
AFRL-IF-WP-TR-2001-1511 

RECONFIGURABLE AND ADAPTIVE 
COMPUTING ENVIRONMENTS 

Dr. Dinesh Bhatia 

University of Cincinnati 
Office of Sponsored Programs 
P.O. Box 210627 
Cincinnati, OH 45221-0627 

March 2000 

FINAL REPORT FOR PERIOD 07 AUGUST 1996 - 08 AUGUST 1999 

I Approved for public release; distribution unlimited. 

INFORMATION DIRECTORATE 
AIR FORCE RESEARCH LABORATORY 
AIR FORCE MATERIEL COMMAND 
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334 

20010328 071 



NOTICE 

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA INCLUDED IN 
THIS DOCUMENT FOR ANY PURPOSE OTHER THAN GOVERNMENT PROCUREMENT 
DOES NOT IN ANY WAY OBLIGATE THE US GOVERNMENT. THE FACT THAT THE 
GOVERNMENT FORMULATED OR SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR 
OTHER DATA DOES NOT LICENSE THE HOLDER OR ANY OTHER PERSON OR 
CORPORATION; OR CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE, 
OR SELL ANY PATENTED INVENTION THAT MAY RELATE TO THEM. 

THIS REPORT IS RELEAS ABLE TO THE NATIONAL TECHNICAL INFORMATION 
SERVICE (NTIS). AT NTIS, IT WILL BE AVAILABLE TO THE GENERAL PUBLIC, 
INCLUDING FOREIGN NATIONS. 

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR 
PUBLICATION. 

KERRY L. HILL, 
Project Engineer 
Hardware Team 
Embedded Info Sys Engineering Branch 

ALFREp J. S{ 
Team Leader 
Hardware Team 
Embedded Info Sys Engineering Branch 

/ Jfä4&m<*e?=L. 
TAMES S. WILLIAMSON 
Chief 
Embedded Info Sys Engineering Branch 

Do not return copies of this report unless contractual obligations or notice on a specific document 
requires its return. 



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 074-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathenng and 
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, 
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503 
1. AGENCY USE ONLY (Leave 
blank) 

2. REPORT DATE 
March 2000 

3. REPORT TYPE AND DATES COVERED 
Final Report, 08/07/1996 - 08/08/1999 

4. TITLE AND SUBTITLE 
Reconfigurable and Adaptive Computing Environments 

5. FUNDING NUMBERS 
C:      F33615-96-C-1912 
PE:    62204F 
PR:    6096 
TA:    40 
WU:   34 6. AUTHOR(S) 

Dr. Dinesh Bhatia 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

University of Cincinnati 
Office of Sponsored Programs 
P.O. Box 210627 
Cincinnati, OH 45221-0627 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

INFORMATION DIRECTORATE 
AIR FORCE RESEARCH LABORATORY 
AIR FORCE MATERIEL COMMAND 
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334 
POC: Kerry L. Hill, AFRL/IFTA, 937-255-7698 x3604 

10. SPONSORING / MONITORING 
AGENCY REPORT NUMBER 

AFRL-IF-WP-TR-2001-1511 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 Words) 
This Reconfigurable Computing (RC) or Adaptive Computing System (ACS) program focused on the development of both 
reconfigurable computing platforms and the associated programming support environments to demonstrate the viability of RC. This 
was demonstrated by exploring the ability to program RCs in a main/integrated C application program and by investigating new, 
partially reconfigurable technology. A Xilinx 4000 Field Programmable Gate Array (FPGA) series board and a Xilinx 6200 FPGA- 
based board were developed as part of this effort. The C compiler technology was developed more for a hardware pragma-based 
implementation, which leveraged hardware macro libraries and worked quite effectively. The Xilinx 6200 board was interesting 
from the standpoint that the 6200 FPGAs are partially reconfigurable. The shortfalls of this product family include poor chip 
design/manufacture, resulting in the inability to utilize a good portion of the FPGA logic resources. Another shortfall is a lack of 
functional programming tools. In spite of these problems, the team was able to exercise the partial reconfigurability of the devices by 
developing programming tools of their own. 

14. SUBJECT TERMS 15. NUMBER OF PAGES 
88 

16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 

Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclassified 

20. LIMITATION OF ABSTRACT 

SAR 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Shi. Z39-18 
298-102 



Chapter 1 

Introduction to Reconfigurable Computing 

Computing paradigms are constantly evolving. Since the creation of ENIAC in 1946, computers have been 
built around the notion of a microprocessor. In following years, other computer models like stack and mem- 
ory machines, vector processors, parallel systems, and distributed system have all been devised to increase 
computational ability and speed. Recently, a new computing paradigm has emerged called reconfigurable 
computing. 

Reconfigurable computing is thought of in many different ways; however, each viewpoint is a variation 
of a basic concept. Reconfigurable computing is essentially performing any type of computing on recon- 
figurable hardware. Reconfigurable computing, termed RC here, primarily focuses on hardware that has 
the ability to be repeatedly re-programmed; nevertheless, systems with once-programmable hardware could 
also be classified as a type of RC. Another way of considering RC is the ability to implement software in 
hardware. A clear distinction is not always made between implementing software on hardware as is the case 
with a microprocessor because some reconfigurable systems are in fact reconfigurable processors. Usu- 
ally, RC is considered in terms of implementing software in hardware; i.e., mapping a software program 
or algorithm into a hardware logic gate-level implementation. Implementing processors in reconfigurable 
hardware is often very slow compared to custom ASICs; however, direct logic mapping of a program onto 
reconfigurable hardware often results in tremendous speed-ups over a conventional microprocessor. 

1.1    Field-Programmable Gate Arrays 

Reconfigurable computing is made possible through the advent of FPGAs, or Field-Programmable Gate 
Arrays. FPGAs are arrays of programmable logic, including general purpose registers, multiplexers, tris- 
tates, and other forms of optimized logic. In many regards, FPGAs are similar to PLAs (programmable logic 
arrays) or EPLD (erasable- programmable logic devices); however, FPGAs contain more types of logic and 
have several types of programmable interconnects and input-output blocks. Mask programmable gate arrays 
usually have more available logic than FPGAs and can be clocked at much higher speeds; however, the 
flexibility, programmability, and low cost of FPGAs make them an ideal choice for most applications. 

FPGAs come in different types of architectures and packages. The most prevalent architecture is the 
array of logic blocks. Figure 1.1 shows an example of an array architecture made by Xilinx [25]. 

The logic block in an FPGA is often called a CLB, or configurable logic block. Another term for the 
logic block is a PFU, or programmable function unit. The CLBs utilize look-up tables to implement differ- 
ent input limited functions. In a Xilinx FPGA, each CLB has several function generators (each a separate 
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Figure 1.1: An example of a typical Xilinx FPGA (courtesy ofXilinx). 

look-up table) that can be connected together to produce larger functions [24]. Likewise, using the inter- 
connects between the CLBs, very large functions can be created by connecting a number of CLBs together. 
Technology allows manufacturers to place more and more CLBs on a chip, increasing the number of logic 
gates available. The greater the amount of logic gates on an FPGA, the more realizable reconfigurable 

computing becomes. 
Another FPGA architecture, called the sea-of-gates, is also very popular. Vendors such as Atmel[4] and 

Xilinx[27] use sea-of-gates architectures to provide very fine-grained reprogrammability and high clocking 
speeds. Figure 1.2 shows two examples of sea-of-gates architectures. 

The sea-of-gates is comprised of single cells that use a small look-up table to implement 2 to 3 input 
functions. In combination with many other cells, these cells become a sea-of-gates with the ability to 
yield a large numbers of logic gates. Since a sea-of-gates resembles a memory structure, configuration and 
accessing the FPGA is much the same as reading or writing to memory. For example, the Xilinx XC6200 
series FPGA has both an address and data bus that allows both reads and writes into individual cells or 
configuration bits. Because of this capability, these types of FPGAs interface nicely with microprocessors 
and bus-type of interconnections. In addition, the ability to program individual cells allows for partial 
reconfiguration of an FPGA; whereas, FPGAs with array structures usually have to be programmed all at 
once in a bit-serial fashion. 

Several other FPGA architectures also exist. Some FPGAs are essentially EPLDs or PLAs; whereas, 
others include analog components to create mixed-signal FPGAs [13][28]. Many of the commercial ap- 
plications for FPGAs use one-time programmable FPGAs as with the popular MACH series FPGAs from 
AMD[1]. One-time programmable FPGAs use anti-fuses to "burn" the configuration into an FPGA. How- 
ever, for reconfigurable computing to take place, SRAM-based FPGAs with the capability of being re- 
programmed many number of times need to be used. SRAM-based FPGAs use SRAM memory cells to 
store the configuration of the FPGA. Each configuration block and interconnect switch-block are config- 
ured based on the values stored in the SRAM. The extra configuration logic reduces the available amounts 
of usable logic as compared to anti-fuse FPGAs, but the added flexibility, and fast reconfigurability make 
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Figure 1.2: Two examples of sea-of-gates FPGA architectures. On the left, a XilinxXC6200 series, and on 
the right, an Atmel AT6000 series (courtesy of Xilinx andAtmel). 

SRAM-based FPGAs suitable for reconfigurable computing. 

1.2   Motivation for Reconfigurable Computing 

With the speed of microprocessors growing faster, why would reconfigurable computing be used? The 
answer is because of its speed-up over implementing software on a microprocessor. However, many would 
argue that the speeds of the Intel Pentium microprocessors clocking above 500MHz and the DEC Alpha 
microprocessors clocking up to 600MHz makes reconfigurable computing neither worthwhile nor capable 
of outperforming custom microprocessors. 

In actuality, any program or algorithm implemented in combinatorial logic (gate-level) is almost al- 
ways going to outperform a sequential execution on a microprocessor. In 1978, Rauscher and Agrawala[21] 
presented work that showed if a program was profiled and its repetitive machine code was added to the pro- 
cessor's microinstructions, then the program would execute much faster on the new architecture. In essence, 
their research showed that if the computer hardware can be customized for each new application, then the 
application will execute much faster on the new custom hardware. An example of such a machine is the 
CM-2X[9]. The CM-2X is a CM-2 parallel computer with a Xilinx XC4005 FPGA instead of a Weitek 
3364 coprocessor. The CM-2X showed a factor of 4 speed-up over a CM-2 with a Weitek coprocessor and a 
factor of 6 speed-up over a CM-2 without any coprocessor. RC also allows the possibility of adaptive com- 
puting; i.e., the hardware can adapt or reconfigure in response to external stimuli. Similarly, adaptability 
allows fault-tolerant systems to automatically reprogram themselves by moving logic out of faulty circuitry 
into properly functioning circuitry. Each of these benefits make RC an attractive form of computing. 

Since RC demonstrates such a noticeable speed-up over microprocessors, another question to ask is, 
"What types of applications are suited for reconfigurable computing?" Essentially, RC can be used for any 
type of application. Figure 1.3 illustrates some of the possible ways current RC systems are being used, and 
the hardware architectures that have been developed to implement those applications. 
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Figure 1.3: Applications of reconfigurable computing and examples of hardware systems that perform that 
type of RC. Since the systems are reconfigurable, most of them can be used for several types of applications. 



1.2.1 Coprocessing 

As shown in Figure 1.3, many systems are designed specifically for coprocessing. Coprocessing usually 
appears in two forms: 1) the coprocessor is implemented as some type of microprocessor, or 2) the copro- 
cessor is made of several FPGAs with uncommitted logic for general purpose applications. FPGA-based 
microprocessors clock slower than custom ASICs; however, since their functionality and op-codes can be 
modified for the application at hand, their overall performance can be much better than a general-purpose 
microprocessor. The second group of coprocessing systems are what is typically thought of as reconfigurable 
computers. A system, usually with some interface to a host, has multiple FPGAs that can implement any 
algorithm or function that is mapped onto the FPGAs' logic. In fact, most FPGA-based systems can be clas- 
sified to some degree as coprocessors since almost all systems interface with a host. Generally, applications 
are described in either a HDL (such as VHDL), C, or C++, and then compiled or synthesized into a bitstream 
configuration for the FPGAs on the RC system. Some examples include the Anyboard [10], BORG [6] [7], 
PRISM [3] [23], the Virtual Computer (P4 and EVC1) [5], Transmogrifier [12], ENABLE++ [16], and 
RACE [22]. 

1.2.2 Application Specific Computing 

Reconfigurable computers are often designed to be optimized for a particular task in an effort to outperform 
the corresponding software implementation. Custom DSP ASICs are very fast, but also general purpose. RC 
systems allow for custom configuration of the hardware for a particular type of filter or algorithm, usually 
resulting in a noticeable speed-up over DSP chips. Similarly, implementing neural networks in RC systems 
is very common. Neural networks use several levels of nodes, and execution in software can be extremely 
slow. Consequently, reconfigurable computers are often designed such that each FPGA represents a node of 
the neural network. 

1.3    Types of Reconfigurability 

Reconfigurable computers can be broadly classified as having one of two types of reconfigurability—static 
and dynamic reconfigurability. These categories are constantly changing since the definitions of static and 
dynamic reconfigurability change from year to year, depending on current research and hardware develop- 
ments. In this discussion, "statically reconfigurable" refers to having the ability to reconfigure a system, but 
once programmed, its configuration remains primarily static. In contrast, any RC system that is constantly 
reconfigured is considered "dynamic". At first, it seems contradictory to call something static that is re- 
configurable since reconfigurable implies that it does not maintain a static configuration; however, the term 
"static" refers more to the RC's mode of operation. In fact, these definitions can be used rather loosely since 
there is overlap between two. Figure 1.4 shows different categories of reconfigurability for RCs. 

1.3.1    Static RCs 

Static RCs are useful primarily for specific tasks. Even though most RCs are considered dynamic, several 
static RCs exist. For example, GANGLION [8] is a connectionist classifier used in manufacturing for 
identifying edges and objects. Static RCs include the MacTester [11], iPoint [18], and SeeD-ROM [20]. 



Types of Reconfigurability 

Figure 1.4: Possible types of reconfigurability a reconfigurable computer can have. 

1.3.2    Dynamic RCs 

The definition of dynamically reconfigurable is as changing as the term itself. When SRAM-based FPGAs 
became available, the term dynamically reconfigurable referred to the ability to be able to simply reconfigure 
hardware in-circuit. Over time, it has come to mean "run-time" reconfigurable, and most recently, "partially" 
reconfigurable. In the broadest sense of the term, all systems with the capability of being reconfigured 
in-circuit are "dynamically" reconfigurable. However, distinctions can be made between different types 
of dynamically reconfigurable systems. For example, most systems can be considered as compile-time 
reconfigurable[17]. In other words, the hardware configuration for an application is determined at compile- 
time and does not change for the duration of the application [15][14]. Systems that change their hardware 
configuration during the execution time of the application can be thought of as run-time reconfigurable . 

Subdividing run-time reconfigurable systems even further, a distinction can be made between RCs that 
require all their FPGAs to be fully reconfigured or can be partially reconfigured. Partial reconfigurability has 
also been termed as local run-time reconfigurability [17]. All Xilinx FPGAs, except for the new XC6200 
series, require the whole chip to be reconfigured any time the configuration needs to be modified. Since most 
RCs are based on Xilinx FPGAs, most RCs are not partially reconfigurable. Partially reconfigurable FPGAs 
are continuing to become more common place, like the new VIRTEX FPGA architecture from Xilinx. Using 



partially reconfigurable FPGAs, RCs can also become adaptive and fault tolerant. In other words, suppose 
a RC is programmed with an application that receives feed-back that modifies its behavior as in the case of a 
neural net. Instead of reconfiguring each entire FPGA, only subtle and minute changes could be made to the 
FPGA while the application is still executing; thus, the RC can be consider adaptive. Likewise, processors 
implemented on partially reconfigurable FPGAs could slightly modify their opcodes or functionality by 
making only partial chip reconfigurations. 

1.4   Obstacles of Reconfigurable Computing 

Reconfigurable computing can result in some large speedups over software execution; however, great ob- 
stacles still must be overcome for it to have widespread use. The largest obstacles are the overhead costs 
associated with RC, and the programming difficulty. The overhead can be thought of in terms of three 
components: 1) the time it take to perform any data transfers, toata Transfers', 2) the time required by the 
operating system to perform the data transfers and control of the RC, tos Cost', and 3) the time required to 
fully configure an FPGA with an application, tconfig Time- In other words, 

toverhead   ~   ^Data Transfers   +  toS Cost   +  t Con fig Time 0-1) 

For most RC systems, tconfig Time is constant (except in the case of partial reconfiguration). The tos Cost 
varies depending on the amount of file and device driver accesses made. In fact, the OS cost can be deter- 
mined once the individual time is known for a particular type of OS access. In other words, the OS cost can 
be approximated in the following way, 

toS Cost   ^   n X tfiie Access   T  TO X tjjrjver Access (.*■•*•) 

where n is the number of files accesses and m is the number of driver accesses. This equation will give only 
a rough approximation since the size of the files accessed may vary greatly. If a program requires some sort 
of data file input, then whether it is implemented in software or in hardware, there will still be the same OS 
overhead cost of reading in the data. Therefore, the cost of reading in a data file should not be considered 
as an overhead cost of reconfiguration computing, rather simply a cost of any type of computing. Instead, 
only the cost of reading in the hardware configuration should be considered. Since most systems must be 
fully reconfigured at one time, the amount of configuration data will remain constant and the OS overhead 
associated with reading the data will also remain basically constant. Likewise, the number of driver accesses 
for configuring an RC will remain essentially the same. The only variable would be the number of driver 
accesses needed for transferring data. In other words, 

toS Cost ~ \Cconfig—File Accesses    i    ^Config—Driver Accesses)   ~r  Tfl X tjjata—Driver Access (.l-v 

where Cconfig-Fiie Accesses is a constant time required to read in the configuration data, CCon fig- Driver Accesses 
is a constant time required to access the device driver to configure the RC, m is the number of data transfers, 
and toata-Driver Access is the average time required to access the driver to perform a data transfer. 

