
apeP^ *&\ t' *j*& "

%jä^^wÄv-:.*i;-r:--. ■.&$&$■?

mOGENEOUS

WOKSIOP

J ...,.■,_ .»vftjd^r *#?+.

DISTRIBUTION STATEMErTT A
Approved for Public Release

Distribution Unlimited

"•

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, Including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, ao4 to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave B/arrfd 2. REPORTDATE
Dec. I, 2000

3. REPORT TYPE AND DATES COVERED
Final, Nov. 24, 1999 to Sept,

4. TITLE AND SUBTITLE

The Ninth Workshop on Heterogeneous Computing: HCW 2000

6. AUTHOR(SJ

H. J. Siegel

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES)

School of Electrical and Computer Engineering
Purdue University
West Lafayette, IN 47907-1285

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Dr. Andre M. van Tilborg,Director
Math, Computer & Information Sciences Division
Office of Naval Research
Arlington, VA 22217-5660

30, 2000
. FUNDING NUMBERS
N00014-00-1-0189

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
This grant funded the proceedings of the 9th Heterogeneous Computing Workshop (HCW 2000),
which was held in May" 2000. HCW 2000 was part of the I4th International Parallel and
Distributed Processing Symposium, which was sponsored by the IEEE Computer Society Technical
Committee on Parallel Processing and help in cooperation withACM SIGARCH. Heterogeneous
computing systems range from diverse elements within a single computer to coordinated,
geographically distributed maches with different architectures. A heterogeneous computing
system provides a variety of capabilities that can be orchestrated to execute multiple tasks
with varied computational requirements. Applications in these environments achieve
preformance by exploiting the affinity of different tasks to different computational platform»
or paradigms, while considering the overhead of inter-task communication and the coordination
of distinct data sources and/or administrative domains. Topics representative of those
iatevaot to heterogeneous computing'include: network profiling,'configuration tools,
scheduling'-töols, analytic benchmarking, programming paradigms, problemlmappirig, processor :
assignment and scheduling, fault tolerance, programming tools, processor selection criteria,
and compiler assistance.

14. SUBJECT TERMS
heterogeneous computing, distributed computing, high-performance
computing

17. SECURITY CLASSIFICATION
OF REPORT
UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES
l

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UNLIMITED

NSN 754001 -280-5500

J61171
10-08-96

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

PROCEEDINGS

9TH HETEROGENEOUS
COMPUTING WORKSHOP

(HCW2000)

20001212 017

PROCEEDINGS

9m HETEROGENEOUS
COMPUTING WORKSHOP

(HCW2000)

MAY 1,2000
CANCUN, MEXICO

Edited by
Cauligi Raghavendra, The Aerospace Corporation

Cosponsored by
IEEE Computer Society Technical Committee on Parallel Processing

U.S. Office of Naval Research

Industrial Affiliate
NOEMIX

NOEMIX

IEEE

COMPUTER
SOCIETY

Los Alamitos, California

Washington • Brussels • Tokyo

Copyright © 2000 by The Institute of Electrical and Electronics Engineers, Inc.
All rights reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries may photocopy
beyond the limits of US copyright law, for private use of patrons, those articles in this volume that carry a code at the
bottom of the first page, provided that the per-copy fee indicated in the code is paid through the Copyright Clearance
Center, 222 Rosewood Drive, Danvers, MA 01923.

Other copying, reprint, or republication requests should be addressed to: IEEE Copyrights Manager, IEEE Service
Center, 445 Hoes Lane, P.O. Box 133, Piscataway, NJ 08855-1331.

The papers in this book comprise the proceedings of the meeting mentioned on the cover and title page. They reflect the
authors' opinions and, in the interests of timely dissemination, are published as presented and without change. Their
inclusion in this publication does not necessarily constitute endorsement by the editors, the IEEE Computer Society, or
the Institute of Electrical and Electronics Engineers, Inc.

IEEE Computer Society Order Number PR00556
IEEE Order Plan Catalog Number PR00556

ISBN 0-7695-0556-2
ISSN 1097-5209

Library of Congress Number 00-100757

IEEE Computer Society
Customer Service Center
10662 Los Vaqueros Circle
P.O. Box 3014
Los Alamitos, CA 90720-1314
Tel: + 1-714-821-8380
Fax: + 1-714-821-4641
E-mail: cs.books@computer.org

Additional copies may be ordered from:

IEEE Service Center
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331
Tel:+1-908-981-1393
Fax: + 1-908-981-9667
mis.custserv@computer.org

IEEE Computer Society
Asia/Pacific Office
Watanabe Bldg., 1-4-2
Minami-Aoyama
Minato-kuTokyo 107-0062
JAPAN
Tel: +81-3-3408-3118
Fax: + 81-3-3408-3553
tokyo.ofc@computer.org

Editorial production by A. Denise Williams

Cover art production by Alex Torres

Printed in the United States of America by Technical Communication Services

IEEE

COMPUTER
SOCIETY

TABLE OF CONTENTS

9TH HETEROGENEOUS COMPUTING WORKSHOP

Message from the General Chair vjjj
Message from the Program Chair jx

Message from the Steering Committee Chair x

Organizing Committee xj
Program Committee xjj

Session 1-A
Grid Environment
Chair: K Hwang, University of Southern California, USA

Master/Slave Computing on the Grid 3
G. Shao, F. Berman, and R. Wolski

Heterogeneity as Key Feature of High Performance Computing: the PQE1 Prototype 17
P. Palazzari, L. Arcipiani, M. Celino, R. Guadagni,
A. Marongiu, A. Mathis, P. Novelli, and V. Rosato

The NRW-Metacomputer—Building Blocks for A Worldwide Computational Grid 31
C.Bitten, J.Gehring, U. Schwiegelshohn, and R. Yahyapour

Session 1-B
Resource Discovery and Management
Chair: F. Darema, NSF, USA

Agent-Based Resource Discovery 43
K. Jun, L. Bölöni, K. Palacz, and D. Marinescu

Evaluation ofPAMS'Adaptive Management Services 53
Y.Kim, S. Hariri, and M. Djunaedi

Load Balancing Across Near-Homogeneous Multi-Resource Servers 60
W. Leinberger, G. Karypis, and V. Kumar

Session 2-A
Communication and Data Management
Chair: D. Panda, Ohio State University, USA

Evaluation of Expanded Heuristics in a Heterogeneous Distributed Data
Staging Network 75

M. Theys, N. Beck, H. Siegel, and M. Jurczyk

Fast Heterogeneous Binary Data Interchange 90
G. Eisenhauer and L. Daley

A Heuristic Algorithm for Mapping Communicating Tasks on Heterogeneous
Resources 202

K. Taura and A. Chien

Design of a Framework for Data-Intensive Wide-Area Applications 116
M. Beynon, T. Kurc, A. Sussman, and J. Saltz

Session 2-B
Modeling and Metrics
Chair: M. Baker, University of Portsmouth, UK

Toward Quality of Security Service in a Resource Management System Benefit Function 133
C. Irvine and T. Levin

Optimizing Heterogeneous Task Migration in the Gardens Virtual Cluster Computer 140
A. Beitz, S, Kent, and P. Roe

Linear Algebra Algorithms in Heterogeneous Cluster of Personal Computers 147
J. Barbosa, J. Tavares, and A. Padilha

New Cost Metrics for Iterative Task Assignment Algorithms in Heterogeneous
Computing Systems 16°

R. Venkataramana and N. Ranganathan

Session 3-A
Heterogeneous Environment
Chair: M. Theys, University of Illinois at Chicago, USA

Reliable Cluster Computing with a New Checkpointing RAID-x Architecture 171
K. Hwang, H. Jin, R. Ho, and W. Ro

Task Execution Time Modeling for Heterogeneous Computing Systems 185
5. Ali, H. Siegel, M. Maheswaran, D. Hensgen, and S. Ali

Distributed Quasi Monte-Carlo Methods in a Heterogeneous Environment 200
E. deDoncker, R. Zanny, M. Ciobanu, and Y. Guan

Session 3-B
Scheduling I
Chair: A. Somani, Iowa State University, USA

Scheduling Multi-Component Applications in Heterogeneous Wide-Area Networks 209
/. Weissman

Application-Aware Scheduling of a Magnetohydrodynamics Application in the
Legion Metasystem 216

H. Dail, G. Obertelli, F. Berman, R. Wolski, and A. Grimshaw

Fast and Effective Task Scheduling in Heterogeneous Systems 229
A. Rädulescu and A. van Gemund

Session 4-A
Grid Applications
Chair: I. Pramanick, Sun Microsystems, USA

Combining Workstations and Supercomputers to Support Grid Applications:
The Parallel Tomography Experience 241

S. Smallen, W. Cirne, J. Frey, F. Berman, R. Wolski,
M-H. Su, C. Kesselman, S. Young, and M. Ellisman

Cluster Performance and the Implications for Distributed, Heterogeneous
Grid Performance

C. Lee, C. DeMatteis, J. Stepanek, and J. Wang

A Debugger for Computational Grid Applications 262
R. Hood and G. Jost

Session 4-B
Resource Management
Chair: P. Stelling, The Aerospace Corporation, USA

A Framework for Mapping with Resource Co-Allocation in Heterogeneous
Computing Systems

A. Alhusaini, V. Prasanna, and C. Raghavendra

Heterogeneous Resource Management for Dynamic Real-Time Systems
E-N. Huh, L. Welch, B. Shirazi, and C. Cavanaugh

 287

A Cost/Benefit Model for Dynamic Resource Sharing
D. Katramatos, D. Saxena, N. Mehta, and S. Chopin

Session 5-A
Design Tools
Chair: S. Singh, Oregon State University, USA

The Harness PVM-Proxy: Gluing PVM Applications to Distributed Object
Environments and Applications 309

M. Migliardi and V. Sunderam

MoBiDiCK: A Tool for Distributed Computing on the Internet 323
M. Dharsee and C. Hogue

RsdEditor: A Graphical User Interface for Specifying Metacomputer Components
R. Baraglia, D. Laforenza, A. Keller, and A. Reinefeld

 336

Session 5-B
Scheduling II
Chair: I. Ahmad, Hong Kong University of Science and Technology, China

Heuristics for Scheduling Parameter Sweep Applications in Grid Environments
H.Casanova, A. Legrand, D. Zagorodnov, and F. Berman

 349

Parallel Program Execution on a Heterogeneous PC Cluster Using Task Duplication
Y-K. Kwok

 364

Segmented Min-Min: A Static Mapping Algorithm for Meta-Tasks on Heterogeneous
Computing Systems

M-Y.Wu, W. Shu, andH. Zhang

Author Index

vii

MESSAGE FROM THE GENERAL CHAIR

Welcome to the 9th Heterogeneous Computing Workshop (HCW 2000). The field of

heterogeneous computing continues to mature, with several focused themes evolving over the

past few years. These include cluster computing, grid computing, and metacomputing, among

others. The Heterogeneous Computing Workshop series offers an international forum for

researchers in all of these overlapping areas to present their research findings and interact with

their peers.

I would like to thank HJ. Siegel, the Steering Committee Chair, for inviting me to be the

General Chair. Throughout the past year, he provided me with invaluable inputs in resolving

meeting-related issues. I also would like to thank C.S. Raghavendra, the Program Chair. He did

an outstanding job in putting together an excellent technical program that addresses diverse

aspects of heterogeneous computing. In addition, he assisted in resolving meeting-related issues

including planning and publicity. It was a pleasure working with H.J. and Raghu.

This year, the response to the call for papers was overwhelming. For the first time, we had to

arrange parallel sessions to accommodate so many excellent papers that were submitted! I would

like to thank Susamma Barua, IPDPS 2000 Local Arrangements Chair, for her assistance in

arranging the meeting space for us.

The workshop is cosponsored by the US Office of Naval Research and the DEEE Computer

Society Technical Committee on Parallel Processing. I would like to thank Richard Freund of

NOEMDC, Inc, for his continued support and guidance of the meeting series.

Muthucumaru Maheswaran acted as the Publicity Chair. I would like to thank him for the

excellent job he did in maintaining our website as well as publicizing the meeting. Denise

Williams of the IEEE Computer Society Press deserves special mention for her efforts in putting

together the proceedings. Finally, I would like to thank my assistant Henryk Chrostek for

coordinating meeting related interactions over the past year. It was a pleasure to work with all of

them.

Viktor K. Prasanna

University of Southern California

Vlll

MESSAGE FROM THE PROGRAM CHAIR

It has been a pleasure to organize the 9th Heterogeneous Computing Workshop (HCW 2000). This

workshop is a forum to discuss the latest findings in heterogeneous computing and promising work-in-

progress. Heterogeneous computing systems range from diverse elements within a single computer, to

coordinated, geographically-distributed machines with different architectures. A heterogeneous

computing system provides a variety of capabilities that can be orchestrated to execute multiple tasks with

varied computational requirements. Applications in these environments achieve performance by

exploiting the affinity of different tasks to different computational platforms or paradigms, while

considering the overhead of inter-task communication and the coordination of distinct data sources and

administrative domains. Such computing systems support information infrastructure and other terms,

including Cluster Computing and Grid Computing, are also used to describe heterogeneous computing.

In prior years, the HCW program had a single track of paper presentations with an invited paper

session. This year we received many quality papers, and with the surveyed opinions of authors, we

decided to have two parallel tracks. The technical program includes 32 papers arranged in 10 sessions

along the two parallel tracks. Each of the submitted papers was reviewed by two program committee

members and external reviewers. These presentations cover a range of heterogeneous computing topics,

including grid computing and applications, scheduling algorithms, theory and modeling, and resource

management. I would like to thank the members of the Technical Program Committee for their valuable

and timely review work and their help in putting together the program.

The success of a workshop such as this depends on the contributions of many individuals. First, I

would like to thank Viktor Prasanna, the General Chair, for inviting me to be the Program Chair and for

providing me with a number of pointers on organizational matters. Next, I would like to thank HJ. Siegel,

the Steering Committee Chair, for his continued support on resolving meeting-related issues and for his

help in getting the financial support for publishing the workshop proceedings. I also would like to thank

Muthucumaru Maheswaran for publicizing this workshop through various on-line mailing lists and

postings on the Web. I am thankful to Henryk Chrostek and Ammar Alhusaini for their help in handling

submitted papers and in the organization of the Program Committee meeting. Finally, on behalf of the

Program Committee, I would like to extend my gratitude to the authors, session chairpersons, and the

reviewers who contributed to making the 9th Heterogeneous Computing Workshop a success.

Cauligi S. Raghavendra

The Aerospace Corporation

IX

MESSAGE FROM THE STEERING COMMITTEE CHAIR

These are the proceedings of the 9th Heterogeneous Computing Workshop, also known as HCW 2000.
Heterogeneous computing is a very important research area with great practical impact. The topic of
heterogeneous systems covers many types of systems. A heterogeneous system may be set of machines
interconnected by a wide-area network and used to support the execution of jobs submitted by a large variety
of users to process data that is distributed throughout the system. A heterogeneous system may be a suite of
high-performance machines tightly interconnected by a fast dedicated local-area network and used to process a
set of production tasks, where the subtasks of each task may execute on different machines in the suite. A
heterogeneous system may also be a special-purpose embedded system, such as a set of different types of
processors used for automatic target recognition. In the extreme, a heterogeneous system may consist of a
single machine that can reconfigure itself to operate in different ways (e.g., in different modes of parallelism).
All of these types of heterogeneous systems (as well as others) are appropriate topics for this workshop series.

I hope you find the contents of these proceedings informative and interesting. I encourage you to look also at

the proceedings of past and future Heterogeneous Computing Workshops.

Many people have worked very hard to make this workshop happen. Cauligi "Raghu" Raghavendra, of the
University of Southern California and The Aerospace Corporation, was this year's Program Committee Chair,
and he assembled the excellent program and collection of papers in these proceedings. Raghu did this with the
assistance of his Program Committee, which is listed in these proceedings. Viktor Prasanna, of the University
of Southern California, was the General Chair, and he was responsible for the overall organization and
administration of this year's workshop, and he did a fine job. I thank Richard F. Freund, of NOEMIX, for
founding this workshop series, and for asking me to succeed him as Chair of the Steering Committee.

Due to the increasing importance of this research area and the efforts of the workshop organizing
committee, we received so many excellent submissions this year that we had to go to parallel sessions for the
first time. While we realize this splits the audience, we did not want to rum away good papers simply because
this is a one-day workshop (and we did not want to extend the workshop another day, conflicting with our host

symposium's sessions).

This year IEEE Computer Society and the Office of Naval Research (ONR) cosponsored the workshop,
with additional support given from our industrial affiliate, NOEMIX. I thank Andre M. van Tilborg, the
Director of the Math, Computer, & Information Sciences Division of the Office of Naval Research, for
arranging funding for the publication of the workshop proceedings (under grant number N00014-00-1-0189).
We greatly appreciate their continued support of our proceedings. I thank Richard F. Freund, of NOEMIX, for

again providing the plaque given to the Program Chair in recognition of his efforts.

This workshop is held in conjunction with the International Parallel and Distributed Processing

Symposium (IPDPS), which is a merger of symposia formerly known as the International Parallel Processing
Symposium (IPPS) and the Symposium on Parallel and Distributed Processing (SPDP). The Heterogeneous
Computing Workshop series is very grateful for the constant cooperation and assistance we have received

from the IPDPS/IPPS/SPDP organizers.

H. J. Siegel

Purdue University

ORGANIZING COMMITTEE

General Chair

Viktor K. Prasanna

University of Southern California

Program Chair

C.S. Raghavendra

The Aerospace Corporation

Steering Committee Chair

H. J. Siegel

Purdue University

Steering Committee

Francine Berman, UCSD

Jack Dongarra, Univ. of Tennessee and Oak Ridge Nat'I. Lab

Richard F. Freund, NOEMIX

Debra Hensgen, Naval Postgraduate School

Paul Messina, Caltech

Jerry Potter, Kent State University

Viktor K. Prasanna, USC

Vaidy Sunderam, Emory University

Publicity Chair

Muthucumaru Maheswaran

University of Manitoba

XI

PROGRAM COMMITTEE

Ishfaq Ahmad, Hong Kong Univ. of Sei. and Tech.

John Antonio, University of Oklahoma

Mark Baker, University of Portsmouth, UK

Rajkumar Buyya, Monash University, Australia

Steve Chapin, Syracuse University

Alok Choudhary, Northwestern University

Frederica Darema, NSF/CISE

Rudolf Eigenmann, Purdue University

Mary Eshaghian, California State Univ., Long Beach

Salim Hariri, University of Arizona

Debra Hensgen, Naval Postgraduate School

Kai Hwang, University of Southern California

Zvi Kedem, New York University

Vipin Kumar, University of Minnesota

Craig Lee, The Aerospace Corporation

Jörg Liebeherr, University of Virginia

Muthucumaru Maheswaran, University of Manitoba

Dhabaleshwar Panda, Ohio State University

Ira Pramanick, Sun Microsystems

Karsten Schwan, Georgia Institute of Technology

Behrooz Shirazi, University of Texas at Arlington

Arun Somani, Iowa State University

Mitchell Theys, University of Illinois at Chicago

Jon B. Weissman, University of Minnesota

Xll

REFEREES

Ishfaq Ahmad Stephen D. Kleban
Shahriar M. Akramullah Eileen Kraemer
Ammar Alhusaini Vipin Kumar
Shoukat Ali Ricky Kwok
John Antonio Domenico Laforenza
Mark Baker Craig Lee
Jorge Barbosa William J Leinberger
Noah Beck Tim Levin
Fran Berman Wei-Keng Liao
Machael D. Beynon Jörg Liebeherr
Prashant Bhat Hwa-Chun Lin
Tracy Braun Muthucumaru Maheswaran
Rajkumar Buyya Dan Marinescu
Henri Casanova Graziano Obertelli
Charles Cavanaugh Zoran Obradovic
Fangzhe Chang Paolo Palazzari
Steve Chapin Dhabaleshwar Panda
Surjamukhi Chatterjea Ira Pramanick
Andrew Chien Viktor Prasanna
Alok Choudhary Xiao Qin
Holly Dail Andrei Radulescu
Lynn K. Daley C.S. Raghavendra
Frederica Darema Albert I. Reuther
Elise deDoncker Paul Roe
Rudolf Eigenmann Arnold Rosenberg
Mary Eshaghian Ellard Roush
Rasit Eskicioglu Charles Salisbury
Silvia Figueira Ahmed S. Sameh
Jose Fortes Karsten Schwan
Joern Gehring Gary Shao
Claudia Gold Behrooz Shirazi
Peter Graham H. J. Siegel
Andrew Grimshaw Fabricio Silva
Salim Hariri Shava Smallen
Christopher Hogue Arun Somani
Robert Hood Paul Stelling
Hai Jin Vaidy Sunderam
Mahesh V. Joshi Rajeev Thakur
Abhay Kanhere Mitchell Theys
Nirav H. Kapadia Raju Venkataramana
Zvi Kedem Manish Verma
Carl Kesselman Jon Weissman
Yoonhee Kim Vladimir Yarmolenko

xiii

SESSION 1-A
GRID ENVIRONMENT

Chair: K. Hwang, University of Southern California, USA

Master/Slave Computing on the Grid

Gary Shao *
Department of Computer Science

and Engineering
University of California, San Diego

San Diego, CA 92093-0114
gshao@cs.ucsd.edu

Francine Berman t
Department of Computer Science

and Engineering
University of California, San Diego

San Diego, CA 92093-0114
berman@cs.ucsd.edu

Rich Wolski t
Department of Computer Science

107 Ayres Hall
University of Tennessee

Knoxville,TN 37996-1301
rich@cs.utk.edu

Abstract

Resource selection is fundamental to the performance
of master/slave applications. In this paper, we address
the problem of promoting performance for distributed mas-
ter/slave applications targeted to distributed, heteroge-
neous "Grid" resources. We present a work-rate-based
model of master/slave application performance which uti-
lizes both system and application characteristics to select
potentially performance-efficient hosts for both the master
and slave processes. Using a Grid allocation strategy based
on this performance model, we demonstrate a performance
improvement over other selection options for a representa-
tive set of Master/Slave applications in both simulated and
actual Grid environments.

1. Introduction

The master/slave paradigm is a fundamental and com-
monly used approach for parallel and distributed applica-
tions. In master/slave applications, a single master process
controls the distribution of work to a set of identically oper-
ating slave processes. The master/slave paradigm has been
used successfully for a wide class of parallel applications
[12] [6] [14], and is well suited as a programming model for

* Supported in part by NSF grant #ASC-9701333, DARPA/IT0 contract
#N66001-97-C-8531, NPACI award #ASC9619020

tSupported in part by NSF grant #ASC-9701333, DARPA/ITO contract
#N66001-97-C-8531, NPACI award #ASC9619020

applications targeted to distributed, heterogeneous "Grid"
resources[l].

Methods which can improve the performance of mas-
ter/slave applications are of considerable interest to many
people. Researchers and application developers have pre-
viously experimented with tuning the granularity of master
and slave processes to balance computation and communi-
cation, varying parameters such as the number and com-
plexity of tasks assigned to slaves, and varying the number
of slave processes used [3] [8][16]. Note that in a homoge-
neous environment, any processor can reasonably be chosen
as a master or a slave, as all resources are typically consid-
ered to be equivalent. However, in a heterogeneous Grid en-
vironment, non-uniformity in both the peak and deliverable
capacities of computational and communication resources
can produce very different application execution times de-
pending on which processor is chosen for the master and
which processors are chosen for the slaves.

In this paper, we address the problem of how to deter-
mine a performance-efficient placement of master and slave
processes running in shared, distributed and heterogeneous
environments. In a heterogeneous environment, the choice
of processor for the master can have a significant effect on
total available work rate, directly impacting application per-
formance. Our strategy for selecting a location for the mas-
ter process involves identifying the host processor which
allows for the largest aggregated system work rate, which
we will define in the next section. Our strategy for select-
ing slaves utilizes the performance capacity of the available
computation and communication resources to determine a

0-7695-0556-2/00 $10.00 © 2000 IEEE

performance-efficient collection of workers.
This paper is organized as follows: Section 2 provides

a performance model for distributed master/slave applica-
tions. Section 3 describes how we obtain and use input pa-
rameters for calculating resource work capacity values in
our performance models. Section 4 describes our algorithm
for selecting the resources to use for the master and slave
processes. Section 5 gives a representative set of perfor-
mance results from our experiments, Section 6 includes a
short discussion of some related work, and Section 7 pro-
vides a summary of our work.

Net3

50

AB CD

Figure 1. Example network configuration.

2. A master/slave performance model

We consider a model of master/slave applications in
which the primary function of the master process m is to
pass out and collect work from a set of slave processes
s € S.' We assume that communication patterns are simple
and well-defined, requiring communication only between
the master process and individual slave processes. We will
define the application's work as a divisible set of tasks;
where each task may require some input data and produces
some output data.

Tasks are completed in an application by progressing
through four stages in the master/slave computation:

Stage 1 is the transmission of a command to initiate a
task on one of the slave processes, including any data
needed by the slave to perform the computation.

Stage 2 is the execution of the task by the designated slave.

Stage 3 is the transmission of results from the slave back
to the master.

Stage 4 is any immediate processing of task results from
the slave that must be done by the master.

While passing through each stage in the computation, a
particular system resource must be employed by a task for
some period of time, after which the task can move on to
the the next stage. As an example, we can consider the sim-
ple network topology shown in Figure 1. If processor A in
Figure 1 is designated as the master process, a task intended
for slave processor B during Stage 1 will employ the use of
network Netl to transfer required data from processor A to
processor B. During Stage 2 the task will utilize processor
time on B to run task computations. During Stage 3 the task
will again utilize network Netl to transfer result data from
B to A. Finally, during Stage 4 the task will utilize proces-
sor time on A to process the incoming results and to prepare
for initiating additional task transfers to B.

'It would be straightforward to extend this work to the case in which
the master may also perform some work as a slave.

In constructing a performance model for master/slave
applications, we look at the rate that applications process
tasks. The rate at which an application cycles through tasks
can be used as a measure of application performance, as
faster overall cycle rates will correspond directly to reduced
application execution times.

If we consider the flow of tasks between a master process
m and a slave process s, we can make the definition:

SlaveRate(m, s) is the task completion rate occurring be-
tween master m and slave s, in units of tasks per unit
of time.

For master/slave computations where there is no com-
munication between different slave processes, the total rate
of task completions for an application will be the sum of the
rates arising from task completions by individual slaves. We
define AppRate(m, S) in Equation (1) to be the rate of task
completions by an application with master process m and a
set of slave processes S.

AppRate(m, S) - ^ SlaveRate(m, s) (1)
s€S

We can then define execution time, ExecTime(m,S),
for an application with a master process m and the set of
slave processes S, and where Tasks is the total number of
tasks in the application.

ExecTime(m, S) = Tasks/AppRate(m, S), (2)

Application performance can thus be derived from val-
ues for SlaveRate(m,s). One way to solve for these
SlaveRate values is to consider the system resource con-
straints which bound achievable application performance.
To illustrate the concept, we go back to our simple example
system in Figure 1, and observe that each processor and net-
work has been labeled with one or more numerical values.
We define the numbers in the diagram to represent resource
work capacities in terms of tasks per unit of time. The val-
ues next to network links represent network work capacity
for that network link, the upper number within each circle

represents slave work capacity for that processor, and the
lower number within each circle represents master work ca-
pacity for that processor.

Consider an application which uses processor C to host
the master process. To solve for application performance,
we would like to determine values for SlaveRate(C,A),
SlaveRate{C,B) and SlaveRate(C,D). The fundamen-
tal constraint condition to meet is that total task flow rates
through any resource cannot exceed the capacity value of
that resource. This means, since task flow from both pro-
cessor A and processor B passes through network Net3
in our example, that the sum of SlaveRate(C,A) and
SlaveRate(C, B) can be at most 50, the capacity of Net3.

In general, we can define the following resource work
capacity terms for processor and network resources. All
terms are rates with units of tasks per unit of time.

WMasterCPu(i) = the maximum master work rate sup-
ported by a processor i. This is determined by proces-
sor i's capacity to perform Stage 4 computations for a
specified application.

WsiaveCPu(i) = the maximum slave work rate supported
by a processor i. This is determined by processor i's
capacity to perform Stage 2 computations for a speci-
fied application.

Wtfet(n) = the maximum communication rate supported
by a network n. This is determined by network n's
capacity to perform the Stage 1 and Stage 3 communi-
cation of a specified application.

Assuming we have a graph G representing network con-
nectivity (such as the diagram in Figure 1) that allows us to
identify which network resources are shared between dif-
ferent task flows, and resource work capacity rates for each
of the resources in our system, we can form a set of upper
bounds on possible SlaveRate(m, s) values. The process
by which the network connectivity graph G and the work
capacity rate terms can be derived for resources in a Grid
environment will be discussed later in section 3.

First, to aid us in defining our upper bound constraints,
we define a helper set constructor function:

ShareNet(G, S, m, n) takes as input a network connec-
tivity graph G, a set of slaves processes S, a master
process m, and a network resource n, and returns the
set of slave processes from S which share the use of
network resource n when communicating with m.

For master/slave applications, ShareNet(G,S,m,n)
can be easily determined for a network graph G, master pro-
cess m, set of slaves 5, and network resource n by follow-
ing the single path in the graph G from each slave process
s € S to the master process m, recording each path passing
through the resource n.

Now we can give bounds which form constraints on ap-
plication performance, as shown below2.

^2 SlaveRate(m, i) < WMasterCPu(m) (3)
ies

SlaveRate(m,i) <WSiaveCPu(i) (4)

£ SlaveRate(m,i) <Wivet(n) (5)
ieShareNet(G,S,m,n)

Our goal is to find the values of SlaveRate(m, s) which
meet the constraints given above and which yield the largest
value of AppRate(m, S). The solution will correspond to a
configuration which delivers the best achievable application
performance.

We can frame the problem of determining val-
ues for SlaveRate(m,s) which yield the largest
AppRate(m,S) value as a flow-rate problem where:
(1) the SlaveRate(m,s) values are the flows we wish
to solve for, (2) m is the sink for all flows, (3) the set
S of slave processes are the sources for flows, and (4)
the flow constraints correspond to the WMasterCPu{i),
Wsiavecpu(i), and Wfiet{n) work capacities in our target
environment.

Because the work flows in a master/slave computation
form a tree rooted at the master, and because we have lim-
ited our investigation to considering no more than one pro-
cess hosted on each processor, efficient algorithms like the
Maximum-Flow algorithm [5] exist for solving this prob-
lem. This approach can be used to solve the flow-rate
problem for several candidate processes m, finding the one
which is expected to deliver the maximum work flow, and
hence the best expected application performance. Section 4
describes the implementation of one such maximum-flow
algorithm that can be used to find the largest possible work
flow.

3. Modeling work capacity rates in a Grid en-
vironment

In order to apply our work flow performance model to
real applications running in a Grid environment, we must
derive a network connectivity graph G and appropriate
values for the work capacity rate terms WMasterCPu(i),
WSiaveCPu(i), and WNet(n).

The flow-rate algorithm for determining application per-
formance requires a graph G which represents the network
connectivity between processor resources. For wide-area

2 Since we consider here only cases where processors can host at most
one process from the same application, we allow the process identifier to
be the identifier of the processor hosting it in our inequality expressions.

Input
Data

Description Used
In

How
Acquired

When
Acquired

GraphNet Network connectivity G ENV periodically

TsiaveCPU CPU slave task time WsiaveCPU benchmark install

TMasterCPU CPU master task time WltfasterCPU benchmark install

Availcpu CPU availability WsiaveCPU,
WMasterCPU

NWS run-time

SizeTaskXfer Task data transfer size wNet analysis,
logging

application

BWNet Network bandwidth wNet NWS run-time

Table 1. Inputs for constructing the performance model.

Grid environments, it might be very difficult to get com-
plete physical network configuration data about every plat-
form in the system. It is reasonable, however, to represent
the target computational resources and their interconnection
by a logical view which captures those areas where network
constraints present potential bottlenecks to application per-
formance. We derive a logical view of resource intercon-
nection using a logical network configuration discovery tool
called Effective Network Views (ENV) [13]. (Other sys-
tems for discovery of effective system topology such as [9]
might also be used.) The output of the ENV tool is a net-
work graph representation where every processor belongs
to a cluster of one or more machines. Machines in a clus-
ter are connected together through a local network, where
the capacity of the local network represents the limiting ca-
pacity of a network resource shared by each machine in the
cluster. Clusters of local networks are connected together
in our logical representation through a single layer of non-
local network links. This representation is suitable for use
in graph-based analysis techniques like our maximum flow-
rate problem, and directly translates to the network graph G
in our flow-rate solution.

The processor work capacity rates WsiaveCPu{i) and
WMasterCPU (i) in our model are determined with two
components: an application-specific component represent-
ing the maximum performance delivered by a processor
resource in its unloaded state, and a dynamic component
that is determined at run-time to adjust capacity rates to
account for current loading conditions. The application-
specific component is obtained by running a benchmark of
the target application code on an unloaded processor, and
measuring the times TsiaveCPU (*) and TMasterCPU (i) that
are required to compute a single task on processor type i by
the slave and master processes respectively. If the task com-

putation time is variable over time, perhaps because of data
dependencies in the application, we take an average value
for all task times in one run of the application benchmark.
This value could be scaled for particular classes of data sets
at run-time if the variation in average task run times is large
when different data sets are used. The benchmark times
only have to be measured once for each platform type on
which the application is built to run, so obtaining these val-
ues is computationally efficient.

The dynamic component of the work capacity terms for
processor resources is calculated with the help of real-time
monitoring and forecasting services such as the Network
Weather Service [19] (NWS). The NWS provides real-time
predictions of dynamic processor availability Availcpu{i)
(the percentage of CPU time a process can expect to get on
processor i). Availcpu{i) describes the predicted avail-
ability status of a processor resource, and can be generated
independently from any particular application. This enables
a single NWS system to provide simultaneous service to
many applications requiring real-time information about re-
source behavior.

The processor work capacity rates can be calculated us-
ing the application-specific and dynamic components as
shown below. The input parameters for these functions are
summarized in Table 1.

WsiaveCPu{i) = AvailCPu(i)/TsiaveCPU {i) (6)

WMasterCPu(i) = Avüllcpuii) /TMasterCPu{i) (7)

The network work capacity rate PT/Vet («) in our model
is also calculated using two components. One component
is the application-specific term SizeraskXfer, which rep-
resents the amount of data transferred between a master
process and a slave process for each task in an application.

If the task data transfer sizes are a variable quantity over
time, perhaps due to data dependencies in the application,
we must calculate an average data transfer value that rep-
resents expected steady-state communication behavior over
the time of an entire application run.

The second component used in calculating network work
capacities on a network resource n is a dynamic predic-
tion of expected available network bandwidth BWNet(n),
which we obtain from the NWS. The network work capac-
ity rates can be calculated using application-specific and dy-
namic components as shown below. The input parameters
are again summarized in Table 1.

WNet{n) = BWNet(n)/SizeTaskXfe (8)

Having constructed a set of resource constraint values
to help model the performance of a Grid environment, we
should also discuss an obvious limitation of our approach.
For each of the terms derived in this section, we have gen-
erated an average-value expression for use in our steady-
state application performance model. Yet each of the prop-
erties being modeled might in reality exhibit considerable
variability over time, either due to time-varying load con-
ditions or data dependent behavior of the application being
run. Our experience has been that despite the limitations of
converting many variable terms to average steady-state val-
ues, our approach still yields a performance model which
can do a good job at estimating application performance,
and which provides an effective tool for helping to solve the
resource selection problem, which we discuss next.

4. Selecting a master and the slaves

Given the work-rate performance model described in
Section 2 and a logical representation of the work capacities
of Grid resources, we can now consider strategies for select-
ing processors to host the master and slave processes. These
are important issues for master/slave applications running
in Grid environments, where users may be able to choose
from among many different types of resources, and where
availability of these resources may change over time.

Selection of the right processor to host the master pro-
cess can significantly impact the overall application per-
formance, as the following section will show. Knowing
which master placement produces the best application per-
formance might also influence other important decisions,
such as where to efficiently position input and output files
for the application. Selection of the right set of processor
resources to host the slave processes has two goals: (1) se-
lecting enough resources from the available set to produce
the best achievable application performance.and (2) limit-
ing the selection to resources that will actually benefit ap-
plication performance. The second goal is important for

Grid environments where resources can be shared by many
users, and resources can be owned and managed by many
different organizations. In these environments, it is desir-
able that applications use only those resources they really
need; thereby allowing limited pools of shared resources to
satisfy the largest number of users. We will first consider
the issue of selecting the right host for the master process.

4.1. Master selection example

In a heterogeneous system, selection of a location for
the master process very strongly depends on the deliverable
work capacity of candidate resources. Consider the logi-
cal Grid configuration shown back in Figure 1, where four
processors are connected by a system of three networks. We
have labeled the network resources with values representing
the Wxet capacity terms. The processor resources, shown
as circles in the diagram, have been labeled with two values:
a WsiaveCPU capacity term on top, and a WMasterCPU ca-
pacity term on the bottom. All capacity terms are in units
of tasks per second.

For this simple example system, we can determine the
assignment of the master process to a processor that gives
us the greatest achievable work flow. If processor A is se-
lected to host the master process, processor B is able to pro-
vide 60 tasks/sec work rate as a slave. In addition, a max-
imum of 50 tasks/sec worth of data can be transferred over
network Net3, a work rate which can be supplied by proces-
sor C. The total expected application work rate with proces-
sor A hosting the master is therefore 110 tasks/sec. If we
consider selecting processor C to host the master process,
we observe that processor D can deliver a work rate of 10
tasks/sec working as a slave. In addition, we can transfer a
maximum of 50 tasks/sec worth of data over network Net3,
which can be supplied by processor A. It becomes apparent
that processor C is constrained from achieving any higher
application work rate by the limitations on the Net3 capac-
ity, as well as the capacity of processor C to serve as the
master host, to no more than 60 tasks/sec. We could pro-
ceed in a similar manner for all the processors, and derive
expected application work rates for each candidate. Table 2
shows one set of possible outcomes for this process. It is
apparent from the last column in Table 2 that processor B
is the best choice, yielding a potential application work rate
of 130 tasks/sec.

4.2. Selecting the master

More generally, we have developed a basic algorithm for
finding the best performing host for the master process. It is
based on the well-known maximum-flow algorithm by Ford
and Fulkerson [7]. In this algorithm, we keep augmenting
the estimated flow rate for each master host by adding the

Master WMasterCPU SlaveRate SlaveRate SlaveRate SlaveRate

Location m (m) (m,A) (m,B) {m,C) (m,D) AppRate(m)

A 200 0 60 50 0 110

B 150 80 0 50 0 130

C 60 50 0 0 10 60

D 90 40 0 50 0 90

Table 2. Work rates resulting from master placement decision.

contributions of slave processors. Additional contributing
slaves are selected first from those on the same local net-
work as the master. This continues until either all of the
slaves have been included, or no further slave work rates
can be incorporated because of either capacity limitations
on network resources, or capacity limitations of the master
processor itself. If further capacity is available from pro-
cessors on non-local networks, they are added one by one
to the accumulated master total until no further additions
are possible without exceeding one of the resource capaci-
ties. Figure 2 illustrates our basic algorithm for finding the
best performing master host. Upon termination of the algo-
rithm, the processor with the highest calculated work rate is
selected as the master.

4.3. Complexity

In deriving the complexity of our algorithm, we note
that our simplified logical representation of network con-
figuration reduces the entire system to sets of processors
connected by local networks. Each of these local networks
is then connected to other local networks by at most one
level of remote networking. With this logical topology,
data transfers between slaves on the same local network
pass through only one level of networking, and encounter
only one network resource constraint. Data transfers be-
tween slaves located on different local networks will pass
through at most three levels of networking, and must satisfy
at most three networking constraints. All slave work rates
must meet the resource constraints of the master processor.
With this arrangement, there are at most four tests of con-
straints in our algorithm that have to be checked for each
master and slave pairing.

If we have n processors in our system, then each master
candidate can have at most n — 1 slaves, and each individual
master work rate calculation takes 0(n) time to calculate.
Calculating maximum work rates for all n possible mas-
ter candidates thus takes 0(n2) time. Since our algorithm
requires only simple compare and accumulation operations
for each resource constraint test, the entire algorithm is ef-
ficient for the numbers of processors and networks we cur-
rently find in Grid environments available to a typical user.

4.4. Selecting the slaves

After selecting the master processor, we turn to selec-
tion of the slave processors. The issue is to select a set of
processors for hosting slave processes that will deliver good
aggregate performance. One approach is to start with the set
of slave processors found in our master selection algorithm
that yielded the highest expected application performance.
Our algorithm keeps track of this set in the Found(m) list,
a list containing slaves used by the algorithm to calculate the
maximum work rate for an application with processor m as
the master host. Our master selection algorithm ensures that
this set of processors results in work flows that fall within
the constraints imposed by resource capacity limitations.

In numerous experimental trials using the set of proces-
sors from Found(m) as slave hosts, we observed that the
slave processors were often not delivering the maximum
work rate values we expected in our algorithm. Observa-
tions of selected slaves showed the reduction in slave per-
formance was due to the presence of unaccounted idle time,
periods of time when slave processors were not doing use-
ful work. An explanation for the observed idle times comes
from observing the manner in which tasks are distributed to
slave processors from the master. Each master/slave appli-
cation we tested maintained a queue of available tasks on
the master process, and distributed new tasks to individual
slave processes upon request (a very commonly used tech-
nique). Because of contention for shared resources, such as
networks and the master processor, delays sometimes oc-
curred between the time a slave processor finished one task
and the time at which the next task appeared for processing.
These delays appeared as idle time in our observations of
the slaves. With a minimum set of slaves selected to achieve
the desired work rate, the unexpected idle time in the slaves
resulted in a reduction of the actual total work rate achieved.

The work flow-rate performance model correctly deter-
mines possible application performance based on resource
capacity limits. Our master selection algorithm uses this
performance model, and in the process identifies a set of
slaves which delivers this performance, assuming that each
slave delivers its maximum work rate. Experimentation has
shown that sometimes these slaves actually deliver less than
their predicted maximum work rates, resulting in less per-

For all networks k
Calculate maximum network capacity WMet{k)

For all processors j
Calculate maximum master processor capacity WMasterCPU(j)
Calculate maximum slave processor capacity WSiavecpu(j)

For each candidate master processor p on local network n
Set sum for candidate slave work rates CandRate(p) = 0
Set found set Found(p) to empty
For all networks k

Set network utilization sum NetUtil(k) = 0
Get maximum capacity WNet (n) of local network n
Get maximum master processor capacity WMasterCPu(p)
While CandRate(p) < WNet(n) mdCandRate{p) < WMasterCPu{p)

Select new processor s from same local network as p with
the largest available WSiaveCPu(s) value
Get slave processor capacity WSiavecpu («)
Get fraction F of WSiaVeCPU («) that will not cause
utilization NetUtil(n) to exceed WNet(n)

Add F to CandRate(p)
Add F to NetUtil(n)
Add processor s to found set Found(p)

Total candidate work rate CandRate{p) = mm(CandRate(p), WMasterCPu(j>))
Total local network utilization NetUtil(n) = CandRate{p)
While CandRate(p) < WNet(n) and CandRate(p) < WMasterCPu(p)

Select new processor q from outside local network with
the largest available WSiaveCpu(q) value
Get slave processor capacity WSiaveCPu{q)
Get fraction F of WSiavecpu(q) that will not cause
utilization NetUtil(i) to exceed WNet(i) for any network i

Add F to CandRate{p)
Add F to NetUtil(n)
Add F to other NetUtil(k) where network fc is involved in
communications between processors p and q
Add processor 5 to found set Found(p)

Select processor p with largest CandRate(p) as master

J
Figure 2. Algorithm for finding best processor for the master.

formance than resource capacity constraints would allow.
One way to get application performance back up to pre-
dicted levels is to add additional slave processors to the
originally selected mix, thereby raising the effective slave
work rates achieved up to expected values. Our goal is to
compensate for lost performance due to idle time on the in-
dividual slave processors, while keeping the number of ad-
ditional processors down to the minimum needed to accom-
plish this goal.

Our steady-state flow-rate performance model was not
useful in helping to decide how many slaves to add to in-
crease effective performance because it could not account
for idle times caused by slaves waiting for new tasks to ar-
rive. To address this shortcoming and others in our steady-
state approaches to performance analysis, we developed a
master/slave application performance simulator to provide
significant new capabilities. We discuss this simulator and
how it can be used to help solve the slave selection problem
in the following subsections.

4.5. An application performance simulator

We originally developed a master/slave application per-
formance simulator to provide detailed predictions of per-
formance and resource behavior for applications running in
Grid environments. One effective use we have found for this
simulator is to help determine how many additional slave
processors might be added to a predicted group of master
and slave processors to make up for performance losses due
to slave idle time.

At its core, our simulator is a set of routines which model
the behavior of tasks as they pass through a system com-
prised of two kinds of resources: processors and networks.
The resources are modeled as single servers with first-in-
first-out input queues. Service times for the processor re-
sources determine how long a task has control of the pro-
cessor before relinquishing the resource to the next task
in the input queue, and are dependent on the same pro-
cessor availability parameters Availcpu (*) and estimated
task execution times TsiaveCPu(i) and TMasterCPu{i) de-
veloped earlier for our flow-rate model. Service times for
the network resources determine how long a network re-
source is committed to servicing data transfers for each
task, and are dependent on the same network bandwidth pa-
rameters BWNet(n) and size of the data transfers values
SizeraskXfer developed for the flow-rate model presented
earlier. In addition, all of the parameters can be adjusted to
use either static steady-state values like those in the flow-
rate performance model, or more dynamic data inputs such
as statistical distributions or actual measured trace values
from application runs. Network connectivity is represented
using the same graph G, an output of the ENV tool, used in
the work flow-rate performance model.

The simulator is written in highly portable C-language
code, with the help of a simulation library package called
Sim++ [4]. This simulator can be easily embedded into
other programs, such as an application scheduler, to pro-
vide detailed predictions of application performance and
resource utilization levels. It is particularly useful for ob-
serving the performance impact of changing application or
resource parameters.

4.6. Using simulation to enhance slave selection

Our algorithm for finding the correct set of slave proces-
sors starts with the master processor m and the Found(m)
set of slaves from the master selection algorithm. The sim-
ulator is run with these machines as the target environment,
using the same values for resource capacities as were used
in the master selection algorithm. Results from the simu-
lation are checked to see if any idle time on the simulated
slaves results in a significant decrease in overall applica-
tion performance. If a substantial performance decrease is
found, resource utilization figures from the simulation are
checked to see where additional processors might be added
without exceeding existing resource constraints. If more
slave processors are available to be added that will not vi-
olate any known resource constraints, they are added to the
set of found slaves. A new system configuration with the
additional processors added in is constructed and simulated
once again. The process of slave additions and testing by
simulation repeats until either there are no further perfor-
mance gains realized by adding more slave processors, or no
more processors can be found and placed without exceed-
ing one of the known resource capacity constraints. Figure 3
illustrates our algorithm for finding the set of slave proces-
sors.

The algorithm given above makes good use of simulator
results which calculate predicted resource utilization values
for every resource in the system. These values allow us
to quickly identify where in the system, if anywhere, slave
processors might be added to improve application perfor-
mance. In practice, the number of times the simulation cy-
cle needs to be run is small as the process quickly converges
to a situation where either additional performance gains are
insignificant, or no further additions can be made without
exceeding a resource constraint.

5. Experimental results

In this section, we describe experiments whose goal it
is to test the usefulness and accuracy of our work-rate per-
formance model and application performance simulator, as
well as the performance of our algorithms for selecting mas-
ter and slave processors.

10

Run master selection algorithm to get master processor m, set of slaves
Found(m), and predicted application work rate R

Run application performance simulator using m and Found(m) to get
simulated work rate S and slave utilization values U(s)

While S less than R
Using U(s), check which slaves s in Found(m) have large
simulated idle times

Find additional processors A' that make up for idle time without
exceeding any WNet{n) or WMasterCPU(m) constraints

Add processors A' to Found(m) to form Found'(m)

Run simulator using m and Found'(m) processors to get new
simulated work rate S' and slave utilization values U'(s)

US = S' or Found(m) = Found'(m)
Return Found(m) as slave solution

Set S equal to S', all U(s) equal to U'(s)
Set Found(m) equal to Found'(m)

Return Found(m) as slave solution

Figure 3. Algorithm for finding best processors for slaves.

We use as an application test suite three applications cho-
sen to represent a spectrum of potential master/slave dis-
tributed applications. The applications were selected and
implemented to test the sensitivity of our approach to com-
putation and communication granularity. Our master/slave
implementation of the Mandelbrot image application is ex-
pected to display a relatively high sensitivity to communi-
cation constraints, as the amount of image data transferred
during execution is large compared to the overall computa-
tion time. At the other extreme is the NAS Parallel Bench-
marks' EP [18] application, which performs relatively little
data transfer compared to the time spent computing. The
Povray [11] ray-tracing application falls somewhere in the
middle, with the transfer of one fourth the amount of image
data as the Mandelbrot application which was spread out
over a longer computation time.. Each of the applications
was initially benchmarked on all target processor types to
produce the application-specific parameters needed for our
performance analysis tools. The applications are summa-
rized in Table 3.

5.1. Experimental design

In the experiments, we compared predicted execution
time (resulting from our performance model), simulated
execution time (using the application simulator), and ac-
tual execution time (determined from experimental runs).
All comparisons were made in a non-dedicated environ-
ment where the load traces used for the predicted and simu-
lated execution times were determined from the NWS load
trace of the actual execution time runs. We used identical
parameter inputs for network configuration, resource con-
straints, and application characteristics in both work-flow
analysis and performance simulation tools. In this way, we
attempted to compare each set of execution times under the
same environmental conditions.

The target experimental platform was a heterogeneous
mix of Intel processor-based machines running Linux, and
Sun SPARC machines running Solaris located in the Paral-
lel Computation Laboratory in the Department of Computer
Science and Engineering at the University of California,
San Diego. The experiments were run with all machines
in non-dedicated mode, but outside loading from compet-

11

Name
Mandelbrot
Povray
NBPEP

Description
parallel fractal image generator
parallel implementation of popular ray-tracer
NAS Parallel Benchmark EP variant

Emphasis
communication

both
computation

Table 3. List of applications used in experiments.

ing jobs was observed to be relatively light for most of the
machines during the course of experimentation.

5.2. Results

In the first set of experiments, we ran the test suite of
applications on a set of nine workstations shown in Ta-
ble 4. For the three applications, trials were run with each
of the nine processors being selected to run as the master
while the other eight were included to run as slaves. In
all cases, the work flow-rate problem was solved for each
configuration of master and slaves to give the expected ap-
plication execution time, shown as the light bars in Fig-
ures 4-6. The application performance simulator was run
for all cases to give a predicted application execution time,
shown by the middle bars in the graphs. And finally, the
real applications were run on each configuration and their
execution times recorded to appear as the dark bars on the
graphs.. Figure 4 shows the results while running the rela-
tively communication-heavy Mandelbrot application. Fig-
ure 5 shows the same set of execution times for the more
balanced Povray application, while Figure 6 shows exe-
cution times for the computation-intensive NAS Parallel
Benchmarks' EP application.

In these experiments, the work-rate performance model
would have done a good job of identifying the correct mas-
ter host to produce the fastest application execution times.
In the Mandelbrot series of experiments, the machine thing]
was calculated to yield the lowest execution time, which
was confirmed in the actual application run. For this ap-
plication the highest execution time, achieved with the ma-
chine named lorax, took 170% longer to finish than the best
choice. For the other two applications, the work-rate per-
formance model estimates of execution time again showed
results which correlated closely with actual application run
times. For these applications, which exhibited lower de-
pendence on network constraints, the differences between
the worst and best performers was smaller: about 25% for
Povray and 10% for NAS EP. The work-rate based perfor-
mance model correctly ordered master performance for both
communication and computation constrained applications.
The results also show that the application performance sim-
ulator did a good job of tracking the actual application exe-
cution times as well.

The experimental results show a small number of cases

where the execution time was significantly underestimated
for the Mandelbrot application. Analysis of experimen-
tal results leads us to believe the discrepancy in pre-
dicted and actual performance on the communication-heavy
application was due to inadequate benchmarking of the
WMasterCPU constraint terms. Actual application perfor-
mance is worse than that predicted by both the work-flow
model and the simulator because both tools overestimated
the capacity of the single master process to process in-
coming data and respond to new task requests. When the
real master process fails to keep up with projected work
rates, the overall application work rate is reduced and ex-
ecution time becomes relatively larger. Improved methods
for benchmarking master processor performance are cur-
rently being developed to overcome this shortcoming.

In the second set of experiments, we look at two of our
applications: Mandelbrot and Povray. In these trials we pick
a specific host for the master process, then run our appli-
cation for different numbers of slave processes. We show
measured execution times and simulated execution times
for our two applications as we increase the number of slave
processors.

Figure 7 shows results with our communication-
intensive Mandelbrot application for two different choices
of the master host. These results show that the number
of slaves which can beneficially be employed varies un-
der different conditions, and is heavily constrained by the
network speed of the master process host. Figure 8 shows
results with the Povray application, whose performance is
less dominated by communication costs. In our test envi-
ronment, this application shows more scalable performance
than Mandelbrot, but eventually also reaches a point where
additional processors do not significantly decrease execu-
tion time. Results are shown for only one master case be-
cause data for other cases produces almost identical graphs.
Results for our third application, NPB EP, are not shown
here, but they are very similar to those for povray, with sim-
ulation predicted run times and actual application run times
very close for all numbers of processors. These results indi-
cate that for our representative examples, the performance
simulator can be a useful tool to help predict the points at
which either additional slaves should be added to a com-
putation to increase performance, or when additional slaves
cease to have any useful effect.

12

Master Selection Results
Mandelbrot

Hosts

Figure 4. Execution time of communication-intensive application while varying master host.

Master Selection Results
Povray

"* J* JS «X <* ** ^ ^ ^
Hosts

Figure 5. Execution time of application while varying master host.

13

Master Selection Results
NPBEP

40

30

E
t 20

10

" Anatysis j
I Simulation
| Application'

Hosts

Figure 6. Execution time of computation-intensive application while varying master host.

Name
azulejo
kingkong
kongo
lorax
magie
saltimbanco
sojourner
tandem
thing 1

Processor
Intel Pentium Pro 200
Sun UltraSPARC-Hi 333MHz
Sun UltraSPARC 166MHz
Sun microSPARC II 85MHz
Intel Pentium Pro 200
Intel Pentium 11-400
Intel Pentium 11-266
Intel Pentium 11-300
Sun UltraSPARC 200MHz

Network
100 Mbit/s ethernet
lOOMbit/sethernet
100 Mbit/s ethernet
100 Mbit/s ethernet
10 Mbit/s ethernet
10 Mbit/s ethernet
10 Mbit/s ethernet
100 Mbit/s ethernet
100 Mbit/s ethernet

OS
Linux 2.0.36
Solans 2.6
Solaris 2.6
Solaris 2.6
Linux 2.1.125
Linux 2.1.125
Linux 2.2.9
Linux 2.0.36
Solaris 2.6

Table 4. Partial list of heterogeneous mix of machines used in experiments.

6. Related Work

Many different approaches to predicting the performance
of parallel applications on distributed-memory machines
have appeared in the literature. A partial summary of some
earlier efforts can be found in [10]. Unfortunately, these
approaches often suffered from either limited accuracy un-
der real-world conditions (caused by making many simpli-
fying assumptions), or from excessive complexity when ei-
ther constructing or using the models. Our approach to per-
formance prediction focuses on achieving useful levels of
prediction accuracy while limiting model complexity and
allowing efficient measurement and quantification of impor-
tant model parameters.

The application of performance prediction to the prob-

lem of resource selection has also been addressed recently
by Weissman and Zhao [17]. In their work, Weissman and
Zhao use heuristics to select a number of candidate config-
urations, then employ cost functions to derive computation
and communication times for each configuration. They then
select the configuration yielding the lowest total cost. Our
approach to resource selection efficiently evaluates appli-
cation performance for different configurations using only
simple constraint calculations.

Subhlok, Lieu and Lowekamp [15] have looked at au-
tomatically selecting processor nodes for applications run-
ning on high-speed networks. For their results, Subhlok,
Lieu and Lowekamp present algorithms which allow them
to automatically select nodes with three different goals:
maximizing computation capacity, maximizing communi-

14

40

30

E
■" 20

10

Slave Selection
Mandelbrot

V>\ ' ■■■■ \

1 '

-

 Application (sojourner master)
 Simulation (sojourner master)
 Application (tandem master)
 Simulation (tandem master)

_.;^
--■=.:-.:-.::.- - ::;

,.^~-

10 15
Number of Slave Processes

20 25

500

400

Ä 300

E
P

o 200

100

Slave Selection
Povray

- Applicatk>n (tandem master)
simulated (tandem master)

10 15
Number of Slave Processes

20 25

Figure 7. Application performance with vary-
ing numbers of slaves.

Figure 8. Application performance with vary-
ing numbers of slaves.

cation capacity, or balancing computation and communica-
tion. Their paper does not explain how the correct goal is
selected to match specific application characteristics in or-
der to give optimum performance. Our approach automat-
ically determines performance bottlenecks based on both
computation and communication constraints, and finds the
best performing configuration for all cases.

7. Summary

In this paper, we have described a rate-based perfor-
mance model for master/slave applications running on dis-
tributed heterogeneous processors and networks. By param-
eterizing this steady-state performance model with some
dynamic run-time information, we are able to accurately
predict maximum achievable application performance rates
- even in the cases where application characteristics and re-
source behavior are not steady over time.

We have also described an application performance sim-
ulator which accurately simulates the dynamic interaction
of a master/slave application with a defined configuration
of performance constrained resources. This simulator al-
lows for a detailed analysis of where performance bottle-
necks due to resource limitations may occur in an applica-
tion. This kind of detailed information about how applica-
tions interact with resources in a Grid environment can be
very valuable for resource selection at application runtime,
advanced application and platform planning, and program

development activities. The key to our success with our
performance prediction tools has been the identification of
a common set of application and resource parameters which
could be quantified and measured, and which captured both
the static and dynamic aspects of application performance
in Grid environments.

Based on the effectiveness of our performance prediction
tools, we have developed algorithms for master and slave
resource selection on Grid platforms. These algorithms en-
able the selection of a master processor and a set of slave
processors which allow maximum application performance
to occur. Actually achieving the maximum application per-
formance in dynamic Grid environments may also require
the use of other run-time techniques to handle issues like
load balancing and fault tolerance. These are issues we are
actively researching, and will be the subject of future publi-
cations.

Some brief experimental data was presented to verify
that both our perforrriance prediction tools and our strate-
gies for selecting master and slave resources were sound.
We are currently integrating the performance tools and re-
source selection strategies into an AppLeS [2] Grid ap-
plication scheduler with the goal of providing an auto-
matic mechanism for high-quality distributed master/slave
scheduling in heterogeneous and dynamic Grid environ-
ments.

In the future, we would like to extend the work-rate-
based performance model to other common classes of paral-

15

lei computing in Grid environments. We would also like to
study whether other physical resource characteristics, such
as available memory, might be beneficial to include in our
constraint analyses. Our experience has shown that the idea
of estimating application performance by accounting for ap-
plication/resource constraints appears promising as a tool
for enabling more effective application scheduling.

References

[I] F. Berman. High-performance schedulers. In I. Foster and
C. Kesselman, editors, The Grid: Blueprint for a New Com-
puting Infrastructure, chapter 12. Morgan Kaufmann Pub-
lishers, July 1998.

[2] F. Berman and R. Wolski. Scheduling from the perspective
of the application. In Proceedings of the Fifth IEEE Sym-
posium on High Performance Distributed Computing, pages
100-111, Aug. 1996.

[3] A. Clematis and A. Corana. Performance analysis of task-
based algorithms on heterogeneous systems with message
passing. In Proceedings Recent Advances in Parallel Vir-
tual Machine and Message Passing Interface, 5th European
PVM/MPI Users' Group Meeting, Sept. 1998.

[4] R. M Cubert and P. Fishwick. Sim++, Version 1.0. Depart-
ment of Computer and Information Science and Engineer-
ing, University of Florida, Gainesville, FL, 1995.

[5] J. R. Evans and E. Minieka. Optimization Algorithms for
Networks and Graphs, chapter 5, pages 178-233. Marcel
Dekker, Inc., second edition, 1992.

[6] K. Everaars and B. Koren. Using coordination to parallelize
sparse-grid methods for 3-d cfd problems. Parallel Comput-
ing,24(7):1081-1106, 1998.

[7] L. R. Ford and D. R. Fulkerson. Flows in Networks. Prince-
ton University Press, Princeton, New Jersey, 1962.

[8] D. Gelernter, M. R. Jourdenais, and D. Kaminsky. Piranha
scheduling: Strategies and their implementation. Interna-
tional Journal of Parallel Programming, 23(l):5-33, Feb.
1995.

[9] B. Lowekamp, N. Miller, D. Sutherland, T. Gross,
P. Steenkiste, and J. Subhlok. A resource query interface
for network-aware applications. In Proceedings of Seventh
International Symposium on High Performance Distributed
Computing, July 1998.

[10] W. Meira. Modeling performance of parallel programs.
Technical Report 589, Computer Science Department, Uni-
versity of Rochester, Rochester, NY, June 1995.

[II] Persistence of vision raytracer. Persistence of Vision Devel-
opment Team, 1999. http://www.povray.org/.

[12] J. Pruyne and M. Livny. Interfacing condor and PVM to har-
ness the cycles of workstation clusters. Future Generation
Computer Systems, 12(l):67-85, 1996.

[13] G. Shao, F. Berman, and R. Wolski. Using effective network
views to promote distributed application performance. In
Proceedings of the 1999 International Conference on Paral-
lel and Distributed Processing Techniques and Applications,
June 1999.

[14] L. M. Silva, V. Batista, P. Martins, and G. Soares. Using
mobile agents for parallel processing. In Proceedings of the
International Symposium on Distributed Objects and Appli-
cations, Sept. 1999.

[15] J. Subhlok, P. Lieu, and B. Lowekamp. Automatic node se-
lection for high performance applications on networks. In
to appear in Proceedings of the Seventh ACM SIGPLAN
Symposium on Principles and Practice of Parallel Program-
ming, May 1999.

[16] A. S. Wagner, H. V. Sreekantaswamy, and S. T. Chanson.
Performance models for the processor farm paradigm. IEEE
Transactions on Parallel and Distributed Systems, 8(5):475-
489, May 1997.

[17] J. B. Weissman and X. Zhao. Scheduling parallel applica-
tions in distributed networks. Journal of Cluster Computing,
1(1), 1998.

[18] S. M. White, A. Alund, and V. S. Sunderam.
Nas parallel benchmark kernels for pvm 3.
http://www.nas.nasa.gov/NAS/NPB/, Oct. 1993.

[19] R. Wolski. Dynamically forecasting network performance
using the network weather service. In Proceedings of the
6th High-Performance Distributed Computing Conference,
pages 316-325, Aug. 1997.

Gary Shao is a graduate student in the Department of
Computer Science and Engineering at the University of
California, San Diego. His research interests include
parallel and distributed computing, adaptive scheduling,
and application development environments. He received
his B.S from the University of Missouri, Columbia and his
M.S. from Washington University in St. Louis, Missouri.

Francine Berman is a Professor of Computer Science and
Engineering at the University of California, San Diego. She
is also a Senior Fellow at the San Diego Supercomputer
Center, Fellow of the ACM, and founder of the Parallel
Computation Laboratory at UCSD. Her research interests
over the last two decades have focused on parallel and
distributed computation, and in particular the areas of
programming environments, tools, and models that support
high-performance computing. She received her B.A. from
the University of California, Los Angeles, her M.S. and
Ph.D. from the University of Washington.

Rich Wolski is an Assistant Professor in the Department
of Computer Science at the University of Tennessee and
a partner in the National Partnership for Advanced Com-
putational Infrastructure. His research interests include
parallel and distributed computing, on-line performance
analysis techniques and software, compiler runtime system,
and dynamic scheduling. He received his B.S. from the
California Polytechnic University, San Luis Obispo and
his M.S. and Ph.D. from the University of California at
Davis/Livermore Campus.

16

Heterogeneity as Key Feature of High Performance Computing: the PQE1
Prototype *

P.Palazzari1, L.Arcipiani1, M.Celino1, R. Guadagni2, A.Marongiu1, A.Mathis1, P.Novelli1, V.Rosato1

ENEA. Casaccia Research Center - Rome
JHPCN Project, 2Funzione Centrale Informatica

palazzari@casaccia.enea.it

Abstract
In this work we present the results of a project aimed

at assembling an hybrid massively parallel machine, the
PQE1 prototype, devoted to the simulation of complex
physical models. The analysis of some of the existing
parallel architectures has revealed that general-purpose
machines are largely over-dimensioned and often perform
inefficiently in grand-challenge scientific applications.
We have thus developed an heterogeneous parallel system
which matches task-heterogeneity with
architecture-heterogeneity: in fact special-purpose
massively parallel architectures, when coupled to
general-purpose machines, are able to efficiently satisfy
the requirements of complex scientific computing. We
present the HW structure and the SW tools developed for
the PQE1 prototype. Starting from the concept of
machine-granularity and task-granularity, we show the
necessity to exploit both high granularity and low
granularity parallelism to efficiently use the PQE1
system. Some examples describing application fields in
which the PQE1 prototype has been successfully used are
briefly described.

1. Introduction

Technical applications (image processing, real-time
control,...) and simulation of complex models used in
scientific applications (quantum chemistry, weather
forecast, electromagnetic compatibility...) require
sustained computational powers of the order of tens (or
hundreds) of Gflops (lGflops = 109 floating point
operations per second). Massively parallel processing
seems to be the only practical way to reach these figures.
To date, commodity off-the-shelf processors are able to

provide peak performance in the range of 1-5-2 Gflops (for
example, the 667 MHz Alpha 21264 chip has a peak
performance of 1.3 Gflops [1]): hundreds of those
processors can be coupled, for instance, up to reaching the
desired sustained performances.

The Accelerated Strategic Computing Initiative (ASCI,
[2]) and the Path Forward project, finalized to build very
powerful parallel machines to implement extremely
complex simulations, have produced, to date, the
installation of several general purpose platforms:
1. ASCI Red: composed by 9,216 Pentium Pro

processors, has 584.5 Gbytes of RAM, bi-directional
cross-section bandwidth of 51.6 Gbyte/sec and peak
performance of 1.8 Tflops;
ASCI Blue Mountain: assembled with 48 Silicon
Graphics/Cray Origin2000 servers (each is
configured with 128 SMP processors) containing a
total of 6,144 processors, with projected peak
performance of 3 Tflops;
ASCI Blue Pacific: has 1,344 PowerPC 604e
processors (332 MHz), 504 Gbytes of RAM, nodes
connected through an Omega Network with a
node-to-node bandwidth of 150MB/sec and offers a
peak performance of 0.89 Tflops.

Also these platforms, like the most widespread
commercial parallel systems, are based on commercial
general-purpose computing devices which allow to
sustain very irregular programming models. If, on one
side, this property makes these systems well suited for
most of the computational tasks related to complex
scientific applications, on the other side this can also be
considered as their main limitation. In fact, the need of
being general-purpose implies that these systems are
designed to support multitasking/multiuser operative
environments, so that most of their silicon, instead of

2.

3.

* This work has been performed in the framework of an industrial collaboration between ENEA (The Italian Agency for
New Technologies, Energy and the Environment) and QSW (Quadrics Supercomputing World Ltd., a Finmeccanica
group company).

0-7695-0556-2/00 $10.00 © 2000 IEEE
17

being devoted to implement computing devices, is used to
build cache memory and control HW to manage complex
memory hierarchies, out of order execution of
instructions, processor scheduling and multiprocess
environment. This fact, while enhancing system
operability, largely decreases the efficiency per silicon
area in floating point dominated applications, being a
large part of the electronic devices not operative for most
of the time [3].

A completely opposite approach to high performance
scientific computing can be found in the physicists
community, where small research groups are used to
design by themselves dedicated machines which can
efficiently solve their computational problems. An
example of this approach is given by the GRAPE
(GRAvitational PipE) system [4]: GRAPE-4, the system
version now available, is a special purpose computer for
astrophysical simulations (N-body gravitational problems
requiring 0(N2) computations) with peak speed exceeding
1 Tflops [5]. GRAPE system is a completely not
programmable machine, allowing only to load/read
initial/final data into/from the machine. Extreme
specialization is the key to achieve very high efficiency in
the use of the silicon area: in such platforms only the
required functions are implemented, thus maximizing the
performances per unit of volume of electronics. The
GRAPE project is going to release a 200 TFlops computer
[6], yielding a computational speed from 10 to 100 times
larger than that achievable, on the same problem, in the
platforms developed in the framework of ASCI project.

A further example of the advantages which can be
achieved through HW specialization is given by the APE
project [7] launched by Italian physicists, aimed to build a
massively parallel system to be used in Lattice Quantum
Chromo Dynamics (LQCD). These platforms, the APE
series (APE100 is the old system [8], APEmille is the new
prototype which will be soon launched [9],[10]) are SIMD
programmable systems equipped with up to 2048 Very
Long Instruction Word (VLTW) custom processors and
offering peak performances of lOOGflops (APE 100
series) and 1 Tflops (the new APEmille system). In both
cases, the machines in the largest configurations are
easily contained in few rack-mounted containers.

In scientific computations, most of the time is usually
spent in the execution of quite regular codes which iterate
(e.g. in time, frequency, space) several transformations on
large domains of data. In such a computational scenario,
heterogeneous computing is a very promising way to
achieve high performances: the key idea is to connect a
(small) general-purpose parallel machine to several, very
powerful, specialized parallel systems. The less flexible,
specialized machines are dedicated to provide most of the
computational power required by the numerical programs,
while the general-purpose machine is used to give the
necessary flexibility to the whole system, coordinating

tasks and pre/post processing data produced by the
specialized systems.

Heterogeneous computing has been used to achieve the
very high performances required when dealing with
challenging problems: machine heterogeneity is exploited
to match task heterogeneity, using massively parallel
systems as dedicated, high-efficiency boosters attached to
a single user general-purpose parallel machine.

In this work we present the outcome of a scientific
program aimed at developing a massively parallel hybrid
machine. In the first part of the paper a theoretical
framework to describe heterogeneous tasks and
heterogeneous systems is presented. Task and machine
granularity are introduced and their influence on the
efficient implementation of heterogeneous tasks onto
heterogeneous systems is discussed. Then we describe the
PQE1 prototype, the massively parallel hybrid system
which has been developed in our research center. Along
with the description of the HW and the SW of the system,
we discuss the rationale of such architecture and we
sketch the results obtained in two different, successful
applications of the PQE1 platform. Finally the next
version of this hybrid prototype, now in its final design
phase, is presented.

2. Hierarchical Modeling of Heterogeneous
Tasks and Systems

An algorithm to be implemented on a parallel system
can be represented as a labeled Control Data Flow Graph
(CDFG) G(N,E,C_N,C_E), being
1. N={nili=l,2 N]

the set of functionality necessary to implement the
algorithm,

2. EcNxN={eif=(ni,nj)l n; sends data to nj}
the internode communication set,

3. C_N={c_nilc_njeX,nieN, i=l,2,...,JV}
the node labeling set, containing the integer value
which is a measure of the complexity of the
functionality corresponding to n{ (e.g., the number of
operations needed to implement nO and

4. C_E={c_eijl c_eij6 X, eyeE}
the channel labeling set, containing the integer value
which is a measure of the complexity of the
communication corresponding to ey (e.g., the number

Data-in, ... Data_inN ini

fi(Data_in i,.. .,Data_inNJn j,

** Data_out|,...,Data_outN ouij)

N_outj

Data_out, ... Data_outN

Figure 1: graph node, with input and output
edges, representing the computation nr

18

of byte sent through ey).
Each node n; in the computation is associated to a

functionality which transforms N_inj input data (with
their corresponding associated data type) into N_outj
output data (with their data type). N_in; and N_outj are,
respectively, the input and the output degrees of n;. The
correspondence between node n; and function fj is
depicted in figure 1.

In a completely similar way, a parallel system can be
represented through a labeled graph PS(R,IN,M_R,B_IN),
being
1. R={rjli=l,2 r)

the resource set (processing elements with their local
memory, shared memory banks, I/O devices) which
can be decomposed into basic sets, i.e.

R={Ui=I,..,kpi}u{ui=1,..,mMi Mui=1,..,tI/0j }.
So the parallel system resource set is constituted by

k sets of processing elements pi; each set ps being
characterized by the number and by the type of
homogeneous computing devices contained in it;
m sets of memory banks Mj, each set of memory
banks being characterized by the number of
memory banks, by their access time and by the
size of each bank given (in byte) by sizeof(nij),
mj£ Mjj

t sets of I/O channels I/O;, each set being
characterized by the directionality, the bandwidth
and the number of channels contained in it.

2. INcP0W(R)xP0W(R)={cij=({ril,...,rih},{rjl,...,rjn})l
{ri,,...,rih} is connected to {rj, rjn}}

the interconnection network set, where Pow(R)
denotes the power set of R. Pow(R) is used to model
shared interconnections: a set of homogeneous
processors pj={p,p,...,p} sharing a memory bank
me Mj are represented through the couple (p;,m); a
shared bus connecting the processors of p; is
represented by the couple (pi,Pi); a point to point
connection with one dedicated channel between two
not homogeneous processors is represented by the
couple (pae pi, pbepj);

3. M_R={m_rjl m_rj6 K ^eR, i=l,2,...,r}
the resource labeling set, which associates to each
resource a number measuring its performances (e.g.
the number of flops executed per clock cycle by a
general purpose processor pe pi, the number of clock
cycles necessary to compute functionality / in the
computing devices dedicated to its HW
implementation, the access time for shared memory
banks meM;, the bandwidth for I/O channels
c_i/oeI/Oi);

4. B_IN={b_Cyl b_Cij6 X, CyelN}
the labeling set which associates the bandwidth to
each channel eye IN.

It is fundamental to underline that, in the cases of both
task and parallel system graphs, each node can be

modeled through another task or parallel system graph:
such a hierarchical description of a graph allows to put in
evidence only the degree of parallelism (and of detail)
which the user wants to consider. All the lower level
details are hidden at this stage of abstraction. For instance,
a complex program can be represented through a CDFG
in which nodes are very complex routines;' after a
refinement step, each routine can be detailed through
several simpler routines (for instance, an iterative solver
can be expressed by means of Basic Linear Algebra
Subroutines (BLAS)); going on with the zooming of
details, each BLAS routine can be decomposed into
(dependent, i.e. interconnected) elementary operations
expressed in a standard imperative language (e.g., C or
Fortran). As example of hierarchical representation of a
parallel system, we can think to a system graph whose
nodes are large systems (Vector Computers, Distributed
Memory SIMD and MIMD systems, Shared Memory
Multiprocessors, DSP and specialized computing devices)
connected through some kind of (eventually not
homogeneous) IN. Each node can be detailed through
several lower level nodes (processors of the system and
their IN) which can still be detailed through a lower level
representation (interconnected functional units within a
processor). A sketch of this hierarchical description is

Figure 2: Hierarchical
representation of a

heterogeneous parallel
system

depicted in the example reported in figure 2.

3. Task and Machine Granularity: Formal
Definition of Heterogeneous Systems and
Heterogeneous Tasks

Once introduced the formal hierarchical definitions to
model computations and parallel systems, we try to give a
(not exhaustive) definition of task and system
heterogeneity. We need first to introduce the fundamental
concepts of task and machine granularity.

19

The granularity of a task is usually referred to as being
proportional to the ratio between the computation and the
communication times involved in the execution of the
task [23]. This definition of granularity is, indeed,
machine dependent, as both communication and
computation times may vary when the task is executed on
different architectures. Being interested to a
heterogeneous environment, we prefer to introduce the
concepts of machine granularity (gm) and task granularity
(gt)- gmis a measure of the balance between computational
and communication speed of a system and is defined as

gm
node peak computation speed _ PCS

I/O bandwidth BW

where the node peak computation speed (PCS) is the
maximal number of operations per second executed by the
node (usually PCS are 'expressed in terms of flops in the
context of numerical computations). Previous definition
can be applied to nodes at different hierarchical levels.
Referring to figure 2, for instance, we can define the
granularity of vector nodes, SIMD nodes and MIMD
nodes; at this level (the system level) nodes usually have
very high granularity gm, ranging typical computation
speeds from few Gflops to several tens of Gflops and
typical I/O bandwidth from tens of Mbyte/sec up to few
Gbyte/sec (for massively system with parallel fast I/O); a
typical value for a medium-large system can be

50x 10
gm = JV 1W =1QQ. When moving to a lower level of

500 xlO6

detail (the sub-system level), granularity of a node
diminishes, as typical computation speeds of today's
processing elements are in the range of few hundreds of
Mflops up to 1-2 Gflops and communication bandwidths
range from tens up to few hundreds of Mbyte/sec; typical
value for a high-end processing element (like the Alpha
EV6.7) equipped with a 64-bit PCI connection is

1 3x10^ gm__: = 6.5. Moving into a lower level of
200 xlO6

detail (the processor level, inside the processing element),
granularity assumes a smaller value, as communication
speed is always in the range of few hundreds of Mflops up
to few Gflops, while communication bandwidth
(processor<=>memory) ranges from few hundreds of
Mbyte/sec up to few Gbyte/sec; for instance, a processing
element with an EV6.7 processor (peak speed 1.3 Gflops)
and a fast chipset for the memory control (e.g the
Tsunami chipset, allowing an internal memory bandwidth
of 2.6Gbyte/sec) is characterized by a granularity

1.3xl09 ne
gm= g=05-

2.6 XlO9

We are now able to give the following
definition of heterogeneous system: a parallel system

is heterogeneous when

1. it is composed by more than one computing element
and

2. its computing elements are based on different
architectural paradigms (Vector systems, Distributed
Memory/Shared Memory MIMD systems, SIMD
systems, etc..) and/or

3. it can be described through a hierarchical
classification evidencing different node granularities
throughout the hierarchical levels.

gm is a measure of the ratio between system
computation speed and system communication
bandwidth. Following a similar reasoning, task
granularity g, is defined as a measure of the balancing of
computational and communication requirements of a task
and is defined as

number of computing op. n_op
a = - (£)

1 number of bytes of I/O data n_I/0_byte

The hierarchical classification approach, used to model
heterogeneous tasks, can be applied also in the case of
CDFGs. Given a CDFG with k different nodes, g,(ni) is
the granularity of each node (i=l,2,..,k; n^N) and the
granularity of the whole CDFG is the maximal value of
the granularity of its composing tasks, i.e.

gt(CDFG)=maxi=1.k(gt(ni)) (3)

Granularity of a set of nodes is defined as the largest
granularity in the set because it seems to be reasonable to
represent computation/communication demands of a
complex task through its largest component; in fact, given
for instance a CDFG with 9 different nodes with the same
(small) granularity 1 and one node with (large) granularity
100, computation/communication demands are well
represented by the value 100 (worst case). If we use an
average value to represent the global task granularity, in
previous example we would obtain g,= 10.9, which clearly
underestimates the influence of the 'large' task, probably
yielding, as we will discuss later, an inefficient
implementation of the task on the parallel system.

When a hierarchical representation of a CDFG is used,
the change from the procedural level (i.e. the level in
which nodes represent routines) to the instruction level of
detail (nodes represent elementary instruction, e.g. basic
C statements) determines a decrease in the node
granularity. In fact, if we indicate with n the size (in byte)
of the input/output parameters, the number of operations
N_OP(n) executed by the routine has, in most cases, a
dependency law larger than O(n), i.e. N_OP(n)>0(n).
N_OP(n)=0(n) is a lower bound, being O(n) the number
of elementary operations necessary to read/write input
data (with the obvious exception of data structures already
stored in memory and communicated through a pointer;
however, also in this case the following inequality (4) is
satisfied). As a consequence, the law connecting the

20

granularity of a task to the size n of input/output data is
given by

„„».N^SäiOO) (4)
O(n)

At the instruction level the granularity is 0(1), i.e. the
number of bytes used to encode input and output
parameters of one operation is a constant number (with
very few, and particular, exceptions involving data
movement), because elementary operations manipulate
one or two scalar values and return another scalar value.
As a consequence, when moving from the procedural to
the instruction level, task granularity does not increase
(typically diminishes).

Other parameters characterizing nodes of CDFG, at the
procedural level, are

the type Te{'control-dominated', 'computation-
dominated'}; a node is control dominated when has
small granularity and contains a number of decision
operations (i.e. conditional jumps) significantly larger
than the computing operations; on the contrary, a
node is computation dominated when has large
granularity,
computational paradigm; each node of the graph,
when expressed at a lower level of detail, can be
represented by means of the 'data-parallel', the
'pipeline', the 'farm', the 'loop', the 'unrestricted'
structuring constructs; for the description of the
structuring constructs, except the 'unrestricted', see
[29]; the 'unrestricted' paradigm refers to a generic
computation represented by means of an irregular
CDFG.

We are now able to give the following
definition of heterogeneous task: a CDFG represents

an heterogeneous task when
1. it is composed by more than one node at the

'procedural' level and
2. its nodes are based on different computational

paradigms or have different types T and/or
3. its nodes have different granularities

4. Matching Task and System Heterogeneity
to Maximize System Performances

Once fixed the meaning of heterogeneity for tasks and
systems, it is important to evaluate their mutual relation
and to describe the associated heterogeneity parameters
(granularity, computational/architectural paradigms, node
type T). In this framework, it is worth investigating the
connections among system/task granularity, heterogeneity
and global performances.

The granularity G, in its classical form, is defined as
the ratio between Run time (R) and Communication time
(C) of a given task [28], i.e.

G:
task execution time _ R

task communication time C
(5)

In order to avoid a too formal explanation, far beyond
the scope of this paper, we do not go into the details
necessary to define task execution and communication
times; intuitively, we consider as execution
(communication) time the summation of all the time
intervals in which at least one computational unit (I/O
channel) is computing (communicating).

Previous definition of granularity is machine
dependent, being execution and communication times
connected to processor speeds and I/O bandwidths. The
previously introduced definitions of gm and gt can be used
to make explicit this dependence; in fact G can be
expressed as

G = 77 gt (6)

being rj =
^proc

an efficiency figure which takes into
'/comm

account the partial utilization of the processor speed

V/proc) and of the bandwidth (fcomm)• In order to verify

the validity of (6), it is sufficient to substitute in it the
expressions of g, and gm and, with few algebraic
operations, we obtain

n_op
^proc'

G:
^procSt

^commSm

n_I/0_byte

*7comm
PCS

BW

: *7proc
n_op R
PCS n_I/Q_byte C

77comm —

The actual value of r\ depends on the characteristics of
tasks and on their implementation on the physical system.
A reasonable estimation, to be confirmed through some
experiences on a given system, is T[=0.1-H0.5. For
instance, when dealing with tasks with large I/O packets
(small granularity), usually communication startup time is
negligible and r|comm=l; in such a case r|=T|proc and
processor utilization in the range from 20% up to 60% is a
realistic figure.

The expression pf G as ratio between task and
machine granularity underlines how the relative values of
task and machine granularity are relevant to achieve high
performances when implementing the task on an actual
(heterogeneous) parallel system. Efficient task
implementation requires to match two conflicting
behaviors: that of a task with maximum parallelism (to
minimize execution time) with the constraint of
minimizing communication costs (overheads). The only
information on the granularity G is not sufficient to
determine if the implementation of the task on a machine

21

is efficient: G gives just a measure of the relative
influence of communication overhead on system
performances. Given an implementation of a task on a
parallel system, efficiency reaches its maximum when, for
a fixed degree of parallelism, communication overhead is
minimum. In fact, indicating with R the time spent
executing computations and with C the time spent in
communications, and defining as efficiency the ratio

Eff■■
R

Actual Computing Time
(7)

where the Actual Computing Time is the elapsed time
from the start of the parallel program till its end, the
following inequalities hold:

R
EffMin=ir-7^Eff<

R

R + C MAX(R,C)
= Eff Max (8)

which can be rewritten, introducing the granularity G, as

= Eff Max (9) EffMin=-n-*Eff£ ^T
1 + — MAX(1,—)

G G

It is worthwhile to note that the fraction of unused
computational resources is given by (1-Eff). The lowest
value for the efficiency (EffMin) corresponds to the
complete absence of overlapping between computation
and communications; the highest value for the efficiency
(EffMax) corresponds to a complete overlapping between
computations and communications. In figure 3 the values
EffMi„ anf EffMax are sketched as function of the
granularity G.

1-2 i

.2
o
E
ui

-»-Min Eff
♦ Max Eff

0123456789 10
Granularity

Figure 3: Minimum and maximum efficiency values
vs Granularity

Actual efficiency values lie within the two plots, being
closer to the lower or to the higher depending on the
algorithm structure and the HW support for computation
and communication overlapping (number of DMA
channels, routing processors).

G=l indicates equality between computation and
communication times. The larger is G, the more

negligible is the communication time with respect to
computing time. Values of G<1 originate I/O bound
problems.

In order to avoid situations with processors stalling
due to I/O operations, with a consequent strong
decreasing of efficiency, granularity of the task should be
greater of a certain value G0 so that efficiency results
greater than the minimum acceptable threshold EffT. If the
not overlapping model is assumed, the granularity must
respect the following inequality in order to have Eff>EffT,

G>
Effj

1 - Eff T

(10)

and, evidencing dependence of G on g, and gm, we obtain

gt EffT 1

gm 1 - EffT

EffT
From previous inequality, setting k =

1 -EfiT

1

obtain a fundamental relation between task and
chine granularity

gt >kgm (12)

In the case of perfect overlapping between
computation and communications, it is easy to verify that
expression (12), from the position G>1, becomes

1
> —

V
(13)

Previous expressions ensure a correct implementation
of tasks on heterogeneous systems. The value k has to be
estimated on the basis of 'reasonable' assumptions about
the degree of overlapping between computations and
communications (expression of k has been determined
assuming the worst case, with no overlapping) and about
the efficiency r\ which can be achieved when
implementing the task on the system.

The scheme to allocate a heterogeneous task onto a
heterogeneous system is the following:

Consider the highest levels of detail both for the
system and the task graphs;
Ordinate the node tasks in descending order of
computational complexity;
For each node in the task graph, chosen according to
previous decreasing ordering, select the system nodes
which match, with their architectural paradigms, the
node computational paradigm;
Among all the candidate system nodes, choose the
one which has the highest computational power and
respects the relation g,>kgm; as the choice of the
system depends on k, i.e. on the efficiency of the
implementation of the task node on the system node,
the process can be iterated at a lower level of detail

22

(i.e. the node is expanded (if possible) into a smaller
granularity CDFG and also the system node is
considered at a lower level of detail) until a
reasonable estimation for k is achieved.
Assign the task node to the system node found in
previous point (the choice of the system with the
highest computational power allows to satisfy the
tasks with highest computing requirements).

As the previous 'recipe' does not consider the load
balancing, some policy must be chosen to avoid the
overloading of the most powerful systems; a method
could be based on a cyclic allocation policy or on some
dynamic updating of system performances (as a system
node becomes more loaded, its computational speed
appear smaller to the other task nodes that must still be
allocated). In order to take into account precedence
relations among nodes in the CDFG, techniques discussed
in [23], [35] can be used.

5. The Heterogeneous PQE1 System

The previous discussion is aimed at stressing that a
heterogeneous system is not a mere collection of several
platforms used, sometimes, as a parallel system, but it is
an integrated system that must be designed from scratch
to behave as a heterogeneous parallel system. In fact,
heterogeneity is a property of the problems to be solved.
A 'well balanced' heterogeneous system will thus provide
the best way to solve complex 'real' problems.
Heterogeneity moreover, avoids to over-dimension a
parallel system, as the computational power is 'dedicated'
(according to several computational paradigms), allowing
very high efficiency. The idea is to avoid, as much as
possible, the use of general purpose systems just because
they perform 'quite well' in all the problems but not 'very
well' for any problem. On the contrary, heterogeneous
systems could contain different 'dedicated' parallel
systems, some of which very well suited for a certain
class of problems, others for others different classes. In
this way, in principle, it would be possible to have a
system which often behaves 'very well' on a lot of
problems, because different parts of a complex
application could be efficiently implemented onto
architecturally different parts of the system. Furthermore,
on the basis of the previous analysis, specialized
architectures are, often, less costly (in terms of silicon
area, power consumption, volume) than general purpose
systems.

5.1 Rationale for the PQE1 prototype

General-purpose parallel machines support the Single
Program Multiple Data (SPMD) asynchronous
programming paradigm. Their HW structure is inherently
asynchronous and some silicon area, other than some

time, must be wasted to manage process synchronization
and asynchronous communications. Such a wasting of
resources can be avoided by using synchronous machines
to which could be efficiently allotted computational tasks
requiring synchronous algorithms.

On the basis of the experience gained using SIMD
systems in several fields of technical-scientific computing
(material science [14] [15], astrophysics [40], atmospheric
modeling [16], image processing and compression
[17][18], computational electromagnetic [19][20], linear
algebra [21], neural networks [22]) we are convinced that
SIMD architectural paradigm can efficiently express
programs solving problems related to such fields.
Moreover it is also preferable to the MIMD paradigm
because many algorithms
1. are synchronous;
2. often require that all the processors execute the same

instructions on different domains;
3. need interprocessor communications executed in a

synchronous way;
4. do not need deep memory hierarchies thanks to the

regular patterns of memory accesses.
Point 1 and 3 show that, for such classes of algorithms,

the time spent in synchronization phases, required by
MIMD systems, is a completely unnecessary overhead
introduced, by the asynchronous HW structure of the
machine. This overhead is not required by SIMD
machines with synchronous communications. Point 2
shows that all the HW dedicated to manage different
program flows in the processors is unnecessary, being
sufficient one centralized controller of program flow.
Point 4 means that cache memory and the related
management policies are not needed in most scientific
applications, being the 'locality' of the problem [30]
easily controlled by the programmer through instructions
of vector movements between main memory and an
internal register file. Although cache memory results to be
particularly useful in multi-programmed environments,
where several processes are running and the fast memory
is not large enough to keep the whole image of all the
running processes, in most cases of scientific computing
only one process is running and its locality is easily
captured by the programmer through instructions which
allow burst memory transfers, through DMA channels,
between the slow external RAM and a fast internal
register file (or a multi-port/multi-bank internal static
memory). A further discussion on SIMD vs MIMD
architectures, along with a description of SIMD/MIMD
mixed mode systems, is reported in [27].

5.2 HW description of the PQE1 prototype

The PQE1 is an 'hybrid' MIMD-SIMD platform where
the flexibility and operability of a MIMD (distributed
memory) architecture (the eight node Meiko/QSW CS-2)
are coupled to the power and efficiency of SIMD

23

machines (7 APEIOO/Quadrics systems) which enable to
efficiently perform in small granularity tasks.

If we take into account the 4 points listed above and
we assume that most algorithms arising in scientific
applications can be expressed through synchronous
programs with synchronous communications, executing
the same instruction on a set of different data which can
be easily mapped onto a data parallel structure with
regular patterns of memory access, it results very
reasonable to allot those parts of the computation to the
SIMD machine APEIOO/Quadrics, leaving the remaining
tasks of the computation to be executed on the MIMD
part.

We used 7 APEIOO/Quadrics machines, built in 1994:
two with 512 processors arranged as an (8x8x8) 3D torus
and 5 with 128 processors arranged as an (8x4x4) 3D
torus. Each computing node is based on a custom VLIW
processor, has clock frequency fCk=25 MHz and is able to
terminate a 'normal operation' AxB+C every clock cycle,
so each processor executes two floating point operations
in one clock cycle (when the pipeline is full) and has a
peak speed of 50 Mflops; floating point are represented
according to the IEEE 754 standard (single precision).
Each node is connected to a data memory of 4Mbytes and
has an internal register file (RF) with 128 registers; each
clock cycle the processor is able to read two operands
from RF and write one result to RF. Communications
with other adjacent nodes, connected in the north, south,
east, west, up and down directions are synchronous and
memory mapped; interprocessor communication
bandwidth is 12.5 Mbyte/sec, so the 512 (128) processor
configuration has an aggregate bandwidth of 6.4 (1.6)
Gbyte/sec and a peak speed of 25.6 (6.4) Gflops.

The connection of the APEIOO/Quadrics machines to a
MIMD system, the Meiko/QSW CS-2 [24], has been
performed to give more flexibility to the SIMD machines.
Each node of the MIMD platform is based on two Ultra
Sparc processors, connected in the SMP configuration, it
offers a peak speed of 180 Mflops and has 128 Mbytes of
RAM. The connection between CS-2 nodes and
APEIOO/Quadrics systems is implemented through an
HiPPI (High Performance Parallel Interface) channel,
which provides a bandwidth of 20 Mbyte/sec. The
connection among the nodes of the CS-2 machine takes
place via the Meiko/QSW proprietary network based on
the ASIC circuits Elan/Elite and implementing a
multistage interconnection network with Fat Tree
topology and point-to-point bandwidth of 100 Mbyte/sec.
The scheme of the complete prototype is shown in Fig.4.

The PQE1 hybrid systems is thus composed by 7
SIMD machines which allow to obtain an aggregate
computational speed of 83.2 Gflops, 20.8 Gbyte/sec of
bandwidth and 6.5 Gbytes of RAM. These parallel
systems communicate through 7 HiPPI channels with a
CS-2 machines, so the communication bandwidth

between the two systems is 140 Mbytes/sec. The CS-2
MIMD parallel system has 8 twin nodes, offers a peak
speed of 1 Gflops, has 1 Gbyte of RAM and has an
aggregate bandwidth of 800 Mbyte/sec.

Looking at previous data, it is clear that the machine is
strongly unbalanced, having the most of computational
and communication speed in the SIMD part. If we analyze
the sub-unit composed by a CS-2 node and the attached
SIMD machine, seen as co-processing system,the

Figure 4: HW structure
of the PQE1 Prototype

resulting sub-unit granularity (at the system level) is

gm(y4P£100-#512) =
25.6 -10"

20 106
=1280 (14)

and
gm(^/>£100-#128) = 320 (15)

The PQE1 system can be considered, at a first level, as
a parallel machine with small parallelism (parallelism
degree is 7). In order to avoid wasting of performances, at
this level of parallelization we have to consider only very
large granularity tasks. If we consider, for instance, the
product of two (n x n) single precision matrices, the task

granularity is given by gt = *L_ = H- (2n3 is the
12n2 6

number of operations required, while 12n is the number
of byte to transfer, being necessary reading the two input
matrices and writing the result matrix). In order to avoid
I/O bound behavior, r|gt>gm must result; in the case of a
128 processor machine, supposing T|=0.5 (reasonable
value for this type of computations, using sequences of
not independent operations of the type AxB+C), this
corresponds to the condition n>3840.

24

The second level of parallelism can be exploited within
the single task. The SIMD machine has granularity (at the
sub-system level) is

25-6 6A A nfl gm=—-= —= 4 (16)
6.4 1.6

In this case we have a lot of parallelism available
(parallelism degree is 128 or 512) and we can deal with
small granularity tasks.

As stated above, the rationale for such a strong
machine imbalance is that SIMD systems are very well
suited to implement numerical computations, allowing to
reach very high sustained performances. The MIMD
nodes are not devoted to solve the 'number crunching'
part of the problem, but to perform data pre/post
processing and to allow communications among different
algorithms implemented on the SIMD systems. We
underline that typical sustained performances obtained on
the APEIOO/Quadrics machines range from 30% to 70%
of the peak performances, i.e. they vary from 7.7 to 18
Gflops on the 512 node machines.

5.3 SW description of the PQE1 prototype

The basic modality to program PQE1 system is the
using of a message passing paradigm (the MPI library) to
manage the high granularity tasks allocated into the
MIMD part. In order to allow a low-level interaction
between CS-2 nodes and SIMD machines, a
communication library has been devised and
implemented. This library contains a set of commands to
load/run programs into the SIMD machines, to
synchronize the execution between the program running
on the MIMD node and the program running on the
connected SIMD system, to communicate data to/from the
SIMD system. Due to the large granularity of the
programs running on the SIMD nodes, no particular effort
has been spent to reduce start-up times which, for all the
operations, are in the order of 10 ms.

As the MIMD system is devoted to manage the whole
hybrid system and to increase the flexibility of the PQE1
platform, a library implementing the functionality of a
Distributed Virtual Shared Memory (DVSM) was
developed [25]. This library allows to declare physically
distributed memory areas as 'shared', thus allowing the
user to operate on such areas with the usual operations of
locking/unlocking and implementing atomic instructions
to perform blocking/non-blocking read/write operations
with synchronized/unsynchronized access. Typical times
for locking (unlocking) an area are 60 (45) u.s; the time
necessary to access in writing (reading) a page is 19 (50)
M-s. Previous times do not depend on the size of the
memory area.

A further tool, called SkIE-CL [26], has been devised
and implemented to improve the programmability of

PQE1 system, is a skeleton based coordination language
which allows to express task/data parallelism through
some predefined schemes (pipeline, farm, map, loop).
Once the program has been written through the available
parallel constructs, SkIE-CL is able to generate MPI code
to program the MIMD part of the machine, performing a
(near)-optimal mapping of tasks on the MIMD part of the
system, by using some analytical model of the constructs;
furthermore SkIE-CL allows to control the SIMD systems
by means of the communication library described above.

Previous tools (the DVSM and the SkIE-CL) were
jointly developed by QSW and the Information Science
Department of University of Pisa.

Two interesting applications using PQE1 prototype
features, i.e. overlapping computations between the SIMÖ
and the MIMD parts of the system can be found in [21]
and [16]. The first refers to the implementation of Basic
Linear Algebra Subroutines-3 on the SIMD part of the
system. The MIMD connections are used to perform a
block-based partitioned matrix-matrix product, being the
sub-blocks products distributed among several SIMD
machines. The second work is related to the
implementation of a high resolution meteorological
limited area model coupled with an ocean model for the
prediction of the state of the Mediterranean Sea and of
high water events in the Venice Lagoon. The code was
parallelized by allotting the computation of the most time
consuming models (the High Resolution and the Very
High Resolution Limited Area Models) to the SIMD part
and the resolution of the less intensive computing spectral
wave model (WAM) to the MIMD nodes. To these nodes
is also demanded the computation of the two dimensional
model (POM) for the prevision of the Adriatic Sea
circulation and, ultimately, the finite elements shallow
water model of the Venice Lagoon.

In the following two paragraphs we give some details
on the implementations and the results achieved when
using the PQE1 system to perform n-body gravitational
computations and electromagnetic simulations.

5.4 n-body computations

The PQE1 architecture has been recently used for
performing n-body (0(N2) calculations to study the
dynamic behavior of a galactic globular cluster hosting a
massive object (black hole) in its center [40]. Calculations
have been carried out by exploiting a double level of
parallelism which can be attained with the machine: the
first, related to the SIMD parallelization of the 0(N2)
loop, was obtained by partitioning the stellar positions
among the different nodes and by allotting the force
calculations on the given partition to the single SIMD
node. The hypersystolic loop ([36],[37)] has been
successfully used to reduce communication times within
the force loop calculation. The second level of parallelism
has been exploited by using the MIMD resources to

25

evaluate the black hole-stars interactions (O(N) loop)
during the time spent by the SIMD part to evaluate the
interstellar interactions. The concurrent use of both the
MIMD and the SIMD parts allowed to perform the
integration of one reference time (crossing time) of a
system of N= 128000 stars in a CPU time of the order of
t=72500 sec (with the SIMD part constituted by a
platform with 512 nodes).

5.5 Electromagnetic simulation

We investigated the simulation of dynamic evolution
of electromagnetic fields through the integration of
Maxwell equations by means of the Finite Difference in
the Time Domain (FDTD) scheme. A domain with
(n x n x n) cells was considered. Simulating one period of
the input signal requires Ns time steps. At the end of each
period of the simulation (i.e. at simulation time n+Ns,
n=0,1,...) in each cell the value

Emax(i,j,k)= max (E"^)
t=l,...,Ns 'J'

is computed. These maximal values are then
sub-sampled with step s and communicated to the host to
be post-processed (for example reordered, normalized and
stored). In order to simulate an EM phenomenon with
frequency f=1.9 GHz on a domain with (n x n x n) cells,
we have chosen spatial discretization A=1.5 cm and
temporal discretization At=2.88xl0" [sec] to avoid
numerical and modal dispersion, so Ns=19. The number of
computations executed in one period is

Nflops = Nsx36xn3=684n3 (17)

Setting the sub-sampling step s-5 (i.e. two samples for
wavelength are saved), at the end of each period the
number of bytes to be sent is given by

:fü?=-Ln3(18)
[s; 125

(2), task granularity is given by
.3

Nbytes= 4x

According to

gt =
684n-

125

: 21675 (19)

From (6), (14) and (19), assuming an efficiency in the
implementation r|=0.2, we obtain the granularity value
for the EM simulation executed on the 512 processor
APE100 system

G(APE-#512) =
7] gt 0.2x21675

gr 1280
= 3.4

and, from (6), (15) and (19) the granularity value for the
execution on the 128 processor APE 100 system

G(APE-#128) =
7/ gt 0.2x21675

gr 320
= 13.5

Resulting G>1 in both previous cases, the simulation
of one period of the EM phenomenon and the
communication of sub-sampled results does not originate
an I/O bound problem.

The second level of parallelism can be exploited within
the single FDTD task. In this case we have a lot of
parallelism available (parallelism degree is 128 or 512)
and we can deal with small granularity tasks. For
example, going inside the structure of the parallel FDTD
simulation (described in [20]), 36(nc)

3 is the number of
floating point operations executed in one time step within
a processor where (nc x nc x nc) cells have been allocated
and 2x6x4(nc)

2 is the number of bytes to communicate at
each time step (3 faces with two of the Ex, Ey, Ez

components (depending on the face) and 3 faces with two
of the Hx, Hy, Hz, components must be communicated); in
such a case task granularity is given by

gt
48(nc)

2
(20)

3 1 [80]
— nr > 4=>nc >
4 c 0.2 3

In order to avoid an I/O bound problem, being in the
case in which the overlapping between communications

and computations is allowed, gt >— gm must result

(eq(13)); from(13), (16) and (20) we derive the condition

27 which gives the linear

dimensions of the sub-domain in which the global
simulation domain is partitioned.

Performances achieved in EM simulations were close
to the value r|=0.1, which corresponds to sustained
performances of 2.5 Gflops when using the PQE1 system
with one 512 node SIMD machine. This quite low figure
is due to the Absorbing Boundary Conditions (ABC), not
discussed above, which present a very low degree of
small granularity parallelism, thus diminishing the global
performances of the system.

6. Next generation of the PQE1 hybrid
prototype

The very interesting results obtained with the hybrid
PQE1 prototype confirmed the validity of the approach of
coupling specialized massively parallel systems to general
purpose parallel machines. The PQE1 prototype,
presented in this work, is based on HW of a previous
technological generation: we are thus planning to design a
new system with up-to-date components. A next system is
planned and will be based on several images of the new
APEmille SIMD parallel machine. The MIMD part will
be constituted, according with recent trends in parallel
computing with large granularity systems, by a Linux
cluster connected through a proprietary fast

26

interconnection network. Furthermore, the new prototype
will allow the insertion of ad hoc designed specialized
systems, based on programmable HW (e.g. FPGA).

One of the main novelty of the next generation
prototype, along with its technological improvements
which put it in the very high-end section of today
supercomputers, relies on the possibility to apply and test
methodologies derived from the HW/SW co-design field.
In fact, the capability to implement on programmable HW
some specific classes of algorithms will allow, at compile
time, on the basis of some cost criteria, the choice
between SW or HW implementation of some nodes in the
CDFG specifying the application behavior.

6.1 The APEmille system

APEmille, being the evolution of the
Quadrics/APEIOO system, is a SIMD machine. The first
prototypes have been built in 1999. Similarly to APE100,
APEmille has a 3D toroidal topology and uses custom
VLIW processors. Each processor, working at a clock
frequency of 66 MHz, at every clock cycle is able to
terminate a 'normal operation' AxB+C on complex
numbers. As executing 8 floating point operations per
cycle, the peak performance of an APEmille processor is
equal to 528 Mflops.

Each node has an internal register file with 512
locations at 32 bits and is equipped with 32 Mbytes of
Synchronous DRAM which can be accessed with a
bandwidth of 528 Mbyte/sec, thus resulting in a node
granularity, at the processor level, gm=l.

Each node can access memory of its neighbors in the 3
spatial directions with a bandwidth of 66Mbyte/sec, so the
granularity of APEmille machine with p processors, at the

u.i,- P-528X106

sub-system level, is gm = — = 8
/>-66xl06

The I/O is based on the use of one PCI channel for
each cluster of 32 computing nodes, thus resulting in a
granularity, at the system level,

32-528x10° ,„„ , .
gm = — = 170, being 100 MByte/sec the

lOOxlO6

actual bandwidth measured on the PCI channel.
The largest configuration of the APEmille is

constituted by 2048 nodes, yielding a peak speed
exceeding 1 Tflops.

Other than the improvements in processor and memory
access speeds, APEmille differs from APE 100 because
double precision and integer operations are provided in
the computing nodes.

6.2 The MIMD system

Following the evolution of high-end commodity
processors, as computing core the ALPHA EV6.7 has

been chosen because of its high computational
performances (1.3 Gflops).

