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Abstract  

A closed form solution for the flow of resin in the vacuum-assisted resin transfer 
molding (VARTM) process is used extensively for affordable manufacturing of large 
composite structures. During VARTM processing, a highly permeable distribution 
medium is incorporated into the preform as a surface layer. During infusion, the resin 
flows preferentially across the surface, simultaneously through the preform, to a complex 
flow front. The analytical solution presented here provides insight into the scaling laws 
governing fill times and resin inlet placement as a function of the properties of the 
preform, distribution media, and resin. The formulation assumes that the flow is fully 
developed and is divided into two areas: (1) a saturated region with no crossflow, and (2) 
a flow front region, which moves with a uniform velocity, where the resin is infiltrating 
into the preform from the distribution medium. The law of conservation of mass and 
Darcy's Law for flow through porous media are applied in each region. The resulting 
equations are nondimensionalized and are solved to yield the flow front shape and the 
development of the saturated region. It is found that the flow front is parabolic in shape, 
and the length of the saturated region is proportional to the square root of the time 
elapsed. The obtained results are compared to data from full-scale simulation and show 
good agreement. The solution allows greater insight into the physics process, enables 
parametric and optimization studies, and can reduce the computational cost of full-scale, 
three-dimensional (3-D) simulations. 
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1. Introduction 

The vacuum-assisted resin transfer molding (VARTM) process offers numerous cost 

advantages over traditional RTM via lower tooling costs, room temperature processing, and 

scalability to large structures. Recent advanced technology demonstrators such as the Advanced 

Enclosed Mast Sensor (AEM/S) System and the composite advanced vehicle (CAV) have shown 

the potential of VARTM technology for the low-cost fabrication of large-scale structures 

requiring thick-section construction and hybrid multifunctional integral armor. The VARTM 

process is also used extensively in commercial applications such as bridge decks, rail cars, and 

yachts (Figure 1). 

MR M HIS »tiBA» (b 

Figure 1.  Examples of the Broad Application Potential for VARTM Processes Including 
Shipping, Infrastructure, Land Combat Vehicle Armor, and Repair. 



VARTM is a composites manufacturing process that involves the layup and vacuum bagging 

of dry reinforcing fibers in fabric, tape, or bulk form as a preform in a one-sided open mold and 

impregnating the preform with liquid resin using negative pressure (i.e., a vacuum) followed by 

cure and demolding. The advantages of the VARTM process over the RTM process are 

scalability and affordability for the fabrication of large composite structures. Large parts can be 

infused rapidly using vinyl esters, phenolics, and epoxies at room temperature under vacuum 

pressure only. Consequently, tooling costs and investments are substantially reduced. VARTM 

is a completely closed system that traps volatile organic compounds (VOCs), reduces the need 

for solvents, and results in less scrap than other processes. 

The present study focuses on Seemann's Resin Infusion Molding Process (SCRIMP) 

(Seemann 1990). In this VARTM process, a highly permeable distribution medium is 

incorporated into preform as a surface layer. During infusion, the resin flows preferentially 

across the surface and simultaneously through the preform thickness enabling large parts to be 

fabricated solely under vacuum pressure. The layup of the materials in the process is shown in 

Figure 2. 

In very large composite structures, multiple inlet gates are required to. ensure complete wet- 

out of the part prior to gelation of the resin. Selection of distribution media, performs, and gate 

and vent locations are based on past experience for similar applications. New applications in 

which part thickness, resin, or preform characteristics change require costly trial and error 

process development. Hence, a fundamental understanding of the process physics and associated 

models represent a significant contribution to the science base for VARTM. 

Modeling and predicting the flow during the impregnation process provides insight into the 

process physics and highlights potential problems before production. In addition, flow 

prediction enables optimization of the design variables affecting the process, such as the distance 

between resin inlets (in the case of multiple lines and thickness of the diffusion layer), and 

provides rules of thumb for scaling of the prototypes. Thus, a fundamental understanding of the 

underlying science will help develop models to reduce costs, aid in selection of design 

parameters, and improve quality. 



resin 

fiber preform under vacuum 

vacuum 
pump 

layup detail 

fiber preforr 

(structural layer)      mo,d 

vacuum bag 

distribution layer 

peel ply 

Figure 2. Layup of Materials in the VARTM Process. 



