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INTRODUCTION: 

This work develops new functional diagnostics and treatments for Parkinson's disease 
(PD) from pre-clinical experiments in primate models of neurotoxically induced PD. Given that 
(1) dopamine (DA) neurons die and a stable PD-like behavioral syndrome appears in primates 
after chronic administration of a neurotoxin: l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine 
(MPTP), (2) loss of dopaminergic axon can be diagnostically detected by positron emission 
tomography (PET) and ligands to label striatal DA reuptake sites, (3) neural transplantation may 
replace neurotoxically eliminated neurons and reverse PD-like symptoms and drug induced side 
effects, we will now determine how implanted fetal porcine neural DA and control non-DA cells 
can repair neural systems and reverse behavioral deficits. Pallidotomy is tested as a parallel 
therapeutic method. We will measure DA receptors and cerebral oxidative glucose metabolism 
by PET and neuroanatomy, hemodynamics, levels and profiles of brain tissue neurochemicals by 
MRI/MRS in rodent and primate animal models. The data-sets from PET and MRI/MRS are 
correlated with behavioral and post-mortem studies. This project develops 1) objective in vivo 
measurements of brain damage associated with neurotoxins and 2) therapies for neurotoxically 
induced PD. 

BODY: 

We describe below the research accomplishments associated with the approved Statement 
of Work, which is copied here in bold. The publications and figures referenced are attached in 
the Appendix. 

STATEMENT OF WORK 

WE WILL DETERMINE AND DEVELOP NOVEL DIAGNOSITC CRITERIA FOR 
ACUTE NEUROTOXICITY AND LONG-TERM DEGENERATION OF THE 
DOPAMINE SYSTEM (OBJECTIVE 1) 

Starting in year 1, and continuing through year 3, we determine in MPTP induced primate 
parkinsonism, the consequences of acute neurotoxicity (ANT). The following questions are 
answered in this sequence: 

Step 1.1. Are there changes in dopamine reuptake sites or dopamine receptors in ANT? 

Our results (Fig. 1) indicate that there is a rapid loss of dopamine reuptake sites and 
corresponding upregulation of dopamine receptors in ANT. (Year 1 and 2, Brownell et al. 2000, 
Soc. Neurosci. Abstract, appendix). 

Step 1.2. Is there any sign of oxidative stress in ANT? 

Our results (Fig. 2, 3) indicate that there are dramatic signs of oxidative stress in ANT, 
which (see below) continues after chronic loss of dopamine neurons. (Brownell et al. 1998, 1999, 
2000, appendix). 
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Step 1.3. Are there changes in tissue neurochemical profiles in ANT? 

Our results indicate that there are initial progressive changes in the neurochemical profile. 
There are increases in choline and decreases in NAA, there are parallel increases in lactate and 
macromolecules paralleling Parkinson's disease. (Brownell et al. 1998, appendix). In addition, 
we have found more evidence of neuroinflammation (Cicchetti et al. 2000, Soc. Neurosci. 
Abstract, appendix). 

Step 1.4. Are there hemodynamic changes observable in ANT? 

Yes, see Fig. 4. 

Step 1.5. Is there any change in behavioral locomotor activity in ANT? 

Our results indicate that there is a rapid loss of locomotor activity which parallels the 
neurotoxic syndrome. However, this change does not become overt Parkinsonism until a chronic 
stage of at least 70-80% loss of dopamine. (Brownell et al. 1998, 1999, appendix). Transient or 
few exposures to MPTP cause transient behavioral dysfunction, but incremental DA fiber loss 
(Fig.5A,B,C) 

The specific biological questions during longer-term degeneration are studied in years 2-4: 

Step 1.6. Does the initial DA loss trigger metabolic and/or neurochemical changes over time 
in non-DA systems? 

Dopamine loss beyond 60-80% in caudate-putamen triggers long-term changes in non- 
dopamine systems. After MPTP , there are MRI/MRS changes seen two and a half years after 
the neurotoxin exposure. Similarly, the initial loss of dopamine induces a cascade of 
degenerations that persist for and terminate years after the initial toxic exposure. (Brownell et al. 
1998, 1999, 2000, appendix). Glial or macromolecular MRS changes also normalize after end- 
stage (severe) MPTP toxicity. 

Step 1.7 As an endpoint of stable Parkinsonism longitudinal studies will be correlated with 
clinically relevant behavior in a slowly progressing primate Parkinson disease model. 

These studies are ongoing and indicate that Parkinson's disease is mirrored very closely 
by MPTP toxin treatment (Brownell et al. 1999,2000; Isacson et al. 2000). 

The PET studies using nCFT show the binding to dopamine reuptake sites and UC- 
raclopride to dopamine D2 receptors. Oxidative stress was observed by PET studies of oxidative 
metabolism (oxygen extraction fraction, oxygen metabolism and glucose metabolism) as well as 
MRS studies of lactate/lipid peaks. MRS studies simultaneously show a number of tissue 
neurochemicals: choline, creatine, N-acetylaspartate, myo-inositol. 
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IN EXPERIMENTAL PD MODELS, WE WILL DETERMINE THE MECHANISMS 
BEHIND EFFECTS OF THERAPEUTIC INTERVENTIONS WITH FETAL NEURONS 
OR PALLIDOTOMY (OBJECTIVE 2) 

Therapeutic interventions will be investigated in combination with PET and MRI/MRS 
and locomotor activity studies. Initiated in year 1, but continuing through year 4 we will 
answer the following biological questions in a primate PD model: 

Step 2.1. Is there change in dopamine reuptake sites or dopamine receptors after 
transplantation with DA or non-DA neurons? 

One animal has had transplants 2 1/2 months ago. It will receive PET scans using CFT 
and raclopride. 

Step 2.2. Has oxidative stress recovered after transplantation with DA or non-DA neurons? 

These studies are in progress. 

Step 2.3. Are there changes in tissue neurochemical profiles after transplantation with DA 
or non-DA neurons? 

These studies are in progress. 

Step 2.4. Is there vascular arborization after transplantation with DA or non-DA neurons? 

These studies are in progress. 

Step 2.5.1s there change in locomotor activity after transplantation with DA or non-DA 
neurons? 

These studies are in progress. 

Step 2.6. Does pallidotomy effect on regional blood flow, oxygen extraction fraction, oxygen 
or glucose metabolism? 

These studies are in progress (Fig. 6, 7, 8). 

Step 2.7. Does pallidotomy have any effect on dopamine reuptake sites or dopamine 
receptors? 

These studies are in progress (Fig. 6, 7, 8). 

Step 2.8. Does pallidotomy have any effect on neurochemicals? 

These studies are in progress (Fig. 6, 7, 8). 
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Step 2.9. Does pallidotomy effect on behavioral locomotor activity? 

These studies are in progress (Fig. 6, 7, 8). 

Step 2.10. The endpoint correlation of parameters derived of imaging studies with 
behavioral studies and post-mortem histology. 

These studies are in progress.   Preliminary data indicate that the imaging studies are 
highly predictive of the postmortem analysis of remaining or degenerated dopamine fibers. 

KEY RESEARCH ACCOMPLISHMENTS: 
1. The stereotaxic precision surgery using CT-MRI fused imaging and spatial algorithms allow 

for transplantation and surgical access for the substantia nigra, subthalamic nucleus and 
globus pallidus (Fig. 7, 8). 

2. Acute neurotoxic exposure to MPTP usually has a reversible behavioral outcome (movement 
analysis) (Fig. 5A, B, C). 

3. Repeated neurotoxic exposure caused incremental neuronal damage that progresses to a 
symptomatic threshold (Brownell et al. 1998, 1999). 

4. Progressive but not transient neurotoxin treatment with oxidative stress using complex I 
inhibitors (toxin: MPTP) creates a syndrome identical to Parkinson's disease in nonhuman 
primates (Fig. 2, 3, Brownell et al. 1998, 1999,2000). 

5. Repeated neurotoxic treatment with MPTP creates loss of dopamine terminals and a 
commensurate up-regulation of dopamine receptors (Fig. 1). 

6. After PD signs have occurred, magnetic resonance spectroscopy (MRS) shows oxidative 
stress and neuroinflammation in the striatum long after neurotoxin exposure (Brownell et al. 
1999, Cicchetti et al. 2000). 

7. Oxidative stress and glial indices eventually normalize after chronic MPTP toxin exposure 
(Brownell et al. 1999). 

8. The loss of dopamine synapses in the caudate putamen after mitochondrial toxin exposure 
fits an exponential curve and an equation resembling cell survival theory (Brownell et al. 
1999). 

9. The MPTP primate model has MRI and MRS spectra similar to Parkinson's patients. The 
predictive value of the equations for this degeneration phenomena provide an opportunity for 
protective treatments (Brownell et al. 1999). 

REPORTABLE OUTCOMES: 

Manuscripts: 

1. Brownell, A.-L., Jenkins, B.G., Elmaleh, D.R., Deacon, T.W., Spealman, R.D., Isacson, O. 
(1998) Combined PET/MRS studies of the brain reveal dynamic and long-term physiological 
changes in a Parkinson's disease primate model. Nature Med. 4, 1308-1312. 

2. Brownell, A-L, Jenkins, B. and Isacson, O. (1999) Dopamine Imaging Markers and 
Predictive Mathematical Models for Progressive Degeneration in Parkinson's Disease. 
Biomedicine & Pharmacotherapy 53, 131-140. 

3. Isacson, O., van Home, C, Schumacher, J.M., Brownell, A.-L. (2000) Improved surgical cell 
therapy in Parkinson's disease: physiological basis and new transplantation methodology. In: 
Parkinson's Disease, Advances in Neurology, D. Calne, ed. Lippincott Williams Wilkins, 
Philadelphia, PA, in press. 
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4. Chen, Y.I., Brownell, A.-L., Galpern, W., Isacson, O., Bogdanov, M., Beal, M.F., Livni, E., 
Rosen, B.R., Jenkins, B.G. (1999) Detection of dopaminergic cell loss and neural 
transplantation using pharmacological MRI, PET and behavioral assessment. Neuroreport 
10,2881-2886. 

5. Costantini, L.C. and Isacson, 0.(1999) Dopamine neuron grafts: development and molecular 
biology. In: Dopamine Neuron Development, U. di Porzio, R. Pernas-Alonso and C. Perone- 
Capano, eds., R.G. Landes Company, Georgetown, pp. 123-137. 

6. Fink, J.S., Schumacher, J.M., Ellias, S.L., Palmer, E.P., Saint-Hilaire, M., Shannon, K., Penn, 
R., Starr, P., van Home, C, Kott, H.S., Dempsey, P.K., Fischman, A.J., Raineri, R., Manhart, 
C, Dinsmore, J., Isacson, O. (1999) Porcine xenografts in Parkinson's disease and 
Huntington's disease patients: tentative outcomes. Cell Transplant. 9, 273-278. 

7. Isacson, O., Costantini, L.C. and Galpern, W.R. (1999) Molecules for neuroprotection and 
regeneration in animal models of Parkinson's disease. In: Central Nervous System Diseases: 
Innovative animal models from lab to clinic, D.Emerich, R. Dean and P.R. Sanberg, eds. 
Humana Press, Totowa, NJ, pp. 187-207. 

8. Isacson, O., Costantini, L., Schumacher, J.M., Cicchetti, F., Chung, S. and Kim, K.-S. (2000) 
Cell Implantation Therapies for Parkinson's Disease Using Neural Stem, Transgenic or 
Xenogenic Donor Cells. Parkinson's Disease and Related Disorders, Elsevier Science Ltd, in 
press. 

9. Björklund, L., Herlihy, D., Isacson, O. (2000) Cell and synaptic replacement therapy for 
Parkinson's disease: current status and future directions. Neuroscience News, in press. 

Abstracts: 

1. A.-L. Brownell, Y.-I. Chen, E. Livni, F. Cicchetti, O. Isacson. Complementary PET studies 
of striatal dopaminergic system and cerebral metabolism in a primate model of Parkinson's 
disease. Soc. Neurosci. 2000. 

2. O. Isacson. Neural cell transplantation in neurodegenerative diseases. XVIII Intl. Congress 
of the Transplantation Society, Rome, 2000. 

3. A.E. Moore, F. Cicchetti, L. Bjorklund and O. Isacson. Behavioral assays for determining 
selective dopaminergic degeneration and regeneration in parkinsonian rat models. Soc. 
Neurosci. 2000. 

4. F. Cicchetti, A.L. Brownell, Y.I. Chen, E. Livni, O. Isacson. Neuroinflammation of the 
nigro-striatal pathway during progressive dopamine degeneration. Soc. Neurosci. 2000. 

5. O. Isacson.    Development of neuronal repair and reconstruction strategies against 
neurodegenerative disease.  Intl. Workshop on Stem Cell Biology and Cellular Molecular 
Treatment, Tokyo, 2000. 

Presentations: 

1999    Austrian Parkinson Society, Vienna (lecture) 
1999    Bonn, Intl. Neuroscience Symposium "Molecular Basis of CNS Disorders" 

(lecture) 
1999    London, The Novartis Foundation "Neural Transplantation in Neurodegenerative 

Disease" 
1999 Miami, 6th National Parkinson's Foundation Intl. Symposium on Parkinson's 

Research (lecture) 
2000 Louisville, "The Neuroscience of Developing Cell Therapies for Parkinson's 

Disease" (lecture) 
2000   Zurich, Intl. Study Group on the Pharmacology of Memory, (lecture) 
2000   Tokyo, Intl. Workshop: Stem Cell Biology & Cellular Molecular Treatment 

(lecture) 
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2000   II Ciocco, Italy, Gordon Research Conference (lecture) 
2000   Rome, Intl. Cong, of the Transplantation Society (lecture) 
2000   Turin, Italy, Cellular & Molecular Mechanisms of Brain Repair (lecture) 

CONCLUSIONS: 

Our transplantation and neurosurgical compensation lesion studies indicate that 
stereotaxic targeting for reproducible access to substantia nigra, subthalamic nucleus and 
pallidotomy requires CT-MRI fused imaging and spatial algorithms. Behavioral and PET/MRI 
studies indicate that low dose exposure to MPTP causes a transient dysfunction, but an 
incremental neuronal decrease of the dopaminergic system. In vivo PET/MRS brain imaging 
shows compensatory changes following toxin exposure. The data provide exact mathematical 
models for which both the degeneration and neuroprotection for PD can be evaluated. Many 
molecules in the environment and potentially administered toxins can simulate the action of 
MPTP, which with repeated exposure could increase the risk of Parkinson's disease. 
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APPENDICES: 

Figures 1-8 and Figure Legends 

Publications: 

1. Brownell, A.-L., Jenkins, B.G., Elmaleh, D.R., Deacon, T.W., Spealman, R.D. and Isacson, 
O. (1998) Combined PET/MRS brain studies show dynamic and long-term physiological 
changes in a primate model of Parkinson disease. Nature Medicine 4, 1308-1312. 

2. Brownell, A-L, Jenkins, B. and Isacson, O. (1999) Dopamine Imaging Markers and 
Predictive Mathematical Models for Progressive Degeneration in Parkinson's Disease. 
Biomedicine & Pharmacotherapy 53, 131-140. 

3. Isacson, O., van Home, C, Schumacher, J.M., Brownell, A.-L. (2000) Improved surgical cell 
therapy in Parkinson's disease: physiological basis and new transplantation methodology. In: 
Parkinson's Disease, Advances in Neurology, D. Calne, ed. Lippincott Williams Wilkins, 
Philadelphia, PA, in press. 

4. Isacson, O., Costantini, L., Schumacher, J.M., Cicchetti, F., Chung, S. and Kim, K.-S. (2000) 
Cell Implantation Therapies for Parkinson's Disease Using Neural Stem, Transgenic or 
Xenogenic Donor Cells. Parkinson's Disease and Related Disorders, Elsevier Science Ltd, in 
press. 

5. Björklund, L., Herlihy, D., Isacson, O. (2000) Cell and synaptic replacement therapy for 
Parkinson's disease: current status and future directions. Neuroscience News, in press. 

6. A.L. Brownell, B.G. Jenkins, D.R. Elmaleh, T.W. Deacon, O. Isacson, Long-Term In Vivo 
PET/MRS Neurodegeneration Studies of a Primate Parkinson's Disease Model, Soc. 
Neurosci. 1998. 

7. A.-L. Brownell, T. van Nguyen, Y-C. J. Chen, F. Cavagna, B.R. Bosen, O. Isacson, B.Q. 
Jenkins. PET and phMRI sutides of dopamine receptor modulation in PD models. Soc. 
Neurosci. 1999. 

8. A.-L. Brownell, Y.-I. Chen, E. Livni, F. Cicchetti, O. Isacson. Complementary PET studies 
of striatal dopaminergic system and cerebral metabolism in a primate model of Parkinson's 
disease. Soc. Neurosci. 2000. 

9. F. Cicchetti, A.L. Brownell, Y.I. Chen, ELivni, O. Isacson. Neuroinflammation of the nicro- 
striatal pathway during progressive dopamine degeneration. Soc. Neurosci. 2000. 

Curriculum Vitae: Dr. Ole Isacson 
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FIGURE LEGENDS: 

Figure 1: 

Dopamine receptors supersensitivity during MPTP in primate brain 

PET imaging of dopamine transporter binding was performed using "C-CFT and D2 receptor 
binding using uC-raclopride. Top panel illustrates control studies conducted before MPTP 
treatments for both dopamine transporter and D2 receptor binding in 3 coronal sections at 20, 15 
and 10mm, anterior to the ear level. Lower panel depicts decreased dopamine transporter 
binding after acute MPTP treatments and elevated binding of D2 receptors post-treatment. 

Figure 2: 

Oxygen metabolism during acute MPTP in primate brain 

Oxygen metabolism was investigated using a steady state inhalation technique of 1502-gas. Six 
coronal sections illustrate the magnitude of the metabolism distribution at two time points after 
acute MPTP treatments with one month interval between measurements. The results show a 
significant increase in oxygen metabolism one month after acute MPTP treatments. Note that the 
color coding may not reflect absolute change. 

Figure 3: 

Glucose metabolism during acute MPTP in primate brain 

Glucose metabolism was investigated using 18F-labelled flurodeoxy glucose. Six coronal sections 
illustrate the magnitude of the metabolism distribution before and during the acute MPTP 
treatment with one month interval between measurements. The experiments illustrate an initial 
reduction in glucose metabolism and normalization after one month. 

Figure 4: 

Blood flow during acute MPTP in primate brain 

Blood flow was investigated using a steady state inhalation technique of C1502-gas. Six coronal 
sections illustrate the magnitude of the flow distribution at two time points during the acute 
MPTP treatment with one month interval between measurements. The images reveal an 
increased blood flow evident one month after the MPTP treatment. 

Figure 5: 

Locomotor activity prior to and during acute MPTP treatments 

Graphs illustrating mean locomotor activity prior to and during acute MPTP treatments on 
maccaca fascicularis, a) #463.97, b) 458.97 and c) 464.97 over several weeks of observation. 
Data for daytime and nighttime activity, collected by the actiwatch activity monitor, are shown. 
Black arrows indicate weeks of MPTP treatments. The actiwatch activity monitor is a small 

11 
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device held in the pocket of a jacket worn by the animal for the duration of the experiment. The 
monitor measures momentum change. 

Figure 6: 

Photograph of the pallidotomy procedure on the maccaca fascicularis #463.97 

Side-view of the animal in the human head frame with electrode attachment in place for single- 
unit recording. Recordings were performed to confirm globus pallidus target sites selected on the 
Radionics stereoplan system shown in Figure 7. 

Figure 7: 

Stereoplan imaging system 

Screen print of Radionics stereoplan imaging system used for the targeting of the brain sites prior 
to the surgical procedure. Top left panel depicts an axial plan of the maccaca fascicularis 
#463.97 brain at a dorso-ventral level where targeted sites are clearly visible. The small cross on 
the monkey's right globus pallidus marks the selected area for lesion. Top right panel shows a 
table of the coordinates used to determine the optimal lesion site. The fourth set of coordinates 
were used for lesioning. Bottom panel depicts coronal (left) and sagittal (right) brain sections 
after selection of the specific points for targeting. The pallidotomy procedure included a single- 
unit recording session to confirm selected coordinates. After confirmation, the lesion electrode 
was inserted into the brain starting at 10mm above target to the exact target zone. At 2mm 
increments, hand movements generated by stimulation at different voltages were observable. At 
target site, hand movements were generated at ideal low voltage stimulation and heat lesion (70 
degrees) for 60 seconds was performed. 

Figure 8: 

Stereoplan imaging system 

High magnification of the axial plan (shown in Figure 8) of the animal's brain at a dorsoventral 
level where targeted globus pallidus sites are clearly visible. 