The MIMD system will be based on 16 nodes, each
equipped with 1 Gbyte of DRAM. The nodes are
constituted by two EV6.7 processors connected in SMP
configuration. Internal memory bandwidth is 2.6
Gbyte/sec, so the granularity at the node level, is

_2-1.3xl09 ,
Sm — o — 1 •

2.6xl09

Interconnection network uses the QsNet, based on the
Elan III network adapter and the Elite III switch. QsNet
[31] has a fat-tree topology, as shown in figure 5 for a 128
node system, and offers a remote access latency of 2.5
(isec and a bandwidth of 210 Mbyte/sec. For a system
with p nodes, granularity at the interval level is

g
P-2.6XW _

P-210X106
= 12.4. Granularity at the system

level has the same value, because both interprocessor
communications and I/O operations are limited by the PCI
speed.

#»:. gm. j{§ m. m m m if*
/m ft\\ //u /lu /n\ fiv» /}\s /m

i* ifcri
Figure 5: fat-tree topology (128 nodes)

An interesting comparison enlightening the better
performances of QsNet with respect to the Gigabit
Ethernet and Myrinet networks are reported in [41], where
the MPI measured latency and bandwidth are given. In
Table 1 we summarize such values.

Table 1: Network Comparisons
Network Latency ((is) Bandwidth

(MB/s)
Fast Ethernet 50 12.5

Gigabit Ethernet 15 125
Myrinet 20 62
QsNet 5 200

6.3 Specialized system design

In order to design specialized HW systems, we have
developed a High Level Synthesis (HLS) methodology
which, starting from a high level description of an affine
iterative algorithm, allows its automatic hardware
synthesis; theoretical basis of this approach can be found
in [38],[39]. The HLS methodology is based on a sequence
of steps which transform the high level description into

27

several lower level representations, until reaching the
hardware implementation (described through a Hardware
Description Language). Each transformation step is
correct-by-construction, i.e. it preserve application
semantics allowing the automatic implementation of the
HLS methodology. In order to ensure the generation of
correct-by-construction transformation steps, the
algorithm high level description is given through a
mathematical model of computation. In such a way each
transformation step is mathematically proved to be
correct.

The chosen model of computation is the System of
Affine Recurrence Equations (SARE) ([32] [33] [34])
which is one of the most promising model of computation
in such fields arising in signal and image processing,
linear algebra, scientific computing. SARE computational
model allows the specification of an algorithm by means
of recurrence equations.

7. Conclusions

In this work a brief review of the supercomputer
scenario has been presented, discussing advantages of
custom vs commodity system implementation.

Some theoretical aspects involved in heterogeneous
system design and management have been introduced.
Particular emphasis has been devoted to definition and
discussions of task and system granularity. After
underlying impact of a correct matching between
task/system granularity, they were presented some results
obtained in a scientific project aimed to exploit the
advantages connected both to heterogeneity and to the use
of custom parallel architectures. The outcome of this
project was the PQE1 hybrid parallel system. After a brief
description of its HW and SW environment, some
examples of its use in several application domains have
been reported (simulation of the sea level in the Venice
lagoon, of the dynamic of galactic globular cluster, of
electromagnetic field evolution).

Finally, on the basis of the experience gained while
developing this project, the HW/SW architecture of a next
hybrid parallel prototype has been shortly presented.

Acknowledgments

The authors acknowledge the fundamental role
played by the Italian Project PQE2000 (which groups
INFN, ENEA, CNR and QSW) for having triggered the
idea of the PQE1 platform and for the collaboration
during the course of the project. It should be emphasized
the preminent role of M. Vanneschi, F. Baiardi, D. Guerri,
M. Danelutto and S. Pelagatti (University of Pisa) in the
realization of most of the SW structures (DVSM, SklE-
CL) which are supported by the PQE1 architecture and
constitute its relevant assets. The role played by the QSW
staff (R. Marega, B. Bacci, R. Castino, L. Di Iulio, S.

Pratesi, D. Rowet, A. Scippa, R. Simonazzi) in the
platform realization is also acknowledged. The authors
are also indebted to the staff of ENEA Funzione Centrale
Informatica (INFO) for its constant technical support
throughout the course of the project.

8. References

[1] ALPHA 21264 Microprocessor Hardware Reference
Manual
[2] Accelerated Strategic Computing Initiative - ASCI -
URL: http://www.sandia.gov/ASCI/
[3] Mathis, A.: Technologies for Teracomputing: a European
Option. Para98 -Workshop On Applied Parallel Computing
In Large Scale Scientific and Industrial Problems - Umea,
Sweden June, 14-16,1998
[4] The GRAPE project. URL: http://grape.au-
tokyo.ac.jp/grape/
[5] Makino, J„ Taiji, M.: Astrophysical N-body simulation on
GRAPE-4 special purpose computer. Proceedings of
Supercomputing 1995
[6] Makino, J.: Stellar dynamics on 200 Tflops special purpose
computers. Proceedings of the International Symposium on
Supercomputing (1997)
[7] APE: The Italian SIMD supercomputer in the teraflop
range. URL http://chimera.romal.infn.it/ape.html
[8] Battista, C. et al.: The APE100 Computer: (I) the
Architecture. Int. Journal of High Speed Computing n. 5 -1993
[9] Bartoloni, A. et al.: The new wave of the APE Project:
APEmille. Nucl. Phys. B, n. 42 - 1995
[10] Tripiccione, R. APEmille. Parallel Computing, vol. 25, n.
10-11, Oct. 1999, Special Issue: High performance computing in
lattice QCD.
[11] PQE1 prototype description - URL:
http://www.pqe2000.enea.it/home/pqel/PQEl_a.html
[12] Vanneschi, M.: The PQE2000 Project on General Purpose
Massively Parallel Systems". Alta Frequenza, IEEE. November
1996.
[13] Vanneschi, M.: PQE2000:HPC tools for industrial
applications IEEE Concurrency, Vol 6, n.4, Oct-dec. 1998
[14]Pucello, N., Rosati, M., Celino, M., D'Agostino, G.,
Pisacane, R, Rosato,V.: Search of molecular ground state via
genetic algorithm; implementation on a hybrid SIMD-MIMD
platform, Lecture Notes in Computer Science; A.Bode,
J.Dongarra, T.Ludwig, V.Sunderam Eds. (Springer) 1996
[15] Pucello, N., Celino, M., Rosato,V.: SuperComputing
Application to Materials Science Engineering Proc. SIMAI 98
Conference, Giardini Naxos; Messina, Italy (1-5 June 1998)
[16] Nicastro, S., Valentinotti, F.: An Atmosphere-Ocean
Forecast System on a Hybrid Architecture. Proceedings of the
Euromicro International Workshop on Parallel and Distributed
Computing PDP 99. Madeira (Spain), 1999.
[17] Valentinotti, F., Taraglio, S.: Phase Difference Stereo
Disparity Computation on a SIMD Parallel Machine. Lecture
Notes in Computer Science N.1225. Proceedings of High
Performance Computing and Networking - Europe, HPCN'97,
Vienna, Austria, April 1997.
[18] Palazzari, P., Coli, M., Lulli, G: Massively parallel
processing approach to fractal image compression with near-
optimal coefficient quantization. Journal of Systems
Architecture vol 45, n. 10, April 1999 pp. 765-779

28

[19] Palazzari, P., D'Atanasio, P., Ragusini, F.: Simulation of
Patch Array Antennas by Parallel Finite-Difference Time-
Domain Algorithm. Proceedings of the High Performance
Computing and Networking - Europe (HPCN Europe 98), April
21st-23rd, 1998, Amsterdam (Nederland).
[20] Palazzari, P., Adda, S., DAtanasio, P.: A Tool for the
Simulation of Electromagnetic Field Dynamic in Complex
Environments through Massively Parallel Systems. 13th
European Simulation Multiconference (ESM'99), Warsaw,
Poland, June 1-4,1999
[21] Coletta, M, Lippert, T., Palazzari, P.: Hyper-Systolic
Implementation of BLAS-3 Routines in the APEIOO/Quadrics
Machine. Para98 -Workshop On Applied Parallel Computing In
Large Scale Scientific and Industrial Problems - Umea, Sweden
June, 14-16,1998
[22] Taraglio, S., Massaioli, F.: An efficient implementation of a
Backpropagation learning algorithm on a Quadrics parallel
supercomputer", Proceedings of the High Performance
Computing and Networking - Europe (HPCN-Europe 1995),
April 1995.
[23] Gerasoulis,A., Yang.T.: On the granularity and clustering of
directed acyclic task graphs. IEEE Transactions on Parallel and
Distributed Systems, vol. 4, N. 6, Jun. 1993.
[24] Meiko Web Page:
www.meiko.com/info/TechnicalDescription/TechnicalDescripti
on.html
[25] Baiardi,F., Bernasconi.C, Guerri,D., RicciJL., Vaglini,L.:
Implementing concurrent paradigms through virtual shared
areas. Technical report from Informatics Department, University
of Pisa, November 1998.
[26] Bacci,B., Cantalupo,B., Danelutto,M., Orlando.S.,
Pasetto,D., Pelagatti,S., Vanneschi,M. : An environment for
structured parallel programming. In Advances in High
Performance Computing, NATO ASI series e, Vol. 30,1997.
[27] Siegel, H. J., Maheswaran, M., Watson, D.W., Antonio,
J.K., Atallah, M.J.: Mixed Mode System Heterogeneous
Computing. Chapter 2 in the book 'Heterogeneous Computing',
Ed. Eshigian,M.M., Arctech House, Norwood, MA, 1996.
[28] Stone, H.S.: Multiprocessors. In High-Performance
Computer Architecture, First Edition, Addison Wesley, 1987.
[29] Bacci,B., Danelutto.M., Pelagatti.S., Vanneschi.M.: SklE:
A heterogeneous environment for HPC applications. Parallel
Computing, Vol. 25, n.13-14, Dec. 1999.
[30] Silbershatz, A., Galvin, P.B.: Virtual Memory. Chapter in
Operating System Concepts, Addison Wesley, 1994
[31] www.quadrics.com/web/public/fliers/qsnet.html
[32] Mongenet C: Data Compiling for System of Affine
Recurrence Equations. IEEE International Conference on
Application - Specific Array Processors, ASAP, Aug. 1994.
[33] Mongenet C, Clauss P., Perrin G.R.: Geometrical Tools to
Map System of Affine Recurrence Equations on Regular Arrays.
Acta Informatica, Vol. 31, No. 2,1994.
[34]Loechner V., Mongenet C: Solutions to the
Communication Minimization Problem for Affine Recurrence
Equations. Proceedings of the EUROPAR '97, Passau,
Germany, Vol. LNCS 1300, August 1997.
[35] Sarkar, V. : Partitioning and scheduling parallel programs
for multiprocessors. The MIT Press, 1989
[36] Lippert, T., Seyfried, A., Bode, A., Schilling, K.: Hyper-
Systolic Parallel Computing. IEEE Trans, on Parallel and
Distributed Systems, n. 1,1998.

[37] Lippert, T., Glaessner, U. , Hoeber, H., Schilling, K. and
Seyfried, A.: Hyper-Systolic Processing on APEIOO/Quadrics,
in n2-loop computations'. Int. Jour. Mod. Phys. C, 7, 1996.
[38] Marongiu, A., Palazzari, P.: A new memory-saving
technique to map System of Affine Recurrence Equations
(SARE) onto Distributed Memory Parallel Systems.
International Parallel Processing Symposium IPPS99, April 12-
16,1999, San Juan, Puerto Rico.
[39] Marongiu, A., Palazzari, P.: Automatic Mapping of System
of N-dimensional Affine Recurrence Equations (SARE) onto
Distributed Memory Parallel Systems. Accepted to appear in the
special issue of IEEE Trans, on Software Engineering on
Architecture-Independent Languages and Software Tools for
Parallel Processing
[40] Saraceni, F., Coletta, M., Pucello, N., Rosato, V.,
Capuzzo-dolcetta.R.: On the use of a hybrid MIMD-SIMD
platform to simulate the dynamics of globular clusters with an
internal massive object. In preparation.
[41] Allan, R.J., Guest, M.E.: Distributed Computing
Programme.HPC Profile - The national publication for High -
Performance computing applications and techniques, 24, ppl2-
15, Dec. 1999

Paolo Palazzari, graduated in Electronic Engineering W,
Ph.D. 94. From W to 95 he was scientific assistant at the
Electronic Engineering Department of University La
Sapienza' in Rome. From 96 he is staff scientist at the
Italian National Agency for New Technologies, Energy
and the Environment (ENEA) where works on the High
Performance Computing and Networking project. Main
fields of his research are automatic parallelism detection
for High Level HW/SW synthesis, routing, allocation and
scheduling of parallel programs, image processing, neural
networks and non linear optimization techniques.

Lidia Arcipiani graduated in Mathematics and received a
post-graduate "diploma" in Statistical Methodology. After
ten years at the Electronic Division of the Italian
Company Olivetti, she moved at the Italian Commission
for Nuclear Energy (CNEN, now ENEA) as director of
Casaccia Computing Centre. She has been acting as
coordinator of computing, information and networking
programs for the Department of Energy. At present she is
staff scientist and R&D expert on the High Performance
Computing and Networking Project of ENEA. She has
been member of the National Committee for the
Mathematical Science of the Consiglio Nazionale delle
Ricerche (CNR) and vice-president of the National
Committee for the Information Technologies of the CNR.
She was professor of Computer Science at Catania
University.

Massimo Celino, graduated in Physics at the University
"La Sapienza" of Rome (1992), has been working as
Research Associate at the Department of Physics in the
field of Statistical Physics. From 1994 he is working at
the Italian National Agency for New Technologies,
Energy and the Environment (ENEA). His work is mainly

29

focused on Computational Physics for applications in
Materials Science and Quantum Chemistry. Other
interests are in the field of computer programming and
parallel algorithms for high performance computing
platforms.

Roberto Guadagni, graduated in Electronic Engineering
at University "La Sapienza" of Rome in 1983. He is
working at the Italian National Agency for New
Technologies, Energy and the Environment (ENEA) from
1986. Now he is responsible of the supercomputing
facilities in the Casaccia Research Center.

Alessandro Marongiu, graduated in Electronic
Engineering '95, Ph.D. 2000. Main fields of his research
are automatic parallelism detection for High Level
HW/SW synthesis, allocation and scheduling of parallel
programs, cellular neural network design.

Agostino Mathis is Director of the Interdepartmental
Project "High Performance Computing and Networking"
(HPCN) at the Italian National Agency for New
Technology, Energy and the Environment (ENEA). He
graduated in Electrical Engineering, and received a post-
graduate "diploma" in Nuclear Engineering, at the Turin
Polytechnic School of Engineering. He holds the "Libera
Docenza" in Control Engineering at the Rome "La
Sapienza" University. He is Professor of High
Performance Computing at the Rome "Tor Vergata"
University. He has published numerous papers on
mathematical modeling of industrial processes, techniques
for computer simulation, information systems for
organizational management and high performance
computing.

Paolo Novelli graduated in Physics at the University of
Rome (Italy) in 1969. From 1971 to 1975, he was an
assistant professor of electronics at the Physics
Department of the same University. At the Italian
National Agency for New Technologies, Energy and the
Environment (ENEA) since the beginning of his
professional activity, he was involved in the following
fields: design of electronic devices for nuclear plants and
analog computers, development of numerical models of
uranium enrichment cascades, computational gas-
dynamics of ultracentrifuges. From 1982, he was involved
in the corporate planning activities, and in 1987 he
became the Head of the Organizational Development unit.
In 1994, he came back to his past research interests and
joined the High Performance Computing and Networking
unit (HPCN).

Vittorio Rosato, graduated in Physics at the University of
Pisa (1979), received the Ph.D. at the University of Nancy
(F) on 1986. He has been working as Research Associate
at the University College of Wales in Aberystwyth (UK),
at the Centre d'Etudes Nucleaires de Saclay (F), at the
CECAM (Centre Europeen de Calcul Atomique et
Moleculaire) in Orsay (F). From 1990 he is a Staff
Scientist at the Italian National Agency for New
Technologies, Energy and the Environment (ENEA). His
research field is Computational Materials Science; in this
area, he has been working on the development of
interatomic potentials for metals and intermetallics and in
their use to study thermodynamic and structural properties
of complex materials. He is now active in the field of
atomic-scale simulations of new C-based and Si-based
materials. He is involved in design and realization of new
tools (HW and SW) for HPC for scientific applications.

30

The NRW-M etacomputer
Building Blocks for A Worldwide Computational Grid *

Claus Bitten
Regional Computing Centre, University Cologne, 50923 Cologne, Germany

Jörn Gehring
Paderborn Center for Parallel Computing, University Paderborn, 33095 Paderborn, Germany

Uwe Schwiegeishohn
Ramin Yahyapour

Computer Engineering Institute, University Dortmund, 44221 Dortmund, Germany

Abstract

In this paper, we present the results of the NRW-
Metacomputing task force, which has been working on the
development of a country-wide metacomputer since 1996.
The resulting installation is among the very few that are al-
ready operational, have full support for heterogeneous re-
sources, contain a decent security model, and feature an
advanced scheduling sub-systemfor the metacomputing en-
vironment. The NRW-M etacomputer has been implemented
using a modular software architecture. Hence, concepts
and components of it can be re-used by others without the
need of having to obtain the metacomputing-software as a
whole. Furthermore, the NRW-Metacomputer already pro-
vides well defined interfaces for linking the system with
other metacomputing environments to form a truly global
computational grid. Distinctive features of this system are
its highly scalable and fault tolerant software architecture,
its advanced resource planning mechanisms as well as an
integration into a DCE/DFS environment.

1 Metacomputing and the Computational
Power Grid

The term metacomputer was initially coined by Larry
Smarr around 1987 [13]. According to his definition, a
metacomputer is a network of globally distributed machines
that are linked together by a complex software system
which enables them to act like a single very large supercom-
puter. The advantages of the concepts are obvious. First of
all, a metacomputer can theoretically provide more comput-

ing power than any existing single machine. Furthermore,
it offers its users free choice, which machine(s) to use for a
specific job and it helps the participating computing centers
to distribute the load more evenly.

Building a metacomputer however is a complex and
difficult task. Since the concept was invented, many re-
searchers have been working on the subject and nowadays
there are several software systems, which all cover different
aspects of Smarr's and Catlett's vision. Among them are
advanced cluster management systems like CODINE [8],
LSF [15], or CONDOR [5], which focus mainly on con-
necting Unix workstations. Furthermore, there are a cou-
ple of projects which take a more general approach and
work on the integration of fully heterogeneous resources
like e.g. supercomputers or remote data sources (e.g. satel-
lites, weather radar, unique scientific instruments). The
NRW-Metacomputer initiative, which is presented in this
paper, is one of these projects. Other are e.g. GLOBUS
[6], LEGION [10], orMSHN [11].

Over the time it became clear that a global metacom-
puter which meets the definition of Smarr and Catlett and
is as easy to use as a single workstation, is unlikely to be
established by any single research group. The large vari-
ety of problems that have to be solved (resource manage-
ment, administration, accounting, security, scheduling, etc.)
requires close cooperation between researchers from many
different fields. This is why in the recent past a couple of
open forums have been established, which focus on the in-
stallation of large computational power grids* by putting to-
gether the pieces that have been invented during seven years
of metacomputing research all over the world [1,2].

In the following, we present the outcomes of the NRW-

* Supported by a grant from the NRW Metacomputing project
'a synonym

tionwide power grid
for metacomputer which emphasizes the analogy to a na-
grid

0-7695-0556-2/00 $10.00 © 2000 IEEE
31

Metacomputing task force [3], which has been working
on the development of a country-wide metacomputer since
1996. The resulting installation is among the very few that
are already operational, have full support for heterogeneous
resources, contain a decent security model, and features
an advanced scheduling sub-system for the metacomput-
ing environment. The NRW-Metacomputer has been im-
plemented using a modular software architecture. Hence,
both concepts or components of it can be re-used by others
without the need of having to obtain the metacomputing-
software as a whole. Furthermore, the NRW-Metacomputer
already provides well denned interfaces for linking the sys-
tem with other metacomputing environments to form a truly
global computational grid.

2 Architecture of the NRW-Metacomputer

The backbone of the NRW-Metacomputer was built dur-
ing the HPCM (high performance computer management)
project, which provides basic infrastructure for metacom-
puting management. It features a multi-tier architecture
in which a server layer receives user requests from access
modules (see Sec. 5) and forwards them to the attached re-
sources like for example supercomputers (Fig. 1). These re-
sources are encapsulated by so called coupling modules that
implement an abstract service layer on top of the heteroge-
neous hardware pool. Besides abstracting the available in-
formation and access methods from the management, the
coupling modules interact with the locally installed man-
agement system of the HPC component. Although the cou-
pling modules have to be adapted to every new kind of hard-
ware, each implementation is based on a generic frame that
already covers a significant amount of the required func-
tionality. So far, there exist implementations of coupling
modules for UNIX, CODINE [8], NQE [4], CCS [12] and
LoadLeveler. Additional modules, as e.g. for LSF, can eas-
ily be derived from the existing implementations.

One of the major goals of the initiative was to develop
a metacomputer that maintains maximum autonomy for the
participating service centers. Hence, each institute is free to
tailor the behavior of its coupling modules to comply with
the local policies. For example, if a certain service shall
be made available to the metacomputer only when the local
machines are lightly loaded or the remote user is willing to
pay an extra fee, the behavior of the coupling module can
be adjusted accordingly.

It is furthermore possible to attach completely different
types of services to the metacomputer by using the same
abstract service interface that defines the behavior of the
coupling modules. For example, the scheduling services
described in Sec. 3 integrate itself into the metacomputer
through this interface. A similar approach could be used to
establish a link between the NRW-Metacomputer and e.g.

a metacomputing system in another country or even on a
different continent.

Communication links between the different components
of the metacomputer are established by the so called com-
munication layer. This is a separate module that provides
secured communication services for both Java- and C++/C-
based components. Currently the communication layer uses
TCP sockets for message passing and the GSS API [9] for
security. However, these can be easily exchanged or even
mixed with other paradigms, if necessary.

Another important issue for any metacomputer installa-
tion that needs to be brought to practical use is administra-
tion and authentication of its users. Typically, service cen-
ters already have set high standards for the management of
their local users and are not willing to compromise this by
installing the metacomputer software. Hence, we decided
to rely on the services provided by the Distributed Comput-
ing Environment (DCE) [7], since this is a vendor supported
product and already accepted and used by many computing
centers (see Sec. 4).

Much effort has been spent on designing the NRW-
Metacomputer as a highly reliable and fault tolerant system.
Its architecture does not contain any single point of failure.
This could be achieved by having the distributed environ-
ment being managed by the coordinated effort of the man-
agement daemons. These daemons are all alike and none of
them performs any specific tasks that are not directly related
to the corresponding computing center. Hence, a failure at
one node can at most render that center unavailable where
the problem occurred. As long as there is one management
daemon alive, the NRW-Metacomputer remains available.

It should be noted that all management daemons actively
contribute to the operation of the whole system. There
are no shadow daemons that monitor the system operations
silently until a component fails and take the place of that
component. As a consequence, the principle of coopera-
tive management not only increases fault tolerance but also
helps improving the overall system performance. Clearly,
this system architecture required some extra effort in speci-
fying transaction protocols and during the implementation.
The key concept here was to employ the technique of virtual
shared memory for the metacomputer (Fig. 2).

All information that refers to the global state of the meta-
computer (such as the lists of active jobs or available re-
sources) are stored in so called shared objects. These are
object oriented encapsulations of virtual shared memory
segments. Whenever the content of a shared object changes,
these modifications are transparently propagated to all other
remote instances of the same object. Internal methods of
the shared object class ensure that the data is kept in a con-
sistent state, even if parts of the metacomputer should fail
while remote instances of shared objects were updated.

The use of shared objects enables each management

32

DCE-Metacomputer-Cell

ÖFS

L-^«3v&ääUdIa2&'

stdin, sldout, stderr

Compute-Server | socket stdin, stdout, stdeW HPCM Server Machine

Figure 1. Layout of the management infrastructure

daemon to accept incoming requests and co-ordinate their
fulfillment by underlying metacomputing services. If one
management daemon should fail, the remaining ones take
over its tasks. It only becomes visible to the users that the
state of their jobs is reverted to the last completed transac-
tion. In most cases, this equals the current state of a job.

3 Integrated Metacomputer-Scheduling

Job scheduling and resource allocation are one of the
core problems in the metacomputing architecture. The own-
ers of HPC installations are only willing to include their
resources into a metacomputer if the performance of their
components will not degrade. Similarly, users expect a bet-
ter performance for their jobs. Note that the expression per-
formance has not been defined as different people may at-
tach a different meaning to it. Therefore, the scheduler must
provide a high efficiency for the metacomputer while also
taking additional requirements into account.

3.1 Scheduling Considerations

The paradigms for scheduling on a metacomputer dif-
fers significantly from job scheduling on a parallel com-
puter. Therefore, we give in the following some properties

of meta-scheduling that must be considered for building a
computational power grid:

Variable Scheduling Objectives: In common job
scheduling there usually exists a single scheduling objective
or performance metric that is fixed for a parallel computer
and all its jobs. For example, this can be the minimization
of the average response or turnaround time [?]. The objec-
tive is typically determined by the local management system
or by the administrator. In metacomputing this objective is
variable. As we assume a distributed system that is not con-
trolled by a single instance, the objective should further be
adaptable for each resource in the metasystem. While the
schedule target for some machines may for instance be the
maximization of the throughput, others have the objective
to minimize the response time. Besides the objectives for
the resources, we must also take the needs of the user into
account. Some user may favor the availability of specific
resource properties like the size of the main memory while
other may have additional constraints about the execution of
a job. A typical example would be a deadline for a job that
must be met while it is of no particular interest if the job is
completed as fast as possible. For this user the minimiza-
tion of the response time would not reflect her demands. In
metacomputing it is necessary that user objectives are con-
sidered. For instance, the user may only be interested in
resources that fit her needs better than any local resources.

33

Figure 2. The NRW-Metacomputer uses virtual shared memory for its distributed management

Therefore, the scheduling must be adaptable to generate the
most appropriate result.

Independent Schedulers: Usually a scheduler in meta-
computing cannot demand exclusive control over all re-
sources. For scheduling in metasystems, we have to cope
with the situation that jobs may not only be submitted via
the metacomputing interface. Hence, any limitations of the
local management must also be considered. For instance,
one problem is the list scheduling of most management sys-
tems which do not provide any information about the ex-
pected completion time of a job. Unfortunately, availability
of this kind of information is important in distributed meta-
systems to allow future allocation planning. Of course, if
the local management provides additional information, the
metacomputing scheduler should be able to utilize it. In this
case the metacomputing management does not perform any
local scheduling but relies on the existing system scheduler.
The resulting schedule efficiency highly depends on the fea-
tures of the lower-level scheduler. If a resource does not
provide the requested features like a guaranteed completion
time, it cannot be considered suitable for some job requests.
This limits the usability of this resource for the metasys-
tem. Nevertheless, the metacomputing scheduling should
support all kind of local management systems.

Arbitrary Resource Requests: As job requirements
and resources in a metasystem may vary according to type
and application, there is a need for the description of com-
plex requests. For instance, assume two different users:
The first user does not provide a very detailed request as
she wants to get as many computing resources as possible.
More restrictive requirements would only reduce the possi-
ble resource set for her job. The other user is looking for
very specific resources. He may have access to an alterna-

tive set of local resources for the execution of his job and
is therefore only looking for a better resource allocation.
Consequently, he formulates special requirements and pref-
erences. The meta-scheduler must support both approaches.
The individual user should be able to influence the resource
selection and the scheduling so that she gets the best suited
set of resources. The attributes of a resource and therefore
the available fields in a request should not be considered
invariant. Different resources may have different attributes
and features that may not be known to the scheduler at the
time of implementation. But the system should still be able
to handle them.

Resource Reservation: This feature is necessary for
some applications as well as for the consideration of re-
source maintenance. For instance, demonstrations may re-
quire the reservation of a resource allocation for a dedicated
time span. It is also advantageous for the schedule to con-
sider system downtime or restricted usage that is known in
advance. Reservations are further needed for multi-site ap-
plications. As there is no global scheduler instance, it must
be possible for the local scheduler to reserve resources for
a specific time span in order to guarantee the concurrent
availability of resources at different locations.

Job Execution Guarantees: In metacomputing it would
be inefficient to schedule jobs on an ad-hoc strategy as it
is difficult to respect several objectives by not assuming a
central scheduler. For example, if a job does not need to be
executed as soon as possible, this flexibility can be used to
improve the schedule. Assume again the mentioned case of
a job with an execution deadline. Typically, the user needs
immediate feedback whether his requirements can be met.
It is therefore necessary for the user to receive in advance
guarantees about the schedule of his job so that he can react

34

Site-Boundary

MetaDomain

MM work as broker/trader
^ for the local resources

i AMQWCt j i ftoem» i : RMOUTCB l

Figure 3. Logical Scheduling Infrastructure

accordingly. The scheduler need not always provide such
guarantees, but it should be capable of giving them if they
are required. Those guarantees are additional constraints in
the scheduling of a job.

3.2 Scheduling Architecture

To avoid the bottleneck of a central scheduler and to in-
crease flexibility a distributed approach is employed. To im-
plement a distributed metacomputing scheduler we use an
architecture which is based upon so called MetaDomains.
All MetaDomains of a metacomputer form a redundant net-
work. Typically, a MetaDomain is associated with local
HPC resources and is controlled by a MetaManager, that is
all HPC resources at one site are connected to a single Meta-
Domain. We use these autonomous scheduling domains to
manage the local resources and offer them to other domains.
This concept supports the idea of a computational power
grid, where several independent sites can join a larger net-
work and share jobs and computing power while not loos-
ing control over the local resources. The logical structure
of such a scheduler is described in Fig. 3. This network can
be dynamically extended or altered. The presented archi-
tecture guarantees a high degree of flexibility by allowing
different implementations.

The MetaDomains communicate among each other by
transmitting or requesting information about resources and
jobs. To this end a MetaManager inquires local schedulers
about system load and job status. A MetaManager can also

allocate local HPC resources to requests. The distributed
scheduling itself is based upon a brokerage and trading con-
cept which is executed between the MetaManagers.

In detail, a MetaDomain tries to

• satisfy local demand if possible,

• ask other MetaDomains for resources, if the local de-
mand cannot be satisfied,

• offer local HPC resources to other MetaDomains for
suitable remote jobs, and

• act as an intermediary for remote requests.

Once a suitable allocation of HPC resources (including
network resources) to a job has been found, the actual sub-
mission is independent of the scheduler. In our architecture
the scheduling objectives are not specified. As already men-
tioned there may not only be a single scheduling objective in
a metacomputer. Each HPC component can define its spe-
cific objectives. Similarly, each user may associate specific
constraints with his job like a deadline or a cost limit. It is
the task of the trading system to find matches between re-
quests and offers. This way not all users and all components
are forced to fit into a single framework as is usually done
in conventional scheduling. Now, it is their responsibility
to define their own objectives. The implementation of the
metacomputing scheduler only provides the framework for
such a definition and it must be able to compare any request
with any offer to find a match.

35

The selection of the best suited allocation is based on a
comparison of the provided objective functions. The objec-
tive function of a request is applied to an allocation in order
to generate a value for the utility from the user's point of
view. Similarly, the offers also provide an objective func-
tion or a value for its utility to represent the resource's point
of view. Now, the responsible MetaManager combines the
objectives and determines an allocation that maximizes the
overall objective with respect to its full schedule. It is also
possible to provide the user with a front-end that allows in-
teractive selection of allocations. Such a front-end can also
be used to obtain status information about the metasystem
with the help of the request mechanism. This information
may help a user to generate a request which results in the
best suited set of resources depending on the current condi-
tion in the metasystem.

Note that our method is not an auction system as we
do not provide a market where several jobs compete for a
resource. Instead our schedulers select allocations that fit
a request best at a particular time instance. However, the
selected allocation need not necessarily be executed. The
MetaManager maintains a schedule with all current alloca-
tions in its domain. Its scheduler is free to modify the cur-
rent schedule at any time. However, changes in the current
scheduling are only allowed as long as they do not violate
any guarantees that have been given for a job. Requested
guarantees are additional constraints that limit future re-
quests for rescheduling. This procedure is used to improve
the current schedule and to cope with resource failures or
cancellations of jobs. The rescheduling requires new re-
quests for offers if other allocations are not active anymore.
Note that a valid schedule exists at every moment. Also,
there is a tentative schedule for a job after each request and
a following allocation.

Any improvement of the schedule is measured by com-
bining all objective values. To this end, the scheduler at-
tempts to maximize the overall objective value of the sched-
ule. As an objective function is received for every request
and for every offer, there is a combined objective function
or value for each allocation. The objective functions of all
allocations together define the optimization problem. An
improvement can be achieved for instance by moving exist-
ing allocations while all constraints are observed. Alterna-
tively, the scheduler can look for new allocations. The meta-
scheduling concept further supports multi-site scheduling
and co-allocation. However, this requires the inclusion
of network management as just another high performance
computing resource to provide guaranteed communication
bandwidth between participating resources. In addition the
local resource managers must provide offers with sched-
ule guarantees which must be exactly met. Note that this
scheduling strategy does not guarantee an optimal schedule
in general, but it meets all requirements of Sec. 3.1 as sep-

arate objectives are allowed for each resource in the meta-
system.

In our metacomputer scheduling concept only the local
HPC scheduler is responsible for the load distribution on
the corresponding HPC resource. Therefore, it can also ac-
cept jobs from sources other than the metacomputer. The
metacomputer scheduler only addresses the load imbalance
between different HPC resources. However, to execute
multi site applications, the concurrent availability of dif-
ferent HPC resources and sufficient network bandwidth be-
tween them becomes necessary. For reasons of efficiency
this requires resource reservation for future time frames and
the concept of guaranteed availability. Although most HPC
schedulers do not presently support such an approach it can
be implemented by using preemption (a checkpoint-restart
facility) while still maintaining a high system load.

In the project SCHEDULE [14] of the initiative a meta-
computer scheduler was designed using CORBA to allow
transparent and language independent access to distributed
management instances. For the evaluation of different
scheduling methods a simulation framework has further
been implemented. It is used to compare different schedul-
ing algorithms regarding their applicability for a metacom-
puting network. The benefit of possible technology en-
hancements, like for example preemption, to the quality of
the schedule is also determined with the help of the simu-
lator. As already mentioned, communication between re-
sources during a multi site job execution must be taken into
account as well. To this end the available network must
be considered as a limited resource that is managed by the
schedulers in the MetaDomains. The inclusion of this ob-
jective into the scheduler is part of the future work.

4 Data Distribution, Security and Adminis-
tration

Like every metacomputing system that is brought to
practical use, the NRW-Metacomputer has to cope with a
variety of problems. Though it runs on a large number of
different hardware architectures, it must still provide a stan-
dard API for the HPC components and other related soft-
ware. Furthermore, it needs a secure mean of communica-
tion across the public and inherently insecure Internet. It
must also provide scalability for its servers and the neces-
sary means of authentication. And finally, it must not im-
pose additional overhead on its users and the administrators
of the attached HPC-nodes.

Hence, it was decided to use the standardized Distributed
Common Environment (DCE) as an existing and reliable
software solution. DCE/DFS is a middleware, created by
the OSF and available in license for commercial usage. Cur-
rently we are using the Versions 1.0 and 1.1 of DCE/DFS on
Solaris, AIX and NT. Versions for IRIX and UP-UX were

36

F(« Go OfHrcm lKl.fl«i H*rp

Upart« Job

r;^»?: \ ^
:!.■ :#yStSW3;.:

P«>s»ct:

PffOflty

CPU Tim«:

I".:, ..Ssfltf'

FttiHh*

t&3äin:: Output;

Said»! JcpÄ

Standart 6nct:

Sitndflwdte

R»sowe«s.

iloe-lcnpl "

KFA.CR»V.T>t5i:

£«t
iifei

W#rstfw« l»b

norm*

»res Qo
rwtiy Job

OMsry Oü*tt# *

Giufciv U»er

Qvety SvMfca» ■

Marina Ham ßn*

0*at* anö/or siÄflrt'

HOUR !,.., w .„

{11938*8/20 IMS

ji

|lit)t»,(ju!

jjflev/nuli

l^iocm.err

||v-ftubef^fr-jo«Hcfi tte

COM»»«»

Erta . y!^' |I \f; :

Submit!

^^^^PJ|^^^^ ijjlll
Mi

r

Figure 4. Screenshot of the Java User Interface

tested. This approach provides us with the possibility to
include any DCE/DFS-capable system into the metacom-
puter. There is also a project to create a free DCE/DFS port
for Linux, but in its early state and without the DFS it is not
usable for the NRW-Metacomputer.

An administrative domain built on DCE is called a cell.
DCE provides a namespace for every cell that allows easy
access to all its resources. Cells can be connected using
cross cell authentication to provide a secure way for sharing
resources and to minimize administrative overhead. Thus,
users can authenticate to any client within the DCE cell,
submit jobs or use the provided distributed file system DFS.

Since all computers within the metacomputer are part
of a DCE cell, the administrative overhead is minimized
and can be distributed throughout the metacomputer. This
is possible because DCE uses access control lists (ACL)
for administrative commands and functions, which allow
privileges to be selectively granted to either individuals or
groups. With these ACLs it is for example possible to create
administrative accounts for special tasks, such as creating
new users or incorporating new clients, without the need to
have full root access to the entire cell.

Communication within the DCE cell is secured by using

encrypted RPC calls. Because of the restrictions to export
encryption algorithms from the USA, the international ver-
sion of DCE/DFS does not have this security. Hence, we
decided to use GSS API for the HPC components to protect
communication across the public internet.

The use of DFS on top of the DCE environment offers
several advantages for the NRW-Metacomputer. All users
have a home directory, which they can access independently
from their physical location, the compute-servers can in-
stantly access the required input and output files, and in-
stalled software packages are available to the whole meta-
computer. DFS uses the DCE ACLs to offer a high level
of security and flexibility for file or data access. It is possi-
ble to create groups who have the same set of permissions,
which lowers the administrative workload. The actual files
within the DFS are stored in filesets, which can be com-
pared to Unix filesystems or DOS partitions. These filesets
provide key features for a distributed environment. Sev-
eral servers can host a specific fileset to provide scalability
and stability. The DFS-Server keeps these so called replicas
synchronized with the original fileset. This allows fast and
up to date access to HPC Software from all clients within
the NRW-Metacomputer. Filesets can be backed up during

37

Syittm administration

HTA_SPOTC
rejrc.rcomwi
pifccfViAMESco

fill So Qpttom - untie* Help j

m WJ
Aan! Delate

Syat«m

Modify | Retrssn i Syttem sususs.

IP rpujqtiptiat
STA CHAT J3E

Ezs^BaiKa

CawneMom

ICO

Hwtn»»»: j KM„C»*v.r3£

*»»«!»: . 'Of

PfowrtWÄ :Ca

Pore { 5!>V5

1"

 _
„..!;. ...- '.

Priority vfcly«: I t

Prfaity ft*m# j normal

Maneje systems •

Jjav^pplBlW.ndbw

PrewröeE

ItAlttMBi. («*»*! tOO 22

3>0

iOWK» «MIT j P*C<iS80j

(WtUJllM

now«!

M

_Ok]_C*B«*j

j-l*.,. iVf ta*W~

Figure 5. Screenshot of the Java Administration Interface

normal system operations, they can be enlarged or even re-
located from one DFS-Server to another without the need
to stop the working software, which is importand for long
running jobs. Given these facts, a centralized backup for
all data within the cell is possible and is used for the NRW-
Metacomputer.

For the special needs of the NRW-Metacomputer the
DCE internal database (registry) is used to store additional
information like e.g. user accounts. It is planned to ex-
pand this, so that the registry will contain all information
needed to run the metacomputer. For instance, this may be
information about special needs or restrictions of connected
compute-servers or software. Using the registry offers sev-
eral advantages, because all its data is accessible within the
whole cell via the DCE API or online commands, and the
database itself is scalable and fault tolerant.

Since DCE provides an API, software can be adapted
to use special features, such as sendmail, the apache web-
server or samba. Furthermore, it is possible to incorporate
DCE into any other proprietary software. DCE has a stan-
dard command line interface, which is called dcecp, the dee
controll programm. By using this interface in a batch mode,
it is possible to write different kinds of administrative soft-

ware, such as a frontend using HTML and CGI-scripts for
webservers, or a XI1-Interface using Tcl/Tk without the
need to directly use the API or other low-level functions
of DCE. The dcecp itself is written using Tel, which allows
new modules to be developed for it.

5 Accessing the Metacomputer via the World
Wide Web

An important aspect of the idea of a computational
power grid is the freedom for its users to access the sys-
tem from wherever they want, ideally even from a hotel
room in a remote corner of the world. Hence, we decided to
use Java and the WWW-technology for implementing the
user interface of the NRW-Metacomputer (Fig. 4). In or-
der to provide the same comfort to the administrators of the
metacomputer, the administration interface has been imple-
mented in the same way thereby enabling both use and ad-
ministration of the metacomputer from whereever there is
a connection to the Internet (Fig. 5). Furthermore, both in-
terfaces are capable of storing personal customization data
within the metacomputer. Thus, users always find their own
personal access interface, no matter from where the system

38

Figure 6. Current size of the NRW-Metacomputer

is being accessed.
The metacomputer performs its own user management,

authentication and authorization based on the DCE infra-
structure. Thus, users will only have to login once for each
metacomputing session. If the machine used for accessing
the system runs a DCE-client, users can even work with
their private files independent from their current location.
This is therefore the recommended way of working with
the NRW-Metacomputer. However, if the DCE services are
not available, user files can be transferred to and from the
metacomputer by a set of ftp-based services, which we have
added to the user interface (Fig. 1).

6 Conclusions

We have presented the NRW-Metacomputer as a work-
ing connection of four computing centers spread all over
Nortrhine-Westphalia, which contains heterogeneous HPC
resources like Cray T3E, IBM SP2, Sun Enterprise, or
Siemens hpcLine (Fig. 6). Among the important aspects of
this system are the modular, multi-tier architecture as well
as its powerful scheduling component and the integration
into a DCE-based environment. Knowing that there exist
several other metacomputing environments with similar ca-
pabilities, we described how these projects can benefit from
the results of the NRW-Metacomputer initiative. Possible
aspects are the re-use of concepts or modules and the cre-
ation of a large metacomputing environment by using the

interfaces of the NRW-Metacomputer.
Besides the integration of more sites into the metacom-

puter, future work will also focus on the development and
evaluation of improved scheduling strategies on top of the
now existing infrastructure. Furthermore, we will employ
the service interface of the NRW-Metacomputer to add new
kinds of services like for example streaming video or other
real-time data sources.

7 About The Authors

Claus Bitten has studied computer science at the Univer-
sity of Bonn and is currently studying Philosophy at the
University of Cologne. He is working as a member of Re-
gional Computing Centre of the University of Cologne and
as an IT Administrator for the Mindfact Interaktive Medien
AG, a member of the Swedish Framfab group. His research
interest focuses on distributed and secure computing envi-
roments and their implementation on various systems. Be-
sides this, his interests include Linux, e-commerce, and the
design of computer games.

Jörn Gehring studied computer science at the Univer-
sity of Paderborn and received a Diploma with distinction
in 1994. Currently he is a staff member at the Paderborn
Center for Parallel Computing. His research interest fo-
cuses in the field of parallel computing, in particular high-
performance- and metacomputing. He works in the design

39

of distributed resource management software and runtime
environments for metacomputers. Besides metacomputing,
his research interests include distributed genetic algorithms
and sorting on massively parallel machines.

Uwe Schwiegeishohn is professor at the Computer Engi-
neering Institute of the University Dortmund since 1994.
His main research interests include scheduling problems,
metacomputing and embedded systems. He received a
diploma and a doctor degree in electrical engineering from
the Technical University Munich in 1984 and 1988, respec-
tively. From 1988 to 1994 he was with the IBM T.J. Watson
Research Center in Yorktown Heights.

Ramin Yahyapour studied electrical engineering at the
University of Dortmund and received his Diploma in 1996.
Currently he is a staff member at the Computer Engineering
Institute in Dortmund. His research interest focuses in the
field of parallel computing, in particular high-performance-
and metacomputing. He works in the design of distributed
resource management software and runtime environments
for metacomputers. Besides metacomputing, his research
intersts include network management.

References

[1] EGRID: The european grid forum.
http://www.egrid.org/.

[2] The grid forum, http: //www. gridforurn.org/.

[3] Nrw-metacomputing task force.
http://www.upb.de/pc2/nrw-mc/.

[4] Introducing NQE. Cray Research Publication, Silion
Graphics, Inc., 1998.

[5] D. H. J. Epema, M. Livny, R. van Dantzig, X. Ev-
ers, and J. Pruyne. A worldwide flock of condors:
load sharing among workstation clusters. Technical
Report DUT-TWI-95-130, Delft University of Tech-
nology, Department of Technical Mathematics and In-
formatics, Delft, The Netherlands, 1995.

[6] I. Foster and C. Kesselman. Globus: A metacomput-
ing infrastructure toolkit. International journal of Su-
percomputer Applications, 1998.

[7] Frederic Gittler and Anne C. Hopkins. The DCE se-
curity service. Hewlett-Packard Journal: technical
information from the laboratories of Hewlett-Packard
Company, 46(6):41^18, December 1995.

[8] GENIAS Software GmbH. CODINE: Com-
puting in distributed networked environments.
http: //www.genias .de, sep 1995.

[9] D. Gollmann. Cryptographic APIs. Lecture Notes in
Computer Science, 1029:290-??, 1996.

[10] A.S. Grimschaw and WA. Wulf. The legion vision of
a worldwide virtual computer. Coomunications of the
ACM, 40(1),jan 1997.

[11] D. Hensgen, T. Kidd, D. St. John, M. C. Schnaidt, H. J.
Siegel, T. Braun, J.-K. Kim, S. Ali, C. Irvine, T. Levin,
V. Prasanna, P. Bhat, R. Freund, and M. Gherrity.
An overview of the management system for hetero-
geneous networks (MSHN). In 8th Workshop on Het-
erogeneous Computing Systems (HCW '99), San Juan,
Puerto Rico, 1999.

[12] F. Ramme, T. Römke, and K. Kremer. A distributed
computing center software for efficient use of parallel
computer systems. In High-Performance Computing
and Networking, volume 2 of Lecture Notes in Com-
puter Science, pages 129-136. Springer, 1994.

[13] Larry Smarr and Charles E. Catlett. Metacomputing.
Communications of the ACM, 35(6):44-52, June 1992.

[14] R.Yahyapour U. Schwiegelshohn. Resource allocation
and scheduling in metasystems. (1593):851-860, april
1999.

[15] Songnian Zhou. LSF: load sharing in large-scale het-
erogeneous distributed systems. In Proceedings of
the Workshop on Cluster Computing, Tallahassee, FL,
December 1992. Supercomputing Computations Re-
search Institute, Florida State University.

40

SESSION 1-B
RESOURCE DISCOVERY AND MANAGEMENT

Chair: F. Darema, NSF, USA

Agent-Based Resource Discovery

Kyungkoo Jun, Ladislau Bölöni, Krzysztof Palacz, and Dan C. Marinescu
Computer Sciences Department,

Purdue University
West Lafayette, IN 47907

email: {junkk, boloni, palacz, dcm}@cs.purdue.edu

Abstract

In this paper we present a distributed discovery method
allowing individual nodes to gather information about re-
sources in a wide-area distributed system made up of au-
tonomous systems linked together by a network technology
substrate. We introduce an algorithm and a model for dis-
tributed awareness and a framework for dynamic assem-
bly of agents monitoring network resources. Whenever an
agent needs detailed information about individual compo-
nents of another system it uses the information gathered by
the distributed awareness mechanism to identify the target
system, then creates a description of a monitoring agent ca-
pable of providing the information about remote resources,
and sends this description to the remote site. There an agent
factory assembles dynamically the monitoring agent. This
solution is scalable and suitable for heterogeneous environ-
ments where the architecture and the hardware resources of
individual nodes differ, the services provided by the system
are diverse, the bandwidth and the latency of the communi-
cation links cover a broad range.

1. Introduction

In this paper we address the problem of resource dis-
covery in a wide-area distributed system made up of au-
tonomous systems linked together by a network technology
substrate. The system is heterogeneous, the architecture and
the hardware resources of individual nodes differ, the ser-
vices provided by the system are diverse, the bandwidth and
the latency of the communication links cover a broad range.

Individual nodes in such a distributed system may co-
operate to accomplish tasks that require resources above
and beyond those available in any single node, clients and
servers may need to negotiate the quality of service, system
administrators may wish to gather synthetic data regarding
resource utilization to identify bottlenecks. A data intensive
problem may generate a request to assemble dynamically a

cluster of workstations with a compound CPU rate, mem-
ory, and secondary storage space determined by the prob-
lem size. A system administrator may wish to determine the
overall secondary storage utilization in a virtual Intranet.

Resource management in a distributed system can be del-
egated to a subset of nodes providing site-coordination, ne-
gotiation, resource monitoring, and other services. For ex-
ample the Open Data Network, ODN, model [13] is based
upon an hourglass architecture with four layers: applica-
tions, middleware services, transport services, and bearer
services provided by LANs, wireless networks, ATMs,
satellite networks and so on. The architecture is conceived
to support services ranging from teleconferencing to finan-
cial services, from remote login to interactive education.
In turn middleware services cover security, name services,
multi-site coordination, file systems and so on, and use
transport services for video, audio, text, fax, and other types
of data. The diversity of the networking substrate, the het-
erogeneity and autonomy of the nodes, the variety of ser-
vices provided by the system make all aspects of resource
management in this model rather challenging and motivate
the desire to search for solutions that are more scalable and
able to accommodate rapidly changing heterogeneous envi-
ronments.

Distributed algorithms for resource management have
been known for some time. The flooding algorithm is used
by routers in the Internet, broadcasting by local queries,
known as "gossiping" [11], [15] have been used to main-
tain consistency in replicated databases [3] and to gather
information about system failures [4].

Autonomous and mobile software agents are widely re-
garded as necessary components of large-scale distributed
systems. Agents can facilitate access to existing services
to thin clients, support nomadic computing, perform func-
tions related to resource management, support negotiations
among several parties involved in a transaction, reconfig-
ure servers, and so on. For example mobile agents to map
network topology were proposed in [14].

Autonomy implies that the agents are active objects with

0-7695-0556-2/00 $10.00 © 2000 IEEE
43

their own tread of control, they can exhibit intelligent be-
havior. Mobility ensures that the agents can operate in
rapidly changing heterogeneous environments. Yet, ensur-
ing code mobility in a heterogeneous environment when the
architecture of the nodes is different and we have several
operating systems installed is a non-trivial endeavor.

The implicit assumption of agent-based solution for re-
source discovery in a wide-area system is the existence of
a framework for the interoperabilty of different agent fami-
lies, like the one proposed in [1]. Throughout this paper we
assume that a system like the one described in Section 3.1 is
installed in every node and the system has an agent factory,
an object able to respond to external requests and assemble
agents based upon a description of an agent provided by the
entity that initiated the request.

In this paper we introduce an agent-based model for re-
source discovery. Agents running at individual nodes learn
about the existence of each other using a mechanism called
distributed awareness. Each agent maintains information
about the other agents it has communicated with over a
period of time and exchange periodically this information
among themselves. Whenever an agent needs detailed in-
formation about individual components of the system we
use the information gathered by the distributed awareness
mechanism and then assemble dynamically agents capable
of reporting the state of remote resources and to negotiate
the use of these resources. The remote agent creation and
surgery techniques discussed in Section 3.3 are general and
allow us to alter drastically the behavior of an agent. For
example we can add additional planes for resource nego-
tiations with clients and with the local resource manager,
planes to reconfigure a local server and so on.

The contributions of this paper are an algorithm and a
model for the distributed awareness and a framework for
dynamic assembly of agents capable of providing detailed
information about network resources.

The rest of this paper is structured as follows. Section
2 reviews some of the existing algorithms for resource dis-
covery, presents their basic assumptions and relevant per-
formance measures. Then it presents our distributed aware-
ness algorithm and two models for its behavior. Section 3
introduces the agent-based resource discovery architecture
and describes an implementation based upon Bond [6], a
component-based agent framework.

2. Algorithms and Models for Distributed
Awareness

A first step in all applications that require some knowl-
edge about the other nodes of a network is to learn about
the existence of each other. We call this process "distributed
awareness", while other authors [10] refer to it as resource
discovery. We believe that in a heterogeneous environment

learning about the existence of other nodes is only the first
step in a complex process and that resource discovery re-
quires a set of progressively more intricate interactions with
the newly discovered object.

2.1. Related work

We review briefly some of the algorithms presented in
the literature, their basic assumptions, and the proposed per-
formance measures to evaluate an algorithm. Virtually all
algorithms model the distributed system as a directed graph,
in which each machine is a node and edges represent the re-
lation "machine A knows about machine B". The network
is assumed to be weakly connected and communication oc-
curs in synchronous parallel rounds.

One performance measure is the running time of the al-
gorithm, namely the number of rounds required until ev-
ery machine learns about every other machine. The amount
of communication required by the algorithm is measured
by: (a) the pointer communication complexity defined as the
number of pointers exchanged during the course of the al-
gorithm, and (b) the connection communication complexity
defined by the total number of connections between pairs of
entities.

The flooding algorithm assumes that each node v only
communicates over edges connecting it with a set of initial
neighbors, T(v). In every round node v contacts all its ini-
tial neighbors and transmits to them updates, T{v)updates

and then updates its own set of neighbors by merging T(v)
with the set {T(u)updates}, with u G T(v). The number of
rounds required by the flooding algorithm is equal with the
diameter of the graph.

The swamping algorithm allows a machine to open con-
nections with all their current neighbors not only with the
set of initial neighbors. The graph of the network known to
one machine converges to a complete graph on 0(log(n))
steps but the communication complexity increases. Here n
is the number of nodes in the network.

In the random pointer jump algorithm each node v con-
nects a random neighbor, u £ T(v) who sends F(u) to v
who in turn merges T(v) with T(u). A version of the al-
gorithm called the random pointer jump with back edge re-
quires u to send back to v a pointer to all its neighbors.
There are even strongly connected graphs that require with
high probability H(n) time to converge to a complete graph
in the random pointer jump algorithm.

The Name-Dropper algorithm is proposed in [10]. Dur-
ing each round each machine v transmits T(v) to one ran-
domly chosen neighbor. A machine u that receives T(v)
merges T(v) with F(u). In this algorithm after 0(log2n)
rounds the graph evolves into a complete graph with proba-
bility greater than 1 - l/(n°(1)).

44

2.2. Distributed Awareness; Algorithm and Models

2.2.1 A Distributed Awareness Algorithm

Distributed awareness is a mechanism for the nodes of a
message-passing distributed system to learn about the ex-
istence of each other. Each node maintains an awareness
table and exchanges the information in this table with other
nodes. An entry in the awareness table contains: (1) Node
location, the IP address of a node, (2) lastHeard-
From, the time when we last heard from the node, and (3)
last Sync the time when the awareness information was
last sent to the node. The awareness information is pig-
gybacked onto regular messages exchanged between two
nodes.

Incoming/outgoing message handling and table merging
are discussed now. The algorithm to add new or update ex-
isting items is:
for every incoming message

find sender, S

if the local awareness table has an item / with

the same node location as S

set lastHeardFrom of 7" as current time

else

add a new item initialized with S and last-

HeardFrom set as current time

if the incoming message has piggybacked awareness

information

execute table merging algorithm

The table merging algorithm is:
for each awareness item, I, of the piggybacked

awareness table

if the local table has item hocal with the same
node location of I

set lastHeardFrom of 7/oca/ with more recent

time stamp between those of hocai and I

else

add / to the local table with lastSync set
zero

The outgoing message handling algorithm appends the
local awareness table to the outgoing message:
for an outgoing message Moutgoing destined to a
node N

look up an item / with node location N in the

local table

if lastSync of / reached a specified age,

add the local table to Moutgoing

set lastSync of I as current time

send out Moutgoing

Notice that lastSync is checked to control the interval
between sending awareness information and that the aware-

ness table is periodically purged based upon lastHeard-
From field.

2.2.2 Deterministic and Non-deterministic Models

Modeling and analysis of the distributed awareness algo-
rithm is rather difficult. The problem is unstructured, in the
general case we do not know either the network topology
or the communication patterns among nodes thus it is rather
difficult to simplify assumptions leading to a tractable anal-
ysis. Yet we need to get a rough idea of the overhead in-
curred by this method and the asymptotic properties of the
algorithm. Intuitively we expect that after some time all
agents will learn about the existence of all other agents.

To model the distributed awareness we propose to use
models similar to the ones for the spread of a contagious
disease. An epidemic develops in a population of fixed size
consisting of two groups the infected individuals and the un-
infected ones. The progress of the epidemic is determined
by the interactions between these two groups.

We introduce first a deterministic model. Given a group
of n nodes this simple model is based upon the assumption
that the rate of change in agent's awareness list, is propor-
tional with the size of the group the agent is already aware
of, y, and also with the size of the group the agent is un-
aware of, n - y. If k is a constant we can express this rela-
tion as follows:

V(t)' = kx y(t) x (n - y(t))

The solution of this differential equation with the initial
condition y(Q) = 0 is:

»(*) = 1 + (n - l)e -knt

This function is plotted in Figure 1 and shows that after
time T a node becomes aware of all the other nodes in the
network. The parameter k as well as the value r can be
determined through simulation.

Call r/ the ratio of the awareness information exchanges
to the total number of instances an agent communicates
with other agents. A typical value for this parameter is
T) = 0.001. If the amount of awareness information is only
a fraction b, say b = 0.1 of the payload carried out dur-
ing communication between two agents, it follows that the
additional load due to the distributed awareness is only a
small fraction, in our example only r\ x b = 0.01% of the
total network traffic.

This deterministic model allows only a qualitative analy-
sis. Rather than the smooth transition from 0 to n we should
expect a series of transitions each one corresponding to a
batch of newly discovered agents. Yet this simple model
provides some insight into the overhead incurred during the
learning phase of the awareness mechanism we propose.

45

Once a large system is operational we can attempt to de-
termine the parameters of the model, including the transi-
tion probabilities, and then validate the model. The large
number of parameters make this model very cumbersome
for analysis of a realistic system, with a large number of
nodes. The model is useful for theoretical studies, assum-
ing different communication patterns, but this is beyond the
scope of this paper.

3. Monitoring Agents and Resource Discovery

Figure 1. The number of agents known to a
given agent, function of time, using a deter-
ministic distributed awareness model. After
time T, each agent becomes aware of all the
other agents in the network

A non-deterministic model is sketched below. New ac-
quaintances occur in batches at time intervals determined
by the overall rate of information exchange among nodes
and by r/. Call p the probability of contact between two
agents such that as a result of the contact the awareness list
are modified, and let q = 1 - p. Assume that the contacts
between agents are stochastically independent and observe
that the probability that among the i entries in the list sup-
plied to an agent, k, < i entries are not already in its list
is

(I) x pk x ql-k

Call Y(s) the random variable denoting the number of
entries in the list of the "typical" agent at discrete time s =
1,2,.... Then

P(Y(s + 1) = j\Y(s) = i)= Q x pl-i x qi

if i > j and zero otherwise.
The probability distribution of Y(s + 1) is independent

of the values assumed by the random variables Y (r), r <
s. Therefore (F(s))s>0 is a Markov chain with states

0 1 2 r

0
1
2

" 1 0
p q
p2 2pq

0
0

0
0
0

r pr rpr~~lq cy-v ■■ qr

Information about the resources and the state of the
nodes of a wide area distributed system is sometimes
needed to coordinate the activity of a group of nodes, to
provide synthetic information about resource utilization, or
for other needs. A common approach taken by commercial
as well as research systems is to install on each node a mon-
itor to gather local resource information. The local monitors
may update periodically a centrally stored database or pro-
vide the information on demand. Sometimes the informa-
tion may be stored in servers hierarchically arranged.

Several metacomputing projects [9], [7] rely on a group
of central entities to maintain the resource information re-
ported by local entities. Globus [9] provides a Metacomput-
ing Directory Service where network resource information
is stored in a tree-like structure and it is accessible using the
Lightweight Directory Access Protocol [16]. Local moni-
tors residing on each node report the structure and state of
resources. Monitors have to be installed and configured for
each site. Legion [7] uses collections as repositories for in-
formation describing the state of the resources comprising
the system. The collection is a database of static informa-
tion reported by remote monitors. Resource management
software provided by several companies including Tivoli [2]
follow the same paradigm.

The information provided by a local monitor is deter-
mined at the time the monitoring program is installed. To
provide additional information the program must be modi-
fied and reinstalled, and also it must be non-intrusive. Often
the information obtained from static databases is obsolete.
These considerations justify the need to investigate alterna-
tive means for gathering resource information.

Using software agents for resource discovery and mon-
itoring has several advantages over the traditional ap-
proaches outlined above. Monitoring agents have an au-
tonomous behavior and evolve based upon the characteris-
tics of the local system and the requirements. Agents can
engage in a gradual discovery process and respond to a
changing set of requirements. They are able to adapt to the
architecture and the operating environment of local nodes.
An agent may decide its behavior based upon the results of
an inference process thus the tasks assigned can be rather
complex.

46

Now we describe an agent-based, distributed resource
discovery architecture where agents are created at remote
locations and modified as needed, to gather the information
for resource management.

3.1. Bond; a Distributed Object System

Bond is a Java-based distributed object system and agent
framework, with an emphasis on flexibility and perfor-
mance. It is composed of (a) a core containing an ob-
ject model and message oriented middleware, (b) a service
layer containing distributed services like directory and per-
sistent storage services, and (c) the agent framework provid-
ing basic tools for creating autonomous agents and a set of
reusable components, called strategies, from which devel-
opers assemble agents with no or minimal amount of pro-
gramming.

Bond Core. At the heart of the Bond system there is a
Java Bean-compatible component architecture. Bond ob-
jects extend Java Beans by allowing users to attach new
properties to the object during runtime, and offer a uni-
form API for accessing regular fields, dynamic properties
and Java Bean style setField/getField-defined vir-
tual fields. This allows programmers the same flexibility
like languages like Lisp or Scheme, while maintaining the
familiar Java programming syntax.

Bond objects are network objects; they can be both
senders and receivers of messages. No post-processing of
the object code as in RMI or CORBA-like stub genera-
tion, is needed. Bond uses message passing while RMI or
CORBA-based component architectures use remote method
invocation.

The system is largely independent from the message
transport mechanism thus several communication engines
can be used interchangeably. We currently provide TCP-
based, UDP-based, Infospheres-based, and, separately, a
multicast engine. Other communication engines will be im-
plemented as needed. The API of the communication en-
gine allows Bond objects to use any communication engines
without changing or recompiling codes. On the other hand,
the properties of the communication engine are reflected in
applications as a whole. For example the UDP-based en-
gine offers higher performance but does not guarantee reli-
able delivery.

All Bond objects communicate by an agent communi-
cation language, KQML [8]. Recently XML-based inter-
agent communication was provided as an alternative to
KQML. Bond defines the concept of subprotocols, highly
specialized, closed set of commands. Subprotocols gener-
ally contain the messages to perform a specific task. Ex-
amples of generic Bond subprotocols are property access
subprotocol, agent control subprotocol or security subpro-
tocol.

Subprotocols group the same functionality of messages
which in a remote method invocation system would be
grouped in interface. But the larger flexibility of the mes-
saging system allows for several new techniques which are
difficult to implement in the remote method call case:

• The subprotocols implemented by an object are prop-
erties of the object, thus two objects can use the prop-
erty access subprotocol, which is implemented by ev-
ery Bond object, to find the common set of subproto-
cols between them.

• An object is able to control the internal path of a
message delivery and to delegate the processing of
the message to subcomponents called regular probes.
Regular probes can be attached dynamically to an ob-
ject as needed.

• Messages can be intercepted before they are delivered
to the object, thus providing a convenient way for fire
wall, accounting, logging, monitoring, filtering or pre-
processing. These operations are performed by sub-
components called preemptive probes.

• Subprotocols, like interfaces, group some functionality
of the object, which may or may not be used during its
lifetime. A subcomponent called autoprobe allows the
object to instantiate a new probe, to handle an incom-
ing message which could not be understood by existing
probes.

• Objects can be addressed by their unique identifier, or
by their alias. Aliases specify the services provided by
the object or its probes. An object can have multiple
aliases and multiple objects can be registered under the
same alias. The latter enables the architecture to sup-
port load balancing services.

These techniques can be implemented through different
means in languages which treat methods as messages, e.g.
Smalltalk. In Java and C++ they can be implemented at
compile time, not at runtime, e.g. using the delegation de-
sign pattern. Techniques from the recent CORBA specifica-
tions e.g. the simultaneous use of DU, POA, trading service
and others, also allow to implement a similar functionality,
but with a larger overhead, and significantly more complex
code.

Bond Services. Bond provides a number of services
commonly found in distributed object systems, like direc-
tory, persistent storage, monitoring and security. Event, no-
tification, and messaging services, which provide message
passing services in remote method invocation based systems
are not needed in Bond, due to the message-oriented archi-
tecture of the system.

47

Some of Bond services perform differently than their
counterparts in other middleware systems, like CORBA.
For example, Bond never requires explicit registration of a
new object with a service. Finding out the properties of a re-
mote object, i.e. the set of subprotocols implemented by the
object, is achieved by direct negotiation among the objects.
The directory service in Bond combines the functionality of
the naming and trading services of other systems and it is
implemented in a distributed fashion. Objects are located
by a search process which propagates from local directory
to local directory. The directories are linked into a virtual
network by a transparent distributed awareness mechanism,
which transfers directory information by piggybacking on
messages as discussed in the previous Section.

Compared with the naming service implementations in
systems like CORBA or RMI, which are based on the ex-
istence of a name server, this approach has the advantage
that there is no single point of failure, and the distributed
awareness mechanism reconstitutes the network of directo-
ries even after catastrophic failures. However, a distributed
search can be slower than lookup on a server, especially for
large networks. For these cases, Bond objects can be reg-
istered to external directories, either to a CORBA naming
service through a gateway object, or to external directory
services based on LDAR

3.2. Bond Agents

The Bond agent framework is an application of the facil-
ities provided by the Bond core layer to implement collab-
orative network agents. Agents are assembled dynamically
from components in a structure described by a multi-plane
state machine [5]. This structure is described by a spe-
cialized language called blueprint. Bond also supports
agent description in XML. The components (strategies) are
loaded locally or remotely, or can be specified in inter-
pretive programming languages embedded in the blueprint
script. The state information and knowledge base of the
agents are collected in a single object called model of the
world which allows for easy checkpointing and migration of
agents. The multiplane state machine describing the behav-
ior of agents can be modified dynamically by agent surgery,
which will be discussed shortly.

The behavior of the agent is described by the actions
the agent is performing. The actions are performed by
the strategies either as reactions to external events, or au-
tonomously in order to pursue the agenda of the agent. The
current state of the multiplane state machine (described by
a state vector) is specifying the strategies active at a certain
moment. The multiple planes are a way of expressing par-
allelism in Bond agents. A good technique is to use them
to express the various facets of the agents behavior: sens-
ing, reasoning, communication/negotiation, acting upon the

environment and so on. The transitions in the agent are
modifying the behavior of the agent by changing the cur-
rent set of active strategies. The transitions can be triggered
by internal events or from external messages - these external
messages form the control subprotocol of the agent.

Strategies are reusable by having interface requirements.
The Bond agent framework provides a strategy database,
for the most commonly used tasks, like starting and con-
trolling external agents or legacy applications. A number of
base strategies for common tasks like dialog boxes or mes-
sage handlers are also provided, which can be sub-classed
by developers to implement specific functionality. External
algorithms, especially if written in Java are usually easily
portable to the strategy interface.

3.3. Remote Creation and Surgery of Monitoring
Agents

In this section, we discuss the remote creation of an agent
and its surgery. To illustrate the concepts outlined in Section
3.2 we present the creation and modification of a monitor-
ing agent. Several entities are involved in this process: a
beneficiary agent at the site where the resource information
is needed, an agent factory at the target site, and possibly
a blueprint repository. The target site is identified by the
distributed awareness or by a name or directory service. To
install a monitoring agent on the target site, the beneficiary
agent needs to obtains a blueprint of a monitoring agent.
The blueprint can be retrieved from the blueprint reposi-
tory or created dynamically by an inferencing agent given a
set of rules and facts. After that, a message containing the
blueprint or the location of the repository and the blueprint
name is sent to the agent factory. Figure 2 illustrates this
process. A Bond Resident is a container object including
directory, communicator, and all other objects. In this ex-
ample the message sent by the beneficiary agent contains
the blueprint:

(achieve :content assemble-agent
:blueprint-program [agent blueprint])

The beneficiary agent in this example decides to create
a single plane monitoring agent with the blueprint shown
in Figure 3. Figure 4 shows the monitoring agent with one
plane designed to gather information about the primary stor-
age, e.g. the amount of physical memory available in the
node, the amount of used and free storage, a list of the top
users of memory, and so on. Notice that each plane de-
scribes a state machine.

The agent factory receives the message, interprets the
blueprint, and creates a monitoring agent with one plane
called PrimaryStorage using one strategy included in
the blueprint as JPython program [12], associated with
MemoryCheck state. The complete JPython strategy is

48

(Mhkvt :oontwit wfflbh «gwil
:bpt titt|»LAvww.ca.purffcM.Miufeg«nt.bpt)

(«cM«v* :contMit modlty-ftCMni :bond!D xxx
' :bpt litlp:/Arww.c»purdiM.tdu/u)rcjtry.bpt)'

Figure 2. The communication between Ben-
eficiary Agent, the Agent Factory and the
Blueprint Repository. Messages instructing
the agent factory to create a monitoring agent
(solid line) and to perform surgery (dotted
line) are shown.

shown in the Appendix. After creating the agent, the agent
factory sends back an acknowledgment to the beneficiary
agent.

Once started, the agent performs a transition to the Mem-
oryCheck state. The Jpython strategy identifies the op-
erating system running on that node and invokes the sys-
tem calls, e.g. vmstat in Unix, necessary to gather the
information about the primary storage. If successful, the
state machines performs a transition to the MemoryRe-
port state with strategy ReportPS, and sends back the
information to the beneficiary agent named in the Bene-
f iciaryAddress of the blueprint and finishes its execu-
tion by transition to the Done state with the End strategy.

The primary storage map changes in real time, thus it
might be desirable to have an agent capable of reporting the
information periodically. In addition, it may be necessary
to gather information about secondary storage, e.g. the total
amount of disk space available, the amount in use, the free
disk space, the number of file systems, etc.

To obtain the periodic memory report and the secondary
storage information, the agent can be modified through
surgery as shown in Figure 5. In our example we (a) add
another plane, called SecondaryStorage, to report the
amount of free secondary storage space, and (b) modify the
memory plane by adding transition from MemoryReport
state to MemoryCheck state while deleting Done state and
gotoEnd transition. As a result, the agent reports period-
ically the state of the primary storage. The reporting inter-
val is specified in the blueprint as Interval, in this case,
5000 msec.

To perform the surgery, we send the agent factory at the

create agent MonitoringAgent
plane PrimaryStroage

add state Init with strategy InitCheck;
add state MemoryCheck with strategy language
python embedded {:

def getcmdresults(cmd):
''''Run a command and return its output

as a string and exit value

def vmstat():
''''Return the statistics
''''from vmstat output
1'''in form of a hashtable

[list, exitcode] =
getcmdresults('vmstat 1 2'

def save(map, prefix = ''):
''''Save a hashtable into model

save(vmstat(), 'discover.')
self.fsm.transition)''gotoReport'');

:}
add state MemoryReport with strategy ReportPS;
add state Done with strategy End;

internal transitions {
from InitCheck to MemoryCheck on gotoCheck;
from MemoryCheck to MemoryReport

on gotoReport;
from MemoryReport to Done on gotoDone;

}
model {

BeneficiaryAddress =
'%ResourceAgent@peter.cs.purdue.edu:2000'

}
end plane;
end create.

Figure 3. The blueprint of a monitoring agent
designed to gather information about avail-
able physical memory, the amount of used
and free storage, and a list of top memory
users

49

Figure 4. The monitoring agent built using the
blueprint in Figure 3. The strategies associ-
ated with every state are shown in parenthe-
sis.

modify agent Probing
plane SecondaryStorage
add state Init with strategy InitSS;
add state StorageCheck

with strategy MeasureSS;
add state StorageReport

with strategy ReportSS;
internal transitions {

from InitSS to StorageCheck on gotoCheck;
from StorageCheck to StorageReport

on gotoReport;
from StorageReport to StorageCheck

on gotoCheck;

}
end plane;
plane PrimaryStorage
delete state Done;
internal transitions {

delete from MemoryReport to Done
on gotoEnd;

from MemoryReport to MeamoryCheck
on gotoCheck;

}
model {

Interval = 5000;

}
end plane;

Figure 5. The agent surgery script. S second
plane, SecondaryStorage is added and state
machine of the first plane, PrimaryStorage
is modifyed.

Figure 6. The agent after the surgery

target site the following message:

(achieve :content modify-agent :bondID [agent ID]
:blueprint-program [agent surgery script])

The message contains the unique Bond ID of the agent.
This allows the agent factory to identify the target of the
surgery request. Figure 6 shows the monitoring agent after
the surgery of Figure 5. Agent surgery involves the modifi-
cation of the data structure used to control the scheduling of
various strategies in the planes of the agent. The surgery can
be performed while the agent is running and the blueprint of
the modified agent can be generated.

4. Conclusions

Information about the topology, resources and the state
of the nodes of a wide area distributed system is sometimes
needed to coordinate the activity of a group of nodes, to pro-
vide synthetic information about resource utilization, or for
other needs. A common approach taken by commercial as
well as research systems is to install on each node a moni-
tor to gather local resource information. The local monitors
may update periodically a centrally stored database or pro-
vide the information on demand.

Using software agents for resource discovery and mon-
itoring has several advantages over the more traditional
approach outlined above. Monitoring agents have an au-
tonomous behavior and evolve based upon the characteris-
tics of the local system and the requirements of the benefi-
ciary agent. Agents can engage in a gradual discovery pro-
cess and respond to a changing set of requirements. They
are able to adapt to the architecture and the operating en-
vironment of the local node. An agent may change its be-
havior based upon the results of an inference process and

50

the tasks assigned to an agent can be rather complex. On
the other hand, the amount of resources used by the agency
may be larger than resources required by a custom-made
monitoring system.

In this paper we introduce an agent-based model for re-
source discovery. Agents running at individual nodes learn
about the existence of each other using a mechanism called
distributed awareness. Each agent maintains information
about the other agents it has communicated with over a
period of time and exchange periodically this information
among themselves. Whenever an agent needs detailed in-
formation about individual components of the system we
use the information gathered by the distributed awareness
mechanism and then assemble dynamically agents capable
of reporting the state of remote resources and to negotiate
the use of these resources. The remote agent creation and
surgery techniques are general and allow us to alter drasti-
cally the behavior of an agent.

We present two models for distributed" awareness, a de-
terministic model that supports a qualitative analysis and a
more intricate, quantitative model. We introduce the Bond
system and discuss the assembly and surgery of a monitor-
ing agent capable to report the use of primary and secondary
storage.

The Bond systems is available under an open source li-
cense from http: / /bond. cs . purdue. edu.

5. Acknowledgments

The work reported in this paper was partially supported
by a grant from the National Science Foundation, MCB-
9527131, by the Scalable I/O Initiative, and by a grant from
the Intel Corporation.

6. Appendix: a JPython Strategy to Gather
Memory Information

add state Memorycheck with strategy language
python embedded

from Java.lang import Runtime, StringBuffer
from java.io import InputStream, StringWriter

import string

def getcmdresults(cmd):
 Run a command and return its output

as a string also return the exit
value as the tuple's second arg
Runtime.exec() writes some nonsense
on standard output at least in Linux

p = Runtime.getRuntimeO .exec_(cmd)
p.waitFor()
output = p.getlnputStreamO

buf = StringWriter()
c = output.read()
while c '.= -1:

buf.write(c)
c = output.read()

return (buf .getBuf fer () . toStringO , p.exitValueO)

def accustat(param):
 Accumulate information about users

and return a hashtable requires System V
ps (Solaris 2.x, newest Linux) see man page
for parameter names, try e.g. pmem

(t it n

[list, exitcode]
= getcmdresults('ps -eo user,'+ param)

if exitcode > 0:
return None

broken = string.split(list, '\n')
map = {}
for line in broken[1:]:

spl = string.split(line)
if len(spl) != 2:
continue
[user, param] = spl
if map.has_key(user):

map[user] = map[user] + string.atof(param)
eise:

map[user] = string.atof(param)
return map

def vmstat():
 Return the statistics from the vmstat

output in form of a hashtable. See manual
page for the meanings of the keys (system
dependent although some are common).

[list, exitcode]
= getcmdresults)'vmstat 12')

if exitcode > 0:
return None

broken = string.split(list, '\n')
names = string.split(brokenfl])
values = string.split(broken[3])
map = {}
i = 0
for name in names:

map[name] = string.atoi(values[i])
i = i + 1

return map

def save(map, prefix = ''):
 ' save a hashtable into the model with

optional prefix (should include the dot)

for name in map.keys ():
model.set(prefix + name, map[name])

save(vmstat(), 'discover.')
self.fsm.transition("gotoReport")
:};

References

[1] MASIF - The CORBA Mobile Agent Specification. URL
http://www.omg.org/cgi-bin/doc?orbos/
98-03-09.

51

[2] Tivoli Enterprise Solutions. URL http://www.
tivoli.com/products/solutions.

[3] D. Agrawal, A. Abbadi, and R. Steinke. Epidemie Algo-
rithms in Replicated Databases. In Proceedings of the 16th
ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pages 161-172, May 1997.

[4] S. Assmann and D. Kleitman. The number of rounds needed
to exchange information within a graph. SIAM Discrete Ap-
plied Math, (6): 117-125, 1983.

[5] L. Bölöni and D. C. Marinescu. A Multi - plane State Ma-
chine Agent Model. Technical Report CS TR 99-027, Com-
puter Sciences Department, Purdue University, 9 1999.

[6] L. Bölöni and D. C. Marinescu. An Object-Oriented
Framework for Building Collaborative Network Agents. In
A. Kandel, K. Hoffmann, D. Mlynek, and N. Teodorescu,
editors, Intelligent Systems and Interfaces. Kluwer Publis-
ing House, 1999.

[7] S. Chapin, D. Katramatos, J. Karpovich, and A. Grimshaw.
Resource Management in Legion. In Proceedings of the 5th
Workshop on Job Scheduling Strategies for Parallel Process-
ing in conjunction with the International Parallel and Dis-
tributed Processing Symposium, April 1999.

[8] T. Finin et al. Specification of the KQML Agent-
Communication Language - plus example agent policies
and architectures, 1993.

[9] S. Fitzgerald, I. Foster, C. Kesselman, G. Laszewski,
W. Smith, and S. Tuecke. A directory service for config-
uring high-performance distributed computations. In Pro-
ceedings of the 6th IEEE Symp. on High-Performance Dis-
tributed Computing, pages 365-375, 1997.

[10] M. Harchol-Balter, T. Leighton, and D. Lewin. Re-
source discovery in distributed networks. In Proceedings
ofPODC'99, pages 229-237, Atlanta, Georgia, 1999.

[11] S. Hedetniemi, S. Hedetniemi, and A. Liestman. A Sur-
vey of Gossiping and Broadcasting in Communication Net-
works. Networks, 1988.

[12] J. Hugunin. Python and Java: The best of both worlds.
In Proceedings of the 6th International Python Conference,
San Jose, California, October 1997.

[13] L. Kleinrock and J. Major. Defining A Decade, chapter
Computing and Communications Unchained: The Virtual
World, pages 36-^46. National Research Council, National
Academy Press, 1999.

[14] N. Minar, K. H. Kramer, and P. Maes. Cooperating Mobile
Agents for Dynamic Network Routing, chapter 12. Springer-
Verlag, Berlin Germany, 1999.

[15] A. Pelc. Fault-tolerant Broadcasting and Gossiping in Com-
munication. Networks, 1996.

[16] W. Yeong, T. Howes, and S. Kille. RFC 1777: Lightweight
Directory Access Protocol, Mar. 1995. Obsoletes RFC 1487.
Status: DRAFT STANDARD.

is a member of the Upsilon Pi Epsilon, a computing hon-
orary society. His research interests include resource man-
agement, Quality of Service in multimedia and autonomous
agents.

Ladislau L Bölöni is a PhD student and Research As-
sistant in the Computer Sciences Department at Purdue
University. He received a Master of Science degree from
the Computer Sciences department of Purdue University
in 1999 and Diploma Engineer degree in Computer Engi-
neering with Honors from the Technical University of Cluj-
Napoca, Romania in 1993. He received a fellowship from
the Hungarian Academy of Sciences for the 1994-95 aca-
demic year. He is a member of ACM and the Upsilon Pi
Epsilon honorary society. His research interests include
distributed object systems, autonomous agents and parallel
computing.

Krzysztof Palacz is a PhD student and Research Assis-
tant in the Computer Sciences Department at Purdue Uni-
versity. He received a Master of Science degree in Com-
puter Science in 1997 and in Physics in 1995 from Adam
Mickiewicz University, Poznan, Poland. He is a member
of ACM and the Upsilon Pi Epsilon honorary society. His
research interests include distributed computing, workflow
management systems and autonomous agents.

Dan C. Marinescu is Professor of Computer Sciences
at Purdue University in West Lafayette, Indiana. He is
conducting research in parallel and distributed computing,
scientific computing, Petri Nets, and software agents. He
has co-authored more than 110 papers published in refer-
eed journals and conference proceedings. He was the chief
architect of a distributed data acquisition and analysis sys-
tem used in nuclear physics, now he is the PI of an NSF
funded Grand Challenge project to solve large structural bi-
ology problems using parallel and distributed systems and
the Director of the Bond project.

Kyungkoo Jun is a PhD student and Research Assistant
in the Computer Sciences Department, Purdue University,
W. Lafayette, Indiana, USA, working with professor Dan C.
Marinescu. He received an MS in Computer Science from
Purdue University in 1998 and a BS with honors in Com-
puter Science from Sogang University, Korea, in 1996. He

52

Evaluation of PAMS' Adaptive Management Services

Yoonhee Kim,
Department of Electrical Engineering and

Computer Science,
Syracuse University

Syracuse, NY 13244
yhkim@ecs.syr.edu

ABSTRACT
Management of large-scale parallel and distributed
applications is an extremely complex task due .to
factors such as centralized management architectures,
lack of coordination and compatibility among
heterogeneous network management systems, and
dynamic characteristics of networks and application
bandwidth requirements. The development of an
integrated network management framework that is
proactive, scalable and robust is a challenging
research problem. In this paper, we present our
approach to implement a Proactive Application
Management System (PAMS). PAMS architecture
consists of two main modules: Application Centric
Management (ACM) and Management Computing
System (MCS). The ACM module provides the
application developers with all the tools required to
specify the appropriate management schemes to
manage any quality of service requirement or
application attribute/functionality (e.g., performance,
fault, security, etc.). The MCS provides the core
management services to enable the efficient proactive
management of a wide range of network applications.
The services offered by the MCS are implemented
using mobile agents. Furthermore, each MCS service
can be implemented using several techniques that can
be selected dynamically by invoking the corresponding
mobile agent template for the service implementation.
In this paper, we present our preliminary results of
evaluating PAMS management services to manage the
performance and fault tolerance execution of three
applications of different sizes (small, medium and
large). The experimental results demonstrate that our
agent-based approach can lead to significant gains in
the performance and low overhead fault management
of parallel/distributed. For example, the overhead
incurred in the application fault management to
tolerate one task failure, two task failures, and three
task failures in a medium to large size application is
less than 0.02%.

Salim Hariri, and Muhamad Djunaedi
Department of Electrical and Computer

Engineering, University of Arizona
Tucson, AZ 85721

{hariri, djunaedi}® ece.arizona.edu

1. Introduction

The emerging high speed networks and the-
advances in computing technology are important
driving forces to merge the communications and
computing technologies that will result in an explosive
growth in network complexity, size and networked
applications. Furthermore, we are observing an
explosive growth in network applications that use
computing, networking and storage resources that can
be accessed from global national and/or international
networks. The management of such networks and their
distributed applications has become increasingly
complex, and unmanageable. Unfortunately, the
current network management technologies focus on
collecting management information and manually
manage the network using platform-specific products.
There has been little research toward the development
of intelligent, efficient, proactive end-to-end
management of large networks and their applications.

The increased importance of network management
for large-scale networks has stimulated research on
novel approaches to reduce the management
complexity and cope with dynamic management
change. Instead of a centralized manager, multi-
managers and their communication protocols are
proposed such as Management by Delegation
(MbD)[4] and Code Mobility[5]. Another approach
replaces the manger-agent relationship among
managers and agents with peer-to-peer relationship
using the Common Object Request Broker
Architecture (CORBA) has been studied in the area of
Telecommunications Information Networking
Architecture (TINA) framework [2]. A few web-based
approaches to network management have emerged
recently (JMAPI, WEBEM). [3].

However, distributed network management of
applications over heterogeneous has not fully studied
and is becoming increasingly important. Recently,
Application Management MIB [7] and MH3 for
Application [6] have been proposed to collect and
store common application management information in

0-7695-0556-2/00 $10.00 © 2000 IEEE
53

IETF. Common Information Model (CM) by DMTF
is proposed a similar process information definition
for WBEM [Patrck98]. Still, there has been little work
done to achieve programmable application
management schemes and is not well understood.

ACM Layer

/^{M»l^pert£(fiingSei%8^£^

MCS Layer

NPM Layer

CMISP WBEM

ADM Appfcabon Delegated Manager
TA1. JI: Task Agentl ..n

TIB: Task Information Base
SSerscf

ArActiatcr
Figure 1. The Runtime Architecture of the Proactive

Application Management System.

In this paper, we present the design and evaluation of a
Proactive Application Management System (PAMS)
prototype being developed at the University of
Arizona. PAMS provides adaptive application
management services to dynamically manage the
performance and fault of parallel/distributed
applications in an unreliable and heterogeneous
computing environment. PAMS implementation is
based on using mobile agents that can be programmed
to maintain the quality of service requirements of

distributed applications. We have evaluated three
adaptive techniques to manage the performance and
fault tolerance of distributed applications. The first
approach is based on using active redundancy to
improve performance and tolerate faults. The second
approach is based on passive redundancy in which a
set of machines is designated as backup machines to
be used to replace any of the machines assigned to the
application tasks in order to improve performance or
to tolerate software/hardware failures. The third
approach does not introduce redundancy in the system
and it requires task migration to another machine in
order to improve performance or to tolerate
software/hardware failures. The preliminary results of
applying these techniques demonstrate that our agent-
based approach can lead to significant gains in the
performance and low overhead fault management of
parallel/distributed application. The organization of
the paper is as follows. In Section 2, we give a brief
overview of the PAMS prototype. In Section 3, we
discuss our approach to benchmark and evaluate the
adaptive performance management services offered by
PAMS. In Section 4, we benchmark and evaluate the
adaptive fault management service.

2. Architecture of the Proactive
Application Management System (PAMS)

The architecture of PAMS is shown in Figure 1.
The ACM layer provides application developers with
the tools required to specify and characterize the
application requirements in terms of performance,
fault, security, and also specify the appropriate
management scheme to maintain the application
requirements. Once the application management
requirements are defined using the ACM tools, the
next step is to utilize the management services
provided by the Management Computing System
(MCS) to build the appropriate application execution
environment that can dynamically control the allocated
resources to maintain the application requirements
during the application execution. The MCS assigns
one Application Delegated Manager (ADM) to
manage one or more application attributes
(performance, fault, security, etc.). For each task in the
application, the ADM launches an appropriate Task
Agent (TA) to monitor and manage the task execution.
The TA monitors the task execution using appropriate
task sensors and intervenes whenever the task
execution on the assigned machine can not neet its
requirements using the task actuators that can suspend,
save task execution state, or migrate the task execution
to another remote machine. Our approach supports

54

several strategies to maintain each task attribute. For
example, to manage the task performance, ADM could
use active redundancy, passive redundancy, or by
migrating the task execution to a faster machine when
the assigned machine becomes heavily loaded. The
appropriate management scheme can be selected at
runtime depending on the system state and the current
available resources as will be discussed in further
detail later.
The main management activities of TA can be
abstracted into three procedures or functions:
Change_Detection, Analsis_Verification, and
Adaptation_Plan. The Change_Detection procedure is
responsible for detecting the conditions in which the
monitored tasks deviates from the acceptable behavior
or operation (e.g., the task performance degrades
severely due to bursty traffic conditions, or due to
software or hardware failures). The
Analysis_Verification algorithm is invoked whenever
a change is detected and to make sure that the change
is real and not due to false alarms. Once the change
event is verified and its type is identified, the
Adaptation Plan procedure is invoked to execute the
appropriate adaptation scheme.

Proactive_Application_Management Algorithm
1 For each Ap Ap;e ACM(Apj),
2 Assign Application Delegated Manager ADM
(Api)

Lunch ADM (Api)
While (AEE(Api) is running) do

For each Service S;6 APi
*i 6 {Sf„ Spcrf, Stuffy, Sconfig}
Start Service S^ApO,
Monitor St(Ap^

EndFor
EndWhile

EndProactive_Application_Management_Algorithm
Figure 2 Proactive Application Management Algorithm

Figure 2 shows the general Proactive Application
Management Algorithm for the PAMS prototype. The
application Execution Environment (AEE(Api)) refers
to all the resources allocated to run a give application
Api . While the application is running (step 4 in the
Proactive Application Management Algorithm of
Figure 2), the ADM starts all the task agents required
to manage the application requirements (performance,
security, fault, etc.) (Step 7,8 in the algorithm of
Figure 2) and then monitor the execution of that
application to detect any changes or deterioration
while it is running. In what follows, we discuss PAMS
approach to use mobile agents to manage the

performance and fault tolerance of parallel/distributed
applications.

3. Adaptive Performance Application
Management

(a) Active Redunduncy

f MCS >

l(fault V Pert. Vsecurityjfconfigurationj J

(b) Passive Redunduncy

f MCS >>
\C faultjf Pert, ^Tsecurity") (configuration} I

(c) Migration

Figure 3 Controlling Techniques of Performance
Management

Performance management for distributed systems
is complex due to the existence of many components
that need to be monitored and controlled. Performance
management techniques can be broadly characterized
into two schemes: monitoring and controlling.
Monitoring is the function that tracks the performance
activities of the resources, networks and their
applications. The controlling function enables
performance management to make adjustments to

55

improve performance. We need algorithms and
techniques to derive appropriate performance metrics
[9] [10], and resource indicators for different levels of
performance. Adjusting threshold schemes [13] and
polling intervals [14] are the main issues in
implementing the performance monitoring function.
Performance statistics can be used to recognize
potential bottlenecks or failures before they cause
problems. Five major prediction models for
performance predictions for parallel or distributed
applications are discussed in [10]. With performance
prediction, performance management schemes can
proactively manage large and complex systems.
Dynamic load-balancing [12] and process migration
[11] have also been studied to provide appropriate
performance management.

In our application performance management, we
monitor the execution times of an application as well
as the resource and network utilization. In addition, we
use redundancy techniques and task migration to
implement the control functions required to
dynamically manage the application performance. In
this paper, we evaluate three techniques to manage the
application performance: active redundancy, passive
redundancy and migration. Each technique is
implemented as an agent template as shown in Figure
3.
The active redundancy scheme duplicates the
execution of the application on two machines (see
Figure 3 (a)). In this scheme, the task agent will pick
up the results from the first machine that completes the
task execution. This approach has several advantages.
First, lead to better performance because we always
pick up the results from the faster machine. Second, it
simplifies the performance management since no need
to perform task migration or load balancing in the
system due to load changes or bursty traffic
conditions.

* load <5%

> load <99% and
no migration

load <99% and
migration

Tasks

The passive redundancy assigns each task to a
primary machine that will run the task and another
machine to be used as a backup whenever the task
performance deteriorates on the assigned machine (see
Figure 3 (b)). The backup machine is kept-up-to-date
in order to be ready to resume the task execution from
the last updated checkpoint. The main advantage of
this approach is that it needs less resources than the
active redundancy approach. In this scheme, one
backup machine can be used as a backup machine to
several tasks.

The third approach does not introduce redundancy
and improves the performance by task migration (see
Figure 3 (c)). However, the overhead of task migration
is high and it should be used only for large task
granularities where the migration overhead is
relatively small when compared to the task execution
time.

«load <5%

« load <99%, no
redundancy

load <99%,
active
redundancy

■ load <99%,
passive
redundancy

large
size

Tasks

Figure 4 Application Execution with migration scheme

Figure 5 Application Execution with Redundancy policies

We benchmarked the overhead associated with
implementing PAMS performance management
service for two application types: a small application
with an average execution time of 30 seconds and a
large application with an average execution time of
450 seconds. We evaluated the use migration, active
redundancy and passive redundancy techniques to
dynamically mange the performance of these two
applications. If, during the application execution, the
load on a machine suddenly increased to 99% CPU
utilization, the migration approach was able to
improve the performance by 25% for the small size
application (approximately 40 seconds) and by 75%
for the large application (approximately 308 seconds)
as shown in Figure 4. The active redundancy
technique achieved a 31% performance gain for the
small application and 174% for the large application as
shown in Figure 5. Similar results were achieved in
the passive redundancy approach, where a 22%
performance gain was achieved for the small

56

application and a 114% performance gain for the large
application.

4. Adaptive Fault Tolerance

The main goal of the application fault
management is to efficiently recover from
hardware/software failures of the system resources.
Redundancy is an important technique to detect and
recover from component failures in the system. The
redundancy can be in the form of hardware, software,
or time [15]. As the system increases its complexity,
more sophisticated techniques are needed to manage
those redundancies. In addition, the fault management
scheme must be flexible and adaptive. In SCOP [17], a
design methodology is proposed to introduce support
techniques to reduce the resource cost of fault-tolerant
software, both in space and time, by providing
designers with a flexible redundancy architecture in
which dependability and efficiency can be adjusted
dynamically at run time. In another work [18], the use
of mobile agents to support adaptive fault tolerance is
implemented. In our adaptive application fault-
tolerance approach, we use mobile agents to efficiently
manage the redundancy. We evaluate two redundancy
techniques: Passive and Active redundancy.

[®> <®)l l®> <Ä>| I«
Figure 6 Active Redundancy Techniques for Fault

Management

In the active redundancy technique shown in
Figure 6, we assign two identical tasks to two
machines that are managed by two Task Agents (TAs);
one task is designated as the primary task while the

second one is referred to as the secondary task. In this
scenario, the ADM doesn't need to determine the
adaptation plan when a fault occurs. If the fault occurs
in the primary task, the results can be picked up
without any delay from the secondary task that
becomes the new primary task once its task agent
detects the failure in the primary task due to software
or hardware failures. In addition to reducing the time
for fault detection, active redundancy technique
simplifies the communication between task agents.
Figure 8 shows the overhead incurred by applying this
redundancy scheme to adaptively manage the faults of
three applications with three tasks each. In the small
application case (execution time is around 60s), the
overhead incurred in using our scheme to detect and
recover from one task failure, two task failures, and
three task failures are 0.10%, 0.18%, and 0.22%,
respectively (see Figure 7). For medium and large
applications, the overhead in managing one, two or
three task failures is very small (less than 0.02%).

0.25

0.2

Time o.15
Overhead

(%) 0.1

0.05

0

« Small (60s)
m Medium (600s)

» Large (6000s)

Number of Task
Failures

Figure 7 The overhead of Active Redundancy Technique

The second approach is based on using passive
redundancy in managing the application faults (see
Figure 8). In this scenario, we assign the task to two
machines: one is designated as the primary machine
while the second machine is designated as the backup
machine. The backup machine does not run the task as
is done in the active redundancy case, but it is kept up-
to-date about the task execution periodically so it can
resume the task execution from the last checkpoint
(update) if a fault occurred in the primary task.
Furthermore, the backup machine could be assigned as

57

a backup machine for more than one task. This
improves the utilization of the system resources.
Figure 9 shows the overhead incurred in applying this
redundancy technique to manage the faults of three
applications. For a small application with three tasks,
the overhead incurred to manage one task failure, two
task failures, and three task failures are 0.18%, 0.26%,
and 0.42%. For a medium to large size application, the
overhead to manage one, two or three task failures is
very small (less than 0.02%).

It is clear from the experimental results that our
approach is very efficient, especially, for large
parallel/distributed applications. Furthermore, the use
of mobile agents and agent templates, we can
dynamically select the appropriate redundancy
technique at runtime depending on the system load and
number of available resources.

Figure 8 Passive Redundancy Techniques for Fault
Management

5. Conclusion

In this paper, we presented our approach to implement
a Proactive Application Management System (PAMS).
The PAMS architecture is based on integrated
management framework being developed at the
University of Arizona [8]. The experimental results of
the PAMS management services to manage the
performance and fault tolerance execution of three
applications of different sizes (small, medium and
large demonstrate that our agent-based approach can

lead to significant gains in performance and low
overhead in fault management. We are currently
implementing additional services to balance the load
across the network resources and maintain the system
and application security requirements.

Time
Overhead

(%)

0.45
0.4

0.35
0.3

0.25
0.2

0.15
0.1

0.05"

* Small (60s)

ss Medium (600s)

■ Large (6000s)

Number of Task
Failures

Figure 9 The overhead of Passive Redundancy Technique

6. Reference

[1] S. Waldbusser, Remote Network Monitoring
Management Information Base RFC1757, Feb. 1995.
[2] J. Pavon and J. Tomas, CORBA for Network and
Service Management in the TINA Framework, IEEE
Communication Magazine, March 1998.
[3] J. P. Thompson, Web-Based Enterprise
Management Architecture, IEEE Communication
Magazine, March 1998
[4] G. Goldszmidt and Y. Yemini, Distributed
Management by Delegation, in 15th international
Conference on Distbuted Computing, June 1995.
[5] M. Baldi, S. Gai and G. Picco, Exploiting Code
Mobility in Decentalized and Flexible Network
Management, In First International Workshop, MA97,
Berlin, Germany, April 97.
[6] C. Krupczak and J. Saperia, Definition of System-
Level Managed Objects for Applications, RFC2287,
Feb 1998.
[7] C. Kalbfleisch, C. Krupczak, R. Presuhn, and J.
Saperia, Application Management MIB, Internet-draft,
Nov. 98.

58

[8] S. Hariri, Y. Kim, P.Varshney, RiCamiski. D
haugue, C Maciag, The End-to-End Proactive
Management. IEEE/IFIP 1998 Network Operations
and management Symposium, Feb. 1998
[9] Michael Katchabaw, Stephen Howard, Andrew
Marshall, Michael Bauer, "Evaluating the Cost of
Management: A Distributed Application Management
Testbed," Proceeding of the 1996 CAS
conference(CASCON'96) Toronto, Canada, Nov. 12-
14pp2941.
[10] Tomas Fahringer, "Automatic Performance
Prediction of Parallel Programs" Kluwer Academic
Publishers, 1996
[11] Michael Litzkow, "Supporting Checkpointing and
Process Migration outside the Unix Kernel," Usenix
Winter Conference, San Francisco, California, 1992
[12] Mohammed Zaki, Wei Li, Srinivasan
Parthasarathy "Customized Dynamic Load Balancing
of a Network of Workstations/Technical Report 602,
Dec. 1995
[13] Marina Thottan, Chuanyi Ji, "Adaptive
Thresholding for Proactive Network Problem
Detection, Procedding of the 1998 international
workshop for Systems Management, Newport, April,
1998.
[14] P Dini, G. Bochmann,T. Koch, B. Kramer,
"Agent based Management of Distributed Systems
with Variable Polling Frequency Policies,"
[15] A. Avizienis. "Fault-Tolerant Systems." IEEE
Transactions on Computers, C-25(12):1304-1312,
December 1976.
[16] P. Jalote. "Fault Tolerance in Distributed
Systems." Prentice Hall, 1994
[17] J. Xu, A. Bondavalli, F. D. Giandomenico.
"Dynamic Adjustment of Dependability and
Efficiency in Fault-Tolerant Software", in "Predictably
Dependable Computing Systems", B. Randell, J. C.
Laprie, H. Kopetz and B. Littlewood Ed., Springer-
Verlag, 1995, pp.155-172.
[18] S. Bagchi, K. Whisnant, Z. Kalbarcyzk, R.K.
Iyer. "Chameleon: Adaptive Fault Tolerance Using
Reliable, Mobile Agents", The 27th Fault Tolerance
Computer Symposium, Munich, Germany, June 23-25
1998

computing systems, and software architecture. Email:
y hkim @ ece.arizona.edu

Dr. Salim Hariri is currently an Associate Professor
in the Department of Electrical and Computer
Engineering at The University of Arizona. Dr. Hariri
received his Ph.D. in computer engineering from
University of Southern California in 1986, and a M.Sc.
degree from The Ohio State University. He is the
Director of the Center for Advanced TeleSysMatics
(CAT): Next-Generation Network-Centric Systems.
His current research focuses on high performance
distributed computing, agent-based proactive and
intelligent network management systems, design and
analysis of high speed networks, benchmarking and
evaluating parallel and distributed systems, and
developing software design tools for high performance
computing and communication systems and
applications. Dr. Hariri is the co-Editor-In-Chief for
the Cluster Computing. Dr. Hariri served as the
General Chair of the JEEE International Symposium
on High Performance Distributed Computing (HPDC).

Muhamad Djunaedi received the B.S. degree in
computer and electrical engineering from Purdue
University in 1995. Since 1998, he has been studying
for M.S. degree in electrical and computer engineering
department at University of Arizona. His research
interests include mobile agent, fault tolerance,
distributed system and management of information
system. Email: djunaedi@ece.arizona.edu

Yoonhee Kim is currently a Ph.D. candidate in the
department of Electrical Engineering and Computer
Science at Syracuse University and work in a research
engineer position at the University of Arizona. She
received her M.S. degree in Computer Information
Science from Syracuse University, New York at 1996.
Her research interests include system, network and
application management, distributed and parallel

59

Load Balancing Across Near-Homogeneous Multi-Resource Servers

William Leinberger, George Karypis, Vipin Kumar
Army High Performance Computing and Research Center

Department of Computer Science and Engineering, University of Minnesota
{leinberg, karypis, kumar}@cs.umn.edu

Rupak Biswas
MRJ Technology Solutions, Numerical Aerospace Simulation Division

NASA Ames Research Center, Moffett Field, CA 94035
rbiswas@nas.nasa.gov

Abstract

An emerging model for computational grids intercon-
nects similar multi-resource servers from distributed sites.
A job submitted to the grid can be executed by any of the
servers; however, resource size or balance may be differ-
ent across servers. One approach to resource management
for this grid is to layer a global load distribution system on
top of the local job management systems at each site. Un-
fortunately, classical load distribution policies fail on two
aspects when applied to a multi-resource server grid. First,
simple load indices may not recognize that a resource im-
balance exists at a server. Second, classical job selection
policies do not actively correct such a resource imbalanced
state. We show through simulation that new policies based
on resource balancing perform consistently better than the
classical load distribution strategies.

1. Introduction

An emerging model in high performance supercomput-
ing is to interconnect similar computing systems from ge-
ographically remote sites, creating a near-homogeneous
computational grid system. Computing systems, or servers,
are homogeneous in that any job submitted to the grid may
be sent to any server for execution. However, the servers
may be heterogeneous with respect to their exact resource
configurations. For example, the first phase of the NASA
Metacenter linked a 42-node IBM SP2 at Langley and a

"This work was supported by NASA grant NCC2-5268 and contract
NAS2-14303, and by Army High Performance Computing Research Cen-
ter (AHPCRC) cooperative agreement DAAH04-95-2-0003 and contract
DAAH04-95-C-0008. Access to computing facilities was provided by AH-
PCRC, Minnesota Supercomputer Institute.

144-node SP2 at Ames [7]. The two servers were homo-
geneous in that they were both IBM SP2s, with identical or
synchronized software configurations. However, they were
heterogeneous on two counts: the number of nodes in each
server, and the fact that the Langley machine consisted of
thin nodes while the Ames machine had wide nodes. A job
could be executed by either server without modifications,
provided a sufficient number of nodes were available on that
server.

The resource manager for the near-homogeneous grid
system is responsible for scheduling submitted jobs to avail-
able resources such that some global objective is satisfied,
subject to the constraints imposed by the local policies at
each site. One approach to resource management for near-
homogeneous computational grids is to provide a global
load distribution system (LDS) layered on top of the local
job management system (JMS) at each site. This architec-
ture is depicted in Figure 1. The compute server at each
site is managed by a local JMS. Users submit jobs directly
to their local JMS which places the jobs in wait queues un-
til sufficient resources are available on the local compute
server. The global LDS monitors the load at each site. In
the event that some sites become heavily loaded while other
sites are lightly loaded, the LDS attempts to equalize the
load across all serves by moving jobs among the sites. The
JMS at each site is then responsible for the detailed allo-
cation and scheduling of local resources to jobs submitted
directly to it, as well as to jobs which are assigned to it by
the global LDS. The local JMS also provides load status
to the LDS to support load distribution decisions, as well
as a scheduling Applications Programming Interface (API)
to implement these decisions. For example, in the NASA
Metacenter, a peer-aware receiver-initiated load balancing
algorithm was used to move work from one IBM SP2 to
the other. When the workload on one SP2 dropped below

0-7695-0556-2/00 $10.00 © 2000 IEEE
60

User Job
Submission

Global Load Distribution
Load Index
Information Policy
Transfer Policy
Location Policy
Selection Policy

User Job
Submission

Global Load Distribution
Load Index
Information Policy
Transfer Policy
Location Policy
Selection Policy

Figure 1. Near-Homogeneous Metacomputing Resource Management Architecture

a specified threshold, the peer-aware load balancing mech-
anism would query the other SP2 to see if it had any work
which could be transferred for execution.