The largest cost incurred with reconfigurable computing is usually the cost associated with transferring 
the data into the RC. With software, once the data is read into memory, it can immediately start using the 
data; whereas, with an RC, the data has to be transferred to the system, which can incur a high latency. If an 
RC sits on the computer's main bus as many coprocessing RCs do, then this data transfer overhead can be 
eliminated. Consequently, equation 1.1 can be re-written as 

''Overhead   ~   ''Data Transfers ~\~ m X tf)ata—£)river Access T y->Con fig Time ('■•^J 



where t]~,ata Transfers depends on the data size, m is the number of device driver accesses for the data 
transfers, tr>ata-Drwer Access is the average amount of time required to make a driver access for transferring 
the data, and Cconfig Time istne sum constant time associated with programming the RC, including the file 
system and driver accessing time. 

If the overhead cost of reconfigurable computing outweighs the time required to implement an appli- 
cation in software, then little reason exists to do reconfigurable computing. In fact, even if the time to 
implement in software is equal to the time necessary for hardware, then it is still easier to execute in soft- 
ware. The difficultly of designing an application in hardware greatly outweighs the difficulty of writing 
software. Consequently, to make reconfigurable computing attractive as a viable solution, the following 
must hold true, 

tsoftware   ^   ^hardware   ~t~  1-overhead \*-.j) 

where tsoftware is the time required to execute an application in software, thardware is the time required to 
execute the same application in hardware, and t0verhead is the overhead cost given in equation 1.4 for the 
application. Since the overhead is dependent on the amount of data required for an application, applications 
with large data sets may result in too large of an overhead cost for reconfigurable computing. Likewise, even 
if tsoftware < thardware, the overhead cost will usually make executing in software faster. Consequently, 
trying to execute everything on an RC may not be worth it; instead, RCs are better suited for very time- 
consuming applications where tsoftware > thardware, or as coprocessing systems for software-hardware 
co-execution. 

Another obstacle to reconfigurable computing is the difficulty of mapping software constructs and algo- 
rithms into raw logic gates. In fact, behavior synthesis can be a very hard problem for most applications. 
Likewise, all RCs have memory and logic limitations which make designing the applications even more 
difficult. For example, implementing floating point operations in hardware requires a large number of bits 
to provide adequate precision for the numbers. If an RC does not have enough memory or the data bus size 
is too small, then a resulting slow down will occur from more memory fetches. Likewise, floating point 
operations can require a lot of logic that may not be available on the RC. Techniques like temporally par- 
titioning, i.e., slicing a hardware design into multiple stages or time slices, can help overcome some of the 
RCs hardware limitations. Lastly, designing hardware applications often requires some sort of hardware 
knowledge and experience that an average software programmer may not have. 



Chapter 2 

Hardware Platforms for Reconfigurable 
Computing 

The Reconfigurable Computing Environments contract resulted in several accomplishments. These in- 
clude the Hardware platforms named RACE-I and the NEBULA architectures. RACE-I is built around 
Xilinx 4000 family parts and suppoorts static and dynamic runtime reconfigurability. NEBULA architecture 
was built around Xilinx 6200 family of parts and supports all features supported by RACE-I as well as the 
partial reconfigurability. In this chapter, we describe the hardware features for RACE-I and the NEBULA 
architecture. 

2.1 The RACE-I Architecture 

The RACE architecture consists of a host workstation, an interface, and an external board of FPGAs, which 
is used for co-processing applications. The following sections describe in detail each component of the 
RACE system. 

2.2 Workstation 

The workstation that is used to interface with RACE is a Sun Sparc IPC workstation running SunOS 4.1.3. 
The workstation's internal bus uses the SBus protocol, which is an industry open standard. The SBus 
can transfer data up to 16, 32-bit word bursts or double-word bursts of 64-bits (extended mode). In a 
Sparestation, the SBus' frequency is 25MHz. Ideally, the SBus can transfer a word per clock, which equals 
to 100MB per second (168MB in extended mode). In practice on an IPC, typical bus transfer rates are about 
25MB per second since it can only handle up to 4 word bursts. 

2.3 DPS-1 Interface 

The interface between the RACE co-processing architecture and the workstation is a DAWN VME Products 
DPS-1 DMA SBus prototyping board. The DAWN board has an LSI Logic L64853A Enhanced SBus 
DMA Controller [19] as well as an area for wire-wrap prototyping. The LSI L64853A DMA controller has 
two modes of operation. The first mode is master mode. In master mode, the L64853A performs DMA 
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Figure 2.1: The LSI Logic L64853A DMA controller. This figure illustrates the five registers used during a 
DMA transfer, and the D-channel with its data bus and control signals. 

{direct memory access) transfers independently of the workstation's CPU. The L64853A requests access 
to the SBus and supplies the virtual memory address when granted access to the bus. Only one master 
or slave access can occur at any one time on the SBus; however, the CPU can continue to execute while 
simultaneous memory transfers are occurring on the SBus. The second mode of operation of the L64853A 
controller is slave mode. In slave mode, the CPU acts as the SBus master and supplies the memory address 
for access into the memory map of the SBus card. This is analogous to "peeking" and "poking" directly 
into the memory. Slave accesses are easily made from a high level language because once the SBus card's 
memory map is mapped into the system's memory, the user program can read and write directly to the 
memory address of the SBus card. Since the CPU acts as the SBus master during a slave access, the CPU 
is busy performing the data transfer instead of other system or user programs. During either slave or master 
mode accesses, the L64853A acts as a conduit, passing data between the SBus and whatever is connected 
to its input/output channel. An internal 32-byte cache helps reduce the amount of necessary SBus accesses. 
Figure 2.1 illustrates the LSI L64853A DMA controller. For more a detailed description of the L64853A, 
refer to the LSI L64853A Enhanced SBus DMA Controller Technical Manual [19] 

2.4    RACE Board 

The RACE board can be divided into three parts: 1) the controller, 2) the memory, and 3) the FPGAs (Figure 
2.2, which illustrates the RACE board). In addition to these three components of the RACE board, the bus, 
clocking, and power components will also be described in this section. 

2.4.1    RACE Controller 

The RACE controller is perhaps the most critical part of the RACE system since it determines the func- 
tionality of the board. The controller is made from a Xilinx XC4013E FPGA with a 208-pin surface mount 
package. In an effort to make RACE totally reconfigurable for reconfigurable computing, the controller does 
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Figure 2.2: 7%e &4CZ? architecture. The architecture consists of a host and interface, a Xilinx XC4013E 
controller, four Xilinx XC4013 FPGAs, 512KB SRAM used for function data, and 256KB SRAM used for 
configuration data. 

not have to have a static configuration, but can be reconfigured with optimized configurations for particular 
applications. In general for most applications, the controller's configuration need not change. The con- 
troller's functions include: 1) DMA transfers (which includes generating the appropriate addresses for the 
address bus), 2) programming of the FPGAs on the RACE system, 3) control of the functions implemented 
on the RACE system, 4) control of the on-board memory and memory arbitration, and 5) communicating 
the resulting value of functions through polling or interrupts. 

Since the controller is reprogrammable, there is no set way the controller has to behave, except to have 
the aforementioned five types of functionality. The following describes the default configuration for the 
controller developed for RACE and how it is used. The RACE controller consists of four primary registers, 
address decode logic, several state machines, and other control logic. Figure 2.3 illustrates the internal 
structure of the RACE controller. For applications that need a modified controller, a basic controller interface 
(static) can be used in a schematic and interfaced with an application specific (user-definable) portion. 

The four registers of the RACE controller are: 1) the Control register (CR), 2) the Flag register, 3) the 
Address register, and 4) the Count register. Since the L64853A has only an 8-bit D-channel, the registers 
are split into two or three individual registers so that values larger that 8-bits can be stored. For example, 
the CR and flag register are 16-bits wide; therefore, two read/write accesses have to be made to fully access 
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Figure 2.3: The RACE controller. The static portion (left) can be interfaced with a user-definable (right) 
portion. 

each register. The address and count registers consist of three bytes because they need to be able to access 
128KBytes (17-bits) of memory that is local to each FPGA. 

Slave Accesses 

Accessing the registers inside the controller involves making SBus slave accesses to the RACE board. Dur- 
ing a slave access, the microprocessor in the workstation is performing the reading or writing into memory. 
The microprocessor, governed by a user program or kernel device driver, supplies the appropriate address 
for the SBus card that it wants to access. Each slot on the SBus has a designated virtual address that gets 
mapped into the kernel memory. Depending on the address decode logic on each SBus card, this determines 
what actually gets accessed during a slave data transfer. For example, the L64853A on the DPS-1 interface 
has a port address of 0x800000 for its CSR. Therefore, to write a value to the CSR of the L64853A, the user 
program or kernel device driver would write to the following virtual address: SBus slot virtual address + 
0x800000. The physical address would be placed on the SBus' 28-bit physical address lines and the address 
decode logic in the L64853A would recognize the access as a write into its CSR register. Likewise, if the 
appropriate physical address is supplied on the SBus, then accesses can be made into the internal registers 
of the RACE controller. 

During a slave access, the L64853A basically provides the needed SBus protocol interface and buffers 
the data being sent, but is essentially by-passed by the microprocessor (which is acting as the SBus DMA 
master). When the microprocessor (or any other DMA master) places a slave request on the SBus, the 
L64853A asserts the chip select signal, TJJCS, to the D-channel controller. Then, either the DMD or 
DJVR signal is asserted depending on the direction of the data transfer as shown in Figure 2.4. The D- 
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Figure 2.4: L6485SA D-Channel signals during a slave access with the D-Channel controller. 

channel reads or writes the 8-bit data at the memory location specified by the SBus' physical address lines. 

Control Register 

The Control register (CR) is used control the functionality of the controller. For example, if a user wants 
to program a particular FPGA, then the appropriate value is written to the CR, and the controller performs 
the programming ofthat FPGA. Figure 2.5 illustrates the individual bits of the CR, and Table 2.1 describes 
the purpose of each bit. All of the CR's bits are read/writable except for the error bit, which is set when a 
programming error occurs. Since only 8-bit data transfers can occur at one time through the LSI L64853A's 
D-channel, the CR is split into two registers—CR1 and CR2. 

Address and Count Registers 

The Address and Count registers are used during DMA transfers to provide the memory addresses and 
number of bytes to be transferred, respectively. Since each FPGA on the RACE board has up to 128KB of 
local memory for data, 17 bits are needed to fully address each memory location. Therefore, the address and 
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Controll (Bits 0-7) 
Bit Function Enable Value Description 

0 Reset RESET=1 
(R/W) 

Resets the entire RACE system. Resets the 
controller and erases the configuration of the 
FPGAs specified by bits 8-11. 

1 Interrupts 
Enabled 

ENABLED=1 
(R/W) 

Enables the controller to assert its DJRQ 
signal upon completion of a function's 
execution or programming of an FPGA. 

2 DMA On ON=l 
(R/W) 

Starts the DMA transfer of data. Once a DMA 
transfer is finished, this bit is reset. 

3 Program ON=l 
(R/W) 

Begin programming of FPGA(s). Once this 
bit is set, the FPGAs enabled in bits 8-11 are 
programmed with the bitstream configuration 
contained in the bank of configuration memory 
specified by bits 12-15. 

4 Bitstream ON=l 
(R/W) 

Turning this bit on causes any subsequent 
DMA transfers to transfer data to or from the 
configuration memory. 

5 Clock_On ON=l 
(R/W) 

Turns the 8MHz CCLK clock used to configure 
the FPGAs in Synchronous Peripheral mode. 

6 Error ERROR=l 
(Read Only) 

Indicates an error occurred either during a 
DMA transfer or programming of an FPGA(s). 
Once this bit is set, all controller operations are 
halted, and the controller must be reset to 
resume normal operation. 

7 Reserved N/A This bit is not used for any purpose, but 
functionality can be added in the future. 

Control2 (Bits 8-15) 
Bit Function Enable Value Description 

8-11 FPGA[l-4] ON=l 
(R/W) 

These bits determine which FPGAs are 
intended for the DMA or programming requests. 

12-15 FPGA[l-4] 
Bank 

BANK 0 = 0 
BANK 1 = 1 

(R/W) 

These bits determines the bank of configuration 
memory that will be used during a DMA transfer 
or while programming. Each bit corresponds to an 
FPGA. A value of '0' refers to bank 0, and a value 
of' 1' refers to bank 1. (NOTE: With devices larger 
than Xilinx XC4013, there is actually only one 
bank of configuration memory since more than 
32KB is required for one bitstream configuration.) 

Table 2.1: A description of each bit in the two control registers. 
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Figure 2.5: The RACE controller's Control Register. 

count registers are both 17 bits wide, though it can only be accessed 8 bits at a time. Consequently, each 
register is divided into three 8-bit registers with the most significant register (Address3 and Count3) having 
only one writable bit (bit 17 of the address and count registers). The other bits of Address3 and Count3 are 

fixed to 0x0. 

User-Definable Registers and Control 

The RACE controller can be optimized to work with specific applications that a user may want to implement 
on the system. For example, suppose an application is divided into four individual bitstream configurations 
(or partitions) with each configuration being implemented on one of the four FPGAs on the RACE board. 
Partition 1 may use all of its data and need to have the next section of data transfered from the host's 
memory onto the board. Connected to the controller are several uncommitted signals that are attached to 
each FPGA. Inside the user-definable portion of the controller, registers could store status information from 
each partition, which the host's software could read through slave accesses to the controller. The partition 
can notify the controller that it requires the next section of memory, and then the software, upon reading this 
status information from the controller, could initiate the next DMA transfer of memory to RACE. Similarly, 
the user-definable portion of the controller can also be used to synchronize the different partitions since they 
may execute at different rates. 

DMA Transfers 

DMA transfers, or Direct Memory Accesses, are the only way that data can be transfered between the RACE 
memory and the host (i.e., not considering the controller's registers accessible through slave accesses). In 
order to perform DMA transfers, a DMA kernel device driver has to be install that actually programs both 
the LSI L64853A and the RACE controller. To initiate a DMA transfer, first the RACE controller's Control, 
Address, and Count registers are loaded with the appropriate values to begin the DMA transfer. Next, 
the L64853A's CSR is programmed with the proper enable values, the Address register is loaded with the 
virtual address of the memory to be transfered, and the Byte Count register is loaded with the size of the 
data transfer. Once the RACE controller is programmed, it initiates the DMA transfer with the L64853 A by 
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Figure 2.6: Steps to initiating a DMA transfer. 

asserting the DJIEQ signal and the transfer begins. Each byte of data is accompanied by a DJiCK and 
DJZD/DJVR (depending on the direction of the data transfer) from the L64853A. When the DMA transfer 
is complete, the RACE controller releases the DJIEQ signal and the transfer stops. Figure 2.6 shows the 
steps required to initiate a DMA transfer, and Figure 2.7 illustrates the signals involved in a DMA transfer. 

Configuring the RACE Controller 

The RACE controller can be programmed in three different ways: 1) slave serial via an external XChecker 
cable (provided from Xilinx), 2) master serial by means of an on-board SPROM, or 3) asynchronous periph- 
eral by means of the on-board PAL. In slave serial mode, an XChecker cable programs the controller one bit 
at a time through the workstation's serial port. This mode is useful for rapid prototyping of new controller 
designs. If the controller's configuration will not change, then the SPROM (serial PROM) can be used to 
store the controller's static configuration. However, the most convenient way of dynamically configuring 
the controller is through asynchronous peripheral mode. The PAL has its register written to through a slave 
access, which initiates the reprogramming of the controller. The PAL then acts as the interface between the 
L64853A as the bitstream configuration is written one byte at a time to the controller through slave writes. 
Once the controller is configured, the PAL is no longer needed as an interface to the L64853A. The config- 
uration mode of the controller is determined by setting the four dip switches adjacent to the controller. Each 
mode signal, M0-M2, can be turned on or off depending on the desired mode (see [24] for the available con- 
figuration modes and mode signals settings), and the ENABLE_SPROM must be turned on if the SPROM 
is to be used for master serial mode. 
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Figure 2.7: L64853A D-Channel signals during a DMA transfer. 

2.4.2    RACE Memory 

The memory used on the RACE board consists of 15ns access time, 32x8KB SRAM. Each FPGA has 
two types of memory local to itself: configuration memory (or also called bitstream memory) and data 
memory. The configuration memory is used for one purpose only—to store bitstream configurations for the 
local FPGA. Sixty-four kilobytes of SRAM is specifically set aside for each FPGA for storing bitsteams. 
Since the RACE board uses Xilinx XC4013 FPGAs, approximately 30KB is required to store one bitstream 
configuration. Consequently, the 64KB can be divided into two banks of 32KB, allowing the storage of two 
bitstream configurations. (Larger FPGAs like XC4020 and XC4028 require around 50KB for a bitstream; 
therefore, only one bank of memory would exist using these FPGAs). Storing bitstreams on the board 
eliminates the overhead incurred by the DMA transfer of the bitstream to the board by allowing the FPGAs 
to be programmed immediately once the current implemented function is finished. Consequently, different 
applications can be queued-up in the configuration memory while waiting to be implemented in the FPGA, 
which further facilitates reconfigurable computing. 

