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Introduction 
While x-ray mammography is the most reliable method available at present for the detection of breast 
cancer in screening programs, it still does not detect all cancers. A great deal of research effort over the 
past several decades has been directed towards the development of better and more effective imaging 
systems. These new systems must be designed carefully to ensure they can produce images of the highest 
quality possible for a specified radiation dose to the patient. 

Fourier-based linear-systems transfer theory is often used to develop theoretical models of the signal and 
noise performance of new system designs. While it has been used successfully in a number of new 
system designs, only relatively simple systems can be analyzed using this approach. We are developing 
new theoretical relationships that will extend the capabilities of linear-systems theory so that it can be 
used in the design of increasingly complex systems. In particular, we are developing new Fourier- 
based transfer relationships for the description of: a) complex parallel cascades; and, b) digital 
detector systems. The result of our research will be a generalized resource "library" of transfer 
relationships to be used by scientists and engineers to achieve optimal designs of new imaging systems 
for mammography. 

Body 
The following four tasks correspond to the four tasks outlined for Year 1 in the Statement of Work of our 
grant application. A statement of our progress on each task to date is summarized in this section. 

Task 1. Develop Expertise in Stochastic Point-Process Theory 
Stochastic point-process theory has been adopted as our primary means of mathematically representing 
the distribution of image quanta that collectively form a quantum image. This includes both x-ray images 
and optical images. In our work this year, we have also used this approach to represent the spatial 
distribution of particular events that take place within an imaging system, such as the distribution of 
photoelectric events, or the distribution of sites where characteristic x rays are re-absorbed. The use of 
stochastic point-process theory in medical imaging was recently pioneered by H.H. Barrett, and he 
remains one of only a few such experts in the world on this material.1'2,3 Drs. Barrett and Myers are 
currently writing a new book scheduled for publication in 2001 that describes the fundamentals of this 
method.3 The use of stochastic point-process theory is complex and requires more mathematical 
expertise in random processes than most scientists and engineers who design imaging systems can 
achieve in a reasonable time. However, use of the transfer-theory relationships can generally be 
accomplished by non-mathematicians, making the benefits of the complex statistical analysis available to 
system designers. 

In the past year, we have developed our own expertise in the use of point-process theory to a level 
adequate for the analysis of medical imaging systems. Using this approach, each quantum is represented 
as a Dirac delta function distributed somewhere within the image and a quantum image is described as a 
spatial distribution of many such delta functions. What we call "image noise" is the impact of statistical 
correlations between these quanta. The mathematical relationship between these statistical correlations 
in the input x-ray image and the output digital image is described in terms of signal and noise "transfer- 
theory" relationships. 

Task 2. Develop Expertise in Moment-Generating Function Theory 



An additional skill needed for this work is expertise in moment-generating functions for this research. 
This has also be completed but was significantly easier than developing expertise in random point 
processes. 

Task 3. Develop Concept of Cross Spectral Density of Parallel Cascades 
A generalized approach to describing transfer of the noise power spectrum (NPS) through medical 
imaging systems has been developed over the past several years in which image-forming processes are 
represented in terms of a cascade of amplified point processes. Until recently, this approach has been 
restricted to serial cascades only. The development of a general expression for the cross spectral density 
of parallel cascades was the major task identified for the first year. This has been completed using the 
random point-process approach, and enables the use of parallel cascades of image-forming processes. A 
manuscript has been submitted for publication in Medical Physics4 and a copy is included as Appendix I 
of this report. The final result of this work can be expressed as a single equation: the general expression 
for the cross covariance of amplified point processes and an expression for the cross spectral density for 
wide-sense stationary conditions is given by Eq. 81 in Appendix I. 

These results extend the generalized transfer-theory approach to include the description of more complex 
image-forming processes involving parallel cascades of quantum amplification processes. This parallel- 
cascade approach has been used to develop a theoretical expression for noise-power transfer in a simple 
radiographic screen that includes the effect of characteristic x-ray reabsorption. The result confirms 
earlier work by Metz and Vyborny5 who showed that reabsorption increases image noise and decreases 
the detective quantum efficiency (DQE) at some spatial frequencies. Use of the transfer-theory approach 
facilitates a straightforward generalization to many new digital imaging systems including conventional 
angiographic and active-matrix flat-panel systems. 

Task 4. Design and Construct Mono-Energetic X-Ray System 
Task 4 was the development of a mono-energetic x-ray source based on a secondary lanthanum target. 
This has been designed and construction completed. This system is required to generate experimental 
proof of the correctness of the results described in Task 3 for reabsorption of characteristic radiation in a 
digital imaging system using a Csl input phosphor. During year H, experiments will be performed using 
both a conventional x-ray image intensifier system as well as a flat-panel detector using the General 

nta)«B«r>»6r>gi«iiw 

Figure 1. Photograph of mono-energetic x-ray     Figure 2. Schematic illustration of mono- 
source with top removed. energetic x-ray source. 



Electric digital mammography system. Figure 1 shows a photograph of the mono-energetic source and 
Fig. 2 shows a schematic drawing of the design. It will be used to measure the DQE of the Csl-based 
systems just above and just below the iodine k edge. The difference in the DQE is due to the effects of 
reabsorption. 

The results described here are consistent with the tasks identified in the approved grant application. No 
insurmountable difficulties are expected to prevent us from achieving the tasks identified for year H 

Key Research Accomplishments 
The key research accomplishments are itemized here, consistent with the tasks identified above plus two 
additional accomplishments directly related to the current grant: 
1. Develop expertise in stochastic point-process theory. 

2. Develop concept of cross spectral density of amplified point processes. This has been the 
missing link preventing the use of parallel cascades in the design of complex digital imaging 
systems for mammography. A manuscript describing this result has been submitted for 
publication and is attached as Appendix I. 

3. Design and build mono-energetic x-ray source for experimental verification of the parallel 
cascaded approach to understand the effects of self reabsorption in detectors. 

4. Completion and submission of a paper describing how linear systems theory can be used to 
describe x-ray scatter in terms of a scatter operator, attached as Appendix H6 

5. A review chapter has been written in the past year and recently published by the Society for 
Optical Engineering.7 This chapter consists of approximately 100 pages and describes the use of 
linear systems transfer theory in the design of digital x-ray detectors. Approximately 25% of this 
chapter is based on research completed during the first year of the current grant. This 
investigator has been invited to give a course on this material during the SPIE meeting in San 
Diego, February 2001. 

Reportable Outcomes 

Publications 
(students working under my direct supervision indicated with •) 

1. • J. Yao, «T.E. Moschandreou and I.A. Cunningham. Parallel cascades: New ways to describe noise 
transfer in medical imaging systems, Medical Physics [submitted]. 

2. I.A. Cunningham, «M.S. Westmore and A. Fenster.   Unified representation of image blur and noise 
in linear-systems transfer theory using a scatter operator, Medical Physics [submitted]. 

3. I.A. Cunningham. Applied linear-systems theory, Chapter 2, Handbook of Medical Imaging, Vol 1. 



Physics and Psychophysics, Eds. J. Beutel, H.L. Kundel and R.L. Van Metter, pp. 79-159 (The 
International Society for Optical Engineering, Bellingham, Washington, 2000). 

Abstracts and Presentations 
(students working under my direct supervision indicated with •) 

1. Understanding radiologic image quality: From basic concepts to a practical tool-kit for scientists 
and engineers, American Association of Physicists in Medicine and World Congress of Medical 
Physics and Biomedical Engineering, Chicago, July 2000. 

2. • J. Yao, «T. Moschandreou and I.A. Cunningham, Cross Covariance of Correlated Point Processes 
for use in Linear-Systems Theory, World Congress of Medical Physics and Biomedical 

Engineering, Chicago, July 2000. 

3. «T. Moschandreou, • J. Yao and I.A. Cunningham. Use of the Cross Covariance in Linear-Systems 
Theory to Model the DQE of Detectors with Fluorescence Reabsorption, World Congress of 
Medical Physics and Biomedical Engineering, Chicago, July 2000. 

Conclusions 
The most important outcome of the first year of progress has been development of the idea of parallel 
cascaded of amplified point processes. In particular, Eq. (81) of Appendix I describes the cross spectral 
density which has been the missing link preventing prior use of this approach. Using it, linear-systems 
transfer theory can be used to predict the detective quantum efficiency (DQE) during the design of 
complex x-ray detectors being developed for digital mammography, to ensure optimal design of these 
detectors that will maximize image quality for any specified radiation dose to the patient. 
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Appendix I: Parallel Cascades 

This appendix consists of a copy of a manuscript submitted to Medical Physics. It describes the concept 
of parallel cascades in linear-systems transfer theory and is the primary outcome for year I. 



Parallel cascades: New ways to describe noise transfer in medical imaging systems 

J. Yao, T.E. Moschandreou 
Imaging Research Laboratories, The John P. Robarts Research Institute, 

London, Ontario N6A 5K8, Canada 

and I.A. Cunningham 
Imaging Research Laboratories, The John P. Robarts Research Institute and Department of Diagnostic Radiology, 

London Health Sciences Center and The University of Western Ontario, 
London, Ontario, Canada 

(November 16, 2000) 

A generalized approach to describing transfer of the noise power spectrum (NPS) through 
medical imaging systems has been developed over the past several years in which image-forming 
processes are represented in terms of a cascade of amplified point processes. Until recently, this 
approach has been restricted to serial cascades only. Here, we develop a generalized expression 
for the cross covariance of amplified point processes and an expression for the cross spectral 
density for wide-sense stationary conditions. These results extend the generalized transfer- 
theory approach to include the description of more complex image-forming processes involving 
parallel cascades of quantum amplification processes. 

This parallel-cascade approach is used to develop a theoretical expression for noise-power 
transfer in a simple radiographic screen that includes the effect of characteristic x-ray reabsorp- 
tion. The result confirms earlier work by Metz and Vyborny who showed that reabsorption 
increases image noise and decreases the detective quantum efficiency (DQE) at low spatial 
frequencies. Use of the transfer-theory approach facilitates a straightforward generalization 
to many new digital imaging systems including conventional angiographic and active-matrix 
flat-panel systems. 

Key words: random point processes, amplified point processes, cross covariance, cross spec- 
tral density, noise power spectrum, transfer theory 

Submitted to Medical Physics May 2000 

I. INTRODUCTION 

Medical x-ray imaging systems must be designed to 
ensure that maximum image quality is obtained for a 
specified radiation dose to the patient. While there are 
many aspects of "image quality", one important con- 
sideration is image noise as described by the Wiener 
spectrum, or noise power spectrum (NPS) [1-3]. The 
NPS describes the spectral decomposition of second- 
moment statistics in terms of spatial frequencies un- 
der wide-sense stationary (WSS) conditions [2,3]. It is 
required for the determination of other image-quality 
metrics used to quantify image quality and system 
performance including the noise-equivalent number of 
quanta (NEQ) [1,4,5], which describes an equivalent 
number of quanta forming an image, and the detective 
quantum efficiency (DQE) [4-9], which describes the 
ability of an imaging system to make efficient use of 
the incident image quanta. 

Over the past several years, a generalized transfer- 
theory approach [10-12] has been developed to de- 
scribe how the NPS is transferred from the input of 
an imaging system to the output image [13-18]. Of 
particular significance in this development was a de- 
scription of how the NPS is transferred through quan- 
tum gain and quantum scattering stages by Rabbani, 
Shaw and Van Metter [13] and by Barrett, Wagner and 

Myers [19,20]. This generalized description of image 
noise has resulted in a comprehensive frame-work for 
the understanding of system performance built upon 
a communication theory based approach. 

Using this approach, many imaging systems can be 
represented in terms of serial cascades of three ele- 
mentary processes: i) quantum amplification; ii) quan- 
tum scattering; and, iii) linear filters. Transfer of sig- 
nal and noise through these models can be described 
by cascading transfer relationships of each elementary 
process. In Appendix A, transfer properties of these 
three elementary processes are summarized. This ap- 
proach has been used recently to describe signal and 
noise transfer and the DQE of a number of x-ray 
medical imaging systems, including film screen sys- 
tems [21-23], active-matrix flat-panel systems for digi- 
tal radiography [24-26], video-based systems for portal 
imaging and radiation therapy verification [27,28], and 
other new system designs [29-32]. 

We are developing a number of new transfer-theory 
relationships to describe noise transfer through pro- 
cesses where the three elementary processes described 
above are inadequate. These new relationships form 
the basis of new theoretical "tools" that can be used 
by scientists and engineers developing or assessing new 
system designs. Of particular practical importance is 
the spatial-frequency-dependent form of these tools for 
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WSS conditions. They can be used to make a theo- 
retical prediction of the NEQ or DQE of a particular 
system design. 

One such current limitation of the transfer-theory 
approach is that it has been restricted to serial cas- 
cades of the elementary processes. This excludes the 
situation where more than one image-forming process 
must be summed to form an image [16]. For example, 
x rays interacting in a radiographic screen generally 
do so by the photo-electric interaction. This process 
often results in the emission of a characteristic x ray 
that may be reabsorbed elsewhere in the screen. Light 
is generated at both the primary-interaction and re- 
absorption sites, but with different intensities. In ad- 
dition, the reabsorption site is randomly located but 
spatially correlated with the primary-interaction site. 
Light from both sites contribute to production of the 
final radiographic image recorded on film. However, it 
is not possible to describe image noise as the sum of 
these correlated image-forming processes using a sim- 
ple serial cascade, and hence the effect of reabsorption 
has not been included in any transfer-theory analysis. 

In this article, we extend the capabilities of the 
transfer-theory approach so that more complex sys- 
tems requiring both serial and parallel cascades of 
these elementary processes can be represented. This 
is accomplished by developing a general expression for 
the cross covariance and cross spectral density of noise 
processes that can be incorporated into the transfer- 
theory analysis (see Appendix B). Use is made of ran- 
dom point process theory, where a quantum image is 
represented as a two-dimensional spatial point process 
in which each quantum is represented as a point im- 
pulse [19,20,33]. A general expression is derived for 
the cross covariance of two correlated random point 
processes. This is then simplified for the special case 
of wide-sense stationary random point processes where 
the cross spectral density function is derived. 

We derive here a general expression for the cross 
covariance of a pair of correlated point processes. Of 
practical importance for applications in medical imag- 
ing is the special case where each point process repre- 
sents a subset of a common input point distribution. 
The cross covariance of these two subsets is derived, 
and then generalized to describe the cross covariance 
of the two distributions after they subsequently un- 
dergo an arbitrary cascade of quantum amplification 
and scattering processes. It is shown that a very sim- 
ple closed-form expression for the cross covariance and 
cross spectral density exists under WSS conditions, 
where the cross spectral density is the Fourier trans- 
form of the cross covariance. Use of the cross spectral 
density is then demonstrated in an analysis of noise in 
a radiographic screen with reabsorption. This prob- 
lem was first solved by Metz and Vyborny [34] using 
a very different type of statistical analysis. Our work 
confirms their result, and is of a more general nature 
that is readily extended to describe reabsorption in 

other imaging systems including digital flat-panel ra- 
diographic systems. 

Throughout the following description, we use a no- 
tation where the overhead tilde (eg. N) indicates a 
random variable, overline (e.g. q) indicates a mean 
value and bold face (eg. r) indicates a vector. 

II. THEORY 

The framework of this analysis is based in part on 
earlier works by Barrett et al. [19,20] who developed 
the use of random point process theory for studying 
noise in imaging systems. A random point process is 
any random process for which all sample functions can 
be represented as a distribution of points, and we will 
represent each point as a spatial Dirac S function. For 
instance, a quantum image is described as a spatial 
distribution of S functions. However, these points may 
also represent a spatial distribution of certain events, 
such as a distribution of photo-electric events, or a 
distribution of photo-electric events when a K x ray is 
reabsorbed. 