The architecture depicted in Figure 1 is conceptually
identical to classical load balancing in a parallel or dis-
tributed computer with two notable exceptions. First, the
compute server at each site may be a complex combina-
tion of multiple types of resources (CPUS, memory, disks,
switches, and so on). Similarly, the applications submit-
ted by the users are described by multiple resource re-
quirements. We generalize these notions and define a
2f-resource server and corresponding if-requirement job.
Each server St has K resources, S?, S},..., Sf'1. Each
job Jj is described by its requirements for each resource
type, Jj\ J?,..., Jf~l. Note that the servers are still con-
sidered homogeneous from the jobs' perspective, as any job
may be sent to any server for execution.

The second exception is that the physical configura-
tions of the K resources for each server may be heteroge-

neous. This heterogeneity can be manifested in two ways.
The amount of a given resource at one server site may be
quite different than the configuration of a server at another
site. For example, server Si may have more memory than
server Sj. Additionally, servers may have a different bal-
ance of each resource. For example, one server may have
a (relatively) large memory with respect to its number of
CPUs while another server may have a large number of
CPUs with less memory.

Classical load balancing attempts to maximize system
throughput by keeping all processors busy. We extend this
notional goal to fully utilizing all K resources at each site.
One heuristic for achieving this objective is to match the job
mix at each server with the capabilities ofthat server, in ad-
dition to balancing the load across servers. For example, if
a server has a large shared memory, then the job mix in the
local wait queue should be adjusted by the global LDS to
contain jobs which are generally memory intensive. Com-
pute intensive jobs should be moved to a server which has

61

a relatively large number of CPUs with respect to its avail-
able memory. The goal of the LDS is to therefore balance
the total resource demand among all sites, for each type of
resource.

This work investigates the use of load balancing tech-
niques to solve the global load distribution problem for
computational grids consisting of near-homogeneous multi-
resource servers. The complexity of multi-resource com-
pute servers along with the multi-resource requirements of
the jobs cause the methods developed in past load balanc-
ing research to fail in at least two areas. First, the defini-
tion of the load at a given server is not easily described by
a single load index. Specifically, a resource imbalance, in
which the local job mix does not match the capabilities of
the local server, is not directly detectable. This impacts the
ability of the global LDS to match the workload at a site
to the capabilities of the site. We propose a simple exten-
sion to a classical load index measure based on a resource
balancing heuristic to provide this additional level of de-
scriptive detail. Second, once a resource imbalance is de-
tected, existing approaches to selecting which jobs to move
between servers fail to actively correct the problem. We
provide an analogous job selection policy, also based on re-
source balancing, which heuristically corrects the resource
imbalance. The combination of these two extensions pro-
vides the framework for a global LDS which consistently
outperforms existing approaches over a wide range of com-
pute server characteristics.

The remainder of this paper is organized as follows. Sec-
tion 2 provides an overview of relevant past research, con-
cluding with variants of a baseline load balancing algorithm
drawn from the literature. Section 3 investigates the limi-
tations of the baseline algorithms, and provides extensions
based on the resource balancing heuristic. A description
of our simulation environment is given in Section 4. The
performance results of our new load balancing methods as
compared to the baseline algorithms is also summarized in
Section 4. Finally, Section 5 provides conclusions and a
brief overview of our current work in progress.

2. Preliminaries

Research related to this effort is drawn from single server
scheduling in the presence of multiple resource require-
ments and general load balancing methods for homoge-
neous parallel processing systems.

Recent research in job scheduling for a single server has
demonstrated the benefits of including information about
the memory requirements of a job in addition to its CPU
requirements [13, 14]. The generalized If-resource sin-
gle server scheduling problem was studied in [10], where
it was shown that simple backfill algorithms based on
multi-dimensional packing heuristics consistently outper-

form single-resource algorithms, with increasing K. These
efforts all suggest that the local JMS at each site should be
multi-resource aware in making its scheduling decisions.
This induces requirements on the global LDS to provide a
job mix to a local server which maximizes the success rate
of the local server.

The general goal of a workload distribution system is to
have sufficient work available to every computational node
to enable the efficient utilization of that node. A central-
ized work queue provides every node equal access to all
available work, and is generally regarded as being efficient
in achieving this goal. Unfortunately, the centralized work
queue is generally not scalable as contention for the sin-
gle queue structure increases with the number of nodes. In
massively parallel processing systems where the number of
nodes was expected to reach into the thousands, this was a
key concern. In distributed systems, the latency for query-
ing the central queue potentially increases as the number of
nodes is increased. Load balancing algorithms attempt to
emulate a central work queue by maintaining a represen-
tative workload across a set of distributed queues, one per
compute node. In this paper, we investigate only the perfor-
mance of load balancing across distributed queues.

Classical load balancing algorithms are typically based
on a load index which provides a measure of the workload
at a node relative to some global average, and four policies
which govern the actions taken once a load imbalance is
detected [15]. The load index is used to detect a load im-
balance state. Qualitatively, a load imbalance occurs when
the load index at one node is much higher (or lower) than
the load index on the other nodes. The length of the CPU
queue has been shown to provide a good load index on time-
shared workstations when the performance measure of in-
terest is the average response time [2, 11]. In the case of
multiple resources (disk, memory, etc.), a linear combina-
tion of the length of all the resource queues provided an
improved measure, as job execution time may be driven by
more than CPU cycles [5].

The four policies that govern the action of a load balanc-
ing algorithm when a load imbalance is detected deal with
information, transfer, location, and selection. The informa-
tion policy is responsible for keeping up-to-date load infor-
mation about each node in the system. A global information
policy provides access to the load index of every node, at the
cost of additional communication for maintaining accurate
information [1].

The transfer policy deals with the dynamic aspects of a
system. It uses the nodes' load information to decide when
a node becomes eligible to act as a sender (transfer a job
to another node) or as a receiver (retrieve a job from an-
other node). Transfer policies are typically threshold based.
Thus, if the load at a node increases beyond a threshold Ts,
the node becomes an eligible sender. Likewise, if the load

62

at a node drops below a threshold Tr, the node becomes an
eligible receiver. Load balancing algorithms which focus
on the transfer policy are described in [2, 15, 16].

The location policy selects a partner node for a job trans-
fer transaction. If the node is an eligible sender, the location
policy seeks out a receiver node to receive the job selected
by the selection policy (described below). If the node is
an eligible receiver, the location policy looks for an eligible
sender node. Load balancing approaches which focus on
the use of the location policy are described in [8, 9].

Once a node becomes an eligible sender, a selection pol-
icy is used to pick which of the queued jobs is to be trans-
ferred to the receiver node. The selection policy uses several
criteria to evaluate the queued jobs. Its goal is to select a job
that reduces the local load, incurs as little cost äs possible
in the transfer, and has good affinity to the node to which
it is transferred. A common selection policy is latest-job-
arrived which selects the job which is currently in last place
in the work queue.

The primary difference between existing load balancing
algorithms and our global load distribution requirements is
that our node is actually a multi-resource server. With this
extension in mind, we define the following baseline load
balancing algorithm:

• Load Index. The load index is based on the average
resource requirements of the jobs waiting in the queue
at a given server. This index is termed the resource
average (RA) index. For our multi-resource server for-
mulation, each resource requirement for a job in the
queue represents a percentage of the server resource
that it requires, normalized to unity. Therefore, the RA
index is a relative index which can be used to compare
the loads on different servers.

• Information Policy. As the information policy is not
the subject of this study, we choose to use a policy
which provides perfect information about the state of
the global system. We assume a global information
policy with instantaneous update.

• Transfer Policy. The transfer policy is threshold based,
since it has been shown to provide robust performance
across a range of load conditions. A server becomes
a sender when its load index grows above the global
load average by a threshold, Ts. Conversely, a server
becomes a receiver when its load index falls below the
global average by a threshold Tr.

• Location Policy. The location policy is also not the
subject of this study. Therefore, we use a simple lo-
cation policy which heuristically results in fast con-
vergence to a balanced load state. In the event that
the transfer policy indicates that a server becomes a

sender, the location policy selects the server which cur-
rently has the least load to be the receiver. However,
the selected server must also be an eligible receiver,
meaning that it currently has a load which is Tr below
the global average. Conversely, if the server is a re-
ceiver, the location policy selects the server which cur-
rently has the highest load that is Ts above the global
average. If no eligible partner is found, the load bal-
ancing action is terminated.

• Selection Policy. A latest-job-arrived selection policy
(LSP) is used to select a job from the sending server
to be transferred to the receiving server. This selec-
tion policy generally performs well with respect to
achieving a good average response time, but suffers
from some jobs being moved excessively. Therefore,
each job keeps a job transfer count which records the
number of times it has been moved. When this count
reaches a threshold Tc, the job is no longer eligible to
be selected for a transfer. Jobs which are already exe-
cuting are excluded from being transferred.

The sender initiated (SI), receiver initiated (RI), and
symmetrically initiated (SY) algorithm variants are gener-
ated using a transfer policy which triggers a load balancing
action on Ts,Tr, or both, respectively. All baseline variants
use the RA load index and the LSP job selection policy.

3. Multi-Resource Aware Load Balancing Poli-
cies

In this section, we first discuss the limitations of the re-
source average load index, RA, and the latest-job-arrived
selection policy, LSP, of the baseline load balancing algo-
rithms for the heterogeneous multi-resource servers prob-
lem. We provide an example which illustrates where these
naive strategies can fail to match the workload to the
servers, resulting in local workloads which exhibit a re-
source imbalance. We then provide extensions to the load
index and the job selection policy which strive to balance
the resource usage at each server.

3.1. Limitations oftRA and LSP

The resource average load index, RA, and the latest-job-
arrived job selection policy, LSP, in the baseline algorithm
fail in the multi-resource server load balancing context. The
following discussion gives an example of these failures and
provides some insight into possible new methods. Our new
methods will be further discussed in Section 3.2.

In past research, the index used to measure the load on
a server with respect to multiple resources consisted of a

63

linear combination or an average of the resource require-
ments for the actively running jobs in a time-shared sys-
tem. A corresponding index which may be applied to batch
queued space-shared systems is to use the average of the
total resource requirements of the jobs waiting in the wait
queue. However, this may not always indicate a system state
where there exists a resource imbalance, that is, the total
job requirements for one resource exceeds the requirements
for the other resources. Essentially, a server with a mis-
matched work mix will be forced to leave some resources
idle while other resources are fully utilized, resulting in an
inefficient use of the system as a whole.

Figure 2(a) depicts the state of the job ready queues,
RQo and RQi for a two-server system, S0 and Si. As-
sume that each server has three resources, S°, S-, and Sf,
and that the configuration for the two servers is identical,
S° = S?, So = Si and S^ = Sf. Each of the two ready
queues currently has two jobs. The job which arrived lat-
est at each server is on the top of the ready queue for that
server. For example, the latest arriving job, JL, in RQo has
the resource requirements J° = 2, J\ = 3, and JL = 2.
Note that the resource requirements for a job are given as
a percentage of the total available in the server. The total
workload for each resource, k, in a given server, Sit is de-
noted as

W? = J2 (Ji)' °<i<5> 0 < * < Ä".
Jj€RQ<

The resource average load index for a given server, S», is
then given by

RAt = Avg(Wf), 0<k<K.

In this example, K = 3 and RA0 = RAX = 4.
The third queue in Figure 2(a), RQAV9, represents the

global average workload for each resource in RQo and
RQi. The global average workload for resource k, is then
given by

" Ävg Avg{Wf), 0<i<S.

Here, S = 2 and W°A WAvg = W\vg = 4, meaning
that on average, each RQi has a total requirement of 4 per-
cent for each resource. The global resource average load
index is simply

RA = Avg{Wk
Avg), 0<k<K,

which in this example is RA = 4. Server S» is defined to be
in a load balanced state as long as RA * (1 - Tx) < RA, <
RA*(1 + TX), where Tx is the transfer policy threshold, as
defined in Section 2. Since RA0 - RAX = RA, the system
is believed to be in a load balanced state.

Even though the RA index indicates a balanced load, it is
clear from Figure 2(a) that the job mix in RQo has a higher

requirement for resource Si than for resources Sg and S$.
The result is that S0 will probably be unable to fully utilize
resources S# and SQ as resource SQ becomes the bottleneck.
Conversely, the job mix in RQ\ has a higher requirement
for resources S° and S? than for S\, resulting in an ineffi-
cient use of resource S\. Therefore, the workload at each
server suffers from a resource imbalance.

In order to detect this problem, we define a second load
index, called resource balance (RB), which measures the
resource imbalance at a given server or globally across the
system. Namely, for server Si, 0 < i < S,

RBt =
MaxjWf1) _ Max(Wk)

Avg(Wt
k RAi

Similarly,

RB =
Max{Wk

Avg) _ Max{Wk
Avß)_

Avg{Wk
Avg) RAAvg

0<k<K.

0<k<K.

Heuristically, the RB index of a server measures how bal-
anced the job mix is with respect to their different re-
source requirements. If the total resource requirements are
all the same, then the local RB measure is unity, since
Max{Wl) = Avg{Wt

k) . This corresponds to the case
where the workload is matched to the server. The global
RB is a measure of how well the total work in the system
matches the capabilities of all the servers in the system. The
goal of the load balancing algorithm is to move each server
towards this global balanced resource level. In Figure 2(a),
RBo = 6/4 or 1.5, while RBX = 5/4 or 1.25. Since
RB = 4/4 or 1.0, the two servers recognize the existence
of a resource imbalanced state.

Once a resource imbalance is detected, the load bal-
ancing policies must actively correct the imbalance. Fig-
ure 2(b) shows the result of using the LSP policy to ad-
just the resource imbalance. Server So sends its latest
job to Si, while Si sends its latest job to S0. Note that
the resource balance index improves on both servers, with
RBo = 4/3.33 or 1.2, while RBX = 5/4.66 or 1.07. How-
ever, the resource balance could have been improved even
further, as shown in Figure 2(c), by transferring the jobs
which best balance the workload at both servers. We refer
to this heuristic policy as the balanced job selection policy
or BSP.

3.2. Resource Balancing Algorithms

In the following discussion, we extend the baseline load
balancing algorithm with the heuristic RB load index and
the BSP job selection policy. In general, the goal of these
extensions is to move the system to a state where the load is
balanced across the servers and the job mix at each server
matches the resource capabilities provided by that server.
These extensions are described below.

64

w; T."°T
Wn W.

RBn

V
RA,

2

; i ;
; i ;

2

3

RB,

RAj
4 4

RQo RQ RQ Avg

(a) Comparison of RA and RB Load Index Measures

T W
T°lT°

2

1

. 1 .

;;3 1 2
: 1

RB0 -

\
RA0

2

3
; 3

1

2

.3

->RB,

RAj

4 4 4

RQ, RQo RQ, -VAvg

(b) Result of Latest Job Selection Policy (LSP)

TTT '0 ' 1 '2 w0w0w0
2

\ \ \

RB0 RB,
./ / \ 1 1 \

: 2
— 3

2 RA0 3
RAj

4 4 4
fe. 3 3

fejSli 1 2 1

.^Avg

RA Avg

RB Avg

RA Avg

RBAvg

RA Avg

RQo RQi RQAVS

(c) Result of Balance Job Selection Policy (BSP)

Figure 2. Limitations of RA and LSP

65

Sender Initiated, Balanced Selection Policy: SI-BSP.
The baseline sender initiated algorithm, SI, is extended to
SI-BSP by modifying the selection policy as follows. The
fact that the load balancing action was triggered by the con-
dition that the load index, RA, of a given server was above
the global average implies that it has more work than at least
one other server. Thus, this heavily loaded server needs to
transfer work to another server. The BSP policy selects the
job for transfer (out) which results in the best resource bal-
ance of the local queue. Note that transferring a job may
actually worsen the resource imbalance, but we proceed
nonetheless so that the overall excess workload can be re-
duced. Also, the resource balance at the receiving server
may worsen as well. However, the receiving server cur-
rently has a workload shortage, so it may be executing less
efficiently anyway.

Sender Initiated, RB Index, Balanced Selection Pol-
icy: SI_RB_BSP. The SLRB.BSP algorithm extends the
SI-BSP algorithm by including the RB load index, and mod-
ifying the transfer and selection policies as follows. First,
the transfer policy triggers a load balancing action based on
RA or RB. If the action is based on RA, SLRB-BSP pro-
ceeds as SI-BSP. However, if the action is based only on
RB, the selection policy is further modified over that used
for SIJBSP. The job which positively improves the resource
balance of the local queue the most is selected for transfer
(out). If no such job is found, no action occurs.

Receiver Initiated, Balanced Selection Policy: RLBSP.
The baseline receiver initiated algorithm, RI, is extended to
RI-BSP in a fashion complementary to SI_BSP

Receiver Initiated, RB Index, Balanced Selection Pol-
icy: RI-RB-BSP. The RI_RBJBSP algorithm extends
the RI-BSP algorithm in a fashion complementary to
SI-RB-BSP.

Symmetrically Initiated, Balanced Selection Policy:
SYJBSP. The baseline symmetrically initiated algorithm,
SY, is extended to SY.BSP as follows. If the transfer pol-
icy triggers a send action, SY-BSP proceeds as SI-BSP Al-
ternatively, if the transfer policy triggers a receive action,
SY-BSP proceeds as RLBSP.

Symmetrically Initiated, RB Index, Balanced Selection
Policy: SY-RB.BSP. The SY-RB-BSP algorithm ex-
tends the SY-BSP algorithm as follows. If the action is
based on RA, SY.RBJBSP proceeds as SYJ3SP However,
if the action is based only on RB, then SY-RB.BSP per-
forms both send and receive actions using methods identi-

cal to SI_RB-BSP and RI-RB-BSP. Heuristically, this main-
tains the RA index but improves the RB index.

4. Experimental Results

The baseline and extended load balancing algorithms
were implemented on a simulated system that is described
in Section 4.1. The experimental results are summarized in
Section 4.2.

4.1. System Model

The simulation system follows the general form of Fig-
ure 1. The server model, workload model, and performance
metrics are discussed below.

Server Model. A system with 16 servers was used for the
current set of experiments. A server model is specified by
the amount of each of the K resource types it contains and
the choice of the local scheduler. For all simulations, the lo-
cal scheduler uses a backfill algorithm with a resource bal-
ancing job selection criteria [10]. To our knowledge, this
is the best performing local scheduling algorithm for the
multi-resource single server problem. At this point, we as-
sume that the jobs are rigid, meaning that they must receive
the required resources before they can execute. We also
assume that the execution time of a job is the same on any
server. Simulation results are reported for a value of K = 8.

Two independent parameters were used to specify the
degree of heterogeneity across the servers in the simulated
system. First, within a single server, the server resource
correlation, Src, parameter specifies how the resources of a
given server are balanced. This represents the intra-server
resource heterogeneity measure. For example, assume each
server has two resources, CPUs and memory. If a cor-
relation value of about one were specified, then a server
with a large memory would also have a large number of
CPUs. Conversely, if a correlation value of about negative
one were used, then a server with a large memory would
probably have a low number of CPUs. Finally, a correla-
tion value near zero implies that the resource sizes within a
given server are unrelated. The value of the resource cor-
relation ranged from 0.15 to 0.85 in the simulations (our
simulator is capable of generating STC values in the range
-1.0/(K - 1) < Src < 1.0).

The second parameter is the server resource variance,
Srv, which is used to describe range of sizes for a single
resource which may be found across all of the servers. This
represents the inter-server heterogeneity measure. Again,
a resource variance about one implies that the number of
CPUs found in server St will be approximately the same as
the number of CPUs found in server Sj for 0 < i,j < S.
In general, a resource variance of Srv = V implies that

66

the server Si with the largest amount of a resource k has
V times as much of that resource as the server Sj which
has the smallest amount of that resource. All other servers
have some amount of resource k between S,* and 5-f. The
value of the resource variance ranged from 1.2 to 8.0 for our
experiments.

Workload Model. The two main aspects of the simulated
workload are the generation of multi-resource jobs and the
job arrival rate. Recent studies on workload models have fo-
cused primarily on a single resource — the number of CPUs
that a job requires. Two general results from these studies
show that the distribution of CPU requirements is gener-
ally hyperexponential, but with strong discrete components
at powers of two and squares of integers [3]. An addi-
tional study investigated the distribution of memory require-
ments on the 1024 processor CM-5 at Los Alamos National
Laboratory. The conclusion was that memory requirements
are also hyperexponentially distributed with strong discrete
components. Additionally, there was a weak correlation be-
tween the CPU and memory requirements for the job stream
studied [4].

We generalize these results to a if-resource workload as
follows. The multiple resource requirements for a job in
the job stream are described by two parameters. The kth
resource requirement for job j, Jj, is drawn from a hyper-
exponential distribution with mean X*. Additionally, the
correlation between resource requirements within a single
job, Jrc is also specified. A single set of workload parame-
ters was used for all of the initial simulations reported here,
in which Xk = 0.15,0 < k < K, and the resource cor-
relation Jrc = 0.25. Essentially, the average job requires
15% of each resource in an average server, and its relative
resource requirements are near random.

Figure 3(a) shows the single resource probability distri-
bution used for the workload. Note that the probability for
small resource requirements is reduced over a strictly expo-
nential distribution. We justify this modification by noting
that small jobs are probably not good candidates for load
balancing activity as they do not impact the local job sched-
uler efficiency significantly (except to improve it). Fig-
ure 3(b) shows the joint probability distribution for a dual
resource (K = 2) system. In general, the joint probability
distribution shown in Figure 3(b) is nearly identical for all
pairs (i,j),0 < i,j < K, of resources in the job stream.
This workload model has also been used to study multi-
resource scheduling on a single server [10].

The job arrival rate generally affects the total load on the
system. A high arrival rate results in a large number of jobs
being queued at each server, while a low arrival rate reduces
the number of queued jobs. For our initial simulations, we
selected an arrival rate that resulted in an average of 32 jobs
per server in the system. As each job arrives, it is sent to a

server selected randomly from a uniform distribution rang-
ing from 0 to S - 1. A final assumption is that the nature
of the workload model impacts only the absolute values of
the system performance, not the relative performance of the
algorithms under study.

Performance Metrics. A single performance metric,
throughput, is our current method for evaluating these al-
gorithms. Throughput is measured as the total elapsed time
from when the first job arrives to when the last job departs.

4.2. Simulation Results

Our initial simulation results are depicted in Figures
4(a)-(f). Recall that load balancing algorithms essentially
try to mimic a central work queue from which any server
can select jobs as its resources become available. Therefore,
the performance results for the load balancing algorithms
are normalized against the results of a system with a central
work queue. For each graph in the figure, the x axis rep-
resents the server resource variance parameter, Srv, as de-
scribed previously, while the y axis represents the through-
put of the algorithms, normalized to the throughput of the
central queue algorithm. The following paragraphs summa-
rize these results.

Impact of the Resource Balancing Policies. Figures
4(a)-(c) depict the performance of the sender initiated, re-
ceiver initiated, and symmetrically initiated baseline and
extended algorithms, normalized to the performance of the
central queue algorithm. For these experiments, K = 8 and
Src = 0.50 (resources within a server are very weakly cor-
related). In comparing the performance of the baseline and
the extended algorithms, we see that the extended variants
consistently out-perform the baseline algorithm from which
they were derived. The addition of the intelligent job se-
lection policy, BSP, provides a 5-10% gain in the SIJBSP,
RLBSP, and SY_BSP algorithms over the SI, RI, and SY
algorithms, respectively. Moreover, the addition of the RB
load index and associated transfer policy further increases
these gains for SLRB.BSP, RI_RB_BSP, and SY_RB_BSP.

Effects of Server Resource Correlation, Src. The jobs
which arrive at each "server may or may not have a natu-
ral affinity for that server. For example, if a server has a
large memory and a few CPUs, a job which is memory in-
tensive has a high affinity for that server. However, a job
which is CPU intensive has a low affinity to that server.
For a job stream with a fixed intra-job resource correla-
tion, Jrc, the probability that an arriving job has good affin-
ity to a server increases as Src increases. A larger natural
affinity increases the packing efficiency of the local sched-
ulers, improving the throughput. Figures 4(d)-(f) compare

67

0.009

0.008

 1 1 1 1 1 1 1 1 1

0.007 ■

0.006
>.
§ 0.005
<D

1 0.004

■

0.003

0.002

0.001 J w w w**n ̂
^^^^

0
() 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Range

(a) Single Resource Probability Distribution

Joint PDF

Resource

Resource 0

(b) Dual Resource Joint Probability Distribution, Correlation=0.25

Figure 3. Multi-Resource Workload Model

the performance of the RI-RB .BSP, SI_RB_BSP, and the
SY_RB_BSP algorithms, over the range of server resource
correlation values, Src = {0.15,0.50,0.70}. Generally, as
the value of STC increases, the performance of the load bal-
ancing algorithms also improve, due to an increased proba-
bility of natural affinity.

The SI_RB-BSP algorithm performs slightly better than
RIJRB_BSP at low values of Src as seen in Figure 4(d).
However, RI.RBJBSP begins to outperform SI_RB_BSP at
higher values of Src, as seen in Figures 4(e) and 4(f)- At low
values of 5rc, the SI variant can actively transfer out jobs
with low affinity, which occur with high probability, while
the RI variant can only try to correct the affinity of their to-
tal workload. Higher values of Srv magnify this problem.
Therefore, the performance advantage goes to the SI vari-
ant. For higher values of Src, the probability of good job-
server affinity is also higher. When accompanied by higher
Srv, the system may be thought of as having some larger
servers and some smaller servers, with good job affinity to
any server. In this case, the throughput of the system is
driven by the efficiency of the larger servers. In the SI vari-
ant, the smaller servers will tend to initiate load balancing
actions, by sending work to the larger servers. So while the
smaller servers may execute efficiently, the larger servers
may not. However, in the RI variant, the larger servers will
tend to initiate load balancing, and intelligently select which
work to receive from the smaller servers. Now, the larger
servers will tend to execute more efficiently. For this rea-
son, the performance advantage goes to the RI variant.

Impact of Server Resource Variation, Srv- As the re-
source variation, Srv, increases in the graphs of Figure 4,
the throughput of the load balancing algorithms drops rela-
tive to the central queue algorithm. This is due to the fact

that the average job size (size of the jobs resource require-
ments) is not taken into account when selecting jobs for
transfer. At higher server resource variances, some servers
have a very small amount of one or more resources. How-
ever, the average job size ending up on the servers with
small resource capacities is the same as those ending up
on the larger servers. The small size of the resources in
these servers, relative to the average resource requirement
of the arriving jobs, causes packing inefficiencies by the lo-
cal scheduler, due to job size granularity. In the case of a
centralized queue, the servers with small resource capacities
are more likely to find jobs with smaller resource require-
ments. In short, simply balancing the workload resource
characteristics is not sufficient. Other workload character-
istics must also be emulated in the local queues, such as the
average job requirements relative to the server resource ca-
pacities. This is a topic in our current work in progress and
is briefly discussed in Section 5.

Central Queue vs. Load Balancing. A final observation
may be drawn from the graphs in Figure 4. Even when
the servers are all similarly configured (e.g. Srv ~ 1 and
Src ~ 1). there is a consistent performance gap of 15% for
all baseline and extended load balancing algorithms with re-
spect to the central queue algorithm. This is due to the fact
that even if the load balancing algorithms are successful in
balancing the load, the local scheduler at each server may
not be able to find a job in its local queue to fill idle re-
sources, even if such a job exists in the queue of a different
server. Closing this gap is the subject of our current work
and is briefly discussed in Section 5.

68

Central Queue
Rl

RIBSP
Rl RB BSP

3 4 5 6 7
Server Resource Variance, Srv

(a) Receiver Initiated Variants

1.05

1

0.95
Q.

O)
3 g
t-

0.9

0.85
■o
(a
N

"iö
E
o
Z

0.8

0.75

0.7

0.65

0.6

Central Queue
SI RB BSP
Rl RB BSP

SY RB BSP

2 3 4 5 6 7
Server Resource Variance, Srv

(d) Server Resource Correlation: Src=0.15

I-

Central Queue
SI

SI BSP
SI RB BSP

3 4 5 6 7
Server Resource Variance, Srv

(b) Sender Initiated Variants

1.05

1

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

Central Queue
SI RB BSP
Rl RB BSP

SYRBBSP

2 3 4 5 6 7
Server Resource Variance, Srv

(e) Server Resource Correlation: Src=0.50

Q.
.C
D)
3
O

01
E
o
Z

Central Queue
SY

SYBSP
SY RB BSP

3 4 5 6 7
Server Resource Variance, Srv

(c) Symmetrically Initiated Variants

1

0.95

.C
3

0.9

1- 0.85
■o

1 0.8

p 0.75
o
z 0.7

0.65

0.6

Central Queue
SI RB BSP
Rl RB BSP

SY RB BSP

2 3 4 5 6 7
Server Resource Variance, Srv

(f) Server Resource Correlation: Src=0.70

Figure 4. Baseline and Extended Algorithm Performance Comparison

69

5. Summary and Work in Progress

In this paper, we defined a workload distribution prob-
lem for a computational grid with near-homogeneous multi-
resource servers. First, servers in the grid have multiple
resource capacities, and jobs submitted to the grid have re-
quirements for each of those resources. Additionally, the
servers are homogeneous in that any job submitted to the
grid can be executed by any of the servers, but heteroge-
neous in their various resource configurations. We next
investigated a load balancing approach to workload distri-
bution for this grid. We showed how previous baseline
load balancing policies for single resource systems failed
to maintain a workload at each server which had a good
affinity towards that server. We then proposed two orthog-
onal extensions based on the concept of resource balanc-
ing. The basic idea of resource balancing is that the local
scheduler is more effective in utilizing the resources of the
local server, if the total relative resource requirements of
all jobs in a local work queue match the relative capacities
of the server. Our simulation results show that our policy
extensions provided a consistent 5-15% increase in system
throughput performance over the baseline load balancing al-
gorithms.

However, there is still significant room for improvement
in the workload distribution approach. First, as the re-
source variance between servers grows, additional work-
load characteristics, beyond the total resource balance, must
be taken into account when evaluating the workload for a
given server. Specifically, we noted that the granularity
of jobs in a local queue impacts the performance of the
smaller servers. Intuitively, small jobs should be sent to
small servers, and large jobs should be sent to large servers.
Here, a large job is one that generally has large resource
requirements, and a large server is one that generally has
large resource capacities. Note that the size of a job is rela-
tive to the size of the server to which it is being compared.
Our current work in progress is investigating refinements to
the load balancing policies which improve the affinity of the
local workload to the local server. Note that these investi-
gations apply to single resource servers as well.

Second, there is a persistent performance gap between
a central queue approach to workload distribution and our
load balancing algorithms. Our conjecture is that even if the
load is perfectly balanced, restricting a server, Si, to execute
jobs only from its local queue will increase the percentage
of time that some of Si's resources remain idle, when there
may be a job in the queue of a different server, Sj, which
would fit in to the idle resources of server S,. These effects
were noted in our simulations in that even when the servers
were all nearly identical, and an equal load was being de-
livered to each server, the system throughput was still sig-
nificantly below the performance of the central queue algo-

rithm. Load balancing schemes were limited to about 85%
of the throughput of the central queue scheme at all tested
values of Srv and Src, as seen in Figures 4(a)-(f).

We are further motivated to look at a more central-
ized approach by real-world computational grids, such as
NASA's Information Power Grid (IPG) [6]. The current
implementation of the IPG uses services from the Globus
toolkit to submit jobs, query their status, and query the state
of the grid resources. Globus uses a centralized directory
structure, the Metacomputing Directory Service (MDS) to
store information about the status of the metacomputing
environment and all jobs submitted to the grid. Informa-
tion in the MDS is used to assist in the placement of new
jobs onto servers with appropriate resources within the grid.
While this approach is currently being used in the IPG,
there are questions about the scalability of such a central-
ized structure. For example, can a central structure han-
dle hundreds of sites and thousands of jobs? How about
fault tolerance? Our current work in progress is therefore
investigating compromises between a single central queue
and completely distributed queues. The general concept is
to keep work close to the servers where it will most likely
execute, and move work to a specific server when needed.
Recent research in dynamic matching and scheduling for
heterogeneous computing systems use similar approaches,
along with heuristics for matching a job to idle server re-
sources [12]. Our work in progress attempts to combine the
centralized nature of current mapping approaches with our
resource-balanced workload affinity approach.

6. Author Biographies

William (Bill) Leinberger is a Ph.D. student and Re-
search Fellow in the Department of Computer Science and
Engineering at the University of Minnesota. He received a
BS in Computer and Electrical Engineering from Purdue
University in 1984. His thesis covers topics in schedul-
ing in the presence of multiple resource requirements. His
other research interests include resource management for
computational grids, and general topics in the area of high-
performance computing architectures. Bill is currently on
an educational leave from General Dynamics Information
Systems, Bloomington, MN, where he has held positions as
a hardware engineer, systems engineer, and systems archi-
tect in the area of special-purpose processing systems.

George Karypis is an assistant professor at the depart-
ment of Computer Science and Engineering at the Univer-
sity of Minnesota. His research interests spans the areas of
parallel algorithm design, data mining, applications of par-
allel processing in scientific computing and optimization,
sparse matrix computations, parallel preconditioners, and
parallel programming languages and libraries. His recent
work has been in the areas of data mining, serial and parallel

70

graph partitioning algorithms, parallel sparse solvers, and
parallel matrix ordering algorithms. His research has re-
sulted in the development of software libraries for serial and
parallel graph partitioning (METIS and ParMETIS), hyper-
graph partitioning (hMEITS), and for parallel Cholesky fac-
torization (PSPASES). He has coauthored several journal
articles and conference papers on these topics and a book
title "Introduction to Parallel Computing" (Publ. Benjamin
Cummings/Addison Wesley, 1994). He is a member of
ACM, and IEEE.

Vipin Kumar is the Director of Army High Performance
Computing Research Center and Professor of Computer
Science at the University of Minnesota. His current research
interests include high performance computing, parallel al-
gorithms for scientific computing problems, and data min-
ing. His research has resulted in the development of the
concept of isoefficiency metric for evaluating the scalabil-
ity of parallel algorithms, as well as highly efficient par-
allel algorithms and software for sparse matrix factoriza-
tion (PSPACES), graph partitioning (METIS, ParMETIS),
VLSI circuit partitioning (hMETIS), and dense hierarchi-
cal solvers. He has authored over 100 research articles, and
coedited or coauthored 5 books including the widely used
text book "Introduction to Parallel Computing" (Publ. Ben-
jamin Cummings/Addison Wesley, 1994). Kumar has given
numerous invited talks at various conferences, workshops,
national laboratories, and has served as chair/co-chair for
many conferences/workshops in the area of parallel com-
puting and high performance data mining. Kumar serves on
the editorial boards of IEEE Concurrency, Parallel Comput-
ing, the Journal of Parallel and Distributed Computing, and
served on the editorial board of IEEE Transactions of Data
and Knowledge Engineering during 1993-97. He is a Fel-
low of IEEE, a member of SIAM, and ACM, and a Fellow
of the Minnesota Supercomputer Institute.

Rupak Biswas is a Senior Research Scientist with MRJ
Technology Solutions at NASA Ames Research Center.
He is the Task Leader of the Algorithms, Architectures,
and Applications (AAA) Group that performs research into
technology for high-performance scientific computing. The
AAA Group is part of the Numerical Aerospace Simulation
(NAS) Division of NASA Ames. Biswas has published over
70 technical papers in major journals and international con-
ferences in the areas of finite element methods, dynamic
mesh adaptation, load balancing, and helicopter aerody-
namics and acoustics. His current research interests are
in dynamic load balancing for NUMA and multithreaded
architectures, scheduling strategies for heterogeneous dis-
tributed resources in the IPG, mesh adaptation for mixed-
element unstructured grids, resource management for mo-
bile computing, and the scalability and latency analysis of
key NASA algorithms and applications. He is a member of
ACM and the IEEE Computer Society.

References

[1] D. L. Eager, E. D. Lazowska, and J. Zahorjan. Adaptive load
sharing in homogeneous distributed systems. IEEE Trans,
on Software Engineering, SE-12(5):340-353, May 1986.

[2] D. L. Eager, E. D. Lazowska, and J. Zahorjan. A compar-
ison of receiver-initiated and sender-initiated adaptive load
sharing. Performance Evaluation, 6:53-68, 1986.

[3] D. G. Feitelson. Packing schemes for gang scheduling. In
D. Feitelson and L. Rudolph, editors, Job Scheduling Strate-
gies for Parallel Processing, volume 1162, pages 65-88.
Springer-Verlag, New York, 1996. LNCS.

[4] D. G. Feitelson. Memory usage in the lanl cm-5 work-
load. In D. Feitelson and L. Rudolph, editors, Job Schedul-
ing Strategies for Parallel Processing, volume 1291, pages
78-94. Springer-Verlag, New York, 1997. LNCS.

[5] D. Ferrari and S. Zhou. An empirical investigation of load
indicies for load balancing applications. In Proc. 12th Intl.
Symposium on Computer Performance Modeling, Measure-
ment, and Evaluation, pages 515-528. North-Holland, Am-
sterdam, 1987.

[6] I. Foster and C. Kesselman, editors. The GRID: Blueprint
for a New Computing Infrastructure. Morgan Kaufmann,
1998.

[7] J. P. Jones. Implementation of the NASA Metacenter: Phase
1 report. Technical report, NASA Ames Research Center,
October 1997. Technical Report NAS-97-027.

[8] L. V. Kale. Comparing the performance of two dynamic load
distribution methods. In Proc. Intl. Conference on Parallel
Processing, pages 77-80, August 1988.

[9] V. Kumar, A. Gramma, and V. Rao. Scalable load balancing
techniques for parallel computers. Journal of Parallel and
Distributed Computing, 22(l):60-79, July 1994.

[10] W. Leinberger, G. Karypis, and V. Kumar. Job scheduling
in the presence of multiple resource requirements. In Super-
computing '99, November 1999.

[11] M. Livny and M. Melman. Load balancing in homogeneous
broadcast distributed systems. In Proc. ACM Computer Net-
work Performance Symposium, pages 47-55, April 1982.

[12] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F.
Freund. Dynamic matching and scheduling of a class of in-
dependent tasks onto heterogeneous computing systems. In
8th IEEE Heterogeneous Computing Workshop (HCW'99),
April 1999.

[13] C. McCann and J. Zahorjan. Scheduling memory con-
strained jobs on distributed memory computers. In Proc.
ACM SIGMETRICS Joint Intl. Conference on Measurement
and Modeling of Computer Systems, pages 208-219, 1996.

[14] E. W. Parsons and K. C. Sevcik. Coordinated allocation of
memory and processors in multiprocessors. Technical re-
port, Computer Systems Research Institute, University of
Toronto, October 1995.

[15] N. G. Shivaratri, P. Krueger, and M. Singhal. Load dis-
tributing for locally distributed systems. IEEE Computer,
25(12):33-44, December 1992.

[16] M. Y. Wu. Symmetrical hopping: A scalable scheduling
algorithm for irregular problems. Concurrency: Practice
and Experience, 7(7):689-706, October 1995.

71

SESSION 2-A
COMMUNICATION AND DATA MANAGEMENT

Chair: D. Panda, Ohio State University, USA

Evaluation of Expanded Heuristics in a
Heterogeneous Distributed Data Staging Network

Mitchell D. Theys
University of Illinois at Chicago

Elec. Engr. and Comp. Sei. Dept. (MC 154)
851 S.Morgan St. RM 1120

Chicago, EL 60607-7053, USA
mtheys@eecs.uic.edu

Noah B. Beck and Howard Jay Siegel
School of Elec. and Comp. Engr.

Purdue University
West Lafayette, IN 47907-1285 USA

{noah, hj}@purdue.edu

Michael Jurczyk
Dept. of Comp. Engr. and Comp. Sei.

University of Missouri - Columbia
Columbia, MO 65211 USA

mjurczyk@cecs.missouri.edu

Abstract

Providing up-to-date input to users' applications is an
important data management problem for a heterogeneous
distributed computing environment, where each data stor-
age location and intermediate node may have different da-
ta available, storage limitations, and communication links
available. Sites in the heterogeneous network request data
items and each request has an associated deadline and pri-
ority. In a military situation, the data staging problem in-
volves positioning data for facilitating a faster access time
when it is needed by programs that will aid in decision mak-
ing. This work concentrates on solving a basic version of
the data staging problem in which all parameter values for
the communication system and the data request information
represent the best known information collected so far and
stay fixed throughout the scheduling process. The hetero-
geneous network is assumed to be oversubscribed and not
all requests for data items can be satisfied. Three multiple-
source shortest-path algorithm based procedures for find-
ing a near-optimal schedule of the communication steps for
staging the data are described. Each procedure can be used
with each of three cost criteria developed here (based on
results from earlier experiments). A subset of the possi-
ble procedure/cost criterion combinations are evaluated in
simulation studies considering different priority weighting
schemes, different average number of links used to satisfy
each data request, and different network loadings. The pro-
posed heuristics are shown to perform well with respect to
upper and lower bounds.

1. Introduction

The DARPA Battlefield Awareness and Data Dissemina-
tion (BADD) [15] and the Agile Information Control En-
vironment (AICE) [2] programs include designing an in-
formation system for forwarding (staging) data to proxy
servers prior to their usage as inputs to a local application
in a heterogeneous distributed computing environment, us-
ing satellite and other communication links. The focus is
on providing the ability to operate in a distributed server-
server-client environment to optimize information currency
for many critical classes of information.

Data staging is an important data management problem
that needs to be addressed by the BADD and AICE pro-
grams. A simplified informal description of an example of a
data staging problem in a military application is as follows.
A warfighter is in a remote location with a portable com-
puter and needs data as input for a program that plans troop
movements. The data can include detailed terrain maps,
enemy locations, troop movements, and current weather
predictions. The data will be available from Washington
D.C., foreign military bases, and other data storage loca-
tions. Each location may have specific data available, stor-
age limitations, and communication links. Also, each data
request is associated with a specific deadline and priority.
Each priority level then has a corresponding weight, so that

This research was supported by the DARPA/ISO BADD and ONR under
ONR grant number N00014-970100804, and by the DARPA/ITO AICE
program under contract numbers DABT63-99-C-0010 and 0012. Some of
the equipment used was donated by Microsoft and Intel. In addition, M.
Theys was funded in part by an AFCEA Fellowship.

0-7695-0556-2/00 $10.00 © 2000 IEEE
75

two levels can be compared analytically. Depending on the
particular environment, there may be hundreds of warfight-
ers, all making multiple requests. It is assumed that not
all requests can be satisfied by their deadline. In a military
situation, the data staging problem involves positioning da-
ta for facilitating a faster access time when it is needed by
programs that will aid in decision making.

Positioning the data before it is needed can be complicat-
ed by: the dynamic nature of data requests and network con-
gestion; the limited storage space at certain sites; the lim-
ited bandwidth of links; the changing availability of links
and data; the time constraints of the needed data; the pri-
ority of the needed data; and the determination of where
to stage the data [16]. Also, the associated garbage collec-
tion problem (i.e., determining which data will be deleted
or reverse deployed to rear-sites from the forward-deployed
units) arises when existing storage limitations become criti-
cal [15,16]. The multiple copies provide an increased level
of fault tolerance, in cases of links or storage locations go-
ing off-line, and allow the scheduler to select from among
different sources to satisfy a data request [18].

The simplified data staging problem addressed here re-
quires a schedule for transmitting data between pairs of
nodes in the corresponding communication system for sat-
isfying as large a sum of weighted priorities as possible.
Each node in the system can be: (a) a source machine of
initial data items; (b) an intermediate machine for storing
data temporarily; and/or (c) a final destination machine that
requests a specific data item.

It is also assumed in this simplified model of the da-
ta staging problem that all parameter values for the com-
munication system and the data request information (e.g.,
network configuration and requesting machines) represent
the best known information collected so far and stay fixed
throughout the scheduling process. It is assumed that not
all of the requests can be satisfied by their deadlines due to
storage capacity and communication constraints. The mod-
el is designed to create a schedule for movement of data
from the source of the data to a "staged" location for the da-
ta. It is assumed that a user's application can easily retrieve
the data from this location.

Three multiple-source shortest-path algorithm based
procedures for finding a near-optimal schedule of the com-
munication steps for staging the data are described [20].
Each procedure can be used with each of seven cost criteria
developed. A subset of fourteen of the possible 21 resulting
heuristics that are expected to perform well (based on exper-
iments in [20]) are examined in simulation studies consider-
ing different priority weighting schemes, different average
number of links used to satisfy each data request, and dif-
ferent network loadings. The rationale for considering each
of these procedures and costs is provided. The proposed
heuristics are shown to perform well with respect to upper

and lower bounds. Furthermore, the heuristics using a com-
plex cost criterion are shown to allow more highest priority
messages to be received than a simple-cost-based heuristic
that schedules all highest priority messages first. Finally,
an approach considering data items with "more desirable"
and "less desirable" available versions is evaluated using a
variable time, variable accuracy algorithm, and simulation
results are presented. This research serves as a necessary
step toward solving the more realistic and complicated ver-
sion of the data staging problem involving fault tolerance,
dynamic changes to the network configuration, ad hoc data
requests, sensor-triggered data transfers, etc.

The material in this paper extends the earlier work pres-
ented in [19] by introducing three new cost criteria and two
new bounds. This work also varies additional simulation
parameters, including eight network loadings, three aver-
age numbers of links used to get from a source machine to
a destination machine, and five priority weighting schemes.
This paper also introduces a variable time, variable accura-
cy approach for using data items with "more desirable" and
"less desirable" versions.

Section 2 provides an overview of work that is related
to the data staging problem. In Section 3, a mathematical
model for a basic data staging problem is reviewed. Section
4 provides a description of Dijkstra's algorithm used to find
paths of links for transferring data items within the present-
ed network model. Section 5 presents seven cost criteria for
use in conjunction with different resource allocation proce-
dures. Three multiple-source shortest-path algorithm based
procedures for finding a near-optimal schedule of the com-
munication steps for data staging are described in Section 6.
These heuristics adopt the simplified view of the data stag-
ing problem described by the mathematical model. Three
upper bounds and three lower bounds used to evaluate the
performance of these heuristics are presented in Section 7.
The set of simulation studies given in Section 8 were creat-
ed after studying the results of [19]. These new simulation
studies examine the effects of (1) having six priority lev-
els with five different weighting schemes, (2) varying the
average number of links required for a data item to reach a
destination from its source, and (3) varying the total number
of requests that must be scheduled in a given network. In
Section 9, an approach considering data items with "more
desirable" and "less desirable" available versions is evalu-
ated using a variable time, variable accuracy algorithm, and
simulation results are presented.

2. Related Work
To the best of the authors' knowledge, there is currently

no other work presented in the open literature that address-
es the data staging problem, designs a mathematical model
to quantify it, or presents a heuristic for solving it. Due to
space constraints, the reader is referred to [6] for a more
thorough discussion of the related work. A problem that is,

76

at a high level, remotely similar to data staging is the facili-
ty location problem in management science and operations
research (e.g., [13]). Data management problems similar to
data staging for the BADD/AICE program are studied for
other communication systems [1, 3, 5, 11]. Other areas that
are somewhat related include modifying routing schemes
[4], mapping tasks onto a suite of distributed heterogeneous
machines (e.g., [8, 9, 21]), and earliest deadline first [7, 17]
scheduling for real-time systems. Lastly, other research ex-
ploring heuristics for use in the BADD/AICE environment
have been performed [14]. All of this research is related,
but does not develop a mathematical model like the one
researched here nor do they examine a network similar to
BADD-like network being used in this research.

3. Mathematical Data Staging Model
3.1. Model Definition

Some of this background material is based on [20], and
is included here for completeness. It has been expanded to
include all of the concepts needed for the new experiments
and results presented here.

Consider a network topology graph Gja composed of a
set of vertices that represent the set of machines M in the
network and a set of directed edges that represent the set of
communication links L. There are m machines in M, iden-
tified as {Af [0], M[l],..., M[m - 1]}, and each can be a
source, destination, and intermediate location for data items
in the network. Source machines for data items are the ma-
chines where data items are initially located within the net-
work; these data items may eventually be transferred by the
network to destination machines, possibly stored at interme-
diate machines along the way. Each machine M[i] (where
0 < i < m) also has an associated constant unused stor-
age capacity during the time interval [tj,tj+1), Cap[i](tj).
Note that the times tj and tj+1 may not differ by exactly
one time unit.

Each Communication link in this system is represented
as one or more virtual links. A virtual link corresponds to
a period of constant, continuous, available bandwidth from
one machine to one other machine. Bidirectional communi-
cation links are therefore represented as two virtual links—
one for each direction. Nl[i,j] is the number of virtu-
al links from machine M[i] to M[j] (where i ^ j and
0 < i,j < m). The A;th virtual link from machine M[i]
to M[j] is identified as L[i,j][k] (where 0 < k < Nl[i, j]).
The virtual link L[i, j][k] also has an associated link starting
time Lst[i,j][k]y denoting the time when it becomes avail-
able, as well as a link ending time Let[i,j][k], which spec-
ifies the time when the link is no longer available.

Data items are blocks of information that can be trans-
mitted from one machine to another. The set of data items
with unique names or identifiers that are available on the
machines in M is called A. Names or identifiers assigned

to data items must be different if the contents of the data
items are different in any way, including details such as dif-
fering timestamps on weather maps of the same region. The
number of distinctive data items in A is n, and individual
unique data items are identified as {<J[0], 6[l],...,S[n-l]}.
For a data item 6[Z] (where 0 < / < n), the size of the da-
ta item is represented as \S[l]\. The time duration required
to transfer data item S[l] from machine M[i] to machine
M()'] (where i ^ j and 0 < i,j < m) via the virtual link
L[i,j][k] (where 0 < k < Nl[i,j]) during the time interval
[Lst[i,j][k],Let[i,j][k]] isD[i,j][k](\S[l]\). Machine M\i]
may be a source of S[l], or an intermediate storage location
or destination that already holds a copy of 6[l]. Machine
Mb'] may be an intermediate storage location or a destina-
tion.

Let NS[l] (where 0 < I < n) represent the num-
ber of source machines holding a copy of S[l], and
M[Source[l,j]] represent the jth source machine for da-
ta item S[l] (where 0 < j < NS[l] and 0 < Source[l,j] <
m). The starting time Sst[l,j] refers to the time data item
S[l] becomes available at its jth source machine. The re-
moval time Srt[l, i] (where 0 < i < m) refers to the time
data item 5[l] can be removed from machine M[i], if a copy
of 8[l] is being stored at M[i). This allows the value of
Cap\i](Srt[l, i]) to be increased by \6[l)\. Intermediate ma-
chines, for example, could set Srt[l, i] to be some small time
period 7 after the last deadline at any machine for data item
S[l]. This would allow the storage space to be reclaimed at
intermediate machines after the usefulness of the data item
has expired. The scheduling heuristics do not remove a data
item from any of its sources or destinations because this is
considered outside the scope of responsibility of the sched-
uler.

Consider now a data item such as an image showing a
map of a planned battle area. It may be possible to have
available a higher quality version of the image that shows
a higher level of detail, as well as a lower quality version
showing less detail. An application requesting this data item
would prefer to receive the higher quality image, but it may
be that there are not enough resources (e.g., network band-
width) available to fulfill this data request. In this event,
however, there may be enough resources available to send
the lower quality image, which would be better than sending
nothing at all.

The set Rq (where Rq C A) contains unique data items
requested by destination machines in M. The number of
unique data items in Rq is 2p. The higher quality data items
are identified as {Rq[0], Rq[l], .. .,Rq[p - 1]}, and the
lower quality data items are identified as {Rq[p\, Rq[p +
1], ..., Rq[2p - 1]}. Here, each requested higher quality
data item Rq[i] (where 0 < i < p) has a corresponding
lower quality data item Rq[i + p] that may be sent in place
of Rq[i] if system resources become limited. Note that for

77

every i there must exist exactly one j and exactly one k
such that Rq[i] = 6[j] and Rq[i + p) = S[k]. These data
items S[j] and S[k] are assumed for simplicity to be present
at the same source machines, and to have the same asso-
ciated starting times and removal times. This model also
assumes for simplicity that \Rq[i + p]\ = \\Rq[i]\.

The number of destination machines that request Rq[i]
(where 0 < i < p) is denoted with Nrq[i). If 0 <
k < Nrq[i], then M[Request[i,k]} refers to the k\h ma-
chine that requested Rq[i] (where 0 < Request[i, k] < m).
Each of these machines also implicitly requests Rq[i + p]
in the event that Rq[i] cannot be sent, so that Nrq[i +
p] = Nrq[i], and Request[i + p,k] = Request[i,k]
for all values of k. The finishing time Rft[i, k] (and
equivalent Rft[i + p, k}) refers to a deadline time, af-
ter which data item Rq[i] (and Rq[i + p)) is no longer
useful to machine M[Request[i, k}]. The requesting ma-
chine M[Request[i, k]] also associates the data item Rq[i]
with a numbered priority class Priority[i,k] (equal to
Priority[i + p,k)). The highest, or most important pri-
ority class is P, and the lowest, or least important priority
class is 0, so that 0 < Priority[i,k] < P. In actual sys-
tems, the deadline and priority for a data request would be
set by some combination of the user, application, system
administrator, and commander.

Define a schedule as a series of communication steps,
among the machines of M using the communication links
in L, that transfer some or all of the data items in the
set Rq from their respective source machines to some or
all of their respective destination machines, possibly be-
ing stored at intermediate machines along the way. Sup-
pose that there are a possible distinct schedules, enumerat-
ed {S0, Su..., SCT_i}. The fcth (where 0 < k < Nrq\j])
request for a data item Rq[j] (where 0 < j < 2p) is con-
sidered satisfiable with respect to a specific schedule Sft
(where 0 < h < a) if and only if the data item Rq[j]
is available at machine M[Request[j,k]] at or before the
deadline time Rft[j, k]. The set Srq[Sh] then denotes the
set of two-tuples (j, k) such that the fcth request for the data
item Rq\j] is satisfiable with respect to the schedule 5ft.

There must be a way to represent the relative importance
of a priority class a (where 0 < a < P) compared to an-
other priority class ß (where 0 < ß < P and a ^ /?). The
relative weight of any priority class a is denoted by W[a).
This means that if priority class a is ten times as impor-
tant as priority class ß, then W[a] = 10 * W[ß]. In an
actual system, these weights would be set by the system ad-
ministrator and commander, and would be a function of the
current operating situation (e.g., peace or war).

Let Worth\j,k] (where 0 < j < 2p and
0 < k < Nrq\j}) denote a percentage of value to a
user of data item Rq\j] sent to satisfy a request at machine
M[Request[j,k]}. that if Rq[i] for0<i<p is sent to

M[Request[i,k}} by its deadline, then Worth[i,k] = 1
(meaning 100% for the preferred data version), and
Worth[i + p, k] — 0 (meaning no additional worth
for the second data version). If Rq[i] is not sent to
M[Request[i,k}] by its deadline, and Rq[i + p) is
sent to M[Request[i + p,k\] by its deadline, then
Worth[i +p,k] = 0.25 (meaning 25% for the lower qual-
ity version), and Worth[i,k] = 0. Now, the effect of the
schedule Sh (where 0 < h < a) can be defined as E[Sh] =

- (Z(j,k)esrg[sh] W[Priority[j,k}} * Worth[j,k])

(where 0 < j < 2p and 0 < k < Nrq[j}). The global
optimization criterion, and hence, the objective of all of
the heuristics presented later, is to find the schedule with
the minimum effect, defined as min0<ft<CT £[Sft].This
performance criterion is related to the one described in
[12]. Another way to view this minimization is to think
of it as trying to find the schedule of data transfers that
produces the maximum sum of satisfied requests' priority
weights.

3.2. Heuristic Solution Approach

The heuristic approach used here to create the schedule
Sh with minimum effect E[Sh] utilizes Dijkstra's shortest
path algorithm. This algorithm, presented in Section 4, cal-
culates arrival times for data items and establishes paths of
virtual links to get data items from source machines to des-
tination machines. The paths calculated by this algorithm
give the earliest arrival time for a given data item, based on
the expected system resources available when the algorithm
is run, and ignores any future competition for resources
among the pending data requests, provided that there are
no other data items competing for resources in the network.
After Dijkstra's algorithm has been run for each requested
data item (i.e., all data items in Rq), a single data item and
one or more destination machines are selected through the
use of a cost criterion presented in Section 5. This data item
choice reflects a combination of its contribution to the effect
of the schedule, and the amount of time between its arrival
at a destination and its deadline at that destination. Network
resources and machine storage are then allocated according
to one of the procedures presented in Section 6, updating
link availability times and available machine storage. This
updating of network information will cause the arrival times
and virtual link paths for some other data items to become
invalid, so the heuristic process (using a cost and an alloca-
tion procedure) is repeated again (beginning with Dijkstra's
algorithm) using the modified network information. This
continues until there are no more satisfiable data items in
the network, thus producing the communication schedule.
Results from simulation studies using this approach, which
only considers one version of each data item (i.e., considers
only Rq[i] where 0 < i < p, not Rq[j] where p<j<2p),
are found in Section 8. A modified approach considering

78

both versions of a data item is contained in Section 9.

4. Dijkstra's Shortest Path Algorithm

The heuristics presented here utilize Dijkstra's algorithm
[10] for finding the shortest path from one or more source
nodes to all other nodes in a directed graph. The version
used calculates the earliest possible available time for a data
item Rq[i] (where 0 < i < 2p) at each machine in M,
given a subset of machines in M that already holds a copy
of Rq[i].

Define the available time AT[i,j] (where 0 < i < 2/9,
0 < j < m) as the earliest possible time found, by ex-
ecuting Dijkstra's algorithm, when data item Rq[i] could
be present and available at machine M[j]. Define also the
value of the predecessor ir[i,j] to be the two-tuple (s, k)
(where -1 < s < m,-1 < k < Nl[s,j]) identifying the
machine M[s] as the machine that sends data item Rq[i] to
machine M[j] via virtual link L[s, j][k]. This predecessor
is also determined by the execution of Dijkstra's algorithm.
If the value of ir[i, j] is (-1, -1), this means that no ma-
chine sends data item Rq[i] to machine M[j] via any virtual
link. This may happen if machine M[j] is a source machine
for data item Rq[i], or it may happen if it is not possible for
machine M[j] to receive a copy of data item Rq[i] (possibly
due to the unavailability of network resources). For more in-
formation about the implementation of Dijkstra's algorithm,
including pseudocode and examples, the reader is referred
to [6].

5. Data Item Selection Cost Criteria
5.1. Introduction

Network resources must be allocated to data requests in
some order; this order intuitively should include "more im-
portant" requests and requests that are "close" to their dead-
lines before "less important" requests and requests that are
"not close" to their deadlines. Dijkstra's algorithm is used
here for each data item individually, as if it were the only
request in the system remaining to be satisfied. Thus, Di-
jkstra's algorithm is executed for each remaining data item
separately. Some quantitative cost must therefore be ap-
plied so that an algorithm can evaluate the relative merit of
any given request compared to any other request. Seven dif-
ferent cost criteria are detailed below; each attempts to take
into consideration both the importance of a data request, and
how close the data request is to its deadline.

Suppose M[r] (where 0 < r < m) is the next machine to
receive data item Rq[i] (where 0 < i < 2p) on a path from
M[s] (where (s,/) = ir[i,r]), which can be any machine
already holding a copy of Rq[i], to one or more requesting
destination machines. That is, machine M[s] holds a copy
of data item Rq[i], and M[r] must be the next machine to
receive Rq[i] so that M[Request[i, k]] (for one or more val-
ues of k, where 0 < k < Nrq[i]) can ultimately receive

Rq[i]. Let the set of values of k that satisfy this condition
(i.e., destination machines that request Rq[i] through M[r])
be called Drq[i,r].

Assume that Rq[i] is the next data item to be allo-
cated network resources. Let the value Sat[i, k] (where
0 < i < 2p and 0 < A; < Nrq[i]) be 1 if Request[i, k]
would be satisfiable, and 0 if it would not be satisfiable.
For the simulations of Section 8, Sat[i, k] is 0 for val-
ues of i such that p < i < 2p, thus ignoring the less
desirable data item versions. Now, the effective priori-
ty Efp[i, k] of data item Rq[i] at the kth requesting lo-
cation can be defined as Sat[i, k] * W[Priority[i, k]] *
Worth[i, k]. An urgency term, indicating how close a data
item's available time is to its deadline time (in seconds) at
a destination is defined as Urgency[i,k] = -Sat[i,k] *
(Rft[i,k] - AT[i, Request[i, k]] + 1). A smaller urgen-
cy here indicates that it is less urgent to get Rq[i] to
M[Request[i, k]]. The "+1" in the urgency term is so that
the urgency never becomes a small number close to zero.

The next value that must be defined before detailing the
cost criteria is the number of virtual links used to get from a
machine M[s] to a destination machine M[Request[i, k}},
where k £ Drq[i, r]. Let this value be called Nlinks[i, k],
and note that it reflects the number of links used in the path
(generated by the most recent run of Dijkstra's algorithm)
from a machine holding the data item to a machine request-
ing the data item.

All of the following cost functions take into account the
priority and urgency of a data item. For all cost criteria, a
smaller value indicates a more desirable use of communica-
tion resources; therefore, resource allocation is performed
by the procedures in Section 6 for the data item and desti-
nation machine(s) with minimum cost.

Six of the costs allow the weight assigned to the priority
term to be varied relative to the weight assigned to the ur-
gency term. These weighting terms are WE_ for the weight
of the effective priority term, and Wu_ for the weight of the
urgency term. The relative weight of these two terms com-
pared to each other (WE/Wu) is called the EJJ ratio.

5.2. Costs C1,C2, and C3

Four cost criteria were developed in the previous re-
search that combine the above effective priority and urgency
terms. The best performing cost, C4, was the basis for the
work presented in this paper. The definitions of Cl, C2,
and C3 are not discussed in detail in this paper. The reader
is referred to [20] for more information about these three;
C4 will be discussed in more detail below. The mathemat-
ical definitions of these three cost criterion are included for
reference. Each cost is for sending data item Rq[i] (where
0 < i < 2/9) to M[r] (where 0 < r < m) from M[s] via
link L[s, r][k] (where (s, k) = ir[i, r]), in order to ultimate-
ly try to satisfy the jth (where 0 < j < Nrq[i]) requesting

79

destination machine:

Cl[i,j][s,rp] = -WE*Efp[i,j]-Wu*Urgency[i,j\

C2[i][s,r][k] = {-WE * Zj€Drq[i,r) Efp[i,j})

+ {-Wu * maxjeDrq[itr] Urgency[i,j])

C3[i][s,r][k] = 2~ij£Drq[i,r] Urgency[i,j]

5.3. Cost C4

The cost C4 for transferring data item Rq[i] (where
0 < i < 2/9) to M[r] (where 0 < r < m) from M[s] via
link L[s, r][k] (where (s, fc) = ir[i, r}), in order to ultimate-
ly try to satisfy the jth (where j e Drq[i,r]) requesting
destination machine(s):

C4\i][s,r}[k] = -WE * faeDr^r] Efp[i,j\)

~Wu (ZjzDrq^r] Urgency[i, j]j .

This cost sums the weighted priorities of all satisfiable
requests for data item Rq[i] on a path through machine
M[r] and combines that with the sum of the urgency for
those same satisfiable requests.

5.4. Cost C4links

Based on (74 because of its high performance in simula-
tion tests, cost C4links is also defined for transferring data
item Rq[i] (where 0 < i < 1p) to M[r] (where 0 < r < m)
from M[s] via link L[s, r][k] (where (s, k) = 7r[i, r]), in or-
der to ultimately try to satisfy the jth (where j £ Drq[i, r])
requesting destination machine(s):

C4links[i\[s,r][k] = -WE * (£iei>r,M -fM&fi)

-Wu * (j2jeDrq[i,r} Urgency[i, jfj .

Because, for example, a data request that can be satisfied by
using three virtual links is using three times as much net-
work resources as a data request of the same size that can
be satisfied by using only one virtual link, this cost divides
the effective priority term for each requesting destination
by the number of links used to get to that destination. If the
effective priority associated with a data request is consid-
ered as a measure of worth or importance to the user, then
this first term would be considered a measure of worth per
link. This should allow the cost criterion to better select da-
ta items to satisfy that will make the most effective use of
the network resources available.

5.5. Cost C4size

Based again on C4 because of positive simulation re-
sults, the criterion C4size is also defined for transferring
data item Rq[i] (where 0 < i < 2p) to M[r] (where
0 < r < m) from M[s] via link L[s, r][k] (where (s, k) =

n[i,r])y in order to ultimately try to satisfy the jth (where
j £ Drq[i,r]) requesting destination machine(s):

C4size\i][s,r][k] = -WE * (EjeDr,[i,r] liftf)

-Wu * (EjeDrqii.r] Urgency[i,j]) .

A data request with an effective priority p representing its
worth to the recipient, and a size in bytes of q, then has an
effective worth per byte of ^ Because the goal of a cost
criterion is to identify data requests that will make the most
effective use of network resources, the first term in CAsize
uses this effective priority divided by data request size to
find data items that will transmit the maximum amount of
worth per bandwidth byte.

5.6. Cost Cisizlnk

Cost Cisizlnk is a combination of the ideas in CAsize
and C4links, and gives a cost for transferring data item
Rq[i] (where 0 < i < 2p) to M[r] (where 0 < r < m) from
M[s] via link L[s,r][fc] (where (s,k) = n[i,r]), in order
to ultimately try to satisfy the jth (where j G Drq[i,r])
requesting destination machine(s):

C4sizlnk[i][s,r][k] —

-WE * \2sjeDrq[i,r] \Rq[i]*Nlinks[i,j]) ~

Wu * (EjeDrq[i,r} Urgency[i,j]) .

By combining the size and number of virtual links used,
this cost gives a more accurate calculation of the resources
used by a data request. For instance, consider two data
items Rq[i\] and Rqfa] of equal priority. Consider also
that Rq[i2] is twice as large as Rq[h], and that it requires
the use of three virtual links versus Rq[iiYs single virtu-
al link. In this case, Rqfo] is requiring six times the total
network resources required by Rq[i\] in order to satisfy the
same priority level of request.

6. Resource Allocation Procedures
6.1. Introduction

The three procedures below allocate varying amounts of
network resources for a single data item after each run of
Dijkstra's algorithm, based on a cost function from Section
5. The performance of these procedures is shown in Section
8.

The resource allocations performed by these proce-
dures update the following information in the system after
scheduling Rq[i] to move, and before running Dijkstra's al-
gorithm again: (1) the list of virtual links and their start
and stop times, (2) the available memory capacity on any
machines that data item Rq[i] has been placed, (3) the list
of machines on which Rq[i] is available, and (4) the time
at which Rq[i] can be removed from any intermediate ma-
chines.

80

6.2. Partial Path Procedure
Each iteration of this procedure involves: (1) perform-

ing Dijkstra's algorithm for each data request individually;
(2) for the valid next communication steps, determining the
"cost" to transfer a data item to its successor in the shortest
path; (3) picking the lowest cost data request and transfer-
ring that data item to the successor machine (making this
machine an additional source of that data item); (4) updat-
ing system parameters to reflect resources used in (3); and
(5) repeating (1) through (4) until there are no more sat-
isfiable requests in the system. In some cases, Dijkstra's
algorithm would not need to be executed each iteration for
a particular data transfer, i.e., if the data transfer did not use
resources needed for any future transfers. In this study, only
one data item is scheduled before rerunning Dijkstra's algo-
rithm (this applies for all three procedures). This simplified
the implementation of the procedures without changing the
performance of the resulting schedules. The execution time
of the procedures is affected; however, minimizing this is
not the main goal of the work.

This procedure will schedule the transfer for the sin-
gle "most important" request that must be transferred next,
based on a cost criterion. The procedure (first described in
[19]) is called the partial path procedure because only one
successor machine in the path is scheduled at each itera-
tion. If a data item is partially scheduled through the sys-
tem and because of other scheduled transfers the request-
ing destination's deadline is no longer satisfied, the sched-
uled transfers remain in the system (the initial transfers were
scheduled because the deadline could have been satisfied).
Reasons the schedule for this now unsatisfiable request is
not removed include: (1) in a dynamic situation, a change
in the network could allow the request to be satisfied; and
(2) removing the already scheduled transfers would require
restarting the scheduling for all data requests because of
conflicts that might have occurred.

6.3. Full Path/One Destination Procedure
The full path/one destination procedure uses a cost cri-

terion to select a data request at an individual destination
machine for resource allocation. The data item is then sent
from its current location (machine M[s] in each of the cost
criteria) over as many virtual links as required to reach its
destination machine (machine M[j] for one value of j). For
costs C4, CAlinks, C4size, and CAsizlnk, the data item
Rq[i] with minimum cost is sent first to machine M[r], and
if no request was satisfied, the cost is applied a second time
for the same data item Rq[i], but setting the new M[s] (da-
ta source machine) to the old M[r] (the machine to which
the data was just scheduled). The minimum cost is then tak-
en over all values of r (possible next storage locations). The
value of r with minimum cost determines the machine M[r]
that the data is sent to next. This process continues until the
data item has reached one requesting destination M\j].

This produces a communication schedule using fewer
executions of Dijkstra's algorithm than the partial path pro-
cedure. The behavior of the partial path procedure showed
that if a data item Rq[i] was selected for scheduling a trans-
fer to its next intermediate location (a "hop"), in the follow-
ing iteration, the same requested data item, Rq[i], would
typically be selected again to schedule its next hop. The
full path/one destination procedure attempts to exploit this
trend by selecting a requested data item with a cost crite-
rion and scheduling all hops required for the data item to
reach its lowest cost destination before executing Dijkstra's
algorithm again.

The partial path procedure may construct a partial path
(of many links) that it later cannot complete (due to net-
work or memory resources being consumed by other re-
quested data items). However, until this is determined, the
part of the path constructed may block the paths of the oth-
er requested data items, causing them to take less optimal
paths or causing them to be deemed unsatisfiable. The full
path/one destination procedure avoids this problem. An ad-
vantage the partial path approach does have over the full
path/one destination approach is that it allows the link-by-
link assignment of each virtual link and each machine's
memory capacity to be made based on the relative values
of the cost criteria for the data items that may want the re-
source.

6.4. Full Path/All Destinations Procedure

The full path/all destinations procedure resembles the
full path/one destination procedure but allocates more net-
work resources after each run of Dijkstra's algorithm. This
procedure satisfies all requests that would benefit from
sending data item Rq[i] from machine M[s] to M[r] (i.e.,
those in the set Drq[i,r]. Cost Cl is not used in conjunction
with this procedure because it examines the cost of only
one destination at a time. This approach was considered
because it was expected to generate results comparable to
the full path/one destination procedure, but with a smaller
procedure execution time.

7. Upper and Lower Bounds
7.1. Introduction

Finding optimal solutions to data staging tasks with real-
istic parameter values are intractable problems. Therefore,
it is currently impractical to directly compare the quality of
the solutions found by the proposed heuristics with those
found by exhaustive searches in which optimal answers can
be obtained by enumerating all the possible schedules of
communication steps. Also, to the best of the author's
knowledge, there is no other work presented in the open lit-
erature that addresses the data staging problem and presents
a heuristic for solving it (based on a similar underlying
model). Thus, there is no other heuristic for solving the
same problem with which to make a direct comparison of

81

the heuristics presented in this document. To aid in the
evaluation of these heuristics, a lower bound and an upper
bound on the performance of the heuristics are provided.

7.2. Full Path Random Dijkstra
The lower bound called the full path random Dijkstra

method does take into account which data requests are sat-
isfiable when it allocates resources, allowing it to improve
over the random Dijkstra method used in [20]. It allocates
enough resources in one scheduling step to take a data item
from its current location all the way to one random satis-
fiable requesting destination before running Dijkstra's al-
gorithm again. This method, is based on the full path/one
destination procedure except that the next chosen transfer
is randomly selected, instead of using a cost function. This
bound differs from the single Dijkstra random method of
[20] in that (1) this method checks that a requesting desti-
nation is satisfiable before allocating any resources toward
fulfilling it, and (2) Dijkstra's algorithm is run with updated
communication system information after each scheduling
step.
7.3. Possible Satisfy Bandwidth

The possible satisfy bandwidth bound is a tighter bound
than the possible satisfy bound of [20]. It considers sat-
isfiable requests, and also the total amount of bandwidth
available in the system, NetBandwidth. This value is cal-
culated by adding together the number of bytes that could
be transmitted over each virtual link in the system during
the entire time interval being simultated. Consider the set
of requests that would be satisfiable if each was the only re-
quest in the system. Then the one that has the largest ratio
of priority weight to data item size is selected. Selecting
the request that satisfies this condition guarantees that if a
single link is used to satisfy this request, it will give the
highest possible priority weight value per byte of network
bandwidth used as compared to all requests remaining in
the system. Each time a request is found, its size in bytes
is added to the bandwidth used in the system (this assumes
that only one virtual link is needed to satisfy this request)
and its weighted priority is added to the weights of the oth-
er data items that have been selected. That particular re-
quest is then removed so that a new request can be found.
This continues until the sum of bandwidths for the accept-
ed requests exceeds NetBandwidth. This upper bound is
unrealistic, however, because it does not take into account
that more than one link may have to be used to satisfy a re-
quest, nor does it consider the time intervals that links are
available, nor does it consider what machines have network
bandwidth available between them.

8. Extended Simulation Study
8.1. Introduction

After the simulation study of [19] was completed, a
new study was designed to examine the effects of varying

some other parameters within the system. In particular, this
new study introduces three new cost criteria and two new
bounds, and it varies additional simulation parameters, in-
cluding eight network loadings, three average numbers of
links used to get from a source machine to a destination
machine, and five priority weighting schemes.

The results of [20] indicated that C4 was the best-
performing cost criterion. This led to the development of
cost criteria CAsize, CAlinks, and Cisizlnk, described in
Section 5, for the new study. Because of the previous good
performance of the full path/one destination procedure, it
was implemented for the new study with all seven cost cri-
teria described in Section 5. For comparison, the other two
procedures in Section 6 (partial path and full path/all desti-
nations) were also implemented for the new study with cost
C4, for a total of nine heuristics. C\, C2, C2>, C4,

In the previous study, all requests averaged traversing
approximately 1.5 communication links (a communication
link traversal count) from an initial source machine to a
requesting destination machine. It was decided that the
requests would be generated in a manner allowing this pa-
rameter to be controlled and varied with three different val-
ues in the new study. Another parameter concerning the
data requests was the number of requests being made ver-
sus the number of requests that the network could possibly
fulfill. Eight different "network loads" were decided upon
for the new simulation study, as opposed to only one in the
earlier [20] study. In combination with the three communi-
cation link traversal counts, there was a total of 24 different
data request scenarios.

For this study, it was decided that a six-level priority
scheme would be used in place of the three-level method
used in the previous study. This was intended to better
reflect the priority classes present in a military environ-
ment. Level 0 was generated with a 50% probability, level
1 with 25%, class 2 with 12%, level 3 with 7%, level 4
with 4%, and level 5 is generated with a 2% probability.
These percentages were selected to reflect the fact that in a
BADD/AICE-like environment, there would likely only be
a small number of data requests in the highest priority class,
and a large number of data requests at the lowest priority
class.

The weighting of the priority levels was changed to a
system where the weight of each priority level was a fixed
multiple of the weight of the priority level immediately be-
low it. Five different values for this multiple were used for
this study, and each was evaluated with each of the 24 data
request scenarios above, resulting in 120 testing scenarios
for evaluation by the 79 heuristic/E-U ratio combinations.

As in the previous study, 40 individual test cases
(each with a unique network configuration and set of da-
ta requests) were generated for each testing scenario, be-
cause a single case cannot reflect the range of possible data

82

Table 1. Network parameters used for the gen-
eration of test cases.

parameter min. value max. value
machines 14 16

srcs per data item 1 3
dests per data item 1 5

src available time 1 sec 3600 sec
dest deadline delay 900 sec 3600 sec

data item size lOkBytes 100 MBytes
machine storage 10 MBytes 20 GBytes
outbound links 1 4

link bw 10kBits/sec 1.5 MBits/sec

requests and network configurations. This resulted in the
379,200 simulation runs described in this section.

8.2. Generation of Test Cases

The network parameters used to create data sets for this
simulation study are summarized in Table 1. Actual val-
ues were generated randomly with uniform probability be-
tween (and including) the minimum and the maximum val-
ues shown in the table. The "src available time" is the time
the data item is available at all of its sources (the same time
for all sources of that data item). The "dest deadline de-
lay" is the deadline for the requested data item relative to
the time it becomes available at its sources. These parame-
ter values are intended to be representative of a subset of
a BADD/AICE-like environment. For more information
about how these parameters are used to generate the test
cases, the reader is referred to [6].

For this simulation study, the number of data items gen-
erated for a network was 700 times the number of machines
in the network. After all items were generated, Dijkstra's
algorithm was run once for each item, establishing the indi-
vidual satisfiability of each data item at each requesting des-
tination along with a path of communication links used to
reach each destination. The average number of communica-
tion links traversed from a source machine to a destination
machine for all of the satisfiable requests is the "resulting
average communication link traversal count."As indicated
above, three different average link counts were generated
(1.5,2.5, and 3.5), and for each count, 40 different networks
and associated data requests were created with the method
given above, resulting in a total of 120 networks with asso-
ciated data requests.

Now consider in the network all data requests that are
determined to be satisfiable individually according the first
execution of Dijkstra's algorithm. When considering each
of these requests as if it were the only data request in the
system, the resulting virtual link path from Dijkstra's algo-
rithm and other known information can be used to calculate
the bytes of bandwidth needed for each request. Then these

bandwidths can be summed to give a value representing the
total number of bytes of data bandwidth being requested in
the system. Call this value ReqBandwidth. Recall now
the value NetBandwidth calculated by summing together
the total number of bytes that could be transmitted on each
of the virtual links within the network during the simula-
tion period. An oversubscription rate can then be defined
as ReqBandwidth/NetBandwidth. If this term is larger
than 1, the network can clearly not satisfy all requests due to
bandwidth limitations. If the term is less than 1, bandwidth
may not exist between the correct machines or may not be
available during the required time to satisfy all requests.

To examine system performance under various request
loads, it was decided to consider networks with the follow-
ing oversubscription rates: 25.0, 12.5, 6.2, 3.1, 1.6, 0.8,
0.4, and 0.2. These desired data sets were created by start-
ing with one of the networks and its associated set of data
requests, and removing random data requests until the de-
sired oversubscription rate was achieved. This did not sig-
nificantly affect the average communication link traversal
counts. It resulted in data sets consisting of the same net-
work with eight different oversubscription rates, for each of
the 120 networks.

When applying the heuristics to these test cases, a variety
of E-TJ ratios were used. For simulations run using the full
path/one destination procedure with C4size and C4sizlnk,
the logioiWe/Wu) used wereinf, 9, 8, 7, 6, 5, 4,-inf.
The values of inf and —inf represent considering on-
ly the priority term (the term weighted by WE), and
only the urgency term (the term weighted by Wu), re-
spectively. For simulations run using the partial path
procedure with C4, the full path/all destinations proce-
dure with C4, and the full path/one destination procedure
with C4, and C4links, the log^Ws/Wu) used were
inf, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, - inf.

The last parameter that was varied in this simulation
study was the relative weight of one level of priority com-
pared to another. With the six priority levels of data
requests, the approach simulated was to make the weight
of a priority level a (where 0 < a < 5) data request be wf.
(i.e., W[a] = oja) for some fixed value of u. The values of
UJ simulated were 1, 2, 4, 8, and 16, and this was done for
each of the networks and loadings mentioned above. The
results of the simulations using these parameters are now
presented.

8.3. Evaluation of Simulations

Heuristic and bound labels used in the graphs at the end
of this subsection are summarized in Table 2. As stated
previously, because of the good performance of the full
path/one destination procedure and Cost C4, they were the
focus of these new experiments. The three new costs taking
into account data item size and the number of communica-
tion links traversed from a source to a destination are shown

83

in Figure 1. The peak performance of the costs taking da-
ta item size into account are further to the right (signifying
higher E-U ratios) in the graph because those costs divide
the effective priority term by the data item size. Due to
space constraints, only a subset of the results from [6] ap-
pears in this paper.

In Figures 2 through 5, the data points for the heuristics
used correspond to the best E-U ratio for each testing sce-
nario (for ki/1, this is a combination of the priority and
urgency terms). The values for the normalized vertical axis
in all of these graphs is computed as follows. For each test
case, the sum of the satisfied requests' weighted priorities
for a given heuristic or bound is divided by the sum of satis-
fied requests' weighted priorities given by the best E-U ratio
for full_one_C4. This normalized sum is then averaged over
the 40 network test cases to give the final value for each data
point.

The relative performance of the heuristics are shown in
Figures 2 and 3. The costs considering data item size will
tend to allocate resources for all of the smaller data items
first, resulting in many small time intervals of link band-
width being allocated initially. In the lightly loaded cases,
the remainder of the link bandwidth must be used by larger
data items, but continuously available links may not exist
for a long enough period of time for these larger data items
to use. In the more heavily loaded network cases, there are
enough smaller data items available to make use of all of
the network bandwidth without sending any of the larger
data items. The resulting trend is that the costs incorporat-
ing data item size have a relative decrease in performance
for lightly oversubscribed networks, followed by a relative
increase in performance for the heavily oversubscribed net-
works.

There is a general overall trend that as u increases (and
other factors are fixed), the performance of all heuristics is
closer to each other. This is because more of the total sum
of priority weights of requests in the system is contributed
by a few highest priority requests.

The method full_one_C41inks, performed very compa-

Table 2. Labels for heuristics and bounds
used in the graphs of Section 8.3.

heuristic combination label used

partial path w/ CA partiaLC4
full path/one dest. w/ C4 full_one_C4

full path/one dest. w/ C4links full_one_C4links
full path/one dest. w/ C4size full_one.C4size

full path/one dest. w/ C4sizlnk fulLone_C4sizlnk
full path/all dest. w/ C4 full.alLC4

possible satisfy bandwidth possible-satisfy _bw
full path random Dijkstra fulLrand-Dijkstra

28000

26000

24000 -

22000

« 20000

.2 18000

o 16000

14000

12000

10000

8000

 1 ■ 1 1 —7 1 1 1 1 i i

~V=:=^;zb=r,&:^:^

!'7 '
-

U
•-.^ - -o - -p,~»~ •* «t.-.-.vrj |

IT

I
1

//

" I * / "

; ; "

■ 1
1

' *
"

1

■ i ■/
"

i/
1;

-

//
1

'(full.one.C4links
,x full.one.C4size

,-''•■* full one C4sizlnk
,<:•'•-'' full.one.C4
;' partial C4

full.all.C4

 (
— -K- —

 D

--■■-■•

-■-& ■-■

Pill ■ i i i i ' '
-inf 0 1 3 4 5 6

log]0 E-U ratio

8 9 inf

Figure 1. Sample graph of the effect of varying
the E-U ratio {WE/Wu). The data sets used
had an average link traversal count of 2.5, a
request over-subscription rate of 3.1, and an
w value of 4.

rably to full.one_C4 in all tests. There was no situa-
tion indicated by these simulations where full_one_C4links
should be chosen over full_one_C4, or vice versa. The par-
tial _C4 method was also shown to perform comparably to
the full.one.C4 method in all cases.

The full_all_C4 method is shown to perform well for
small oversubscription rate, but as the oversubscription rate
increases a clear decrease in performance is seen. This
is due to the full path/all destinations procedure allocat-
ing resources for more than one destination simultaneously,
where some requesting destinations may have very low pri-
ority.

Table 3 shows the average number of requests satisfied
at each priority level by full_one.C4 as compared to a sim-
ple algorithm that schedules all requests of a higher priority
level before any requests of a lower priority level. In par-
ticular, this algorithm was full_one_Cl with Wu = 0. For

84

er
CD

CO
CO

■o
B

5

73
CD
N

1.01

0.4 0.8 1.6 3.1 6.2 12.5

request oversubscription rate

25.0

Figure 2. Weighted sum of satisfied
requests' priorities normalized at each
over-subscription rate to the performance of
fulLone_C4. The data sets had an average
link traversal count of 2.5 and an u value of 4.

oj > 1 in these tables, more requests in the top three pri-
ority levels are being satisfied by full_one_C4 (which obeys
the relative importance assigned to each of the priority lev-
els set by the policy maker) than the level by level method
(which ignores these policy requirements). The number of
satisfied requests at the top priority level remains compa-
rable for full_one.C4 and w > 1 because there are so few
requests at that level that all are able to be satisfied. This
is indicated by the fact that the level by level method can-
not satisfy any more of the top priority requests. For ex-
ample, even though the level by level method schedules all

0.99

0.98 -

•S 0.97

0.96

~ 0.95

0.94

0.93

0.92

0.91

\
full.one.C4links —i—•
full.one.C4size —x—

full.one.C4sizlnk — ■*•---
full.one.C4 B
partial C4 —•—-
full.all.C4 — o - '■>-.--.

0.2 0.4 0.8 1.6 3.1 6.2
request oversubscription rate

12.5 25.0

Figure 3. Weighted sum of satisfied
requests' priorities normalized at each
over-subscription rate to the performance of
full_one_C4. The data sets had an average
link traversal count of 2.5 and an w value of 4.

priority level 5 requests as if they were the only requests
in the system, the total number scheduled does not exceed
the results of full_one_C4 (for w > 1). This shows that
full_one_C4 using urgency in addition to effective priority,
is better than fulLone.Cl without urgency. Furthermore,
full_one_C4 results in a higher sum of weighted priorities of
satisfied requests than the level by level method in almost
all cases considered in Table 3.

In summary, a class of heuristics that compare well to
upper and lower bounds has been developed and analyzed.
Many heuristics perform within a few percentage points of
each other, and this is why it is important to also consider
the execution times of the different approaches. Further-
more, while in general several heuristics perform compara-
bly, if a system is known to have a particular operating en-
vironment (e.g., oj value, oversubscription rate), there may

85

Table 3. Number requests satisfied at each
priority level by full.one_C4 with an average
link traversal count of 2.5 and an oversub-
scription rate of 1.6. The "level by level" col-
umn shows the effect of allocating resources
for all priority class a requests before all pri-
ority class ß requests where a > ß.

priority
level

number requests satisfied
OJ level by

level 1 2 4 8 16
5 4.2 8.3 8.4 8.4 8.4 8.2
4 9.8 16.0 16.1 16.1 16.1 16.0
3 16.4 23.4 23.4 23.1 23.5' 22.8
2 28.8 33.8 31.2 27.0 32.5 32.5
1 57.6 50.5 44.8 43.1 43.0 50.1
0 118.8 81.6 82.0 85.9 84.9 78.6

be a preference for one heuristic over another. Confidence
intervals for some of the data points generated by test cases
in this section can be found in [6].

9. Data Items With Multiple Versions
9.1. Approach

In this section, a variable time, variable accuracy algo-
rithm will be presented to deal with data items with a higher
quality and lower quality version, as mentioned in Section
3. The higher quality data item is assumed for simplicity to
be twice the size of the lower quality data item. The higher
quality data item, however, has four times as much "worth"
to the end user as the lower quality data item. This worth
was chosen to indicate that the system should be penalized
for selecting the lower quality data item over the higher one.

The approach used to incorporate these lower quality da-
ta item versions into the developed heuristics was to create
an iterative algorithm that attempts to create a new sched-
ule Sh with each iteration that has a smaller effect E[Sh]-
In the first iteration, only the higher quality versions of the
data items are considered satisfiable by the value Sat[i, k]
(where 0 < i < 2p and 0 < A; < Nrq[i]). That is,
Sat[i,k] (from the cost criteria of Section 5) can only be
1 if 0 < i < p. A heuristic is then used with Dijkstra's
algorithm to create a complete schedule of data transfers,
which corresponds to the research described in Section 8.

After the first iteration schedule has been determined, the
value of Sat[j, k] (where 0 < j < p) for the second iter-
ation is only allowed to be 1 if Request[j, k] was satisfied
in the previous iteration. The value of Sat[j + p, k] is then
only allowed to be 1 if Request[j, k] was not satisfied in
the previous iteration. A complete new schedule is created
using a heuristic with Dijkstra's algorithm. That is, if dur-
ing iteration one a requesting destination does not receive
its higher quality requested data item, then in the second it-

eration, it will request the lower quality version of that data
item instead. The schedule produced by the second itera-
tion will then likely satisfy at least a few lower quality data
item requests (of higher priority) in place of higher quality
data item requests (of lower priority). The higher quality
data item requests that are not satisfied in the second itera-
tion then request their respective lower quality versions for
the third iteration. This iterative process can be repeated
as many times as allotted execution time permits, and can
stop at any time after the first iteration and output the best
schedule that it has generated thus far. (This assumes that
the best schedule is kept separately after each iteration and
that the last iteration performance may not result in the best
schedule.)

9.2. Costs Cl, C2, and C3
Figures 4 and 5 include the full.one procedure with costs

Cl, C2, C3, and C4, where iteration 1 corresponds to the
situation without consideration of versions. The full sets of
experiments in [6] gave insights into the behaviors of these
costs.

The fulLone_Cl heuristic performs well except for the
highest oversubscription rate test cases. Because cost Cl
only considers the benefit of moving data to satisfy a single
request, this suggests that in very highly oversubscribed net-
works, it helps to consider multiple requesting destinations
that would collectively benefit from a data transfer.

The full_one_C2 method appears to suffer from its choice
of destination machines; specifically, it allows a single des-
tination's urgency (instead of a collective view of the urgen-
cies) to affect which valid next step is selected. As system
oversubscription rates increase, its relative performance de-
creases.

The full_one.C3 method performs consistently poorly
for heavily oversubscribed networks. Its performance in the
simulation studies of [20] indicated that it would not like-
ly perform well, so this was expected. It is interesting to
note, however that as u was increased, the relative perfor-
mance of full_one_C3 increased as well. This suggests that
the problem with cost C3 is indeed due to allowing the ur-
gency factor to dominate the cost equation, because as the
priority weight is increased, it begins to perform well. This
is especially true for the lower oversubscription rates.

9.3. Evaluation of Simulations
The data sets used for these experiments were a subset

of the data sets created for the simulation study of Section
8. For very light loading (i.e., 0.2), all of the heuristics per-
form similarly after the second iteration. Only the data sets
with average link traversal counts of 2.5 were used. Five
iterations of the variable accuracy algorithm were run. Re-
sults from those runs under different loads is shown in Fig-
ures 2 and 3, where Figure 2 includes the upper and lower
bounds. It should be noted that each graph is normalized to

86

1.08 1.06

1.06 1.04

1.04

1.02

0.98

0.96

0.94

full_one_C4links —i—
full_one_C4size — x—

full_one_C4sizlnk ---*■ -■
full_one_C1 a
full_one_C2 —•—
full_one_C3 - -o -
full_one_C4 ----»-■

partial_C4 —-A—
full_all_C4 --A-

1.02

1 0.98

0.96"-

0.94

0.92

 *__.

full_one_C4links —i-
full_one_C4size —x-

full_one_C4sizlnk - *-
full_one_C1 B~
full_one_C2 —•-
full_one_C3 - -o-
full_one_C4 -■■►•

partial_C4 ----*-
full_all_C4 ----»--

iteration number iteration number

Figure 4. Weighted sum of satisfied requests'
priorities normalized to the performance of
fulLone_C4 in iteration 1. The data set had an
oversubscription rate of 0.8, an average link
traversal count of 2.5, and an u value of 4.

the performance of full_one_C4 at the end of its first itera-
tion, which is the same as the performance of full_one_C4
in the study of Section 8.

For less oversubscribed networks, the heuristics are al-
most all able to increase their own respective performance
with additional iterations (e.g., Figure 4). For more over-
subscribed networks, this is not generally the case (e.g., Fig-
ure 5). All of the cost criteria used here except C\ consider
more than one destination as part of the cost of sending a
data item to its next machine. The implementation of the
multiple versions approach works against this, particularly
at higher oversubscription rates. For example, in iteration
one, multiple requests may contribute to the overall sum
for a transfer to destination d\. When using multiple ver-
sions, the destinations that receive the second version will
no longer contribute to the sum for destination dx. Because
of this, destination d\ 's request may no longer have a large

Figure 5. Weighted sum of satisfied requests'
priorities normalized to the performance of
full_one_C4 in iteration 1. The data set had an
oversubscription rate of 3.1, an average link
traversal count of 2.5, and an u value of 4.

enough sum to obtain network resources. For this reason,
fulLone.Cl (which does not collectively consider multiple
requesting destinations) is less inclined to decrease in per-
formance in successive iterations after the second iteration.

An additional reason for a lack of improvement after
each iteration for data sets with high oversubscription rates
is related to the large number of requests of high priority in
the system. There are already very many data items in these
tests with a desirable priority to select from, and the sec-
ondary versions of data items are not any better of a choice
than any of the primary versions of data items that are avail-
able.

In summary, the use of multiple versions will help some
heuristics improve the sum of priorities satisfied in all but
the most oversubscribed cases. The improvement obtained
in some operator environments exceeds 10%. In almost all
cases, the best improvement is given by the second iteration

87

of the variable time, variable accuracy algorithm.

10. Summary and Conclusions
Data staging is an important data management issue for

distributed computer systems. It addresses the issues of
distributing and storing over numerous geographically dis-
persed locations both repository data and continually gener-
ated data through an oversubscribed network, where not all
data requests can be satisfied. When certain data with their
corresponding priorities need to arrive at a site with limit-
ed storage capacities in a timely fashion, a heuristic must
be devised to schedule the necessary communication steps
efficiently.

The performance of nine heuristics were shown, and
compared to an upper bound and a lower bound. Many
different weighting schemes for the relative importance of
different priority levels of requested data items were con-
sidered. Each procedure and cost criterion was designed
with particular advantages in mind. The results present-
ed showed that, for the system parameters considered (e.g.,
priority weighting, oversubscription rate), the combination
of cost C4 or C\ with the full path/one destination pro-
cedure and C4 with the partial path procedure consistent-
ly performed the best, when using the measure of weight-
ed sum of priorities satisfied. Because each heuristic has
advantages, the procedure/cost criterion pair that perform-
s best may differ depending on the system parameters (i.e.,
the actual environment where the scheduler heuristic will be
deployed).

An additional novel approach using a variable time, vari-
able accuracy method that considered multiple data item
versions with different resource requirements was evaluat-
ed. The use of multiple versions was shown to help some
heuristics in all but the most oversubscribed cases; in many
cases, the improvement was over 10%.

In summary, a class of heuristics and cost criteria that
compare well to upper and lower bounds were developed
and analyzed. While in general several heuristics perform
comparably, if a system is known to have a particular op-
erating environment (e.g., w value, oversubscription rate),
there may be a preference for one pair over another.

Acknowledgments: The authors thank Joe Rockmore,
Bob Beaton, Jose Fortes, and Edwin Chong for their valu-
able comments and suggestions.

[1] S. Acharya and S. B. Zdonik, "An efficient scheme for
dynamic data replication," Technical Report CS-93-43,
CS Dept., Brown Univ., Sep. 1993, 25 pp.

[2] "Agile Information Control Environment Proposers
Information Package," BAA 98-26, http://web-
ext2.darpa.mil/iso/aice/AICE98-26.htm, May 1998.

[3] M. Baentsch, L. Baum, G. Molter, S. Rothkugel, and
P. Sturm, "Enhancing the web's infrastructure: From
caching to replication," IEEE Internet Computing, Vol.
l,No. 2,Mar.-Apr. 1997,pp. 18-27.

[4] S. Balakrishnan and F. Özgüner, "A priority-driven
flow control mechanism for real-time traffic in mul-
tiprocessor networks," IEEE Trans, on Parallel and
Distributed Systems , Vol. 9, No. 2, July 1998, pp.
664-678.

[5] A. Bestavros, "WWW traffic reduction and load bal-
ancing through server-based caching," IEEE Concur-
rency, Vol. 5, No. 1, Jan.-Mar. 1997, pp. 56-67.

[6] N. B. Beck, M. D. Theys, H. J. Siegel, and M. Jurczyk,
"Evaluation of Heuristics in a Distributed Data Stag-
ing Network," Technical Report TR-ECE 99-7, ECE
School, Purdue Univ., May 1999, 141 pp.

[7] M. A. Bonuccelli and M. C. Clo, "EDD algorithm
performance guarantee for periodic hard-real-time
scheduling in distributed systems," 13th Int'l Parallel
Processing Symp. and 10th Symp. Parallel and Dis-
tributed Programming (IPPS/SPDP'99), Apr. 1999,
pp. 668-677.

[8] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M.
Maheswaran, A. I. Reuther, J. P. Robertson, M. D.
Theys, and B. Yao, "A taxonomy for describing match-
ing and scheduling heuristics for mixed-machine het-
erogeneous computing systems," IEEE Workshop on
Advances in Parallel and Distributed Systems, Oct.
1998, pp. 330-335.

[9] T D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M.
Maheswaran, A. I. Reuther, J. P. Robertson, M. D.
Theys, B. Yao, D. Hensgen, and R. F. Freund, "A com-
parison study of static mapping heuristics for a class of
meta-tasks on heterogeneous computing systems," 8th
IEEE Workshop on Heterogeneous Computing Sys-
tems (HCW '99), Apr. 1999, pp. 15-29.

[10] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, In-
troduction to Algorithms, MIT Press, Cambridge, MA,
1990.

[11] P. Danzig, R. Hall, and M. Schwartz, "A case for
caching file objects inside internetworks," Technical
Report CU-CS-642-93, CS Dept., Univ. of Colorado,
Mar. 1993, 15 pp.

[12] J. K. Kim, D. A. Hensgen, T Kidd, H. J. Siegel, D.
St. John, C. Irvine, T Levin, V. K. Prasanna, and R.
F. Freund, "A QoS performance measure framework
for distributed heterogeneous networks," 8th Euromi-
cro Workshop on Parallel and Distributed Processing,
Jan. 2000, pp. 18-27.

[13] P. C. Jones, T J. Lowe, G. Müller, N. Xu, Y Ye, and J.
L. Zydiak, "Specially structured uncapacitated facility
location problem," Operations Research, Vol. 43, No.
4, July-Aug. 1995, pp. 661-669.

[14] M. J. Lemanski and J. C. Benton, Simulation for S-
martNet Scheduling of Asynchronous Transfer Mode
Virtual Channels, Master's Thesis, CS Dept., Naval
Postgraduate School, June 1997.

[15] A. J. Rockmore, "BADD functional description," In-
ternal DARPA Memo, Febr. 1996, 9 pp.

88

[16] SmartNet/Heterogeneous Computing Team,
"BC2A/TACITUS/BADD integration plan," In-
ternal NRaD Naval Laboratory Report, Aug. 1996, 16
pp.

[17] J. A. Stankovic, M. Spuri, K. Ramamritham, and G. C.
Buttazzo, Deadline Scheduling for Real-Time Systems,
Kluwer Academic Publishers, Boston, MA, 1998.

[18] M. Tan, H. J. Siegel, J. K. Antonio, and Y. A. Li,
"Minimizing the application execution time through
scheduling of subtasks and communication traffic in
a heterogeneous computing system," IEEE Trans, on
Parallel and Distributed Systems, Vol. 8, No. 8, Aug.
1997, pp. 857-871.

[19] M. Tan, M. D. Theys, H. J. Siegel, N B. Beck, M. Ju-
rczyk, "A mathematical model, heuristic, and simula-
tion study for a basic data staging problem in a hetero-
geneous networking environment," 7th IEEE Hetero-
geneous Computing Workshop (HCW '98), Apr. 1998,
pp. 115-129.

[20] M. D. Theys, N. B. Beck, H. J. Siegel, M. Jurczyk,
and M. Tan, "Scheduling heuristics for data requests
in an oversubscribed network with priorities and dead-
lines," Int'l Conf. Distributed Computing Systems,
Apr. 2000, to appear.

[21] L. Wang, H. J. Siegel, V. P. Roychowdhury, and A. A.
Maciejewski, "Task matching and scheduling in het-
erogeneous computing environments using a genetic-
algorithm-based approach," /. of Parallel and Dis-
tributed Computing, Vol. 47, No. 1, Nov. 1997, pp.
1-15.

from MIT, and the MA, MSE, and PhD degrees from the
Department of Electrical Engineering and Computer Sci-
ence at Princeton University. Prof. Siegel has coauthored
over 250 technical papers, has coedited seven volumes, and
wrote the book Interconnection Networks for Large-Scale
Parallel Processing. He was a Coeditor-in-Chief of the
Journal of Parallel and Distributed Computing, and was
on the Editorial Boards of the IEEE Transactions on Paral-
lel and Distributed Systems and the IEEE Transactions on
Computers. He was Program Chair/Co-Chair of three con-
ferences, General Chair/Co-Chair of four conferences, and
Chair/Co-Chair of four workshops. He is an international
keynote speaker and tutorial lecturer, and a consultant for
government and industry.

Michael Jurczyk is an assistant professor at the Com-
puter Engineering and Computer Science Department at
the University of Missouri-Columbia. He studied Electri-
cal Engineering at Purdue University and the University of
Bochum, Germany, where he received his Diploma in 1990.
He obtained his PhD in Electrical Engineering from the
University of Stuttgart, Germany, in 1996, where he studied
parallel simulation and performance issues of interconnec-
tion networks. In 1996, he was a visiting assistant profes-
sor at the School of Electrical and Computer Engineering
at Purdue University. His research interests include parallel
and distributed systems, interconnection networks for paral-
lel and communication systems, ATM-networking, and net-
worked multimedia.

Author Biographies
Mitchell D. Theys is an assistant professor in the Elec-

trical Engineering and Computer Science Department at the
University of Illinois at Chicago. He obtained his PhD in
1999 from the School of Electrical and Computer Engineer-
ing at Purdue University. While working on his PhD, he
was supported by the DARPA BADD and AICE programs,
and an Intel, AFCEA, and Meisner (through the school of
ECE at Purdue) fellowship. He also obtained an MSEE
and a BSCEE from the School of Electrical Engineering
at Purdue. His research interests include parallel systems
on a chip, distributed systems, communication systems, and
computer architecture.

Noah B. Beck is an UltraSPARC Verification Engineer at
the Sun Microsystems Boston Design Center. He received a
Bachelor of Science in Computer Engineering in 1997 and
a Master of Science in Electrical Engineering in 1999 from
Purdue University. His research interests include micropro-
cessor architecture and verification, parallel computing, and
heterogeneous computing.

Howard Jay Siegel is a Professor in the School of Electri-
cal and Computer Engineering at Purdue University. He is
a Fellow of the IEEE and a Fellow of the ACM. He received
BS degrees in both electrical engineering and management

89

Fast Heterogeneous Binary Data Interchange

Greg Eisenhauer and Lynn K. Daley
College of Computing

Georgia Institute of Technology

Abstract

As distributed applications have become more widely
used, they more often need to leverage the comput-
ing power of a heterogeneous network of computer
architectures. Modern communications libraries pro-
vide mechanisms that hide at least some of the com-
plexities of binary data interchange among heteroge-
neous machines. However, these mechanisms may be
cumbersome, requiring that communicating applica-
tions agree a priori on precise message contents, or
they may be inefficient, using both "up" and "down"
translations for binary data. Finally, the seman-
tics of many packages, particularly those which re-
quire applications to manually "pack" and "unpack"
messages, result in multiple copies of message data,
thereby reducing communication performance. This
paper describes PBIO, a novel messaging middleware
which offers applications significantly more flexibility
in message exchange while providing an efficient im-
plementation that offers high performance.

1 Introduction

As distributed applications have become more
widely used, they often need to leverage the comput-
ing power of a heterogeneous network of computer
architectures. Modern communications libraries pro-
vide mechanisms that hide at least some of the com-
plexities of binary data interchange among heteroge-
neous machines. The features and semantics of these
packages are typically a compromise between what
might be useful to the applications and what can be
implemented efficiently.

For example, many packages, such as PVM[8] and
Nexus [7], support message exchanges in which the
communicating applications "pack" and "unpack"
messages, building and decoding them field by field,
datatype by datatype. Other packages, such as
MPI[6], allow the creation of user-defined datatypes
for messages and message fields and provide some

amount of marshalling and unmarshalling support for
those datatypes internally.

The approach of requiring the application to build
messages manually offers applications significant flex-
ibility in message contents while ensuring that the
pack and unpack operations are performed by opti-
mized, compiled code. However, relegating message
packing and unpacking to the communicating ap-
plications means that those applications must have
a priori agreement on the contents and format of
messages. This is not an onerous requirement in
small-scale stable systems, but in enterprise-scale dis-
tributed computing, the need to simultaneously up-
date all application components in order to change
message formats can be a significant impediment to
the integration, deployment and evolution of complex
systems.

In addition, the semantics of application-side pack/
unpack operations generally imply a data copy to or
from message buffers. Such copies are known[ll, 13]
to have a significant impact on communication sys-
tem performance. Packages which can perform inter-
nal marshalling, such as MPI, have an opportunity to
avoid data copies and to offer more flexible semantics
in matching fields provided by senders and receivers.
However, existing packages have failed to capitalize
on those opportunities. For example, MPIs type-
matching rules require strict a priori agreement on
the contents of messages. Additionally, most MPI im-
plementations implement marshalling of user-defined
datatypes via mechanisms that amount to interpreted
versions of field-by-field packing.

This paper describes PBIO(Portable Binary Input/
Output) [3], a multi-purpose communication middle-
ware. In developing PBIO we have not attempted to
recreate various higher-level communication abstrac-
tions offered by MPI or by the Remote Service Re-
quests of Nexus. Instead, we provide flexible hetero-
geneous binary data transport for simple messaging
of a wide range of application data structures, using
novel approaches such as dynamic code generation
(DCG) to preserve efficiency. In addition, PBIO's
flexibility in matching transmitted and expected data

90
0-7695-0556-2/00 $10.00 © 2000 IEEE

types provides key support for application evolution
that is missing from other communication systems.

