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CRACKING OF A GRADED HALF PLANE 

DUE TO SLIDING CONTACT 

Serkan Dag and Fazil Erdogan 

ME-MECH. Department, Lehigh University, Bethlehem, PA 18015 

Abstract 

In this report the initiation and subcritical growth of surface cracks in graded materials 

due to sliding contact are considered. After a brief introduction the general coupled crack/contact 

problem for a semi-infinite graded medium subjected to a sliding rigid stamp of arbitrary profile 

is formulated. Solving the problem in the absence of any cracks, the complete stress state on the 

surface of the medium is evaluated and critical stress that would cause surface crack initiation is 

identified. The coupled problem is then solved, stress intensity factors are calculated and some 

results are presented. 

1. Introduction 

Graded materials, also known as functionally graded materials (FGMs) are 

multiphase composites with continuously varying volume fractions and, as a result, 

thermomechanical properties. Used as coatings and interfacial zones they reduce the 

residual and thermal stresses resulting from the material property mismatch, increase the 

bonding strength, improve surface properties and provide protection against severe 

thermal and chemical environments. Many of the present and potential applications of 

FGMs involve contact problems. These are mostly load transfer problems in deformable 

solids, generally in the presence of friction as in, for example, bearings, gears, cams, 

machine tools and abradable seals in gas turbines. In such applications the concept of 
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material property grading appears to be ideally suited to improve the surface properties 

and wear-resistance of the components that are in contact. 

From the standpoint of failure mechanics an important aspect of contact problems is 

the surface cracking which is caused by friction forces and which invariably leads to 

fretting fatigue. In most applications material property grading near the surface is used as 

a substitute for homogeneous ceramic coatings. In both cases that is, in both 

homogeneous and graded coatings the surface of the medium consists of 100% ceramic 

which is generally a brittle solid. Hence, the "maximum tensile stress" criterion may be 

used for crack initiation on the surface. Once the crack is initiated, its subcritical growth 

under repeated loading by a sliding stamp is controlled by stress intensity factors at the 

crack tip. The main objective of this study is, therefore, the evaluation of peak tensile 

stresses on the surface for the purpose of studying crack initiation and the stress intensity 

factors for modeling the subcritical crack growth. Specifically, the objective is the 

examination of the influence of friction coefficient and material nonhomogeneity 

parameters on the peak surface stresses and stress intensity factors. The problem is 

considered under the assumptions of plane strain, Coulomb friction and linear 

nonhomogeneous elasticity. 

Studies in contact mechanics in elastic solids were originated by Hertz [1]. The 

technical literature on the subject is very extensive. A thorough description of the 

underlying solid mechanics problems in homogeneous materials may be found, for 

example, in Johnson [2]. Some sample solutions for frictionless contact problems in a 

semi-infinite graded medium are given in [3]-[5]. Details of the analysis of homogeneous 

substrates with FGM coatings having positive or negative curvatures and extensive 

results regarding the stress distribution under plane strain conditions and sliding contact 

are discussed in Guler [6]. 



2. Formulation 

The coupled crack/contact problem for a nonhomogeneous half-plane considered in 

this study is described in Figure 1. The half plane is in sliding contact with a rigid stamp 

of arbitrary profile. The normal and tangential forces transferred by the contact are P and 

rjP respectively where r\ is the coefficient of friction, and contact area extends from 

y = a to y = b. The half-plane contains a surface crack of length d which is 

perpendicular to the surface. In this report, we will formulate the problem and reduce it to 

a system of singular integral equations. Solving the integral equations numerically we 

will examine the effects of material nonhomogeneity and friction on the stress intensity 

factors and contact stresses. Largely, for mathematical expediency it will be assumed that 

the elastic parameters of the medium may be approximated by 

Figure 1: The general description of the crack/contact problem in a graded medium. 

H(x) = /i0exp(7x), K = constant, (la,b) 



where /z is the shear modulus, 7 is the nonhomogeneity parameter, re = 3 - Av for plane 

strain and re = (3 - ^)/(l + v) for generalized plane stress, v being the Poisson's ratio. 

By using the Hooke's law 

-<*.»>-^{(<<+i>i+<3-<}. .<*> 

M«)^{(K + l)| + (3-K)|}, (2b) 

axy(x,y) = ß(x){-^ + -^y (2c) 

The equilibrium conditions o^ j = 0 can be expressed as, 

("+D^ + («-i)ä^+2ä^+7(/'+1%+7<3-K)^ = 0'        (3a) 

,92u     ,        sd
2v     n d2u        ,       ^dv       .       ^.du 

(K + 1)v + (K"1fe + 2ä^ + 7(K-%+7(K-1)ä; = a (3b) 

In previous studies (e.g. Delale and Erdogan [7]) it was shown that the stress intensity 

factors in graded materials are not significantly influenced by the variation in v. Thus, in 

this study too, the Poisson's ratio will be assumed to be constant. Following boundary 

conditions must be satisfied in the solution of the problem 

°xx(0,y) = 0,            crxy(0,y)=0,             - 00 < y < a,     b < y < 00, (4a,b) 

<Txy(0,y) = V<rxy(0,v),          ^j^(0, y) = f(y),      a < y < b, (5a,b) 

<Tyy{x, 0) = 0,            axy(x, 0) = 0,            0 < x < d, (6a,b) 

/ <rxx(0,y)dy= -P, (7) 
Ja 

€yy{X, ±00)   =   £0, (8) 



where the known function f(y) defines the stamp profile. Note that, in addition to f(y) 

the external loads are described by the resultant force P, the remote strain e0 and the 

crack surface tractions given by (6a,b). We also observe that the unknown functions of 

the problem may be identified as follows, 

2/J.Q   d 

K + 1 dx 

2jUo   d 

(v(x,0+)-v{x,0~)) = f1(x), 0<x<d, (9a) 

u(x, 0+) - u{x, 0")) = f2{x), 0<x<d, (9b) 
K + 1 dx 

<rxx(0,y) = My),      a<y<b. (9c) 

In the following sections, we will derive the expressions for the stresses and 

displacements in the terms of the unknown functions fj, (j = 1,2,3). The sum of the 

expressions obtained for each fj must satisfy the boundary conditions of the problem 

given by (4)-(8). 

2.1 The contact problem (/i = 0, f2 — 0) 

In this section, we will determine the stress and displacement field due to stamp 

loading, namely Mv)- This can be accomplished by using Fourier transforms. The 

displacement components can be expressed as 

1   f°° 
us(x,y) = —       U3(x, p)exp(ipy)dp, (10a) 

vz{x,y) = —j    V3(x,p)exp(ipy)dp. (10b) 

In (10) subscript 3 stands for the displacements due to stamp loading. Substituting (10) in 

(3) following ordinary differential equations are obtained: 
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(K + 1)^+7(K + 1)5_p2(/c~1)/73+2ip^+7ip(3"K)vr3 = 0'    (lla) 

2iplt+lip{K"1)uz + {K~l)^+1{K~l)d^~p2{"+ 1)vs = °"     (llb) 

Assuming a solution of the form exp(sx) following characteristic equation is obtained, 

(s2 + 7S - p2 - i\p\63) (s
2 + 7S - p2 + i\p\63) = 0,    63 = My—J- (12a>b) 

Roots of the characteristic equation are given by 

Sl= _I7- 1 vy + V + 4i|p|£3, K(si)<0, (13a) 

32 = - |T- |\/T
2
 +4p2-4i|p|63, £(s2) < 0, (13b) 

53 = - ^7 + \ vV + V + 4iH$3, &(s3) > 0, (13c) 

54 = - I7 + 1 v/72 + 4p2_4i|p|(53) K(S4) > o. (13d) 
Zi Zi 

The displacement components u3 and v3 then can be written as 

u3(z, y) = 7T       ^MjexpisjX + ipy)dp, (14a) 
^ J-OO j=l 

-|      /"oo    2 

v3(x, y) = — /    ^MjNjexp(sjx + ipy)dp, (14b) 
^ft J-oo j-l 

where 

^ ^     ^((^ + 1H
2
+7(^ + 1)3J + P

2
(1-^)) 

Using (2), stresses and displacement derivative can be expressed as follows: 



/   \    -i      />oo    2 

ff»x3(x, y) = -^TT /    Z^C* + !) + ^(3 " «O^exp^-rr + ipy)d/>,     (16a) 
K — J- ^ J-00 j=l 

r>oo    2 

^3(x,y) = -^MfTT- /    y)(5j(3 - «) + ipiVi(« + l))Miexp(5ix +w)dp,     (16b) 
K — -I- ^ J-oo ~i 

tf^sO, y) = /*(aO;r- /    X^ + iV3sJ)Miexp(sjx + ipy)dp, (16c) 

ß 1     f°°        2 
-K-U3(X, y) = — /    zp^Miexp(sjx + tpy)dp. (16d) 

Using the boundary conditions given by (4) and (5a), we can write, 

2 />oo    ^ 

-^- /    ^(SJ'(K + 1) + ^^(3 _ K))Mjexp{ipy)dp 

h(v),        a<y<b 
0, — 00 < y < a, b < y < 00 

(17a) 

Aio£pP + ^)M^p(ipy)dp={^'     _*£*?* aih<y<O0    (17b) 

We express Mj(p), (j = 1,2) in the following form, 

M» = —^-(p) / /3(t)exp( - ipt)dt. (18) 

Then, tjjj(p), {j = 1,2) is determined from 

2 

X)(sj(« + 1) + ipiVj(3 - K))^(P) = (« - 1), ' (19a) 
i=i 

J2(ip + NjSj)^(p) = V. (19b) 

Stresses and displacement derivative for the stamp loading can now be obtained using 

(16), (18) and (19). 
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2.2 The opening mode problem (f2 = 0, /3 = 0) 

In this section we will determine the stresses and displacement derivatives due to 

relative displacement derivative of the crack faces in y - direction, namely f\{x). First, 

we will derive the expressions for stresses and displacement derivative for a crack in 

infinite plane. Then, the solution for the half-plane (x > 0), will be superimposed to 

satisfy the boundary conditions at the free surface x = 0. In the solution of the half-plane 

problem, we will also consider the symmetry about z-axis. For a crack in infinite plane, 

displacement components can be expressed using Fourier transformations as follows: 

1    f°° 
u?(x, y) = ±       U^(Lü, y)cxV(iux)du;, (20a) 

27T./-00 

I       />oo 

v?(x, y) = ±       V^iu, y)exp(iux)du, (20b) 

where subscript 1 stands for the opening mode problem (i.e., fi(x) # 0, f2{x) = 0, 

f3(x) = 0) and superscript (i) stands for the infinite plane problem. Substituting (20) in 

(11) following differential equations are obtained: 

(K-l)^ + (K + l){1iu-u2)U1 + (2iu + 7(3-K))^=0, (21a) 

(2iu + 7(K _ i)Ä + (K + 1)^- + («: - 1)(jiu - u2)Vi = 0. (21b) 
ay dyl 

Assuming a solution of the form exp(ny) the characteristic equation is found to be 

(n2 -6in + tw(7 + iu)) (n2 + 6^ + iu(^ + iu)) = 0,     Si = jJ ———. (22a,b) 

Roots of the characteristic equation are given by 

m = - ]-6x + \\l^2 ~ 4^7 + Si K(m)>0, (23a) 



714     2-     2 

n2 = -6x + - J^uß - 4zw7 + 5*, 3ft(n2) > 0, (23b) 

„3 = - Itfi - I«/4w2-4iw7 + 61
2, §ß(n3) < 0, (23c) 

-<$! - -Jutf-tourf + fi, ®M < 0. (23d) 

Then, for y < 0 and y > 0 stresses and displacements can be expressed as follows: 

-i      />oo    2 

^ J-OO j=\ 

-i      />oo    2 

„P (X, y) = ^~       ^C^-exp^y + iwaOdu;, (24b) 

<£iW) = ^^/^E5SM^p(n,i/ + ^)^) (24c) 

«ö*» y) = ^hrJ^s™"iu)expinjy + iux)duJ' (24d) 
-OO j=1 

f>oo    2 

42(x> V) = M*) T- /    X^' + ^^i)^exP(n^ + «Ja;)dw, (24e) 
^ J -ex ,-i -00 j=1 

coo    2 

—«Jr)(x, y) = — /    J^C^exp^y + iwa;)du;, (24f) 

sUj = Z)M« + 1) + ^W3 - «O)^ (24g) 

i=i 

2 

sSi = £M3 - «) + ^W* + 1))ci' (24h) 
i=i 

where superscript (i~) stands for y < 0. 



y>o 

u\  '{x ,v) = 
-^     /-oo    4 

— /    y^CjQxp(njy + iux)du, (25a) 

(j+)/ v\ \x y) = 
1   Z"00 4 

— /    yjCjA:,exp(n^ + iux)du), 
271" J-co j=3 

(25b) 

°xxi(X ,y) = 
K — X ATI J-oo J=3 

(25c) 

(i+)/ ,v) = 1 0     /      yZSyylj^QX^y + lUX)duj> K — J- ^ J-oo j=3 

(25d) 

°xyl(X ,2/) = 
1      T00    4 

//(z) — /    Y^(wj + itüAj)Cjexp(rijy + iux)du, 
27I"j-oo J=3 

(25e) 

dy 
}(z,y 

1      />oo    4 

) = — /    y^Cjnjexp(njy + iux)du, 
27Tj-oo j=3 

(25f) 

c(i+)  _ 
Jxxlj - 

4 

= £( 
j=3 

iu>(re + 1) + Ajnj(3 — K))CJ, (25g) 

c(i+) _ 
2/2/ii 

4 

3=3 

iu(3 — K) + AJTIJ(K + l))Cj, (25h) 

where superscript (i+) stands for y > 0. In (24) and (25) C; (j = 1,2,3, 4) are ; unknown 

constants and Aj is given by 

AM 
U){K - 1) + (iurf - U?){K + 1) 

nj(2iu + 7(3 — K)) 
(26) 