The data memory local to each FPGA can be used by the functions as local data storage. If a function 
needs more SRAM than what can be provided on the FPGA itself, then it can utilize the 128KB of memory 
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hardwired locally to the FPGA. Each FPGA has identical pinouts to its local memory so functions can 
be implemented on any FPGA on the board and still work. Since DMA transfers can be occurring to 
the configuration memory while an application is executing on the FPGA, the controller performs a trivial 
memory arbitration. The application has access to its local memory as long as the memory grant signal from 
the controller is active low (FPGÄJÄG). 

Functions implemented in the FPGAs can read and write to the data memory by asserting the active 
low signals FPGAJR.D and FPGA.WR that are hardwired from each FPGA to its local memory's output 
enable and write enable signals, respectively. The configuration memory's output enable and write enable 
are directly connected to the DJtD and DJVR signals (which come from the L64853A), respectively. 
Ultimately, the controller determines how the memory functions on the RACE board. By asserting the 
appropriate FPGA.RAM and FPGAJ3RAM signals, it can turn on any and every memory bank at any 
time. Therefore, for applications like MISD (multiple instructions, single data) applications, all the data 
memory could be activated simultaneously during a DMA write so that each FPGA receives the same data. 
Likewise, for SIMD (single instruction, multiple data) applications, the same bitstream configurations could 
be written to the configuration memory local to each FPGA. When each FPGA is programmed, they could 
all be implementing the same function, but with different data. By modifying the RACE controller, the user 
has a wide flexibility in how the RACE memory operates. 

2.4.3    RACE FPGAs 

The RACE FPGAs are the most significant component of the RACE system since they make reconfigurable 
computing possible. Four Xilinx XC4013MQ208-5 FPGAs are available on the RACE board. Each FPGA 
has identical pinouts, which prevents an application from being constrained to a particular FPGA on the 
board. Likewise, having identical pinouts allows applications stored in the hardware library to be imple- 
mented on whatever resources are available even if other applications are executing simultaneously. Since 
large applications may be partitioned across multiple FPGAs, a fully connected K4 interconnection exists 
between the four FPGAs. The bus width for each edge of the JQ interconnect is 32-bits. Each FPGA can 
be thought of as having three neighbors—one to the east, south, and diagonal (southeast). The FPGAs are 
rotated on the board such that a particular set of pins on each FPGA is connected to its neighbor to the 
east, south, and diagonal (see Figure 2.8). For example, let the east, diagonal, and south interconnects be 
called A, B, and C, respectively. Suppose pins 1-32 are assigned to A, pins 33-65 are assigned to B, and 
pins 66-98 are assigned to C. An application is partitioned across the four FPGAs and must communicate 
between each partition; therefore, the partitioner needs to determine which pins to use for the inter-FPGA 
communication. It determines that the partition on FPGA1 needs to send a signal to its east neighbor using 
signal Al. The FPGA east of FPGA1 would be FPGA2 on the RACE board. Since FPGA2 is rotated 90 
degrees from FPGA1, Al connects into Cl of FPGA2 (i.e., FPGA1 is "south" of FPGA2). Therefore, the 
partitioner knows that the signal appearing on Cl is coming from FPGAl's Al signal. In the case of di- 
agonal neighbors, a signal appearing on Bl from FPGA1 would also appear on Bl of FPGA3. Figure 2.8 
illustrates the K4 network between FPGAs. 

2.5    RACE Prototype 

A prototype of RACE was made before the full PCB version was created. The prototype was used to not 
only to experiment with reconfigurable computing, but to gain some valuable experience in implementing 
a reconfigurable hardware platform. The prototype is a much smaller wire-wrap version of the full RACE 
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Figure 2.8: The K4 interconnections between FPGAs on the RACE board. 

configuration and can only implement one function at a time. The wire-wrapping was performed on a large 
MUPAC VME-size wire-wrapping board. 

Since the Xilinx XC4013 FPGA comes only in a 208-pin package or higher, smaller FPGAs were used 
in the prototype. A Xilinx XC4005-5 in an 84-pin PLCC package was used for the controller, and a XC4010- 
5 (84-pin) was used for implementing functions. (Only one FPGA was used for functions because of the 
difficulty of hand wire-wrapping not only four FPGAs, but all the control signals and SRAM.) The con- 
troller is programmable only through an external XChecker cable (from Xilinx) that downloads its bitstream 
configuration from the workstation's serial port. Furthermore, the controller's logic is greatly reduced since 
only one FPGA needs to be controlled. The control and flag registers consist of only 8 bits, and the address 
and count registers consist of 16-bits. Since the prototype controller has fewer registers, only three physical 
address signals from the SBus needed sent through the ribbon cable to the controller. Slightly more con- 
trol logic is consumed for decoding the appropriate memory locations since a 74ALS139 was not used on 
the prototype. Clocking the controller FPGA at 25MHz was very difficult since only slight configuration 
modifications resulted in too long of path delays on the critical paths. In fact, the final working version of 
the controller was determined by XDELAY to only clock at 19MHz; however, it clocked fine at 25MHz. 
The most timing critical part of the controller is during DMA transfers when it needs to handshake with 
the L64853A and generate the appropriate addresses on the address bus. Such timing concerns led to the 
decision of using the Xilinx 4000E-series FPGA for the controller on the full configuration. 

The XC4010 on the prototype board had fewer signals connecting it to the controller than the FPGAs on 
the full RACE configuration. On the full configuration, the controller has eight dedicated interconnects that 
the FPGAs can use to communicate to the controller. However, on the prototype, only a status and error sig- 
nal communicate to the controller what is happening on the FPGA. Moreover, the XC4010 is programmable 
in only two modes—master parallel up and down. A programmable external clock can be used, but it only 

19 



RACE Prototype 
Sun Workstation 

DPS-1 

DMA 
L64853A <—^ 

(   XCHECKER    ) 

XC4005 

Data 
"7K~ 

Control 

JÜ 
Address 

iii_ 

PiPP* 

64Kb of Data memory 

32Kb of Configuration memory 

Tristate buffers 

Figure 2.9: The RACE prototype. The prototype is a wire-wrapped version that consists of fewer memory, a 
smaller controller, and only one FPGA. 

clocks at 24MHz, which makes dividing the global 25MHz inside the XC4010 just as easy to use. Figure 
2.9 illustrates the prototype's configuration, and Figure 2.10 shows an actual picture of the wire-wrapped 
prototype. 

2.6   NEBULA Architecture 

NEBULA is a partially reconfigurable PCI coprocessor. As described earlier it caters to a class of applica- 
tions which are time consuming in execution on a fixed processor architecture. Floating point operations 
in general are not very good for execution on FPGAs. Digital signal processing algorithms go very well 
with this architecture since the reconfigurable logic could be used to pipeline and parallelize the operations 
required by any algorithm. The class of applications which would enable a designer to parallelize the op- 
erations and pipeline them in reconfigurable logic is the one that is suitable for this coprocessor board. In 
addition to the partially reconfigurable units, NEBULA has a huge fast memory bank which could be used 
by the reconfigurable logic. 
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Figure 2.12: Picture of the completed RACE PCB. 

2.6.1 NEBULA: Goals 

The main goal of the NEBULA architecture was to enable a class of applications to be executed very quickly 
compared to the execution on a fixed general purpose architecture processor. Quite a large number of 
reconfigurable platforms have been designed to take advantage of the higher speed of execution on the 
hardware. Our next goal was to provide improvisations over the other existing reconfigurable platforms. 
Most of the existing reconfigurable platforms are static in nature. The goal of this project was to go one 
step further and use partially reconfigurable logic which would enable rapid dynamic reconfiguration. An 
additional goal was to have a huge local memory so that the coprocessor could make use of the entire range 
of memory for memory hogging applications which is very common in Digital Signal Processing algorithms. 

2.6.2 NEBULA: Environment 

The NEBULA environment consists of a custom high performance adaptive computing environment capable 
of fine, medium and coarse grain reconfiguration. The NEBULA card is a dynamically reconfigurable 
PCI coprocessor target board. This is housed in a Dell 300 MHz PC on one of the PCI slots. The PCI 
interface provides a 33MHz clock and 32-bit multiplexed address-data bus. The PCI interface block is 
a configurable unit on NEBULA. On boot-up, a serial PROM loads the PCI interface onto the controller 
FPGA of NEBULA. The system software detects the PCI card by reading some of the PCI configuration 
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Figure 2.13: NEBULA : Architecture 

registers. Once the card has been detected and information about the card has been registered by the system, 
further accesses can be made by using the device drivers written for the card. A mezzanine connectivity is 
also provided on NEBULA for future expandibility. 

The initial phase of using this environment is to identify parts of an application which could be mapped 
onto the coprocessor. The configuration streams required for the execution of that part of the code with an 
envelope of calls to device driver routines is then developed. Then the whole application is executed as a 
software/hardware co-execution. 

2.6.3 NEBULA: Features 

NEBULA is a coprocessor board which aids the host processor by executing applications mapped onto it in 
parallel with the processor software execution. Some of the features of NEBULA : 

• 2 Xilinx XC6264 family chips as partially reconfigurable units 

• 2 MB Fast SRAM 

• 1 Xilinx XC4020E-01 for PCI interface 

• 2-100 MHz Programmable Oscillator 

• Mezzanine Connectivity for expandibility 

2.6.4 NEBULA: Architecture 

The NEBULA environment as discussed earlier consists of a host machine (Pentium 300 MHz Dell machine) 
with the NEBULA card occupying one of the PCI slots in the machine. The NEBULA architecture is 
depicted in Figure 2.13. It comprises of two reconfigurable units with local memory directly accessible by 
the host CPU through the PCI interface. The configuration data for the reconfigurable units and the data for 
the applications are transferred from the host memory using the PCI interface. 
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2.6.5 Local Bus Standard - PCI 

One of the goals of the NEBULA card was to reduce the reconfiguration overheads and the data communi- 
cation overheads between the host processor and the coprocessor. The Peripheral Component Interconnect 
Bus (PCI) provides a 33MHz clocking frequency and a maximum data transfer rate of 132 MBps. This 
high data transfer rate is possible because of the high clocking rate and a wide data bus width of 32 bits. 
All the other local bus standards are inferior in comparison with the PCI, taking into consideration the data 
transfer rate. Also, the PCI standard allows burst transfers of data which is a requirement for high speed 
data transfers from the host main memory to the coprocessor local memory. For further details on the PCI 
standard, refer to the chapter on PCI Bus Standard. 

2.6.6 Main Controller 

The Main Controller comprises of circuitry for the PCI interface and also for controlling the events on 
the board. The Controller logic is configurable onto a Xilinx XC4000 family FPGA. The Main controller 
consists of two main logic blocks 

• PCI Logic Core 

• NEBULA Control Core 

The Xilinx LogiCORE [26] for the PCI interface is used for the PCI interface. Additional logic is used for 
controlling various events on the coprocessor. More details on the Controller are given in further sections. 

The PCI logic core consists of a Parity generator/Checker, an Initiator State machine, a Target State 
machine and implementation of some configuration registers. 

The NEBULA control core consists of a host of user registers used to control access mechanisms, in- 
terrupt controls and on-board clock programming. The control generation for accessing on-board memory 
and the reconfigurable units is a part of this block. This block also has the interrupt generation unit which 
generates an interrupt to the host processor depending on certain events that take place on the coprocessor. 

2.6.7 Memory organization and Reconfigurable Units(RU) 

One of the main issues in the design of the reconfigurable architecture is the provision of local memory 
or global memory. The provision of global memory would involve implementing a huge chunk of memory 
which can be accessed by all the reconfigurable units and the system CPU. With the implementation of global 
memory comes the problem of handling memory management and preventing memory access conflicts. 
Provision of local memory for the RUs on the other hand makes them independent units which can perform 
parallel computations without conflicting access of memory. NEBULA provides a huge local memory of 
1 Mbytes for each RU. The memory can be accessed in byte, word or long word formats. Thus highly data 
intensive applications can be implemented on this architecture. 

NEBULA provides partially and dynamically reconfigurable units using Xilinx XC6200 family FPGAs. 
The XC6000 family FPGAs have a very small reconfiguration time compared to the Xilinx XC4000 family 
FPGAs. On top of this these FPGAs are partially reconfigurable. The reconfiguration overhead is dependent 
upon the size of the design unlike that in XC4000 family FPGAs where the reconfiguration overhead is a 
constant. Small changes in design could be easily made in a matter of a few hundreds of nano seconds. 
This ability opens up a new approach towards designing circuits. An architectural issue was to decide on 
the number of RUs to provide on the coprocessor board. The space limitation of the long PCI card was a 
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Figure 2.14: Access Mode 1 

major factor in deciding on the number of RUs to be two. Moreover, the lesser the number of RUs, the 
simpler is the task of partitioning a huge design onto the RUs. Since there are only two RUs, partitioning 
is just a bipartitioning problem which is well understood by the CAD community. The two RUs used in 
NEBULA is equivalent to somewhere between 128k to 200k gates. A very large interconnect bus of seventy 
lines connects the two RUs. Very large applications could be partitioned and mapped onto the two RUs. 

2.6.8    Access Mechanisms 

The interconnectivity between the RUs, memory and the PCI interface is shown in the Figure 2.13. The 
RUs and the local memory of NEBULA can be accessed by the host processor through the PCI interface. 
The local memory could also be accessed by the RUs. However both the processor and the RUs should not 
access the memory simultaneously. In order to avoid these conflicts, certain hardware precautions are taken 
to prevent this possibility. The various legal access mechanisms are described in this section. 

Access Mode 1 

Figure 2.14 shows the Access Mode 1. The host processor accesses both the RUs (RU1 and RU2) simulta- 
neously. During this period, the RUs can access their local memory. This mode is useful when a particular 
functional unit has to be configured on both the RUs. Instead of individually configuring them, it would be 
very convenient to configure them simultaneously. Also, this mode is useful when the host processor wants 
to dump some data onto the state registers on the RUs. While the host processor is configuring the RUs or 
dumping data onto the RUs, the RUs themselves could be accessing their local memory. This allows an RU 
to continue with its execution while the host processor modifies another part of the RUs without interfering 
with the execution of the RUs. 

Note that the simultaneous access to the RUs is allowed only for the "write transaction". This is not 
allowed for simultaneous read transactions since different data may be driven from the two RUs resulting in 
damage to the external buffers. 

Access Mode 2 

Figure 2.15 shows the Access Mode 2 configuration. The host processor accesses the local memory of both 
the reconfigurable units simultaneously. This is useful in instances where both the RUs are operating on the 
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Figure 2.16: Access Mode 3 

same data set and the data needs to be dumped from the system memory onto the local memory of the board. 
As previously noted, only simultaneous write transactions are allowed in this mode too. 

Access Mode 3 

Figure 2.16 shows the configuration for Access Mode 3. It is very similar to Access Mode 1. However, si- 
multaneous access of RUs is not made. The host processor accesses one of the RUs and the RUs individually 
can access their local memory. 

PCI 

RUl MEM1 

RU2 MEM 2 

Figure 2.17: Access Mode 4 
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Access Mode 4 

Figure 2.17 shows the configuration for Access Mode 4. In this mode, the host processor accesses the local 
memory of one RU while the other RU optionally accesses its own local memory. This mode is useful since 
even during the execution period of the RUs, one of the local memory units could be filled by the processor 
making data ready for the other RU. 

2.6.9 NEBULA : Circuit Description 

This section describes the actual implementation of the NEBULA card. The main blocks of the NEBULA 
are the following. 

• Main Controller 

• Memory 

• Reconfigurable Units 

• Buffering block 

• Programmable Clock Oscillator 

• Mezzanine Connectivity 

Each of these blocks will be discussed in detail. 

2.6.10 Main Controller 

The Main Controller (refer Figure 2.18) resides on a reconfigurable Xilinx XC4000 family FPGA. The 
particular part used on the NEBULA is a XC4020EHQ240-1.  The speed grade used is -1 which is the 
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Figure 2.19: PCI Logic Core 

fastest speed grade for the part. This speed grade of the FPGA is used mainly because the PCI interface 
design has many critical paths and the timing for these paths are met only by using a very fast FPGA. 
There are two main blocks in the Main Controller. One is the PCI interface logic core and the other is the 
Nebula control core. A PCI Target LogiCORE from Xilinx has been used for handling the PCI interface of 
NEBULA. Additional logic is implemented to control the various aspects of the NEBULA card. 

2.6.11 PCI Target LogiCORE 

The LogiCORE PCI interface is a PCI interface building block created for XC4000E FPGA family. The 
detailed block diagram shown in Figure 2.19 forms the core PCI interface design. 

The LogiCORE supports a complete 32-bit PCI interface. It is PCI local bus compliant for Revision 2.1. 

2.6.12 Nebula Control Core 

Figure 2.20 shows the Nebula Control Core organization. Both the memory and reconfigurable units are 
accessible from the host processor through the PCI interface. Proper control mechanisms for accessing 
these units and control signal generation for these units is done in the Nebula Control Core. The individual 
blocks within the Nebula Control Core are described here. 

Write Enable Generation 

In order to access the user registers, memory and the RUs, control signals have to be generated using the 
signals that the PCI logic core provides. The PCI logic core block provides various PCI control signals 
which are to be used for the generation of "Write Enable" signals. Write Enable signals have to be generated 
for the user registers, memory and the RUs. 

Clock Selection Block 

This block receives three clocks as its inputs : 33 MHz PCI clock, 16 MHz crystal clock and the clock from 
the programmable clock generator (2MHz to 100 MHz). One of these clocks is selected depending on the 
User Register values for the clock selection bits and is given out as the global clock to the RUs. However, 
the 33MHz clock has to be used for configuration and state accesses of the RUs since the read and write 
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Figure 2.20: Nebula Control Core 

transactions are synchronized to the PCI 3 3 MHz clock. Once the RU is configured, any particular clock 
could be used for the user design on the RUs. 