A random point process is associated with two im- 
portant quantities: the location of points in space 
where events occur and the number of such points [33]. 
The mathematical realization of a spatial point process 
can be expressed as a sequence of random impulses, 
given by 

N 

v(r) = H s(r (1) 
n=l 

where r is a multidimensional spatial coordinate vec- 
tor in space <S where the point process is defined, rn is 
a continuous random vector describing the location of 
the nth point falling in S and N is a random variable 
describing the number of points. The ensemble of ran- 
dom vectors describing the positions of all N points 
is {f „ : n = 1,2, • ■ •, N}. In this section, we derive a 
general expression for the cross covariance of two cor- 
related point processes drawing on previous work by 
Barrett et al. [19,20]. 

A quantum image is represented as a sample q(r) of 
the random point process given by Eq. (1), where the 
space <S of points denotes the two-dimensional image 
area. Our analysis is also applicable to higher dimen- 
sional space. Although the size of <S is arbitrary, an 
infinite size is required for the analysis under WSS 
conditions, and hence we consider S to be infinite in 
size. 

A. Cross covariance of point processes 

For the general case, we consider two random spatial 
point processes, 
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and 

n=l 

ATfi 

?*(»•) = E*(*--*f)> 

(2) 

(3) 
i=i 

which may or may not be statistically correlated. The 
cross correlation of qA(r) and qß(r) is the mean of the 
product qA(r)q*B{r') [2], i.e., 

RAB{r,r') = (qA(r)?B(r')), (4) 

where * denotes a complex conjugate and () repre- 
sents an expectation operator. The cross covariance of 
qA(r) and qB(r) is given by 

KAB(r,r') = RAB(r,r') - (gU(r))(ß(r')).    (5) 

Barrett et al. [19,20] have shown that the mean of 
qA(r) in Eq. (2) is given by 

IN" 

U{r) = (u{r)) = r£vrASr\N/ (6) 
\n=l NA 

where pr f.A(r\NA) is the conditional probability den- 
sity function of the nth point of the process qA(r) eval- 
uated at r„ = r for a specified vahie of NA, and we 
denote by ( )%A the average over NA. Similarly, 

IN" i 

(7) 
\j=i AT» 

If <jU(r) is statistically independent of gs(r), the cross 
correlation RAB(r,r') is equal to the product of their 
means, and the cross covariance K^ß(r,r') in Eq. (5) 
becomes zero. Spatial point processes qA(r) and ?ß(r) 
are then called uncorrelated. 

In order to calculate the mean of the product 
qA{r)qB(r') in Eq. (4) where qA(r) and qB{r) may be 
statistically correlated, we must average over all ran- 
dom quantities {fA}, {ff}, NA and NB in processes 
qA(r) and ^(r'). The procedure is divided into two 
steps [19]. The first one is to take the conditional ex- 
pectation of the continuous random quantities {fn} 
and {ff} for fixed NA and NB. By definition of the 
statistical average over a continuous random variable, 
shown in Appendix C, we have 

E{qA(r)qB(r')\NA,NB} 

= fdrA...fdrB
NB{Y:s(r-rA)Y:6{r'-rf) 

Joo Joo ^n=l j=l 

xpr({r£},{rf}|^7v*)} 

=E E / **• ■ 7 *** Hr - < W - rf) 
n=1 ■,■=!•> oo Joo { 

xp*({rA},{rf}\NA,N^y (8) 

where pr({rA}, {rf}\NA, NB) is the conditional joint 
density function of random variables {fn } and {fj } 
given NA and NB, and we use the symbol /^ to de- 
note a multidimensional integral over all S. Using the 
property of marginal densities, shown in Appendix C, 
we obtain 

E{qA(r)qB(r')\NA,NB} 

= Ei:fdrAfdrB{s(r-rA)6{r'-rB) 
n=lj=1Joo        Jco I 

xpTfAf.f(rA,rf\NA,NB)y   (9) 

It follows from the sifting property of delta functions 
that 

v{qA(r)qB(r')\NA,NB} 

= Ef>f^r'i^<)' 
(10) 

n=lj=l 

where pr^x f.B(r,r'\NA,NB) is the conditional joint 

density function of fA and ff for fixed NA and NB, 
evaluated at rA = r and rf = r'. Next, by averag- 
ing Eq. (10) over NA and NB, we obtain the cross 
correlation of qA(r) and qB{r) given by 

RAB(ry) = (f:^prrt,f(r,r'\NA,NB))     _   . 
\n=lj=l / NA,NB 

(11) 

From Eqs. (5)-(7) and (11), therefore, the cross co- 
variance of qA{r) and <Zß(r) is given by 

K^(r,r')=/EEpr^ifif(r-,r'|^,iVB)\ 
\n=lj=l /jv 

-(EP^(H^)V(EP^(-'I^)V -(12) 

I NA>NB 

\n=l 'JV-4 \i=i 

Without loss of generality we assume that each point 
has the same conditional probability density function 
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for given NA or NB. The probability density functions 
are therefore independent of the indices n and j and 
we simplify our notation by using fA and rB instead 
of fA and ff. Thus, Eq. (12) becomes 

KAB(r,r') = (NANBwfA fB(r,r'\NA, NB)\     _ 
\ '    v /

/N
A
,N

B 

^Prf.(r|iV^)\   /iVVfs(r'\NB)\      (13) 

where the NA x NB terms in the double sum over n 
and j are identical. 

Equation (13) is a general expression for the cross 
covariance of two random point processes. It is valid 
for both stationary and non-stationary random pro- 
cesses. For imaging applications where, in general, 
NA,NB » 1 and the probability density and the joint 
density functions are independent of NA and NB, the 
statistical nature of NA and NB can often be ignored 
and the cross covariance of two quantum images is then 
given by 

KAB(r,r')nNANB [pr^*(r,r') - prf x(r)prf fl(r') 

(14) 

QA(V) 

Qin(r) 
Zn 

QB(V) 

FIG. 1. Illustration of randomly selecting points from a 
random point process. 

trial n. For N trials, the set of random variables £n 

and £n required to describe a single image is given by 
{£„,<„ :n = l,2,---,iV}. 

Similar to Eq. (1), the input is a general spatial point 
process rewritten as 

TV 

Qin{r) = ^26{r-Rn), (15) 
n=l 

B. Cross covariance of random subsets of a 
random point process 

If the quanta in two images are independent of each 
other, the cross covariance of the two images will be 
zero. This is certainly the case when two images are 
acquired independently of each other. However, we are 
interested in the special case where two point distri- 
butions (images) are not independent. A simple ex- 
ample of this occurs when the two point distributions 
are each random subsets of a common input point dis- 
tribution or image. If quanta in the input image are 
statistically correlated, there will in general be a non- 
zero cross covariance between the two subsets. In this 
section, the cross covariance of two point distributions 
is determined when each represents a random subset 
of a correlated input image. 

The process of randomly selecting points from a dis- 
tribution is illustrated in Fig. 1. This random point- 
selection process represents a sequence of independent 
trials in which each trial makes a random determina- 
tion for each point in the input distribution. The point 
is selected to path A with probability £, and path B 
with probability £. That is, each trial is described in 
terms of two binomial random variables, denoted by 
|n and Cn for the nth trial, where each random vari- 
able can have a value of 0 or 1 only. Each trial is 
independent of all others, but we will allow statistical 
relationships between variables |n and £n for a given 

where Rn is a random vector describing the position 
of the nth quantum in the input image. The point se- 
lection process is assumed to be independent of qin(r). 
The outputs qA(r) and ^(r) can therefore be written 
in terms of the random variables £n and £n as 

( N 

^(r-) = £ln*(r-.R„) 
n=l 

JV 
äB(r) = £Cn*(r-Ä„) 

n=l 

(16) 

In Eq. (16), the point processes fair) and gs(r) are 
random subsets of qin(r). We are interested in the 
cross covariance of qU(r) and qß (r). In the following, 
we examine both first-order and second-order statistics 
of qA(r) and qß(r). 

1. Mean 

We calculate the mean of <jU(r) in Eq. (16), in two 
steps. The first step is to take the conditional expec- 
tation of qA{r) for fixed {Rn} and N, i.e., for fixed 
qinir) refering to the sample space of <?m(r), and then 
to average over qnn(r). Thus, we have 
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E{qA(r)\qin(r)} = / £ |n<5(r - £„) 
\n=l 

N 

= Y,v{in}s(r - R. 

Qinir) 
in 
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points in A and B, then (n is orthogonal with |n, i.e., 
C„ = (1 - |n) and R^ = 0. With this notation, we 
have 

n=l 

TV 

?in(r) n=j 

= ^<5(r-fin) = ^i„(r).   (17) 
n=l 

where |n has the same mean value for all n, given by |, 
and we use the symbol \qin(r) to denote the computa- 
tion condition, i.e., for fixed qi„(r). Next, by averaging 
over q~in(r), we can obtain the mean of qu(r) given by 

(r) = E{qA(r)}=tqin(r). (18) 

E{äU(r)&(r')|*„(r)} 

JV 

= Rcc^<5(r-Ä„)<5(r'-JR„) 
n=l 

= R-CC9in(r)^n(T"') 

n=j 

n=j 
(22) 

9.4 

Similarly, 

gB(r) = EJgB(r)| = CftnM- (19) 

2. Cross correlation and cross covariance 

The cross correlation of <jU(f) and <ZB(F), 

RAs(r,r'), is the mean of the product q~A(r)q*B(r')> 
i.e., 

When n ^ j, random variable |n is independent of Q 

and E{|„Cj} = |C- In this case> we nave 

E{^(r)Ö(r')l?in(r)} 

\n=ij=i 

N     N 

= £<EE*(r--R»wr'-Ä^ 
n=lj=l 

9m (r) 
Cn,0 

= ^C9in(T-)gi„(r-') 
n^i 

»#j 

(23) 

Wr,r') = E{4U(r)ft(r')} 

Adding Eqs. (22) and (23), the conditional expectation 
of the product qA(r)q*B(r') is given bv 

= (JtinSir-Rj^CiSir' -Rj)\ (20) 

v{qA(r)q*B(r')\qin(r)} 

\n=l 
RiCqin(r)qin(r')\       + £Cftn(r)fc„(r') (24) 

Again, using an approach similar to Barrett et al. [19], 
computation of the expectation in Eq. (20) is divided 
into two steps. That is, the first one is to average over 
{|„} and {Cn} for fixed input qin(r), and then average 
over q~in(r). There are two cases to be considered in 
Eq. (20), corresponding to n = j and n ^ j. When 
n = j, which has N terms, 

E{qA(r)qB(r')\qin(r)} 
n=j 

E f„Cn S(r - Rn)8(r' - Rn) qin(r)) .  (21) 

which after averaging over g*„(r) yields 

RAB(r,r') = R^Rin(r,r')      . + £{Rin(r,r'] 
n=j n#j 

(25) 

n=l «»■Cn n=j 

It is convenient to denote the cross correlation of £„ 
and Cn for n = l,2,---,iV as R^ = E{|„Cn}- It 
is non-zero when the two random variables are non- 
orthogonal. For instance, if the two images A and 
B represent identical subsets of the input distribution, 
where Cn = In, they are correlated and the cross corre- 
lation of |„ and Cn is R^c- K the two images represent 
complementary subsets, where there are no common 

where Rin(r,r') = E{qin(r)q*n(r')} is the autocorre- 
lation of qin(r) and is given by 

Ri„(r,r') = Ri„(r,r')        +Ri„(r,r')       -     (26) 
n=j nji] 

Equation (25) can be further simplified. Note that for 
a general point process as in Eq. (15), we have [19,20] 

Rin(r.r')        =qin(r)S{r-r'). (27) 
n=j 

From Eqs. (25)-(27), therefore, the cross correlation 
of <jU(?*) and qB (r) becomes 

RAB(r,r') = (RU- iÖQin(r)6(r - r1) + |CRin(r,r') 

= KK qin(r)S(r - r') + f CRi„(r,r'),   (28) 
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where K^ is the cross covariance of random variables 

in and Cn, given by KiC = RiC - £ C- 
Finally, the cross covariance of <jU(r) and gs(r) is 

given by 

KAB(r,r') = R^B(r,r') - ^(r)gs(r') 
= Kcc qin(r)5(r - r') + ÜKin(r,r'), (29) 

where K;n(r,r') is the autocovariance of the input 
point process qin(r). 

Equation (29) is a general expression for the cross 
covariance of qU(r) and q~ß{r), where each is a random 
subset of the input point process. It consists of two 
components. The first represents uncorrelated noise 
power given as a 5 function scaled by the cross covari- 
ance Ktf of the two binomial random variables and the 
mean number qin(r) of quanta per unit area in the in- 
put. This component is zero when A and B represent 
independent subsets of the input, and non-zero oth- 
erwise. The second component represents correlated 
noise and is proportional to the cross covariance of the 
input point process Kj„(r,r'). 

C. Cross covariance following an amplified point 
process 

A more general case involves the cross covariance of 
two point processes that undergo an amplified point 
process subsequent to selection as illustrated in Fig. 2. 
Following the work of Rabbani, Shaw and Van Metter 
[13], and Barrett et cd. [19,20], an amplified point pro- 
cess is considered to be a random point process where 
each point is converted into a random "cluster" of kn 

secondary points randomly distributed by the random 
vectors {Ank : k = 1,2, • • •, kn}, which is the cascade 
of the elementary processes, quantum gain and quan- 
tum scatter, described in Appendix A. If each ampli- 
fication process is independent of all others, the point 
processes gU(r) and qß{r) in Fig. 2 can be written as 

14 

N *■ 

QA (r) = £l«E*(r-*»-**) 
71=1 fc=l 

N k 
,      (30) 

QB(r) = J2inJ26ir~Än~ A"fc) 
Tl=l fc = l 

where the nth input quantum randomly located at Rn, 
if passed to paths A and B produce kA and k® quanta 
respectively, and 

ft^Rn + A 

and 

rnk' 

nk 

zRn + Ank 

QA0(r) 

qin(r) 

APP 
pj{r,R) 

QA(T) 

Zn 

QB0{r) 

APP 
PB(r,R) 

QB{V) 

tAPP: Amplified Point Process 

FIG. 2. Two point processes following an amplified 
point process subsequent to selection of a random point 
process. 

are random vectors describing the positions of the kth 

quantum produced by the nth primary in the image 
plane for each path. As assumed by Barrett et al. 

[19,20], we assume the random displacements Anfc and 

Ank are independent of all others, possibly depending 
on the position of the primary for non-stationary pro- 
cesses. 

Denote by pr4(A^|.Rn) the univariate probability 
density function of 

{Ä^:fc = l,2,---,fcn; n=l,2,---,./vj 

given the primary Rn. The following relationship is 
then known [19,20], 

pr£(A^|J?„) = [^(B„)]"W(A^ + Än,Än), 

(31) 

where the mean number kA{Rn) of secondaries result- 
ing from primary Rn in path A is 

kA(Rn) = f drpA(r,Rn), (32) 
J CO 

and pA(r, Rn), for path A, is defined as the mean dis- 
tribution of secondaries at r when a primary is ab- 
sorbed at Rn- Similarly for path B, we have 

pr|(A^|i?„) = [fcf(Än)]_1pf (Affc + fln,Ä„), 

(33) 

where pr?(A^fc|Ä„) is the univariate probability den- 

sity function of {A„fc} given Rn, and 

kB(Rn) = f drpB(r,Rn). (34) 
Joo 

We now examine the means and cross covariance of 
qA(r) and qß(r) for these amplification processes. 
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1. Mean 

The mean of the point processes qA (r) and qs (r) are 
calculated using an approach similar to that described 
by Barrett et al. [19]. For path A, the procedure is as 
follows. 

~ A 
(a) Average over displacements {Anfc} for fixed Rn; 

(b) average over number k£ of secondaries for fixed 

(c) average over binomial random variables £„ for 
fixed qin(r); 

(d) average over positions {Rn} of input quanta for 
fixed N; and, 

(e) average over total number N of input quanta to 
get the result E{qA(r)}. 