The flow of resin through porous media such as fiber preforms and resin distribution media is 

governed by Darcy's Law: 

«=— -VP, (1) 

where u is the Darcy's velocity (defined as the total flow rate per total flow front area), K is the 

permeability tensor (which characterizes the ease of flow through the fiber perform), and ju is 

the viscosity of the resin. This, when coupled with the continuity equation for incompressible 

flow, gives the Laplace equation for the fluid pressure field inside a region permeated by the 

fluid: 

V. 
(K      } 
—.VP =0. (2) 
U       ) 

This equation can be discretized using finite element methods which then form the basis for 

simulation of mold-filling during the resin infusion process (Bruschke and Advani 1990, 1991a; 

Liu et al. 1996; Mohan et al. 1999). 

The flow simulations can be either two-dimensional (2-D) or three-dimensional (3-D). In 

2-D flow modeling (Bruschke and Advani 1991b; Trochu et al. 1994; Lee et al. 1994), the flow 

of resin through the thickness is considered uniform, and the finite element discretization is 

applied along the other two directions as with liquid injection molding simulation (LMS), which 

is based on the finite element/control volume approach. In 2-D simulations, only the in-plane 

permeabilities are supplied (Simacek et al. 1998). In 3-D simulations, the pressure and flow in 

all three directions is solved, and a 3-D permeability sensor is supplied as input, as in the resin 

infusion process simulation (RIPS), which is based on finite element methods without the use of 

the control volume approach (Gallez and Advani 1996). Usually, the geometry, the material 

parameters, and the position of resin inlets and outlets are specified before the filling simulation 

is carried out.    Simulation codes are used to track flow fronts and estimate the fill times. 



Parametric studies then can be conducted with simulations to design the mold and the process 

parameters. 

Closed form analytical solutions have also been derived for the resin flow under simplifying 

assumptions and for simple geometries. These solutions explain the role of various process 

variables and their interactions during processing. Indeed, a closed form solution of the resin 

flow during the VARTM process not only enables parametric studies, optimization, and 

reduction of computational expenses of full-scale simulations, but also offers insight on the 

scaleup of the process and material parameters for large structures. 

In earlier work, Tari et al. (1998) derived a closed form model for vacuum-bag RTM under 

several simplifying assumptions. They assumed that the velocity of resin in the fiber preform is 

negligible and that the region behind the flow front is uniformly saturated. In the present work, 

these assumptions were not made, so the velocity of the resin, as well as the shape of the flow 

front through the thickness of the fiber perform, are accurately captured. This is important for 

scaling purposes. 

A closed form solution for the flow of resin in the VARTM process is presented here. The 

layup is modeled as the distribution layer (high permeability material) and the structural layer 

(preform material). It is assumed that the flow is well developed and can be divided into a 

saturated region with no crossflow and a flow front region in which the resin infiltrates the 

preform from the distribution medium. The flow front region is assumed to be fully developed 

with a uniform velocity. The law of conservation of mass and Darcy's Law for flow through 

porous media are applied in each region. The resulting equations are nondimensionalized and 

are solved to yield the flow front shape and the development of the saturated region. 

2. Problem Statement 

As illustrated in Figure 3, the layup of materials is modeled as two layers of permeable 

materials. The distribution layer is much thinner than the structural layer, A, « h2, where A, and 
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Figure 3. Two-Layer Model of Resin Flow in the VARTM Process. 

h2 are the respective thicknesses of the two layers. The flow front in the distribution layer is 

considered uniform. The permeability of the distribution layer is Klxx along the flow direction, 

and the permeabilities of the structural layer are K2xx and K2yy in the x and y directions, 

respectively. The constant inlet injection pressure (atmospheric pressure) is P0, and the resin 

viscosity is ju. 

