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Abstract 
There is a recognized need for automated path 
planning for unmanned air vehicles (UAVs) and 
guided munitions. Evolutionary programming 
approaches provide an alternative to classical 
functional optimization methods with the 
capability of incorporating a variety of 
optimization goals, while tolerating vehicle 
constraints. In this work, we introduce an 
evolutionary flight path planning algorithm 
capable of mapping paths for free-flying vehicles 
functioning under several aerodynamic 
constraints. An air-to-ground targeting scenario 
was selected to demonstrate the algorithm. The 
task of the path planner was to generate inputs 
flying a munition to a point where it could fire a 
projectile to eliminate a ground target. Vehicle 
flight constraints, path destination, and final 
orientation were optimized through fitness 
evaluation and iterative improvement of 
generations of candidate flight paths. 
Evolutionary operators comprised of one 
crossover operation and six mutation operators. 
Several cases for air-to-ground vehicle targeting 
have been successfully executed by the 
evolutionary flight path planning algorithm under 
challenging initial conditions. A feasible path is 
typically found rapidly (<100 generations), with 
further optimization (~3000 generations) insuring 
a strike very near target center. These results 
clearly demonstrate that evolutionary 
optimization using can achieve flight objectives 
for air vehicles without violating limits of the 
aircraft. 

I. Introduction 
Autonomous free-flying entities such as 

unmanned aircraft, cruise missiles and other 
precision guided air vehicles are increasingly 
dependent on automatic control. As these 
devices become more sophisticated in their 
capabilities, corresponding task directives and 
potential applications also grow in complexity, 
thus demanding fast, efficient and independent 

""corresponding author: rxv@po.cwru.edu 

path planning systems applicable to entire 
families of such agents. One highly relevant 
scenario is the need for automated path planning 
within critical vehicle constraints for unmanned 
air vehicles (UAVs) and guided munitions for 
target-seeking and/or goal orientation operations. 
Necessary features of such a system include: 
rapid autorouting capability, incorporation of 
vehicular and environmental constraints into path 
generation, and the ability to efficiently perform 
path planning functions within strict time 
constraints'. 

Current path planning technologies do not fully 
achieve future demands for guided air vehicles1' . 
Specific deficiencies include: 
• Many autorouters only address higher-level 

path planning behavior; vehicular dynamics 
and constraints are not fully considered, 

• Many existing path planning methods are of 
little use in path planning in situations 
involving vehicle constraints, resulting in 
bottle-necks with many local minima , 

• The need for autorouting for 6 degree of 
freedom (dof) platforms under strict vehicle 
constraints has not been fully addressed4, 

• Conventional path planners typically use a 
fixed path representation; such methods cannot 
self-adjust to problem complexity , 

• Accounting for time-varying or non- 
holonomic constraints in dynamic 
environments often hampers planner 
performance, 

• Optimization criterion often are complex and 
subjective; many traditional planners optimize 
only with respect to the shortest path5 without 
full consideration of critical constraints. 

Global planning approaches ' are in general 
complete in that if a path exists, it will be found, 
yet the computational expense grows with 
vehicle complexity. Although local methods 
such as potential field procedures 8'9 are more 
efficient,  they  can become  trapped  in  local 
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minima. In general, functional optimization 
methods have tendencies to become trapped 
within local minima, and may be difficult to 
implement on free-flying platforms since 
complexity grows exponentially with vehicle 
degrees of freedom10. Furthermore, enumerative 
techniques are susceptible to inefficiencies when 
dealing with complex vehicles due to size of 
search space. 

A class of heuristic searching methods based 
upon simulated evolution known broadly as 
Genetic Algorithms (GA) has become very 
popular lately for discrete optimization problems 
characterized by many local minima in 
nondifferentiable, discontinuous or constrained 
problem spaces. These evolutionary techniques 
are population-oriented: successive populations 
of feasible solutions are generated in a stochastic 
manner following laws similar to that of natural 
selection. This contrasts standard programming 
techniques that normally follow a single 
trajectory repeatedly until a satisfactory solution 
is reached. In the evolutionary approach, 
multiple stochastic solution trajectories proceed 
simultaneously, allowing various interactions 
mimicking genetic exchange, thus progressing 
towards one or more regions of the search space. 
These approaches are justified by the fact that a 
population-oriented algorithm automatically 
stores a time-sampled replica of the profile of the 
function being optimized, providing important 
clues to its global structure. Additionally, 
evolutionary approaches can also easily be 
implemented on a massively parallel machine to 
achieve super -linear speed up with the number 
of processors. 