Steps (a) and (b) calculate the conditional expectation 
of secondary points given a primary. Step (c) averages 
over the selection of quanta entering path A for fixed 
input. An average over the input point process is ob- 
tained in steps (d) and (e). In an attempt to simplify 
the notation, we will use the step label as a subscript 
to express the result of a step (a)-(e). For example, 
denote by E(a){qA(r)} the result of step (a). 

Step (a) is the statistical average over the continu- 
ous random vectors {AjJfc} given Rn. In a similar way 
to Eqs. (8)-(10), we can obtain 

W       ki _i 

E(o){«U(r)} =£&,£[*„(*«)]    p£(r,Rn),  (35) 
n=l       jfe=l 

where the probability density function pr4(A^fc|i2„) 
has been expressed in terms of p^(r,Rn) from 
Eq. (31). We can simplify Eq. (35) into 

E(„){ü(r)} = J2&*» [#(«»)]     PJ{T,Rn),   (36) 
n=l 

since the kernel in the sum over k is independent of k. 
Step (b) requires the average of Eq. (36) over dis- 

crete value kfi given Rn. This leads to cancellation 
of [kn(Rn)]^1 in Eq. (36) because of the conditional 
expectation of k£ given Rn as shown by E(6){fc^} = 
k^(Rn). Thus 

( 1       N 

E(6){?A(r)} =E(6)JE(a){öi(r)} } = *£ Zn P$ (r, Rn) 
*■ ■*        n=l 

(37) 

Step (c) can be obtained simply by replacing £„ in 
Eq. (37) with f, i.e., 
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f 1       N 

E{c){qA(r)\ = E(cJ Ew{qA(r)} \ = £örf(r,Ä„). 
*- >        n=l 

(38) 

Step (d), for the continuous random variables {-Rn} 
with the univariate conditional density function 
pr^ (Rn\N) given N, requires the computation of 

E(d){gA(r)} 

= jdRl-fdRNYj Zp$(r, Rn) w{kn{{Rn}\N) 
Joo Joo n=1 

JV 

= £(/  di2npj{r,Rn) prkn(Rn\N) 
n=l     •/o° 

= £ f / dRp$(r, R) PrÄn(Ä|iV), (39) 
„_1     Joo n=l 

where the property of marginal densities was invoked 
and the integration variable R„ is renamed R. Since 
the conditional expectation of ^„(r) for fixed N is 
given by (see Eq. (6)) 

E{qin(r)\N} = '£pvkn(r\N), (40) 
n=l 

then Eq. (39) becomes 

E(d){qA(r)} = £J dRP$(r,R)E{qin(R)\N}. 

(41) 

Step (e), the average of Eq. (41) over N, yields 

E{^(r)} =lf dRpj{r,R) qin{R), (42) 
^ ' Joo 

where E{qin(R)\N} is averaged over N. Since 
Üo(r) = |«»nW, where point process qAo(r) is the 
output of the point-selection process for path A (see 
Fig. 2), we obtain 

E{flU(r)} = / dRp$(r,R) qAo(R). (43) 
1 J        Joo 

Equations (42) and (43) are general expressions for 
the mean of an amplified point process. Similarly, the 
mean of gs(r) is given by 

E{qB(r)\ = C / dRpg(r, R) qin(R) 

= [ dRp$(r,R)qBo(R). (44) 
«/OO 
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2. Cross Correlation and Cross Covariance 

We now calculate the cross correlation for the out- 
put point processes qA (r) and qB (r). By definition, 
RAE)(r,r') is given by 

RAB(r,r')=E{qA(r)qB(r')} 

\n=l     *=1 n=l     *=1 / 
(45) 

Similar to the computation of the mean of qA(r), we 
calculate the expectation in Eq. (45) by the five steps 
(a)-(e) shown above. Step (a) is to average over dis- 

~ A ~ B 
placements {Anfc} in qA(r) and {Anfc} in qB(r) for 
fixed {Rn}, denoted by E(jl){qA(r)qB(r')}- Step (b) 
is to average over kA and k% for fixed {Rn}, denoted 
by E(b){qA(r)qB(r')}. We assume the point ampli- 
fication processes in paths A and B may depend on 
incident locations {Rn}, but are independent of all 
other terms. That is, both the gain factors {k^} and 
{kB} are independent for all n and the scatter vectors 

~ A ~ B 
{Ank} and {Anfc} are independent for all n and k. 
Therefore, we can write down the results for steps (a) 
and (b) as 

E{a){qA(r)qB(r')} = E(o){^(r)}E(o){«B(r')}   (46) 

and 

Eib){qA(r)qB(r')} = E(b){qA(r)} E(b){qB(r')}   (47) 
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AT 

Y;^Pd(r,Rn)pB{r',Rn) 
n=l 

N 

(c) n=] 

= Y/
E{^Cn}pd(r,Rn)pB(r',Rn) 

n=l 
N 

(50) 
n=l 

The calculation for Steps (d) and (e) on Eq. (50) is now 
similar to what was done in Eqs. (39)-(42). Thus, the 
result is given by 

E(e){&i(r)9B (*•')} 
n=j 

= R4C I dRpj(r,R)pB(r',R)qin(R). (51) 
■zoo 

Next, consider the case of n ^ j for step (c). From 
Eq. (49), we have 

E{c){qA(r)qB(r')} 

= (EEI«Ö^(r,Ä„)^(r-',ßi)) 
\n=l j=l /(-c 

= EEE{^}^(r''jRn)^(T'''ilj) 
n=lj=l 

= ^EEP^(^-Rn)pf(r',ß 

n^i 

n^j 

n=l j=l 

(52) 

respectively. From Eq. (37) and 

N 

E{b){qB(r')}=Y,CjP
B(r',Rj), 

we can obtain the following result, 

N     N 

Again, similarly as in Eq. (39), step (d) applied to 
Eq. (52) now gives 

(48) 
Eid){qA(r)qB(r')}       = Ü [ dR f dR'UA)(r,R) 

xpfCr'.ilOEEp^,«,^^'^)}       •  (53) 
n=lj=l n#j 

E(6){9A(r)«B(r')} = E E^0^(^,-Rn)pf (r',Ä,-). 

(49) 

Based on the work by Barrett et al. [19], it can be 
shown that 

n=lj=l 

In order to average over {£„} and {Q} for fixed 
qin(r) in step (c), we must consider two cases, de- 
noted by E(c){qA(r)qB(r')}\n=j when n = j and, by 
E(c){QA(r)qB(r')}\n^j when n ^ j. For the double 
sum over n and j in Eq. (49), there are N terms with 
n = j. Averaging these JV terms in Eq. (49), yields 

E{c){qA(r)qB(r')} 
n=] 

E{qin(R)qin(R')\N}       = £ E^^äW 
n^J      n=l j=l 

(54) 

Substituting Eq. (54) into Eq. (53), we have 

Eid){qA(r)qB(r')}        = U f dR f dR'\pj(r,R) 
n^tj •'00 ^°° *• 

xpf(r',Ä')E{ftn(Ä)ftn(Ä')|Jv}       }.  (55) 

«^j 
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Now it is easily shown that step (e) applied to Eq. (55), 
to obtain the average over N, gives 

njtj 

n^j 

QA0(r) 

V(e){qA(r)qB(r')} 

= zrfdR[dR'pj(r, R)pB(r', R')E{qin(R)qin(R')} 
Joo     Joo 

= ec/ dR[ dR'pA(r,R)pB(r',R')Rin(R,R')\      . (56) 
Joo       Joo '"*» 

To replace Rin(Ä,ß')|n#j in Eq. (56) with 
Rin{R,R'), we invoke Eqs. (26)-(27) again. Thus 
Eq. (56) becomes 

E(e){qA(r)qB(r')}\ 

= fc/ dRJ dR'pA(r,R)pB(r',R')Rin(R,R') 
Joo Joo 

-Ü [ dRpA(r, R)pB(r\R) qin(R). (57) 
•Zoo 

Adding Eqs. (51) and (57), the cross correlation of 
qA(r) and qB(r) is given by 

RAB(r,r')=Ka f dRpA(r,R)pB(r',R)qin(R) 
Joo 

+Ü [ dRJ dR' pA(r,R)pB(r',R')Rin(R,R'), (58) 
J oo J oo 

which is a general expression for the non-stationary 
cross correlation of two amplified point processes fol- 
lowing a stochastic input selection. The cross covari- 
ance of qA(r) and qB(r) is given by subtracting the 
product of means from the cross correlation. From 
Eqs. (42), (44) and (58), finally, we have 

KAB(r,r')=KiC f dRpA(r,R)pB(r',R)qin(R) 
Joo 

+ä/ dRJ dR'pA(r,R)pB(r',R')Kin(R,R'), (59) 
Joo Joo 

which is the desired result. For the case illustrated 
in Fig. 2, the expressions given by Eqs. (58) and (59) 
show that: a) the correlation in qA(r) and qB (r) is 
proportional to the cross correlation of the binomial 
random variables |n and C,n describing the point se- 
lection as given by the first term on the right-hand 
side of Eqs. (58) and (59); and, b) any correlation in 
the random source «^„(r) is transferred to the outputs 
through paths A and B as shown by the second term. 

D. Cross Covariance Following Multiple Amplified 
Point Processes 

We now generalize the result of Eq. (59) derived in 
the above section to an arbitrary number of cascaded 

APP 
pAl(r,R) 

APP Ü(r) 

qin(r) 
'Zn 

qBo(r) 

APP 
P^(r,R) 

APP 
pB"(r,R) 

qB(r) 

tAPP: Amplified Point Process 

FIG. 3. Two point processes following multiple ampli- 
fied point processes subsequent to selection of a random 
point process. 

amplification stages in each of the two paths A and B, 
as illustrated in Fig. 3. In doing so, it is important to 
note that there are no random variables in Eq. (59), 
the cross covariance is expressed only in terms of mean 
values and the cross covariance of £n and £n. 

1. Transfer Function of Mean 

We approach the generalization of Eq. (59) by first 
considering the general expression Eq. (43) for the 
mean of an amplified point process with any input 
point process. Without loss of generality, we define a 
transfer function #"(•), an integral operator, in terms 
of Eq. (43), as 

H(qin{RJ) = [ dRPd(r,R)qin(R), (60) 

which describes the propagation of the mean of a 
point process passing through an amplification stage. 
As shown in Fig. 4(a), given an amplification stage 
with transfer function #(■), the mean of the ampli- 
fied point process qout(r) resulting from any point 
process input q~in(r) can be uniquely determined, i.e., 
q~out(r) = H(qin(R)), where R and r represent the po- 
sition vectors of input and output quanta, respectively. 
The mathematical operation in Eq. (60) that maps the 
mean of input at R to the output at r is a convolution 
of the input qin(R) with the function pd(r,R). For 
convenience, denote *v to represent the "shift variant" 
convolution integral such that 

H(qin(R)) = f dRPd(r,R)qin(R) 
^ '        Joo 

äpd(r,R)*vqin(R), (61) 
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q0ut{r) 

(a) 

qin(R) 
*vpd(r,R) 

q0ut(r) 

(b) 

FIG. 4.   Transfer functions of mean for an amplified 
point process. 

where the subscript v of the symbol * is used to 
make a distinction between shift invariant and vari- 
ant systems. Fig. 4(b) is the block-diagram repre- 
sentation of Eq. (61). From the relationship between 
function Pd{r, R) and the probability density function 
pr^(r - R\R) given by Eq. (31), we have 

H (qin(R)) =  f dRpvA(r - R\R)kn(R) qin(R) 

= prA(r - R\R) *v (kn(R) qin(R)),  (62) 

which is an equivalent expression of the mean for an 
amplified point process. As illustrated in Fig. 4(c), an 
inputpoint process q~in(R) is first amplified with mean 
gain kn(R) and then scattered with the density func- 
tion pr^(r - R\R). This result can be found in [13] 
developed by Rabbani et al. from the view of multi- 
variate moment-generating functions. 

If the amplified point process is shift-invariant, then 
the mean gain and density function are independent 
of position R, where kn(R) = k and pr^(r - R\R) = 
pr^(r - R). In this case, Eq. (62) becomes 

H(qin(R)) = [ dRpvA(r-R)kqin(R) 

= kpr^(r)*qin{r). (63) 

2. Cross Covariance 

Now consider the case illustrated in Fig. 3, where 
there are L and M cascaded amplification stages in 
paths A and B, respectively. The output of each am- 
plification stage forms a virtual input to the next. 

First, using an approach similar to the procedure 
discussed previously, we calculate the cross covariance 
of the outputs for the case of two cascaded amplifi- 
cation stages in each of the paths A and B. In other 
words, we may make the calculation, for that case, by 
considering the five steps shown in the previous sec- 
tion. Then, by the method of induction, the cross co- 
variance for the output of the system shown in Fig. 3 
can be obtained. However, this procedure becomes 
tedious due to the conditional average over multiple 
amplification processes. Rather, cascaded amplifica- 
tion stages in each path can be thought of as an entire 
amplified point process if we consider only linear sys- 
tems where the spatial pattern of each amplification 
stage depends only on the position of the primary in- 
teraction. To obtain the statistical characteristic for 
the entire amplified point process, consider the calcu- 
lation of the mean of the output point process qA(r) 
by cascading Eq. (61) with the L amplification stages 
in path A. In Fig. 5, the mean qA (r) of the output at 

r is the convolution of qAL_1(R
Al"1) with the func- 

tion p$L(r,RAL-1) and then of qÄL_2(R
Al-2) with 

the function p*L~x(RAl-\RAl-*)i ■■; finally of in- 

put at R with the function pAl(RAl,R). This lead 
to 

U(r) =pAL(r,RA^) *vqAL.i(RA'-1) 

= pA<{r, RA^) *v [pAl-iRAL-\ RAL
~

2
) *„^„(R

AM
)] 

= P
AL

(T,R
AL

-
X
) *V---*VP

AI
(R

A
\R) *vqAo(R) 

±pA(r,R)*vqAo(R), (64) 

where we define pA(r,R) as the statistical character- 
istic function for the cascade of all stages along path 
A given by 

pA(r,R)^pAl-(r,RA^) ■■■*VP
AI
(R

A \R). 

(65) 

Now we can say that the mean of the output q(r) is 
the convolution of the mean of the input at R with 
the function pA(r, R). 

Similarly, for path B, we obtain that the mean of 
qB(r) is given by 

QB(T) =P*d{r,R)*vqBa{R), (66) 

where point process qs0 (r) is the output of the point- 
selection process for path B (see Fig. 3) and 

rf(r,R)äp*"(r,RB><->)*v---*vrfl(RBl,R). 

(67) 
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FIG. 5. Transfer function of mean for multiple amplified point processes. 

This result shows that multiple cascaded amplified 
point processes can be expressed as a single amplified 
point process with the appropriate statistical charac- 
teristic function for the purpose of describing transfer 
of mean value. Since calculation of the cross covariance 
in Eq. (59) involves integrals in which amplification is 
represented in terms of the statistical characteristic 
only, we conclude that the cross covariance for qA(r) 
and qB(r) is also given by Eq. (59), where pA(r,R) 
is described by Eq. (65) and pB (r,R) is described by 
Eq. (67). 

E. Important Special Cases 

1. Doubly Stochastic Poisson Impulses Source 

where R^ = K^ + £ C is the cross correlation of ran- 
dom binomial variables |„ and Cn- Similarly, substi- 
tuting Eqs. (68) and (69) into Eq. (59), after some 
algebraic manipulations, the cross covariance becomes 

KAB(r,r') = R^ f dRpA(r,R)pB(r',R)b(R) 
Joo 

+Ü [ dRJ dR'pA(r,R)pB(r',R')Kb(R,R'), (71) 
Joo Joo 

which is the result of Fig. 2 for the input process of 
doubly stochastic Poisson impulses. Eqs (70) and (71) 
are given to show the relationship to Barrett's work, 
but are not required to obtain the following special 
cases. 