In the saturated region, the flow is one-dimensional (1-D) with Darcy's velocities U^and U2 

in layers 1 and 2, respectively. The length of this saturated region is D, and the pressure at its 

boundary with the second flow region is assumed to bePD. 

The second region, illustrated in Figure 4, is the flow front region where there is transverse 

flow from the distribution layer to the structural layer. The flow front region of length d is 

assumed to maintain its shape, given by hF, and advances with a uniform horizontal velocity of 
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Figure 4.  Schematic of Resin Flow in the Flow Front Region for the Two-Layer VARTM 
Model. 

UF. This is the observed velocity of the resin and not the Darcy's velocity. The transverse 

velocity of resin infiltration from the distribution layer into the structural layer is ul2y. The 

horizontal velocity in the flow front region in the distribution layer uu is with boundary 

condition ulx (x = D + d) - <Z>, UF. 

Since the resin is an incompressible fluid, using the continuity equation and Darcy's Law in 

the structural layer, the governing equation for the pressure distribution is 



dxz        '" dy 

Consider the following nondimensional variables: 

d2P d2P 
K2xx—T + K2yy-- = 0. (3) 

n* * * X » V .   . 
P =—,x = —,y  =+-, (4) 

pc       *c       ye 

where xc and yc are the characteristic length scales in the longitudinal and thickness directions, 

respectively, and Pc is a scaling parameter for the pressure.   Introducing the dimensionless 

variables, the governing equation can be recast in dimensionless form as follows (Pillai and 

Advani 1998a, 1998b): 

K    v2 d2P"    d2P' 

K2yy
xc  8x*       dy* 

Since the resin distribution media was used in the process to enable the rapid and uniform 

distribution of the resin across the mold surface, it can be assumed that within the flow front 

region in the structural layer, the major portion of the resin flow is from the distribution layer 

into the structural layer. Hence, the flow rate in the y direction must be more significant than 

that in the x direction (i.e., Qy » Qx). The xc in the flow front region is d, while yc is h2. If 

u and v are the average Darcy's velocities in the two directions, then 

Qy=Vd, 

and (6) 

Qx=uh2. 

Considering Darcy's equation for the velocities, the following scaling argument can be made: 



K2xx   ÖP _^ 7.        K2xx  Pc fTi 

H   dx JU    d 

and 

v = _^2LdP^~^K^LP£_ (8) 

H   dy fi   h2 

Since Q » Qx, from equations 6 to 8, it can be determined that: 

K    h2 

2xx \ «1. (9) 
K2j 

This allows for the neglect of the x-term in pressure equation 5 in the flow front region, which 

leads to the following result: 

d2P    .       ÖP     , ( s. 

dy dy 

and (10) 

v = - 
K2yy  BP K2yy 

li   dy p /,(*)• 

At the top of the structural layer, where the flow is always from the distribution layer, the 

boundary condition is defined as v 1^^= M,2>>(
X

)- Hence, in the flow front region, 

v(x) = u12y(x), 



where uny(x) is the velocity of the resin flow from the distribution to the structural layer in the 

flow front region. In the saturated region, the length scale of the flow is D in the x direction and 

h2 in the y direction, where D»h2. Since D»d, from equation 9, 

K      h2 V      h2 

A2„«2 <<1=>Jbs^L.«i. (ii) 
K2„d2 K2yyD 

So, the first term in equation 5 can be neglected, and 

dy2 dy 

Thus, the velocity in the v direction in the saturated region is 

K2yy 8P _     K2yy 

d2p = 0=>^ = fs(x). (12) 

li    dy fi 

At the bottom of the structural layer in the saturated region, the resin is in contact with the 

surface of the mold, which is impermeable. Hence, the no-penetration boundary condition was 

applied (i.e., v = 0 @v = h2) in the saturated region. Therefore, 

dP 
— = fs (x) = 0 in the saturated region. (14) 
dy 

As a result, v = 0 in the saturated region everywhere in the structural layer.   Since v = 0, the 

second term in pressure equation 3 becomes zero, and 

— = 0=> — =   ( ) 
dx2 dx 

10 



as 

^ = 0. 
dy 

So, it can be inferred that g(y) is constant, and 

u = _K2£LdP_ (15) 

fi   fix 

is constant in the saturated region.   Hence, from boundary conditions of P = P0 @x = 0 and 

