Executions

We also tested these algorithms on a real cluster, using the same model for incoming

jobs. We implemented each job with a program that cycled through an array of the

appropriate size, performing calculations on the elements therein, for the appropriate

length of time. The jobs were assigned using the PVM and Enhanced PVM strategies.

Table 3.3 shows the slowdowns for 50 executions on this real cluster. Figure 3.4

shows the results point-by-point. Again, the light line is defined as 'x = y', and the dark

line is a linear trend line. The results of the real system executions are shown below.

59

Slowdown PVM E-PVM

Jobs 19.818 12.272

Executions 18.835 11.698

Table 33: Average slowdown in the real cluster for 2 (re)assignment methods.

The test results in Table 3.3 imply that the real-life thrashing constant and various

miscellaneous factors increased the average slowdown. This is the expected result of

picking conservative simulation parameters. More importantly, these results do not

substantially change the relative values. The Enhanced PVM Strategy performed even

better on the real cluster, compared to regular PVM. We consider this to be a strong

validation of our initial Java simulations and of the merits of this opportunity cost

approach.

Table 3.4 shows the total impact of the opportunity cost approach on the static system.

Slowdown on Simulation for ... PVM vs. E-PVM

Jobs 1.440

Executions 1.463

Slowdown in Real System for ...
* PVM vs. E-PVM

Jobs 1.615

Executions 1.610

Table 3.4: Average relative slowdowns for 2 job (re)assignment methods.

The results presented in Table 3.2, Table 3.3, and Table 3.4 give strong indications

that the opportunity cost approach is among the best methods for adaptive resource

allocation in a scalable computing cluster.

60

Figure 3.4: PVM vs. Enhanced PVM
(Real Executions)

61

Chapter Four: Dynamic Strategies

This chapter expands on the work found in [AABBK98], a joint work with Dr. Yair

Amir, Dr. Baruch Awerbuch, Dr. Amnon Barak, and Dr. Arie Keren.

4.1 The Model

We must assign each job in an incoming stream of jobs ji ...jk to one of n machines.

We define these machines and jobs as in section 3.1.

In the dynamic model, the scheduler has additional power. It can reassign jobs. More

precisely, we define a constant "clock tick" <p and system time t. When t modulo <p is 0,

each machine m selects a random fixed-size subset M of the other machines. If it so

desires, it can take a job running on m and move it to any machine in M. The job then

continues its execution. It does not lose the work performed so far, and therefore the job

completion time obeys equation 4.1.

—-.—r -t{ji), where m is the machine where job jt is currently assigned.

Table 4.1: CompletionTime of a Job

4.2 From Theory to Practice

The arrival rate and resource demands of jobs are unpredictable. In light of this

unpredictability, any non-prescient strategy sometimes assigns jobs to a non-optimal

62

machine. Job reassignment gives the system the power to correct these mistakes. Applied

correctly, this is an extremely powerful tool for reducing the average slowdown.

The model above derives from the behavior of Mosix, an implemented system for job

reassignment. Accordingly, results obtained using this model map naturally into the real

world.

Migration is not a panacea. Reassigning a job to correct an error does not erase the

error - it has already contributed to the slowdown of any jobs that it shared a machine

with. This means that those jobs stay on the system longer and in turn contribute a larger

amount to the slowdown of other jobs. This compounds like interest or debt, so that a

relatively small series of mistakes, quickly corrected, can add a great deal to the system's

eventual slowdown.

Since bad decisions have an effect in the dynamic systems world, it makes sense to

evaluate the opportunity cost approach in this environment. The reassignment strategy of

AssiGN-U requires the ability to reassign jobs to any machine at any time. Further, it is

built on the idea that minimizing reassignments is valuable. Since a real system like

Mosix limits the system's opportunities for reassignment, but makes reassignment cheap

within that context, we do not employ the ASSIGN-U strategy. Instead, we use the Mosix

model for when the system may reassign a job, and use assignments and reassignments to

greedily minimize the load. (See Figure 4.1.)

63

Possible Reassignment

New (Preferred)
Scenario

Machine 1
Machine 2

Before (Dark)

After (Light)
Total Cost

Figure 4.1: Choosing Whether to Reassign Becomes Easy!

To examine the behavior of our approach, we evaluated four different methods for job

assignment.

1. The PVM Strategy, as previously defined, does not take advantage of job

reassignment.

2. The Enhanced PVM Strategy, as previously defined, uses our opportunity cost

approach but does not take advantage of job reassignment.

3. The Mosix Strategy is an adaptive load-balancing strategy that also endeavors to

keep some memory free. In Mosix, a process becomes a candidate for migration

when the difference between the relative loads of a source machine and a target

machine crosses a certain threshold. Older CPU-bound processes receive a higher

migration priority. Mosix machines accumulate information about the processes at

regular intervals {e.g. each time tick cp) and then exchange this information with

64

other machines. If appropriate, they then migrate some set of jobs. Each machine

exchanges information only with a small selection of other machines. This

limitation on Mosix's knowledge makes it possible to make decisions quickly. The

waiting period <p between migrations minimizes the migration overhead. The

Mosix kernel enhancements that allow a system to perform job reassignment use

this strategy.

4. The Enhanced Mosix Strategy is our modified version of the Mosix strategy,

using the opportunity cost approach. It greedily assigns or reassigns jobs to

minimize the sum of the costs of all the machines. The Enhanced Mosix Strategy

has the same limits on its knowledge and reassignment abilities as the Mosix

Strategy. We sometimes abbreviate the Enhanced Mosix Strategy as E-Mosix.

65

We can describe E-Mosix in pseudo-code as follows:

Max jobs = 1;

while 0{

when a new joby arrives: {

cost = MAX_COST;

for (each machine m) {

marginal_cost = power(n, percentage memory utilization on m if/ was added) +

power(n, (jobs on m + 1) / max jobs) - power(n, memory use on m) -

power(n, jobs on m I max jobs);

if (marginal_cost < cost) { machine_pick = m;}

}

assign job to machine_pick;

if (jobs on machine_pick > max jobs) max jobs = max jobs * 2;

}

}

Figure 4.2.1: E-Mosix Pseudo-code (Part 1: Job Placement)

Job placement in E-Mosix functions exactly as in E-PVM.

66

every X seconds: {

for (each machine m) {

choose a small random set of machines M,

for (each job./' on m) {

current_cost = power(n, percentage memory utilization on m) +

power(n, jobs on m I maxjobs) -

power(n, percentage memory utilization on m if/ is migrated away) -

power(n, ((jobs onm) -1) /maxjobs);

for (each machine m2 in M) {

marginaLcost = power(n, percentage memory utilization on ml if/ was added) +

power(n, (jobs on m2+\)l maxjobs) - power(n, memory use on ml) -

power(n, jobs on m21 maxjobs);

if (marginal_cost < current_cost) {

transfer/ to m2;

if (jobs on m2 > maxjobs) maxjobs = maxjobs * 2;

break from loop: for (each machine ml);

}

}

}

}

Figure 4.2.2: E-Mosix Pseudo-code (Part 2: Job Migration)

When migrating jobs, E-Mosix looks at each machine individually. Each machine m

contacts a small random subset M of the other machines. E-Mosix then evaluates, job by

67

job, whether it would reduce the total cost of the system to migrate the job to another

machine in M. If so, it migrates the job. Note that E-Mosix is a greedy algorithm. It

reduces overall system cost whenever it sees an opportunity to do so, rather than

attempting to calculate the optimum set of job reassignments.

4.3 The Simulation Test Bed

We tested our dynamic opportunity cost approach in the simulated cluster described in

Table 3.1. We used the same job arrival scenarios as for our static tests, and can therefore

compare the results directly against the results of the static scenarios.