For a crack in infinite plane and for the opening mode following boundary conditions 

must be satisfied: 

ayyl(x >o) = a^{x,0),                                    -oo<x<oo, 

10 
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47(z, 0) = 47(a:, 0), - oo < x < oo, (27b) 

■^-4-(uf\x,0)-uP(x,0)) =0, -oo<:r<oo (27c) 
K + 1 OX \ / 

ia_if/)fx o) - tMx 0)1-1°' -oo<x<0, d<x<oo 

We first express the unknown constants CJ(UJ) (j — 1,2,3,4) as 

C» = ^pj(") [ A(*)exp( - «**)<**■ (28) 
^Mo Jo 

Then, by using (24), (25) and (27) the following equations can be obtained to determine 

P» 

4 2 

J2(iu(3 - K) + 4^(1 + K))PJ(W) - J](^(3 - K) + AjUj{l + K))PJ(W) = 0, 
j=3 j=l 

(29a) 

4 2 

^(n, + iwAj)Pj(w) - ^2(nj + UJAJ)PJ{U) = 0, (29b) 
i=3 i=i 

iwj^A^-Ca;) - £>P»} = 1, (29c) 

iu[p4(to) + P3(u) - P2(u) - Pi(w)} = 0. (29d) 

Using (34), (25) and (29) the stresses and the displacement derivative for the opening 

mode can be obtained. Note that, if we solve (29) for Pj(u) then substitute in (28) and 

(24e), (25e), we find that 

<i)(^0) = 4;i
)(x,0)=0 (30) 
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which is expected due to the symmetry about x-axis. For the opening mode problem 

til (x, y) is an even and v\ (x, y) is an odd function oft/. In order to satisfy the free surface 

boundary conditions at x = 0, we will now superimpose the solution for the half-plane 

(x > 0) on the solution for infinite plane, and because of symmetry in the half-plane 

(x > 0) solution we will only consider y > 0. Hence, displacement components for the 

half-plane can be written by using the following Fourier cosine and sine integrals: 

/■oo 

u[h){x,y)=        uih\x,a)cos(ay)da, (31a) 
Jo 

/•oo 

vP(x,y)=       V}h\x,a)sm(ay)da, (31b) 
Jo 

where superscript (h) stands for the half-plane problem. Substituting (31) in (3) following 

ordinary differential equations are obtained: 

(K + 1)^+7(K_1)^"a2(K-W(A) + 2a^+7(3"K)T/l(A)=0' 

-a2(K + l)Vi(/l) = 0. (32b) 

Assuming a solution of the form exp(px) we obtain the characteristic equation as, 

(p2 + 7P - a2 - iaSi) [p2 + 7p - a2 + ia8\) = 0, (33) 

where 8i is given by (22b). Roots of the characteristic equation are found to be 

Pl= - i7 + ivr72 + 4o2 + 4ta51,          Sfi(pi) > 0, (34a) 

= - i7 + i>/72 + 4a2-4ia61,          ^t{n) > 0, (34b) n 2 '  '  2 
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p3 = - 17 - i^/72 + 4a2 + 4^i, 3fj(p3) < 0, (34c) 

1 1 
p4 = _ i7 _ -^2 + 4^-4^(51, K(p4) < 0. (34d) 

The stresses and displacements for the half-plane problem are then expressed as follows: 
i 

/»OO 
{h)(x,y) =       (Bzexip(p3x) + BAexp(pAx))cos(ay)da, (35a) 

Jo 
ui 

/>oo 

vf\x,y)= I    {B3D3exp(p3x) + B4D4exp(p4x))sin(ay)da, (35b) 
Jo 

<Äi(*> 2/) = -^4 /£((" + !)Pi + Dia(3 - «))ßiexp(P^)cos(ay)da, (35c) 
K ~~ 1 JO     i^i 

poo   4 

*£i(x'») = -^4 /E«
3
 - «)« + ^'a(K + ^)Bjoxp(pJx)oos(ay)da, (35d) 

« - 1Jo    j=3 

<9 

/-oo   4 

, y) = //(x) /   Y]{DjPj - a)Bjexp(pjx)sin(oiy)da, (35e) 
Jo   i=3 

/■oo 

vff\x,y)= -       a(B3exp(p3x) + B4exp(p4x))sin(ay)da, (35f) 
Jo <9y 

where JBJ (j = 3,4) are unknown constants and .Dj is given by, 

p2(K + l) + a2(l-tt)+7^(1 + 0 ß6, 
a(2Pi + 7(3-ic)) 

For x > 0 and y > 0, the total stress and displacement fields can be obtained by adding 

the equations (25) and (35), that is 

ul(x,y)=uP(x,y) + u?\x,y), (37a) 

vl(x,y)=vf\x,y) + v(t\x,y), (37b) 

axxl(x, y) = ax
i+J(x, y) + ax

h
x\(x, y), (37c) 
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**yi{x, y) = *£?(*, y) + *Sta ^ (37d) 

*wi(*,y) = '£iW) + *Stai')- (37e) 

The constants Bj(a), (.7 = 3,4) are determined by using the free surface boundary 

conditions as follows, 

<W0,y) = afj(0,y) + (7^(0,y) = 0, 0 < y < oo, (38a) 

axyl (0, y) = a^ (0, y) + a™ (0, y) = 0, 0< y < oo. (38b) 

Note that due to symmetry we only consider 0 < y < oo. Using (25c), (25e), (35c), and 

(35e) and after simplifications using by MAPLE, (38) is reduced to following form: 

£((«; + l)Pj + Dja(3 - K))Bj(a) = 

= - -a /  /i(t)dt /    FMi(w, a)exp( - ia^)dw, (39a) 
7T2    2/Xo   Jo J-oo 

V(DiPj- - a)Bj(a) =-—-—/  /^dt /    Fwi(w, a)exp( - iu;t)du; (39b) 
^ 7T    ^0 Jo ./-oo 

where, 

3 — K 
D(w, a) = u;4 - 2i7w3 + (2a2 - 72

)CJ
2
 - 2za27a; + a4 + <*V—rr- (40c) 

The inner integrals in (39) are evaluated in closed form using the theory of residues and 

(39) is reduced to following form to determine the unknown constants Bj(a), (j = 3,4): 

4 

£((«; + l)Pj + Dj<x(3 - K))B*(a,t) = R^ifat), (41a) 
j=3 
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YPJPJ - a)B*(a,t) = Rxyl(a,t). (41b) 
J=3 

Bj(a) is now defined as 

£» = ^JQ
dB*(a,t)cxV[{^ - X^mdt, (42a) 

and, 

*-<*■'>= l^ixMi+^
X2COs{X2t) + (7Al" m + Xl>m{X^) 

(42b) 

_2_J a 
Rxyi{a,t)-      ^-K + 1AlA2(A2 + A2) X 

x |A2(A
2
 + A2 + 7

2/4)cos(A2t) - Ax (A? + A2 - 7
2/4)sin(A2t)} (42c) 

where 

R1 + R2                   .           R1 — R2 ,.~   ,\ 
Ai = A/ 0 ' A2 = V ö ' (43a'b) 

Rx = \/(774 + a2)2 + a2
7

2(3 - «)/(/c + 1), (43c) 

Ä2 = 72/4 + a2. (43d) 

This   completes   the   formulation   for  the   opening   mode   problem.   Stresses   and 

displacements are given by (37) and unknown constants are given by (29) and (41). 

2.3 The sliding mode problem (/1 = 0, /3 = 0) 

In this section, we will determine the displacements and stresses due to relative 

displacement derivative of the crack faces in x-direction, namely /2(x). First we will 

15 



derive the expressions for stresses and displacements for a crack in infinite plane. Then, 

the solution for the half-plane (x > 0) will be superimposed to satisfy the boundary 

conditions at the free surface x = 0. Again, symmetry will be considered in the solution 

of the half-plane (x > 0) problem. Following a similar procedure as given in Section 2.2, 

stresses and displacements for the infinite plane can be written as follows, 

-i      />oo    2 

uP(x,y) = —       J^-exp^y + iux)du, (44a) 
21? J-00 j=l 

1      /"oo    2 

vf\x, y) = 7T     5>AexP(n^ + iL0X^duJ> (44b) 

^ J-OO j=l 

°U^v) = ^^fjZ^U^M^y + i^du, (44c) 

"&W) = ^^£E^SHexp(n;y + zo;,)^ (44d) 

1      /-oo    2 

°%l(*> y) = M*)7- /  E(r^'+ ^^-)^iexp(n^ + ü>x)du, (44e) 

1      />oo    2 

Wf
} (*, y) = — /    ^^exp^y + iwaOdw, (44f) 

^ J -OO j-l 

sUj = X;M«
+*)+A^(3 - K))

^' (44g) 

SU = E(^3 - «)+A^K+1))^-' (44h) 

where subscript 2 stands for the sliding mode or mode II problem and superscript (i~) 

stands for y < 0. 
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y>0 

u2 (a;, y) = -— /    J^-exp^y + iux)du, (45a) 
^ J -oo <;—i 

1     r00   ^ 
uf }(a;, y) = 7T       ^^Ajexp(nJy + iwa;)da;, (45b) 

^ J -OO ,•_■» 

Ä y) = ^hJZ E^SMexp(n,y + «^do/, (45c) 
-oo j=3 

foo    4 

<$?(*> y) = ^ih S-^S^)QXv{njV + iux)du' (45d) 
-ooJ=3 

coo    4 

I 
-oo j=3 

4 

1      /*o°    ^ 

42(^ y) = Kx)IT \    ^2(nJ + iwAj)Ejexp(njy + iux)du, (45e) 
^ J -OO ,—•? 

a i      /-oo    i 

■^uf](x,y) = —       yiEjUjexpinjy + iujx)du, (45f) 
öy 27r>/_00^ 

Ci- = £M«+x)+^W3 -K))^' (45g) 
i=3    ' 

5£y = E^3 - K) + A^K + ^ (45h) 

J'=3 

where superscript (i+) stands for the half-plane (y > 0), rij, (j = 1,2,3,4) is given by 

(23) and Aj is given by (26). The unknown constants Ej, (j = 1, 2,3,4) are determined 

using the following boundary conditions: 

ofJ{x, 0) = a^(x, 0), - oo < x < oo, (46a) 

42(x,0)=^;2
)(a;,0), -oo<x<oo, (46b) 

Ja* („f >(a. o) _ uf )(x, 0)) = ( °« - °° < a'■< °' d < * < °°       (46c) 
K +1 dx V 2   v '  ;       2   v     V      \ h{x),        0<x<d 
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?B-^-(vT)tx.0)-vP(x.0)\=Oi -oo<:r<oo. (46d) %f(or»(a:,0)-4
n(x,0))=0, 

K + 1 OX \ ' 

We first express the unknown constants Ej(u), in the following form 

EAu) = ^^Zj(u) f /2(t)exp( - iut)dt. (47) 
2/io Jo 

Then, using (44), (45) and (46) following equations are obtained to determine Zj(ui): 

4 2 

]£M3 - «) + Aj-rijCl + «0)Z» - 53M3 - «) + A^l + K))ZJ(U) = 0, 
j=3 i=i 

(48a) 

4 2 

^(nj- + iLüA^Zjiu) - Y^irtj + %u>Aj)Zj{u) = 0, (48b) 
j=3 3=1 

iwtf^AjZM - J>Z»| = 0, (48c) 

iw{z4M + Z3(w) - Z2(w) - ZIH} = 1. (48d) 

By using (44), (45), (47) and (48) stresses and displacement derivative for the sliding 

mode problem can then be obtained. Note that if we solve (48) for Zj(u) and substitute 

the results in (47), (44d) and (45d) we find that, 

O$(X,0) = <T%)(X,0) = 0, (49) 

which is expected due to the symmetry about the x-axis. For the sliding mode problem 

u2(x, y) is an odd and v2(x, y) is an even function of y. In order to satisfy the free surface 

boundary conditions at x = 0, we will now superimpose the solution for the half-plane 

(x > 0) on the solution for the infinite plane, and because of symmetry, in the half-plane 

(x > 0) solution we will only consider y > 0. Hence, displacement components for the 

half-plane can be written using Fourier sine and cosine integrals as follows: 
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/•oo 

u(
2
h)(x,y) = /    U2

{k)(x,a)sm(ay)da, (50a) 
Jo 

/•oo 

vf\x,y)=        V2
{h)(x,a)cos(ay)da, (50b) 

Jo 

where superscript (/i) stands for the half-plane problem. Substituting (50) in (3) following 

ordinary differential equations are obtained 

(51a) 

(51b) 

Assuming a solution of the form exp(ta), the characteristic equation is obtained as 

(t2 + 7* - a2 - ia$i) (t2 + 7t - a2 + iatfi) = 0, (52) 

where <5i is given by (22b). Roots of the characteristic equation are obtained as follows 

tx= - i7 + \ v/72+4a2 + 4za^i, K(ti) > 0, (53a) 

t2 = - i7 + iV72 + 4a2-4ia<5i, K(t2) > 0, (53b) 

t3 = - i7 - ^VV + 4a2 + 4ia£i, 9ft(t3) < 0, (53c) 

i4 = - I7 - iv/72 + 4a;2-4za^, 3?(t4) < 0. (53d) 