P = PD@x=D, 

dP     P — P 
— = —  in the saturated region. (16) 
fix D 

3. Analytical Solution 

Considering the element fluid volumes shown in Figure 5 and invoking the mass balance, 

— dh 
ui2ydx + U2(-dhF) = UF02(-dhF)=>uny =—-J-(02UF-U2). (17) 

A lumped mass balance in the distribution layer in the flow front region gives 

du, 
- dulxh} = unydx => ui2y = -A, —^. (18) 

11 
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Figure 5.    Illustration for Resin Mass Balance in the Flow Front Region in the Two-Layer 
Model. 

From equations 17 and 18, the result is 

dx        dx 
(19) 

Applying Darcy's Law in the y direction in the flow front region and using equations 17 and 

18, 

M    K 

and 

unr=-\-^TL = - dx        dx 
^{02UF-U2) = ^^- 

H   hF 
(20) 

12 



This leads to the following equation for P, (JC* ), the pressure field in the distribution medium in 

the flow front region: 

P^)=-hF^(02UF-U2)^-. 
<& K2yy 

(21) 

A similar mass balance in the flow front region, including both the structural and the distribution 

layers, yields 

U1h1+U2h2=UF(®lhi+02h2). (22) 

Applying Darcy's Law in the saturated region with 1-D flow, 

tf.= 
[I D 

and (23) 

U2=
K^Po    P°^UI=U2JE±°L 

H       D K 2xx 

In combination with equation 22, 

u2   (0^+0^) 
ut 

( K, \ 
x-^hx+h2 

KK2xx 

(24) 

The previous set of equations can be nondimensionalized using the following nondimensional 

variables: 

13 



u'=^Lx= K 
UF' Klja 

hP    »     x-D 
F 

7 " ' F        " 

A, A, 
(25) 

and 

*     /z,     ,     d     «     .P 
A, = —,a  =—,P = — 

A2 h2 P0 

This gives the following system of equations: 

■IdP; 
u 

[i   dx 
(26) 

, _ (M'+<0 
J72 = 

■ + 1 

(27) 

^   _{02-U*2)dhF 
dx* A,*       d!x 

(28) 

and 

^ K2yy 
(29) 

Here, /T = \^2 ^   is obtained from the nondimensional Darcy's Law. The boundary conditions 
Kixxr0 

14 



on u!x are u*u(6) = Uj,u*u[d)=<fii.   The boundary conditions on hF(o) = l,hF[d)=0.   The 

pressure boundary conditions are P* (o) = P*D,P* [d j= 0. 

Integrating equation 29 and applying the boundary condition u*lx(o) = U*,u*x [d)=0l, 

«L-kAfc'M- (30) 

In combination with equation 26, 

dx' 
■■ -fi ulx = \i kzß)^)+0i (31) 

Combining equations 29 and 31, the following nonlinear ODE with boundary conditions 

hF(o) = l,hF(d*)=0 result in: 

dx 

,» dh * \ 

v F^*y 

/:. 2jy 

*;('*) 
0,K 

+ - 
02-u; 

(32) 

This ODE is of the form given by {y )" = ay + b.   It can be solved using the substitution 
dy    n       dp 

p = —,y =p— (Murphy  1960).     This usually yields a solution in a quadratic form. 
dx dy 

The quadratic form h*F [x*)= ax*2 + ßx* + y can be substituted into the above equation to find the 

solution using the first boundary condition hF (0) = 1 and matching the coefficients of the powers 

of x* on either side. Then the second boundary condition, hF(d*) = 0, can be used to determine 

d*. This gives a quadratic equation for d* having two roots. Both roots are positive, but if the 

larger one were chosen, then the flow front profile would be physically impossible (Figure 6). 