Many previous path planners cannot 
accommodate a variety of optimization criteria or 
allow changes in these standards without 
changing the characteristics of the planner or the 
search map. Evolutionary approaches, on the 
other hand, can handle a variety of optimization 
goals and are very tolerant to the form of the 
evaluation function. Functions to be optimized 
need not be differentiable or continuos. 
Evolutionary path planning approaches are also 
flexible to changes in environment and are robust 
to uncertainties. 

Evolutionary approaches provide an alternative 
form of path generation capable of incorporating 
a variety of optimization goals, while tolerating 
vehicle constraints. These benefits have lead to 
the development of several evolutionary path 
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planners (a brief summary and reference list is 
presented in5 ). In this work, our past 
research5'"'12 in multi-dimensional path planning 
is expanded to create an evolutionary flight-path 
planning algorithm capable of mapping paths for 
free-flying vehicles functioning under a host of 
aerodynamic constraints. The generation of flight 
trajectories for air-to-ground targeting for 
autonomous munitions is selected as a 
benchmark situation to demonstrate the utility of 
the path planning genetic algorithm. 

The organization of this paper is as follows: in 
Section II the dynamics of a candidate 
autonomous air vehicle are modeled, Section III 
gives a description of the representation used for 
encoding paths, Section IV enumerates work 
performed within evolutionary evaluation 
function to incorporate aerodynamic constraints 
and flight objectives, Section V delineates the 
genetic operators of the path planning algorithm, 
Section VI summarizes the operation of the path 
planner for air-to-ground target seeking, Section 
VII presents results of the algorithm when 
implemented on a candidate aircraft, and Section 
VIII briefly discusses conclusions, ongoing, and 
future work. 

li. frj-y vehicle Model 
Development 

The general equations of motion of a 6 degree 
of freedom (dof) rigid airframe may be described 
through   Newton's   Laws   in   terms   of   the 
nomenclature enumerated in Table 1: 

F = m '#    « 
dt 

+ (OXS 
(la,b) 

M = -h—'- + cox{Ico) 
at 

Aerodynamic forces acting on an air vehicle, 
are often expressed in the form13: 

f.-\.c,ewA (2aib) 
«,=[C.(?)J[ßJ 

Where both [C] matrices are dimensionless 
coefficients which are functions primarily of 
aircraft state z = (V, a, ß, p, q, r), and each [Q] 
is a product of flight dynamic pressure, and 
aircraft reference area or characteristic length, 
respectively. The system inputs, u(t), include 
aerodynamic forces developed by actuator 
deflections and propulsive forces, and 
environmental effects, whose impact on the air 
vehicle may be reflected in state space form as: 
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Variable Parameter Description 

F Total force vector acting on airframe 

M Total moment vector acting on airframe 
7 Position vector of mass center of airframe 
S Angular velocity of airframe (body-fixed) 
m Air vehicle mass 
I Inertia matrix of air vehicle 

8p, 5q, 8r Elevator, aileron, and rudder deflections 
V Absolute vehicle airspeed (global) 
u Forward velocity (body centered) 
V Side velocity (body centered) 
w Downward velocity (body centered) 
a Angle of attack^an'^w/u) 

B Sideslip angle=tan"'(v/«) 
P Angular roll rate 

<? Angular pitch rate 
r Angular yaw rate 
V Euler Angle 3 
9 Euler Angle 2 

♦ Euler Angle 1 
xe X position (global) 
ye Y position (global) 
H Altitude (global) 

Table   1  - Nomenclature  (global  refers to 
ground coordinate system, body-fixed refers to 
inertial frame attached to aircraft) 

z = Az+Bu (3) 
The essential mode of operation for air vehicle 

autopilot systems is to move control surfaces (5p, 
8q, 8r) in response to desired roll rate (p), pitch 
rate (q), and yaw rate (r) commands. Typical 
operation allows equations (1), (2) and (3), when 
operating under specific constraints, to be 
linearized in the form of (3). 