4.3.1 Simulation Results

As before, we evaluated the results of the simulations in two different ways.

• First, we examined the average slowdown by execution and the average slowdown

by job. These results, incorporating 3000 executions, are given in Table 4.1.

• The behavior of Enhanced PVM and Enhanced Mosix are significantly different in

lightly loaded and heavily loaded scenarios. This behavior is illustrated in Figures

4.3 through 4.8.

Slowdown PVM E-PV1V Mosix E-Mosix

Jobs 15.404 10.701 9.421 8.203

Executions 14.334 9.795 8.557 7.479

Table 4.1: Average slowdown in the Java simulation for the different methods.

68

Figure 4.3 is a comparison graph that benchmarks Enhanced Mosix against Mosix.

Again, the light line is defined by x = y* and the dark line is a linear trend line for the

data points. As with E-PVM, the behavior of E-Mosix improves on "hard" scenarios. The

trend line illustrates this effect.

Figure 4.4 compares the E-PVM method, which makes no reassignments at all, to the

powerful Mosix system. In this case, a single opportunity cost-based job assignment

competes against an arbitrary number of reassignments by the carefully optimized Mosix

Strategy. Given the power of reassignment, we cannot expect that E-PVM will

outperform Mosix. It does, however, perform extremely well. Its performance stays close

to Mosix's even in very hard scenarios, as the trend line shows.

Figure 4.5 illustrates the value of migration, and thus the importance of studying the

opportunity cost approach in the dynamic context. Enhanced Mosix outperforms

Enhanced PVM in almost every case, often considerably. The intelligent decision made

by E-PVM is well complemented by the ability to reassign jobs according to the

opportunity cost strategy. The linear trend line for this data indicates that the benefits of

combining job reassignment with the opportunity cost strategy increase dramatically as

scenarios become "hard."

69

Figure 43: Mosix vs. Enhanced Mosix
(Simulation)

Morix

Figure 4.4: Mosix vs. Enhanced PVM
(Simulation)

70

Figure 4.5: Enhanced Mosix vs. Enhanced PVM
(Simulation)

4.4 Real System Executions

Testing the E-Mosix strategy on a real cluster requires a modified version of Mosix

that uses our opportunity cost algorithms in the kernel. We do not yet have access to such

a kernel. However, we were able to test E-PVM against the unenhcmced Mosix strategy

on our real cluster, using the same scenarios and parameters as in section 3.4. Table 4.2

shows the slowdowns for 50 executions on this real cluster. Figure 4.6 shows the results

point-by-point.

71

Slowdown PVM E-PVM Mosix

Jobs 19.818 12.272 8.475

Executions 18.835 11.698 8.683

Table 4.2: Average slowdown in the real cluster for 3 (re)assignment methods.

The test results in Table 4.2 show that the Mosix strategy is stronger in a Mosix-kernel

environment than in our simplified simulation. However, E-PVM remains a strong

contender. About 2/3 of the benefit for implementing Mosix in the kernel can be realized

by instead employing E-PVM at the user level. Since using a Mosix-capable operating

system and installing the Mosix kernel enhancements is not always a desirable option,

this is a strong argument in favor of E-PVM. It also indicates that E-Mosix is likely to

outperform Mosix in practice.

Table 4.3 shows the impact of the opportunity cost approach on dynamic systems.

Slowdown on Simulation for ... PVM vs. Mosix E-PVM vs. Mosix PVM vs. E-PVM

Jobs 1.635 1.139 1.440

Executions 1.675 1.145 1.463

Slowdown in Real System for ... PVM vs. Mosix E-PVM vs. Mosix PVM vs. E-PVM

Jobs 2.282 1.413 1.615

Executions 2.222 1.380 1.610

Table 43: Average relative slowdowns for 3 job (re)assignment methods.

72

Figure 4.6: Mosix vs. Enhanced PVM
(Real Executions)

73

Chapter Five: Strategies with Reduced

Information

5.1 The Model

We define a reduced information scenario as follows. We must assign a stream of jobs

to one of n machines. Machines are defined as in section 3.1. Also as in section 3.1, each

job^'i has the following properties:

• aQ'j), the job's arrival time;

• too, the number of CPU cycles (the "CPU time") required by the job;

• m(jbm), the memory load the job imposes on machine m;

• l(ji,m), the CPU load the job imposes on machine m\ and

• c(fi), the job's completion time, which varies depending on system load and the

system scheduler's decisions.

In a reduced information scenario, t(jj and c(jj are known upon job completion, as in

section 3.1. However, only a(fj) is known when a job arrives. We do not know mQ^m),

and l(jbm) until immediately after we place a job. In other words, we must make our

scheduling decisions without knowing the memory or CPU load a job will add to the

system.

In this context, we consider only static strategies. A dynamic system can employ the

E-Mosix strategy in a reduced information scenario by tentatively assigning jobs to a

74

heuristically appropriate machine and then reassigning them at the next tick, when their

load requirements are known. (Creating opportunity cost strategies with even less

information, where a job's resource requirements remain unknown for a period of time

after assignment, is a subject of ongoing research.)

This model is intended to reflect real world environments. Real systems can usually

obtain roughly accurate load information, but jobs do not necessarily know their resource

requirements in advance.

5.2 From Theory to Practice

In a reduced information scenario, we do not know the change in resource usage from

placing a job. We do, however, know the slope of the cost function at the current

utilization. We use this slope as a very rough approximation of the marginal cost. (We

analyzed this approximation in section 2.5.4.)

To evaluate this approximation, we compared three strategies:

1. The PVM Strategy, as previously defined, is unaffected by reduced information

scenarios.

2. The Enhanced PVM Strategy functions as previously defined. Note that the

Enhanced PVM Strategy has full information, as in Section 3.1. In other words, it

does not face a reduced information scenario. Rather, it serves as a benchmark

against which we compare our approximation. The closer our strategy for reduced

information scenarios comes to the performance of E-PVM, the less we suffer

from the loss of information.

75

3. The Differential PVM Strategy assigns jobs to the machine whose cost function

has the smallest current slope. (Equivalently, it assigns each job greedily to the

machine with the smallest current cost.)

We can describe the Differential PVM Strategy using pseudo-code as:

maxJobs = 1;

while 0 {

cost = MAX_COST;

when a new job/ arrives {

for (each machine m) {

machine_cost = power(n, memory use on m) +

power(n,jobs on«/maxjobs);

if (machine_cost < cost) { machine_pick = m; }

}

assign job to machine_pick;

if (jobs on machine_pick > maxjobs) maxjobs = maxjobs * 2;

}

}

Figure 5.1: Differential PVM Pseudo-code

5.3 Evaluation

We tested the Differential PVM Strategy against the PVM and E-PVM Strategies in

our simulated cluster. We generated scenarios using the same job arrival pattern as for the

76

static and dynamic tests. We could not use the specific scenarios used in earlier tests. We

conducted no real cluster tests, as changes in lab configuration rendered this impractical.

5.3.1 Simulation Results

Table 5.1 shows the compiled results of 3000 tests.

Slowdown PVM Differential PVM E-PVM

Executions 16.371 11.038 10.137

Jobs 17.521 12.119 11.098

Table 5.1: Average slowdown in the Java simulation for the different methods.

Averaging by execution, Differential PVM captures 91.8% of the benefit of Enhanced

PVM. When averaging by jobs, a slightly harsher measure, it captures 91.6% of the

benefit. In other words, users adopting the Differential PVM Strategy - presumably due

to constraints on available information - gain 91-92% of the performance increase they

would achieve if they could employ E-PVM.

Table 5.2 shows the ratio between the average slowdowns for the PVM and

Differential PVM Strategies, as well as the ratio between the Differential PVM and

Enhanced PVM Strategies.