Hence, the smaller root gives the following unique solution: 

15 



K 
a =■ 

lyy 

6h 

0 = -, 
\2K. lyy +

0\K2yy 

3/z,       02-U'2 
(33) 

and 

Thus, 

7=1. 

"F(X )=—*x    -i r^-*- -hx  +1 > 
6Ä, V  3A,       <P2-t/2 

(34) 

and since h'F(d') = 0,d* can be determined as 

d'-    ^ 
<P, <Z>, 

V^lv^-^* V   \*2-^ (35) 

Substituting  the  form   h"F(x" ) = ax' + ßx'+J  in  equation  29,  the  pressure  can be 

determined as follows: 

>•_ fa-uiVu-M P; = -v'z    rz/f" fcox*3 + 3aßx'2 + (ß2 + 2a)x' + ß]. 
K2yy 

(36) 

Applying the boundary condition P'(0) = P*D gives 

16 
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Figure 6.    Two Mathematical Roots of hF*(x*) = 0.  Note That Only the Smaller Root Is 
Physically Possible. 
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■ + - 
2yy 

lyy 3h*      02-U2 

(37) 

Using the nondimensional form of Darcy's Equation in the saturated region, 

_«       A,v_ 1     r, /* = ^a .g=> =1_^ .02~U'2      \2K'2yy 0,Klyy 

It      D K 2xx K 2yy 3A,*      02-U'2 

To find lfF substituted with \C is 

V-  = 
lih2UF 1 

KlxxP0     ID' +A' 
(38) 

17 



where 

r=u> 
^2xx 

and 

A 
'2yy 

From equation 38, the flow front velocity is 

k^K,+Ä. (39) 
K2yy    \ 3Ä,      02-U2 

jrj        ^uA 1  (40) 
F       fjJi2   ID +A J 

but UF = —, and D* = —; hence, the previous equation becomes 
dt h2 

dD    K1]CXP0        1 
(41) 

dt        fih2    ID + Ah2 

Solving the resulting differential equation for D(t), 

t-t0=c\D2 -D2
0)+C2{D-D0) , (42) 

where C, = —— and C2 = —  The variable t0 is the time it takes for the flow front 

region to become fully developed, while D0 is the entry length for the development of the flow 

front region. Solving for D(t), 

18 



l{AhJ+-&-(f-t0+ClD
2

o+C2D0)-Ah2 

D(t) = J —  . (43) 

Equations 42 and 43 are important for the design of the VARTM process. The results 

obtained are compared to full-scale, finite-element-based simulations using LMS 4.0 and are 

presented in the next section. A parametric study is presented to shed light on how one can scale 

the parameters in the VARTM process. 

4. Verification: Full-Scale Simulations 

The results obtained can be compared to finite-element-based simulations of the filling 

process in VARTM. LIMS 4.0 was used for simulation of the filling process for five different 

cases, with different values for permeabilities and fiber volume fractions for the distribution and 

structural layers, respectively, and length of part, D. Each part was modeled using finite 

elements and the filling process simulated as a constant pressure injection at 1 arm at one corner 

of the part. The viscosity of the resin, the thicknesses of the structural and distribution layers, 

and the permeability of the distribution layer were held constant. The fill times and the values of 

d were determined and compared to those obtained from the closed form solution. The results 

are tabulated in Table 1. The fill time from the analytical solution was found to be within 2% of 

the value from the full-scale numerical simulation, while the value of d was within 12% of the 
K   h? 

value from simulation.   For all cases, the condition —2xx^ «1 was maintained for a valid 

analytical solution. 

The flow front history and the pressure contours at the final time are plotted for Case 1 in 

Figure 7. It can be observed that the flow front is constant in shape, while the lines of constant 

pressure in the saturated region are equally spaced and vertical to the x axis, thus verifying the 

assumptions of constant flow front shape and linear variation in pressure in the saturated region. 