In medical imaging systems, the incident x rays at 
the detector form a quantum image which is a dis- 
tribution of quanta, and can be expressed as a sample 
function of a spatial point process q~in(r) as in Eq. (15). 
Barrett [19] has shown that such a point process may 
be described in terms of doubly stochastic Poisson im- 
pulses with intensity process b(r), which he calls the 
random input fluence. In x ray imaging, for instance, 
random changes of the radiation source makes b(r) 
spatially random. 

For the input point process q~in(r) of doubly stochas- 
tic Poisson impulses, Barrett shows that the mean is 
given by 

Qin(r) = b(r), (68) 

where b(r) is the mean of random input fluence, and 
the autocovariance is 

Kjn(r, r') = b(r)S(r - r') + Kb(r, r'), (69) 

where Kb(r,r') is the autocovariance of b(r). Sub- 
stituting Eqs. (68)-(69) into Eq. (29), we obtain (see 
Fig. 1) 

KAB(r,r') =RzCb(r)6(r - r') + UKb(r,r'),   (70) 

2. Shift-Invariant System with Multiple Amplified Point 
Processes 

If the system shown in Fig. 3 is shift-invariant, which 
requires that the mean gain and the probability den- 
sity function for each amplification stage be indepen- 
dent of position, then the propagation of the mean of 
the input point process is shown in Fig. 6. From Fig. 6 
and Eq. (63), it is easily shown that 

U{r) = kA pr£(r) * ^(r) 

qB(r) = kB prf(r) * qBo(r) 
(72) 

where the probability density functions pr^(r) and 
piB (r) for the entire amplified point processes along 
patns A and B, respectively, are expressed as convolu- 
tions of the density functions of sub-stages in its path, 
i.e., 

pr£(r) = P4
L
 (r) * pr^""1 (r) * • • • * pr£ (r) 

(r^pr^r)*---*?^) pr|(r) PrA 
(73) 
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Qin(r) 

QA0(r) 

i 
l 

k^pr^ir)-- k^pr^ir 
QA(T) 

**pi*(r)—- P^pr^tr qß(r) 

FIG. 6.  Shift-invaxiant system with multiple amplified 
point processes. 

and the mean gains kA and kB for the entire ampli- 
fied point processes of paths A and B, respectively, are 
given by 

kA=f[kAi 

i=l 
M 

3=1 

(74) 

Prom Eq. (31), we obtain the function pA(r, R) for the 
entire amplified point process of path A, i.e., 

p$(r,R) = kApr£{r-R). 

Similarly, we have 

pf(r,H) = Fprf(r-fi). 

(75) 

(76) 

covariance KAB (r,r'). For the wide-sense stationary 
conditions, the input process must be stationary in 
the wide sense and, the amplification processes must 
be shift-invariant with uniform mean gains of quanta 
in an infinite imaging plane. Thus, under WSS condi- 
tions, let qin(R) = qin be constant, and Kin(Ä,Ä') = 
Kin(R - R'). Moreover, the functions pA(r,R) and 
pB(r',R) in Eq. (59) are replaced with the products 
of their corresponding constant mean gains and shift- 
invariant density functions as in Eqs. (75) and (76), 
respectively. We obtain 

KAB(r,r')=:KAB(r-r') 

= K^kAkBqin[dRprl(r-R)pvl(r'-R) 

+tCkAkB [dRJ'dR'pvlir-RjpvKr1 -R')Kin(R-R'), 
J oo     J oo 

(78) 

By changing the integral variable R such that r' = 
r' - R, the integral of the first term in Eq. (78) can 
be rewritten as 

/ 
dr'pr|(r-r' + T')pr|(r') 

Substituting Eqs. (75) and (76) into Eq. (59), the cross 
covariance function of qA(r) and <7s(r) is given by 

KAB(r,r') 

= K^kAkBfdRpTA
x(r-R)pvl(r'-R)qin(R) 

J OO 

+Z(kAkB[dRJdR'pvl(r-R) prf (r'-H')Kin(R, R) 
J oo      J OO 

(77) 

which is the desired result for the case when the system 
is shift invariant. 

3. Cross Covariance and Cross Spectral Density Under 
WSS Conditions 

If the outputs of point processes qA{r) and Qs(r) 
in Fig. 2 are wide-sense stationary (WSS), we can de- 
scribe the correlation between two paths A and B in 
the frequency domain by their cross spectral density 
[3] which is equal to the Fourier transform of the cross 

which is the correlation integral of two functions 
pr^ (r) and pr£(r) over r', denoted in short form 
by pr£ (T) *pr£(r), where T = r -r'. Moreover, for 
the double integral of the second term in Eq. (78), we 
perform the changes of r" = r'-R' in the R integral 
and r'" + r" = r - R in the R integral, yielding 

f dr'" \ f dT"pil(r'" + T") prf (T")1 Kin(r-r'-T'"). 

The integral over r" is the correlation integral of 
pr£ (r"') and pr|(r"'), and the integral over r'" is 
the convolution integral of the correlation integral and 
Kj„(r). At this point we simplify our notation and let 
pr(-r) = prÄ(r). Therefore, Eq. (78) becomes 

KAB(T) = KKkAkBqin prA(r) *prB(r) 

+Z(kAkB [prV) *PrV)] * Kin(r),     (79) 

which is the desired expression of the cross covariance 
for wide-sense stationary qA(r) and QB(T-). 

The cross spectral density for paths A and B is de- 
fined as the Fourier transform of the cross covariance 
KAB(T), given by 

NPS^BM=^{K>IB(T)} 

= KiQkAkBqinT{pxA{r) *prB(r)} 

+RkAkBA[prA{T)*pxB{T)] *Kin(T)J.  (80) 
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FIG. 7.  Schematic of the parallel cascade model used to determine the reabsorption of characteristic K x rays in a 
radiographic screen. 

Then the final result for the cross spectral density un- 
der WSS conditions is 

(81) 

where NPSin(i/) is the NPS of the input point process 
(the Fourier transform of Kin(r)), TA(v) and TB(u) 
are Fourier transforms of prA(r) and prß(r) respec- 
tively. When paths A and B represent a cascade of 
multiple amplified point processes, the mean gains kA 

and kB are the product of mean gains along each path 
as given by Eq. (74), and pr^(r) and prB(r) rep- 
resent the cascaded probability density functions for 
each path as given by Eq. (73). Taking the Fourier 
transform of both sides of Eq. (73) shows that TA(v) 
and Tß(i>) represent the product of all scatter transfer 
functions along each path, as given by 

T»=nT*H 
i=l 
M 

(82) 

TB{u) = Y[TB'(u) 
J=I 

where TAi (u) is the Fourier transform of the probabil- 
ity density function of the zth sub-stage in path A. The 
probability density functions always have unity area, 
and hence the transfer functions TA[y) and TB(v) 
always have a value of unity at v — 0. While the 
transfer functions are complex in general, as shown 
in Appendix B, the sum of any cross term pair, 
NPS,IB(I/) + NPSBAM, will always be real only. 

III. APPLICATIONS 

Equation (81) is the general expression for the WSS 
cross spectral density of two parallel cascaded ampli- 
fied point processes descending from a single input 
point process. It is in a particularly simple and con- 
venient form for application in a linear-systems model 
as it is expressed solely in terms of the NPS and mean 
value of the input point process, the selection proba- 
bilities and corresponding cross covariance, and mean 
gains and mean scatter transfer functions for each 
path. In this section, this result is used in a description 
of characteristic reabsorption in a radiographic screen. 

A. Application to Reabsorption of Characteristic 
X Rays in a Radiographic Screen 

We examine here the effects on image noise of fluo- 
rescence reabsorption in a radiographic screen, where 
light is emitted at both the primary photo-electric in- 
teraction site and at the reabsorption site. This prob- 
lem was studied previously by Metz and Vyborny [34] 
using a relatively sophisticated statistical analysis. We 
show that the same result can be obtained using a sim- 
pler linear transfer-theory model that includes parallel 
cascades and the cross spectral density derived in the 
previous section. 

Figure 7 illustrates a "flow diagram" showing the 
sequence of events leading to light production in the 
Metz-Vyborny model. WSS conditions are assumed 
throughout so that each position in this diagram rep- 
resents an intermediate step between input and output 
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characterized in terms of a two-dimensional distribu- 
tion of quanta (points) q(r). The processes included in 
Fig. 7 are based on three "elementary processes" (see 
Appendix A) in the serial cascades plus branch-points 
that give rise to the parallel cascades. 

Several simplifying assumptions are made in order 
to be consistent with Metz and Vyborny [34] and with 
earlier work of Rossmann [35,36]. They include: a) in- 
cident x rays are assumed monoenergetic; b) differ- 
ences in light emission due to different x ray interaction 
depths are ignored; and c) only photo-electric interac- 
tions are considered. Metz and Vyborny also ignored 
the statistical nature of light generation in the screen. 

At the input of the model in Fig. 7, a uniform x-ray 
distribution consisting of q quanta/mm2, each with en- 
ergy Ex, is incident on the radiographic screen. These 
quanta are Poisson distributed, and hence have an as- 
sociated NPS given by NPS(v) = q [37]. A fraction r) 
of these incident quanta will result in a photo-electric 
interaction in the screen. Selection of these events 
is represented as a stochastic selection or binary gain 
stage, where gain is represented by a random variable 
fj that can have a value of 0 or 1 only and mean of T). 
The output from this gain stage is the two-dimensional 
distribution of photo-electric events in the screen. 

As described by Metz and Vyborny, there are three 
possible sequences of events whereby light can be gen- 
erated for each photo-electric interaction: 1) absorp- 
tion of the primary x-ray photon at the primary in- 
teraction site without emission of a characteristic K x 
ray; 2) absorption of the primary x ray accompanied 
by emission of a K x ray; and 3) reabsorption of the 
K x ray at a remote location. These three sequences 
correspond to paths A, B and C in Fig. 7. 

Path A describes the emission of light at the primary 
interaction location when no K x ray is produced. For 
each photo-electric interaction, there is a probability 
qui that a K x ray will be generated, and therefore a 
probability (1 - cw) that a K x ray is not generated 
where c is the probability that, when an incident pho- 
ton interacts in the screen, it undergoes a K-shell inter- 
action, and w is the fluorescent yield of K-shell photo- 
electric interactions. This branching is represented in 
Fig. 7 as the diamond-shaped "Bernoulli branch". It 
is to be interpreted as a Bernoulli trial [2,37] that, 
for each interaction, determines the outcome "yes" or 
"no" where "yes" is obtained randomly with a prob- 
ability ?w, and "no" otherwise. If a K x ray is not 
produced, corresponding to path A in Fig. 7, it is as- 
sumed that the incident x-ray energy Ex is absorbed 
locally producing the number m optical quanta (the 
gain factor m is assumed to be proportional to the ab- 
sorbed energy) which will be emitted from the screen. 
Metz and Vyborny ignore the statistical nature of light 
emission, and hence m is modeled as a deterministic 
gain factor. Note that the gain factor m only describes 
generation of the number of light quanta that are emit- 
ted from the screen. 

Path B describes light emission at the site of the 
photo-electric interaction when a K x ray is emitted 
(which may or may not be reabsorbed). In this case, 
the energy EK = i>Ex is carried away in the K x ray, 
and the remaining energy Ex — EK is deposited at the 
primary interaction site. Thus, only (1 - ip)m optical 
quanta are emitted at the primary interaction site for 
each photo-electric interaction where ip = EK/EX and 
EK W 59.3 kev for tungsten in the calcium tungstate 
screens. 

Path C describes the light emitted from the screen at 
a remote site due to reabsorption of the K x ray, where 
JK is the probability of reabsorption somewhere in the 
screen for each photo-electric interaction producing a 
K x ray. The location of reabsorption is random, but 
the point-spread function PK(T), which has unity area, 
describes the probability density that the K x ray is 
reabsorbed at a distance r from the photo-electric in- 
teraction site. The process representing this random 
relocation of the K x ray is a quantum scatter stage 
as described in Appendix A. At the reabsorption site, 
the K x ray is converted to optical quanta with a con- 
version factor ipm. Events are selected for both paths 
B and C for every "no" event in the Bernoulli branch. 
We call the point of separation of paths B and C a 
"cascade fork." 

Due to geometrical spread and possibly light scatter 
in the screen, optical quanta are distributed spatially 
with a point spread function (normalized to unity area) 
given by p0(r), Metz and Vyborny ignore the statis- 
tical nature of light scatter and this redistribution of 
light is represented as a linear filter (convolution) with 
a kernel p0(r). 

The total light emitted from the screen is therefore 
the sum of contributions from each path, resulting in 

qo = \To(0)\[qA + qB+qc) (83) 

quanta per unit area, where we have used Eq. (A9) 
for the output linear filter in Fig. 7, and the function 
T0(u) is the Fourier transform of p0(r). The contri- 
butions from each path can be obtained by cascadeing 
the elementary processes (see Appendix A) included 
in each path and considering the outcome probability 
of the Bernoulli branch. Then, we have 

qA =m(l -su))r)q, 

qB = (I - tp)m<;ujri q, 

qc = ipmfK<;ojr) q. 

(84) 

(85) 

(86) 

Substituting Eqs. (84)-(86) into Eq. (83), we can ob- 
tain 

q0 = qr,m[l - ^(1 - /*)]|To(0)|. (87) 

The NPS of light emitted from the screen, denoted 
by NPS0(u), is therefore given by (see Appendix B) 
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FIG. 8. The Bernoulli branch with amplified point pro- 
cesses. 
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 (88) 

consisting of the NPS from each of the paths A, B 
and C plus corresponding cross terms as described be- 
low for the parallel paths with "Bernoulli branch" and 
"cascade fork" selection processes. 

1. Bernoulli Branch 

The Bernoulli branch with amplified point processes 
is illustrated in Fig. 8. Each quantum in the in- 
put point process is selected for path A, denoted by 
"yes", when |„ = 1 and for path B, denoted by "no" 
when ^ = 0. The Bernoulli branch is a special 
case of the point selection process described in Fig. 2 
where the two binomial random variables are related 
to C = (1 _ £)• This results in the cross covariance of 
these random variables given by 

tAPP: Amplified Point Process 

FIG. 9. The cascade fork with amplified point processes. 

2. Cascade Fork 

The cascade fork with amplification is shown in 
Fig. 9 where every quantum in the input is selected 
for both paths A and B. This again is a special case of 
the general point selection process described in Fig. 2 
where £„ = £„ = 1, modeled as deterministic unit fac- 
tors. The cross covariance of |n and C„, is therefore 

K« = E{|„Cn} - E{|„}E{C„} = 0, (91) 

and the cross spectral density term for the cascade fork 
based on Eq. (81) is given by 

NPS^BM = kAkB TV)TB»NPSin(z/),    (92) 

which is always non-zero if the input is a random point 
process, and therefore there is always a cross term be- 
tween paths A and B. 

K« = E{|„Cn}-E{|„}E{c„} -£C = -f(l-|). 

(89) 

B. Degradation of the NPS due to Reabsorption 

The NPS in the distribution of optical quanta from 
each path in isolation is obtained by cascading appro- 
priate combinations of the elementary processes de- 
scribed in Appendix A, giving 

The cross spectral density following amplification is 
therefore given by Eq. (81) as 

NPSAB(*/) 

= f(l - ÖkA~kB TV)T
B
» [NPSi7» - qin]   (90) 

showing that there is correlation between paths A and 
B only if quanta in the input image are statistically 
correlated. That is, when NPSin(i/) - qin ^ 0. If the 
quanta are uncorrelated and NPSj„(i/) = q~in, there is 
no cross term. 

