Spreadsheet Generation of a Truth Table

by John D. Sullivan

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory

Aberdeen Proving Ground, MD 21005-5066

Spreadsheet Generation of a Truth Table

John D. Sullivan
Weapons and Materials Research Directorate, ARL

Abstract

Truth tables are an introductory method of evaluating a logical expression or proving an argument. They are, however, cumbersome to construct and apply by hand. This report shows that a spreadsheet can generate truth tables rather easily. A simple example is given of a spreadsheet computing the truth value of an expression of logical variables.

Acknowledgment

The author thanks Audrey L. Mihalcin of the Armor Mechanics Branch, Terminal Effects Division for critically reading this report, particularly the spreadsheet instructions.

INTENTIONALLY LEFT BLANK.

Table of Contents

Page
Acknowledgment iii

1. Introduction 1
2. Truth Table Generation 1
3. Spreadsheet Particulars 4
4. Application 5
4.1 A Very Simple Example 5
4.2 A Simple Example 6
5. Conclusion 6
Distribution List 7
Report Documentation Page 11

INTENTIONALLY LEFT BLANK.

1. Introduction

The deductive reasoning of arguments can be proven (i.e., Do the premises lead to the conclusion?) by analysis methods of symbolic logic. The introductory method of proving the validity of arguments uses truth tables. The drawback to the truth table method of proof is that it is cumbersome-a schema for making tables may not be known to the user, and there are too many table entries. ${ }^{1}$ Moreover, the truth table method of proof is soon abandoned because better methods are available. ${ }^{2}$ The basic method might be revived with a spreadsheet because the speed and thoroughness of the computer overcomes the tediousness of making and applying truth tables. This report shows that a spreadsheet can easily generate truth tables by an iterative method of building each table from the previous one. Truth tables for n variables can be generated ahead of time, stored, and retrieved for later use. A smaller application of a truth table (e.g., supplying values to a 2 -variable logical expression) will be shown, but proof of arguments is outside the scope of this brief report.

2. Truth Table Generation

A logical variable takes on the values of true (T) or false (F). For one variable p, the truth table is:

1-Variable Truth Table
\mathbf{p}
$T \quad F$

[^0]A truth table with several variables is just a list of all the combinations of T and F that can exist. The combinations are written in the "standard order" peculiar to a profession. For the two logical variables p and q, the standard-order truth table is:

2-Variable Truth Table	
\mathbf{p}	\mathbf{q}
T	T
T	F
F	T
F	F

For the three variables p, q, and r, the truth table is:

3-Variable						
Truth Table		$	$	\mathbf{p}	\mathbf{q}	\mathbf{r}
:---:	:---:	:---:				
T	T	T				
T	T	F				
T	F	T				
T	F	F				
F	T	T				
F	T	F				
F	F	T				
F	F	F				

The 2- and 3-variable truth tables show that there is a repeating pattern. The pattern is that the shaded portion of the 2 -variable table is repeated twice in the 3 -variable table, once for p true and once for p false. Another way of describing the pattern is that there are $2^{3}=8$ rows of values for the 3 -variable table. In the first column headed p, the first half of the rows is true and the next half false. The 2-variable table values are supplied against the trues and falses, completing the table.

The pattern and the 3 -variable table comprise the next table. The 4 -variable table has 16 rows $\left(2^{4}\right)$ of values, and the first column headed p will get the first half of the rows true and the next half false. The 3-variable table values (unshaded portion) are supplied against the trues (herringbone up) and also against the falses (herringbone down), which completes the table.

The tables are rapidly made in a spreadsheet or word processor because both programs carry the copy and paste commands that allow highlighting the section that is carried forward to the next table. The leftmost column will always be trues for the upper half of rows and falses for the bottom half of rows. Thus, generating truth tables is advanced one at a time. Each table can be highlighted and saved as a file, so that it does not have to be regenerated in sequence each time it is needed.