12 
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We used brain imaging to study long-term neurodegenerative and bioadaptive neurochemical 
changes in a primate model of Parkinson disease. We gradually induced a selective loss of nigros- 
triatal dopamine neurons, similar to that of Parkinson disease, by creating oxidative stress 
through infusion of the mitochondrial complex 1 inhibitor MPTP for 14 ± 5 months. Repeated 
evaluations over 3 years by positron emission tomography (PET) demonstrated progressive and 
persistent loss of neuronal dopamine pre-synaptic re-uptake sites; repeated magnetic resonance 
spectroscopy (MRS) studies indicated a 23-fold increase in lactate and macromolecules in the 
striatum region of the brain for up to 10 months after the last administration of MPTP. By 2 years 
after the MPTP infusions, these MRS striatal lactate and macromolecule values had returned to 
normal levels. In contrast, there were persistent increases in striatal choline and decreases in N- 
acetylaspartate. Thus, these combined PET/MRS studies demonstrate patterns of neurochemical 
changes that are both dynamic and persistent long after selective dopaminergic degeneration. 

In neurological diseases like Parkinson disease (PD), examina- 
tion of the living brain by high resolution positron emission to- 
mography (PET) and magnetic resonance imaging (MR), 
combined with the appropriate pharmaco-kinetic and physio- 
logical analyses, can provide valuable quantitative information 
of altered brain function1'2. Imaging technology depends on the 
limits of imaging (resolution and sensitivity) as well as biologi- 
cal variables (tissue structure and biochemical processes) (refs. 
3-6). In applications involving the human brain, recent 
progress in obtaining localized magnetic resonance spectra 
(MRS) and spectroscopic images has made possible new studies 
of tumors7'8 and infarcts910, as well as examination of normal 
brain physiology11. 

The most prominent pathological change in idiopathic 
Parkinson disease is degeneration of the nigrostriatal- 
dopaminergic pathway associated with severe cell loss in the 

substantia nigra12. In patients, a chief consequence of the loss 
of dopamine (DA) neurons is a substantial decrease in the 
density of dopaminergic synapses and in the concentrations of 
DA in the striatum1314. The striatal loss of DA results in typical 
signs, including akinesia, bradykinesia, rigidity and resting 
tremor. These findings led to experiments aimed at developing 
animal models of PD using neurotoxins; such as 6-hydroxy- 
dopamine1516, selective for DA neurons. Some cases of parkin- 
sonism have developed after accidental intravenous 
self-administration of a meperidine analogue; l-methyl-4- 
phenyl-1,2,3,6 tetrahydropyridine17 (MPTP). The affected indi- 
viduals had symptoms that included severe akinesia, rigidity, 
flexed posture and a resting tremor. The symptoms were associ- 

ated with decreased striatal 18F-fluoro-L-dopa uptake, observed 
using PET18, and considerable loss of pigmented neurons in the 
substantia nigra. 

In primates, administration of MPTP by stereotaxic applica- 
tion in the striatum, intra-carotid injections or repeated intra- 
venous injection over 5-10 days1^21 generally induces a 
substantial DA depletion resulting in a severe akineto-rigid PD 
syndrome (often requiring drug therapy) within weeks after ad- 
ministration of the neurotoxin. In contrast, repeated low-dose 
administration of MPTP over a longer period of time (up to 19 
months) increases the selectivity of the neurotoxin for specific 
subpopulations of DA neurons, more accurately reproducing 
the pattern of neuropathological and neurochemical alter- 
ations observed in idiopathic PD2223. In this chronic adminis- 
tration model, and in idiopathic PD5'24, signs develop gradually, 
and after these signs appear they do not spontaneously recover 
as reported in some acute MPTP models25. This animal model 
therefore represents a stable parkinsonian syndrome, which is 
necessary for the exploration of long-term functional changes 
and experimental therapies. 

The ability of MRS to sensitively measure neurochemicals in 
brain volumes less than 1 ml provides a unique 'window' into 
neurodegenerative processes. MRS is especially useful because 
it allows quantification of different chemicals in a single study, 
which can be repeated many times. Chemicals quantifiable in 
proton MRS include N-acetyl aspartate (NAA), a correlate 
marker for healthy mature neurons26'27. Thus, MRS has been 
used to study neuronal loss, using NAA as a marker2831. Loss of 
NAA may not always correlate with the final destruction of 

1308 NATURE MEDICINE   •  VOLUME 4   •   NUMBER 11   •   NOVEMBER 1998 



ARTICLES 

Fig. 1 PCR-I with ,8F-labeled water in a 'Derenzo-phantom'. PCR-I is a 
high-resolution brain imaging device; the phantom is a solid plastic disk 
with six sectors of holes each of a different radius (r) and separations (s). 
There is uniform distribution of radioactivity in all the sectors, with clearly 
separated images even for holes 2.0 mm in diameter with 10-mm separa- 
tion. Spectra next to each sector describe measured count distribution in a 
single hole in each sector corresponding a volume of 3.14 x (r)2 x 5 mm3 

(the thickness of the slice is 5 mm). Scale bar represents 10 cm, with each 

division being 2 cm. 

neurons, but to some degree may reflect their health3233. In ad- 
dition to NAA, substances such as lactate, glutamate, creatine, 
choline and myo-inositol provide a view of the progression of 
neurodegeneration; for example, in gliosis, glial cells have a 
concentration of cholines (trimethylamines) twice that of neu- 
rons27. Elevated choline concentrations are also found in con- 
ditions involving the proliferation of pathological forms of 
glial cells such as gliomas7'8. The main limitation in using MRS 
is its relative insensitivity compared to PET, because of the low 
signal obtained per molecule. NAA, the most prominent mole- 
cule in a brain proton spectrum, has an approximate concen- 
tration of 8-10 mM in the brain. Even at this concentration, 
MRS yields a low signal-to-noise ratio, which leads to a rela- 
tively low spatial resolution. Recent developments in PET in- 
strument design have greatly improved the performance of 
PET34-35. Theoretically, the resolution of PET is limited by three 
factors: positron range, small angle deviation, and the sam- 
pling achieved by the detectors. For these experiments, 
positron emission tomography studies were done using a PET 
scanning system (PCR-I) equipped with one ring of 360 BGO 
(bismuth germanate) detectors and a computer controlled 
imaging table36. Here we have studied the long-term physiolog- 
ical changes after MPTP-induced neurotoxicity using PET and 
MRS techniques, in a primate model of PD. 

r= 2 mm 
s= 10 mm 

r= 1.75 mm 
s= 12.5 mm 

r= 1 mm 
s= 10 mm 

r= 2.25 mm 
s= 16.7 mm 

r= 2.5 mm J 

r= 3.25 mm 
s= 25 mm 

Functional PET studies 
Using a specially adapted PET scanning system (Fig. 1), we inves- 
tigated chronic neurodegenerative processes over 3 years in a 
Parkinson disease model in five cynomolgus monkeys (Macaca 
fascicularis). We used carbon-11-labeled 2ß-carbomethoxy-3ß-(4- 
fluorophenyl) tropane ("C-CFT, or WIN 35,428) as a tracer for vi- 
sualizing dopamine re-uptake sites located on presynaptic 
dopamine terminals in experimental animals. We compared regional 
accumulation of "C-CFT in the striatum at two different coronal 
brain levels (A20 and A15 from the stereotaxic zero) with its accu- 
mulation in the cerebellum in the weeks before, during and after ad- 
ministration of MPTP; this treatment produces a parkinsonian brain 
degeneration of the dopamine system (Fig. 2). The striatal-to-cere- 
bellar ratio of the "C-CFT accumulation was 4.5 in the pre-MPTP 
study and declined with the onset of MPTP administration. 
Spontaneous locomotor activity decreases in parallel with the 
decline of the "C-CFT uptake23; however, overt Parkinsonian 
signs appear only after locomotor activity and the "C-CFT up- 
take rate decline to about 30% of their pre-MPTP values23. Here 
the putaminal binding potential of "C-CFT continues to decline 
5-8 months after termination of MPTP administration (Fig. 2) 
and remains at this level for 2 years after MPTP treatment (Fig. 
3). Similarly, the "C-CFT levels in caudate continued to decline 
from 55% when MPTP treatment was stopped (Fig. 2) to 21 + 9% 
5-8 months after its termination, and remained at this level for 2 
years (Fig. 3). Thus, functional degeneration of DA terminals 
continues for approximately 5-8 months after MPTP treatment 
ends and then does not spontaneously recover. During MPTP ad- 
ministration, "C-CFT accumulation decreased at a faster rate in 
putamen than in caudate (as seen in PD)(Figs. 2 and 3), indicat- 
ing that DA terminals are more sensitive to MPTP in the puta- 
men than in the caudate. 

MRS studies during neural degeneration 
We used ]H water-suppressed MRS to measure biochemical 
changes in the striatum during MPTP-induced neurodegenera- 

Fig. 2 A long-term follow-up study of comparative distribution of "C-CFT 
in a primate Parkinson disease model. Two representative coronal brain lev- 
els (A20 and A15) are presented before (0), during (4,16,18) and 6 months 
after (24) MPTP treatment. Images are normalized to cerebellar activity and 
represent distribution of specific to nonspecific binding of "C-CFT in the 
brain 60-62 min after administration of the labeled ligand. 
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Fig. 3 PET studies of "C-CFT bind- 
ing (a) and MRS studies of striatal bio- 
chemistry (b) before, during and after 
MPTP-induced neurotoxicity. There 
were irreversible changes of "C-CFT 
binding, choline and N-acetylaspar- 
tate concentration, as well as a 23-fold 
increase in peaks corresponding to 
lactate and macromolecule concentra- 
tion that was reversible. Normalized 
time scale (horizontal axis) is obtained 
based on the response to MPTP-in- 
duced neurotoxicity in individual 
monkeys (as in patients, susceptibility 
varies). When the monkey showed 
overt parkinsonian symptoms, MPTP 
was terminated. The time of the MPTP 
treatment was normalized to 100, and 
the follow-up period was also normal- 
ized for each animal according this scale. The control value of the bind- 
ing potential (k3/k<) was normalized to 100 and all the follow-up values 
were also normalized using this scale. The average follow-up time post 

b - Lactate/marcromolecules 
-Cho 
-■NAA 

100 150 

Normalized time 

100 150 200 

Normalized time 

MPTP was 2 years and the average value of the binding potential in con- 
trol studies was 4.6-5.6 in putamen and 4.8 -6.6 in caudate region of 
the striatum. 

tive processes. Complementary studies of DA re-uptake sites by 
PET and neurochemical changes by MRS are shown before 
MPTP treatment and 2 months after the last MPTP administra- 
tion (Fig. 4). MPTP induced elevation of lactate/macromole- 
cules and choline peaks (Figs. 3 and 4). Even as much as 10 
months after termination of MPTP-induced neurotoxicity, the 
elevation in lactate/macromolecular peak was 23-fold ± 7-fold 
(Fig. 3). The choline/creatine (Cho/Cr) ratio in control mon- 
keys was 0.83 + 0.06 (Fig. 4), whereas it was 1.30 ± 0.15 in the 
8-10 months after MPTP-induced neurotoxicity (Figs. 3 and 4). 
The NAA/Cr ratio in the control monkeys had very high inter- 
animal reproducibility (2.38 + 0.11). This ratio decreased 
slightly but significantly in MPTP-treated monkeys to 1.93 + 
0.21 (P < 0.01) in the striatum 8-10 months after termination 
of MPTP treatment. This finding may reflect that MPTP is 
mostly neurotoxic for dopaminergic neurons in the substantia 
nigra, with only transsynaptic anterograde degeneration of the 
striatum3738. Our data also show that the changes in NAA and 
Cho persisted after MPTP-induced neurotoxicity (Fig. 3). Two 
years after MPTP treatment stopped, the increase of choline in 
treated monkeys was 38 + 4 % of the control value, and the cor- 

responding decrease of NAA was 26 + 4 % (Fig. 3). In contrast, 
the changes in lactate /macromolecular signal are reversible; by 
2 years after final MPTP administration, this value had re- 
turned to control (background) levels. At approximately the 
time the striatal level of DA reuptake sites (HC-CFT) reached a 
minimum in PET studies, the lactate peak seen with MRS 
reached a maximum. 

Discussion 

These experiments demonstrate, through the combined use of 
PET and MRS methods, a dynamic and specific neurochemical 
pattern of long-term neurodegenerative changes in the pri- 
mate striatum after DA loss similar to that of PD. The physio- 
logical changes characterized by this combined PET/MRS 
approach provide data for a comprehensive in vivo analysis of 
the ongoing biological processes occurring after selective 
neural degeneration. 

In animal models2223 and in humans39, "C-CFT is a useful lig- 
and to monitor DA terminal degeneration by PET scanning23. 
CFT was the first ligand to demonstrate a loss of DA fiber den- 
sity equivalent to the loss of DA in human post-mortem 
Parkinson-diseased brains40. "C-CFT binding also correlates 
with motor signs in the MPTP primate model of Parkinson dis- 
ease22; these observations have been verified in a larger series of 
primates23 and are analogous with findings in early Parkinson 
disease in humans40. 

Here we studied "C-CFT levels and biochemical parameters 
in the striatum of each monkey for about 2 years after the mon- 
key developed overt parkinsonian signs (at which time MPTP 
treatment was terminated). These data show persistent long- 
term physiological changes in striatal CFT binding and MRS- 
identified levels of choline and NAA. The changes in NAA and 

Fig. 4 PET and MRS studies of a monkey before any MPTP and 2 
months after the last MPTP treatment. PET images (left) demonstrate 
that specific/nonspecific binding ratio of "C-CFT was considerably de- 
creased after MPTP treatment (color coded by Max-Min bar at bottom). 
MRS (right) demonstrates a decreased NAA/Cr ratio, an elevated Cho/Cr 
ratio and an elevated lactate and macromolecule peak after MPTP treat- 
ment (TR/TE 2000/272 ms; PRESS). 
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choline levels were moderate and are consistent with an inter- 
pretation that MPTP-induced neuronal loss is mostly in the 
substantia nigra and that transsynaptic anterograde degenera- 
tion is in striatum37'41. MRS studies in patients with idiopathic 
Parkinson disease show few changes in striatal NAA or choline, 
but decreases of NAA and increase of choline are seen in some 
forms of parkinsonism42'43. 

We noted large changes in the MR spectral region between 1 
ppm and 1.5 ppm (corresponding to lactate and macromole- 
cules). Before the oxidative stress induced by MPTP, the inten- 
sity of this spectral band in the striatum was at background 
level, but with MPTP treatment, several large selective increases 
in striatal signal intensity were observed. First, there was a large 
increase of intensity at 1.33 ppm consistent with elevations in 
lactate (Fig. 3). After termination of MPTP treatment, there were 
even larger increases in signals at both 1.0 and 1.3-1.5 ppm. 
These later changes may reflect ongoing oxidative stress caused 
by physiological adaptive changes in function of the striatum. 
The presence of large amounts of mobile lipids acutely after 
MPTP treatment provides evidence for neuronal membrane 
breakdown possibly caused by lipid peroxidation or cell death 
mediated through cellular respiratory-chain inhibition10'38. 
However, the molecular species involved have not yet been 
specifically identified1038. Detailed histological analysis of the 
striatum, however, indicates very little macrophage infiltration 
or gliosis in the MPTP-treated striatum in this progressive 
MPTP-induced degeneration20'22. Nonetheless, minor local stri- 
atal neuronal loss around large blood vessels and arterioles has 
been observed (O.I. and N.K. Kowall, unpublished observation), 
probably a consequence of direct MPTP-induced neuronal de- 
generation and mild gliosis from high toxin levels next to blood 
vessels (from intravenous administration of MPTP). The 
changes in the lactate and macromolecular peaks are reversible, 
however, and return to baseline 2 years after termination of 
MPTP administration. 

These dynamic neurochemical shifts that occur several years 
after the neurotoxic event may relate to important physiologi- 
cal and pathological processes. For example, the signs of PD are 
not discernable in a patient until there is a 60-80% decrease in 
striatal dopamine levels. This in itself indicates fundamental 
adaptive physiological processes that maintain striatal func- 
tion despite considerable degeneration of one transmitter sys- 
tem. Beyond this critical threshold, PD unfolds in a movement 
disorder that can, at least initially, be reversed by DA drug re- 
placement therapy. Because the results of the MPTP treatment 
used here closely resemble the DA degeneration seen in PD, the 
movement disorder in this primate model also develops at the 
critical threshold of DA loss22'23. The dynamic and persistent 
physiological changes seen here using PET and MRS may there- 
fore reflect similar adaptive striatal responses to those occur- 
ring in PD. Furthermore, the oxidative stress seen years after 
the neurotoxic events leading to DA loss indicate that the stri- 
atal neuronal circuitry may be compromised and at risk for 
subsequent structural and pathological processes. Future inves- 
tigations should determine if such physiological stress of the 
caudate-putamen also occurs after other types of neurodegen- 
erative events, or after long-term pharmacologically induced 
changes of the DA system44. 

These data indicate that the structural and neurochemical 
changes after a DA neurotoxic event are dynamic and complex, 
and continue to develop long after the neurodegenerative 
stimulus has stopped and PD signs develop. The characteriza- 

tion of these physiological changes may provide insights and a 
time frame for new therapeutic interventions in PD. 

Methods 
Primate model. The behavioral model of PD in cynomolgus monkeys 
(Macaca fascicularis) was produced by the chronic administration (0.6 
mg/kg intravenously, every 2 weeks until behavioral stability) of the mito- 
chondrial complex 1 inhibitor 1-methyl-4-phenyl-1,2,3,6-tetrahydropyri- 

dine" (MPTP). Spontaneous locomotor activity was quantified by 
continuous monitoring with four pairs of infrared motion detectors. 
Additional video recording and assessment was done monthly. 
Hypokinesia (decreased frequency of spontaneous movement), bradykine- 
sia (slowness of movement) and tremor were rated by two independent 
observers to generate a clinical score (0-12), as reported23. Animals used in 
this study were maintained according to the guidelines of the Committee 
on Animals of the Harvard Medical School and Massachusetts General 
Hospital and those of the Guide for Care and Use of Laboratory Animals of 
the Institute of Laboratory Animal Resources, National Research Council, 

Department of Health, Education and Welfare. 

PET techniques. The resolution of PCR-I for a point source at the center is 
4.5 mm, and the sensitivity is 46,000 counts per s for a source 20 cm in di- 
ameter with a concentration of 1 uCi/ml. The overall detection efficiency 

of photons is 64% of the theoretical maximum for a plane thickness cor- 
responding to the 2-cm-high detectors. A plane thickness of 5 mm (as 
used in this study) is obtained by limiting the effective height of detectors 
with cylindrical collimators, and it corresponds to a volume resolution of 

0.08 ml. The resolving time of the PCR-I is 6 ns (FWHM). 
We used a 'Derenzo-phantom' initially, with 18F-labeled water as a ra- 

dioactive tracer (Fig. 1). The phantom is a solid plastic disk with six sectors 
of holes of different diameters and separations. All the holes have the 
same length (25 mm). The smallest holes have a diameter of 2.0 mm and 
the separation between the midpoints of the holes is 10 mm. The largest 
holes have a diameter of 6.25 mm and the separation between the mid- 
points of these holes is 25 mm. Using the PCR-I, it is possible to image ob- 

jects 2 mm in size separated by 1 cm (Fig. 1). 
The synthesis of "C-CFT involves direct "C-methyl iodide methylation of 

2ß-carbomethoxy-3ß-(-4-fluorophenyl)tropane (WIN 35,428; prepared by 
Organix, Woburn, Massachusetts) as published45. For PET imaging, mon- 
keys were anaesthetized with 30mg/kg ketamine and 3mg/kg xylazine 
(initial dose, intramuscularly), and anesthesia was maintained with half this 
dose as needed. The femoral artery and vein were catheterized for collec- 
tion of blood samples and injection of labeled ligand. The monkey was 
placed in the imaging position and the head was adjusted in a stereotaxic 
headholder with the earbar as a reference plane. Interior orbital supports 
ensure that images are acquired in pseudocoronal plane perpendicular to 
the orbito-meatal line. This allows superposition of data from MRI and 
MRS studies. After administration of labeled ligand (5 mCi; specific activity 
600-1000 mCi/umol) into the femoral vein, imaging data were collected 
'stepwise' on seven coronal levels: A30 (that is, 30 mm anterior from the 
earbar), A25, A20, A15, A10, P5 (that is, 5 mm posterior from the earbar) 
and P10. The initial acquisition time per image was 15 s; it was subse- 
quently increased to 60 s with the total imaging time being 90 min. 
Eighteen arterial blood samples of 0.1 ml each were drawn to monitor the 
decrease of radioactivity, starting a frequency of 15 s and ending with a 
frequency 15 min. In addition, six arterial samples were collected for HPLC 
analyses of metabolites of labeled ligand. Calibration of the positron tomo- 
graph was done for each study session, using the cylindrical plastic phan- 
tom (diam. 6 cm) and ,8F-labeled water. Cross-calibration with a gamma 
counter (Cobra Auto-gamma; Packard, Downers Grove, Illinois) was also 
done using ,8F-labeled water. Plasma data were corrected for counting effi- 
ciency, calibration factor and measured metabolites, and percent activity 
of the injected dose and ligand concentration were calculated. Imaging 
data were corrected for uniformity, sensitivity, attenuation, decay and col- 
lection time. PET images were reconstructed using Hanning weighted con- 
volution backprojection46. Regions of interest (including left and right 
caudate and putamen, frontal cortex and cerebellum) were outlined from 
anatomical representations on the screen, and activity per unit volume, 
percent activity of the injected dose and ligand concentration were calcu- 
lated. Data were analyzed using a three-compartmental model" and 
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SAAM program47. Plasma data were corrected for metabolites using an ex- 
perimental two exponential correction function; f(t) = 0.709 x exp(-0.108 
x t) + 0.286 x exp(-0.014 x t). Binding potential was calculated as a ratio 
of transportation coefficients (k3/k4) into (k3) and from (k„) the area of in- 
terest (caudate or putamen). 