Slowdown in Simulation for ... PVM vs. Differential PVM Differential PVM vs. E-PVM

Jobs 1.483 1.089

Executions 1.446 1.092

Table 5.2: Average relative slowdowns for 3 job (re)assignment methods.

77

Note the consistency in the third column of Table 5.2. The Differential PVM / E-PVM

ratio remains much the same regardless of averaging technique. Since averaging

slowdown by jobs gives more weight to hard scenarios with many jobs, this consistency

suggests that increasing scenario sizes has little effect on Differential PVM's

performance relative to E-PVM's.

Figure 5.2 compares Differential PVM against PVM. Figure 5.3 compares Differential

PVM against E-PVM. We expect the E-PVM Strategy to outperform the Differential

PVM Strategy, because it uses more information. We expect the Differential PVM

Strategy to outperform the PVM Strategy, because it uses load information intelligently

while PVM uses no information at all. As the figures show, this intuition is correct in

almost every scenario.

More importantly, Figure 5.3 demonstrates that the Differential PVM results are close

to the E-PVM results in the vast majority of all scenarios. In "easy" cases, the

Differential PVM Strategy outperforms the PVM Strategy, and its performance closely

matches E-PVM's. This makes sense, since E-PVM uses its extra information not to

optimize performance but to prevent bad performance. In "hard" scenarios, the

Differential PVM Strategy's performance still approximates E-PVM's. Both strategies

outperform the PVM results in every case - often, significantly.

Figure 5.4 puts these results in the same graph so that one can compare the two trend

lines and dispersion patterns directly.

78

Figure 5.2: Differential PVM vs. PVM
(Simulation)

Figure 53: Differential PVM vs. E-PVM
(Simulation)

79

25

PVM (Dark) or E-PVM (Light)

Figure 5.4: Differential PVM vs. Other Strategies
(Simulation)

80

Chapter Six: The Java Market

6.1 Description

We developed the Java Market as the first metacomputer test bed for the Cost-Benefit

framework. It was designed as an Internet-wide market for computational services. For

technical reasons described in section 6.2.1, we moved on to the Frugal system (described

in Chapter Seven: The Frugal System) after developing an initial prototype for the Java

Market.

The Java Market, although built on the volunteer computing model, does not use the

program structures developed in projects such as Bayanihan [Sar98]. Rather than building

a programming structure designed to squeeze the most utility out of the Market's

environment, the Java Market project uses "legacy" code. That is, it transparently adapts

ordinary Java applications to the closest equivalent applets. This increases utility at the

expense of efficiency.

This chapter draws on the work found in [AABOO], a joint work with Dr. Yair Amir

and Dr. Baruch Awerbuch.

6.1.1 Basic Concepts

Two entities define the Java Market's world: machines and jobs. Both machines and

jobs make contracts with the Java Market. Machines sell computational services to the

Market. Jobs buy such services from the Market. This allows the efficient use of unused

cycles available anywhere on the Internet.

81

The Java Market "pays" producer machines for their services and "charges"

consumers for each job they run. For example, a consumer might offer to pay $20 if the

Java Market completes a large simulation in 6 hours or less. A machine owner might

charge the Java Market $10 for 8 hours of their machine's services. The market tries to

maximize its own profit. This is equivalent to maximizing the real wealth generated by

the system, in turn equivalent to using the system's resources in the most globally

beneficial way.

The prototype did not flesh out this system, but in principle the Market could measure

payments and charges in either virtual money (usable to buy Java Market services) or real

currency. Virtual money has the advantage of easy acceptance by the public; real

currency allows the Market to achieve its full power and utility.

The Java Market

Producers

Figure 6.1: An Internet-Wide Metacompiler

82

6.1.2 The System

The Java Market brokers the distribution of computational resources among machines

scattered across the world. As depicted in Figure 6.1, we designed the Java Market to

transfer jobs from any machine on the Internet to any machine on the Internet that wishes

to participate. There is no installation or platform-dependent code - the only requirement

is that the jobs be written in Java. Further, the Java job does not need to be written

especially for the Market - the Market can rewrite Java applications into applets

automatically, and provides services that can overcome some of the inherent applet

restrictions. The Market can then port these applications automatically to any producer

machine. Using the Market is only slightly more difficult than clicking on a browser

bookmark.

The Java Market has no dependence on any given architecture. Producers and

consumers can use any machine and any operating system that has a Java-capable Web

browser. The prototype completely implements the Market's program-transfer

technology.

The Java Market uses the Web and the Java language as its primary tools. A producer

makes their machine available as a resource by directing its browser to one of the Market

web pages. A consumer registers its request for computational resources by posting its

program (written in Java) in a Web-accessible location and contacting another of the

Market's web pages.

The Java Market is composed of three main entities, as depicted in Figure 6.2:

83

• The Resource Manager keeps track of the available machines - those that

have registered themselves as producers.

• The Task Manager keeps track of the consumer-submitted tasks.

• The Market Manager mediates between the Resource Manager and the Task

Manager.

Producers: C^gycft appjgt]> (paunchapplet^ Cuiundiappiet

Market:

Consumers:

^jgqiB&£$^
Task application Task application Task application

Figure 6.2: Java Market Components

6.1.3 The Resource Manager

The Resource Manager runs on the Market machine. When a producer registers with

the Market web pages, they automatically run a special applet, the Launch Applet, that

tells the Resource Manager about the producer's machine's power. The Resource

Manager stores this information, as well as the state of the machine (in this case,

'available,') the IP address, and so forth. This information forms a machine profile.

84

The Launch Applet is the Resource Manager component executed on the producer's

machine. This gives it two responsibilities. It must perform resource discovery: that is,

assessing the machine's computational and networking capabilities. It must also direct the

producer's browser to the web page containing that machine's assigned task.

6.1.4. The Task Manager

The Task Manager runs on the Market machine. When a consumer registers their task

with the Market web pages, they run another special applet, the Request Applet, which

gathers information about the task they want the Market to perform. Once it gathers this

information, the Request Applet sends it to the Task Manager. The Task Manager then

gathers the Java files and input files associated with the task from the Web, edits the Java

files as necessary, compiles them, and passes the entire task to the Market Manager.

The Request Applet is the Task Manager component executed on the consumer's

machine. Its primary responsibility is to wait. First, it waits while the consumer types in

the necessary data about their task. It sends this information to the Task Manager proper

and then waits again. As the Request Applet waits, the Task Manager downloads, edits,

and compiles all of the Java code associated with the task. When it finishes this work, it

tells the Request Applet whether the Market has accepted or rejected the task. The

Request Applet displays this information and ceases computation.

6.1.5. The Market Manager

The Market Manager oversees Market operations, performing resource allocation and

admission control. It must address two key issues:

85

• A producer machine might not be available for the entire time period required

by a given task, and

• Maximizing the market profit requires intelligent decision making.

The prototype did not address the issue of predicting resource availability, although

the Market does respond to resource connections and disconnections. Maximizing the

market profit uses the Cost-Benefit Framework, as described in section 6.2.2.

6.1.6. An Example Scenario

The scenario presented in Figure 6.3 illustrates the Java Market metacomputing

system.

1. A producer machine registers its availability over the network with the Java

Market.

2. A second producer machine registers its availability with the Java Market.

3. A consumer connects to the Java Market and registers a task.

4. The Task Manager downloads the task information from the Web and modifies

and compiles the code. It then notifies the consumer of the consumer's success

at launching the task.

5. The Market Manager mediates between the Task Manager and the Resource

Manager in order to find an appropriate producer to execute the task.