3. Spreadsheet Particulars

Knowing about the organization of spreadsheets helps users save and retrieve work. Spreadsheet programs are designed as notebooks of many tabbed pages (i.e., sheets). It is the whole notebook that is given a path name ending in a file name. To retrieve a particular page, the user selects the notebook name from the file menu and opens the sheet of truth tables by clicking the mouse arrow on the tab. All of the truth tables that can fit on a sheet are saved and viewed together. However, since the hodgepodge of tables on the sheet is unworkable, a feature called a block name is used to retrieve a particular one.

The steps followed in the Corel Quattro Pro 8 spreadsheet program are: 1) highlight a finished truth table, 2) click on the menu names "Insert|Name|Cells," 3) type an obvious name for the block, 4) click Add, and 5) click Close. For instance, the 2-variable truth table would be called " 2 var ," and so on. If the names of the blocks are forgotten, they can be reviewed in the above menus. To put the suggested block on a new sheet, the user types " +2 var" and the entire block of data is printed on the screen. (The block can be quickly deleted by just deleting the named cell [left top corner].)

The ultimate point of having a truth table is to evaluate arguments by the truth table method. The tabled combinations listed so far contain no logical values for computing; they are made with a word processor and are just for looks. Even if they are first made in a spreadsheet, extra measures are needed to change the cells T and F into true and false logical values.

The purpose of the new block, which could be called a logic table, is to supply values for a logic expression that is typed in the next column(s). The new block, started alongside the truth table, is made from a conditional if function. If the block named 2var started in cell A 1 , then @IF(A1="T", @TRUE, @FALSE) would be typed at C 1 and entered. Next, highlighting a 4×2 block (left top corner at cell C1 and right bottom corner at cell D4) and clicking the speedfill icon opens the "Cell Reference Checker" box, and clicking Close fills the block with 1 s and 0 s corresponding to T and F in the 2 var block. Only the 1 s and 0 s are recognized by the spreadsheet as having the logical values true and false. The new block should be saved under a block name such as "2logic." On a new sheet, " +2 logic" is typed into any cell, the table appears, and next to the table is entered the logical expression to be evaluated is entered.

A faster way to make the logic tables is to omit the n -var blocks and work only with the n logic blocks. For instance, to create 3 logic, skip over one cell from where that table is to start and type and enter "+2logic" to retrieve the 2 -variable logic table. Return to the skipped cell (it will become the head of the leftmost column of 3logic) and type and enter @ TRUE. Highlight down to the last row of $2 \operatorname{logic}$ and click on speedfill to fill the blank cells with logical trues (" 1 "). At the cell where the block should be repeated, " +2 logic" is again typed and entered. The leftmost column of 3 logic is completed by typing and entering@FALSE, highlighting down, and speedfilling to give the blank cells logical falses ("0"). With that, the logic table is complete and the block should be given its recognizable name.

4. Application

4.1 A Very Simple Example. A logical expression is any combination of the logical operators and, or, or not acting on logical variables. The truth value of the expression depends on the values that are tried from the truth table. For example, the truth value of the logical expression p and q (abbreviated $p \cdot q$) is true only if p and q are individually true. The 2logic table reveals all possible values of the expression $p \cdot q$. As the table confirms, if either p or q is false, the conjunction is false.

	A	B	C
	\mathbf{p}	\mathbf{q}	$\mathbf{p} \cdot \mathbf{q}$
1	1	1	1
2	1	0	0
3	0	1	0
4	0	0	0

Since the table entries start at cell A1 (p true) and B1 (q true), the spreadsheet entry in C1 $(p \cdot q)$ is written $+A 1$ \#AND\#B1. The empty cells below that entry are highlighted, and the speedfill icon is clicked. The spreadsheet then computes the values (ones and zeros) shown. This very simple example illustrates the truth table method of evaluating a logical expression.
4.2 A Simple Example. Some easy, successful examples of computing the logical value of expressions with a spreadsheet are shown for five examples involving two variables. The various connectives of the variables p and q are: $\mathrm{p} \cdot \mathrm{q}$ means p and q, v means or, and \sim means not. The logic table that the spreadsheet uses is in columns A and B; five different expressions are in columns C G. The computed results are easily mentally checked by the ordinary understanding of the logical results of combinations of true and false statements.