Similar to the autopilot the evolutionary 
algorithm also plans functions based upon a 
linear airframe response. The actual control 
inputs to the system (i.e. control surface 
deflections) are generated and modified by the 
path planner through the evolutionary path 
generation process to achieve desired targeting 
objectives. Additionally, since the genetic 
algorithm also changes the time of each control 
input, the minimum time step is constrained by 
the frequency response characteristics of the 
actuators themselves. These inputs are integrated 
over time to produce the time history of the state 
variables, including aircraft roll, pitch and yaw 
rates. During real-time operation, these rates 
directly form inputs to the autopilot, which then 
directs the aircraft to follow the trajectory 
developed by the genetic algorithm. 
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As a case study for evolutionary flight path 
generation, an air-to-ground targeting scenario 
was chosen. In this scenario, a small airborne 
autonomous munition fires a kinetic energy 
projectile straight downward from its center of 
gravity to strike a ground target. The firing 
action of the munition is depicted in Figure 1, 
with global and body fixed reference frames 
delineated, along with the projectile trajectory. 
The task of the path planner was to generate a set 
of inputs which would fly the munition to a point 
where the projectile trajectory would strike as 
near as possible to the target center For realistic 
depiction of targeting scenarios, the aircraft was 
forced into "glide mode" (forward thrust could 
not be generated), to provide a state analogous to 
endgame situations where engines may not 
respond quickly enough to reach a target at close 
range. 

Figure 1 
To develop realistic flight model path planning 

tests, the Flight Dynamics and Control Analysis 
(FDC) 1.2 toolbox for the MatLab/Simulink 
environment was used1 . The FDC toolbox 
includes a complete non-linear model of a DHC- 
2 Beaver; a light, single engine, high wing 
aircraft. This model was modified to improve 
responsiveness, and more closely resemble the 
flight characteristics of autonomous airborne 
munitions. 

The linearized model comprised of equations 
(1), (2), and (3) was implemented within the 
genetic algorithm to evaluate system flight 
performance during evolutionary optimization. 
The path planner modified control surface inputs 
(limited by the validity of the linearized model), 
and time step between control surface inputs 
(limited by actuator responsiveness) to produce 
an effective flight path to the target. In flight, 
roll, pitch, and yaw rates resulting from the 
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control inputs can be fed directly to an autopilot 
to guide the air vehicle along the path. 

Ill- Multi-resolution Flight 
Trajectory Representation 

A fundamental aspect of any heuristic 
optimization is the specific structure of encoded 
information enabling iterative progression 
towards an ideal solution. For air vehicle flight 
trajectory generation, a multiresolution binary 
tree representation is introduced such that 
complex paths of higher dimensionality may be 
portrayed in a form allowing efficient 
evolutionary reproduction and mutation to 
produce entire generations of candidate flight 
trajectories. 

Multiresolution methods have been used in 
signal and image processing to provide efficient 
data representation adapted to the complexity of 
the signal content, as well as in our own past 
work5' u2 for path planning of autonomous 
robots with less stringent motion constraints. 
Furthermore, tree-like representations have seen 
extensive use in genetic programming15, 
particularly in situations where mutation is relied 
on to play a significant role in evolution 16'17'18. 
The algorithm implemented for automatic 
routing of autonomous air vehicles in this work 
utilizes a related approach to path representation. 
In addition to accurate path encryption, the use of 
iterative multiresolution path representation can 
greatly reduce expected search lengths for 
trajectory generation. If a successful path is 
found early in the search hierarchy (at a low level 
of resolution), further expansion of that portion 
of the path search is not necessary; the structure 
of the binary tree is thus internally optimized 
based upon problem complexity. This advantage 
is mapped into the search space and the string 
length is adjusted accordingly, enhancing 
precision and computational efficiency. 