6. The selected producer's browser automatically begins executing the task.

7. The task completes and its results are mailed to the consumer.

86

8. Later, a producer leaves the Java Market.

Q 3 *\ The Java Market

Consumers
*■** ■**•

Producers

äsJÜ

6.3.3

Consumers

The Java Market

Producers

6.3.5

Consumers

The Java Market

Producers
D

6.3.2

Consumers

The Java Market

Producers

6.3.4

Consumers

The Java Market

Producers

6.3.7
Consumers

The Java Market
**•
■

I—

+»■ **-

-3 Producers

6.3.6 Tne Java Market

Consumers
«I* »M* **•

6.3.8
Consumers

The Java Market
!• «M* «*«*

Producers

Figure 63: A Sample Java Market Scenario

6.2 Java Market Design

6.2.1 Features of Web-Based Metacompilers

The Java Market builds on Java and web technologies. This gives the project certain

inherent advantages and disadvantages.

Java bytecodes are machine-independent. Any sort of machine can execute them. For

this reason, machine and operating system heterogeneity do not significantly complicate

87

the Java Market's task. It can accept jobs from and execute jobs on any kind of machine.

The Market itself, written in Java, can run on any machine, requiring only parameters

describing the local environment. Except for some GUI details, Market code and

submitted jobs run in identical fashion on any machine and any browser. This ability to

handle heterogeneous machines - accentuating the Cost-Benefit Framework's ability to

manage heterogeneous resources - played a large part in choosing Java and web

technology as the first platform for the Cost-Benefit Framework.

The Java Market offers its machines strong security by way of the Java sandbox. All

submitted jobs run inside a browser window. Running within a properly implemented

browser, the jobs cannot harm the producer machine - they cannot corrupt its permanent

storage, steal sensitive information about the producer machine, or otherwise injure the

producer.

Using Java and web technology also brings several hidden costs to the table. First, as a

rule, Java runs slowly compared to longer-established languages. Slowed by a web

browser and the applet sandbox, it runs at a comparative crawl. The Java Market

prototype, like other projects, demonstrates the general feasibility of web-based

metacomputing - but the speed of its computations shows the inadequacy of current

technology. This is, of course, a temporary problem; many projects in research and

industry seek to improve the performance of Java-enabled browser technology.

Second, the Java sandbox imposes strong restrictions on the communication and file

I/O submitted jobs can perform. (This is particularly true given that the Java Market was

developed for Java 1.0.) Jobs can only communicate with the server that launched them.

File I/O on the producer machine is impossible. Therefore, all I/O - and any other form

88

of communication - must go through the server machine, the Java Market itself. This

intensive communication load limits the Java Market's scalability. It can only scale to

large numbers of machines if the processes are CPU-bound. KnittingFactory [BKKK97]

uses a variant approach to web-based metacomputing that could potentially overcome

this limitation.

Third, connecting to a web page and uploading job information does not

fundamentally resemble compiling and running a job on the local system. An ideal

metacomputer is completely transparent - appearing to the user as a local parallel

machine - which, by definition, the Java Market is not. One can increase the transparency

in various ways; local "compiling" might post jobs in a web-accessible location which

the Java Market monitors, for example. The prototype did not implement this

functionality.

Mitigating this lack of transparency, web-based metacomputers are easy to use.

Posting a job to the Java Market, or making one's machine available for work, takes a

few minutes at worst. While users must be actively aware of the Java Market's existence,

using it is not troublesome.

When we began the Java Market research, we knew that these three obstacles existed,

but not whether they would render the product unfeasible. After the prototype, we elected

to seek a scalable metacomputing solution offering greater speed and transparency. This

system is the Frugal System, described in Chapter Seven.

89

6.2.2 Features of the Java Market

In addition to machine and operating system heterogeneity, which the Java Market can

tolerate by virtue of its basic design, the Market must cope with two other forms of

heterogeneity appearing in a distributively owned metacomputing system. The quality of

various machine resources is heterogeneous - some machines have powerful CPUs, while

others have fast network connections. Also, the various machine resources themselves are

heterogeneous.

Two machine resources have particular relevance to the Java Market: the speed of the

machines' CPU and the speed of its connection to the Java Market. The Launch Applet

measures these speeds when a machine connects to the Market. This allows the Java

Market to rationally consider machines with different power and connectivity.

To manage the heterogeneity between these two resources - the dissimilarity between

CPU speed and connectivity - the Java Market converts the impact of assigning a job to

any given machine into a unitless cost. Since we could assign only one job to a machine

at any given time, we developed a new variant of the opportunity cost approach for this

environment. (The prototype did not implement this functionality.)

In this variant of the basic ASSIGN-U algorithm, the scheduler groups producer

machines into a single virtual machine. This machine has two resources: messages per

second and computations per second (at peak capacity). We measure the cost of assigning

a job in terms of the depletion of these pools. Assigning a job to a machine that can

perform cps computations per second reduces the size of our computation pool by cps.

90

This reformulation of the problem gives us a normalized unit cost for each possible

assignment. If necessary, observed trends in what people want to sell their machines for

and buy resources for can be used to convert this to real money. We then use the

opportunity cost strategy for resource assignment.

The Java Market does not provide Quality of Service guarantees. During its

development, we developed the basic framework for a complex decision making strategy.

Producers can register as "opportunistic" machines, making themselves available for an

unknown period of time, receiving compensation for each second of work, or as

"deterministic" providers, selling the Market a fixed block of time for a fixed reward.

Consumers could provide a benefit function describing the value of completing the task

in any given length of time. Even matching benefit functions to producer guarantees,

however, we did not consider the Java Market a viable setting for Quality of Service

guarantees. Dedicated producer machines can still crash or suffer a network partition

separating them from the Java Market. The Java language, as a deliberate design feature,

has limited support for checkpointing. This makes it difficult to protect work against such

crashes. The web interface reduces the speed of program completion. These problems are

not insurmountable, but attempting to provide hard guarantees would interfere with the

Market's primary decision-making function: the search for "profit."

An important concern in metacomputing is awareness of the changing state of the

system resources. The Java Market performs well in this regard, maintaining continuous

contact with all resources. When a resource disconnects or crashes, the Market detects the

loss of the resource and removes it from the list of resources. As noted above, it cannot

91

recover lost work. Circumventing the limits of Java and adding a basic checkpointing

facility was a subject of ongoing research when the project ended.

As noted above, communication- and I/O-intensive jobs create a high communications

overhead on the Market machine. We know from Condor [Con], however, that a single

scheduler can scale to manage hundred of machines. In principle, for CPU-bound jobs,

the Java Market can do the same.

6.3 Lessons Learned

The first major test of the Java Market was performed in the Johns Hopkins Center

for Networking and Distributed Systems (CNDS). Since we had implemented the CPU-

intensive simulation described in chapters 3 and 4 entirely in Java, it was a natural choice

as our test job. We ran one hundred simulations in the following two ways:

• Running the simulation alone on a Pentium II machine using the Java

Developer's Kit, and

• Submitting one hundred copies of the simulation to the Java Market, and,

through it, to six producer machines with combined power roughly equal to

4.7x that of the standalone machine.

The completion time for one hundred executions of the simulation on the standalone

machine, without compilation or remote I/O, was approximately 127 minutes. Using the

Java Market, which had to download and recompile the simulation code each time

(attaching it to the Java Market libraries) and perform I/O remotely, we completed all one

92

hundred executions in 35 minutes. This showed a speedup of approximately 3.6, or 76%

of the best possible speedup. This is comparable to other results (see 1.5.12: Javelin) but

unsatisfying.

Overall, the Java Market research proved the feasibility of the basic design. With web

and Java technology, one can transfer jobs from any machine on the Internet to any other

machine on the Internet. Users can take advantage of this technology to achieve

significant speedups on CPU-intensive parallelizable jobs. Automatically converting Java

code from application to applet format is both possible and quick, so the users need not

rewrite their code for the Java Market or similar applications.