For the half-plane solution the stresses and displacements can now be expressed in the 

following form 

u2 

/■oo 

(x, y) =  /    (G3exp(t3x) + G4exp(t4x))sin(o;y)dQ;, (54a) 
Jo 

(h) 

Jo 
19 



poo 

vf\x,y) =       (G3H3exp{t3x)+G4H4exp{Ux))da, (54b) 
Jo 

'Sato y) = ^\ rJ2«K + !)*i - QjHi(3 - «))Giexp(iix)sin(ay)da, (54c) 
i=3 

4 

ffW (x, y) = -^4 /°°E((3 " * - aH^ + l))Gj^p(tjx)sin(ay)da, (54d) 

/•oo   4 

^(z, y) = /i(x) /    J> + H^Gjtxpit^cosiay)^, (54e) 

/■oo 

u{
2
h\x,y)=       a(G3exp{t3x) + GAexp{t4x))cos{ay)da, (54f) 

JO <9y 

where Gj, (j = 3,4) are unknown constants and Hj is given by, 

ffj(a) = ,0,   L    ,Q vT '       Ü = 3'4^- (55) J a{2tj + ^(S-K)) 

For x > 0 and y > 0, the total stress and displacement fields can now be obtained by 

adding (45) and (54) as 

u2(x,y)=uf\x,y) + u2
M\x,y), (56a) 

v2(x,y)=vP(x,y) + v¥\x,y), (56b) 

axx2(x, y) = ax2(x, y) + ax
h

x\(x, y), (56c) 

axy2{x, y) = ax
i+J(x, y) + ax%(x, y), (56d) 

ayy2(x, y) = ay$(x, y) + ay%(x, y). (56e) 

The constants G^a), (j = 3,4) are determined by using the free surface boundary 

conditions as follows: 
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ff«2(0, y) = 42(0, V) + ^S(0, y) = 0, 0 < y < oo, (57a) 

(7^(0,y) = <2
}(0, y) + ^(0,y) = 0, 0 < y < oo. (57b) 

Note that due to symmetry we only consider 0 < y < oo. Using (45c), (45e), (54c) and 

(54e) and after simplifications by using MAPLE, (57) is reduced to following form: 

4 

]T((K + 1)*,- - Hja{3 - K))Gj(a) = 
j=3 

1    K — 1    td C°° 
= - 4 ^T1 /  /2(*)d* /    Fxx2(u, a)exp( - zwt)du;, (58a) 

4 11/"^ A00 

^(fij-ti + a)Gj(a) = - — — /  /2(t)dt /    FI2/2(o;, a)exp( - iut)du, (58b) 

where, 

and L>(CJ, a) is given by (40c). The inner integrals in (58) are evaluated in closed form by 

using the theory of residues and (58) is reduced to following form to determine the 

unknown constants Gj(a), (j = 3,4): 

4 
Y/((K + l)tj-Hja(3-K))G*{a,t)=Rxx2(a,t), (60a) 
j=3 

4 

Y^WJ + a)G*(a, t) = Rxy2(a, t). (60b) 

where 

G» = ^ j^G;(a,t)exp((2 _ \^t)f2{t)dt (61a) 
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*-<«•«> = - ITTIMXATW) iXM) + »4)K (61b) 

1     1 o? 

x {7A2cos(A2t) + (2(Af + X2
2) +7A1)sin(A2£)|. (61c) 

In (61) Ai and A2 are given by (43). This completes the formulation for the sliding mode 

problem. Stresses and displacements are given by (56) and unknown constants are given 

by (48) and (60). 

3. Derivation of the singular integral equations 

The stress and displacement fields for the contact, opening mode and sliding mode 

crack problems are given in Section 2 in terms of the unknown functions fx(t), f2(t) and 

fz(t). The total stress and displacement fields can now be expressed as follows, 

u(x,y) = u1(x,y)+u2(x,y)+u3(x,y), 0< x < oo, 0< y < oo, (62a) 

v(x,y) = vi(x,y) + v2(x,y) + v3{x,y), 0< z < oo, 0<y<oo, (62b) 

(?xX(x,y)=axxl(x,y) + axx2(x,y) + (Txx3{x,y), 0< x < oo, 0< y < oo, (62c) 

axy{x:y) = axyl(x,y)+(Jxy2(x,y) + axy3(x,y), 0< x < oo, 0 < y < oo, (62d) 

ayy(x, y) = oyyX(x, y) + ayy2(x, y) + cryy3(x, y) + E{x)e0, 

0< x < oo,    0<y <co,       (62e) 

where expressions due to fu f2 and /3 are given by (37), (56) and (16) respectively. In 

this section, the problem will be reduced to three singular integral equations using the 

boundary conditions (5b) and (6), i.e., by using, 
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<Jyy{X, 0) = = 0, 0 < x < d, (63a) 

Vxyv^ 0) = = 0, 0 < x < d, (63b) 

4^o   d 
K + ldy 

'(0,y) = /(v), a < y <b. (63c) 

Considerin g the expressions given in Section 2, stresses and displacement derivative can 

be written in the following g eneral form, 

&yy{X y)- 
rd   2 

= / yx^^ 
Jo  j=i 

t)fj(t)dt+ f k13(x,y, 
Ja 

t)f3{t)dt + E(x)e0, (64a) 

&xy\% ,y)- 
r-d   2 

= / Y%J(
X
M 

Jo  j=1 

t)fj(t)dt+ I k23(x,y 
Ja 

t)f3(t)dt, (64b) 

4^o 
1 + K 

u(x,y) = /  J2} 

dy               Jo jr( 
<y(x,y,t)fj(t)dt+ f ) 

Ja 
eu(x,y,t)h(t)dt. (64c) 

: 
Then, usin g (63) integral equations can be expressed as follows: 

Cyy{X ,0) = 
pd   2 

= /  Y^ijO^O, 
Jo j=l 

t)fj(t)dt+ f k13{x,0 
Ja 

t)f3(t)dt + E{x)e0 = 0, 

0 < x < d, (65a) 

Uxy\X ,0) 
pd   2 

= / y2k2j(x>° 
Jo  j=1 

t)fj(t)dt+ f k23{x,0 
Ja 

,t)h(t)dt = 0, 

0 < x < d, (65b) 

4^o 
1 + * 

d 

idy 

/•d   2 

"(0,y)= / J2 
Jo j=l 

fe3i(0,y,*)/i(t)dt+ f I 
Ja 

^(0,y,t)f3(t)dt = f(y), 

a <y <b. (65c) 
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In the previous section it was shown that because of symmetry cryy2(x,0) = 0, for 

/i(t) = 0, f2(t) # 0, /3(t) = 0 and axyl(x, 0) = 0 for h{t) ^ 0, f2(t) = 0, /3(t) = 0, 

from which it follows that 

k12(x,0,t) = 0, k2i{x,0,t) = 0. (66a,b) 

The expressions for the other kernels k{j{x, y, t) (k^x, 0, t) for i = 1,2, and fc^O, y, t) 

for i = 3) will be given in the following sections. The kernels will be expressed in the 

following general form, 

/■OO 

k{j(x,0,t) =       Kij(x,t,p)dp,      (i = 1,2, j= 1,2,3), (67a) 
Jo 

/•OO 

k{j(0,y,t) =       Kij(y,t,p)dp,       (i = 3,j=l,2,3). (67b) 
Jo 

With the exception of one case (that being fc33(0, y, t) for 7 < 0) the integrands in (67) 

are bounded and continuous for p < 00 and integrable at p = 0. The singular nature of 

the kernels % is therefore determined by examining the asymptotic behavior of the 

integrands as p tends to infinity. In the following sections we will give the expressions 

and details of the asymptotic analyses for the kernels. 

3.1 feu (x,y,t) 

We first express ku(x, y, t) as follows 

kn(x, y, t) = fcgCr, y, t) + k$\x, y, t), (68) 

where fc[J is obtained from the infinite plane solution and k$ is obtained from the half- 

plane (x > 0) solution. Referring to (25d), k^(x, y, t) can be written as 
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k®(x,y,t) = * + \ eXP
4
(Jx)[jil^y)eMM* ~ t))du, (69a) 

4 

^n(w> y) = J]M3 - «) + ^W1 + «))P;-(w)exp(niy), (69b) 
;=3 

wherenj5 (j = 1,2,3,4), Aj and P, are given by (23), (26) and (29), respectively. 

Changing the limits of integration (69a) can be written as, 

fc{?(*,y,t) = l+_\eXV^X) 1°° { KSM^COS^X - t)) + 

+ K®2(u, y)sm(tü{x - t))}du, (70) 

where, 

K®(<O, y) = *i?fa y) + *!?( - ^ v\ (71a) 

K®(u, y) = i(^?(W> y) - </>[?( - w, y)). (71b) 

In order to extract the singular terms we expand K^ and K^2 into series as u —* oo. 

Following asymptotic expansions are obtained by using MAPLE: 

*S>, y) = {/2o + § + - + {f + O (^j) }exp( - u*), (72b) 

where the leading terms are 

_      4(* - 1) 2(K -1)7 f73  w /2°- -^rr'       /u-TH"• (73a,b) 

Subtracting the asymptotic expansions from the integrands in (70), using integration 

cutoff points for the infinite integrals, evaluating some of the integrals in closed form and 

taking the limit as y —> 0, after some manipulations k^(x, y, t) is reduced to 
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fc}y(x>oJt) = «p(7x){ir^ + ^iL 
.(0/ r(0 (0, Jfii(x,t) + Jff2(x,t) 

/uln(i4iVi|t-x| i(0 (74) 

where A, V, is an integration cutoff point and, 

iW 

J^x, t) = /      ürJliCo;, 0)cos(u;(x - t))dw 

+ 

+ 

Kfl^w, 0) - ÜTjli00^, 0) cos{u(x - t))du 
poo 

■/Ain 

/"OO 

JA[i) 
d Anl 

^(i)oo 

ifilrCw, 0) - /n/w cos(o;(x - i))dw 

,<o 111 cos(ai) — 1 
da 

a 

J, (0 
112 (X,t)=   f 

JO 

i(0 

.(t) K$2(u, 0) - /20 sin(w(x - t))du 

+ 

+ 

(0 L 
112 

>-(i)oo ifiy2(w, 0) - KX™(u, 0) sin(w(:r - t))du 

/"OO 

,//l112 

r(t)00 
K^2°°{Lü, 0) - /20 sin(a;(x - t))du 

(75a) 

(75b) 

where A^2 is another integration cutoff point, 70 is the Euler number, [10]. Second 

integrals in (75 a) and (75b) will be neglected in numerical computation for sufficiently 

large values of integration cutoff points. Third integrals in (75a) and (75b) are evaluated 

in closed form. The expressions used in the evaluation of these integrals are given in 

Appendix A. Referring to (35d) and (42a), k[\\x, y, t) can be written as follows 

k[\\x,y,t) = K + ) eXP^7X) /"*<*>(«, t,*)cos(ay)da 
K — 1 A        JQ 

(76) 
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where 

K^(att,x) = J>2(a)B*(<*,i)exp(ft* + (7/2 - Xi)t), (77a) 

0W(a) = p,-(3 - K) + £>,-a(l + «), (j = 3,4). (77b) 

Pj, (j = 1,2,3,4), Dj(a) and B*{a,t) are given by (34), (36) and (41) respectively. In 

order to extract the singular terms we expand K[\\a,t,x) into series as a tends to 

infinity as follows: 

xexp(7(t-x)/2-(t + x)a), (78) 

where the coefficients of the expansion are also functions of x and t. The leading term is 

given by, 

16 K - 1 sm(6ix/2)sm(6it/2) ,?~ 
2 _   7T AC + 1 S2 

Si is given by (22b). Subtracting K^00 from the integrand in (76), evaluating some of 

the integrals in closed form, using an integration cutoff point A[I for the infinite integral 

and taking the limit as y —> 0, after some manipulations k^' can be written as 

fc8,(*,0,t) = ^^{ri?(»,t) + ^(x>t)- 

- /nexp(7(t - x)/2)Ei( - A^{t + x)) |, (80) 

where Ei() is the exponential integral [10] and, 

»-SW) = (7^3+ 7-^2 + 7X-iexp(7(t - x)/2), (81a) 11 I (t + x)3      (t + x)2     t + x) 
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Jo 

r°° r " 
+ /     K[1\a,t,x)-K[1)co(a,t,x) da 

JA<£> L J 

+ /    lii)co(a,t,x)da, (81b) 
JA$> 

K^\a,t,x) = K$\a,tfx) - {h*a2 + h\a + h0)exV{1{t - x)/2 -{t + x)a), 

1 [ a1      a6 a.  ) 

(82a) 

(82b) 

Second integral in (81b) will be neglected in numerical computation for a sufficiently 

i(fc) large value of A^. Third integral in (81b) is evaluated in closed form. The expression 

used in the evaluation of this integral is given in Appendix A. kfi(x, 0, t) and fc^ (x, 0, t) 

are given by equations (74) and (80) respectively. Adding these two equations kn{x, 0, i) 

may be expressed as, 

fcn(ar,0,t) = exp(7xK + hUs(x,t) + huf(x,t) \, (83) 
^ 7T t — X ) 

where, 

Ä"'(x'*) = 2^1)r">(x'*)' (84a) 

hnf(x,t) = l±li-| - /nln^gjt - x|) + J®(x,t) + J&(x,t)} + 

+ 0^j{ J£\x,t) - Äi«p(7(* - *)/2)Ei( - Ajftt + x)) },       (84b) 
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The terms in (84) are given explicitly by (75) and (81). Note that the first term in (83) is 

the Cauchy singularity associated with a crack in infinite plane, as for the second term we 

can write, 

lim    hns(x,t) = -\- + - -*-- Tg   • (85) 
(x,i)-o      v     ;      n\t + x     (t + xf      (t + xfj 

This term becomes singular as x and t simultaneously approach zero, and is the standard 

expression found for edge cracks in homogeneous materials, (see for example, equation 

(23a) in Dag and Erdogan [8]). 