Within the binary tree, air vehicle flight paths 
are represented by hierarchically ordered nodes, 
each containing a specific set of control surface 
deflections, Ai„ = (8p„, 8qn, 5rn), accompanied by 
a time shift, Atn, to form a complete array of 
parameters, Aun, at each node. Atn represents the 
delay from the last input Ain_!, to the current input 
Ai„. The tracking of all such nodes maps the 
total set of control inputs and time intervals 
piloting the air vehicle over the flight trajectory. 
These nodes are organized in a tree-like 
structure, as shown in the left section of Figure 
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2. The complete path from start to finish is 
reflected by this binary tree, with the n node 
corresponding to the input Au„, which is 
comprised of the control surface deflection Ai„, 

occurring at the time t = y\ At, ■ 

The in-order traversal of this binary tree 
provides a sequence of knot points representing 
all control inputs over the flight trajectory from 
start to finish, as described by each Pj in the right 
section of Figure 2, shown with start (S) and end 
(G) points. Intermediate nodes in the figure are 
generated randomly, and may subsequently be 
perturbed, inserted, or removed to modify and 
optimize the path. The sequence of nodes 
defined by the bottom of Figure 2 is: (S =start, G 
=gOal):S-P4-P3->P5->P2->P6->Pl-P8-*-P9->P7-" 
G. 

*V 

© ®Au„ 

®    © ®               / 
Ail.      All« Au„          © 

Figure 2 

The trajectories represented through 
multiresolution binary trees do not correspond 
directly to actual aircraft flight paths; rather they 
decode into a set of piloting commands, which 
may be passed directly to an autopilot for the air 
vehicle to maneuver itself along the flight 
trajectory. Large arrays of candidate flight 
trajectories may be created rapidly using 
multiresolution path representation by generating 
and ordering random sets of control surface 
inputs (Ai), along with random time intervals (At) 
between inputs. Provided each Ai falls within 
acceptable control surface deflections, and each 
At is greater than or equal to the system actuator 
delay, the flight path will be achievable within 
vehicle actuator constraints. Vehicle flight 
dynamics and constraints, as well as path 
destination and final orientation, may be 
optimized through proper fitness evaluation and 
iterative improvement of collections of 
multiresolution flight paths. 

IV.  Evolutionary Fitness 
Evaluation 
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The evolutionary scoring of candidate flight 
trajectories demands several adjustments in the 
manner in which genetic algorithms are typically 
implemented. The primary hindrance lies in the 
fact that evolutionary optimization is classically a 
static process; dynamic constraints incurred by 
time dependent variables are not typically 
considered during evolutionary optimization. 
Indeed, the incorporation of time dependent 
dynamics such as those encountered in flight 
path planning requires the inclusion of entirely 
new sets of criteria for optimization. Classic 
methodologies, such as shortest path 
optimization or energy minimization, are 
inadequate because it is difficult to incorporate 
constraints such as those presented by the flight 
envelope. Interdependent variables whose 
parameters are fluctuating rapidly with time must 
all be optimized simultaneously. This execution 
subsequently requires mathematical integration 
over several candidate solutions within the 
evolutionary process. Novel methods of 
optimizing within the constraints of flight critical 
parameters, while still maintaining aircraft 
stability and attaining flight goals, are 
consequently vital to achieving evolutionary 
flight trajectory generation. Fitness evaluation 
functions therefore must be capable of 
accounting for a host of such factors 
simultaneously when scoring paths for 
evolutionary operation to improve future 
generations of solutions. 

In order to functionally evaluate the fitness of 
multiresolution flight trajectories, actuator 
commands represented by the binary tree must 
first be decoded into a mapping of the actual 
flight motion of the aircraft itself. The decoded 
motion map may then be used to assess flight 
envelope violations, aerodynamic forces and 
constraints, and success in attaining flight 
objectives. Decoding requires a flight model of 
the air vehicle (Section II), an n node 
multiresolution path of flight inputs (Aui; i=l,..,n) 
(Section III), the aircraft's initial state (zo), and 
passive actuator position (Aio). 