This paper briefly describes PBIO semantics and
features, and then illustrates performance metrics
across a heterogeneous environment of Sun Sparc and
X86-based machines running Solaris. These metrics
are compared against the data communication mea-
surements obtained by using MPI as a data commu-
nication mechanism across the same network archi-
tecture. The paper will show that the features and
flexibility of PBIO do not impose overhead beyond
that imposed by other communications systems. In
the worst case PBIO performs as well as other sys-
tems, and in many cases PBIO offers a significant
performance improvement over comparable commu-
nications packages.

Much of PBIO's performance advantage is due to
its use of dynamic code generation to optimize trans-
lations from wire to native format. Because this is
a novel feature in communications middleware, its
impact on PBIO's performance is also considered in-
dependently. In this manner, we show that for pur-
poses of data compatibility, PBIO, along with code
generation, can provide reliable, high performance,
easy-to-use, easy-to-migrate, heterogeneous support
for distributed applications.

2 The PBIO Communication Library

In order to conserve I/O bandwidth and reduce
storage and processing requirements, storing and
transmitting data in binary form is often desirable.
However, transmission of binary data between hetero-
geneous environments has been problematic. PBIO
was developed as a portable self-describing binary
data library, providing both stream and file support
along with data portability.

The basic approach of the Portable Binary I/O li-
brary is straightforward. PBIO is a record-oriented
communications medium. Writers of data must pro-
vide descriptions of the names, types, sizes and po-
sitions of the fields in the records they are writ-
ing. Readers must provide similar information for the
records they wish to read. No translation is done on
the writer's end, our motivation being to offload pro-
cessing from data providers (e.g., servers) whenever
possible. On the reader's end, the format of the in-
coming record is compared with the format expected
by the program. Correspondence between fields in
incoming and expected records is established by field
name, with no weight placed on size or ordering in
the record. If there are discrepancies in field size or
placement, then PBIO's conversion routines perform

the appropriate translations. Thus, the reader pro-
gram may read the binary information produced by
the writer program despite potential differences in:
(1) byte ordering on the reading and writing archi-
tectures; (2) differences in sizes of data types (e.g.
long and int); and (3) differences in structure layout
by compilers.

Since full format information for the incoming
record is available prior to reading it, the receiv-
ing application can make run-time decisions about
the use and processing of incoming messages about
whom it had no a priori knowledge. However, this
additional flexibility comes with the price of poten-
tially complex format conversions on the receiving
end. Since the format of incoming records is prin-
cipally defined by the native formats of the writers
and PBIO has no a priori knowledge of the native
formats used by the program components with which
it might communicate, the precise nature of this for-
mat conversion must be determined at run-time.

Since high performance applications can ill afford
the increased communication costs associated with
interpreted format conversion, PBIO uses dynamic
code generation to reduce these costs. The cus-
tomized data conversion routines generated must be
able to access and store data elements, convert el-
ements between basic types and call subroutines to
convert complex subtypes. Measurements^] show
that the one-time costs of DCG, and the perfor-
mance gains by then being able to leverage com-
piled (and compiler-optimized) code, far outweigh the
costs of continually interpreting data formats. The
analysis in the following section shows that DCG,
together with native-format data transmission and
copy reduction, allows PBIO to provide its additional
type-matching flexibility without negatively impact-
ing performance. In fact, PBIO outperforms our
benchmark communications package in all measured
situations.

3 Evaluation

In order to thoroughly evaluate PBIO's perfor-
mance and its utility in high-performance commu-
nication, we present a variety of measurements in
different circumstances. Where possible, we com-
pare PBIO's performance to the cost of similar op-
erations in MPI. Additionally, we include measure-
ments which evaluate PBIO's performance in situ-
ations which are not supported by other communi-
cations packages. In particular, we evaluate PBIO's
support for application evolution and its ability to
transmit dynamically sized data elements.

91

spare encode network

.034m

spare encode

.086m

.971m

spare encode

13.31m

.227m

network

.345m

spare encode network

1.94m

100 byte roundtrip .66msec

i86 decode i86 encode network

.063m .010m

1Kb roundtrip 1.11msec

i86 decode iS6 encode

.106m .046m

10Kb roundtrip 8.43msec

i86 decode i86 encode

1.19m .876m

network

100Kb roundtrip 80.09msec

i86 decode i86 encode

15.39m 11.63m 8.95m

spare decode

,227m .104m

network spare decode

.345m .186m

network spare decode

1.94m 1.51m

network spare decode

15.39m 15.41m

Figure 1: Cost breakdown for message exchange.

3.1 Analysis of costs in heterogeneous
data exchange

Before analyzing PBIO costs in detail, it is useful to
examine the costs in an exchange of binary data in
a heterogeneous environment. As a baseline for this
discussion, we use the MPICH[10] implementation of
MPI, a popular messaging package in cluster comput-
ing environments. Figure 1 represents a breakdown
of the costs in an MPI message round-trip between
a x86-based PC and a Sun Sparc connected by 100
Mbps Ethernet.1 The time components labeled "En-
code" represent the time span between the applica-
tion invoking HPI_send() and the eventual call to
write data on a socket. The "Decode" component
is the time span between the recv() call returning
and the point at which the data is in a form us-
able by the application. In generating these num-
bers network transmission times were measured with
NetPerf[9] and send and receive times were measured
by substituting dummy calls for socket send() and
recv(). This delineation allows us to focus on the en-
code/decode costs involved in binary data exchange.
That these costs are significant is clear from the fig-
ure, where they typically represent 66% of the total
cost of the exchange.

Figure 1 shows the cost breakdown for messages of
a selection of sizes, but in practice, message times de-

xThe Sun machine is an Ultra 30 with a 247 MHz cpu run-
ning Solaris 7. The x86 machine is a 450 MHz Pentium II, also
running Solaris 7.

pend upon many variables. Some of these variables,
such as basic operating system characteristics that
affect raw end-to-end TCP/IP performance, are be-
yond the control of the application or the communica-
tion middleware. Different encoding strategies in use
by the communication middleware may change the
number of raw bytes transmitted over the network,
but those differences tend to be negligible. There-
fore, the remainder of our analysis will concentrate
on the more controllable sending side and receiving
side costs.

Another application characteristic which has a
strong effect upon end-to-end message exchange time
is the precise nature of the data to be sent in the
message. It could be a contiguous block of atomic
data elements (such as an array of floats), a stride-
based element (such as a stripe of a homogeneous ar-
ray), a structure containing a mix of data elements,
or even a complex pointer-based structure. MPI, de-
signed for scientific computing, has strong facilities
for homogeneous arrays and strided elements. MPIs
support for structures is less efficient than its sup-
port for contiguous arrays of atomic data elements,
and it doesn't attempt to supported pointer-based
structures at all. PBIO doesn't attempt to support
strided array access, but otherwise supports all types
with equal efficiency, including a non-recursive sub-
set of pointer-based structures. The message type of
the 100Kb message in Figure 1 is a non-homogeneous
structure taken from the messaging requirements of
a real application, a mechanical engineering simula-

92

X
•-

X
10

null-terminated string
^ s t r i n g \0

— array size
^

X X X X X X X X X X
X float array

Figure 2: Strings and dynamic arrays in
PBIO.

tion of the effects of micro-structural properties on
solid-body behavior. The smaller message types are
representative subsets of that mixed-type message.

The next sections will examine PBIO's costs in ex-
changing the same sets of messages. Subsequently,
Section 3.5 will examine costs for other data types.

3.2 Sending side cost

As is mentioned in Section 2, PBIO transmits data
in the native format of the sender. No copies or data
conversions are necessary to prepare simple struc-
ture data for transmission. So, while MPICH's costs
to prepare for transmission on the Sparc vary from
34/isec for the 100 byte record up to 13 msec for the
100Kb record, PBIO's cost is a flat 3 //see. Of course,
this efficiency is accomplished by moving most of the
complexity to the receiver, where Section 3.3 tells a
more complex story.

As mentioned above, PBIO also supports the trans-
mission of some pointer-based structures. In partic-
ular, PBIO allows an element of a structure be to a
null-terminated string, or a pointer to a dynamically
sized array,2 as shown in Figure 2. The array ele-
ments may be of an atomic data type or a previously
registered structure. That there is no forward dec-
laration mechanism or self-referentiality for structure
types restricts PBIO from describing such things as
linked lists. However, relatively complex structures,
such as the one depicted in Figure 3 can be directly
transmitted. The ability to directly transmit dynam-
ically sized arrays is a feature that is not normally
present in communications middleware.

Unlike contiguous structures, pointer-based enti-
ties do require some preparation before they are sent.
In particular, PBIO must walk the structure to 1)
prepare a transmission list of data blocks and their
lengths, and 2) change all internal pointers from ad-
dresses to offsets within the message. The type se-

rUJ

i\2\i\s\i\4\l

thill«!*!

*C

In the case of a dynamically sized array, the array size
must be given by another, integer-typed, element in the base
structure.

Figure 3: A multi-level pointer structure that
can be transmitted by PBIO.

mantics ensures that there can be no circularities
in the structure, so the 'walk' is a simple tree de-
scent which stops when it reaches the 'leaf structures
which contain no pointers. In order to avoid chang-
ing the data directly, structures containing pointers
are copied to temporary memory and the pointers
modified there. This imposes a cost on the sender
that is proportional to the amount of data that must
be copied and the number of pointers that must be
adjusted. Because no similar features are included
in common communications libraries, we don't in-
clude any representative measurements of these costs.
However, we do observe that in the most common
use of dynamic arrays, where a relatively small base
structure holds pointers and sizes for one or more ar-
rays, the 'walk' is a simple pass over the base struc-
ture, the majority of the data is in the 'leaves' which
are not copied, and the additional sender-side pro-
cessing is not overly significant.

3.3 Receiving side cost

PBIO's approach to binary data exchange eliminates
sender-side processing by transmitting in the sender's
native format and isolating the complexity of man-
aging heterogeneity in the receiver. Essentially, the
receiver must perform a conversion from the vari-
ous incoming 'wire' formats to the receiver's 'native'
format. PBIO matches fields by name, so a conver-
sion may require byte-order changes (byte-swapping),
movement of data from one offset to another, or even
a change in the basic size of the data type (for exam-
ple, from a 4-byte integer to an 8-byte integer).

This conversion is another form of the "marshal-
ing problem" that occurs widely in RPC implemen-
tations^] and in network communication. That mar-
shaling can be a significant overhead is also well
known[2, 14], and tools such as USC[12] attempt
to optimize marshaling with compile-time solutions.

93

Unfortunately, the dynamic form of the marshaling
problem in PBIO, where the layout and even the
complete field contents of the incoming record are un-
known until run-time, rules out such static solutions.
The conversion overhead is nil for some homogeneous
data exchanges, but as Figure 1 shows, the overhead
is high (66%) for some heterogeneous exchanges.

Generically, receiver-side overhead in communica-
tion middleware has several components which can be
traded off against each other to some extent. Those
basic costs are:

• byte-order conversion,
• data movement costs, and
• control costs.
Byte order conversion costs are to some extent un-

avoidable. If the communicating machines use differ-
ent byte orders, the translation must be performed
somewhere regardless of the capabilities of the com-
munications package.

Data movement costs are harder to quantify. If
byteswapping is necessary, data movement can be
performed as part of the process without incurring
significant additional costs. Otherwise, clever design
of the communications middleware can often avoid
copying data. However, packages that define a 'wire'
format for transmitted data have a harder time be-
ing clever in this area. One of the basic difficulties is
that the native format for mixed-datatype structures
on most architectures has gaps, unused areas between
fields, inserted by the compiler to satisfy data align-
ment requirements. To avoid making assumptions
about the alignment requirements of the machines
they run on, most packages use wire formats which
are fully packed and have no gaps. This mismatch
forces a data copy operation in situations where a
clever communications system might otherwise have
avoided it.

Control costs represent the overhead of iterating
through the fields in the record and deciding what to
do next. Packages which require the application to
marshal and unmarshal their own data have the ad-
vantage that this process occurs in special-purpose
compiler-optimized code, minimizing control costs.
However, to keep that code simple and portable, such
systems uniformly rely on communicating in a pre-
defined wire format, incurring the data movement
costs described in the previous paragraph.

Packages that marshal data themselves typically
use an alternative approach to control, where the
marshalling process is controlled by what amounts
to a table-driven interpreter. This interpreter mar-
shals or unmarshals application-defined data making

m

I I

Receive Times

m
W MPICH
D PBIO

m

§

10Kb 1Kb
Message size

Figure 4: Receiver side costs for PBIO and
MPI interpreted conversions.

data movement and conversion decisions based upon
a description of the structure provided by the applica-
tion and its knowledge of the format of the incoming
record. This approach to data conversion gives the
package significant flexibility in reacting to changes
in the incoming data and was our initial choice for
PBIO. Figure 4 shows a comparison of receiver-side
processing costs on the Sparc for interpreted convert-
ers used by MPICH (via the MPI_Unpack()) call and
PBIO. PBIO's converter is relatively heavily opti-
mized and performs considerably better than MPI,
in part because MPICH uses a separate buffer for
the unpacked message rather than reusing the receive
buffer (as PBIO does). However, PBIO's receiver-
side conversion costs still contribute roughly 20% of
the cost of an end-to-end message exchange. While a
portion of this conversion overhead must be the con-
sequence of the raw number of operations involved
in performing the data conversion, we believed that
a significant fraction of this overhead was due to the
fact that the conversion is essentially being performed
by an interpreter.

Our decision to transmit data in the sender's native
format results in the wire format being unknown to
the receiver until run-time, making a remedy to the
problem of interpretation overhead difficult. How-
ever, our solution to the problem was to employ dy-
namic code generation to create a customized con-
version subroutine for every incoming record type.
These routines are generated by the receiver on the
fly, as soon as the wire format is known, through a
procedure that structurally resembles the interpreted
conversion itself. However, instead of performing the
conversion this procedure directly generates machine
code for performing the conversion.

94

g 1.0

Time for receiver decoding

i

a
10Kb

Message Size

Figure 5: Receiver side costs for interpreted
conversions in MPI and PBIO and DCG con-
versions in PBIO.

The execution times for these dynamically gener-
ated conversion routines are shown in Figure 5. The
dynamically generated conversion routine operates
significantly faster than the interpreted version. This
improvement removes conversion as a major cost in
communication, bringing it down to near the level of
a copy operation, and is the key to PBIO's ability to
efficiently perform many of its functions.

The cost savings achieved by PBIO through the
techniques described in this section are directly re-
flected in the time required for an end-to-end mes-
sage exchange. Figure 6 shows a comparison of PBIO
and MPICH message exchange times for mixed-field
structures of various sizes. The performance differ-
ences are substantial, particularly for large message
sizes where PBIO can accomplish a round-trip in 45%
of the time required by MPICH. The performance
gains are due to:

• virtually eliminating the sender-side encoding
cost by transmitting in the sender's native for-
mat, and

• using dynamic code generation to customize a
conversion routine on the receiving side (cur-
rently not done on the x86 side).

3.4 Details of dynamic code generation

The dynamic code generation in PBIO is performed
by Vcode, a fast dynamic code generation package
developed at MIT by Dawson Engler[5]. We have
significantly enhanced Vcode and ported it to several
new architectures. The present implementation we

can generate code for Sparc (v8, v9 and v9 64-bit),
MIPS (old 32-bit, new 32-bit and 64-bit ABIs) and
DEC Alpha architectures. An x86 port of Vcode is in
progress, but not yet sufficiently advanced for us to
generate PBIO's conversion routines. Vcode essen-
tially provides an API for a virtual RISC instruction
set. The provided instruction set is relatively generic,
so that most Vcode instruction macros generate only
one or two native machine instructions. Native ma-
chine instructions are generated directly into a mem-
ory buffer and can be executed without reference to
an external compiler or linker.

Employing DCG for conversions means that PBIO
must bear the cost of generating the code as well
as executing it. Because the format information in
PBIO is transmitted only once on each connection
and data tends to be transmitted many times, con-
version generation is not normally a significant over-
head. Yet that overhead must still be considered to
determine whether or not the use of DCG results in
performance gains.

The proportional overhead encountered in actually
generating conversion code varies dramatically de-
pending upon the internal structure of the record.
This differs from the situation in Figure 5, where
the worst-case conversion run-time is more dependent
upon the size of the message than its structure. To
understand this variation, consider the conversion of
a record that contains large internal arrays. In this
case, the conversion code consists of a few for loops
that process large amounts of data. In comparison,
a record of similar size consisting solely of indepen-
dent fields of atomic data types requires custom code
for each field. The result is that for records consisting
solely of arrays, DCG almost always improves perfor-
mance. For array-based records of around 200 bytes
the time to generate and execute dynamic conversion
code is less than the time to perform an interpreted
conversion. At that point, DCG is a performance im-
provement, even if the conversion routine is only used
once.

The situation is less clear for record formats con-
sisting mostly of individual atomic fields. For this
type of record, dynamically generated conversions
run nearly an order of magnitude faster than inter-
preted conversions, but the one-time cost of doing the
code generation is relatively high. Obviously, if many
records are exchanged, the costs will be amortized
over the improved conversion times. But for one-
time exchanges dynamic code generation for conver-
sions may be more expensive than simple interpreted
conversions.

95

spare encode network

.034m .227m

MPICH 100 byte roundtrip .66msec

i86 decode i86 encode network

.063m .010m .227m

.126m .0002m -227m

PBIODCG 100b roundtrip ,62msec

spare decode

3
.104m

spare encode network

.086m .345m

MPICH 1Kb roundtrip 1.11msee

i86 decode i86 encode network

.106m .046m .345m

,126m ,0005m ,345m
PBIODCG 1Kb roundtrip ,87msec

spare decode

,186m

3

spare encode network

,971m 1.94m

— MPICH 10Kb roundtrip 8.43msec—

■86 decode i86 encode network

1.19m .876m 1.94m

,345m ,O01m 1.94m 1.16m
PBIODCG 10Kbroundtrip 4.3msec " *"

spare decode

1.51m

spare encode

13.31m

network

15.39m

MPICH 100Kb roundtrip 80.0msec-

i86 decode | i86encod^ network

11.63m 8.95m 15.39m

| deccxji e network

.Q02m 15.39m 3.32m ,001m 15.39m '
^~~—— PBIODCG 100Kbroundtrip 35.27msec-

| qeco'

spare decode

15.41m

Figure 6: Cost comparison for PBIO and MPICH message exchange.

96

start of proceedure bookkeeping
save Xsp, -360, Xsp

byteswap load and store the 'lvalue' field.
clr Xgl
ldswa [XiO + y.gi] #ASI_P_L, Xg2
st Xg2, [*/.il]

byteswap load and store the 'dvalue'field
mov 4, Xgl
ldswa [XiO + */.gl] #ASI_P_L, y.g2
mov 8, */,gl

ldswa [y.io + y.gi] #ASI_P_L, y.g3
st y.g3, [*/.sp + 0x158]
st y.g2, [y.sp + ox i5c]
ldd [y.sp + 0x158] , y.f 4
std y.f4, [y.ii + 8]

loop to handle 'iarray'
save 'incoming' and 'destination'pointers for later
restoration

st y.iO, [y.sp + 0x160]
st Xil, [*/.sp + 0x164]

make regs iO and il point to start of incoming and
destination float arrays

add '/.iO, Oxc, XiO
add %il, 0x10, Xil

setup loop counter
mov 5, Xg3

loop body.
clr Xgl
ldswa [XiO + Xgl] #ASI_P_L, Xg2
st Xg2, [Xil]

end of loop, increment 'incoming' and 'destination',
decrement loop count, test for end and branch

dec Xg3
add XiO, 4, XiO
add Xil, 4, Xil
cmp Xg3, 0
bg,a 0xl85c70
clr Xgl

reload original 'incoming' and 'destination'pointers
Id [Xsp + 0x160], XiO
Id [Xsp + 0x164], Xil

end-of-procedure bookkeeping
ret
restore

Figure 7: A sample DCG conversion routine.

For the reader desiring more information on the
precise nature of the code that is generated, we in-
clude a small sample subroutine in Figure 7. This
particular conversion subroutine converts message
data received from an x86 machine into native Sparc
data. The message being exchange has a relatively
simple structure:

typedef struct small_record {
int ivalue;
double dvalue;
int iarray[5];

};

Since the record is being sent from an x86 and PBIO
always sends data in the sender's native data formats
and layout, the "wire" and native formats differ in
both byte order and alignment. In particular, the
floating point value is aligned on a 4-byte boundary
in the x86 format and on an 8-byte boundary on the
Sparc. The subroutine takes two arguments. The
first argument in register */,i0 is a pointer to the in-
coming "wire format" record. The second argument
in register */,il is a pointer to the desired destination,
where the converted record is to be written in native
Sparc format.

The exact details of the code are interesting for a
couple of points. First, we make use of the SparcV9
Load from Alternate Space instructions which can
perform byteswapping in hardware during the fetch
from memory. This yields a significant savings over
byteswapping with register shifts and masks. Since
this is not an instruction that is normally generated
by compilers in any situation, being able to use it
directly in this situation is one of the advantages of
dynamic code generation.

Second, from an optimization point of view, the
generated code is actually quite poor. Among other
things, it performs two instructions when one would
obviously suffice, and unnecessarily generates an ex-
tra load/store pair to get the double value into a float
register. The are several reasons for this suboptimal
code generation, including the generic nature of the
virtual RISC instruction set offered by Vcode, the
lack of an optimizer to repair it, and the fact that
we have not seriously attempted to make the code
generation better. Even when generating poor code,
DCG conversions are a significant improvement over
other approaches.

Examining the generated code may also bring to
mind another lurking subtlety in generating conver-
sion routines: data alignment. The alignment of
fields in the incoming record reflects the restrictions
of the sender. If the receiver has more stringent re-

97

MPICH - 100Kb Structure - 80.0msec

PBIO - 100Kb Structure - 35.2msec
vlS39mr 3.23

MPICH - 100Kb Array - 53.4msec

PBIO - 100Kb Array - 35.2msec
"f5".39ms" 3.23 15l39ms 1.2'

Jparc ehcodY Xd Network x86 decode =
iiniiiiiiiiiiiiiiinii ■
x86 encode

ii ii nun

Figure 8: Comparison between PBIO and MPICH in structure and array exchange time.

MPICH PBIO

data size total time
send
side

overhead

receive
side

overhead
total time

send
side

overhead

receive
side

overhead

100Kb 20.8ms 0.46 0.78 18.3 0.0028 0.034

10Kb 3.02ms 0.083 0.20 2.52 0.0028 0.034

1Kb 1.06ms 0.0097 0.086 0.90 0.0028 0.034

100b .63ms 0.0056 0.076 0.52 0.0028 0.034

Table 1: A comparison of PBIO and MPICH for homogeneous exchange of arrays

strictions, the generated load instruction may end
up referencing a misaligned address, a fatal error
on many architectures. This situation would actu-
ally have occurred in in the example shown in Fig-
ure 7, where the incoming double array is aligned on
a 4 byte boundary because the Sparc requires 8 byte
alignment for 8-byte loads. Fortunately, the subop-
timal Sparc dynamic code generator loads the two
halves of the incoming 8-byte doubles with separate
ldswa instructions instead of a single lddf a instruc-
tion.

Data alignment is generally not an issue in storing
to the native record because it is presumably aligned
according to the requirements of the receiving ma-
chine. We also assume that the base addresses of
the incoming and native records are strongly aligned.
This leaves the offsets of the incoming record fields as
the primary source of misalignment. Since these are
known at code generation time, we can make static
decisions about using efficient direct loads for aligned
data or using potentially less efficient methods for un-
aligned data.3

3
 Our current code generator does not handle misaligned

accesses, but the extension to handle them is straightforward.

3.5 Other data types and homogeneous
systems

The previous sections compared PBIO's performance
with that of MPICH in situations involving a het-
erogeneous exchange of structures containing mixed
types. While PBIO shows clear and significant
performance gains over MPICH in that situation,
MPICH might be expected to perform better in deal-
ing with messages consisting of contiguous arrays, or
in a homogeneous exchange where it might not use
an XDR-based encoding scheme.

Figure 8 shows a breakdown of MPICH and PBIO
performance for heterogeneous transmission of a
100Kb floating point array and compares it to the
previously presented breakdowns for the 100Kb struc-
ture. This figure shows that PBIO's performance
remains essentially unchanged when the datatype is
changed from structure to an array. MPICH perfor-
mance does improve with contiguous arrays, but not
to the point where it matches PBIO's performance.
The results for smaller datatypes are similar.

A comparison of round-trip times for contiguous ar-
rays between homogenous machines is shown in Ta-
ble 1. This is one of the simplest cases in binary

98

1.0

.01

Heterogeneous Receive Times

K23 Matched fields

I I Mismatched fields

m. m.
100Kb 10Kb 1Kb

message size

Figure 9: Receiver-side decoding costs with
and without an unexpected field - heteroge-
neous case.

1.0

(0
O
(0
O]
o

.1 ^

Homogeneous Receive Times

,01 I H ■

tssi Matching fields

l_l Mismatched fields

M RSSI I ty

100Kb 10Kb 1Kb 100b

message size

Figure 10: Receiver-side decoding costs with
and without an unexpected field - homoge-
neous case.

communication, requiring no data conversion of any
kind. The send and receive side overheads are tiny
compared to the time required for network transmis-
sion, but PBIO retains a slight edge over MPICH in
both receive and send side overheads. These differ-
ences largely account for the 10% or so better per-
formance that PBIO achieves in round-trip time for
these contiguous arrays.

That PBIO has better performance than MPICH
even in situations where MPICH might be expected
to prevail is convincing evidence that PBIO's extra
flexibility in supporting application evolution does
not negatively impact performance in other situa-
tions. The next section will examine PBIO's per-
formance in the presence of application evolution.

3.6 Performance in application evolution

The principal difference between PBIO and most
other messaging middleware is that PBIO messages
carry format meta-information, somewhat like an
XML-style description of the message content. This
meta-information can be an incredibly useful tool
in building and deploying enterprise-level distributed
systems because it 1) allows generic components to
operate upon data about which they have no a priori
knowledge, and 2) allows the evolution and extension
of the basic message formats used by an application
without requiring simultaneous upgrades to all appli-
cation components. In other terms, PBIO allows re-
flection and type extension. Both of these are valuable
features commonly associated with object systems.

PBIO supports reflection by allowing message for-
mats to be inspected before the message is received.
It's support of type extension derives from doing field
matching between incoming and expected records by
name. Because of this, new fields can be added

to messages without disruption because application
components which don't expect the new fields will
simply ignore them.

Most systems which support reflection and type
extension in messaging, such as systems which use
XML as a wire format or which marshal objects as
messages, suffer prohibitively poor performance com-
pared to systems such as MPI which have no such
support. Therefore, it is interesting to examine the
effect of exploiting these features upon PBIO perfor-
mance. In particular, we measure the performance ef-
fect of type extension by introducing an unexpected
field into the incoming message and measuring the
change in receiver-side processing.

Figures 9 and 10 present receive-side processing
costs for an exchange of data with an unexpected
field. These figures show values measured on the
Sparc side of heterogeneous and homogeneous ex-
changes, respectively, using PBIO's dynamic code
generation facilities to create conversion routines. It's
clear from Figure 9 that the extra field has no ef-
fect upon the receive-side performance. Transmitting
would have added slightly to the network transmis-
sion time, but otherwise the support of type extension
adds no cost to this exchange.

Figure 10 shows the effect of the presence of an
unexpected field in the homogeneous case. Here, the
overhead is potentially significant because the homo-
geneous case normally imposes no conversion over-
head in PBIO. The presence of the unexpected field
creates a layout mismatch between the wire and na-
tive record formats and as a result the conversion
routine must relocate the fields. As the figure shows,
the resulting overhead is non-negligible, but not as
high as exists in the heterogeneous case. For smaller
record sizes, most of the cost of receiving data is ac-

99

tually caused by the overhead of the kernel select ()
call. The difference between the overheads for match-
ing and extra field cases is roughly comparable to the
cost of memcpy () operation for the same amount of
data.

The results shown in Figure 10 are actually based
upon a worst-case assumption, where an unexpected
field appears before all expected fields in the record,
causing field offset mismatches in all expected fields.
In general, the overhead imposed by a mismatch
varies proportionally with the extent of the mis-
match. An evolving application might exploit this
feature of PBIO by adding any additional at the
end of existing record formats. This would minimize
the overhead caused to application components which
have not been updated.

4 Conclusions

Current distributed applications rely heavily on
leveraging the computing power of heterogeneous net-
works of computer architectures. The PBIO library is
a valuable addition to the mechanisms available for
handling binary data interchange among these het-
erogeneous distributed systems. PBIO performs ef-
ficient data translations, and supports simple, trans-
parent system evolution of distributed applications,
both on a software and a hardware basis.

Rather than relegating message packing and un-
packing operations to the communicating applica-
tions, thus requiring a priori agreement on these
data structures, PBIO efficiently layers and abstracts
diversities in computer architectures. Applications
need only agree on data by name, and previously ex-
posed concerns such as byte ordering, architecture
specifications, data type sizes, and compiler differ-
ences are no longer a concern. Since PBIO uses dy-
namic code generation rather than data interpreta-
tion, compiler optimizations are utilized without the
cumbersome limitations of static data structures.

Enterprise-scale distributed computing can be im-
plemented and deployed much more simply and effi-
ciently using PBIO's flexibility, not only initially, but
during the evolution of specific distributed compo-
nents. Data elements can be incrementally to the ba-
sic message formats of distributed applications with-
out disrupting the operation of existing application
components.

The measurements in this paper have shown that
PBIO's flexibility does not impact its performance.
In fact, PBIO's performance is better than that of a
popular MPI implementation in every test case, and
significantly better in heterogeneous exchanges. Per-

formance gains of up to 60% are largely due to:
• virtually eliminating the sender-side encoding

cost by transmitting in the sender's native for-
mat, and

• using dynamic code generation to perform data
conversion on the receiving side.

In short, PBIO is a novel messaging middleware
that combines significant flexibility improvements
with an efficient implementation to offer distributed
applications fast heterogeneous binary data inter-
change.

References

[1] Guy T. Almes. The impact of language and sys-
tem on remote procedure call design. In Sixth Inter-
national Conference on Distributed Computing Sys-
tems, Boston, Mass., pages 414-421. IEEE, May
1986.

[2] D.D.Clark and D.L.Tennenhouse. Architectural con-
siderations for a new generation of protocols. In
Proceedings of the SIGCOMM '90 Synposium, pages
200-208, Sept 1990.

[3] Greg Eisenhauer. Portable self-describing binary
data streams. Technical Report GIT-CC-94-45, Col-
lege of Computing, Georgia Institute of Technology,
1994. (anon, ftp from ftp.cc.gatech.edu).

[4] Greg Eisenhauer, Beth Schroeder, and Karsten
Schwan. Dataexchange: High performance commu-
nication in distributed laboratories. Journal of Par-
allel Computing, 24(12-13), 1998.

[5] Dawson R. Engler. Vcode: a retargetable, extensible,
very fast dynamic code generation system. In Pro-
ceedings of the SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI
'96), May 1996.

[6] Message Passing Interface (MPI) Forum. MPI: A
message passing interface standard. Technical re-
port, University of Tennessee, 1995.

[7] I. Foster, C. Kesselman, and S. Tuecke. The nexus
approach to integrating multithreading and commu-
nication. Journal of Parallel and Distributed Com-
puting, pages 70-82, 1996.

[8] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng
Jiang, Robert Manchek, and Vaidy Sunderam. PVM
3 Users Guide and Reference manual. Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831,
May 94.

[9] Hewlet-Packard. The netperf network performance
benchmark, http://www.netperf.org.

[10] Argonne National Laboratory. Mpich-a portable im-
plementation of mpi. http://www-unix.mcs.anl.gov/
mpi/mpich.

[11] Mario Lauria, Scott Pakin, and Andrew A. Chien.
Efficient layering for high speed communication:
Fast messages 2.x. In Proceedings of the 7th High
Performance Distributed Computing (HPDC7), July
1998.

[12] S. W. O'Malley, T. A. Proebsting, and A. B. Montz.
Universal stub compiler. In Proceedings of the SIG-
COMM '94 Symposium, Aug 1994.

100

[13] Marcel-Catalin Rosu, Karsten Schwan, and Richard
Fujimoto. Supporting parallel applications on clus-
ters of workstations: The virtual communication
machine-based architecture. Cluster Computing,
Special Issue on High Performance Distributed Com-
puting, 1, January 1998.

[14] M. Schroeder and M. Burrows. Performance or firefly
rpc. In Twelfth A CM Symposium on Operating Sys-
tems, SIGOPS, 23, 5, pages 83-90. ACM, SIGOPS,
Dec. 1989.

Greg Eisenhauer is a research scientist in the
College of Computing at the Georgia Institute of
Technology. He received his PhD from Georgia
Tech in 1998 under the direction of Dr. Karsten
Schwan. Dr. Eisenhauer previously worked at Honey-
well's Systems and Research Center and received his
BS and MS degrees from the University of Illinois,
Champaign-Urbana. His research interests include
interactive computational steering, performance eval-
uation and scientific computing.

Lynn K. Daley is a PhD student in the Col-
lege of Computing at Georgia Institute of Technology,
working under the direction of Dr. Karsten Schwan.
Ms. Daley has over 20 years software development ex-
perience, having worked at Harris Government Sys-
tems, Digital Equipment Corp., and Atlanta Signal
Processors. She holds BS/CS and MS/EE degrees
from Georgia Institute of Tech, and a MS/EngMgmt
from Florida Institute of Technology. Her research
interests include parallel, distributed, and real-time
processing.

101

A Heuristic Algorithm for Mapping Communicating Tasks
on Heterogeneous Resources

Kenjiro Taura*
Computer Systems and Architecture Group

Computer Science and Engineering
University of California, San Diego

tau@csag.ucsd.edu

Andrew Chien
Computer Systems and Architecture Group

Computer Science and Engineering
University of California, San Diego

achien@csag.ucsd.edu

Abstract

A heuristic algorithm that maps data-processing tasks
onto heterogeneous resources (i.e., processors and links of
various capacities) is presented. The algorithm tries to
achieve a good throughput of the whole data-processing
pipeline, taking both parallelism (load balance) and com-
munication volume (locality) into account. It performs well
both under compute-intensive and communication-intensive
conditions. When all tasks/processors are of the same size
and communication is negligible, it quickly distributes the
compute load over processors and finds the optimal map-
ping. As communication becomes significant and reveals as
a bottleneck, it trades parallelism for reduction of commu-
nication traffic. Experimental results using a topology gen-
erator that models the Internet show that it performs sig-
nificantly better than communication-ignorant schedulers.

1. Introduction

It is widely believed that future computing environmen-
t will consist of geographically distributed compute- and
data-resources connected with diverse communication ca-
pacities, forming a so-called "computational Grid" environ-
ment [10]. Computational elements range from a desktop
to clusters [4, 5] to supercomputers, and links range from
phone lines to gigabits system area networks. Both CPU
capacity and the network connectivity are improving in a
rapid pace, but the recent trend indicates network band-
width increases more rapidly than CPUs. As a consequence,
communication-intensive parallel jobs, which we are cur-
rently able to run only on dedicated supercomputers or clus-
ters, are likely to be hosted by a collection of desktops in

•Also affiliated to Departement of Information Science, University of
Tokyo.

laboratories or even home. This brings the Grid beyond
just an aggregation of computational horsepower and en-
ables a qualitatively different use of it. On the other hand,
it presents significant resource management problems to all
levels of parallel/distributed software developments.

One of the fundamental elements of such resource man-
agement problems is, given an application that consists of
many communicating tasks, to select a suitable set of re-
sources and map its tasks appropriately. To obtain a robust
performance across a wide range of resource configurations,
mapping algorithms must trade load balancing for the re-
duction of communication, and vice versa.

In this paper, we present a graph-theoretic formulation
of this general problem and propose its heuristic algorith-
m. The algorithm takes as input a task graph and a re-
source graph and outputs the mapping from tasks to pro-
cessors. A task graph models a data processing pipeline; a
task in a pipeline continuously receives data from adjacen-
t tasks, processes them, and sends processed data to other
tasks. Weights of nodes and edges represent compute and
communication requirements of these tasks, respectively. A
resource graph models processors and links. Weights of n-
odes and edges represent their compute and communication
capacities, respectively. If too many tasks are assigned on a
processor or too much communication goes through a link,
the processor or the link becomes a bottleneck and deter-
mines the overall throughput of the entire pipeline.

The key to achieving a good throughput is clustering of
a task graph, a process which recognizes highly-connected
components in a task graph. A cluster in a task graph repre-
sents a set of tasks that are intensively communicating with
each other. These tasks should be placed in a single proces-
sor if available communication bandwidth is low. Among
several graph clustering methods proposed in the literature
[9,13,28], we use a simplified version of the stochastic flow
injection method [29, 30] proposed by by Yeh et al.

Under a simple condition in which tasks and proces-

102
0-7695-0556-2/00 $10.00 © 2000 IEEE

sors are of a uniform weight and communication is neg-
ligible, it guarantees to quickly give the optimal solu-
tion, in which tasks are uniformly distributed over proces-
sors. As communication becomes significant and reveals
as a bottleneck, it co-locates highly communicating tasks
to reduce communication traffic. We have implemented
the algorithm in scripting language Python [16] and per-
formed experiments using a simplified version of an Internet
topology generator [7, 12] to generate a realistic resource
graph. As we expected, our algorithm significantly out-
performs simpler, communication-ignorant algorithms on
communication-intensive conditions.

The rest of the paper is organized as follows. Section 2
gives a practical motivating scenario that we envision will
commonly occur in emerging Grid applications. Section 3
is devoted to the problem formulation and Section 4 de-
scribes its algorithm. Section 5 shows experimental results.
Section 6 mentions relationship to other work and Section 7
summarizes the paper and states future work.

2. A Practical Scenario

Consider an application which reads a large volume of
data from geographically distributed source (storage serv-
er), processes them, and displays the result on a desktop.
An example of such application is SARA [22], in which the
data is surface data of the earth. Emerging distributed ap-
plications that use geographically distributed data such as
digital libraries [1] and scientific data archives [6] will have
more or less this kind of structure.

Even in this fairly simple setting, one question that aris-
es is where the data should be processed. The best de-
cision clearly depends on how computationally expensive
the processing is, how much data it reads from the source
and writes to the display, how computationally powerful are
the desktop and the storage server, and how much band-
width we have between these nodes. The decision is much
more complex when we have a more involved data process-
ing pipeline and more available resources such as parallel
compute-servers. Finally, the availability of all these re-
sources changes over time. For example, processing should
be done on the desktop when the storage server is highly
loaded.

It can easily be seen that it is, if not impossible, difficult
and time-consuming for individual application developers
to implement a decision that works in a wide range of re-
source configurations, even in a very simple case like this.
Application-specific solutions, if any, would not generalize
to even more complex and dynamic cases, in which we have
hundreds of tasks that are created and ceased over time.

3. Problem Description

3.1. Preliminary Definitions and Notations

Resource Graph and Task Graph: A resource graph is
a weighted graph (both nodes and edges are weighted).1 A
node of a resource graph represents a processor and an edge
a link between a pair of processors. The weight of a node
represents the processor's compute capacity (the amount of
computation that can be performed in a unit time) and that
of an edge the link's communication capacity (the amount
of data that can go through the link in a unit time).

A task graph is also a weighted graph. A node of a task
graph represents a task and an edge a continuous communi-
cation (stream) between a pair of tasks. The weight of a n-
ode represents the task's compute requirement (the amount
of computation that must be done for this task to make a unit
progress) and that of an edge the communication require-
ment of the connected tasks (the amount of data that must
be communicated for these tasks to make a unit progress).

Note that a task graph is not a traditional dependence
graph, in which an edge s -)• t represents the fact that task
t can start its computation only after s has finished. Rather,
our task graph models a data processing pipeline, in which
all tasks continuously receive pieces of data, process them,
and then send the processed data. A typical example is a
multimedia data processing pipeline such as Smart Kiosk
[21, 20], in which the natural unit of work is a frame. Typi-
cal tasks include compression, decompression, color track-
ing, object detection, and so on. A weight of a node is the
amount of computation performed by the task per single
frame, whereas that of an edge the size of transferred da-
ta per frame.

Unlike other formulations [14, 26], our model does not
have an explicit notion of parallelized tasks. That is, a s-
ingle node of a task graph can be mapped only on a single
node of a resource graph. A parallelized task can be to some
extent modeled by many nodes that together represent a s-
ingle logical task.

Notations: Let G be a weighted graph. Gt is the weight
of node i and dj the weight of edge i -» j. Gl is the
weighted graph isomorphic to G, in which the weight of
node i is one and that of all other nodes/edges is zero. Gi,j

is the weighted graph isomorphic to G, in which the weight
of the edges along the path from i to j is one and that of all
other nodes/edges is zero (Figure 1). If there are multiple
paths between a pair of nodes, we fix one such path.

Let G and H be isomorphic weighted graphs. We define
G + H as node- and edge-wise addition of their weights.
We similarly define G-H and G/H. Let A; be a scalar, kG

'Graphs can either be directed or undirected, but the following discus-
sion assumes directed graphs.

103

^>

! o.o ..D.O.. o.o ;
o.o L-v _,—-,i 00

o.o\/o.o r5-n-|
A J—lfc

L _J

Ga

[o.O ...0.Q- O.o]
iy \ / \oo

I0.0T '0\/00 fco],
«LJ A J J*

[0.0 0,01

G".b

Figure 1. A weighted graph G, Gl, and Ghj.

denotes a graph isomorphic to G whose weights are multi-
plied by k.

Interpretation: As we mentioned earlier, a task graph
models a set of tasks each of which repeatedly receives da-
ta from other tasks, performs some computation on them
to produce other data, and sends the produced data to oth-
er tasks. We make it more precise by showing the pseudo
code for a task t in a task graph G = (V, E), as shown in
Figure 2.

The progress rate of task t is determined by several fac-
tors. First, t will experience a certain amount of wait time
at the wait phase, if tasks that are sending data to t can-
not produce data fast enough or the bandwidth from these
tasks to t are not enough. Second, more obviously, this task
will spend some time at the compute step. Finally, the time
taken at the send step will be determined by outgoing band-
width and how fast receiving tasks can consume data.

As will be made clear in the next section, our problem
formulation effectively makes idealizing assumptions that
the progress rate of this task is determined by the maxi-
mum, rather than the summation, of these three factors. For
example, if the wait step in isolation takes 5 time units, the
compute step 3 time units, and the send step 2, then u-
nit-progress as a whole takes only 5 time units, rather
than 5 + 3 + 2 = 10. This approximates a situation in
which these three phases interleave in the infinitely fine-
grained manner; that is, compute phase begins process-
ing data when a single bit of data appears in the incoming
stream, and the send phase sends data as soon as produced.

/*G = (V,E).
a unit work task t repeats. */

unit_pregress(£)

{
/*(l)wait*/
for s G V s.t. s-->te E{

wait for GStt units (e.g., bytes) of data
to arrive from s;

}
/* (2) compute */
perform Gt units of computation upon the

received data;
/* (3) send */
for u € V s.t. t -> u € E {

send Gt,u bytes of data to u;

}
}

/* a task t simply repeats unit-progress forever */
task(t)

{
while (1){

unit.pr ogres s(t);

}
}

Figure 2. Pseudo code for task t.

3.2. Formulation

We are interested in the throughput (the number of work
units completed per unit time) of the system in equilibrium.
Given a mapping from tasks to processors, it determines
the amount of computation each processor must perform to

104

make all tasks complete a unit work; it is simply the summa-
tion of task weights mapped on the processor in question.
It similarly determines the volume of data each link must
transfer to have all tasks make a unit-progress. By dividing
the requirement at each node (edge) by its corresponding
computation (communication) capacity, we have the time
required to service requested computation/communication
at the node (edge). We call it occupancy at the node (edge).
The maximum occupancy over the entire graph gives us the
time required to unit-progress all tasks. The goal is to make
the maximum occupancy of the mapping as small as possi-
ble. Note that an occupancy is the inverse of the number of
unit works finished per a unit time. Thus, minimizing the
occupancy is equivalent to maximizing the throughput.

A more formal description follows. Let G = (VG, EG)

be a task graph and P = (VP,EP) a processor graph. Let
m be a mapping from VG to VP. We define the load graph
of the mapping, denoted by L(G, P, m), as:

L(G,P,m) = Y,GtPm{t)+ Yl GMPm(s)'mW

t€V (s,t)£E

That is, a load graph is a graph whose weights represent
the amount of computation and communication required (at
each node and edge) to unit-progress all tasks.

Occupancy graph of the mapping, denoted by
0(G,P,m), is obtained by simply dividing the load
by the capacity at each node and edge:

0(G,P,m)=L(G,P,m)/P

The goal is to find a mapping m that minimizes
max(0(G, P, m))t where max(X) is the maximum weight
over nodes and edges in graph X. Figure 3 shows an exam-
ple of a load graph and an occupancy graph.

Note that the above formulation effectively assumes that
all tasks progress in the same pace; when any of the tasks
takes x unit time to make a unit progress, all the other tasks
also take x. In other words, resources are never used to
make some tasks go faster than the others. This is a prac-
tical assumption because, assuming finite communication
buffers, any pair of communicating tasks must progress in
the same pace in equilibrium. Consequently, for connected
task graphs, tasks must eventually match their paces with
all the other tasks.

Finally, we state that this problem is NP-hard. We
show that the corresponding decision problem TASKMAP,
which asks if a mapping whose maximum occupancy is
no greater than a specified limit exists, is NP-hard. There
are several NP-hard problems that straightforwardly reduce
to TASKMAP. Reducing Knapsack problem is particularly
simple; we however use a reduction from the two-way graph
partitioning problem which is also NP-hard [19], because
we believe it better illustrates the difficulty of the problem

30.0

\ r
10^0| 20.0

S /
10.0

P G
m = {(a,p),(b,q\(c,q),(d,r)Ae,s)

p

]S~\ 3.
[3.1>~.
h—(4.1

+4.1

/ r
(u) (g

s /
(u)

<3.2+«.2)/45.0 420S.O

' P ./ \ /
2.1/10.0 5.1/20.0

y
<■ 5.2/15.0
s y

1.1/10.0

L(G, P, m) 0(G, P, m)

Figure 3. Load graph and occupancy graph.

(in particular it also shows the problem remains NP-hard
even if we restrict all tasks to be the same size). The graph
partitioning problem, PARTITION, takes an (unweighted)
graph G = (V, E) and an integer c as input, and asks if there
is a partition V = Vi + V2, such that Vi and V2 are disjoint
and equal size (i.e., Vi H V2 = 0 and |Vi| = |V2| = |V|/2)
and the number of edges between Vi and V2 is < c.

Theorem 1 TASKMAP is NP-hard.

Proof: For a given instance of PARTITION G = (V, E)
and c, we construct an instance of TASKMAP as follows.

• The task graph is a graph isomorphic to G, whose node
weights and edge weights are all ones.

• The resource graph is a graph of two nodes, whose
weights are both | V|/2, and the weight of the edge be-
tween the two is c.

• The maximum occupancy is one. That is, we ask if
there is a mapping whose maximum occupancy is no
greater than 1.

It is easily seen that if and only if there is such a map-
ping, there is a solution for the original graph partitioning
problem, and the reduction can be performed in a polyno-
mial time (Q.E.D).

105

4. The Algorithm

4.1. Motivating Example

If tasks are very compute-bound (communication is al-
most negligible), mapping is relatively straightforward, at
least when task sizes are fairly uniform. It simply amounts
to assigning each processor task weights roughly proportion
to its compute capacity. Our main contribution is on cases
where tasks are more communication intensive, thus such
communication-ignorant mappings result in excess traffic
that limits the performance. With increasing communica-
tion intensity of tasks, it becomes likely that mapping tasks
that intensively communicate with each other on the same
processor results in a significantly better performance.

As is the case in most combinatorial problems, the fun-
damental difficulty in achieving such mappings lies in the
fact that the performance as a function of mappings is quite
discontinuous and there are many local optima; the de-
sired mapping is quite different from one communication
intensity to another, and mappings that are in some sense
'between' these desired mappings are typically worse than
both. Therefore it is difficult to move from one desired map-
ping to another by a series of greedy moves. To illustrate
this, consider a task graph shown in Figure 4 where all n-
odes weigh one and all edges weigh c (a parameter). When
c is very small, the desired mapping will typically be the
one in which a single processor has a single task (assuming
sufficient number of equally powerful processors). As c in-
creases up to a certain threshold, the best mapping will typi-
cally become the one in which a single processor is assigned
to a single cluster of tasks (as easily perceived by humans).
Everything between these two extremes (for example, map-
pings in which a single processor has two tasks) are typical-
ly worse than both. This is because, when compared to the
first extreme (one task per processor), the amount of traffic a
single processor sends or receives increases, thus it does not
reduce the communication bottleneck. The communication
bottleneck can be eliminated only by moving all tasks of a
cluster to a single processor. This property prohibits the use
of a simple local search strategy which tries to find a task
t and a processor p such that moving t to p improves the
objective function. It is quite unlikely that a series of such
moves eventually reaches the desired extreme, whichever is
the better.

4.2. Overall Structure

As is easily seen from the example just discussed, the
key to achieving a good mapping is to recognize highly-
connected clusters, and use this clustering information to
guide the mapping process. Our basic approach is to linear-
ly order tasks in such a way that tasks within a cluster are

Figure 4. A graph with highly-connected
subgraphs.

close to each other, and put tasks to processors according
to this order (as indicated by the labels in the figure). If a
single processor is assigned to multiple tasks, they are like-
ly to be in the same cluster, and therefore, when the tasks
turn out to be communication-bound, processors can reduce
communication simply by accommodating more tasks from
the list.

To continue the above example, we first pick up a proces-
sor and move tasks to it from the list. As tasks are ordered
as shown in the figure, we exclusively choose tasks from a
cluster (labeled A) in the beginning. The remaining prob-
lem is when we should stop this process and go onto the
next processor. The best answer again depends on commu-
nication intensity; when c is small, it is typically when the
compute-load is best balanced among processors, and oth-
erwise when one or more clusters have just moved. Details
are given in Section 4.4.

Our entire algorithm first obtains the appropriate order of
tasks based on a simplified version of stochastic flow injec-
tion method proposed in [29, 30]. Given this information, it
obtains an initial mapping and then improves it step by step.
The elementary procedure mentioned above is used both to
obtain the initial mapping and to improve it. The top-level
structure of the algorithm is illustrated in Figure 5.

In the following sections, we first describe the cluster-
ing algorithm to obtain the order of tasks in Section 4.3,
the elementary procedure that moves tasks to a processor
from the list in Section 4.4, and how to improve the map-
ping once obtained in Section 4.5. Throughout the sections,
G = (VG,EG) and P = (VP,EP) refer to the given task
graph and the resource graph, respectively. As a conven-
tion, we do not update data structures in place (we always
rebind a variable to signify an update). Variables assigned
in one iteration of a loop and used in the next is subscripted

106

I*G=(VG,EG): task graph.
P = (Vp, EP) : resource graph. */

taskmapO

{
<G = clustering(G); — (section 4.3)
m = {};/* empty map */
m = map_tasks(m); — (section 4.4)
repeat {

m' = m;
m =improve(m'); — (section 4.5)

} while(0(G,P,m) < 0(G,P,m'))

Figure 5. The overall structure of the algo-
rithm.

by a loop index, even though it is a single variable in the
real program.

Finally, we made various simplifications for the purpose
of presentation. For example, the following algorithm cal-
culates L(G, P, m) many times, with m's that only slightly
differ from each other. The actual program keeps track of
L(G, P, m) all the time and incrementally updates it as m
changes. This kind of practical optimizations are not ex-
plicit in the description.

4.3. Clustering Task Graph

The clustering algorithm is shown in Figure 6. Given a
graph H, it first creates a tree that hierarchically decompose
the task graph into clusters (line 3). The root of the tree rep-
resents the entire set of nodes, whereas a leaf a singleton
set of a node. Children of a node are partitions of the par-
ent node, obtained by a simplified stochastic flow injection
method as described below. Once such a tree is obtained,
we determine a total order between nodes, <H, simply by
traversing the tree in a depth-first order (line 4).

The stochastic flow injection was originally proposed for
VLSI circuit partitioning and works as follows:

1. Randomly pick up two nodes s and t of the given graph
G.

2. Find the shortest path between s and t.

3. Decrement the weights of all the edges on the path by
a (small) constant A (i.e., inject a flow A between s
and t).

4. Remove edges whose weight become zero or negative.

1: c luster ing(fl')
{

T =recursive_clustering(üf);
<H= depth-first traversal order of T;

5: return <#;

}

recurs i ve_c luster ing(H)
H — (V, E) I* a subgraph of the task graph */

10: {
if (V is singleton (= {v})) {

return leaf(t;)
} else {

Hi, ■ ■ •, Hn =clusters obtained by
15: stochastic flow injection (see text);

return node^ecursive-clustering^),
• • •, recursive-clustering^,,));

}

Figure 6. Clustering Task Graphs.

5. Repeat 1-4 until the graph becomes unconnected.

6. When graphs are disconnected, each connected com-
ponent is a cluster.

The intuition is that if only a small number of edges bridge
two (or more) large clusters, such edges are likely to be
decremented often, and the graph soon becomes disconnect-
ed by these edges.

In the original stochastic flow injection method, anoth-
er phase follows to merge some of the clusters hereby ob-
tained, but we simply skip this phase, because our purpose
is to recursively decompose clusters until each cluster be-
comes a singleton. We also slightly modified the above step
1, so that a task is chosen by a probability proportional to
its weight; this is necessary because the original stochastic
flow injection method assumes uniform weights (as in the
case in their application).

4.4. The Elementary Move

Procedure map.tasks shown in Figure 7 takes as a pa-
rameter m, a partial mapping from tasks to processors (it
is partial because some tasks are not mapped). It maps
tasks not mapped in m onto Vp, by simply making a series
of calls to a more elementary procedure map_tasks_on,
which maps some tasks to a specified processor.

The procedure map.tasks.on takes three parameters,
77i, q, and Q; m is a partial mapping from tasks to pro-

107

1: map-tasks(m)

{
Q = Vp;
while (£?#{}){

q = a processor £ Q;

5: 0 = Q - { q };
m = map-tasks_ori(m, q, Q)\

}
return m;

}
10: /* move some of the tasks not mapped in m to

processor q, taking open communication and
the balance between { q } and Q into account */

map_tasks_on(m, q, Q)

15: Umo = { 11 not mapped in m };
fori = l,---,|J7mo| {

t = the minimum task E Umi_x w.r.t. <G;

m, = mj-i [i/g]; /* add mapping t^t q*l

umi = ^., - {*};
20: 0 = 0(G,P,mi);

Ocomp = Gcomp(v, ■»imiiQ)>
/*0Comp = Ooif(5 = {}*/
0_> =0-*(G,P,mi,Umi,q);
0<_ =0^(G,P,mi,q,[/mv);

25: Mi = max(O,OComp,0->,O<-)'>
}
find i that gave minimum Mi {i = 1,

break ties by selecting largest i.
return mi;

■-.Itfmol);

30:}

Figure 7. The elementary move operation.

cessors, q a processor € Vp onto which some tasks are
going to be mapped by the procedure, and Q a subset of
Vp (q $. Q) yet unused. The goal is to put an appropri-
ate number of tasks on q, so that we are likely to reach
a good final mapping, if the remaining tasks are mapped
on Q. As mentioned earlier, it puts tasks one after anoth-
er in the order obtained by the clustering; as we add more
tasks to q, we obtain a series of mappings m0 = m, m\ -
m0[ti/q],m2 = mi[t2/q),- ■ ■ ,m„ = m„_i[i„/c?],2 where
h <G h <G, ■ ■ ■, <G tn and m„ is the total mapping from
VG to Vp. So the only question is which rrii we should
choose.

Let Um denote the set of tasks that are not mapped in m.
At each step, we keep track of the following four (three in
case of undirected graphs) values to evaluate the situation.

• (Line 20): The current occupancy 0(G, P,rrii).

• (Line 21): A hypothetic occupancy OCOmp-
Ocomp{G,P,mi,Q) is an occupancy estimated
by assuming that tasks G Umi are perfectly mapped
on Q, ignoring communication. That is, it is simply
the total compute requirement of these tasks over the
total compute capacity of Q:

Ocomp(G,P,m,Q) = Y.t€Vm
Gt

Spec? Pp

For convenience we define this to be oo when Q = {}.

(Lines 23 and 24): Hypothetic occupancies
0-+(G,P,mi,Umi,q) and 0^{G,P,mi,q,Umi),
which we call occupancies induced by open commu-
nication. Given a set of tasks T and a processor q,
we define open communication from T to q (from
q to T) to be the total communication volume from
tasks in T to tasks on q (from tasks on q to tasks in
T). O-,.(G,P,m,T,q) refers to open communication
from T to q divided by the total edge capacity adjacent
to q. Similarly for 0<_. That is:

0^(G,P,rn,T,q) = ^ Mv)=Q

P,
, and

0^(G,P,m,q,T) = X
P,<,)€EP

r"-"

6T,m(„) = ,G''*

P.l)€EP

When graphs are undirected, these two give the same
value and are collectively referred to as 0o •

At each step, we calculate the above four (or three in undi-
rected case) values and record the maximum of them {Mi
at line 25). The procedure returns rrii that minimizes Mt

(lines 27-29).
2m' = m[t/q] is an extension of m, s.t. m'(t) = q and m'(x) —

m(x) for x ^ t.

108

The first item will be intuitive. The second one, OCOmP,
tries to estimate how much is the final occupancy going
to be. Given this estimate, we determine how many tasks
should be accommodated to the current processor q. For
example, suppose compute capacity of q is 1, the total com-
pute capacity of Q 99, and the total compute requirement of
tasks yet to be mapped 1,000. Ideally, we like to obtain a
mapping whose maximum occupancy is close to 1,000/(1 +
99) = 10. Put differently, when we compare a series of map-
pings mi, m2, ■ ■ ; any mapping whose occupancy is below
10 is equally good; there is no points in quitting at m^, when
the occupancy of mi+i is still below 10.

The third item, 0-+ (0<_) or, open communication met-
ric is to identify m, at which the communication volume
between tasks already mapped on q and those that are not is
small. Keeping track of such communication is necessary
because it is not taken into account by 0(G,P,m,i), which
only counts tasks mapped in m;. This guides the mapping
process, by giving following pieces of information: "rather
than choosing an m5 at which open communication is so
large, accommodate more tasks and choose m$, at which
the processor is more loaded, but communication traffic is
much smaller." Accurate estimation clearly requires not on-
ly communication volume, but also the link bandwidth from
q to processors that accommodate the other tasks. An ob-
vious problem is we are yet to know how remaining tasks
will be mapped, so we do not precisely know how much
will the occupancy of these links be. We simply estimate
this by: (1) calculating the total communication volume be-
tween tasks on q and the remaining tasks, and (2) dividing
it by the total link capacity adjacent to q. This effectively
assumes such communication will be routed evenly across
all adjacent links and internal links (not adjacent to a pro-
cessor) will not be bottleneck. These assumptions, the first
one in particular, may be optimistic and need be more so-
phisticated when q has multiple adjacent links. In our ex-
periments, a processor is adjacent only to a single link, thus
this is not an issue.

To illustrate how the procedure works, let us look at a
process that maps tasks to a processor as shown in Figure 8.
We start from the empty mapping and add tasks to the left
processor, in the order indicated by the numbers. Edges
and nodes in the task graph weigh one. The edge of the
resource graph weighs one and the two nodes five. Figure 9
plots O, Ocomp» and 0<_> (graphs are undirected) at every
step. Observe that the open communication metric goes up
and down and that Oj (the maximum of the three values)
minimizes at m8, even though compute load between the
two processors best balances at mn (the point where two
graphs Ocomp and O intersect). Therefore the procedure
will choose to put 8 tasks on the left processor, which is
optimal. If edges of the task graph weigh much smaller
(say, 0.1), on the other hand, the graph of 0++ will become

Figure 8. Example graph to illustrate
map_tasks_on.

-Q_comp -»-O ^*-Q_<->

20

IS

10

1 3 5 7 9 11 13 15 17 19 21

number of tasks put on the left processor

Figure 9. How O, Ocomp, and O^ changes as
we put tasks to the left processor in Fig-
ure 8.

much lower, giving the best M» at mn. So in this case, the
first processor will get 11 tasks, which is again optimal.

Note that in general, for the easy case where commu-
nication is negligible and task and processors weigh u-
niformly (w.o.l.g. assume they weigh 1), the procedure
map.tasks({}) is guaranteed to return the optimal map-
ping in which no processors get more than \N/P~\ tasks,
where N is the number of tasks and P the number of pro-
cessors. To see this, consider what happens in the first call
to map_tasks_on({}, q, VP - { q }). As communication
is negligible, it simply amounts to finding the intersection
of two graphs O = i and OCOmp = (N - i)/(P - 1). Solv-
ing the equation O = OCOmp gives i = N/P and thus the
best value is obtained either at \N/P] or \N/P] - 1. We
can repeat this argument to show that this is the case for
other processors. This property ensures our mapping proce-
dure quickly gives a good solution for compute-mostly jobs
without iterating improvements.

109

Other Implementation Notes: The actual implementa-
tion of the procedure is a bit more sophisticated to avoid
useless computation.

• map-tasks_on quits as soon as 0(G,P,m,i) be-
comes greater than any of Mj (J < i). Since
0(G, P, mi) is monotonically non-decreasing with re-
spect to i, once this condition is observed, we have:

Mk > 0{G,P,mk) > 0(G,P,mi > Mj for all k > i.

Thus there is no chance that we observe a better Mk
in future. Again, this guarantees that in the easy case
mentioned above, map_tasks_on quits as soon as it
puts \N/P] + 1 tasks on a processor.

• Both map-tasks and map-tasks_on optionally
take one more parameter, u, which specifies the oc-
cupancy they should at least achieve, map-tasks.on
quits as soon as 0(G, P, mi) becomes greater than this
value, map.tasks aborts the entire process as soon as
OcomP(G, P,muQ) gets larger than u in an iteration.
This is useful when we already know a mapping and
try to improve it. In such circumstances, we determine
u based on the current occupancy {e.g., u = the current
occupancy x 0.9) and give it to map-tasks.

4.5. Iterative Improvement

Procedure improve in Figure 10 tries to improve a giv-
en (total) mapping m by first removing some tasks from
m (line 3) and then applying map-tasks to the partial
mapping obtained this way. Obviously, the key is to iden-
tify a small subset of tasks whose removal gives us a good
chance to improve the mapping. A silly selection algorith-
m could remove all the tasks from m, effectively applying
map-tasks again from the empty mapping.

The selection algorithm works as follows.

1. First calculate the current max occupancy and multi-
ply it by an acceleration factor (currently 0.75). We
remove tasks until the resulting mapping gives max oc-
cupancy below this value (line 10).

2. We scan nodes and edges of the resource graph, trying
to find an edge or a node whose occupancy is greater
than it.

3. If such a node is found, let p be the node. Find tasks Sj
(i = 1,2, • • •). such that Sj is mapped on p and is not
deleted yet. Among all such tasks, select the heaviest
task.

4. If such an edge is found, let / be the edge. Find pairs of
tasks (sj, U) (i = 1,2, • ■ •). such that the route between
Si and U (on the processor graph) uses I and either Si

1: improve(m)

{
m — remove_bottlenecks(m);
m = map-tasks(m);

5: return m;

}

remove_bottlenecks(m)

{
10: o-0.75xma.\(O(G,P,m));

D = {}; /* set of deleted mappings */
while (max(0(G,P,m - D) > o)) {

15:

20:

while (max(0(G,P,m-£>)
L = L{G,P,m-D);
find if any p € P and q e P s.t. Lp,q/PPtq > o;
if found {

select s,t£VG s.t. (s £ D or t & D),
P£l*)Mt) = ^ and Gst is maximum;

D = D + {(s,m(s)),(t,m(t))};
} else {

there must be p € P s.t. Lp/Pp > o;
select s € VG s.t. s g D,

m(s) = p, and Gs is maximum;
D = D + {(s,m{s))};

}
25: }

return m — D;

}

Figure 10. The procedure to improve the
current mapping.

110

or U is not deleted yet. Among all such pairs, select the
most heavily communicating pairs and delete them.

5. Repeat steps 2-4 until the occupancy becomes less than
the target value computed at step 1.

It basically tries to identify a set of tasks that form bottle-
necks, tasks making the current occupancy so large. It finds
an edge or node in the resource graph whose occupancy is
larger than the target value calculated from the current oc-
cupancy. If found, tasks contributing to the edge or the node
are candidates.

While reasonable, this algorithm still has a room for fur-
ther improvements which we are yet to experiment with. It
does not pay attention to communication induced between
deleted tasks and undeleted tasks. If the communication be-
tween them is large, attempts to moving those deleted tasks
unavoidably induce a large communication traffic and are
likely to fail. Among many ways to select candidate tasks,
we like to select a set of tasks that do not intensively com-
municate with the other tasks. If such selection cannot be
obtained, it makes sense to co-migrate some of the other
tasks too, even if they do not constitute the bottleneck.

5. Experiments

5.1. Graph Generation

We used a simplified version of the Internet topology
model described in [7, 12] to generate resource graphs.
While they model WAN, MAN, and LAN, we omit MAN-
s for simplicity and model resource graphs by two level
(WAN and LAN) hierarchy. Given a configuration that
describes such parameters as the number of WAN nodes,
LANs, nodes within a LAN, and compute capacity of a pro-
cessor, it generates a graph as follows.

• First generate the specified number of WAN nodes and
randomly place them in a specified rectangle. Create
edges between all pairs of nodes, associating a cost
proportional to its length with each edge. Then make
the minimum spanning tree of the resulting complete
graph.

• Generate the specified number of LANs. For each
LAN, first create a gateway and randomly place it in
the specified rectangle. Connect gateway to its nearest
WAN node. Then generate a randomly chosen number
of nodes in the LAN. LAN is modeled as a (shallow)
tree whose root is connected to its gateway and each
node has a randomly chosen number of children. The
compute capacity within a single LAN is uniform and
chosen randomly.

Generated Network

100
X

WAN —i—
WAN-LAN —*■-

^\ LA^ -

80

vr""
^

/ ^^ ■

60 «K \

40

T* \

20 < \ /

0

 1

**
> '

20 40 60

Horizontal Distance

80 100

Figure 11. A typical resource graph used
by the experiments. It was generated by a
simplified Internet topology generator.

Table 1 lists relevant parameters and Figure 11 shows a typ-
ical graph generated by this model. A sector in the figure
is a LAN, which has from 10 to 20 nodes. Depth of some
sectors are one and that of others two.

For task graphs, we generate a pipeline of parallel jobs
for each run as follows.

1. Randomly choose the number of tasks in a parallel job
(m), and create a complete graph of m nodes. Nodes
within a single parallel job are equally weighted and
the weight is randomly chosen.

2. Repeat the step 1 a randomly chosen number (n) of
times and obtains complete graphs.

3. Connect these complete graphs to form a simple
pipeline (without branches and merges). To connec-
t two complete graphs A and B, we simply form a
complete bipartite graph (create an edge between ev-
ery task in A and every task in B). Each edge weighs
1.0/(o x b), where o and b are the number of nodes in
A and B, respectively. The total communication vol-
ume between two parallel jobs is always 1.0.

Ill

Resource Graph
the number of WAN nodes
the number of LANs
bandwidth between WAN nodes
WAN <-*■ LAN bandwidth
LAN bandwidth
the number of children for a LAN node
compute capacity of a processor

10
10

1000.0
500.0

50.0
[5,20]

[3.0,15.0]
Task Graph
the number of clusters in a task graph
the number of tasks in a cluster
compute requirement of a task
(total) comm. between a pair of clusters
communication intensity parameter

[5,10]
[5,10]

[1.0,3.0]
1.0

c (see text)

Table 1. Parameters used in the experi-
ments. [a,b] means that a value is chosen
randomly from [a, b] for each run.

Edges within a single parallel job are equally weighted and
the weight is chosen randomly from [1, c], where c is a pa-
rameter that controls the communication intensity of the
tasks. We compare performance of several algorithms for
various values of c.

Let us perform a rough calculation to see how communi-
cation intensity of tasks vary according to c. Since compute
requirement per task is from 1.0 to 3.0, and capacity per
processor is 3.0 to 15.0, the occupancy of a processor ranges
from 1.0/15.0 to 1.0, assuming a single processor accom-
modates a single task. When sufficiently many tasks are
created, one of the processors is likely to get an occupancy
close to 1.0. On the other hand, since the number of tasks
in a parallel job is from 5 to 10, the communication vol-
ume per task is from 5c to 10c (ignoring inter-cluster com-
munication, which is a fraction). Considering LAN band-
width, which is 50.0, occupancy of an edge adjacent to a
processor is 0.1c to 0.2c, again assuming a single task on a
single processor. Comparing the expected node occupancy
(« 1.0) and this value, clustering is unlikely to be necessary
for c w 1. In this sense, for c « 1, tasks are hardly commu-
nication intensive. For c « 16, on the other hand, an edge
occupancy will range from 1.6 to 3.2, much larger than the
expected processor occupancy. Therefore when c « 16, a
good solution is likely to use clustering.

5.2. Results

We compare the following four algorithms for c = 1,2,
4,8, 12, and 16.

Base: Do not use the open communication metric de-
scribed in Section 4.4. Also do not perform the im-

provement phase described in Section 4.2.

Base + improve: Do not use the open communication
metric. Apply the improvement phase after an initial
mapping is obtained, again without open communica-
tion metric.

Open: Use the open communication metric,
perform the improvement phase.

But do not

Open + improve: Use the open communication metric
and apply the improvement phase to the initial map-
ping.

For each value of c, we generate 32 instances of the problem
and run the four algorithms. For each instance and for each
algorithm, we calculate the improvement of the occupancy
against Base. Graphs in Figure 12 show the result. A dot
corresponds to an instance and the value represents the rela-
tive improvement over Base (Note that in Base + improve,
the number of dots looks much smaller than 32. This is be-
cause results are in many cases 1; i.e., no improvement is
observed). Figure 13 shows the average improvement over
32 instances.

It is clear that taking open communication into account
becomes significant as tasks become communication inten-
sive. As we have expected, all four algorithms perform e-
qually well for c ss 1. Adding the iterative improvements
to Open slightly improved performance, but not very much.
As we have discussed in Section 4.5, our task selection al-
gorithm is not very sophisticated yet, so we need more ex-
periments to be conclusive.

6. Related Work

6.1. Task Scheduling

There are a number of studies on task scheduling in het-
erogeneous environments [8, 11, 15, 17, 18, 27]. To the
author's knowledge, most of these work have been focus-
ing on scheduling DAGs, in which a task graph represents
dependencies between tasks. DAG scheduling problem and
the throughput optimization problem discussed in this paper
are quite different, both in terms of basic techniques em-
ployed and target applications. In terms of techniques, most
algorithms for DAG scheduling are more or less based on
a list scheduling, whereas the basic model of the through-
put optimization is graph partitioning. For target applica-
tion, DAG scheduling applies to a set of many tasks that
rarely communicate with each other, whereas the through-
put optimization problem to tasks communicating via high-
bandwidth streams. While both are important, we believe
the throughput optimization problem discussed in this paper
will increasingly become important for emerging multime-
dia and data-intensive applications on wide area.

112

Base + improve

'S 2

5 10 15

c: communication intensity

20

Open

■g 6
■5
1 5

- 0

■il i t
5 10 15

c : communication intensity

20

Open + improve

•2 4

t T=r=t
10 15

c : communication intensity

20

Figure 12. Improvements of the various
methods over the Base method (Internet
model).

average improvements

- Base + improve -*~ Open -A- Open + improve |

S 2
B

ä 0

10 15

c : communication intensity

Figure 13. Average improvements.

Several studies on scheduling with bandwidth metrics
have been done. Subhlok et al. [25, 26] studied optimal
processor allocation for a set of communicating data paral-
lel tasks, both with latency and bandwidth metrics. In their
problem setting, performance of a task is a function of the
number of processors allocated for that task and does not
depend on which processors are used. They make a simi-
lar assumption on communication performance. Therefore
the problem amounts to determining how many processors
should be allocated for each task. This effectively assumes
two things. One is that processor speed is uniform. The oth-
er is that link bandwidth is not only uniform but also very
high, so the locations of communicating tasks do not matter.
This will be a good model for system-area cluster, which is
their target environment, but will not be directly applicable
to multimedia/data-intensive applications on wide area.

Developing applications that exhibit robust performance
over a wide range of resource conditions have become such
an important issue. Several frameworks have been pro-
posed [3, 24] and many practical studies on adaptive appli-
cations in heterogeneous environments have been conduct-
ed [2, 23]. While such studies are certainly instructive, it is
difficult for individual programmers to perform such studies
for every single application. We believe that task mapping
should be much more automated.

6.2. Graph Partitioning

Graph partitioning'tries to cut a graph into two ore more
sub-graphs each of which is more connected than the en-
tire graph. Our problem shares the common difficulty with
this basic problem, in that moving any single node or ex-
changing any single pair of nodes is not likely to improve
the objective function.

Kernighan and Lin [13] dealt with the basic two-way par-
titioning problem to cut the graph into two graphs of exactly
the same size and gave the basic idea to overcome the lo-
cal optima. Fidducia and Mattheyses [9] proposed a faster

113

algorithm for a slightly different problem, in which a cer-
tain amount of difference between the sizes of the two sub-
graphs is accepted. Wei et al. further proposed a ratio cut
[28], which automatically achieves a balance between a low
cut size and a good ratio of the sub-graph sizes. Finally, Yeh
et al. proposed multi-way partitioning based on stochastic
flow injection method [29, 30].

While our current algorithm can basically use any good
partitioning algorithm as the preprocessing of a task graph,
the following property of the Yeh's method is particularly
attractive for our purpose; it can not only find highly con-
nected components from a graph, but also finds the (nega-
tive) fact that no more natural clusters exist in a graph, in
which case it typically divides the graph into many single-
tons. Having only two-way partitioning, we still have to
apply two-way partitioning recursively. This is computa-
tionally expensive and does not improve quality.

7. Summary and Future Work

We have presented a heuristic algorithm for a task map-
ping problem, which takes compute and bandwidth require-
ments into account. The key to achieving good perfor-
mance is clustering, a process that recognizes intensively-
communicating tasks. We use this clustering information
to obtain the order in which tasks should be put on proces-
sors. Open communication metric was introduced to decide
how many tasks should be put in a processor. The algorifh-
m is able to incrementally improve a given mapping, mov-
ing only those tasks that form the bottleneck. Therefore it
can efficiently fix a significant load imbalance caused by a
small number of tasks. We observed expected experimen-
tal results, indicating that our communication-sensitive al-
gorithm significantly outperforms simpler, communication-
ignorant algorithms for communication-intensive jobs.

We are planning to enhance this work in several ways.
First, we are going to improve the task selection algorithm
for incremental improvements, so that it moves clusters that
do not intensively communicate with the rest of the tasks.
Second, we will analyze computational complexity of the
algorithm in detail. Third, we will try to identify other cases
where this algorithm guarantees to produce a result within
a constant of the optimal. Practical goals include develop-
ing a system that automatically selects resources and maps
tasks on wide area, which helps Grid application designer-
s develop performance-portable Grid code. We hope this
work serves as a sound, logical step toward achieving this
goal.

Acknowledgements The research described is supported
in part by DARPA orders #E313 and #E524 through the US
Air Force Rome Laboratory Contracts F30602-99-1-0534,

F30602-97-2-0121, and F30602-96-1-0286. It is also sup-
ported by NSF Young Investigator award CCR-94-57809
and NSF EIA-99-75020. It is also supported in part by fund-
s from the NSF Partnerships for Advanced Computational
Infrastructure - the Alliance (NCSA) and NPACI. Support
from Microsoft, Hewlett-Packard, Myricom Corporation,
Intel Corporation, Packet Engines, Tandem Computers, and
Platform Computing is also gratefully acknowledged. The
paper was written when the first author was visiting UCSD
as an exchange visitor, supported by the Ministry of Educa-
tion of Japan.

References

[1] G. Aloisio, M. Cafaro, and R. Williams. The digi-
tal puglia project: An active digital library of remote
sensing data. In Proceedings of the 7th Internation-
al Conference on High Performance. Computing and
Networking Europe, volume 1593 of Springer Lec-
ture Notes in Computer Science, pages 563-572, 1999.
http://www.cacr.caltech.edu/SDA/digital-
-puglia.html.

[2] F. Berman and R. Wolski. Application-level scheduling on
distributed heterogeneous networks. In Proceedings ofSu-
percomputing, 1996.

[3] F. Berman and R. Wolski. The AppLeS project: A
status report. In Proceedings of the 8th NEC Research
Symposium, Berlin, Germany, 1997. http://www-
cse.ucsd.edu/groups/hpcl/apples/apples.html.

[4] A. Chien, M. Lauria, R. Pennington, M. Showerman,
G. Iannello, M. Buchanan, K. Connelly, L. Gianni-
ni, G. Koenig, S. Krishnamurthy, Q. Liu, S. Pakin,
and G. Sampemane. Design and evaluation of an
HPVM-based windows NT supercomputer. The Inter-
national Journal of High-Performance Computing Ap-
plications, 13(3):201-209, Fall 1999. http://www-
csag.ucsd.edu/projects/hpvm.html.

[5] D. E. Culler, A. Arpaci-Dusseau, R. Arpaci-Dusseau,
B. Chun, S. Lumetta, A. Mainwaring, R. Martin,
C. Yoshikawa, and F. Wong. Parallel computing
on the berkeley NOW. In Proceedings of the 9th
Joint Symposium on Parallel Processing (JSPP), 1997.
http://now.es.berkeley.edu/.

[6] Digital Sky Project. Center for Advanced Computing
Research (CACR) at California Institute of Technology.
http://www.cacr.caltech.edu/SDA/digital-
_sky.html.

[7] K. C. Ellen W. Zegura and S. Bhattacharjee. How to model
an Internetwork. In Proceedings of IEEE Infocom '96,1996.

[8] M. Eshaghian and Y. Wu. Mapping heterogeneous task
graphs onto heterogeneous system graphs. In Proceedings
of Heterogeneous Computing Workshop, 1997.

[9] C. Fiduccia and R. Mattheyses. A linear-time heuristic
for improving network partitions. In Proeedings of 19th
ACM/IEEE Design Automation Conference, pages 175-181,
1982.

114

[10] I. Foster and C. Kesselman, editors. The Grid: Blueprint for
a New Computing Infrastructure. Morgan Kaufmann Pub-
lishers, 1998.

[11] R. F. Freund, M. Gherrity, S. Ambrosius, M. Campbell,
M. Halderman, D. Hensgen, E. Keith, T. Kidd, M. Kussow,
J. D. Lima, F. Mirabile, L. Moore, B. Rust, and H. J. Siegel.
Scheduling resources in multi-user, heterogeneous, comput-
ing environments with SmartNet. In Proceedings of Hetero-
geneous Computing Workshop, 1998.

[12] M. D. Ken Calvert and E. W. Zegura. Modeling Internet
topology. IEEE Communications Magazine, June 1997.

[13] B. Kernighan and S. Lin. An efficient heuristic procedure
for partitioning graphs. Bell Systems Technical Journal,
49(2):291-307, 1970.

[14] K. Knobe, J. M. Rehg, A. Chauhan, R. S. Nikhil, and
U. Ramachandran. Scheduling constrained dynamic ap-
plications on clusters. In Proceedings of SC'99, 1999.
http://www.sc99.org.

[15] Y.-K. Kwok and I. Ahmad. High Performance Cluster Com-
puting, volume 1, chapter 23, Parallel Program Scheduling
Techniques, pages 553-578. Prentice Hall, 1999.

[16] M. Lutz. Programming Python. O'Reilly & Associates,
1996.

[17] M. Maheswaran and H. J. Siegel. A dynamic matching and
scheduling algorithm for heterogeneous computing system-
s. In Proceedings of Heterogeneous Computing Workshop,
1998.

[18] H. Nakada, A. Takefusa, S. Matsuoka, M. Sato,
and S. Sekiguchi. A scheduling framework for
global computing. In Proceedings of Joint Sympo-
sium on Parallel Processing, pages 277-284, 1999.
http://ninf.etl.go.jp/.

[19] C. H. Papadimitriou and K. Steiglitz. Combinatorial Opti-
mization : Algorithms and Complexity. Dover Publications,
1998.

[20] U. Ramachandran, R. S. Nikhil, N. Harel, J. M. Rehg, and
K. Knobe. Space-time memory: A parallel programming
abstration for interactive multimedia applications. In Pro-
ceedings of the Seventh ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming (PPoPP'99),
1999.

[21] J. M. Rehg, K. Knobe, U. Ramachandran, R. S. Nikhil, and
A. Chauhan. Integrated task and data parallel support for
dynamic applications. In Proceedings of the Fourth Work-
shop on Languages, Compilers, and Run-Time Systems for
Scalable Computers, pages 167-180, 1998.

[22] SARA: The Synthetic Aperture Radar Atlas. Univer-
sity of Lecce and California Institute of Technology.
http://sara.unile.it/sara/.

[23] N. Spring and R. Wolski. Application level scheduling of
gene sequence comparison on metacomputers. In Proceed-
ings of the 12th ACM International Conference on Super-
computing, 1998.

[24] P. Steenkiste. Adaptation models for network-aware dis-
tributed computations. In 3rd Workshop on Communication,
Architecture, and Applications for Network-based Parallel
Computing (CANPC99), 1999.

[25] J. Subhlok and G. Vondran. Optimal mapping of sequences
of data parallel tasks. In Proceedings of ACM SIGPLAN

Symposium on Principles and Practice of Parallel Program-
ming (PPoPP), 1995.

[26] J. Subhlok and G. Vondran. Optimal latency-throughput
tradeoffs for data parallel pipelines. In Proceedings of 8th
Annual ACM Symposium on Parallel Alogorithms and Ar-
chitectures (SPAA), pages 62-71, 1996.

[27] H. Topcuoglu, S. Hariri, and M.-Y. Wu. Task scheduling
algorithms for heterogeneous processors. In Proceedings of
Heterogeneous Computing Workshop, 1999.

[28] Y. Wei and C. Cheng. Ratio cut partitioning for hierarchi-
cal designs. IEEE Transactions on Computer-Aided Design,
10:911-921, 1991.

[29] C.-W. Yeh, C.-K. Cheng, and T.-T Y Lin. A probabilis-
tic multicommodity-flow solution to circuit clustering prob-
lems. In IEEE International Conference on Computer-Aided
Design, pages 428-431, 1992.

[30] C.-W. Yeh, C.-K. Cheng, and T.-T. Y Lin. Circuit clustering
using a stochastic flow injection method. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Sys-
tems, 14(2):154-162, 1995.

Kenjiro Taura is a research associate of Department of In-
formation Science, University of Tokyo. He is also a
visiting researcher of the Department of Computer Sci-
ence and Engineering at the University of California at
San Diego. He received BS, MS, and PhD from Uni-
versity of Tokyo. Contact him at UCSD/CSE-AP&M
6414, 9500 Gilman Drive, Dept. 0114 La Jolla, CA
92093-0114 USA; tau@csag.ucsd.edu.

Andrew A. Chien is the Science Applications Internation-
al Corporation Chair Professor in the Departmen-
t of Computer Science and Engineering at the Uni-
versity of California at San Diego. Andrew Chien
leads the Concurrent Systems Architecture Group
and is involved with joint projects with both NC-
SA and NPACI . He received BS, MS, and PhD
from the Massachusetts Institute of Technology. Con-
tact him at UCSD/CSE-AP&M 4808, 9500 Gilman
Drive, Dept. 0114 La Jolla, CA 92093-0114 USA;
achien@cs.ucsd.edu.

115

Design of a Framework for Data-Intensive Wide-Area Applications

Michael D. Beynon, Tahsin Kurc, Alan Sussman, Joel Saltz
Department of Computer Science

University of Maryland, College Park, MD 20742
{beynon,kurc,als,saltz}@cs.umd.edu

Abstract

Applications that use collections of very large, dis-
tributed datasets have become an increasingly important
part of science and engineering. With high performance
wide-area networks becoming more pervasive, there is in-
terest in making collective use of distributed computational
and data resources. Recent work has converged to the
notion of the Grid, which attempts to uniformly present a
heterogeneous collection of distributed resources. Current
Grid research covers many areas from low level infrastruc-
ture issues to high level application concerns. However,
providing support for efficient exploration and processing of
very large scientific datasets stored in distributed archival
storage systems remains a challenging research issue.

We have initiated an effort that focuses on developing ef-
ficient data-intensive applications in a Grid environment. In
this paper, we present a framework, called filter-stream pro-
gramming, that represents the processing units of a data-
intensive application as a set of filters, which are designed to
be efficient in their use of memory and scratch space. We de-
scribe a prototype infrastructure that supports execution of
applications using the proposed framework We present the
implementation of two applications using the filter-stream
programming framework, and discuss experimental results
demonstrating the effects of heterogeneous resources on ap-
plication performance.

1. Introduction

Increasingly powerful computers have made it possible
for computational scientists and engineers to model physi-
cal phenomena in greater detail. As a result, overwhelming
amounts of experimental data are being generated by scien-
tific and engineering simulations. In addition, large amounts

* This research was supported by the National Science Foundation under
Grants #ASC-9619020 (UC Subcontract #10152408), and by the Office of
Naval Research under Grant #N66001-97-C-8534.

of data are being gathered by sensors of various sorts, at-
tached to devices such as satellites and microscopes. There
are many examples of large useful datasets from simula-
tions [26, 29, 33], sensor data [25, 28], and medical imag-
ing [2] (pathology, MRI, CT scan, etc.). The primary goal of
generating data through large scale simulations or sensors is
to better understand the causes and effects of physical phe-
nomena. Understanding is achieved through running analy-
sis codes on the stored data, or by a more interactive visu-
alization that relies on the ability to gain insight from look-
ing at a complex system. Thus, both data analysis and visual
exploration of large datasets plays an increasingly important
role in many domains of scientific research. Decision sup-
port database applications are similar to scientific applica-
tions because they deal with large quantities of data (rela-
tional data), and need to perform significant computation in
processing the data. The value provided by decision support
systems and data-mining algorithms depend greatly on the
amount of data, and hence businesses are inclined to retain
as much data as possible.

Disks continue to become larger and cheaper making
them commodity items. This helps to make it relatively easy
to setup a large set of archival storage disks at a relatively
low cost. For example, to build a large disk farm out of com-
modity PC components for the lowest current price: $400
for a motherboard with a Celeron or AMD K6-2 400MHz
cpu and 64MB memory [9], four 40GB EIDE disks at $254
each [10] and a fast ethernet interconnect (100 Mbps), a
farm of 8 PCs can present 1.25TB of disk space for less than
$15K. The price point is sufficiently low to enable many
such disk collections to be setup independently at multiple
disparate locations, where local storage needs dictate. We
anticipate that this trend will result in the emergence of is-
lands of data, where cheap archival storage systems will
be used to hold large locally generated datasets. Use of
computation farms also is important for handling very large
datasets in a reasonable amount of time. Oftentimes, high
performance computation farms are where the data is gen-
erated (as in large scientific simulations), and the data may
reside locally on the computation farm in an archival storage

116
0-7695-0556-2/00 $10.00 © 2000 IEEE

system such as HPSS [22]. Thanks to high-performance net-
works, increasing numbers of computation farms have be-
come accessible across a wide-area network. These com-
putation farms span a spectrum of widely varying config-
urations and computation power, from relatively inexpen-
sive network of workstations and PC clusters to very expen-
sive high-performance machines, providing computing per-
formance in the order of Teraflops.

These trends combine to present a new opportunity: very
large distributed datasets that can be used by applications
for computationally and data intensive analysis, exploration
and visualization.

Consider the following scenario: A scientist wants to
compare properties of a 3D reconstructed view of a raw
dataset recently generated at a collaborating institution, with
the properties of a large collection of reference datasets. The
3D reconstruction operation involves retrieving portions of
2D slices from the regions in question, and then perform-
ing feature recognition and interpolating between the slices
to extract the important 3D features. A description of these
features and the associated properties are then compared
against a database of known features, and some appropriate
similarity measure is computed. The final result is the set of
reference features found that are close in some way to those
found in the new raw dataset, along with the corresponding
view renderings to visualize.

Sensor \-J

Raw Dataset
sensor readings

©
Client PC

Figure 1.3D reconstruction/visualization sce-
nario on distributed collection of resources.

Consider the problems that can occur when the applica-
tion is executed in a Grid [16] environment. That is, the re-
quired resources (new raw dataset, reference database, and
the scientist) are all at distributed locations in a wide-area
network as seen in Figure 1. The reference database is likely
to be stored in an image library, since the dataset is large and
useful to many users. The new raw dataset is stored at the

site where the sensor readings were taken. If the hosts con-
taining the data are low-power archival systems that make
the execution of the 3D reconstruction code prohibitively
expensive, it becomes unclear how to structure the applica-
tion for efficient execution. Ideally we would like to execute
portions of the application at strategic points in the collec-
tion of machines. A set of possible locations for perform-
ing computation is indicated in the figure by question marks.
For example, if the portion of code that performs the range
select on the new raw dataset could be run on the host where
the data lives, the amount of data to be transmitted over the
wide-area network (WAN) would be reduced. The compu-
tation farm is an ideal location for the feature recognition
and 3D reconstruction due to the parallelism inherent in the
codes. Given the set of features that were identified, it would
be efficient to perform the selection of similar features from
the reference database on the data server where the database
is located. The low end PC where the scientist is located can
be used to collect the 3D rendering and the similar feature
information for interactive presentation to the scientist.

The success of this scenario depends on the application
allowing portions of its computation to be executed in a dis-
tributed fashion. Beyond the mere possibility of execution
in a distributed environment is the question of how efficient
the application is. One interpretation of efficiency in this
context is the ratio of useful data transmitted to the total
amount of data transmitted between any two pieces of the
application. For example, if an application transmitted a full
dataset from a remote host, and discarded a large portion not
required by subsequent processing, then this would not be
considered efficient operation.

We have initiated an effort to investigate and develop
methodologies and a framework for efficient execution of
applications that make use of distributed collections of
datasets in a Grid environment. There are two main chal-
lenges in developing efficient applications in a Grid environ-
ment:

• The Grid is composed of collections of heterogeneous
resources. The characteristics, capacity and power
of resources, including storage, computation, and net-
work, vary widely. This requires that applications
should be structured to accommodate the heteroge-
neous nature of the Grid.

• These distributed resources can be shared by many ap-
plications. This requires that applications should be de-
signed to be optimized in their use of shared resources.

In order to address these challenges, we are investigating:

• Methodologies and a framework for structuring appli-
cations. In particular, we address decomposition of ap-
plication processing into components and placement of
these components onto a collection of heterogeneous
resources that will aid efficient execution.

117

• Feasibility and effects of exposing application structure
and characteristics. In particular, we address exposing
resource requirements and the communication pattern
between application components, and how this extra
application structure information can be used.

• An infrastructure for providing execution of applica-
tions that conform to the developed framework.

In this paper, we present a framework, called filter-
stream programming, that represents the processing in a
data-intensive application as a set of processing units, re-
ferred to here as filters, which are designed to be efficient
in their use of memory and scratch space. In this frame-
work, data exchange between any two filters is described
via streams, which are uni-directional pipes that deliver data
in fixed size buffers. We describe a prototype infrastructure
that provides support for execution of applications using the
proposed framework. We present the implementation of two
applications in filter-stream programming framework, and
experimental results to demonstrate the effects of heteroge-
neous resources on the performance of the applications.

2. The Proposed Approach

In this section, we present a framework, called the filter-
stream programming model. The basic ideas are to (1) con-
strain application components to allow for location indepen-
dence, which is necessary for execution in a distributed envi-
ronment, and (2) expose the application communication pat-
tern and resource requirements, allowing a runtime system
to aid in efficient execution. We should note that any pro-
gramming model (e.g., message passing) modified to expose
similar constraints could be employed in place of the filter-
stream programming model we describe.

The programming model used in this work is derived
from the stream-based programming model, originally de-
veloped for Active Disks [1, 35]. Many stream-based al-
gorithms were developed and analyzed for Active Disks.
These algorithms carry out a variety of data transforma-
tions that arise in earth science applications and applications
of standard relational database sort, select and join opera-
tions. In this work we extend these algorithms and investi-
gate the application of filters and the stream-based program-
ming model in a Grid environment.

In the filter-stream programming model, an application
is represented by a collection of filters. A filter is a por-
tion of the full application that performs some amount of
work. Filters are required to pre-disclose dynamic memory
and scratch space needs. Communication with other filters
is solely through the use of streams. A stream is a com-
munication abstraction that allows fixed sized untyped data
buffers to be transported from one filter to another. An ex-
ample set of filters for the motivating example is shown in

Figure 2. A simple example of this model is Unix system
pipes, where the standard output of a process is used as stan-
dard input for another process. Unix pipes represent a linear
chain of filters, each of which have a single input stream and
a single output stream. The filter-stream model allows for
arbitrary graphs of filters with any number of input and out-
put streams.

Q

(view result)

3D reconstruction

(Extract raw J

(_ Extract ret j

Reference DB

Raw Dataset

Figure 2. 3D reconstruction application de-
composed into filters.

The process of manually restructuring an application us-
ing this model is referred to as decomposing the application.
In choosing the appropriate decomposition, we need to con-
sider the complete data flow path from data generation to
ultimate consumption and the target machine configuration,
which can be a distributed collection of heterogeneous ma-
chines. The main goal is to achieve efficient use of limited
resources in a distributed and heterogeneous environment.
The choice of decomposition can have a significant impact
on efficiency and performance. Too many filters could mean
there is not much work for individual filters, which would
cause the system to spend much of its time moving data
around and little time performing useful work on the data.
Too few filters could limit the ability of the overall system
to execute filters concurrently. Similarly, sending data over
streams in very small pieces can make the overhead of the
runtime system too large. If possible, an ideal granularity
size should balance the amount of computation and commu-
nication such that the overall processing time across all fil-
ters does not exhibit a penalty merely because the computa-
tion is distributed.

Given a set of filters, the runtime mapping of filters onto
various hosts in a wide-area grid environment is referred to
as placement. Figure 3 shows a possible placement of the
filters described for the motivating scenario. The choice of
placement represents the main degree of freedom in affect-
ing application performance by:

• placing filters with affinity to data sources near the
sources,

• minimizing communication volume on slow links,
• co-locating filters with large communication volume,
• placing computationally intensive filters on less loaded

hosts,

118

iBeferenee DB
"fMfuSeilfet

Q Extract ref)

Data Server

Q 3D reconstruction 5
Computation Farm

(Extract raw j

Sensor
i

Raw Dataset \
sprrsaqings

(view result)

Client PC

Figure 3. Possible placement of 3D recon-
struction application filters.

• pipelining application filters by concurrent execution.

Note that a placement decision is not assumed to be static,
and the programming model explicitly supports the notion
of stopping a set of filters and replacing them with possibly
a new set of filters with a different placement.

A runtime system infrastructure is used to support the ex-
ecution of applications that are structured in the filter-stream
programming model. In the following sections we present a
prototype infrastructure for executing application filters, and
present implementations of an image processing application
and a database application using the filter-stream program-
ming model.

3. Related Work

There is a large body of hardware and software research
on archival storage systems, including distributed parallel
storage systems [24], file systems [34], image servers [32],
and data warehouses [23]. Several research projects have
focused on digital libraries and geographic information sys-
tems [4, 20] that access collections of archival storage sys-
tems, high-performance I/O systems [8], tertiary storage
systems [22] and remote I/O [19, 31]. Distributed storage
systems attempt to provide large amounts of data to dis-
tributed clients. They present a uniform view of distributed
data to applications, and transparently handle replicas and
caching. This does not push the computation to the data
as in our work, rather the data is migrated to the computa-
tion, but can achieve a similar result with an effective re-
placement policy and a warm cache. Another issue is finding
the required data. The Storage Resource Broker (SRB) [31]
provides uniform UNIX-like I/O interfaces and meta-data
management services to locate and access collections of dis-
tributed data resources.

Distributed computing covers research that addresses
ways to deal with distributed execution of application code
in many different ways. Current work related to Grid com-
puting [7, 14, 16] attempts to provide a uniform view into
a collection of distributed computational, network and stor-
age resources, and to provide services for unified, secure, ef-
ficient and reliable access. However, providing support for
efficient exploration and processing of very large scientific
datasets stored in archival storage systems at distributed lo-
cations remains a challenging research issue, and the neces-
sity of infrastructure to provide such support was recognized
in recent Grid forums [21]. This support of processing and
retrieval for efficient operation is exactly what our work is
attempting to provide.

There is a large body of classic work on dataflow sys-
tems. The macro dataflow model [30, 36] describes an ap-
plication as a sets of tasks, communication edges, edge com-
munication costs and task computation costs. PYRROS [37]
uses this model of application behavior and manual annota-
tions to cluster, map, and schedule computation to nodes of
a homogeneous parallel machine. As we target a heteroge-
neous grid environment, we expand on assumptions such as
constant computation regardless of placement, which makes
sense in a tightly coupled environment. There is also task
parallel work in systems such as STRAND [12], PCN, For-
tran M [13], and HPF [18], which are related due to the
dataflow model and/or task parallelism used. Our work is
different in that we are considering remote datasource affin-
ity as a primary reason for decomposition, rather than an at-
tempt to extract paralellism.

4. A Prototype Infrastructure

In this section, we describe a prototype infrastructure im-
plementation that provides support for execution of appli-
cations developed using the filter-stream framework. This
work is part of the DataCutter project [6], that provides
services for subsetting and processing multi-dimensional
datasets stored on archival storage systems.

4.1. Filters

A filter is specified by the code to execute, and a descrip-
tion of the input and output streams it will use. Currently,
filter code is expressed using a C++ language binding by
sub-classing a provided filter base class. This base class pro-
vides a well-defined interface between the filter code and
the system filter service. The description of input and out-
put streams is specified in a separate configuration file (Fig-
ure 4).

Filters are constrained in several respects. First, undis-
closed dynamic allocation of memory and local disk space
is not allowed. Instead, the filter must pre-disclose and be

119

granted scratch memory and disk space by the runtime sys-
tem. The granted scratch space is allocated on behalf of the
filter by the runtime system when the filter is instantiated.
Later, the filter may make use of the granted scratch space as
needed. One of the potential benefits of exposing resource
requirements in this way is that runtime system can achieve
a better placement of filters. For example, a filter can be run
on a machine with enough memory to avoid paging, and two
filters requesting large scratch space can be placed on two
different machines. In addition, the runtime system can po-
tentially perform better scheduling of co-located filters on a
machine. One of our goals in this project is to investigate
and assess the potential benefits of pre-allocating memory,
when it will really be important, and implications for struc-
turing applications. In order to accomplish this, we plan to
compare standard versions of target applications with filter-
stream based implementations in subsequent work.

The interface for filters consists of an initialization func-
tion, a processing function, and a finalization function:

class MyFilter: public AS.Filter.Base {
public:

int init(int arge, char *argv[]) {...};
int process(stream.t st) { ... };
intfinalize(void) {...};

}

The init function is called when the filter is instantiated,
and is passed parameters with the command line arguments
used when the application was started. This is where a fil-
ter would request scratch memory space for use during later
processing, for example. The process function is called to
handle data arriving on the input streams in buffers from the
sending filter. The parameter passed to the process function
contains arrays of descriptors for the sets of input streams
and output streams this filter can use. The filter can only read
and write from/to the provided streams. No new streams can
be created by the filter at runtime. The finalize function is
called after all processing is finished and the filter is ready to
terminate. This is where a filter would release any resources
in use.

Another restriction is that a filter cannot change the
source of its input streams nor the sinks of its output streams.
This has two advantages. First, a filter does not need to
handle buffering and scheduling for its own communication,
thereby reducing the complexity of filters. Second, the loca-
tion of filters is transparent, allowing filters to be placed at
different locations initially and relocated as system resource
constraints change.

Filters are the unit of placement. Each filter can poten-
tially be executed on a different host. In addition, a filter's
location may change at discrete application-defined inter-
vals during the course of execution. Note this does not imply
true migration of code and state, but rather placement can

be recomputed and the filter can be stopped on the original
host and a new copy re-instantiated on the new host. There
is a limited mechanism for a final state transfer by a sin-
gle buffer transfer from the old instance to the new instance.
This approach avoids many of the details involved in check-
pointing and process migration [11], while retaining most of
the benefits. Filters need to be structured appropriately to
handle such events. For cases when this is not desirable, a
filter can be pinned to a particular host, which means the fil-
ter will always be placed on that host. This host affinity is
useful for some situations, such as when runtime libraries or
auxiliary data files only exist on a particular host, but does
limit placement flexibility.

4.2. Streams

A stream is an abstraction used for filter communica-
tion. Since the placement of filters is largely unknown un-
til runtime, this mechanism is used to achieve location-
independent filter code because stream names are used
rather than endpoint location on a specific host. A stream
is used to specify how filters are logically connected, and
to provide the glue at runtime to attach an input stream for
one filter to an output stream of another. All transfers to
and from streams are through a provided buffer abstraction.
A buffer represents a contiguous memory region containing
useful data. The buffer contains a pointer to the start, the
length of the portion containing useful data, and the maxi-
mum size of the buffer. In the current prototype implemen-
tation we are using TCP for stream communication, but any
point-to-point communication library could be added, such
as Nexus [17].

The streams are specified in a global sense, separate from
the application code. For each filter, a list of input and output
streams is required. This discloses all potential filter com-
munication pairs for the entire execution of the application.
Given a set of filters with stream connectivity information,
we can build a task graph where the nodes represent the fil-
ters, and the edges represent stream connections. For exam-
ple, given three filters A, B and C, with data being sent from
A to both B and C, and from B to C, the specification and re-
sulting task graph are seen in Figure 4. Each filter in the spec
appears in a section labeled [filter.<name>]. For each sec-
tion, two optional entries ins and outs can appear containing
the list of input and output stream names respectively.

In addition to the above inter-filter streams, we allow
for two other types of streams:1 File Streams and External
Communication Streams. Files Streams are used to read and
write to files stored in local scratch disk space or local per-
manent disk storage. The file stream abstraction further in-
sulates the filter code from specifics about the host system.
This provides a measure of safety between co-located filters,

'These are not yet implemented in the prototype.

120

[filter.A]
outs = stream 1 stream3
[filter.B]
ins = stream 1
outs = stream2
[filter.C]
ins = stream2 stream3

(a) filter/stream spec (b) resulting graph

Figure 4. Sample filter/stream specification.

since one filter cannot access another filter's scratch disk
space. The permanent disk storage presents a uniform file
system to all filters, similar to a traditional file system. Thus
a filter with sufficient authorization can read files in perma-
nent disk storage written by another filter. External Commu-
nication Streams are used to connect to, and receive connec-
tions from legacy or other non-filter application code.

4.3. Execution Environment

The execution service performs all the steps necessary to
instantiate filters on particular machines, connect all the log-
ical stream endpoints, and call the interface functions to al-
low filters to run.

The description of where to instantiate filters is provided
by a placement specification. Currently, this is statically
generated before the application is started. An example
placement specification for the sample filters is:

[placement]
A = hostl .cs.umd.edu
B = host2.cs.umd.edu
C = host3.cs.umd.edu

The [placement] section is expected to contain one en-
try for each filter. The value is simply the host to execute
the filter on. In general, this host can be a parallel ma-
chine, which implies multiple instances of the filter are cre-
ated, but the prototype implementation does not yet support
parallel filters. Security concerns have made it difficult to
start processes on remote machines in a uniform manner.
To solve this problem in the current prototype, an Applica-
tion Execution Daemons (appd) must be run on every host
used to execute filters. In the future, we plan to use exist-
ing Globus [15] services for process creation and authenti-
cation, in which case the Application Execution Daemons
would not be needed. In addition, a single provided Direc-
tory Daemon (dird), which is similar to an LDAP server, is
used to record the contact information (host, port, pid) for
each appd. The dird is the only process that runs on a well-
defined host and port. All other ports are ephemeral, and

registered with the dird to later be queried. Based on a given
placement specification, the execution of a filter-based ap-
plication requires contacting the appd process on each host.
A lookup is performed to find contact information for each
required appd. Currently, we require an application binary
to exist on every host, which must contain at least the code
for the filters that will execute on that host. The binary can
contain code for all the filters, and those filters not intended
to run on a given host will not be instantiated at runtime.
Currently we manually compile/copy the binaries as needed,
but convenience procedures to do this will be added in the
future.

The application is started by running the application bi-
nary on some host. This will become the console process,
which performs no application processing such as running
filters. The console process queries the dird process to get
the relevant appd contact information, and then sends an ex-
ecute command to each appd. The appd executes the appli-
cation binary on that host, which in turn contacts the console
process and performs some initial handshaking to setup the
stream abstractions. In the current prototype, one POSIX
thread is created for each filter that runs on the host, and
a new instance of the application filter object is created.
The thread calls the init interface function passing the com-
mand line arguments that were used when the console pro-
cess was started. Next, the thread calls the process function.
When this returns, all open streams are closed and the final-
ize function is called. Any remaining filter resources are re-
leased before the thread stops.

The multiple threads allow for fairness across filters on a
single host, since all threads are executed with the same pri-
ority by the underlying operating system. No one filter can
starve another due to the time sharing semantics of POSIX
threads. Of course the filters do need to be thread-safe with
respect to each other. Based on the filter-stream program-
ming model, this should be natural for most applications.
Filters in this model are inherently isolated and communi-
cate via system provided buffers, thus should be fairly easy
to make thread-safe due to the lack of shared resources. One
problem could be common library routines. For the cases
where no thread-safe implementations exist, we provide fil-
ter level locks that can be used to wrap the offending calls.
This is only an issue when thread safety problems exist be-
tween filters that run on the same host, thus in the same pro-
cess. For the sample placement, filters A, B and C can all
have thread safety violations, since they are all actually run
in separate processes on three different hosts.