	A	B	C	D	E	F	G				
	\mathbf{p}	\mathbf{q}	$\mathbf{p} \cdot \mathbf{q}$	$\mathbf{p} \mathbf{v} \mathbf{q}$	$\mathbf{p} \cdot \mathbf{q} \mathbf{v} \mathbf{p}$	$\sim \mathbf{p}$	$\mathbf{p} \cdot \mathbf{q} \mathbf{v} \sim \mathbf{p}$				
1	1	1	1	1	1	0	1				
2	1	0	0	1	1	0	0				
3	0	1	0	1	0	1	1				
4	0	0	0	0	0	1	1				
2-logic table							five logical expressions evaluated				

Although these 2-variable examples are simple, the spreadsheet can compute much more complicated expressions of numerous variables.

5. Conclusion

Because truth tables contain a pattern, it is easy to generate the next higher table from an existing one. By using a spreadsheet, large truth tables can be generated, saved, and applied to large expressions that are impractical to evaluate by hand.

NO. OF
COPIES ORGANIZATION
2 DEFENSE TECHNICAL INFORMATION CENTER DTIC DDA
8725 JOHN J KINGMAN RD
STE 0944
FT BELVOIR VA 22060-6218
1 HQDA
DAMO FDT
400 ARMY PENTAGON
WASHINGTON DC 20310-0460

1 OSD
OUSD(A\&T)/ODDDR\&E(R)
R J TREW
THE PENTAGON
WASHINGTON DC 20301-7100
1 DPTY CG FOR RDA
US ARMY MATERIEL CMD
AMCRDA
5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

1 INST FOR ADVNCD TCHNLGY
THE UNIV OF TEXAS AT AUSTIN
PO BOX 202797
AUSTIN TX 78720-2797
1 DARPA
B KASPAR
3701 N FAIRFAX DR
ARLINGTON VA 22203-1714

1 NAVAL SURFACE WARFARE CTR
CODE B07 J PENNELLA
17320 DAHLGREN RD
BLDG 1470 RM 1101
DAHLGREN VA 22448-5100
1 US MILITARY ACADEMY
MATH SCI CTR OF EXCELLENCE
DEPT OF MATHEMATICAL SCI
MADN MATH
THAYER HALL
WEST POINT NY 10996-1786

NO. OF
COPIES ORGANIZATION
1 DIRECTOR
US ARMY RESEARCH LAB
AMSRL D
D R SMITH
2800 POWDER MILL RD
ADELPHI MD 20783-1197
1 DIRECTOR
US ARMY RESEARCH LAB
AMSRL DD
2800 POWDER MILL RD
ADELPHI MD 20783-1197
1 DIRECTOR
US ARMY RESEARCH LAB
AMSRL CS AS (RECORDS MGMT)
2800 POWDER MILL RD
ADELPHI MD 20783-1145

3 DIRECTOR
US ARMY RESEARCH LAB
AMSRL CI LL
2800 POWDER MILL RD
ADELPHI MD 20783-1145

ABERDEEN PROVING GROUND
4 DIR USARL
AMSRL CI LP (BLDG 305)
NO. OF
COPIES ORGANIZATION
2 COMMANDER
DSWA FIELD COMMAND
DASIAC
KIRTLAND AFB NM 87117-5669
1 DIRECTOR
US ARMY RESEARCH LAB
AMSRL CS CC IP P CLOHAN
2800 POWDER MILL RD
ADELPHI MD 20783-1197
3 COMMANDER
US ARMY ARDEC
PAILU
N SLAGG
J PEARSON
PCTNY ARSNL NJ 07806-5000
2 COMMANDER
US ARMY BELVOIR RD\&E CTR
STRBE N HEBERLEN
TECH LIB
FT BELVOIR VA 22060-5606
2 COMMANDER
US ARMY CONCEPTS ANAL AGCY
M OGORZALEK
TECH LIB
8120 WOODMONT AVE
BETHESDA MD 20814
1 COMMANDER
US ARMY RESEARCH OFFICE
PO BOX 12211
RSCH TRI PK NC 27709
2 COMMANDER
US ARMY NGIC
TECH LIB
C WARD
220 TTH ST NE
CHARLOTTESVILLE VA 22902-5396
3 DIRECTOR
USA ENGR WATERWAYS EXP ST
TECH LIB
R FRANCO
K DAVIS
PO BOX 631
VICKSBURG MS 39180-0631