In many contexts, bundles of resources - e.g., machines - can only accept one job,

regardless of their strength. Studying the Cost-Benefit Framework in the Java Market, we

evolved a technique for handling such situations: grouping the machines into a larger

conceptual unit, with depletable pools of each of the resources. This technique can prove

valuable in adapting the opportunity cost approach to many other specialized

environments.

Expecting users to specify job benefit functions, or producers to precisely outlay the

benefit they expect for each second of use, is unrealistic in a system designed for

simplicity. However, the three-legged hierarchy developed here - with consumer benefit

functions, producer cost functions, and the Framework's beneficial theoretical properties

mediating between them - has significant potential in future research efforts. With some

level of bidding and selling automation, or a software agents structure, this approach

could form the backbone of a high-utility metacomputer.

93

This research demonstrated the value of the Java language and web technology as a

basis for a Cost-Benefit Framework metacomputer. These tools offered utility, security,

and ease of use. An ideal environment for these algorithms would preserve these

beneficial features while adding efficiency and elegance. The search for such an

environment led to a study of the new Jini technology from Sun, and thence to the

development of the Frugal System: a fully-functional metacomputer for Jini networks

capturing most of the best features of the Java Market, yielding high performance,

requiring minimal programming effort, and allowing the use of sophisticated

programming techniques.

94

Chapter Seven: The Frugal System

7.1 Description

Remote Method Invocation allows Java objects to call the methods of objects running

on remote machines. This technology allows programs to hand off worker objects from

one machine to another - the program can transfer the worker object, and all its

functionality, by passing the worker as an argument to a remote method. With Remote

Method Invocation, objects can run on any machine that the system considers

appropriate.

Sun Microsystems' Jini builds on RMI technology to create a new, object-oriented,

network paradigm. In Jini, programs running on the network are services, clients, or both.

Clients find the services they need through a central lookup service. Because Java RMI

defines a world of objects rather than traditional programs, services often subclass

standard objects or implement standard interfaces. Clients can find the service they desire

by searching, not for a specific class, but for a standard object or interface.

This model has incredible power. It allows two programs to interact seamlessly even

when neither program's designers knew that the other program existed. A spreadsheet

can find the local statistical analysis package and perform analysis, whether or not the

spreadsheet's developers explicitly considered interactions with that statistical package.

A system management GUI can automatically add a new graphical component for new

system components - even if the relevant peripheral performs a function unknown at the

time of the GUI's creation.

95

In a network built around Jini, the old models of metacomputing do not apply. Java

processes do not behave like processes but rather like virtual machines - the flow of work

moves from one Java object to another, regardless of physical machines, based on the

activation of the services' methods. In this context, one naturally wishes to perform

resource allocation within the network of these virtual machines. The physical resources

of the system exist only as qualities of the appropriate Java programs.

The Frugal System, developed in this work, builds on Jini technology to create a fully

functional metacomputer with strong resource allocation. It includes two major

components: Frugal Resources and Frugal Managers.

Frugal Resources, running on different physical machines, perform computational

work for clients. A Frugal Resource converts a physical machine into a Jini-enabled Java

object with computational power.

A Frugal Manager oversees a collection of Frugal Resources. Frugal Managers use the

Differential PVM Strategy to rationally distribute computational resources - Frugal

Resources - to clients that need computational work performed. In other words, clients

can protect the system against memory overuse and ensure low loads by using a Frugal

Manager to help place their computational tasks.

The Frugal System also contains miscellaneous components such as Java Beans that

display information about the system state and several utilities for the system's users.

96

7:1.1 Basic Concepts

Each Frugal Resource fr encapsulates a physical machine. It transforms the physical

machine into five virtual properties:

• Mfr, the total memory allocated to the Frugal Resource;

• mfr, the free memory available to the Frugal Resource;

• Sfr, the maximum computation speed seen on this machine;

• sjr, the machine's most recently calculated computation speed; and

• Lfr, the maximum load seen on this machine.

In addition, Frugal Resources can perform work and can join groups on the various

lookup services. Group membership helps define the proper use for the Resource. For

example, a Frugal Resource might join the group corresponding to a specific research

project if code associated with that project should use that machine.

Each Frugal Manager fin acts as a scheduler, implementing the Differential PVM

algorithm in the Jini network. It joins a set of groups assigned by an administrator and

performs resource allocation within that group.

97

Jini Lookup Service

«■; -i

m
m

^Frugal .;.!
^Resources

Frugal
Client:

Figure 7.1: Frugal System Layout

Figure 7.1 visually displays the structure of the Frugal System. First, a client discovers

that it needs a computational task performed. It contacts the Frugal Manager and asks

where to perform this task. The Manager returns a reference to the most appropriate

Frugal Resource. The client can then communicate with the resource directly and ask it to

perform work.

A full implementation of the Frugal System exists at this time.

7.1.2 Internal Structure

The Frugal System provides a standard interface for Frugal services, and implements

two such services: Frugal Resources and Frugal Managers. Frugal implements each

service with an administrable server and a service implementation. The server performs

98

Standard management functions for a Jini service: group membership, registration with

the lookup service, and so forth. The implementation performs service-specific behavior.

Frugal also contains several miscellaneous components, such as the Projectable

interface that worker objects must implement.

7.1.3 Frugal Resources

The implementation of Frugal Resources includes the following components:

• The aajninistrable server that maintains the Frugal Resource;

• A Frugal Resource object that can perform work for clients;

• Lookup properties that display information about the resource; and

• A load testing program that keeps track of the system's effective speed.

The server and Resource object are both straightforward in function. Note that Frugal

Resources do not need to implement the Differential PVM Strategy, as the Frugal

Managers handle this. They do not need to implement security directly, as a standard Java

policy file provides customizable security.

Lookup properties associated with the Resource describe its permanent ID as well as

the five Resource properties detailed earlier: total memory, free memory, current speed,

maximum speed, and the maximum load. In addition, the Resource maintains information

on the global maximum load. It does not need this information to function, but can use

this information to advertise its cost.

99

The Java environment does not give Frugal Resources direct access to the total

memory and free memory on the system. Instead, each virtual machine receives a heap of

memory with an initial size and maximum size determined by the user. Querying the

system's memory from within Java returns the size of this heap and the amount of free

memory in this heap. To avoid dependence on system-dependent native code, Frugal

Resources treat the allocated memory as the system memory. Thus, the Differential PVM

Strategy does not protect Frugal Resources directly against thrashing, but rather prevents

memory exhaustion. Choosing the virtual machine heap size carefully, users can use this

property to keep their machines from thrashing.

The Frugal Resource's load tester does not directly measure system load, as accessing

maintained load information is also a highly system-dependent activity. Since Frugal

Resources abstract away the physical machine, we consider it important to make them

executable on any machine. Thus, Frugal Resources measure the system's "load" by

regularly evaluating its speed of computation. The maximum computation speed yet seen

divided by the current computation speed is the system's load. Thus, if we have seen a

computation speed of 3 million computations per second, but the system only performed

half a million computations per second when last tested, we estimate the load as 6.0.

7.1.4 Frugal Managers

The implementation of Frugal Managers includes the following components:

• The administrable server that maintains the Frugal Manager;

• A Frugal Manager object that implements the Differential PVM Strategy; and

100

• A Frugal Manager Ears object that monitors Frugal Resources on the system.

As with Frugal Resource servers, Frugal Manager servers function in a straightforward

manner. A standard administrative interface allows system administrators to choose

which groups on which lookup services a given Frugal Manager monitors. The server

then maintains a registration for a Frugal Manager object in those groups on those lookup

services.