The decoding process begins through the 
generation of a map of the aircraft's motion from 
its initial state, to the time (Ati) of the first 
actuator input (Aii) by: 1) solving and integrating 
equation (3) from t^O-^At) with input u=Ai0 to 
obtain all aircraft states (z) over the interval, 2) 
solving equations (2 a & b) using the derived 
states (z) to determine all applied forces (F) and 
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moments (M) from t=0—>Ath and 3) solving and 
integrating equation (1 a & b) to obtain a global 
map of all aircraft translational positions (s) and 
angular orientations (co) from t=0—»At]. The end 
result of this decoding is the set of all states, 
global positions, and angular orientations of the 
aircraft following the flight trajectory from 
starting position to the first node on the 
multiresolution path. This process is repeated 
from node 1 to node 2 for t=Ati->At|+At2, with 
the actuator input u=Aii, and continues until the 

j=n-\ j=n 

interval t= VA/ —»VA?, with input u=Ain-i 

is reached covering node (n-1) to node n. In the 
final decoding step, the actuator delay, At,™,, is 
added to the time at node n to provide integration 
limits from node n to end node G for the final 
input Ai„, hence providing a map of aircraft 
transnational positions, angular orientations, and 
flight states over the entire multiresolution flight 
path. 

Based upon the generated flight map, the 
aircraft path planner performs evolutionary 
fitness evaluation in three stages for the inclusion 
of all vital optimization criteria: Stage 1 
evaluates flight paths purely in relation to 
maintaining flight stability and avoiding flight 
envelope violations, Stage 2 assesses path fitness 
in terms of non-critical flight parameters; i.e. 
constraints whose violation will not cause loss of 
aircraft control, yet whose limits ideally should 
not be exceeded, while Stage 3 analyzes the path 
with respect to flight objectives by combining 
three factors: 1) proximity of path to desired 
goal, 2) orientation of aircraft, and 3) time of 
flight. The total evolutionary fitness for a given 
path is the weighted sum of scores from each 
stage, each of which is scaled according to its 
importance to flight goals. 

In its implementation for ground vehicle 
targeting, a flight envelope consisting of limits 
on all flight parameters (V, a, ß, p, q, r, \|/, 0, <|>, 
Xe, ye, H) was developed based upon the 
aircraft's dynamics; flying within these limits 
maintains flight control and stability. Stage 1 of 
fitness evaluation analyzed the decoded flight 
map for violations of these limits providing 
fitness score SI: 

=* 
*,= 2>, (4) 
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where the summation represents the total number 
of states whose limits were exceeded, k is the 
amount of states, and pi is a scaling constant for 
normalization. For these experiments, the only 
relevant parameter in Stage 2 fitness were 
altitude limits given by: 
52 = [v]*p2 (5) 
where the quantity in brackets reflects flight path 
altitude violations, and p2 provides 
normalization. The air vehicle ideally should not 
infringe these altitude limits (e.g. too low 
exposes the plane to ground fire, too high causes 
uncertainty in targeting), but in the event that no 
alternative options exist, these limits may be 
exceeded. 
Three factors comprised the Stage 3 fitness: 
53 = D(p) * p31 + 0(p) * p32 + T(p) * p33    (6) 

D(p) measures the distance (Euclidean norm) 
from the targeting point of the vehicle to the 
center of the target. 

D(p)= f-c (7) 

/ 
xe/+Hf*' 

(8) 

where c is a vector containing the target center 
coordinates, and f is a vector of the current target 
of the aircraft given by: 

(tanö^ cos\j/f +tan07 sin^) 

(tan^ cos\frf +tan0/ sim/zy) 

The subscript f indicates states at the final point 
of flight and the A symbol represents the Euler 
angles transformed into angular orientations on 
the body fixed frame. 

Since a hit from directly above the target is 
preferable to one at an angle, 0(p) is included in 
Stage 3 as: 

0(p) = tan 

l~I.N-l-l 

H 
(9) 

where d is the vector difference between the 
target center and the point directly under the 
aircraft projected onto the plane of the target. 
0(p) thus approaches 0 as the angle or the target 
trajectory approaches 90°. The final fitness 
measure in Stage 3 T(p) is simply the normalized 
time of flight. Note that p3i, p32, and p33 are 
scaling constants. 