3.2 k13(x,y,t) 

Referring to (16b), fci3(a;, y, t) can be written as 

M*,y,i) = ^Z^ r^i3(p,x)exp(ip(y-t))dp, (86a) 

2 

Mp, X) = ^(ipNjiK + 1) + Sj{3 - K))il>j(p)exp(sjx), (86b) 

where s, (j = 1,2,3,4), Nj and ^(p) are given by (13), (15) and (19), respectively. 

Changing the limits of integration in (86a) and taking the limit as y -► 0, and rearranging, 

kiz(x, 0, t) can be written as 

M*><M) = ^M J_ f°{ K131(p,x)cos(pt) - Km(p,x)sm(pt)\dp, (87) 

where, 

#131 (P,*) = <MP,a;) + M -p,x), (88a) 

# i32(p, x) = i{<f>13(p, x) - 4>lz{ ~ P, x)). (88b) 
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In order to extract the singular terms we expand Ä"i3i(p, x) and Kiz2(p, x) into series as 

p —> oo. Following asymptotic expansions are obtained by using MAPLE, 

KT^P.x) = {<rilP + d10 + d-f + *f + -• + ^f }exp( - (7/2 + p)*), (89a) 

*&(/>, s) = \d*2lp + d20 + ^ + ^ß + - + ?ß}exp( - (7/2 + p)s), (89a) 

where the coefficients are functions of x. The leading terms are given by, 

= _ 4(K-l)sin(W2)i dii _ _ 4,(«-l)sin(W2)| (90ab) 

and <53 by (12b). Subtracting the asymptotic expansions from the integrands in (87), using 

integration cutoff points for the infinite integrals and evaluating some of the integrals in 

closed form, after some manipulations (87) is reduced to, 

fci3(x, 0, t) = exp(7x) j/i13s(x, t) + hm(x, t)j, (91) 

h13s(x,t) = -——-|ri3i(M) + ri32(M)}, (92a) 

h13f(x,t)=        _ ^ -| Ji3i (x, t) + J132 (x,t) + 

+ 4eXP(:W2) fr(0, (x - it)Am) + r(0, (x + it)Am) 

+ d2iexp( - 7x/2)arctan( - t/x) >, (92b) 

where Am is an integration cutoff point and T(,) is the incomplete gamma function, [10] 

and 

ri3l(M) = {(x^+t^1 + x^Tt*dl°}eM " 7X/2)' (93a) 
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rizM = {j^rkdlx" ^d2°}exp(-7*/2)'      .        (93b) 

Jm(x,t)= Km(p,x)cos(pt)dp 
Jo 

/>oo 

+   /       (#131 (p, X) ~ #131 (P> x))C0s(Pt)dp 
JAm 

/■00 

+ /    rm(p,x)cos(pt)dP> (93c) 
JAm 

Ml32 

Jm(p,x)=-\      K*132{p,x)sin(pt)dp 
Jo 

/•oo 

- /    (K132(p,x) - Kfl2(p,x))sm(pt)dp 
JAll2 

/>oo 
- /    r%2(p,x)sm(pt)dp, (93d) 

where Ai32 is another integration cutoff point and the remaining terms are given by, 

K*m(p,x) = Km(p,x) - (d*np + d10)exp( - (7/2 + p)x), (94a) 

^(p,«) = {^ + ^ + - + ^}exp(-(7/2 + p)x), (94b) 

#i*32(P, x) = Km(p, x) - {d*2lp + d20 + d21/p)exp( - (7/2 + p)x), (94c) 

/S(p,*) = {f+ ^ + - + ^}«P(-(7/2 + p)x). (94d) 

Second integrals in (93c) and (93d) will be neglected in numerical computation for 

sufficiently large values of Am and A132. Third integrals in (93c) and (93d) are evaluated 

in closed form. The expressions used in the evaluation of these integrals are given in 

Appendix A. Also note that, 
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,       /        N 1  f       2xt2 2f3 \ (QK\ lim    h13s(x,t) = -\ +2s2-V( 2, .2.2 \- W 
(x,t)-*o irl(x2+tz) {xl+tz) J 

This term becomes singular as x and t simultaneously approach zero, and is the standard 

expression obtained for the homogeneous materials (see, for example, equation (23b) in 

Dag and Erdogan [8]). 

3.3 k22(x,y,t) 

We first express k2i{x, V-, t) as follows 

k22(x, v, t) = fcg(x, y, t) + k&\x, y, t), (96) 

where fc§ is obtained from the infinite plane solution and k$ is obtained from the half- 

plane (x > 0) solution. Referring to (45e) k£(x, y, t) can be written as 

kg(s,y,t) = (« + ^fAKW^ - *))<*", (97a> 

0g (W> y) = £>J + iuA^Zjiu^MnjV), (97b) 

whereni5 (j= 1,2,3,4), A3 and Z, are given by (23), (26) and (48), respectively. 

Changing the limits of integration (97a) can be written as, 

+ K$2{u, y)sm(u;{x - t))}du, (98) 

where, 

K&(u, y) = <f>$(u, y) + 4k~ ". v)> <"*> 
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K®(u,y) = i(4$(u,y)-<$(-u>iyj). (99b) 

In order to extract the singular terms we expand if 221 and -^222 ^nto ser*es as u ~* °°- 

Following asymptotic expansions are obtained by using MAPLE 

K^{^y) = \hi + kJi + ... + hii+o(±)^M-^), U        UJ3   ' '   u11   '  "Iw13 

&22 &212 ff<*>,y) = U2o + ^f + - + ^f+0(-h)^exp(-^) 
LOL LÜ1 

(100a) 

(100b) 

where the leading terms are 

4 
C20 

K + l' 
hi = 

27 
K + l' 

(101a,b) 

Subtracting the asymptotic expansions from the integrands in (98), using integration 

cutoff points for the infinite integrals, evaluating some integrals in closed form and taking 

the limit as y —» 0, and after some manipulations k^](x, y, t) is reduced to, 

1    1 
fcg(x, 0,t) = exp(7xK + (« + !)— J^iOM) + J^2(x,t) 

irt — x 47T 

r(0. r(0, 

-fenln^lt a; 

where, 

J, 221 (*,*) = / 
./o 

L221 '(0 fQ21(w, 0)cos(u;(:r - *))dw 

+ 

+ 

üfä(w, 0) - K%?°{u, 0) cos(a;(a: - t))dw 
/•oo 

JA{i) 

/•OO 

*/A221 

>-(i)oo 

tf&iV» °) - Ww cos(o;(a: - t))dw 

iW A22i cos(a) - 1 

a 
da}, 
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(103a) 



J222'x 

JO 

iW 

K%22(u, 0) - k20 sin(o;(x - i))cL> 

+ 

+ 

(0 
222 

^(i)oo K%2{u, 0) - K$£°(u, 0) sin(o;(x - t))du 

poo 

° A222 

-(i)oo iffiV» 0) - k20 sin(w(:r - t))dw, (103b) 

A22\ and A^22 are integration cutoff points and 70 is the Euler number, [10]. Second 

integrals in (103a) and (103b) will be neglected in numerical computation for sufficiently 

large values of integration cutoff points. Third integrals in (103a) and (103b) are 

evaluated in closed form. The expressions used in the evaluation of these integrals are 

given in Appendix A. Referring to (54e) and (61a), k{
22\x, y, t) can be written as follows 

*      Jo 
^22 (x> y 

(104) 

where 

K$\a, t, x) = J2(a + Hjtj)G){a, t)exV(tp + (7/2 - \x)t\ 
i=3 

(105a) 

tj, (j = 1,2,3,4), Hj(a) and G*(a, t) are given by (53), (55) and (60), respectively. In 

order to extract the singular terms we expand K22(a,t,x) into series as a tends to 

infinity as follows: 

r(h)oo, K£>°°(a: t, x) =     m\a> + m*a + m0 + -^ + -f + --- + -7+O[-Jl>x mi       7712 

a       a2 

rn-j 

a* 

x exp(7(t — x)/2 — (t + x)a), (106) 

where the coefficients of the expansion are also functions of x and t. The leading term is 

given by, 
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16    1    sin(gig/2)sin(git/2) ^Q- 
f"2~   7T #6+1""" e\ 

and 8X is given by (22b). Subtracting K£
)O

° from the integrand in (104), evaluating some 

of the integrals in closed form, using an integration cutoff point A22 for the infinite 

integral and taking the limit as y -> 0, after some manipulations k\2 can be written as, 

k&\x,0,t) = (* + l)?^{r&\x,t) + j£\x,t) - 

- miexp(7(t - x)/2)Ei( - A%\t + x)) |, (108) 

where Ei() is the exponential integral [10] and, 

fA72 
J2

{
2

h\x,t) = /  " K!$*(a,t,x)da 
Jo 

poo _ 

+ /      K^(a,t,x)-K^(a,t,x) da 

+ lhr2y°°(a,t,x)da, (109b) 
"^22 

K$*(a, t, x) = K$(a, t, x) - (m*2a
2 + m\a + m0)exp(7(i - x)/2 - (t + x)a), 

(110a) 

r^(a,t,x) = i[^ + ^ + --- + ^yxV(1(t-x)/2-(t + x)a). (110b) 

Second integral in (109b) will be neglected in numerical computation for a sufficiently 

large value of A$. Third integral in (109b) is evaluated in closed form. The expression 

used in the evaluation of this integral is given in Appendix A. k% (x, 0, t) and k>22' (x, 0, t) 

are given by equations (102) and (108) respectively. Adding these two equations 

k22(x, 0, t) is expressed in the following form, 
35 



k22(x,0,t) = exp(7z){-- + h22s(x,t) + h22f(x,t) \, (111) 
(7T t — X J 

where, 

h22s(x,t) = ^±±r%(x,t), (H2a) 

h22f(x,t) = (K + i)i-| - fc11ln(4?1|t - x|) + J^(x,t) + •*$,(*,*)} + 

+ ^h&\x, t) - miexp(7(t - x)/2)Ei( - 45}(t + xj) }.        (H2b) 

The terms in (112) are given explicitly by (103) and (109). Note that the first term in 

(111) is the Cauchy singularity associated with a crack in infinite plane, as for the second 

term, we can write, 

hm     h22s(x,t) = -[ + - -« - -Ö   ■ (113) 
(x,*)-o 22n      ;      ir\t + x      (t + x)2      (t + xfj 

This term becomes singular as x and t simultaneously approach zero, and is the standard 

expression found for edge cracks in homogeneous materials, (see for example, equation 

(23a) in Dag and Erdogan [8]). Also, note that if the medium is homogeneous (i.e., 

7 = 0), h22f = 0 in (111) and hUf = 0 in (83) and kn(x,0,t) = k22{x,0,t), but if 

7^0, this equality is not valid and consequently for graded materials 

kn(x,0,t) ^k22(x,0,t). 

3.4 k2S(x,y,t) 

Referring to (16c), k2$(x, y, t) can be written as, 

k2s(x,y,t) = ^M r^{p,x)^{ip{y-t))dPl (H4a) 
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2 

4>23(p, x) = Y,{W + NjSjWjWexpisjx), (114b) 
3=1 

where Sj, (j = 1,2,3,4), Nj and ipj{p) are given by (13), (15) and (19), respectively. 

Changing the limits of integration in (114a) and taking the limit as y -> 0, and 

rearranging, k23(x, 0, t) can be written as 

k23(x,0,t) = ^^/°°{ K231(p,x)cos(pt) - K232(p,x)sm(pt)}dp, (115) 

where, 

K231(p, x) = (j>23 {p, x) + 4>23(-p,x), (116a) 

K232(p,x) = i(<foz(p,x) - fo3( ~ P,x)). (H6b) 

In order to extract the singular terms we expand K23i(p, x) and K232{p, x) into series as 

p —► oo. Following asymptotic expansions are obtained by using MAPLE, 

^1(p,x) = {ehp + e10 + ^ + ^ + - + ^f}eXp(-(7/2 + p)rr), (117a) 

K&(p, x) = \e*2lp + e20 + J + ^ + -- + ^f}exp( - (7/2 + p)x), (117b) 

where the coefficients are functions of x. The leading terms are given by, 

4r?sin(<$3:r/2)                         4sin(63x/2) MlRaM 
en = , e21 = -: , (118a,b) 

O3 <->3 

and 63 by (12b). Subtracting the asymptotic expansions from the integrands in (115), 

using integration cutoff points for the infinite integrals and evaluating some of the 

integrals in closed form, after some manipulations (115) is reduced to, 

k23(x,0,t) = exp(ix){h23S(x,t) + h23f(x,t)}, (119) 
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hm{x,t) = ^{r23i(M) + r232(x,t)}, (120a) 

h23f(x,t) = —I J23i(x,t) + J232(x,t) + 

+ eiiexp(
2"7x/2) [r(o, (x - it)Am) + r(o, (x + it)A231)} 

+ e2iexp( - 7x/2)arctan( - t/x) \, (120b) 

where A23i is an integration cutoff point, T(,) is the incomplete gamma function, [10], 

7-231 (M) = {(x
X2 + ^2)2

eii + ^2eio}exp( - 7x/2), (121a) 

f    — 2tx t 1 
rm(x,t) = | 2e^ - ^-^e20 jexp( - 7a:/2), (121b) 

Jwi(x,t)= K*2Zl(p,x)cos{pt)dp 
Jo 

/•oo 

+ /    (K23l{p,x) - K^{p,x))cos{pt)dp 
JMZI 

/■oo 

+ /    r^(p,x)cos(pt)dp, (121c) 

/"-<4-232 

^232(P,«)=   -   / ^232(P,z)sin(pf)dp 

(K232{p,x) - K£2{p,x))sin(pt)dp 
A232 

/•oo 

- /    r£2(p,x)sin(pt)dp, (121d) 
JA232 

and A232 is another integration cutoff point. The remaining terms are given by 

K^(p,x) = K231(p,x) - {e*up + e10)exp( - (7/2 + p)x), (122a) 
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/a(p.*) = {^ + ^ + - + ^}«p(-<7/3+ri*). <122b> 

ÄJj2(p, x) = Km(ß, x) - (e'21f> + e20 + e21/p)exp( - (7/2 + p)x), (122c) 

/S(p,*) = {^ + ^ + - + ^}»P(-(7/2 + rt*). (123d) 

Second integrals in (121c) and (121d) will be neglected in numerical computation for 

sufficiently large values of A2zi and A2z2- Third integrals in (121c) and (121d) are 

evaluated in closed form. The expressions used in the evaluation of these integrals are 

given in Appendix A. Also note that 

/ x 1   ( 2xt2 2tx2 1 MA\ 

This term becomes singular as x and t simultaneously approach zero, and is the standard 

expression obtained for the homogeneous materials (see, for example, equation (23c) in 

Dag and Erdogan [8]). 