The Frugal Manager object performs scheduling for its clients. When a client consults

a Frugal Manager, the Manager applies the Differential PVM Strategy to the group of

Frugsd Resources it administers. It treats the number of Resources currently administered

as the number of machines "n". It scans them for the smallest and largest calculation

speeds seen so far on any of the machines. This determines the maximum load seen by

the system, as well as the ratio of the speeds of the different machines. From this

information, it can calculate the Differential PVM cost function.

The "Frugal Manager Ears" object maintains an up-to-date list of all the Frugal

Resources that a given Frugal Manager can administrate. It responds appropriately when

new Frugal Resources enter the system or old Frugal Resources leave the system. For

these purposes, a Frugal Resource "leaves" the system when it fails to regularly renew its

registration on the lookup service.

7.1.5 Miscellaneous Components

The Frugal System also contains three miscellaneous components:

• A standard interface for work objects submitted to the Frugal System;

101

A standard administrative object for managing the interface between the Frugal

System and the Jini lookup service; and

A Frugal Ears object for clients that monitors Frugal Managers on the system.

Worker objects that clients wish to allocate using the Frugal System must implement

the Projectable interface. This interface specifies the existence of a "main'' method that

takes an array of objects as arguments and returns an array of objects as its result.

The administrative object performs standard functions. It allows users to customize the

groups and lookup services that a Frugal service connects to, the "Entry" objects that

identify them to other services, and so forth.

The "Frugal Ears" object maintains an up-to-date list of all the Frugal Managers that a

given client can find. It responds appropriately when a new Frugal Manager enters the

system or an established Frugal Manager leaves the system.

7.1.6 Class Structure

Figure 7.2 depicts the general Frugal Service class hierarchy. Grey boxes are Frugal

System code. Boxes with a fancy border belong to the Frugal Manager component of the

system. Shadowed boxes belong to the Frugal Resource component of the system. White

boxes are part of the Jini connection technology or a client's code.

Figure 7.3 shows the class structure for Frugal Resources and Frugal Managers. Note

that clients use only the interfaces for Frugal Resources and Frugal Managers. This

102

means that the underlying Frugal System code can add new functionality without

changing the behavior of established Frugal System clients.

Figure 7.4 shows the class structure for Frugal Resource lookup properties. Finally,

7.5 shows miscellaneous Frugal classes and the non-Frugal classes they depend upon.

Frugal Service Hierarchy

E-.V .'.'■ "V-!,-. -."■ i.^;!^'

Figure 7.2: Frugal Object Hierarchy (Part 1)

103

Frugal Resource and Manager Hierarchy

JJrJiM'mf Frugal Reaorces "^ I ^FmgalManager i; j
^Jtwy-fa^far Frugal managers',

Figure 7.3: Frugal Object Hierarchy (Part 2)

Resource Entries Hierarchy

'•$■&-*'

ij»-j3r^n^^^l

Name
Jini Lookup Property for a Resource

(NameBean Displays)

Figure 7.4: Frugal Object Hierarchy (Part 3)

104

Miscellaneous Objects Hierarchy

mxzw.h i
*i%£m

Submitted Code
User Code

waSw&i
t*V-:£Z%S'?--i

Figure 7.5: Frugal Object Hierarchy (Part 4)

7.2 Frugal System Design

7.2.1 Features of Jini-Based Metacomputers

The Frugal System builds on Jini connection technology. This also gives the project

certain inherent advantages and disadvantages.

The Frugal System, like the Java Market, uses pure Java code. The Frugal System

does not depend on any machine architecture or operating system. Any machine with a

Jini environment and the ability to interpret Java bytecodes can take advantage of the

Frugal System.

The security model used by modern Java environments, outside of web browsers,

possesses considerable sophistication and power. Administrators can tailor the security

105

restrictions on the Frugal System and on individual clients thereof to suit their needs.

Clients cannot use the Frugal System to affect, modify, or damage the machines on which

the Frugal Resources run unless the system policy file gives them specific authorization.

Jini connection technology runs with reasonable efficiency. The performance issues

that plague browser-based programs manifest to a much reduced extent. It could use

approximately 91% of the real resources of the test cluster, as opposed to the Java

Market's 75%, as described below.

Except when mandated by the security policy file, Jini imposes no restrictions on the

communication and file I/O performed by submitted jobs. The Frugal Manager does not

need to act as an intermediary for file and network I/O operations. It acts only as a

scheduler. Therefore, we expect it to scale to manage hundreds of Frugal Resources

simultaneously. For very large clusters, installing multiple Frugal Managers to balance

different sets of Resources is very simple.

Jini technology allows a great deal of transparency. Jini programs often forward

objects to other machines, and in many cases, those objects perform work on the remote

machine. Thus, clients use Frugal services just as they use any other service. To use an

ordinary Java program with the Frugal System requires small modifications to the code.

These changes fit the standard Jini programming model and are not conceptually unique

to the Frugal System.

One obstacle does appear when translating the Cost-Benefit Framework into the Jini

context. As a deliberate design decision, Java virtual machines do not allow direct access

to the resources of the underlying machine. Without using native code, and sacrificing the

Frugal System's machine independence, we could not access load or memory information

106

about the underlying system directly. The Frugal System protects the memory assigned to

its virtual machines from exhaustion, rather than directly protecting the physical

machines' memory from paging. (Naturally, the two tasks interrelate.) It determines

system load and speed by regularly testing the system's computational speed; between

tests, load information is out of date.

7.2.2 Features of the Frugal System

The Frugal System reacts dynamically to changing cluster configurations. When the

set of running and accessible Frugal Resources changes, the Frugal Manager adjusts its

list of resources, machine count, and global maximum load automatically. The cost

calculations used in the Differential PVM Strategy draw on information about the

currently active cluster.

Combining the Frugal System with various Jini-related technologies (such as

JavaSpaces), one can implement advanced metacomputing techniques such as Charlotte's

eager scheduling. A properly designed program can easily implement checkpointing and

limited migration.

The Frugal System makes efficient use of its resources.

7.3 Lessons Learned

We performed the first major test of the Frugal System at the Johns Hopkins Center

for Networking and Distributed Systems (CNDS). We used the simulation described in

107

chapters 3 through 6 as our test job. We ran three thousand executions of this simulation

in the following two ways:

• Running the simulation alone on a Pentium II machine using the Java

Developer's Kit, and

• Distributing 3000 copies of the simulation to the Frugal System, and, through

it, to five machines with combined power roughly equal to 3.56x that of the

standalone machine. We executed 60 copies of the simulation simultaneously

at any one time. Each machine performed two simulations and then returned

their results. The first 60 assignments arrived over the course of a minute. (We

chose these parameters to make good use of the Frugal System, but did not

seek an optimal configuration.)

The standalone machine completed 3000 simulations in 22,533,157ms, or

approximately six hours and sixteen minutes. A purely random assignment of simulation

instances to machines in the cluster resulted in a completion time of 15,191,534 ms, for a

speedup of 1.48x - only 42% of the best possible speedup. The Frugal System, on the

other hand, completed 3000 simulations in 6,938,848ms, slightly under two hours. This

shows a speedup of 3.24x, or 91% of the best possible speedup. The missing 9% results

from the following factors:

• An imbalance in the memory of the machines. Due to differences in physical

memory and running system processes, the virtual machines received memory

assignments of 32,32, 35, 64, and 85 Megabytes of memory.

108

• The update time for CPU load. A machine's awareness of its CPU load updates

every 30 seconds. This reduces the ability of the system to load balance

properly. With a task completing every 2-3 seconds, the update time gave the

system a significant handicap.