Buffering block 

All the address and data lines required for the memory and RUs are buffered in this block. All inputs and 
outputs are clocked with the 33MHz PCI clock so that everything is synchronized to a particular reference 
clock. The control signals like chip select, write enable and output enable are also buffered and driven out 
of the Main Controller. 

2.6.13    Memory 

On-board memory of 2 MB fast SRAM is used in NEBULA. This corresponds to 1MB local memory for 
each RU. The part used for memory is an integrated chip from Samsung. The Samsung memory part used 
on NEBULA is KM6164002-20. It is a 256K x 16 Bit High Speed CMOS Static RAM. It works on a power 
supply of 5V. It provides TTL compatible inputs and outputs, fully static operation, three state outputs, 
center power/ground pin configuration and data byte control for accessing higher and lower bytes. The 
part provides an access time of 20ns for the read operations. It is available as a 400 mil 44pin plastic SOJ 
package. Two such memory parts are used for each RU. The control signals for the memory can be generated 
by either the Main Controller or the RUs. 
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Property XC6264 details 
Typical Gate Count Range 64000-100000 

Number of cells 16384 
Number of registers 16384 

Number of IOBs 512 
Cell Rows x Columns 128x128 

Table 2.2: XC6264 data specifications 

2.6.14 Reconfigurable Units 

The reconfigurable units used in NEBULA are the Xilinx XC6200 family FPGAs. These FPGAs are par- 
tially and dynamically reconfigurable. Two XC6264 parts are being used on this coprocessor. The details of 
the XC6200 family of FPGAs is described in brief in this section. 

2.6.15 The Xilinx XC6200 Family of FPGAs 

The XC6200 family FPGA [2] is a high performance Sea-Of-Gates FPGA. It is a fine grain architecture 
with abundant registers, gates and routing resources. It is an Advanced Processor compatible architecture. 
It provides a Xilinx FastMAP processor interface which enables direct processor read/write access to all 
internal registers in user design with no logic overhead. It also provides a programmable data bus width and 
is easily interfaced with most microcontrollers and microprocessors. It allows high speed reconfiguration 
via the parallel CPU interface and is ideal for custom computing applications. It has a flexible interconnect 
architecture and provides a low-delay FastLANE hierarchical routing scheme. It also provides flexible pin 
configuration like any other FPGA. The development on the XC6200 FPGAs is supported by CAD tools 
like Viewlogic, Synopsys and XACT step series 6000 backend tools. 

2.6.16 RU organization on NEBULA 

Partially and dynamically reconfigurable XC6264 FPGA from Xilinx is used as the reconfigurable unit on 
NEBULA. The details of this particular part are shown in Table 2.2. 

Two XC6264 FPGAs are used as reconfigurable units on NEBULA. The address and data bus from the 
Main Controller are used to access the RUs using the FastMAP interface of the XC6264. Control signals 
like Chip Select and Write Enable are generated in the Main Controller. The two RUs are interconnected 
with seventy interconnecting signals. Hence if a huge design were to be partitioned and mapped onto the 
two RUs then the cutset between the partitions can be as high as seventy. The global clock to the RUs is 
generated by the Main controller. The PCI 33MHz clock is used for configuring the RUs and for accessing 
registers within the RUs. However, the user design could make use of the PCI 33MHz clock 16MHz or the 
programmable clock as its global clock for execution. 

The RUs are connected to the local memory modules also. A set of pins are allocated for the address and 
data lines towards the memory modules. The user design on the RUs should provide the address and data 
on the assigned pins of the XC6264 to access the local memory. However the user of the RUs should ensure 
that the user design does not access the memory when the Main controller is accessing the same memory 
unit. 

31 



OxOObfffff 

OxOOSffKT 
/       Rcconfigurablc unit address range 

I 

~-'   User register address range 

U 
f'-'  Memory address range 

Unused Address space on Nebula 

Figure 2.21: Address Ranges for Memory, user registers and reconfigurable units 

2.6.17 Mezzanine Connectivity 

Three 64 pin IEEE 1386 mezzanine connectors are used on the board. These are used to enable a child card 
to be connected to the Nebula board. The part number that is used for the mezzanine connectors is 120527-1 
from AMP. Twenty address lines, thirty two data lines and a few control signals from the Main Controller 
(PCI interface FPGA) are brought to the mezzanine connectors. Twenty four signals from the interconnect 
network between the two reconfigurable units is also brought to the connectors. Eight unused lines from the 
Main Controller FPGA and four unused lines from each of the reconfigurable units are also connected to the 
mezzanine connectors. 

2.6.18 Nebula Programming Considerations 

The Main Controller controls the generation of control signals for the reconfiguration unit and memory on 
the board. It also has a set of user registers which can be programmed for controlling the generation of these 
control signals. The three main address spaces on the Nebula board are: 

• Memory 

• User Registers 

• Reconfigurable units 

The User registers are both memory mapped and I/O mapped and hence can be accessed as either 
memory locations or I/O locations. Address bits AD23 and AD22 are used to decode the particular address 
space for each of these units. Figure 2.21 shows the address range for these units. 

The address space allocated for memory is four times that of the size of a single unit of memory. Each 
memory unit is 1MB and the space allocated for this is 4 MB in the address space. This is due to the fact 
that address lines AD[21:2] are used for addressing memory. The reason for using this set of address lines 
is addressed in the next paragraph. By using control bits in the user registers, the user can decide which 
memory unit to access. It is possible to access both the memory units simultaneously for write operations. 
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The address space allocated for the reconfigurable units is also four times the address space required for a 
single reconfigurable unit. The XC6264 is addressed by eighteen address lines and hence requires a memory 
allocation of 256 KB. However 1MB is allocated in the address space since the address lines AD[19:2] are 
used to address the RUs. The reason for using these address lines is to enable the host processor to make 
single byte accesses to the RUs. The XC6264 gives out its data on the D[7:0] lines or the least significant 
eight data lines. The PCI protocol requires that the data should be presented on either the D[7:0] or D[15:8] 
or D[23:16] or the D[31:24] lines, i.e. for addresses 0x0, 0x4, 0x8, .... , a byte access is to be made on the 
D[7:0], for addresses 0x1, 0x5, 0x9,...., byte access is to be made on D[15:8], for addresses 0x2, 0x4, 0x6, 
... byte access is to be made on D[23:16] and for addresses 0x3, 0x7, Oxa, ..., byte access is to be made on 
D[31:24]. Since this is not possible for accesses to XC6264, the configuration has been designed so that 
only addresses AD[19:2] are used for addressing RUs. The lower two bits are always zero from the PCI 
side and hence will be considered as byte accesses on addresses 0x0,0x4,0x8... and the data is expected on 
D[7:0]. Since the same address lines are used for the memory units too, the address displacement has to be 
made for accesses to memory as well. 

2.7    NEBULA PCB 

In this section, a few details are described about the NEBULA printed circuit board. The size of the PCB 
was designed in accordance to the PCI specifications Revision 2.1s. The size conforms to the size of a 
standard length PCI expansion card and provides 49 square inches of real estate. Also the gold fingers for 
the PCI card was chosen from a standard library. The tools used to capture the schematics and layout and 
routing of the PCB were the Oread Design Capture and Layout tools. 

The Nebula design was made using surface mount components in order to maximize the area utility of 
the PCB. The buffers, FPGAs, RUs, resistors, memory and the mezzanine connectors are surface mount 
components which are mounted on the top of the board. The capacitors are also surface mount components 
and are mounted on the bottom of the board. The only through-hole components used in the design are the 
LEDs, PROM and the oscillator. A lot of test points are also made available for the GND, VCC and many 
control signals. All the data lines and the address lines from the Main Controller have been brought out to 
test points which helped us in debugging the board. Two LEDs are provided to indicate that the power is 
present and that the Main Controller FPGA is configured. 

The thirty two width data bus and twenty line width address bus had to be routed to the memory and 
the reconfigurable units. These lines and the interconnection between the RUs made NEBULA a very dense 
board. Consequently, a six-layered, FR4-type material board was chosen for the implementation. The six- 
layered board had the following layer stacking: 1) top, 2) first inner layer, 3) power, 4) ground, 5) second 
inner layer, and 6) bottom. The top and bottom layers were routed vertically, and the two inner layers were 
routed horizontally. Initially all the power signals i.e. the 5V, GND, 3V and 12V signals were routed. Thick 
routes were used for the 3 V and 12V lines. The power pins of the SMD components were fanned out. All the 
PCI signals from the gold fingers to the Main Controller FPGA were routed initially to satisfy the condition 
that all the PCI interface signals should be less than 1.5 inches in length. Then the address and data lines 
from the Main Controller to the buffers and the RUs were routed. Then the other signals were routed by 
giving priority to critical signals. 
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Chapter 3 

Software 

3.1    Issues in Programming Reconfigurable Computers 

The programming methodologies of reconfigurable systems differ from the way normal computers are pro- 
grammed. In normal computers the whole program executes on the general purpose microprocessor. But on 
a reconfigurable computer parts of the program are modeled as hardware on the reconfigurable hardware. 
The rest of the program executes as software on the general purpose microprocessor. The results of the hard- 
ware part are communicated to the main program executing on the microprocessor. The general idea is given 
in Figure 3.1. The main difference in programming reconfigurable computers as compared to programming 
on a general purpose computer is that hardware equivalents of software programs need to be generated so 
that they can be downloaded on to the FPGAs for execution. This usually calls for knowledge of CAD tools 
and hardware design, which the general programming community does not possess. Decision also needs to 
be made by the programmer on partitioning a program into hardware and software portions. 

3.1.1     Partitioning programs between hardware and software 

Designing systems containing both hardware and software components is not a new problem. A key point 
to address is the evaluation of execution time, since the partition to be produced should minimize it. Some 
criteria are needed to split the system under development into hardware and software parts. The usual 
constraints are performance, hardware area, and cost criteria. Once the hardware portions are identified, 
circuits need to be synthesized for those portions. A software and hardware evaluation should then made in 
order to check if the performance and area requirements are reached. If not, the partition should be revised. 
This is a sort of repetitive cycle which takes time and requires a lot of manual interaction. 

When designing the hardware portions to execute on the the reconfigurable hardware, care should be 
taken only to move the computationally intensive portions of the algorithm onto hardware. Taking non- 
compute intensive portions of the code on to hardware might actually slow down the overall performance 
due to the overheads associated with programming the FPGA device. 

The figure below Figure 3.2, gives a possible design flow involving a hardware/software partitioning of 
a program, so that it can be implemented on a reconfigurable computer. The source program is profiled to 
identify the computationally intensive portions of the algorithm. Profiling can be done using specific tools 
(gprof on unix) or manually by the user. Once the profiling of the code is done and the compute intensive 
portions of the program identified, hardware for the compute intensive portions can be generated. Note 
that the hardware generated should contain the necessary control circuitry to help it interact with the host 
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Figure 3.1: Programming difference between a general purpose computer and a reconfigurable computer. 

CPU. The software part constitutes the larger portion of the whole program and is compiled for the target 
workstation. The software portion is usually responsible for writing the configuration bitstream into the 
reconfigurable hardware, providing data to the reconfigurable hardware to operate on and to get back the 
results from the reconfigurable hardware. 

3.2    Taking programs into hardware 

The biggest problem in programming a reconfigurable computer is the building of the hardware part that 
executes on the reconfigurable hardware. 

Schematic capture methods which have been traditionally used for designing hardware for FPGAs have 
been found to be very time consuming. In this method the designer thinks of the hardware architecture 
for his program in terms of register transfers and uses a visual editor (like Viewdraw), to "glue" hardware 
components (taken from a library) together and implements his hardware design. 

With the size and complexity of digital systems growing at an exponential rate, the human mind is 
quickly reaching the limits of comprehending such systems. So the emphasis is now shifting towards de- 
signing at higher levels of abstraction where design functionality and tradeoffs are easier to comprehend. 
Designers can work with fewer design objects at higher levels of abstractions and can think of implementing 
their designs in a variety of different methods. 

36 



C++ Specification 

Design h/w with 
necessary controls 

Compile Software par 
using CC or g++ 

\ 
Configurable logic 

+ local memory 
Main Memory HoslCPU 

Main Bus on the host machine 
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3.2.1     High Level Synthesis 

Recently, High-Level Synthesis (HLS) systems are becoming more effective in supporting the design of 
complex integrated circuits. High-level synthesis converts a technology independent behavioral specification 
of a digital system into a hardware implementation of the system being described. This design automation at 
a higher level assures a short design cycle. Described at a high-level, the design is more portable, incremental 
changes are incorporated more easily, and the design's life cycle is likely to be much shorter. 

The high-level synthesis tools take the description of the design as input and generate an implementation 
of the description using a generic, technology independent models of register-transfer (RT) components. The 
resulting implementation is a datapath consisting of interconnected instances of generic RT components 
and a finite state machine describing the controller. Register-transfer level synthesis will then refine this 
implementation. The generic RT components are mapped to RT components from an existing library, or 
logic synthesis is used to create a logic implementation of each generic component instance. Figure 3.3 
shows the schematic of a high-level synthesis flow. 

If the reconfigurable computer systems are to become widely used, good tools need to be developed to 
help conventional programmers to use them. A reconfigurable logic on a computer would not be of much 
use to the general software programmers unless there is a way to generate hardware equivalents of their 
software very easily. 

The programmers have an option of coding portions of algorithm in an hardware description language 
like VHDL, but programming in an HDL is quite different from programming in a high-level programming 
language like C or C++. HDLs have additional constructs to accommodate the intrinsic features of hardware, 
such as the notions of clocking and asynchrony. Programming in HDL requires the user to think in terms 
of "hardware" than "software". Even the syntax of most HDLs is quite different from the regular high-level 
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Figure 3.3: A typical high-level synthesis flow. 

programming languages like C or C++. It would be very convenient to have some sort of a compiler which 
converts their C/C++ programs "as is" (or with very slight modifications) into hardware. 

Since there are already a number of very good commercial tools which compile a VHDL description into 
hardware very efficiently, we were motivated towards developing a translator for converting C/C++ language 
programs to synthesizable VHDL descriptions. The translator converts a C/C++ code into a functionally 
equivalent, synthesizable VHDL code. Along with the VHDL translations, it also generates script files for 
the Synopsys FPGA compiler which helps the user to convert the VHDL code to hardware with minimal 
interaction. 

In order to accomodate the synthesized designs on multi-device reconfigurable architectures like RACE 
and NEBULA, a CAD tool for partitioning would also be required. The partitioner will take a design and 
split it into segments such that each segment is of size that doest not exceed the capacity of device(s) on the 
multi-FPGA boards. The partitioner that we have explained later accomplish these tasks. 

For the physical synthesis of designs on FPGAs, CAD tools for placement, floorplanning, and routing 
are needed. Although there are commercial tools that accomplish this task, their performance and execution 
times for large designs are not acceptable. Our hierarchical floorplanner addresses these problems by map- 
ping very large designs on large FPGAs in miniscule time without affecting the performance of mapping. In 
the next chapter, we have described the CAD tools that were developed under the contract. 
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Chapter 4 

CAD Tools 

4.1    The DAL C language 

It is very difficult to have a translator that translates the whole range of C programs into hardware (or into 
synthesizable VHDL). C has certain language features which do not have any counterparts in VHDL. Since 
we use Synopsys FPGA compiler to synthesize our VHDL to Xilinx netlist, we also have to consider the 
limitations of the FPGA compiler and accordingly allow only certain C constructs. 

Though VHDL supports floats, the Synopsys FPGA compiler does not synthesize f loats.Though 
floats could have been implemented as lower level functions involving integers, those type of hardware 
occupy a large number of gates and hence not suitable to be implemented on FPGAs. We should note here 
that FPGA hardware resources are limited and we need to make the optimum use of this hardware resource. 
The only C type which is allowed in the language is the int. C constructs like pointers, structs 
etc. do not make any sense in hardware hence C programs using those constructs cannot be translated into 
hardware. There is also a restriction not to use any reserved words in VHDL, as variable names, because 
that would produce a syntactically incorrect VHDL translation. All these and other limitations forced us 
to define a new language called DAL C, which is a subset of the normal C/C++ programming language 
with some extensions. The extensions allow the user to read and write into the local RAM on the RACE-I 
hardware. 

In this section we discuss the limitations of the DAL C language and describe in detail the syntax of the 
DAL C language. 

4.1.1     Restrictions of the DAL C language 

We will just mention a few restrictions in this section. Details about the restrictions are also given during 
the description of the language syntax. 

DAL C does not support floats or doubles for reasons mentioned earlier. It also does not support 
char variables. But any char variable can always be represented as an 8 bit integer. Though it does 
not support long ints explicitly, the provision of mentioning the bit length of the variable is given so 
hardware with more than 32 bit variables can be generated. Character constants (like * \n' etc.) are also 
not supported. 

VHDL reserved words cannot be used in writing DAL C code. Though the translator translates the 
program without error, such translations will encounter difficulties when the FPGA compiler is used to 
synthesize designs. We could have probably mapped them into non-reserved words in VHDL but we have 
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tried to keep this implementation of the translator very simple and not done these mappings. There are also 
restrictions imposed on the function within a function type of procedure declarations which will become 
clear in the sections to follow. 

DAL C only supports a single-in, single-out type of control flow. This implies that there are no gotos, 
or return from functions. There are no equivalent statements in VHDL for the C gotos. Since we 
translate each C function into a VHDL entity with its own architecture and do not implement them 
as VHDL functions the return statements are also not allowed. We translate each function into a VHDL 
entity to generate macro based designs. 