For cases when thread safety is a problem and lock wrap-
ping will not work, the infrastructure could be augmented to
optionally use a single thread for all filters on a given host.
Control could use a dataflow model where scheduling is per-
formed by the infrastructure for filters based on the arrival
of input. Another alternative re-design is to make each filter

121

execute as a separate process, thus avoiding all threading is-
sues at the expense of increased filter communication costs
on the same host. The use of a thread-per-filter-instance is a
property of the current prototype implementation, and is not
mandated by the overall model.

4.4. Applicability

Our approach is intended to be applicable to many com-
mon types of data-intensive applications that are emerging
for use in a grid environment. The benefits of this approach
result directly from two observations. The first is that the
filter-stream framework exposes useful information, partic-
ularly application communication patternand communica-
tion volume information. The second is that expressing the
application processing as filters enables data volume reduc-
tion from remote data sources. These factors can be lever-
aged to improve application efficiency at runtime.

We recognize that the approach may not be effective for
all application types, and are identifying characteristics that
make applications ill-suited for this approach. Ill-suited in
this case means performance will be no better than that of
a generic message passing implementation, for example us-
ing MPI [27]. The first problem occurs when applications
have high selectivity. This means nearly all the remote data
is needed by the application, and no significant data reduc-
tion is achieved, which will nullify the benefits of applica-
tion decomposition.

Applications that lack a clear task structure are also prob-
lematic. If the application cannot be divided cleanly into a
set of filters, then placement choices are more limited for
such a monolithic application. For example, if an applica-
tion uses two remote data sources and cannot be divided into
filters, we can execute the application at either data source
(inputs), the client (output), or at an intermediate location.
This will most likely be efficient only for data located at the
execution site chosen, and inefficient for other input/output
data sources/sinks.

The communication pattern and volume are significant
characteristics that enable intelligent placement to overlap
communication with computation and reduce high volume
on slow network links. If the pattern or volume of com-
munication is unknown, chaotic, very fine grained, or time
varying, then it is difficult to perform an intelligent place-
ment. For example, a communication pattern that involves
all possible filters and is data dependent, where the destina-
tion for a piece of data is known only after its examination,
will result in a conservative approximation of an all-to-all
pattern with equal volume between all pairs of filters. There
is no clear choice for placement in this case, because any
possible good placement may only be known after execu-
tion has finished and the communication activity has been
observed. Even worse, the observed communication pattern

and volume may not be helpful for future runs, due to non-
determinism in such applications. Our approach assumes a
single significant communication pattern and deterministic
volume, which can be used for choosing placement for the
entire execution. For the applications we are targeting, such
as volume visualization, database decision support, and im-
age processing, these assumptions appear to hold.

5. Application: Image Processing

The Virtual Microscope [2] is a query-response appli-
cation that processes multi-dimensional image data to sat-
isfy client queries. The dataset contains high power digi-
tized images of microscope slides, which effectively forms
a 3D dataset because each slide can contain multiple 2D fo-
cal planes at different depths. Images are stored at the high-
est magnification level, and the size of a single slide typi-
cally varies from 100MB to bGB, compressed. The sys-
tem is required to provide interactive response times simi-
lar to a physical microscope, including continuously mov-
ing the stage and changing magnification. A typical query
allows a client to request a 2D rectangular region at a partic-
ular magnification from within the bounds of a single focal
plane. The processing for the query requires projecting high
resolution data onto a grid of suitable resolution (governed
by the desired magnification) and appropriately composit-
ing pixels that map to a single grid point to avoid introduc-
ing spurious artifacts into the displayed image. The Virtual
Microscope is useful for performing operations that are diffi-
cult with a physical microscope, such as simultaneous view-
ing and manipulation of a single slide by multiple users, or
remote telepathology [2] where diagnosing pathologists are
not required to be physically located near the slide.

5.1. Original Implementation

The original Virtual Microscope system is composed of
two components; a client to generate queries and display the
results (i.e. images), and a server to process the queries. The
server is composed of a frontend and a backend. The fron-
tend interacts with clients; it receives queries from clients
and forwards them to the backend. The backend consists of
one or more processes, typically one per node of a parallel
machine. The processing of a query is carried out entirely in
the backend.

In order to achieve high I/O bandwidth, each focal plane
in a slide is regularly partitioned into data chunks, each of
which is a rectangular subregion of the 2D image. Data
chunks are declustered across all backend local disks to
achieve I/O parallelism. Each pixel in a chunk is associated
with a coordinate (in x- and y-dimensions) in the entire im-
age. Each chunk has an associated minimum bounding rect-
angle (MBR) based on all the pixels in the chunk. An index

122

is created using the MBR of each chunk. Since the image is
regularly partitioned into rectangular regions, a simple com-
putation can be used instead of a complex index search.

During query processing, the backend process finds the
chunks that intersect the query region, and reads them from
the local disks. Each data chunk is stored in compressed
form (JPEG format), and must be first decompressed. Then,
it is clipped to the query region. Afterwards, each clipped
chunk is subsampled to achieve the zoom level (magnifica-
tion) specified in the query. The resulting image blocks are
directly sent to the client. The client viewer assembles and
displays the image blocks from each of the backend pro-
cesses to form the query output.

5.2. Filter Implementation

The filter decomposition used for the Virtual Microscope
system [6] is shown in Figure 5. This filter pipeline struc-
ture is natural for query-response applications. The figure
only depicts the main dataflow path of image data through
the system; other low-volume streams related to the client-
server protocol are not shown for clarity. The thickness of
the stream arrows indicate the relative volume of data that
flows on the different streams.

Figure 5. Virtual Microscope decomposition

In this implementation each of the main processing steps
in the server is a filter:

• read-data: Full-resolution data chunks that intersect
the query region are read from disk, and written to the
output stream.

• decompress: Image blocks are read individually from
the input stream. The block is decompressed using
JPEG decompression and converted into a 3 byte RGB
format. The image block is then written to the output
stream.

• clip: Uncompressed image blocks are read from the in-
put stream. Portions of the block that lie outside the
query region are removed, and the clipped image block
is written to the output stream.

• zoom: Image blocks are read from the input stream,
subsampled to achieve the magnification requested in
the query, and then written to the output stream.

• view: Image blocks are received for a given query, col-
lected into a single reply, and sent to the client using the
standard Virtual Microscope client/server protocol.

Figure 6 illustrates the high-level code for the zoom fil-
ter, which has two input streams and one output stream. It

VM_zoom::init0 {

// Allocate output buffer from pre-allocated scratch space
bufOut = AllocFromScratch(getOutputStreamBufferSize());

VM_zoom::process(stream_t &st) {
DC.StreamBuffer *buf;
VMQuery *query;
VMChunk *chunk;

// recv the query
buf = st.insIO].read(); query = VMUnpackQuery (buf);
// while there is data retrieved from input stream
while ((buf = st.insll].read!)) != NULL) {

chunk = VMUnpackchunk(buf); // extract chunk information
zoom_chunk(chunk, query); // perform zoom operation
buf Out = VMPackChunk (chunk); // pack chunk into buffer
at.outs[0].write(sbufOut); // write data to output stream
FreeToScratch(chunk->Data);

VM_zoom::finalize() {
PraaToScratch(bufOut);

}
void VM_zoom:: zoom_chunk(VHChunk *chunk, VMQuery *query)

int rel_zoom = query->Zoom/chunk->Zoom;
int width = chunk->width/rel_zoom;
int height = chunk->Height/rel_zoom;
int size = width*height"PIXELSIZE;

char *psrc = chunk->Data;
char *pDst = chunk->Data = AllocPromScratch(size);
// subsample the image block
for (j = height; j>0; —j) {

lor (i = width; i>0; —i) {
memcpylpDst, pSrc, PIXELSIZE);
pSrc += rel_zoom*PIXELSIZE;
pDst += PIXELSIZE;

)
pSrc += rel_zoom*chunk.Width*PIXELSIZE;

)
// update chunk metadata
chunk->Zoom = query->Zoom;

Figure 6. The high-level code for zoom filter.

reads the query from stream 0 (st.ins[0]) and data chunks
from stream 1 (st.ins[l])(and subsamples the received data
chunks using the zoom_chunk function. The zoom filter
uses scratch space to store results during subsampling and
to pack the subsampled chunk into the output buffer. The
result is written to the output stream (st.outsfO]), which con-
nects the filters zoom and view.

5.3. Experimental Results

Using the filters described in Section 5.2, we have im-
plemented a simple data server for digitized microscopy im-
ages [6], stored in the IBM HPSS archival storage system at
the University of Maryland. An existing Virtual Microscope
client trace driver was used to drive the experiments. This
driver was always executed on the same host as the view fil-
ter, which is referred to as the client host. The server host is
where the read-data filter is run, which is the machine con-
taining the disks with the dataset.

The HPSS setup has 10TB of tape storage space, 500GB
of disk cache, and is accessed through a 10-node IBM SP. In

123

< 180k ►

t
3
-t

qi
~I '

1

I

5
1

H »
t
1

1 !
O 43

' r~
i
i

V

■■ 1

i •
< -90k ►

Filter Total Volume Volume Per Chunk

read data 3.60 MB 102.52 KB
decompress 83.42 MB 2373.04 KB

clip 57.83 MB 1645.02 KB
zoom (no) 57.83 MB 1645.02 KB
zoom (8) .90 MB 25.70 KB

Figure 7. 2D dataset and query regions. The
table lists transmitted data sizes for q5. zoom
(no) is for no subsampling and zoom (8) is for
a subsampling factor of 8 (in each of the two
spatial dimensions).

all experiments we use a 4GB 2D compressed JPEG image
dataset (90GB uncompressed), created by stitching together
smaller digitized microscopy images. This dataset is equiv-
alent to a digitized slide with a single focal plane that has
180 A' x 180 A' RGB pixels. The 2D image is regularly par-
titioned into 200 x 200 data chunks and stored in HPSS in a
set of files. We defined five possible queries, each of which
covers 5x5 chunks of the image (see Figure 7). The ex-
ecution times we will show are response times seen by the
visualization client averaged over 5 repeated runs. For the
presented experiments, we eliminated the effects of retriev-
ing data stored on tape by insuring the data was staged to the
HPSS disk cache before each run. We are using machines
on our local area network for experimental repeatability, and
will switch to hosts in a wide-area Grid environment once
application behavior is sufficiently well-understood.

Overhead of Using Filters. The query execution times for
the original optimized Virtual Microscope server versus the
prototype filter implementation are shown in Figure 8. In
this experiment the entire dataset is loaded from HPSS and
stored on a single local disk attached to a SUN Ultra 1 work-
station, because the original server can only access datasets
stored on disks. The loading of the dataset took 4750 sec-
onds (1 hour 19 minutes). The original server is run as a
single process, and all filters in the filter-stream implemen-

ts

3,
<D

E

50

40

30 -

CD

S 20
o
Q.
CO
CD

CC 10

0 J

■ Original Server

Filter Server

mm
q1 q2 q3 q4

Query

q5

Figure 8. Query execution times for the origi-
nal server and the filter implementation, (sub-
sampling factor is 8)

tation are executed on the same uniprocessor SUN worksta-
tion where the dataset has been pre-loaded. In both cases
the client is run on another SUN Ultra 1 workstation con-
nected to the local Ethernet segment. As is seen from the fig-
ure, the filter implementation does not introduce much over-
head compared to the optimized original server. The percent
increase in query execution time ranges from 6% to 30%
across all queries. The filter version contains extra work not
present in the original server, such as flattening of the chunk
and metadata into a linear buffer on the sending filter, and
expanding the chunk and metadata into the same structure in
the receiving filter. This overhead is necessary when filters
are located on distributed machines, but could be eliminated
for the co-located case by instead sending a pointer to an in-
memory structure, which would eliminate much of the over-
head. This experiment is designed to be biased against the
filter implementation to see what the overhead is in the de-
composed version. We should also note that the timings do
not include the time for loading the dataset from tape, which
can substantially increase for larger datasets and datasets
stored in archival storage systems across a wide-area net-
work.

Varying the Processing. One node of the IBM SP is used
to access the stored dataset, and the client was run on a SUN
workstation connected to the SP node through the depart-
ment Ethernet. We experimented with different placements
of the filters by running some of the filters on the same SP
node where the data is accessed, as well as on the SUN work-
station where the client is run.

In Figure 9 we consider varying the placement of
the filters under different processing requirements. Fig-

124

g. 400
0)

p 300
0)
(0

o 200 a «
0)

OC 100

q1q2q3q4q5

RDCZ-V
q1 q2 q3 q4 q5

RDC-ZV
ql q2q3q4qE

HD--CZV
ql q2 q3 q4 qE

R-DCZV

Filter Placement / Query

E
F=

q1q2q3q4qS q1q2q3q4qS q1q2q3q4qS q1q2q3q4q5

RDCZ-V RDC-ZV RD-CZV R-DCZV

Filter Placement / Query

(a) no zooming (no subsampling) (b) subsampling by a factor of 8

Figure 9. Execution time of queries under varying processing (subsampling). R,D,C,Z,V denote the
filters read-data, decompress, clip, zoom, and view, respectively. <server>-<client> denotes the placement
of the filters in each set.

ures 9(a) and (b) show the query execution times when the
image is viewed at the highest magnification (no subsam-
pling) and when the subsampling factor is 8 (i.e. every 8th
pixel in each dimension is output), respectively. There are
three predominant factors in these experiments. The first
is the placement of the most computationally intensive fil-
ter (decompress). The second is the volume of data trans-
mitted between the two machines. The final factor is the
amount of data sent by the view filter to the client driver.
Consider the first two groups of bars in the figures. The dif-
ference between the groups within each figure is the place-
ment of the zoom filter on the server (RDCZ-V) or client host
(RDC-ZV). When there is no subsampling, query execution
times remain almost the same for both placements, because
the volume of data transfer between the server and client
is the same in both cases. In the case of subsampling, the
placement of the zoom filter makes a difference, because the
volume of data sent from the server to the client decreases
if the zoom filter is executed at the server. Now consider
the last two groups of bars in the figures. The difference
between the groups within each figure is the placement of
the decompress filter (RD-CZV or R-DCZV). For no sub-
sampling case, the time increases substantially when decom-
press is placed on the client, because of the combined ef-
fects of the most computationally intensive filter (decom-
press) and the high amount of data being processed by view
and sent to the client driver. When there is subsampling, the
query execution time is not as high, because the amount of
data processed by view and sent to the client driver is much
lower. These experiments demonstrate the complex inter-
actions between placement of computation and communica-

tion volume.

Varying the Server Load. In the next set of experiments
(Figure 10), we consider varying the server load. We use
the same experimental setup as for the previous experiment.
In all experiments, we use a subsampling factor of 8. Fig-
ures 10(a), (b), and (c) show query execution times when the
server load is doubled, tripled, and quintupled, respectively.
The different loads were emulated by artificially slowing
down the set of filters running on the server host such that the
total running time was delayed. For example, the zoom filter
runs twice as long in the 2 x case because the time is delayed.
As server load increases (or the client host becomes rela-
tively faster), running the filters on the client host achieves
better performance. This result is not unexpected, but the
experiment quantifies the effect for this particular configura-
tion. The use of a different client to server network, or hosts
with different relative speeds would significantly change the
observed trends and trade-off points.

6. Application: External Sort

External sort has a long history of research in the database
community and has resulted in many fast algorithms [3, 5].
The application starts with a large unsorted data file that is
partitioned across multiple nodes, and the output is a new
partitioned data file that contains the same data sorted on a
key field. The sample data file is based on a standard sort-
ing benchmark that specifies 100 byte tuples, with the first
10 bytes being the sort key. The distribution of the key val-
ues is assumed to be uniform, both in terms of the unsorted
file as a whole and for each partition. A recent record holder

125

140 -

120 ■

140 -

120 ■

$
rx

qlq2q3q4qS q1q3q3q4q5

RDCZ-V RDC-ZV
qlqZq3q«qS

RD-CZV
q1q2q3q4q5

n-Dczv

Filler Placement / Query

eo •

60 -

ql <C q3 q4 qS ql <9 tP q« qS q1q2q3q«q5 ql q2 q3 q* qS

RDCZ-V RDC-ZV RD--CZV R-DCZV

Filter Placement / Query

ql!#q3q*qS ql q2 q3 q« qS

RDCZ-V RDC-ZV
ql q2 q3 q« qS

RD-CZV
q1q2q3q4q5

R-DCZV

Filter Placement / Query

(a) 2x server load (b) 3x server load (c) 5x server load

Figure 10. Execution time of queries under varying server load. 2x means the server computation is
delayed to double the execution time of a filter on the server, etc. (subsampling factor is 8)

for the fastest external sort is NowSort [5], and we use the
pipelined version of their two-pass parallel sort for our basic
algorithm.

The algorithm proceeds in two phases. The first phase
generates temporary sorted runs on each node, and the sec-
ond phase produces the output sorted partition on each node.
During the first phase, a reader reads chunks of tuples from
the unsorted input file on disk, and partitions the records ac-
cording to which node it will reside on when sorted, puts
them into in-memory buffers, and when a buffer is full,
sends it to the correct node. A writer collects tuples from
all nodes, and when the in-memory buffer is full, sorts it us-
ing partial-radix sort2, and writes the sorted run to disk. This
first phase is over when all the unsorted input files have been
processed, and written to disk as temporary sorted runs. For
the second phase a merge-reader reads tuples from each lo-
cal sorted run into merge input buffers. A merger selects the
lowest-value key among all merge input buffers and copies
it to an output buffer, from which the merge-writer appends
buffers to the sorted output file on disk. This phase com-
pletes when tuples from all local runs have been merged.

6.1. Filter Implementation

The implementation of external sort using filters follows
the above description. The location of the unsorted dataset
dictates the number of nodes to be used for execution. There
are two filters on each node, Partitioner and Sorter. The
Partitioner filter reads buffers from the unsorted input file,
and distributes the tuples into buckets based on the key
value. When a bucket is full, it is sent over the stream that
connects to the Sorter filter on the corresponding node. The

2Makingtwo passes over the keys with a radix size of 11 -bits [3] plus a
cleanup.

Sorter continually reads buffers from the input streams, and
extracts a portion of the key and appends it to a sort buffer.
When the sort buffer becomes full, it is sorted and written
to scratch space as a single temporary run. When all buffers
have been read from the input streams, the merge phase be-
gins with only the Sorter filters still executing. The Sorter
filter then reads sorted tuples from each of the temporary run
files and merges them into a single output buffer, and writes
this buffer to the sorted output file on disk.

This application is essentially a parallel SPMD program,
with an all-to-all communication pattern. This organization
is in contrast to the Virtual Microscope application that was
structured as a processing chain pipeline.

6.2. Experimental Results

The experimental setup is a 16 node cluster of dual
400MHz Pentium IIs with 256MB memory per node, run-
ning Linux kernel 2.2.12. There are two interconnects, a
shared Ethernet segment, and a switched gigabit Ethernet
channel. We use the faster switched interconnect for all ex-
periments, and because of a problem with the network inter-
face cards on some of the nodes, only use a maximum of 8
nodes in all experiments. The nodes are isolated from the
rest of the network, and the cluster was not running other
jobs during the experiments. Each node has a single Ultra2
SCSI disk. All data for a particular node, including tempo-
rary data, is stored on the single local disk. The dataset con-
sists of a single 128MB unsorted file per node. The unsorted
dataset was generated randomly with a uniform key distribu-
tion. The execution time for an experiment is the maximum
time across all nodes used for the experiment. Each exper-
iment is repeated for 5 trials, and the execution time shown
represents the average of the trials. Both a Partitioner and

126

140

120 -

100

E

c
o

CO

80

60

40

20

6

Number of Nodes

Figure 11. Sort execution time as number of
nodes is increased. The dataset size is scaled
with the number of nodes (128MB/node).

a Sorter filter are executed on each node used in the exper-
iments for Figures 11 and Figures 13(a)-(d), and two Parti-
tioner and Sorter filters are executed on some of the nodes
in the experiments for Figures 13(e) and (f). The disk cache
was cleared between executions to insure a cold disk cache
for each run. Note that we are using a tightly coupled cluster
for experimental repeatability, and will be switching to hosts
on a wide-area Grid environment when application behavior
is better understood.

Scaling. The first experiment examines the scalability of
the sort application as we increase the number of nodes and
total dataset size. As seen in Figure 11, the application is
well-behaved. There is good scaling due to the fast inter-
connect not becoming saturated by the traffic generated by
sort. This experiment demonstrates there is nothing inherent
in the filter-stream based implementation that would other-
wise limit its scalability.

Varying Memory Size. In this set of experiments we vary
the amount of memory available for filters on some of the
nodes while keeping it constant for filters on the remaining
nodes. Our goal is to create a heterogeneous configuration
in a controlled way, and observe the effects of heterogeneity
on the application performance.

Figure 13 shows the execution times under varying mem-
ory constraints. The solid line in all of the graphs denotes
the base case, in which the size of the memory is reduced
equally across all nodes, and shows the change in the ex-
ecution time. The amount of the Full memory case is de-
termined empirically to minimize execution time while con-
suming the least memory (see Figure 12). Memory param-
eters are varied by halving the full memory amount for the
1/2 case, and halving again for the 1/4 case, etc. Constrain-

Filter Parameter Full Memory
Partitioner reacLsize
single disk buffer for reading tuples from the unsorted input file

256KB

Partitioner bucket-Size 1 MB
shared space for all outgoing tuple buckets, before sending to Sorter filters

Sorter (phase 1) keybuLsize 1 MB
single buffer for storing extracted key and tuple pointer, before sorting and writ-
ing the temporary run

Sorter (phase 2) sharedbuf 768 KB
shared disk buffer for reading from all temporary runs during merge

Sorter (phase 2) outputbuf
single disk buffer for writing sorted tuples to output file

512KB

Figure 12. Memory parameters used by the
sort filters. The Full Memory column contains
the initial value for each parameter.

ing memory causes the filters to read/process/write data in
smaller pieces, thus performance should suffer. As is shown
by the solid line in the figure, the execution time increases as
the size of the memory is decreased. In the experiments with
heterogeneous memory configuration, we divide the eight
nodes into two sets of four nodes. The first set of nodes re-
tains the initial amount of memory (i.e., Full memory) for
all runs, while the second set has their memory reduced for
each case. The left bars for each case in each graph shows
the maximum of the execution times on the nodes with full
memory. Similarly, the right bar for each case in each graph
shows the maximum of the execution times on the nodes
with reduced memory. As is shown in Figure 13(a), we ob-
serve performance degradation similar to the base case. The
nodes that use a constant amount of memory finish sooner,
but the entire job runs no faster. In this experiment, both the
input data to the Partitioner filter and the output of the Par-
titioner (i.e. the input data to the Sorter filter) on each node
are regularly partitioned across all the nodes.

Notice that the total amount of memory across all nodes
for this experiment is larger than that for the base case be-
cause half the nodes keep full memory. For example, for the
1/8 memory case, 350% more memory was being used in
aggregate than for the 1/8 base case. Instead of a reduction
in sort time, the extra memory results in a load imbalance
between the two sets of four nodes. Hence, in the next ex-
periment we partitioned the amount of input data for each
node irregularly, to attempt to reduce overall execution time.
Figure 13(b) shows that the execution time increases when
we partition the input data based on available node mem-
ory, i.e., full nodes have more input data than nodes with re-
duced memory. This results from an increase in the time for
the partitioning phase, because the Partitioner filters on the
set of nodes with full memory have more input records to
process. The execution time for the merge phase is effec-

127

tively unchanged, because the amount of data sent to each
node is unchanged. Figure 13(c) shows the result of parti-
tioning the output of the Partitioner filter (and thus the merge
phase work) according to the memory usage of the receiv-
ing node. This experiment, however, moves too much work
to the nodes with full memory, so that those nodes become
the longest running node set. To improve performance fur-
ther, we followed two different approaches. In Figure 13(d),
the Partitioner filter output is adjusted to balance the perfor-
mance of both sets of nodes (approximately a 10% reduc-
tion in the number of tuples assigned to a node for each 1/2
reduction in memory usage). In this case, we observe bet-
ter performance than the previous cases. In the second ap-
proach, we partitioned both the input data and the output of
the Partitioner filter as was done in the experiment for Fig-
ure 13(c), but executed two Sorter and two Partitioner fil-
ters on the nodes with Full memory to take advantage of the
dual processors available in each node. As is seen in Fig-
ure 13(e), the performance is better than for the previous
cases. Finally, Figure 13(f) shows the combined effect of
running two sets of filters on the nodes with full memory,
and adjusting the Partitioner output to balance the workload
across both set of nodes. As expected, this configuration
performs better than all other cases. These experimental re-
sults clearly show that application-level workload handling
and careful placement of filters can deal with heterogeneity,
which can have a significant impact on performance. Ques-
tions that require further investigation include (1) "can we
develop cost models for niters and for the application per-
formance so that the placement of filters and workload han-
dling can be done by the runtime system, with little interven-
tion from the user?" and (2) "can we make use of expos-
ing resource requirements and communication characteris-
tics to develop accurate and efficient cost models?". We plan
to work on more applications and different configurations to
seek answers to these questions in future work.

7. Conclusion and Future Work

We have presented a framework, called filter-stream pro-
gramming, for developing data-intensive applications in a
Grid environment. This framework represents the process-
ing in an application as a set of processing components,
called filters. The goal is to constraint application com-
ponents to allow for location independence, and to expose
communication characteristics and resource requirements,
thus enabling a runtime system to support efficient execu-
tion of the application. We have described a prototype run-
time infrastructure to execute applications using the filter-
stream programming framework. We have discussed imple-
mentations of two data-intensive applications that make use
of our filter-stream framework, and presented experimental
results.

Our experimental results show that there exists a delicate
balance, and sometimes subtle interactions with heteroge-
neous resources, that can have a large impact on application
performance. We plan to further investigate such interac-
tions to develop cost models that can aid in decomposition
of applications into filters and placement of the filters. We
also are in the process of implementing other applications to
use the filter-stream programming framework from applica-
tion areas such as volume visualization, database decision
support, and image processing.

References

[I] A. Acharya, M. Uysal, and J. Saltz. Active disks: Program-
ming model, algorithms and evaluation. In Proceedings of
the Eighth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems
(ASPLOS VIII), pages 81-91. ACM Press, October 1998.
ACM SIGPLAN Notices, Vol. 33, No. 11.

[2] A. Afework, M. D. Beynon, F. Bustamante, A. Demarzo,
R. Ferreira, R. Miller, M. Silberman, J. Saltz, A. Sussman,
and H. Tsang. Digital dynamic telepathology - the Vir-
tual Microscope. In Proceedings of the 1998 AMIA An-
nual Fall Symposium. American Medical Informatics Asso-
ciation, November 1998.

[3] R. Agarwal. A super scalar sort algorithm for RISC proces-
sors. In Proceedings of 1996 ACM SIGMOD Conference,
pages 240-6,1996.

[4] Alexandria Digital Library, http://alexandria.ucsb.edu/.
[5] A. Arpaci-Dusseau, R. Arpaci-Dusseau, D. Culler, J. Heller-

stein, and D. Patterson. High-performance sorting on net-
works of workstations. In Proceedings of 1997 ACM SIG-
MOD Conference, Tucson, AZ, 1997.

[6] M. D. Beynon, R. Ferreira, T. Kurc, A. Sussman, and J. Saltz.
DataCutter: Middleware for filtering very large scientific
datasets on archival storage systems. In Proceedings of the
2000 Mass Storage Systems Conference, College Park, MD,
March 2000. IEEE Computer Society Press. To appear.

[7] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and
S. Tuecke. The Data Grid: Towards an architecture for
the distributed management and analysis of large scientific
datasets. (Submitted to NetStore '99), September 1999.

[8] A. Choudhary, R. Bordawekar, M. Harry, R. Krishnaiyer,
R. Ponnusamy, T Singh, and R. Thakur. PASSION: Par-
allel and scalable software for input-output. Technical Re-
port SCCS-636, NPAC, September 1994. Also available as
CRPC Report CRPC-TR94483.

[9] Phoenix Computers Catalog.
http://www.phoenixcomputers.net/, Jan 2000. Follow-
ing link from http://www.pricewatch.com/.

[10] ShopHere USA Catalog.
http://205.164.161.100/products.asp?dept=33, Jan 2000.
Following link from http://www.pricewatch.com/.

[II] F. Doughs and J. Ousterhout. Process migration in the Sprite
operating system. In Proceedings of the Seventh Interna-
tional Conference on Distributed Computing Systems, pages
18-25, September 1987.

128

Full Full FuH 1/2 Full 1/4 Full 1/8

Filter Memory Usage (4 node groups)
FuH Full FuU 1/2 Full 1/4 FuH 1/8

Filter Memory Usage (4 node groups)
FuH Full FuH 1/2 Full 1/4 FuH 1/8

Filter Memory Usage (4 node groups)

(a) Regular partitioning of input data and
Partitioner filter output

(b) Irregular partitioning of input data (c) Irregular partitioning of input data
and Partitioner filter output

FuH Full Full 1/2 Full 1/4 FuH 1/8

Fitter Memory Usage (4 node groups)

f 1 El
FuH Full FuH 1/2 Full 1/4 FuH 1/8

Filter Memory Usage (4 node groups)

1111
Ful Full FuO 1/2 Full 1/4 Full 1/8

Filter Memory Usage (4 node groups)

(d) Irregular partitioning of input data
and Partitioner filter output (tuned)

(e) Irregular partitioning of input data
and Partitioner output, 2 pair of filters per
Full node

(f) Irregular partitioning of input data
and Partitioner filter output (tuned), 2
pair of filters per Full node

Figure 13. Execution time of sorting a 1GB dataset using 8 nodes. Two groups of four nodes: (1)
memory usage held constant (Full), (2) memory usage reduced (1/X).

[12] I. Foster. Automatic generation of self-scheduling pro-
grams. IEEE Transactions on Parallel and Distributed Sys-
tems, 2(l):68-78, January 1991.

[13] I. Foster. Compositional parallel programming languages.
ACM Trans. Prog. Lang. Syst., 18(4):454-476, July 1996.

[14] I. Foster. The Beta Grid: A national infrastructure for com-
puter systems research. In Network Storage Symposium, Oc-
tober 1999.

[15] I. Foster and C. Kesselman. Globus: A metacomputing in-
frastructure toolkit. Internationaljournal of Supercomputer
Applications and High Performance Computing, 11 (2): 115-
128,1997.

[16] I. Foster and C. Kesselman. The GRID: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann, 1999.

[17] I. Foster, C. Kesselman, and S. Tuecke. The Nexus approach
to integrating multithreading and communication. Journal of
Parallel and Distributed Computing, 37:70-82,1996.

[18] I. Foster, D. Kohr, R. Krishnaiyer, and A. Choudary. Double
standards: Bringing task parallelisn to HPF via the message
passing interface. In ProceedingsSupercomputing '96. IEEE
Computer Society Press, November 1996.

[19] I. Foster, D. Kohr, R. Krishnaiyer, and J. Mogul. Remote
I/O: Fast access to distant storage. In Fifth Workshop on I/O

in Parallel and Distributed Systems (IOPADS), pages 14-25.
ACM Press, 1997.

[20] Geographic Information Systems.
http://www.usgs.gov/research/gis/title.html.

[21] Grid Forum. Birds-of-a-Feather Session, SC99, Nov 1999.
[22] The High Performance Storage System (HPSS).

http://www.sdsc.edu/hpss/hpssl.html.
[23] T. Johnson. An architecture for using tertiary storage in a

data warehouse. In the Sixth NASA Goddard Space Flight
Center Conference on Mass Storage Systems and Technolo-
gies, Fifteenth IEEE Symposium on Mass Storage Systems,
1998.

[24] W. Johnston and B\ Tierney. A distributed parallel storage
architecture and its potential application within EOSDIS. In
the Fourth NASA Goddard Conference on Mass Storage Sys-
tems and Technologies, 1995.

[25] Land Satellite Thematic Mapper (TM).
http://edcwww.cr.usgs.gov/nsdi/html/landsatJm/ land-
satJm.

[26] K.-L. Ma and Z. Zheng. 3D visualization of unsteady 2D
airplane wake vortices. In Proceedings of Visualization'94,
pages 124-31, Oct 1994.

129

[27] Message Passing Interface Forum. Document for a stan-
dard message-passing interface. Technical Report CS-93-
214, University of Tennessee, November 1993.

[28] Microsoft Corp. Microsoft TerraServer.
http://www.terraserver.microsoft.com, 1998.

[29] G. Patnaik, K. Kailasnath, and E. Oran. Effect of grav-
ity on flame instabilities in premixed gases. A1AA Journal,
29(12):2141-8, Dec 1991.

[30] V. Sarkar. Partitioning and scheduling parallel programs for
multiprocessors. In Research Monographs in Parallel and
Distributed Computing. Cambridge, MA, 1989.

[31] SRB: The Storage Resource Broker.
http://www.npaci.edu/DICE/SRB/index.html.

[32] N. Talagala, S. Asami, and D. Patterson. The Berkeley-San
Francisco fine arts image database. In the Sixth NASA God-
dard Space Flight Center Conference on Mass Storage Sys-
tems and Technologies, Fifteenth IEEE Symposium on Mass
Storage Systems, 1998.

[33] T. Tanaka. Configurations of the solar wind flow and mag-
netic field around the planets with no magnetic field: cal-
culation by a new MHD. Jounal of Geophysical Research,
98(A10):17251-62,Octl993.

[34] M. Teller and P. Rutherford. Petabyte file systems based on
tertiary storage. In the Sixth NASA Goddard Space Flight
Center Conference on Mass Storage Systems and Technolo-
gies, Fifteenth IEEE Symposium on Mass Storage Systems,
1998.

[35] M. Uysal. Programming Model, Algorithms, and Perfor-
mance Evaluation of Active Disks. PhD thesis, Department
of Computer Science, University of Maryland, College Park,
1999.

[36] M.-Y. Wu and D. D. Gajski. Hypertool: A programming
aid for multicomputers. In Proceedings of the 1989 Inter-
national Conference on Parallel Processing, pages 11-15 -
11-18. Pennsylvania State University Press, August 1989.

[37] T. Yang and A. Gerasoulis. PYRROS: static task scheduling
and code generation. In Proceedings of the 1992 Interna-
tional Conference on Supercomputing, July 1992.

Joel Saltz is a professor of Computer Science at the Univer-
sity of Maryland College Park and a professor of Pathology
at the Johns Hopkins School of Medicine. His research in-
terests are in the development of systems sofware, databases
and compilers for the management, processing and explo-

ration of very large datasets.

Michael D. Beynon is a Ph.D. candidate in the Department
of Computer Science at the University of Maryland, Col-
lege Park. His research interests include resource intensive
application performance and high performance parallel and

distributed systems.

Tahsin Kurc is a postdoctoral research associate in the De-
partment of Computer Science at the University of Mary-
land College Park. His research interests include algo-
rithms and systems software for high-performance and data-

intensive computing.

Alan Sussman is a Research Scientist in the Computer Sci-
ence Department at the University of Maryland College
Park and a visiting scientist in Pathology at the Johns Hop-
kins School of Medicine. His research interests include high
performance runtime and compilation systems for data- and

compute-intensive applications.

130

SESSION 2-B
MODELING AND METRICS

Chair: M. Baker, University of Portsmouth, UK

Toward Quality of Security Service in a
Resource Management System Benefit Function

Cynthia E. Irvine
Department of Computer Science

Naval Postgraduate School
Monterey, CA 93943 USA

email: irvine@cs.nps.navy.mil

Timothy E. Levin
Anteon Corporation
2600 Garden Road

Monterey, CA 93940 USA
email: levin@cs.nps.navy.mil

Abstract
Enforcement of a high-level statement of security policy
may be difficult to discern when mapped through func-
tional requirements to a myriad of possible security ser-
vices and mechanisms in a highly complex, networked
environment. A method for articulating network security
functional requirements, and their fulfillment, is presented.
Using this method, security in a quality of service frame-
work is discussed in terms of "variant" security mecha-
nisms and dynamic security policies. For illustration, it is
shown how this method can be used to represent Quality of
Security Service (QoSS) in a network scheduler benefit
function .

1 Introduction

Several efforts are underway to develop middleware
systems that will logically combine network resources to
construct a "virtual" computational system [4] [7] [8]
[15] . These geographically distributed, heterogeneous
resources are expected to be used to support a heteroge-
neous mix of applications. Collections of tasks with dispar-
ate computation requirements will need to be efficiently
scheduled for remote execution. Large parallelized compu-
tations found in fields such as astrophysics [14] and meteo-
rology will require allocation of perhaps hundreds of
individual processes to underlying systems. Multimedia
applications, such as voice and video will impose require-
ments for low jitter, minimal packet losses, and isochronal
data rates. Adaptive applications will need information
about their environment so they can adjust to changing
conditions.

User acceptance of these virtual systems, for either
commercial or military applications, will depend, in part,
upon the security, adaptability, and user-responsiveness

1. This work was supported by the DARPA/ITO Quorum program.

provided. Several of the projects engaged in building the
middleware to create these networks are pursuing the inte-
gration of security [6] [10] [23] and quality of service [1]
[17] into these systems. The need for virtual networked
systems to both adapt to varying security conditions, and
offer the user a range of security choices is apparent.

In the network computing context, users or user pro-
grams may request the execution of "jobs," which are
scheduled by an underlying control program to execute on
local or remote computing resources. The execution of the
job may access or consume a variety of network resources,
such as: local I/O device bandwidth, internetwork band-
width; local and remote CPU time; local, intermediate
(e.g., routing buffers) and remote storage. The resource
usages may be temporary or persistent. As there are multi-
ple users accessing the same resources, there are naturally
various allotment, contention, and security issues regarding
use of those resources.

The body of rules for resolving network security issues
is called the network security policy, whereas the body of
rules for resolving network contention and allotment com-
prise a network management policy (which is sometimes
taken to include the network security policy). These poli-
cies consist of broad policy jurisdictions, such as schedul-
ing, routing, access control, auditing, and authentication.
Furthermore, these jurisdictions can be decomposed, typi-
cally, into functional requirements, such as, "users from
network domain A must not access site B," and "user C
must receive a certain quality of service." The network
management and security policies, as mapped through the
functional requirements, may be manifested in mecha-
nisms throughout the network, including: host computer
operating systems, network managers, traffic shapers,
schedulers, routers, switches and combinations thereof. As
these mechanisms are distributed and are often obscurely
related, there has been some interest in the ability to
express and quantify the level of support for security policy
and Quality of Security Service (QoSS: managing security
and security requests as a responsive "service" for which

0-7695-0556-2/00 $10.00 © 2000 IEEE
133

quantitative measurement of service "efficiency" is possi-
ble) provided in networked systems.

The purpose of this paper is to present the system devel-
oped for the MSHN resource management system [8] for
describing network security policy functional require-
ments, to show how QoSS parameters and mechanisms can
be represented in such a system, and to provide an example
of the use of this system. The remainder of this paper is
organized as follows. Section 2 discusses a "security vec-
tor" for quantifying functional support of network security
policy. Section 3 describes how the security vector can be
used for expressing the effects of QoSS in a network-
scheduling benefit function; and a conclusion follows in
Section 4.

2 Network Security Vector

A network security policy can be viewed as an n-dimen-
sional space of functional security requirements. We repre-
sent this multidimensional space with a vector (S) of
security components. Each component (S.c) specifies a
boolean functional requirement, whereby the instantiation
of a network job either meets (possibly trivially) or does
not meet each of the requirements. By convention, a secu-
rity vector's components are ordered, so they can be refer-
enced ordinally (S.3) or symbolically (S.c). A component
may indicate positive requirements (e.g., communications
via node n must use encryption) as well as negative con-
straints (e.g., users from subnet s may not use node n).
Components can also be hierarchically grouped. [22]
Requirements for a given security service may be repre-
sented by one or more components (indicating a service
sub-vector), and a security service may utilize functions
and requirements of other services and their components.

Some jobs can produce output in different formats,
where a given format (e.g., high resolution video) might be
more resource consumptive than another format (e.g., low
resolution video). Formats may have differing security
requirements, even within the same job. For example, a
video-stream format may require less packet authentication
[19] , percentage-wise, than a series of fixed images based
on the same data. A "quality of service" scheduling mecha-
nism might choose one format for a job over another,
depending on varying network conditions (e.g., traffic con-
gestion). Further, adaptive applications may select formats
depending upon changing conditions. For example, IPSec,
security association (SA) processing using ISAKMP under
IKE can permit complex security choices through an SA
payload; and the payload recipient may be given transform
choices regarding both Authentication Header and Encap-
sulating Security Protocol [13] .

2.1 Notation

The set of all jobs is represented by J. The set of all for-
mats is represented by /. The notation Stj identifies a vector
containing the portions of S that are applicable to job j in
format i, and Sjj.c identifies a given component (c) of Sy.
The relation of S to Sy is clarified further, below. The fol-
lowing are some informal examples of security-vector
components:

• S. 1: user access to resource is equal to read/write; based
on table t

• S.2: % of packets authenticated >= 50, <= 90; inc 10

• S.3: clearance (user) = secrecy/integrity (resource)

• S.4: length of confidentiality encryption key >= 64, <=
256; inc 64

• S.5: authentication header transform in {HMAC-MD5,
HMAC-SHA}

• S.6: packets from domain A to domain B must be
encrypted

• S.7: packets from domain A cannot be sent through
domain C

Here, "inc 10" indicates that the range from 50 through
90 is quantized into increments of 10, viz: 50, 60, 70, 80,
90. Later, we will need to indicate the number of quantized
steps in the component; to do this, one more notational ele-
ment is introduced, [S.c]. In the above examples, [5.7] = 1,
and [S.2] = 5.

2.2 Variant Security Components

When [S.c] > 1, the underlying control program has a
range within which it may allow the job to execute with
respect to the policy requirement. We refer to this type of
policy, and component, as "variant." Security-variant poli-
cies may be used within a resource management context,
for example, to effect adaptation to varying network condi-
tions. [18] Also, if the policy mechanism is variant, the
control program may offer QoSS choices to the users to
indicate their preferences with respect to a given job or
jobs. Without variant mechanisms, neither security adapt-
ability by the underlying control program nor QoSS are
possible, since fixed policy mechanisms do not allow for
changes to security within a fixed job/resource environ-
ment. While the expression S.c may contain a compound
boolean statement (see Section 2.3), by convention it may
contain only one variant clause.

134

2.3 Component Structure

For use in the examples in this discussion, a component
has the following composition (see Table 1 for details):

• component ::= boolean expression, variant-range-spec-
ifier ; modifying-clause

• boolean _expression ::= boolean_statement [(or I and)
boolean_statement] *

• boolean_statement ::= LHS boolean-operator RHS

Note that it is not the focus here to elaborate on a policy
representation language. See other efforts and works in
progress [2] [3] [5] [16].

A given policy component has a value which is a bool-
ean expression. This component may also have an instanti-
ated value with respect to a specific job and format, which
is either "true" or "false." A component has a left hand side
(LHS), which is the item that is being tested; of course the
LHS has a value as well as an instantiated value. A compo-
nent also has a right hand side (RHS), which is what the
LHS is tested against, as well as zero or more modifying
clauses. Similarly to the LHS, the RHS may have a value
(or values) which is dependent on the instantiation of the
component.

2.4 Dynamic Security Policies

With a dynamic security policy, the value of a vector's
components may depend on the network "mode" (e.g., nor-

mal, impacted, emergency, etc.), where M is the set of all
modes. There is, conceptually, a separate vector for each
operational mode, represented as: Smode. Access to a pre-
defined set of alternate security policies allows their func-
tional requirements and implementation mechanisms to be
examined with respect to the overall policy prior to being
fielded, rather than depending on ad hoc methods, for
example, during an emergency.

Initially, every component of S has the same value in
each of its modes. Ultimately, components may be
assigned different values, depending on the network mode.
For example:

• Snormal.a: % packets authenticated >= 50, <= 90; inc 10

• SimPacted.a: % of packets authenticated >= 20, <= 50;
inc 10
Note how [S.a] changes from 5 to 4 under the
impacted mode

• Snormal.b: user access to network node = granted; based
on table t

• Simpacted.b: user access to network node = granted;
based on table t, OR UID in set of administrators

• Semersency.b: UID in set of {administrators, policymak-
ers}
Or, for example, policy makers might decide that the

policy should remain in force regardless of network mode:
. snormalc = ^mpacted c = s™^.c: clearance (user)

= classification (resource)

Table 1: Simple Component Elements

Element Name Example S.l Example S.2

Value user access to resource r = RW, based
on table t

% of packets authenticated
>= 50, <= 90; inc 10

Instantiated value false true

Value of LHS user access to resource r % of packets authenticated

Instantiated value of LHS W 70

Boolean operator = >=

Value of RHS RW 50

variant range specifier none applicable <=90

Modifying clause based on table t inc 10

135

If a mode is not specified for a component (e.g., "S.a"),
normal mode is assumed. This will be the case (i.e., the
mode is unspecified) for the remainder of this discussion.

2.5 Refinements to Security Vector

R is the set of resources [r7.. rn}. Ry is the subset of R
utilized in executing job7 in format i.

Tj is the requested completion time of job j.
Security policies may be expressed with respect to prin-

cipals (user, group or role, etc.,), applications, data sets
(both destination and source), formats, etc., as well as
resources in Ry.

The definition of Sy is finally refined as follows: Sy is a
vector that is an order-preserving projection of S, such that
a component c from S is in Sy if and only if the value of c
depends on format i, job ;', or any r in Ry. The number of
components in a security vector 5,-y is [Sjß.

2.6 Summary of Security Vector

S is a general purpose notational system suitable for
expressing arbitrarily complex sets of network security
mechanisms. S can express variant policies, to allow secu-
rity expressions of quality of service requests, and can have
dynamic security elements to accommodate multiple situa-
tion-based policies. In particular, S can represent both (1)
static security requirements that may be implemented in a
system, as well as (2) the results of running a particular job
or set of jobs against such static requirements. The latter
usage will be examined in the next section, to express
QoSS in a resource management system benefit function.

3 Network-Scheduler Benefit Function

As discussed above, various mechanisms exist for man-
aging contention for, and allotment of distributed network
resources. One class of these mechanisms attempts to effi-
ciently schedule the execution of multiple (possibly simul-
taneous) jobs on multiple distributed computers (e.g., the
MSHN project [8] [23] [24] [11] [17]), where each job
requires a determinable subset of the resources. Of interest
is a benefit function for comparing the effectiveness of
such job scheduling mechanisms when they are presented
with real or hypothetical "data sets" of jobs.

Jobs are assigned priorities for use in resolving resource
contention and allocation issues. In some systems, a job's
priority may depend upon the particular operating mode of
the network. [8] Also, the different data formats of a multi-
ple-format job may have different preferences (e.g.,
assigned by a user or "hard wired" as part of the applica-
tion or job-scheduler database), and different levels of

resource usage. [10] [12] A network job scheduler should
receive more credit in the benefit function for scheduling
high priority and high preference jobs, as opposed to low
priority or low preference jobs. That is to say, a scheduler
is intuitively doing a better job if important jobs, as judged
by priority and preference, receive more attention than
unimportant jobs. How much weight the priorities and
preferences are given is a matter of network scheduling
policy.

For illustration, we introduce a simple benefit function,
B, to measure how well a scheduler meets the goals of user
preference and system priorities (see [4] , [12] and [21]
for other approaches). This function averages preference
(p) and priority (P) (use of a priority and preference in
measuring network effectiveness have been introduced for
the MSHN project [10]).

XIW+^)
B= ±

In
Where the characteristic function X is defined for i, j as:

Xij - 1 if format i was successfully delivered to job;
within time Tj, else 0
and at most one format is completed per job:

f
V;e7

\

V; = 1
Jobs and formats are defined as above.

P. is the priority of job;

0<P.<1
The formats for a job are assigned preferences (p) by

the user such that:
0 <= p<= 1
nij is the number of [format, preference} pairs

assigned for job;
Pij is the preference the user has assigned to format;',

job;
the preferences for a job add up to 1:

mi

;= 1

This approach assumes that users will assign preference
values that correspond to resource usage, since we want the
benefit function to indicate a higher value when the sched-
uler succeeds in scheduling "harder" jobs [12].

136

3.1 Adding Security to the Benefit Function

We wish the benefit function to reflect the effectiveness
and restrictions of the security policy. First, we define the
characteristic security function Z, for i and j:

Zjj = 1 if the instantiated value of all components in S,-,-
are true, else 0

The numerator of the benefit function is multiplied by Z,
so that no credit is given for jobs that fail to meet the secu-
rity requirements:

n rrij

II XijZij(Pj + Pij)
B= i=li=l

In

Now, for variant components, we wish to be able to give
less credit to the scheduler for fulfilling less "difficult"
security requirements. One algorithm for expressing this is
for each instantiated component (c) in St: to be assigned a
security completion token (g) where 0 < g < 1. gc will
indicate the completion token corresponding to component
S.c. gc is defined to be the "percentage" of [S.c] met or
exceeded by the instantiated value of the component's
LHS (notated as S.c"):

gc = S.c"/[S.c]

To illustrate the calculation of gj, for component S.l:
S.l: % of packets authenticated >= 50, <= 90; inc 10
[S. 1] = 5 (the number of quanta in S.l), S.l" = 3 (the
job achieves the 3rd quantum (70))
gj = 3/5 = 0.6

For invariant components, g = 1 or g = 0. A token (g)
whose value is 0 represents a job "failing" the component's
security policy. Recall that Z will be 0 when the job/format
fails to meet the requirement of any security component,
meaning that the function returns no benefit value for that
job/format. We introduce a function (A) which averages the
tokens of a job:

Aij = (8l+g2 + -+gn)
/n

where n = [S;ß — the number of components in 5,-.-

and (0<Aij<\)

Averages, such as A, over many different elements can
tend to minimize the difference that is seen between differ-
ent data sets. Therefore, we weight the tokens (g) assigned
to individual security components to give more credence to
components that are "more important" than others, e.g.,
reflecting network management policies. Each gn has a cor-
responding integer weight (w„), wc > 0. So Aij becomes:

Aij = (gl^l + g2w2 + ■■+ gnwnV(wl + w2 + ■■ + ™n)

again (0<A,7<1)

In the final expression of the network benefit function, A
is added to the numerator, providing an average of security,
priority and preference.

n rrij

B= i=li = 1
3n

0 < B < 1 , where 1 indicates the maximum
scheduling effectiveness.

3.2 Applicability

This technique for quantifying the variant security
instantiated by a resource management system is being
used in the MSHN project as a factor in representing the
effectiveness of its resource assignments [10] . In the
MSHN design, the security requirements of network
resources (represented by S) are stored in a Resource
Requirements Database. This database is consulted during
the resource scheduling phase to effectively match jobs to
resources. We expect that this measurement technique
could also be applied to other resource management sys-
tems, such as Condor [15] and Globus [7].

While different schedulers could be compared with
respect to the individual components of B, a summary
function such as B would be useful to automate and nor-
malize the comparison process. Additionally, we expect
that the security component (viz, A) in an operational sys-
tem would be complex enough to evade effective manual
analysis.

4 Discussion and Conclusion

A security vector has been presented for describing
functional requirements of network security policies. It has
been shown that this vector can be used for representing
security with respect to both quality of service and a net-
work scheduler benefit function.

We are involved in ongoing work to organize the secu-
rity vector into a "normal form" with sub-vectors or hierar-
chies corresponding to security policy jurisdictions (such
as: access control, auditing, and authentication) and to
incorporate a costing methodology for security compo-
nents, such as can be provided to a resource management
system [9] . We are working to develop a means of adjust-
ing the preference expression with a notion of the corre-
sponding resource usage [12] . We are considering how to
expand the security benefit function (A) to reflect user qual-

137

ity of security service choices within the range allowed by
variant security components, and to reflect performance
implications of redundant security mechanisms.

The organizational security policy [20] governing the
network may allow individuals or principals representing
them to override rules represented by invariant security
vector components. For example, a military commander
might decide to forgo cryptographic secrecy mechanisms
for a job in an emergency (e.g., to improve network perfor-
mance), even though the system has not been configured
with "dynamic" or "variant" security mechanisms, as
defined herein. From the perspective of the security vector
S and the benefit function, this is a change to or violation
of the computer security policy. It is recommended that this

type of policy change be audited.

References

[1] Aurrecoechea, C, Campbell, A., and Hauw, L. "A Survey of
Quality of Service Architectures", Multimedia Systems
Journal, Special Issue on QoS Architectures, 1996.

[2] Badger, L., Stern, D. F., Sherman, D. L., Walker, K. M., and
Haghighat, S. A., "Practical Domain and Type Enforce-
ment for Unix," Proceedings of 1995 IEEE Symposium on
Security and Privacy, 1995, Oakland, Ca., pp. 66-77

[3] Blaze, M., Feigenbaum, J., and Lacy, J., "Decentralized Trust
Management," in Proceedings of 1996 IEEE Symposium
on Security and Privacy, May 6-8, 1996, Oakland, Ca., pp
164-173

[4] Chatterjee, S., Sabata, B., Sydir, J. "ERDoS QOS Architec-
ture," SRI Technical Report, ITAD-1667-TR-98-075,
Menlo Park, CA, May 1998.

[5] Condell, M., Lynn, C. and Zao, J. "Security Policy Specifica-
tion Language," INTERNET-DRAFT, Network Working
Group, July 1, 1999, ftp://ftp.ietf.org/internet-drafts/draft-
ietf-ipsec-spsl-01.txt, Expires January, 2000

[6] Foster, I, N. T. Karonis, N. T, Kesselman, C, Tuecke, S.
Managing Security in High-Performance Distributed
Computing. Cluster Computing 1(1):95-107,1998.

[7] Foster, I., and Kesselman, C, Globus: A Metacomputing
Infrastructure Toolkit. Intl J. Supercomputer Applications,
11(2):115-128,1997.

[8] Debra Hensgen, Taylor Kidd, David St. John, Matthew C.
Schnaidt, H. J. Siegel, Tracy Braun, Jong-Kook Kim,
Shoukat Ali, Cynthia Irvine, Tim Levin, Viktor Prasanna,
Prashanth Bhat, Richard Freund, and Mike Gherrity, An
Overview of the Management System for Heterogeneous
Networks (MSHN), 8th Workshop on Heterogeneous
Computing Systems (HCW '99), San Juan, Puerto Rico,
Apr. 1999

[9] Irvine, C, and Levin, T, Toward a Taxonomy and Costing
Method for Security Metrics, Annual Computer Security

Applications Conference, Phoenix, AZ, Dec. 1999

[10] Kim, Jong-Kook, Hensgen, D., Kidd, T, Siegel, H.J.,
StJohn, D., Irvine, C, Levin, T, Porter, N.W., Prasanna,
V., and Freund, R., A QoS Performance Measure Frame-
work for Distributed Heterogeneous Networks, Proceed-
ings of the 8th Euromicro Workshop on Parallel and
Distributed Processing, Rhodos, Greece, January 2000.

[11] Lee, C. Kesselman, C, Stepanek, j., Lindell, R., Hwang, S.,
Scott Michel, B., Bannister, J., Foster, I., and Roy, A. The
Quality of Service Component for the Globus Metacom-
puting System. Proc. 1998 International Workshop on
Quality of Service, Napa California, pp. 140-142, May,
1998.

[12] Levin, T, and Irvine C, An Approach to Characterizing
Resource Usage and User Preferences in Benefit Func-
tions, NPS Technical Report, NPS-CS-99-005

[13] Maughan, D., Schertler, M., Schneider, M., and Turner, J.
Internet Security Association and Key Management Proto-
col, RFC 2408, http://info.internet.isi.edu/in-notes/rfc/
files/rfc2408.txt

[14] Ostriker, J., and Norman. M. L., Cosmology of the Early
Universe Viewed Through the New Infrastructure.
C.A.C.M.40(ll):85-94.

[15] Raman, R., Livny, M., Solomon, M., "Matchmaking: Dis-
tributed Resource Management for High Throughput
Computing," Proceedings the 7th IEEE International Sym-
posium on High Performance Distributed Computing, July
28-31,1998, Chicago, 111.

[16] Ryutov, T and Neuman, C. Access Control Framework for
Distributed Applications. INTERNET-DRAFT, CAT
Working Group, USC/Information Sciences Institute,
draft-ietf-cat-acc-cntrl-frmw-OO.txt, August 07, 1998,
Expires February 1999, http://gost.isi.edu/info/
gaa_api.html

[17] Sabata, B., Chatterjee, S., Davis, M., Sydir, J., Lawrence, T.
'Taxonomy for QoS Specifications," Proceedings the
Third International Workshop on Object-Oriented Real-
Time Dependable Systems (WORDS'97), February 5-7,
1997, Newport Beach, Ca., pages 100-107

[18] Schantz, R. E. "Quality of Service," to be published in
"Encyclopedia of Distributed Computing," 1998.

[19] Schneck, P. A., and Schwan, K, "Dynamic Authentication
for High-Performance Networked Applications," Georgia
Institute of Technology College of Computing Technical
Report, GIT-CC-98-08,1998.

[20] Stern, D. F, On the Buzzword "Security Policy", Proceed-
ings of 1991 IEEE Symposium on Security and Privacy,
1991, Oakland, Ca., pages 219-230.

[21] Vendatasubramanian, N. and Nahrstedt, K, "An Integrated
Metric for Video QoS," ACM International Multimedia
Conference, Seattle, Wa., Nov. 1997.

[22] Wang, C. and Wulf, W. A, "A Framework for Security Mea-

138

surement." Proc. National Information Systems Security
Conference, Baltimore, MD, pp. 522-533, Oct. 1997.

[23] Wright, R., Integrity Architecture and Security Services
Demonstration for Management System for Heteroge-
neous Networks, Masters Thesis, Naval Postgraduate
School, Monterey, CA, Sept. 1998.

[24] Wright, R., Shifflett, D., and Irvine, C. E., "Security Archi-
tecture for a Virtual Heterogeneous Machine." Proc. Com-
puter Security Applications Conference, Scottsdale, AZ,
Dec. 1998, pp 167-17

Biographies

Cynthia E. Irvine is Director, Naval Postgraduate
School Center for INFOSEC Studies and Research and an
Assistant Professor of Computer Science at the Naval Post-
graduate School. Dr. Irvine holds a Ph.D. from Case West-
ern Reserve University. She has over thirteen years
experience in computer security research and development.
Her current research centers on architectural issues associ-
ated with applications for high assurance trusted systems,
security architectures combining popular commercial and
specialized multilevel components, and the design of mul-
tilevel secure operating systems.

Timothy E. Levin is a Senior Research Associate at the
Naval Postgraduate School Center for INFOSEC Studies
and Research. He received a BS degree in Computer and
Information Science from the University of California at
Santa Cruz, 1981. He has over fifteen years experience in
computer security research and development. His current
research interests include management and quantification
of heterogeneous network security in the context of
Resource Management Systems, development of costing
frameworks and scheduling algorithms for the dynamic
selection of QoS security mechanisms, and the application
of formal methods to secure computer systems.

139

Optimising Heterogeneous Task Migration in the Gardens Virtual Cluster
Computer

Ashley Beitz, Simon Kent and Paul Roe
School of Computing Science

Queensland University of Technology
Australia

ashley@citr.com.au, s.kent@student.qut.edu.au, p.roe@qut.edu.au

Abstract

Gardens is an integrated programming language and
system designed to support parallel computing across non-
dedicated cluster computers, in particular networks of PCs.
To utilise non-dedicated machines a program must adapt
to those currently available. In Gardens this is realised
by over decomposing a program into more tasks than pro-
cessors, and migrating tasks to implement adaptation. To
be effective this requires efficient task migration. Fur-
thermore, typically non-dedicated clusters contain different
machines hence heterogeneous task migration is required.
Gardens supports efficient task migration between hetero-
geneous machines via meta-information which completely
describes a task's state. By identifying different degrees of
heterogeneity and different kinds of tasks, we are able to
optimise task migration. The main contribution of this pa-
per is to show how heterogeneous task migration may be
optimised.

1. Introduction

In the aggregate, networks of workstations represent a
huge and cheap unused computing resource. By their very
nature such non-dedicated cluster computers are dynamic.
The workstations available to a computation will typically
change during the execution of a program as workstation
users come and go. Thus programs must adapt to the chang-
ing availability of workstations.

The Gardens system [28] is an integrated programming
language and system targeted at non-dedicated cluster com-
puters. The goals of Gardens are: adaptation, safety, ab-
straction and performance (ASAP!). These are realised in
part by a modern object oriented programming language,
Mianjin [27], a derivative of Pascal. The Gardens system
and Mianjin programming language are custom designed

and built; thus we have complete control over both of these.
Gardens utilises task migration to realise adaptation. A

program is over decomposed into more tasks than proces-
sors and tasks are migrated in response to changing work-
station loads. This adaptation is transparent to the program-
mer. Typically, workstation networks comprise a collec-
tion of different machines. Thus efficient use of such ma-
chines entails heterogeneous computing and heterogeneous
task migration, the subject of this paper. Task migration is
integrated into both Gardens and the Mianjin compiler.

Tasks communicate via a virtual shared object space.
Tasks may reference objects belonging to other tasks, to
communicate they invoke methods on such remote objects.
This is the only way tasks may communicate, tasks cannot
otherwise share data.

The main contribution of this paper is to show how effi-
cient heterogeneous task migration may be achieved, to re-
alise adaptive utilisation of workstation clusters; however, it
should be noted that there are other uses for task migration
e.g. to implement automatic fault tolerance through migrat-
ing tasks to disk.

The next section summarises our techniques for achiev-
ing heterogeneous task migration. Section 3 presents a more
detailed look at the implementation. Some performance fig-
ures are reported in Section 4. Section 5 presents related
work, and the final section discusses the work and future
directions.

2. Task migration

To implement task migration Gardens uses meta-
information which fully describes a task's state. This meta-
information is generated by the Gardens Mianjin compiler.
The meta-information is similar to that available in Java,
although in addition to heap objects our meta-information
also describes stack frames. A prerequisite for task migra-
tion is a safe language. For example we cannot allow a

140
0-7695-0556-2/00 $10.00 © 2000 IEEE

pointer to masquerade as an integer or vice versa since in-
tegers and pointers may require different translation under
task migration (see Section 3).

Task migration is only supported at predetermined call
points in the program. These migration points may be man-
ually inserted by the programmer or automatically by the
compiler. At these points the compiler generates the addi-
tional code and meta-information to support task migration.
This can support both preemptive and non-preemptive task
migration. Our current compiler does not support optimised
code, although this is currently under investigation. To sim-
plify migration we arrange for data structures to have com-
mon alignments and sizes across all platforms. We can do
this since we have a custom system, language and compiler.
A foreign language interface mechanism supports interop-
erability, but we do not support task migration within such
code.

Meta-information is used to recover a task's state. A
task's state comprises its stack, heap and global variables;
registers and the PC are flushed to the stack. We do not
migrate OS process state, our goal is to handle such state
within wrapper libraries that can be migrated. The stack
and heap are similar in that both can be viewed as collec-
tions of tagged records. The heap contains tagged objects,
the stack contains tagged activation records, all objects in
stack frames are statically known at compile time. When re-
quired, a task's state is transformed into a state suitable for
the target machine. In general this is done lazily since the
task may initially be saved to stable storage hence its des-
tination may be unknown hence the information for trans-
formation will only be available at task load time e.g. stack
and heap base addresses.

To make task migration efficient we use optimisations
based on different kinds of tasks and different degrees of
platform heterogeneity. This is described in the following
sections.

2.1. Different kinds of tasks

There are three kinds of tasks in Gardens which have
different migration requirements. These different kinds of
tasks can be distinguished by the runtime system.

Seed tasks are newly created tasks which have never been
run. They comprise just the initial data passed in a
create task operation, they have no stack nor heap and
hence are trivial to migrate. Seed tasks are stored in a
separate structure from other tasks until they are run,
and hence are easily distinguished from other tasks.

Stackless tasks have no stack. They correspond to an in-
verted programming style as often used in event driven
programming where control must periodically return

to an event loop. Such tasks require only heap migra-
tion, since their stacks are empty, which can be con-
siderably simpler than full task migration; some early
work on this was reported in [29]. A stackless task
may also be a task that has completed its main thread
of execution but has "actions" to perform or objects in
its heap which are referenced by other tasks.

Full tasks have stacks and heaps both of which must be mi-
grated. These are the most expensive tasks to migrate.

2.2. Degrees of heterogeneity

There is a spectrum of degrees of system heterogeneity:

0. Same architecture, statically linked code, same heap
and stack base addresses: a completely homogeneous
platform. For such platforms no state transformation is
required and migration corresponds to a straight mem-
ory copy from one machine to another. However in
practice few modern platforms are this simple.

1. Same platform, but different base addresses (e.g. due
to dynamic linking and loading): since all structures
have common sizes and alignments, and all stack
frames have the same representation, task migration
only requires stack and heap pointers to be adjusted
to deal with new stack and heap base offsets. This re-
quires meta-information to locate all pointers in stack
frames and heap objects.

2. Different architecture, but same word size: for heaps
this requires stack and heap pointer adjustments as
described above, endian adjustments, code and data
pointer translations and type representation adjust-
ments (e.g. for floating point types). In the case of
migrating a stack, the stack must be rebuilt with dif-
ferent activation record conventions, e.g. stack mark
information, register window flushing for SPARC etc.
This can be very expensive to perform.

3. Different architecture and different word size: at
present we do not address this level of heterogeneity.
Note, some 64 bit processors are capable of running 32
bit code which may prove useful.

3. Implementation

3.1. Meta-information

All objects (records and arrays) in Gardens have an iden-
tifying "tag" located in the two words before the logical start
of the object in memory. One word is used for garbage col-
lection purposes while the second points to the object's type
descriptor; these type descriptors serve two purposes.

141

Firstly, a type descriptor holds typical runtime informa-
tion such as dimension and element size for arrays and
method, ancestor and pointer tables for records to enable
construction and polymorphism. Secondly, the type de-
scriptors contain links to complete meta-information gen-
erated by the Gardens compiler to aid task migration. This
meta-information maps out the size, location and type of
fields or elements of the type in question. This allows the
traversal of all objects at runtime. Furthermore, the meta-
information contains a link to a descriptor for the type's
module as well as a per-module index that is assigned to the
type at compile time. From this, a unique module ID/per-
module index pair may be obtained to identify the type
across heterogeneous platforms.

In addition to the meta-information for types, meta-
information for procedures is generated as well. Procedural
meta-information maps out procedure entry addresses, lo-
cal variable and parameter information (number, type and
frame offset), possible frame offset location of saved dis-
play values, a module descriptor link and per-module index
similar to those described for types. This information al-
lows for traversal of a stack frame, given the location of a
frame via a frame pointer and for unique identification for
procedures, in function pointers or as instances in the stack,
across platforms.

Finally, the module descriptor contains compilation and
time stamps as well as three tables mapping per-module in-
dexes to concrete addresses. The first two tables correspond
to the type and procedure indexes while the third table maps
potential migration points.

3.2. Heap migration

Each heap segment in Gardens comprises of two logi-
cal parts: the contiguous memory in which objects are allo-
cated and the runtime information for managing that mem-
ory. Having designed and implemented the Gardens com-
piler and runtime system has allowed us to ensure that:

1. Objects of identical type are aligned identically across
platforms.

2. Heap segment structure is identical across platforms.

3. Heap runtime information is logically identical across
platforms.

This makes heap migration relatively simple; all that is
required is a few changes to the heap segment's representa-
tion. Furthermore, since all hosts in Gardens environment
have complete information as to the characteristics (archi-
tecture and operating system) of the other hosts, these rep-
resentation changes may be made directly by the source or
destination host; packing to and unpacking from an inter-
mediate representation is avoided.

Representation changes fall into three categories:

1. Pointer rebasing

2. Endian adjustment

3. Code/Data segment address translation

The current platforms targeted by Gardens have similar
representation for types (floating points, booleans, etc.) so
type adjustments are currently not necessary.

Pointer rebasing is necessary when migrating between
hosts with a degree of heterogeneity of (1) and (2) and in-
volves traversal of all pointer fields within objects in the
heap segment and adjusting any non-null pointers by an ap-
propriate heap offset. Pointer rebasing is performed by the
source host and, in the case of objects in the heap, requires
only the pointer table found in the type descriptor.

Endian adjustment requires a full traversal of all objects
in the heap segment and performing byte swapping on fields
of necessary size. This is only required in degree (2) cases
in which machines are of different endian. Endian swapping
is generally performed by the source host.

Code/data segment address translation is also only re-
quired in degree (2) cases. Since the layout of code and
data segments will not be identical across heterogeneous
platforms, pointers into the code or data segments cannot
be simply "rebased". In Gardens, however, the only can-
didates for code and data segment pointers in the heap are
procedure variables and type descriptor addresses present in
each object tag. These are replaced with procedure and type
module ID/per-module index identifiers on the source side
and replaced with the host specific address on the destina-
tion side.

Heap migration in Gardens thus breaks down into per-
forming the above transformations to the objects in the heap
segment and to the runtime information describing the heap
itself.

The objects in the heap segment may be located by scan-
ning a heap object bitmap that is maintained by the run-
time system for memory management and garbage collec-
tion. The type and meta-information of each object is then
obtained by inspecting the object's tag allowing the object
to be traversed and transformed as necessary.

The runtime information for the heap consists of the por-
tion of the heap object bitmap relevant to the heap segment,
a heap descriptor located at the start of each heap segment
and the list of free blocks for the heap. The heap object
bitmap contains no pointers and only needs endian adjust-
ments; however, the heap object bitmap remains in use on
the source host after heap migration has occurred (to mark
objects and heap segments as remote). Therefore, endian
adjustments on the heap object bitmap are performed by the
destination host if necessary. The heap descriptor and free

142

block list are indistinguishable from other objects and are
transformed correspondingly.

3.3. Stack migration

Stack segments in Gardens comprise of a runtime stack
and a task descriptor. The task descriptor stores stack and
context information along with some programmer definable
task property objects. As with heap descriptors, transforma-
tion of the task descriptor is straightforward. The method of
runtime stack transformation, however, depends upon the
degree of heterogeneity between hosts.

Degree (0), of course, requires no modifications to the
stack.

Degree (1) requires only pointer rebasing as in degree
(1) heap migration. Candidates for pointer rebasing in stack
migration are no longer just pointer fields in structures but
pointers in local variables and parameters, variable parame-
ters, display pointers saved in stack frames and frame point-
ers themselves. The stack is traversed using the instruction
pointer (or return address) for each stack frame to obtain the
corresponding procedure's meta-information.

For degree (2) all three representation transformations
described above need be performed. In addition to this, the
layout of each of the stack frames needs to be restructured
to match that of the destination host. To achieve this, the
source host traverses the stack and deconstructs the stack
into an abstract stack while performing the representation
transformations. A list of all variable parameters that point
into the stack and the address into the abstract stack at which
they point is also constructed by the host.

The abstract stack is similar to the concrete stack in some
ways. Each concrete frame has a corresponding abstract
frame and each abstract frame has a parameter section, stack
mark, local variable section and workspace (for value open
arrays and value reference records). However, the abstract
stack format does differ from concrete stacks in the follow-
ing manners:

• Abstract frames are in opposite order to those in the
concrete stack with the abstract frame pointers refer-
ring to the following frame rather than the proceeding
frame.

• Along with an abstract frame pointer, each abstract
stack mark contains module ID/per-module index
identifier for the return address and a similar identifier
for the procedure relevant procedure.

• Parameters and local variables are stored in order from
the abstract stack mark as frame offsets of parameters
and local variables differ across platforms.

Once the destination host has received the abstract stack,
it rebuilds a stack specific to its architecture using a novel

approach. For each stack frame, the parameters are first
loaded from the abstract stack (into the concrete stack or
the parameter registers). A context switch is performed to
the new stack and a dummy procedure prologue is called for
the appropriate procedure. This allocates appropriate stack
space, updates the display vector and copies any value ar-
rays into the appropriate position in the workspace. Context
is switched back to the original stack and the correct re-
turn address is inserted into the newly allocated stack frame.
Local variables are copied to their respective positions and
code/data segment translations are performed. Finally, the
variable parameter list is checked to see if memory pointed
to by a variable parameter down the stack has been copied
to the concrete stack. If so, the variable parameter value
is adjusted to reflect the change. The stack frame is then
complete.

Finally, the task descriptor requires some minor changes
to reflect the state of the stack on the new host.

4. Performance

The measurements below were taken on: 233 MHz Pen-
tium II, 96 Mb RAM running RedHat Linux v5.2 and Sun
4 Sparc, 32 Mb RAM running Solaris 2.51. For degrees of
heterogeneity (0) and (1), figures are specified for machines
running Linux as specified above. For degree (2), (LS) in-
dicates migration from Linux to Solaris and (SL) indicates
migration from Solaris to Linux.

The measurements are for a recursive sum program of
approximately 40 stack frames and linked list program
with 1000 objects in the heap. Each set of measurements
presents the time taken for task transformation only (that is,
no communication times are included) with the measure-
ments split between the time taken by the source and desti-
nation hosts to perform the transformations necessary.

Seed Task Migi ■ation

Degree
Source

(timers)
Dest.

(time [is)
0
1

2(LS)
2(SL)

6
8
9

11

4
4
8
4

Stackless Task Migration (Linked List)
Heap Stack

Source Dest. Source Dest.
Degree (time ms) (time ms) (time ms) (time ms)

0 0 0 0 0
1 0.64 0 0.03 0

2(LS) 4.49 27.65 0.64 0.95
2(SL) 57.20 2.46 7.83 0.05

143

Full Task Migration (Linked List)

Degree
0
1

2(LS)
2(SL)

Heap Stack
Source Dest. Source Dest.

(time ms) (time ms) (time ms) (time ms)
0 0 0 0

0.65 0 1.06 0
4.73 30.08 1.21 7.37

59.38 2.47 12.47 0.83

Full Task Migration (Recursive Sum)

Degree
0
1

2(LS)
2(SL)

Heap
Source Dest.

(time ms) (time ms)

Stack
Source Dest.

(time ms) (time ms)

0
0.03
0.03
0.09

0
0

0.82
0.09

0
1.14
1.46

13.95

0
0

10.70
0.98

The above figures clearly show the advantages of iden-
tifying and targeting both the different degrees of hetero-
geneity and different classes of tasks to migrate.

In the context of task creation and initial load balancing,
it is clear that seed task migration holds the greatest advan-
tage for all degrees of heterogeneity, especially since seed
tasks incur the smallest communication costs due to their
size.

Similarly, the speed up for degree (1) migration from de-
gree (2) migration (twice as fast for stack migration, ten
times as fast for heap migration) is considerable. The heap
migration figures reflect the use of pointer tables for pointer
rebasing for degree (1) migration. This suggests a similar
pointer map should be implemented for stack frames.

Of note are the times for the stack and task descriptor
transformations for stackless and full task migration. The
full task recursive sum stack transformation with 40 stack
frames takes is only 10% to 20% slower than the full task
linked list stack transformation. We believe this is due
to inefficiencies in our current method of loading meta-
information. This is further illustrated by the stack transfor-
mation (really task descriptor transformation) figure for the
degree (2) stackless task migration; full meta-information
information for the programmer defined task properties ob-
ject must be loaded whereas only pointer tables are required
for degree (1) migration.

5. Related Work

There are three main approaches to task migration across
heterogeneous platforms [32]. The first approach assumes
that all tasks will execute on a virtual machine that is avail-
able on all hosts in the system, for example the Java Virtual

Machine. The second and third approaches both assume
that tasks will execute on their host's native machine. To do
this they need to generate meta-information on the execut-
ing task, so that they can translate the task's execution state
from one native machine's format to another. The second
approach relies on code that collects this meta-information
to be included in the task's source code. This can either ei-
ther be done manually by the programmer or automatically
by a pre-processor. The third approach relies on the com-
piler and runtime system to generate the meta-information.

The first approach is much simpler than the other two,
as the use of a common execution environment reduces
the problem to one that can be solved via a homoge-
neous migration solution. This approach was initially used
by Chameleon [12]. Today it is widely used by mo-
bile agent systems, such as Agent TCL [16], Aglets [18],
ARA [22], Concordia [11], Extended Facile [23], Liquid
Software [13], Mole [2], Obliq [5], Odyssey [15], Omni-
ware [20], Sumatra [1], TACOMA [39] and Telescript [40].
Despite this approach's simplicity it suffers performance
penalties from the use of a virtual machine. Some solu-
tions [20, 13] alleviate this problem by using "on-the-fly
compilation" to translate parts of the task's code to native
code. However, the native code produced is still 25 percent
slower than regular native code [1], as they must include
safeguards to protect the execution environment from being
corrupted by the native code.

The second and third approaches provide better perfor-
mance results than the first approach, as they allow the tasks
to execute directly on the native machine. The second ap-
proach is more portable than the third approach, as it does
not require a specialised compiler. However, the third ap-
proach delivers better runtime performance as it does not
need to generate all of its meta-information at runtime.
In addition to this, the third approach's migration mech-
anism is more transparent to the programmer. Examples
of the second approach include: HMF [21], Process In-
trospection [14], HiCaM [25], Ythreads [30], Arachne [8],
DOME [31], PMT [32] and MpPVM [6]. Examples of
the third approach include: Emerald [35], Tui [34], Shub,
Dubach and Rutherford's work [9, 10], Hollander and Sil-
berman's work [17], Distributed C [24] and porch [36]. Our
work is based on the third approach, as it provides the most
optimal results.

With heterogeneous task migration, most research has
focused on how to reconstruct the task's state [38, 3, 7, 30],
the location of migration points [4, 35] and analysing the
safety aspects of this approach [34, 19]. Very little research
has been done on how to optimise migration based on dif-
ferent kinds of tasks and different degrees of heterogeneity.
Most of the work in this area has been done by the Univer-
sity of Colorado at Colorado Springs [10, 33, 9]. The most
significant contribution originating from their work is the

144

idea of ensuring that compilers generate code with the same
data alignment rules. Our work builds on what they have
done by providing optimised translation based on the task
type and the degree of heterogeneity between platforms.

6. Discussion and Further Work

A basic heterogeneous task migration system has been
implemented and initial results are promising. We are cur-
rently working on a revised system using local compiler
back-end technology which supports the migration of tasks
utilising optimised code. To make the migration process
even more efficient we are looking at optimising our meta-
information. Current performance figures suggest that our
current meta-information and corresponding traversal tech-
niques may be over complicated. To this end, a generalised
version of the pointer map scheme, using bitmaps to plot
required actions for stack frames and objects is being con-
sidered. Other methods of optimising meta-information in-
clude compression and lazy loading.

A general problem is how to deal with non-migrable re-
sources such as I/O and file handles, our current solution
is to retain remote references to them [26]. An interesting
alternative, is to migrate tasks to the JVM where no tar-
get mapping is defined using e.g. Java Platform Debugger
Architecture [37]. Task migration may also be generalised
to encompass dynamic software reconfiguration. We have
yet to study degree 3 heterogeneity where e.g. word sizes
and alignments of data may differ between platforms; this
is particularly challenging.

Acknowledgements

We would like to thank S-Y Chan for his help writ-
ing the Gardens meta-information facility and other Gar-
deners for their useful discussions concerning task migra-
tion. This study has been supported by an Australian
Research Council grant and the Gardens research project
(www.plasrc.qut.edu.au/Gardens) of the Programming Lan-
guages and Systems Research Centre at QUT.

References

[1] A. Acharya, M. Ranganathan, and J. Saltz. Sumatra: A Lan-
guage for Resource-aware Mobile Programs. Number 1222
in LNCS, Springer-Verlag, 1997,pages 111-130.

[2] M. Strasser, J. Baumann and F. Hohl. Mole - a Java based
agent system. In Proceedings of the ECOOP'96 Workshop
on Mobile Object Systems, 1996.

[3] D. G. V. Bank. Gnu c language system support for dynamic
native code heterogeneous process-originated migration in
the v system. Master's thesis, University of Colorado at Col-
orado Springs, 1990.

[4] D. V. Bank, C. M. Shub, and R. W. Sebesta. A unified
model of pointwise equivalence of procedural computations.
ACM Transactions on Programming Languages and Sys-
tems, 14(6): 1842-1874, Nov. 1994.

[5] L. Cardelli. A Language with Distributed Scope. Computing
Systems, 8(l):27-59, Winter 1995.

[6] K. Chanchio and X. Sun. MpPVM: A Software System
for Non-Dedicated Heterogeneous Computing. In Proceed-
ings of the International Conference on Parallel Processing,
1996.

[7] K. Chanchio and X. H. Sun. Memory space representation
for heterogeneous network process migration. In 12th Inter-
national Parallel Processing Symposium, Mar. 1998.

[8] B. Dimitrov and V. Rego. Arachne: A Portable Threads
System Supporting Migrant Threads on Heterogeneous Net-
work Farms. In Proceedings of IEEE Parallel and Dis-
tributed Systems, volume 9,1998.

[9] F. B. Dubach. Code-Point and Data Mapping in Dynamic
Native-Code Cross-Architectural Process Migration. Mas-
ter's thesis, University of Colorado at Colorado Springs,
1990.

[10] F. B. Dubach, R. M. Rutherford, and C. M. Shub. Process-
originated migration in a heterogeneous environment. In
ACM Seventeenth Annual Computer Science Conference,
pages 98-102. ACM Press, 1989.

[11] D. Wong, N. Paciorek, T. Walsh, J. DiCelie, M. Young and
B. Peet. Concordia: An infrastructure for collaborating mo-
bile agents. Number 1219 in LNCS, Spring-Verlag, 1997,
pages 86-97.

[12] G. Attardi et al. Techniques for dynamic software migration.
In Proc, 5th Annual ESPRIT Conference, pages 475-491,
Brussels, Belgium, Nov. 1988. North-Holland.

[13] J. Hartman et al. Liquid software: A new paradigm for
networked systems. Technical Report TR96-11, Dept. of
Comp. Sei., University of Arizona, 1996.

[14] A. Ferrari. Process State Capture and Recover in High-
Performance Heterogeneous Distributed Computing Sys-
tems. PhD thesis, School of Engineering and Applied Sci-
ence, University of Virginia, 1998.

[15] General Magic Inc. Introduction to the Odyssey API, 20
North Mary Avenue, CA 94086

[16] R. Gray. Agent TCL: A Flexible and secure mobile-agent
system. PhD thesis, Dartmouth College, Hanover, New
Hampshire, 1997.

[17] Y Hollander and G M. Silberman. A Mechanism for the
Migration of Tasks in Heterogeneous Distributed Process-
ing Systems, Parallel Processing and Applications, Elsevier
Science Publishers B.V. (North-Holland), 1988, pages 93-
98.

[18] IBM. Aglets software development kit. Technical report,
IBM Japan, 1998. http://www.trl.ibm.co.jp/aglets/.

[19] G. Q. M. Jr and J. M. Smith. Process migration: Effects on
scientific computation. ACM SIGPLAN Notices, 23(3): 102-
106, Mar. 1988.

[20] S. Lucco, O. Sharp, and R. Wahbe. Omniware: A Universal
Substrate for Web Programming. In Proceedings of the 4th
International World Wide Web Conference: The Web Revo-
lution, 1995.

145

[21] M. V. M Bishop and L. Wisniewski. Process migration for
heterogeneous distributed systems. Technical Report PCS-
TR95-264, Dept of Comp Sei, Dartmouth College, Janover,
New Hampshire, Aug. 1995.

[22] H. Peine and T. Stolpmann. The Architecture of the ARA
platform for Mobile Agents. Number 1219 in LNCS,
Springer-Verlag, 1997.

[23] F. Knabe. Language Support for Mobile Agents. PhD thesis,
School of Computer Science, Carnegie Mellon University,
1995.

[24] C. Pleier. Prozessverlagerung in heterogenen Rechnernetzen
basierend auf einer speziellen Ubersetzungstechnik. PhD
thesis, Technische Universität München, Institut fur Infor-
matik, 1996.

[25] T. Redhead. A High-level Checkpointing and Migration
Scheme for Heterogeneous Distributed Systems. PhD the-
sis, Dept of Comp Sei, University of Queensland, Australia,
1996.

[26] P. Roe and S.-Y. Chan. I/O in the Gardens Non-Dedicated
Cluster Computing Environment. In to appear in: First
International Workshop on Cluster Computing, Melbourne,
Australia, Dec. 1999. IEEE Press.

[27] P. Roe and C. Szyperski. Mianjin is Gardens Point:
A parallel language taming asynchronous communication.
In Fourth Australasian Conference on Parallel and Real-
Time Systems (PART'97), Newcastle, Australia, Sept. 1997.
Springer.

[28] P. Roe and C. Szyperski. The gardens approach to adaptive
parallel computing. In R. Buyya, editor, Cluster Computing,
volume 1, pages 740-753. Prentice Hall, 1999.

[29] P. Roe and C. Szyperski. Transplanting in gardens: Efficient
heterogeneous task migration for fully inverted software ar-
chitectures. In Proc, Australasian Computer Architecture
Conference (ACAC'99), Auckland, New Zealand, Transac-
tions of the CSA. Springer, 1999.

[30] J. Sang, G. W. Peters, and V. Rego. Thread Migration on
Heterogeneous Systems via Compile-Time Transformation.
In Proceedings of the International Conference on Paral-
lel and Distributed Systems (ICPADS'94), pages 634-639,
Hsinchu, Taiwan, IEEE Computer Society Press, Dec. 1994.

[31] E. Seligman and A. Beguelin. DOME: Distributed Object
Migration Environment. Technical Report CMU-CS-94-
153, Carnegie-Mellon University, 1994.

[32] C. Shao and B. Schnabel. A Task Migration System for Par-
allel Scientific Computations in Heterogeneous NOW Envi-
ronments. In Proceedings of the Ninth SIAM Conference on
Parallel Processing for Scientific Computing, San Antonio,
TX, 1999.

[33] C. M. Shub. Native code process-oriented migration in a
heterogeneous environment. In Proc, 18th Annual Computer
Science Conf, pages 266-270, Washington, DC, ACM Press,
Feb. 1990.

[34] P. Smith. The Possibilities and Limitations of Heteroge-
neous Process Migration. PhD thesis, University of British
Columbia, 1997.

[35] B. Steensgaard and E. Jul. Object and Native Code Thread
Mobility Among Heterogeneous Computers. Operating Sys-
tems Review, 29(5):69-78, Dec. 1995.

[36] W. Strumpen. Compiler Technology for Portable
Checkpoints, submitted for publication (http://theory.lcs.
mit.edu/ strumpen/porch.ps.gz), 1998.

[37] Sun Microsystems. Java platform debugger architecture.
http://java.sun.com/products/jpda/.

[38] M. Theimer and B. Hayes. Heterogeneous Process Migra-
tion by Recompilation. In Proc, 11th Ml Conf on Dis-
tributed Computing Systems, pages 18-25. IEEE Comp Soc
Press, 1991.

[39] D. Johansen, R. van Renesse and F. Schneider. An Introduc-
tion to the TACOMA Distributed System, Version 1.0. Tech-
nical Report 95-23, University of Tromso, Norway, June
1995.

[40] J. White. Mobile agents, White Paper, General Magic Inc.,
1996,
http://www.genmagic.com/agents/Whitepaper/whitepaper.html.

Biographies

Ashley Beitz is a software architect at CiTR
(http://www.citr.com.au) and is a part time PhD stu-
dent at Queensland University of Technology (QUT).
Simon Kent is a PhD student also at QUT; he was formerly
a research assistant working on heterogeneous task migra-
tion. Paul Roe is a senior lecturer at QUT interested in
cluster computing, programming languages and compo-
nent technology. For further information concerning our
research see: www.plasrc.qut.edu.au.

146

Linear Algebra Algorithms in a Heterogeneous Cluster of Personal Computers

J. Barbosa* J. Tavarestand A.J. Padilha
FEUP-INEB

Grupo de Arquitecturas e Sistemas
Praca Coronel Pacheco, 1,4050 Porto (P)

{jbarbosa,tavares,padilha}@fe.up.pt

Abstract

Cluster computing is presently a major research area,
mostly for high performance computing. The work herein
presented refers to the application of cluster computing in a
small scale where a virtual machine is composed by a small
number of off-the-shelf personal computers connected by a
low cost network. A methodology to determine the opti-
mal number of processors to be used in a computation is
presented as well as the speedup results obtained for the
matrix-matrix multiplication and for the symmetric QR al-
gorithm for eigenvector computation which are significant
building blocks for applications in the target image process-
ing and analysis domain. The load balancing strategy is
also addressed.

1. Introduction

Several personal computer or workstation based clus-
ter systems have been developed, from commercial off-the-
shelf processors to high performance ones such as SMP ar-
chitectures [3] and using high performance networks like
Myrinet [2, 19]. Most of the work is devoted to the high
performance computing aiming to achieve the performance
of a specific supercomputer at a lower cost.

Our aim is not to build a cluster of personal computers
for parallel processing but to do parallel processing on al-
ready existing group clusters, where each node is a desktop
computer running the Windows operating system. These
clusters are characterized by having a low cost network,
such as a 10 Mbits/s Ethernet, connecting different types
of processors, of variable processing capacity and amount
of memory, thus forming a heterogeneous parallel virtual
computer. Due to network restrictions, which do not allow
simultaneous communication among several nodes, the ap-

*PhD grant BD/2850/94 from PRAXIS XXI
+PhD grant BD/3243/94 from PRAXIS XXI

plication domain is restricted to one or two dozens of pro-
cessors.

The need for a methodology to determine the ideal num-
ber of processors comes also due to network restrictions,
since as the number of processors increases the network
acts as a communication bottleneck and the time spent in
data exchange can overcome the benefits of more process-
ing power. This is not usually referred in the high perfor-
mance clusters literature, due to the usually huge problem
size, however, in [17] a scheduling policy is studied for mul-
tiprocessor systems based on that some applications cannot
exploit the computational power available, due to hardware
and software constraints. In [4] a performance model for
heterogeneous processing was proposed but not in the con-
text of processor co-operation to solve a task.

Our motivation for a parallel implementation of lin-
ear algebra algorithms comes from image and image se-
quence analysis needs, posed by various application do-
mains, which are becoming increasingly more demanding
in terms of the detail and variety of the expected analytic re-
sults, requiring the use of more sophisticated image and ob-
ject models (e.g., physically-based deformable models), and
of more complex algorithms, while the timing constraints
are kept very stringent.

A promising approach to deal with the above require-
ments consists in developing parallel software to be exe-
cuted, in a distributed manner, by the machines available in
an existing computer network, taking advantage of the well-
known fact that many of the computers are often idle for
long periods of time. Jt is quite common in many organiza-
tions that a standard network connects several general pur-
pose workstations and personal computers, accumulating a
very substantial computing power that, through the use of
appropriate managing software, could be put at the service
of the more computationally demanding applications.

Existing software, such as the Windows Parallel Virtual
Machine (WPVM) [1], allows building parallel virtual com-
puters by integrating in a common processing environment
a set of distinct machines (nodes) connected to the network.

0-7695-0556-2/00 $10.00 © 2000 IEEE
147

Although the parallel virtual computer nodes and the under-
lying communication network were not designed for opti-
mized parallel operation, very significant performance gains
can be attained if the parallel application software is con-
ceived for that specific environment.

This paper addresses the problem [22] of determining,
from a pool of available nodes, which ones should be se-
lected for building a parallel virtual computer that achieves
the fastest application response time, and it also discusses
the issue of computational load distribution; the study con-
siders that the nodes available prior to running the appli-
cation may differ from time to time, as different users and
machines are active. At every program initiation phase, the
highest performance computers from the available set are
selected, in a number that is computed for optimizing the
processing time.

The test cases presented, a parallel matrix multiplication
algorithm and the QR algorithm, while pertinent to many
advanced image analysis methods, are also a common mod-
ule in many other fields, such as in simulation problems. In
a previously reported work [5], the step edge operator pro-
posed by Shen and Castan [20] was also tested.

2. Computational model

Several computational models [23,7,14] were presented
in order to estimate the processing time of a parallel pro-
gram. Although they could be adapted for the cluster of
personal computers, a specific and simplified model is pre-
sented below. The target machine is composed by nodes
with different processing capacities, resulting from differ-
ent amounts of available memory and from various proces-
sor types and versions, connected by a standard intercon-
nection network, such as the Ethernet. Each node of the
machine is characterized by the processor capacity S, mea-
sured in Mflops. The network is characterized by the num-
ber of messages that are allowed simultaneously, the band-
width LB measured in Mbits/s, and by the existence or not
of broadcasting capacity.

The computational model for the virtual machine, de-
scribing the behavior for a given algorithm, is obtained by
summing the time spent in sequential operations Ts and the
time spent in parallel operations Tp. Sequential operations
include communications, data input/output and other pro-
cessing that cannot occur in parallel due to each particular
algorithm characteristics. Parallel operations are those that
the time spent by one processor can be divided by p if p pro-
cessors are used. The total processing time, as a function of
the number of processors p and the problem size n is given
by equation 1.

The interconnection network is modeled by a temporal
expression, Tc, representing the time required to transmit a
message of no bits between two network nodes, assuming a
distance 1 network.

Tc = TL+nb(—+TE) (2)

The latency time Tj, represents the time gap between the
processor order to transmit and the beginning of transmis-
sion and TE the packing time. The logical topology of an
Ethernet provides a single channel, or bus, that carries Eth-
ernet signals to all stations, allowing broadcast communica-
tions. There is only one signal channel delivering packets
over the network to all stations. Each message is divided
into packets of length 46 to 1500 bytes of data (packetsize),
to be sent sequentially and individually onto the shared
channel. For each packet the computer has to gain access
to the channel [21]. This division of a message into packets
leads to a latency time'for each message that is proportional
to the number of packets (K) into which it is split, resulting
equation 3.

Tco = KTL + nb(—+TE) (3)

The value of K is given by equation 4. A typical value
for packetsize is 1024 bytes.

K=\:
nb/8

-1 1 packetsize'

For a heterogeneous virtual machine Ti and TE depend
on the processor speed 5. Several experiments were con-
ducted in order to measure these parameters, for the net-
work referred to in the results section, which is composed
by processors as illustrated in table 1. The values were mea-
sured for the matrix multiplication algorithm over different
matrix sizes, resulting the average values of table 1.

S(M flops) 244 161 60 50 49
TL(»s/byte) 70 130 180 180 180
TE(ßs/byte) 0.05 0.07 0.13 0.13 0.13

TT(n,p) = Ts(n,p) + Tp(n,p) (1)

Table 1. Processors parameters

Although the Ethernet physically allows broadcasting
the WPVM converts a broadcast in a p processor machine to
p - 1 messages [1]. Therefore, to model correctly a broad-
cast the time spent in one message has to be multiplied by
p-1.

Independent communications over rows or columns, ei-
ther for 1-D or 2-D grids, can originate network collisions.
Examples are all slave processes trying to send results to
the master process at the same time; or for the matrices
multiplication algorithm, in each step, the distribution of
the matrices are independent over rows, for one matrix, and

148

over columns for the other matrix. To avoid collisions a
set of communication routines using a ring communication
pattern, as shown in figure 1, were developed. They allow
processes to synchronize by establishing the order of com-
munications according to the processes position on the grid.

POO -O)
t>00~-D

Signal

Figure 1. Communication pattern for two in-
dependent row broadcasts

The parallel component Tp of the computational model,
equation 5, represents the operations that can be divided
over a set of p processors obtaining a speedup of p, i.e. op-
erations without any sequential part.

TP(n,p) =
ip(n)

(5)

The numerator ip(n) is the cost function of the algorithm
measured in floating point operations (flops) as a function
of the problem size n. For example, to multiply square ma-
trices of size n, the cost is ip(n) = 2ra3 [8]. This oper-
ation count does not include memory operations resulting,
therefore, a higher complexity. To obtain a correct operation
count one should consider the memory references made and
have an estimation of the memory access time. The nodes of
the virtual machine have different levels of memory (cache,
main memory, and disk) with different access times, and
one cannot predict how many accesses are made to each
one.

Figure 2 shows the processing capacity achieved by an
161 Mflop peak performance processor for the matrix mul-
tiplication algorithm. The computational cost is ip(n) =
21.5n3flops. Figure 2 also shows that a non block oriented
algorithm cannot assure a constant coefficient of ip{n),
which is a requirement in order to be able to estimate the
time the processors will take to execute the algorithm. From
this point on the coefficient of tp(n) will be referred to as the
algorithm constant ß. The value ß does not depend on the
processor but rather is a characteristic of the algorithm.

The denominator of equation 5 is the processing capacity
used which is obtained by summing the individual process-
ing capacities of the machines. For this equation to be valid
each machine should not take more than Tp seconds to pro-
cess its part. This assumes a perfect load balancing in the
heterogeneous machine.

19.00

17.00

15.00

E. 13.00
o
| 1100

9.00

7.00

5.00

2k^£ »^s-a, a—awe—j <e~»g—iii—»^—»e-»^^

V
V

•Non blocked

'Blocked

200 «JO 600 800

Malrixsize (n)
1000 1200

Figure 2. Performance of the matrix multipli-
cation algorithm on a 161 Mflop peak perfor-
mance processor as a function of matrix size

3. Load balancing strategy

In this section a static load distribution algorithm is pre-
sented and issues related to the optimization of processing
time in a heterogeneous environment are discussed.

3.1. Data distribution

To avoid the slowest processors to determine the parallel
processing time, the load should be distributed proportion-
ally to the capacity of each processor. The aim is to assign
the same amount of processing time which may not corre-
spond to the same amount of data.

The matrices are organized in square blocks of data
which are assigned to the processor grid. To achieve a bal-
anced distribution in the heterogeneous machine the number
of blocks assigned to each processor should be proportional
to its processing capacity compared to the entire machine:

h =
£Z=i Sk

(6)

The load index lt although theoretically correct, is not fully
applicable in practice since the number of blocks assigned
has to be an integer value. As an example, for a machine
composed by 6 processors of capacity {244,244, 161,161,
60, 50} Mflops, h would be {0.265, 0.265, 0.175, 0.175,
0.065, 0.054}. To distribute a matrix of size 1800 over a
(1,6) processor grid the assignment would be 1800 rows by
{477,477, 315, 315, 118, 98} columns respectively.

The strategy implemented is to compute the number of
blocks to assign to each processor rounding the real value
obtained down to the nearest integer, so that some blocks
are left to be assigned. Then, to obtain an optimal solution
the remaining blocks are assigned one at a time to the grid

149

of processors, choosing the one that will take less time to
finish the job.

For the test case presented, consider a block size of 25 el-
ements, which lead to an assignment in terms of number of
blocks, of {19, 19,12,12,4, 3} summing 69 in a total of 72
blocks, leaving 3 blocks unassigned. Using the time com-
plexity analysis presented in the next section for the matrix
multiplication algorithm, Tp = 21.5n3/5, the estimated
computational time per processor is {135.6, 135.6, 129.8,
129.8, 116.1, 104.5} seconds. Each block will take {7.14,
7.14, 10.82, 10.82, 29.03, 34.83} seconds in each proces-
sor respectively. This block processing time is summed to
the total time each remaining block being assigned to the
processor that would finish first. The first block is assigned
to processor 6 and the last two blocks to processors 3 and
4, resulting an estimated processing time of {135.6, 135.6,
140.6, 140.6, 116.1, 139.3} seconds. A perfect load bal-
ancing cannot be achieved, however for this block size it is
the optimal assignment, i.e. the assignment that leads to the
minimum processing time. Figure 9 shows the processing
time measured for each processor.

Another issue in data distribution for a heterogeneous
machine is to keep the load balance in the whole algo-
rithm. For some algorithms, such as tridiagonal reduction
and LU factorization, in each iteration part of the matrix is
fully computed and not visited again, the working matrix
being smaller from step to step. This can lead to an imbal-
ance load if the distribution is not cyclic. For the example
above, if contiguous blocks are assigned to each processor,
one of the fastest processors would be idle after computing
19 blocks of the matrix , remaining 53 blocks to be pro-
cessed.

To overcome this load imbalance, blocks are organized
in balanced groups. Being lf the load index of processor i,
one define group block GB as:

GB =
1

min(li)
(7)

If GB/Q < 2 then GB = 2/min(li), where Q is the num-
ber of column processors. For a (P, Q) grid the algorithm
is applied to columns and rows independently, considering
the processing capacity by column and row respectively, as
shown in table 2.

For the example given above GB = 1/0.054 = 18
blocks, giving a group block of {5, 5, 3, 3, 1, 1}.

With this strategy it is guaranteed that from the begin-
ning to the end of the algorithm all processors are involved
in proportion of their load indices U, allowing an effective
load balancing. When the last group block is being pro-
cessed, the last 8 blocks would be computed by the slowest
processors; it is reasonable that in cases where some pro-
cessors cannot participate due to the lack of data, it should
be the fastest ones doing the computation. Therefore, the

cyclic distribution is used inside each group block.

3.2. Data redistribution

In order to exploit the computational capacity of the tar-
get machine, the algorithms must be implemented in order
to increase the computation to communication ratio, mainly
due to the slow network. Therefore, data redistribution is
allowed in order to switch to the optimal grid computed for
each algorithm. Data distribution is represented by system
independent objects, allowing the system to switch between
two unrelated processor grids.

The cost of redistribution is estimated by the communi-
cation of n2 elements for a matrix of size n, which is the
worst case, i.e. every element being allocated to a differ-
ent processor. The redistribution algorithm starts from the
first processor (1,1) to the last, changing data synchronously
with the remaining processors.

For related grids, e.g. switching from (1,6) to (1,7), the
system evaluates if the gain in time due to the addition of
one processor is overcome by the data redistribution time.
In that case the grid change does not occur.

3.3. Block size

The block size should be chosen according to the fol-
lowing conditions: first, it should maximize the individual
processing capacity, that as shown in figure 2 degrades for
a block size 1, and second, to allow the implementation of a
load balancing distribution. For the machines tested a block
size in the range 15 to 40 ensure an almost constant process-
ing capacity.

For a sequence of parallel algorithms, e.g. for eigenvec-
tor computation where different grids are used, the block
size should satisfy all grids in terms of load balancing since,
although there is data redistribution, this parameter remains
unchanged.

3.4. Processor selection policy

The system keeps a record of the computers enrolled in
the parallel virtual machine ordered by decreasing compu-
tational capacity. If only part of the machine is needed to
execute the algorithm the computers are selected from the
fastest to the slowest one.

A computer is considered available for parallel process-
ing if there is no user activity for at least half the process-
ing time of the last parallel algorithm. If a user starts us-
ing his/her computer during a parallel execution, the system
does not transfer the work to another computer; it completes
the current job and then marks the computer as unavailable.
For the problem size addressed, whose processing time is
expected to be of a few minutes, this policy is satisfactory.

150

4. Optimization of the processing time 4.1. Application to a homogeneous machine

A parallel algorithm may have two aims: to obtain a
better accuracy of results by using a more detailed domain
which could not be possible in a single processor, usually
due to memory limitations, or, for a given accuracy, to ob-
tain a reduction in the processing time. The time gain ob-
tained with the parallel algorithm is usually called Speedup
and is defined as the quotient of the serial algorithm time
(Ti) over the parallel algorithm time (TT).

Speedup — — (8)

Depending on how the serial processing time is mea-
sured one can have different definitions of Speedup. Rel-
ative Speedup is obtained if the serial time is the processing
time of the parallel algorithm in a single node of the parallel
computer. Real Speedup is obtained if the serial time is the
processing time of the most efficient sequential algorithm
in a single node of the parallel computer. Absolute Speedup
is defined when the serial time is obtained for the fastest
sequential algorithm executed in the fastest sequential com-
puter available [18]. In the context of the envisaged applica-
tions of the parallel virtual machine, we define Speedup as
the ratio between the processing time of the serial version
in the computer that controls the parallel execution (mas-
ter), over the processing time of the parallel program. This
is the effective gain as seen by the user, who has a choice
between his/her own single machine (master) or the parallel
virtual machine; the definition is also globally fair when the
master computer is one of the fastest available, which is the
case in the test cases presented below. In a parallel virtual
machine it is quite common that each node of the computer
network is not fully available for the user that is running
a parallel application. The application should not schedule
work for nodes that are in use by other users, and therefore
it should have a record of the ones that are free. The aim
in scheduling work for distributed processing is to obtain a
processing time that is as small as it can be obtained for that
particular network, even if some of the nodes are left in the
idle state. Therefore, the relevant parameter to be consid-
ered is the Speedup in detriment of the Efficiency, which is
often used in other contexts.

Given the above definitions, one can state the goal of the
work herein reported as the determination of the optimum
number of processors using a criterion of minimum process-
ing time. The optimal number of processors p, which min-
imizes TT{TI,P), is the one for which an increase on the
serial component, due to the addition of one more proces-
sor, will be balanced by the gain obtained on the processing
time of the parallel component.

For a given algorithm, characterized by the constant ß,
and for size n matrices, p can be obtained by solving equa-
tion 9 in order to p [5].

8TT

dp
0 (9)

For a homogeneous machine equation 5 simplifies to
TP(n,p) — y£~L and the communication parameters TL

and TE assume the same value for all machines, allowing a
straightforward solution.

4.2. Application to a heterogeneous machine

For a heterogeneous machine another degree of com-
plexity is added to equation 9: first, processors have differ-
ent computational capacities (5) and second, the communi-
cation parameters TL and TE also vary with S, as shown in
table 1.

To tackle this problem one first orders the nodes by de-
creasing value of Si (the capacity of node i), and then sched-
ules the work from the fastest to the slowest free node, re-
sulting the denominator of equation 5: ST(P) = Y%=\ Si-
To compute the first derivative of TT in order to p it is re-
quired to find the sum ST(P), which cannot be computed
beforehand since one does not know how many processors
will be used. The function ST(J>) increases monotonically
with p, having a growth rate that decreases with increasing
p, as shown in figure 3 for a machine composed by proces-
sors of capacities {244, 244, 161, 161, 60, 50, 49} Mflops
in decreasing order.