3.5 k31(x,y,t) 

We first express /c3i(x, y, t) as follows: 

k31(x,y,t) = k^(x,y,t) + k^(x,y,t), (125) 

where k$ and k$ are obtained from the infinite plane and half-plane (x > 0) solutions 

respectively. Referring to (25f), k^(x, y, t) can be expressed as, 

I     poo 

ktlix,y,t) = -       41^v)«pM* - t))du, (126a) 
7? J — oo -00 

4 

4}(u, y) = ^»^exp^y), (126b) 
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rij, (j - 1,2,3,4), Pj are given by (23) and (29), respectively. Changing the limits of 

integration, (126a) can be written as 

*£?(*,y,t) = - /    { K®(u,y)co$(u{x - t)) + K®(u,y)sin(u>(x - t)) \du      (127) 
Tf JO      ^ J 

where 

K§M y) = <t$(u, y) + <$( - u, y), (128a) 

K®(u,y) = i($(u>,y) - $(-u,yj). (128b) 

In order to extract the singular terms we expand K^x and K^2 int0 series as u —» oo. 

Following asymptotic expansions are obtained by using MAPLE 

K®?(ü>,y) = {g^w + gn + ^ + ^ + - + gf }exp( -ojy), (129a) 

K^{u,y) = j&w + fco + ^ + gf + - + flf }exP( ~^)> (129b) 

where the leading terms are given in Appendix B. Note that the coefficients of the 

expansion are functions of y. Subtracting the asymptotic expansions from the integrands 

in (127), using integration cutoff points for the infinite integrals, evaluating some of the 

integrals in closed form and taking the limit as x —> 0, after some manipulations 

k^(x, y, t) is reduced to 

k£(0,y,t) = £{rg(y,t) + J®(y,t) + J§2(y,t) 

i(o,(t/-it)4?1)+r(o,(y + ^4?1)' 

+ 02iarctan(-i/y)l, (130) 

ffn 
2 
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where A3\\ is an integration cutoff point, T(,) is the incomplete gamma function [10], 

'#(**) = 4^?9{l + ^9l°" W^)A ' y^920' (131a) 

Jm(y>t)= f mK§:(u;,y)cos(ut)du 
Jo 

+ r {K®(U>,y) - #£>,y)}cos(ut)dw 
"'■^311 

/•OO 

+ /    r®™(u,y)cos(vt)du, (131b) 
Mi 

/•4l2 
^£2(1/»*)= - /      ^?2*(^y)sin(^)du; 

JO 

- r {#&(«>,!/) - ^?2°°(a;,y)}sin(^)^ 
"'•^312 

/»OO 

" /    r3
(?2°°(a;,y)sm(a;t)da;, (131c) 

"/-A312 

^312 is another integration cutoff point and the remaining terms are given by 

K$(ü>, y) = K&(u>> V) - (rfiw + Sio)exP( " wy), (132a) 

4r(-,y) = {§ + f + - + ^}«P( " **)• <132b> 

K^(CJ, y) = K$2(u, y) - (g*21u + g20 + W^)exp( - uy), (132c) 

rSr^v) = {ff + ff + - + ?f}exp( - -/), (132d) 

Second integrals in (131b) and (131c) will be neglected in numerical computation for 

sufficiently large values of A3\\ and A{£2. Third integrals in (131b) and (131c) are 
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evaluated in closed form. The expressions used in the evaluation of these integrals are 

given in Appendix A. Referring to (35f) and (41a), k$(x, y, t) can be written as follows: 

/•oo 

A;g)(x,y,t) = 2/   K£\a,t,x)sm(ay)da, (133) 
Jo 

where 

K^(a,t,x) = - aJ2B*(a,t)exv(Pjx + (7/2 - XJt), (134) 

pj, (j= 1,2,3,4) and B*{a,t) are given by (34) and (41), respectively. In order to 

extract the singular terms we expand K^(a,t, 0) into a series as a tends to infinity as 

follows: 

Kg)oo(o;,t,0) = |^a + zo + ^ + ^ + -- + ^}exp((7/2-a)t) (135) 

where the coefficients of the expansion are functions oft. The leading term is given by 

= _ 2 Ksin(<M/2) (136) 
h <K  (K + 1)6I ' 

<5i by (22b). Subtracting K^00 from the integrand in (133), evaluating some of the 

integrals in closed form, using an integration cutoff point for the infinite integral and 

taking the limit as x —> 0, after some manipulations fc^i can be written as 

fcffCO, y, t) = 2{rg)(y, t) + z1exp(7t/2)arctan(y/t) + J^\y, t)}, (137) 

r8)(y,t)={(Ä?^+^°hW2)> (138a) 
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4(A) 

J, 
(h) 

31 K^*(a,t)sia(ay)da (v,*) = f 
Jo 

+ /      K$\a,t,0) - K$)co(a,t,0) sm(ay)da 
JA{? L J 

/"OO 

+        rg)00(a,t)sm(ay)da. (138b) 

In (138) Agf is an integration cutoff point and the remaining terms are given by 

<h) K£}*{a,t) = O,t,0) - (ila + i0 + ii/a)exp((7/2 - a)t), 

nrM = \%+%+-"+%\«*tw*-°)*)- 

(139a) 

(139b) 

Note that second integral in (138b) will be neglected in numerical computation for a 

sufficiently large value of A^ and third integral is evaluated in closed form. The 

expression used in the evaluation of this integral is given in Appendix A. k^{(0, y, t) and 

k£\0,y,t) are given by equations (130) and (137), respectively. Adding these two 

equations, k$i (0, y, t) is expressed in the following form, 

MO, V, t) = hu(y, t) + hsifiy, t), (140) 

where, 

his(y,t) = -r$(y,t) + 2rl\y,t), (141a) 

r(0 r«, hzif(y,t) = ^ J£i(y,t) + JSJifat) + 

+ 011 r (oAv-it)4£l)+r(o,(v + it)4ii) + £2iarctan( - t/y) 

+ 2\ J^'(y,t) + z1exp(7t/2)arctan(y/t) \. (141b) 

43 



The terms in (141) are given explicitly by (131) and (138). Also, note that, 

lim   >(^)=-;T^. (142) 

This term becomes singular as y and £ simultaneously tend to zero, and is the standard 

expression found for homogeneous materials, (see, for example, equation (23d) in Dag 

and Erdogan [8]). 

3.6k32(x,y,t) 

We first express fc32(x, y, t) as follows, 

k32(x,y,t) = k^(x,y,t) + k^(x,y,t), (143) 

where k$ and k$ are obtained from the infinite plane and half-plane (x > 0) solutions 

respectively. Referring to (45f) k^(x, y, t) can be expressed as 

•I      /«oo 

feg(x,y,t) = -       4>®(u,y)exp(ia;(s - i))dw, (144a) 
^ J -oo 

0g(W, y) = ^Zj(a;)njexp(n^), (144b) 

where r*,-, (j = 1, 2,3,4) is given by (23) and Z, is given by (48). Changing the limits of 

integration (144a) can be written as 

fcg(*,y,t) = i|°°{ Kll{u,y)oos{uj{x - t)) + K&(u>,y)sm(u(x - t))}du,     (145) 

where 

K&fay) = 4W) + *S(-",»), (146a) 
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K$My) = »(*g(w>y) - 4k - W,</)). (146b) 

In order to extract the singular terms we expand K^\ an<i -K322 mt0 series as u —> 00. 

Following asymptotic expansions are obtained by using MAPLE: 

^r(«.y) = {^ + 'io + ^ + ^ + "- + ^}«P(-^). (147a) 

^r(^y) = {^ + ^o + ^ + ^ + --- + ^}exp(-^), (147b) 

where the leading terms are given in Appendix B. Note that the coefficients of the 

expansion are functions of y. Subtracting the asymptotic expansions from the integrands 

in (145), using integration cutoff points for the infinite integrals, evaluating some 

integrals in closed form and taking the limit as x —> 0, after some manipulations 

£32 (x, y, t) is reduced to: 

4>(0, y, t) = \{r%, t) + J®(y, t) + jg(y, t) 

^ 

+ Z21arctan(-i/y)l, (148) 

1« where A^ is an integration cutoff point, T(,) is the incomplete gamma function, 

r»fo*> = ^f'11 + TT^'10 " (^W" ^20' (149a) 
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Jä(v,t)= /      K£;(u,y)cos(ut)du 
Jo 

+ / {i) {Kg(u,y) - K^(ui,y)}cos(ut)du 

/•oo 

+ /    r$™(u,y)cos{vt)du, (149b) 
J41 

322   / ^ 
J£2M= - I      K$£(u>,y)sm{ut)du> 

o 

L ,/A322 

t) {K&fay) - K^{u,y))sm{ut)du> 
!22 

/>00 

- /    r$°(u,y)sm{ut)du, (149c) 
° -^322 

^322 is another integration cutoff point and the remaining terms are given by 

#«>, y) = K<il{u, y) - (rnu + l10)ap( - uy), (150a) 

r%r(«,v) = {^f + lf3 + - + £g}«P( - a*), (150b) 

Äg2>, y) = Kg2(^ 2/) - O + ho + W<")exp( - uy), (150c) 

iTtov) = {% + ä + - + ^}-p( - «■*>. <150d> 

Second integrals in (149b) and (149c) will be neglected in numerical computation for 

sufficiently large values of A32\ and A^2. Third integrals in (149b) and (149c) are 

evaluated in closed form. The expressions used in the evaluation of these integrals are 

given in Appendix A. Referring to (54f) and (61a), k$(x, y, t) can be written as follows: 

/•oo 

k{£(x,y,t) = 2      Kg){a,t,x)cos(ay)da, (151) 
Jo 
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where 

K&\a}t,x) = a^2G*(a,t)exp(Pjx + (7/2 - \x)t), (152) 

tj, (j = 1,2,3,4) is given by (53) and G*(a, t) is given by (60). In order to extract the 

singular terms we expand K^\a, t, 0) into a series as a tends to infinity as follows 

ffg)oo(a,t,0) = Ua + no + ^ + ^ + --- + %}exp((7/2 - a)t), (153) 

where the coefficients of the expansion are functions oft. The leading term is given by 

* _      2 «sin(frt/2) ü54) 
1 7T    (K + l)6i 

and <5i by (22b). Subtracting K$°° from the integrand in (151), evaluating some integrals 

in closed form, using an integration cutoff point for the infinite integral and taking the 

limit as x —> 0, after some manipulations A;^ can be written as 

kg\0,y,t) = 2l[r£\y,t) + jg\y,t) + 

+ T r(0,(t + iy)A<$)+r(0,(t-iy)A. (A) 
32 exp(7t/2)   , (155) 

where, 

r'M = I W^fnl + ^n}exp(7*/2)" (156a) 

J&)(y,t) = /      Kg)*(a,t)cos(ay)da 
Jo 

+ /      tfffCa, i, 0) - iCg)0O(a, t, 0) cos(ay)da 
M?L J 

+ I    r£)co{a,t)cos(ay)da. (156b) 
^32 
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A$ is an integration cutoff point, and the remaining terms in (156b) are given by 

<h) K{^*(a,t) = #gj(a,t,0) - (n*a + n0)exp((7/2 - a)t), 

r3?
)0>, t) = /^ + ^ + ... + ^}exp((7/2-a)t). 

[ a1     a6 a' J 

(157a) 

(157b) 

Note that second integral in (156b) will be neglected in numerical computation for a 

sufficiently large value of A$ and third integral is evaluated in closed form. The 

expression used in the evaluation of this integral is given in Appendix A. fc^ (0, y, t) and 

k^(0,y,t) are given by equations (148) and (155), respectively. Adding these two 

equations, fc32 (0, y, t) may be expressed in the following form, 

ks2{0,y,t) = h32s(y,t) + h32f(y,t), (158) 

where 

hs2s(y,t) = -r®(y,t) + 2r™(y,t), (159a) 
7T 

hs2f(y,t) = ^h^(y,t) + J3%(y,t) + 

^ 
'(o^y-m^+r^iy + it^) + Z2iarctan( - t/y) 

rW,.   ^  .  ni + 2{J£>(y,t) + T{0,(t + iy)A^)+r{0,(t-iy)A (h) 
32 exp(7i/2U.      (159b) 

The terms in (159) are given explicitly by (149) and (156). Also, note that, 

4       t3 

lim    h32s (y, t) = - ———5 • 
M-*0 7T (y2 _|_ py 

(160) 
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This term becomes singular as y and t simultaneously tend to zero, and it is the standard 

expression found for homogeneous materials, (see, for example, equation (23e) in Dag 

and Erdogan [8]). 