NPS^(i/)=m2(l-cw)7?g, 

NPSß(i/) = (l-V))2m2?w7?g, 

NPSc(^) = ij)2m2fk^r}q, 

(93) 

(94) 

(95) 

where we have used NPS(f) = q since the input quanta 
are Poisson distributed. Quanta in the input image are 
statistically uncorrelated, therefore there is no cross 
term between paths separated by the Bernoulli branch. 
That is, 

NPS^B(I/) = NPSB^W = 0, 

NPS^c(^) = NPSCA(^) = 0. 
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FIG. 10. Illustration of Tfc(z/), the MTF corresponding 

to reabsorption in the film-screen system (adapted from 
Metz and Vyborny). 

The cross terms NPSBc(i/) and NPSCB("), based 
on Eq. (92), axe given by 

NPSBCW = (1 - i/OV^/Ati/)^ q,       (96) 

and 

NPScs(^) = (1 - i>)i>m2fKTK(v)<;ur)q-,       (97) 

respectively, where Tfc(i/) is the characteristic transfer 
function describing the reabsorption probability den- 
sity in terms of spatial frequencies and is equal to the 
Fourier transform of the reabsorption PSF, PK(T). It 
is known that the sum of two complex conjugates is 
equal to two times the real part. This leads to 

NPSBGM + NPSCBM 

= 2ww(l-^m2//fRe{TK(f)}, (98) 

which is always real, where Re{ } denotes the real part 
of a complex quantity. 

Combining the above results gives the NPS for the 
output optical image quanta, including the effect of 
the redistribution of light in the screen, as 

NPS0(i/) = qr\m2 [(1 - cw) + ?w(l - </>)2 + «TW/K^
2 

+2CW/K^(1 - </>)Re{TK(i/)}] IT»!2  (99) 

which is the Metz-Vyborny result for the NPS of light 
emitted from the screen. 

Metz and Vyborny used Eq. (99) to describe the ef- 
fect of reabsorption in a Dupont Par Speed calcium 
tungstate screen. Assuming a constant film density 
(fixed light output q0), the effect of reabsorption is 
obtained by considering the NPS just above and be- 
low the K-edge of tungsten at approximately 68.5 keV. 
Above the K-edge reabsorption takes place and q0 is 
given by Eq. (87). Below the K-edge, both the light 
output and the NPS are determined by setting ip - 0 
and 

3456789       10 
Spatial Frequency (cycles/mm) 

FIG. 11.  Illustration of T(v) from Eq. (100), showing 
contributions from the uncorrelated and correlated com- 
ponents (adapted from Metz and Vyborny). 

<rw = 0. Therefore, the ratio of the NPS just above the 
K-edge to just below, normalized to fixed total light 
output, is given by T(u) where 

(1 - ?w)+w(l - V)2+ W/JCV^ Wä^O- - i^ReJTjcM} 

1 - cw^(l - SK) 

(100) 

Figure 10 illustrates TK(") as used by Metz and 
Vyborny. The corresponding degradation in the NPS, 
T(v), is shown in Fig. 11 obtained using values listed in 
Table 1. The value of NPS(i/) is decreased by approx- 
imately 10% at low frequencies, increasing to within a 
few percent of the uncorrelated value for frequencies 
above approximately 2 cycles/mm. While these re- 
sults are specific to a calcium tungstate screen which 
has limited use at present, corresponding results for 
newer screens and other imaging systems can be ob- 
tained using the same formalism. The transfer-theory 
approach is sometimes more physically intuitive than 
a detailed statistical analysis, making an interpreta- 
tion of the results more physically meaningful. For 
instance, it is clear from this analysis that the MTF 
describing reabsorption, TK(V), appears in the cross- 
spectral density term since light emitted remotely is 
correlated with light emitted locally when a K x ray is 
produced. It appears in the first power since it appears 
in only one of two correlated paths. 

IV. CONCLUSIONS 

The DQE is an important indicator of the perfor- 
mance of medical imaging systems. Recent devel- 
opments in understanding noise transfer in medical 
imaging systems has resulted in a generalized transfer- 
theory approach that can be used to describe the DQE 
and other metrics of system performance for many 
imaging systems. 
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Variable 

SK 

"See Ref. [34] 

TABLE I. Values used to determine T(u) from Metz and Vyborny. EK = 59.3 keV. 

Value" Physical Meaning 
0.85 
0.93 
0.866 
0.20 

probability that an interacting x rayundergoes a K-shell interaction 
fluorescent yield of K-shell photoelectricinteractions 
fraction of incident x-ray energy transferredto K x ray, EK/EX 

probability that a K x ray is reabsorbed in thescreen, depends on geometry 

Until recently, the transfer-theory approach has 
been limited to the description of serial cascades of 
quantum gain and quantum scattering processes. As 
part of a program developing new transfer-theory 
relationships, we describe how parallel cascades of 
image-forming processes can be incorporated into the 
transfer-theory approach. Parallel cascades are re- 
quired when more than one image-forming process 
combines to create the final image. It has been shown 
in this article that parallel cascades can be used with 
the introduction of the cross covariance between cas- 
cades. A general expression for the cross covariance of 
correlated point processes has been developed, and in 
particular, the cross covariance of two amplified point 
processes descending from randomly selected quanta in 
a common input image was examined which has par- 
ticular importance for the analysis of medical imaging 
systems [Eq. (81) for WSS conditions]. It has been 
shown how a complete imaging system can be rep- 
resented in terms of a schematic diagram describing 
relationships between elementary image-forming pro- 
cesses. 

Under wide-sense stationary conditions, the Fourier 
transform of the cross covariance is the cross spec- 
tral density function. With it, transfer-theory models 
can be developed to describe the noise power spec- 
trum in imaging systems that require the use of par- 
allel cascades of image-forming processes. The ex- 
ample of reabsorption of K x rays in a radiographic 
screen was described in this article. It was shown that 
the transfer-theory approach gives the same result ob- 
tained by Metz and Vyborny using a sophisticated sta- 
tistical analysis when the same assumptions are made. 
Other examples may include: a) double-emulsion film- 
screen systems where light may cross from one emul- 
sion to the other; b) portal imaging systems where 
high-energy x rays may generate different kinds of sec- 
ondary quanta in the detector such as electrons and 
light; and, c) flat-panel active matrix detectors where 
scattered light may contribute a non-negligible frac- 
tion of the image signal. 

Extension of the transfer-theory approach to include 
parallel cascades increases the number of theoretical 
"tools" available to scientists and engineers in the 
transfer-theory "tool-box." We are currently devel- 
oping additional tools for the analysis of new digital 
imaging systems. These new tools are required to de- 

scribe noise transfer in the presence of other situations 
such as non-uniform detector-element gain and sen- 
sitivity, random errors in detector-element offset and 
gain corrections, polyenergetic x rays, thick phosphors 
with variable conversion factors due to Swank noise 
and the Lubberts effect, and detectors with lag. 
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APPENDIX A: ELEMENTARY PROCESSES 

Medical x-ray imaging system modeling is based on 
three elementary processes. Under wide-sense station- 
ary (WSS) conditions, the elementary processes, and 
the transfer properties of signal and noise, are summa- 
rized in this Appendix. 

1. Quantum Gain and Selection 

Rabbani et al. [13] described the transfer of signal 
and noise through a stochastic quantum gain stage, 
characterized by a random variable g which has a mean 
value g and variance a\. Barrett et al. [19,20] consid- 
ered this elementary process as the limiting case of 
amplified point process. They showed that the uni- 
form mean value of distribution of quanta (i.e., mean 
number of quanta per unit area) and corresponding 
NPS are transferred according to 

Qout — 9 <lin (Al) 

and 

NPSolrt(»/) = f NPSin(i/) + o*qin, (A2) 

respectively. If g is modeled as a deterministic gain 
factor, Eq. (Al) remains the same, but Eq. (A2) be- 
comes 
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NPS0Ut(^=Ä2NPSin(^), (A3) 

which lacks the second term in Eq. (A2). 
For the special case where g represents a binary se- 

lection process such as the responsive quantum effi- 
ciency of the radiographic screen, g can have a value 
of 0 or 1 only, 0 < g < 1, and cr2 - g(l - g). In this 
case, it is also possible to express signal transfer as 

Qoutir) = gqin(r) (A4) 

where <ft„(r) and qout{r) are sample functions of the 
input and output random point processes. 

2. Quantum Scatter (Relocation) 

Quantum scatter is a translated point process [33] 
whereby a quantum is randomly relocated by the dis- 
placement vector r and where p(r) is a point spread 
function (PSF) describing the translation probability 
density [13,38]. 

The transfer function through this process have been 
described by both Rabbani et al. [13] and Barrett et 
al. [19,20], given by 

q0ut{r) =p(r)*sqin{r), (A5) 

where *s represents the scattering process and p(r) 
has unity area. The statistics of signal and noise are 
transferred according to 

Qout — Q.ini (A6) 

and 

NPS0Ul(^) = [NPSin(i/) - qin] |T(^)|2 + qin (A7) 

where T(y) is the Fourier transform of p{r). 

3. Linear Filter (Convolution) 

The transfer relationships through a linear shift- 
invariant filter are described by the convolution inte- 
gral, given by [2] 

(A8) dout(r) =p{r)*qin(r), 

d, out |T(0)|a, 

and 

NPS0Ut(I/) = NPSi„(^)|TH|2 

(A9) 

(A10) 

where * represents a convolution, p(r) is the impulse 
response commonly referred to as the blur PSF and 
T(i/) is the characteristic transfer function of the fil- 
ter, given by the Fourier transform of p(r). Unlike 
the scattering process, the ouput dout{r) from a linear 
filter is not a point process. 

APPENDIX B: STATISTICS OF PARALLEL 
PROCESSES 

When two random processes contribute to an out- 
put signal, the result is a random process that is the 
sum of two random processes. For example, consider 
a stochastic system described by c(r) = ä(r) + b(r). 
The autocorrelation of the sum process is [39] 

Rc(r,r') = E{c(r)c*(r')} 

= E{[ä(r)+6(r)pV) + 6*(r')]} 

= E{ä(r)ö*(r')} + E{b(r)ö*(r')} 

+E{ä(r)5*(r')} +E{b(r)ä*(r')} 

= Ra(r-,r') + R*(r,r') + Ro6(r,r') + Rba(r,r'),  (Bl) 

where * denotes a complex conjugate. When a(r) and 
b(r) are both wide-sense stationary (WSS), c(r) is also 
WSS, and the autocorrelation of c(r) in Eq. (Bl) can 
be written as 

Rc(r) = Ra(r) + R6(r) + Rab(r) + R6o(r).     (B2) 

The autocovariance, Kc(r,r'), is similar to the auto- 
correlation but with the mean subtracted. Similar to 
above, 

Kc(r,r') = E{[5(r) + b(r)}[ä*(r') + 6*(r')]} 

-EJä(r) + b(r)}E{ä*(r') + b*(r')} 

= Ka(r,r') + Kb(r,r') + Kab(r,r') + Kba(r,r'),  (B3) 

and for WSS processes 

KC(T) = K0(T) + Kb(r) + Ko6(r) + K6o(r).    (B4) 

The corresponding NPS of c(r) is therefore 

NPS» = J-{Kc(-r)} 

= NPS„(»/) + NPS6(i/) + NPSa6(^) + NPSjaM, (B5) 

where each term in Eq. (B5) is the Fourier transform 
of the corresponding term in Eq. (B4). The terms 
NPSofcM and NPS6a(^) are cross spectral densities 
and reflect the spatial-frequency dependence of the 
auto-covariance. 

By definition of the cross covariance for two random 
procesess, we have 

Ko6(r,r')=K;a(r',r). (B6) 

Under WSS conditions, Eq. (B6) becomes 
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Ka6(r) = K;0(-T), (B7) 

where r = r-r'. The cross spectral density NPSaft(iv) 
is the Fourier transform of Kaft(r) given by 

NPS«6(«/) = ^{KO6(T)} = / Kab(r)e-^UTdr. 
*■ J Joo 

(B8) 

Substituting Eq. (B7) into Eq. (B8), we have 

NPS„t(*/) = / Kla(-r)e'^Tdr 
Joo 

= /" K6*a(r)e^^Trfr 
./oo 

= {^{K6a(r)}j* = NPSLH.       (B9) 

Thus, we conclude that the cross spectral densities 
NPSa6(i/) and NPSbaC") are conjugate pairs, and the 
sum of NPSofr(^) + NPS6a(i/) is always a real value, 
i.e., 

NPSo6(i/) + NPS6a(i/) = 2Re{NPSa6(i/)} 

= 2Re{NPS6a(i/)},     (BIO) 

where Re{ } denotes the real part of a complex quan- 
tity. 

APPENDIX C: STATISTICAL AVERAGES 
AND MARGINAL PROBABILITY DENSITIES 

Consider a continuous random variable y = f(x), 
where x is a continuous random variable with the prob- 
ability density function Px(x). The function f(x) is a 
single-valued function of x, and maps random variable 
x into random variable y. We define the mean of the 
continuous random variable y by the equation [2] 

y = E{y} = E{g(x)\ = f    g(x)Px(x)dx,      (Cl) 
*• '        J —oo 

which is the statistical average over random variable 
x. If the probability density function py(y) is defined, 
then 

y = E{y} = /     ypy(y)dy. 
J—oo 

(C2) 

Eqs. (Cl) and (C2) give the same result for the statis- 
tical average of y = g(x). Equation (Cl) refers to the 
sample space of x and Eq. (C2) refers to the sample 
space of y. 

For a set of several random variables, the statistics 
of each are called marginal [2]. For example, Px{x) 
is the marginal probability density of x and py(y) the 
marginal probability density of y for their joint den- 
sity function Pz,y(x, y). The following relationships are 
satisfied [2] forpä(x) andpy(y), 

Pi(x) =  I 
J — < 

Px,y(x^y)dy (C3) 

and 

Py(y) = /     Pi<y(x,y)dx, (C4) 
J — oo 

which are the property of marginal densities. 
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Appendix II: Scatter Operator 

This appendix consists of a manuscript completed this year describing how x-ray scatter can be 
incorporated into the linear-systems approach as a "scatter operator." It has been submitted to Medical 
Physics for publication. 
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Unified representation of image blur and noise in linear-systems transfer 
theory with a scatter operator 

I.A. Cunningham,1,2 M.S. Westmore1 and A. Fenster1 

1 Imaging Research Laboratories, The John P. Robarts Research Institute, P.O. Box 5015, 
100 Perth Drive, London, Ontario, N6A 5K8 Canada; and, 
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ABSTRACT 

Rabbani, Shaw and Van Metter described the transfer of the auto-covariance and image noise-power 
spectrum through a photon scattering (image blurring) process. We incorporate their result into a linear- 
systems transfer-theory framework by describing a generalized scatter operator acting with an associated 
point-spread function. Scatter is a translated point-process, and it is shown that this operator is not 
distributive over addition or multiplication. While in general it does not commute with addition or mul- 
tiplication, it does commute with itself and with a binomial selection process (as might represent the 
quantum efficiency of a detector). Strictly speaking it is not associative, although a similar property that 
is true is described. This formalism is used to explain the degradation of the detective quantum efficiency 
(DQE) caused by both the x-ray focal-spot size and optical blur in a radiographic screen as illustrative 
examples. It is shown that for quantum-noise limited systems in general, the frequency dependence of 
the system DQE is a direct consequence of the statistical properties of image quanta as represented by 
the scatter operator. This extended linear-systems approach has wide application for the description of 
imaging systems in general. 