C I/O operators like printf(), scanf() etc., are also not supported by the language. These are constructs 
which access the screen and keyboard and usually the reconfigurable PPGA board usually does not have 
access to these hardware on the machine. 

4.1.2     Types, Operators and Expressions 

Variables and constants are the basic data objects manipulated in a program. Declarations list the variables 
to be used, and state what type they have and perhaps what their initial values are. Operators specify what 
is to be done to them. Expressions combine variables and constants to produce new values. The type of an 
object determines the set of values it can have and what operations can be performed on it. 

Variable names 

There are some restrictions imposed on the names of variables. Names are made up of letters and digits; the 
first character must be a letter. The underscore "_" counts as a letter; it is sometimes useful for improving 
the readability of long variable names. Upper case and lower case letters are distinct, so x and X are two 
different names. Keywords like if, else, int, etc., are reserved: you can't use them as variable names. 
They must be in lower case. 

Also all the reserved words of the VHDL language like in, out, port, etc., should not be used as 
variable names in the DAL C. Though the compiler will compile the code and translate it to VHDL without 
any error, the VHDL code thus produced will be syntactically wrong and the FPGA compiler will not 
synthesize the resulting VHDL code. 

Data types and sizes 

The only basic data type allowed by the language is the int, and the only compound data type is one 
dimensional array of int. A default int contains 8 bits, but its size can be changed by a compiler 
switch and ints of custom length can also be created by specifying the size explicitly when declaring the 
variables or function parameters. 

Presently no other data type like the float is supported. It is because, we use Synopsys tools to convert 
our VHDL code into xnf files and as of yet, the Synopsys FPGA compiler does not recognize floats. 

Constants 

Only integer constants are allowed in the language. A long as in normal C definition (123456789L), is not 
allowed and usage of such constants will make the compiler flag an error. Also note that character constants 
like ' x', ' \0 ', etc., which are allowed in normal C are not allowed in DAL C. Use of enumeration 
constants also is prohibited in DAL C. 
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Declarations 

The syntax of the variable declaration in DAL C is very similar to the standard C++ syntax. A variable 
declaration starts with the optional keyword static followed by the keyword int. The variable decla- 
ration itself consists of its name and, optionally, its width and initial value. If the width is not specified, 
the compiler assigns the default width 8 or a width specified as an option when the compiler was called. 
Variables names should confirm to the restrictions imposed in the section on variable names. 

All variables must be declared before use. A declaration specifies a type, and contains a list of one or 
more variables of that type, as in 

int a, b, c; 
int a_16bit(16); // not a valid syntax in normal C++ 
int arr [5] ; 
int arr_9bit(9) [5] ; // not a valid syntax in normal C+ + 

Variables can be distributed among declarations in any fashion; the lists above could equally well be written 

as 

int a ; 
int b; 
int c ; 
int a_16bit(16); 
int arr [5] ; 
int arr_9bit(9)[5]; 

A variable may also be initialized in its declaration. If the name is followed by an equals sign and an 
expression, the expression serves an an initializer. For example, 

int a = 10; 
int b = 2 0; 
int c = 3; 
int a_16bit(16) = 1232; 
int arr[5] = { 1, 2, 3, 4, 5}; 
int arr_9bit(9)[5] = { 1, 2, 3, 4, 5}; 

All variables for which there is no explicit initializer have undefined random values. 

Arithmetic Operators 

The binary arithmetic operators supported are +, -, *. There is an unary -, but no unary +. The + and - 
operators have the same precedence, which is lower than the precedence of *, which is in turn lower than 
unary minus. Arithmetic operators, as in C, are grouped left to right. The / operator has to be implemented 
as repeated subtraction. We do not provide support for the / operator as Synopsys FPGA compiler does not 
support the / operator in its entirety. 

41 



Relational and Logical Operators 

The relational operators are 

> >=       <       <= 

They all have the same precedence. Just below them in precedence are the equality operators 

Relational operators have lower precedence than arithmetic operators, so an expression like i < 1 im-1 is 
taken as i  <   (1 im-1), as would be expected. 

The logical operators are && and | |. Expressions connected by && or | | are evaluated left to right. 
The precedence of && is higher than that of | |, and both are lower than the relational and equality operators. 

By definition, the numeric value of a relational or logical expression is 1 if the relation is true, and 0 if 
the relation is false. 

Increment and Decrement Operators 

The language provides auto increment (++) and auto decrement (-) operators. For example a++ and ++a are 
equivalent to a = a + 1, where as a-and-a are equivalent to a=a-l. However an auto incremented or 
decremented expression cannot be referenced. That is b = a++; is illegal. But unlike in C, both ++a and 
a++ have the same meaning — that of a++. 

Bitwise Operators 

DAL C provides four operators for bit manipulation. 

&       bitwise AND 
|   bitwise inclusive OR 

bitwise exclusive OR 
one's complement (unary) 

The bitwise AND operator & is often used to mask off some set of bits; for example, n = n & 1, 
sets to zero all but the first lowest bit of n. The bitwise OR operator | is used to turn bits on. The bitwise 
exclusive OR operator ~ sets a one in each bit position where its operand have different bits, and zero where 
they are the same. 

One must distinguish the bitwise operators & and | from the logical operators && and | |, which imply 
left to right evaluation of a truth value. For example, if x is 1 and y is 2, then x & y is zero while x && y is 
one. 

The unary operator ~ yields the one's complement of an integer; that is, it converts each 1-bit into a 0-bit 
and vice versa. 

Assignments and Assignment Operators 

An assignment to a variable modifies the value of the variable, and affects subsequent references to the 
variable. The formal syntax of an assignment is 

variable  =  expression; 
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where expression is either an arithmetic or logical expression. 
Expressions such as 

i   =   i   +   2; 

in which the variable on the left hand side is repeated immediately on the right, can be written in the 
compressed form. 

i   +=   2 

The operator += is called an assignment operator. 
Most binary operators (operators like + that have a left and right operand) have a corresponding assign- 

ment operator op=, where op is one of 

If exprl and expr2 are expressions then, 

exprl  op=  expr2 

is equivalent to 

exprl  =   (exprl)   op   (expr2) 

Quite apart from conciseness, assignment operators have the advantage that they correspond better to 
the way people think. 

Precedence and Order of evaluation 

Table 4.1 summarized the rules for precedence and associativity of all operators described above. Operators 
on the same line have the same precedence; rows are in order of decreasing precedence, so, for example, * 
has a higher precedence than that of binary + and -. The precedence of both + and - is the same. 

Operators Associativity 

0    [] left to right 
!    ~   ++   --   +   - right to left 
* left to right 
+   - left to right 
<<=>>= left to right 
= =    ! = left to right 
& left to right 
" left to right 

1    & left to right 
&& left to right 

| | left to right 
=   +=   -+   *=   &=   ~=    |= left to right 

Table 4.1: Precedence and order of evaluation 
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4.1.3     Control Flow 

The control flow statements of the language specify the order the computations are carried out. We support 
a single-in, single-out control flow. This implies that no gotos, breaks from loops, and returns are 
allowed in the language. 

Statements and Blocks 

An expression such as x =  0 or i++ becomes a statement when it is followed by a semicolon, for example, 

X   =   0; 

i + +; 
k   +=   10; 

In C the semicolon is a statement terminator. Braces { and } are used to group declarations and statements 
together into a compound statement, or block, so that they are syntactically equivalent to a single statement. 
The braces that surround the statements of a function are an obvious example; braces around multiple 
statements after an if, else, while or for are another. There is no semicolon after the right brace that 
ends the block. 

If-Else 

The if-else statement is used to express decisions. Formally, the syntax is 

if (expression) 
statementl 

else 
statements 

where the else part is optional. The expression is evaluated; if it is true (that is, if expression has a 
non-zero value), statementl is executed. If false (expression is zero) and if there is an else part, statement2 
is executed instead. 

Because the else part of an if-else is optional, there is an ambiguity when an else is omitted from 
a nested if sequence. This is resolved by associating the else with the closest previous else-less if. For 
example, 

if   (n  >   0) 
if   (a   >  b) 

x =  a; 
else 

x  =  b; 

the else goes with the inner if, as we have shown by indentation. If that is not what is wanted, braces 
must be used to force the proper association. 

if   (n  >   0)    { 
if   (a  > b) 

x  =  a; 

} 
else 

x  =  b; 
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Else-If 

A sequence of if statements is the most general way of writing a multi-way decision. The syntax of a 
multiway if statement is 

if   (expression].) 
statementl 

else if (expression2) 
statements 

else if (expressions) 
statements 

else 
statement4 

The expressions are evaluated in order; if any expression is true, the statement associated with it is 
executed, and this terminates the whole chain. As always, the code for each statement is either a single 
statement, or a group in braces. The else part handles the "none of the above" or default case where none of 
the other conditions is satisfied. 

Switch 

The switch statement is a multi-way decision that tests whether an expression matches one of a number 
of constant integer values, and branches accordingly. 

switch (expression) { 
case const: statements 
case const: statements 
default: statements 

} 
Each case is labeled by integer valued constants. If a case matches the expression value, execution starts 
at that case. The case labeled default is executed if none of the other cases are satisfied. A default 
must be present in DAL C. Though cases can occur in any order, default should occur at the last. In 
DAL C, each statement should have a break statement at the end to indicate an exit from the switch. 
The parser signals an error if the break is not included at the end of each statement. For example 

switch   (num)    { 
case   0   : 

c = a + b; 

break; 
case 1 : 

c = a - b; 
break; 

case 2 : 
c = a * b; 

default 
// flags error because no 'break' 

c = a + b; 
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Loops - While and For 

Both while and for statements support looping. In 

while (expression) 
statement 

the expression is evaluated. If it is non-zero, statement is executed and expression is re-evaluated. This cycle 
continues until expression becomes zero, at which point execution resumes after statement. 
The for statement 

for (exprl; expr2; expr3) 
statement 

is equivalent to 

exprl; 
while (expr2) { 

statement 
expr3; 

} 

Break and Continue 

It is sometimes convinient to be able to exit from a loop other thatn by testing at the top or bottom. The 
break statement provides an early exit from a for and while loop. A break causes the innermost 
enclosing loop or swithch to be exited immediately, continue statement is related to break, but less 
often used; it causes the next iteration of the enclosing for or while loop to begin. In the while , this 
means that the test part is executed immediately; in the for, control passes to the increment step. 

4.1.4    Functions and Program Structure 

The description of a function starts with the optional keyword void, followed by the interface and the 
implementation of the function or procedure. The interface is composed of the name of the function and 
the set of input and output parameters, while the implementation is the body of the function. There are two 
kinds of parameters: parameters passed by value and parameters passed by reference. Parameters passed by 
value are input parameters, while parameters passed by reference are output only parameters, i.e, the output 
parameters do not have exactly the same semantics as C++ reference parameters. We had to do this so that 
the C++ code by itself can be compiled by any C++ compiler, while at the same time, we are able to decide 
between the input and outputs of the function. 

An example of procedure declaration is given below. The inpA and inpB parameters are 8 bit input 
parameters and the outC is also an 8-bit output parameter. Procedures cannot return a value and thus are 
of type void. This procedure definition gets translated into a hardware macro. Each procedure basically 
becomes a hardware module. An example of a procedure is given below. 

void 
func_do_this (int inpA, int inpB, int &outC) 

{ 
// procedure body 
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4.1.5     Input and Output - interacting with RACE memory 

There is an extension provided by the language that allows the user to interact with the external RACE 
memory. The language construct uses two functions not there in the normal C/C++ language. They are 

fread(var, addr); 
and 
fwrite(var, addr); 

The freadQ function gets the value stored in the RACE memory location pointed to by addr and stores it in 
the variable var, similarly fwrite() writes the value in variable var to the address location pointed to by addr. 

The restrictions imposed here are that addr should be an integer variable, it cannot be a constant inside 
the function. Also the var in fwriteQ cannot be a constant. It has to be an integer variable. If constants 
need to used it can always be done by assigning a constant to the variable just before the function is called; 
example : 

addr = 10; 
fread(var, addr); 
or 
var = 4 0; 
addr = 20; 
fwrite(var, addr); 

4.2   Multi-Way Partitioning for Programmable Board Architectures 

This section describes the multi-FPGA based partitioning. Section 4.2.1 gives a brief introduction to our 
method of board level partitioning. Section 4.2.2 gives a formal definition to the multi-way partitioning 
problem. Section 4.2.3 gives a brief overview of the partitioning approach used in our work. In section 4.2.4 
we describe the pre-processing step used for synchronous sequential designs. Sections 4.2.5, 4.2.6, 4.2.8, 
4.2.7 illustrate the algorithms used for each step involved in our partitioning approach. 

4.2.1    Introduction 

Our approach is timing driven in order to improve the clock speed of the partitioned design. The partitioner 
addresses both fiat (gate-level) and macro based designs. Macro based designs not only speed up the par- 
titioning process but also give better performance in terms of timing. Since the number of modules on the 
top level are lesser the partitioning problem becomes easier and it allows the user to handle extremely large 
circuits. 

We use path based clustering to capture the connectivity of the modules and timing on critical circuit 
paths in order to reduce the cutset during partitioning and improve the clock speed of the partitioned design. 
This is followed by k-way partitioning for forming multiple partitions. This is followed by pin-assignment 
and global signal routing for all the cut signals. The delays introduced on the circuit paths because of being 
cut during partitioning are incorporated into the circuit delay model to give a better estimation of clock speed 
during retiming. Retiming is used to improve the clock speed of the partitioned design. 
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4.2.2 Problem Formulation 

The multi-way partitioning problem under architectural constraints can be formulated as follows : 
Given : A circuit C represented as a hyper-graph, an MFS architecture A with some V number of devices. 
C = (V, E) where V — {vi, v%,... vn} and E = {e\, ei, ■ ■ - em} where e, C V, 1 < i < m. Let Sj — size 
of device j, 1 < j < V, and let Vj = # of pins on device j, 1 < j < V. For our application, Si = Sj Vi, j 
and i y£ j, and Vi = Vj Vi, j and i ^ j. 
Objective: Partition C into less than or equal to V segments such that the following conditions are satisfied, 

• Size of each segment j is less than or equal to Sj, 1 < j < V. 

• Cutset for each segment j is less than or equal to Vi, where Cutset is the set of nets Ej such that at 
least one node for each net in Ej is not is segment j. Ideally, it is desirable to have Cutset(j, k) < 
interconnect^, k) where we define Cutset(j, k) as the number of nets that have at least one node in 
segment j and at least one node in segment k, and interconnect^, k) as the width of the board level 
interconnection between the device embedding the segment j and the device embedding the segment 
k. If the later condition is not satisfied, the partitioned solution would not be able to route all the cut 
signals using the direct interconnect between segments j&fc, 1 < j,k < D,j ^ k. Our partitioner 
tries to find a direct routing j -> 1,1 ->■ k,j ^ k ^ 1,1 < j,k,l < D. 

• User defined timing constraints are satisfied1. 

4.2.3 The Board-Level Partitioning Approach 

The partitioner deals with the partitioning of VLSI circuits specified in terms of gates or macros2. The 
partitioning is performed under board-level and user-defined parameters and constraints, see figure 4.1. The 
board level constraints are defined in the RACE — I architecture description. The architectural description 
defines the pin-connectivity among the FPGAs, the board level delays and CLB delays of the chosen Xilinx 
FPGA architecture and the connections to the controller and the FPGA's local memory. The board-level 
partitioning involves the mapping of the input design onto the four FPGAs on the board. 

The multi-way cut method used is shown in figure 4.2. The k-way partitioning proceeds in the clock-wise 
direction starting with FPGA# 1 and terminating with FPGA# 4, see figure 4.2. 

Our partitioner addresses only module partitioning. The memory partitioning problem is not addressed 
by our partitioner. The memory usage of the design can be determined only after design simulation. It 
cannot be determined by the partitioner. 

4.2.4 Preprocessing for Sequential Designs 

A synchronous sequential circuit consists of clocked flip-flops and combinational logic elements connected 
together by a feedback path. An algorithm suggested by Murgai breaks the feedback loops at the input of all 

' The partitioner accepts user defined constraints as an input in form of the application support file. The timing constraints can be 
declared in the application support file as global signals and critical paths in the design. For example, signals like CLK or GLOBAL 
RESET may have dedicated lines on the board to route them. In such a case these signals can be prevented from being cut and 
being routed over the programmable interconnect for performance optimization by declaring them as global signals in the support 
file. The critical paths are prevented from being cut during partitioning. This again helps in improving the timing performance of 
the design after partitioning. In addition to these constraints, the partitioner uses a timing driven clustering approach (see section 
4.2.5) to minimize the worst case delay in the partitioned circuit. The partitioner also uses Retiming in order to improve the clock 
speed of the partitioned design. 

2Macros are circuit blocks which are themselves a group of connected gates implementing a certain function. 
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Algorithm 4.2.1 Conversion to DAG 

Input: Directed Cyclic Graph (DCG) of the design netlistfile. 

Output: Directed Acyclic Graph {DAG) of the design netlistfile. 

{ Call Depth J^irstSearch{graphG); 
For each vertex in the graph G 

List vertices in decreasing finishing times in L; 

Perform Transpose(G); 
While (List of vertices L is not empty) 

Call Depth -First-Search ( GT ); 

Output vertices in each tree in depth-first forest as strongly connected components; 

} 

flip-flops. A depth first search algorithm is run on the DCG and the start and finish time stamps are noted for 
each node. A list L of the all the vertices of the graph G in the order or decreasing finishing times is formed. 
A transpose of the given graph is obtained by reversing the direction of signal flow in the edges of the graph. 
A depth first search is run on this transposed graph considering the vertices in the order defined in list L. 
The vertices of each tree in the depth first forest are given out as strongly connected components. The nodes 
in a cycle are considered as a single vertex to form an acyclic graph representation. This preprocessing step 
is done for synchronous sequential designs in order to convert the given circuit graph to a DAG. The method 
is presented in Algorithm 4.2.1. 