M={244,244,161, 161, 60,50, 49}

2 3 4 5 6

Number of processors

Figure 3. Processing capacity of the hetero-
geneous machine as a function of the proces-
sors used

The aim is to approximate Sx(p) by a polynomial func-
tion in p in order to be able to solve equation 9. A first

151

order polynomial function as used for a homogeneous ma-
chine is not adequate here. The ideal polynomial function
would be one that passes in all points of ST(p); however, its
computation time may be significant for a large number of
processors. The solution adopted was an iterative quadratic
approximation. The first function is defined by zero and the
extreme points of ST{P)- The iterative process allows the
reevaluation of the cost function TT{n,p) in the neighbor-
hood of the solution computed. In each iteration only half of
the processors used in the last iteration are considered being
the polynomial function defined by: if P is the total number
of processors, p(l~^ the solution for iteration (i - 1) then
in iteration i the function is defined by the three points of
equation 10.

Srtf-1 ± Pßi+1) and ST(p{<_1)) » = 1,2,...
(10)

The second degree polynomial function has the same be-
havior as ST(P) and is written as:

Ps(p) = ap2 + bp + d (11)

resulting the first derivative of Tp(n,p) in order to p in:

dTp(n,p)

dp
d_
dp

ip(n)
ap2 + bp + d

= 0 (12)

which must be solved in order to obtain the number of pro-
cessors p that minimizes the total processing time.

If the logical grid of processors affects the processing
time, then changing to a 2D grid (e.g. (r, c) grid) or 3D
(e.g. hypercube), one or two dimensions are added to the
problem respectively. For the 2D grid the quadratic approx-
imation with p = re becomes:

Ps(r, c) = a(rc)2 + b{rc) + d (13)

The communication parameters TL and TE also need
to be modeled by a function of p in order to solve
dTs{n,p)/dp. To transmit a message from computer A to
B the latency and packing time depend on the speed of pro-
cessor A. If one can predict the amount of data each pro-
cessor will be responsible to transmit, one can estimate the
time spent in communications by the whole machine. Ac-
cording to the data distribution algorithm to each processor
is allocated an amount of data proportional to its relative
speed in the heterogeneous machine: U = Si/XX=i Sk-
Therefore, functions to model these parameters are defined
by equations 14 and 15, corresponding to an weighted mean
of these values for each possibility of p processors. The val-
ues of (Ti)j and (Tß)i are shown in table 1.

TTL(P) = £P , U x (TL)i (14)

TTE{P) = J2P , '•• x (T^ *—-*i=l
(15)

For the machine considered (figure 3), the functions
TTL{P) and TTE(P) are shown in figures 4 and 5 respec-
tively. In those figures it is also shown a first degree poly-
nomial approximation to be included in Ts{n, r, c).

Latency Time

y =6.3924x+62:Vs

100.0 •

u
s/

b
yt

e

00

<D

o

o

d

d

x/

* TTL(p)

70.0 ■ fyr £ , .

60.0 ■
CTru;p))

2 4 6

Number of Processors

Figure 4. Approximation for TTL(p) per byte

Packing Time

0.08

0.07

* 0.06
VI

0.05

0.04

y = 0.0036x + 0J0446^K

■x^s^y*.

K TTE(p)

(TTE(p»

2 4 6

Number of Processors

Figure 5. Approximation for TTE(P) per byte

The (r, c) configuration that minimizes the processing
time is obtained by VTr(n,r,c) = 0. Since one wants to
compute the ideal grid (r, c) for a given problem size n, the
first derivative of Tx(n, r, c) in order to n is zero. Thus, the
optimal configuration is obtained by solving the system of
equations 16.

dTT(n,r,c) _ Q
dr

dTT(n,r,c) _ Q
dc

(16)

152

4.3. Applying the methodology to a matrix multi-
plication algorithm

The methodology presented above will be tested with an
improved implementation of the matrix multiplication oper-
ations [11]. Figure 6 shows an hypothetical data assignment
for a (2,3) processor grid. For simplicity, the blocks dis-
played are formed by contiguous data, although the block
cyclic data distribution is used [10].

To compute the matrix product C = A x B, in each iter-
ation of the algorithm each processor multiplies one column
block of A by one row block of B, updating the correspon-
dent block of C. The shadowed area in matrix C represents
the block that processor (0,0) has to update in each itera-
tion.

x = f

Figure 6. Matrix multiplication operations

Considering a grid (r, c) of processors, the matrices A =
(m,k), B = (k,l) and C = (m,l) the amount of data
required to broadcast matrix A over the rows of processors
is:

m k,
 (c
r c

l)rc = mk(c— 1) (17)

Note that (c— 1) appears because the broadcast is in fact per-
formed by sequential communications. To broadcast matrix
B over the column of processors it is required to transmit:

kl
r c

-(r — l)cr = kl(r — 1) (18)

The time required to compute the inner loop products is
given by:

TP = ß-
mlk

(19)
ST(r,c)

where Sr(r, c) is the processing capacity of the heteroge-
neous machine when re processors are used. The value ß
for the matrix multiplication is 21.5, as given in section 2.
The total estimated processing time, assuming square ma-
trices of size n, is expressed as:

TT(n,r,c) = (
n2(r + c-2)
packetsize

)TTL(V,C)

+ß Ps(r,c)
(20)

Depending on the data types used (float or double) the
correspondent communication factors have to represent the
amount of data in bytes. LB is the bandwidth per byte.

For the machine of figure 3 the quadratic approximation,
equation 11, becomes Ps(r,c) = -17.595(rc)2 + 261.6rc.
This approximation is close to the real curve Sr(r, c) for
values 0 < re < 7. Outside this domain the polynomial
function may introduce false minima in the processing time
function. Therefore, the minimization must be restricted to
the allowed domain by the number of processors available.
This can be accomplished by introducing the Lagrange mul-
tipliers [15] in the system of equations 16. An additional
function to restrict the domain is included:

(dTs(n,r,c) , 3TP(n,r,c) _ •.
Or "+" dr ~ ~ÄC

dTs(n,r,c) , dTP(n,r,c) _ ,
dc ~*~ dc — ~Ar

\(rc - 7) = 0

(21)

+(n2(r + c - 2)){LB~1 + TTE(r, c))

The following figures, 7 and 8, present results for ma-
trices of size 1800. Figure 7 displays the communication
estimated (Est.) and measured (Meas.) time for one and
two rows of processors, limited to 7 processors. And fig-
ure 8 displays the total processing time Tr(n, r, c) obtained
by estimation with the quadratic approximation for machine
processing capacity (Tot. E), by estimation using the exact
processing capacity (Tot. R), and the measured time (Tot.
M). The communication times are modeled correctly, exist-
ing only a slight difference for some grids. The total esti-
mated processing time differs from the measured one due to
the quadratic approximation which underestimates the pro-
cessing capacity in some cases and overestimates in others,
although the behavior is similar to the measured curve and
it does not introduce false minima in the processing time
function. The curve obtained with the real processing ca-
pacity of the heterogeneous machine shows that the overall
model is correct and that the processing time can be accu-
rately estimated.

Solving the system of equations 21, the values of r =
c = 2.65 are obtained for n = 1800 and LB =
10QMbits/s. Since one wants an integer solution, it can
be assumed c = 3 which implies r = 2, since re < 7.
The grid (3,2) would be equivalent. Figure 8 shows that the
minimum is obtained for grid (2,3), confirming the system
solution, although there is an increase in the processing time
compared to the estimation. This is the consequence of an
imbalance grid which cannot be overcome for that machine.
Table 2 shows the processor layout for grid (2,3). The first
two columns of processors are equilibrated what does not
happen for column 3, in which either processor (1,3) will

153

Meas .r=2

3 4 5 6

Columns of processors (c)

Figure 7. Communications for the matrix mul-
tiplication algorithm (matrix size 1800)

150 _, , f

3 4 5 6
Columns of processors(c)

Figure 8. Processing time for the matrix mul-
tiplication algorithm (matrix size 1800)

be underloaded or processor (2,3) will be overloaded, de-
laying all other processors as they will be always waiting to
communicate.

Figure 9 shows the processing time for all processors,
where it can be seen that processor 6 is delaying the process
for grid (2,3). Grid (1,6) is better balanced but the ideal
load balance is not achieved due to the data blocks indivis-
ibility. For this network, due to processor relation in pro-
cessing speed, a balanced load can only be achieved with
small blocks of data. The squared block size used was 25.
A smaller block size, e.g. 10, while improving the load bal-
ance, would decrease the individual performance of proces-
sors due to a sub-utilization of the processors cache mem-
ory.
Note that although grid (2,3) is less balanced and there is
one processor that takes more time, it makes a better so-

244 161 60 =465
244 161 50 =455

=488 =322 =110

Table 2. Processor layout for grid (2,3)

- - i I I I i i
P6 l

- II III
P5 ■ 1x6

□ 2x3

§ P3

1 1 1 1 1 1

1 1 1 1 1 1 '

it 1 1 1 1 1 1
P2

■ 1 1 1 1 1 1
P1
 r~ 1 1 1 1 1—-

0 20 40 60 80 100 120 140 160 180

Processing time (s)

Figure 9. Matrix multiplication processing
time

lution than grid (1,6) due to the fact that this grid requires
more communication time, as it can be seen in figure 7.

5. Results

In this section results for tridiagonal reduction (TRD),
LU and QR factorization algorithms in the heterogeneous
machine represented in figure 3 for an Ethernet network
at 100 Mbits/s are presented. Figure 10 shows the perfor-
mance of each algorithm in a single processor. The QR per-
formance is divided by 2 for displaying purposes. As shown
before for the matrix multiplication algorithm, the processor
performance is kept almost constant for the block versions
of these algorithms, for matrices greater than 400 elements.
The correspondent ß value considered for each algorithm is
the average in that domain. The square block size used in
all cases varies from 15 to 40. There is some variation in the
processor performance for a given matrix size, mainly due
to the operating system (Windows NT) which stochastically
has some activity; however, this represents a variation in the
processing time below 1%.

The estimated values presented below are obtained by
applying the system of equations 21 using the time function
of each algorithm respectively.

5.1. LU factorization algorithm

The LU factorization algorithm is applied in order to
solve directly a system of equations. The implementation

154

Figure 10. Performance of LU, QR and TRD
block algorithms on a 161 Mflop peak perfor-
mance processor as a function of matrix size

is the right-looking variant where algorithm details can be
found in [9]. For a (r, c) grid of processors, the amount of
data (double/float) transmitted in the parallel matrix update
is:

(r + c-2)-

and the parallel processing time is:

TP(n,r,c) = ß-
n*

+ 0(n2)

(22)

(23)
ST(r,c)

The ß for LU is 7.5. There is a component of complexity ra2

correspondent to the computations made by the pivot pro-
cessor. Figure 11 shows the processing time estimated and
measured for a matrix of size 1800. Although it is hardly
perceptible in the figure, the optimum value estimated for
(r,c) is (1,5). In practice the optimum is grid (1,4), which
outperforms grid (1,5) by only 0.5 seconds. In this case
the difference is due to the quadratic approximation for ma-
chine processing capacity. If the real values are used the
estimated optimum is (1,4).

Figure 12 shows the estimated (E) and measured (M)
communication times for matrices of size 1200 and 1800.
In general the communications are well modeled. The dif-
ferences observed are less than 3 seconds. This can lead to a
grid selection that is not the optimal one; however, since the
processing times obtained for grids (1,4), (1,5) and (1,6) are
69.1, 69.6 and 70.0, the main drawback would be to have
unnecessary processors allocated.

Figure 13 shows the load distribution for the matrix of
size 1800. For up to 5 processors a good load balancing
is achieved, with processors taking almost the same time
to process the data allocated to them. The block size from
processor (1,1) to (1,5) is 1800 rows by 500,500, 340, 340

190 -

£ 160 '■

| 130 ■

8 70-

40 -

1

—■— Est.r=1

—*— Meas.i=1
>

—«— Meas.i=2

:=ZZ£^"**^w

2 3

Columns

4 5 6 7

of processors

Figure 11. LU processing time for a matrix of
size 1800

3 4 5 6

Colu mns of processors

Figure 12. Estimated (E) and measured (M)
communications for LU algorithm

and 120 columns respectively. Ideally they should receive
504,504, 333, 333 and 124 columns.

5.2. Tridiagonal reduction algorithm

The tridiagonal reduction algorithm (TRD) is a step in
the computation of the eigenvalues and eigenvectors of a
symmetric matrix. Details of the algorithm can be found in
[6]. For a (r,c) grid of processors, the amount of data to
transmit is:

2n(r - 1) + 4n2(rc - 1) (24)

for computation and broadcast of Householder vectors, par-
allel matrix update and matrix vector products. The parallel
processing time is:

TP(n, r, c) = ß^r-^ + 0(n2) (25)
Sr(r,c)

The ß for TRD is 28 and there is also a negligible term
in n2. Figure 14 shows the processing time for a matrix

155

L
10 20 30 10 50 60

Processingtime (s)

Figure 13. LU load distribution for a matrix of
size 1800

JUJJU -
-o—E1200

 * M1200

—A—E800

—»-M800

25J00 ■-
^-^

w20JOO --
01

l*^'*'"'
•^ 1500 •- i-^* '""'

_-< £ Jf.'-
£ 10O0 ■
0 &?■-■" _^=

^ .^-.C^**^

UJUU f„ \^a-—=_*

3 4 5 6

Columns of processors

Figure 15. Estimated (E) and measured (M)
communications for Tridiagonal reduction al-
gorithm

of size 1200. For grids (1,1) to (1,4) the estimated time is
higher than the measured one; the maximum error occurs
for grid (1,4) which coincides with the maximum error in
the quadratic approximation of computational capacity. The
minimum is correctly determined as grid (1,4). Again if grid
(1,3) was chosen the total time would be marginally higher:
104.7 s instead of 100.0 s. To guarantee the selection of
the best grid the scheduler can operate with real values of
processing capacity for estimating the processing time in
the neighborhood of the solution obtained by the system of
equations 21.

220

"in
m inn
t
n> 130
c

X 100
o o
t 70

40

—■— Est.r=1

—*— Meas.Fl

V __^4

 —i 1- 1 » >

2 3 4 5 6

Columns of processors

Figure 14. Tridiagonal reduction processing
time for a matrix of size 1200

Figure 15 shows the estimated (E) and measured (M)
communication times for matrices of size 800 and 1200.
The more significant differences are for matrix of size 1200
where communications are overestimated. In all cases the
difference is below 1.1 second.

Figure 16 shows the load distribution for the matrix of
size 1800. For grid (1,4) a good load balancing is achieved.
For grid (1,5) one process takes 3 seconds less than the oth-

ers because it was assigned one block- less of size 20. The
data allocated to each processor was 1200 rows by 340,320,
220, 220 and 100 columns respectively; ideally it should be
1200 by 336, 336, 222, 222, 83. Grids (1,6) and (1,7) are
not well balanced also due to block indivisibility.

0 10 20 30 40 50 60
Processing time (s)

Figure 16. Tridiagonal reduction load distri-
bution for a matrix of size 1200

5.3. QR iteration algorithm

The QR iteration is the last step in the eigenvector com-
putation sequence, preceded by the tridiagonal reduction of
a symmetric matrix and orthogonal matrix computation.

Synthetically, the procedure is to compute Givens rota-
tions in order to reduce the tridiagonal matrix into a diago-
nal one whose elements are the eigenvalues. Eigenvectors
are computed by updating the orthogonal matrix, resulting
from the tridiagonal operation, with the rotations. Each ro-
tation affects only two columns of the orthogonal matrix; a
detailed explanation is given in [12].

156

The parallelization implemented takes advantages of the
fact that one rotation updates only two columns without
inter-row dependencies. For the tridiagonal reduction a col-
umn oriented distribution is more favorable; however, that
data allocation will imply communications between bound-
ary columns, with the additional drawback of using cyclic
distributions, which increase the boundary columns drasti-
cally. A column oriented algorithm applying the technique
of considering multiple bulges [13] was implemented, but
only a marginal speedup, below 1.5, was obtained due to
the fact that multiple bulges increase the number of itera-
tions required which, associated to boundary communica-
tions, is not suited for the slow bus network of the target
machine.

Alternatively, it was given the possibility of data redis-
tribution in order to match the ideal processor grid for each
algorithm. In this case, QR iteration was a row oriented
strategy.

The QR iteration has two computational tasks: one, to
do the bulge chase of order n2, and the other to update the
orthogonal matrix of order n3:

TP = ß-r
nö

■ + 6(n2
rn 1 \" "■" WV" I (26) TT{r,c)

The ß for QR is 43. The time to compute the chases is in
fact negligible compared to the 6(n3) term (e.g., for the
matrix of size 1600 used it takes 2.1 seconds to compute the
chases and 721 seconds to update the matrix in a 244 Mflop
computer). Therefore, the solution adopted was to do the
chases in one computer (1,1), the fastest one, which at the
end of a chase transmits the correspondent rotations to the
remaining processors. Then, all processors update the part
of the orthogonal matrix allocated to them without requiring
any data exchange, i.e. true parallelism.

Figure 17 shows the estimated and measured processing
time for a matrix of size 1000. The difference for grid (1,4)
is mainly due to error of the quadratic approximation which
is maximum for 4 processors. The estimated minimum is
6 processors; in practice it is 7 processors. This is due to
a load imbalance occurring for 6 processors, in which there
is a processor that takes 2 seconds more than the others, as
shown in figure 18.

The communications involved are only to distribute the
Givens rotations, estimated assuming a convergence rate of
7, as:

in2(r - 1) (27)

This is an estimation because the number of chases depends
on the rate of convergence of the QR iteration. This rate is
expected to be less than 2 [8]. The estimated values of figure
19 were obtained with 7 = 0.9 obtained experimentally
with the matrix used. In this algorithm the communication
parameters TE and TL refer to the machine that computes

100

% 80

T1=176s

60

40

^

-■-Est.c=1

—*— Meas .c=1

V
1 1 —1 1

12 3 4 5 6 7

Rows of processors

Figure 17. QR iteration processing time for a
matrix of size 1000

10 20 30 40 50 eo
Processing time (s)

Figure 18. QR iteration load distribution for a
matrix of size 1000

the Givens rotations, since it is the only emitter in the QR
iteration.

5.4. Symmetric eigenvector computation

In this subsection the whole algorithm for eigenvec-
tor computation executed in the heterogeneous machine is
compared to a serial version [16] when executed in the
fastest node.

The performance metrics used to evaluate the parallel
application is, first, the runtime, and second the speedup
achieved. To have a fair comparison in terms of speedup,
one defines the Equivalent Machine Number (EMN(p))
which considers the power available instead of the number
of machines that, for a heterogeneous environment, is an
ambiguous information. Equation 28 defines EMN(p) for
p processors used, and 5i is the computational capacity of
the processor that executed the serial code, also called the

157

20.00

0.00

..,-*»

3 4 5 6

Columns of processors

Figure 19. Estimated (E) and measured (M)
communications for QR iteration

Stage Number of processors used GRID

(n) 400 600 800 1000 1200 1400 1600 (pxq)

TRD

Q (Orth.)

QRit

12 3 3 4 4 4

5 6 6 6 7 7 7

5 6 6 6 6 6 6

1xq

1xq

px1

Speedup 1.0 1.7 2.3 2.6 2.9 3.0 3.1

EMN 3.6 3.8 3.8 3.8 4.0 4.0 4.0

Efficiency 0.3 0.5 0.6 0.7 0.7 0.8 0.8

Table 3. Processors used in each stage of the
eigenvector computation

6. Conclusions

master processor.

EMN{p)
Si

(28)

For the machine presented in figure 3 EMN(6) — 3.77
and EMN(7) = 3.97, i.e. using 6 processors of the hetero-
geneous machine is equivalent to 3.77 processors identical
to the master processor and to 3.97 if 7 processors are used.

Figure 20 and table 3 compare the virtual machine to the
fastest node of the machine used to run the sequential code.
Different grid configurations are used for the different algo-
rithms, according to the optimal grid computed by equation
21.

2000

1750

1500

1250

1000

750

500

250

0

D Virtual Machine

E Sequential Alg.

rf! rflri
400 600 800 1000 1200 1400 1600

Matrix size (n)

Figure 20. Eigenvector computation in a 7 pro-
cessor heterogeneous machine compared
to the sequential algorithm executed in the
fastest node

Briefly stated, the methodology presented in this paper
was designed to address problems arising in the context of
using image processing and analysis algorithms for inter-
actively extracting important data and information from im-
ages of a specific application domain, e.g. medical imaging.

Currently, this activity is often conducted by exploring
the functionality (hardware and software) of general pur-
pose systems, which usually trade off algorithm sophistica-
tion and user comfort; this means that more advanced image
tools may be absent in these systems due to practical con-
siderations.

The main goal of the work herein presented was to take
advantage of the existence of a network of computers (this is
a very frequent situation in many user organizations) to try
and move the aforementioned trade-off in the direction of
allowing the provision of more advanced and sophisticated
algorithms without sacrificing user comfort.

The results presented show that, for the important linear
algebra building blocks of many advanced image analysis
methods, the stated goal may be accomplished; an improve-
ment has been achieved in the execution time, by a factor of
about 3, which may bring more image analysis tools into
the feasible condition for new general-purpose software.

A collection of machines with a wide range of process-
ing capacities, from 244 to 49 Mflops in the case presented,
can cooperate and achieve a considerable speedup in linear
algebra algorithms. The load balancing strategy proved to
be a determinant condition for the quality of the results.

A methodology to determine in a computer network the
number of active processors that minimizes the total pro-
cessing time for a specific parallelized algorithm was pre-
sented. The main objective is that the user of a computa-
tionally demanding application may benefit from the com-
putational power distributed over the network, while keep-
ing other active users undisturbed.

This goal can be achieved in a transparent manner for the
user, once the modules of his/her application are correctly

158

parallelized for the target network and the performance of
the machines in the network is known. The application, be-
fore initiating a parallel module, determines the best avail-
able computer composition for a parallel virtual computer to
execute it, and then launches the module, achieving the best
response time possible in the actual network conditions.

Practical tests of the methodology were conducted both
on homogeneous and heterogeneous networks, using basic
algorithms from linear algebra; in both cases, the theoreti-
cal values computed were confirmed by the measured per-
formance. It was shown that a good load balancing could
be achieved even for a heterogeneous environment, by us-
ing an appropriate processor layout. Other generic modules
will be parallelized and tested, so that an ever increasing
number of image analysis methods may be assembled from
them. Application domains other than image analysis may
also benefit from the proposed methodology.

References

[1] A. Alves, L. Silva, J. Carreira, and J. Silva. Wpvm:
Parallel computing for the people. In HPCN'95 High
Performance Computing and Network Conference, Milan
(http://dsg.dei.uc.pt/wpvm), 1995. Springer-Verlag.

[2] T. Anderson, D. Culler, D. Patterson, and T. N. Team. A case
for now (network of workstations). IEEE Micro, February
1995.

[3] M. Baker, R. Buyya, and D. Hyde. Cluster computing: A
high-performance contender. IEEE Computer, 32(7):79-83,
July 1999.

[4] S. Balsamo, L. Donatiello, and N. V. Dijk. Bound per-
formance models of heterogeneous parallel processing sys-
tems. IEEE Transactions on Parallel and Distributed Sys-
tems, 9(10), October 1998.

[5] J. Barbosa and A. Padilha. Algorithm-dependent method to
determine the optimal number of computers in parallel vir-
tual machines. In VECPAR'98, 3rd International Meeting on
Vector and Parallel Processing (Systems and Applications),
volume 1573, Porto, 1998. Springer-Verlag.

[6] J. Choi, J. Dongarra, and D. Walker. The design of par-
allel dense linear software library: Reduction to hessenberg,
tridiagonal and bidiagonal form. Technical Report LAPACK
Working Note 92, University of Tennessee, Knoxville, Jan-
uary 1995.

[7] D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser,
E. Santos, R. Subramonian, and T von Eicken. Logp: To-
wards a realistic model of parallel computation. In 4 ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming, San Diego, CA, 1993.

[8] J. W. Demmel. Applied Numerical Linear Algebra. SIAM
1997.

[9] J. Dongarra, S. Hammarling, and D. W Walker. Key con-
cepts for parallel out-of-core lu factorization. Technical Re-
port CS-96-324, LAPACK Working Note 110, University of
Tennessee Computer Science, Knoxville, April 1996.

[10] J. Dongarra and D. Walker. The design of linear algebra
libraries for high performance computers. Technical Re-
port LAPACK Working Note 58, University of Tennessee,
Knoxville, June 1993.

[11] R. Geijn and J. Watts. Summa: Scalable universal matrix
multiplication algorithm. Technical Report CS-95-286, Uni-
versity of Tennessee, Knoxville, 1995.

[12] G. Golub. Matrix Computations. The Johns Hopkins Uni-
versity Press, 1996.

[13] G. Henry, D. Watkins, and J. Dongarra. A parallel imple-
mentation of the nonsymmetric qr algorithm for distributed
memory architectures. Technical Report Technical Report
CS-97-352 and LAPACK Working Note 121, University of
Tennessee, March 1997.

[14] J. JäJä and K. Ryu. The block distributed memory model.
Technical Report CS-TR-3207, University of Maryland,
January 1994.

[15] J. E. Marsden and A. J. Tromba. Vector Calculus. W. H.
Freeman and Company, 1981.

[16] W Press, S. A. Teukolsky, W. T Vetterling, and B. P. Flan-
nery. Numerical Recipes in C: The Art of Scientific Comput-
ing. Cambridge University Press, 1997.

[17] E. Rosti, E. Smirni, L. Dowdy, G. Serazzi, and K. Sevcik.
Processor saving scheduling policies for multiprocessor sys-
tems. IEEE Transactions on Computers, 47(2), February
1998.

[18] S. Sahni and V. Thanvantri. Performance metrics: Keeping
the focus on runtime. IEEE Parallel & Distributed Technol-
ogy, pages 43-56, Spring 1996.

[19] C. Seitz. Myrinet - a gigabit per second local-area network.
IEEEMicro, February 1995.

[20] J. Shen and S. Castan. An optimal linear operator for step
edge detection. CVGIP: Graphical Models and Image Pro-
cessing, 54(2):112-133, 1992.

[21] C. Spurgeon. Ethernet Configuration Guidelines. Peer-to-
Peer Communications, Inc, 1996.

[22] A. Steen. Methodology, metrics and presentation of results.
In Tutorial in VECPAR'98, 3rd International Meeting on
Vector and Parallel Processing (Systems and Applications),
Porto, 1998.

[23] L. G. Valiant. A bridging model for parallel computation.
Communications of the ACM, 33(8):103-111, August 1990.

Biographies

Jorge Barbosa got a diploma in Electrical Engi-
neering from FEUP (Faculdade de Engenharia do Porto), a
MSc. in Digital Systems from UMIST, UK, and he is cur-
rently a PhD. student1 at FEUP, researching the application
of parallel computing in image processing. Joäo Tavares
got a diploma in Mechanical Engineering and a MSc. in
Electrical Engineering from FEUP, and he is currently a
PhD. student at FEUP researching DEFORMABLE object
models in image processing. Armando Padilha is ASSO-
CIATE PROFESSOR at FEUP and GROUP research leader
at INEB (BIOMEDICAL ENGINEERING INSTITUTE,
http://ineb.fe.up.pt).

159

New Cost Metrics for Iterative Task Assignment Algorithms in Heterogeneous
Computing Systems

Raju D. Venkataramana & N. Ranganathan
Department of Computer Science and Engineering

University Of South Florida
Tampa, FL 33620, USA

venkatar@csee.usf.edu & ranganat@csee.usf.edu

Abstract

Task assignment and scheduling algorithms for Hetero-
geneous computing systems can be classified as iterative
and non-iterative techniques, and are designed to optimize
a specific cost function defined on the system. The quality
of the solutions generated is controlled by the nature of this
cost metric. The common metrics that are used include min-
imizing the overall execution time or minimizing the load on
the maximum loaded processor. In this work, a new set of
cost metrics have been proposed that can be used by itera-
tive task assignment algorithms. These metrics exploit the
fact that in iterative algorithms the mapping of the subtasks
to the processors is known at every iteration. They reflect
the actual scheduling cost of the application, thereby im-
proving the quality of the solutions generated by the algo-
rithm. The proposed metrics are evaluated using the learn-
ing automata based iterative algorithm [15]. Observations
are made regarding the nature of the metrics from the re-
sults obtained.
Key Words: Task assignment and scheduling, Heteroge-
neous computing, Cost function.

1 Introduction

Efficient task assignment and scheduling is critical to
achieving high performance in Heterogeneous Comput-
ing(HC) systems [2, 10]. In these systems, applications are
represented as a directed acyclic graph called the task flow
graph(TFG), and the processing resources are represented
as a directed graph called the processor graph(PG). The
purpose of scheduling is to map the tasks to the available
processors and order their execution, so that the task prece-
dence requirements are satisfied and the schedule length is
minimized. It has been shown that the scheduling problem
in general is an NP-complete problem [14], and hence a

number of heuristic algorithms have been proposed to solve
it.

These algorithms can be broadly classified as iterative
and non-iterative algorithms. Proposed works in the for-
mer category include [12, 13, 15, 17], and the algorithms in
the latter are [1, 3, 4, 5, 6, 9, 11, 16]. The non-iterative al-
gorithms work by exploiting the graph-theoretic properties
of the TFG to generate a solution that optimizes a specific
cost function. The iterative algorithms on the other hand,
proceed by generating an initial random solution and then
progressively improving it, subject once again to optimiz-
ing the cost criterion. Due to the difference in approach
of the two classes of algorithms, the influence of the cost
metric on their ability to generate efficient solutions varies.
But, traditionally, generic cost metrics like minimization of
overall execution time or minimization of the load on the
maximum loaded processor have been used for both classes
of algorithms. In this work, we propose a new set of cost
metrics that are applicable to the iterative algorithms. The
proposed metrics generate solutions that are closer to the
actual schedule time.

The material in this paper is organized as follows. Sec-
tion 2 begins with the required preliminaries and explains
the system model within which the metrics have been de-
fined. The next section describes the proposed set of cost
functions. Section 4 evaluates these functions and makes
observations about the efficiency based on the results ob-
tained. The last section concludes the work.

2 Preliminaries

This section introduces the required preliminaries and
describes the system model within which the proposed cost
metrics have been defined.

It is assumed that the application has been partitioned
into subtasks and modeled by means of a directed acyclic

0-7695-0556-2/00 $10.00 © 2000 IEEE
160

graph called the task flow graph. The nodes of the TFG
correspond to the subtasks and the edges represent the data-
dependencies between them. The nodes are represented by
the set S and the edges by the set ETFG. Hence,

S = {Si,0<i< |5|}and
E = i(hj) I si,sj £ Sand Si dependent on Sj}

Every directed edge in the graph indicates the flow of data
from one subtask to another. The edges are assigned a
weight that corresponds to the number of data-units ex-
changed between the corresponding pair of subtasks. If
effG represents the edge weight, then:

eTFG = <

' # of data units excha-
nged between s,- and Sj, if (i',j) G ETFG;

U, otherwise.

The processor configuration is assumed to be modeled as
a directed graph called the processor graph. Here, the nodes
correspond to the processors and the edges to the communi-
cation links between them. Let M represent the set of nodes
and EPG the set of edges, then:

M = {mi,0<i < |M|}and
EPG = {(i,j) I mi,m.j G M and m,i is connected

tom,j}
Here again, the edges which indicate whether or not a set
of processors are connected, are assigned weights that cor-
respond to the cost of communicating a single unit of data
from one processor to another. Let epf represent the edge
weight, then:

nPG

' cost of communicating
a data unit between nrii
andmi.

< oo,

if (i,j) € EPG;

otherwise.

In addition to this information, it is assumed that the
cost of executing each of the subtasks on the processors are
known. These values are stored as a matrix called EJT. The
matrix can be represented as:

E.T = {eJ(i,j), 0<i< \S\, 0<j< \M\}.
eJ(i, j) = execution time of subtask Si on machine

m,i

Since in this work we are concerned only with the iter-
ative algorithms, there should be a means of representing
the solution generated at every iteration. In general, the so-
lution can be conceived as a mapping, IT, from the set of
subtasks to the set of processors.

■K : S -> M.
Let 'n' represent the iteration number. Then the solution
generated at iteration'n' can be represented as irn (i), where:

7r„(i) -> indicates the machine'm'j to which subtask
's'i is assigned to at iteration tn'.

The representation of the system model is now complete
and the cost functions can be defined on the system. This
forms the subject of the next section.

3 Proposed Cost Metrics

The objective of iterative task assignment algorithms is
to explore the solution space efficiently in order to seek the
global optimal solution. The solution space is character-
ized by the cost function defined on the system, and hence
becomes critical to determining its performance. In these
assignment algorithms, the process of determining the final
solution proceeds by initially generating a random solution.
This is then evaluated for its merit, based on which a new
improved solution is generated in the next iteration. The
process is repeated until the solution converges, or in other
words when there is no further improvement in the quality
of the solution. Hence, at each iteration of the algorithm,
the mapping of the subtasks to the machines is known. In
previous works, this information is neglected when trying
to determine the solution to the assignment problem. But it
can be utilized to explore the solution space more efficiently
and bring the final solution closer to the actual scheduling
cost. In this work, we propose precisely such a set of met-
rics.

To begin with, let us define terminologies that will help
develop the cost metrics. For each node st G 5 in the TFG
we associate three schedule times, for each of the machines
mj G M a machine start time, and arrays of nodes. These
are defined as:

MST[j, I] ->■ the machine start time for machine mj at
the beginning of level T.

EST[i] -> the earliest time at which the subtask s* can
begin its execution.

WT[i] -> the amount of time the subtask s, has to wait
before it can begin its execution.

CT[i] -» the time at which the subtask st completes its
execution.

predi D -> an array consisting of the predecessor nodes
of subtask Sj.

orderjj Q -» an array that specifies the order in which
the subtasks in level'/' and assigned to machine mj are ex-
ecuted.

TTjtl ->• represents the number of subtasks in order jtl Q.

It can be readily inferred that for any node s, in the TFG,
the completion time CT[i] at iteration 'n' can be computed
as:

CT[i] = EST[i] + WT\i] + eJ(i,7rn(i))

In order to compute MST, EST and WT of the nodes
however, the information about the structure of the TFG is

161

needed. This is achieved by leveling the TFG. The leveliz-
ing process is similar to the levelized min time heuristic
proposed in [7]. The root node or nodes are first assigned,
'level 0'. It's successor nodes, if all of their predecessors
are in 'level 0', are assigned 'level V. The next successor
nodes, if all of their predecessors are either in 'level 0' or
'level 1', are assigned 'level T and so on. Finally the leaf
nodes are assigned a level number equal to the height of the
TFG. Now, the machine start time, earliest start time and
the wait times of the nodes can be computed.

The machine start time MST, refers to the time at which
a particular machine can begin executing tasks from a par-
ticular level. This is important, since nodes or tasks at a later
level have to wait until all the tasks in previous levels have
completed execution on the machines they were assigned
to. Therefore we have:

MST^=\Ma^

0, if/ = 0;

M
{CT[orderjti-i\k}]}, otherwise.

Assume that a subtask Sj has 'p' predecessor nodes, rep-
resented as defined previously by the array predi[k] with
0 < k < p - 1. Then,

0, ifp = 0;
EST[i] =

Maxp
k=0 X(k), otherwise.

where X(k) = Max{ {CT\predi[k}} + e^t%(k),i *

<Ve*(*)Wi)}'MSTM'V]}

To complete the calculation of the completion time for
each of the subtasks, the wait time has to be defined. The
wait time determines when a task will begin its execution
and hence determines the efficiency of the cost metrics. If a
subtask is the only task that has been mapped to a particular
processor, then it does not have to wait to begin its execu-
tion. It's wait time therefore will be equal to zero. But if
more than one subtask is mapped to the same machine, then
it's possible to order their execution so that a more optimal
solution can be obtained. Since the TFG has task prece-
dence constraints, only the subtasks in the same level can
be considered for this ordering. The ordering of the sub-
tasks determines the wait time for each of them. Here, three
different orderings of the subtasks that result in three cost
metrics, named CM A, CM.2, CM.Z are proposed.

Cost Metric CM A:
The subtasks from the same level and assigned to a partic-
ular machine, are executed in the non-decreasing order of
their earliest start times. For instance, if we have three sub-

tasks si, s2 and s3, and assume that EST[1] < EST[2] <
EST[Z], then the subtask si will be executed first, followed
by s2 and then S3.

Cost Metric CM.2:
In the second cost metric, the subtasks are executed in the
non-decreasing order of their expected execution times. For
the aforementioned three tasks if we assume that e.t(3, j) <
e.t(2,j) < eJ(l,j), where 4m/ is the machine to which
they are assigned, then the subtask s3 is executed first, fol-
lowed by s2 and si.

Cost Metric CM.3:
The last cost metric that is proposed here, in a way com-
bines the ideas of the previous two cost metrics. It orders
the subtasks in the non-decreasing order of the sum of the
earliest execution time and the expected execution time of
the subtasks.

The difference in these cost metrics can be clearly un-
derstood by means of an illustrative example. Assume that
three subtasks s\, s2 and s3 belong to the same level in a
TFG, and are assigned to the machine m,j. Let their earliest
start times and expected execution times be:

EST[1] = 4, and e.t[l,j] = 11 timeunits.
EST[2] = 7, and e.t[2,j] = 6 timeunits.
EST[3] = 18, and e.t[3,j] = 3 timeunits.

Figure 1 shows the schedule times for the three subtasks
based on the ordering of CM A. Here, the maximum of
the completion times amongst the subtasks is 24 time units.
The schedule times corresponding to the order of CM.2
is shown in Figure 2. For this metric the maximum of the
completion times is 38 time units. The final metric CMS,
results in the schedule times shown in Figure 3. Here, the
maximum of the completion times is 27 time units. There-
fore, for the example case, the ordering of CM A offers the
best solution as it results in the minimum schedule time(24),
amongst the three metrics.

The different orderings of the subtasks represented by
the metrics can be incorporated into the generic cost metric
by means of the wait time. The array, orderjtl\\, specifies
the ordering of the subtasks in level I and assigned to ma-
chine mj, as shown in the initial definitions. Now the wait
time can be generically defined as:

WT[orderjti[k]}

0, if k = 0;

{Mod(CT[k - 1] -
EST[k]) + (CT[k otherwise.
-1] - EST[k])) I 2,

where 0 < k < TTjj.

162

It can be observed that the proposed metrics are very
similar to scheduling heuristics proposed previously in the
literature, and can be easily confused with them. But there
are important distinctions between the cost metrics pro-
posed in this work and these heuristics. A scheduling heur-
sitic works on a fixed assignment and tries to generate an
optimal schedule of the mapped tasks so that the overall
completion time of the application is minimized. In our ap-
proach on the other hand, the cost metric is used to as a
measure of efficiency for the solutions generated. This is
then used by the iterative algorithm to move towards a bet-
ter and more optimal solution for the assignment problem.
There is also a clear distinction between dynamic schedul-
ing algorithms proposed in [8] and the metrics presented in
this work. The dynamic scheduling algorithms begin with
an intial assignment and attempt to determine the optimal
remapping for each of the subtasks in turn by using the
information on subtasks that have already completed exe-
cution and those that need to be executed. The cost met-
rics CM A, CM .2 and CM.3, at every iteration consider
the entire mapping of subtasks to the various machines and
compute a cost that is as close as possible to the actual
scheduling cost. This metric is then exploited by the algo-
rithm to explore the solution space more efficiently. Hence,
although the construction of the proposed metrics are simi-
lar to scheduling heuristics, there are important distinctions
between them.

At every iteration of any iterative algorithm therefore,
the completion times of each of the subtasks can be com-
puted using one of the three proposed cost metrics. The
objective of the algorithm would then be to minimize the
completion time of the subtask that has the maximum com-
pletion time. The next section present the results that were
obtained using these cost metrics.

4 Results and Observations

To evaluate the proposed cost metrics, the learning au-
tomata based iterative algorithm [15] is used, though the
metrics can be used by any iterative assignment algorithm.
The primary reason for using this algorithm is because it
can be adapted for any user specified cost metric without
requiring a change in the construction of the algorithm. A
short description of the algorithm is presented first.

The task assignment algorithm proposed in [15] works
on a framework consisting of a HC system model and a
learning automata model. The system model abstracts the
application as a TFG and the suite of machines as a PG,
similar to the model presented in this work. The algorithm
can be adapted to work for any cost metric that can be de-
fined on the system by the user. This feature is realized
by means of the learning automata model. It is constructed

by associatong every task in the TFG with a variable struc-
ture stochastic automaton. The HC system model serves as
the external environment for these automata. Six heuristics
were investigated to construct the learning algorithm. The
best of these heuristics is used in this work.

The simulation environment consists of the task flow
graph and the processor graph which are generated at ran-
dom. The edge weights of the graphs are also assumed to be
generated at random with equal probability over some pre-
defined ranges. The values for these ranges are presented
in Table 1. It is assumed that the iterations of the algorithm
are continued until the probability of the actions of the au-
tomata reach 0.99, or if the number of iterations reaches a
specified user limit. In all the experiments that were con-
ducted, the algorithm terminated due to the former reason
indicating that the solutions were convergent.

For the first set of experiments, the communication com-
plexity was assumed to be low. In other words, the num-
ber of edges in the TFG is equal to one-third the number
of tasks. The number of processors were varied between
2,5,10 and 20. The results obtained are presented in Fig-
ures 4 - 7. It can be observed from the graphs that the costs
generated by the metrics differ in their optimality. They can
therefore be used to deliver better solutions to the assign-
ment problem.

The second set of experiments was conducted with a
medium communication complexity, where the number of
edges were equal to two-thirds that of the tasks. These re-
sults are presented in Figures 8 - 11. A similar observation
as the first set of experiments can be made here, proving
once again the utility of the metrics proposed. From both
sets of experiments, it can be seen that when the communi-
cation complexity increases it leads to an increased differ-
ence between the solutions generated by the metrics. The
reason for this is that when the communication complexity
increases the number of tasks being assigned to the same
level also increases. Hence the different orderings of the
proposed metrics have a greater impact on the solutions
generated.

On the same lines, in both sets of experiments when the
number of tasks are low, the costs generated are equal be-
tween the different metrics. This is due to the fact that very
few of the tasks are a^the same level number when the total
number of tasks are low and hence the ordering of the sub-
tasks does not have a big impact on the solutions generated.

In general it can be seen that the proposed metrics are
affected by the number of subtasks in the TFG, their data
dependencies represented as the communication complex-
ity, and the number of processors available for scheduling.
Since all these factors directly affect the actual schedul-
ing cost of an application task executing in the HC system,

163

Number of tasks 10,25,50,75 and 100
Number of machines 2,5,10 and 20

Number of edges |S|/3and2|5|/3
Expected execution time range 1000

Communication time range 4
TFG edge weight range 500

Table 1. Parameters for generating TFG's and
PG's

the proposed metrics can help in providing better solutions.
Since in the results shown, the graphs, the expected exe-
cution time and communication time are all generated at
random, the difference in efficiency of these metrics is not
discernible.

5 Conclusions

A new set of cost metrics for iterative task assignment al-
gorithms in HC systems were proposed. The metrics were
developed by exploiting the fact that in iterative algorithms
the mapping of the subtasks to the processors is known at
all iterations. The proposed functions were evaluated using
the learning automata based iterative algorithm [15]. The
results obtained show that when the number of tasks in the
TFG is low or when the communication complexity is low,
there is not much of difference in the costs generated by
the metrics. This difference increased when the communi-
cation complexity was increased. Since the performance of
the proposed metrics depend on the factors that affect the
scheduling cost, they reflect the actual scheduling time of
the application. Therefore they can be used to improve the
quality of solutions for the task assignment problem in het-
erogeneous computing systems.

References

[1] Song Chen et al, "Selection Theory for Methodology for Het-
erogeneous Supercomputing," Proceedings of Heterogeneous
Computing Workshop, pp. 15-22, Apr. 1993.

[2] M.M. Eshaghian, Heterogeneous Computing, Artech House,
Norwood, MA, 1996.

[3] Chi-Chung Hui and S.T. Chanson, "Allocating Task Interac-
tion Graphs to Processors in Heterogeneous Networks," IEEE
Trans, on Parallel and Distributed Systems, vol. 8, no. 9, pp.
908-923, Sept. 1997.

[4] R.F. Freund, "Optimal Selection Theory for Superconcur-
rency," Proceedings Supercomputing '89, pp. 699-703, Nov.
1989.

[5] R.F. Freund "SuperC or Distributed Heterogeneous HPC,"
Computing Systems in Engineering, vol. 2, no. 9, pp. 349-355,
1991.

[6] R.F. Freund and H. J. Seigel, "Heterogeneous Processing,"
IEEE Computer, vol. 26, no. 6, pp. 13-17, Jun. 1993.

EST(I] < EST|2] < Krm

EST a

' WT ' '

5 10 15 20 25

Figure 1. Example schedule times for CM A

5 10 15 20 25 30 35 TIME

Figure 2. Example schedule times for CMJ2

164

EST[2] + eJ[2,j] < EST[1] t ej[l,j] < EST|3]tej[3)

EST

EST a

WT

a

EST

10 15 TIME

Figure 3. Example schedule times for CM.3

10 25

Figure 5. Low communication complexity,
\M\ = 5

Figure 4. Low communication complexity,
\M\ = 2

Figure 6. Low communication complexity,
\M\ = 10

165

M CM_1
iB CM_2
I I CM J

10 25 50 75
of Tasks

Figure 7. Low communication complexity,
\M\ = 20

Figure 9. Medium communication complexity,
\M\ = 5

t0 25 10 25

Figure 8. Medium communication complexity,
\M\ = 2

Figure 10. Medium communication complex-
ity, \M\ = 10

166

10 25

Figure 11. Medium communication complex-
ity, \M\ = 20

[7] M. Iverson, F. Ozguner, and G. Folien, "Parallelizing Existing
Applications in a Distributed Heterogeneous Environment,"
Proceedings of Heterogeneous Computing Workshop, pp. 93-
100, Apr. 1995.

[8] M. Maheswaran and HJ. Seigel, "A Dynamic Matching and
Scheduling Algorithm for Heterogeneous Computing Sys-
tems," Proceedings of Heterogeneous Computing Workshop,
Mar. 1998.

[9] B. Narahari, A. Youssef, and H.A. Choi, "Matching and
Scheduling in a Generalized Optimal Selection Theory," Pro-
ceedings of Heterogeneous Computing Workshop, pp. 3-8,
Apr. 1994.

[10] H.J. Seigel et al, "Heterogeneous Computing," Parallel and
Distributed Computing Handbook, A.Y. Zomaya, McGraw-
Hill, New York, pp. 725-761, 1996.

[11] C.C. Shen and W.H. Tsai, "A Graph Matching Approach to
Optimal Task Assignment in Distributed Computing Systems
Using a Minimax Criterion," IEEE Trans, on Computer, vol.
34, no. 3, pp. 197-203, Mar 1985.

[12] P. Shroff et al, "Genetic Simulated Annealing for Scheduling
Data-dependent tasks in Heterogeneous Environments," Pro-
ceedings of Heterogeneous Computing Workshop, pp. 98-117,
Apr. 1996.

[13] H. Singh and A. Youssef, "Mapping and Scheduling Hetero-
geneous Task Graphs using Genetic Algorithms," Proceed-
ings of Heterogeneous Computing Workshop, pp. 86-97, Apr.
1996.

[14] H.S. Stone, "Multiprocessor Scheduling with the aid of Net-
work Flow Algorithms," IEEE Trans. Software Eng., vol. 3,
no. 1, pp. 85-93, Jan. 1977.

[15] Raju D. Venkataramana and N. Ranganathan, "Multiple Cost
Optimization for Task Assignment in Heterogeneous Com-
puting Systems Using Learning Automata," Proceedings of
Heterogeneous Computing Workshop, pp 137-145, Apr. 1999.

[16] M. Wang et al, "Augmenting the Optimal Selection Theory
for Superconcurrency," Proceedings of the Workshop on Het-
erogeneous Processing, pp. 13-22, 1992.

[17] Lee Wang et al, "Task Matching and Scheduling in Heteroge-
neous Computing Environments Using a Genetic-Algorithm-
Based Approach," Journal of Parallel and Distributed Com-
puting, vol. 47, pp. 8-22, Nov. 1997.

Raju D. Venkataramana is currently pursuing a PhD in
the Dept. of Computer Science and Engineering at the Uni-
versity of South Florida, Tampa. He received his B.E. in
Computer Science and Engineering from Sri Venkateswara
College of Engineering, University of Madras, India and
Masters in Computer Science from the University of South
Florida,Tampa in 1995 and 1997 respectively. His research
interests include heterogeneous computing, parallel and dis-
tributed processing, interconnection networks and VLSI de-
sign.

N. Ranganathan is currently a Professor of Computer Sci-
ence and Engineering at The Univ of South Florida, Tampa
and was an Associate Professor from 1988-1998. He was
also a Professor of Electrical and Computer Engineering at
the University of Texas at El Paso, El Paso from 1998-1999.
His research interests include VLSI design and hardware al-
gorithms, computer architecture and parallel processing.

167

SESSION 3-A
HETEROGENEOUS ENVIRONMENT

Chair: M. Theys, University of Illinois at Chicago, USA

Reliable Cluster Computing with
a New Checkpointing RAID-x Architecture

Kai Hwang, Hai Jin, Roy Ho, and Wonwoo Ro
Internet and Cluster Computing Laboratory

University of Southern California

Email: {kaihwang, hjin,wro} ©usc.edu, and scho@csis.hku.hk

Abstract
In a serverless cluster of PCs or workstations, the

cluster must allow remote file accesses or parallel I/O
directly performed over disks distributed to all client
nodes. We introduce a new distributed disk array, called
the RAID-x, for use in serverless clusters. The RAID-x
architecture is based on an orthogonal striping and
mirroring (OSM) scheme, which exploits full-bandwidth
and protects the system from all single disk failures.

The performance of the RAID-x is experimentally
proven superior to RAID-1 and NFS in the Linux cluster
environment. We propose a new striped checkpointing
scheme, leveraging on striped parallelism and pipelined
writing of successive disk stripes. This RAID-x
architecture greatly enhances the throughput, reliability,
and availability of scalable clusters. It appeals especially
to I/O-centric cluster applications.

Keywords: Scalable computing, RAID architectures,
parallel I/O, Linux clusters, disk mirroring, single
system image, checkpointing, staggered writing, and
fault tolerance

1. Introduction
Many redundant arrays of inexpensive disks (RAID) [6]

use independent disks under the control of a single or
multiple controllers. The TickerTAIP [3] pioneered the
Parallel RAID architecture for supporting parallel disk I/O
with multiple controllers. Still, these parallel disk arrays
are implemented as a centralized I/O subsystem. These
RAID subsystems are often attached to a storage server or
used as network-attached disks [10].

For this reason, we consider the classic disk arrays as a
centralized RAID. In contrast, this paper deals only with
distributed RAID architectures. This concept was
investigated by Stonebraker and Schloss [25]. The actual
prototyping of distributed RAIDs did not start until the
Petal [17] and the Tertiary Disk project [26].

A distributed RAID is constructed out of dispersed
disks, which are physically attached to different computer
hosts through the network connections. The Petal was built
with a chained declustering [12]. The Tertiary Disk was
built with a RAID-5 architecture using software support by
the serverless xFS file system [2].

The architecture and performance of a new distributed
RAID architecture, namely the RAID-x, are reported here.
The level x is yet to be rectified with an appropriate code
assignment by the RAID Advisory Board [22]. Our RAID-
x differs from existing distributed RAID architectures in
many aspects.

First, the RAID-x is built with a new disk mirroring
technique, called orthogonal striping and mirroring
(OSM). The small write problem associated with RAID-5
is completely eliminated in this OSM approach. Second,
we use cooperative disks instead of independent disks.

To enable true cooperation among dispersed disks, we
have developed cooperative disk drivers (CDD) at the
kernel level. Data consistency is maintained inside the
CDD, instead of using a central network file system.
Therefore, unmodified file system interface is available to
users. Third, the RAID-x was specially designed over
distributed disks for I/O-centric cluster computing.

The rest of the paper is organized as follows: Section 2
describes the Trojans cluster architecture and also presents
an overview of distributed RAID architectures. Our
RAID-x approach is compared with the architectural
designs in Berkeley Tertiary Disks running the xFS,

0-7695-0556-2/00 $10.00 © 2000 IEEE
171

Digital Petal system and Princeton TickerTAIP parallel
RAID system. Section 3 introduces the OSM scheme and
the RAID-x architecture. We also compare RAID-x with
RAID-1 for designing distributed disk arrays. Section 4
describes the architecture of the cooperative disk drivers
and data consistency checking mechanisms.

Section 5 presents the benchmark performance results
obtained on the Trojans cluster. Section 6 explains the
striped staggering checkpointing scheme we developed on
top of RAID-x. Section 7 gives out the preliminary
experimental results on striped checkpointing overhead
and the analysis of reliability issue of proposed
checkpointing scheme. Section 8 summaries the
contributions and identifies extended research work.

2. USC Trojans Cluster Architecture

The prototype Trojans cluster was built with 16
Pentium PCs (Pentium II 400MHz) running the Linux
operating system (Redhat Linux 6.0 with kernel 2.2.5).
These PC nodes are connected by a 100 Mbps Fast
Ethernet switch.

At present, each node is attached with a 10-GB disk.
With 16 nodes, the total capacity of the disk array is 160
GB. All 16 disks form a single I/O space. Figure la shows
the front view of the prototype Trojans cluster. This
cluster is connected to Internet over fiber links.

As illustrated in Fig.lb, we subdivide the cluster nodes
into three functional classes. The entry partition is for the
user to access the cluster through Internet/Intranet. Nodes
in the service partition provide the services requested by
users. The database partition supports database or
information accesses operations. Nodes in the three
partitions can be dynamically reconfigured to suit special
application demands.

To build a distributed RAID with a SIOS, our research
objectives are identified in three aspects: (i) A single
address space for all data blocks in the cluster. This means
that the users can utilize all disk storage in a cluster
without knowing the physical locations of the data blocks
referenced or of the files used, (ii) High scalability,
availability, and compatibility with current cluster
architectures and applications must be maintained, (iii)
Remote disk I/O operations should have performance at
least comparable to that of local disk I/O operations.

Previous approaches to achieve SIOS were attempted at
the user level, file-system level, and device-driver level.
The user-level approach has the lowest cost and higher

portability across different platforms. The Parallel Virtual
File System (PVFS) [18] and the Remote I/O project [9]
are two examples. However, this approach does introduce
two problems: First, users still have to use specific APIs
and identifiers to exploit full functionality of the packages.
Second, using system calls to perform network and file I/O
are too expensive to meet real-time or cluster computing
requirements.

(a) A front-view of the Trojans Cluster

Database
Partition

Entry
Partitior

Service
Partition

Service Flow Dataflow

(b) I/O-centric cluster architecture

Fig. 1. Trojans cluster built at USC Internet and
Cluster Computing Laboratory

172

Distributed file systems provide another approach to
achieving SIOS to the users. Users can access remote data
as if it is accessed locally. The serverless xFS system
developed at Berkeley [2] and the Solaris MC project are
good examples. However, this approach has its own
shortcomings.

Changing the file system does not guarantee high
compatibility with current applications. This will
discourage the deployment of the distributed file systems
in clusters. What we want to achieve is a SIOS with an
unmodified file system to achieve high portability with a
low cost/performance ratio.

Device-driver level designs provide SIOS not only to
the users, but also to the file system. We choose this
approach, because it solves most of the above problems
and shortcomings. Digital Petal project [17] uses user
level device driver design to enable remote I/O access.

All physically distributed disks can be viewed as a
collection of virtual disks. Each virtual disk can be
accessed as if it is a local disk. Petal developed a
distributed file system, called Frangipani [27]. In Petal, the
actual data transfer is handled at the user level.

We have developed Cooperative Device Drivers
(CDD). These drivers work cooperatively at the kernel
level. Data consistency is maintained by the CDD.
Unmodified file system is used to achieve high portability
and compatibility.

The development of the RAID-x architecture was
inspired by previous projects. The pioneering RAID work
at Berkeley [2] [6] [8] and at CMU [10], the TickerTAIP
project [3], the Tertiary Disk project [25], chained
declustering [12], and Petal project [17] all have

influenced our design philosophy.

Our RAID-x design appeals especially to serverless
clusters. The major innovation in our design lies in the
cooperation of distributed disks in a serverless cluster
environment. The cooperation is established at the Linux
kernel level, rather in the user space.

Petal and Tertiary Disk achieve the SIOS at the levels
of user level device drivers and xFS file system,
respectively. The Digital Petal virtual disks was built in
1996, the Berkeley Tertiary Disk project was reported in
1998, the Princeton TickerTAIP parallel RAID was
designed at 1993, and our RAID-x built at USC Trojans
project in 1999.

The entries in Table 1 distinguish the four parallel and
distributed RAID architectures in four aspects. All four
I/O subsystems support SIOS, however by quite different
mechanisms. All four parallel and distributed RAIDs
support parallel disk I/O at the block level.

The first distinction among the four distributed RAIDs
lies in their architectures. The Petal virtual disk array uses
chained declustering, Tertiary Disk applies the RAID-5,
TickerTAIP uses parallel disk array controllers within
single RAID server to implement parallel RAID-5, and we
use the new RAID-x architecture.

Our major contributions lie in the creation of the OSM
and CDD mechanisms. The enabling mechanisms for
SIOS are also quite different among the four architectures.
TickerTAIP achieves SIOS by event-driven simulation
among all the worker nodes. We realize the SIOS with
cooperative device driver at the Linux kernel level.

Table 1 Parallel and Distributed RAID Projects at USC, Princeton, Digital and Berkeley

System
Attributes

USC Trojans
RAID-x

Princeton
TickerTAIP PI

Digital
Petal [17]

Berkeley Tertiary
Disk [26]

RAID
Architecture
Environment

Orthogonal striping
and mirroring over
The RAID-x in a
Linux cluster

RAID-5 with
multiple
controllers in a
single server

Chained
declustering in
an Unix cluster

RAID-5 built with
a Solaris PC cluster

Enabling
Mechanism for
SIOS

Cooperative device
drivers in Linux
kernels

Single server
implements the
SIOS directly

Petal device
drivers at user
level

xFS storage servers
at file system level

Data Consistency
Checking

Locks at device
driver level

Sequencing of
user requests

Supported by
Frangipani
file system

Locks in the xFS
file system

Communication
Mechanism

TCP/IP
Sockets

Not Available UDP/IP
Sockets

RPCat
user level

173

Even both Petal and RAID-x choose the device driver
approach, their implementations are very different under
UNIX user level and Linux kernel level. Petal does
provide a global name space for logical disks in the
cluster. We want to extend the global name space to each
data block in the cluster.

The four RAID architectures differ in their handling of
the data consistency problem in establishing a distributed
file management system. We implemented the lock
mechanisms within the device drivers. Our performance
results are generated in Linux cluster environment.

For inter-node communications, we use the TCP/IP
sockets. Regardless of their differences, we believe that
hardware and software experiences learned from
distributed RAID projects will be complementary to each
other in many aspects.

For parallel writes, the RAID-x has lower access times
than RAID-1. These claims are based on benchmark
results to be presented in section 5. To sum up, the RAID-
x scheme demonstrates scalable I/O bandwidth with much
reduced latency in a cluster environment.

Using the CDDs, a cluster can be built serverless and
offers remote disk access directly at the kernel level.
Parallel I/O is made possible on any subset of local disks,
because all distributed disks form a SIOS. No heavy cross-
space system calls are needed to perform remote file
accesses.

3. Orthogonal Striping and Mirroring
Over the years, many techniques have been developed

to overcome the small-write problem [6] [22], such as
parity logging [24], floating parity and data [20], parity
striping [7], disk caching disk [13], log-structured disk
subsystem [19] and chained declustering [12]. The concept
of OSM started with our earlier work [16].

In this paper, we present the design details of RAID-x
and prove its effectiveness through experimentation.
Figure 2 shows the architecture of RAID-x (Fig.2b) along
with RAID-1 (Fig.2a) architectures. The original data
blocks are denoted as Di in the unshaded boxes. The
corresponding image blocks are distinguished with primes,
such as Di' in the shaded boxes. The RAID-x completely
avoids the small write problem.

As shown in Fig.2b, data blocks in RAID-x are striped
across the disks on the top half of the disk array. Low
latency and high bandwidth of RAID-0 are preserved in
RAID-x architecture. The image blocks of other data

blocks in the same stripe are clustered in the same disk
vertically. All image blocks occupy the lower half of the
disk array. On a RAID-x, the images are copied and
updated at the background, thus saving the overhead time.

Consider the top stripe of data blocks DO, Dl, D2, and
D3 in Fig.2b. Their image blocks DO', DI', and D2' are
stored in Disk 3, while the image block D3' in disk 2. The
rule is that no data block and its image should be mapped
in the same disk. Full bandwidth is achievable in parallel
disk I/O across the same stripe.

For large write, the data blocks are written in parallel to
all disks simultaneously. The image blocks are gathered as
a long block written into the same disk with a reduced
latency. In case of the small write of a single block, the
writing is directed to the data block, while the image block
is postponed to write to the disk until all the clustered
image blocks are ready.

DiskO Diskl Disk 2 Disk 3

DO DI DO» l)V
D2 D3 D2> ID3'

D4 D5 !D4» IDS'*'
D6 D7 ;T)6> I.D7'"
D8 D9 LD8r tw-"<
DI DI D10 If mi

(a) Duplicated striping in RAID-1

DiskO Diskl Disk 2 Diskl

DO Dl D2 D3

D4 D5 D6 D7

D8 D9 D10 DU

D9> D6' ; D.V DO'
; D10' D7» D4' i or

DU' D8' D5' !ä^

(b) Orthogonal striping and
mirroring in RAID-x

Fig. 2 The mirroring schemes in
RAID-1 and RAID-x

We define a pair of functions for the logical data block
to physical RAID mapping: data-mapping-function and

174

mirror-mapping-function. The data-mapping-function is a
one-to-one function which maps a logical RAID block
address A to a physical disk address (DiskNo, StripeNo).
Mirror-mapping-function maps the corresponding image
block of a logical block address to a physical disk address.
The A, DiskNo, and StripeNo count from 0.

We define n as the number of disks in the array, k as
the number of blocks per disk, and A as the logical RAID
block address. Table 2 gives out the data-mapping
function and mirror-mapping function for RAID-1 and
RAID-x. The notation mod stands for arithmetic modulo
operation. Table 2 also lists the expected peak
performance of two RAID architectures.

The maximum bandwidth of a disk array reflects the
ideal case of parallel accesses of all useful data blocks. B
stands for the bandwidth per disk. In the best case, a full
bandwidth of nB can be delivered by RAID-x. The RAID-
1 can only deliver half of the full bandwidth. The parallel
read or parallel write time of a file of m blocks depends on
the read or write latencies (R and W) per block, the array
size n, and the file size m.

The entries given in Table 2 are expected peak
performance of parallel disk I/O operations, excluding all
software overhead or network delays. In case of large
reads, mR/n latency is expected to perform m/n reads
simultaneously for RAID-x, while RAID-1 needs to
double the latency. For small read of a single block, both
require R time to finish the read.

For parallel writes, as in RAID-x, the image blocks are
clustered in one disk, written to the disk at the same time.
That is, m/n(n-\) image blocks are written together to each
disk. Therefore, the large write latency is reduced to mW/n
+ m/n(n-l).

For small writes, our RAID-x takes only W time to
write the data block. The writing of the image blocks will

be done later when all the stripe images are clustered at
the same disk. This clustered writing can be done at the
background, overlapping with the regular data writes.

Table 2 also shows the maximum number of disk
failures that each disk array can tolerate. The RAID-x can
tolerate single-disk failures, RAID-1 is more robust than
RAID-x. The experimental results in section 6 will verify
the accuracy of the expected performance.

Figure 3 illustrates an example of the two-dimensional
RAID-x architecture with 3 disks attached to each node.
The maximum number of disks attached to each SCSI
controller is determined by the SCSI controller used. For
Wide/Fast SCSI-II, 15 disks can be connected to one
single SCSI controller.

In order to implement SIOS, addresses of all the data
blocks are linearly continuous among all the member
disks. Only the disks with same position corresponding to
each node belong to one stripe group. All the disks within
stripe group can be accessed in parallel.

Different stripe groups are independent. As all the disks
within one node are connected through SCSI bus, different
stripe group can be accessed in pipeline. The overlap
degree for the different stripe group is depends on the
property of SCSI bus used.

The Trojans cluster is presently being upgraded to 4
disks per node. Using 20 GB SCSI disks, the next RAID-x
array will have 1.28 TB on 64 disks. In the future, the
Trojans cluster will scale to hundreds of PC nodes or
more, using next generation of microprocessors and
Gigabit switched connections.

Using the Fast Ethernet, the aggregate I/O bandwidth is
at most 12.5 MB/s. As reported in section 5, we have
achieved 9.7 MB/s bandwidth for large parallel reads. This
represents 78% efficiency in the cluster utilization.

Table 2 Architectural Characteristics of RAID-1 and RAID-x
Performance Indicators

Data Block
mapping

Mirror-mapping
function

Max. Bandwidth
Estimates
of Parallel
Read/Write
Time

DiskNo.
StripeNo.
DiskNo.

RAID-1

A mod nil
jlAIn) mod k

RAID-x

A mod«

StripeNo.
Read/Write
Large Read
Small Read
Large Write
Small Write

Max. Fault Coverage

nil + A mod nil
(lA/n) mod k

nB/1
ImR/n

R
2mW/n

W
nil disk failures

(2 Alri) mod k
(-(Al(n - 1)) mod kll - 1) mod n

kll + (A/(n - 1) n) (n - 1) + A mod (n - 1)
nB

mR/n
R

mW/n + m/n(n-l)
= W

Single disk failure

175

NodeO

P/M

Nodel

CDD

Figure 3. Distributed RAID-x architecture, shown with a 4 x 3 configuration

(P: processor, M: memory, CDD: cooperative disk drivers. All shaded blocks
are mirrored images of the corresponding unshaded data blocks)

With a 128-node cluster and 8 disks per node, the disk
array could be enlarged to have a total capacity exceeding
20 TB, suitable for any large-scale, database or
multimedia applications. With an enlarged array of 128
disks, the cluster must be upgraded to a Gigabit switched
connection. Based on the growing I/O bandwidth, the
Trojans cluster and its RAID-x architecture show a very
promising future in term of scalability and availability.

4. Cooperative Disk Drivers

The Single I/O space (SIOS) is crucial to building
scalable cluster of computers. A loosely coupled cluster
use distributed disks driven by different hosts

independently. The independent disk drivers handle
distinct I/O address spaces. Without the SIOS, remote disk
I/O must be done by a sequence of time-consuming
system calls through a centralized file server (such as the
use of NFS) across the cluster network.

On the other hand, the CDDs work together to establish
the SIOS across all physically distributed disks. Once the
SIOS is established, all disks are used collectively as a
single global virtual disk shown in Fig.4a.

Each node perceives the illusion that it has several
physical disks attached locally. Figure 4b shows the
internal design of a CDD. Each CDD is essentially made
from three working modules. The storage manager
receives and processes the I/O requests from remote client
modules. The client module redirects local I/O requests to

176

remote disk managers.

The consistency module is responsible for maintaining
data consistency among distributed disks. A CDD can be
configured to run as a storage manager or as a client, or
both at the same time. There are three possible states of
each disk: (1) a manager to coordinate use of local disk
storage by remote nodes, (2) a client accessing remote
disks through remote disk managers, and (3) both of the
above functions.

(a) A global virtual disk with a SIOS
formed by cooperative disks

Cooperative Disk Driver (CDD)

Data Consistency Module

Communications through the network

(b) The CDD architecture

Figure 4 Single I/O space in RAID-x built
at Linux kernel level.

The Petal virtual disk array uses chained declustering,
Tertiary Disk applies the RAID-5, and we use the new
RAID-x architecture. The major innovations in RAID-x
architecture lie in the creation of the orthogonal striping
and mirroring in mapping the data blocks and their images
on the distributed disks.

The OSM scheme outperforms the chained declustering
scheme mainly in parallel write operations. The RAID-x
scheme demonstrates scalable I/O bandwidth with much
reduced latency in a cluster environment. Both Petal and
Tertiary Disk achieve the SIOS at the user level. We
achieved the SIOS at the Linux kernel level. Using the
CDDs, the cluster can be built serverless and offers remote
disk access directly at the kernel level.

Parallel I/O is made possible on any subset of local
disks, because all distributed disks form SIOS. No heavy
cross-space system calls are needed to perform remote file
access. A device masquerading technique is adopted here.

•Multiple CDDs run cooperatively to redirect I/O requests
to remote disks.

Data consistency problems arise when multiple cluster
nodes have cached copies of the same set of data blocks.
The xFS approach and the Frangipani approach maintain
the data consistency at the file system level. In our design,
data consistency checking is maintained at the disk driver
level.

Our approach simplifies the design and implementation
of distributed file management services. Data consistency
is maintained by all CDDs with higher speed and
efficiency at the data block level. We introduced a special
lock-group table for developing distributed file
management services.

Each record in this table corresponds to a group of data
blocks that have been granted to a specific CDD client
with write permissions. The write locks in each record are
granted and released atomically. This lock-group table is
replicated among the data consistency modules in the
CDDs. Which guarantee that file management operations
are performed atomically.

5. Benchmark Performance Results

To test the cooperative operations among the CDDs
residing on individual PCs, we use all 16 PCs as I/O
storage servers. We use the same hardware platform to
compare the relative performance of two disk array
architectures: RAID-1 and RAID-x, all supported by
CDDs. The NFS is used as a baseline for comparison
purposes. Presently, Linux kernel version 2.2.5 supports
the RAID-0, RAID-1, and RAID-5 configurations.

We implemented the RAID-x based on the RAID-0
implementation supported in the Linux kernel. This poses
no difficulty in mapping the data blocks onto the top half
of each disk. The mapping of the image blocks in the

177

RAID-x configuration is done by a special address
translation subroutine residing in each CDD. To study the
maximum I/O bandwidth of the disk array, the caches in
the storage servers are bypassed by issuing a special sync
command in the Linux kernel.

For reads or writes, the file size chosen was 10MB.
Each block (stripe unit) in the disk is 4 KB. This means
that a 10-MB file is striped uniformly across all 16 disks
in consecutive stripe groups. We have performed three
benchmark experiments.

The first two experiments measure the parallel I/O
performance in terms of the throughput or the aggregate
I/O bandwidth'. The first experiment tests the throughput
of RAID-x, RAID-1 and the NFS against the number of
client requests. The second test checks the bandwidth
against the disk array size for RAID-1 and RAID-x.

The distributed file system is evaluated in the third
experiment using the standard Andrew Benchmark [11]
consisting of a sequence of basic file system testing
programs. There are five phases in the Andrew
benchmark.

The first phase recursively creates subdirectories. The
second phase measures the data transfer capabilities by
copying files. The third phase recursively examines the
status of directories and the associated files. The fourth
phase scans the contents of each file. The final phase
compiles the files and links them together.

5.1. Bandwidth Results and Analysis
Figure 5 shows the performance of RAID-x, RAID-1

and NFS architectures. The results on parallel read are
given in Fig. 5a. In this test, each client reads a 10MB-
long file from all the disks. Therefore, the test is truly
focused on the parallel I/O capability of the disk array. All
the files are set to be uncached and each client only reads
its own private file. All read operations are performed
simultaneously, with the help of an MPI_Barrier() call.

The NFS throughput is limited at 2.6 MB/s regardless
of the number of clients, due to the fact that sequential I/O
is performed by the NFS on a central server. As the
request number increases, the NFS becoming the
bottleneck shows a declining performance. RAID-x
architectures scale up to a bandwidth of 9.7 MB/s for 16
clients. RAID-1 lags behind with a show of 6.33 MB/s for
16 clients.

Fig. 5b shows the write bandwidths of the RAID-x,
RAID-1 and NFS subsystems. In this test, each client
writes a 10MB-long file to the cache and issues a special
syncQ call to flush the data blocks to the disks. All write

operations among the clients are also synchronized in
these experiments.

The NFS scales in performance up to 4 requests. As the
requests exceed 4, the NFS bandwidth drops to a low
2.77MB/s. For writes of a large file, RAID-x achieves the
better scalability with a 9.02MB/s for 16 clients. RAID-1
saturates early to a 5.95MB/s, due to the fact that only half
of the disks are used for data storage.

12

in

E

€8

i

m
• .
O)
0)
w

Ö) d

<

4 8 12
Number of Clients

(a) Parallel read

16

10

£ 8

•1*
1 5
a
«0 4
o
co o
O) J

a>
S>2
at
< 1

-
■*- RAID-x
♦ RAID-1

-

•

4 8 12 16
Number of Clients

(c) Parallel write

Fig. 5 Aggregate I/O bandwidth of RAID-x,
RAID-1 and NFS with increasing clients

5.2. Raw I/O Performance of RAID-x
Raw I/O performance is plotted in Fig.6 against the

disk array size. The results are shown for two RAID
architectures. Again, all caches are bypassed in the
experiments and the number of client processes is fixed at
16. The read ranking differs from the write ranking

178

sharply in these plots.

For parallel reads (Fig. 6a), the data size has very little
effects on the relative standings of two RAIDs. It is
important to note that the read bandwidth of RAID-x
approaches 9.7 MB/s, about 78% of 12.5 MB/s, the limit
of a 100 Mbps Fast Ethernet. The difference is attributed
mainly to the CDD protocol and TCP/IP overheads
incurred.

4 8 12

Number of I/O Nodes

(a) Parallel read

10

;» 9
CO

5 7
■a
S 6
■a
c 5

CD

o> 3
SI
g2

< 1

- — RAID-x
— RAID-1

-

2 4 8 12 16
Number of I/O Nodes

(b) Parallel write

Fig. 6 Aggregate I/O bandwidth of RAID-x and
RAID-1 with increasing disk numbers

For parallel writes, the large write bandwidths of
RAID-x and RAID-lare 9.02MB/s and 5.72MB/s,
respectively. Table 3 shows the improvement factor of 16
clients over 1 client in using the 16-node Trojans cluster.
Comparing with Berkeley xFS results, our 1-client
bandwidth is quite high due to well-exploited parallelism
in 16-way striping across the disk array.

For this reason, the improvement factor is lower than
that achieved by the xFS system. Again, the RAID-x
demonstrated the highest improvement factor among the

three distributed RAID architectures and the NFS.

5.3. Andrew Benchmark Results
Andrew benchmark tests the performance of a network

file system. In this experiment, the Andrew benchmark
was executed on four I/O subsystems with respect to
increasing number of client requests up to 32. The
performance is indicated by the elapsed time in executing
Andrew benchmark on the target I/O subsystem. Figure 7
shows the benchmark results for RAID-x and NFS.

80

70-

8" 60

«T 50

P 40

I 30
Q.
— 20

10

0

Compile

1 Read File

■ Make Dir

D Scan Dir

Copy Files

8 16

Number of Clients

(a) NFS performance

24 32

8 16 24 32

Number of Clients

(b) RAED-x performance

Fig. 7 Elapsed time to execute the Andrew
benchmark on the Trojans cluster

These tests demonstrate how the underlying storage
structures can affect'the performance of the file system
being supported. Each local file system on the I/O nodes
mounts the "virtual" storage device provided by the CDD.
The number of I/O nodes is fixed at 16. Each client only
executes its own private copy of Andrew benchmark. We
use the Linux ext2 local file system to keep the operations
on metadata atomic.

179

Table 3 Achievable I/O Bandwidth and Improvement Factor on Trojans Cluster

I/O
Operations

NFS RAID-x

1 Client 16 Clients Improve 1 Client 16 Clients Improve

Large Read 2.58 MB/s 2.3 MB/s 0.89 3.36 MB/s 9.65 MB/s 2.87

Large Write 2.11 MB/s 2.77 MB/s 1.31 3.12 MB/s 9.02 MB/s 2.89

Small Write 2.47 MB/s 2.81 MB/s 1.34 3.22 MB/s 9.13 MB/s 2.84

Figure 7a shows the benchmark result of NFS, while
Figures 7b shows the results of RAID-x. It is obvious that
the elapsed time in using NFS increases sharply with the
number of clients, while the RAID-x scheme can sustain
the same workload. For 16 clients, the elapsed times for
RAID-x and NFS are 6.8 and 33 seconds, respectively.

For 32 clients, these numbers increase to 7.41 and 75.5,
respectively. From Fig. 7a, NFS shows a worsening
performance especially in reading the files, scanning
directories, and copying files operations. The RAID-x
architectures, in contrast, do not share this weakness.

6. Striped and Staggered Checkpointing

The parallel I/O characteristic of distributed RAID-x
architecture can be applied to achieve fast checkpointing
in the cluster system. Striped checkpointing method is
storing checkpointing file over distributed RAID-x
system. To alleviate the network contention, the staggered
writing skill is combined to striped checkpointing.

Simultaneous writing of multiple processes in
coordinated checkpointing may cause a network
contention and I/O bottleneck problem to a central stable
storage. As suggested by Vaidya [28], staggered writing of
the checkpoints taken by different nodes reduces the above
contentions. The time lag between staggered
checkpointers can alleviate the bottleneck problem
associated with the central stable storage.

The basic concept of staggered checkpointing allows
only one process to store the checkpoint at a time. A token
is passed around to determine the timing. When a node
receives the token, the node starts to store the checkpoint.
After finishing checkpointing, the node passes the token to
the next node.

Our work on coordinated checkpointing was inspired
by the previous works by Cao [4] and associates, Chandy
and Lamport [5], and Vaidya [28]. In our scheme, several
nodes within the cluster form a striped group. Only the

nodes within the same striped group checkpoint
simultaneously and each of the groups checkpoints in a
staggered way.

Figure 8 shows the concept of striped staggering in
coordinated checkpointing on the RAID-x disk array. The
drawing shows a 12-disk RAID-x array configured as a 2-
dimensional structure, i.e. a 4 x 3 configuration. Each
stripe corresponds to the degree of parallelism (DOP) in
concurrent accesses of four disks in the 4 x 3 disk array.

Time

StripeO

*" Stripe!

y Stripe!

C: Checkpointing overhead

S: Synchronization overhead

Fig. 8. Striped checkpointing with staggering
on a distributed RAID-x

Successive stripes are accessed in a staggered manner
from different stripes on successive 4-disk groups, as
demonstrated in Fig.3. Staggering implies pipelined
accesses of the disk array. We first proposed the idea of
striped checkpointing in [23]. There exists trade-off
between stripe parallelism and staggering depth.

For example, the layout in Fig. 8 can be reconfigured

180

from 4x3toa6x2 configuration, if needed. Higher DOP
leads to higher aggregate disk bandwidth. Higher
staggering degree can cope better the network contention
problem. The staggered writing way can reduce the
average checkpointing overhead. However, in the case of
blocking algorithm, the staggered writing method also
introduces the synchronization time.

Although blocking algorithm is the simpler than non-
blocking algorithm to achieve coordinated checkpointing
in parallel processing, it suffers from large amount of
overhead. Every node should be blocked during the
checkpointing procedure. The basic idea is to shut down
all processes temporary to define consistent state. After all
the processes are blocked and all the messages are clearly
delivered, the global checkpoints are stored. In the
staggered writing case, the blocked time increases
according to the number of node.

1.21 221 321 4.21 521 621 7.21 E11

checkpoint file size (IVB)

Fig. 9 Checkpointing overhead of staggered
writing on distributed RAIDs

7. Overhead and Reliability Analysis

Figure 9 shows the advantage of striped staggering on
distributed disk array, as compared with staggering in
Vaidya scheme [28] on a centralized disk and the
conventional approach using the NFS server. These
preliminary results were measured on the small prototype
Trojans cluster.

Our striped checkpointing scheme has the lowest
overhead, especially when the checkpoint files becomes
very large. Through continued experiments on the
enlarged 64-disk RAID-x cluster, we will reveal more
experimental results on the checkpointing overhead and
rollback recovery latency.

Table 4 summarizes three checkpointing schemes we
have compared in this paper. Their advantages and
shortcomings are identified. Suitable applications for each
checkpointing scheme are also elaborated.

Using the OSM, each striped checkpointing file has its
mirrored image in its local disk. For each node, transit
failure can be recovered from its mirrored image in local
disk. Permanent failure of a disk can be recovered from
the striped checkpointing among the distributed disks.

The I/O performance in a degraded mode of OSM is
the same as the RAID-0 performance in a normal mode.
The striped checkpointing can be read in parallel from
RAID-x. The checkpointing recovery latency can be
shortened gftatly.

Table 4 Summary of Three Coordinated Checkpointing Schemes

Checkpointing Scheme Advantages Shortcomings • Suitable applications

Simultaneous writing to Simple, Has network and I/O Small size of checkpoint,
a central storage no inconsistent state contentions, NFS is single small number of nodes,
(The NFS scheme) point of failure low I/O operation
Staggered writing to a Eliminate the network and I/O Network bandwidth is Small size of checkpointers,
central storage contention wasted, NFS is a single small number of nodes,
(Vaidya scheme) point of failure low I/O operations
Striped staggering Eliminate network and I/O Can not tolerate more Large size of checkpointers,
checkpointing on any contentions, low checkpoint node failures within large number of nodes,
distributed RAID overhead, fully utilize network each stripe group low communication,
(Our scheme) bandwidth, tolerate multiple

failures among stripe groups'
I/O intensive applications

181

According to the mirror mapping of the OSM, the
proposed RAID-x architecture can recover from any single
disk failure in each stripe group. The total number of disk
failure depends on the number of stripe groups to be
accessed. For the 4 x 3 configuration in Fig.3, three disk
failures in three stripe groups can be tolerated. An indepth
analysis of the reliability of the proposed checkpointing
RAID-x architecture is given in [23].

8. Conclusions

The development of the new RAID-x architecture was
inspired by several research projects. The xFS and the
Tertiary Disk projects at Berkeley [26], and the Petal
project at Compaq Digital [17], all have influenced our
design philosophy. The main difference between our
approach and these projects is that we use the orthogonal
striping and mirroring (OSM) to preserve both parallel
disk accesses and staggered (pipelined) checkpointing of
successive stripes.

We built data consistency checking in the device driver
level. The CDDs work cooperatively to perform data
transferring and consistency checking. With the support of
CDDs, the design of a distributed file system can be
focused on the concurrent file access policies and the
related performance issues. In this case, the complexity of
the distributed file system can be greatly reduced Our
SIOS disk array separates the I/O subsystem into a
distributed file system and a set of distributed CDDs.

All SSI services are provided by the CDDs while the
file system modification is reduced to a minimum.
Furthermore, some desired SSI services for cluster
computing can be built on top of the SIOS. In this aspect,
the SIOS is a very powerful middleware infrastructure to
achieve single-system image. Benchmark performance
results show that our distributed RAID can achieve
scalability, performance, and availability in cluster
computing.

The RAID-x outperforms the RAID-1 in the Linux
cluster environment. For parallel reads with 16 active
clients, the RAID-x achieved 9.7 MB/s throughput, 1.5
and 3.7 times higher than using RAID-1 and NFS,
respectively. Running the Andrew benchmark, RAID-x
results in a 17% cut in elapsed time, compared with that
experienced on a RAID-1. The achieved throughput
corresponds to 78% of the peak bandwidth deliverable by
the Fast Ethernet. Scalable I/O bandwidth makes the
RAID-x especially appealing to I/O-centric cluster
applications.

The OSM mechanisms can be built not only on Linux
PC clusters, but also on any Unix workstation clusters.
These architectural features differ from the user-level
designs in Berkeley Tertiary Disk and Digital Petal virtual
disks. The new mechanisms support not only single I/O
space, but also distributed shared memory, checkpointing,
and distributed file management at the kernel level without
using cross-space system calls.

The prototype RAID-x has the following open issues
yet to be solved in future R/D efforts. These extended
works are among the tasks planned in the next phase of
our Trojans cluster project.

(1). We expect even Higher performance as we continue
improving the CDD protocol. The current hand shaking
protocol could be improved with prefetching techniques.
The TCP/IP used in our prototype is known for its high
overhead. Plan is underway to port the whole cluster
system with a low-latency protocol, expecting to further
reduce the communication overhead.

(2). We plan to design a distributed file system with I/O
load balancing capabilities along with an enlarged
distributed disk array onto our Trojans cluster in the
future. In addition to consider the RAID-1, RAID-5, and
RAID-x configurations, we will also consider other
configurations, such as RAID-10 and chained
declustering.

(3). Our PC nodes in the Trojans cluster act as clients
as well as storage servers at the same time. These dual
roles affect the performance of the I/O nodes. We believe
that the I/O performance can be further improved with an
enlarged cluster size.

(4). We plan to develop a suite of middleware with
striped staggering checkpointing to support process
migration. Based on future Trojans cluster configuration,
more detailed analysis of the DOP and depth of staggering
will be conducted.

(5). New message logging algorithms for non-blocking
striped checkpointing will be developed to reduce
checkpointing overhead furthermore. We also plan to
design an application dependent checkpointing scheme to
elaborate the efficiency of striped checkpointing.

Lots of interesting research work can be generated out
of a very large disk array in real-life applications. Potential
applications are encouraged in biological sequence
analysis, collaborative engineering design, clusters or
grids for E-commerce, specialized digital libraries, and
distributed multimedia processing.

182

References

[1] C. Amza, A. L. Cox, S. D. Wakadas, P. Keleher, H. Lu,
R. Rajamony, W. Yu, and W. Zwaenepoel,
"TreadMarks: Shared Memory Computing on Networks
of Workstations", IEEE Computer, Vol.29, No.2, 1996,
pp. 18-28.

[2] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D.
Roselli, and R. Wang. "Serverless Network File
Systems". ACM Trans, on Computer Systems, Jan. 1996,
pp.41-79.

[3] P. Cao, S. B. Lim, S. Venkataraman, and J. Wilkes, "The
TickerTAIP Parallel RAID Architecture", ACM Trans,
on Computer System, Vol.12, No.3, August 1994,
pp.236-269.

[4] G. Cao and M. Singhal, "On Coordinated Checkpointing
in Distributed Systems", IEEE Transactions on Parallel
and Distributed Systems, Vol. 9, No. 12, pp. 1213-1225,
Dec. 1998.

[5] K. M. Chandy and L. Lamport, "Distributed Snapshots:
Determining Global States of Distributed Systems,"
ACM Trans. Computer Systems, pp. 63-75, Feb. 1985.

[6] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz and D.
A. Patterson; "RAID: High-Performance, Reliable
Secondary Storage", ACM Computing Surveys, Vol.26,
No.2, June 1994, pp.145-185.

[7] S. Chen and D. Towsley, "The Design and Evaluation of
RAID 5 and Parity Stripping Disk Array Architecture",
Journal of Parallel and Distributed Computing, Vol.17,
1993,pp.58-74.

[8] M. Dahlin, R. Wang, T. Anderson, D. Patterson.
"Cooperative Caching: Using Remote Client Memory to
Improve File System Performance". Proceedings of
Operating System Design and Implementation, 1994.

[9] I. Foster, D. Kohr, Jr., R. Krishnaiyer, and J. Mogul.
"Remote I/O: Fast Access to Distant Storage". Proc. of
the Fifth Annual Workshop on I/O in Parallel and
Distributed Systems, November 1997, pp. 14-25.

[10] G. Gibson, D. Nagle, K. Amiri, F. Chang, H. Gobioff, E.
Riedel, D. Rochberg and J. Zelenka, "A Cost-effective,
High-bandwidth Storage Architecture", Proc. of the 8th
Conf. on Architectural Support for Programming
Langagues and Operating Systems, 1998.

[11] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebotham, and M. J. West,
"Scale and Performance in a Distributed File System".
ACM Trans, on Computer System, Vol.6, No.l, pp.51-81,
February 1988.

[12] H. I. Hsiao and D. DeWitt, "Chained Declustering: A
New Availability Strategy for Multiprocessor Database
Machines", Proc. of 6'h International Data Engineering
Conf, 1990, pp.456-465.

[13] Y. Hu and Q. Yang, "DCD - Disk Caching Disk: A New
Approach for Boosting I/O Performance", Proc. of the
23rd International Symp. On Computer Architecture,
1996, pp. 169-177.

[14] K. Hwang, H. Jin, E. Chow, C.L. Wang, and Z. Xu.
"Designing SSI Clusters with Hierarchical
Checkpointing and Single I/O Space". IEEE
Concurrency Magazine, March 1999, pp.60-69.

[15] K. Hwang and Z. Xu. Scalable Parallel Computing:
Technology, Architecture, Programming. McGraw-Hill,
New York, 1998.

[16] H. Jin and K. Hwang, "Striped Mirroring Disk Array",
Journal of Systems Architecture, Elsevier Science, The
Netherlands, March 2000.

[17] E. K. Lee and C. A. Thekkath. "Petal: Distributed Virtual
Disks". Proceedings of the Seventh International conf.
on Architectural Support for Programming Languages
and Operating Systems, Cambridge, MA, October 1996,
pp.84-92.

[18] W. B. Ligon and R. B. Ross. "An Overview of the
Parallel Virtual File System". Proceedings of the 1999
Extreme Linux Workshop, June 1999.

[19] B. McNutt, "Background Data Movement in a Log-
Structured Disk Subsystem", IBM Journal of Research
and Development, Vol.38, No.l, January 1994, pp.47-58.

[20] J. Menon, J. Roche and J. Kason, "Floating Parity and
Data Disk Arrays", Journals of Parallel and Distributed
Computing, January 1993.

[21] G. F. Pfister. "The Varieties of Single System Image",
Proceedings of IEEE Workshop on Advances in Parallel
and Distributed System, IEEE CS Press, 1993, pp.59-63.

[22] RAID Advisory Board, The RAIDbook, Seventh Edition,
December 1998.

[23] W. Ro and K. Hwang, "Striped Staggering for
Coordinated Checkpointing on Distributed RAIDs",
Technical Report, Department of EE-Systems,
University of Southern California, Feb. 10,2000.

[24] D. Stodolsky, M. Holland, W. V. Courtright II and G. A.
Gibson, "Parity-Logging Disk arrays", ACM Trans, on
Computer Systems, Vol.12, No.3, August 1994, pp.206-
235.

[25] M. Stonebraker and G. A. Schloss, "Distributed RAID -
a New Multiple Copy Algorithm", Proc. of the Sixth

183

International Conf. on Data Engineering, Feb. 1990,
pp.430-437.

[26] N. Talagala, S. Asami, D. Patterson, and K. Lutz,
"Tertiary Disk: Large Scale Distributed Storage", UCB
Technical Report No. UCB//CSD-98-989.

[27] C. A. Thekkath, T. Mann, and E. K. Lee. "Frangipani: A
Scalable Distributed File System". Proceedings of ACM
Symp. of Operating Systems Principles, Oct. 1997,
pp.224-237.

[28] N. H. Vaidya, "Staggered Consistent Checkpointing",
IEEE Transactions on Parallel and Distributed Systems,
1999, Vol. 10, No. 7, pp. 694- 702.

Hai Jin is an Associate Professor of Computer Science at
Huazhong University of Science and Technology (HUST)
in China. He received his Ph.D. in computer engineering
from HUST in 1994. He has worked at the University of
Hong Kong, where he participated in the HKU Cluster
project. Presently, he works as a visiting scholar at the
Internet and Cluster Computing Laboratory at USC.

A member of IEEE and ACM, he served as program
committee chair of APSCC'2000. He has co-authored
three books and published more than 30 papers in
international journals and conferences. His research
interests cover parallel I/O, RAID architecture design,
fault tolerance, and cluster benchmark experiments.
Contact him at hiin@ceng.usc.edu.

Biographical Sketches:

Kai Hwang is a Professor of Electrical Engineering and
Computer Science at the University of Southern
California. An IEEE Fellow, he specializes in computer
architecture, digital arithmetic, and parallel processing. He
is a founding Editor of the Journal of Parallel and
Distributed Computing. He received the Outstanding
Achievement Award from the PDPTA in 1996.

He has published six books and over 160 technical
papers in computer science and engineering. His current
research interest lies in network-based PC or workstation
clusters and the middleware support for security,
availability, and single-system-image services. He can be
reached by Email: kaihwang@usc.edu.

Roy Ho is currently working on his M. Phil, degree in the
Computer Science and Information Systems Department,
University of Hong Kong. He receives the B.S. degree in
Computer Engineering from the University of Hong Kong
in 1998. He has participated in this work, while he was
visiting USC in Fall 1999. His research interest lies in
computer architecture and scalable cluster computing. He
can be reached by Email: scho@csis.hku.hk.

Wonwoo Ro presently works as a Ph.D. research
assistant in the Department of Electrical Engineering at
USC. He received the B.S. degree in Electrical
Engineering from Yonsei University, Seoul, Korea, in
1996. He received the M.S. degree in Electrical
Engineering from USC in 1999. His current research
interest includes scalable cluster computing, checkpointing
and fault tolerance. He can be reached by Email:
wro@usc.edu.

184

Task Execution Time Modeling for Heterogeneous Computing Systems

Shoukat Ali1", Howard Jay Siegel1", Muthucumaru Maheswaran*,
Debra Hensgen0, and Sahra Ali1"

^Purdue University
School of Electrical and Computer Engineering

West Lafayette, IN 47907-1285 USA
{alis@ecn., hj@}purdue.edu

^Department of Computer Science
University of Manitoba

Winnipeg, MB R3T 2N2 Canada
maheswar@cs.umanitoba.ca

°OS Research and Evaluation
OpenTV

Mountain View, CA 94043 USA
dhensgen@opentv.com

Abstract

A distributed heterogeneous computing (HC) system
consists of diversely capable machines harnessed togeth-
er to execute a set of tasks that vary in their computation-
al requirements. Heuristics are needed to map (match and
schedule) tasks onto machines in an HC system so as to
optimize some figure of merit. This paper characterizes a
simulated HC environment by using the expected execution
times of the tasks that arrive in the system onto the different
machines present in the system. This information is ar-
ranged in an "expected time to compute " (ETC) matrix as a
model of the given HC system, where the entry(i, j) is the ex-
pected execution time of task i on machine j. This model is
needed to simulate different HC environments to allow test-
ing of relative performance of different mapping heuristics
under different circumstances. In particular, the ETC mod-
el is used to express the heterogeneity among the runtimes
of the tasks to be executed, and among the machines in the
HC system. An existing range-based technique to generate
ETC matrices is described. A coefficient-of-variation based
technique to generate ETC matrices is proposed, and com-
pared with the range-based technique. The coefficient-of-
variation-based ETC generation method provides a greater
control over the spread of values (i.e., heterogeneity) in any
given row or column of the ETC matrix than the range-
based method.

1. Introduction

A distributed heterogeneous computing (HC) system
consists of diversely capable machines harnessed togeth-
er to execute a set of tasks that vary in their computation-
al requirements. Heuristics are needed to map (match and

This research was supported by the DARPA/ITO Quorum Program un-
der the NPS subcontract numbers N62271-98-M-0217 and N62271-98-M-
0448, and under the GSA subcontract number GS09K99BH0250. Some
of the equipment used was donated by Intel.

schedule) tasks onto machines in an HC system so as to op-
timize some figure of merit. The heuristics that match a task
to a machine can vary in the information they use. For ex-
ample, the current candidate task can be assigned to the ma-
chine that becomes available soonest (even if the task may
take a much longer time to execute on that machine than
elsewhere). In another approach, the task may be assigned
to the machine where it executes fastest (but ignores when
that machine becomes available). Or the current candidate
task may be assigned to the machine that completes the task
soonest, i.e., the machine which minimizes the sum of task
execution time and the machine ready time, where machine
ready time for a particular machine is the time when that
machine becomes available after having executed the tasks
previously assigned to it (e.g., [13]).

The discussion above should reveal that more sophisti-
cated (and possibly wiser) approaches to the mapping prob-
lem require estimates of the execution times of all tasks (that
can be expected to arrive for service) on all the machines
present in the HC suite to make better mapping decisions.
One aspect of the research on HC mapping heuristics ex-
plores the behavior of the heuristics in different HC envi-
ronments. The ability to test the relative performance of
different mapping heuristics under different circumstances
necessitates that there be a framework for generating simu-
lated execution times of all the tasks in the HC system on all
the machines in the HC system. Such a framework would,
in turn, require a quantification of heterogeneity to express
the variability among the runtimes of the tasks to be execut-
ed, and among the capabilities of the machines in the HC
system. The goal of this paper is to present a methodology
for synthesizing simulated HC environments with quantifi-
able levels of task and machine heterogeneity. This paper
characterizes the HC environments so that it will be easier
for the researchers to describe the workload and the ma-
chines used in their simulations using a common scale.

Given a set of heuristics and a characterization of HC

0-7695-0556-2/00 $10.00 © 2000 IEEE
185

environments, one can determine the best heuristic to use in
a given environment for optimizing a given objective func-
tion. In addition to increasing one's understanding of the
operation of different heuristics, this knowledge can help a
working resource management system select which mapper
to use for a given real HC environment.

This research is part of a DARPA/ITO Quorum Pro-
gram project called MSHN (pronounced "mission") (Man-
agement System for Heterogeneous Networks) [7]. MSHN
is a collaborative research effort that includes the Naval
Postgraduate School, NOEMIX, Purdue, and University of
Southern California. It builds on SmartNet, an implemented
scheduling framework and system for managing resources
in an HC environment developed at NRaD [5]. The techni-
cal objective of the MSHN project is to design, prototype,
and refine a distributed resource management system that
leverages the heterogeneity of resources and tasks to deliver
the requested qualities of service. The methodology devel-
oped here for generating simulated HC environments may
be used to design, analyze and evaluate heuristics for the
Scheduling Advisor component of the MSHN prototype.

The rest of this paper is organized as follows. A mod-
el for describing an HC system is presented in Section 2.
Based on that model, two techniques for simulating an HC
environment are described in Section 3. Section 4 briefly
discusses analyzing the task execution time information
from real life HC scenarios. Some related work is outlined
in the Section 5.

2. Modeling Heterogeneity
To better evaluate the behavior of mapping heuristics,

a model of the execution times of the tasks on the ma-
chines is needed so that the parameters of this model can
be changed to investigate the performance of the heuristics
under different HC systems and under different types of
tasks to be mapped. One such model consists of an
expected time to compute (ETC) matrix, where the entry(i,
j) is the expected execution time of task i on machine j. The
ETC matrix can be stored on the same machine where the
mapper is stored, and contains the estimates for the expect-
ed execution times of a task on all machines, for all the tasks
that are expected to arrive for service over a given interval
of time. (Although stored with the mapper, the ETC infor-
mation may be derived from other components of a resource
management system (e.g., [7])). In an ETC matrix, the el-
ements along a row indicate the estimates of the expected
execution times of a given task on different machines, and
those along a column give the estimates of the expected ex-
ecution times of different tasks on a given machine.

The exact actual task execution times on all machines
may not be known for all tasks because, for example, they
might be a function of input data. What is typically as-
sumed in the HC literature is that estimates of the expected

execution times of tasks on all machines are known (e.g.,
[6, 10, 12, 16]). These estimates could be built from task
profiling and machine benchmarking, could be derived from
the previous executions of a task on a machine, or could be
provided by the user (e.g., [3, 6, 8, 14, 18]).

The ETC model presented here can be characterized by
three parameters: machine heterogeneity, task heterogene-
ity, and consistency. The variation along a row is referred
to as the machine heterogeneity; this is the degree to which
the machine execution times vary for a given task [1]. A
system's machine heterogeneity is based on a combination
of the machine heterogeneities for all tasks (rows). A sys-
tem comprised mainly of workstations of similar capabil-
ities can be said to have "low" machine heterogeneity. A
system consisting of diversely capable machines, e.g., a col-
lection of SMP's, workstations, and supercomputers, may
be said to have "high" machine heterogeneity.

Similarly, the variation along a column of an ETC matrix
is referred to as the task heterogeneity; this is the degree to
which the task execution times vary for a given machine [1].
A system's task heterogeneity is based on a combination of
the task heterogeneities for all machines (columns). "High"
task heterogeneity may occur when the computational need-
s of the tasks vary greatly, e.g., when both time-consuming
simulations and fast compilations of small programs are
performed. "Low" task heterogeneity may typically be seen
in the jobs submitted by users solving problems of similar
complexity (and hence have similar execution times on a
given machine).

Based on the above idea, four categories were proposed
for the ETC matrix in [1]: (a) high task heterogeneity and
high machine heterogeneity, (b) high task heterogeneity and
low machine heterogeneity, (c) low task heterogeneity and
high machine heterogeneity, and (d) low task heterogeneity
and low machine heterogeneity.

The ETC matrix can be further classified into two cat-
egories, consistent and inconsistent [1], which are orthog-
onal to the previous classifications. For a consistent ETC
matrix, if a machine mx has a lower execution time than
a machine my for a task f*, then the same is true for any
task tj. A consistent ETC matrix can be considered to rep-
resent an extreme case of low task heterogeneity and high
machine heterogeneity. If machine heterogeneity is high e-
nough, then the machines may be so much different from
each other in their compute power that the differences in
the computational requirements of the tasks (if low enough)
will not matter in determining the relative order of execu-
tion times for a given task on the different machines (i.e.,
along a row). As a trivially extreme example, consider a
system consisting of Intel Pentium III and Intel 286. The
Pentium III will almost always run any given task from a
certain set of tasks faster than the 286 provided the compu-
tational requirements of all tasks in the set are similar (i.e.,

186

low task heterogeneity), thereby giving rise to a consistent
ETC matrix.

In inconsistent ETC matrices, the relationships among
the task computational requirements and machine capabili-
ties are such that no structure as that in the consistent case
is enforced. Inconsistent ETC matrices occur in practice
when: (1) there is a variety of different machine architec-
tures in the HC suite (e.g., parallel machines, superscalars,
workstations), and (2) there is a variety of different com-
putational needs among the tasks (e.g., readily paralleliz-
able tasks, difficult to parallelize tasks, tasks that are float-
ing point intensive, simple text formatting tasks). Thus, the
way in which a task's needs correspond to a machine's ca-
pabilities may differ for each possible pairing of tasks to
machines.

A combination of these two cases, which may be more
realistic in many environments, is the partially-consistent
ETC matrix, which is an inconsistent matrix with a consis-
tent sub-matrix [2, 13]. This sub-matrix can be composed
of any subset of rows and any subset of columns. As an ex-
ample, in a given partially-consistent ETC matrix, 50% of
the tasks and 25% of the machines may define a consistent
sub-matrix.

Even though no structure is enforced on an inconsistent
ETC matrix, a given ETC matrix generated to be inconsis-
tent may have the structure of a partially consistent ETC
matrix. In this sense, partially-consistent ETC matrices are
a special case of inconsistent ETC matrices. Similarly, con-
sistent ETC matrices are special cases of inconsistent and
partially-consistent ETC matrices.

It should be noted that this classification scheme is used
for generating ETC matrices. Later in this paper, it will
be shown how these three cases differ in generation pro-
cess. If one is given an ETC matrix, and is asked to classify
it among these three classes, it will be called a consistent
ETC matrix only if it is fully consistent. It will be called
inconsistent if it is not consistent.

Often an inconsistent ETC matrix will have some par-
tial consistency in it. For example, a trivial case of partial-
consistency always exists; for any two machines in the HC
suite, at least 50% of the tasks will show consistent execu-
tion times.

3. Generating the ETC Matrices

3.1. Range Based ETC Matrix Generation

Any method for generating the ETC matrices will require
that heterogeneity be defined mathematically. In the range-
based ETC generation technique, the heterogeneity of a set
of execution time values is quantified by the range of the
execution times [2,13]. The procedures given in this section
for generating the ETC matrices produce inconsistent ETC
matrices. It is shown later in this section how consistent and

(1) for/fromOto(f-l)
(2) *[i\ = U(l,Rtask)
(3) fory'fromOto(m-l)
(4) e[i,j]=x[i\xU(l,Rmach)
(5) endfor
(6) endfor

Figure 1. The range-based method for gener-
ating ETC matrices.

partially-consistent ETC matrices could be obtained from
the inconsistent ETC matrices.

Assume m is the total number of machines in the HC
suite, and t_ is the total number of tasks expected to be
serviced by the HC system over a given interval of time.
Let U(a, b) be a number sampled from a uniform dis-
tribution with a range from a to b. (Each invocation of
U(a, b) returns a new sample.) Let R^t and Rmach be num-
bers representing task heterogeneity and machine hetero-
geneity, respectively, such that higher values for R,ask and
Rmach represent higher heterogeneities. Then an ETC ma-
trix e[0..(t - l),0..(m - 1)], for a given task heterogeneity
and a given machine heterogeneity, can be generated by the
range-based method given in Figure 1, where e[i,j] is the
estimated expected execution time for the task / on the ma-
chine j.

As shown in Figure 1, each iteration of the outer for loop
samples a uniform distribution with a range from 1 to Rtask

to generate one value for a vector t. For each element of x
thus generated, the m iterations of the inner for loop (Line
3) generate one row of the ETC matrix. For the i-th iteration
of the outer for loop, each iteration of the inner for loop
produces one element of the ETC matrix by multiplying x[i\
with a random number sampled from a uniform distribution
ranging from 1 toRmach.