• The non-negligible overhead for resource discovery. It took between 73ms and

27 seconds to perform resource discovery and selection, with a median time of

632ms and an average time of 1625ms. This was the time taken to perform

resource selection for two executions of the simulation, which lasted an

average of 3001ms longer. While significant, this is not a 50% overhead - with

60 executions running simultaneously, the periods of resource discovery

overlapped. The Frugal Manager handled approximately 20 requests at any

given time, so this represents a resource selection overhead of 1.8%.

Overall, the Frugal System demonstrates the feasibility of implementing the ideas of

the Cost-Benefit Framework in a real metacomputing system. It contains a complete and

functional implementation of the Cost-Benefit Framework's Differential PVM Strategy,

and can make its decisions quickly.

In adapting the Cost-Benefit Framework to Jini networks, we advanced the Cost-

Benefit Framework's technology in several key respects. First, we observed a weakness

in Enhanced PVM's model. Enhanced PVM assumes that jobs advertise their CPU and

memory requirements, which is not always the case. This observation led directly to the

creation of the Differential PVM Strategy, as described in Chapter Five.

Second, in creating the Frugal System, we confronted the issue of variable system

membership. Machines join a Frugal Manager's resource pool when an administrator

109

Starts a Frugal Resource. Machines leave the resource pool when an administrator kills

the Frugal Resource, removes it from the relevant groups on a lookup service, or the

machine crashes. The set of machines that the Frugal Manager manages may change

completely from one day to the next.

Accordingly, the Frugal Manager "outsources" the computation of the system's

calculated maximum CPU load. That maximum becomes the smallest integral power of 2

greater than the highest load any of the individual Resources currently accessible has

seen. The Manager itself does not maintain maximum load information.

110

Chapter Eight: Conclusions

One can reasonably think of a modern computing cluster as a single conceptual

machine - a metacomputer - that possesses the computational power of all its component

machines. Such metacomputers are often more powerful than strong supercomputers. At

the same time, individual serial or parallel tasks submitted to the metacomputer must run

on specific hardware. To use the cluster to its fullest advantage, the system's scheduler

must appropriately divide its workload among the cluster's various physical machines.

Standard approaches to resource management divide into theoretically sound

approaches, which consider CPU load or memory load, and heuristic approaches, which

consider multiple resources. This work develops a theoretically sound approach to

resource allocation in metacomputers that considers multiple resources and displays good

performance in practice.

We presented the Enhanced PVM Strategy for resource allocation. This strategy

makes permanent job assignments. It is theoretically competitive with the optimal

prescient strategy in terms of maximum resource utilization, assuming permanent jobs.

Its competitive ratio is 0(log n). Experiments demonstrate that this strategy can complete

jobs in approximately 62% of the time that a naive strategy requires. This captures 66-

70% of the benefit of employing the highly tuned Mosix strategy on a kernel enhanced to

allow temporary job assignments.

We presented the Enhanced Mosix Strategy for resource allocation. This strategy

makes temporary job assignments. It both assigns and reassigns jobs. It does not preserve

111

Enhanced PVM's competitive bound. It does, however, share many of the performance

properties of the Enhanced PVM Strategy. Simulations indicate that it can complete jobs

in approximately 87.5% of the time they would require using the Mosix Strategy for

assignment and reassignment.

We presented the Differential PVM Strategy. This strategy adapts the Enhanced PVM

Strategy for environments where the system does not have sufficient information about

jobs entering the system. It captures approximately 91% of the benefit of Enhanced PVM

without knowing anything about jobs until after it places them permanently on a machine.

We implemented these strategies in two metacomputing test beds. The first test bed,

called the Java Market, conceptually converted the entire Internet into a metacomputer.

Users anywhere on the Internet could submit jobs to the Java Market or make their

machine available for use by the Market, simply by connecting to a web page. We built a

functional prototype of the Java Market, able to accept and place jobs on contributing

machines.

The second test bed, called the Frugal System,' enhances Jini networks with

metacomputing capability. We have completed a full version of this system, using the

Differential PVM Strategy to place jobs. This system allows Java objects to perform

work on any machine in the computing cluster, and moreover allows programs to choose

the "best" machine to perform their work on. Using the Frugal System helps to ensure

low CPU loads and, by conserving the memory assigned to the system's virtual

machines, prevent thrashing or memory exhaustion.

In sum, this work introduces a new approach to resource allocation in metacomputers

with beneficial theoretical properties. It shows that using this approach produces

112

excellent results in practice. It implements this work in a new, functional, real-world

metacomputing platform to demonstrate the feasibility of implementing it in practice.

113

References

[AABOO] A Cost-Benefit Framework for Online Management of a

Metacomputing System, Y. Amir, B. Awerbuch, R.S. Borgstrom, The International

Journal for Decision Support Systems, Elsevier Science, 28 (2000): 155-164

[AAFPW97] On-Line Routing of Virtual Circuits with Applications to Load

Balancing and Machine Scheduling, J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, 0. Waarts,

Journal of the ACM, 44(3): 486-504, May 1997

[AAP93] Throughput-competitive on-line routing, B. Awerbuch, Y. Azar, S.

Plotkin, 34th IEEE Symposium on Foundations of Computer Science, 1993

[AAPW94] Competitive Routing of Virtual Circuits with Unknown Duration, B.

Awerbuch, Y. Azar, S. Plotkin, O. Waarts, ACM-SIAM Symposium on Discrete

Algorithms (SODA), 1994

[ABG00] Nimrod/G: An Architecture of a Resource Management and

Scheduling System in a Global Computational Grid, D. Abramson, R. Buyya, J.

Giddy, HPC Asia 2000 (to appear)

[APMOW97] Dynamic Load Distribution in MIST, K. Al-Saqabi, R. Prouty,

D. McNamee, S. Otto, J. Walpole, the 1997 International Conference on Parallel and

Distributed Processing Techniques and Applications, June/July 1997

[AAPW94] Competitive Routing of Virtual Circuits with Unknown Duration,

ACM-SIAM Symposium on Discrete Algorithms (SODA), 1994.

114

[BBB96] Atlas: An Infrastructure for Global Computing, J.E. Baldeschwieler,

R.D. Blumofe, E.A. Brewer, the 7th ACM SIGOPS European Workshop: Systems

Support for Worldwide Applications, September 1996.

[BFKV92] New Algorithms for an Ancient Scheduling Problem, Y. Bartal, A. Fiat,

H. Karloff, R. Vohra, the ACM Symposium on Theory of Algorithms, 1992

[BHJM99] Structural Biology Metaphors Applied to the Design of a Distributed

Object System, L. Bölöni, R. Hao, K. Jun, and D. Marinescu, the 13th International

Parallel Processing Symposium and 10th Symposium on Parallel and Distributed

Processing, April 1999.

[BKKK97] KnittingFactory: An Infrastructure for Distributed Web

Applications, A. Baratloo, M. Karaul, H. Karl, Z.M. Kedem, TR 1997-748, Department

of Computer Science, New York University

[BL98] The MOSIX Multicomputer Operating System for High Performance

Cluster Computing, A. Barak, O. La'adan, Journal of Future Generation Computer

Systems, 13(4-5): 361-372, March 1998.

[BW97] The AppLeS Project: A Status Report, F. Berman, R. Wolski, the 8'

NEC Research Symposium, May 1997.

[Caly] http://www.cs.nvu.edu/milan/calvpso/index.html

[CCINSW97] Javelin: Internet-Based Parallel Computing using Java, P.

Cappello, B. Christiansen, M. Ionescu, M.O. Neary, K.E. Schauser, D. Wu, 1997 ACM

Workshop on Java for Science and Engineering Computation, June 1997.

th

115

[Clear96] Market-Based Control: A Paradigm for Distributed Resource

Allocation, edited by S.H. Clearwater, World Scientific.

[CPBDOO] Deploying Fault-tolerance and Task Migration with NetSolve, H.