3.7kZ3{x,y,t) 

Referring to (16d), k33(x, y, t) can be written as 

2    1  f°° 
hz(x,y,t) = —T- /    <fai(p,x)exp{ip(y-t))dp, (161a) 

2 

<Mp, X) = ipY^^j(p)QMsjx), (161b) 
j=l 

where, Sj, {j = 1,2,3,4) and ^-(p) are given by (13) and (19), respectively. Changing 

the limits of integration in (161a), fc33 can be written as 

2     1  /*°° r 1 hz{x,y,t) = —--        Km(p,x)cos(p{y-t)) + K332(p,x)sm(p(y-t)) dp, 
K + ITTJO    L -i 

(162) 

where, 

#331 (p,x) = WP, x) + (j)33( - p, x), (163a) 

#332(P, X) = i(<f>33{P, X) ~ 033( ~ P, x)). (163b) 

In order to extract the singular terms we expand K33\ and K332 into series as p —> oo. 

Following asymptotic expansions are obtained using MAPLE: 

#3Cf2(P^) = {c20 + ^ + ^ + - + ^}exp(-px), (164b) 
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where the leading terms are given by 

cio = - 27?(AC_1)' c2o= ^{K + 1). (165a,b) 

Subtracting the asymptotic expansions from the integrands in (162), using integration 

cutoff points for the infinite integrals, evaluating some integrals in closed form and taking 

the limit as x —> 0, after some manipulations (162) is reduced to: 

MO, y,t) = \ -- r]^—-6(t -y) + h33f{y, t) 
[     lit — y        K + l 

2 ( 7T 
h33f(y,t) = < - cnln(A33i|t - y\) - c2ixsign(t - y) 

7T(K + i)   [_ * 

+ Jm(y,t) + Jm(y,t)Y 

where A331 is an integration cutoff point, 6() is the Dirac delta function, 

rA3zi r 

J- 331 (y,t)= / 
Jo 

Km(p, 0) - cio cos(p(y - t))dp 

+ 

+ 

r°° r 
/ ^331 (P,0) 

■M33I 

K^(p,0) cos(p(y-t))dp 

cn<7o + 

rMzi 

#331 (/>>°) - cio - cn//>Jcos(p(y - t))dp 

A33il*-2/lcos(a)_i 
■da 

a 

f   2 r i 
J332(y, t)= K332(p, 0) - c20 - c2i/p sin{p(y - t))dp 

Jo       L J 

/      Km(p, 0) - KH2(p, 0)J sin(/>(y - i))dp 
•^332 

/•oo  r 1 

/      K£2(p, 0) - c20 - C2i/pj sin(p(y - t))dp, 
J A.V11 

+ 

(166a) 

(166b) 

(167a) 

(167b) 
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A332 is another integration cutoff point and 70 is the Euler number, [10]. Second integrals 

in (167a) and (167b) will be neglected in numerical computation for sufficiently large 

values of A331 and ^4332. Third integrals in (167) are evaluated in closed form. The 

expressions used in the evaluation of these integrals are given in Appendix A. Also, note 

that first two terms in (166a) are the singular terms and they are the standard expressions 

obtained for homogeneous materials, (see, for example, equation (22c) in Dag and 

Erdogan [8]). 

The contact problem for decreasing stiffness (7 < 0) 

Consider the sliding contact problem for a graded medium without a surface crack 

and remote loading e0. The half-plane is thus subjected to a pair of unbalanced resultant 

forces P and rjP. The integral equation for this problem can be written as follows: 

Ja 

hs(0,y,t)fz(t)dt = -^-/(y),       a < y < b, (168) 

If we now consider (166) and (167) and expand #331(10,0) and K332(p, 0) into series as p 

tends to zero, we find the following expansions: 

ffgifo 0) = *>2P2 + b4P
4 + hp6 + 0(p8), (169a) 

#332(P> 0) = aiP + a3P3 + a5p
5 + 0(p7), (169b) 

where, 

7J(1 + K) 

-16r]{«2(l + sign(7))-K(7 + 9sign(7)) + 10 + 16sign(7)} 

7
4
(K + 1)2(1 + sign(7)) 
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Oi 
2(K-1) 

7(K + 1) 
03 

8(fc-3)(«(l + sign(7))-4) 

73(l + fc)2(l + sign(7)) 
(170c,d) 

Observing that sign(7) = 1 for 7 > 0, sign(7) = - 1 for 7 < 0 from (169) and (170) it 

is seen that if331 (p, 0) and if332(/>, 0) are well behaved near p = 0, for 7 > 0. However, 

for 7 < 0 coefficients 64 and a3 (and possibly that of higher powers of p) become 

unbounded and as a result fc33 expressed by (166a) also becomes unbounded. 

Consequently, it is seen that for a graded half plane with an exponentially decaying 

stiffness the contact problem is not a well-posed problem. Physically, the problem that is 

analogous to 7 < 0 case is a homogeneous strip of finite thickness under an unbalanced 

transverse load P (in thickness direction) which has no solution (see Ratwani and 

Erdogan [9], for explanation). Thus for graded half-planes with or without a crack if 

7 < 0 the contact problem has no solution. 

4. Singular behavior of the solution 

The integral equations of the problem are given by (65) and the kernels of the 

equations are derived in Section 3. The asymptotic behaviors of the integrands are also 

examined and singular terms are extracted. Using the expressions given in section 3, 

integral equations given by (65) can be written as follows: 

fd r 1    1 1 <jyy(x,0)exip(-7x) = / + hns(x,t)+hnf(x,t) f1(t)dt + 
JO    L7T t — X -1 

+ hssix, t) + hiZf(x, t) f3(t)dt + E0e0 = 0,       0 < x < d, 

fd r 1   1 1 
axy(x, 0)exp( - 7z) = / + /i22S(z, *) + Vf(x> *) &(*)<** + 

Jo l7rt-x J 

+ / \h23s(x, t) + /i23/(x,tj\ f3(t)dt = 0, 0 < x < d, 
Ja   L J 

(171a) 

(171b) 
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i£2_iU(0,y)= f \hUs(y,t) + h31f(y,t)\fl(t)dt + 
1 + KÖy Jo l J 

+ h32s{y,t) + h2f{y,t) f2(t)dt 

-V^-4h(y)+ f \--T^— + hm(y,t)\f3(t)dt,     a<y<b, (171c) 
K + 1 J0   L       7T t - J/ -I 

where expressions for hijs(x*,t) and hijf(x*,t) (x* = x for i = 1,2 and x* = y for 

z = 3) are given in Section 3. hijs(x*,t) are the generalized Cauchy kernels (of the order 

l/t) that become unbounded as the arguments x* and t tend to the end point 

simultaneously. hijf(x*,t) are bounded Fredholm kernels. The singular terms are found 

tobe: 

i    N    if1 2t 4t2   \ 
lim     hns(x,t) = lim     h22s{^,t) = -< — h TO - — ^fi 
(x,t)-o    v    y     (x,t)-,o 7T{t + x    (t + xy    (t + xy) 

1 f     2xt2 2£3 

Um _ofc13,(a:,t) = - j ^-^ - „p-j-jy 

2ta2 

0<(t,a;)<d, (172a) 

, a<t<b,0<x <d, (172b) 

1 f       2xt2 

km     h3is{y,t)= — —j, 
(»,0-o 7T [f + y2y 

1      4£3 

lim     h2s{y,t) = - 2, 
(y,t)-o 7T (t2 + y2) 

a<t<b,0<x <d, (172c) 

0 < t < d, a < y < 6, (172d) 

0<t<d,      a<y <b,       (172e) 

Note that the singular terms in the integral equations, i.e., the Cauchy singularities and 

generalized Cauchy kernels given by (172) are also obtained for the crack/contact 

problem in a homogeneous half-plane. If we compare (172) and equations (23a,e) which 

are given in [8], we observe that the singular terms are identical except for the sign 

changes for some terms, which are due to the different coordinate axes used in [8] and in 
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this report. It may then be concluded that the singular behavior of the unknown functions 

for the graded and homogeneous materials are identical. Hence, for the graded materials, 

the singular behavior of the unknown functions is independent of the material 

nonhomogeneity constants 7 and ß0 and depend on the friction coefficient 77 and the 

surface value of the Poisson's ratio (through elastic constant K) only. The details of the 

function-theoretic analysis to determine the singular behavior of the unknowns are given 

in [8]. Here we summarize the results, for the two cases a > 0 and a — 0. 

a> 0 

In this case the kernels (172b-e) are bounded in their corresponding closed intervals and 

would not contribute to the singularities of the functions /1, /2 and /3. We express /; as, 

/i(ar) = xe>{d - x)AlFi(x), 0 < x < d, (173a) 

f2(x) = xe*(d - x)X2F2(x), 0<x<d, (173b) 

Mv) = (y~ a)u(b - y)ßF3(y),       a<y<b. (173c) 

The function-theoretic analysis to determine the exponents is described in [8], and 

following equations are obtained, 

0l =0, 62 = 0, (174a) 

cot(ir\i) = 0,       cot(7rA2) = 0,       (A: = A2 = - 0.5), (174b) 

cot(W) = 77^—-, cot(?r/3)= -r]1^——, (174c,d) 
K+l K+l 

where acceptable roots are Ai = - 0.5, A2 = - 0.5, {R(w) < 0 if a is known and is a 

sharp corner, $l(u) > 0, if a is unknown and is a point of smooth contact. Similarly 
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sft(/5) < 0 if 6 is a known sharp comer and &(/?) > 0 if b is unknown and the contact is 

smooth. 

a = 0 

In this case all kernels hijs(x*,t) become unbounded as x* -♦ 0 and t^O 

simultaneously and contribute to the singularity of the unknown functions. Again, we 

express the unknown functions as follows, 

fl(x) = xa(d-x)XlG1{x), 0<x<d, (175a) 

f2(x) = xa(d - x)X2G2(x), 0<x<d, (175b) 

h(y) = ya(b-y)ßG3(x), o<y<b, (175c) 

The function-theoretic analysis carried out in [8] shows that 

cot(TrAi) = 0, cot(7rA2) = 0, (Ai = A2 = - 0.5), (176a,b) 

cot(7r/3) = -V^—-r- (176c^ 
K/ "T*  -1- 

As shown in [8] equation (56) and (57), the eigenvalue a and the expressions relating 

G2(0) and G3(0) are given by 

2a2 + 4a + 1 - cos(7ra) 
(K + l)sin2(7ra) 

x (?y(4a2 + 10a + 5 + (K - l)cos(Tra) + «(2a + 3)) + (K + l)sin(Tra)) = 0,     (177a) 

Gl(0)>/5= - ( «" + 2)co,(W2) + (a + 1NW2) U ^ (177b) w [ 2a2 + 4a + 1 - cos(7ra) J 

G2(0)^ = - (■?(" +l)^(W2)-Qcos(W2)-| 
A ' v \        2a2 + 4a + 1 - cos(7ra)        J 
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From the symmetrically loaded half plane (y > 0) analogy it is known that a = 0 for 

77 = 0 and at x = 0, y = 0 the stress state is bounded. In this case function-theoretic 

analysis shows that in order not to have a logarithmic singularity in the integral equations 

following condition must be satisfied, 

G2{0)y/d = ±G3{0)bP. (178) 

5. Numerical solution of the integral equations 

In this section, we will develop a numerical solution method for the case of a flat 

stamp as shown in Figure 2. We first normalize the intervals in (171) by defining 

Figure 2: The geometry of the crack/contact problem for a flat stamp. 

d       d 
t=2r + r 

d      d b — a       b + a 
t= -^r-r-{ — (179a,b,c) 

in integrals involving fi(t), f2(t) and f3(t), respectively. Then we define the normalized 

unknowns of the problem as follows: 
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*<r>=-j^dr-        "1<r<1-       "       (180a) 

«r) = f/o-./- - * <r <J- (,80b) 

. fb-a       b + a\ 

+>M= P/ib-a) > ~1<r<1- (180C) 

The intervals (0, d) and (a, b) are also normalized by defining, 

x = ^Sl + ^, for eqn. (171a), (181a) 

x = ^s2 + ^, for eqn. (171b), (181b) 

y = ^S3 + *±£      for eqn. (171c). (181c) 

Using (180) and (181), integral equations (171) and equilibrium condition (7) can be 

written as 

1 f1Mldr+ I #11(Sllr)01(r)dr+ / Hl3(Sl,r)fo(r)dr + 
nj^r-si J_! J_i 

+ P/^°e°   ^=0^ -1<81<1, (182a) P/(6 - a) 

1  /-1 &(»\ 
-dr+   /    i3r22(S2,'")^2(Odr"+   /    #23(s2,r)<£3(r)dr = 

Trj-ir-s2        y_i J-i 

= 0, -1< 32 < 1, (182b) 

/l /"l K — 1 
#3i(s3, r)fa(r)dr + /   #32(s3, r)^2{r)dr - V—-^Msz) + 

+ [ Hi5(sz,r)fo(r)dr = 0, - 1< s3 < 1, (182c) 
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/    Mss)dsZ (182d) 

where Hij(si,r) are given in Appendix C. Unknown function (pi{r), (i = 1,2,3) can 

now be expressed in the following form, 

Mr) = w^r^AmPt^ir),        Wl(r) = (1 - r)"1/2(l + r)a\ (183a) 
71=0 

00 

<h(r) = w2{r)Y,A2nPt
lM(r),        w2(r) = (1 - r)"1/2(l + r)a\ (183b) 

ra=0 

oo 

fo(r) = w3(r)J2A3nP^\r), w3(r) = (1 - rf(l + r)a\ (183c) 

where for a = 0, ax — a2 = a and for a > 0 ot\ = 0, a2 = w. Substituting (183c) into 

(182d), A3Q is obtained as 

A    -      2/6 0       2^+1r(/3+l)r(a2 + l) 
A30 - - 2/Ö0, 6>o - r(/3 + tt2 + 2) ■ (184a'b) 

Now, substituting (183) into (182), regularizing the singular parts of the equations using 

the expressions given in Appendix D in [8] and truncating the infinite series at N, 

following system of linear algebraic equations is obtained: 

N N 771   c 

mnn(si)Ain + 2_^miZn(si)Azn = - _      - m13o(si)A30, 
n=0 n=l ' * ' 

- 1< 5i < 1, (185a) 

N N 

Y^m^s^)A^ + ^2m23n(s2)A3n = - m230(s2)A30,      - 1 < s2 < 1, (185b) 
n=0 n=l 

JV iV JV 

^rn3in(s3)Ain + y^m32n(s3)A2n + ^m33n(s3)A3n = - m330(s3)A30, 
n=0 n=0 n=l 

- 1< s3 < 1. (185c) 

58 



The expressions for mijn(si), (i, j = 1,2,3) are given in Appendix C. Note that if a = 0, 

compatibility conditions expressed by (177) and (178) must also be considered. 