In the range-based ETC generation, it is possible to
obtain high task heterogeneity low machine heterogeneity
ETC matrices with characteristics similar to that of low task
heterogeneity high machine heterogeneity ETC matrices if
Rtask = Rmach- In realistic HC systems, the variation that
tasks show in their computational needs is generally larg-
er than the variation that machines show in their capabil-
ities. Therefore it is assumed here that requirements of
high heterogeneity tasks are likely to be more "heteroge-
neous" than the capabilities of high heterogeneity machines
(i.e., Rtask » Rmach)- However, for the ETC matrices gen-
erated here, low heterogeneity in both machines and tasks
is assumed to be same. Table 1 shows typical values for
Rtask and Rmach for low and high heterogeneities. Tables 2
through 5 show four ETC matrices generated by the range-
based method. The execution time values in Table 2 are

187

Table 1. Suggested values for RtaSk and
flmach for a realistic HC system for high het-
erogeneity and low heterogeneity.

high low

task 105 101

machine 102 101

much higher than the execution time values in Table 5. The
difference in the values between these two tables would
be reduced if the range for the low task heterogeneity was
changed to 103 to 104 instead of 1 to 10.

With the range-based method, low task heterogeneity
high machine heterogeneity ETC matrices tend to have high
heterogeneity for both tasks and machines, due to method
used for generation. For example, in Table 5, original x
vector values were selected from 1 to 10. When each entry
is multiplied by a number from 1 to 100 for high machine
heterogeneity this generates a task heterogeneity compara-
ble to machine heterogeneity. It is shown later in Section
3.2 how to produce low task heterogeneity high machine
heterogeneity ETC matrices which do show low task het-
erogeneity.

3.2. Coefficient-of-Variation Based ETC Matrix
Generation

A modification of the procedure in Figure 1 defines the
coefficient of variation, V, of execution time values as a
measure of heterogeneity (instead of the range of execu-
tion time values). The coefficient of variation of a set of
values is a better measure of the dispersion in the values
than the standard deviation because it expresses the stan-
dard deviation as a percentage of the mean of the values
[11]. Let c and pi be the standard deviation and mean, re-
spectively, of a set of execution time values. Then V = c/fi.
The coefficient-of-variation-based ETC generation method
provides a greater control over spread of the execution time
values (i.e., heterogeneity) in any given row or column of
the ETC matrix than the range-based method.

The coefficient-of-variation-based (CVB) ETC genera-
tion method works as follows. A task vector, q, of expected
execution times with the desired task heterogeneity must be
generated. Essentially, q[i\ is the execution time of task i on
an "average" machine in the HC suite. For example, if the
HC suite consists of an IBM SP/2, an Alpha server, and a
Sun SPARC 5 workstation, then q would represent estimat-
ed execution times of the tasks on the Alpha server.

To generate q, two input parameters are needed: fi,ask

and Vtask. The input parameter, jw is used to set the av-
erage of the values in q. The input parameter V,ask is the
desired coefficient of variation of the values in q. The value
of V,ask quantifies task heterogeneity, and is larger for high-
er task heterogeneity. Each element of the task vector q is
then used to produce one row of the ETC matrix such that
the desired coefficient of variation of values in each row is
Vmac)„ another input parameter. The value of Vmach quanti-
fies machine heterogeneity, and is larger for higher machine
heterogeneity. Thus /ju,,k, V,ask, and V,mch are the three input
parameters for the CVB ETC generation method.

A direct approach to simulating HC environments should
use the probability distribution that is empirically found to
represent closely the distribution of task execution times.
However, no standard benchmarks for HC systems are cur-
rently available. Therefore, this research uses a distribution
which, though not necessarily reflective of an actual HC
scenario, is flexible enough to be adapted to one. Such a
distribution should not produce negative values of task ex-
ecution times (e.g., ruling out Gaussian distribution), and
should have a variable coefficient of variation (e.g., ruling
out exponential distribution).

The gamma distribution is a good choice for the CVB
ETC generation method because, with proper constraints on
its characteristic parameters, it can approximate two other
probability distributions, namely the Erlang-k and Gaussian
(without the negative values) [11, 15]. The fact that it can
approximate these two other distributions is helpful because
this increases the chances that the simulated ETC matrices
could be synthesized closer to some real life HC environ-
ment.

The uniform distribution can also be used but is not as
flexible as the gamma distribution for two reasons: (1) it
does not approximate any other distribution, and (2) the
characteristic parameters of a uniform distribution cannot
take all real values (explained later in the Section 3.3).

The gamma distribution [11, 15] is defined in terms of
characteristic shape parameter, a, and scale parameter, ß.
The characteristic parameters of the gamma distribution can
be fixed to generate different distributions. For example,
if a is fixed to be an integer, then the gamma distribution
becomes an Erlang-k distribution. If a is large enough, then
the gamma distribution approaches a Gaussian distribution
(but still does not return negative values for task execution
times).

Figures 2(a) and 2(b) show how a gamma density func-
tion changes with the shape parameter a. When the shape
parameter increases from two to eight, the shape of the dis-
tribution changes from a curve biased to the left to a more
balanced bell-like curve. Figures 2(a), 2(c) and 2(d) show

188

Table 2. A high task heterogeneity low machine heterogeneity matrix generated by the range-based
method using Rtask and Rmach values of Table 1.

m\ mi mi ni4 m5 m6 mj

t\ 333304 375636 198220 190694 395173 258818 376568
h 442658 400648 346423 181600 289558 323546 380792
ti 75696 103564 438703 129944 67881 194194 425543
H 194421 392810 582168 248073 178060 267439 611144
H 466164 424736 503137 325183 193326 241520 506642
h 665071 687676 578668 919104 795367 390558 758117
ti 177445 227254 72944 139111 236971 325137 347456
h 32584 55086 127709 51743 100393 196190 270979
t9 311589 568804 148140 583456 209847 108797 270100

tio 314271 113525 448233 201645 274328 248473 170176
hi 272632 268320 264038 140247 110338 29620 69011
tn 489327 393071 225777 71622 243056 445419 213477

Table 3. A high task heterogeneity high machine heterogeneity matrix generated by the range-based
method using Rtask and Rmach values of Table 1.

m\ WZ2 7tt3 7K4 m5 tn6 mi
t\ 2425808 3478227 719442 2378978 408142 2966676 2890219
h 2322703 2175934 228056 3456054 6717002 5122744 3660354
?3 1254234 3182830 4408801 5347545 4582239 6124228 5343661
U 227811 419597 13972 297165 438317 23374 135871
'5 6477669 5619369 707470 8380933 4693277 8496507 7279100
t(, 1113545 1642662 303302 244439 1280736 541067 792149
tl 2860617 161413 2814518 2102684 8218122 7493882 2945193
h 1744479 623574 1516988 5518507 2023691 3527522 1181276
?9 6274527 1022174 3303746 7318486 7274181 6957782 2145689

'10 1025604 694016 169297 193669 1009294 1117123 690846
t\l 2390362 1552226 2955480 4198336 1641012 3072991 3262071
tn 1 96699 882914 63054 199175 894968 248324 297691

189

Table 4. A low task heterogeneity low machine heterogeneity matrix generated by the range-based
method using Rtask and Rmach values of Table 1.

m i ni2 '»3 mn m5 ni(, mi

t\ 22 21 6 16 15 24 13

h 7 46 5 28 45 43 31
h 64 83 45 23 58 50 38

U 53 56 26 42 53 9 58

h 11 12 14 7 8 3 14

t(, 33 31 46 25 23 39 10

ti 24 11 17 14 25 35 4

h 20 17 23 4 3 18 20

t9 13 28 14 7 34 6 29

'10 2 5 7 7 6 3 7

'u 16 37 23 22 23 12 44

?12 8 66 47 11 47 55 56

Table 5. A low task heterogeneity high machine heterogeneity matrix generated by the range-based
method using Rtaak and Rmach values of Table 1.

m\ mi mi nit m5 m6 mi

t\ 440 762 319 532 151 652 308

tl 459 205 457 92 92 379 60

h 499 263 92 152 75 18 128

h 421 362 347 194 241 481 391

ts 276 636 136 355 338 324 255

t(, 89 139 37 67 9 53 139

h 404 521 54 295 257 208 539

t% 49 114 279 22 93 39 36

?9 59 35 184 262 145 287 277

fio 7 235 44 81 330 56 78

h\ 716 601 75 689 299 144 457

t\2 435 208 256 330 6 394 419

190

0.05
cc=2, ß=8 a=8, ß=8

120

(a) (b)

0.025
cx=2, ß=16

0.012
a=2, ß=32

0 50 100 150 200 250 300 50 100 150 200 250 300

(c) (d)

Figure 2. Gamma probability density function for (a) a = 2, ß = 8, (b) a = 8, ß = 8, (c) a = 2, ß = 16
and (d) a = 2, ß = 32.

191

(1) Otask = 1/Vtask2; Umach = 1/VmacA I
ßfasi = Ptask/ata.ik

(2) for/fromOto(f-l)
(3) g[i] = G(a/fl.vJfc, ß,a.?*)

/* g[i] will be used as mean
of i-th row of ETC matrix 7

(4) ßmflcfcl»'] = q[i\/<Zmach
I* scale parameter for i-th row */

(5) for 7 from 0 to (m - 1)
(6) e[i,j] = G(amuch, ßmflCfc['])
(7) endfor
(8) endfor

(1) oc/n,jt = 1/V/a.vt2; amorft = \/vmach ;
Pmiic/i — Pmach / &mach

(2) for j from 0 to (m - 1)

(3) P[j] = G(°WA, ßm«f/i)
/* /?[;'] will be used as mean
of >th column of ETC matrix */

(4) $n,.sk[j} = P[j}/tttask
I* scale parameter for y'-th column */

(5) fori'fromOto(r-l)
(6) e[i,j] = G{alask, Ksk[j})
(7) endfor
(8) endfor

Figure 3. The general CVB method for gener-
ating ETC matrices.

Figure 4. The CVB method for generating low
task heterogeneity high machine heterogene-
ity ETC matrices.

the effect on the distribution caused by an increase in the
scale parameter from 8 to 16 to 32. The two-fold increase in
the scale parameter does not change the shape of the graph
(the curve is still biased to the left); however the curve now
has twice as large a domain (i.e., range on x-axis).

The gamma distribution's characteristic parameters, a
and ß, can be easily interpreted in terms of p,axk, V,ask,
and Vmach- For a gamma distribution, o = ß>/ä , and
fi = ßa, so that V = G//J= \/y/ä (and a = 1/V2). Then
<W = 1/1W2 and ow*_ = \/Vmach

2. Further, because
ft = ßa, ß = fi/a, and fW = n,ask/a,ask- Also, for task i,

$mach[l\ = q{l\IU-mach-
Let G(a, ß) be a number sampled from a gamma dis-

tribution with the given parameters. (Each invocation of
G(cc, ß) returns a new sample.) Figure 3 shows the general
procedure for the CVB ETC generation.

Given the three input parameters, Vtask, Vmach, and /W>
Line (1) of Figure 3 determines the shape parameter alask

and scale parameter ß,fl,* of the gamma distribution that will
be later sampled to build the task vector q. Line (1) also
calculates the shape parameter amach t0 use later in Line (6)-
In the i-th iteration of the outer for loop (Line 2) in Figure
3, a gamma distribution with parameters a,ask and %ask is
sampled to obtain q[i\. Then q[i\ is used to determine the

scale parameter ßmac/,['] (t0 be used later in Line (6^- For

the ('-th iteration of the outer for loop (Line 2), each iteration
of the inner for loop (Line 5) produces one element of the i-
th row of the ETC matrix by sampling a gamma distribution
with parameters amach and ßmac/,[f']- One complete row of
the ETC matrix is produced by m iterations of the inner for
loop (Line 5). Note that while each row in the ETC matrix
has gamma distributed execution times, the execution times
in columns are not gamma distributed.

The ETC generation method of Figure 3 can be used to
generate high task heterogeneity high machine heterogene-

ity ETC matrices, high task heterogeneity low machine het-
erogeneity ETC matrices, and low task heterogeneity low
machine heterogeneity ETC matrices, but cannot generate
low task heterogeneity high machine heterogeneity ETC
matrices. To satisfy the heterogeneity quadrants of Section
2, each column in the final low task heterogeneity high ma-
chine heterogeneity ETC matrix should reflect the low task
heterogeneity of the "parent" task vector q. This condition
would not necessarily hold if rows of the ETC matrix were
produced with a high machine heterogeneity from a task
vector of low heterogeneity. This is because a given col-
umn may be formed from widely different execution time
values from different rows because of the high machine het-
erogeneity. That is, any two entries in a given column are
based on different values of q[i] and amwh, and may there-
fore show high task heterogeneity as opposed to the intend-
ed low task heterogeneity. In contrast, in a high task het-
erogeneity low machine heterogeneity ETC matrix the low
heterogeneity among the machines for a given task (across
a row) is based on the same q[i] value.

One solution is to generate what is in effect a transpose
of a high task heterogeneity low machine heterogeneity ma-
trix to produce a low task heterogeneity high machine het-
erogeneity one. The transposition can be built into the pro-
cedure as shown in Figure 4. The procedure in Figure 4 is
very similar to the one in Figure 3. The input parameter
litask is replaced with //,„„f;,. Here, first a machine vector, p,
(with an average value of fJmach) is produced. Each element
of this "parent" machine vector is then used to generate one
low task heterogeneity column of the ETC matrix, such that
the high machine heterogeneity present in p is reflected in
all rows. This approach for generating low task heterogene-
ity high machine heterogeneity ETC matrices can also be
used with the range-based method.

192

Tables 6 through 11 show some sample ETC matrices
generated using the CVB ETC generation method. Tables 6
and 7 both show high task heterogeneity low machine het-
erogeneity ETC matrices. In both tables, the spread of the
execution time values in columns is higher than that in rows.
The ETC matrix in Table 7 has a higher task heterogeneity
(higher V,ask) than the ETC matrix in Table 6. This can be
seen in a higher spread in the columns of matrix in Table 7
than that in Table 6.

Tables 8 and 9 show high task heterogeneity high ma-
chine heterogeneity and low task heterogeneity low ma-
chine heterogeneity ETC matrices, respectively. The exe-
cution times in Table 8 are widely spaced along both rows
and columns. The spread of execution times in Table 9 is
smaller along both columns and rows, because both Vtask

and Vmach are smaller.
Tables 10 and 11 show low task heterogeneity high ma-

chine heterogeneity ETC matrices. In both tables, the
spread of the execution time values in rows is higher than
that in columns. ETC matrix in Table 11 has a higher ma-
chine heterogeneity (higher Vmach) than the ETC matrix in
Table 10. This can be seen in a higher spread in the rows of
matrix in Table 11 than that in Table 10.

3.3. Uniform Distribution in the CVB Method

The uniform distribution could also be used for the CVB
ETC generation method. The uniform distribution's charac-
teristic parameters a (lower bound for the range of values)
and b (upper bound for the range of values), can be easily
interpreted in terms of /jtask, Vlask, and Vmach. (Recall that
Vtask = Gtasklntask and Vmach = omachlUmach)- For a uniform
distribution, a = (b-a)/Vl2 and,u = (b + a)/2 [15]. So
that

a + b = 2/j (1)

Once the task vector q has been generated, the ?'-th row of
the ETC matrix can be generated by sampling (m times) a
uniform distribution with the following parameters:

a - b = -ay/12

Adding Equations (1) and (2),

a=n(l-VV3)

b = 2/j — a

(2)

(3)

(4)

(5)

(6)

The Equations (5) and (6) can be used to generate the task
vector q from the uniform distribution with the following
parameters:

atask - Mask (1 - VlaskV3) (7)

Also,

amach=q[i](l-VmachV3)

bmach = 2q[i\ - amach

bfask — 2/Utask ~ atask (8)

(9)

(10)

The CVB ETC generation using the uniform distribu-
tion, however, places a restriction on the values of Vtask and
Vmach- Because both a,ask and amach have to be positive, it
follows from Equations (7) and (9) that the maximum value
for Vmach or Vtask is 1/73. Thus, for the CVB ETC gen-
eration, the gamma distribution is better than the uniform
distribution because it does not restrict the values of task or
machine heterogeneities.

3.4. Producing Consistent ETC Matrices

The procedures given in Figures 1,3, and 4 produce
inconsistent ETC matrices. Consistent ETC matrices can
be obtained from the inconsistent ETC matrices generated
above by sorting the execution times for each task on all
machines (i.e., sorting the values within each row and do-
ing this for all rows independently). From the inconsistent
ETC matrices generated above, partially-consistent matri-
ces consisting of an i x k sub-matrix could be generated by
sorting the execution times across a random subset of k ma-
chines for each task in a random subset of i tasks.

It should be noted from Tables 10 and 11 that the greater
the difference in machine and task heterogeneities, the high-
er the degree of consistency in the inconsistent low task het-
erogeneity high machine heterogeneity ETC matrices. For
example, in Table 11 all tasks show consistent execution
times on all machines except on the machines that corre-
spond to columns 3 and 4. As mentioned in Section 1, these
degrees and classes of mixed-machine heterogeneity can be
used to characterize many different HC environments.

4. Analysis and Synthesis

Once the actual ETC matrices from a real life scenario
are obtained, they can be analyzed to estimate the prob-
ability distribution of the execution times, and the values
of the model parameters (i.e., Vtask, Vmach, and fitask (or
Vmach, if a low task heterogeneity high machine heterogene-
ity ETC matrix is desired)) appropriate for the given real
life scenario. The above analysis could be carried out using
common statistical procedures [9]. Once a model of a par-
ticular HC system is available, the effect of changes in the
workload (i.e., the tasks arriving for service in the system)
and the system (i.e., the machines present in the HC system)
can be studied in a controlled manner by simply changing
the parameters of the ETC model.

193

Table 6. A high task heterogeneity low machine heterogeneity matrix generated by the CVB method.

Vtasfc = 0.3, Vmach = 0.1.

m\ nit mi ni4 m5 m6 mi '«8 mi) "MO

t\ 628 633 748 558 743 684 740 692 593 554

h 688 712 874 743 854 851 701 701 811 864

h 965 1029 1087 1020 921 825 1238 934 928 1042

U 891 866 912 896 776 993 875 999 919 860

h 1844 1507 1353 1436 1677 1691 1508 1646 1789 1251

h 1261 1157 1193 1297 1261 1251 1156 1317 1189 1306

ti 850 928 780 1017 761 900 998 838 797 824

t» 1042 1291 1169 1562 1277 1431 1236 1092 1274 1305

t9 1309 1305 1641 1225 1425 1280 1388 1268 1290 1549

t\o 881 865 752 893 883 813 892 805 873 915

Table 7. A high task heterogeneity low machine heterogeneity matrix generated by the CVB method.
Vtask = 0.5, Vmach =0.1.

m\ W22 »13 W4 ms m6 m-j m% mi) wio

t\ 377 476 434 486 457 486 431 417 429 428

h 493 370 400 420 502 472 475 440 483 576

'3 745 646 922 650 791 878 853 791 756 788

U 542 490 469 559 488 498 509 431 547 542

t* 625 666 618 710 624 615 618 599 522 540

t(, 921 785 759 979 865 843 853 870 939 801

ti 677 767 750 720 797 728 941 717 686 870

h 428 418 394 460 434 427 378 427 447 466

t9 263 289 267 231 243 222 283 257 240 247

tio 1182 1518 1272 1237 1349 1218 1344 1117 1122 1260

t\\ 1455 1384 1694 1644 1562 1639 1776 1813 1488 1709

hi 3255 2753 3289 3526 2391 2588 3849 3075 3664 3312

194

Table 8. A high task heterogeneity high machine heterogeneity matrix generated by the CVB method.
Vtask = 0.6, Vmach = 0.6.

m\ m.2 «13 ma, m5 m6 m-] /ng rn<) mio
t\ 1446 1110 666 883 1663 1458 653 1886 458 1265
ll 1010 588 682 1255 3665 3455 1293 1747 1173 1638
h 1893 2798 1097 465 2413 1184 2119 1955 1316 2686
h 1014 1193 275 1010 1023 1282 559 1133 865 2258
t5 170 444 500 408 790 528 232 303 301 480
h 1454 1106 901 793 1346 703 1215 490 537 1592
h 579 1041 852 1560 1983 1648 859 683 945 1713
t& 2980 2114 417 3005 2900 3216 421 2854 1425 1631
?9 252 519 196 352 958 355 720 168 668 1017

'10 173 235 273 176 110 127 93 276 390 103
h\ 115 74 251 71 107 479 153 138 274 189
t\2 305 226 860 554 394 344 68 86 223 120

Table 9. A low task heterogeneity low machine heterogeneity matrix generated by the CVB method.
Vtask =0.1, Vmach =0.1.

mi mi m-i run ms tn6 mi ms mg «10

h 985 1043 945 835 830 1087 1009 891 1066 1075
h 963 962 910 918 1078 1091 881 980 1009 981
t3 782 837 968 960 790 800 947 1007 1115 845
tA 999 953 892 986 958 1006 1039 1072 1090 1030
t5 971 972 913 1030 891 873 898 994 1086 1122
t(, 1155 1065 800 1247 980 1103 1228 1062 1011 1005
tl 1007 1191 964 860 1034 896 1185 932 1035 1019
t% 1088 864 972 984 736 950 944 994 970 894
tg 878 967 954 917 942 978 1046 1134 985 1032

tio 1210 1120 1043 1093 1386 1097 1202 1004 1185 1226
fn 910 958 1046 1062 952 1054 1020 1175 850 1060
'12 930 935 908 1155 991 997 828 1062 886 831

195

Table 10. A low task heterogeneity high machine heterogeneity matrix generated by the CVB method.
Vtask =0.1, Vmach = 0.6.

mi mi >»3 nin m5 m6 »17 m% mt) mio

t\ 1679 876 1332 716 1186 1860 662 833 534 804

tl 1767 766 1327 711 957 2061 625 626 642 800

ti 1870 861 1411 932 1065 1562 625 976 556 842

h 1861 817 1218 865 1096 1660 587 767 736 822

h 1768 850 1465 764 1066 1585 663 863 579 757

t(, 1951 807 1177 914 939 1483 573 961 643 712

ti 1312 697 1304 921 1005 1639 562 831 633 784

h 1665 849 1414 795 1162 1593 577 791 709 774

tg 1618 753 1283 794 1153 1673 639 787 563 744

t\o 1576 964 1373 752 950 1726 699 836 633 764

hi 1693 742 1454 758 961 1781 721 988 641 793

tl2 1863 823 1317 890 1137 1812 704 800 479 848

Table 11. A low task heterogeneity high machine heterogeneity matrix generated by the CVB method.
Vto.h=0.1, Knach = 2.0.

mi ni2 m3 W4 ™5 m6 mi mg m<) "*io

'1 4784 326 1620 1307 3301 10 103 4449 228 40

tl 4315 276 1291 1863 3712 11 91 5255 200 4/

h 6278 269 1493 1181 3186 12 93 4604 235 46

U 4945 294 1629 1429 2894 14 87 4724 231 45

h 5276 321 1532 1516 2679 12 102 4621 205 46

h 4946 293 1467 1609 2661 10 96 3991 255 39

ti 4802 327 1317 1668 2982 10 90 5090 252 42

h 5381 365 1698 1384 3668 12 99 5133 242 38

'9 5011 255 1491 1386 3061 10 94 3739 216 42

fio 5228 296 1489 1515 3632 12 107 4682 203 38

t\\ 5367 319 1332 1363 3393 12 72 4769 221 43

tn 4621 258 1473 1501 3124 12 96 4091 199 44

196

This experimental set-up can then be used to find out
which mapping heuristics are best suited for a given set of
model parameters (i.e., Vtask, Vmach, and n,ask (or pmach)).
This information can be stored in a "look-up table," so as
to facilitate the choice of a mapping heuristic given a set
of model parameters. The look-up table can be part of the
toolbox in the mapper.

The ETC model of Section 2 assumes that the machine
heterogeneity is the same for all tasks, i.e., different tasks
show the same general variation in their execution times
over different machines. In reality this may not be true;
the variation in the execution times of one task on all ma-
chines may be very different from some other task. To mod-
el the "variation in machine heterogeneity" along different
rows (i.e., for different tasks), another level of heterogeneity
could be introduced. For example, in the CVB ETC gener-
ation, instead of having a fixed value for Vmach for all the
tasks, the value of Vmach for a given task could be variable,
e.g., it could be sampled from a probability distribution.
Once again, the nature of the probability distribution and
its parameters will need to be decided empirically.

5. Related Work

To the best of the authors' knowledge, there is currently
no work presented in the open literature that addresses the
problem of modeling of execution times of the tasks in an
HC system (except the already discussed work [13]). How-
ever, below are presented two tangentially related works.

A detailed workload model for parallel machines has
been given in [4]. However the model is not intended for
HC systems in that the machine heterogeneity is not mod-
eled. Task execution times are modeled but tasks are as-
sumed to be running on multiple processing nodes, unlike
the HC environment presented here where tasks run on sin-
gle machines only.

A method for generating random task graphs is given in
[17] as part of description of the simulation environment
for the HC systems. The method proposed in [17] assumes
that the computation cost of a task ?,-, averaged over all the
machines in the system, is available as w]. The method
does provide for characterizing the differences in the exe-
cution times of a given task on different processors in the
HC system (i.e., machine heterogeneity). The "range per-
centage" (ß) of computation costs on processors roughly
corresponds to the notion of machine heterogeneity as p-
resented here. The execution time, eij, of task ?,■ on machine
rrij is randomly selected from the range, wj x (1 - ß/2) <
eij < wj x (1 + ß/2). However, the method in [17] does not
provide for describing the differences in the execution times
of all the tasks on an "average" machine in the HC system.
The method in [17] does not tell how the differences in the
values of Wj for different machines will be modeled. That
is, the method is [17] does not consider task heterogeneity.

Further, the model in [17] does not take into account the
consistency of the task execution times.

6. Conclusions

To describe different kinds of heterogeneous environ-
ments, an existing model based on the characteristics of
the ETC matrix was presented. The three parameters of
this model (task heterogeneity, machine heterogeneity,
and consistency) can be changed to investigate the per-
formance of mapping heuristics for different HC systems
and different sets of tasks. An existing range-based
method for quantifying heterogeneity was described, and a
new coefficient-of-variation-based method was proposed.
Corresponding procedures for generating the ETC matrices
representing various heterogeneous environments were
presented. Sample ETC matrices were provided for both
ETC generation procedures. The coefficient-ofTvariation-
based ETC generation method provides a greater control
over the spread of values (i.e., heterogeneity) in any given
row or column of the ETC matrix than the range-based
method. This characterization of HC environments will
allow a researcher to simulate different HC environments,
and then evaluate the behavior of the mapping heuristics
under different conditions of heterogeneity.

Acknowledgments: The authors thank Anthony A.
Maciejewski, Tracy D. Braun, and Taylor Kidd for their
valuable comments and suggestions.

References

[1] R. Armstrong, Investigation of Effect of Different Run-
Time Distributions on SmartNet Performance Master's
thesis, Department of Computer Science, Naval Post-
graduate School, 1997 (D. Hensgen, Advisor).

[2] T D. Braun, H. J. Siegel, N. Beck,.L. Bölöni, M.
Maheswaran, A. I. Reuther, J. R Robertson, M. D.
Theys, B. Yao, R. F. Freund, and D. Hensgen, "A com-
parison study of static mapping heuristics for a class
of meta-tasks on heterogeneous computing systems,"
8th IEEE Heterogeneous Computing Workshop (HCW
'99), Apr. 1999, pp. 15-29.

[3] H. G. Dietz, W. E. Cohen, and B. K. Grant, "Would y-
ou run it here... or there? (AHS: Automatic Heteroge-
neous Supercomputing)," 1993 International Confer-
ence on Parallel Processing (ICPP '93), Vol. II, Aug.
1993, pp. 217-221.

[4] D. G. Feitelson and L. Rudolph, "Metrics and bench-
marking for parallel job scheduling," in Job Schedul-
ing Strategies for Parallel Processing, D. G. Feitel-
son and L. Rudolph, eds., Vol. 1459, Lecture Notes in
Computer Science, Vol. 1459, Springer-Verlag, New
York, NY, 1998, pp. 1-15.

197

[5] R. F. Freund, M. Gherrity, S. Ambrosius, M. Campbel-
1, M. Halderman, D. Hensgen, E. Keith, T. Kidd, M.
Kussow, J. D. Lima, F. Mirabile, L. Moore, B. Rust,
and H. J. Siegel, "Scheduling resources in multi-user,
heterogeneous, computing environments with Smart-
Net," 7th IEEE Heterogeneous Computing Workshop
(HCW '98), Mar. 1998, pp. 184-199.

[6] A. Ghafoor and J. Yang, "Distributed heterogeneous
supercomputing management system," IEEE Comput-
er, Vol. 26, No. 6, June 1993, pp. 78-86.

[7] D. A. Hensgen, T. Kidd, D. St. John, M. C. Schnaidt,
H. J. Siegel, T. D. Braun, M. Maheswaran, S. Ali, J..-K.
Kim, C. Irvine, T. Levin, R. F. Freund, M. Kussow, M.
Godfrey, A. Duman, P. Carff, S. Kidd, V. Prasanna, P.
Bhat, and A. Alhusaini, "An overview of MSHN: The
Management System for Heterogeneous Networks,"
8th IEEE Heterogeneous Computing Workshop (HCW
'99), Apr. 1999, pp. 184-198.

[8] M. A. Iverson, F. Özgüner, and G. J. Folien, "Statisti-
cal prediction of task execution times through analytic
benchmarking for scheduling in a heterogeneous envi-
ronment," 8th IEEE Heterogeneous Computing Work-
shop (HCW '99), Apr. 1999, pp. 99-111.

[9] R. Jain, The Art of Computer Systems Performance
Analysis, John Wiley & Sons, Inc., New York, NY,
1991.

[10] M. Kafil and I. Ahmad, "Optimal task assignment in
heterogeneous distributed computing systems," IEEE
Concurrency, Vol. 6, No. 3, July-Sep. 1998, pp. 42-
51.

[11] L. L. Lapin, Probability and Statistics for Modern
Engineering, Second Edition, Waveland Press, Inc.,
Prospect Heights, IL, 1998.

[12] N. Lopez-Benitez and J.-Y Hyon, "Simulation of task
graph systems in heterogeneous computing environ-
ments," 8th IEEE Heterogeneous Computing Work-
shop (HCW '99), Apr. 1999, pp. 112-124.

[13] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen,
and R. F. Freund, "Dynamic mapping of a class
of independent tasks onto heterogeneous computing
systems," Journal of Parallel and Distributed Comput-
ing, Special Issue on Software Support for Distributed
Computing, Vol. 59, No. 2, pp. 107-131, Nov. 1999.

[14] M. Maheswaran, T. D. Braun, and H. J. Siegel, "Het-
erogeneous distributed computing," in Encyclopedi-
a of Electrical and Electronics Engineering, Vol. 8,
J. G. Webster, ed., John Wiley, New York, NY, 1999,
pp. 679-690.

[15] A. Papoulis, Probability, Random Variables, and S-
tochastic Processes, McGraw-Hill, New York, NY,
1984.

[16] H. Singh and A. Youssef, "Mapping and scheduling
heterogeneous task graphs using genetic algorithms,"
5th IEEE Heterogeneous Computing Workshop (HCW
'96), Apr. 1996, pp. 86-97.

[17] H. Topcuoglu, S. Hariri, and M.-Y. Wu, "Task
scheduling algorithms for heterogeneous processors,"
8th IEEE Heterogeneous Computing Workshop (HCW
'99), Apr. 1999, pp. 3-14.

[18] J. Yang, I. Ahmad, and A. Ghafoor, "Estimation of
execution times on heterogeneous supercomputer ar-
chitecture," 1993 International Conference on Paral-
lel Processing (ICPP '93), Vol. I, Aug. 1993, pp. 219-
225.

Biographies

Shoukat AH is pursuing a PhD degree from the School
of Electrical and Computer Engineering at Purdue Univer-
sity, where he is currently a Research Assistant. His main
research topic is dynamic mapping of meta-tasks in hetero-
geneous computing systems. He has held teaching positions
at Aitchison College and Keynesian Institute of Manage-
ment and Sciences, both in Lahore, Pakistan. He was also
a Teaching Assistant at Purdue. Shoukat received his MS
degree in electrical and electronic engineering from Purdue
University in 1999, and his BS degree in electrical and elec-
tronic engineering from the University of Engineering and
Technology, Lahore, Pakistan in 1996. His research inter-
ests include computer architecture, parallel computing, and
heterogeneous computing.

Howard Jay Siegel is a Professor in the School of Elec-
trical and Computer Engineering at Purdue University. He
is a Fellow of the IEEE and a Fellow of the ACM. He re-
ceived BS degrees in both electrical engineering and man-
agement from MIT, and the MA, MSE, and PhD degrees
from the Department of Electrical Engineering and Com-
puter Science at Princeton University. Prof. Siegel has
coauthored over 250 technical papers, has coedited seven
volumes, and wrote the book Interconnection Networks for
Large-Scale Parallel Processing. He was a Coeditor-in-
Chief of the Journal of Parallel and Distributed Computing,
and was on the Editorial Boards of the IEEE Transactions
on Parallel and Distributed Systems and the IEEE Trans-
actions on Computers. He was Program Chair/Co-Chair of
three conferences, General Chair/Co-Chair of four confer-
ences, and Chair/Co-Chair of four workshops. He is an in-
ternational keynote speaker and tutorial lecturer, and a con-
sultant for government and industry.

Muthucumaru Maheswaran is an Assistant Professor
in the Department of Computer Science at the University

198

of Manitoba, Canada. In 1990, he received a BSc degree
in electrical and electronic engineering from the University
of Peradeniya, Sri Lanka. He received an MSEE degree in
1994 and a PhD degree in 1998, both from the School of
Electrical and Computer Engineering at Purdue University.
He held a Fulbright scholarship during his tenure as an M-
SEE student at Purdue University. His research interests in-
clude computer architecture, distributed computing, hetero-
geneous computing, Internet and world wide web systems,
metacomputing, mobile programs, network computing, par-
allel computing, resource management systems for meta-
computing, and scientific computing. He has authored or
coauthored 15 technical papers in these and related areas.
He is a member of the Eta Kappa Nu honorary society.

Debra Hensgen is a member of the Research and
Evaluation Team at OpenTV in Mountain View, California.
OpenTV produces middleware for set-top boxes in support
of interactive television. She received her PhD in the area of
Distributed Operating Systems from the University of Ken-
tucky. Prior to moving to private industry, as an Associate
Professor in the systems area, she worked with students
and colleagues to design and develop tools and systems for
resource management, network re-routing algorithms and
systems that preserve quality of service guarantees, and
visualization tools for performance debugging of parallel
and distributed systems. She has published numerous pa-
pers concerning her contributions to the Concurra toolk-
it for automatically generating safe, efficient concurrent
code, the Graze parallel processing performance debugger,
the SAAM path information base, and the SmartNet and
MSHN Resource Management Systems.

Sahra Ali is pursuing a PhD degree at the School of
Electrical and Computer Engineering at Purdue Universi-
ty, where she is currently a Research Assistant. Her main
research topic is the modeling of reliability in software in-
tensive communication networks. She has also been work-
ing as a software developer for Cisco Systems since 1997.
She was previously a Teaching Assistant and lab coordina-
tor at Purdue. Sahra received her MS degree in electrical
engineering from Purdue University in 1998, and her BS
degree in electrical and electronic engineering from Sharif
University of Technology, Tehran, Iran in 1995. Her re-
search interests include testing, reliability and availability
of communication networks, as well as multimedia.

199

Distributed Quasi-Monte Carlo Methods in a Heterogeneous Environment

E. deDoncker, R. Zanny, M. Ciobanu and Y. Guan
Department of Computer Science

Western Michigan University
Kalamazoo, Michigan 49008, USA

{elise,rrzanny} @cs.wmich.edu

Abstract

We present an asynchronous Quasi-Monte Carlo (QMC)
algorithm for numerical integration tailored for heteroge-
neous environments. QMC techniques are better suited for
high dimensions than adaptive methods and have generally
better convergence properties than classical Monte Carlo
methods.

The algorithm focuses on the asynchronous computation
of randomized lattice (Korobov) rules. Whereas the individ-
ual rules disallow realistic error estimates, randomization
provides a tool for giving confidence intervals for the mag-
nitude of the error. The algorithm generates a sequence of
stochastic families, using an increasing number of points,
for the purpose of automatic termination.

In the algorithm, each each randomized rule constitutes
a single unit of work; a work assignment consists of a set
of work units. Static and dynamic load balancing strategies
are explored to keep the processors busy performing use-
ful work while gradually calculating higher-level families
needed to reach the desired accuracy. We present results in
the context of a performance model for parallel programs
executing in a heterogeneous environment.

1. Introduction

Sampling techniques for numerically solving integration
problems are well established, and are particularly useful
when solving problems of high dimensions. While syn-
chronous parallel implementations of these techniques ap-
pear to be straightforward on tightly coupled parallel ar-
chitectures, various factors push for an asynchronous so-
lution in heterogeneous, coarse-grained, network of work-
stations (NOW) architectures. We focus on the design and
implementation of asynchronous sampling techniques on
these architectures, and the unique difficulties in doing so.

This work is based on the sequential implementation by
Genz[12].

The next section presents background information; Sec-
tion 3 introduces Quasi-Monte Carlo techniques, and Sec-
tion 4 discusses the algorithm. A performance model is out-
lined in Section 5 and test results are given in Section 6.

2. Background

The goal is to calculate an approximate answer Q to the
multivariate integral I = Jv /(x)dx, and an error bound
Ea such that \I - Q\ < Ea < e = max{eQ,er|/|}, where
ea and er specify absolute and relative error tolerances, re-
spectively. The integration domain V is a d-dimensional
hyper-rectangular region, though without loss of generality
we assume that it is the d-dimensional unit hypercube Ud-

When d is small (say, d < 10), adaptive partitioning
methods, (APM) generally work well for finding highly ac-
curate solutions. They continually divide V into smaller
subregions, evaluating each with a quadrature rule, until an
answer Q of the desired accuracy e is reached. We have
done extensive work on the parallelization of adaptive meth-
ods (see, e.g., [6]), leading to the parallel software package
PARlNTl.0[7].

However, when d is large, the dimensional effect in the
required number of evaluation points grows to an unaccept-
able level [4]. Indeed, if a particular 1-dimensional problem
requires s subdivisions and one considers a d-dimensional
problem of the same degree of difficulty in each dimension,
then one would expect to need about sd subdivisions for
the rf-dimensional problem. Sampling techniques such as
Monte Carlo (MC) and Quasi-Monte Carlo (QMC) methods
are used for high dimensions.

A previous version of PARlNT [8] allowed for multiple
integration problems to be solved in parallel by dividing the
processors into groups, with each group solving a single in-
tegration problem by a parallel APM. In this version, the
groups could also have applied QMC methods depending

200
0-7695-0556-2/00 $10.00 © 2000 IEEE

on the type of problem. This hierarchical, two-level par-
allelization is well-suited for problems where sets of high-
dimensional integrals need to be calculated, such as in the
computational finance problem treated in [17]. The hierar-
chical system has a natural inclination towards a heteroge-
neous implementation. The ability to easily add the QMC
technique to the hierarchical version tightens our focus on
finding a heterogeneous implementation of QMC methods.

Automatic QMC techniques require a sequence of ap-
proximations over all of Hd until an adequate answer is
reached. Each rule is a mean of function values and can be
obtained from a number of partial sums. Each of these can
be calculated independently, so they form a natural starting
point for the parallelization of the task.

To calculate the approximations in sequence using paral-
lel processes and a synchronous accumulation of the contri-
butions from all processes to each element of the sequence
would require a synchronization point for each sequence el-
ement. On a heterogeneous network this would result in a
large communication cost. Furthermore, on a network there
is often a significant lag between the creation of the first and
the last of the parallel processes, so that processes which
started earlier would have to wait for the later ones. This
suggests an asynchronous approach for updating the global
results.

3. Quasi-Monte Carlo methods

Basic QMC methods evaluate the integrand function at
a set of points calculated deterministically, as opposed to
MC which evaluates the integrand at random points. QMC
methods are classified according to the type of point set
used. Lattice rules have been found particularly useful for
mid-range dimensions (say, 10 < d < 20). Equidistributed
point sequences have been used effectively in higher dimen-
sions as well, including Richtmyer rules and low discrep-
ancy rules such as Sobol's LPr sequences.

We use the lattice (Korobov) and Richtmyer rules
from [12] for low-to-moderate and for high dimensions, re-
spectively. Their convergence properties are generally bet-
ter than the ö{1/VN) rate of classic MC, where N is the
number of points used.

Let / = KN + EN be the d-variate integral of/ over 1-Ld

with

*" = ^E/(4v}), (1)

where {x} = the fractional part of x and v is a predeter-
mined generator vector with integer coefficients. The er-
ror for a sequence of lattice rules (1) for increasing N =
NQ,NI,... , satisfies

_ (logAQ*7-
N ~ (—m—}'

where 7* is known as the index of the rules [4], for / €
£k (k > 1), which is the class of all functions /, periodic
with period 1 in each variable and for which the Fourier
coefficients cm satisfy

-k \cm\ < Cr

for all m ^ 0, a constant C > 0 and rm =
n^imaxjl,^!}.

In view of the periodicity requirement, a periodizing
transformation is applied to the original integral.

Two drawbacks are that good lattice rules are hard to ob-
tain in high dimensions and that the error is hard to estimate.

Richtmyer rules satisfy EN = Ö(JV_1) for / e
£k, k > 1. We have I = RN + EN where

^=^£/({*M, ,{i0d})
i=i

and 0i, 82, ■ . . , 8d are d irrational numbers such that
1,01,02, ■■■ ,0d satisfy A0 + Ai0j + • • • + \d0d ± 0 for
rational A coefficients not all zero [4].

Genz [12] uses 8t = ,/irl where 7T; is the i-th prime, and
applies the Richtmyer sequence for dimensions > 20.

4. Algorithm

Cranley and Patterson [3] randomize (1) to obtain a
stochastic family of rules. Let

1 N
K»(ß)=vEf({-bv+w>

i=l
N (2)

where ß is a uniformly distributed random vector. Using a
random sample set of size q,

i<N = -nY,K"Wi) (3)
j=l

preserves the integration properties of (1) and allows
= EM = for a standard error estimation by

^TjE^i^iv^)-^)2.
Our algorithm must calculate K^ values for succes-

sively larger values of N until either an answer is found
to the user-specified accuracy or the function count limit
is reached. As these KN^K^,..., values are calcu-
lated, the overall result is calculated as the weighted sum

Q = (Hi ßff)/(Ei 1^7) (where KNi is weighted with
the inverse of its corresponding squared standard error) and,
correspondingly, E = 1.0/ (£\ ^-). The randomized lat-
tice rules in 3 can be written as

Kij = KNi(ßj j = 1,... , Ji <q, (4)

201

where a single /tjj represents a single unit of work in our
algorithm. The K,J values are calculated by the worker pro-
cesses and applied (asynchronously) to update the overall
result KNi and error by the controller. It is thus not neces-
sary that Ji = q in the asynchronous computation. In our
implementation, the controller can optionally also function
as a worker.

To alleviate a potential erratic generation of the /c^ table,
a successful distributed algorithm will attempt to gradually
calculate higher-level rules as needed to reach the desired
accuracy, while keeping all processors busy performing use-
ful work. Particularly on a heterogeneous network of work-
stations, in which the various processors may be operating
at different speeds and which may haye different commu-
nication latencies between processors, the asynchronous al-
gorithm must perform dynamic load balancing to keep the
processors busy.

Our algorithm fits within the paradigm of scheduling
tasks within a distributed system [11]. An important char-
acteristic of this problem is that we do not know in ad-
vance when termination will occur, as it depends upon ei-
ther reaching the user's accuracy or the function count limit.
There are no strict precedences among the tasks (a task be-
ing the calculation of a K,J value), but the algorithm will
generally perform minimal work when a full KN{ value is
known before beginning to calculate Kjvj+1 •

Initially, all workers independently and statically assign
themselves an initial task for a low-level rule and report
their answer to the controller via an update message. After
that, the controller dynamically assigns tasks to the workers
via work assignment messages as the updates are received.

A work request is for the calculation of one or more
Kij values. Since higher level rules require more function
evaluations, a reasonable approach is to apportion the work
into pieces of similar size based on the number of function
points required to complete the work. A single work request
may therefore consist of a set of K^ for multiple values of
j and i. However, we have found that after several rows
have been calculated, and for the computationally intensive
problems with which we are experimenting, it is enough to
assign K^ cells to workers one at a time, as the computation
of each cell can require a significant amount of work.

Note that this method of task allocation can be consid-
ered a FIFO work assignment [11], as the statically defined
sequence of rules (for a given q value in (3)) forms an im-
plicit queue of tasks to be completed, and the set of work
assignments for a worker forms its own FIFO queue. Once
a task has been assigned to a worker, it is not transferred.

The heterogeneity of the target parallel platform is han-
dled automatically, in that the faster workers will finish
work more often, and therefore are assigned more work than
the slower processors.

5. Performance on a heterogeneous network

In this section we will discuss a model (of [2]) to assess
algorithm efficiency on a heterogeneous network.

Let the network be designated by v. The total work, W,
is assumed constant. The work is split up overp processors,
processor i being responsible for the part Wi of the total
work, i.e., YH=\ Wi = W. Since we will assume a partic-
ular ordering on the processors of the network, we refer to
the p-processor portion of the network by vp.

The speed of a processor (for the application) is ex-
pressed as work performed per unit of time, i.e, the speed
Oi of processor i is <n = Wj/Tj, where Tt is the sequential
time for the execution of Wi on processor i. Note that the
time Ti is proportional to the number of units of work Wi.

The total speed of the network is YZ=\ a' for the cor"
responding partitioning of the work. The relative network
speed Rp{vp) with respect to reference processor p is then
defined as

1 f

i=\

and has the meaning of the number of processors equivalent
to the reference processor, which would together have the
same total speed as the network vp. Furthermore, Rp{vp)
provides a bound for the speedup which can be obtained on
the network.

Denoting the sequential time on reference processor p
by T = —, the speedup of the network with respect to the
reference processor is given by

SM =
T W

T{up) apT{up)

anASp{vp) < Rp{vP)- Hence, the efficiency of the network,

E{vp) =
SP(vP)
Rp{vp)

<1.

Note that it is customary to use the fastest processor as
the reference processor in defining the speedup [16, 18].
Furthermore, the above model is invalid when there are dif-
ferent types of work (which may take different times per
unit of work on different processors). The study in [16]
shows how this contributes to allowing superlinear speedup,
for their decomposition of a global climate model on a het-
erogeneous, distributed system.

We remark that Colombet [2] extends his model by split-
ting up the work into its different types, W = Ylj=i Wj, so
that a cost (time) nj is incurred per unit work of type j on
processor i. Denoting the number of units of type j work on
processor i by wtj, the parallel time can be minimized by

solving for minw T(up) = minwmaxf=1(^=1 njWij)-
While imposing further that T(up) = T;, 1 < i < p, the

202

above expression becomes T// = minw(Y^'j=1 TpjWpj).
Solving the optimization problem for w„ > 0 and denoting
the optimal solution elements by tu*., the work assigned to

processor i by W* = X^=1 tut. and corresponding speed
by ai = W*/T/i, a bound for the speedup is again obtained
by Sp(i/P) <Rp(vp).

6. Experimental results

6.1. Problem class

Preliminary results were reported in [9] using static
load balancing and Korobov rules for the calcula-
tion of the multivariate normal distribution function
|S|~5(27T)~5 /a e-5xTE~lxdx, where S is an d x (/sym-
metric positive definite covariance matrix and one or more
of the integration limits may be +00 or —00. Good accuracy
and speedup were obtained on our LAN of Ultra-10 Sparc-
stations and on the IBM-SP machine at Argonne National
Laboratory.

In [10] we reported timing results using static load bal-
ancing on a homogeneous network, for a class of prob-
lems based on an integral 1(f) from computational fi-
nance [1,15], where /(x) has a Gaussian weight and a fac-
tor of the form g(x) =

c£
*=i

((1 - Wfc(x)) + 1Vk(x)ck) n-=l (1 - Wj(x))

ILtott+ *;(*))
(5)

where ^(x) = i0K
3

0e^
x''+-+xi\ K0 ■e-*2/2,wk{x) =

Kl+K2tS,n-\Kzik{x)+Ki),ck = £?T* (l+t0)--»',and
the domain of integration is Htd. The integral represents the
current value of a security backed by mortgages of length
(d) months with fixed monthly interest rate i0.

In order to map the infinite domain to the d-dimensional
unit hypercube we performed the transformation zk =
(£), k = 1,... ,d, where $fc is the univariate normal
distribution function. Note that the transformation absorbs
the Gaussian weight. The resulting integral is fn f(z)dz
with

f(z)=9(*-\z1),...,<j>-\zd)).

Using the constants C = 1, i0 = .007, a = .02 and Ki =
.01, K2 = -.005, K3 = 10, A4 = .5 yields Caflish and
Morokoff's "nearly linear" problem.

6.2. Experimental environment

We ran our tests on a network v of Sparc workstations,
using 10 Ultra-Sparc 10's, 1 Sparc 20, and 5 Sparc 5's. We
took an Ultra 10 as our reference machine p, and always
considered orderings of the machines in decreasing speed.

Table 1. Table of machines' relative perfor-
mances

Machine Time a/ap a „ja
Ultra Sparc 10 123.69 1.00 1.00
Sparc 20 228.20 1.84 0.54
Sparc 5 571.91 4.62 0.22

To derive speeds relative to p, we timed the sequential solv-
ing of a reference problem on each type of machine (thus
ensuring a benchmark containing a similar mix of instruc-
tions as the actual algorithm tested). The problem was the
financial problem in 50 dimensions to 10000 function eval-
uations. Table 1 shows the results: the time (in seconds)
for each machine to solve the reference problem, the speed
a = W/T (using a reference workload W of 1.0), the
relative speed a/ap, and the inverse of the relative speed
{a„I a).

The ratio for the Sparc 5 is 4.62, meaning that an Ultra 10
has the same performance as 4.62 Sparc 5's, or, inversely,
that adding a Sparc 5 to a given set of machines adds the
power of about one-fifth of an Ultra 10.

We present results for the financial problem solved to
60 dimensions. The function count limit was set to 30000
evaluations, with q (samples per lattice rule) set to 10. The
error tolerance was set low so that termination occurred by
reaching the function count limit.

6.3. Speedup and efficiency results

The speedup S„(vp) and ideal speedup R„(vp) was cal-
culated for 1 < p < 16 as per Section 5. The graph in Fig-
ure 1 shows the speedup results. As the processors were or-
dered from fastest to slowest, the reduced slope in the ideal
speedup curve represents the reduced expectations from the
slower workstations. Figure 2 shows the same results in an
efficiency graph.

From the efficiency graph, one can see that we achieve
an efficiency of about .70, and retain that efficiency through
about 13 workstations. At that point, we are using 10 fast
workstations, 1 medium, and 2 slow. Beyond that point we
begin to lose efficiency.

We believe that this loss in efficiency is due to the slower
communication to and from the slower workstations. The
relative speed ai/ap of workstation i only takes into ac-
count the relative computational speed. If a workstation
has slower communication hardware and software, then this
workstation will work even slower than its relative speed
can account for. As the experimental results model does not
take this into account, it appears as a loss of efficiency. In
these models, any form of communication, at any speed, is

203

Graph: Speedup vs. Number of Processors

Figure 1. Speedup results

Graph: Efficiency vs. Number of Processors

0.20

0.00

V '

•60 dimensions

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Number of Processors

Figure 2. Efficiency results

204

taken to be a loss of efficiency, as the comparison is always
to a sequential implementation that does no communication.

Note the downward dip in efficiency and speedup at
p = 2. We determined that having the controller participate
in the work resulted in problems. With this option on, the
controller would begin to calculate a Ki5 value when there
were no updates to receive. When a task was completed,
the controller would again look for updates. This worked
fine in the lower rules, but as the rules became more ex-
pensive to calculate, the controller could work for extended
periods of time without checking for any updates. The re-
sult was starvation loss (i.e., a loss in efficiency), where the
workers would be waiting idle for work, and, breaking loss,
where the update that would allow the algorithm to termi-
nate would be waiting on an incoming message queue while
the controller was busy.

The fact that the controller is not working is the cause
of the downward dip in the graphs at p = 2. A hybrid ap-
proach is probably best, allowing for the controller to do
smaller amounts of work at a time, especially for small val-
ues of p, and allowing it to devote more time, as necessary,
to controlling the workers for larger values of p.

Breaking loss also forms a loss of efficiency, regardless
of the issue of the controller working. As higher level rules
are calculated, each rule requires more and more points.
If execution terminates due to reaching the function count
limit, then the final function count will be generally higher
than the limit; the number of excess function values will
be the amount required to finish the last mj. As the tasks
require more points, this amount increases.

Also note that our use of a non-dedicated network was
detrimental to the overall efficiency.

6.4. Comparisons with adaptive partitioning

As mentioned in Section 1, adaptive partitioning tech-
niques suffer exponentially as the number of dimensions
increases. For a given function of moderate (say, 5 to 15) di-
mensions, it is interesting to consider whether APM or QMC
techniques perform better. Table 2 shows some results com-
paring these techniques for the financial problem at 10 di-
mensions, for varying amounts of requested accuracy. The
ed values referenced in the table correspond roughly to the
number of digits of accuracy requested. The function count
limit was set to 3 million.

The table indicates that neither method has to do much
work initially. The QMC technique is able to handle tighter
accuracies before going over the function limit. The APM
blows up as soon as any partitioning is required. Note
that given the large number of points required per cubature
rule application (1265 points at 10 dimensions for our rules
from [13, 14]), 3 million function evaluations corresponds
to only about 2300 rule evaluations.

Table 2. Table of number of function evalua-
tions and time (in seconds), vs. requested
accuracy, for APM and QMC

Ed APM QMC
Time Fen Evals Time Fen Evals

1 0.35 1265 0.21 620
2 0.35 1265 0.21 620
3 0.35 1265 0.21 620
4 0.36 1265 0.21 620
5 >3M 0.21 620
6 0.22 620
7 2.83 8740
8 58.66 181000
9 133.41 413000
10 >3M

7. Conclusions and future work

We focused on the asynchronous computation of a se-
quence of stochastic lattice rule families using dynamic load
balancing, and presented test results on a heterogeneous
network.

Further theoretical work and experimentation is needed,
e.g., regarding the number of entries needed in a family for
satisfactory error estimation. We also need to assess the
quality of the weighted average of the sequence of results
and error estimates. We are investigating the applicability
of LPr sequences to deal with some classes of singular be-
havior [5]. Furthermore, we intend to experiment with mod-
ifications of the scheduling strategy.

Finally, we are considering the incorporation of the
asynchronous QMC methods as a significant addition to
Parlnt [7].

References

[1] R. Caflisch and W. Morokoff. Quasi-Monte Carlo compu-
tation of a finance problem. In Proceedings of the Work-
shop on Quasi-Monte Carlo Methods and their Applica-
tions, pages 15-30. Statistics Research and Consultancy
Unit, Hong Kong Baptist Univeristy, 1996.

[2] L. Colombet. Parallelisation d'applications pour des
reseaux de processeurs homogenes ou heterogenes. PhD
thesis, Tlnstitut National Polytechnique de Grenoble, 1994.

[3] R. Cranley and T. N. L. Patterson. Randomization of number
theoretic methods for multiple integration. SIAM J. Numer.
Anal., 13:904-914, 1976.

[4] P. J. Davis and P. Rabinowitz. Methods of Numerical Inte-
gration. Academic Press, New York, 1984.

205

[5]

[6]

[7]

[8]

[9]

[10]

[12]

E. deDoncker and A. Genz. Parallel computation of multi-
variate normal probabilities. Computing Science and Statis-

tics, 30,1999.
E. deDoncker, A. Gupta, J. Ball, P. Ealy, and A. Genz.
Parlnt: A software package for parallel integration. In 10*
ACM International Conference on Supercomputing, pages
149-156. Kluwer Academic Publishers, 1996.
E. deDoncker, A. Gupta, A. Genz, and R. Zanny. PARINT

web site. At http://www.cs.wmich.edu/~parint.
E. deDoncker, A. Gupta, and R. Zanny. Large scale par-
allel numerical integration. Journal of Computational and
Applied Mathematics, 112:29-44, 1999.
E. deDoncker, A. Genz, and M. Ciobanu. Parallel computa-
tion of multivariate normal probabilities. Computing Science

and Statistics, 30,1999.
E. deDoncker, R. Zanny, M. Ciobanu, and Y. Guan. Asyn-
chronous quasi monte-carlo methods. In Proceedings of the
High Performance Computing Symposium 2000. To appear.

[11] H. El-Rewini, T. G. Lewis, and H. A. Ali. Task Scheduling
in Parallel and Distributed Systems. Prentice Hall Series in
Innovative Technology. Prentice Hall, 1994.
A. Genz. MVNDST: Software for the numerical compu-
tation of multivariate normal probabilities, 1998. At http:
//www.sci.wsu.edu/math/faculty/genz/homepage.

[13] A. Genz and A. Malik. An adaptive algorithm for numerical
integration over an n-dimensional rectangular region. Jour-
nal of Computational and Applied Mathematics, 6:295-302,

1980.
A. Genz and A. Malik. An imbedded family of multidimen-
sional integration rules. SIAMJ. Numer. Anal, 20:580-588,

1983.
A. Genz and J. Monahan. A stochastic algorithm
for high dimensional integrals over unbounded regions
with Gaussian weight. Available from website at
http://www.sci.wsu.edu/math/faculty/genz/homepage.
C. R. Mechoso, J. D. Farrara, and J. A. Spahr. Achiev-
ing superlinear speedup on a heterogeneous, distributed sys-
tem. IEEE Parallel and Distributed Technology, 2(2): 57-61,

1994.
S. H. Paskov and J. F. Traub. Faster valuation of financial
derivatives. J. Portfolio Management, 22(1):113-120, 1995.
X. Zhang and Y. Yan. Modeling and characterizing paral-
lel computing performance on heterogeneous networks of
workstations. In Proceedings of the Seventh IEEE Sympo-
sium on Parallel and Distributed Processing, pages 25-34,

1995.

Elise deDoncker is a professor of computer science
at Western Michigan University. Her research interests
include parallel and distributed algorithms/ computing,
scientific computations, numerical analysis and quantum
computing. She received her doctorate in Mathematics
from the Katholieke Universiteit Leuven in Belgium.

Rodger Zanny is a doctoral student at Western Michi-
gan University. His research interests include numerical
integration, adaptive partitioning algorithms, search al-
gorithms, and more generally, distributed and parallel

[14]

[15]

[16]

[17]

[18]

computing. He received his B.S. in Computer Science in
1991 from Cornell University and his M.S. from WMU in

1999.

Manuel Ciobanu graduated from the Department of
Computer Science at Western Michigan University. His
interests include parallel and distributed computing, and
weather modeling. He works for Reliant Energy Services

(Houston, TX) as a Quantitative Analyst.

Yuqiang Guan is a doctoral student in computer science
at the University of Texas at Austin. His research interests
include the theory of computation, parallel/ scientific com-
puting, algorithms, quantum computing, data mining and

system modeling.

206

SESSION 3-B
SCHEDULING I

Chair: A. Somani, Iowa State University, USA

Scheduling Multi-Component Applications in Heterogeneous Wide-Area Networks

Jon B. Weissman

Department of Computer Science and Engineering
University of Minnesota

(jon @ cs. umn. edu)

Abstract

In this paper we present a scalable scheduling heuristic
for several common classes of multi-component appli-
cations (meta-applications). We consider this schedul-
ing problem in a wide-area heterogeneous computing
environment, or metasystem. The heterogeneity and
scale of the computing environment and the heteroge-
neity of the application make this a challenging prob-
lem. We have studied the performance of the heuristic
in simulation and the results are encouraging. Comple-
tion times for three common classes of meta-applica-
tions were within 10-20% of optimal on average with a
worst-case variance of 60%. The results suggest that
effective scheduling of meta-applications is possible, if
sufficient application and system resource cost infor-
mation is provided .

1.0 Introduction

Metacomputing is the seamless application of wide-
area distributed computing resources to user applica-
tions. A number of research groups are building low-
level metacomputing infrastructure [2][4]. What distin-
guishes metacomputing applications from other wide-
area distributed applications is the objective of high-
performance. In fact, it is the promise of performance
greater than can be achieved using single site resources
that makes metacomputing most attractive in solving
complex scientific problems. The applications most
suitable for metacomputing are often very heterogene-
ous in structure [6]. For instance, such applications may
include remote databases or servers, remote instru-
ments, remote supercomputers, VR devices, and
humans-in-the-loop. In addition to hardware heteroge-
neity, the underlying networks that connect the differ-
ent sites may also exhibit performance heterogeneity in

1. This work was partially funded by NSF ACR-9996418

both latency and bandwidth. The challenges inherent in
heterogeneous computing are well known [3].

Exploiting the performance potential in metacom-
puting environments requires effective application
scheduling: the selection and allocation of resources to
the application. This problem is particularly challeng-
ing due to the heterogeneous nature of both the
resources (machines and networks) and the application
itself. In this paper, we consider the scheduling of meta-
applications; applications consisting of multiple sched-
ulable components across multiple sites with the goal of
reduced completion time. Previous work showed that
selecting the best single site for single component par-
allel applications can be done efficiently [8]. The
scheduling of multiple interacting components across
multiple sites is a complex problem especially when the
network capacity is assumed to vary between sites.
Most of the metacomputing scheduling work assumes
either communication between components can be
ignored, or the application will be confined to run in a
single site, or the number of sites and components are
small enough to make a brute-force scheduling algo-
rithm feasible. In contrast, we present a scalable sched-
uling heuristic that has achieved excellent results
(typically within 10% of optimal on average) in a
detailed simulation study of three common classes of
meta-applications.

2.0 Meta-Application Model

The underlying network contains a collection of
sites connected by wide-area networks (Figure 1). The
network sites each offer an amount of one or more
resources (cycles, memory, disk, or other specialized
resources) and have a point-to-point bandwidth to each
site (bwj.j that may be different). In this paper, we char-
acterize the site resources and network capabilities
solely in terms of their delivered performance to appli-
cations as in [1].

Meta-applications consist of a set of distinct applica-
tion components that may communicate and interact

0-7695-0556-2/00 $10.00 © 2000 IEEE
209

Sitel

Site 2

Site 3

Site 4

Figure 1: Network Model.

over the course of the application. Components may be
schedulable computations, remote servers or databases,
remote instruments, humans-in-the-loop, etc. (Figure
2). Computational components themselves may be
sequential or parallel computations. Some components
are fixed such as a remote database server and do not
require scheduling, but may impact the scheduling of
other components. For example, the placement of com-
ponent B may be influenced by the amount of data
transmitted by a database to B. If a great deal of data is
moved, then a high-speed link between B and the data-
base may be desired. It is also possible that other com-
ponents are fixed due to scheduling constraints, such as
a given program component must run in a particular
site.

We consider meta-applications in which the inter-
component communication pattern is statically known
(Figure 2) and divide meta-applications into three cate-
gories — concurrent, parallel, and pipeline (Figure 3).
Concurrent is the classic meta-application in which a

set of components each running in a single site are exe-
cuting concurrently and exchanging data. Examples
include global climate modelling which often integrates
several large-scale coupled computational models [5].
A parallel application is a special case of concurrent in
which a component might benefit by distribution across
multiple sites2. This normally applies to large-scale par-
allel applications in which a task (or subcomponent)
may be replicated an arbitrary number of times with
minimal task interaction relative to task computation.
Very-coarse grain SPMD computations or highly com-
pute-intensive applications such as large parallel simu-
lations, RSA factoring, are examples in this category.
Finally, pipeline applications consist of a number of
components connected in a chain-like fashion. Exam-
ples include certain multi-disciplinary optimization
problems in which the outputs of one program are often

2. This is not to be confused with a component that happens to be a
parallel computation, but would not benefit by multi-site distribution.

Figure 2: A meta-application consisting of five components. Three computations (A, B, C),
a database server and a VR server. The presence of an arc indicates data communication.

210

a) concurrent b) parallel c) pipeline

Figure 3: Meta-application classes.

fed into another [7]. In addition, applications may be
hybrids of the above classes. For example, the applica-
tion may be pipelined, but one of the components may
be parallel. In this work we consider concurrent and
pipeline applications with components confined to a
single site. Hybrid and parallel applications are the sub-
ject of future work. Scheduling meta-applications to
minimize application completion time requires a cost
model to evaluate the potential set of candidate sched-
ules. These cost functions require information about the
application. For each application component Q, we
assume the following information:

comp_amt [Cj] — the amount of computation in # of
instructions to be executed, Cj schedulable

comm_amt [Cj, Cj] ~ the amount of communication
(in # of bytes transmitted) between Cj, G

The following cost functions are constructed using
this information and system resource information (S is a
site, N is the number of components, n is the number of
schedulable components, and m is the number of sites):

comp [Q, Sk] for all (i < ri), (k < m)

comm [Cj, Cj, Sk, S,] for all (i, j < N), (k, 1 < m)

commjotal [Cj, Sk] for all (i < «), (k < m)

initjime [Cj, Sk] for all (i < n), (k < m)

The function comp gives the computation time for
component Cs running in site Sk given the current state
of the resources Sk is willing to provide to the applica-
tion assuming no other component is scheduled there. If
other components are also scheduled in Sk, then the
comp function for these components may be degraded
to reflect the sharing of Sk's resources.

The function comm gives the communication time
spent by Cj in communication with Cj when Cj and Cj

are run in Sk and S] respectively. It has the value 0, if
there is no communication. If multiple components are
sharing a link, then the comm function for these compo-
nents may be degraded to reflect the sharing of the link.
The total communication cost for a component
commjotal, is a function of the comm values associ-
ated with its links. In the simplest case it would be the
sum of these costs, but in other situations some link
communication might be overlapped. The communica-
tion costs will vary for different component assign-
ments due to the heterogeneity of the underlying
network. For example, some sites might be vBNS-con-
nected, but others might be limited to standard Internet
connections. The function init_time includes any start-
up overhead which could include queue time for Sk's
resources, time to transmit component binaries from the
initiating site if they are not already located at Sk, etc.
For simplicity, we will assume it is 0 and that n = N in
the remainder of the paper.

Numerous research groups, including ours, are
addressing the problem of producing such cost func-
tions using application and system resource information
[1][9]. Here, we focus on the problem of making sched-
uling decisions given these cost functions for three
classes of meta-applications: pipelines in which a com-
putation stage cannot begin until the prior stage has
completed, and concurrent applications in which all
component computations and inter-component commu-
nication are either overlapped or sequential. The meta-
application completion time TCT can be defined in
terms of the component cost functions (where i, j, k, 1
range over the values above):

211

(1) TCT [pipeline] = £ comp [Cv Sk]+ commjotal [Cv Cy Sk, S]]
(2) TCT [concurrent, overlapped] = max {comp [C,, Sk], commjotal [Cv Cy Sk, Sj]}

(3) TCT [concurrent] = max [comp [Cv Sk]+ commjotal [C;, Cj, Sk, S]]}

Other cost functions are possible depending on the
application. For example, pipeline computation and
communication could be overlapped, or some of the
components within the application may have over-
lapped computation and inter-component communica-
tion. These cases are the subject of future work.

2.1 Scheduling Heuristic

The scheduling problem is to determine an assign-
ment of schedulable components to site resources that
minimizes TCT. Unfortunately, this scheduling problem
is NP-complete. An exhaustive search is not feasible
since if there are n schedulable components and m sites,
then there are m" possible schedules if components can
be co-located and single components cannot span mul-
tiple sites. We presume that while n may be small in
practice (likely less than 10), m may grow as metacom-
puting environments achieve large-scale deployment.
In practice, we may only want to consider a subset of
sites or we may limit m to include sites that contain
resources specifically requested by the application.

The general steps of the scheduling process are the
following:

1: determine candidate sites; for each site
2: a) collect available resources from the site
b) compute cost function estimates for each com-
ponent from the site

3: run scheduling heuristic to search for best compo-
nent/site assignment

Two scheduling heuristics have been developed, one
suitable for compute-intensive meta-applications and
the other for data-intensive meta-applications (a newly
emerging class of meta-applications). In the former
class, component-site scheduling is most critical, while
for the latter, link scheduling (i.e. the link capacity is
considered first) becomes important.

TABLE 1. Simulation Parameters

name value range/units comments

num sites 3.. 10 this size covers today's testbeds

comp_rate [1,10000] MIPS covers weak to powerful sites

intra_link_rate [500, 1000] KBps - fixed value - ethernet speed

inter_link_rate [50, 100], [100, 200], [500, 10000] KBps slow Internet up to vBNS-like

link_variance 1,2,5,10 reflects T network heterogeneity

affinity 1,2,5,10 reflects T component/site affinity

appl_type concurrent w/wo overlap, pipeline

num_components 3..8 8 should cover most meta-apps

comp_amt [10000, 100000], [100000, 100000],

[1000000, 10000000] MInstructions

comp_ and comm_amt ranges cover
medium-coarse grain apps

comm_amt [1, 10000], [1, 100000], [1, 100000] Bytes

col_degrade [0, 1] — real interval 0 = no degradation, 1 = linear

212

pipeline -
concurrent overlap -

concurrent -

11,100000)
Communication Amount (Bytes)

pipeline -----
concurrent overlap **--

concurrent -•—

110000,100000J

1 2 5
Link Variance

pipeline -
concurrent overlap -

concurrent -

[100000,1000000J
Computation Amount (Ml)

pipeline -
concurrent overlap -

concurrent -

5
Affinity

pipeline ——
concurrajit overlap -o—

concurrent -*—

Figure 4: Performance of scheduling heuristic

Below we present the compute-intensive heuristic.

This heuristic considers components in decreasing
order of computational weight:

1. order application components by decreasing
comp_amt value

2. init PLACEMENT[Ci]= -1 for all components Q
3. for each component Cj

4. for each site Sk

5. compute TCT with PLACEMENT[Ci]=Sk,
given PLACEMENT[Cj], j<i, unchanged
(use Eq. 1-3 to compute TCT based on application
type)
6. remember best TCT and best associated site
Sbest
7. end for
8. PLACEMENT[Cs]=Sbest

9. end for

This is a greedy algorithm with complexity 0(mn2).
There are mn schedules and n steps to evaluate TCT (n
links per component). We consider this heuristic to be
scalable as n will be small in practice. It finds a single
best candidate. The computation of T^j in step 5 is
based on an assignment of components up to the current

component. The comp and comm terms for unassigned
components are set to 0 in this calculation.

3.0 Initial Results

We have run the scheduling heuristic over a large set
of simulated metacomputing environments and meta-
applications, and measured the performance of the heu-
ristic with respect to the optimal schedule. The simu-
lated metacomputing environment consists of a number
of interconnected sites that provide a particular compu-
tation and communicate rate. The communication rate
between the different sites is also specified. A link vari-
ance parameter is used to vary to inter-site communica-
tion performance allowing us to simulate a truly uneven
network.

Meta-applications consists of a type and a number of
components. For each component we have an amount
of computation and an amount of communication to all
other components. These parameters are varied to allow
us to simulate a wide range of application granularities.
We also provide an affinity parameter which is used to
bias particular components to particular sites. From this
parameter, we generate an affinity value for each com-
ponent site pair. This allows us to simulate environ-
ments with differing degrees of heterogeneity. This

213

parameter is used to adjust the comp value. Finally,
when components are collocated to particular sites, we
use a parameter to degrade the sites computing power
to all hosted components. This value ranges from no
effect (e.g. perhaps the site has ample resources for all
components) to a degradation linear in the number of
hosted components. Currently, we do not degrade inter-
site link performance in the event that a link is shared
since we do not yet have empirical data for this parame-
ter. For each schedule to be evaluated, the simulator can
easily construct comp, commjotal, and TCT from these
parameter values. The function commjotal is defined
to be the sum of the individual link communication
costs for a component.

Realistic values are chosen for the parameter ranges
(Table 1). For example, the intra-site link rate is based
on a typical ethernet LAN, while the inter-site rate
ranges from Internet WAN speeds up to reported vBNS
rates. For parameters that are specified as ranges, a ran-
dom value uniformly distributed over the range is gen-
erated for each simulation run.

The results that suggest that the heuristic performs
very effectively over the simulated parameter ranges
for the three application classes. A simulation study of
over 800,000 distinct environment and application
instances was performed. For each run, we execute the
heuristic and search for the optimal schedule. We use
several comparison metrics: how close the heuristic is
to the optimal on average and the maximum variance

from optimal. The first set of results are depicted in Fig-
ure 4. The heuristic performs best on the application
classes in the following order: pipeline, concurrent, and
concurrent-overlap. This order reflects increasing sensi-
tivity of the overall completion time to the scheduling
of a single component. Since the completion time of
pipelines are a sum of all components, the heuristic can
afford to schedule a few components sub-optimally. For
the other classes, suboptimal scheduling of a single
component can have a larger impact on the completion
time. However, the heuristic performs quite well for all
application classes. When the number of components is
< 5, the heuristic is within 10% of optimal on average.
In general, it is within 20% on average. The heuristic
also appears to be insensitive to the heterogeneity of the
network environment; performance is fairly flat for
changes in link_variance and affinity parameters. The
heuristic also performs well as the amount of computa-
tion and communication varies. Pipeline applications
are insensitive to these parameters, while the other
application classes exhibit greater sensitivity. The heu-
ristic is also sensitive to the number of sites in the envi-
ronment, but exhibits slow degradation as the number
of sites increases. The second set of results indicate that
the worst-case variance from optimal is within 60% for
all parameter ranges, and typically within 30-40%
(Table 2).

Table 2. Maximum variance for heuristic. Shown for each parameter value and each application class.

Parameter

num sites

num_components

comp_amt

comm amt

link variance

affinity

Max Variance for appl classes [% drift from optimal]:
(pipeline, concurrent overlap, concurrent)

3: (21.7,36.5, 26.8), 4: (24.5,41.9, 28.2), 5: (25.7,42.7, 28.5), 6: (25.4,45.0, 30.0),

7: (25.6,43.4, 28.3), 8: (27.1,47.5, 25.5), 9: (28.4, 53.5, 28.5), 10: (32.4,42.6, 28.6)

3: (19.2,19.4,12.2), 4: (23.3, 32.9, 22.6), 5: (23.7,40.4, 27.4), 6: (25.8,49.1,32.8),

7: (27.0, 50.7, 25.6), 8: (27.0, 57.1, 38.0)

rl: (25.8, 44.5, 27.9), r2: (22.8, 38.3, 28.3), r3: (27.8, 40.5,47.1)

rl: (21.7, 36.5, 3.1), r2: (21.3, 35.2, 25.8), r3: (29.7, 52.6, 25.4)

1:(25.0,40.9, 23.4), 2: (25.5, 41.9, 27.0), 5: (23.5,42.1, 29.9), 10: (23.1, 40.8, 32.2)

1:(14.2,42.1, 28.2), 2: (21.0, 41.5, 27.8), 5: (29.1,40.2, 28.0), 10: (32.7, 42.0, 28.5)

214

4.0 Summary

The scalability of scheduling and resource manage-
ment strategies will become an increasingly important
problem as Grids are scaled up. We presented a scalable
heuristic that has performed extremely well in a simula-
tion study of synthetic meta-applications and metacom-
puting environments. Completion times for three
common classes of meta-applications were within 10-
20% of optimal on average with a worst-case variance
of 60%. The results suggest that effective scheduling of
meta-applications is possible, if sufficient application
and system resource cost information is provided to the
system. Future work includes experimental validation
of the algorithms on a live system. We are also investi-
gating the problem of multiple job scheduling and the
interplay between multiple meta-applications and sin-
gle-resource jobs.

5.0 References

currency: Practice and Experience, Vol. 7(5),
pp. 455-478, 1995.

Biography

Jon B. Weissman received the B.S. degree from Carne-
gie-Mellon University in 1984, and the M.S. and Ph.D.
degrees from the University of Virginia in 1989, 1995.
He joined the University of Minnesota as an Assistant
Professor of Computer Science in Fall 1999. He was an
active member of the Mentat and Legion research
groups while at the University of Virginia. His current
research interests are in distributed systems, high per-
formance computing, and metacomputing.

[1] F. Berman and R. Wolski, "Scheduling From
the Perspective of the Application," Fifth
International Symposium on High Perform-
ance Distributed Computing, 1996.

[2] I. Foster and C. Kesselman, "Globus: A Meta-
computing Infrastructure Toolkit," Interna-
tional Journal of Supercomputing
Applications, 11(2), 1997.

[3] F. Freund and HJ. Siegel, "Heterogeneous
Processing," IEEE Computer, 1993.

[4] A.S. Grimshaw and W. A. Wulf, "The Legion
Vision of a Worldwide Virtual Computer,"
Communications of the ACM, Vol. 40(1),
1997.

[5] C.R. Mechoso et al, "Running a Climate
Model in a Heterogeneous Distributed Com-
puter Environment," Proceedings of the Third
IEEE International Symposium on High Per-
formance Distributed Computing, 1994.

[6] GJ. McRae, "How Application Domains
Define Requirements for the Grid," Communi-
cations of the ACM, Vol. 40(11), 1997.

[7] Multidisciplinary Optimization Home Page,
http://akao.larc.nasa.gov/dfc/mdo/moo.html.

[8] J.B. Weissman, "Gallop: The Benefits of
Wide-Area Computing for Parallel Process-
ing," Journal of Parallel and Distributed
Computing, Vol 54(2), November 1998.

[9] J.B. Weissman and A.S. Grimshaw, "A
Framework for Partitioning Parallel Computa-
tions in Heterogeneous Environments," Con-

215

Application-Aware Scheduling of a Magnetohydrodynamics Application
in the Legion Metasystem

Holly Dail* Graziano Obertelli*

Francine Berman* Rich Wolski* Andrew Grimshaw*

Computer Science and Engineering Department
University of California, San Diego

[hdail, graziano, berman] ©cs.ucsd.edu

* Department of Computer Science
University of Virginia

grimshaw@virginia.edu

* Department of Computer Science
University of Tennessee

rich@cs.utk.edu

Abstract 1. Introduction

Computational Grids have become an important and
popular computing platform for both scientific and commer-
cial distributed computing communities. However, users of
such systems typically find achievement of application ex-
ecution performance remains challenging. Although Grid
infrastructures such as Legion and Globus provide basic re-
source selection functionality, work allocation functional-
ity, and scheduling mechanisms, applications must interpret
system performance information in terms of their own re-
quirements in order to develop performance-efficient sched-
ules.

We describe a new high-performance scheduler that in-
corporates dynamic system information, application re-
quirements, and a detailed performance model in order to
create performance efficient schedules. While the sched-
uler is designed to provide improved performance for a
magneto hydrodynamics simulation in the Legion Compu-
tational Grid infrastructure, the design is generalizable to
other systems and other data-parallel, iterative codes. We
describe the adaptive performance model, resource selec-
tion strategies, and scheduling policies employed by the
scheduler. We demonstrate the improvement in application
performance achieved by the scheduler in dedicated and
shared Legion environments.

This research was supported in part by DARPA Contract#N66001-
97-C-8531, DoD Modernization Contract 9720733-00, and NSF/NPACI
Grant ASC-9619020

Computational Grids [7] are rapidly becoming an impor-
tant and popular computing platform for both scientific and
commercial distributed computing communities. Grids in-
tegrate independently administered machines, storage sys-
tems, databases, networks, and scientific instruments with
the goal of providing greater delivered application perfor-
mance than can be obtained from any single site. There
are many critical research challenges in the development of
Computational Grids as an effective computing platform.
For users, both performance and programmability of the un-
derlying infrastructure are essential to the successful imple-
mentation of applications in Grid environments.

The Legion Computational Grid infrastructure [11] pro-
vides a sophisticated object-oriented programming envi-
ronment that promotes application programmability by
enabling transparent access to Grid resources. Legion
provides basic resource selection, work allocation, and
scheduling mechanisms. In order to achieve desired per-
formance levels, applications (or their users) must inter-
pret system performance information in terms of require-
ments specific to the target application. Application Level
Scheduling (AppLeS) [3] is an established methodology
for developing adaptive, distributed programs that execute
in dynamically changing and heterogeneous execution set-
tings. The ultimate goal of this work is to draw upon the
AppLeS and Legion Computational Grid research efforts to
design an adaptive application scheduler for regular itera-
tive stencil codes in Legion environments.

We consider a general class of regular, data-parallel sten-
cil codes which require repeated applications of relatively

0-7695-0556-2/00 $10.00 © 2000 IEEE
216

constant-time operations. Many of these codes have the fol-
lowing structure:

Initialization

Loop over an n-dimensional mesh

Finalization

in which the basic activity of the loop is a stencil based com-
putation. In other words the data items in the n-dimensional
mesh are updated based on the values of their nearest neigh-
bors in the mesh. Such codes are common in scientific com-
puting and include parallel implementations of matrix oper-
ations as well as routines found in packages such as ScaLA-
PACK[18].

In this paper we focus on the development of an adaptive
strategy for scheduling a regular, data-parallel stencil code
called PMHD3D on the Legion Grid infrastructure. The
primary contributions of this paper are:

• We describe an adaptive performance model for
PMHD3D and demonstrate its ability to predict appli-
cation performance in initial experiments. The perfor-
mance model represents the application's requirements
for computation, communication, overhead, and mem-
ory, and could easily be extended to serve more gener-
ally as a framework for regular iterative stencil codes
in Grid environments.

• We couple the PMHD3D performance model with re-
source selection strategies, schedule selection policies,
and deployment software to form an AppLeS sched-
uler for PMHD3D.

• In order to satisfy the requirements of the PMHD3D
performance model we implement and utilize a new
memory sensor as part of the Network Weather Ser-
vice (NWS)[22]. The sensor collects measurements
and produces forecasts of the amount of free memory
available on a processor.

• We demonstrate the ability of the AppLeS method-
ology to provide enhanced performance for the
PMHD3D application, using the Legion software in-
frastructure as a platform for high-performance appli-
cation execution.

In the next section we discuss the structure of the target
application and the environment that we used as a test-bed.
In Section 3, we discuss the AppLeS we have designed for
PMHD3D and provide a generalizable performance model.
Section 4 provides experimental results and demonstrates
performance improvements we achieved via AppLeS using
Legion. In Sections 5 and 6 we review related work and
investigate possible new directions, respectively.

2. Research Components:
PMHD3D and Legion

AppLeS, NWS,

In order to build a high-performance scheduler for
PMHD3D we leveraged application characteristics, dy-
namic resource information from NWS, the AppLeS
methodology, and the Legion system infrastructure. In this
section we explain each of these components in detail.

2.1. AppLeS

The AppLeS project focuses on the development of a
methodology and software for achieving application per-
formance via adaptive scheduling [1]. For individual ap-
plications, an AppLeS is an agent that integrates with the
application and uses dynamic and application-specific in-
formation to develop and deploy a customized adaptive ap-
plication schedule. For structurally similar classes of appli-
cations, an AppLeS template provides a "pluggable" frame-
work which comprises a class-specific performance model,
scheduling model, and deployment module. An applica-
tion from the class can be instantiated within the template
to form a performance-oriented self-scheduling application
targeted to the underlying Grid resources.

AppLeS schedulers often rely on available tools in order
to deploy the schedule or to gather information on resources
or environment. AppLeS commonly depends on the Net-
work Weather Service (NWS) (see Section 2.4) to provide
dynamic predictions of resource load and availability. To-
gether, AppLeS and the Network Weather Service can be
used to adapt application performance to the deliverable ca-
pacities of Grid resources at execution time. In this project
AppLeS uses Legion to execute a schedule and the Internet
Backplane Protocol (IBP) [13] to effectively cache the data
coming from NWS.

2.2. PMHD3D

The target application for this work, PMHD3D [12, 15],
is a magnetohydrodynamics simulation developed at the
University of Virginia Department of Astronomy by John
F. Hawley and ported to Legion by Greg Lindhal. The code
is an MPI FORTRAN stencil-based application and shares
many characteristics with other stencil codes. The code is
structured as a three-dimensional mesh of data, upon which
the same computation is iteratively performed on each point
using data from its neighbors. PMHD3D alternates between
CPU-intensive computation and communication (between
"slab" neighbors and for barrier synchronizations).

At startup PMHD3D reads a configuration file that spec-
ifies the problem size and the target number of processors.
Since the other two dimensions are fixed in PMHD3D's
three-dimensional mesh, we refer to the height of the mesh

217

PMHD3D PMHD3D

Using AppLcS

Using Legion

USER »p-zS-i >i

AppLeS
Schedule Resource „ . 0 Performance „ , .
Creation« Selection „ , . Model Selection

Resource

Figure 1. PMHD3D run-time scenarios with and without AppLeS.

as the problem size. In order to allocate work among proces-
sors in the computation the mesh is divided into horizontal
slabs such that each processor receives a slab. For load bal-
ancing purposes each processor can be assigned a different
amount of work (by dividing the work into slabs of vary-
ing height). The AppLeS scheduler determines the optimal
height of each slab depending on the raw speed of the pro-
cessor and on NWS forecasts of CPU load, the amount of
free memory, and network conditions. AppLeS is dynamic
in the sense that the data used by the scheduler is computed
and collected just before execution, but once the schedule is
created and implemented, the execution currently proceeds
without interaction with the AppLeS.

2.3. Legion

Legion, a project at the University of Virginia, is de-
signed to provide users with a transparent, secure, and re-
liable interface to resources in a wide-area system, both at
the programming interface level as well as at the end-user
level [9, 14]. Both the programmer and the end-user have
coherent and seamless access to all the resources and ser-
vices managed by Legion. Legion addresses challenging
issues in Computational Grid research such as parallelism,
fault-tolerance, security, autonomy, heterogeneity, legacy
code management, resource management, and access trans-
parency.

Legion provides mechanisms and facilities, leaving to
the programmer the implementation of the policies to be
enforced for a particular task. Following this idea, schedul-
ing in Legion is flexible and can be tailored to suit applica-

tions with different requirements. The main Legion compo-
nents involved in scheduling are the collection, the enactor,
the scheduler, and the hosts which will execute the sched-
ule [5]. The collection provides information about the avail-
able resources and the scheduler selects the resources to be
used in a schedule. The schedule is then given to the enac-
tor, which contacts the host objects involved in the sched-
ule and attempts to execute the application. This scheme
provides scheduling flexibility; for example, in case of host
failures, the enactor can ask the scheduler for a new sched-
ule and continue despite the failure, the collection can re-
turn subsets of the resources depending on the user and/or
the application, or the hosts can refuse to serve a specific
user.

Legion currently provides default implementations of all
the objects described herein. Moreover, new objects can
be developed and used rather than the default ones. Note
that the PMHD3D AppLeS is developed "on top" of Le-
gion, and uses default Legion objects. We would expect
the performance improvement for such a code to conserva-
tively bound from below that which would be achievable if
the AppLeS were structured as a Legion object. We plan
to eventually develop the AppLeS described here as a Le-
gion scheduling object for a class of regular, iterative, data-
parallel applications.

2.4. Network Weather Service

The Network Weather Service [17, 22] is a distributed
system that periodically monitors and dynamically fore-
casts the performance various network and computational

218

resources can deliver. NWS is composed of sensors, mem-
ories and forecasters. Sensors measure the availability of
the resource, for example CPU availability, and then record
the measurement in a NWS memory. In response to a query,
the NWS software will return a time series of measurements
from any activated sensor in the system. This time series
can then be passed to the NWS forecaster which predicts
the future availability of the resource. The forecaster tests
a variety of predictors and returns the result and expected
error of the most accurate predictor. To obtain better per-
formance for PMHD3D we developed a memory sensor
that measures the available free memory of a machine. The
sensor has been extended and is now part of NWS.

2.5. Interactions Among System Components

PMHD3D can directly access Legion's scheduling fa-
cilities or can use AppLeS to obtain a more performance-
efficient schedule. Figure 1 shows the interactions among
components in each of these scenarios. The dotted line rep-
resents the scheduling of a PMHD3D run without AppLeS
facilities: the user supplies the number of processors, the
processor list, and the associated problem size per proces-
sor and the rest of the scheduling process is supplied by a
default scheduler within the Legion infrastructure.

When the application uses AppLeS for scheduling, the
interactions among components can instead be represented
by the solid lines in Figure 1. In this case the user sup-
plies only the problem size of interest. AppLeS collects
the list of available resources from the environment (via the
Legion collection object or, in our case, via the Legion con-
text space), and then queries NWS to obtain updated per-
formance and availability predictions for the available re-
sources. As the figure shows, AppLeS collects the NWS
predictions as an IBP client: the predictions are pushed into
the IBP server by a separate process.

AppLeS then creates a performance-promoting adaptive
schedule and asks the Legion scheduler to execute it. The
schedule is adaptive because AppLeS assigns a different
amount of work to each processor depending on their pre-
dicted performance. As is suggested by the figure, the
PMHD3D AppLeS is built on top of Legion facilities. A fu-
ture goal is to integrate the AppLeS as an alternative sched-
uler in Legion for the class of regular, data-parallel, stencil
applications.

3. The PMHD3D AppLeS

The general AppLeS approach is to create good sched-
ules for an application by incorporating application spe-
cific characteristics, system characteristics, and dynamic
resource performance data in scheduling decisions. The
PMHD3D AppLeS draws upon the general AppLeS

methodology [3] and the experience gained building an Ap-
pLeS for a structurally similar Jacobi-2D application [2].

Conceptually, the PMHD3D AppLeS can be decom-
posed into three components:

• a performance model that accurately represents ap-
plication performance within the Computational Grid
environment;

• a resource selection strategy that identifies poten-
tially performance-efficient candidate resource sets
from those that are available at run time;

• a schedule creation and selection strategy that cre-
ates a good schedule for each of the various candidate
resource sets and then selects the most performance-
efficient schedule.

The overall strategy and organization of the scheduler
will be discussed here but the details of each component are
reserved for the following sections.

An accurate performance model (Section 3.1) is funda-
mental for the development of good schedules. The per-
formance model is used in two important ways, the first of
which is to guide the creation of schedules for specific re-
source sets. For example, load balancing is a necessary con-
dition developing an efficient schedule but is difficult or im-
possible to achieve without an estimate of the relative costs
of computation on various resources. An accurate perfor-
mance model is also necessary for selection of the highest
performance schedule from a set of candidate schedules.

The resource selection strategy (Section 3.2) produces
several orderings of available resources based on differ-
ent concepts of "desirability" of resources to PMHD3D.
Our definitions of desirability incorporate Legion re-
source discovery results, dynamic resource availability from
NWS, dynamic performance forecasts from NWS, and
application-specific performance data for each resource.
Once complete, the ordered lists of resources are passed on
to the schedule creation and selection component of the Ap-
pLeS.

The schedule creation step (Section 3.3) takes the pro-
posed resource lists and creates a good schedule for each
based on the constraints the system and application im-
pose. System constraints are characteristics such as avail-
able memory of the resources while the application con-
straints are characteristics such as the amount of memory re-
quired for the application to remain in main memory. Once
all schedules have been created the performance model is
used to select the highest performance schedule (the one in
which the execution time is expected to be the lowest).

The decomposition of the scheduling process into these
disjoint steps provides an overly simplistic view of the in-
teractions between steps. In reality the scheduling process

219

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Rset = getResourceSet()
NWS_data = NWS(Rset)
C = getScheduleConstraints()
for (balance = {0, 0.5, 1})

S = sort(Rset, balance, maxP)
for (n = 2..maxP)

sched = findSchedln, S, NWS_data, C)
while (sched is not found)

"Schedule constraints are too restrictive"
relaxConstraints (C)
sched = findSchedtn,

endwhile
best)

S, NWS_data, C)

if (cost(sched)
best = sched

endif
endfor

17 endfor
18 run(best)

\\ Available resources obtained from Legion
\\ NWS forecasts of resource performance
\\ Obtain scheduling constraints for simplex
\\ Select for CPU power, connectivity, both
\\ Returns list of hosts sorted by desirability
\\ Searching for correct number of processors
\\ Use simplex to find schedule on S using C
\\ Simplex was unsolvable with S and C

\\ More schedule flexibility, more possible error
\\ Try to find schedule again
\\ Found a feasible schedule
\\ If best one so far keep it, else throw away

\\ Best schedule found, run it

Figure 2. PMHD3D AppLeS pseudo-code.

requires more complicated interactions. To accurately rep-
resent the true interaction of the scheduling components we
present a pseudo-code version of the PMHD3D AppLeS
strategy in Figure 2. The steps shown in Figure 2 will be-
come clearer in the following sections.

3.1. Performance Model

The goal of the performance model is to accurately pre-
dict the execution time of PMHD3D. Since the run-time
may vary somewhat from processor to processor, we take
the maximum run-time of any processor involved in the
computation as the overall run-time. During every iteration
each processor computes on its slab of data, communicates
with its neighbors, and synchronizes with all other proces-
sors.

Formally, the running time for processor i is given by:

Ti = Compi + Comrrii + Overi

where Compi, Comrrii and Overt are the predicted com-
putation time, the predicted communication time, and the
estimated overhead for Pif respectively.

Computation time is directly related to the units of work
assigned to a processor (in other words the height of the
slab) and to the speed of that processor. The computation
time for Pi is:

Compi =
Xj * BMj

Availi

where Xi is the amount of work allocated to processor Pi
(dynamically determined by the scheduling process), BMi
is a benchmark for the application-specific speed of Pi's
processor configuration, and Availi is a forecast of the CPU
load on processor Pi (obtained from dynamic NWS fore-
casts). To obtain the benchmarks, we run PMHD3D on

dedicated machines with various problem sizes and vari-
able number of hosts. Execution times were proportional
to problem size and are given in terms of seconds per point
on each platform.

Communication time is modeled as the time required
for transferring data to neighboring processors across the
available network. This represents communication for all
iterations and accounts for both the time to establish a con-
nection and the time to transfer the messages. To simplify
the communication model, we have not attempted to di-
rectly predict synchronization time or the time a processor
waits for a communication partner. We hope instead to cap-
ture the effect of these communication costs in our estimate
of overhead costs, which we discuss shortly. Communica-
tion time is then:

Comrrii = MB/{bi>i+1 + 6M_i) + M * (ZM+J + h,i-i)

where MB is the total megabytes transfered, M is the num-
ber of messages transfered, and 6^ and kj are predictions
of available bandwidth and latency from Pi to Pj, respec-
tively. Predictions of available bandwidth and latency be-
tween pairs of processors are obtained from dynamic NWS
forecasts. To provide an estimate of the number of mes-
sages transferred (M) and the megabytes transferred (MB)
we examined post-execution program performance reports
provided by Legion. For a variety of problem sizes and re-
source set sizes the number of megabytes transferred var-
ied by less than 5% so we used an average value for all
runs. Data transfer does not significantly vary with prob-
lem size because the problem size affects only the height of
the grid while the decomposition is performed horizontally.
Data transfer costs also do not vary with number of proces-
sors because each processor must communicate with only
its neighbors, regardless of the total number of processors.
Although the number of messages transferred varied more

220

significantly from run-to-run we also used an average value
for this variable. This approximation did not adversely af-
fect our scheduling ability in the environments we tested; in
cases where communication costs are more severe a model
could be developed to approximate the expected number of
messages transferred.

The overhead factor Overi is included in the perfor-
mance model to capture application and system behav-
ior that cannot be accounted for by a simple commu-
nication/computation model. For example, a processor
will likely spend time synchronizing with other processors,
waiting for neighbor processors for data communication,
and waiting for system delays. System overheads are as-
sociated with specifics of the hardware and Legion infras-
tructure such as the time required to resolve the physical
location of a data object needed by the application. The
overhead for PMHD3D can be estimated by:

Overt = 16 - 1.5 * probSize/1000 + 0.094P2

where P is the number of processors involved in the com-
putation and probSize is the height of the PMHD3D mesh.

Overt was estimated empirically using data from 106
individual application executions with problem sizes vary-
ing from 1000 to 6000 and with resource set sizes vary-
ing between 4 and 26. To determine the effect of the num-
ber of processors on overhead runs, runs were grouped by
problem size and the corresponding execution times plot-
ted against number of processors. For each set of runs per-
formed with the same problem size, a quadratic fit was per-
formed on the difference between the actual execution time
and the predicted execution time (without the overhead fac-
tor). The quadratic factor varied between 0.090 and 0.096
with a mean of 0.094 (standard deviation of 0.0022). To
determine the effect of problem size on overhead we used
the same runs but did a linear datafit on the predicted/actual
execution time difference with problem size.

3.2. Resource Selection

Resource selection is the process of selecting a set
of target resources (processors in this case) that will be
performance-efficient. Finding the optimal set of resources
requires comparing all possible schedules on all possible
subsets of the resource pool - clearly an inefficient pro-
cess as the resource pool becomes large. Instead, we create
several ordered lists of resources by employing a heuristic
to sort candidate resources in terms of several definitions
of resource desirability. Resource desirability is based on
how resource characteristics such as computational speed
and network connectivity will affect the performance of
PMHD3D.

The resource selection process begins by querying Le-
gion to discover the available set of resources. Effec-

tive evaluation of the desirability of each resource requires
application-specific performance information as well as dy-
namic resource performance information. As of this writ-
ing, Legion collection objects report available resources and
their static configurations but do not provide up-to-date dy-
namic information on availability, load, or connectivity. Ac-
cordingly, the list of available resources reported by Legion
is used to query NWS for dynamic forecasts of resource
availability, CPU load, and free memory for each host and
of latency and bandwidth between all pairs of hosts. To ob-
tain the computational cost per unit of the PMHD3D grid
on each type of resource we used the benchmarking method
described in Section 3.1.

Once the available resource lists and the dynamic sys-
tem characteristics are collected, the list can be ordered in
terms of desirability. We use three definitions of desirability
of a resource: desirability based on connectivity, desirabil-
ity based on computational power, and desirability based
equally on the two characteristics. Connectivity is approx-
imated by computing the latency and bandwidth between
the resource in question and all other resources in the re-
source pool: as a metric we calculate the amount of time
(seconds) it would take for the resource in question to ex-
change a packet of size 1 byte to and from every other host.
Computational power is measured by the time (seconds) it
would take the host to compute 1 point for 1 iteration based
on the NWS predictions and the benchmarks we discussed
earlier. The balanced strategy orders the resources based on
an average of computational power and connectivity.

The resource set is sorted into 3 resource lists using the
3 notions of resource desirability. We then create subsets of
the lists by selecting the n most desirable hosts from each
list where n = 2...maxP and n is even. We select multiple
subsets from each list because it is often impossible to know
the optimal number of hosts a priori. Once the subsets have
been created the resulting group of proposed resource sets
are passed on to the schedule creation step described in the
next section. Although the approach described here is not
guaranteed to find the optimal resource set, the methodol-
ogy provides a scalable and performance-efficient approach
to resource selection.

3.3. Schedule Creation and Selection

For each of the proposed resource sets, a schedule is de-
veloped. Essentially, schedule development on a given re-
source set for PMHD3D reduces to finding a work alloca-
tion that provides good time balancing. As in Section 3.1
work allocation is represented by Xi and is the height of the
slab given to processor Pt.

One of the most important characteristics for any solu-
tion to this problem is time balancing: all processors should
finish at the same time. Using the notation from Section 3.1,

221

T{ = Ti+U i e {l...(n - 1)} and, since all of the
work must be allocated, we also have J^t z; = probSize.
Taken together we have n equations in n unknowns and the
problem can be solved with a basic linear solver. This ap-
proach was successful for the Jacobi-2D AppLeS [2] but is
not powerful enough to incorporate several additional con-
straints required to develop good schedules for PMHD3D.

One of the important constraints for PMHD3D perfor-
mance is the amount of memory available for the applica-
tion. There is a limit to the size of problem that can be
placed on a machine because if the computation spills out
of memory, performance can drop by two orders of magni-
tude. To quantify this constraint a benchmark for applica-
tion memory usage must be obtained by observing memory
usage for varying problem sizes on each type of resource.
Formally, this constraint becomes:

BMmerrii * Xi < MemAvaih

where MemAvaih is the available memory for processor
i (provided by the NWS memory sensor) and BMmerrii is
the memory benchmark (megabytes/unit) recorded for pro-
cessor i's architecture.

We formalize the work allocation constraints as a Lin-
ear Programming problem (from now on simply LP), solv-
able with the simplex method [6]. In short, LP solves the
problem of finding an extreme (maximum or minimum) of
a function f{xi ,x2,...,xn) where the unknowns have to
satisfy a set of constraints g{xi ,x2,...,xn) > band both
the objective function and the constraints are linear. The
simplex is a well-known method used to solve LP prob-
lems. The simplex formulation requires that constraints are
expressed in standard form; that is the constraints must be
expressed as equalities and each variable is assigned a non-
negativity sign restriction. There is a simple procedure that
can be used to transform LP problems into a standard form
equivalent.

We modified the time balancing equations to provide
some flexibility for the constraints specification: expected
execution time for any processor in the computation must
fall within a small percentage of the expected total running
time. This flexibility is beneficial, especially as additional
constraints such as memory limits are incorporated into the
problem formulation. The constraints are initially very rigid
but can be relaxed in cases where no solution can be found
given the initial constraints. The time balancing equations
and the application memory requirements form the applica-
tion constraints on which the simplex has to operate. The
simplex formulation also requires specification of an objec-
tive function where the goal of the solver is to maximize the
objective function while satisfying the simplex constraints.
We use X), xi as tne objective function and search for a so-
lution where all work is allocated.

For each of the proposed resource sets the simplex is

used to create the best schedule possible for that resource
set. We use a library [16] which provides a fast and easy to
use implementation of the simplex. There are several bene-
fits of using linear programming and the simplex method to
create a good schedule:

• Linear programming is well known and commonly
used so that fast and reliable algorithms are readily
available.

• Once the constraints are formalized as a linear pro-
gramming problem, adding additional constraints is
trivial. For example, the FORTRAN compiler used to
compile PMHD3D enforced a limit on the maximum
size of arrays, therefore limiting the maximum units
of work that could be allocated to any processor. This
constraint was easily added to the problem formaliza-
tion.

• The linear programming problem can be extended to
give integer solutions, although the problem then be-
comes much more difficult. Currently the solver com-
putes real values for work allocation and we redis-
tribute the fractional work portions. In some problems
a linear solution may be required for additional accu-
racy.

• In the case that a solution cannot be found, the simplex
method provides important feedback. For this applica-
tion, the simplex could not find a solution if the con-
straints were too restrictive. In this case the simplex is
reiterated with successively relaxed constraints until a
solution can be reached.

Once the proposed schedules are identified, schedule se-
lection is surprisingly simple. The performance model is
used to evaluate the expected execution time of each pro-
posed schedule, and the schedule with the lowest estimated
execution time is selected and implemented.

4. Results

The PMHD3D AppLeS has been implemented and we
present results to investigate the usefulness of the method-
ology. The goals of these experiments were to:

• Evaluate the accuracy of our performance prediction
model.

• Evaluate the ability of the PMHD3D AppLeS to pro-
mote application performance in a multi-user Legion
environment.

The previous sections stressed the importance of the per-
formance model for effective scheduling. In Section 4.2 we
explain in detail results demonstrating the accuracy of the

222

performance model. In Section 4.3 we present evidence that
the scheduling methodology and implementation are effec-
tive in practice. Before discussing these results we first out-
line our experimental design.

4.1. Experimental Design

To evaluate the PMHD3D AppLeS, we conducted ex-
periments on the University of Virginia Centurion Cluster,
a large cluster of machines maintained by the Legion team
(see [4] for more information on the cluster). The Centu-
rion Cluster is continuously upgraded for new Legion ver-
sion releases; during the 3-month period of the experiments,
we used Legion versions 1.5 through 1.6.1. The cluster it-
self is composed of 128 Alphas and 128 Dual-Pentium II
PCs; 12 fast Ethernet switches and a gigaswitch connect
the whole cluster. Although we employed both Alphas and
Pentiums during the development and initial testing process,
we had multiple difficulties with Alpha Linux kernel insta-
bilities and a faulty network driver which made our data
for the Alphas machines unreliable. The results presented
here are based only on the 400 MHz Dual Pentium II ma-
chines. We didn't employ the second processor on the Dual
Pentium: therefore when we talk about host or machine we
consider the machines to be uniprocessors. It is worth not-
ing that many users only use one processor per node so that
even a computationally intensive user will not affect CPU
availability as much as might be expected. However, the
two processors on each Dual Pentium machine utilize the
same memory, sometimes leading to performance degrada-
tion due to overloaded memory systems. Inclusion of mem-
ory constraints in the performance model helped the Ap-
pLeS scheduler avoid overloaded memory systems.

We restricted our experiments to 34 machines for practi-
cal reasons: the dynamic information collected from NWS
includes a large amount of data, even for a relatively small
cluster. Limiting the resource pool did not impact inves-
tigations of application performance or schedule efficiency
because, as will become clear, the parallelism available in
PMHD3D for the problem sizes studied here is well below
the 34 machine limit. As explained in Section 2.5 we used
an IBP server running at all times at UCSD, while AppLeS
acted as an IBP client retrieving the forecasts. This setup
allowed us to obtain updated predictions for a large number
of resources in a reasonable amount of time. On average it
took less than 4 seconds to retrieve the data, with a mini-
mum of 2.5 seconds and a maximum of 8.5 seconds.

To test the performance of PMHD3D under a variety
of conditions, experiments were typically performed with
maximum resource set sizes (from now on called resource
pool or simply pool) of 4,6...26 and problem sizes of
1000,2000...6000. Problem size is the height of the data
grid used by PMHD3D. The pool is the maximum num-

ber of machines the scheduler is allowed to employ. We
test varying pool sizes to simulate conditions under which
a user may be limited to a certain number of resources by
cost or access considerations. Although our overall resource
pool contains 34 machines in total, the maximum pool size
we simulate is only 26. This choice was practical: we fre-
quently found unavailable or inaccessible machines in our
overall resource pool and so were never able to access all
34 machines at one time. Note also that the scheduler may
determine that utilizing the entire pool is not the most per-
formance efficient choice. In this case the pool is larger than
the number of target resources.