Casanova, J. Plank, M. Beck, J. Dongarra, The International Journal on Future

Generation Computer Systems, to appear.

[Con] http://www.cs.wisc.edu/condor/

[Fer98] JPVM: Network Parallel Computing in Java, A.J. Ferrari, ACM 1998

Workshop on Java for High-Performance Network Computing

[FDG97] Scalable Networked Information Processing Environment (SND7E),

G.E. Fagg, J.J. Dongarra, A. Geist, SC97: High Performance Networking and

Computing, November 1997

[Fin93] Specification of the KQML Agent Communication Language, T. Finin

et al, DARPA Knowledge Sharing Initiative Draft, June 1993.

[Glo] http://www.globus.org/

[GS99] Metacomputing with the IceT System, P. A. Gray, V.S. Sunderam, the

International Journal of High Performance Computing Applications, 13(3): 241-252,

1999.

[GWLt97] The Legion Vision of a Worldwide Virtual Computer, A.S. Grimshaw,

W.A. Wulf, the Legion Team, Communications of the ACM 40(1), January 1997.

[Har] http://www.epm.ornl.gov/harness/

116

[HD96] Exploiting Process Lifetime Distributions for Dynamic Load

Balancing, M. Harchol-Balter, A. Downey, ACM Sigmetrics Conference on

Measurement and Modeling of Computer Systems, 1996.

[Inf] http://www.infospheres.caltech.edu/

[IK97] Globus: A Metacomputing Infrastructure Toolkit, I. Foster, C.

Kesselman, International Journal of Supercomputer Applications, 11(2): 115-128,1997.

[Java] http://java.sun.com/

[JavSp] http://java.sun.com/products/javaspaces/index.html

[Jin] http://www.sun.com/)ini/

[Kar98] Metacomputing and Resource Allocation on the World Wide Web,

Mehmet Karaul, doctoral thesis, Department of Computer Science, New York University,

May 1998.

[KC93] CC++: A declarative concurrent object oriented programming

notation, K.M. Chandy, C. Kesselman, Research Directions in Object Oriented

Programming, The MIT Press, 1993, 281-313

[Leg] http://www.cs.virginia.edu/~legion/

[Lin] http://www.sca.com/linda.html

[LLM88] Condor - A Hunter of Idle Workstations, M. Litzkow, M. Livny, M.W.

Mutka, the 8th International Conference of Distributed Computing Systems, June 1988.

117

[MBHJ98] An Alternative Model for Scheduling on a Computational Grid, D.

Marinescu, L. Bölöni, R. Hao, and K. Jun, the 13th International Symposium on

Computer and Information Sciences, IOP Press, 1998.

[MG97] Towards Portable Message Passing in Java: Binding MPI, S.

Mintchev, V. Getov, EuroPVM-MPI, 1997

[Mos] http://www.mosix.org

[Pir] http://www.sca.com/piranha.htm1

[PVM] http://www.epm.ornl.gov/pvm/pvm_home.html

[MPI] http://www.mpi-forum.org/

[NetW] http://nws.npaci.edu/NWS/

[RRFH96] A Task Migration Implementation for MPI, J. Robinson, S. Russ, B.

Flachs, B. Heckel, the 5th IEEE International Symposium on High Performance

Distributed Computing (HPDC-5), August 1996.

[Sar98] Bayanihan: Web-Based Volunteer Computing using Java, Luis F.G.

Sarmenta, the 2nd International Conference on World-Wide Computing and its

Applications (WWCA '98).

[SPS97] The Design of JET: A Java Library for Embarrassingly ParaUel

Applications, L.M. Silva, H. Pedroso, J.G. Silva, WOTUG'20 - Parallel Programming

and Java Conference, April 1997.

118

[WHHKS92] Spawn: A distributed computational economy, C.A.

Waldspurger, T. Hogg, B A. Huberman, J.O. Kephart, W.S. Stornetta, IEEE Transactions

on Software Engineering, 18(2): 103-117, February 1992

[WW98] Market-aware agents for a multiagent world, M.P. Wellman, P.R.

Wurman, Robotics and Autonomous Systems, 1998.

119

DISTRIBUTION LIST

addresses number
of copies

AFRL/IFTO
52 5 3R00XS ROAD
??0M£r MY 1 3441 -4505

JOHN HOPKINS UiXVESSXTT
135 AHES HULL
3400 M. CHAfLES STREET
BALTIMORE* HD 21218-263«

AFRL/IFOIL
TECHNICAL LIBRARY
26 ELECTRONIC ®KY
ROHE Nf 13441-4514

ATTENTION: OTIC-OCC
DEFENSE TECHNICAL IMFS CENTER
8725 Smn J» KINSMAN R9A0# ST£ 0944
FT- 8ELV0IR*- y* 22360-6213

DEFENSE ÄDVAfiCEÖ RESEARCH
PROJECTS h%EHCY
3701 HORT« FAIRFAX DRIi?E
ARLINGTON VA 22203-1714

ATTN: MAM »FP.IffiER
IIT RESEARCH INSTITUTE
201 MILL ST.
ROME* MY 15440

AFIT ACADEMIC LIBRARY
AFXT/LDR*' 2950 P.STREET
AREA Br BL0S 642
tfRIGHT-PÄTTERSON &F3 0H 45433-7765

AFRL/HESC-T0C
2693 S STREET, 8L0S 190
HRI6HT-PATTERS0N ÄFS 0« 45433-7604

DL-1

ATTNs S«C IH PL
us mm SPACE § MISSILE DEF CM
P.O. SOX 1500
BUMTSVILLE AL 3580?~3S01

COMMANDER, COSE 4TLO009
TECHNICAL LIBRARY** MAWC-MB
1 ADMINISTRATION CIRCLE
CHINA LAXE €A 93555-S100

CDR# OS ARM AVIATION & MISSILE CMS
REDSTOME SCIENTIFIC INFORMATION CTR
ATTN: AKSAiY-RD-03-Rs C&OCfJMENTS)
REDSTONE ARSENAL AL 3SB98-5000

REPORT LZBKARY
HS P364
LOS ALAMOS NATIONAL LABORATORY
LDS ALAMOS NM 37545

ATTN: Ö*30i?AM HART
AVIATION BRANCH 3¥C 122.10
F031OA, RK 931
800 IMDEPEMDEMCE A¥£# SW
WASHINGTON DC 20591

AFXWC/NSY
102 HALL 3L¥P, ST£ 315
SAN ANTONIO TX 78243-7016

ATTNs KARDLA *!. Y3ÜRIS0H
SOFTWARE ESSINESRIN5 INSTITUTE
4500 FIFTH AVEHUE
PITTSBUSSH PA 15213

USAF/AXR FDiCS RESEAiCH LABORATORY
AFRL/VS0SACLI3SARY-3LDS 1103)
5 URISHT ÖRI¥£
HANSCOn AFB MA 01731-3004

ATTH: EILEEN LADUKE/0460
MITRE CÖSP0RATIOH
232 SURLINSTON RD
SEDFORD HA 01730

OL-2

0üSDCi*)/i>T$Ä/DyTö
ATTN: PATRICK S. SULLIVAN* Jft.
403 Af?sIY MI¥Y ÖRI¥S
SUITS 300
ARLINSTON VA 22202

AF5?L/IFT
525 BS80KS ROAD
R0M£# NY 13441-4503

AFRL/XFTW
525 BROOKS ROAD
ROME*- MY 13441-4505

«U.S. GOVERNMENT PRINTING OFFICE: 2001-610-055-10072

UL-3

MISSION
OF

AFRL/INFORMATIONDIRECTORATE (IF)

The advancement and application of Information Systems Science

and Technology to meet Air Force unique requirements for

Information Dominance and its transition to aerospace systems to

meet Air Force needs.