MRS techniques. Monkeys were scanned on a CE 1.5T Sigma scanner 
(General Electric, Milwaukee, Wisconsin) using a saddle coil 15 cm in di- 
ameter. Monkeys were anesthesized with a dose of a mixture of 30 mg/kg 
ketamine and 3mg/kg xylazine. In the neurochemical analysis30, single 
voxel spectra were recorded from striatum in the monkeys using a stan- 
dard point resolved spectroscopy (PRESS) sequence (TR/TE = 2000/272 
ms and 2000/1 36 ms, 2-kHz sweep width) with presaturation of the 
water using three chemical shift selective suppression (CHESS) pulses. The 
voxels were prescribed from a coronal plane and were optimized to cover 
both caudate and putamen. The voxel sizes ranged from a minimum of 8 
x 8 x 9 mm3 (0.6 cm3) to a maximum of 1 x 1 x 1 cm3. Data were analyzed 
using the NMR1 (New Methods Research, Syracuse New York) software 
package. After apodization with an exponential multiplication corre- 
sponding to a 1-2-Hz line-broadening and Fourier transformation, the 
major metabolites30 were integrated in the frequency domain using curve 
fitting and assuming mixed Lorenzian-Gaussian lineshapes. Metabolite in- 
tensities were normalized relative to the phosphocreatine/creatine peak 
at 3.03 ppm as the denominator. 
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Summary - We conducted PET imaging studies of modulation of dopamine transporter function and MRS studies of neurochemicals in 
idiopathic primate Parkinson's disease (PD) model induced by long-term, low-dose administration of MPTP. MR spectra showed striking 
similarities of the control spectrum of the primate and human striatum as well as MPTP-treated primate (six months after cessation of 
MPTP), and Parkinson's disease patient striatum (68 year old male; Hoehn-Yahr scale II; 510 mg/d L-DOPA). The choline/creatine ratio 
was similar in the MPTP model and human parkinsonism, suggesting a possible glial abnormality. The progressive degeneration of dopamine 
re-uptake sites observed in our PD model can be expressed by a time dependent exponential equation N(t) = N0 exp (-(0.072 ± 0.016) t), 
where N0 represents intact entities (dopamine re-uptake sites before MPTP) and 0.072 per month is the rate of degeneration. When the signs 
of PD appear, N(t) is about 0.3-0.4 times N0. Interestingly, this biological degenerative phenomena has similar progression to that observed 
in cell survival theory. According to this theory and calculated degeneration rate, predictive models can be produced for regeneration and 
protective treatments. © 1999 Elsevier, Paris 
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Parkinson's disease (PD) is one of the most common 
neurologic disorders. It is estimated that about 1 mil- 
lion Americans are affected by Parkinson's disease and 
about 40,000 new patients are diagnosed every year. 
Hypotheses of the etiology of PD are focused on possi- 
ble genetic links (such as a-synuclein) and on the poten- 
tial contribution of toxins (exogeneous and/or endoge- 
nous) [78, 79] and their potential interaction with 
genetic components [15]. At the cellular level PD is 
characterized by severe depletion of DA neurons and 
associated loss of synapses in the basal ganglia. 

PD is diagnosed clinically based on the cardinal 
signs: tremor, rigidity, bradykinesia and postural insta- 
bility [66]. Improved understanding of the pathophysi- 
ologic mechanism underlying parkinsonian signs and 
symptoms [70], as well as refinement of methods and 
techniques in neuroradiology, neurosurgery and neuro- 
physiology, have stimulated the recent interest in devel- 
oping therapeutic techniques. Investigations of MPTP 
(l-methyl-4-phenyl-1,2,5,6-tetrahydropyridine)- 
induced parkinsonism in non-human primates have led 
to the hypothesis that dopamine deficiency in striatum 
leads to unbalanced activity from subthalamic nucleus 
into globus pallidus, resulting excessive inhibitory out- 

flow (increased and synchronized spontaneous firing 
rate) from the internal segment of the globus pallidus 
[25]. This suppresses the motor thalamus which reduces 
activation of the cerebral cortex motor system, result- 
ing in deficiency of movement [6, 25]. To interrupt this 
basal ganglia-motor system circuitry; three different 
therapeutic modalities are used, namely pharmacolog- 
ical therapy [52, 72, 80], fetal cell transplantation [28, 
29,51,59], and surgical procedures such as pallidotomy 
[30, 36], thalamotomy [46] and chronic thalamic high 
frequency stimulation [4]. 

A recent extensive PD twin study indicates that phys- 
iological and toxic factors play roles in causing typical 
PD as humans age [79]. This progressive decline of 
dopamine (DA) terminals seen in idiopathic PD can be 
closely modeled in the non-human primate Macacafas- 
cicularis by a low-dose exposure of the mitochondrial 
toxin, MPTP [8, 42, 81]. 

Developing radiopharmaceuticals for detection of 
dopamine terminals has been a major challenge for 
pharmacological research. Since autoradiographic 
studies of using cocaine analogs to label dopamine 
transporters were introduced [49], tropane derivatives 
have been widely used in PET imaging studies of 
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Parkinson's disease and drag abuse [35, 40, 52]. The 
latest developments, however, involve specific and sen- 
sitive cocaine analogs labeled with technetium-99m or 
iodine-123, used in single photon emission tomography 
studies of dopaminergic system [7, 22, 38, 53, 64]. 

The ability to observe both physiology and function in 
small areas within the brain is now possible with high res- 
olution PET and MR imaging techniques [ 11,16,47]. The 
potential use of positron emission tomography (PET) as 
a research tool in movement disorders has been demon- 
strated in studies of brain dopamine function [74] and glu- 
cose metabolism associated with movement disorders [1, 
43,71]. Recently, high resolution PET imaging has been 
widely used in studies with animal models of Parkinson's 
disease [8-10,18,19,42,48,81]. In addition, advances in 
receptor studies [10, 32, 42], and magnetic resonance 
spectroscopy of neurodegeneration [8, 24, 39, 44, 47], 
provide specific functional neurochemical information. 

Our earlier work indicated; (1) that a stable Parkinson- 
like disease appears after chronic administration of 
a neurotoxin, MPTP; (2) that progressive dopamin- 
ergic fiber loss can be detected by positron emis- 
sion tomography (PET) using carbon-11 labeled 
2ß-carbomethoxy-3ß-(4-fluorophenyl) tropane 
("C-WIN 35,428 or nC-CFT) to label dopamine re- 
uptake sites [42, 81]; and, (3) that progressive physio- 
logical changes of neurochemicals occur as observed 
with MRS and PET [8]. In the present article, we com- 
pare imaging characteristics of UC-CFT with those 
of 18F-L-6-fluorodopa, and show that by using "C-CFT 
the progressive degeneration of dopamine terminals can 
be mathematically modeled to determine the rate of 
degeneration and predict the time of onset of PD signs. 

MATERIALS AND METHODS 

Study design 

Longitudinal PET and MRS imaging studies were carried 
out in six MPTP-treated primates (Macaca fascicularis) to 
follow the progression of the MPTP-induced degeneration. 
These primates served as their own controls in studies prior 
MPTP. Control studies with MRS included four additional 
primates (table I). Comparison of MRS primate data was 
done with one Parkinson's disease patient (68 year old 
male; Hoehn-Yarn scale II, 510 mg/d L-DOPA) and an aged 
matched normal volunteer. 

MPTP-lesion in primates 

A slow neurotoxic lesion of dopaminergic cells located in 
the substantia nigra and in the ventral tegmental area was 

Table I. Striatal neurochemical changes in primates 0.5-2 years 
after cessation of MPTP treatment. 

Metabolite 
Ratio 

Controls 
(n = 10) 

MPTP 
(n = 6) 

NAA/Cr (range) 

Cho/Cr (range) 

2.38 ±0.11 
(2.3-2.5) 
0.83 + 0.06 
(0.8-0.9) 

2.09 ± 0.29* 
(1.7-2.5) 
1.20 ±0.15*** 
(1.0-1.4) 

Unpaired Student's t test values for difference from control: 
* P < 0.05; ** P < 0.01; *** P < 0.001. 

obtained by repetitive administration of MPTP dissolved in 
saline and immediately administered intravenously to pri- 
mates (0.6 mg/kg i.V., every two weeks until behavioral sta- 
bility) under light anesthesia (ketamine, 5 mg/kg i.m.), as 
previously described [81]. 

In this chronic model, behavioral signs developed grad- 
ually over 9-14 months, progressing from bradykinesia to 
akinesia in all limbs. Tremor also occurred as the last PD 
sign. These signs did not spontaneously recove, in contrast 
to acutely induced MPTP-PD models [20, 31, 54]. 

PET imaging studies of dopamine transporters 

Instrumentation 
Positron emission tomography studies were carried out 
with PET scanning system, PCR-I [11], as earlier described 
[8]. 

Labeling of radiopharmaceuticals 
Radiolabeling of "C-CFT was published earlier [10] and 
L-6-18F-fluorodopa was prepared according to the fluoro- 
demercuration method [62]. 

Experimental procedures 
For PET imaging, animals were anaesthetized with 
ketamine/xylazine (30/3 mg/kg i.m.) initial dose and anes- 
thesia was maintained with half a dose hourly injections as 
needed. Catheterization of the femoral artery and vein was 
used for collection of blood samples and injection of labeled 
ligand. The animal was placed in the imaging position, and 
the head was adjusted into a stereotactic headholder with 
the earbar at the origin. Interior orbital supports ensure that 
images were acquired in pseudocoronal plane perpendicu- 
lar to the orbito-meatal line. This allows superposition of 
data from MRI and MRS studies. After the injection of 
labeled ligand, "C-CFT or 18F-L-6-fluorodopa (5mCi, spe- 
cific activity 600-1,000 mCi/|imol) into the femoral vein, 
imaging data were collected stepwise on seven levels (A30 
(30 mm anterior from the origin), A25, A20, A15, A10, P5 
(5 mm posterior from the origin) and P10) initially using 
15 s frames. The frame time was subsequently increased to 
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60 s, the total imaging time being 90 min for "C-CFT 
and 120 min for l8F-L-6-fluorodopa. While imaging with 
1'C-CFT, 18 arterial blood samples of 0.1 mL were col- 
lected at different time points starting from 10 s frequency 
and ending with 15 min frequency to monitor the decrease 
in radioactivity. In addition three arterial blood samples 
were collected for HPLC analyses of metabolites of labeled 
ligand. 

Calibration of the positron tomograph was performed in 
each study session using a cylindrical plastic phantom 
(diameter 6 cm) and l8F-solution. Cross calibration with a 
gamma counter (Packard Cobra Auto-gamma, Downers 
Grove, IL, USA) was carried out using the same solution. 
Imaging data were corrected for uniformity, sensitivity, 
attenuation, decay and collection time. PET images were 
reconstructed using Hanning weighted convolution back- 
projection [13]. Regions of interest including left and right 
caudate and putamen, frontal, parietal and temporal cortex, 
thalamus and cerebellum were drawn on each level and 
activity per unit volume, percent activity of injected dose, 
and ligand concentration were calculated. Plasma data were 
corrected for counting efficiency, calibration factor and 
measured metabolites of "C-CFT and percent activity of 
injected dose and ligand concentration were calculated. 
Plasma data was used as an input function in the kinetic 
modeling. 

Receptor studies with nC-labeled CFT 

The kinetic behavior of "C-CFT was studied with a three 
compartmental model approach [77]. In the three compart - 
mental model, the first compartment is the plasma pool, the 
second is the exchangeable tracer pool including free and 
nonspecifically bound ligand in the brain, and the third 
compartment is a trapped tracer pool including bound lig- 
and in the brain. The exchangeable tracer pool contains 
ligand but no receptors and the third compartment includes 
all the receptors, partly or totally occupied by ligands. The 
kinetic parameters k3 and k4 describe the binding to and dis- 
sociation from receptors. 

The transfer coefficients k,-k4 were mathematically 
resolved using the SAAMII program [26]. For stabilization 
of the k values the fitting procedure was performed using 
three steps. Since cerebellum does not have specific receptor 
binding or it is negligible, fitting was done in the cerebel- 
lum data letting all the k-values float. Briefly, with estimates 
for the initial conditions for the k-values, the differential 
equations were integrated using an adaptable fourth order 
Runge-Kutta method with suitable accuracy (tolerance le~7). 
Iterations continued until sufficient convergence was 
achieved for the system parameters (k,-k4). The ratio k,/k2 

was calculated. In further iterations of the striatal data the 

fixed ratio (k,/k2) was used as a constraint to reach param- 
eter optimization. Regional binding parameters k3/k4 were 
calculated for each study. 

Comparison of imaging characteristics of "C-CFT 
and 18F-L-6-fluorodopa 

Comparison of imaging characteristics of "C-CFT and 
,8F-L-6-fluorodopa was based on obtained contrast in stria- 
turn compared to cerebellum. The difference of the striatal 
and cerebral accumulation of radioactivity was fitted into 
gamma variate function and the maximum value was 
divided by the value of the cerebral activity at that time 
point. 

Modeling of progressive degeneration 

To analyze MPTP-induced progressive degeneration, val- 
ues of striatal binding potentials of "C-CFT at different 
time points during the MPTP-administrations (time = 0 
when MPTP-administration was started) were fitted into an 
exponential function; N(t) = N„(t = 0) exp(-k t). N0 denotes 
binding potential in the intact dopamine terminals or arbi- 
trary estimate of the intact dopamine terminals, N(t) is the 
corresponding value after degeneration of time (t) and k is 
a rate of degeneration. 

MRS studies of neurochemicals 

For these studies, we utilized single voxel spectroscopy of 
the basal ganglia. We chose voxels centered in the striatum 
for both monkeys and PD patients. Voxels were between 
0.5-1 cm3 in the monkey brain and between 3-5 cm3 in 
the human brain. Water suppression was performed using 
CHESS pulses and localization by a standard PRESS-type 
sequence with TR/TE of either 2000/272 or 2000/136 ms. 
Spectra were processed using the NMR1 program (NMRI, 
Syracuse, NY), by curve fitting the entire spectrum and inte- 
grating the areas of the major metabolites. Integrals were 
then normalized to the creatine peak at 3.03 ppm (Cr) as a 
standard. 

Metabolite quantification 

We found NAA/Cr ratios to be reliable quantitative indica- 
tors of neurodegeneration. This reliability was indicated by 
the large differences noted between the MPTP-lesioned 
animals. In the case of single voxel spectroscopy we used 
a fully relaxed non-water suppressed spectrum from the 
voxel. This provides a constant internal reference for a 
metabolite/water ratio even if, due to metabolite Tl and T2 
errors, absolute concentrations remain elusive. The Stan- 
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dard deviations in this technique were very small, and 
allowed to make direct inter-animal comparisons. 

Characterization of the elevated lipid/lactate peaks were 
performed using multiple TE values to characterize the cou- 
pling constants and double quantum filtration to estimate 
how much of the intensity is due to lactate. Due to the rel- 
atively shorterTl values of lipids, we used inversion recov- 
ery PRESS spectra with variable TI values to characterize 
the lipid Tls in order to estimate the concentrations. In 
addition, we have implemented a STEAM sequence with 
the capability getting TE's down to 6 ms. This enables quan- 
titative measurements of the lipid and macromolecular 
components when combined with the inversion recovery 
experiments. 

RESULTS 

Figure 1 shows "C-CFT and 18F-L-6-fluorodopa distri- 
bution in the same control primate. Sixty minutes before 
the 18F-L-6-fluorodopa injection the primate was pre- 
treated with carbidopa (5 mg/kg) to reduce peripheral 
metabolism. These images show the striking specificity 
of "C-CFT to image striatal function. The contrast of 
striatal binding using "C-CFT was 3.25 ± 0.56 and cor- 
respondingly 1.67 ± 0.23 using 18F-L-6-fluorodopa. 
Striatal data were averaged from putamen data of 
levels A20 and Al5 from the left and right sides and 
caudate data of levels A25 and A20 from both sides. 
Figure 2 shows relative "C-CFT binding distribution 
before and during MPTP administration in an asymp- 
tomatic and symptomatic stage. Three coronal brain 
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Figure 1. Color coded PET images showing "C-CFT and 
l8F-L-6-fluorodopa accumulation in the same control primate 
brain. Sixty minutes before fluorodopa injection the animal was 
pretreated with carbidopa (5 mg/kg) to reduce peripheral dopamine 
metabolism. "C-CFT images are acquired 60-62 min after injec- 
tion and l8F-L-6-fluorodopa images 90-120 min after injection. 
Four images represent the brain levels A25, A20, Al5 mm anterior 
and P5 mm posterior from the reference plain. After corrections 
for decay, acquisition time and injected activity the highest pixel 
value of the four "C-CFT images was normalized to 10,000 
and the lowest to 0. All the "C-CFT images were normalized 
according to this scale. Correspondingly, after corrections the four 
,8F-L-6-fluorodopa images were normalized similarly. 
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Figure 2. Color coded PET images showing relative "C-CFT 
binding in a monkey brain 60-62 min after injection. The three 
images represent the levels throughout caudate-putamen (A25, 
A20 Al5 mm anterior of the reference plain) before MPTP treat- 
ment, after 3 MPTP injections, when the primate was asymp- 
tomatic and after 9 months of MPTP treatment, when the monkey 
was symptomatic. After corrections for decay, acquisition time and 
injected activity, the average count density was determined in cere- 
bellum study and "C-CFT images of the three coronal brain lev- 
els were divided by this value on the pixel basis individually in 
each study. Finally, the highest pixel value in the nine images was 
normalized to 10,000 and the lowest to 0. All the images were nor- 
malized according to this scale. 

levels (A25, A20 and A15) through the striatum show 
that degeneration in putamen is more severe that in cau- 
date. The progressive degeneration of dopamine re- 
uptake sites observed in our primate PD model can 
be expressed by an exponential equation N(t) = N0 exp 
(-k t), where N0 represents intact entities (dopamine re- 
uptake sites) and k represents the rate of progressive 
degeneration. Figure 3 shows progressive degeneration 
observed in six primates during low-dose MPTP admin- 
istrations. The exponential curve fitted to the calculated 
binding potential values is N(t) = N0 exp (-(0.072 + 
0.016) t) indicating that the rate of MPTP-induced 
degeneration is 0.072 per month. When signs of PD 
appeared, N(t) was about (0.3-0.4) N0. 

We have also investigated neurochemical changes 
with MRS in the same primates as imaged by PET using 
"C-CFT. Spectra from a control and typical MPTP- 
treated primate striatum (six months after cessation of 
MPTP therapy) is shown in figure 4 with comparison to 
MR spectra of a parkinsonian patient (68 year old male, 
Hoehn-Yahr scale II, 510 mg/d L-DOPA) and an age 
matched control patient. Note the pronounced changes 
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Figure 3. Model for the progressive degeneration and the appear- 
ance of parkinsonism in MPTP treated primates. Control value of 
the binding potential (before MPTP) was normalized individually 
to 100 and all the other values were normalized according this 
scale. (Raw data from [8].) 

compared to the control striatum. Lactate and/or lipid 
peaks are visible in both the patient and the primate, but 
not in the controls. In all the primates studied (n = 6), 
the lactateAipid peaks had disappeared after an addi- 
tional eight months [8]. These data indicate an acute 
metabolic process which resolves after a period of time, 
and is consistent with the time course for macrophage 
infiltration. Unfortunately we were unable to collect 
enough data to completely assay the time course of 
changes in all the metabolites over time. Future studies 
will entail collection of more data to determine the com- 
plete spectroscopic time profile of evolution of the neu- 
rochemical changes. 