NO. OF COPIES	ORGANIZATION
1	BDM CORP
	TECH LIB
	7915 JONES BR DR
	MCLEAN VA 22102
1	COREL CORP
	1600 CARLING AVE
	OTTAWA ONT CAN KIZ8R7
1	EVE INC
	W WRIGHT
	440 HILLCREST DRIVE
	ABERDEEN MD 21001-1811
1	D RICHMOND CONSULTING
	3006 HYDER SE
	ALBUQUERQUE NM 87106
1	TECH REPS INC
	F MCMULLAN
	5000 MARBLE NE STE 222
	ALBUQUERQUE NM 87110
1	WILFRED BAKER ENGRG
	8700 CROWNHILL SUTTE 310
	SAN ANTONIO TX 78209-1128
1	EARLHAM COLLEGE
	DEPT OF PHILOS
	P SUBER
	NATL RD W
	RICHMOND IN 47374-4095
1	UMF COMPUTING CENTER
	9 SOUTH STREET
	FARMINGTON ME 04938
1	UNIV OF TORONTO
	DEPT OF PHILOS
	R TULLY
	215 HURON ST
	TORONTO ONT CAN M5SIAI
1	L J BELLIVEAU
	1132 PARRISH DR
	ROCKVILLE MD 20851
1	R J RALEY
	350 COLUMBINE
	MARBLE FALLS TX 78654

NO. OF

COPIES ORGANIZATION

1 S J ZARDAS
3102 WOOLSEY DR
CHURCHVILLE MD 21028

1 GKLONG
7028 STRATHMORE ST
FALLS CHURCH VA 22042
ABERDEEN PROVING GROUND
CDR USATC
STEAC TE F BINDEL STEAC AS TF WILEY

3 DIR USAERDEC
SCBRD RTT
L BICKFORD
N LEVERETT
SCBRD RTL A TURETSKY
DIR USARL
AMSRL SL ET J ANDRESE
AMSRL SL BN E FIORAVANTE
AMSRL WM TB J SULLIVAN (4 CPS) R FREY
W GAULT W LAWRENCE J STARKENBERG W SUNDERLAND L VANDE KIEFT
AMSRL WM BA P MULLER
AMSRL HR SB G FERGUSON T MERMAGEN
AMSRL WM TA A MIHALCIN (2 CPS)
AMSRL WM TD A DIETRICH
F GREGORY A GUPTA
AMSRL WM BA A THOMPSON
AMSRL WM BF R PEARSON AMSRL SL BD L MOSS AMSRL CS TT J POLK AMSRL WM BC D WEBB AMSRL CI CT A BRODEEN B BROOME

INIENTIONALLY LEFT BLANK.

INTENTIONALLY LEFT BLANK.

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to the items/questions below will aid us in our efforts.

1. ARL Report Number/Author_ARL-MR-497(Sullivan)_D__D__ Date of Report September 2000
2. Date Report Received \qquad
3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be used.) \qquad
\qquad
\qquad
4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.) \qquad
\qquad
\qquad
5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs avoided, or efficiencies achieved, etc? If so, piease elaborate. \qquad
\qquad
6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, technical content, format, etc.) \qquad
\qquad
\qquad
\qquad

Organization
CURRENT

Name	E-mail Name

Street or P.O. Box No.
City, State, Zip Code
7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old or Incorrect address below.

Organization

OLD

 ADDRESS
Name

Street or P.O. Box No.

City, State, Zip Code
(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)

[^0]: ${ }^{1}$ A logical variable can take just two values, true or false, but all combinations of values of n variables must be tested, which requires a table of 2^{n} rows by n columns. For instance, five variables create 160 table entries ($2^{5} \times 5=160$), which are lengthy to write out and apply.
 ${ }^{2}$ The usual method of establishing an argument's validity is recasting the premises using the rules of inference to list permissible statements that lead to the conclusion. (The logician's art and skill are important for fashioning a short proof.)