Substituting (183) in (177) and (178) we obtain, 

7?>0 

jr,AinPtlM( - 1) - /i(«) (l)"V1/2X>nif'Q)( - 1) = 
n=0 V(I/ n=l 

= /i(a)(^)"V+1/2A30, (186a) 

f>nPi-^( - 1) - /2(a) ß) "V+^f^Pf^ - 1) = 
n=0 V°y n=l 

= /2(a)Q)"V+1/2i430, (186b) 

_ rj(a + 2)COS(TTQ/2) + (a + l)sin(7ra/2) (lg6c) 
/l(0;j_ 2a2 + 4a + 1 - cos(ira) 

_ rj(a + l)sin(7ra/2) - a:cos(7ra/2) (186d) 
j2W_ 2a2 + 4a + 1 - cos(7ra/2)      ' 

77 = 0 

ZA2nPtl/2>0)(-l)--42
ß+l/2f 

n=0 n=l 

EA2„Pi"1/2'°)( - 1) - V^f^PrH - 1) = V^o, (187) 

Equations (185) can be solved using the collocation technique. For a > 0, the number of 

unknowns is (3iV + 2). Roots of the Chebyshev polynomials are used as the collocation 

points as follows: 

•»—(i$7i}>      •=
1
--

W+1
- (,88b> 
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S3i = C0S(!^lv^)' i = l,-,N. (188c) 

In the numerical solution for a — 0, the equations (186) and (187) are also considered. 

After solving equations (185) for Ain, (i = 1,2,3) the contact stresses <Jxx(0,y) and 

<7xy(0, y) and stress intensity factors at the crack tip (d, 0) may be evaluated by using the 

results. The stress intensity factors are defined by and calculated from 

ki = lim    y/2(x — d)ayy(x, 0) 
x->d+0 

lim ^4^2(d-x)^(v(x,0+)-v(x,0-)), (189a) 
;->d-0 K + l O 

kjj = lim    i/2(x — d)axy(x: 0) = 
x—»d+0 

= -lim ^lj2(d - x)4-(u(x, 0+) - u(x, 0")). (189b) 
x-xl-0 K + 1 OX 

Using (189), the normalized stress intensity factors and the normal component of the 

contact stress may be expressed as 

^ß=- cxp(1d)2^-^-fjAlnPtlM(l), (190a) 
71=0 

^ = - ^v{ld)2^-^-j^A2nPtlM{l\ (190b) 
ra=0 

(    b — a        b + a\ 
Cxrr I 0, —— S3 H —  I N 

V      p/{b_a) 
J   = (1 - S3)^(l + 53)

Q2E^Pi/3'Q2)(53). (191) 
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6. Results and discussion 

The calculated results in this report consist of the normal and in-plane components of 

the stresses on the surface of the graded half plane in the absence of a crack, contact 

stresses (aIS(0, y), axy{0,y), a < y < b) and the stress intensity factors (fcj, kn). First 

we give some results, showing the surface stresses in a graded medium in the absence of a 

crack and loaded by a sliding flat stamp. These results are shown in Figures 3-8. Contact 

stresses in the absence of a crack are calculated by solving the integral equation given by 

(168) and also considering the equilibrium condition given by (7). As shown in section 

3.7, the contact problem with or without a crack has no solution for 7 < 0. Hence, in 

Figures 3-8 results are given for positive values of the nonhomogeneity parameter 7. 

Figures 3 and 4 show that, for 77 = 0 both axx(0, y) and ayy(0, y) are symmetric and they 

have square-root singularities at y = a and y = b. ayy(0, y) vanishes outside the contact 

area for 7 = 0, and as 7 increases it becomes tensile at both ends of the contact region. 

Figures 5 and 6 show the results for 77 = 0.4. It is seen that there is a greater stress 

concentration near the trailing end of the stamp , y = a and |CJ| > \ß\, u> and ß being the 

singularities at y = a and y — b respectively. The important conclusion one may draw 

from Figure 6 is that at the trailing end of the stamp the in-plane component of the stress 

ayy(0,y) is unbounded, tensile and discontinuous and has a singularity of the order 

(a - y)u, where - u > 1/2. This implies that y = a is a likely location of surface crack 

initiation. Similar results are also shown in Figures 7 and 8 for 77 = 0.8. 

In Figures 9-16, stress intensity factors kj and ku are shown as functions of the 

relative stamp size b/d for a = 0, v = 0.25 and for various values of 7 and 77. In these 

figures the stress intensity factors are normalized with respect to PI yd also the 

nonhomogeneity parameter is used in normalized form jd. The circles in these figures are 

the results obtained from the solution of the homogeneous half-plane problem as 
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described in Dag and Erdogan [8]. It is shown in Figures 9 and 10 and in all the results 

presented in this study that, the results obtained from the solution of the graded half plane 

problem by letting fd = 0.0001 and those obtained from the solution of the 

homogeneous half plane problem are in very good agreement. That is, for all intents and 

purposes these two sets of results are identical. Figures 9 and 10 show that for a = 0 and 

r\ = 0, i.e., for the case of normal indentation, mode I stress intensity factors are negative 

and mode II stress intensity factors are positive for all values of the nonhomogeneity 

constant 'yd. Mode I stress intensity factors increase and mode II stress intensity factors 

decrease as 'yd increases. Since kj is less than zero crack closure occurs and there is 

contact between the crack faces. But the results can still be applicable and useful in 

superposition with an uncoupled solution resulting, for example, from remote strain 

loading eyy(x,^oo), [11], [12], provided the resultant kj is positive. Otherwise, the 

problem needs to be formulated by taking into account the crack closure and determining 

the closure distance from the condition of ki = 0. Figures 11 and 12 show the modes I 

and II stress intensity factors for rj = 0.2 and for a = 0. It is seen that, mode I stress 

intensity factors increase as the friction coefficient increases but they are still negative for 

this value of rj. Comparison of Figures 10 and 12 shows that mode II stress intensity 

factors decrease as r\ decreases. It is also seen that, the effect of the nonhomogeneity 

parameter on the stress intensity factors is quite significant. Again, the results for 

7<i = 0.0001 are in exact agreement with the results obtained from the homogeneous 

formulation. In Figures 13-14 and 15-16 modes I and II stress intensity factors are given 

for rj — 0.4 and r\ = 0.8, respectively. It can be observed that gradually kj becomes 

positive and kjj becomes negative as the the tangential force increases. The contact stress 

distribution is shown in Figures 17-20 for a = 0. In this case the stress singularities a and 

ß at the end points a = 0 and b are given by (56) and (174d), respectively. Figure 17 

shows that for 77 = 0 there is no singularity at the trailing end a = 0. In Figures 18 and 
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19, contact stress distributions for 77 = 0.2 and 77 = 0.4 are given. For these relatively 

small values of 77 the stress singularities at b are greater than those at a = 0 (i.e., 

- ß > -a), hence the skewed distribution in Figures 18 and 19. On the other hand for 

relatively large values of 77, \a\ > \ß\ the trend is reversed and there is a greater stress 

concentration near the end a = 0 (see Figure 20). 

Figures 21-28 show the modes I and II stress intensity factors as functions of a/d for 

a constant relative contact area length (b - a)/d - 0.1. These figures also show that, the 

limiting cases of jd = 0.0001, are in very good agreement with the results obtained from 

the solution of the homogeneous half plane problem. As seen in Figure 21, for 

7<2 = 0.0001 mode I stress intensity factors are negative for all values of a/d, which 

would lead to crack closure. It can also be seen that mode I stress intensity factors in a 

graded medium are larger than those for the homogenous medium and for some values of 

7^ and a/d, mode I stress intensity factors become positive. Figure 22 shows that mode II 

stress intensity factors are positive for all values of a/d in a homogeneous medium, and 

they decrease gradually as the nonhomogeneity parameter 7c? increases. Figures 23 and 24 

show the results for 77 = 0.2. As the coefficient of friction, hence the tangential force 

increases mode I stress intensity factors increase and mode II stress intensity factors 

decrease. The results for 77 = 0.4 and 77 = 0.8 are shown in Figures 25-26 and 27-28 

respectively. Figure 27 shows that for 77 = 0.8 mode I stress intensity factors are positive 

for all values of 'yd. 

Contact stress distribution for (b - a)/d = 0.1 and a/d = 0.4 are given in Figures 

29-32. Figure 29 shows the results for 77 = 0. Although there is no tangential force and 

singularities are equal at both ends of the contact area, the stress distribution is not 

exactly symmetric due to the effect of the surface crack in the graded medium. It can be 

seen in Figures 30-32 that, as the coefficient of friction increases, singularity at the 
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leading end i.e., - ß decreases and there is a higher stress intensification at the trailing 

end. 

Another set of results for the stress intensity factors are given in Figures 33-40 for a 

relatively larger stamp size (b - a)/d = 1.0. The trends are similar as in Figures 21-28. 

The contact stress distributions for (b-a)'/d = 1.0 are shown in Figures 41-44 for 

various values of the friction coefficient 77. 

Some conclusions 

1. Analytically the contact problem for a graded half-plane with exponentially decaying 

stiffness is not a well-posed problem. 

2. The trailing end of the sliding rigid stamp with friction is a likely location of surface 

crack initiation due to greater stress concentration. 

3. In the medium containing a surface crack and loaded by a sliding rigid stamp, the 

mixed mode stress state at the crack tip is such that the cracks tend to be periodic and 

curve backward. 

4. In the coupled crack/contact problems for a graded medium stress singularities a, ß 

and LV are independent of the material nonhomogeneity constants 7 and fj,0 and depend on 

the friction coefficient rj and the surface value of the Poisson's ratio (through the elastic 

constant K) only. 
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Figure 3: The distribution of the contact stress on the surface of the graded medium 
loaded by a flat stamp as shown in Figure 2 , d = 0, 77 = 0, K = 2. 
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Figure 4: The distribution of the in-plane stress on the surface of the graded medium 
loaded by a flat stamp as shown in Figure 2, d = 0, 77 = 0, « = 2. 
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(2y-(b + a))/(b-a) 
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Figure 5: The distribution of the contact stress on the surface of the graded medium 
loaded by a flat stamp as shown in Figure 2 , d = 0, r\ = 0.4, K = 2. 
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Figure 6: The distribution of the in-plane stress on the surface of the graded medium 
loaded by a flat stamp as shown in Figure 2 , d = 0, ry = 0.4, n = 2. 
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Figure 7: The distribution of the contact stress on the surface of the graded medium 
loaded by a flat stamp as shown in Figure 2 , d = 0, r) = 0.8, K = 2. 
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Figure 8: The distribution of the in-plane stress on the surface of the graded medium 
loaded by a flat stamp as shown in Figure 2 , d = 0, 77 = 0.8, n = 2. 
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Figure 9: Mode I stress intensity factors for an edge crack in a graded half plane indented 
by a flat stamp as shown in Figure 2, a = 0, rj = 0, v = 0.25. 
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Figure 10: Mode II stress intensity factors for an edge crack in a graded half plane 
indented by a flat stamp as shown in Figure 2, a = 0, r\ — 0. v = 0.25. 
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Figure 11: Mode I stress intensity factors for an edge crack in a graded half plane 
indented by a flat stamp as shown in Figure 2, a — 0, r\ = 0.2, v = 0.25. 
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Figure 12: Mode II stress intensity factors for an edge crack in a graded half plane 
indented by a flat stamp as shown in Figure 2, a = 0, r\ = 0.2, v — 0.25. 
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Figure 13: Mode I stress intensity factors for an edge crack in a graded half plane 
indented by a flat stamp as shown in Figure 2, a = 0, rj — 0.4, v = 0.25. 
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Figure 14: Mode II stress intensity factors for an edge crack in a graded half plane 
indented by a flat stamp as shown in Figure 2, a = 0, r) = 0.4, v = 0.25. 
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Figure 15: Mode I stress intensity factors for an edge crack in a graded half plane 
indented by a flat stamp as shown in Figure 2, a = 0, rj = 0.8, v = 0.25. 
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Figure 16: Mode II stress intensity factors for an edge crack in a graded half plane 
indented by a flat stamp as shown in Figure 2, a = 0, rj = 0.8, v = 0.25. 
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Figure 17: Contact stress distribution for a graded half plane with an edge crack and 
indented by a flat stamp as shown in Figure 2, a = 0, r\ — 0, v = 0.25, b/d = 0.5. 
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Figure 18: Contact stress distribution for a graded half plane with an edge crack and 
indented by a flat stamp as shown in Figure 2, a = 0, rj = 0.2, v = 0.25, b/d = 0.5. 
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Figure 19: Contact stress distribution for a graded half plane with an edge crack and 
indented by a flat stamp as shown in Figure 2, a = 0, r\ = 0.4, v — 0.25, b/d = 0.4. 
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Figure 20: Contact stress distribution for a graded half plane with an edge crack and 
indented by a flat stamp as shown in Figure 2, a = 0, rj = 0.8, v = 0.25, b/d = 0.4. 
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Figure 21: Mode I stress intensity factors for an edge crack in a graded half plane 
indented by a flat stamp as shown in Figure 2, (b — a)/d = 0.1, r\ = 0, v — 0.25. 
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Figure 22: Mode II stress intensity factors for an edge crack in a graded half plane 
indented by a flat stamp as shown in Figure 2, (b — a)/d = 0.1, 77 = 0, v — 0.25. 