In the MPTP model there is a significant decrease in 
NAA, which is larger than that seen in our PD patients 
(NAA/Cr = 2.09, n = 6 vs. 2.33 in PD patients, n = 23, 
B. Jenkins, personal communication). This is signifi- 
cant since our control human population had identical 
NAA/Cr levels to the primate controls (2.33 ± 0.46 in 
humans; n - 20 vs. 2.38 ±0.11 in primates, n = 10, 
Jenkins, personal communication). Notably, in the 
MPTP monkeys there was a large increase in the Cho/Cr 
ratio, very similar to what is seen in our PD patients 
(Cho/Cr = 1.2). Choline may be reflective of gliosis as 
the choline concentration in glial cells is twice that in 
neurons or of macrophage activity. A quantitative sum- 
mary of our primate results is shown in the table I. 

Cho   cr 

PD Patient 

NAA 

MPTP-Treated Monkey 

NAA 

Macromolecules/ 
Lactate 

Macromolecules/ 
Lactate 

4.00 3.00 2.00 1.00 ppm 4.00 3.00 2.00 1.00 ppm 

Figure 4. Striatal spectra from: Left) A PD patient (male; 68 years old; Hoehn-Yahr scale II; 510 mg/d L-DOPA), and an age-matched 
control. Right) An MPTP-treated monkey 6 months after cessation of MPTP-treatment and a control monkey. Major neurochemicals 
observed are indicated. Note the striking similarity of the control spectrum of the primate and human as well MPTP-treated primate and 
Parkinson's disease patient (TR/TE 2000/272ms; PRESS). 
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DISCUSSION 

Realistic primate models that mimic the progressive 
changes of PD are of critical importance for developing 
neural therapeutic techniques. The optimal procedure 
for therapy-induced behavioral recovery observed in 
many clinical and experimental studies is still unclear. 

Primate models of parkinsonism were developed 
using MPTP administered according to different proto- 
cols [12, 56]. Stereotaxic application of MPTP (or its 
active metabolite MPP+) in substantia nigra or in the 
striatum, as well as intra-carotid injections or repeated 
intravenous administration during 5-10 days [12, 45, 
56], generally induces a marked dopamine depletion 
resulting in a severe akineto-rigid parkinsonian syn- 
drome (often requiring drug therapy) within weeks 
following treatment. Such studies demonstrated 
that MPTP-induced behavioral, neurochemical and 
anatomical changes are analogous but not identical to 
alterations observed in parkinsonian patients [12, 21]. 
Acute protocols (toxicity induced over one to five days) 
of MPTP differ from idiopathic (PD) in several aspects: 
(1) pathologic changes in idiopathic PD extend beyond 
the substantia nigra [37]; whereas, the substantia nigra, 
and to a lesser extent the ventral tegmental area, are the 
regions primarily lesioned by MPTP toxicity; (2) acute 
MPTP-administration to non-human primates does not 
produce an uneven pattern of striatal dopamine loss 
described in idiopathic PD, with relative sparing of 
dopamine levels in the caudate nucleus compared to the 
putamen [21]; (3) acute MPTP toxicity in non-human 
primates also creates motor symptoms that may recover 
with time [20,54]; (4) an acute administration protocol 
does not reproduce the chronic and slow degeneration 
of dopamine neurons that occurs in idiopathic PD. 
Recently, a less acute primate model of various stages 
of PD has been obtained by unilateral intra carotid infu- 
sion [48] combined with sequential systemic doses of 
MPTP [19]. In addition, a chronic model of PD has been 
introduced by using daily low dose systemic injections 
ofMPTPfor22days[5]. 

Following these principles, our studies involving 
chronic low-dose administration of MPTP [8], have 
clearly demonstrated that by repeated administration of 
the neurotoxin over a long period of time, it is possible 
to increase the selectivity of the neurotoxin for specific 
subpopulations of dopamine neurons, more accurately 
reproducing the pattern of neuropathological and neu- 
rochemical alterations observed in idiopathic PD. 

Recent advances of in vivo receptor studies have 
resulted in the development of new receptor specific lig- 
ands [2, 23, 32, 33, 63] combined with advances in 

instrumentation for PET [3, 11, 16]. High resolution 
positron imaging yields accurate data over small 
regions inside the brain [9] that, combined with model- 
ing of the ligand-receptor interaction, can provide valu- 
able quantitative information about receptor behavior in 
different areas of the living brain. 

Modeling of neuroreceptor kinetics has also been an 
active research area. Several methods have been pro- 
posed for estimating the binding parameters (Bmax, max- 
imum available receptor binding sites; KD, dissociation 
constant; kon, bimolecular association rate constant; and, 
koff, dissociation rate). The choice of method depends 
on the particular properties of ligand-receptor interac- 
tion. In reversible binding, ligands dissociate from the 
receptor during the imaging period so that the maxi- 
mum binding site density can be calculated from the 
equilibrium distribution [23]. In the case of irreversible 
binding, equilibrium is not achieved during the imag- 
ing period. The dopamine transporter specific ligand 
(nC-CFT) has irreversible binding. 

Two types of kinetic analysis are used to analyze PET 
data. The graphical method [60, 73] has been applied 
by our group to estimate the influx of nC-CFT to 
dopamine terminals [42], and by several groups in esti- 
mating the influx of L-6-18F-fluorodopa [59, 67].The 
other method is based on general non-linear regression 
techniques [14, 61,69, 77]. 

Research has demonstrated a significant correlation 
between depression of striatal 18F-L-fluorodopa uptake 
of PD patients and their degree of locomotor disability. 
However, while the average putamen 18F-L-dopa uptake 
in PD is reduced to 40% of normal, a 60% loss of 
nigra compacta cells and 80-90% loss of putaminal 
dopamine levels are found post-mortem in PD [34]. 
Therefore, striatal 18F-L-fluorodopa uptake reflects 
metabolic and functional activity of nigro-striatal 
fibers, but may not accurately depict levels of endoge- 
nous striatal dopamine or anatomical depletion of 
dopamine terminals. A specific tracer for selective 
labeling of dopamine fibers would be preferable. 
Among various candidates for labeling dopaminergic 
fibers, specific ligands for dopamine re-uptake sites 
(dopamine transporter) such as "C-nomifensine, 
"C-cocaine or 18F-GBR 13119 (l-((4-((18F)fluo- 
rophenyl) (phenyl)methoxy) ethyl)-4-(3-phenylpropyl) 
piperazine) have been used in PET studies [27,50,57]. 
In such PET studies, specific binding of the ligands to 
dopamine transporters were taken as a measure of 
monoaminergic nerve terminal density. However, using 
these ligands in vitro, binding assay showed only a 40% 
decrease of binding in the caudate nucleus and putamen 
of subjects with PD [65], while other measures for 
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dopaminergic terminals were reduced much more dra- 
matically. Similar results have been obtained in vivo 
using "C-S-nomifensine as a PET tracer [58]. Again, 
the 40% decrease in dopamine re-uptake site density is 
strikingly different from the 90% decrease of dopamine 
levels measured post-mortem in parkinsonian putamen. 

We have studied the imaging characteristics of car- 
bon-1 1 labeled CFT in normal and MPTP-treated pri- 
mates [10], and it has proved to be a very selective lig- 
and [68] to monitor dopamine terminal degeneration 
having higher specificity than nomifensine or GBR ana- 
logues for the dopamine uptake complex [49]. Several 
observations suggest that CFT is a useful and specific 
marker for dopamine nerve terminal density: "C-CFT 
in vivo binding, as well as 3H-CFT in vitro binding [49] 
in the non-human primate caudate nucleus, is highly 
specific for the dopamine transporter. 3H-CFT binding 
was decreased in PD up to 95% depending on striatal 
region [49], and 3H-CFT depletion in PD paralleled the 
dopamine depletion, with a more severe decrease in 
specific binding in the putamen than in the caudate 
nucleus [49]. 

Our group was the first to demonstrate that "C-CFT 
binding correlated with behavioral symptoms in a pri- 
mate model of Parkinson's disease [42]. This has been 
verified in a larger series of primates [81], and also in 
early Parkinson's disease in humans [32]. After the 
earlier studies, several novel tropane derivatives have 
been introduced for imaging of dopamine transporters, 
mainly labeled with iodine-123 (altropane [64], beta- 
CIT [22], FP-CIT [7], PE21 [38] or technetium-99m 
(trodat) [53]. 

Figure 1 shows that the radiolabeled cocaine analog 
ligands e.g., "C-CFT provide better sensitivity and 
selectivity for imaging of the striatal dopamine system 
than radiolabeled L-dopa. Figure 1 also demonstrates 
the effect of the increased active radiolabeled metabo- 
lites during imaging with 18F-L-6-fluorodopa in blood 
rich areas in the head. "C-CFT used in PET imaging of 
MPTP treated monkeys demonstrate progressive DA 
terminal loss in caudate-putamen before and after 
appearance of PD signs. In addition, the observed 
MPTP-induced degeneration is more progressive in 
putamen than in caudate (figure 2). Our new MRS stud- 
ies illustrate lactate/lipid elevation in the striatum in 
both parkinsonian monkeys (post-MPTP) and in a typ- 
ical case of a Parkinson's disease patient (68 year old 
male, Hoehn-Yahr scale II). This is consistent with pre- 
vious studies [8], showing parallel increases in striatal 
lactate/lipid and continuous DA fiber ("C-CFT) degen- 
eration. In addition, the small decrease in NAA (12%) 
observed in the monkeys may also be reflective of the 

loss of dopamine terminals and striatal cell dendritic 
density. 

Notably in the MPTP monkeys, there was a large 
increase in the Cho/Cr ratio which was almost identical 
to that of PD patients (Cho/Cr = 1.2). This is possibly 
an important physiological observation, since choline 
may reflect gliosis or magrophage activity. The various 
theories for neurodegeneration in PD includes one of 
loss of target-derived trophic support [17,75,76]. Glial 
cells typically provide both growth-factors and homeo- 
static support [75,76,82]. This finding deserves further 
investigation to determine if sub glial changes are a con- 
sequence or a primary cause of dopaminergic axonal 
degeneration in the caudate-putamen of PD. 

Our data provides a basis for a mathematical model 
of degeneration of the DA system in PD. It is known 
that 60-70% degeneration in a dopaminergic system 
precedes the symptoms of PD. In our primate PD 
model, the remaining entities (dopamine re-uptake 
sites) were (0.3-0.4) of the original value when the PD 
signs appeared. Interestingly, this biological degenera- 
tive phenomena has similar progression to that formu- 
lated in cell survival theory in radiobiology concerning 
the effect of radiation in killing cells [41]. According to 
the formula, the number of survived cells (ND) after 
radiation dose (D) is ND = N0 exp (-D/D0), where N0 is 
the number of cells before radiation and D0 is the mean 
lethal dose of radiation. When the radiation dose (D) 
equals to the mean lethal dose (D0), the function will 
get a form of ND/N0 = e~' = 0.37 and the number of sur- 
vived cells is 0.37 N0. Similarly, using the rate of degen- 
eration (0.072 ± 0.016, figure 3), the calculated time to 
get PD signs is 13.9 ± 2.5 months in this MPTP-PD 
model, which is the same as was observed in experi- 
mental studies (figure 3). With this theory and imaging 
studies of the dopaminergic system, a realistic estimate 
can be obtained of degeneration rate and the time when 
the patient will get PD symptoms. 

CONCLUSION 

"C-CFT is a useful ligand for detection of PD-like 
progressive degeneration. Based on the decrease of 
"C-CFT binding, a rate of degeneration can be calcu- 
lated and the time of onset of PD symptoms can be 
determined. 
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1. Physiological basis for treatments of parkinsonism 

In the classical neuropathological description of Parkinson's Disease (PD) there is 

abnormal degeneration and dysfunction of the dopaminergic (DA) neurons in the 

substantia nigra pars compacta region; with associated DA axonal and synaptic loss in the 

striatum, subthalamic nucleus and substantia nigra pars reticulatae. This in effect leaves 

the patient with signs of resting tremor, bradykinesia, rigidity and inability to initiate 

movements unless L-dopa treated. Other parallel pathologies may be present but the 

dopaminergie degeneration probably accounts for the motoric dysfunction. 

The ability to observe both physiology and function in small areas within the 

brain is now possible with high resolution PET and MR imaging techniques(l-3). The 

potential use of PET as a research tool in movement disorders has been demonstrated in 

studies of brain dopamine function (4) and glucose metabolism associated with 

movement disorders(5-7). Recently, high resolution PET imaging has been widely used 

in studies with animal models of Parkinson's disease(8-15). In addition, advances in 

receptor studies (8, 10, 16, 17) and magnetic resonance spectroscopy of 

neurodegeneration (3, 15, 18-20) provide specific functional neurochemical information 

which may be of value in determining prognosis and therapy.   In PD, the finding of 

changes in metabolic activity as determined by positron emission tomography (PET), in 

pre-SMA and PM cortices; are intriguing(21). What actually may explain the signs of PD 

at the physiological circuitry level, is the synchronization of neuronal pallidal (GPE and 

GPI) output signals as a result of the loss of DA tonic input to the putamen together with 



a reduced thalamic input to the SMA and PM cortices (22) (see Figure 1-2). An apparent 

recruitment of more cortical regions than normal and the increased and widespread 

activation of PM and SMA associated cortices suggest that these structures are 

compensating for the abnormal input; to be able to activate the motor cortex for initiation 

of the movement (see Figure 1). Evidence for this view comes from pallidotomy 

studies(22) in which the loss of PD signs (tremor, rigidity and L-dopa induced 

dyskinesias) is reflected in a more localized metabolic activity, as well as appropriate 

activation in motor association cortex ((21) and Yoland Smith, personal communication). 

Based on all of these data and relevant circuitry of motor system, we hypothesize that full 

DA reinnervation, by cell transplantation or regeneration, will rebalance this motor 

system. 

Studies in PD patients and primate PD models have postulated that nigrostriatal 

DA deficiency leads to decreased inhibitory activity from putamen to the internal 

segment of globus pallidus(23-25). Resulting inhibitory outflow from globus pallidus 

suppresses the motor thalamus reducing activation of cerebral motor cortex system and 

creates the signs of PD. After transplantation therapy, putaminal inhibitory action of 

globus pallidus is expected to recover. Longitudinal studies after different transplantation 

regimen with dopamine fetal cells is necessary to determine the underlying biological 

mechanism of the therapeutic effects on movement initiation. 



Insert Figure 1 here: 

Figure 1. (a) A schematic circuit of network diagram highlighting motor systems 

interactions. The results of STN lesions (and pallidotomy) may simply provide a release 

of movement control via the indirect pathway (CP - GPi and GPE via STN regulation of 

GPi inhibition of thalamic VA/VL). In this way the clinical signs of abnormally reduced 

or enhanced dopamine release in the CP can be eliminated, for example, the L-dopa 

induced dyskinesias typically seen in advanced PD patients virtually disappear after 

pallidotomy or STN modulation. Reports indicate that such advanced PD patients can 

sustain excessive DA activation of CP and remaining A10 DA neuronal systems (for 

example, nucleus accumbens) after STN stimulation or pallidotomy. These observations 

suggest that the indirect basal ganglia loop either blocks cortical motor-output (as in 

dopamine deficiency in PD) or create abnormal "oscillation" of cortical output (as in 

DA/L-dopa induced dyskinesias or Huntington's Disease). 

Insert Figure 2 here: 

Figure 2. A schematic network of the functional interactions of the motor systems in 

parkinsonism. The thick black lines show enhanced activation. The thick dark gray lines 

are enhanced inhibition. The broken lines are reduced inhibitory (GPE) or excitatory 

(Th) activity. 



In the medical history of Parkinson's disease, James Parkinson's description of 

the disease in 1817 did not relieve the patients of their suffering until the early 1950s, 

when observations were made about unilateral improvements of PD signs contralateral to 

the subcortical stroke. Stereotactic thalamotomies and, subsequently, pallidotomies were 

performed as a rational intervention simulating this therapeutic effect. Surgical trials 

were fairly extensive and, in many cases, provided long term improvements and 

reductions in the patients' signs over several years (e.g. see volumes in Acta Psychiatrica 

Neurologica Scandinavica, 1960). The thermal lesions of such type were, however, 

superceded by the discovery that the dopamine system was prima culpa in Parkinson's 

disease. Through findings by Arvid Carlson's team in Sweden, Oleh Hornykiewics in 

Austria; the systemic pharmacological dosing and delivery of L-dopa was initiated to 

patients (e.g., Tolosa et al. 1998(26)). This became the mainstay treatment, and only 

after some time did it become evident that this precursor treatment (overcoming the 

dopamine rate-limiting enzyme tyrosine hydroxylase) in dopamine neurons would not be 

a permanent relief for the patients(26-29). 

A novel rational idea then emerged from scientists working in neurobiology and 

cell culture: to replace lost dopamine neurons through neural transplantation(30, 31). 

Since animal experiments in the early 1980s and through the beginning of exploratory 

clinical trials in the late 1980s; the development of a new therapy involving fetal 

transplantation has reached some spectacular results(32-37) as well as some evidence of 

the need for further refinement(38, 39). In PD, neural transplantation potentially will 



replace the missing dopamine neurons and provide an endogenous source (rather than a 

drug source) of dopamine in the striatum and other dopamine-depleted regions. The last 

few years have provided clear evidence that dopamine cell transplant therapy additionally 

improves drug response to L-dopa(36, 37,40). The L-dopa can be taken up by 

transplanted dopamine cells and be appropriately converted by the dopa-decarboxylase 

into dopamine and released in a physiological way into the anatomical target zones. 

2.   Combined use of DA pharmacological and cell therapies: Can the neuronal 

replacement enhance L-dopa responses and reduce L-dopa induced dyskinsesias in 

Parkinson's disease? 

After neural transplantation of fetal dopamine cells to PD patients, (when 

appropriate methods are used for transplantation) the vast majority of patients show a 

reduction in L-dopa-induced abnormal dyskinesias and dystonias in the "on" phase, as 

well as percent time spent in "off'(35-37). These findings are correlated with the 

presence of surviving dopaminergic grafts. Between 4 and 12 months after 

transplantation, up to 10 patients worldwide have reduced their L-dopa usage to zero, in 

association with 50-80% reductions in prior symptoms as assessed by the clinical rating 

scale (e.g. UPDRS). Cell replacement therapy is, however, in its infancy. This treatment 

modality is indeed novel; and therefore requires experimentation to become useful and 

understandable in a neurobiological context(39). The symptomatic recovery in some 

individual patients from parkinsonism with grafting of fetal neural cells is truly 
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remarkable. However, the six or seven research teams using this methodology around the 

world are in a sense artisans; in that they are using different techniques and clearly have 

different success rates(35). Moreover, most of these research teams are improving their 

technology and transplantation techniques every year. Thus, the skepticism levied at 

some of their results and inconsistencies is understandable. We have reviewed many 

active programs in North America and Europe, and find that the most reliable finding 

after transplantation is some reduction of the use of L-dopa and a dramatic loss of 

dyskinesias and "on/off phenomena with full L-dopa dose. The most likely explanation 

for this finding is that the biosynthetic machinery provided by the cells implanted will 

allow L-dopa, through dopamine decarboxylase and other synaptic vesicular transport 

mechanisms; to be released and regulated for constancy of concentration at the synaptic 

sites in the striatum or elsewhere. In this view, a compelling reason for neural 

transplantation is to provide needed relief for patients from drug side effects, which is a 

primary source for current pain and dysfunction. This interpretation of neural 

transplantation effects in PD also provides an understanding of the progressive 

improvements seen. The patients worldwide that have no need for L-dopa after 

transplantation all demonstrated a progressive improvement over a six-month to six-year 

period that is sustained(33, 35). Moreover, the degeneration seen of the host 

dopaminergic systems also continues with no apparent effect on the implanted cells. This 

becomes apparent when analyzing data from unilaterally transplanted patients (Lindvall 

et al.'s cohort in Lund, Sweden). In their initial patient-series, as the grafted side became 

functional, the contralateral side continued to degenerate(35). In this way, a form of 

hemiparkinsonism developed and one patient was relieved by subsequent bilateral 



transplantation (35). This type of clinical case-by-case evidence is complemented by a 

solid base of research in rodents and monkeys that demonstrates that the CNS 

dopaminergic system can be repaired(41). Nonetheless, in clinical application the 

variability in procedures by different transplant teams (on nearly all parameters used in 

cell preparation, cell number and sites transplanted) as well as the lack of understanding 

of the large number of individual forms of parkinsonism among PD patients, make 

comparisons and conclusions difficult. 