Keywords: linear-systems, transfer theory, detective quantum efficiency, DQE, convolution, modulation- 
transfer function, MTF, noise-power spectrum, NPS, cascaded systems 

I.    INTRODUCTION 

The design and analysis of medical imaging systems requires a mathematical understanding of important 
principles and processes that contribute to image formation. Linear-systems transfer theory is an approach 
used by many authors to describe the performance of linear and shift-invariant (LSI) imaging systems in 
both the spatial and spatial-frequency domains.1"4 Image-blurring mechanisms are described in terms 
of linear filters1'5'6 as a convolution with a specified point-spread function (PSF) in the spatial domain, 
or alternatively by multiplication with the modulation-transfer function (MTF) in the spatial-frequency 
domain.7'8 Complex systems can be represented as a serial cascade of simple processes, or stages, where 
the output from one stage forms a virtual input to the next. Excellent early review papers on this topic 
have been written by Doi, Rossmann and Haus,9 and Metz and Doi.2 

This linear-filter approach describes only the expectation (noise-free) effect of image-blurring mecha- 
nisms since it represents blur as a deterministic process. In reality, blur generally results from the random 
scattering of individual image quanta, and the effect of this scatter on image noise must be described 
separately using stochastic-process theories.2'10 For the special case of wide-sense-stationary (WSS) noise 
processes,11 this noise can be characterized in terms of the auto-covariance, or its Fourier transform, the 
noise-power spectrum (NPS). Dainty and Shaw,8 Barrett and Swindell,1 Macovski,5 Parker6 and others 
have used this approach extensively in their texts to describe important principles and fundamental prop- 
erties of many system designs. 
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The distinction between scatter and deterministic blur has been recognized by many investigators, 
including Dainty and Shaw,8 Wagner,12 Metz and Doi,2 Sandrik and Wagner,13 Metz and Vyborny,14 

and Barrett and Swindell.1 The NPS of a random process undergoing a deterministic blur is "passed 
through" the square of the blur MTF (e.g. Barrett and Swindell1 Eq. 3.200, Parker6 Eq. 24.28). More 
recently, transfer of the NPS through a scattering process was described by Shaw and Van Metter,15 

derived theoretically by Rabbani et al.16 using moment-generating functions, and later by Barrett et al.17 

using point-process theory. They note that the correlated component of the NPS is passed through the 
squared scatter MTF while the uncorrelated component is not.15'16 Their result has been experimentally 
demonstrated by Maidment and Yaffe,18 and derived in a different form by Mulder.19 

The scatter result16 has been used by Nishikawa et al.20'21 and others in a small number of applications, 
but its implications are of a more general nature. We incorporate scatter into the linear-systems approach 
by describing a generalized scatter operator as an alternative to the convolution operation that is used 
to describe deterministic blur. The word "convolution" means to fold or roll together (Webster), and is 
used to represent the blur of a linear filter when the filter PSF is "folded into" the image signal. In some 
sense, scatter can be interpreted as a "stochastic convolution," as this folding together is a consequence 
of the random relocating of individual image quanta. Use of the scatter operator (and hence the Rabbani 
NPS) as a substitute for the convolution integral to describe image blurring processes means that linear- 
systems transfer theory can be used to describe both image-signal and image-noise (second order) transfer 
characteristics in a cascaded-systems analysis. 

Under certain circumstances, the difference between scatter and deterministic blurring is insignificant. 
For instance, Barrett and Swindell22 note that when x rays are converted to light in a radiographic screen, 
the statistical nature of the light photons can be ignored if a large number of photons are generated 
and hence each x ray produces light that is adequately described by the deterministic PSF. The work 
described here discusses this in more detail, and extends this observation to show that it is spatial-frequency 
dependent. In addition, if the light is subsequently collected by an inefficient optical system, the statistical 
nature of the optical photons cannot be ignored. This will occur, for example, if only a few light quanta 
are detected per interacting x ray since it is not possible to know where, within each PSF distribution, 
the detected quanta originated. Thus, when assessing new systems or system designs, it is necessary 
to correctly account for these statistical properties. Ignoring them can result in much wasted effort in 
designing new systems that have no chance of achieving a sufficiently high detective quantum efficiency 
(DQE). 

II.    BACKGROUND 

Linear systems can be described in terms of the transfer of image signal and noise from input to output. 
In this context, an image is a spatial distribution of quanta (e.g. x rays or light). Signal transfer corresponds 
to the transfer of the expected distribution of image quanta. Noise transfer corresponds to the transfer of 
parameters that describe image noise, such as the autocovariance or NPS. In this article, a third type of 
transfer relationship will be used that we call the sample transfer, describing the transfer of a particular 
sample distribution of image quanta. 

Quanta have negligible spatial extent, and one way of describing a sample distribution of quanta is 
as q{r), a superposition of many ^-functions where each ^-function represents one quantum. While this 
approach is often convenient, ^-functions are generalized functions3,23 and must be treated with care. In 
addition, it is convenient to write the ensemble average, or expectation, of q(r) as E{<?(r)}. Thus, while 
q(r) is a sample distribution of quanta representing a particular image, E{q(r)} describes the expectation 
number of quanta per unit area as a function of position, and can be viewed as a "noise-free" image. Both 
have dimension of quanta per unit area. 

The generalized function q(r) is not directly measurable. Measurable quantities, such as the output 
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Screen Lens Assembly 

Selection of x-ray Conversion to Spreading of light    Selection of light      Integration in detector 
quanta which      light quanta quanta quanta which are     elements 
interact in the detected 

screen 

Figure 1: The hypothetical system represented as a cascade of linear stages. 

from a detector element (see Appendix I) are expressed as d given by 

= 9o       q{r' 
JAd 

dV (1) 

where Ad is the area of the detector element and g0 is a conversion factor relating the number of interacting 
quanta to the detector signal. When Ad is expressed as Ad(r), the area of a hypothetical element centered 
at position r, the signal d is written as d(r) and has been called the "presampling" detector signal as it 
is a function that describes the detector signals when evaluated ("sampled") at positions corresponding 
to the centers of the detector elements. In the following, we use q to represent a distribution of quanta 
and d to represent a physically measured - or measurable - detector signal in terms of an analog-to-digital 
converter (ADC) value. Image noise is defined in terms of the noise-power spectrum (NPS) in q(r) for the 
special case of E{q(r)} equal to a constant throughout the image to satisfy the requirement for wide-sense 
stationary noise processes where the mean and autocorrelation are invariant with r. 

The utility of the linear-systems approach is illustrated by analyzing the simplified hypothetical system 
shown in Fig. (1) to determine the presampling detector signal. The system consists of a thin radiographic 
screen coupled to a CCD camera through a lens assembly. All components are assumed to be linear 
and shift invariant. The screen quantum efficiency is a (assumed to be unity for the moment) and each 
interacting x ray generates exactly m optical quanta at some point of interaction in the screen. The optical 
quanta are scattered (i.e. spread) before leaving the screen according to a PSF pr(r). The optical quanta 
are coupled to the CCD camera with a lens having a collection efficiency ß. The camera integrates incident 
optical quanta in discrete detector elements and the signals from all elements are combined to generate a 
digital image. This model does not describe the effect of such things as variable x-ray energy, or variable 
interaction depth or gain in the screen. As such, it is a simplified model and is chosen primarily to highlight 
the difference between use of the conventional and "stochastic" convolutions in linear-systems theory. 

The serial nature of the model is illustrated in Fig. (1) where q{r) represents the distribution of x-ray 
quanta incident on the screen. The distribution of interacting quanta is q^r) and the distribution of optical 
quanta as generated in the screen is qm{r) where 

E{<?m(r)} = E{<7,(r)}m = E{q{r)}am. 

The two-dimensional NPS in the distribution of optical quanta is NPSm(fe) given by 

NPSm(fc) = m2NPS/(fc) = mlqi 

(2) 

(3) 
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where k is a two-dimensional frequency vector (with units cycles per unit length) in the direction of r 
and the NPS of qj(r) is3 NPSj(fc) = q~i- The assumption of a deterministic gain m is not always a valid 
assumption, and is discussed below. 

If it can further be assumed that each interacting x-ray quantum produces exactly the same distribution 
of light at the screen surface, and that no optical quanta are lost or absorbed in the screen, then the 
expectation distribution of q0(r), the optical quanta that exit from the screen, can be expressed using 
linear-systems theory as 

V{qm(r')}pr(r-r')d2r' 
-oo 

(4) 

where ** represents a two-dimensional convolution integral.3 A pure scattering process neither creates 
nor destroys quanta, and hence pr(r) must necessarily be normalized to unity area. Thus, as shown in 
Eq. (4), the expectation blurred optical image E{q0(r)} can be expressed as a convolution of an expectation 
"pre-blurring" optical image E{qm{r)} with the appropriate PSF. 

The relationship described by Eq. (4) can be expressed in the spatial-frequency domain as 

E{Q0(k)} = E{QI(k)}mTr(k) (5) 

where E{Q0{k)}, E{Qi{k)} and Tr(fc) are the two-dimensional Fourier transforms of E{q0(r)}, E{g/(r)} 
and pr(r) respectively. The two-dimensional MTF for this system is therefore given by 

MTF(fe) = |Tr(fc)| (6) 

which has a value of unity when k = 0 since pr(r) is required to have unity area. 
The next stage in the model is propagation of the optical quanta and integration in the digital detector. 

In Appendix I it is shown that the presampling detector signal d(r) can be represented as a convolution 
of the distribution of interacting quanta with an appropriate rectangular aperture function having unity 
height. An overall expression for the expectation presampling detector signal in Cartesian coordinates can 
therefore be written as 

E{d(r)} = E{d(x,y)}=g0 [E{q!(x, y)}m * * pr{x, y)]ß**U 
x_   y_ 

(7) 

where ß describes the fraction of optical quanta leaving the screen that are integrated in the detector, aa 

and ay are the x- and y-direction dimensions of the active regions of individual detector elements. 
The convolution operator commutes with both itself and multiplication,3 and hence 

E{d(x,y)} = 5om/3E{g/(x,y)} * * pr(x,y)**U (—,— 
GT     &T, 

(8) 

This relationship can be written in the spatial-frequency domain as 

E{D(u, v)} = g0mßaxay E{Qi(u, v)} Tr(u, v) sinc(7raxu) smc(nayv) (9) 

where E{D(u, v)} is the (complex) expected value of the Fourier transform of d{x, y) ,u&ndv are spatial fre- 
quencies in the x- and y-directions respectively, and sinc(ö) = sin(0)/0. The product 50oa,oysinc(7rasu)sinc(7raj,«) 
has been called the sampling aperture optical transfer function by Giger and Doi.24 The two-dimensional 
MTF for this system including the effect of integration in detector elements is therefore given by 

MTF(u,i>) = \Tr(u,v) smc{iraxu) sinc(7rayv)|. (10) 

While x-ray quanta are always Poisson distributed when distributed with a uniform mean, this is not 
generally so with other image quanta such as light from a screen. Therefore, Eq. (7) cannot be used directly 
to determine the NPS in d(x,y). This is in part because the convolution integral correctly describes the 
transfer of mean values, but not noise, through a stochastic system. In the following sections, the "stochastic 
convolution" representation of scatter is suggested as a means of bringing the Rabbani result to this type 
of analysis. 
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III.    THEORY 

The blurring of an image when described by the convolution integral is given by Eq. (4) for LSI systems. 
In this expression, pr(r - r') describes the fraction of the signal in an infinitesimal element d2r that is 
"mis-located" to the new position rasa result of the optical blurring process. The NPS is transferred 
through a convolution integral according to3 

NPSd(fc) = NPS(fe)|T(fe)|2 (11) 

where NPS(fe) is the initial NPS and T(fc) is the characteristic transfer function of the blurring process. 
We will call this process "deterministic blur," as indicted by the subscript d, to emphasize the deterministic 
nature of the convolution. However, this result is not generally used to describe the NPS transfer through 
imaging systems because it does not accommodate the discrete nature and statistical properties of the 
image quanta responsible for blurring processes. 

Rabbani et al.16 developed a theoretical description of the resulting NPS when independent quanta are 
scattered according to a probability density distribution pr(r) that specifically accounts for the statistical 
properties of these quanta. When pr(r) is shift invariant, a general expression for the resulting NPS 

NPSs(fc) is given by 
NPS5(fc) = [NPS(fc) -q] \T(k)\2 + q (12) 

where q is the average distribution of image quanta before the blur. We will call this "stochastic blur'^ as 
indicated by the subscript s. This result shows that the correlated component of the NPS, NPS(fc) - q, is 
passed though the squared MTF while the uncorrelated component, q, is not.16 A correlated component 
can result from a conversion with gain from one form of quanta to another as described in Sec. III.B. The 
NPS resulting from stochastic blur can also be expressed in terms of the NPS resulting from deterministic 

blur [Eq. (11)] as 
NPSs(fc) = NPSd(fe) + [l - |T(fe)|2] q (13) 

showing that at low frequencies where |T(fc)|2 « 1, NPSd(fc) and NPSs(fc) are similar and hence the 
deterministic and stochastic results are similar. They are also similar if the distribution of input quanta 
are statistically correlated, implying that NPS(fc) » q (Sec. III.B), except at very high spatial frequencies. 
However, at non-zero frequencies where |T(fc)| < 1, the deterministic result in general underestimates 

image noise. 
Use of linear-systems theory in general, and the convolution operator in particular, to describe image 

blurring processes is a very powerful technique. Thus, while the convolution integral results in an NPS 
described by Eq. (11), it seems appropriate to introduce a modified operator that will result in the NPS 
described by Eq. (12). It is intended that this modified operator unify the description of both image 
blur and image noise within a linear-systems framework. That is, relatively simple expressions similar to 
Eq. (7) can be developed to describe both image-signal and image-noise transfer characteristics of particular 

systems by using this scatter operator. 

A.    The Scatter Operator, *s 

The input to an imaging system is a distribution of quanta, q{r), which may be written as 

N 

1 
i=l 

9(r) = £<5(r-ri) (I4) 

where N is a Poisson random variable describing the total number of incident quanta and n is a vector 
describing the position of the tth quantum. Thus, q{r) is a sample distribution of a random process 
generating image quanta with the appropriate statistical distribution. 
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Convolution Scatter 

a) III d) 

b) e) 

Figure 2: Deterministic blur represented with a convolution integral, and scatter, are shown in the left 
and right columns respectively. The convolution "smears" the input according to the PSF (a to c), while 
scatter "relocates" the input quanta according to the probability distribution given by the PSF (d to f). 

Rabbani et al. derived Eq. (12) in terms of the set of transition probabilities {p^}, where p)!' is the 
probability that a quantum in pixel j is scattered to pixel k. For LSI systems this transition probability is 
independent of position and hence the probability of being scattered to a pixel displaced by the vector Ar 
can be written pAr- The distribution of quanta following a scattering process is described by qs(r) where 

N 

qs(r) = ^6(r-[ri + Ari\) (15) 
i-i 

and where Ar* describes the scatter displacement of the ith quantum. The displacement Ar j is a random 
vector variable with a set of probabilities {pArJ that describe the scatter PSF p(r) where 

PAri=p(r)d2r\r=Ar. (16) 

and where d2r is the area of an infinitesimal image element. Equation (15) describes the "stochastic 
convolution" of q(r) with p(r), and is written in short form for two-dimensional scatter as 

qs(r) = q(r)*s*sp(r). (17) 

The scatter operator describes transfer of a sample distribution of image quanta. It is a translated point- 
process, similar to the translated Poisson-process described by Snyder and Miller,10 although not restricted 
to Poisson processes. 

Thus, while the convolution integral "smears" the input according to the PSF, scatter "mis-locates" 
input quanta according to a probability described by the PSF. This difference is illustrated in Fig. (2). 
In the column on the left, the input (2a) consists of randomly positioned quanta, each represented as a 
^-function. This input is convolved with the PSF (2b) producing the result (2c) with a corresponding NPS 
described by Eq. (11). On the right, the same input undergoes a scatter resulting in a random relocation 
of all quanta (2f) according to the same PSF. The NPS of this result is described by Eq. (12). 