19 



Table 1.  Comparison of Closed Form Solution With Results From Full-Scale Numerical 
Solution of the VARTM Process 

Case Parameters 

d 
(cm) 

t-to 
(s) 

% Error3 

LMS 4.0 Closed Form 
Solution LMS 4.0 

Closed Form 
Solution d 

(%) 

t 
(%) 

1 K2xx=8.8E-7cm2 

K2yy=4.4E-7cm2 

fa = 0.99, <J>2 = 0.50 
D-Do = 40.0 cm 

8.9 9.8 44.9 44.8 9.7 -0.3 

2 K2xx=8.8E-7cm2 

K2yy=4.4E-8cm2 

fa = 0.99, fa = 0.50 
D-Do =19.0 cm 

29.2 30.9 19.1 19.4 5.7 1.5 

3 K2xx=8.8E-7cm2 

K2yy = 4.4E-6cm2 

fa = 0.99, fa = 0.50 
D-Do = 47.0 cm 

3.0 3.1 54.2 54.5 2.9 0.5 

4 K2xx=8.8E-7cm2 

K2yy = 4.4E-7cm2 

fa = 0.99, fa = 0.80 
D-Do = 40.3 cm 

9.2 10.1 71.7 72.1 10.2 0.6 

5 K2xx=8.8E-7cm2 

K2yy=4.4E-7cm2 

fa = 0.70, <(>2 = 0.50 
D-Do = 40.0 cm 

9.0 10.0 44.2 44.5 11.6 0.7 

Note:  The following variables were used in all cases: 
P0 = 1E6 g/cm-s2, 
u = 1 g/cm-s 
h,=0.01 cm, 
h2 = 1 cm, 
K]xx = 1E-3 cm2, and 
D0~0 cm for all the cases. 

Based on results from LIMS 4.0. 

20 



5. Effect of Process Variables: A Parametric Study 

The process variables that affect the flow of resin are broadly classified into geometric 

parameters (such as thickness) and material properties (such as permeability and porosity of the 

two layers). These process variables influence the time to fill a mold of a given length. A 

parametric study of these effects allows for better design and analysis of the VARTM 

manufacturing process. In the present section, the effect of a number of process variables on the 

fill times and flow velocity was studied. The baseline values used for the study are: 

P0 = 1 arm, /i = 1 cp, 

h, = 1.00 cm, h2 = 0.025 cm, 

Klxx =8.8xlO-4cm2,K2xx = 8.8xlO_7cm2,K2yy = 1.47xl0-7cm2, and 

$, = 0.99, *2 =0.50. 

In the plots for each parameter, the flow front velocity (UF) and the time taken (t) are plotted 

against D for different values of the parameter. Note that the time axis is reversed; therefore, the 

lines for t start from zero at the top of the graph. 

5.1   Effect of Thickness Ratios. The effect of the ratio of the thickness of the distribution 
h 

medium to that of the structural layer, h* = —- , is considered.   Figure 8 plots the flow front 

velocity, UF, vs. D for different thickness ratios.   As A,   increases, the flow front velocity 

increases while the fill time decreases for a given length D. This is because as the thickness of 

the highly permeable distribution medium relative to that of the structural layer increases, the 

resin flow rate in the distribution medium increases.   Since the diffusion material is used to 

distribute resin in the part and ensure mold filling, an increase in h* will cause an increase in 

flow front velocity and a decrease in fill time. 

For the case of h* = 0.1, encountered with thin section composite parts, UF shows a slower 

decrease with D than with the other cases.  With thick-section composite parts where A, ->• 0, 
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Figure 7. Example of a Full-Scale Numerical Simulation: (a) Flow Front History and 
(b) Pressure Distribution at the Final Time Step. 
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Figure 8.    Flow Front Velocity and Fill Time as a Function of Length of the Saturated 
Region: Effect of Thickness Ratios. 