In summary, starting with animal experiments in the early 1980s and through the 

beginning of exploratory clinical trials in the late 1980s the development of a new 

therapy involving fetal transplantation has reached some spectacular results(32-37) as 

well as much evidence for the need of further refinement(38, 39). Essentially, the 

treatment for PD with neural transplantation potentially will replace all the missing 

dopamine neurons and thereby provide an endogenous source (rather than a drug source) 

of dopamine in the striatum and other dopamine-depleted regions. The last few years 

have provided substantial evidence that dopamine cell transplant therapy additionally 

improves drug response(36, 37,40). The L-dopa can be taken up by transplanted 

dopamine cells and be appropriately converted by the dopa-decarboxylase into dopamine 

and released in a physiological way into the anatomical target zones. As will be outlined 

in the next section, the most recent research for transplantation in PD has shown that 

more targets than striatum need to be transplanted for optimal anatomical and functional 

effects(42-48). We consider that triple stereotactic targeting including the striatum, the 

subthalamic nucleus and substantia nigra pars reticulata may be necessary for optimal 



recovery in patients. This would achieve reinnervation of frontal (CPU and STN) and 

caudal output systems (the substantia nigra pars reticulata and brain stem/spinal systems. 

Preliminary studies suggest a rapid and complete restoration of function after such 

procedures(42-48). 

3. Transplantation of dopamine cells: what are the appropriate cells and 

transplantation sites ? 

Experimental work has established protocols for reliable dopamine cell transplant 

survival, outgrowth and function, as a rational idea for PD intervention derived from 

neurobiology and cell culture(30, 31). Many different strategies to improve the efficacy 

and survival of fetal ventral mesencephalic grafts have been described including 

treatment with growth factors(49,50), antioxidants(51), and variations in cell dissociation 

techniques(52). The implantation procedure itself can also affect the outcome. Nikkah et 

al. have used a micrografting paradigm in rodents and shown that several implants of 

small volumes of cell suspension in the denervated striatum result in better functional 

recovery compared with animals receiving traditional macrograft implants(53). 

Another important question in neural transplantation is the capacity for specific 

neuronal cell types to reinnervate selectively denervated host target regions(54-57). 

Transplanted embryonic neurons placed in denervated host targets display a relative 

specificity of fiber outgrowth into areas typical of their adult phenotype(54-57). The 



dopaminergic neurons of the midbrain can be divided into various subsets distinguished 

by different immunoreactivity, for example, dopamine transporter, TH, calbindin and 

cholecystokinin (CCK)(54, 58). Some of these markers correspond to distinct projection 

patterns from the substantia nigra and have been used to provide evidence for the 

selective growth regulation of grafted tissue(54). 

Fetal cell transplantation experiments generally, also makes discoveries possible 

for applications involving stem cells. Simply put, stems cells allow a more abundant 

generation of transplantable DA cells than sources from fetal primary cells. The current 

opportunities for PD therapy are limited by access to appropriate cells for transplantation. 

There are a number of choices beyond the use of human fetal cells. For example, 

xenogeneic fetal mesencephalic neurons, stem cells, immortalized cells or genetically 

modified non-neuronal or neuronal cells. Any of these choices are dependent on the state 

of research in each particular branch of cell biology. We have found that xenogeneic 

cells (pig) can be used both in animal models and patients with some success(57, 59). 

Nevertheless, we believe the aim of producing a reliable source of a very large number of 

dopamine cells will require a vigorous research programs for other cell types, such as 

stem cells. The use of pluripotent cells from the early blastula stage, which, if the 

differentiation steps were known and genetic modification possible, would provide a 

major source for transplantable dopamine cells. We have shown(60, 61) that 

differentiation of such stem cell grafts can lead to the production of nerve cells, including 

dopaminergic neuronal phenotypes. Nevertheless, the realistic use of a stem cell source 

can only be achieved, in our view, after considerable experimentation, which will 



probably be preceded in the clinic by improvements in the standard fetal cell 

transplantation paradigm. This is important, because data from a number of research 

groups over the last decade demonstrate that fetal cell transplantation can help 

parkinsonian patients, while there is still considerable room for technical improvements. 

Many neurosurgeons and neurologists have expressed the view that the neural cell 

implant treatment could supercede any currently available methodology, such as 

physiological stimulation or lesioning procedures; pallidotomy or deep brain stimulation. 

Surgical treatments in PD have seen a renaissance by electrophysiological 

intervention, using deep brain stimulation such as pallidal or subthalamic high frequency 

stimulation. By most accounts, these interventions provide relief from symptoms through 

depolarization, causing subsequent inhibition or activation of thalamic nuclei and their 

outflow to the cortex, or through subcortical output systems(22). This type of approach is 

based on an understanding of the circuitry involved in PD(see Fig.2). Also neural cell 

transplantation, can be applied to this specific circuitry, but as a form of "repair" in 

regions involved in the ablative electrical stimulations, since these regions are 

dopaminoceptive. Through dopamine synapse replacement by transplants, improvements 

to existing patient responses to L-dopa could be obtained. The DA released in the STN 

and SNr are of exceptional importance for normal motor function(44-48). The previous 

focus on transplantation to the dopaminoceptive caudate-putamen, while useful, may 

have lacked the necessary DA replacement needed for normal function of the STN output 

to mesencephalic locomotor regions and VA/VL thalamus. (Fig. 3) 



Insert Figure 3 here: 

Figure 3. Transplantation sites in putamen, substantia nigra and subthalamic nucleus: 

Two sites in the putamen will be transplanted (arrows) and depending on the paradigm, 

there will be tranplantation to the subthalamic nucleus and the substantia nigra (arrows) 

(see text). 

Indeed, research towards transplantation in Parkinson's disease has recently 

indicated that additional targets to the striatum need to be transplanted for optimal 

anatomical and functional effects to occur(42-48). Thus, further research is warranted to 

determine the effects of multiple stereotactic targets including the striatum, the 

subthalamic nucleus and substantia nigra pars reticulata. This will allow DA 

reinnervation of the direct (nigro-striatal) and indirect pathway (including STN) of frontal 

and caudal output systems (to the substantia nigra pars reticulata and possibly beyond in 

the brain stem). The VTA (A 10) DA input to layer 6 is relatively intact in PD. 

Preliminary data, including from our own laboratories, indicate that fetal (or equivalent) 

dopaminergic neurons can innervate all DA zones depleted in PD. Experiments in 

progress investigate the specific contribution of additional targets to functional recovery 

by addressing if multiple target grafting (CPU, SNr, STN) will restore function in a PD 

primate model. 
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ABSTRACT 

A new therapeutic neurological and neurosurgical methodology involves cell implantation 

into the living brain in order to replace intrinsic neuronal systems, that do not spontaneously 

regenerate after injury, such as the dopaminergic (DA) system affected in Parkinson's disease (PD) 

and aging. Current clinical data indicate proof of principle for this cell implantation therapy for PD. 

Furthermore, the disease process does not appear to negatively affect the transplanted cells, 

although the patient's endogenous DA system degeneration continues. However, the optimal cells 

for replacement, such as highly specialized human fetal dopaminergic cells capable of repairing an 

entire degenerated nigro-striatal system, cannot be reliably obtained or generated in sufficient 

numbers for a standardized medically effective intervention. Xenogeneic and transgenic cell sources 

of analogous DA cells have shown great utility in animal models and some promise in early pilot 

studies in PD patients. The cell implantation treatment discipline, using cell fate committed fetal 

allo- or xenogeneic dopamine neurons and glia, is currently complemented by research on potential 

stem cell derived DA neurons. Understanding the cell biological principles and developing 

methodology necessary to generate functional DA progenitors is currently our focus for obtaining 

DA cells in sufficient quantities for the unmet cell transplantation need for patients with Parkinson's 

disease and related disorders. 
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The relatively new concept of replacing large numbers of degenerated neurons by 

implanting new cells into the adult brain has created a complementary therapeutic strategy to that of 

traditional pharmacological therapies for Parkinson's disease (PD). The specificity of cellular 

degeneration which occurs in PD (DA neurons of the SN), and the relatively major synaptic target 

region of these degenerating DA cells (the caudate, putamen and SN), have made PD the most 

accessible therapeutic application for neural cell implantation methodology. 

Early clinical transplantation studies involved autologous transplantation of catecholamine- 

containing adrenal medulla cells [1, 2]. The absence of objective reductions of PD signs, the low 

adrenal medulla graft survival and the reported morbidity of patients reinforced the scientific 

rationale for using fetal neural donor cells instead. Cell implantation for PD using fetal DA cells is 

likely to improve greatly by scientific and technical advances. The development of brain cell 

transplantation with embryonic neurons and glia is innovative both from a technical and biological 

standpoint and will require much work to optimize. The scaling up of this method from rodents to 

primates has proved very challenging; particularly in obtaining an acceptable, abundant and reliable 

cell. In the initial series of clinical pilot transplant experiments performed in Europe, the first two 

PD patients did not show a meaningful recovery. Parallel technical and cell dose enhancements 

produced dramatically better results in the next two patients receiving unilateral fetal VM 

suspensions. MPTP-exposed patients received VM DA cell suspensions bilaterally into the 

striatum and this caused motor improvement in association with increased fluordopa uptake [3]. 

Recent data from the studies of Lindvall and colleagues indicate DA cell survival in patients for 

almost a decade after surgery, with meaningful clinical improvement [4]. The transplantation of 

non-dissociated human VM tissue pieces has also provided benefits to many patients [5, 6]. In this 

series of transplantation studies carried out by Olanow and colleagues in the US, autopsy from two 

bilaterally transplanted (6.5-9 week human fetal VM) patients who died 18-19 months after surgery 

showed over 200,000 surviving DA neurons, which reinnervated about 50% of the right putamen 
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and 25% of the left putamen [7]. Electron microscopy revealed axo-dendritic and occasional axo- 

axonic synapses between graft and host, and analysis of TH mRNA revealed higher expression 

within the fetal neurons than within the residual host nigral cells [7]. Autopsy of another patient in 

this surgical group showed over 130,000 surviving DA neurons, reinnervating almost 80% of the 

putamen [8]. Notably, both patients had shown major improvements in motor function and 

increases in fluorodopa uptake in the putamen on PET scanning. 

An alternative source of fetal donor cells for clinical cell implantation therapy for 

neurodgenerative disease is xenogeneic. The remarkable homogeneity in cellular (neurons and glia) 

basic structure and function suggested that even discordant mammalian species (rodent into non- 

human primates) could effectively replace local synaptic function after cell loss in the adult brain [9, 

10]. Such across-species cell transfer (xenotransplantation) allows a more standardized acquisition 

of larger quantities of appropriate fetal tissue than from human abortions. The immunological 

reaction of complement activated rejection and T-cell mediated responses leading to rejection of 

xenografts can in many ways be inhibited by immune suppression [11]. Transplantation studies in 

animals have shown survival, function, and afferent/efferent connections of xenogeneic cells when 

transplanted into animal hosts [12,13] (and see reviews [14,15]). In the first pilot-clinical trial, the 

transplantation of E27 porcine VM into the caudate and putamen on one side of the brain of twelve 

immunosuppressed PD patients produced some clinical improvements [16]. The overall results 

indicated that the scaling up problems, also seen with human fetal cells, were significant, further 

compounded by more vigorous immunological responses in primate and human hosts compared to 

laboratory rodents. One patient from this study died seven months after surgery from a pulmonary 

embolism; histological analyses using species-specific markers showed porcine neuron projection 

axons and forming synapses in the host brain. All three identified transplant sites contained DA 

neurons (a total of 630 DA neurons), and non-DA neurons expressing pig-specific neurofilament 

[17]. Pig glial cell, including astrocytes also survived in the patient's brain. Microglial and T-cell 

markers showed low reactivity in and around the pig cell graft perimeter. 
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The scientific foundation of cell implantation therapy for Parkinson's disease 

Basic research involving cell implantation has made it abundantly clear that biological cell 

replacements strategies can provide the basis for reconstruction and repair of damaged or 

dysfunctional neuronal connections of the damaged or disease afflicted adult brain [18]. Functional 

effects of intrastriatal grafts of fetal DA cells have been illustrated in a range of animal behavioral 

tests [19-21]. The behavioral effects observed are dependent on the survival of DA neurons within 

the striatum, since grafting of other tissue produces no behavioral effects [22, 23], and removal of 

transplanted tissue [24] or immune rejection of transplanted neurons [25] reverses transplant- 

induced behavioral recovery in animal studies. Embryonic day (E) 12-17 fetal rat tissue [26], pig E 

27-29 [13] and 6.5-9 weeks old human fetal tissue [5] ventral mesencephalic (VM) donor tissue 

neuronal exhibit survival and functional effects when transplanted into the adult dopamine depleted 

striatum. The minimum number of surviving transplanted DA neurons required for behavioral 

effect in rodent animal models is approximately 100-200 [12]. Using current micro-dissection 

techniques and cell preparation, only 10% of the transplanted VM cells are phenotypically DA, and 

only 1-20% of these DA neurons survive implantation depending on trophic and immunological 

factors [7, 17, 27-32]. Therefore as many as 10-15 fetal VM per patient may be required for 

sufficient survival and adequate DA synapse replacement [33]. 

Factors that are important for maturation and connectivity of DA neurons during normal 

ontogeny likely also influence development and integration of grafted embryonic tissue when 

placed in an adult host brain. Current methodology for fetal cell implantation in animal models and 

patients includes the transfer of numerous types of fetal neuronal and glial progentitor cells. Thus, 

the implanted neurons are transferred into the host brain with their own contemporaneous glial and 

angiogenic factor releasing cells, thereby providing a mileu that may contribute to the observed 

normal cell autonomous development of transplanted fetal VM cells. Adding appropriate trophic 

factors to fetal cell preparations can enhance survival and growth of implanted DA neurons into 

animal models of PD [28,34-39]. The ability of fetal neurons to be placed into an ectopic region of 

an adult brain, survive, and extend neuntes within this region is remarkable. The functional effects 
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of VM transplants into DA-depleted striatum is often correlated with degree of striatal reinnervation 

[26, 30].   However there is some limitation in the ability of the transplanted neurons to extend 

neuntes in the adult brain. Even though the graft-induced elevations in tissue DA concentrations 

are substantial [40], values taken distant from the graft suggest that reinnervation of the whole 

striatum does not occur. The hypothesis for this sharp decline in density of DA fiber outgrowth is 

that age-dependent characteristics within the host brain alter outgrowth, since extensive outgrowth 

can be achieved when transplanted into immature (neonatal) host brain.   Expression levels and 

patterns of adhesion molecules expressed by mature host brain are thought to be the culprits of this 

reinnervation-inhibitory effect. Allogeneic cell implantation into immature host brain shows robust 

neuronal and glial migration away from the transplant site and a high degree of integration and 

target-directed neurite outgrowth [18]. In contrast, fetal neural cells transplanted into mature brains 

show neuronal reaggregation around the implant site and less extensive axonal outgrowth into host 

brain, suggesting an age-dependent increase in inhibitory or decrease in growth-promoting 

processes. Clearly, both promoting and repulsive host factor and substrate activities influence 

axonal guidance and extension of transplanted developing neurons [18]. 

Data arguing against any absolute outgrowth-inhibitory properties of adult brain come from 

studies  showing  long-distance  and  target-specific  axonal  growth  from  human  embryonic 

transplants into adult rat brain [41], as well as from porcine embryonic transplants into adult rat 

brain [13]. The species-specific markers used in our studies of fetal porcine transplants into adult 

immunosuppressed rat brain allowed comparison of donor glial fiber and donor axonal growth in 

different host brain regions, demonstrating their distinct trophic characteristics.   Target zones in 

adult host gray matter were selectively innervated by embryonic donor axons normally destined to 

form synapses there, whereas donor glial fibers grew irrespective of any target orientation within 

white matter tracts [13]. Xenogenicpig axons branched profusely in gray matter target region and 

only rarely penetrated or crossed white matter tracts. DA fibers from transplants placed into the SN 

were found coursing up toward the striatum through myelinated fiber bundles, then branching into 

host gray matter. Notably, we found that the non-DA VM cells also grew toward distant gray matter 
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target zones, such as mediodorsal and ventral anterior thalamus. These data suggest that directional 

cues for axons, whether diffusible or substrate-bound, are provided by adult host target regions. 

Since porcine neural development continues four to five times longer than mouse, these axons may 

grow and make synapses for a longer time (with slower maturation) than that seen in rat-to-rat 

studies. These general differences are borne out in the time-course comparisons of functional 

recovery in rodent porcine-transplant recipients (8 weeks post-transplantation) as compared with 

allografts (4 weeks post-transplantation) [18]. 

Anatomical and cell type specification of dopamine neurons. 

The current understanding of the maturation and phenotypic specializations of DA neurons located 

in the adult substantia nigra parallels the observations made of the development of committed fetal 

dopamine neurons placed as grafts into the adult CNS (Fig. 1). The molecular signaling necessary 

for the final morphological specializations and connectivity of the nigro-striatal DA system must 

therefore be largely intrinsic to the developing DA neurons; or alternatively, present in significant 

detail in the adult brain for this process to be completed in a normal way. On the post-synaptic host 

side; different regions of the striatum are associated with specific behaviors in rat: the dorsal 

striatum receives primary afferents from the motor areas of neocortex, and has been shown to be 

preferentially involved in rotational recovery after DA neuron transplantation [42]. In the intact rat, 

the subpopulation of nigral DA neurons from A9 SN which co-express AHD project their axons to 

the dorsal-lateral and rostral regions of the striatum. When transplanted into adult DA-denervated 

rat striatum, these AHD/TH neurons innervated this region of the DA-depleted striatum [18, 43]), 

showing a preferential reinnervation of the dorsolateral striatum corresponding to the normal 

projection pattern of AHD/TH neurons. Specific innervation by subsets of transplanted DA 

neurons was also demonstrated by Schultzberg, showing reinnervation of the DA-depleted striatum 

by the population of grafted A9 VM neurons lacking cholecystokinin (CCK) [44]. The CCK+ 

fibers were found in a narrow zone immediately adjoining the graft. These data suggest the 

presence of mechanisms which selectively favor the ingrowth of fibers from the appropriate DA 
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neuronal subset. Thus enrichment of the DA-neuron subpopulation which specifically expresses 

AHD may allow more appropriate reinnervation of striatum after transplantation, and influence the 

degree of functional recovery in PD [18] (Fig. 1). 

Repair of synaptic function and regulated dopamine release after implantation of new dopamine 

neurons. 

The most important factor in obtaining complete and sustained functional effects may be the 

presence of new synapses for biochemically and physiologically appropriate DA release in the host 

striatum. Embryonic DA neurons produce new connections with the mature host striatal neurons. 

Synaptic connections between transplanted VM cells and host cells, as well as afferents from host 

neurons to transplanted cells, have been extensively documented [45, 46]. Functional analyses 

indicate that pharmacological delivery into the striatum may not be as effective in ameliorating the 

motor symptom of PD, as regulated, synaptic release obtained with transplanted DA neurons [33]; 

When DA is directly administered into the ventricle of PD patients, serious psychosis can develop 

[47]. Even from a cell biological standpoint, the rationale for normal range DA release is illustrated 

by differential display experiments that show abnormal upregulation of over 10 genes within the 

striatum after abnormal DA exposure in vivo [48]. Complications associated with unregulated DA 

levels are obvious when observing effects of long-term L-dopa administration: as PD progresses, 

and the DA neuron degeneration continues, the unregulated formation of DA within the striatum 

and abnormal down-stream activity in the basal ganglia can lead to motor abnormalities such as 

dyskinesias. Physiologically appropriate DA functions can be achieved by DA neurons or, 

alternatively, cells which express the complete set of feedback elements required to regulate release 

and uptake of DA. Several studies have shown normalized metabolic activity throughout the basal 

ganglia after transplantation. Using cytochrome oxidase histochemistry as an indicator of neuronal 

metabolism in the 6-OHDA-lesioned rat; the lesion-induced increases in activity of the 

entopeduncular nucleus and SN reticulata were reversed by intrastriatal VM grafts, whereas the 

lesion-induced increases in globus pallidus and subthalamic nucleus were not affected by grafting 



Dopamine cell implantation strategies for Parkinson's disease 
9/25/00 

[49]. Similarly, in MPTP-treated monkey receiving VM transplants, DA cell implants increased the 

metabolic activity of the implanted striatum, particularly in the region of grafts containing greater 

numbers of DA neurons [50].  Positron emission tomography (PET) and carbon-11-labeled 2B- 

carbomethoxy-3B-(4-fluorophenyl)tropane (11C-CFT) have been utilized as markers for striatal 

presynaptic DA transporters in a unilateral lesion model in rat. In the lesioned striatum, the binding 

ratio was reduced to 15% to 35% of the intact side. After DA neuronal transplantation, behavioral 

recovery occurred only after the 11C-CFT binding ratio had increased to 75% to 85% of the intact 

side, revealing a threshold for functional recovery in the lesioned nigrostriatal system after neural 

transplantation[23]. Autoregulation of DA release and metabolism by intrastriatal grafts has been 

shown by in vivo microdialysis. Infusion of a non-selective DA agonist (apomorphine) reduced 

DA concentrations in the grafted striatum [12, 51], indicating auto-regulation of DA levels by 

transplanted cells. Evidence for the formation of functional synapses and appropriate DA regulation 

by transplanted fetal DA neurons comes from the observation that dyskinesias, expressed either as 

contraversive circling after repeated L-dopa injections  in  rodents   [52]   or L-dopa-induced 

dyskinesias in non-human primates are reduced after transplantation. These data indicate that DA 

levels within the transplanted striatum will be regulated in a functional manner by the transplanted 

DA neurons. 