1.     Conditions of Use 

The conditions of use of the scatter operator *s are essentially the assumptions described by Rabbani 
et al. in the derivation of Eq. (12). They include: 
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1. q(r) must represent a distribution of independent quanta, with units of quanta per unit area (a 
one-dimensional form would have units of quanta per unit length); 

2. the scattering process is shift invariant; 

3. all scattering events are independent; 

4. p(r) represents the probability (per unit area) that any given quantum is scattered (relocated) by a 
displacement vector r; and, 

5. quanta can be neither created nor destroyed by the scattering process [the integral of p(r) over all 
space is unity]. 

2.    Numerical Implementation 

It is intended that *s be used symbolically [e.g. Eq. (17)] to represent scattering processes, and the 
Rabbani equation be used to describe NPS transfer. However, a numerical implementation is also possible 
using simple Monte Carlo methods25 should a numerical simulation of the blurring process be desired. The 
steps required in such a calculation are summarized below and must be repeated for each quantum being 
scattered: 

1. Choose the scattering polar angle 6 where 0 < 6 < 2?r. This will be a uniformly distributed random 
variable if the scattering process is isotropic. This step is not required for a one-dimensional geometry. 

2. Choose the scatter displacement magnitude |Ar,| which is a random variable with a probability 
distribution given by PAT{ [Eq- (16)]. 

3. Reassign the location of the quantum being scattered by the displacement Ar; determined from the 
direction and distance calculated above. 

Computation time is therefore dependent on the total number of quanta in the image at the scattering 
stage, but not on the size or number of pixels. Each image shown in the results section of this paper contain 
approximately 107 quanta in a 256 x 512-pixel matrix, requiring approximately 1 minute to implement 
the scatter on a Sun SPARC 10. 

B.    Scatter in a Cascaded Model 

The operator *s represents a single scattering process. However, most real systems are better repre- 
sented as a cascade of multiple scattering processes intermixed with quantum gain (conversion) processes 
as illustrated in Fig. (1). A consequence of the gain stages is that they can introduce spatial correlations 
into the distribution of image quanta and thereby influence how image noise is passed through scattering 
processes. This was described by Rabbani et al.,16 who showed that an increase in the number of quanta 
representing the image by a gain stage having a mean g and variance CT

2
 affects the NPS by 

NPSs(fc) = 52NPS(fc) + a2
gq. (18) 

where NPS(fc) and q are the NPS and mean respectively of the input distribution of image quanta q(r). 
When the distribution of quanta after the gain is uncorrelated, the NPS is equal to the mean, i.e. NPS9(fc) = 
gNPS(k) = gq. It is clear that the actual NPS given by Eq. (18) is always greater than this value for g > 1 
and non-deterministic gains (a2 > 0). Thus, the NPS of the distribution of quanta following a gain stage 
(in which the quanta are "clumped" according to the distribution of quanta before the gain) is always 
greater than the NPS of the same number of uncorrelated quanta. Equation (18) is an extension into the 
spatial-frequency domain of the effect of a stochastic gain on the signal variance.1'26'27 The deterministic 
gain used in Eq. (3) corresponds to cr2 = 0. 
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Figure 3: The statistical nature of light photons generated in a screen become less important, and stochastic 
and deterministic blurs merge, as the number of photons generated per x ray increases: (a) 1, (b) 2, (c) 
10, (d) 100 and (e) 1000. 

1.    Cascading Gain and Scatter - a Radiographic Screen 

In the radiographic screen example, each interacting x ray produces many light photons that are 
scattered before leaving the screen on the exit side. If the gain is assumed to be deterministic for simplicity 
with a value g, the resulting NPS, NPS9)S(fc), is obtained by combining Eqs. (18) and (12): 

NPS9>s(fc) = NPSg,d(k) + gq[l - |T(fe)|2 (19) 

where NPS9 ,* (fc) is given by 
NPS9>d(fc)-p2NPS(fc)|T(fc)|2 (20) 

and is the NPS that would be obtained if the blur were deterministic, obtained by combining Eqs. (18) 

and (11). 
Equation (19) shows that in general NPSSiS(fc) is greater than NPS9,d(fe). They are similar only 

when the first term on the right side of Eq. (19) dominates which will occur when #NPS(fc)|T(A:)|2 » 
£[1 - |T(fc)|2]. This may occur when g is sufficiently large or when |T(fc)|2 « 1 (i.e. \k\ « 0). At sufficiently 
high spatial frequencies for which |T(fc)|2 < q/\gKPS(k) + q] (a condition often true since g can be very 
large and NPS(fc) can be no less than q), the second term will dominate and the Rabbani NPS resulting 
from scatter is much greater than the NPS resulting from deterministic blur. 

The above condition for large gain factors is illustrated in Fig. (3) where the distribution of light 
photons is calculated following a scatter and various gain values. Figure (3a) shows the same distribution 
of interacting quanta used in Fig. (2). The distribution of light photons following scatter (implemented 
using the Monte Carlo method) approaches the deterministic convolution result [Fig. (2c)] as g is increased 
from 2 [Fig. (3b)] to 1000 [Fig. (3e)]. This illustrates how similar the stochastic and deterministic blur 
results are when following a large gain stage as predicted by Eqs. (19) and (20). 

2.    Error Associated with the Deterministic-Blur Model 

Equation (19) shows that the NPS of a system consisting of a noise-free gain followed by a blurring 
process is underestimated when the blur is represented as a convolution integral rather than as a scatter. 
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Figure 4: The relative error in the NPS following an amplification stage (such as generation of light photons 
in a radiographic screen) resulting from use of the conventional convolution for a Poisson-distributed input 
is shown as a function of the MTF value for gains of 1, 10, 100 and 200. 

This relative error is given by the fraction E(k) where 

E(k) = 
NPSg,s(fc)-NPSg,d(fc) _1 

NPS^fe) 9 L|T(fc)F 
-1 (21) 

for an uncorrelated Poisson-distributed input. Figure (4) shows this error increases dramatically as the 
MTF value decreases. In the absence of gain (g = 1), the error is approximately 56% when the MTF 
value is 0.8, and increases to a factor of 99 when the MTF value is 0.1. In a radiographic screen, a typical 
gain of g = 200 (the number of light quanta that exit the screen per interacting x ray) reduces this error 
to 0.5% and 46% respectively. In general, the error caused by use of the convolution integral depends on 
gains throughout the system, and hence cannot be determined without considering the entire system. 

C.    Properties of the Scatter Operator 

Mean Value 

The expectation result of scatter approaches the convolution integral (noise-free) result described by 
Eq. (4). This was shown by Rabbani et al. in Ref 16, Eq. (22): 

Vj = J2 xkPj-k 
k 

(22) 

indicating that the average number of quanta in pixel j after the scattering process, ijj, is equal to the 
average number of quanta in pixel k before scattering, xk, multiplied by the transition probability Pj-k 

and summed over all pixels. Combining this with Eq. (16) and taking the limit of infinitesimally small 
pixels results in 

/oo 
E{q(r')}p(r-r')d2r (23) 

-oo 

which is recognized as being the two-dimensional convolution integral of the incident expectation dis- 
tribution with the scatter PSF. This result indicates that the linear-filter approach describes the true 
mean (noise-free) image. The convolution integral may be used to describe the expectation distribution of 
quanta after a scatter process, but details of the actual sample distribution are dependent on the statistical 
properties of the quanta as represented by the scatter operator. 
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2.    Other Properties 

The following results are expressed using one-dimensional geometry. Corresponding results are obtained 
using two-dimensional geometry. In each case, q(x) represents an actual sample distribution of quanta. 

1. Unlike the convolution integral, the two terms do not commute, i.e. 

q(x) *s p{x) ^ p(z) *s q(x) (24) 

although this is not a particularly meaningful observation as one term must be a distribution of 
quanta and the other a probability density distribution (a PSF), and the roles cannot be reversed. 

2. In general, scatter does not commute with multiplication, i.e. 

[gq(x)} *s p(x) ^ g [q(x) *s p(x)} (25) 

since the NPS of each side evaluated using Eq. (18) differ. An exception to this occurs when g 
represents a binomial selection process such as a quantum efficiency. In this special case, g is a 
random variable having a value 1 or 0 only where the value 1 occurs with a probability g, 0 < g < 1, 
and a2 = g{l-g). The NPS of each side are then equal, and scatter does commute with multiplication. 
This means that the order of sequential binomial selection and scattering processes can be reversed 
without affecting the NPS of the outcome. 

3. The scatter operator is not distributive under addition, i.e. 

[q(x) *s Pi (a:)] + [q(x) *s P2(a0] + <l(x) ** \Pi(x) + P2(a0] (26) 

since the PSF must have unity area and it is not possible for each of px(a;) and p2(x) as well as 
the sum px(s) + p2(z) to be so normalized. Nor is it distributive under multiplication for the same 
reason. 

4. Scatter is not associative, i.e. 

[q(x) *s p^x)] *s p2(x) ? q{x) *s [px{x) *s P2(z)] (27) 

since it is not meaningful to write px(x) *s p2{x) as one term must be a distribution of quanta. 

A consequence of the above results is that it is generally not possible to re-group or re-arrange ex- 
pressions that include a scatter operation in the same way that it is possible to re-arrange expressions 
involving a convolution. This is because transfer expressions for the NPS can be cascaded, but are 
generally not multiplicative. 

5. An important property that does apply to the scatter operator is 

[q(x) *s Pi(s)] *s P2(z) = q(x) *s [Pi(z) * P2(z)] (28) 

which is shown by proving that the mean and NPS of each side are equivalent. The means are 
obtained by replacing scatter with a convolution, and hence they must be equal since the convolution 
integral is associative. The NPS of the left-hand side [using Eq. (12)] is 

NPSL(U) - [NPS(u) - q] |Ti(u)|2|T2(u)|2 + q (29) 

and that of the right-hand side is 

NPSß(w) = [NPS(u) - q] |Ti(u)T2(u)|2 + q. (30) 

Thus, they are equal and Eq. (28) is true since |Ti(u)|2|T2(u)|2 = |Ti(u)T2(u)|2 for any complex 
Ti(tt) and T2(u). This means that two cascaded scattering processes can be represented as a single 
scattering process and retain the same second-order statistics by using a PSF that is a convolution 
of the two individual PSFs. In addition, the order of the two scattering processes in Eq. (28) can be 
reversed without affecting the outcome, showing that scatter commutes with itself. 
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6. The total "energy" in q(x) is given by W as 

/oo 
\q(x)\2dx = N (31) 

-oo 

where N is the total number of quanta. This result is equal also to the total energy in qs{x) following 
a scatter and hence scatter conserves energy. 

3.    Scatter in the Fourier Domain 

Scatter relocates individual quanta by a random vector Ar. Application of the shift theorem3 indicates 
that the Fourier transform of this operation therefore corresponds to multiplication of the Fourier transform 
of individual quanta by the factor e-

i27rfeAr which introduces a random phase change and where • represents 
a vector dot-product operation (k ■ Ar = uAx + «Ay). If the Fourier transform of q(r) is Q(k), where 

Q(k) = F{q(r)} = F\Y,5(r-ri))=lL 
-««■fe-r^ (32) 

then the Fourier transform after scatter is Qs(k) where 

N 

Qs(k) = '£e-i2«k<r<+Ar^ (33) 
t=i 

and where Ar* is a random vector variable describing the displacement of the ith quantum. It is clear that 
unlike the convolution integral, the effect of scatter is not multiplicative in the spatial-frequency domain. 

D.    Relationship to the Detective Quantum Efficiency 

The detective quantum efficiency (DQE) describes the transfer through an imaging system of the image 
NPS weighted by the squared system transfer function, and can be expressed as28 

= g2|T(fe)pNPS(fc) (34) 

DQl^J NPSout(fc) 

where G is the average overall system gain, |T(fc)| is the system MTF, NPS(fc) is the input NPS which is 
equal to q (the average incident quantum distribution) if the input quanta are uncorrelated,8 and NPSout(fe) 
is the image NPS. Using this approach, the effect of scatter on the DQE is obtained by setting G = 1 and 
noting that the numerator is then equal to the NPS for deterministic blur NPSd(fc) [Eq. (11)]. Hence, the 
effect of scatter on the DQE can be expressed as the term DQE'(fc), defined as the ratio of NPSd(fc) to 
the actual NPS, NPSoui(fc): 

A deterministic linear-filter blur therefore has no effect on the system DQE. The effect of scatter on the 

DQE, DQE^(fe), is 

»> ■ Si ™ 
NPSd(fc) 1 (37) 

~    NPSd(fc) + g[l-|T(fc)|2] g[l-lT(fc)|2| 
+ NPS(fc)|T(fc)|2 
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and is always less than unity. For the special case of Poisson-distributed incident quanta, NPS(fc) = q, 
and DQE's(fc) becomes 

DQE'S(*) =        1_\T{k)l2 = |T(fe)|2- (38) 

1+     |T(fc)|2 

Thus, blur described with a convolution does not result in a degradation of the DQE, while blur due to 
scatter does. This result must be interpreted with caution as in general the DQE of a cascaded system is 
not simply a product of DQE factors.29 

Using this type of linear-systems approach, a more general form of Eq. (38) has been derived elsewhere,29 

giving the DQE of a system consisting of an arbitrary cascade of M scattering and gain processes as 

DQE(fe) = —5^-L—j^;Pi(*)=n»|Ti(fc)|2 (39) 

»=i Pi(fe) 

where each stage may be either a scatter or a gain stage, but not both; & is the gain of the tth stage having 
a gain variance of o2

g. which can also be expressed in terms of a gain Poisson excess, e9i = {o2
gJgi - 1); and 

Pi(fe) is the product of the gains and squared MTFs of all stages up to and including the ith stage. For 
scattering stages, gt = 1, oj. =0, and e9i = -1. For gain stages, Tj(fc) = 1. Equation (39) describes the DQE 
following a cascade of stochastic gains and scatters only. Linear-filter blurs, such as the stage representing 
integration of quanta in the detector elements as a convolution with TL(x/ax,y/ay), would not normally be 
included in Eq. (39) since the convolution integral does not affect the DQE. 

CONVOLUTION SCATTER 

Notation: 

Definition: 

Fourier Transform: 

Commutative: 

Distributive: 

Associative: 

Expectation Value: 

MTF: 

NPS: 

Effect on DQE: 

qd(r) = q{r)**v{r) 

/°° 
?(r')p(r-r')dV 

-00 

FteW} = F{9(r)}T(fc) 

terms; self; 
addition; multiplication 

addition; multiplication 

Yes 

E{qd{r)} = E{q{r)}**p{r) 

MTF(fe) = M 

NPSd(fe)=NPS(fe)|T(fc)|2 

none 

qs{r) = q{r)*s*sp(r) 
N 

<ZS(r) = X>(r-h + Ari]) 

JV 

Fte(r)} = Ee_i27rfe(ri+Ari) 

self; binomial selection 

No 

No 

E{qs(r)} = E{q(r)}**p(r) 
= E{%(r)} 

MTF(fc) = |T(fc)| 

NPSs(fe) = [NPS(fc) - q]\T(k)\2 + q 
= NPSd(fc)+9[l-|T(fc)|2] 
(Rabbani et al.) 

system dependent 

Table 1: Summary of the properties of the (deterministic) convolution (*) and scatter (*<,) operators for 
an input image q(r) = Y$Li S(r - rt), where T(fc) is the Fourier transform of p(r). 
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Figure 5: Simulated images showing: a) initial "pre-blurring" image; b) blurred image using the convolution 
integral; and c) blurred image using the scatter operator with the same PSF as b). 

These characteristics of the scatter operator are summarized and compared with those of the convolution 
integral in Table I. 

IV.    RESULTS 

A.    Simulated Images 

The visual effect of scatter is illustrated by simulating images of sinusoidal patterns of various frequencies30 

where image blur is described first as a convolution and second as a scatter. It is not intended that this 
calculation describe a particular physical situation; rather, it is presented as a visual comparison. 