Therefore, for a path (p) represented by an 
ordered set of nodes from beginning to end, the 
total evolutionary fitness score, F(p) is defined as 
the sum of each of the stages, or: 
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F(p) = Sl+S2+S3 (10) 

3L EvQlutipngirv Qper?fr<?rg 
The use of multiresolution representation with 

variable length encoding for air vehicle 
trajectories introduces many unique opportunities 
for evolutionary operation with respect to the 
binary tree structures. Given that each node Au, 
represents a set of control inputs occurring at a 
specified time with respect only to the preceding 
node, intermediate nodes may be freely 
interchanged with those from binary trees of 
other candidate trajectories, allowing infinite 
crossover possibilities between individuals 
within a generation. Furthermore, this same 
representation enables a host of mutation 
possibilities; the insertion and removal of nodes, 
as well as random or directed perturbation of 
existing nodes, may be applied without any loss 
of generality in path representation. Evolutionary 
operators utilized by the flight path planner 
expanded upon our past work to generate one 
crossover operator, five random mutation 
operators, and one "intelligent" mutation 
operator suitable for aircraft targeting trajectory 
optimization. Operators implemented to 
manipulate genetic material encoded within the 
intermediate nodes of trajectory representation 
consisted of: 
• Swap-Subtree Crossover: combines two 

paths to reproduce two new ones by selecting 
a node at random from each parent, and 
exchanging subtrees branching from that node 
in their offspring. Figure 3 delineates 
crossover operation, (one parent in white; its 
mate in black), where the "X" marked nodes 
are selected. The binary trees may possess 
different numbers of nodes, and the subtrees 
swapped may have different topologies and 
could map different portions of corresponding 
parent trees. The practical impact of this 
operation will be to exchange sets of inputs 
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V 

between candidate paths. 
Perturb 1 Mutator: randomly selects a node 
(n) in the binary tree and perturbs its contents 
(Aun) a small amount. This operator allows 
for fine tuning of acceptable, but not ideal, 
paths by making small changes in control 
surface deflection and input time for path 
modification. 
Perturb 2 Mutator: randomly selects a node 
(n) in the binary tree and perturbs its contents 
(Aun) a large amount. This mutation makes 
significant alterations in flight trajectory, 
ideally to change an infeasible path into a 
feasible one, or to move an inaccurate path 
much closer to its target. 
Swap-Node Mutator: exchanges the 
contents (Au) of two randomly picked nodes 
in the binary tree, shown in Figure 4. 
Insert-Node Mutator: creates a new 
intermediate path input (Au), by inserting a 
node into the binary tree, shown in Figure 5. 

• Flip Mutator: changes the sign of Ai within a 
randomly picked node 

• Fix Mutator ("intelligent" mutation): operates 
in a similar manner to the Perturb 2 Mutator, 
except that its operation is not random. Within 
the selected binary tree, inputs Au are changed 
specifically in relation to states violating flight 
constraints. For example, a binary tree 
mapping a flight path with too great a pitch 
angle G, will be fixed by manipulating 
deflections within Ai such that 8 is reduced for 
that section of the flight. The operation of this 
mutation is designed to fix input/output 
relationships of completely infeasible paths by 
altering the input and time of input, forcing the 
path into feasible regions. 

VI. Evolutionary Target 
Seeking Implementation 

Process 
Figure 6 outlines the implementation process 

for   the   evolutionary   generation   of   ground 
targeting trajectories for air vehicles.     Since 
certain evolutionary operators (Section V) are 
best suited to correcting infeasible paths, while 
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Evolutionary Target Seeking Process for Autonomous Air 
Vehicles 

Genetic 
Algorithm 

Generate initial population of 
paths based upon inputs and 

time intervals: u=(5p,8q,8r,At) 

Calculate aircraft state (x) along 
each path in population from 

z=&+Bu  given initial x and 
time history for u 

Calculate global translational positions 
(s) along each path from aerodynamic 

forces, F = M s   for s=(x,y,z) and 
angular orientation (oj) from 

aerodynamic moments, T = lw   for 
«TvVAW'D 

Calculate aerodynamic forces (F) 

frornr7 = Cfz and aerodynamic 

moments (T) frorrff" =CW z 

Check each path for flight 
envelope violations - record results 

Check each path for target kill 

Score each path based upon flight 
envelope violations and kill probability 

Was a path achieving target kill within 
flight envelope evolved? 