Potential use of stem cells for obtaining donor cell for transplantation. 

Most living systems undergo continuous growth. There are many examples of cell division and 

differentiation for maintaining cell populations in adult human bodies; for example, the bone 

marrow that recruits stem cells capable of dividing into most of the cells necessary for blood and 

immune systems throughout life. Part of entire adult organs can be regenerated, such as the liver. 

Cells in the lining of the gut are shed on a daily basis with replacements growing in from layers 

below. In the skin, the basal cell layers of the dermis provides a plentiful source of growth; that 

also signifies a continuous growth process. These specialized cells can divide to maintain or 

increase growth of organ systems in the adult body. The recent fascination with the most 
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pluripotent of such cell; the so-called stem cells, illustrate a renewed interest and deepening 

molecular understanding of developmental biology. While for the last 60 years most text-books of 

embryology has detailed most biological sequences in the development of mammals, it is not until 

recently that a molecular and mechanistic data of cellular signaling pathways involved in cell fate 

and development of organ systems has been obtained. In addition, recent cloning experiments have 

illustrated that even mammalian adult cell nuclei (containing DNA) has the material for establishing 

all cells of a whole organism after transfer to a fertilized egg-cell. The fertilized oocyte goes 

through a few rounds of cell division and then the resulting cluster of cells (in the range of 250 

cells; see Fig. 2) is capable of imbedding itself in the wall of the uterus in mammals. At this stage, 

each of the cells in the inner cell mass cluster is usually capable of forming any part, or the whole of 

the entire body plan. This type of cell is therefore denoted stem cell, or in this case, embryonic stem 

cells. From this initial group of stem cells, all other cells that form the living body are generated. 

The developmental sequential orchestration of the growth of the body into its specialized parts and 

unique form and function follows a strict pattern and sequence in the embryo and neonate. 

Nevertheless, as previously mentioned, in the adult organism, many cells with the body remain 

capable of division and growth into specialized cell systems. Recently, such divisible (yet non- 

malignant or carcinogenic) cells have gained increased attention. The idea that such multipotent 

cells present in the blood stream, or even in the brain, are still capable of multiple cellular fates has 

intrigued biologists and the public. In particular in the brain, in addition to the well-known fact that 

olfactory epithelium and a few other brain regions (including the dentate gyrus of the hippocampus) 

there may also be dividing cells capable of other types of growth or repair. Such continuous cell 

division may be necessary for maintenance and adaptive function of many cellular systems. 

In experimentation, stem cell-like behavior has been observed from embryonic stem cells, 

growth factor-expanded neural progenitors, immortalized cell lines and embryonal carcinoma cells. 

Growth factor-expanded cells have been implanted into the adult brain, with survival of small cell 

clusters [53-55]. Immortalized cell lines have shown capacity to differentiate into several neuronal 

cell types when transplanted (for review, see [56]).   The implantation of immortalized cells into 

10 
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neonatal brain resulted in differentiation into neurons and glia with apparent region-specific 

morphology [57-60].    Notably, when transplanted into adult brain such immortalized cells 

(generated from embryonic striatum or hippocampus) are usually fated to form glia [61].   Brain 

implants of embryonic carcinoma cell lines have been shown to survive and grow as neurons when 

treated with retinoic acid [62-65].  We transplanted mouse D3 and E3 normal ES cells into adult 

mouse striatum and adult 6-OHDA-lesioned striatum, which spontaneously developed into neurons 

and other cells (Fig. 2). Many TH+ neurons were found, while dopamine-ß-hydroxylase+ cells 

were infrequent. Non-neuronal regions sometimes were immunoreactive for glial fibrillary acidic 

protein. Many neurons, including DA and 5-HT catecholaminergic cells, grew axons into the host 

brain. The axonal growth into gray matter was not abnormal, but did not resemble the five caliber 

fiber innervation seen in normal DA growth in the striatum [13, 66].   ES derived serotonergic 

neurons grew in a less restricted pattern than TH+ neurons. Mouse D3 and E3 ES cells placed into 

mouse kidney capsule grew into similar neuronal phenotypes as those placed in the adult brain. 

These data suggest that neuralization is a possible default pathway, and occurs spontaneously if 

pre-gastrula cells are prevented from getting patterned signals from other embryonic cell layers 

[67]. This is not entirely surprising, given that the early gastrula ectodermal animal cap, normally 

destined to become epidermal tissue, will form neural tissue if disrupted [68]. There are known 

inducing factors discovered for epidermal differentiation during gastrulation, such as BMP4 [69]. 

Homozygous knock-out mice lacking functional BMP receptor (BMPR1) will not survive past 

gastrulation [70], a time when epidermis would normally form. Inhibitors of BMP4 or activin, such 

as noggin, follistatin, and chordin, from the Spemann organizer region, can cause ectopic formation 

of neural tissue Taken together, these findings indicate that disruption of these epidermis-inducing 

signals causes neural differentiation. Given that our experiment involved dissociated and expanded 

ES cells, this may be equivalent of such disruption. Nonetheless, it remains to be determined if 

other growth factors present in brain and kidney capsule can induce TH+ neurons. The absence of 

kidney formation in GDNF-knockout mice suggests that GDNF may play a role in both kidney 

and brain development [71]. While these ES cells form neurons of TH+ (putative DA) phenotypes 

11 
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that extend axons, into the adult host striatum, such neurons have not yet been shown to create the 

kind of behavioral recovery seen with implantation of normal phenotypic fetal DA neurons (Isacson 

et al, unpublished observations). 

In conclusion, there is a large unmet need for obtaining a donor cell source for clinical cell 

implantation to PD patients. While human fetal DA donor cells work in principle, as shown in 

human pilot studies, this cell source is not available or workable in a standard clinical environment. 

Analogous fetal DA donor cells from other animal species are potential alternatives to human fetal 

tissue. For example, the pig or rodent meso-striatal DA system also contains cell groups A8, A9, 

and A10 that differentiate into the homologous cell groups seen in humans and function after 

transplantation to the mature brain. Alternatively, functionally appropriate DA neurons could be 

derived   from   progenitor   or   stem   cell   populations.   Moreover,   genetic   engineering   and 

immortalization technology could be applied to progenitor and stem cells, in order to obtain 

sufficient numbers of DA neurons of appropriate design for cell transplantation to a large number 

of PD patients. 
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FIGURE LEGENDS 

Figure 1. Target-specific innervation by grafted fetal cells. (A) Target zones in adult host gray 

matter are selectively innervated by embryonic pig donor DA axons normally destined to form 

synapses there, whereas non-DA donor fibers grow into host myelinated bundles. (B) In the intact 

rat, the subpopulation of nigral DA neurons from A9 SNc, which co-express AHD, project their 

axons to the gray matter of dorsal-lateral regions of the striatum. The ventral tegmental area (VTA) 
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neurons from A10 co-express CCK, and project to ventromedial striatum, nucleus accumbens, 

neocortex and limbic regions.  (C) When the enriched population of TH/AHD neurons obtained 

from a medial (versus lateral) VM dissection is transplanted into DA-lesioned adult rat striatum, 

these neurons preferentially reinnervate their normal dorsolateral striatal target, shown to be 

involved in rotational recovery after DA neuron transplantation. TH/CCK neurons from VM show 

different patterns of outgrowth when placed into cortex. (Reprinted with permission from Trends in 

Neurosciences 1997; 20:477-482. © Elsevier.) 

Figure 2. Basic steps for ES cell procedures including in vitro expansion, chemical or spontaneous 

induction into neurons after implantation into the adult brain. Totipotent embryonic stem cells 

derived from the inner cell mast of blastocyst are propagated in culture in the presence of leukemia 

inhibitory factor (LIF). Prior to transplantation, LIF is removed. The cells are treated with retinoic 

acid (A) or are transplanted directly (B) into adult brain. Regardless of pre-treatment with retinoic 

acid, the transplanted ES cells differentiate to form cells with neuron-like morphology and 

phenotypic expression of neuronal markers. 
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Parkinson's disease (PD) is caused by a degeneration of dopaminergic (DA) neurons located in the ventral mesen- 

cephalon. Cell replacement therapy seeks to replace the loss in synaptic signaling cause by the neuronal degenera- 

tion. It has been shown that fetal ventral mesencephalic neurons transplanted to the caudate/putamen of PD 

patients can significantly reduce the need of L-dopa treatment and improve symptoms. However, the fetal cell 

grafting procedure is limited to a few centers worldwide and will not become a standard treatment until some 

major issues are solved. The current major problem is the use of fetal tissue that raises ethical concerns and is 

impracticable since tissue from several fetuses is needed due to low neuronal survival after grafting. It is also of 

importance to achieve increased axonal outgrowth and synaptic reinnervation from the grafted cells. Recent find- 

ings in stem cell research have indicated that stem cells might be a very potential cell donor source for cell replace- 

ment therapy. In addition, new insights into axon guidance mechanisms will provide tools for stimulating outgrowth 

and achieving appropriate target innervation from the grafted cells. This review discusses the development of cell 

replacement therapy for PD and also looks forwards towards future possibilities on how to increase 

the efficacy and availability of this treatment. 

Keywords: Dopamine • transplantation • L-dopa • stem cells • axon guidance 

Patients presently with Parkinson's disease (PD) can 
only benefit from pharmacological treatment for about 
5-10 years due to a continued loss of dopamine (DA) 
neurons and synapses, a gradual increase in side 
effects and decreased sensitivity to the drugs. The 
major cause of Parkinson's disease is a selective loss of 
DA neurons in the ventral mesencephalon, and one 
obvious way to seek a cure has to been to try to substi- 

tute the lost DA neurons with implantation of new cells 
producing adequate dopamine. 

The current problems and opportunities in neural 
repair by implanted cells revolve around how to 
achieve a practical, reliable and reproducible source of 
donor cells that survive and provide new functional 
synapses in appropriate areas of the brain and spinal 
cord. To date, most technical efforts have been focused 
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on increasing survival of grafted DA neurons. 
However, to achieve sufficient functional effects by the 
grafted cells, not only do the cells need to survive in the 
new location, but must also form synaptic contacts in 
the patient's brain. 

In this review we discuss the current status of cell 
replacement therapy for PD and future directions for 
achieving a reproducible effective therapy for PD. 

TRANSPLANTATION OF NEURAL TISSUE 
TO THE CENTRAL NERVOUS SYSTEM  

The first report of apparently successful brain grafting 
came from Elisabeth Dunn in 1917 [1]. In her experi- 
ment, neonatal rat cortical tissue that had been grafted 
to the cortex of rat pups retained many morphological 
features. This report showed the importance of using 
developing rather than mature donor material for 
grafting. Further evidence for this came in 1940 when 
W. E. LeGros Clarke reported successful grafting of 
fetal cortical tissue into the neonatal brain [2]. 
Interestingly, functional effects were obtained by K. M. 
Knigge in 1962 [5] and in 1965 by B. Halasz et al. [4], 
who showed that neonatal pituitary tissue grafted to 
the third ventricle could restore growth and reproduc- 
tive function in pituitary ectomized rats. 

Sixteen years later, Perlow et al. [5], as well as 
Stenevi and Björklund [6] (1979) were able to show that 
grafts of fetal ventral mesencephalic DA neurons could 
compensate for the DA motor deficits produced by a 
unilateral 6-OHDA lesion in the rat. In the years fol- 
lowing this report, the scientific community was able to 
produce extensive proof that grafts of fetal DA neurons 
could survive the grafting procedure for a long time 
period, have spontaneous electrical activity [7J, and 
establish both afferent and efferent synaptic contacts 
with the host brain [8]. This form of cell transplantation 
produced symptomatic relief in various animal models 
of PD. Based on this extensive and encouraging work 
in animal models, in 1987, a research team from Lund, 
Sweden lead by Lindvall and colleagues performed the 
first grafting of fetal human ventral mesencephalic tis- 
sue to a patient with PD [9]. Inspired by the pioneering 
work by the Lund group, other research teams soon 
followed and currently, many groups worldwide are 
now using DA transplants as an experimental therapy. 

CURRENT AND POTENTIAL THERAPEUTIC 
BENEFITS FROM NEURONAL CELL 
IMPLANTATION IN PARKINSON'S DISEASE 

The development of fetal neural transplantation for PD 
has shown (when appropriate methods are used for 
transplantation) that most patients show an improve- 
ment and reduction in drug-induced dyskinesias and 

dystonias in the "ON" phase, as well as percent time 
spent in «OFF" [10]. These findings are highly correlat- 
ed with the presence of surviving dopaminergic grafts. 
In the best cases reported so far, patients have reduced 
their L-dopa usage to zero, in association with 50-80% 
reductions in prior symptoms as assessed by the clini- 
cal rating scale (e.g. UPDRS). The fact, that the current 
clinical groups are using different techniques and with 
different success rates [10] indicates that neural DA 
transplantation is still experimental and in an early 
technical phase. Thus, the skepticism levied at some of 
their results and inconsistencies is understandable. 
One of the most reliable findings after transplantation 
is some reduction of the use of L-dopa a few months 
after implantation and a dramatic loss of dyskinesias 
and "ON/OFF" phenomena with full L-dopa dose. The 
most likely explanation for this finding is that the 
biosynthetic machinery provided by the implanted new 
cells allows L-dopa, through dopamine decarboxylase 
and other synaptic vesicular transport mechanisms; to 
be converted to dopamine, that is released and regulat- 
ed at the synaptic sites in the host brain. This interpre- 
tation of neural transplantation effects in PD also pro- 
vides an understanding of the progressive improve- 
ments seen. The patients who no longer need L-dopa 
after transplantation all demonstrated a progressive 
improvement over a six-month to six-year period that 
is sustained [10, 11], Moreover, the degeneration seen 
of the host dopaminergic systems also continues with 
no apparent effect on the implanted cells. This 
becomes apparent when analyzing data from unilater- 
ally transplanted patients [12]. In Lindvall's first 
patients (number 5 and 4), as the grafted side became 
functional, the contralateral side continued to degener- 
ate [10]. In this way, a form of hemiparkinsonism devel- 
oped and the patients were relieved by subsequent 
transplantation bilaterally [10]. This type of clinical 
case-by-case evidence is complemented by a solid base 
of research in rodents and monkeys that demonstrates 
that the CNS dopaminergic system can be repaired [15]. 
Thus it is evident that the fetal cells that grow into the 
host brain are capable of taking over the function of the 
degenerated host systems. 

CURRENT PROBLEMS IN ESTABLISHING 
NEURONAL CELL IMPLANTATION AS A 
I?IAJMNIJ:0.?..PARK,NS0N'SDISEASE 

SOURCES OF RELIABLE DONOR CELLS 

Although grafting of fetal DA cells to PD patients 
shows great promise, several current limitations have 
to be overcome before this methodology can become a 
standard treatment for PD. One such problem at the 
present time is that fetal tissue for one PD patient has 
to be taken from about 4-8 aborted fetuses, which is 
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ethically controversial and restricts the use of the 
method to Research Centers with a high turnover of 
abortions at early gestations. Some authors have 
argued [14] based on postmortem studies of grafted PD 
patients, [15] that about 80,000 surviving DA neurons 
per striatum are needed to achieve symptomatic relief, 
although the reasoning for this assumes that all 
dopamine neurons are functionally equal (while A10 
and A9 DA neurons are not). The major reason for the 
large amount of tissue needed per patient has been the 
relatively low survival of the grafted fetal neurons after 
transplantation. Unfortunately, only 5-10% of the graft- 
ed DA cells have been able to survive the transplanta- 
tion procedures. Great efforts have been made to try to 
solve the problem of poor post transplantation viability. 
Using animal models, increased DA neuronal survival 
has been reported using growth factors like glial cell 
line-derived neurotrophic factor (GDNF) [16]. Similar 
results have been reported using antioxidative agents 
Uke lazaroids [17, 18]. However, independently of 
which agent was used, a survival plateau of around 50- 
40% of the implanted cells was reached. Since the ven- 
tral mesencephalon of a human fetus contains about 
1 x 10e neurons and approximately 10% of these are DA 
neurons, 2-5 fetuses per side would still be needed to 
produce enough surviving DA neurons even with max- 
imized trophic support. 

Due to the many problems connected to the use of 
fetal DA neurons, many scientists have now began the 
search for an alternative source to produce functional 
DA neurons. Fetal pig DA neurons have been tried as 
an alternative source and these neurons can survive 
and reinnervate the host brain when grafted to PD 
patients [19]. However, the survival of the pig neurons 
has been poor and there are also infectious and 
immunological issues that have to be considered using 
xenografting techniques as a standard treatment 

THE USE OF STEM CELLS 

A research direction that has attracted a lot of atten- 
tion and that seems very exciting and promising is the 
use of stem cells. In its broadest definition, a stem cell 
is a self-renewing cell that can give rise to multiple 
mature phenotypes. This includes a wide variety of 
immature cell types from all stages of embryogenesis as 
well as certain developmentally sequestered cell popu- 
lations in organs and tissues of the adult, such as 
hematopoieüc stem cells and cells within the forebrain 
subventricular zone. While it is used interchangeably 
with stem cell, the term "a progenitor cell" usually rep- 
resents a cell with more restricted potential to differen- 
tiate (see Johe, this volume). Many laboratories have 
reported that neural progenitor cells can be isolated 
from the developing embryonic brain as well as from 
the adult brain and spinal cord [20-25]. These multipo- 

tential stem cells can be expanded in vitro in the pres- 
ence of mitogens such as fibroblast growth factor-2 
(FGF-2) or epidermal growth factor (EGF) and upon 
withdrawal of mitogens differentiate into all three 
major cell types of the CNS namely, neurons, astrocytes, 
and oligodendrocytes. Notably, individual extracellular 
signals have been shown to induce these mulüpotential 
cells to alternative differentiation pathways. Thus, 
neural stem cells efficiently differentiate into astrocytes 
in the presence of ciliary neurotrophic factor (CNTF) 
[24]. Bone morphogenetic proteins (BMPs) have also 
been shown to facilitate differentiation of progenitor 
cells to astrocytes [25]. There is a tremendous differ- 
ence in this self-renewing capacity of stem cells to dif- 
ferentiate into distinct cell types, which corresponds to 
the progressive restriction of potential that occurs dur- 
ing development Recent research has focused on the 
derivation, characterization, and control of proliferation 
and differentiation of pleuripotent cells capable of gen- 
erating multiple CNS cellular phenotypes. 

In order to develop viable transplantation tech- 
niques using such putative neural precursors, one 
needs to isolate and expand the selected cells. 
Pleuripotent progenitor cells derived from fetal or 
adult brains can be expanded in vitro, treated with cer- 
tain signaling molecule(s), and/or genetically modified 
for optimal differentiation to therapeutically relevant 
neural phenotypes. Recent progress on molecular 
mechanisms underlying differentiation and neuro- 
transmitter specification of DA neurons provides an 
unprecedented opportunity for cell-based therapy of 
PD and other neurodegeneraüve diseases (Figure 1). 
Transcriptional control mechanisms for neuronal dif- 
ferentiation and neurotransmitter identity have been 
identified in organisms such as C. elegans, Drosophila, 
and mouse [26]. For example, a new orphan member of 
the nuclear receptor superfamily, Nurrl, was isolated 
and found to be co-expressed with TH in CNS DA neu- 
rons such as substantia nigra and olfactory bulb [27, 
28]. Recent studies of Nurrl knock out mice showed 
that Nurrl is essential for the later stages of DA cell 
development by inducing a DA phenotype in the sub- 
stantia nigra [29]. These studies suggest that Nurrl reg- 
ulates the DA phenotype directly or indirectly, although, 
at present, the direct target gene(s) of Nurrl are not 
defined. Genetic manipulation of stem cells using 
recent discoveries regarding key transcription factors in 
DA neuronal differentiation may provide a very useful 
way of achieve large amounts of DA cells for transplan- 
tation [30] (Figure 1). 