A "pre-blurring" image was generated assuming an average of 100 detected quanta per 0.025- x 0.025- 
mm2 pixel. An isotropic Gaussian-shaped PSF, p(r), with a standard deviation width a = 4 pixels (0.1 
mm) was used to represent the blur, where 

p(r) = 
1 

27TCT2 

-r2/2a2 

and where r2 = x2 + y1. The resulting MTF associated with this blur is 

|T(fc)| = e-27rV2fe2. 

(40) 

(41) 

Figure (5a) is the simulated pre-blurring image on a 256- x 512-pixel matrix. All 10 sinusoidal patterns 
can be seen, although the image noise obscures some image detail. Figure (5b) is the result of a conven- 
tional convolution of the pre-blurring image with the PSF described by Eq. (40). It is shown that only 
approximately 7 patterns can be seen, and that image noise has also been reduced significantly. Figure (5c) 
is the result of a "stochastic convolution" of the pre-blurring image with the same PSF. Approximately 
7 patterns can still be seen, similar to Fig. (5b), although the noise in Fig. (5c) is significantly greater. 
Theoretically one would expect both Figs. (5b) and (5c) to have the same spatial resolution (same MTF) 
but very different noise properties. The difference between Figs. (5b) and (5c) illustrates the difference 
between convolution and scatter for an input image with Poisson-distributed quanta. 

The NPS measured from each image in Fig. (5) are shown in Fig. (6). Subsequent to convolution with 
the PSF, the NPS decreases rapidly with increasing frequency, and shows excellent agreement with the 



Appendix II: Scatter Operator 43 

_ 240000 

|   200000 
"S3 
c   160000 
CD 

-S  120000 

o 
0- 

to 
'o 

80000 

40000 

5 10 15 
Spatial Frequency (cycles/mm) 

20 

Figure 6: The NPS measured from the image data used in Fig. (5) (thin lines) are compared with theoretical 
predictions (thick lines) for convolution (deterministic blur) and scatter operations. 

theoretical NPS predicted by Eq. (11).   Subsequent to scatter, the NPS is uniform in frequencies, and 
shows excellent agreement with the theoretical NPS predicted by Eq. (12). 

B.    Scatter in a Cascaded-Systems Analysis 

By extending the linear-systems approach to make use of scatter when appropriate, the linear-systems 
method can also be used to describe noise properties of these systems. In this section, illustrative examples 
of this approach are described. 

1.    Image Focal-Spot Blur 

The effect of x-ray focal-spot blur on image sharpness has been described by Rossmann and Doi,31'32 

Burgess,33,34 Barrett and Swindell1 and others in terms of a convolution integral with the appropriate 
focal-spot PSF. This calculation is summarized in Appendix II where it is shown that 

E{q(r)} « E{q(r)} * * P/(r) (42) 

where E{q{r)} and E{q{r)} represent the expectation (noise-free) pre- and post-blurring images respec- 
tively, and py(r) is the normalized focal-spot PSF projected onto the image plane. If we instead omit 
the expectation operator and represent the pre-blurring image as q{r), an actual sample distribution of 
quanta, then second-order statistics of the blurred image q(r) are preserved if we write 

q{r) &q(r)*s*sVf{r)- (43) 

The distribution q(r) is Poisson distributed and hence the DQE associated with the finite size of the 
source is given by Eq. (38) as 

DQE^fe) = |T/(fc)|2 (44) 

where |T/(fe)| is the focal-spot MTF. An additional consequence is that while image sharpness is degraded, 
image noise (NPS) is unaffected by focal-spot size. Although this result has been known for some time 
(e.g. Sandrik and Wagner13), it is presented as an illustrative example to show that this result can also be 
obtained using a linear-systems approach with the scatter operator. 

Off-focal radiation is also a source of image quality degradation. If the source PSF is calculated to 
include the distribution of any off-focal radiation contributing to image formation, the NPS and DQE 
obtained with this approach will describe the corresponding image quality degradation. 
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2.    Hypothetical Radiographic System 

The hypothetical system illustrated in Fig. (1) is now analyzed using the extended linear-systems 
approach. Screen blur is represented with the scatter operator while integration of light quanta in the 
detector elements remains a convolution integral. The presampling detector signal therefore becomes 

d(x,y) =g [qi(x,y)m *s *s pr(x, y)] ß * * I! 
x_   y_ 

Q,x      <Xy 
(45) 

This expression cannot be rearranged significantly because scatter does not commute with multiplication 

by m (Sec. III.C2.ii). 
The corresponding NPS is obtained by cascading the NPS of each individual step as summarized in 

Table II, where the signal and NPS following each stage are determined by cascading appropriate combi- 
nations of Eqs. (12) and (18). The DQE of the system can then be obtained using Eq. (34). Equivalently, 
Eq. (39) can be used directly to obtain 

1 
DQEs(fe)    = 

i |  l + em  |  l-|Tr(*012  , 1-/3 

m m|Tr(fc)|2       mß\Tr(k)\< 
(46) 

(47) 

1 + + 
m     ro)8|Tr(fc)|2 

which is the accepted result.16'35 

It should be noted that if the convolution integral had been (incorrectly) used to describe image blur, 

the DQE would have been 

DQEd(fc) = —  (48) 1 
! + - + -; 

m      mp 

which is a similar result but lacks any spatial-frequency dependence. The difference between scatter and 
deterministic blur is fully responsible for the frequency dependence of the DQE. 

STAGE IMAGE QUANTA NPS 

X Rays 
Interacting 

Optical Photons 
Generated 

Optical Photons 
Scattered 

Optical Photons 
Detected 

Presampling 
Detector Signal 

qm{r) = qi{r)m 

qs(r) = qm{r)*s*sPr(r) 

NPSj(fc) = qi 

NPSm(fc) = m2NPS/(fe) + olüi 

= qirn2(l + Ä) 

NPS,(fc) = [NPSm(fc) - qm]\Tr(k)\2 + qm 

= qifh2(l + ?h-±)\Tr(k)\2 + qifh 

qdetir) = qs{r)ß 

ds{x,y) = 
9oqdet(x,y)**n(£,%) 

NPSdet(fc) = £2NPSs(fc) + ß(l - ß)qa 

= 9/m2(l + ^ " k)ß2\^r{k)\2+qjfhß 

NPSs(u,ü) - 
NPSde4(u, v)g2a2

xalsmc2{-Kuax)smc2(Trvay) 

Table 2: Expressions describing the distribution of image quanta and the NPS at each stage of the hypo- 

thetical system. 
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In the absence of additive noise, the DQE of the entire system including the effect of focal-spot blur 
and screen quantum efficiency can be obtained by extending the model with additional stages: 

d{x, y) = 9o [{q(x,y) *s *s Pf{r)} am *s *s pr(x,y)] ß * * U f —, — (49) 

where q(x, y) represents the sample distribution of x-ray quanta that would have been obtained had there 
been no focal-spot blur (Appendix II). The DQE obtained using Eq. (39) is 

DQEs(fe) 

l-|T/(fe)|2     _l_^_a l + em l-|Tr(fc)|2 1-/3 * 
1 +     iT^fc)!2     + a|T/(fe)|2 + am\Tf(k)\* + am|T/(fc)Tr(fe)|2     «m/3|T/(fe)Tr(fe)|2 

a......-..2 

1 -\ h 

lT/(fc)l2 (50) 

m     mß\Tr(k)\2 

which includes the effect of focal-spot blur. 

V.    DISCUSSION 

The scatter operator described in this article is a translated point-process,10 and represents the phys- 
ical mechanism giving rise to the Rabbani, Shaw and Van Metter NPS. It is described as a "stochastic 
convolution" in which the blur PSF is "folded" into the image signal through a stochastic mechanism. It 
is used as an alternative to the convolution integral (linear filter) description of blur in a linear-systems 
analysis. Convolution describes a deterministic cascading of weights, while the scatter operator describes 
a cascading of probabilities. 

A deterministic system is one in which the output depends only on the input (Papoulis11) and where 
Eq. (11) describes the NPS transfer through a blurring mechanism. In contrast to this, a stochastic system 
is one in which the system transfer function contains a stochastic element.11 In the context of this article, 
this is due to the statistical nature of quanta transferring image information through the system. Physical 
imaging systems are almost universally stochastic systems, and thus the Rabbani results [Eqs. (12) and 
(18)] should generally be used to describe the NPS transfer through blur and gain processes in these 

systems. 
In the simplistic hypothetical system discussed here, it was assumed that none of the optical quanta 

were absorbed in the screen. When this is not a good assumption, an additional stage must be introduced 
to describe the fraction of generated optical quanta that are emitted. This is represented as a binomial 
selection stage (a gain less than unity). Since the scatter operator commutes with binomial selection 
(Sec. III.C.2), the relative order of this selection and the scatter stage is unimportant. 

A deterministic blurring process has no effect on the DQE of a system. That is, both the square of the 
signal and the NPS are passed through the square of the blur MTF. This is not the case for a scatter, where 
the DQE decreases according to Eq. (12) and hence it can be concluded that the frequency-dependence of 
the DQE is a direct consequence of the scatter of image quanta. In the absence of additive noise, these 
statistical properties - as described by the Rabbani NPS and hence the scatter operator - fully account for 
this frequency dependence. This observation would suggest that at sufficiently high spatial frequencies, 
where the MTF of a system is necessarily much less than unity, scatter is always the dominant factor 
responsible for degradation of the DQE. 

The impact on the DQE of scatter in a cascaded system can only be determined when expressed in the 
context of the complete system. For instance, in the hypothetical system the DQE [Eq. (50)] is degraded 
by scatter only when both the terms |Tr(fe)|2 and mß\Tr{k)\2 are less than unity. The second term 
describes the effective number of secondary optical quanta at a particular frequency that are detected by 
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the detector array. A value less than unity indicates the presence of a secondary "quantum sink". Thus, 
it is the secondary quantum sink that is responsible for making scatter a significant degrading factor in 
the DQE. If the squared MTF term is not small also, then the secondary quantum sink exists due to 
inadequate gain rather than to scatter. A more general comment can therefore be made that for any 
specified frequency, a scattering process degrades the system DQE significantly if the squared MTF of that 
process is significantly less than unity, and the system has a subsequent secondary quantum sink at any 

specified frequency [Pi(k) < 1 in Eq. (39)]. 

VI.    CONCLUSION 

The convolution operator often used to describe image blurring processes in linear-systems theory passes 
first-order statistics (mean values) but not second-order statistics when applied to imaging systems. As a 
consequence, image noise is generally not analyzed using linear-systems theory, but rather with stochastic 
process theory. A scatter operator is described here which represents the physical process giving rise to 
the Rabbani NPS, and passes first- and second-order statistics thereby unifying image blur and image 
noise calculations within a linear-systems framework. A convolution blurs the input in a deterministic way 
according to the PSF, while scatter relocates quanta according to a probability given by the same PSF. 
The scatter operator is expressed in terms of random variables and is consistent with a linear-systems 
approach to modeling linear and shift-invariant imaging systems, allowing for the use of Fourier-domain 

mathematics. 
Several properties of the scatter operator are described. It is shown that it commutes with itself and 

with a binomial selection process (representing a quantum efficiency). Strictly speaking it is not associative, 
although a similar property that is true is described. The input and output must necessarily be expressed 
in units of quanta per unit area, and the associated PSF must necessarily be normalized to unity area. 
It is shown that for LSI systems in general (in the absence of additive noise), the transfer of second- 
order statistics through scattering processes is fully responsible for the spatial-frequency dependence of the 

system DQE. 
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APPENDIX I: Detector Presampling Signal 

In this appendix it is shown that the operation of integrating image quanta in discrete detector elements 
of a detector array can be described with a convolution operation. The resulting "presampling" detector 
signal includes the smoothing effect caused by the finite width of detector-element apertures, but does not 
include aliasing artifacts. This approach of using a presampling signal is equivalent to the presampling 
optical transfer function described by Sones and Barnes36 and Giger and Doi24 among others. 

It is assumed that the distribution of quanta that interact in the detector can be represented as q{x, y), 
a generalized function consisting of the superposition of ^-functions where each ^-function represents a 
single interacting quantum. Thus, the signal from a rectangular detector element centered at position 

xn,yn and having dimensions ax x ay is given by 

dn=9o av   q(x,y)dxdy (A-l ) 

where g0 relates the detector signal (in detector-signal units) to the number of interacting quanta. Inspec- 
tion of Eq. (A-l ) shows that this integral can also be expressed as the integral of q(x,y) multiplied by a 
rectangular function having unity height and dimensions ax and ay that describe the element aperture: 

J-oo J-oo \    ax ay    j 

Equation (A-2 ) is recognized as being the two-dimensional cross-correlation integral11 of q{x,y) with 
U(x/ax,y/ay), evaluated at position xn,yn. Therefore, we can express the signal from the nth detector 

element as 
dn = d(x,y)\x,y=Xn,yn (A"3 ) 

where d(x,y) is the presampling detector signal that provides the detector element values for all possible 
element positions. When evaluated ("sampled") at positions corresponding to the centers of the actual 
elements, it provides the set of actual detector-element values. The function d{x, y) is given by 

*^=°°rj>'»'H^r^)<*<*-**.«<)**n(i,i)   <A-4> 
in terms of the two-dimensional cross-correlation operator **, or as 

d{x,y)=g0q{x,v)**n(^,^) (A-5 ) 
\«i     uy / 

in terms of the two-dimensional convolution3 operator **. The aperture profile is symmetric and hence 

the negative signs in Eq. (A-5 ) can be omitted. 

APPENDIX II: Focal Spot Blur as a Convolution 

In this appendix, a calculation showing that the average effect of focal-spot blur can be expressed as a 
convolution is summarized following Barrett and Swindell.1 In Fig. (7), r" is a two-dimensional coordinate 
in the source plane, r' is in the object plane, and r is in the image plane (r" and r have been exchanged 
relative to Barrett and Swindell's use. Care must be taken because r, r' and r" lie in three parallel but 
different planes. If s{r") is an emission function describing the emission of x rays (photons emitted per 
unit area) from the source, s{r")d2r" is the mean number of x-ray photons emitted into all space from 
an elemental area d2r". If the x rays are emitted uniformly in all directions from the source and t{r ) is 



Appendix II: Scatter Operator 48 

source, f(r") 

object, t(r') 

image, q(r) 

Figure 7: Calculation of the focal spot MTF. 

the transmission factor through a planar object at position r', then the expectation x-ray photon density 
reaching the image at position r can be written as1 

E{<7(r)} = 7^2 f       s(r") «>s3(0)i(O dV 
47!" iy    J source 

(A-6) 

where 6 is the angle of the x-ray beam with respect to the source-image direction, and D is the source-image 
distance. Barrett and Swindell then show that if D is large with respect to the source dimensions, 

E{q(r)} (1 - mfAirD2 i-oo   Vl f m :)*(' m 
)d2r0 (A-7 

where m = D/d is the geometric magnification factor and d is the source-object distance. It is more 
convenient to work with the projection of s and t onto the image plane. Therefore, t{[r - r0]/m) is 
replaced with U(r - r0) where the subscript i indicates projection onto the image plane. The integral of 
s(r") over all space gives E{N}, the expectation total number of x rays emitted from the source. As a 
result, [1 - m]-2s(r0/[l - m\) is replaced with E{N}pf(r0) where P/(r0) is the focal-spot PSF projected 
on to the image plane (normalized to unity area). Therefore, 

E{g(r)}   «    ^S-Jf{rMr~ro)^ 

lfflP/(r)**ti(r). 

(A-8) 

(A-9) 

This result shows that the average blurring effect of the focal spot can be represented as a convolution of 
the source profile with the object transmission function. The commutative property of the conventional 
convolution operator means that Eq. (A-9 ) can also be written as 

«   E{q(r)} * *Pf(r). 

(A-10 

(A-ll 

where E{q{r)} = E{N}l{AnD2)ti(r) represents an expectation image that has not been blurred by the 
focal spot. The expectation blurred image is therefore represented as the expectation "pre-blurring" image 

convolved with the focal-spot PSF. 
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