Alter mutation type and 
probabilities 

Maintain initial mutation types and 
probabilities 

Mutate and breed paths based on fitness 
score to create new generation of paths 

Figure 6: Evolutionary Implementation Process 
others optimize feasible paths for greater 
accuracy, selection probabilities of each are 
adjusted once a target strike is achieved. 

Vt* i Implementation Results 
Utilizing the fixed wing aircraft model (Section 

II), evolutionary fitness scoring routines, and 
operators, the multiresolution aircraft path 
planning algorithm was implemented for optimal 
trajectory generation for ground target seeking. 
The movements of three control surfaces 
(elevator, aileron, and rudder) were optimized to 
develop a trajectory for the vehicle to reach a 
position such that its firing trajectory would 
strike a circular land based target of 2.5m radius. 
Actuator delay was set at Atmin=0.25 sec, with 
input allowable at t=0, and an initial V=45 m/s. 
Elementary targeting scenarios were run for very 
simple targeting tasks in a LINUX C++ 
programming environment. Following these 
simple cases, the air vehicle was assigned a set of 
challenging initial conditions including: ß and 9 
directed away from its target, and a very near its 
allowable limit (an aircraft passive state). 
Sample results for initial populations varying 
from 50 to 70 individuals, a mutation probability 
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of 0.65, and a crossover probability of 0.35 are 
shown in Figures 7 to 10. 

Figure 7 shows frontal, lateral, and aerial 
views of critical munition positions along the 
path evolved to strike a target 30m directly in 
front (X dimension) and 100 m below (Z 
dimension) the air vehicle's initial position. 
Dashed lines in the lateral and top views show 
the projectile trajectory. For this situation, the 
path planner created a trajectory piloting the 
vehicle to an orientation allowing accurate target 
strike (0.027m from target center) in 0.59 sec of 
flight time.  The  angular  orientations  of the 
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aircraft through flight (in radians) versus time are 
plotted in the lower right corner, while a 
logarithmic (base 10) plot of the best candidate in 
each generation versus the generation count is 
shown in the lower left (the flat line indicates the 
minimum fitness score necessary to strike the 
target). 

Figures 8, 9, and 10 show successful targeting 
paths for varying goal positions lateral to the 
aircraft (Y dimension). The target is not shown 
in the aerial views in Figures 9 and 10 for better 
visualization of the aircraft, although the 
viewable portion of  the projectile trajectory is 

IC : Initial a, P, 9, 2.5m rad.targ 
Evolutionary Evaluation: 500 Ge 
Output: 0.59 sec flight, target pt. 
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IC: Initial a, ß, 9, 2.5m rad. target 30m x, 5m y 
Evolutionary Evaluation: 3000 Generations, Target acquired @~2000 
Output: 0.63 sec flight, target pt. 2.35m off center 
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IC: Initial a, ß, 9,  2.5m rad. target 30m x, -5m y 
Evolutionary Evaluation: 3000 Generations, Target acquired @~80 
Output: 0.47 sec flight, target pt. 0.09m off center 
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Figure 9 
IC: Initial a, ß, 9,   2.5m rad. target 30m x, 10m y 
Evolutionary Evaluation: 3 000 Gene rations, Target acquired @~100 
Output: 0.45 sec flight, target pt. 0.01m off center 
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Figure 10 

still shown. Specific information for each run 
including: target position, generations necessary 
for target acquisition, total number of 
generations, time of flight, initial conditions and 
final strike point is enumerated at the top of each 
figure. In each of these runs, the target position 
forced the angular orientations allowing accurate 
target strike; most notably in Figure 10 where 
roll and pitch angles are combined to achieve a 
firing trajectory 0.01m off a target center 10m 
lateral to plane starting position. 

VIII.  Conclusions 

The    results    presented    in    Section    VII 
demonstrate that evolutionary flight path 
optimization using multiresolution representation 
can achieve flight objectives without violating 
limits of the aircraft. Several cases for air-to- 
ground vehicle targeting have been successfully 
executed under challenging initial conditions. In 
most situations, a feasible path is found rapidly 
(<100 generations), although further optimization 
is necessary to insure a strike very near target 
center. Future work plans include planning for 
target motion through optimization of intercept 
point, while current efforts involve the training of 
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neural networks to reproduce generated flight 
trajectories for instantaneous reaction. 
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