75 



kjy/d 

p 

0.05 

0.00 

-0.05 

-0.10 

-0.15 - 

-0.20 
0 8 10 2 4 6 

a/d 

Figure 23: Mode I stress intensity factors for an edge crack in a graded half plane 
indented by a flat stamp as shown in Figure 2, (b — a)/d = 0.1, 77 = 0.2, v — 0.25. 
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Figure 24: Mode II stress intensity factors for an edge crack in a graded half plane 
indented by a flat stamp as shown in Figure 2, (b - a)/d = 0.1, rj = 0.2, v = 0.25. 
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Figure 25: Mode I stress intensity factors for an edge crack in a graded half plane 
indented by a flat stamp as shown in Figure 2, (b - a)/d = 0.1, r\ = 0.4, v = 0.25. 
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Figure 26: Mode II stress intensity factors for an edge crack in a graded half plane 
indented by a flat stamp as shown in Figure 2, (b - a)/d = 0.1, r\ — 0.4, v = 0.25. 

77 



0.24 

0.00 
0 8 10 2 4 6 

a/d 

Figure 27: Mode I stress intensity factors for an edge crack in a graded half plane 
indented by a flat stamp as shown in Figure 2, (b - a)/d = 0.1, 77 = 0.8, v = 0.25. 
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Figure 28: Mode II stress intensity factors for an edge crack in a graded half plane 
indented by a flat stamp as shown in Figure 2, (b - a)/d = 0.1, 77 = 0.8, v = 0.25. 
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Figure 29: Contact stress distribution for a graded half plane with an edge crack and 
indented by a flat stamp as shown in Figure 2, (b — a)/d = 0.1, r\ = 0, v = 0.25, 
a/d = 0.4. 
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Figure 30: Contact stress distribution for a graded half plane with an edge crack and 
indented by a flat stamp as shown in Figure 2, (b - a)/d = 0.1, r? = 0.2, v = 0.25, 
a/d = 0.4. 
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Figure 31: Contact stress distribution for a graded half plane with an edge crack and 
indented by a flat stamp as shown in Figure 2, (b — a)/d = 0.1, 77 = 0.4, v = 0.25, 
a/d = 0.4. 
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Figure 32: Contact stress distribution for a graded half plane with an edge crack and 
indented by a flat stamp as shown in Figure 2, (6 — a)/d = 0.1, r\ = 0.8, v = 0.25, 
a/d = 0.4. 
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Figure 33: Mode I stress intensity factors for an edge crack in a graded half plane 
indented by a flat stamp as shown in Figure 2, (b — a)/d = 1.0, rj = 0, v — 0.25. 
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Figure 34: Mode II stress intensity factors for an edge crack in a graded half plane 
indented by a flat stamp as shown in Figure 2, (b — a)/d = 1.0, 77 = 0, v — 0.25. 
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Figure 35: Mode I stress intensity factors for an edge crack in a graded half plane 
indented by a flat stamp as shown in Figure 2, (b - a)/d = 1.0, 77 = 0.2, v = 0.25. 
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Figure 36: Mode II stress intensity factors for an edge crack in a graded half plane 
indented by a flat stamp as shown in Figure 2, (b - a)/d = 1.0, 77 = 0.2, v = 0.25. 
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Figure 37: Mode I stress intensity factors for an edge crack in a graded half plane 
indented by a flat stamp as shown in Figure 2, (b - a)/d = 1.0, rj = 0.4, v = 0.25. 
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Figure 38: Mode II stress intensity factors for an edge crack in a graded half plane 
indented by a flat stamp as shown in Figure 2, (ft - a)/d = 1.0, r? = 0.4, v = 0.25. 
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Figure 39: Mode I stress intensity factors for an edge crack in a graded half plane 
indented by a flat stamp as shown in Figure 2, (b — a)/d = 1.0, rj = 0.8, v = 0.25. 
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Figure 40: Mode II stress intensity factors for an edge crack in a graded half plane 
indented by a flat stamp as shown in Figure 2, (6 - a)/d = 1.0, rj = 0.8, v — 0.25. 
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Figure 41: Contact stress distribution for a graded half plane with an edge crack and 
indented by a flat stamp as shown in Figure 2, (b - a)/d = 1.0, r\ = 0, u = 0.25, 
a/d = 0.4. 
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Figure 42: Contact stress distribution for a graded half plane with an edge crack and 
indented by a flat stamp as shown in Figure 2, (b - a)/d = 1.0, 77 = 0.2, v = 0.25, 
a/d = 0.4. 
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Figure 43: Contact stress distribution for a graded half plane with an edge crack and 
indented by a flat stamp as shown in Figure 2, (b — a)/d = 1.0, r\ = 0.4, v = 0.25, 
a/d = 0.4. 
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Figure 44: Contact stress distribution for a graded half plane with an edge crack and 
indented by a flat stamp as shown in Figure 2, (b - a)/d = 1.0, 77 = 0.8, v = 0.25, 
a/d = 0.4. 
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APPENDIX A 

Some Useful Integrals 

Here, we give the expressions that are used to evaluate the integrals involving the 

asymptotic expansions of the integrands of the kernels. There are three types of integrals 

involving the asymptotic expansions. The expressions for each type are given below. 

Integrals of type 1 

In this case, the integrals that we want to evaluate are in the following form, 

f°° 1 
Cn= /    —cos(pu)dp,       n = 1,2,3..., N, (Fla) 

JA  Pn 

r°° l 
Sn= /    — sin{pu)dp,        n = 1,2,3..., N. (Fib) 

JA  Pn 

For n=l, following results are obtained using MAPLE, 

d= -Ci(AM), (F2a) 

5i=sign(«)(|-Si(A|u|)), (F2b) 

where Ci() and Si() are cosine and sine integrals, respectively, and they are defined by 

:cos(a) — 1 ^./ s , / \       /^cosfa) 
Q (x) = 7o + ln(ar) + /   —— 

Jo a 
■da, (F3a) 

sin(a;) „., ,       /"^sinfi 
Six  = /   —\ 

Jo      oc 
da. (F3b) 

and the Euler constant is 70 = 0.5772156649. For n > 1, integrating (Fla) and (Fib) by 

parts the following general recursive relations are obtained: 
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Following result is also used in the integration of asymptotic expressions, 

f=^ = ^ign(U). (F5) 
Jo        P 2 

Integrals of type 2 

In this case, we consider the following integral: 

r°° i 
Rn=        —exp(pu)dp, n= 1,2,3..., N,       [u<0]. (F6) 

JA  Pn 

For n = 1, following result is obtained using MAPLE, 

Äi = Ei( - Au),       Bi(z) = - Ei( - z), (F7a,b) 

where Ei() is the exponential integral function. For n > 1, following expression is used 

which is given by Gradshteyn and Ryzhik [10]: 

r°°&qp{-px)dx _   _      +lP
nEi(-pA)     exp(-pA)^      (-l)V^ 

JA z«+i ~[      } n\ A-       ^n(n-l)...(n-fe)' 

[p>0], (F8) 

(F8) reduces to (F7) for n = 1. 

Integrals of type 3 

Type 3 integrals are in the following form: 



poo   -I 

Cn= /    —cos(pv)exp(pu)dp, n = 1,2,3... ,7V,       [u<0]. (F9a) 
./A    P" 

/•oo   1 

Sn= /    —sin(/w)exp(/m)d,£>, n = 1,2,3...,N,       [u<6\. (F9b) 
JA  P" 

(F9) are evaluated using the following expressions which are given by Gradshteyn and 

Ryzhik [10]: 

poo 1 

/   x^1exp( - ßx)cos(6x)dx = -(ß + i6)~ßT(n, (ß + i6)A) 
JA 2 

+ ±(ß-i6)-»r(p,(ß-i6)A),    [»(/?)> |3(5)|], (FlOa) 

/   ^-1exp( - ßx)sin(8x)dx =-(ß + iS)~ßT(ß, {ß + iö)Ä) 
JA 2 

-i-{ß-iö)^T{^{ß-i8)Ä),    [B(/3)>|9(«)|], (FlOb) 

where T(,) is the incomplete Gamma function. Following result is also used in the 

integration of asymptotic expressions, 

f°° 1 /f\ /    -sin(/w)exp(pu)dp = - arctanl-), u < 0. (Fll) 
Jo   P Ku/ 
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APPENDIX B 

Some leading terms in asymptotic expansions 

Here, we give the leading terms of asymptotic expansions K^(u,y), K3\™(u,y) and 

K$™(LJ, y), K$°(u, y) which are given by equations (129) and (147), respectively. 

* _     Ocos(7y/2)(exp( - fry) - l)exp(fty/2) (Ql) 
911 ~     l                      (1 + K)«I 

* „sin(7t//2)(exp( - 6lV) - l)exp(fty/2) (Qh) 
521-2                       (1 + K)* 

_      0sin(7y/2)(exp( - 8xy) - l)exp(fty/2) , 

_      Ocos(7y/2)(exp( - fry) - l)exp(fty/2) _   « 

'21~      l (l + «)«i 
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APPENDIX C 

Kernels of the integral equations 

In this Appendix, we give the transformed form of the kernels that are used in equations 

(182a,c) and the terms that are used in equations (185). 

Hn{si,r) = -(Hn8{si,r) + Hnf{si,r)), (Hla) 

Hi3(si,r)=     2    (#i3s(si,r) + #i3/(si,0)> (Hlb) 

H22(s2,r) = -(H22s(s2,r) + H22f(s2,r)), (Hlc) 

Hn(sX,r) = -^(H23s(s2,r) + H13f(s2,r)), (Hid) 

H3i(s3,r) = -(H31s{s3,r) + H3lf(s3,r)), (Hie) 

H32(s3,r) = -(H32s{s3,r) + H32f (s3,r)), (Hlf) 

#33(s3,0=     2    H33f{s3,r), (Hlg) 

where, 

■tiijsySiif) = H>ijs(X) tj, (H2a) 

Hijf(si,r) = hijf{x,t), (H2b) 

x= < 

■ 

f d        d                   .     . 0 
— Si H—,                  £ = 1, 2 
2         2 

6 — a        6 + a      . 
I    2   Si+    2    '    % = Z 

(H3a) 
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r d      d 
i = i, 2 

t = < 
b — a       b + a 

The terms used in equations (185) are given below: 

2«i-i/2r( _ i/2)r(n + ai + 1) 
7rr(n + 1/2 + cni) 

x F(TI+1, - n + 1/2 - au 3/2; (1 - si)/2) 

+ f1 (1 - r)-1/2(l + r)*Pt1/2'ai)(r)Hn(si,r)dT 

miznisi) = f\l- r)\l + rrP^\r)H13(Sl,r)dr, 

2«i-i/2r( _ i/2)r(n + ai + 1) 
m22n(s2) 7rr(n + l/2 + ai) 

x F(ra+1, - n + 1/2 - ai; 3/2; (1 - s2)/2) + 

+ ^ (1 - r)"1/2(l + rrPt1/2'a'\r)Hn(s2, r)dr, 

m23n(s2) 

m31 n{Sz) =   I 

m32n{Sz) =   / 

(1 _ rf(i + rpP^\r)Hl3(s2, r)dr, 

(1 - r)"1/2(l + r)aiPtl/2'ai)(r)H31(s3, r)dr, 

(1 - r)-1/2(l + rpPt1/2'ai)(r)H31(sz, r)dr, 

(H3b) 

(H4a) 

(H4b) 

(H4c) 

(H4d) 

(H4e) 

(H4f) 
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2^T(ß)T(n + a2 + 1) w 

7iT(n + ß + a2 + 1) 

x F(n+1, - n - ß - a2; 1 - ß; (1 - s3)/2) + 

+ / (1 - 0^(1 + rpPiß^(r)H33(s3, r)dr, (H4e) 

Note that if a2 + ß = - 1,0, or 1 (H4e) reduces to 

(H5a) 

In this case, if (a2 + ß) = - 1 and n = 0 we have 

m33o(s3) = f (1 - 0^(1 + r)a2#33(S3, r)dr. (H5b) 
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