INCREASING THE DA SYNAPTIC REINNERVATION CAPACITY 
OF THE GRAFTED CELLS 

It is necessary to achieve survival of grafted DA neu- 
rons, but it may not be sufficient to obtain an optimal 
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COMPLEMENTARY PATTERNS OF EPHRIN B2 
AND EPH B1 RECEPTOR IN THE DEVELOPING 

NIGROSTRIATAL CIRCUIT 

FIGURE 2 
Schematic drawing showing the striatal expression pattern of 
Ephrin B2 (red) and the ventral mesencephalic distribution of 
the Eph B1 receptor (blue) in the developing rat brain. Ephrin 
B2 is expression is expressed a gradient with high levels in the 
nucleus accumbens and ventro-medial striatum, while levels 
are low in the dorsolateral striatum. The corresponding 
receptor Eph B1 is exclusively expressed in the substantia 
nigra pars compacta (SNc) and not the ventral tegmental area 
(VTA) neurons. The high levels of the Ephrin B2 ligand in 
nucleus accumbens and ventro-medial striatum will prevent the 
Eph B1 expressing growth cones from SNc DA neurons from 
entering this area since the interaction between ligand and 
receptor induces growth cone collapse. This interaction does 
not occur in the dorso-lateral striatum thus allowing the SNc 
DA neurons to innervate this area. (This figure is modified from 
Yueeta/., 1999.) 

therapeutic effect. It is very important that the grafted 
neurons establish appropriate synaptic contact with the 
target territory [15]. Some efforts have been made to try 
to stimulate increased axonal outgrowth and branch- 
ing from the surviving grafted DA neurons. Both intrin- 
sic and extrinsic mechanisms of increased fiber out- 
growth have been investigated [31]. It has been shown 

that transgenic overexpression of the anti-apoptotic 
factor Bcl-2 can increase axonal outgrowth from graft- 
ed fetal DA neurons [32, 33]. Xenografts of fetal pig DA 
neurons that normally develop over a longer time peri- 
od than rat DA neurons will also grow for longer dis- 
tances to appropriate targets in rat hosts, further indi- 
cating the fact that intrinsic factors play an important 
role in axonal outgrowth [13, 34]. Extrinsic factors 
shown to increase axonal outgrowth capacity from 
fetal grafted DA neurons are GDNF [35] and 
immunophilin ligands [36]. These factors are now seri- 
ously considered for inclusion in clinical transplanta- 
tion trials. 

DEVELOPING DA AXONS FIND THE WAY 
TO THEIR TARGETS BY RESPONDING TO 
BOTH INHIBITORY AND GROWTH 
PROMOTING FACTORS  

Recently, several DA axon guidance molecules have 
been characterized. The dopaminergic neurons in the 
substantia nigra are dividing between Ell and E16 
[37], and their axons begin reaching the striatal target 
around E 15.5 [58]. Recent studies of the formation of 
the nigrostriatal circuit, have indicated functions of 
axon guidance molecules of the Semaphorin [59], 
Netrin [40], Ephrin and the Eph receptor [41] families. 
The Eph receptors are the largest known family of tyro- 
sine receptor kinases and they play important roles in 
cell growth, survival, migration and connectivity [42, 
45]. The Eph receptors can be divided into two sub- 
families; Eph A receptors (Eph Al to Eph A8) and Eph 
B receptors (Eph Bl to Eph B6), corresponding to their 
ligand specificity. The ligands are called Ephrins and 
consist of two subclasses. Ephrin Al to Ephrin A5 are 
linked to the cell membrane via a glycosyl-phospho- 
Üdyl inositol (GPI) linkage while the Ephrin Bl to 
Ephrin B3 are transmembrane proteins. So far, one lig- 
and (Ephrin B2) and one receptor (Eph Bl) have been 
shown to be expressed in a gradient pattern within the 
nigrostriatal circuit [41] (Figure 2). When an Eph Bl 
receptor on a growth cone binds to the Ephrin B2 lig- 
and, this will cause growth cone collapse and also send 
apoptosis inducing signals to the neuron, thus 
repelling the axon. During development of the nigros- 
triatal circuit, the Eph Bl receptor is expressed only in 
the DA neurons of the substantia nigra pars compacta 
(SNc) and not in ventral tegmental area (VTA) DA neu- 
rons while the corresponding ligand Ephrin B2 is 
expressed in a gradient pattern within the target stria- 
tum. High levels of Ephrin B2 can be found in the ven- 
tromedial striatum and nucleus accumbens while lev- 
els are low in the dorsolateral striatum (Figure 2). This 
gradient restricts the SNc DA neurons from growing 
into the ventromedial striatum and nucleus accum- 
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bens, but they will not be repelled from the dorsolater- 
al striatum (their appropriate synapüc target area). 
These findings by Yue and collaborators [41] have start- 
ed to reveal some of the mechanisms involved in how 
developing DA neurons find their target areas. Further 
knowledge about the axon guidance mechanism can 
allow manipulations to increase the synaptic reinner- 
vation capacity of grafted DA cells. 

In conclusion, from fairly inauspicious beginnings, 
DA fetal and stem cell neural transplantation is provid- 
ing a completely new approach for treatment of PD. 
Rational pharmacological replacement of the dead DA 
neurons in PD by L-dopa, while initially helpful, even- 
tually becomes insufficient with debilitating side- 
effects for the patient Since the loss of efficacy is like- 
ly due to loss of L-dopa conversion and DA synaptic 
control (homeostatic) mechanisms of transmitter 
release, reinnervation with new synapses by implanted 
DA neurons can potentially provide a better interven- 
tion. Neural DA cell replacement for PD requires better 
techniques and donor cells to become a standard and 
reliable therapy. Hopefully, scientific insights about 
new donor cell sources, their axonal and synaptic inte- 
gration in the patients brain as well as technical devel- 
opment in neurosurgery (see Mendez et al., this vol- 
ume) will achieve a translation of these novel ideas 
into clinical practice. 
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Degeneration  of dopamine   (DA)   synapses  in   Parkinson's  disease (PD) 
is associated with the loss of striatal dopamine release and dopamine reuptake sites. 
To compensate for this loss of innervation, the remaining postsynaptic DA targets 
(D2 receptors) might have enhanced capacity to bind dopamine. 

To assess the relationship between dopamine transporters, D2 receptors and 
energy metabolism we conducted PET imaging studies in a primate MPTP model of 
PD. PET imaging studies were conducted before and 2 and 3 months after the last 
MPTP administration. The binding ratio of "C-CFT to the striatal dopamine 
transporters was reduced by 65-72 % indicating loss of dopamine transporter sites. 
In the same areas the binding ratio of "C-raclopride was increased 18-22% 
indicating significantly enhanced binding to the postsynaptic dopamine D2 

receptors. Studies of energy metabolism conducted with 18F-2-fluorodeoxy-D- 
glucose showed only minor increases in glucose utilization in the same striatal 
areas. 

These  data  indicate  that  decrease of striatal dopamine release, induced by 
depletion of presynaptic dopamine reuptake sites of up to 72%, enhances binding of 
dopamine to postsynaptic D2 receptors. Minor increases in total PET glucose 
utilization was observed in such striatal areas, possibly reflecting a maintained 
neuronal function at this level of DA loss or evidence of degenerative processes. 
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Neuroregeneration Laboratory, McLean Hospital/Harvard Medical School, 

Belmont, MA 02478; department of Radiology, Massachusetts General 
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We investigated the inflammatory response in vivo during 
dopamine degeneration using PET imaging of dopamine transporters and 
microglial activation in a rat model of progressive dopamine neuron 
degeneration induced by unilateral (right) intrastriatal administration of 6- 
hydroxydopamine (6-OHDA). Intrastriatally administrated 6-OHDA 
produces retrograde degenerative changes in dopaminergic neurons of the 
substantia nigra through oxidative and mitochondrial damage and thus 
creates a slowly progressive degeneration of the dopaminergic system. 
Imaging studies of dopaminergic degeneration were conducted in 4 control 
rats and 5 unilaterally lesioned rats 3 weeks after 6-OHDA using "C-CFT 
(2ß-carbomethoxy-3ß-(4-fluorophenyl) tropane), a specific ligand for pre- 
synaptic dopamine transporters and C-PK11195 (l-(2-chlorophenyl)-N- 
methyl-N-(l-methylpropyl)-3 isoquinoline carboxamide), a specific ligand 
for microglia. The dopaminergic system showed a significant decrease in 
binding parameters of the dopamine transporters "C-CFT in the striatum 
indicating degeneration of the dopaminergic system and parallel increases of 
"C-PK11195 binding, indicating microglial activation in the striatum and 
substantia nigra. These preliminary data strongly support the hypothesis that 
inflammation is a significant component in progressive dopaminergic 
degeneration. 
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PART II: 

REPORT OF RESEARCH: 

Major Research Interests: 
(1) Methods for neuronal repair, regeneration and protection: using animal models of Parkinson's, Huntington's 

and Alzheimer's diseases. 
(2) The pathophysiology and therapy of CNS degeneration in Huntington's, Parkinson's, and Alzheimer's 

diseases. 

Narrative Description of Research: 
The research programs focus on mechanisms of neuronal degeneration and innovative methods for cellular repair, 

with emphasis on the neurodegenerative disorders like Parkinson's (PD), Alzheimer's (AD), and Huntington's (HD). 
This work has already led to applications of cell therapy for PD and HD. This laboratory is involved in several 
pharmacological, gene, molecular and cellular studies to obtain neuroprotection or cell and gene delivery in the CNS. 

1. Neural Transplantation: 
The understanding of regeneration and plasticity of the mammalian nervous system has developed over the last 

decade. We have participated in research that shows that the brain is a regenerative system which can integrate 
implanted primary neurons, progenitor or stem cells into the adult brain. These implanted neurons grow 
physiologically and functionally to repair previously damaged or degenerated neuronal pathways. The specific 
experiments performed in this laboratory have significantly influenced neural transplantation in clinical trials using 
porcine and human cells for Parkinson's and Huntington's disease. Encouraging results suggest that cell therapy 
may become, when fully developed, a useful treatment for neurodegenerative disease. At the very fundamental level, 
this laboratory also investigates the specific axon guidance factors that persist in the adult brain. In animal models, 
by transplanting neuroblasts into various locations in the brain, we are determining if reconnection and tropic 
interactions are possible. The goal of this work is a better understanding of the structural and functional plasticity of 
the central nervous system that can lead to improved therapies for neurological disease. 
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REPORT OF RESEARCH: (continued) 

2. Neuroprotection: 

Starting in 1989, this laboratory has investigated a number of paradigms in which neurotrophic factors can 
prevent degenerative events. Based on the theory that the neuron at any given moment is in a defined state of 
vulnerability (dependent on genetic and phenotypic characteristics), we have devised methods to improve the 
resilience of neurons affected in Huntington's, Parkinson's and Alzheimer's diseases. We are currently investigating 
several novel molecular (e.g. neurophilins) treatments for Parkinson's disease and Alzheimer's disease models. In 
addition, we are performing basic research on molecular modifications of striatal neurons to enhance their capacity to 
withstand insults or modify their genetically induced vulnerability in Huntington's disease. 

3. Gene Delivery and Gene Therapy: 

Since 1989, this laboratory has developed a number of model systems for gene delivery, ranging from delivery in 
the peripheral nervous system to specific delivery in anatomical systems involved in Parkinson's and Huntington's 
disease. We have used modified and transfected cell lines to establish new paradigms for neuroprotection and recently 
have made inroads into efficient, selective and stable delivery and expression of genes by modified viral vectors into 
the CNS. 

(Please refer to Bibliography to see the development and progress of these research paths.) 

Specific Research Funding Information: 
1989-90 NATO Grant# CRG 890583, (PI) "Neural transplantation in primate models of 

neurodegenerative disease". 
1990-91 NIH Program Project Award: Huntington's Disease Center, (PI of sub-contract) MGH and 

McLean Hospital. 
1991-96 NIH: Neurological Science. Research Grant NS29178, (PI), "Excitotoxic Cortex Lesions- 

Degeneration and Remodeling" 
1992-93 Biotechnology sponsored research program, (PI) "Cell Based Therapy" 
1992-95 NIH: Neurological Science. Research Grant # ROI NS30064, "Neuronal Replacement in a 

Model of Huntington's Disease 
1993-94 Biotechnology sponsored research program, (PI) "Cell Based Therapy" 
1994- NIH: MH19905 (Benes, PI) "Clinical Neuroscience Training Program Grant" 
1994-95 Biotechnology sponsored research program, (PI) "Immunological masking techniques in 

intracerebral fetal nerve cell transplantation" 
1995 Milton Fund, Harvard University, (PI) "Novel neurotrophic molecules for neuroprotection 

in Parkinson's disease" 
1995-96 Wills Foundation, (Sponsor (01), Haque, fellowship), 
1995-96 Biotechnology sponsored research program, (PI) "New Immunological Methods in 

Intracerebral Fetal Nerve Cell Transplantation" 
1995-98 NIH: Neurological Science. Research Grant # RO1 NS30064, Competing Renewal, (PI) 

"Neuronal Replacement in a Model of Huntington's Disease" 
1996- NIH: 5-T32-AG00222 (Yankner, PI) "Molecular Biology of Neurodegeneration Training 

Grant" 
1996-97 National Parkinson Foundation, (Sponsor (01), Costantini, fellowship) "Ex vivo and in 

vivo gene transfer of CuZn SOD-1: protection from oxidative stress and neurodegeneration" 
1996-97 Biotechnology sponsored research program, (PI) "Cholinergic neuronal replacement in 

animal models" 
1996- Pharmaceutical industry sponsored research program, (PI) "Documentation of 

neuroprotective and therapeutic effects of compounds against MPTP/MPP+ induced 
neurotoxicity in mice and rat paradigms of Parkinson's disease" 

1997- Biotechnology sponsored research program, (PI) "Functional pharmacological and 
therapeutic models relevant to neuroprotection or amyloid formation" 

1997- Biotechnology sponsored research program, (PI) "Identification of the human immune 
response to porcine fetal mesencephalic cells" 
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Research Funding Information: (continued) 

1997-99 Clinical Neuroscience Training Program, (Sponsor (01), Costantini, fellowship) "Ex vivo 
and in vivo gene transfer of CuZn SOD-1: protection from oxidative stress and 
neurodegeneration" 

1998- Federal, USAMRAA, DAMD17-98-1-8618, (PI) "Structural and functional brain repair 
studies of PD models by novel neurosurgical, PET and MRI/MRS methods" 

1999- Federal, USAMRAA, DAMD17-99-1-9482, New (PI) "Knock-out and transgenic strategies 
to improve neural transplantation therapy for Parkinson's disease" 

1999- Century Foundation, Sarasota Memorial Hospital, sponsored research program (PI) 
"Electrophysiology of PD" 

1999- Federal: NINDS/NIH P50 NS39793, Parkinson's disease Research Center of Excellence 
(Center Director and PI) "Novel Therapeutic Approaches to Parkinson's disease" 

1999- NIH: Neurological Science. Research Grant # ROI NS30064, Competing Renewal, (PI) 
"Transgenic Xenotransplants for Huntington's Disease" 

2000- NIH Neurological Science. Research Grant # ROI NS41263-01, "Novel Anti- 
inflammatory Therapies for Neurotoxically Induced PD" 

(2000) Total Grant Support: $2,200,000/yr. 

REPORT OF TEACHING: 

Local Contributions: 

Graduate Medical Courses/Seminars/Invited Teaching Presentations: 
1988 Boston, Dept. of Neurology, Harvard Medical School, Massachusetts General Hospital 

"Neuronal transplantation and strategies for CNS regeneration" (seminar) 
1990- Faculty, Program of Neuroscience, Harvard Medical School. 

Faculty, Neurobiology of Behavior course/program, McLean Hospital, Harvard Medical 
School 

1990 Boston, MA "Excitotoxic lesions of the cerebral cortex model degeneration and plasticity 
seen in neurodegenerative diseases" (lecture) 

1990 Cold Spring Harbor, N.Y., "The use of genetically engineered cells as donor tissue in 
models of intracerebral transplantation" (lecture) 

1990 Woods Hole Marine Biology Laboratory, RUNN course lecture: "Studies of neuronal cell 
death and regeneration in transplantation models" (faculty) 

1992 Course organizer: HMS Program of Neuroscience Course; "Paradigms to investigate 
neuronal health: what happens to neurons in neurodegenerative diseases" 

1992 Faculty, Lecturer, Dept. of Neurology, HMS, MGH course: "Intensive Clinical and Basic 
Neuroscience Update" 

1993 Neurobiology 209, Harvard Medical School (lecture) 
1994 Massachusetts General Hospital, Scientific Integrity Course (faculty) 
1995 McLean Hospital, Clinical Neuroscience Training Program/'Neural transplantation: site- 

specific CNS delivery of neuroprotectants and neurotransmitters" (lecture) 
1996 Gene Therapy: Principles and Practice (Genetics 208), Harvard Medical School "Strategies 

of gene therapy for dominant and recessive genetic, as well as non-hereditary, diseases" 
(lecture) 

1996 Neurobiology of Disease Course, Harvard Medical School 
1997 McLean Hospital, Clinical Neuroscience Training Program, "Neural transplantation: site- 

specific CNS delivery of neuroprotectants and neurotransmitters" (lecture) 
1997 Boston, Brigham and Women's Hospital, "Hosting foreign cells in the brain: will 

xenogeneic neurons serve as treatments for Parkinson's and Huntington's disease?" (lecture) 
1997 Gene Therapy Group, Harvard Medical School "Gene Therapy for Huntington's Disease" 

(lecture) 
1997 Boston, Harvard-Mahoney Neuroscience Institute Forum, "Neural Transplantation in 

Parkinson's and Huntington's Disease" 
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TEACHING: Local Contributions: (continued) 

Graduate Medical Courses/Seminars/Invited Teaching Presentations: (continued) 
1998 Boston, MGH, Current Approaches to Understanding Neurodegenerative Disease 

Symposium, "Neural transplantation therapy for neurodegenerative disease", (lecture) 
1999 Southborough, MA, Harvard Primate Research Center, "How neural transplantation can 

work in patients with neurodegenerative disease" (lecture) 
1999 Boston, Partners Neurology Residency, Basic Neuroscience Course, "Neuronal Death, 

Regeneration and Transplantation" (lecture) 
1999 McLean Hospital, Clinical Neuroscience Training Program, "Neural transplantation: site- 

specific CNS delivery of neuroprotectants and neurotransmitters" (lecture) 
2000 Cambridge, MIT, Modulation of APP and memory by the cholinergic system (lecture) 

Continuing Medical Education Courses: 
1992 Dept. of Neurology, HMS, MGH course, Boston.MA "Intensive Clinical and Basic 

Neuroscience Update" (faculty) 
1996 State University of New York, Syracuse, NY, 8th Annual Neuroscience Symposium 

(Neurofest '96), "Specificity of axonal growth from porcine embryonic neural xenografts in 
host brain" (lecture) 

1998 Co-director, "Anatomy and Physiology of Basal Ganglia Surgery" CME Course and 
Scientific Conference, Sarasota, FL 

1998 Organizer, Second "Cellular and Molecular Treatments of Neurological Diseases" Scientific 
Conference, Cambridge, MA 

1999 Co-director, "Anatomy and Physiology of Basal Ganglia Surgery" CME Course and 
Scientific Conference, Sarasota, FL 

Advisory and Supervisory Responsibilities in Clinical or Laboratory Setting: 

A. Faculty Mentor. Thesis Advisor or Supervisor in Neuroregeneration Laboratories: 

Al. Current Predoctoral Students: (Degree") 
2000-Present Therese Andersson MSc. 2000 Kalmar University 
1999-Present Anna Moore MSc. 1998 Cardiff University 

A2. Past Predoctoral Students: (Degree, current position) 
1997-1999 AnnaMattsson MSc. 1998 Kalmar University, 

PhD Student, Karolinska Institute 
1997-1999 Biljana Georgievska MSc. 1998 Kalmar University, 

PhD Student, Lund University 
1997-1998 Karin Holm MD 1999 Lund University, 

Resident, Lund University 
1997-1998 ZitaBoonman MD 1999 Utrecht University, 

Resident, Utrecht University 
1996-1997 Lina Fine BS 1997 Harvard University, 

PhD Studies 
1996-1997 Brandi Whatley BS 1997 Boston University, 

Ph.D. Student, U. Maryland 
1993-1996 Wendy Galpern BS 1989 Tufts University, PhD 1996, 