4.2.5    Clustering Method 

Clustering boosts performance and improves the quality of partitioning. Our objective function for clustering 
is both connectivity and timing driven. 

Path-based clustering is done to reduce the number of cuts on the circuit paths. A depth-first(DF) 
traversal is done on the circuit graph starting with the input nodes of the given graph. A source set is 
formed which contains the input nodes of the graph. For each of these sources we do a depth first traversal. 
As we proceeds, we select a node to be placed in the cluster depending on its area, connectivity, and delay. 
Once the traversal for all the sources is completed, all the nodes have been assigned to clusters. Our heuristic 
aims to reduce the number of path cuts in the circuit by traveling along the circuit paths while clustering 
the nodes. The size of the clusters formed during clustering, in terms of their area and associated pin sizes 
affects the satisfiability of the area, pin, and timing constraints during partitioning. 

S is the set of all previously clustered nodes of the current cluster, cluster Area is the area of the present 
cluster, cluster Size is the maximum specified size of the cluster taken as an input from the user. area(u) 
is the area of a node u £ G. Eu is set of nets incident on a node u where u is the node being visited during 
traversal, w(ej) is the weight of any net ej G Eu, w(ej) = 2~Dfcee- a.rea{k), where area(k) is the area of 
node k, w(u) is weight (size) of the node u, w{v) is weight of a clustered node v to which the net ej is 
connected, The weights a and ß are empirically chosen to be 1/2 and 1 respectively. Using a = 1/2 gave 
good approximation for the attraction of the given node to unclustered nodes. Values of a ranging from 1/4 
to 2 were tried out and a value of 1/2 was seen to give the best results (in terms of reduction in cutset) for 
most of the benchmark circuits used in our work. The delay metric varies linearly with the worst case delay 
of the node and so choosing a value of 1 for ß reflects this variation appropriately. Values of ß ranging from 
1/4 to 2 were tried out and a value of 1 was found to give the best results (in terms of reduction in worst case 
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Algorithm 4.2.2 Path Based Clustering 

Input: Directed Acyclic Graph G 

Output: A group of clusters on the input graph G 

Mark all the nodes in the graph as UnVisited; 

Calculate the path delay values of each node in the circuit graph using a topological ordering 
of the nodes; 

Form the Source Set Sources — {source%, source?., - ■ •, source{\ where sourcet is aprimary 
input node of the design and I is the number of input nodes; 

while ( Sources ^ $ &all nodes are not marked Visited) 

{ Make a depth first traversal of the circuit graph for sourcei; 
Calculate the cost of adding a node u £ G, where u belongs to the adjacency list of 
nodes in the present cluster C, to the cluster C using the attraction function; 
Add the node with the maximum attraction and satisfying area constraint 
(area(u) + cluster Area < cluster Size) to the present cluster; 
If area constraint is not satisfied start a new cluster starting with the node u; 
Mark the node as Visited and update its cluster # and the cluster Area; 
If all nodes have been traversed for the source\ 
Sources = Sources \ sourcei; 
i <- i + 1; } 

path delay) for most of the benchmark circuits. The heuristic is presented as a pseudocode in Algorithm 
4.2.2. 

4.2.6    Multi-way Partitioning 

Fiduccia-Mattheyses algorithm (FM) based min-cut k-way partitioning is performed on the given design to 
produce multiple partitions. FM is applied repeatedly on the given circuit. After each partition, a slice is 
removed from the original circuit. The remaining circuit is once again partitioned using FM (this time on the 
reduced circuit size). This is continued until the remaining circuit is small enough to fit in a single FPGA. 
Once this stage is reached we have multiple partitions each of which has to be embedded into a FPGA. CLIP 
is used to reduce the number of signals cut by moving natural clusters to one partition. We will look at how 
the basic FM bi-partitioning heuristic works. Then we will look at how CLIP helps in reducing the cutset. 
The FM heuristic is used to find a solution to the following bi-partitioning problem: 

Given : a circuit C consisting of« cells connected by a set of m nets, the problem is to partition circuit 
C into two blocks A and B such that the number of nets which have cells in both the blocks is minimized and 
the balance factor r(= >A , Li) , where | A | and | B | are sizes of partitioned blocks A and B respectively, 
is satisfied. 

A pseudocode for the modified FM heuristic is presented in Algorithm 4.2.3. In Algorithm 4.2.3, 

• 'designSize' : is the size of the current input design in terms of CLBs. As the k-way partitioning 
proceeds, the size of the design goes on decreasing. 

• 'fPgaSize' '■ is me size of the given FPGA size as defined in the architecture description file in terms 
of CLBs. 
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• 'Gain of a celV: The gain g{i) of a cell 'i' is the number of nets by which the cutset would decrease 
if cell 'i' were to be moved. A cell is moved from its current block to its complementary block. 

• 'Balance criterion^: To avoid having all cells migrate to one block a balancing criterion is maintained. 
A partition (A, B) is balanced if 

r-\V\ -Smax <\A\<r.\V\ +smax (4.1) 

where | A | + | B |=| V |; and smax = Max[s(i)\, i <E A U B — V. 

'basecell': The cell selected for movement from one block to another is called 'basecelV'. It is the 
cell with the maximum gain and the one whose movement will not violate the balance criterion. 

'pass' : is the counter for the number of iterations. 

'freecellsef : is the set of cells which have not been locked in the current pass of FM. 

'endofFAf : is the flag which indicates the end of FM, when FM can no longer reduce the cutset. 

'endofPass' : is the flag which indicates the end of the present pass, when the cutset can no longer be 
reduced during the pass. 

'cutsizepass' : is the cutset size at the end of the current pass. 

'cutsizepass-i' : is the cutset size at the end of the previous pass. 

' C = {ci, C2,..., Cn } ': is the set of all cells which have not been assigned partitions and n is number 
of cells which have not been Assigned partitions. 

'mi,m2,..., mk  '■ are the move numbers. 

'areai, areo2' : are the areas of the two partitions. 

In the FM method, cell gains are calculated based on the immediate benefits of moving cells. After a 
cell is moved, the gains of its neighbors are updated. At any stage in the move process, the total gain of a 
cell can be broken down as the sum of the initial gain component and the updated gain component. The total 
gain indicates the overall situation of the cell, while the updated gain component reflects the change in the 
cell's status due to the movements of its neighbors. Instead if cell movement decisions are based primarily 
on their updated gain components, the distraction during the cluster pulling effort caused by cells not in 
the cluster currently being moved is reduced. It allows the heuristic to concentrate on a single cluster at a 
time for moves in one direction. The initial gain of the cell is, however, useful for choosing a starting seed. 
For implementation sake, the cell gains are set to zero after the initial gain calculation, but they are ordered 
according to their initial gains. This is shown in algorithm 4.2.3 as, "make gains of all cells = 0 after 1st cell 
selection". Cell gains are updated as in the original FM method. The advantage of this method is that the 
clusters lying entirely in one subset can be easily moved to the other subset. This is because cells gains being 
cleared to zero in the initial stage causes cells in a cluster to have less inertia in staying inside their original 
subset. The benefit of this movement is that larger but less densely connected clusters can be removed from 
the cutset by moving their densely connected constituent clusters from one subset to the other. 
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Algorithm 4.2.3 (K-way Partitioning) 

while (designSize <fpgaSize) { 

while (endofFM^ TRUE) { 
pass 4— 1; 
C = {ci,c2)... ,cn}; 
for each i, 1 < i < n, compute gain (g{); 
freecellset F 4- C; 
while (endofPass ^ TRUE) { 

Select cell with highest gain which does-not violate constraints; 
make gains of all cells = 0 after 1st cell selection; 
lino basecell foundendofPass = TRUE; 
lock basecell; 
update partition areas (area\,area2); 
F <r- F — basecell; 
update gains of all cells connected to basecell; 

} 
Select best sequence of moves mi,m,2, - ■ ■ raft(l < k < i) 

such that G = YJI=\ 9j ^ maximum; 
if G < 0 exit; 
calculate cutsizepass; 
if cutsizepass — cutsizepass-\ endofFM = TRUE; 
Make all k moves permanent; 
Free all cells; 
pass <— pass + 1; 

} 

designSize = designSize — areai; } 
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4.2.7    Pin Assignment 

In a Multiple FPGA System, while the FPGAs themselves can be routed and re-routed, the wires moving 
signals between FPGA pins are fixed by the routing structure on the implementation board. While impressive 
results have been achieved by hand-mapping of algorithms and circuits to FPGA systems, developing a 
completely automatic system for mapping to these structures is important for greater utility of these systems. 
For global routing purposes, the multi-FPGA system can be thought of as a complex graph including internal 
resources or as an abstract graph with FPGAs as nodes. Various solutions have been attempted in the past 
for the pin assignment problem: 

• One solution is to ignore the problem. After Global Routing has routed signals through intermediate 
FPGAs, those signals are then randomly assigned to individual pins. 

• A specific topology can be used for simplifying the problem. Topologies such as bipartite graphs are 
used which connect logic-bearing FPGAs with routing-only FPGAs. The logic-bearing FPGAs are 
placed initially and it is assumed that the routing-only FPGAs can address any possible pin assign- 
ment. This applies to topologies such as bipartite graphs and partial crossbars, where logic-bearing 
FPGAs are not directly connected. This is not our case. 

• The FPGA placement tool determines its own assignment. The user is allowed to restrict the locations 
where an I/O pin can be assigned. With such a system, I/O signals are restricted to only those pin 
locations that are wired to proper destinations. Once the placement tool determines the pin assignment 
for one FPGA, this assignment is propagated to the attached FPGAs. 

In our work, pin assignment, refer figure 4.3, is done based on the Architecture Description as given 
in the architecture description file (for the RACE — I architecture, the file is called race. arc). The file 
defines the connectivity between the FPGAs on the board. From the connectivity information an architecture 
model is formed and this model is used for pin assignment and global signal routing. The model is an abstract 
model of the MFS, where each FPGA is treated as an entity. The architecture description defines a specific 
connection available for each pin on the board so the problem is very restricted. The procedure used for I/O 
pad assignment is presented in Algorithm 4.2.4. 

A set of all cut nets, 
CutNets = {Ci,C2,...,Cn} (4.2) 

is formed, where C, is a cut net and n is the total number of cut nets. For each cut net, depending on 
the FPGAs in which the modules on this signal are, pads are assigned on the FPGAs according to the 
connectivity information. If the number of cut signals between any two FPGAs is greater than the width 
of interconnect between the FPGAs then a direct assignment for the cut signal cannot be made. In such a 
situation available pins on other FPGAs are used for completing the routing. In such a case the other FPGAs 
act as routing FPGAs only. Such a routing introduces > 2 board-level delays and delay due to routing inside 
the extra FPGA which is a great penalty in terms of delay for that cut signal. 

The pin assignment phase is followed by the retiming. The necessary buffers and pads are introduced 
into the design and this information is written into the individual FPGA design netlist files after retiming is 
performed on the design3. This produces a feasible mapping of the partitioned design on the board. These 
netlist files can be directly given as an input to the RACE — I floorplanner or the Xilinx PPR tools. 

3This is because the pin assignment phase is done to find out the exact mapping of the cut signals on the RACE — I architecture. 
Once retiming is done there are changes in the design netlist (please refer to section 4.2.8 for details) which have to be written into 
the design netlist files for the individual FPGA files. However, the number of cut signals is not changed by retiming 
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Algorithm 4.2.4 (IOAssignment) 
Input: CutNets which contains all the nets that are cut and the modules that are connected to the cut net. 
It also contains the FPGA in which each module is present. 
Output: Design file for each partition with iopads and buffers included for cut nets. 

{ 
for every net in the cut nets set do 

*■     SOURCE = source-cell-FPGA#; 
SINK = sink-cell-FPGA#; 
Try to find a direct routing between the FPGAs; 
iifound 

{ Assign Pads for the net on both FPGAs; 
assigned_flag/or the net = TRUE; 
Write the iopad information to the design file; } 

else 
assigned-flag^ör the net = FALSE; 

} 
for every net in the cut nets set do 

{ 
if assigned'-flag is FALSE 

{ Try to find a valid routing (possibly with minimum hops) 
through available pins on other FPGAs; 
If valid routing found 

{ assigned_flagybr the net = TRUE; 
Write the I/O information to design file; } 

else 
{ assigned-flagybr the net = FALSE; 
write net information to unRoutedfile; } } 
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4.2.8    Retiming 

The pin assignment and global signal routing is followed by Retiming. We will look at the formal definition 
of retiming and the various steps involved in retiming which will be followed by the procedure used by our 
partitioner in implementing retiming. 

Retiming is a circuit transformation in which registers are added at some points in the circuit and removed 
from others in such a way that the functional behavior of the circuit as a whole is preserved. Retiming is 
used to reduce the combinational rippling in the circuit thereby improving the clock speed of the circuit. 

For understanding how the clocked circuits are optimized by relocating registers, we use the correlator 
circuit shown in figure 4.4. A correlator circuit takes a stream of bits XQ,XI,... as input and compares it 
with a fixed-length pattern ao, ai,..., o^. After receiving each input X{, the correlator produces as output 
the number of matches given by: 

k 

where 5 is a comparison function, such that, it is 1 if x = y and 0 otherwise. 
A synchronous circuit is a circuit which satisfies all the above restrictions. A re-timing of a circuit 

G = (V, E', d, W) is an integer-valued vertex-labeling 

r : V -> Z (4.4) 

Retiming changes the original circuit to a new circuit Gr = {V, E',d,wr), where the edge-weighting 
wr is defined for an edge u —> v by 

wr(e) = tu(e) + r(v) — r(u) (4.5) 

For any retimed circuit the conditions laid down by Theorem 1 should be satisfied. Theorem 1 provides 
the basic tool needed to solve the clock-period minimization problem. A legal re-timing of the circuit is 
obtained only when the retimed circuit satisfies the conditions laid down by Theorem 1. 

The minimum feasible clock period for a synchronous circuit G, is given by the maximum amount of 
propagation delay through which any signal must ripple between clock ticks. The clock period is defined by 

$(G) = max{d(p) : w(p) = 0} 

4.3    Floorplanning 

In this section, we describe the work related to floorplanning. First, we describe the problem addressed in 
this work. Then, we go on and present a detailed overview of our solution of the problem. Section 4.3.1 
provides a detailed description of the floorplanning problem for FPGAs. Section 4.3.3 describes solution 
methodology. Section 4.3.4 to 4.5 describe the detailed steps of our solution. 

4.3.1    Problem Formulation 

We address the problem of floorplanning a macro based design for FPGAs. Macros are a collection of 
relatively placed CLBs. They can be hard (of fixed relative placement of CLBs, hence fixed shape), or soft 
(of flexible relative placement of CLBs, hence flexible shape). The goal is to decide dimensions of macro 
blocks, and allocate locations to them on the target FPGA chip such that no part of the chip is allocated 

57 



BEFORE RETIMING 

Clock Speed before Retiming = 24 esec 

HOST 

a3 

Worst case delay path 

COMB   A combinational block 

REG     A sequential block (flip flop) 

HOST The host for the circuit 

Figure 4.4: A Correlator Circuit Before Retiming 

Theorem 1 Let G= (V, E', d, w) be a synchronous circuit. Let c be an arbitrary positive real number and 
let r be a function from V to integers. Then r is a legal re-timing of G such that 3>(Gr) < c if and only if 
r(u) — r(v) < w(e)for every edge u —> v ofG, and 
r(u) — r(v) < W(u, v) — lfor all vertices u, v G V such that D(u, v) < c. 

58 



to more than one macro. In the process of physical mapping of the macros, we try to minimize the area 
occupied by the fioorplan, while also trying to minimize the total interconnection length and the length of 
longest interconnect in the floorplanned design. 

4.3.2 Input-Output 

Following are the inputs to the fioorplanner that are also illustrated in figure 4.5 : 

1. Design files : The fioorplanner takes macro based designs as input.The design is given as a set of files 
in xilinx netlist format (xnf). The set of files includes : 

• Top level xnf file : It gives the interconnection pattern of macros. 

• Macro xnf files : An xnf file for every type of macro used in the design. 

2. Support files 

• Macro description file : It contains information about all macros used in the design. 

• Architecture description file : It Contains information about FPGA chips used as target architec- 
ture for floorplanning. 

3. Target FPGA : The FPGA chip, on which the input design should be floorplanned. 

4. Degree of Compactness : Degree of compactness governs area of the floorplanned layout. Its range 
is 0 to 2. Degree of compactness equal to 2 results in minimum area. 

Outputs of the fioorplanner are : 

1. Constraint file : It gives starting locations of all the macros. 

2. Updated macro xnf files : Fioorplanner reshapes soft macros in the input design. These are the xnf 
files for these reshaped macros. 

3. Updated top level xnf file : This file gives interconnection pattern between the macros. The macros 
included in this file are the reshaped macros. 

The constraint file and the set of xnf files output by the fioorplanner are presented to Xilinx router for 
circuit routing. CAD flow involving the fioorplanner is illustrated in figure 4.6. 