UF falls rapidly. In order to fill such a part efficiently, the distance between the gates (D) has to 

be small; thus, the number of gates required increases. Therefore, the solution provides insight 

into the scaling laws required for manufacturing thick-section composites by VARTM. 

5.2 Effect of Permeability. The permeability values of importance are: K^, the 

permeability of the distribution layer in the longitudinal x direction, andK*2xx andAT^,, the 

permeabilities of the structural layer in the longitudinal x and thickness y directions. As seen in 
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Figures 9-11, as the permeability values increase, the time to fill decreases, and the flow front 

velocity increases. As the permeability values increase, the resistance of the material to the resin 

flow decreases. Hence, the net flow rates are higher, and the time to fill decreases, while the 

flow front velocity increases. Since the flow rate in the distribution layer is higher, the effect of 

K*^ is significantly more than that of K*2xx and K2 . These effects can also be observed from 

the plots shown. This has important ramifications on the selection and the thickness of 

distribution media. 

5.3 Effect of Porosity. The porosity of a fiber preform is defined as the fraction of the total 

volume of the material not occupied by the fibers. In composite manufacturing, the 

complementary term, volume fraction, was more commonly used. The volume fraction is 

defined as the fraction of the fiber preform occupied by the fibers and is related to the porosity 

by the relation Vf = 1 - 0. The porosity also affects the permeability of the material. However, 

this coupling has not been accounted for in the present work. 

The porosity values considered here are &x, the porosity of the distribution layer, and 02, 

the porosity of the structural layer. As observed from Figure 12, <P,did not significantly affect 

the time to fill and the flow front velocity. In Figure 13, as 02 increases, the flow-front velocity 

decreases, and the fill time significantly increases. This is because the fraction of the total part 

volume occupied by the thin layer of diffusion material is very low compared to that occupied by 

the fiber preform in the structural layer. Hence, increasing the porosity of the diffusion material 

does not have a significant effect. Whereas, if 02 increases, the volume of the structural layer 

(which is unoccupied by the fiber perform) significantly increases. This additional volume must 

be filled by the resin, thus requiring more time to fill it and therefore slowing down the flow 

front. 
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Figure 9. Flow Front Velocity and Fill Time as a Function of Length of the Saturated 
Region: Effect of Permeability of Distribution Medium. 

6. Conclusions 

A closed form solution for flow of resin in the VARTM process has been developed. This 

process is explained by a two-layer model comprised of a distribution layer and a structural 

layer, containing fiber preform.   The flow is divided into a saturated region where there is no 
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Figure 10.   Flow Front Velocity and Fill Time as a Function of Length of the Saturated 
Region: Effect of In-Plane Permeability of Fiber Preform. 

crossflow, and a flow front region with a steady shape and uniform velocity where the driving 

flow emanates from the distribution layer to the structural layer. It is assumed that the thickness 

of the distribution layer is much smaller than that of the structural layer, and that the length of 

the flow front region is much smaller than that of the saturated region. It is also assumed that the 

crossflow in the flow front region is much higher than the flow from the saturated region into the 

flow front region. Darcy's Law regarding flow in porous media and mass balances at different 

sections was used to formulate a system of differential equations, and a closed form solution was 
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Figure 11. Flow Front Velocity and Fill Time as a Function of Length of the Saturated 
Region: Effect of Transverse Permeability of Fiber Preform. 

found. The model predicted the shape and development of the flow front given the material 

properties, the geometric parameters, the pressure at the inlet, and the viscosity. The obtained 

results were verified by comparing them with full-scale simulations. The parametric study 

indicated trends that reflect the physics of the flow process and identified the parameters that 
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Figure 12.   Flow Front Velocity and Fill Time as a Function of Length of the Saturated 
Region: Effect of Porosity of Distribution Medium. 

significantly affect the filling process. Subsquent solutions provided physical insight into the 

manufacturing process and can be used for scaling, design, and optimization of the VARTM 

process. 
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