NRL/McLean Hospital & U Mass, MD 1998 U Mass 
Resident Neurology MGH 
Instructor, Harvard Medical School 

1995-1996 ArifHusain BS 1996 MIT, 
Medical School 

1995-1996 Paul Borghesani BS 1994 MIT, 
MD-PhD 1999, Harvard Medical School 

1995 Marcus Ware BS 1993 Tougaloo College, 
MD-PhD at Harvard/MIT HST Program 
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TEACHING: Local Contributions: (continued) 
A2. Past Predoctoral Students: (Degree, current position) (continued) 
1995 Amy Spiegel 

1995-1996 D. Andrina Ngo 

1994 Lisa Genova 

1993-1995 David St. Peter 

1993-1995 Antony Garcia 

1993-1994 Marc Dinkin 

1992-1993 Tara Uhler 

1991-1992 Joseph Simpson 

1991-1992 Wendy Yee 

1989-1991 Lisi Fishman 

A3. Current Staff and Postdoctoral Fellows: 
2000- 
2000- 
2000- 
2000- 
2000- 
1999- 
1999- 

Kai Sonntag 
Aygul Baicioglu 
Kevin McNaught 
Hyemyung Seo 
Lars Bjorklund 
Sangmi Chung 
Francesca Cicchetti 

1998- Anna-Liisa Brownell 

1998- Craig van Home 

1996- Wendy Galpern 

A4. Past Postdoctoral Fellows: (Deeree. cun 
1996-2000 Lauren Costantini 

1996-1999 Ling Lin 

1992-1999 Terry Deacon 

1998-1999 Pushpa Tandon 

1995-1996 Nadia S. K. Haque 

1992-1996 Lindsay Burns 

BS 1995 West Chester University, 
Medical School 
BS 1996 Harvard University, 
PhD Student, Johns Hopkins University 
Program in Neuroscience, PhD 1998 Harvard Medical School, 
Consultant, Health Advances, Wellsley 
BS 1995 Harvard University, 
Director, Biotech, development, New York, NY 
BS 1995 Harvard University, 
Director, Computer-software development, Cambridge, MA 
BS 1994 Harvard University, 
Medical School 
MA 1992 Harvard University, 
MD, Harvard Medical School 
BS 1992 Harvard University, 
MD, PhD at Washington University, St. Louis 
BS 1992 MIT, 
1999, PhD at Johns Hopkins University 
BS 1991 Harvard University, 
Psychologist, Cambridge, MA 

MD 1993, PhD 1994 U. Heidelberg, Instructor HMS 
PhD 1994 Mass College of Pharmacy, Instructor HMS 
PhD 1995 Kings College, London 
PhD 1999 U. Tennessee, College of Medicine 
MD 1999, PhD 1998 Karolinska Institute, Sweden 
PhD 1998 Cornell University, New York 
PhD 1998 Robert Laval Univ., Quebec 
PhD 1974 University of Helsinki 
Asst. Imaging Biologist, McLean Hosp. 
Assoc. Prof., Harvard Medical School 
MD 1992 U. Colorado School of Medicine 
PhD 1992 U. Colorado School of Medicine 
Assistant Neurobiologist, McLean Hospital 
Asst. Prof., Harvard Medical School 
Ph.D. 1996 U Mass/McLean/NRL 
Instructor, 1997 Harvard Medical School 

Ph.D. 1996 U. of New York, Albany 
Assoc. Director of Technol. Dev., Titan, Inc. 
M.D. 1985 Henan Medical U. 
Graduate School, Hong Kong 
Ph.D. 1984 Harvard U., Associate Professor 
Boston University (formerly Assoc. Prof, at 
Harvard U.) 
Ph.D. 1985 U. Lucknow, India 
Research Scientist, Igen, Inc. 
Ph.D. 1995 Cambridge U., 
Research Scientist, Geron, Inc. 
Ph.D. 1991 Cambridge U., 
Research Scientist, Neurex, Inc. 
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TEACHING: Local Contributions: (continued) 
A4. Past Postdoctoral Fellows: (Degree, current position)(continued) 
1993-1995 Stephen Tatter M.DVPh.D. 1990, 1989 Rockefeller U. 

/Cornell Med. School, Asst. Prof. 
Neurosurgery, North Carolina Baptist Hospital 

1992-1994 Peyman Pakzaban M.D. 1984 MGH, 
Neurosurgery, U. Texas Med. Center 

1991-1993 David Frim Ph.DVM.D. 1988 Harvard Medical School , 
Neurosurgery, Assoc. Prof., U. Chicago Medical Center 

1991-1992 Ullrich Wullner M.D.-Ph.D. 1989 U. Gottingen, 
Asst. Prof., Lab Director, Neurology, 
University of Tübingen 

1991-1992 Philippe Hantraye Ph.D. 1987 U. of Paris Assoc. Prof., 
Director, Research Unit, Centre National de 
Recherche Scientifique (France) 

1990-1992 William Rosenberg M.D. 1987 Harvard Medical School, 
Asst. Prof., Neurosurgery, U. Cincinnati 

1989-1990 James Schumacher M.D. 1986 U. Washington, 
Neurosurgery, Sarasota Memorial Hospital 
Instructor, Harvard Medical School 2000 

B. Recent Theses/Dissertations Directed: 

Bl. Graduate 
Anna Mattsson, MSc. Thesis, 1998 
Biljana Gjorgijevska, MSc. Thesis, 1998 
Karin Holm, MSc, MB Thesis, 1998 
Wendy R. Galpern, Ph.D. "Neuroprotection and Neurotransplantation Strategies in Models of Parkinson's 

Disease", Awarded 1996 

B2. Undergraduate (Primary research supervisor and mentor roles) 
Brandi Whatley, BS, Senior Honors Thesis, 1997 Boston University 
Amy Spiegel, BS, Senior Honors Thesis, 1995 West Chester University 
David St. Peter, BS, Senior Honors Thesis, Biology, 1995 Harvard University 
Antony Garcia, BS, Senior Honors Thesis, Biology, 1995 Harvard University 
Marc Dinkin, BS, Senior Honors Thesis, Biology, 1994 Harvard University 
Joseph Simpson, BS, Senior Honors Thesis, Biology, 1992 Harvard University 
Wendy Yee, BS, Senior Honors Thesis, Biology, 1992 MIT 
Lisi Fishman, BS, Senior Honors Thesis, Biology, 1991 Harvard University 

C. PhD Dissertation or Examining Committees: 
1993-1995 Macrene Alexiades, Thesis Advisory Committee, HMS 
1994 Wendy R. Galpern, Oral Qualifying Examination Committee, U Mass Medical School 
1994-1996 Paul Borghesani, Thesis Advisor, MD-PhD Program, HMS 
1999 Richard Christie, PhD Thesis Examination Committee, HMS 

Leadership Roles: 
1992-1993 "On Neuronal Health", Graduate course, HMS (organizer) 
1994 HMS Neuroscience Student Visit to McLean Hospital (organizer) 
1995 National Youth Leadership Forum, presentation to high school students interested in 

pursuing research and medical studies, Simmons College, Boston 
1995 Scientific Program Organizer, "Cellular and Molecular Treatments of Neurological 

Diseases" Conference, Three day international conference of 50 invited participants 
including students from HMS Program in Neuroscience and residents of Neurology and 
Neurosurgery Programs at HMS hospitals. 
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TEACHING: Local Contributions: (continued) 
Leadership Roles: (continued) 

1998 Scientific Program Organizer, "Cellular and Molecular Treatments of Neurological 
Diseases" Conference, American Academy of Arts and Sciences, Cambridge, MA. Three 
day international conference of 150 invited participants including students from HMS 
Program in Neuroscience and residents of Neurology and Neurosurgery Programs at HMS 
hospitals 

TEACHING: National or International Contributions: 

Medical/Graduate School Courses/Seminars/Invited Teaching Presentations: 
1981-83 Seminars and tutorials in Cell Biology, Histology and Neurobiology at the Medical 

Faculty, University of Lund, Sweden 
1983-85 Lecturer in Neurobiology and Histology at the Medical Faculty, University of Lund. 
1985-87 Lecturer and Assistant Director of Medical Neurobiology Course, Lecturer in Histology. 

Supervisor for research students in Medicine, Co-supervisor for 2 PhD students, University 
of Lund. 

1987-89 V. Fellow, Jesus College, Cambridge, University of Cambridge, England. 
Supervisor for Medical Part II students, University of Cambridge, England. 

1990 Faculty, Lecturer, RUNN Course (Review and Update in Neurobiology for Neurosurgeons 
and Neurologists) Woods Hole, MA 

1990 Faculty, Lecturer, Cold Spring Harbor Course: "Molecular Genetic 
Analysis of Diseases of the Nervous System", N.Y. 

1994 Woods Hole, MA, RUNN Course "Affecting Neural Function by Transplantation" 
(faculty) 

1995 Chicago, EL, for Rush University Research Week (Keynote speaker) 
1996 Miami, FL, The University of Miami, The Miami Project to Cure Paralysis "Specificity 

of connections formed by transplanted fetal neurons to the mature CNS" (Visiting 
Professor) 

1998 Karolinska Institute, Stockholm, Introductory lecture for PhD thesis examination for Lars 
Bjorklund on Intraocular Cellular Transplants 

Invited Presentations: 

1983 Hamburg, European Neuroscience Association "Monitoring of neuronal survival in 
suspensions of embryonic CNS tissue" (paper) 

1984 University of Cambridge, Downing Site "Functional neuronal replacement in the ibotenic 
acid lesioned neostriatum by neostriatal neural grafts" (lecture) 

1984 Lund, Nordic Meeting in Neuropsychiatry "Functional neuronal replacement in an animal 
model of Huntington's disease" (paper) 

1984 Oxford, Dept. of Pharmacology, University of Oxford "Striatal neural transplant in the 
excitotoxically lesioned neostriatum" (lecture) 

1985 Uppsala, Nordic Physiology Meeting "Neuronal replacement in an animal model of 
Huntington's disease (paper) 

1985 München, Glial-neuronal communication symposia "The use of neural transplants in the 
study of lesion models of the adult CNS" (lecture) 

1985 Oxford, European Neuroscience Association "Morphological and behavioural changes 
following neural grafting in rats with 
lesions of the anteromedial neostriatum" (paper) 

1986 Avoriaz, Symposium at European Winter Congress on Brain Research "Neural replacement 
by intracerebral grafts in animal models of Parkinson's and Huntington's disease" (chairman 
and lecture) 

1986 New York, New York Academy of Sciences "Morphology and function of striatal neural 
grafts" (lecture) 

1986 Dusseldorf, Dept. of Neurology "The use of neural grafting in studies of CNS development 
and regeneration" (lecture) 
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Dr. Ole Isacson 

TEACHING: National or International Contributions: (continued) 
Invited Presentations: (continued) 

1986 Spetses-ETP, Research program at European Training Program "Autumn School" "The use 
of neural grafting in experimental studies of CNS regeneration and development" (lecturer) 

1987 London, Royal Free Hospital, Dept. of Psychiatry "Aspects of degeneration and 
regeneration in the adult CNS using intracerebral transplants" (lecture) 

1987 London, Maudsley Hospital, Inst. of Psychiatry "Neural grafting in animal models of 
neurodegenerative disease" (lecture) 

1987 Venice, 2nd Symposium on Restorative Neurology "The use of fetal neurons to replace 
neurons in the CNS" (lecture) 

1987 Rochester, New York, at Neural transplantation into the mammalian CNS meeting, "Fetal 
cortical grafts into the excitotoxically lesioned neocortex: a model for trophic interactions 
in Alzheimer's disease ?" (paper) 

1987 P6cs, Hungary, Satelite Symposium on Neural Regeneration and Transplantation "Striatal 
cell suspension grafts in an animal model of Huntington's disease" (paper) 

1987 Paris, Dept of Neurology, Frederic Joliot Hospital, Orsay " A primate model of 
Huntington's disease" (lecture) 

1988 Paris, Dept. of Neurology, Frederic Joliot Hospital, Orsay "Excitotoxic lesions models of 
CNS degeneration" (lecture) 

1988 Paris, Dept. of Neurology, Frederic Joliot Hospital, Orsay "The use of neural 
transplantation in patients with neurodegenerative disease: basic research and recent clinical 
experiments" (lecture) 

1988 Lyon, Conference: Trends in Neurobiology "Neuron-target interaction in the CNS: 
neuronal degeneration and regeneration theories" (paper) 

1989 Cambridge, England, Neural transplantation meeting: molecular bases to clinical 
application "Neural transplantation in a primate model of Huntington's disease" (paper) 

1990 Lund, Sweden "From pharmacological to neuronal replacement in Huntington's disease" 
(paper) 

1991 St. Louis, Missouri, CNS Transplants in Adult Damaged Sensory 
Thalamus and Neocortex (lecture) 

1991 Washington, D.C., Georgetown University, Neural Transplantation in Animal Models of 
Huntington's Disease (lecture) 

1991 Paris, La Salpetriere Hospital, "Animal Models of Neuronal Protection, Degeneration and 
Regeneration: Concepts of Neuronal Health" (lecture) 

1991 Stockholm, Karolinska Institute, "CNS degeneration and regeneration models: new 
concepts of neuronal damage and protection" (lecture) 

1992 Nagoya, Japan, "International Conference on Biochemistry of Disease" (lecture) 
1992 Washington, D.C. "IV International Symposium on Neural Transplantation" (lecture) 
1992 Brussels, "25th International Congress of Psychology" (lecture) 
1993 Frankfurt, Symposium on anti-excitotoxic therapy: "Neuronal protection, gene-transfer and 

circuitry repair in the basal ganglia" (lecture) 
1994 Hancock, MA, Third Berkshire Neuroscience Symposium (lecture) 
1994 Chatenay-Malabry (Paris), 5th International Symposium on Neural Transplantation 

(lecture) 
1995 Winter Conference on Brain Research, "Primate models of caudate-putamen motor 

functions" (lecture) 
1995 Paris, ANPP Meeting "Novel Therapeutics in the Nervous System: Gene Transfers and 

Trophic Factors" (lecture) 
1995 Philadelphia, PA, Intl. Conf. on Gene Therapy for CNS Disorders, "Gene Therapy for 

Huntington's Disease" (lecture) 
1995 National Press Club, Washington D.C. "New therapies for Parkinson's disease" (lecture) 
1995 U.S. Senate Special Committee on Aging, Washington D.C. Advisory presentation on 

Parkinson's disease 
1995 House Subcommittee on Health and Environment, Washington, D.C, Advisory 

presentation on Parkinsons disease 
1995 Maastricht, Holland, Annual Meeting of NECTAR (lecture) 
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TEACHING: National or International Contributions: (continued) 
Invited Presentations: (continued) 

1996 Washington, DC, National Foundation for Brain Research, Gene 
Therapy for Parkinson's Disease Consortium 

1996 San Francisco, CA, Annual Meeting of American Diabetes Association "Neural 
xenotransplants in degenerative disease" (lecture) 

1996 Miami, FL, The University of Miami, The Miami Project to Cure Paralysis "Specificity 
of connections formed by transplanted fetal neurons to the mature CNS" (Visiting 
Professor) 

1996 New York, NY, New York Academy of Sciences "Cellular protection and repair of the 
brain using cell transplantation" (lecture) 

1996 New Haven, CT, Yale University, Ninth Gene Therapy User Group Meeting, "Gene 
delivery strategies for the treatment of neurodegenerative diseases" (lecture) 

1997 Denver, CO, Univ. of Colorado "Hosting foreign cells in the brain: will xenogeneic 
neurons serve as treatments for Parkinson's and Huntington's disease?" (lecture) 

1997 U.S. Veterans Administration, Washington, D.C. (1997) Chairman, Advisory Committee 
on Parkinson's disease research 

1998 Austrian Parkinson Society, Vienna, "Reconnections of neural circuitry in Parkinson's 
disease patients by xenogeneic dopaminergic neurons." (lecture) 

1998 Karolinska Institute, Stockholm, Introductory lecture for thesis examination on Intraocular 
Cellular Transplants 

1998 New York, NY, 5th Intl. Congress of Parkinson's Disease and Movement Disorders. 
"Gene Therapy for Parkinsons' Disease", (plenary lecture) 

1998 Tokyo, Japan.The Molecular Medicine Revolution Conference, "Neural cell transplants to 
physiologically repair circuitry in neurodegenerative diesease" (plenary lecture) 

1998 Cardiff, Wales, The Physiological Society, "Cell transplantation as a therapy for 
Parkinson's disease" (lecture) 

1999 Cornell Medical School/New York Hospital "Developing nerve cells against 
neurodegeneration" (grand rounds & lecture) 

1999 Montreux, Switzerland, The International Cell Transplant Society, "Primary neuronal cell 
transplantation for Parkinson's disease (lecture) 

1999 Keystone Symposia, "Neural xenotransplantation for neurodegenerative disease" (lecture) 
1999 Dalhousie University, Halifax, Clinical Neuroscience (rounds) and Dept. of Anatomy and 

Neurobiology (lecture) 
1999 University of Pittsburgh Medical Center, Dept. of Pathology (lecture) 
1999 University of Rochester, Experimental Therapeutics Workshop (lecture) and Neurology 

Grand Rounds 
1999 Vancouver, BC, XHIth Intl. Congress on Parkinson's Disease (lecture) 
1999 Odense, Denmark, 7th Intl. Neural Transplantation Meeting (lecture) 
1999 Boston, European Behavioral Pharmacology Society and Behavioral Pharmacology Society 

Conference (lecture) 
1999 Austrian Parkinson Society, Vienna (lecture) 
1999 Bonn, Intl. Neuroscience Symposium "Molecular Basis of CNS Disorders" (lecture) 
1999 London, The Novartis Foundation "Neural Transplantation in Neurodegenerative Disease" 
1999 Miami, 6th National Parkinson's Foundation Intl. Symposium on Parkinson's Research 

(lecture) 
2000 Louisville, "The Neuroscience of Developing Cell Therapies for Parkinson's Disease" 

(lecture) 
2000 Zurich, Intl. Study Group on the Pharmacology of Memory, (lecture) 
2000 Tokyo, Intl. Workshop: Stem Cell Biology & Cellular Molecular Treatment (lecture) 
2000 II Ciocco, Italy, Gordon Research Conference (lecture) 
2000 Rome, Intl. Cong, of the Transplantation Society (lecture) 
2000 Turin, Italy, Cellular & Molecular Mechanisms of Brain Repair (lecture) 
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TEACHING: National or International Contributions: (continued) 

Advisory and Supervisory Responsibilities in Clinical or Laboratory Setting: 

A. Faculty Mentor. Thesis Advisor or Supervisor: 
1988-1989 Boris Lambs MD 1990 Cambridge U. 

MD at Cambridge University, 
England 

1986-1988 Walter Fischer MD 1991 Lund University 
MD, PhD at Lund University 
Medical School, Sweden 

1986-1988 KlasWictorin MD 1991 Lund University 
MD, PhD at Lund University 
Medical School, Sweden 

1985-1986 Lars Anderson MD 1989 Lund University 
MD at Lund University Medical 
School, Sweden 

B. Theses/Dissertations Directed: 
Walter Fischer, PhD at Lund University, (Asst. Supervisor) Awarded 1988 
Klas Wictorin, PhD at Lund University, (Asst. Supervisor) Awarded 1988 
Boris Lambs, MA at Cambridge U., (Co-advisor) Awarded 1989 

C. Ph.D. Dissertation or Examining Committees: 
1994 Principal examiner, Serge Marty's Doctoral Thesis, INSERM, Paris, France 
1998 Principal examiner, Lars Björklund's Doctoral Thesis, Karolinska Institute, Sweden 

Professional Leadership Roles related to Teaching: 
1995-1996 Chair, Program Committee, American Society for Neural Transplantation 
1995 Organizer, "Cellular and Molecular Treatments of Neurological Diseases" Conference, 

Three day international conference with 
invited speakers and participants, Cambridge, MA, (Sept. 7-10,1995) 

1998 Co-director, "Anatomy and Physiology of Basal Ganglia Surgery" CME Course and 
Scientific Conference, Sarasota, FL (March 13-15 1998) 

1998 Organizer, "2nd Cellular and Molecular Treatments of Neurological Diseases" CME Course 
and Scientific Conference, Cambridge, MA (Oct. 8-11, 1998) 

1999 Co-director, "2nd Anatomy and Physiology of Basal Ganglia Surgery" CME Course and 
Scientific Conference, Sarasota, FL (May 15-16, 1999) 

CLINICAL ACTIVITIES: (N/A) 

(Dr. Isacson does not have a clinical appointment or license.) 

1995-1997 Scientific advisor at clinical trials for Parkinson's and Huntington's disease at HMS and 
Lahey Clinic, Burlington, MA 
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