4.3.3 Overview of Methodology 

Basic approach, we have adopted to address the problem is min-cut based floorplanning. First we divide 
the design in multiple segments, each containing a group of macros, and place these segments on the target 
FPGA chip. Then, in each of these segments, we reshape the constituent soft macros and allocate exact 
locations to all the macros. Following which, we go on to perform intra macro placement for soft macros. 
Finally we do compaction on the fioorplan to minimize the area occupied by the fioorplan. Overview of the 
approach to floorplanning is shown in the Figure 4.7. Floorplanning is accomplished in the following stages 

• Successive Bipartitioning: This step divides the input design into multiple segments, and assigns area 
on FPGA for each segment. Each of these segments is essentially, a set of macro blocks. 
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• Legal Placement: This step operates individually on every group of macro generated by successive 
bipartitioning. In each segment, we assign exact position to every macro, and to the CLBs inside each 
macro. We also reshape soft macros. We try to place macros using minimum area in each group. 
Basic floorplan layout of the input design is obtained in this step. 

• Compaction : Compaction operates on floorplanned layout, as given by the previous step. During 
compaction, we try to minimize the area occupied by the floorplan by eliminating unused CLBs 
within the bounding box of the floorplanned layout. 

In the rest of the chapter we provide detailed description of various steps of our solution. Section 4.3.4 
explains the process of successive bipartitioning in detail. Legal placement step is illustrated in section 4.4. 
Section 4.5 describes global compaction done on the floorplan. Finally, we conclude with a summary. 

4.3.4    Successive Bipartitioning 

Following definitions will help in understanding the process : 

Bipartition : Given a set, Parti, of« modules Mt,M2, M3,..., Mn of sizes 51,52, S3,..., Sn respectively, 
bipartitioning is a process of dividing the modules in two sets, SubPartl and SubPart2 of nearly 

equal sizes. 

Partition Segment: Set of modules generated by bipartitioning is called partition segment. A bipartitioning 
of a set generates two partition segments. 

Segment Number : Each partition segment is assigned a unique number, called segment number. 

Parent Partition Segment: A partition segment is parent to all the modules contained in it. 

Cardinality of Partition Segment: Number of modules in the segment is referred to as its cardinality. 

Cutline : All partition segments are mapped to a specific area on FPGA chip. Along with each bipartition- 
ing of partition segment, corresponding area on FPGA chip is also divided in two blocks by a cutline. 
Cutline can be a horizontal cutline or a vertical cutline. Ratio of the area of blocks is same as the ratio 
of sizes of partition segments generated by the bipartition. 

Area Slice : Every block of area on FPGA chip generated by cutlines is called an area slice. Each partition 
segment is mapped to one and only one area slice, and each area slice has one and only one partition 
segment mapped to it. 

Successive bipartitioning is a process of dividing the design into multiple segments, such that cardinality 
of each segment is less than or equal to a constant, K. We start with the input design as initial partition seg- 
ment and assign it to whole of the FPGA area. We continue to bipartition the segments, until the terminating 
condition {cardinality ofeach partition segment equal to K) is satisfied. With every bipartitioning, we also 
divide the area of FPGA chip, allocated to that segment, in two area slices. Then, we allocate each new 
partition segment to an area slice. 

The process of successive bipartitioning is described in detail in the following. A queue To_Cut is 
maintained to keep track of partition segments, which are candidates for further partitioning. A partition 
segment is candidate for further bipartitioning if and only if, number of macros in it is greater than a constant 
K. The queue is initialized by the original design. In one pass of successive bipartitioning, head of the 
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queue To_Cut is bipartitioned. At the same time, area of the target FPGA is sliced in two parts by a 
vertical cut, and each area slice is allocated to a segment obtained as the result of bipartitioning. Out of 
these partition segments, eligible candidates for further partitioning are bipartitioned. The corresponding 
areas on the target FPGA are now sliced by a horizontal cut. Mapping of the new subpartitioned segments 
to sliced area is done. Segments, which are eligible candidates for further bipartitioning, are added to the 
queue To_Cut. This process is repeated until the queue To_Cut is not empty This process of iterative 
bipartitioning effectively forms a partition tree whose nodes are Hor V indicating horizontal, or vertical cut 
respectively, and leaf cells are the partition segments with less than or equal to K number of modules. Each 
of these leaf cells have an area slice assigned to it on FPGA. A possible order of cuts is shown in Figure 4.8 
(A), and the corresponding partition tree is shown in Figure 4.8 (B). Gridxy is a two dimensional integer 
array, which maps the CLB slots of the FPGA to CLBs of the design being fioorplanned. Integer value at 
the index (x, y) in this array, corresponds to the segment number occupying that slot on the FPGA. After 
completion of successive bipartitioning Gridxy gives the mapping of each segment of the design on the 
FPGA. Since, all the leaf nodes of the partition tree are mapped to the array Gridxy, the physical area of the 
FPGA chip allocated to the tree nodes is determined. Each of these nodes contain less than or equal to K 
number of macros. Hence, effectively, mapping of groups of macros to localities on the FPGA is obtained. 

Bipartitioning is done using Fiduccia Mattheyses (FM) method. Initial cut for FM is generated by 
clustering the input set of macros in two clusters. Following partitioning, terminal propagation is done to 
keep global knowledge of connections in each segment. 

Partitioning of the circuit is done with cutset4 as a constraint. This places densely connected modules 
in one partitioning segment. We try to generate equal sized partition segments by every bipartitioning, but 
it is not always achievable because of difference in size of macros. The actual ratio of size, in which the 
bipartitioning occurs is given by Ratio. After completion of this step, following holds true 

VSegmenti | 1 < i < Numberof Segments, Cardinality(Segmenti) < K 

The process of successive bipartitioning results in relative placement of groups of macros.  Depending 

on the number of cuts during hierarchical bipartitioning, the depth of partitioning tree can vary. The leaf 
cells of partitioning tree should contain less than or equal to a constant number of modules.  Successive 

4 Cutset is defined as the number of nets connecting macros across two partitions 
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Algorithm 4.3.1 (Successive-Bipartition Algorithm) 
SuccessiveBipartition(9 

*■       To-Cut <- Source-Part; 

while(To_Cut ^ <j>) 

*■       CutPartition <- #ead(To_Cut); 

DoPartitionfCwtf'arrirfon, SubPartl, SubPart2); 

Count <— Cardinality(Su6Par<l); 

iffCWn* > 4) 

*     DoPartitionfSi/pPa/*/, SubPart3, SubPart4); 
}     PutlnTo.CutfSwWartf, SubPart4); 

else Legal-Place <— Legal-Place + SubPartl; 

Count <- Cardinality(5u6Par-i2); 

iffCouni > 4j 

*■     DoPartitionf%?Part2, SubPart3, SubPart4); 
}     PutlnTo.Cut^M&Pflrti, SubPart4); 

else Legal-Place <— Legal-Place + SubPart2; 

bipartitioning is followed by Zega/ Placement, where we assign physical location to every macro. 
Steps for Successive Bipartitioning are illustrated in the following subsections. 

Clustering 

The algorithm given below describes the flow of clustering. It addresses the following problem : 
Given a circuit C consisting of n cells connected by a set of m nets, the problem is to make two clusters 

A and B out of the circuit C such that the number of interconnections between the two clusters is minimized 
and the ratio r, where r(= , J, L,), is satisfied. Here \A\ and \B\ are sizes of clusters A and B respectively. 

Let p(i) be the number of pins of cell i and size(i) be the size of cell i, 1 < i < n. The following 
definitions are useful in explaining the procedure. 

Size of cell: The size size(i) of cell i is the number of CLBs in the cell. 

Size of Cluster: The size Sizet of cluster i is the summation of sizes of all the modules in the cluster. If 
there are X modules in a cluster C, then Size of the Cluster is Y,?=i Size(Modi) | Modi 6 C 

Balance criterion: To avoid having all cells migrate to one block, a balancing criterion is maintained. A 
partition (A, B) is balanced if, 

r X |V| - Smax < r x \V\ + smax 

where |A| + |B| = \V\ and smax = Max{s(i)\l <i< n}. 
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Algorithm 4.3.2 (DoPartition Algorithm) 
DoPartitionfSourcePart, SubPartl, SubPart2) 
/* The function DoPartition, takes input partition as first argument - SourcePart, and outputs two subpar- 
titions as second and third arguments - SubPartl and SubPart2. TL and BR are top left and bottom right 
coordinates, respectively, of partition */ 

•■        Cluster (SourcePart, SubPartl, SubPart2); 

Ratio <- FM(SourcePart, SubPartl, SubPart2); 

Size <- X)"=i Size(Modi) \ Modi G Source-Part; 

Size1 <- (^gg^); 

x <r- Source-Part(TL.X); 

y <- Source-Part(TL.Y); 

/* Upadate Gridxy */ 

i I 0 < i < Size' 

"■       if(Gridxy ^ SourceJPart) continue; 

GridXy <r- SubPartl; 

y <- y + 1; 

if(y > Source-Part(BR.Y)) 

{     x <r- x + 1; 
i      y <- SourceJPart(TL.Y); 

VGridXy | Gridxy — SourcePart{Gridxy <— SubParti); 

TerminalPropagationß'wWarti,); 

,        TerminalPropagation(5,MfePpar?2J; 

Algorithm 4.3.3 (Cardinality Algorithm) 
Cardinalityf.S'wWar^ 

*        VMj  | Mi G SubPart {Count <- Count + 1}; 

return Count; 
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Algorithm 4.3.4 (PutlnToXut Algorithm) 
?ut!nTo.Cut(SubPartl, SubPart2) 

*■        Count <- Cardinality(SukParil); 

if Count > 4  To-Cut <- To_Cut + SubPartl; 

else Legal-Place -f- LegaLPlace + SubPartl; 

Count <- Cardinality(SubPart2); 

if Count > 4  To_Cut <- To_Cut + SubPart2; 

else LegaLPlace «- LegaLPlace + SubPart2; 

Connectivity of cell: Number of connections a cell has with the cluster being filled, is called the connectivity 
Connectivity^) of the cell i. It denotes the reduction in cutset due to the movement of cell i. 

Cutset of partition: The cutset of a partition is the total number of nets connecting modules in the partition 
with macros outside the partition. 

We perform clustering to form initial partition for FM bipartitioning algorithm. We extract two clus- 
ters out of the initial macro set Source.Part. Each contains macros which are densely connected in 
Source_Part. These clusters are presented into FM partitioning algorithm to obtain min cut bipartition. 
Since initial clusters are further operated by partitioner to refine the cutset, speed takes precedence over 
quality during clustering. Therefore, a simple greedy method is used to obtain the clusters. 

To start, we unlock all the pseudo modules (refer terminal propagation 4.3.6) falling on cutline. Then 
place the modules locked to a position in appropriate cluster. We divide the area of FPGA allocated to the 
original macro set to be partitioned (Source_Part) between two clusters DestPartl and DestPart2. 
Then assign the modules locked to a position to the cluster, which is allocated to the area containing the 
locked module. 

Then, we initialize DestPartl by an arbitrary macro from Source_Part. For all macros in Source-Part, 
their connectivity with respect to DestPartl is updated, and one with highest connectivity is placed in 
DestPartl. We repeat this process until balance criterion is satisfied. Then place all macros left over 
in Source-Part, in the other cluster DestPart2. DestPartl and DestPart2 are given to FM for 
refining the cut set. 

FM partitioning algorithm, being iterative in nature, is highly dependent on quality of initial cut. Hence 
a good initial cut produced by clustering, remarkably improves the performance of FM. Value of cutsets in 
first bipartitioning by FM for various input designs with random initial cut5, and that with clustered initial 
cut is tabulated in the table 4.2. 

4.3.5    FM Partitioner 

It is the Fiduccia - Mattheyses algorithm implemented with slight modifications to accommodate IO pins, 
and zero sized pseudo modules introduced by terminal propagation. Zero sized modules are put only with 

5 Random cut was generated by alternately allocating a macro to each partition segment, till one of the partition segment was 
filled. Following which, all other macros were assigned to the other partition. 
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Design 
Cutset by FM Partitioner 

Random Initial Cut Initial Cut With Clustering 
CKT1 62 40 
Mult 16 79 45 

MultRace 57 50 
CLA 148 82 
CPU 58 73 

Table 4.2: Cutset After First Cut on Input Design 

Connectivity - 3 

Vj 
Connectivity = 2 

Figure 4.9: An example to illustrate clustering 

connectivity as a constraint, not size, therefore are placed after placement of finite sized modules is com- 
pleted. 

The algorithm repeatedly tries to move the cell with the largest gain from its partition to the other 
partition provided the balance criterion is met. An Efficient data structure called a bucket array is used to 
implement the algorithm. Each entry in the array is an array of buckets with one bucket for every possible 
gain value. If pmax is the maximum number of pins connected to any cell, the gain value can vary from 
Pmax to -pmax and thus there are 2 * pmax + 1 number of buckets. 

Two bucket arrays (one for each partition) are maintained. Initially, in each pass, the cells are placed 
into the bucket corresponding to their gains. Whenever a cell i is chosen for moving, the corresponding 
entry from its bucket is removed. The gains of the cells connected to cell i are updated and the entries of 
these cells in the bucket array are updated based on the new gains. 

At the end of a pass, the best sequence of moves are made permanent. The whole procedure is repeated 
for a few passes and the algorithm terminates when the cutsize does not change between consecutive passes. 

4.3.6    Terminal Propagation 

Following definitions are significant with respect to terminal propagation : 

Pseudo Module : Pseudo Module is a module of size zero, introduced by the process of terminal propaga- 
tion. A pseudo module is always contained in a partition segment. 

Coordinates of Partition Segment: Coordinates of a partition segment are the coordinates of the area slice, 
to which it is mapped. They are represented by Part.TL (top left coordinates) and Part.BR (Bottom 
right coordinate). Top left coordinate of the FPGA chip is (0,0). 
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Algorithm 4.3.5 (Clustering Algorithm) 
Clus ter(So urce-Part) 

"■        /* Unlock pseudo modules falling on outline */ 

if (Cut = Horizontal); 

>- x-i   ± r ■       1/  ,     Source-Part.Topv+Source-Part.Bottomv CutLine.Y < ^—^  • 

MMi 1     <     i     <     n;Mj G     Source-Part;    Lock(Mi).Y 
CutLine.Y] Type(Mi) = PSEUDO 

{LockStatus{Mi) *- UNLOCKED} 

} 
else 

C   i T '        Y 4— Source-Part.Leftx+Source-Part.Rightx . 

VM,      |     1     <     i     <     n;Mi        G     Source-Part;    Lock(Mi).X 
CutLine.X; Type(Mi) = PSEUDO 

{LockStatus(Mi) <- UNLOCKED} 

} 

/*Place locked modules in proper cluster*/ 

VMi | 1 < i < n;Mi  G Source-Part; Lock(Mi) G DestParti 

{DestParti <- DestParti + M{}; 

for each i | 1 < i < n; Mi G DestParti {Compute Connectivity^)}; 

SizesouTce <- EiLi size(Mj); 

VMj | Mi G DestParti {SizeDestparti *~ SizeDestparti + size(Mi)}; 

/* Make first cluster DestParti */ 

yvhile(SizeDestParti < (SizeSource * r)) 

*■       NewModule <— Mi \ i <— max(Conneci«wit2/(i)); 

DestParti <- DestParti + NewModule; 

VM, | Mi $ DestParti; 1 < « < n{Update Connectivity (Mi)}; 

,       SizeDestparti <~ SizeDestparti + size(NewModule); 

/*Make Second cluster DestParti*/ 

,        VMi | Mi £ DestParti; 1 < i < n{DestPart2 <- DestPart2 + M{}; 
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Algorithm 4.3.6 (Fiduccia-Mattheyses algorithm) 

{ Store unlocked zero size modules in a list; 

while(9 

*■      pass f- 1; 

foreach i, 1 < i < n, compute gain fa) 

i <- 1; 

free cell set F 4- C; 

whilefF ^ <f>) 

base cell b(i) <— j, j is the unlocked cell with maximum gain and choosing 
j does not violate the balance criterion; 
If no base cell found break 
mi <- move cell b(i)from its partition to the other partition; 
lock cell b(i);F <r-F-b{i); 
update gains of all cells connected to cell b(i); 
i 4-i + l; 

select best sequence of moves m\, m.2 ■ - - mj;(l < k < i) such that G — Y^j=i 9j ^ 
maximum; 

if G < 0 break 

make all k moves (mi, m^ ■ ■ ■ mk)permanent; 

calculate cutsizepass; 

if cutsizepass = cutsizepass-i break 

pass 4— pass + 1; 
} 
Put Zero size modules in partitions according to their connectivity; 
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Lock(Mi) : It gives the position, to which the pseudo module Mi is locked. It is computed from the 
coordinates of its parent partition segment. 

Pair of Pseudo Modules : Pseudo modules are introduced when a net is cut as a result of bipartitioning. 
One module each is introduced in both the partition segments. These modules are locked to adjacent 
positions on the boundary of the partition segments, and form a pair. Pair of pseudo modules always 
maintain their relative position. 

Purpose of terminal propagation is to give knowledge of inter-partition connections to modules in each 
partition. This helps in reducing total interconnection length of the placed design. We begin with pre- 
processing the existing pseudo terminals. The pseudo terminals, which were unlocked during clustering 
(refer section 4.3.4, now belong to one of the subpartitions generated by FM partitioner (refer section 4.3.5), 
but are still unlocked. In this preprocessing, we first lock such pseudo modules. If a pseudo module belongs 
to a partition segment Part, its previous lock position was (a;, y), then with current cutline as horizontal, 
its new lock position is (a, P^t.BR.Y+Part.TL.Y^ and with a vertical cutHne jt js (Port.BR.X+Port.TL.X tyy 

After allocating the new lock position to all the unlocked pseudo modules, we lock the corresponding pseudo 
module in every module pair, such that the relative lock position of the pair of modules is maintained. 

After this preprocessing, we introduce a new pseudo module for each cut-net in both the sub-partitions 
on either side of center of the cut-line. Hence, a new pair of pseudo modules belonging to two different 
partitions but locked to adjacent positions is introduced. Hereafter, whenever any pseudo module of this pair 
is moved to other location, the other pseudo module is also moved to maintain the same relative position. 
This forms an intermediate connection which makes the modules connected to these pseudo modules, in the 
corresponding partitions, to remain close to each other, as depicted in Figure 4.10. 

In the figure 4.10, the modules shown Ma and Mf, are cut by the first vertical cut Vi. At this point, two 
pseudo modules (shown as circles) are introduced and locked to the the center of the cutline V\. Suppose, 
after the horizontal cut H\, the module Ma gets placed in the top partition. Because of this movement, the 
pseudo module in the partition of Mi moves to the center position on the previous vertical cut-line in the 
new partition of Mi. This makes the corresponding pseudo module of the pair to get attracted to the adjacent 
position. If the pseudo modules were not introduced and locked to the position as shown, the module M& 
could have gone in the top or bottom partition made by horizontal cut Hi without any bias to remain close 
to the module Ma. But as a result of the pseudo modules, Mf, has a bias to go to the top partition, which 
will reduce the cutset by one, hence remain close to Ma. For the same reason, the two modules will tend to 
remain in the nearby partitions after further cuts too. Each time a cut is introduced, such pseudo modules 
are introduced and weight of the net is increased. This assures that modules connected to already cut nets 
remain close together, and also same net is not cut many times, hence minimizing the length of the net. 

4.4   Legal Placement 

At the end of successive bipartitioning, each leaf node of the partitioning tree contains maximum of K 
macros. Also, each leaf node is mapped on the target FPGA chip. In effect, it gives a locality on the FPGA 
chip corresponding to a leaf node, within which, macros contained in the leaf node should be placed. Legal 
placement is performed individually on each leaf node to decide the exact location and shape of macros 
contained in them. First, we decide relative placement of macros inside each partition. Then, we place hard 
macros. Finally, we process soft macros and place them. Processing of soft macros include reshaping, and 
deciding CLB placement inside the reshaped macro. Legal placement is also largely responsible for highly 
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To obtain relative placement of macros inside a partition, we perform an exhaustive search for best relative 

in 

of soft macros. In this step, we place 
consideration, figure 4.11. 

K mddule$, maximum of K\ combinations 
This is because, increasing the we foutid K — 3 to be good value, 

value of K does not improve the quality of he floorplan, but *reatl) increases the time taken for the legal 
placement step. On the other hand, reducing the value of K also results in increase in time required for 
floorplanning because of larger number of iterations required in successive bipartitioning step. 

Numberof Modules < K(K = 3) 
MaxN umber of passes —)■ K\ 

Pseudo modules, introduced during terminal propagation (section 4.3.6), are still present at the bound- 
aries of the partition, giving the direction from which each net enters or exits the partition. While deciding 
the relative placement of modules inside a partition, we account for wirelength for connections among var- 
ious macros as well as the pseudo modules in the partition. This takes care of both inter-partition, and 
intra-partition connections. Hence an attempt to achieve global minimum wirelength is made. 

To identify best arrangement out of all possible permutations of macros inside a partition, we compute 
number of connections between macros and those between macros and edges of partition. Connections 
on left edge of the partition are denoted by Lef tConnection and those on right edge are denoted by 
Right-Connection. Then, we calculate number of connections between each module in partition and 
Lef tConnection, and store them in an array LefU. We also calculate, number of connections between 
each module and RightConnection, and store them in an array Right{. If maximum of Lef'U (i = 
P) is greater than maximum of RighU (i = Q), we place module Mp next to the left edge, and make 
Lef tConnection a union of Lef tConnection and pins on the modules placed. Otherwise, we place 
module MQ next to right edge, and make RightConnection union of RightConnection and pins 
on module just placed. An array Or der i with range 1 to k is used to store the sequence of modules. Index 1 
indicates position next to left edge, and k indicates position next to right edge. We repeat this process until 
all the modules in the partition are placed. 
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Algorithm 4.3.7 (Terminal Propagation algorithm) 
TV (Parti, Part!) 
/* Parti and Part2 are subpartitions created by last cut */ 

*        /* Lock all the unlocked pseudo modules */ 

if(CutEdge = VERTICAL) 

l v _ (Partl.TL.X+Partl.BR.X) 
A -    2 ' 

Y = Partl.BR.Y; 

\/Mi     |    Mi    €    Parti\Type{Mi)    =    PSEUDO; LockStatus(Mi) 
UNLOCKED 

{Lock(Mi) <- (X,Y); Lock(Mi+1) i-(X,Y+l); LockStatus(MO = LOCKED] 
} 
else 

{ X = Partl.BR.X; 
v _ Partl.TL.Y+Partl.BR.Y , 
1   — 2 

VM*     |    Mi     G    Parti;Type{Mi)    =    PSEUDO; LockStatus(Mi) 
UNLOCKED 

{Lock(Mi) <- (XJ); Lock(Mi+1) <-(X+l,Y); LockStatus(Mi) = LOCKED) 

} 

/* Introduce new pseudo modules */ 

if {CutEdge = VERTICAL) 

{      X = Partl.BR.X; 
V — Partl.TL.Y+Partl.BR.Y . 
1   ~ 2 

} 
else 

{ 

foreach net in CutSet 

IntroducePseudoMods(% Y,X+1, Y); 

Y — (Partl.TL.X+Partl.BR.X) , 
A  — 2 

Y = Partl.BR.Y; 

foreach net in CutSet 

IntroducePseudoModsfX Y,X, Y+l); 
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Algorithm 4.3.8 (Introduce Pseudo Module algorithm) 
IntroPseudoModsfXi ,Yi,X2, Y2) 
/* SubPartl and SubPart2 are subpartitions created by last cut */ 

*■        N <- NumModule + 1; 

/* NumModules is Number of modules currently present */ 

Introduce two new modules M^andM^^i; 

Lock(MN) i-(XiM); 

Lock{MN+1) <- (X2,Y2); 

LockStatus(MN) <- LOCKED; 

LockStatus(MN+i) <- LOCKED; 

Type(MN) <- PSEUDO; 

Type(MN+1) <- PSEUDO; 

NumModule 4- NumModule + 2; 

Par-ii <- Parti + Mjy; 

Pari2 <- Part2 + MN+1; 

NumModule <- NumModule + 2; 
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Algorithm 4.4.1 (Relative place algorithm) 

*•        Foreach Partition 

"■       index 4— 1; 

LeftConnection 4— Connections on Left edge of Partition; 

RightConnection 4- Connections on Right edge of Partition; 

V Mi | Mi £ Partition {LefU 4- Connections between Mi and LeftConnection] 

V Mi\ Mi G Partition {Righti 4- Connections between Mi and RightConnection) 

P 4- Max(?e/tj)   1 < i < Number of Modules in Partition 

Q 4- M.ax(righti)   1 < i < Number of Modules in Partition 

VM, | 1 < i < Number of Modules in the Partition 

{ 
if(P > Q) 

Or der index <- MP; 
Partition 4- Partition — Mp; 
LeftConnection 4- LeftConnection + Pins on Mp; 
VMi | Mi e Partition 

,        {LefU 4- Connections between Mi and LeftConnection} 

else 

Orderk-index+i <- MQ; 

Partition 4- Partition — MQ; 

RightConnection 4- RightConnection + Pins on MQ; 

VMJ | Mi G Partition 
{Righti *~ Connections between Mi and RightConnection] 

index 4- index + 1; 
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Figure 4.11: Legal Placement: Non rectangular shapes of macros 

4.4.2    Place Hard Macros 

Hard macros are a collection of "CLBs toilthl predetermined relative plajcSnent. Therefore, they have fixed 
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Suppose the decided module location is (x, 
then hard macro is placed at a location (ar H- c x 
(x + Sx,y + 8y) can accommodate the hare 

y, 

icase i 
i aljopated til) it. 

If 1 hi3 location ein not accommodate the hard macro Mi, 
y -+ 5'j), wh;r<; |5a:| and \Sy\ are minimum, and location 

macro module M,. 
Hence dimensions of hard macros are respected with minimum variation in its relative position decided 

in the floorplan. 

4.4.3 Reshape and Place Soft Macros 

Like hard macros, soft macros are also a collection of CLBs. Also, soft macros have fixed number of CLBs, 
hence fixed area. But they do not have pre determined relative locations of CLBs, hence do not have fixed 
dimensions. CLBs of soft macros are required to be mapped on the available CLB slots on the FPGA. We 
reshape soft macros to fit into the dimensions of the space allocated to their parent leaf cell in the partition 
tree. This is done by sequentially allocating available CLB slots on the FPGA to macros in the partition 
segment. This allocation is done in snake like fashion (even columns start from top row, and odd from 
bottom). Method of CLB assignment is such that, first we fill column of available space beginning from 
first row of the column. After a column is finished col + 1 is filled starting from last row up to the first 
row. Remaining CLBs of the macro start occupying the available CLB slots in next column. This process is 
continued until all CLBs inside the macro are placed. If degree of compactness desired is greater than zero, 
next soft macro starts where the previous one ends. Hence the shape of the soft macros can turn out to be 
non rectangular, which helps in placing the macros in minimum possible space (Figure 4.11). But if desired 
degree of compactness is zero, then next macro starts from top row of next column, in which case, shape of 
macros is always rectangular. 

4.4.4 Simulated Annealing for Intra Macro Placement 

CLBs inside each soft macro are placed using simulated annealing. Constraints are minimum total wire- 
length, and minimum longest wire.   In this step also, both intra module connections, and inter module 
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Algorithm 4.4.2 (Reshape-place algorithm) 
Reshape-Place(9 

"•        foreach module Mi in the Partition Part 

i       Y = Part.Topy; 

X = Part.Leftx; 

Size = Mi.Size; 

GridxY = Mit- 

if(Row = EVEN) 

{     Y = Y + 1; 
iffy > Part.Bottorriy) 
{    X = X + 1; 

Y — Part.Bottomy; 
Row = ODD; 

}      > 
else 

{     Y = Y-1; 
\f(Y < Part.Topy) 
{     X=X + 1; 

Y = Part.Topy; 
Row = EVEN; 

}     > 
Size — Size — 1; 

if (Size = <f>) 

{     {{(Compactness = <j>) 
{     Y = Part.Topy; 

j      }     X = X + 1; 
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Algorithm 4.4.3 (Simulated Annealing) 
SAO 

••        temp <r- TEMPINIT; 

place <- PLACEINIT; 

whileftemp > TEMPFINAL) 

*■       whilefmneWoopcriterzon = FALSE) 

{     placenew <- PERTURB {place); 
if placenew = Invalid Continue; 
<SC <- COST{placenew) - COST{place); 
if(SC < <f>) 

place <r- placenew; s 
else if(RANDOM{0,1) > e^) 
{    place <— placenew; 

temp <- SCHEDULE{temp); 

connections are considered. Hence a global picture is in view while attempting wirelength minimization. 
The total wirelength is the sum of length for each net. The wirelength of a net is estimated by bounding 

box model. 
For combinational circuits, the timing constraint is calculated as the sum of slack on the critical paths. 

The slack calculation for a given path is based on path delay analysis. A slack at an output 10 pin 70, is 
defined as, 

Si = ri-ai,   ie{l,2,...,p} 

where n is the latest required time at an output pad 70,, a, is the actual arrival time at an output pad 
10{ and Si is the path slack. A negative value for s,-, Vi indicates a violation of the timing constraint A path 
is deemed critical if its slack is negative. 

Correspondingly for sequential circuits the slack is given by, 

sj = J ~ ^com6'     v' 

where / is the expected clocking frequency, T£omb is the long path delay for a sub-path j where sub-path 
is a path between two clocked elements or a path between an 10 pad and a clocked element. Also, 

max(sj) 
j 

gives the maximum slack for the circuit and is the determining factor for the operational frequency of the 
circuit. The arrival time at the primary inputs is assumed to be zero. 
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Fig ure 4 

4.5   Compaction 

At the end of legal placement (section 4.4), we arrive at 
modules inside each leaf cell 
area inside leaf cells. This is illustrated in 
macros separated by unused CLBs 

(k) uffbrc 

by legal placement and strive to eliminate such unused 

Compactibr 

12: Compaction : Degree of Compactness 

of'thepartition tree. 3ut there are some 

over the FPGA area. During compaction we work on floorplan generated 

LJ, planned layout, without destroying relative placement of macros 
floorplan. We perform compaction by eliminating un-utihzed 
inside the boundary of the placed 

gikre4.12(A) 

a val id loprplan. This floorplan has tightly placed 

space fron within the bounding box of the floor- 

. Effectively, we have 
unused CLBs surrounding the placed 

very tightly placed groups of 

Compaction produces a globally compact 
rows and columns of CLBs on FPGA (if any) 

and/or columns are left as they are. This design. PartiallV empty rows 
ensures that relative placement obtained so far is respected. 

The floorplanner can be executed with different degrees of compaction. Following is the effect degree 
of compactness on the final floorplanned layout: 

• Two : Most compact floorplan is produced. Actual rectilinear boundaries are considered as described 
in legal placement step. Global compaction, as described in this section, is also done. 

• One : As before, actual rectilinear boundaries of each macro is considered in legal placement, but 
compaction as described in this section is not performed. This leaves un-utilized spaces between 
partition segments hence providing extra resources to route. 

• Zero : This produces least compact floorlan. Instead of considering actual rectilinear boundaries 
of each macro, legal placement is done by bounding boxes of macros (refer section 4.4.3). Also, 
compaction described in this section is not done. This leaves extra un-utilized spaces between macros, 
hence providing even more resources to route. 

This step is carried out only if degree of compactness desired is 2. We identify rows of CLB on FPGA, 
which are completely unoccupied in the floorplan generated by legal placement. We move all modules up 
by one rov/(Y coordinate of their starting position - Mi.Topy - is decreased by 1), for each such row above 
them. Similarly, we identify empty columns, and move all the modules one column left (X coordinate of 
their starting position - Mi.Leftx - is decreased by 1), for each such column to their left. Figure 4.12 
illustrates an example floorplan before and after compaction. 

At the end of compaction, we arrive at the final floorplan of the input design. 
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Algorithm 4.5.1 (algorithm) 
Compact^ 

*■       for all row,  0 < row < Number of rows in FPGA 

{ if (row = empty) 

{VMj | Mi.Topy > row, 1 < i < Number of modules in design 

{Mi.Topy i- Mi.Topy - 1}}}; 

for all col,  0 < col < Number of columns in FPGA 

{ if (col = empty) 

{VMi | Mi.Leftx) > col, 1 < i < Number of modules in design 

{Mi.Leftx <- Mi.Leftx - 1}}}; 

4.6    Routability 

Routability of a circuit mapped on FPGA depends on two factors : 

• Available routing resources : Total number of resources required for routing should not be more than 
the routing resources available on the FPGA. 

• Local Congestions : If a particular locality of FPGA has very high density of logic mapped on it, some 
wire in the locality might not get routed because of the lack of resources there, despite availability 
of resources in other parts of the FPGA die. This situation arises when logic is densely packed in a 
locality, resulting in congestion. 

First situation has been improved by keeping the average wirelength small. Successive bipartitioning 
with effective terminal propagation helps in reducing not only the maximum wirelength, but also the average 
wirelength of the design. 

Second factor has been taken care of by providing several user controllable levels of compaction. Higher 
compaction level results in higher degree of logic packing, but can thwart routability for some dense circuits. 
Whereas lower compaction levels leaves some un-utilized space in the floorplan, thereby reducing the logic 
density, but providing more routing resources to prevent local congestion. 
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Chapter 5 

Conclusions and Future Directions 

5.1    Concluding Remarks 

The RACE program resulted in several notable accomplishments. These include two architecture designs 
and their implementations and a software environment supporting the hardware architectures. It is a system 
level design project and we are pleased that almost everything worked without any glitch. RACE-I and NEB- 
ULA architectures have been used to demonstrate acceleration of various applications that are commonly 
used in DoD and commercial world. These include, 

• Various filters for signal and image processing. 

• Large scale arithmetic operations - multipliers. 

• Discrete cosine transforms 

• Fault tolerance of electronic circuits 

Technology developed under RACE program is tranferrable to commercial sector and we are making 
progress in that direction. There is active communication with some potential points of interests. We intend 
to keep the program manager informed about any and every development related to technology transfer. 

There are several areas in which more research and improvements can be made. CAD tools for reconfig- 
urable computers are starting to emerge and are becoming stable. Execution time for physical design tools 
(place and route) still remains a bottlneck. Especially, with FPGA density growing at an enormous rate, the 
physical design tools have to address the challenges to break the computing time barrier. Our current work 
addresses these challenges. 

I/O for reconfigurable computers is another performance bottleneck. Most reconfigurable computers are 
co-processors. RACE-I and NEBULA are also co-processors. The interface between main system bus and 
co-processor is thru a 16 bit or 32 bit wide bus. Advantages to computing on custom hardware are lost due 
to high time required to access the data using slow interface. Some of the new FPGA architectures like 
VIRTEX from Xilinx are addressing these issues by embedding small memory blocks within the FPGA and 
also by creating custom high speed interface between FPGA and external memory. Embedded processor 
cores with reconfigurable logic is a better solution. Our current research direction is to arrive at a system 
that embeds reconfigurable logic within the processor. Preliminary work in this direction has already started. 
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