The experiments presented in Section 4.2 were con-
ducted under unloaded conditions while those presented in
Section 4.3 were conducted under loaded conditions. The
ambient load present during most of our loaded runs con-
sisted of heavy use of some machines and light use of oth-
ers. In order to investigate application performance we
report performance results based on application execution
time. However, there is a cost associated with using Ap-
pLeS to develop a schedule. We analyzed 43 runs in detail
and the dominant scheduling cost is associated with query-
ing the Legion Collection and the Legion context space.
The time required to access NWS and IBP is on average less
than 4 seconds. Once the system and performance informa-
tion has been collected, the AppLeS required on average
roughly 1 second to order the resources, create schedules,
and select the best schedule.

4.2. Performance Model Validation

The performance model is the basis for determining a
good work allocation and, more importantly, provides the
basis for selecting a final schedule among those that have
been considered. We tested model accuracy for a variety of
problem sizes and target resource sets (see Figure 3). For
the 62 runs shown in this figure the model accurately pre-
dicts execution time within 1.5%, on average. The perfor-
mance model consistently achieved this level of accuracy
for other runs taken under similar conditions. Notice that as
the problem size becomes larger, the smallest pool that we
test also increases (i.e. the smallest pool for a problem size
of 2000 is of size 4 while for a problem size of 6000 it is
12). This experimental setup was required by a limit in the
g77 FORTRAN compiler we employed: no more than 507
work units could be allocated to any one processor during
the computation.

Figure 3 demonstrates the importance of selecting an ap-
propriate number of target resources for PMHD3D. For ex-
ample, for a problem size of 1000 the minimal execution
time is achieved when the application is run on 10 proces-
sors. If fewer processors are used, the amount of work per
processor is high and the overall execution time is higher.

223

120

110

100

10 12 14 16 18
Number of processors

20 22 24 26

Figure 3. Model predictions (dashed lines) and observed execution time {solid lines) for a variety of
problem sizes and pool sizes.

Table 1. Number of resources to target for
various problem sizes under unloaded con-
ditions. Optimal is the best choice, range in-
dicates close to optimal choices.
Size 1000 2000 3000 4000 5000 6000

Hosts
Range

10
8-12

12
12-14

14
14-16

16
14-18

18 18
16-18 18-20

If more processors are used, the added communication and
system overheads cannot be offset by the advantage of the
additional computational power. Significantly, the perfor-
mance model accurately tracks the knee (i.e. inflection
point) in the curve and is thus capable of predicting the cor-
rect number of target resources, at least under these con-
ditions. We report the optimal number of target resources
for all problem sizes tested in Table 1. As will be obvious
in Section 4.3, the optimal number of processors may vary
with resource performance and dynamic system conditions
as well as with problem size.

Figure 4 demonstrates the scheduling advantage of accu-
rately predicting the correct number of processors to target.
In these experiments the PMHD3D AppLeS was allowed to
select any number of processors up to the maximum pool

size. The PMHD3D AppLeS selects the maximum num-
ber of resources for each resource pool up to and including
a size of 18. For resource pools of size 20 and larger the
optimal number of hosts is 18 and the PMHD3D AppLeS
correctly selects only 18 hosts.

-*- Execution Time
-0- Predicted Execution Time
x Pool Size Chosen

»151

12 14 16 18 20 22
Maximum Allowed Processors

24

Figure 4. PMHD3D AppLeS predicted and ac-
tual execution times for a problem size of
5000.

4.3. Performance Results

Once we verified that the performance model is accu-
rate in a predictable environment (i.e. where resources
are dedicated), we turned our attention to considering the

224

performance of the AppLeS in a more dynamic, unpre-
dictable, multi-user environment. We begin by investigat-
ing the ability of PMHD3D AppLeS to compare available
resources and select desirable hosts (computationally fast,
well-connected, or both). To provide a comparison point we
test the performance of another available scheduler, namely
the default Legion scheduler. We conducted experiments in
runs, namely back-to-back PMHD3D executions using the
same resource pool and the same problem size but utiliz-
ing the PMHD3D AppLeS scheduler first and the default
Legion scheduler second.

140

120

noo

-0- Execution Time w/o AppLeS
-*- Execution Time w/ AppLeS
-Q- Predicted Execution Time

;A.,.A: -.A-.-A.-^.j)

10 15 20
Maximum Allowed Processors

25

Figure 5. PMHD3D performance attained with
and without the AppLeS scheduler for a prob-
lem size of 1000.

In Fig. 5 we show a series of runs comparing the
two schedulers for a problem size of 1000. Clearly, the
PMHD3D AppLeS provides a performance advantage for
all resource set sizes tested. However, it is notable that the
two execution time curves follow the same trend only when
the resource pool is in the range of 4-12 hosts. When more
resources are added to the pool the execution time achieved
with the PMHD3D AppLeS remains constant while the de-
fault Legion scheduler execution time diverges. The default
Legion scheduler allocates all available resources, a less
than optimal strategy for PMHD3D. In Table 2 we report
the typical number of processors selected by AppLeS for
different problem sizes and resource set sizes.

For pool sizes of 4 - 12 performance achieved via the
PMHD3D AppLeS is consistently 20 - 25 seconds lower
than that achieved via the default scheduler. In this range
of pool sizes, the PMHD3D AppLeS selects the maximum
number of hosts available and so uses the same number of
resources as the default Legion scheduler. The performance
advantage is achieved by selecting "desirable" resources,
i.e. resources that are computationally fast and/or well-
connected. Figure 6 illustrates the load of all available ma-
chines just before scheduling occurred for the 18-processor
run shown in Figure 5. Clearly, the PMHD3D AppLeS se-
lects lightly loaded hosts (i.e. those hosts with high avail-
ability) while the default scheduler selects several loaded
hosts. It is the load on these selected machines that causes

Table 2. Hosts chosen by PMHD3D AppLeS.
The Legion default scheduler always selects
the maximum number of hosts.

Problem Size
Max Hosts 1000 2000 4000 5000 6000

4
6
8
10
12
14
16
18
20
22
24
26

4
6
8
10
10
10
10
10
10
10
10
10

4
6
8
10
12
12
12
12
12
12
14
14

10
12
14
14
16
14
14
14
14

10
12 12
14 14
16 16
16 18
18 20
18 20
18 18
18 18

a performance disadvantage for the default scheduler. In a
more heterogeneous network environment the connectivity
of the hosts would also play an important role in host selec-
tion and resulting performance.

We obtained 83 runs comparing the default Legion
scheduler to the PMHD3D AppLeS for a variety of problem
sizes (1000-6000) and pool sizes (4-26). Figure 7 shows a
histogram of the percent improvement the PMHD3D Ap-
pLeS achieved over the default Legion scheduler for the 83
runs (the average improvement was 30%).

Note that in a few runs there was little or no advantage
to using the PMHD3D AppLeS. In these cases the proces-
sors were essentially idle and the pool size was below the
optimal number so that the schedulers selected the same
number of processors. In one run the PMHD3D AppLeS-
determined schedule was considerably slower than that de-
termined by the default Legion scheduler. In this case the
scheduler created a schedule based on incorrect system in-
formation: NWS forecasts of CPU availability were unable
to a predict a sudden change in load on several machines
and the resulting schedule was poorly load balanced.

The Legion default scheduler was designed to provide
general scheduling services, not the specialized services we
include in the PMHD3D AppLeS. It is therefore not sur-
prising that the AppLeS is better able to promote applica-
tion performance. In fact, the PMHD3D AppLeS could be
developed as a Legion object for scheduling regular, iter-
ative, data-parallel computations, and this is a focus of fu-
ture work. Using the PMHD3D AppLeS and the Legion de-
fault scheduling strategy as extremes, we wanted to explore
a third alternative for scheduling - that of what a "smart
user" might do: In a typical user scenario for a cluster of
machines a user will have access to a large number of ma-
chines and will typically do a back-of-the-envelope static

225

0.5

00 000000000000000 0 * *

o o fy o o o

o Unavailable Hosts
» Hosts selected by AppLeS
o Hosts selected by default scheduler

II II II II II II II II II II II II l0l II II II II II II II

10 15 20
Processor ID

25 30 35

Figure 6. A snapshot of CPU availability taken
during scheduling for the 18-processor run
shown in Figure 5.

1000

-0- Default Legion Scheduling
-a- Smart User Scheduling
-*- AppLeS Scheduling

2000 3000 4000
Problem Size

5000 6000

Figure 8. Performance obtained by three
schedulers when each was given access to
at most 26 processors.

0 20 40
Percent Improvement

Figure 7. Range of performance improvement
obtained by PMHD3D AppLeS.

calculation to determine an appropriate number of target re-
sources given the granularity of the application. Although a
user may correctly determine the number of hosts to target,
accurate information on resource load and availability will
be difficult or impossible to obtain and interpret prior to or
at compile-time.

To simulate this user scenario, we developed a third
scheduling method called the smart user. The smart user
selects an appropriate number of hosts but does not select
hosts based on desirability. Experiments were performed
for problem sizes ranging from 1000 to 6000 with a pool
size of 26 hosts. Figure 8 shows the performance obtained
by the PMHD3D AppLeS, the default Legion scheduler,
and that obtained by the smart user. In these experiments,
the PMHD3D AppLeS provides a significant performance
advantage over both alternatives.

5. Related Work

The PMHD3D AppLeS is an adaptation and extension of
previous work targeting the structurally similar Jacobi-2D
application ([2],[3]). Jacobi-2D is a data-parallel, stencil-
based iterative code, as is PMHD3D. Both applications al-
low non-uniform work distribution, however Jacobi-2D em-
ploys strip decomposition (using strip widths) for its 2-

dimensional grid while PMHD3D employs slab decompo-
sition (using slab height) for its 3-dimensional grid. While
the applications are structurally similar, PMHD3D required
tighter constraints on memory availability and a more com-
plex performance model. Additionally, PMHD3D was tar-
geted for a much larger resource set (34 machines vs. 8).
The availability of a larger resource pool for this work mo-
tivated the introduction of the quadratic overhead term in
the PMHD3D performance model. Previous AppLeS work
has not included the additional overhead of using extra ma-
chines in scheduling decisions.

As part of our previous work, we developed an AppLeS
for Complib and the Mentat distributed programming en-
vironment. Complib implements a genetic sequencing al-
gorithm for libraries of sequences. It is particularly diffi-
cult to schedule because of its highly data dependent exe-
cution profile. The implementation of Complib we chose
was for Mentat [8] which is an early prototype of the Le-
gion Grid software infrastructure. By combining a fixed
initial distribution strategy (based on a combination of ap-
plication characteristics and NWS forecasts) with a shared
work-queue distribution strategy, the Complib AppLeS was
able to achieve large performance improvements in dif-
ferent Grid settings [20]. In addition to AppLeS for Le-
gion/Mentat applications, we have developed AppLeS for a
variety of Grid infrastructures and applications [19, 21, 7].

In [10], the authors describe a scheduler targeting data
parallel "stencil" applications that use the Mentat program-
ming system. They specifically examine Gaussian elimi-
nation using a master/slave work-distribution methodology.
While it is difficult to compare the performance of each sys-
tem, their approach differs from AppLeS in that it requires
more extensive modification of the application and it does
not incorporate dynamic information.

226

6. New Directions

An ultimate goal is to offer the PMHD3D AppLeS agent
within the Legion framework as a default scheduler for it-
erative, regular, stencil-based distributed applications. In
particular, the scheduler's performance model is flexible
enough to incorporate the requirements and constraints of
other stencil applications and the characteristics of other
platforms. To use this model for other appropriate appli-
cations, good predictions of megabytes transferred, number
of messages initiated, overhead factor, benchmarks for pro-
gram CPU and memory utilization over the different target
architectures, as well as access to dynamic system infor-
mation from NWS or a similar system would be required.
Once obtained, these characteristics are used as inputs to
the model without changing the model structure.

Portability and heterogeneity are also important. The
AppLeS itself is written in C and Perl and has been com-
piled successfully and executed on various architectures and
systems (Pentium, Alpha, Linux and Solaris). Initial results
indicate that the scheduler can be used effectively on dif-
ferent target environments without changes to the structure
of the performance model. For example, we used mpich on
a local cluster for initial development and debugging. The
schedule worked well with only the previously described
changes in model input parameters.

Acknowledgements

The authors would like to express their gratitude to the
reviewers for their comments and suggestions. The insight
and focus provided by their comments improved the paper
greatly. We thank the NWS team and Jim Hayes in particu-
lar for sharing their NWS expertise with us. We also thank
the Legion team and Norman Francis Beekwilder in partic-
ular for sharing their Legion expertise with us.

References

[1] Application-Level Scheduling.
http://apples.ucsd.edu.

[2] F. Berman and R. Wolski. Scheduling from the perspec-
tive of the application. In Proceedings ofHigh-Performance
Distributed Computing Conference, 1996.

[3] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao.
Application level scheduling on distributed heterogeneous
networks. In Proceedings of Supercomputing, 1996.

[4] Virginia Centurion Cluster. http://
legion.Virginia.edu/centurion/facts.

[5] S. J. Chapin, D. Katramatos, J. Karpovich, and
A. Grimshaw. Resource management in Legion. In
Journal of Future Generation Computing Systems,
volume 15, 1999. page583-594 vol 15.

[6] D. Dantzig. Programming of interdependent activities, ii,
mathematical model. Activity Analysis of Production and
Allocation, July-October 1949.

[7] I. Foster and C. Kesselman, editors. The Grid: Blueprint for
a New Computing Infrastructure. Morgan Kaufmann Pub-
lishers, July 1998.

[8] A. Grimshaw. Easy-to-use object-oriented parallel program-
ming with mentat. IEEE Computer, May 1993.

[9] A. Grimshaw, A. Ferrari, F. Knabe, and M. Humphrey.
Wide-area computing: Resource sharing on a large scale.
In IEEE Computer 32(5), volume 32(5), May 1999. page
29-37.

[10] A. Grimshaw, J. Weissman, E. West, and E. J. Loyot. Meta-
systems: an approach combining parallel processing and
heterogeneous distributed computer systems. Journal of
Parallel and Distributed Computing, June 1994.

[11] A. Grimshaw and W. Wulf. Legion-a view from 50,000 feet.
In Proceedings of High-Performance Distributed Comput-
ing Conference, 1996.

[12] John Hawley. http://www.astro.virginia.edu/
~jh8h.

[13] Internet Backplane Protocol.
http://www.es.utk.edu/~elwasif/IBP.

[14] Legion, http://legion.virginia.edu.
[15] G. Lindhal. Private communication.
[16] W. Naylor. wnlib. ftp://ftp.rahul.net/pub/spiketech/softlib/

wnlib/wnlib.tar.Z.
[17] Network Weather Service, http: / /nws . npaci . edu/.
[18] ScaLAPACK. http://www.netlib.org/

scalapack/scalapack_home.html.
[19] S. Smallen, W. Cirne, J. Frey, F. Berman, R. Wolski, M.-H.

Su, C. Kesselman, S. Young, and M. Ellisman. Combining
workstations and supercomputers to support grid applica-
tions: The parallel tomography experience. Heterogeneous
Computing Workshop, May 2000. To appear.

[20] N. Spring and R. Wolski. Application level scheduling:
Gene sequence library comparison. In Proceedings of ACM
International Conference on Supercomputing 1998, July
1998.

[21] A. Su, F. Berman, R. Wolski, and M. M. Strout. Using Ap-
pLeS to schedule simple SARA on the computational grid.
International Journal of High Performance Computing Ap-
plications, 13(3):253-262, 1999.

[22] R. Wolski. Dynamically forecasting network performance
using the network weather service. Cluster Computing,
1998.

Holly Dail is currently a M.S. student in the Department
of Computer Science and Engineering at the University of
California San Diego. She received a B.S. in Physics and a
B.S. in Oceanography from the University of Washington
in 1996. Her current research interests focus on achieving
application performance in Computational Grid environ-
ments.

Graziano Obertelli is currently an Analyst Programmer
in the Department of Computer Science and Engineering

227

at the University of California, San Diego. He received
his Laurea in Computer Science at Univeritä degli Studi,
Milano.

Francine Berman is a Professor of Computer Science and
Engineering at the University of California, San Diego. She
is also a Senior Fellow at the San Diego Supercomputer
Center, Fellow of the ACM, and founder of the Parallel
Computation Laboratory at UCSD. Her research interests
over the last two decades have focused on parallel and
distributed computation, and in particular the areas of
programming environments, tools, and models that support
high-performance computing. She received her B.A. from
the University of California, Los Angeles, her M.S. and
Ph.D. from the University of Washington.

Rich Wolski is an Assistant Professor in the Depart-
ment of Computer Science at the University Tennessee,
Knoxville and a partner in the National Partnership for
Advanced Computational Infrastructure. His research
interests include parallel and distributed computing, on-line
performance analysis techniques and software, compiler
runtime system, and dynamic scheduling. He received his
B.S. from the California Polytechnic University, San Luis
Obispo and his M.S. and Ph.D. from the University of
California at Davis/Livermore Campus.

Andrew S. Grimshaw is an Associate Professor of
Computer Science and director of the Institute of Parallel
Computation at the University of Virginia. His research
interests include high-performance parallel computing,
heterogeneous parallel computing, compilers for parallel
systems, operating systems, and high-performance parallel
I/O. He is the chief designer and architect of Mentat and
Legion. Grimshaw received his M.S. and Ph.D. from the
University of Illinois at Urbana-Champaign in 1986 and
1988 respectively.

228

Fast and Effective Task Scheduling in
Heterogeneous Systems

Andrei Rädulescu Arjan J.C. van Gemund
Faculty of Information Technology and Systems

Delft University of Technology
P.O.Box 5031, 2600 GA Delft, The Netherlands
{A.Radulescu,AJ.C.vanGemund}@ its.tudelft.nl

Abstract

Recently, we presented two very low-cost approaches to
compile-time list scheduling where the tasks' priorities
are computed statically or dynamically, respectively. For
homogeneous systems, these two algorithms, called FCP
and FLB, have shown to yield a performance equivalent to
other much more costly algorithms such as MCP and ETF.
In this paper we present modified versions of FCP and
FLB targeted to heterogeneous systems. We show that
the modified versions yield a good overall performance,
which is generally comparable to algorithms specifically
designed for heterogeneous systems, such as HEFT or
ERT. There are a few cases, mainly for irregular problems
and large processor speed variance, where FCP and FLB's
performance drops down to 32% and 63%, respectively.
Considering the good overall performance and their very
low cost however, FCP and FLB are interesting options
for scheduling very large problems on heterogeneous sys-
tems.

Keywords: compile-time task scheduling, list schedul-
ing, low-cost, heterogeneous systems

1 Introduction

Heterogeneous systems have recently become widely
used as a cheap way of obtaining a parallel system. Clus-
ters of workstations connected by high-speed networks,
or simply the Internet are common examples of hetero-

geneous systems. However, in order to obtain high-
performance from such a system, both compile-time and
runtime support is necessary, in which scheduling the ap-
plication to the parallel system is a crucial factor. The
problem, known as task scheduling, has been shown to be
NP-complete [3].

The general problem of task scheduling has been exten-
sively studied, mainly for homogeneous systems. Various
heuristics have been proposed, including list algorithms
[4, 11, 12, 13, 20], multi-step algorithms [14, 15, 22],
duplication based algorithms [7, 2, 1], genetic algo-
rithms [18], algorithms using local search [21], bin pack-
ing [19], or graph decomposition [6]. Within all these ap-
proaches, list scheduling has been shown to have a good
cost-performance trade-off, as considering its low cost,
the performance is still very good [8, 13, 12]. The low-
cost is a key issue for large problems, in which even a
0{V2) algorithm, where V is the number of tasks, may
have a prohibitive cost.

Task scheduling has also been studied in the specific
context of heterogeneous systems ([5, 9, 10, 16, 17]). It
has been shown that minimizing the tasks' completion
time throughout the schedule is preferable to minimizing
the tasks' start time [10, 17]. With respect to list schedul-
ing algorithms, one can note that most of them can be eas-
ily modified to meet the task's completion time minimiza-
tion criterion, and thus obtain good performance also in
the heterogeneous case (e.g., HEFT [17] and ERT [9] are
the versions using the tasks' completion time as the task
priority of MCP [20] and ETF [4], respectively). How-
ever, two very low-cost list scheduling algorithms that we

0-7695-0556-2/00 $10.00 © 2000 IEEE
229

proposed recently, namely FCP (Fast Critical Path) [13]
and FLB (Fast Load Balancing) [12], cannot be modi-
fied in such an easy way without sacrificing their com-
petitively low cost.

In this paper we present the modifications required to
obtain a good performance from FCP and FLB in het-
erogeneous systems. We show that the modified ver-
sions of FCP and FLB yield a good overall performance,
which is generally comparable to algorithms specifically
designed for heterogeneous systems, such as-HEFT (Het-
erogeneous Earliest-Finish-Time) [17] and ERT (Earliest
Task First) [9]. There are a few cases, mainly for irregular
problems and wide processor speed ranges, in which FCP
and FLB's performance drops down to 32% and 63%, re-
spectively. Considering their very low cost and reason-
ably good performance, we believe that FCP and FLB are
interesting options for task scheduling in heterogeneous
systems, especially for large problems where scheduling
time would otherwise be prohibitive.

This paper is organized as follows: The next two sec-
tions briefly describe the scheduling problem, and the
FCP and FLB algorithms, respectively. In Section 4 we
study their performance for heterogeneous systems. Sec-
tion 5 concludes the paper.

current task to any exit task, where the path length is the
sum of the computation and communication costs of the
tasks and edges belonging to the path. A task is said to be
ready if all its parents have finished their execution. Note
that at any given time the number of ready tasks never
exceeds W. A task can start its execution only after all its
messages have been received.

As a distributed system we assume a set V of P pro-
cessors connected in a clique topology in which inter-
processor communication is assumed to perform with-
out contention. The processors' computing speeds differ
and are represented as fractions of the slowest processor
speed. We assume that the task execution time is pro-
portional with the speed of the processor it is executed
on, and consists of the computation cost multiplied by the
processor speed.

In our algorithms, an important concept is that of the
enabling processor of a ready task t, EP(t), which is the
processor from which the last message arrives. Given a
partial schedule and a ready task t, the task is said to be of
type EP if its last message arrival time is greater than the
ready time of its enabling processor and of type non-EP
otherwise. Thus, an EP type task starts the earliest on its
enabling processor.

2 Preliminaries

The task scheduling algorithm input is a directed acyclic
graph Q = (V, £), that models a parallel program, where
V is a set of V nodes and 8 is a set of E edges. A node
in the DAG represents a task, containing instructions that
execute sequentially without preemption. Each task is as-
sumed to have a computation cost. The edges correspond
to task dependencies (communication messages or prece-
dence constraints) and have a communication cost. The
communication-to-computation ratio (CCR) of a paral-
lel program is defined as the ratio between its average
communication and computation costs. If two tasks are
scheduled to the same processor, the communication cost
between them is assumed to be zero. The task graph
width (W) is defined as the maximum number of tasks
that are not connected through a path.

A task with no input edges is called an entry task, while
a task with no output edges is called an exit task. The
task's bottom level is defined as the longest path from the

3 The Algorithms

List scheduling algorithms use two approaches to sched-
ule tasks. The first category is the static list schedul-
ing algorithms (e.g., MCP [20], DPS [11], HEFT [17],
FCP [13]) that schedule the tasks in the order of their pre-
viously computed priorities. A task is usually scheduled
on the processor that gives the earliest start time for the
given task. Thus, at each scheduling step, first the task is
selected and afterwards its destination processor.

The second approach is dynamic list scheduling
(e.g. ETF [4], ERT [9], FLB [12]). In this case, the tasks
do not have a precomputed priority. At each scheduling
step, each ready task is tentatively scheduled to each pro-
cessor, and the best <task, processor> pair is selected
(e.g., the ready task that starts the earliest on the proces-
sor where this earliest start time is obtained for ETF, or
the ready task that finishes the earliest on the processor
where this earliest finish time is obtained for ERT). Thus,
at each step both the task and its destination processor are

230

selected at the same time.
Both static and dynamic approaches of list schedul-

ing have their advantages and drawbacks in terms of the
schedule quality they produce. Static approaches are more
suited for communication-intensive and irregular prob-
lems, where selecting important tasks first is more crucial.
Dynamic approaches are more suited for computation-
intensive applications with a high degree of parallelism,
because these algorithms focus on obtaining a good pro-
cessor utilization.

FCP (Fast Critical Path) [13] and FLB (Fast Load Bal-
ancing) [12] significantly reduce the cost of the static and
dynamic list scheduling approaches, respectively. In the
next two sections, we describe both algorithms and we
outline the differences between them and previous list
scheduling algorithms.

3.1 FCP

Static list scheduling algorithms have three important
steps: (a) task priorities computation, that takes at least
0(E + V) time, since the whole task graph has to be
traversed, (b) task selection according to their priori-
ties, that takes 0(V\ogW) time, and (c) processor se-
lection, that selects the "best" processor for the previ-
ously selected task, usually the processor where the cur-
rent task starts/finishes the earliest. Processor selection
takes 0((E + V)P) time, since each task is tentatively
scheduled to each processor. Thus, the highest complex-
ity steps are the task and processor selection steps, which
determine the 0{V log (W) + (E+V)P) time complexity
of the static list scheduling algorithms

In FCP, the processor selection complexity is signifi-
cantly reduced by restricting the choice for the destina-
tion processor from all processors to only two proces-
sors: (a) the task's enabling processor, or (b) the processor
which becomes idle the earliest. In [13] we prove that the
start time of a given task is minimized by selecting one
of these two destination processors. The proof is based
on the fact that the start time of a task t on a candidate
processor p is defined as the maximum between (a) the
time the last message to t arrives, and (b) the time p be-
comes idle. As the above-mentioned processors minimize
the two components of the task's start time, respectively,
it follows that one of the two processors minimizes the
task's start time. Consequently, the algorithm's perfor-

mance is not affected, while the time complexity is dras-
tically reduced from 0((E + V)P) to 0(V log (P) + E).

The task selection complexity can be reduced by main-
taining only a constant size sorted list of ready tasks.
Thus, we sort as many tasks as they fit in the fixed size
sorted list, while the others are stored in an unsorted FIFO
list which has an 0(1) access time. The time complex-
ity of sorting tasks using a list of size H decreases to
0(V logH) as all the tasks are enqueued and dequeued
in the sorted list only once. We have found that for
FCP, which uses bottom level as task priority, a size of
P is required to achieve a performance comparable to
the original list scheduling algorithm (see Section 4). A
sorted list size of P results in a task sorting complexity of
O(VlogP).

Using the described techniques for task sorting and
processor selection the total time complexity of FCP
(0(V log (P) + E)) is clearly a significant improvement
over the time complexity of typical list scheduling ap-
proaches with statically computed priority.

3.2 FLB

In FLB, at each iteration of the algorithm, the ready task
that can start the earliest is scheduled to the processor on
which that start time is achieved. Note that FLB uses the
same task selection criterion as in ETF. In contrast to ETF
however, the preferred task and its destination processor
are identified in 0(log(W) + log(P)) time instead of
0{WP).

To select the earliest starting task, pairs of a ready task
and the processor on which the task starts the earliest need
to be considered. As shown earlier, in order to obtain the
earliest start time of a ready task on a partial schedule,
the given task must be scheduled either (a) to the task's
enabling processor, or (b) to the processor becoming idle
the earliest.

Given a partial schedule, there are only two pairs task-
processor that can achieve the minimum start time for a
task: (a) the EP type task t with the minimum estimated
start time EST(t, EP(t)) on its enabling processor, and
(b) the non-EP type task t' with the minimum last message
arrival time LMT(t') on the processor becoming idle the
earliest. The first case minimizes the earliest start time
of the EP type tasks, while the second case minimizes the
earliest start time of the non-EP type tasks. If in both cases

231

LU Laplace Stencil

Figure 1: Miniature task graphs

the same earliest start time is obtained, the non-EP type
task is preferred, because the communication caused by
the messages sent from the task's predecessors are already
overlapped with the previous computation. Considering
the two cases discussed above guarantees that the ready
task with the earliest start time will be identified. A formal
proof is given in [12].

To reduce the complexity even further, the same
scheme as in FCP can be used. Instead of maintaining all
EP and non-EP tasks sorted, only a fixed number of tasks
are stored sorted, while the other are stored in FIFO order.
The FLB's complexity is reduced to 0(V log (P) + E),
while the performance is maintained at a level comparable
to using the fully sorted task lists (see Section 4).

3.3 The Modifications

As mentioned earlier, task scheduling algorithms for het-
erogeneous systems perform better when they sort tasks
by their finish time rather than start time. The reason is
that sorting by finish time implicitly takes into considera-
tion processor speeds. However, in order to maintain their
very low complexity, FCP and FLB must sort the tasks
according to their start time. As a consequence, the pro-
cessor speed is not considered when scheduling a non-EP
task, but only the time the processors becomes idle.

To overcome this deficiency, we change the priority cri-
terion for processors for both FCP and FLB. Instead of
using the time the processor becomes idle the earliest as a
priority, we now use the sum of the processor idle time and

the mean task execution time. Using this priority scheme,
we are now able to incorporate the processor speed when
selecting the processor for a non-EP task. This is a raw
approximation of finding the processor where a non-EP
type task finishes the earliest.

In FLB, we also modify the task priority for the EP-type
tasks. The EP-type tasks are sorted by their finish time on
their enabling processor instead of their start time.

Finally, for both FCP and FLB, we change the final
choice between the two candidate tasks, by selecting the
task finishing the earliest instead of the task starting the
earliest.

Note, that all these modifications of FCP and FLB do
not involve any extra cost compared to the original ver-
sions. As a consequence, the cost of both FCP and FLB
is maintained at the same very low level.

4 Performance Results

The FCP and FLB algorithms are compared with
ERT (Earliest Task First) [9] and HEFT (Heterogeneous
Earliest-Finish-Time) [17]. ERT (0(W(E + V)P)) and
HEFT (0{V\ogW + (E + V)P)) are well-known and
have been shown to obtain competitive results in hetero-
geneous systems [9, 17].

For both FCP and FLB we used two versions. The first
version uses fully sorted task lists. For this first version,
FCP and FLB have exactly the same scheduling criteria
as MCP and ETF, respectively. The second version uses

232

QERT QFCP-f
|HEFT 0FCP-p

QFLB-f
|FLB-p

2 4 8 16 32 64

Figure 2: Cost comparison

partially sorted priority lists of size P. We call the first
version of the algorithms FCP-f and FLB-f, and the sec-
ond FCP-p and FLB-p, respectively.

We consider task graphs representing various types of
parallel algorithms. The selected problems are LU decom-
position ("LU"), Laplace equation solver ("Laplace") and
a stencil algorithm ("Stencil"). For each of these prob-
lems, we adjusted the problem size to obtain task graphs
of about 2000 nodes. For each problem, we varied the
task graph granularities, by varying the communication-
to-computation ratio (CCR). The values used for CCR
are 0.2 and 5.0. For each problem and each CCR value,
we generated 5 graphs with random execution times and
communication delays (i.i.d. uniform distribution with
unit coefficient of variation), the results being the aver-
age over the 5 graphs (in view of the low overall variance,
5 samples are sufficient). Miniature task graphs samples
of each type are shown in Figure 1.

We schedule the task graphs on 2, 4, 8, 16 and 32
processors. For each P, we use 10 heterogeneous con-
figurations in which the processors' speed are uniformly
distributed over the following intervals: [8,12], [6,14]
and [4,16]. Thus, the total number of test configura-
tions is 3 (problems) x 2 (CCR) x 5 (sample graphs) x
5 (processor ranges) x 10 (processor configurations) x
3 (processor intervals) = 5500.

4.1 Running Times

In Fig. 2 the average running time of the algorithms
is shown in CPU seconds as measured on a Pentium

Pro/300MHz PC with 64Mb RAM running Linux 2.0.32.
ERT is the most costly among the compared algorithms.
Its cost increases from 72 ms for 2 processors up to 11 s
for 64 processors (we do not include ERT's running times
for P > 16 in Figure 2 due to their too much higher val-
ues). HEFT's cost also increases with the number of pro-
cessors, but it is significantly lower. For P = 2, it runs
for 17 ms, while for P = 64, the running time is 279 ms.

Both versions of the FCP and FLB have considerably
lower running times. FCP-p's running time is the lowest,
varying from 16 ms for P = 2 to 25 ms for P = 64.
FCP-f varies from 21 ms for P = 2 to 24 ms for P = 64.
One can note that for larger number of processors both
versions of FCP have the same running times. The reason
is that the ready tasks fit in the sorted part of the FCP-f's
priority list.

FLB has a slightly higher cost compared to FCP, be-
cause of the more complicated task and processor selec-
tion schemes. The running times vary around 26 ms and
24 ms for FLB-f and FLB-p, respectively. Their running
times do not vary significantly with the number of proces-
sors. One can note that for larger number of processors,
FCP and FLB's running times tend to become similar.

4.2 Scheduling Performance

In this section we study how the FCP and FLB algorithms
perform. We first compare FCP and FLB's performance
to ERT and HEFT's performance, with respect to gran-
ularity, problem type and processor heterogeneity. Next,
we show the speedups achieved by FCP and FLB.

233

NSL

CCR
1/5 1.0

NSL NSL

GERT 0FCP-f
■HEFT BFCP-p

OFLB-f
BFLB-p

NSL NSL

4 8 16
Laplace

NSL

1.4

1.2

1.0

0.8

0.6

Figure 3: Performance comparison with respect to the problem

4 8 16
Stencil

For performance comparison, we use the normalized
schedule length (NSL), defined as the ratio between the
schedule length of the given algorithm and the schedule
length of ERT.

In Figure 3 we study the algorithms' performance with
respect to the problem type by comparing the schedule
lengths averaged over the three processor speed intervals.
One can note that for both FCP and FLB, the partial
versions obtain performance similar to the full versions.
Therefore we will further refer only to the partial versions
of FCP and FLB.

One can note that the overall performance of FCP is
comparable to ERT's performance, although at a much
lower cost. For problems involving a large number of fork
and join tasks, such as LU and Laplace, for a large number
of processors ERT performs better, up to 16% for both
coarse and fine-grain cases (Laplace, P = 32). For all
the other cases (i.e., for regular problems, such as Stencil,
or for small number of processors) FCP performs equal
or better compared to ERT, up to 8% (Stencil, P = 32)
and 7% (LU, P = 16) for coarse and fine-grain problems,

respectively.
Compared to HEFT, FCP is outperformed for problems

involving a large number of fork and join tasks, such as
LU and Laplace, for a large number of processors, with
up to 27% (Laplace, P = 32) and 23% (LU, P = 32)
for coarse and fine-grain cases, respectively. However,
in all the other cases (i.e., for regular problems, such as
Stencil, or for small number of processors) FCP performs
comparable to HEFT.

FLB's performance is generally worse, being outper-
formed by ERT, HEFT and FCP by up to 46%, 57%, and
30% (all for coarse-grain Laplace, P = 32%), respec-
tively. However, even for FLB, the performance becomes
comparable to the other three algorithms for regular prob-
lems, such as Stencil, or small number of processors.

In Figure 4 we study the influence of the heterogene-
ity to the performance. The results are averaged over the
LU, Laplace and Stencil problems. Again, both FCP and
FLB obtain similar performance for the full and partial
versions.

Again, the overall performance of FCP is comparable

234

NSL

CCR
1/5 1.0

NSL

6-14

NSL

DERT BFCP-f
■HEFT 0FCP-P

QFLB-f
SFLB-p

NSL

CCR
5/1 1.0

NSL

2 4
Processor
speed range 4~16

NSL

Figure 4: Performance comparison with respect to heterogeneity

8-12

to ERT's performance. For a large processor speed vari-
ance (i.e., 4 - 16) and for a large number of processors
ERT performs better, up to 15% and 12% for coarse and
fine-grain cases (4 - 16 processor speed range, P = 32),
respectively. For all the other cases (i.e., small processor
speed variance, or for small number of processors) FCP
performs equal or even better compared to ERT, up to 8%
and 12% (both for Stencil, P = 16) for coarse and fine-
grain problems, respectively.

Compared to HEFT, FCP is also outperformed for a
large processor speed variance and for a large number of
processors, with up to 28% and 26% (both for 4-16 pro-
cessor speed range, P — 32) for coarse and fine-grain
cases, respectively. However, for small processor speed
variance, or for small number of processors, FCP's per-
formance tends to become comparable to HEFT.

FLB's performance is generally worse, being outper-
formed by ERT, HEFT and FCP with up to 50%, 63%, and
35% (all for 4-16 processor speed range, coarse-grain
problems, P = 32%), respectively. However, even for

FLB, the performance becomes comparable to the other
three algorithms for regular problems, such as Stencil, or
small number of processors.

One can note that for heterogeneous systems, the ver-
sions using fully and partially sorted priority lists perform
comparable for both FCP and FLB. Similar to homoge-
neous systems, a partially sorted list of size P yields com-
petitive results, while the scheduling complexity becomes
extremely low: 0(V log (P) + E).

Figures 5 and 6 show the speedups achieved for the
FCP and FLB algorithms respectively. Although FCP per-
forms better, the two algorithms perform similar with re-
spect to problem type, granularity and processor speed
range. For Stencil the speedup is almost linear. How-
ever, for LU and Laplace the speedup starts leveling off
for more than 32 processors. The reason is that LU
and Laplace have a large number of fork and join nodes,
and as a consequence a limited parallelism, while Sten-
cil is a regular problem with a large and constant paral-
lelism. Also, one can note that for a large processor speed

235

CCR
1/5

CCR
5/1

"1 2 4 8 16 32 P
Processor . .,
speed range 4~10

1 2 4 8 16 32 P

6-14

2 4 8 16 32 P

8-12

Figure 5: FCP-p Speedup

CCR
5/1

S1
32

k S

 -j, 32

CCR
1/5

16

8

4

2

 -/£* "
• ^ 2

1 r —a»- 1

16 32 P 1 2 4
Processor , ..
speed range 4_1° °~l*

Figure 6: FLB-p Speedup

16 32 " P "1 2 4 8 16 32

S

32

16

236

variance (i.e., 4 - 16) and a large number of processors
(P — 32) the speedup is lower compared to a small pro-
cessor speed variance. Also, for fine-grain problems, the
speedup is lower for a large number of processors. In
both cases the reason is that there are not enough tasks
to fully utilize the existing processors, and, as FCP and
FLB are not specifically designed for heterogeneous pro-
cessors, they do not always select the faster processors
first.

5 Conclusion

In this paper we investigate the performance of the low-
cost static list scheduling algorithm FCP and dynamic list
scheduling algorithm FLB, modified to schedule applica-
tions for heterogeneous systems. We show that making
minimal modifications that do not affect their very low
cost, FCP and FLB still obtain good performance in het-
erogeneous systems, at a cost that is considerably below
typical scheduling algorithms for heterogeneous systems.

We show that the performance of the modified versions
of FCP and FLB is generally comparable to algorithms
specifically designed for heterogeneous systems, such as
HEFT and ERT. There are only a few cases, mainly for
irregular problems and large processor speed variance,
where FCP and FLB's performance drops down to 32%
and 63%, respectively.

Considering the overall performance and their very low
cost compared to the other algorithms, we believe FCP
and FLB to be interesting compile-time candidates for
heterogeneous systems, especially considering the large
problem sizes that are used in practice.

References

[1] I. Ahmad and Y.-K. Kwok. A new approach to
scheduling parallel programs using task duplication.
In Proc. Int'l Conf. on Parallel Processing, 1994.

[2] Y. C. Chung and S. Ranka. Application and perfor-
mance analysis of a compile-time optimization ap-
proach for list scheduling algorithms on distributed-
memory multiprocessors. In Proc. Supercomputing,
1992.

[3] R. L. Graham. Bounds on multiprocessing timing
anomalies. SIAM Journal on Applied Mathematics
17(2):416-429, Mar. 1969.

[4] J.-J. Hwang, Y.-C. Chow, F. D. Anger, and C.-Y
Lee. Scheduling precedence graphs in systems with
interprocessor communication times. SIAM Journal
on Computing, 18:244-257, Apr. 1989.

[5] M. Kafil and I. Ahmad. Optimal task assignment in
heterogeneous computing systems. In Proc. Hetero-
geneous Computing Workshop, 1997.

[6] A. A. Khan, C. L. McCreary, and M. S. Jones. A
comparison of multiprocessor scheduling heuristics.
In Proc. Int'l Conf. on Parallel Processing, 1994.

[7] B. Kruatrachue and T. G. Lewis. Grain size determi-
nation for parallel processing. IEEE Software, pages
23-32, Jan. 1988.

[8] Y.-K. Kwok and I. Ahmad. Benchmarking the task
graph scheduling algorithms. In Proc. Int'l Paral-
lel Processing Symp. / Symp. on Parallel and Dis-
tributed Processing, 1998.

[9] C.-Y. Lee, J.-J. Hwang, Y.-C. Chow, and F. D.
Anger. Multiprocessor scheduling with interpro-
cessor communication delays. Operations Research
Letters, 7:141-147, June 1988.

[10] M. Maheswaran and H. J. Siegel. A dynamic
matching and scheduling algorithm for heteroge-
neous computing systems. In Proc. Heterogeneous
Computing Workshop, 1998.

[11] G.-L. Park, B. Shirazi, J. Marquis, and H. Choo.
Decisive path scheduling: A new list scheduling
method. In Proc. Int'l Conf. on Parallel Processing,
1997.

[12] A. Rädulescu and A. J. C. van Gemund. FLB: Fast
load balancing for distributed-memory machines. In
Proc. Int'l Conf. on Parallel Processing, 1999.

[13] A. Rädulescu and A. J. C. van Gemund. On the com-
plexity of list scheduling algorithms for distributed-
memory systems. In Proc. ACM Int'l Conf. on Su-
percomputing, 1999.

237

[14] A. Rädulescu, A. J. C. van Gemund, and H.-X. Lin.
LLB: A fast and effective scheduling algorithm for
distributed-memory systems. In Proc. Int'l Paral-
lel Processing Symp. / Symp. on Parallel and Dis-
tributed Processing, pages 525-530,1999.

[15] V. Sarkar. Partitioning and Scheduling Parallel Pro-
grams for Execution on Multiprocessors. PhD the-
sis, MIT, 1989.

[16] M. Tan, H. J. Siegel, J. K. Antonio, and Y. A. Li.
Minimizing the application execution time through
scheduling of subtasks and communication traffic in
a heterogeneous computing system. IEEE Trans,
on Parallel and Distributed Systems, 8(8):857-871,
Aug. 1997.

[17] H. Topcuoglu, S. Hariri, and M.-Y. Wu. Task
scheduling algorithms for heterogeneous proces-
sors. In Proc. Heterogeneous Computing Workshop,
1999.

[18] L. Wang, H. J. Siegel, V. P. Roychowdhury, and
A. A. Maciejewski. Task matching and scheduling
in heterogeneous computing environments using a
genetic-algorithm-based approach. Journal of Par-
allel and Distributed Computing, 47:8-22,1997.

[19] C. M. Woodside and G. G. Monforton. Fast allo-
cation of processes in distributed and parallel sys-
tems. IEEE Trans, on Parallel and Distributed Sys-
tems, 4(2): 164-174, Feb. 1993.

[20] M.-Y. Wu and D. D. Gajski. Hypertool: A program-
ming aid for message-passing systems. IEEE Trans,
on Parallel and Distributed Systems, l(7):330-343,
July 1990.

[21] M.-Y. Wu, W Shu, and J. Gu. Local search for dag
scheduling and task assignment. In Proc. Int'l Conf.
on Parallel Processing, 1997.

[22] T. Yang and A. Gerasoulis. Pyrros: Static task
scheduling and code generation for message pass-
ing multiprocessors. In Proc. ACM Int'l Conf. on
Supercomputing, 1992.

Biographies

Andrei Rädulescu received a MSc degree in Com-
puter Science in 1995 from "Politehnica" University of
Bucharest. Between 1995 and 1997 he was a teaching as-
sistant at the "Politehnica" University of Bucharest. Since
1997, he is a PhD student at the Department of Infor-
mation Technology and Systems of Delft University of
Technology. His research interests are in multiprocessor
scheduling, software support for parallel computing and
parallel and distributed systems programming,

Arjan J.C. van Gemund received a BSc in Physics in
1981, a MSc degree (cum laude) in Computer Science
in 1989, and a PhD (cum laude) in 1996, all from Delft
University of Technology. In 1981 he joined the R &
D organization of a Dutch multinational company as an
Electrical Engineer and Systems Programmer. Between
1989 and 1992 he joined the Dutch TNO research orga-
nization as a Research Scientist specialized in the field of
high-performance computing. Since 1992, he works at
the Department of Information Technology and Systems
of Delft University of Technology, currently as Associate
Professor. His research interests are in the area of paral-
lel and distributed systems programming, scheduling, and
performance modeling.

238

SESSION 4-A
GRID APPLICATIONS

Chair: I. Pramanick, Sun Microsystems, USA

Combining Workstations and Supercomputers to Support Grid Applications:
The Parallel Tomography Experience

Shava Smallen* Walfredo Cirne* Jaime Frey11 Francine Berman* RichWolskit

Mei-HuiSu§ Carl Kesselman5 Steve Young* Mark Ellisman*

* Computer Science and Engineering Department f Department of Computer Science
University of California, San Diego University of Wisconsin

[ssmallen, walfredo, berman] ©cs.ucsd.edu jfrey@cs.wisc.edu
f Department of Computer Science § Information Sciences Institute

University of Tennessee University of Southern California
rich@cs.utk.edu [mei, carl] ©isi.edu
i National Center for Microscopy and Imaging Research

University of California, San Diego
mark@ncmir.ucsd.edu

Abstract

Computational Grids are becoming an increasingly im-
portant and powerful platform for the execution of large-
scale, resource-intensive applications. However, it remains
a challenge for applications to tap into the potential of Grid
resources in order to achieve performance. In this paper, we
illustrate how work queue applications can leverage Grids
to achieve performance through coallocation. We describe
our experiences developing a scheduling strategy for a pro-
duction tomography application targeted to Grids that con-
tain both workstations and parallel supercomputers.

Our strategy uses dynamic information exported by a
supercomputer's batch scheduler to simultaneously sched-
ule tasks on workstations and immediately available super-
computer nodes. This strategy is of great practical inter-
est because it combines resources available to the typical
research lab: time-shared workstations and CPU time in
remote space-shared supercomputers. "We show that this
strategy improves the performance of the tomography appli-
cation compared to traditional scheduling strategies, which
target the application to either type of resource alone.

This research was supported in part by NSF grants ASC-
9701333 and ASC-9318180, DoD Modernization contract 9720733-00,
NPACI/NSF award ASC-9619020 and Cooperative Agreement ANI-
9807479, NIH/NCR grants RR04050 and RR08605, CAPES grant

1. Introduction

The aggregation of heterogenous resources into a Com-
putational Grid [9] provides a powerful platform for the ex-
ecution of large-scale resource-intensive applications. The
simultaneous use of heterogeneous resources can greatly
improve the performance of many applications, and permits
researchers to run applications at the very large problem
sizes critical to the discovery of new results. Although we
are gaining considerable experience in the development of
infrastructures which integrate distributed, heterogeneous
resources, we have less experience developing applications
which can leverage the distributed resources of the Grid to
improve performance.

One application which has profited from leveraging the
processing power of the Computational Grid is the Paral-
lel Tomography (GTOMO) application being used in pro-
duction at the National Center for Microscopy and Imaging
Research (NCMIR). GTOMO is an embarrassingly-parallel
application implemented with a work queue scheduling
strategy. It uses Globus [10] services to perform a 3-D re-
construction from a series of images produced by NCMIR's
electron microscope. As is the case with many laborato-
ries, NCMIR owns a limited number of workstations (which
are used as desktop machines and as a platform for parallel
processing) and has access to supercomputer time. In this

DBE2428/95-4, and DARPA/ITO under contract #N66001-97-C-8531.

0-7695-0556-2/00 $10.00 © 2000 IEEE
241

paper, we describe a coallocation strategy for using both
supercomputers and interactive workstation clusters to im-
prove the execution performance ofGTOMO within the con-
text of a typical lab environment.

The scheduling strategy for GTOMO works at the
application-level to target the application to both interactive
workstation clusters and supercomputers. In an interactive
workstation cluster, typically a time-shared computational
platform, jobs begin execution immediately but share the
CPU and network with other competing processes. In con-
trast, job submissions to a supercomputer, typically a space-
shared computational platform, must wait in a batch queue
until the desired number of the machine's processors be-
come available for dedicated use. The time an application
spends waiting in the queue impacts its turnaround time,
the time elapsed from the submission of the application by
the user until all of the results are available. Because the
queue wait time can be quite lengthy [20], an application's
turnaround time can be relatively large compared to its exe-
cution time.1 Furthermore, the queue wait times make it dif-
ficult to use supercomputers and workstations concurrently,
a strategy that could increase the processing power avail-
able to an application. Our strategy avoids unpredictable
queue time delays by adaptively submitting requests to the
supercomputer that can start running immediately.

The adaptive scheduler developed for GTOMO is framed
as an AppLeS [2]. An AppLeS application scheduler inte-
grates with the target application to develop a schedule for
deploying the application in a shared, dynamic Grid envi-
ronment [3,23, 22]. The scheduler makes predictions of the
performance the application may experience on prospec-
tive resources at execution time. Using these predictions,
a potentially performance-efficient schedule for the appli-
cation is identified and deployed. We developed a simple
and effective coallocation strategy for the GTOMO AppLeS
which targets both supercomputers and interactive worksta-
tions. Our experiments show that the GTOMO AppLeS
coallocation strategy improves the turnaround time of the
application over strategies which target either interactive
workstations alone or a parallel supercomputer alone. We
believe that the GTOMO AppLeS coallocation strategy will
be effective for other work queue applications as well.

The next section provides a brief description of
GTOMO. Section 3 describes our coallocation strategy for
scheduling GTOMO over workstations and supercomput-
ers. Section 4 presents the results of comparing our strategy
against other scheduling alternatives. Section 5 discusses
related work. Section 6 concludes the paper and discusses
future work.

'in practice, queue times may range from seconds to days.

2. GTOMO Structure

Tomography allows for the reconstruction of the 3-D
structure of an object based on 2-D projections through it
taken at different angles. Electron microscopy is a classical
use for tomography. Biological specimens on the cellular
and sub-cellular level are viewed with an electron micro-
scope and their images are recorded at a number of differ-
ent angles. These images are then aligned and reconstructed
into 3-D volumes using analytic and iterative tomographic
techniques [18].

Reconstructing a typically sized volume using a simple
algorithm (filtered back-projection) currently takes several
hours on a workstation. NCMIR-researchers have been in-
terested in increasing the computation speed of the recon-
struction for two reasons. First, they want to make use
of more elaborate tomographic algorithms, which produce
more refined 3-D volumes. These algorithms are more com-
putationally intensive than the algorithms currently used.
Second, NCMIR is interested in on-line tomography where
the volume is rendered while the biologist is still collecting
data on the microscope. This provides immediate feedback
about the specimen being viewed and thus may prompt the
researcher to change the experiment as a whole, or just some
parameters of it (e.g., orientation and/or number of projec-
tions). For this to be useful, a rough reconstruction would
have to finish in 5 to 10 minutes. No single processor can
achieve this presently, which led the NCMIR researchers to
explore parallelism.

The tomography application is highly amenable to par-
allelism. Because specimens are only rotated about a single
axis as images are acquired, for any slice orthogonal to the
axis of rotation, all information for that slice falls onto a sin-
gle line on each of the projections (see Figure 1). More im-
portantly, any such slice can be reconstructed independently
of projection information for the rest of the volume. This
makes the reconstruction embarrassingly parallel. There-
fore, the the tomographic reconstruction can naturally be
implemented as a work queue. In our implementation, we
use Globus services to support efficient application execu-
tion within a heterogeneous, distributed environment.

The structure of GTOMO is depicted in Figure 2. There
are four types of application processes: driver, reader,
writer, and ptomo. The driver controls the work queue:
it assigns one work unit or slice to a free ptomo until no
more slices remain. The driver is invoked by the user and
starts up the other processes. The reader and writer are I/O
processes and hence have direct access to the user file sys-
tem. The reader reads input files off the disk and sends them
to the ptomos for processing. The writer receives output
files from ptomos and writes them to disk. Note that the
reader and writer enable GTOMO to run across different
file system domains. The ptomo receives input files from a

242

Figure 1. Projection geometry relating to a single-axis tilting experiment (from [12])

reader, does all the computational work, and sends output
to a writer. In this study, we use one reader, one writer, and
any number of ptomos. Due to the multi-threaded nature of
Globus' Nexus communications library, one reader can ser-
vice I/O requests for many ptomos simultaneously, and the
same applies to the writer.

3. Scheduling GTOMO

Generally speaking, the set of potential resources avail-
able to GTOMO consists of workstations w\,..., wu and su-
percomputers si,..., sa. A request to run a process p on
workstation w causes p to start immediately, but p time-
shares w with other processes. To use a supercomputer
s, one has to specify how many processors n will execute
copies of p and for how long t. The n copies of p do not
necessarily start immediately; they might wait in the queue
for an indeterminate amount of time until n nodes become
available for t seconds. However, supercomputer processes
run over dedicated resources once they are acquired.

Scheduling a GTOMO job consists of (i) choosing the
requests to send to both supercomputers and workstations,
and (ii) assigning work for the ptomos. For (ii), we use the
work queue strategy shown in Figure 2 that assigns work on
demand. For the first, we have to determine performance-
efficient values of n and t for each available supercomputer
s. Our goal is to select n and t in a way that minimizes
GTOMO's turnaround time. Note that difficulty in pre-
dicting supercomputer queue wait times make it difficult to

find an optimal n and t [8, 20, 14]. We avoid the queue
time prediction problem by using supercomputer nodes that
are immediately available. Therefore, we minimize the
turnaround time of GTOMO by scheduling its execution at
once on workstations and any immediately available super-
computer nodes.

We assume that the supercomputer scheduler can provide
us with the maximum values of n and t for which execution
can begin immediately. In our implementation, this infor-
mation is supplied by the showbf command provided with
the Maui Scheduler [15], a scheduler available for the IBM
SP2. The showbf command returns a set of backfill win-
dows, bi,...,bg. Each bi = (n, t) where n nodes are available
for immediate execution for the next t seconds.

The GTOMO AppLeS scheduler uses the following al-
gorithm to schedule the ptomos:

for i = 1 to a:
b = showbf (Sj) ;
for j = 1 to 0:

start bj . n ptomos on Sj for time bj.t
for i = 1 to u:

start ptomo on Wi

Therefore, if backfill windows are available on any of the
supercomputers, the job will be coallocated on those idle
supercomputer nodes and workstations. If no backfill win-
dows are returned by any of the supercomputers, the job

243

Figure 2. Application components of GTOMO. Solid lines represent transfer of input and output.
Dotted lines denote control connections

will run only on workstations. The reader is scheduled on
the machine where the input data is located and the writer
is scheduled on the machine where the output data will be
placed.

Note that the nodes immediately available in the SP2
may not be available for the full duration of the application.
Therefore, the GTOMO AppLeS scheduler has to cope with
ptomo processes that detach themselves from the applica-
tion before execution has completed. We have added a fault
recovery mechanism to GTOMO, which enables us to treat
this problem as a ptomo failure. Whenever a ptomo fails,
the slice it was processing is returned to the work queue.
We can use such a simple scheme because processing a slice
has no side effects. The advantage of reducing this problem
to fault recovery is, of course, that it also covers real faults.

4. Experimental Results

We denote the GTOMO AppLeS scheduling strategy as
SP2Immed/WS since it adaptively combines both the im-
mediately available SP2 nodes and workstations. In order
to ascertain how this strategy performs, we compared it
against other possible scheduling strategies: using worksta-
tions only (WS), using only the nodes that are immediately

available in the SP2 (SPHmmed), and requesting a predeter-
mined number of nodes in the SP2 and probably waiting for
them in the queue (SP2Queue). WS and SP2Queue respec-
tively are the standard ways to use a cluster of workstations
and a parallel supercomputer.

We ran experiments on a cluster of 7 workstations avail-
able in the Parallel Computation Laboratory (PCL) at U.C.
San Diego and on the San Diego Supercomputer Center's
SP2, one of the supercomputers available to NCMIR scien-
tists. The PCL workstation cluster includes one 200 MHz
UltraSPARC 2, a 110 MHz Sparc 5, a 85 MHz Sparc 5, and
four 400 MHz Pentium IIs. The workstations are connected
by a mixture of 10 and 100 Mbit/s ethernet subnets. The SP
has 128 thin node POWER2 processors running at 160 MHz
where processor pairs are interconnected by a 110 MB/s bi-
directional network [21]. Other users were present on all
resources during the experiments. Our dataset consisted of
300 slices; each input slice was 238 KB and the output slice
was 1.2 MB.

We note that it is problematic to design experiments
which compare multiple scheduling strategies under the
same load and queue conditions for multi-user production
environments. In such environments, the load and availabil-
ity of resources change over time, so reproducibility of the

244

same ambient load conditions is generally not an option. In
contrast, it is possible to achieve reproducibility using sim-
ulation, but it may be difficult to represent dynamic load
variation in complex heterogeneous systems authentically.

For our experiments, we performed sets of runs of
SP2Immed, SP2Immed/WS, WS, and SP2Queue back-to-
back 2 hoping that experiments within the same set would
enjoy roughly similar load conditions. Moreover, we moni-
tored the number of free nodes in the SP2 and used this in-
formation to discard execution sets in which the nodes avail-
able to SP2Immed/WS and SP2Immed differed by more
than two. In this case, we considered the load conditions
for strategies in the same set to be different. This was the
case in 37 (out of 100) experiment sets. We therefore ended
up with 63 valid experiment sets.

There are two other details to note in the design of our
experiments. First, when we use only the resources immedi-
ately available in the SP2, it might be that there are no nodes
available to execute the application. In this case, we did not
run the set of experiments until the necessary resources be-
came available. This happened 9 times out of 63 attempts.
Notice that by excluding this retry time, we present opti-
mistic turnaround times for the SP2Immed method. A user
using this method would have experienced longer delays.

Second, we needed to decide on n and t when we used
the SP2 in the traditional way (i.e., SP2Queue). Note that
the determination of the best n requires an accurate queue
time prediction. Since such predictions are not available,
we rotated among values of n likely to be used by GTOMO
users: 8, 16, and 32 nodes. We then executed benchmarks
on the SP2 to determine the average processing time of
one slice, £&. This enabled us to conservatively determine
t given n (a conservative estimate is needed because a job
is killed when its execution exceeds t) using the following:

and SP2Immed/WS acquired in each set of experiments is
shown in Figures 3-5(b).

We see that the SP2Immed/WS strategy yielded the best
performance in all cases except one (Figure 4, run 8). Fur-
ther study indicated contention on the reader and writer due
to the selection of too many ptomos (in this experiment set,
we received the highest number of immediately available
SP2 nodes). A future scheduler improvement would be to
model the contention and incorporate it into the GTOMO
AppLeS.

We also assess the variability of each strategy using the
coefficient of variance, cv, which measures the amount of
variance relative to the mean [7]. It is defined as follows:

standard deviation
mean

The SP2Immed/WS strategy exhibited the lowest cv in all
groups of experiments. Table 2 shows the mean, coeffi-
cient of variance, minimum, and maximum values for each
strategy in each group of experiments. Table 2(a) shows
the results of the experiment sets where SP2Queue used
8 nodes, Table 2(b) shows the results for 16 nodes, and
Table 2(c) shows the results for 32 nodes. As expected,
SP2Queue's c„ is quite large due to the unpredictable wait
times in the queue. While its turnaround time was some-
times close to SP2ImmedAVS (544s for SP2Queue vs. 601s
for SP2Immed/WS for the one time it beat SP2Immed/WS),
its worst time was more than two orders of magnitude
greater than SP2Immed/WS (88,323s for SP2Queue vs.
601s for SP2Immed/WS). Also, we note that the SP2Immed
strategy had a high cv in the SP2Queue(8) results due to
the variability of number of nodes acquired. This variabil-
ity was amortized in the SP2Immed/WS strategy because of
the relatively low c„ of WS.

t = 2x
U x number of slices 5. Related Work

The results of the 63 experimental sets are parti-
tioned into three groups using the number of nodes re-
quested for SP2Queue: SP2Queue(8), SP2Queue(16), and
SP2Queue(32). Figure 3 shows the results of the experi-
ment sets in which SP2Queue used 8 nodes, Figure 4 shows
the results for 16 nodes, and Figure 5 shows the results for
32 nodes. Figures 3-5(a) depict the turnaround times of
the different strategies (WS, SP2Immed/WS, SP2Immed,
and SP2Queue). Each set of bars in the figure depicts a
set of four executions, one under each of the four strate-
gies. Since several of the SP2Queue turnaround times did
not fit on the graphs, Table 1 displays the turnaround times
for the SP2Queue runs. The number of nodes SP2Immed

2We used a 5 minute interval between experiments to ensure that the
Maui scheduler had time to update its availability information.

The GTOMO code is also used in the Computed Micro-
tomography (CMT) Project at Argonne National Labora-
tory (ANL) [26, 27]. In contrast to NCMIR, projections
are collected from a x-ray source at the Advanced Photon
Source (APS) located at ANL. Their work has focused on
on-line tomography where data is collected at APS, trans-
ferred to a 128 node SGI Origin 2000 for processing, and
then transferred back to the user for visualization. Cur-
rently, they are able to deliver a reconstructed image to the
user within minutes after data acquisition has completed.
The CMT and NCMIR versions of GTOMO are currently
being integrated as part of the NPACI Telescience Alpha
Project [25].

Application scheduling for Grids is a recent and very ac-
tive area. Existing work has focused primarily on resource
discovery and scheduling [4, 17, 10, 28] and coallocation

245

run 8 nodes 16 nodes 32 nodes

1 685.0235 591.2153 1293.9811
2 759.2754 581.2684 532.6011
3 698.2693 20483.5053 536.9106
4 3077.8569 723.0844 541.6972

5 701.3900 17268.0273 658.2000
6 708.8977 2097.6415 565.0041

7 691.5886 579.8207 27480.0918
8 1805.0212 543.7824 9868.9585
9 6163.5884 581.0620 2267.3595
10 687.5382 615.1581 614.1135
11 689.0494 793.9383 17735.0314

12 682.3540 9193.4053 39286.8783
13 700.8448 742.4905 34642.5641
14 4625.1468 2164.4710 1120.0531

15 1260.1495 621.3329 88322.6571

17 3249.5812 574.9321 1809.4320
18 710.8228 593.0303 664.4993

19 718.0481 1203.5411 6815.6301
20 721.3216 575.2712 607.1331
21 719.9383 33715.8070 29675.0315
22 707.4284 580.8794
23 717.6290

Table 1. Turnaround times for SP2Queue

strategy mean Cv min max

SP2Immed 1946.68 2.10 504.81 19694.46
SP2Immed/WS 437.99 0.17 346.71 554.50
WS 775.98 0.19 596.26 1133.44
SP2Queue 1430.94 1.05 682.35 6163.59

(a) SP2Queue(8) results

strategy mean Cv min max

SP2Immed 660.58 0.28 502.75 1105.61
SP2Immed/WS 402.31 0.17 342.03 600.98
WS 777.53 0.19 588.76 1127.03
SP2Queue 4515.41 1.94 543.78 33715.81

(b) SP2Queue(16) results

strategy mean Cv min max

SP2Immed 659.30 0.33 500.24 1262.72
SP2Immed/WS 397.37 0.12 342.70 519.13
WS 789.69 0.20 587.68 1128.41
SP2Queue 13251.89 1.66 532.60 88322.66

(c) SP2Queue(32) results

Table 2. Summary results of experiments

246

3500

3000

2500

SP2Queue(8) results

3
CD

•2-2000

1000

500

1

IM SP2lmmed
E3 SP2lmmed/WS
Hl WS
^B SP2Queue

50

45

40

35

CO

§ 30

25

S20
JO
E
c 15

10

(a)
Available SP2 nodes for SP2Queue(8) experiments

1 A.

^B SP2lmmed
HI SP2lmmed/WS

10 15 20

(b)
Figure 3. Experiment results when 8 nodes were requested for SP2Queue. (a) Turnaround time.
(SP2lmmed values too large to fit on graph: run 14 - 5067s, run 21 • 19694s) (b) Number of SP2 nodes
used by SP2lmmed/WS and SP2lmmed.

247

SP2Queue(16) results
3500

3000

2500 -

-2-2000

1500

1000 -

500 -

50

45

40

35

30

25 -
DL

* 20

15

10

(a)

Available SP2 nodes for SP2Queue(16) experiments
~\ r

■■ SP2lmmed
I I SP2lmmed/WS

J J I
10 12 14 16 18 20 22

runs

(b)
Figure 4. Experiment results when 16 nodes were requested for SP2Queue. (a) Turnaround time, (b)
Number of SP2 nodes used by SP2lmmed/WS and SP2lmmed.

248

SP2Queue(32) results
1 1 1 1 ■ l l

■■ SP2lmmed
F=[SP2lmmed/WS
1 1 WS

3000 - I SP2Queue

2500 -

"To
o

-2- 2000 - -
.1
T3
CZ
3

i 1500 - -

_3

1000 -

Fir f ij D [1
-

500 -

n _

H HI Ij U II 1 |H ill ill
0 2 4 6 8 10 12 14 16 18 20

runs

(a)

Available SP2 nodes for SP2Queue(32) experiments
<J\J i i i i i i i ■ i

■■ SP2lmmed
HI SP2lmmed/WS

45

40 PI F]

(D 35
.a
J2
"<5 i 1 i 1 |
5 30 w\
a>
a>

■a o
c 25 CM ^°]
a.
CO ! ! in i i
2 20 a> I i i | i -
XI t; | 5 | |

E % % 1 Pi
3
c15 [I -

10 l ll
ll 1 11

-

5 1 1 I : ' -

U
c) 2 4 6 8 10 12 14 16 18 20

runs

(b)

Figure 5. Experiment results when 32 nodes were requested for SP2Queue. (a) Turnaround time, (b)
Number of SP2 nodes used by SP2lmmed/WS and SP2lmmed.

249

among workstations [3,1, 19,22,23,9]. The work reported
herein extends the target domain for GTOMO by targeting
both parallel supercomputers and interactive resources si-
multaneously.

6. Discussion and Conclusions

In this work, we show how to combine workstations and
supercomputers to run GTOMO, a work queue application
used in production at NCMIR. Our solution automatically
selects all resources immediately available across the sys-
tem. We leverage the Maui Scheduler to obtain informa-
tion on immediately available SP2 nodes. This strategy has
the advantage of not requiring predictions of how long re-
quests wait in the supercomputer queue. Our experimental
results show that the GTOMO AppLeS scheduling strategy
consistently outperforms three other strategies that can be
used for scheduling in an typical laboratory setting where
researchers have access to a local cluster of workstations
and supercomputer time.

We have learned three interesting lessons about Compu-
tational Grids in general as a result of this effort. First, the
interface exported by the resource scheduler has great im-
pact on application schedulers. In fact, we can implement
our strategy in a very straightforward manner thanks to the
Maui Scheduler's showbf command. On the other hand,
the Maui Scheduler (as with other supercomputer sched-
ulers, for that matter) precluded us from trying something
more sophisticated due to the difficulty in predicting queue
times for supercomputer requests. Emerging efforts such
as S3 [6], GARA [11], and more generally, the Grid Forum
Scheduling Working Group [13] are working to change this.

Second, evaluating solutions for real applications run-
ning over production environments has proven to be diffi-
cult due to the impossibility of reproducing the system load
and queue conditions for comparison runs. Others have en-
countered the same problem. Indeed, a simulation environ-
ment specifically targeted toward Grids such as the Bricks
project [24], the MicroGrid [16], or the work described
in [5] would be very useful.

Third, fault tolerance is likely to be even more important
in Grid computing than it is in parallel computing. For our
solution in particular, fault recovery was a natural way to
deal with the time expiration of SP2 requests. In general,
using autonomous and distributed resources increases the
chance that some component of the application will fail.

The GTOMO AppLeS scheduler has been incorporated
with the production version of GTOMO at NCMIR and is
used daily be researchers. Current work involves extending
the applicability of the scheduler to additional resources and
different scenarios of the application.

Dedication and Acknowledgements

This paper is dedicated to Steve Young who was a cor-
nerstone of this work. Steve was a respected scientist and
treasured friend and we will miss him greatly.

We are grateful to the NPACI partnership and SDSC re-
searchers for their assistance with this work. We benefited
greatly from discussions with the AppLeS team, the Globus
team, and our colleagues at NCMIR.

References

[I] D. Andersen, T. Yang, O. Ibarra, and O. Egecioglu. Adap-
tive partitioning and scheduling for enhancing WWW ap-
plication performance. Journal of Parallel and Distributed
Computing, 49:57-85, Feb 1998.

[2] AppLeS webpage at http: / /apples . ucsd. edu.
[3] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao.

Application level scheduling on distributed heterogeneous
networks. In Proceedings ofSupercomputing 1996, 1996.

[4] H. Casanova and J. Dongarra. Netsolve: A network server
for solving computational science problems. In Proceedings
of Supercomputing 1996, 1996.

[5] H. Casanova, A. Legrand, D. Zagorodnov, and F Berman.
Using Simulation to Evaluate Scheduling Heuristics for a
Class of Applications in Grid Environments. Technical Re-
port RR1999-46, Ecole Normale Superieure de Lyon, LIP,
1999.

[6] W. Cirne and F. Berman. Application scheduling over super-
computers: A proposal. Technical Report UCSD-CS99-631,
University of California, San Diego, October 1999.

[7] J. L. Devore. Probability and Statistics for Engineering and
the Sciences. Duxbury Press, 1995.

[8] A. Downey. Using queue time predictions for processor al-
location. In 3rd Workshop on Job Scheduling Strategies for
Parallel Processing, in conjunction with IPPS'97, 1997.

[9] I. Foster and C. Kesselman, editors. The Grid: Blueprint for
a New Computing Infrastructure. Morgan Kaufmann Pub-
lishers, July 1998.

[10] I. Foster and C. Kesselman. The Globus Project: A Status
Report. In Proc. IPPS/SPDP '98 Heterogeneous Computing
Workshop, 1998.

[II] I. Foster, C. Kesselman, C. Lee, B. Lindell, K. Nahrstedt,
and A. Roy. Distributed resource management architecture
that supports advance reservations and co-allocation. In Intl
Workshop on Quality of Service, 1999.

[12] J. Frank and M. Radermacher. Three-dimensional recon-
struction of nonperiodic macromolecular assemblies from
electron micrographs. In J. K. Koehler, editor, Advanced
Techniques in Biological Electon Microscopy 111. Springer-
Verlag, 1986.

[13] Grid Forum webpage at http://www.gridforum.
org/.

[14] R. Gibbons. A historical application profiler for use by par-
allel schedulers. In 3rd Workshop on Job Scheduling Strate-
gies for Parallel Processing, in conjunction with IPPS'97,
1997.

250

[15] Maui Scheduler webpage at http://www.mhpcc. edu/
maui.

[16] MicroGrid webpage at http://www-csag.ucsd.
edu/projects/grid/microgrid.html.

[17] H. Nakada, M. Sato, and S. Sekiguchi. Design and imple-
mentations of ninf: towards a global computing infrastruc-
ture. Future Generation Computing Systems, 1999. Meta-
computing Issue.

[18] G. Perkins, C. Renken, S. Young, S. Lamont, M. Mar-
tone, S. Lindsey, T. Frey, and M. Ellisman. Electron to-
mography of large multicomponent biological structures. J.
Struct.Biol, 120:219-227, 1997.

[19] G. Shao, R. Wolski, and F. Berman. Predicting the cost of
redistribution in scheduling. In Proceedings of the 8th SIAM
Conference on Parallel Processing for Scientific Computing,
1997.

[20] W. Smith, V. Taylor, and I. Foster. Using run-time predictors
to estimate queue wait times and improve scheduler perfor-
mance. In 5th Workshop on Job Scheduling Strategies for
Parallel Processing, in conjunction with IPPS'99,1999.

[21] NPACI's SP webpage at http: / /www. npaci . edu/SP.
[22] N. Spring and R. Wolski. Application level scheduling of

gene sequence comparison on metacomputers. 12th ACM
International Conference on Supercomputing, July 1998.

[23] A. Su, F. Berman, R. Wolski, and M. M. Strout. Using Ap-
pLeS to schedule a distributed visualization tool on the com-
putational grid. International Journal of Supercomputer and
High-Performance Applications, 1999.

[24] A. Takefusa, S. Matsuoka, H. Nakada, K. Aida, and U. Na-
gashima. Overview of a performance evaluation system for
global computing scheduling algorithm. To appear in the 8th
HPDC conference, 1999.

[25] Telescience webpage at http://www.npaci.edu/
Alpha/Telescience/.

[26] G. von Laszewski, M.-H. Su, J. Insley, I. Foster, J. Bres-
nahan, C. Kesselman, M. Thiebaux, M. Rivers, S. Wang,
B. Tieman, and I. McNulty. Real-time analysis, visual-
ization, and steering of tomography experiments at photon
sources. Ninth SIAM Conference on Parallel Processing for
Scientific Computing, Apr 1999.

[27] Y. Wang, F. D. Carlo, I. Foster, J. Insley, C. Kesselman,
P. Lane, G. von Laszewski, D. Mancini, I. McNulty, M.-H.
Su, and B. Tieman. A quasi-realtime x-ray microtomogra-
phy system at the Advanced Photon Source. Proceedings of
SPIE99, 3772, 1999.

[28] J. Weissman. Gallop: The benefits of wide-area computing
for parallel processing. Journal of Parallel and Distributed
Computing, 54, Nov 1998.

Shava Smallen received a B.S. and is currently pursuing a
M.S. at the Department of Computer Science and Engineer-
ing at the University of California, San Diego. Her current
research interest is in scheduling on Computational Grids.

Walfredo Cirne is a Ph.D. student at the University of
California, San Diego and an assistant professor at Brazil's
Universidade Federal da Paraiba (currently on leave).
He has previously worked on Machine Learning and

Network Security. Now, his research efforts concentrate
on scheduling on Computational Grids. In particular, he is
investigating how application schedulers can use resources
controlled by space-shared supercomputers. He received
his B.S. and M.S from the Universidade Federal da Paraiba.

Jaime Frey is currently pursuing a Ph.D. at the Department
of Computer Science at the University of Wisconsin. His
current research interests include scheduling in distributed
systems. He received his B.S. from the University of
California, San Diego.

Francine Berman is a Professor of Computer Science and
Engineering at the University of California, San Diego. She
is also a Senior Fellow at the San Diego Supercomputer
Center, Fellow of the ACM, and founder of the Parallel
Computation Laboratory at UCSD. Her research interests
over the last two decades have focused on parallel and
distributed computation, and in particular the areas of
programming environments, tools, and models that support
high-performance computing. She received her B.A. from
the University of California, Los Angeles, her M.S. and
Ph.D. from the University of Washington.

Rich Wolski is an Assistant Professor in the Department
of Computer Science at the University of Tennessee and
a partner in the National Partnership for Advanced Com-
putational Infrastructure. His research interests include
parallel and distributed computing, on-line performance
analysis techniques and software, compiler runtime system,
and dynamic scheduling. He received his B.S. from the
California Polytechnic University, San Luis Obispo and
his M.S. and Ph.D. from the University of California at
Davis/Livermore Campus.

Mei-Hui Su is a programmer at the Information Sciences
Institute located at the University of Southern California.
Her current research interest is in distributed parallel
computing. She received her B.S. from the University of
California, Berkeley.

Carl Kesselman leads a research group at the Information
Sciences Institute located at the University of Southern
California. His research focus has been in the development
of new methods, tools, and programming environments
for large-scale, high-performance computer systems. He
received his B.S. from the University of Buffalo, his M.S.
from the University of Southern California, and his Ph.D.
from the University of California, Los Angeles.

Steve J. Young was a Specialist in Psychiatry and an
Associate Director of the National Center for Microscopy
and Imaging Research (NCMIR). Until his untimely

251

passing on January 9th, 1999, he led the technology
development team at NCMIR, contributing to the work
presented here and nearly all projects at the Center. His
research interests ranged from the neurophysiology of
perception to the design of software to improve our ability
to accurately represent complex relationships between
biological systems. He was a unique man with remarkable
talents. He was also a friend and colleague who shared
his extensive knowledge freely enhancing the lives of
all around him, including the authors of this paper. He
earned his Undergraduate Degree at Berkeley and Ph.D.
at the University of California, Los Angeles. He became
a Professor of Physiological Psychology at the University
of Colorado at Boulder before moving to UCSD where
together with Elli'sman he established the NCMIR.

Mark H. Ellisman is a Professor of Neurosciences and
Bioengineering at the University of California, San Diego
and Director of the National Center for Microscopy and
Imaging Resource and the Center for Research on Biolog-
ical Structure at UCSD. He leads the Neuroscience Thrust
for the National Partnership for Advanced Computational
Infrastructure and is a Senior Fellow at the San Diego
Supercomputer Center. His research interests over the last
three decades have focused on structure and function of
the nervous system including the development of advanced
imaging instruments and computational approaches for the
refinement of data about and visualization of multiscale
biological complexes. He received his B.A. from the
University of California, Berkeley and M.A. and Ph.D from
the University of Colorado at Boulder.

252

Cluster Performance and the Implications for
Distributed, Heterogeneous Grid Performance

CraigLee1 Cheryl DeMatteis1 James Stepanek1 Johnson Wang2

1 Computer Systems Research Department, Ml-102
2 Fluid Mechanics Department, M4-965

The Aerospace Corporation, P.O. Box 92957, El Segundo, CA 90009-2957
{lee | cdematt\stepanek] @ aero.org
Johnson. C. Wang@notes.aero.org

Abstract

This paper examines the issues surrounding efficient ex-
ecution in heterogeneous grid environments. The perfor-
mance of a Linux cluster and a parallel supercomputer is
initially compared using both benchmarks and an applica-
tion. With an understanding of how benchmark and appli-
cation performance is affected by processor and intercon-
nect speed, a comparison is made with the bandwidth and
latencies available in a grid testbed. Of significant concern
is the fact that the available communication bandwidth and
latencies have a dynamic range of 3 to 4 orders of mag-
nitude while processor speeds have a range of about one
half order of magnitude. Also, while both processor speed
and network bandwidth are increasing very rapidly, simple
propagation delay will become more significant in the net-
work latencies seen by many grid applications. That is to
say, the pipes in a grid will be getting fatter but not commen-
surately shorter. How are we to effectively utilize such an
infrastructure? Clearly an attractive approach is to require
sufficient concurrency in the application such that a coarse-
grain, data-driven model of execution can be used to hide
latencies while hopefully keeping context switching over-
heads low. If the "spatial component" of an application
is understood, then runtime systems could also apply estab-
lished techniques like caching, compression, estimation and
speculative pre-fetching. Ideally this low-level performance
management should be encapsulated in an easy-to-use ab-
straction.

1 Introduction

Cluster computing has been gaining wide acceptance
over single-machine, massively parallel computing due to

its undeniable cost-effectiveness for suitable applications
[4]. Since clusters are built from commodity hardware,
however, they typically have slightly slower processors
and lower communication bandwidths than "big iron" ma-
chines. Hence, suitability in this context means simply that
either (1) an application must be more tolerant of higher
communication costs, or (2) the user's "mission require-
ments" are lenient enough to accept the lower performance
at a much lower dollar cost.

The increasing potential of grid computing, however,
means that users and applications will be faced with envi-
ronments that have an even greater heterogeneity of com-
munication abilities. [8]. While this potential includes the
flexible harnessing of resources on a scale not previously
considered for individual applications, it also means that
achieving efficient use of those resources will be harder than
ever. This paper endeavors not to present any solutions to
this problem but to quantitatively demonstrate the bounds of
the problem as motivation for exploring candidate program-
ming and execution models that can effectively operate in a
grid environment.

We will do this by comparing the performance of a paral-
lel machine, a cluster, and a grid testbed by several means.
These are specifically the Cray T3E [13], a Pentium clus-
ter with fast ethernet, and the Globus GUSTO testbed [7],
which are representative of their respective classes. (Dif-
ferent examples of each class could be used but the funda-
mental relationships between them would not be altered.)
The Cray T3E used here is the T3E-1200 at the CEWES
Major Shared Resource Center in Vicksburg, Mississippi.
It has 512 DEC Alpha 21164 processors clocked at 600
MHz. with 128 MB of memory per processor. Its 3D torus
dedicated interconnect is capable of 650 MB/sec. (theoret-
ical peak) in both directions. The cluster used here is at
the Aerospace Corporation. It has fourteen Intel Pentium

0-7695-0556-2/00 $10.00 © 2000 IEEE
253

II processors clocked at 400 MHz. running Red Hat Linux
with 192 MB of memory per processor. They are connected
by 100 Mbit/sec. fast ethernet through a Baystack 450-24T
switched ethernet hub. The Globus GUSTO testbed is dis-
tributed across many adminstative sites and includes a large
variety of machines. The current configuration of GUSTO
can always be examined by using the Metacomputing Di-
rectory Service (MDS) Browser on the Globus web site
(www.globus.org).

These "machines" (including the grid) will be compared
using parallel benchmarks, a parallel application, and a dis-
tributed performance monitoring tool. We will look at the
relative processing speeds and communication speeds. We
then discuss the implications of achieving efficiency in an
increasingly heterogeneous computing infrastructure.

2 A Benchmark Comparison

To compare the performance of a Linux cluster and a par-
allel supercomputer, we use the NAS Parallel Benchmarks
[12]. These benchmarks were developed by the Numeri-
cal Aerodynamics Simulation (NAS) group at NASA Ames
with the goal of being able to make more reliable quanti-
tative performance comparisons among parallel machines.
These benchmarks consist of numerical kernels for a wide
range of computing problems. Rather than a single "micro-
benchmark" that may exercise only one aspect of a machine,
these benchmarks were chosen to exercise all aspects of
a machine, individually and in combination. Specifically
these benchmarks exercise communication, integer compu-
tation and floating-point computation.

For brevity and conciseness, we only need to present the
results of two benchmarks that illustrate the major differ-
ence between these two platforms. For each benchmark,
the per processor performance is plotted as a function of
the number of nodes. These two benchmarks involve inte-
ger computation, so the measurement metric is millions of
operations per second per node: Mop/sec/node. This allows
the relative performance and scalability on each platform to
be shown in one graph. For each benchmark, there are also
three classes, A, B, and C, that correlate to three different
problem sizes, with A being the smallest and C being the
largest. Hence, for each benchmark graph, there are three
curves (one for each class) for both platforms. For con-
sistency and ease of comparison, the same point symbol is
used for each platform. The same line style is used for each
benchmark class.

Figure 1 shows the Random Number Generation bench-
mark. This is an "embarrassingly parallel" benchmark since
the parallel tasks (generating random numbers) are com-
pletely independent, i.e., after the tasks are started, there is
absolutely no communication or synchronization between
nodes. As expected, both platforms show good scaling (flat

curves). The Alpha processors, however, are approximately
4x faster than the Pentium IIs.

Figure 2 shows the Integer Sorting benchmark. Integer
sorting is not a computationally complex task since it pri-
marily requires the comparison of integers. It can, however,
require massive amounts of communication as data values
are relocated to their sorted positions. Here we see that the
T3E exhibits not only faster processing but also much bet-
ter communication scaling. For the cluster, the per-node
performance falls off dramatically as the number of nodes
increases.

These two benchmarks dramatically illustrate the per-
formance differences between parallel and distributed com-
putations that are compute-bound versus communication-
bound. In the sorting benchmark, the communication band-
width is clearly dominating the overall performance. In
terms of relative performance and scalability, the other NAS
Parallel Benchmarks fall inbetween these two extremes.

3 An Application Comparison

In this section, we use an application to compare the
performance of these two platforms. That application
is ALSINS (Aerospace Launch Systems Implicit Navier-
Stokes), a computational fluid dynamics (CFD) code devel-
oped by the Fluid Mechanics Department at Aerospace and
used to investigate flow fields of the Delta-II and Titan-IV
launch vehicles [16, 15].

CFD works by discretizing the space around a physical
object into "cells" and computing the flux of material be-
tween cells by solving the Navier-Stokes equations for a
sequence of time steps until the solution has converged to
a final state. CFD is typically parallelized by decompos-
ing the discretized spatial domain and assigning different
blocks to different processors. The algorithm has an iter-
ative structure consisting of (1) exchanging neighbor data,
(2) computing the minimum time step among all blocks,
and (3) computing the flux for the current time step. For
ALSINS, this is implemented using MPI.

With this basic structure, there are two hard synchroniza-
tions per iteration: exchanging neighbor data and the mini-
mum time reduction. Aside from potential synchronization
delays, the minimum time reduction is a very quick opera-
tion since it only involves finding the minimum of a single
floating-point time step value across all nodes. The time re-
quired for communication and the local flux computation,
however, depends on the data block size allocated to each
node. Note that it is possible to improve efficiency by over-
lapping communication and computation for a given itera-
tion. The rate of convergence for the solution depends on
the geometry of the test case and can be on the order of
105 iterations. The speed at which iterations can be com-
puted depends on the total size of the discretized space and

254

Random Number Generation
10

"t3e.ep.A.mops" —i-
"t3e.ep.B.mops" —H
"t3e.ep.C.mops" +•■■
"beo.ep.A.mops" —x-
"beo.ep.B.mops" —x-
"beo.ep.C.mops" *■■

x—ft"**^— X

0.1
10

number of nodes
15 20

Figure 1. The Random Number Generation Benchmark.

10
Integer Sorting

"t3e.is.A.mops"
"t3e.is.B.mops"
"t3e.is.C.mops"
beo.is.A.mops"
beo.is.B.mops"

o,L
10

number of nodes
15 20

Figure 2. The Integer Sorting Benchmark.

255

the number and speed of the processing nodes used on the
problem.

The test case computed using ALSINS is the flow field
around the base of a Centaur launch vehicle with both en-
gines running with exhaust plumes. Figure 3 shows a flow
field computation done on the Pentium cluster.

ALSINS performance was measured and analyzed us-
ing NetLogger [14], a tool developed at Lawrence Berke-
ley Lab for analyzing distributed systems. NetLogger logs
timestamped, application-defined events either locally or to
a remote logging daemon. The NetLogger visualization
tool, nlv, can subsequently display these events as grouped,
color-coded sets of events, called lifelines, overtime. Other
events or statistics associated with a scalar values, such as
cpu load, can be also be displayed as loadlines.

ALSINS with the Centaur Double Nozzle test case was
run on both platforms in two versions using overlapped and
non-overlapped communication. The NetLogger visualiza-
tion display for two representative iterations of the over-
lapped code version on the Pentium cluster is shown in
Figure 4. This shows the color-coded, per-iteration life-
lines for each node. Each lifeline consists of six events
tags: REDUCE.TAU, START.COMM, START-SOLVER,
SOLVER-DONE, COMM_DONE, and COPIES_DONE.
Loadlines for the utilization (number of processors actively
engaged in communication or computation) and the effi-
ciency (utilization over the duration of the computation) are
also shown.

These results show us that per iteration, ALSINS is
«2.9x faster on the T3E than on the cluster (4.75 seconds
vs. 1.63 seconds). Part of this difference is due to the faster
processors on the T3E and also a memory subsystem aug-
mented with stream buffers. Of this iteration time, however,
there is «19% idle time due to the load imbalance. Hence,
there is an efficiency of «81% where processors are busy
doing communication or computation. On the cluster, com-
munication takes «16% of the iteration time. On the T3E,
communication takes «2%.

4 A Bandwidth ^benchmark Comparison

It is certainly not news that communication bandwidth
plays a direct role in determining parallel application per-
formance. But in the scope of emerging computational in-
frastructures, however, what is the depth of the communica-
tion hierarchy? What is the range of impact that communi-
cation infrastructures can have, will have, on distributed,
parallel applications? We examine this question in two
parts. First, we do a simple MPI bandwidth test between the
Pentium cluster and the T3E. Second, we compare these re-
sults with a histogram of host pair bandwidths on the Globus
GUSTO testbed [7].

The MPI bandwidth test program we used tests a variety

of communication patterns with differing number of nodes
and different data volumes (message sizes). We ran this pro-
gram on both the Pentium cluster and the T3E. For brevity
and conciseness, we present only the most relevant data in
Table 1. In this particular test, bidirectional communica-
tion occurs among all nodes simultaneously for two to eight
nodes. This means that every node is sending and receiving
a 1 MB message from all other nodes at the same time to
stress the limits of performance.

The cluster is theoretically capable of 100 Mbit/sec. or
12.5 MB/sec. For two nodes, a bidirectional bandwidth of
over 10 MB/sec, or 80 Mbit/sec, is achieved. This is the
expected end-to-end result since overhead in the message-
passing process, e.g., buffer copying and device driver
scheduling, etc., means that an application will always see
less bandwidth than the physical medium is "clocked" at; in
this case, fast ethcrnet. Note, however, that as more nodes
are added to the test, the realized bandwidth sinks to about
4 MB/sec. This indicates that contention for resources is
occurring somewhere. (While the hub is technically non-
blocking, it may still have a backplane that is becoming sat-
urated as the aggregate bandwidth demand increases.) For
the T3E, we see that two nodes arc capable of over 300
MB/sec. For eight nodes, the average bidirectional band-
width is still over 200 MB/sec. This means that the ded-
icated communication hardware on the T3E is 30x to 50x
faster than fast ethcrnet in a cluster. (This might lead one to
conclude that much of a large machine's cost is in its dedi-
cated interconnect.)

How do these bandwidths compare with that typically
available in a grid environment? To answer this question,
we made use of the Gloperf network performance data that
is periodically uploaded into the Globus Metacomputing
Directory Service (MDS) [6]. The MDS is based on the
Lightweight Directory Access Protocol (LDAP) and pro-
vides an information naming scheme and repository for all
manner of grid computing information, e.g., available hosts,
number of nodes, current load, network interfaces, gate-
keeper contact information, etc. It is also used to record
bandwidth and latency data periodically measured between
host pairs by Gloperf.

Gloperf [10] is a simple tool that is automatically de-
ployed on each Globus host. At Globus boot-time, the
Gloperf daemon will register itself in the MDS and then
query the MDS for all other Gloperf daemons. The daemon
will then make periodic bandwidth and latency tests with all
other daemons and store the results in the MDS. (The initial
implementation of Gloperf did measurements between all
pairs which does, of course, result in non-scalable behavior.
The latest implementation uses a simple group scheme to
produce hierarchies of measurements.)

The actual Gloperf measurement mechanism is bor-
rowed from netperf. Gloperf is configured to perform a

256

Figure 3. The Centaur Double Nozzle Test Case Computed on a Pentium Cluster.

!; NetLogger Visualization? >

!!>»(•)

Figure 4. ALSINS with overlapped communication/computation on the Pentium Cluster.

257

Cluster Bandwidth, MB/sec.
Avg. NodeO Nodel Node 2 Node 3 Node 4 Node 5 Node 6 Node 7

10.348 10.379 10.317
8.076 10.225 6.957 7.047

8.730 10.028 7.561 9.910 7.421

7.869 9.979 7.941 6.675 8.135 6.616

6.472 6.689 6.216 7.035 6.207 6.354 6.333

6.778 8.355 7.276 6.483 5.868 7.194 6.445 5.822

4.489 6.072 4.907 4.948 4.426 4.167 3.942 3.727 3.726

T3E Bandwidth, MB/sec.
Avg. NodeO Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7

319.252 319.101 319.402
253.973 253.161 253.259 255.498

224.496 218.161 211.452 241.411 226.958

194.584 194.335 190.279 219.954 183.446 184.905

203.172 215.007 181.744 242.082 184.683 213.967 181.548

222.200 231.971 193.002 282.610 198.681 238.679 217.750 192.702

211.705 212.216 191.008 236.182 200.079 235.900 222.200 205.023 191.024

Table 1. Bandwidth tests for T3E and Cluster.

10-second, TCP "packet-blasting" test and measure the data
volume sent. Gloperf also measures the number round-trips
that can be made in a 10-second period. The sequence of
hosts and test types (bandwidth and latency) are random-
ized in order. Since Gloperf does untuned TCP testing from
the user-level, it essentially observes the same end-to-end
performance that an application would see.

To extract the Gloperf data from the MDS, a simple pro-
gram would periodically snapshot the MDS Gloperf data
into log files. Scripts were then used to extract just the band-
width and latency data and eliminate duplicates. Figure 5
shows histograms of Gloperf bandwidth and latency mea-
surements on GUSTO beginning in August and continuing
through October, 1999. This represents 18615 unique mea-
surements between 3405 unique host pairs over 138 unique
hosts; mostly in North America but including a few in Eu-
rope, Asia, and Australia. Note that these histograms em-
ploy log-sized bins that make the mode of the distributions
much more evident. While it was not uncommon to ob-
serve bandwidths as high as 96 Mbits/sec, the median band-
width for this distribution is 2.2 Mbits/sec. and the 90th per-
centile is 15.1 Mbits/sec. While the latency distribution has
a much narrower (rhinokurtotic) mode, common latencies
span three orders of magnitude. Here, the median is 57.35
msec, and 90% of the latencies are above 5.5 msec.

It is clear that in a grid environment that can include clus-
ters and "big iron" machines, there can be a 3 to 4 order of
magnitude dynamic range in the bandwidth and latencies
available to an application.

5 Discussion and Implications

What are the implications of these observations for het-
erogeneous cluster performance and grid performance? The
argument can be made that there is a much greater dynamic
range in the the available communication bandwidths than
there is in processor speeds; 3 to 4 orders of magnitude ver-
sus one half order of magnitude. We note that since the
graphs in Figure 5 represent capacity that is shared among
other non-Globus traffic, one could argue that in terms of
a shared resource, processors could exhibit the same range
of available cycles. A counter-argument, however, is that
one typically has greater control over the compute resources
rather than the network; even if one does not have com-
plete control of the processors, the processors may be batch
scheduled. Regardless of such arguments, in many cases
there will be a significant differential between the available
processor speeds and network speeds.

What is the implication of this processor-network dif-
ferential? We note that processor speeds have been in-
creasing according to Moore's Law (doubling every 18
months). Memory bandwidth, however, has been increas-
ing much more slowly, by some estimates as little as 7%
per year. To cope with this processor-memory differential,
hardware designers have had use increasingly larger caches
and to employ numerous techniques to overlap operations
to hide latency, such as speculative execution, prefetching,
and hardware multithreading. This has also motivated the
research in Processing-In-Memory (PIM) architectures [9]

258

c
O
Ü

1400

1200

1000

800

600

400

200 -

0
0.0001

c
o
Ü

2500

2000

1500

1000

500

i / r v

n i
l\l
/V

V

! ?!

0.001 0.01 0.1 1 10 100

bandwidth (Mbits/s), 100 log-sized bins

r\ \l

i i

IV
\Ar"\

1000

i i-^^ ^A

0.1 1 10 100 1000

latency (ms), 100 log-sized bins

Figure 5. Globus testbed bandwidth and latency distributions.

10000

259

where much higher bandwidths between memory and the
processing units can be realized.

Fortunately network bandwidths seem to be increasing
at least as fast as Moore's Law, if not faster, since around
1994 (A.W. - After Web). Unfortunately this improvement
in bandwidth will not affect the speed of light. A signifi-
cant part of latencies present in a grid is simply propaga-
tion delay. As an example, the end-to-end, application-level
message-passing latency between Los Angeles and Chicago
can already be as much as 33% propagation delay. Clearly
this limits the reduction in latencies that are physically pos-
sible in a grid computing environment. Hence, in ten years
time, we might expect the bandwidth distribution in Fig-
ure 5 to move to the right by an order of magnitude. While
the possible relative reduction in latency will depend on the
geographic separation among the compute resources, it is
safe to say that many latencies in the latency distribution
will not decrease as much. The bottom-line is that pipes
will get fatter but not commensurately shorter.

How exactly will this relative change in bandwidths,
latencies and processing speeds affect application perfor-
mance? Work done by Martin, et al., is relevant to this ques-
tion [11]. They examined the effect of latency, overhead and
bandwidth on cluster performance. For this work, latency is
defined as the end-to-end delay in sending a message from
its source to its destination. Overhead is denned as the time
that a processor is engaged in message transmission or re-
ceipt during which it cannot do anything else. Bandwidth is
inversely defined in terms of the "gap" between consecutive
message sends, i.e., messages per unit time.

For a set of applications on an UltraSPARC cluster us-
ing Myrinet A set of applications were run on an Ultra-
SPARC cluster using Myrinet where the LANai processor
on the Myricom network interface card was used to emulate
a range of latencies, bandwidths and overhead. The appli-
cations in this experimental context were much more sen-
sitive to overhead than to bandwidth or latency. For these
applications, one is forced to conclude that since the ad-
ditional per message overhead was unavoidable, it directly
affected the application's running time, while at least part of
the additional latency was naturally overlapped or hidden by
the structure of the application. It was also shown that the
applications had relatively modest bandwidth requirements
compared to the dedicated network's capacity. Most appli-
cations did not slow-down significantly until the bandwidth
was effectively reduced to approximately 12% of its normal
capacity. Indeed, even the increased latencies in this clus-
ter were well below those found in a grid and the reduced
bandwidths were above the 90th percentile. In a general
grid environment, these results would be different.

In the light of these considerations, the next question to
ask is "How tightly coupled do distributed, heterogeneous
grid applications need to be or can be?" Clearly not all ap-

plications are tightly coupled or need to be, in the sense
that a CFD code is tightly coupled. Applications that con-
nect unique resources, such as X-ray sources, with visual-
ization devices, such as CAVEs, typically rely on a func-
tional decomposition that is more tolerant of the dynamic
range of bandwidth within a machine and between ma-
chines. Nonetheless, all distributed applications will run
better with faster networks. This is not news. In the con-
text of the World Wide Web, most people probably feel that
downloads are too slow. In part, the notion of quality of ser-
vice is to provide a "floor" to the performance that a user
receives from a shared resource, e.g., a network.

The opinion is also held that flexibility is actually more
important for grid applications than performance manage-
ment. For a large class of applications, this will be true.^
The grid is being designed to make it as easy as possible to
compose disparate resources such as specialized databases,
unique instruments, and embedded systems. For another
large class of applications, however, the grid holds the
promise of applying very large amounts of aggregate com-
pute power to very large problems that is not economically
feasible any other way. Hence, what can be done to manage
performance across these bandwidths and latencies?

Cluster computing can, again, be used as a point of de-
parture. Several projects have been reported that deal with
programming clusters of SMPs, or clumps, where the het-
erogeneity of in-memory communication vs. network com-
munication is the central issue. The SIMPLE model [2], for
example, provides a simple set of collective operations that
are handled by different modules for intra-node and inter-
node communication. KeLP and its Data Mover [5, 1] take
a different approach. KeLP defines a set of meta-data ab-
stractions, such as Region, Map, FloorPlan and Mo-
tionPlan, that capture the geometry of block-structured
decomposition and the resulting data dependencies in par-
allel execution. The current Data Mover implementation
uses a private MPI communicator and asynchronous point-
to-point messages to actually move the data.

An important issue for communication libraries or run-
time systems that support higher-level semantics, however,
is that of irregular communication; communication that
does not follow a regular, geometric pattern and may be dy-
namic and not known until run-time. This issue has been
faced by the High Performance Fortran (HPF) community
for some time. This has given rise to an inspector-executor
paradigm where an inspector routine does a run-time analy-
sis of array accesses for communication and derives a com-
munication schedule that is then used by the executor rou-
tine to actually perform the communication. Since the in-
spector routine can be very time-consuming, there has been
work done on minimizing its overhead and reusing any
schedules produced [3].

For some applications, it will be best to use a program-

260

ming model that does not hide the heterogeneity of the un-
derlying resources and requires the application builder to
hand-code the application to the resources. There are, of
course, great benefits in not having to hand-code applica-
tions to tolerate bandwidths and latencies. For these situa-
tions, dealing with a heterogeneous infrastructure means ad-
dressing the fundamental problems of (1) data locality and
(2) scheduling, where scheduling in this context means both
communication and execution scheduling which are, in fact,
interdependent. A clearly attractive approach is to require
sufficient concurrency in the application such that a coarse-
grain, data-driven model of execution can be used. The
initial challenge is to hide latency with concurrency while
keeping context switching overheads low. The next chal-
lenge is to encapsulate this low-level performance manage-
ment into an easy-to-use package or component. If this is
possible, then other established techniques such as caching,
compression, estimation and speculative pre-fetching, could
also be used.

Finally we note that applications tend to have their own,
natural "problem architecture" and some, by their very na-
ture, are more tightly coupled than others. As soon as a
distributed implementation is considered, it imparts a three-
dimensional or spatial "density distribution" to the compu-
tation. This density and the available bandwidth and latency
become part of the algorithmic complexity governing per-
formance. Some applications will have unavoidable spa-
tial constraints that will be best addressed by recasting the
problem and its solution in a more loosely coupled fash-
ion. The Barnes-Hut algorithm, for example, solves the
N-Body problem in less than 0(n2) complexity by repre-
senting space with an octree such that from any given body,
groups of far away bodies can be represented as a point
source.

The challenge for grids and heterogeneous computing,
however, is to minimize the class of applications that have
to be recast by developing systems and runtimes that under-
stand the "spatial component" of an application and can act
accordingly to provide the best overall performance with the
available communication resources. This is one of the goals
of the Grid Forum's Advanced Programming Models Work-
ing Group (www.gridforum.org). The need for such "spa-
tial component" management will only increase as systems
like long-latency satellite networks and low-power mobile
networks come online with high-performance compute sys-
tems such as hardware multithreaded processors that toler-
ate deep memory hierarchies.

References

[1] S. Baden and S. Fink. The Data Mover: A machine-
independent abstraction for managing customized data mo-
tion. LCPC, August 1999.

[2] D. Bader and J. JäJä. SIMPLE: A methodology for program-
ming high performance algorithms on clusters of symmetric
multiprocessors. Technical report, University of Maryland,
Department of Computer Science, and The University of
Maryland Institute for Advanced Computer Studies, 1997.
Tech report, CS-TR-3798, UMIACS-TR-97-48.

[3] S. Benkner, P. Mehrotra, J. V. Rosendale, and H. Zima.
High-level management of communication schedules in
HPF-like languages. International Conference on Super-
computing, 1998.

[4] CESDIS. The Beowulf Project. Technical report, NASA,
1999. http://www.beowulf.org.

[5] S. Fink and S. Baden. Runtime support for multi-
tier programming of block-structured applications on
smp clusters. International Scientific Computing in
Object-Oriented Parallel Environments Conference (.IS-
COPE '97), December 1997. Available at www-
cse.ucsd.edu/groups/hpcl/scg/kelp/pubs.html.

[6] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski,
W. Smith, and S. Tuecke. A directory service for config-
uring high-performance distributed computations. In Pro-
ceedings 6th IEEE Symp. on High Performance Distributed
Computing, pages 365-375, 1997.

[7] I. Foster and C. Kesselman. Globus: A metacomputing in-
frastructure toolkit. Intl. J. Supercomputing Applications,
11(2):115-128, 1997.

[8] I. Foster and C. Kesselman. The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann, 1998.

[9] M. Hall et al. Mapping irregular applications to DIVA, a
PIM-based data-intensive architecture. Supercomputing '99,
1999.

[10] C. Lee, R. Wolski, J. Stepanek, C. Kesselman, and I. Foster.
A network performance tool for grid environments. Super-
computing '99, 1999.

[11] R. Martin, A. Vahdat, D. Culler, and T. Anderson. Effects of
communication latency, overhead, and bandwidth in a clus-
ter architecture. 24th ISCA, June 1997.

[12] NAS. The NAS Parallel Benchmarks. Technical report,
NASA, 1999. http://www.nas.nasa.gov/Soft-
ware/NPB/index.html.

[13] SGI. The Cray T3E Homepage. Technical report, SGI, 1999.
http://www.sgi.com/t3e.

[14] B. L. Tierney. NetLogger: A methodology for moni-
toring and analysis of distributed systems. Technical re-
port, Lawrence Berkeley Laboratory, 1999. http: / /www-
didc.lbl.gov/NetLogger.

[15] J. Wang and S. Taylor. Industrial Strength Parallel Comput-
ing, chapter 10: An architecture-independent Navier-Stokes
Code. Morgan Kaufman, Inc., 1999.

[16] J. Wang and G. Widhopf. An efficient finite volume TVD
scheme for steady state solution of the 3-D compressible
Euler/Navier-Stokes equations. In A1AA paper 90-1523,
June 1990.

261

A Debugger for Computational Grid Applications*

Robert Hood Gabriele Jost

MRJ Technology Solutions—Numerical Aerospace Simulation Division
NASA Ames Research Center
{rhood,gjost}@nas.nasa.gov

Abstract
The Portable Parallel/Distributed Debugger project at

the NASA Ames Research Center has built a debugger for
applications running on heterogeneous computational
grids. It employs a client-server architecture to simplify the
implementation, and its user interface has been designed to
provide process control and state examination functions on
computations with a large number of processes. The
debugger can find processes participating in distributed
computations even when those processes were not created
under debugger control. In addition to working in a com-
putational grid environment, these techniques also work on
other distributed memory jobs such as those initiated by
mpirun.

1. Introduction

While tools for debugging computationally intensive
programs have improved substantially in the last few years
[5] [22], there are two areas where further improvement is
needed. First, existing tools do not cope well with applica-
tions running on heterogeneous computing platforms. Sec-
ond, they do not provide sufficiently abstract and scalable
operations for examining and controlling execution.

This combination of inadequacies is particularly felt by
programmers building applications to run on large-scale
computational grids, such as NASA's Information Power
Grid (IPG) [12]. The IPG is based on the Globus toolkit [7]
and can give an application access to a variety of comput-
ing resources across the country. Debugging such a compu-
tation using existing techniques is at best very tedious. In
the worst case, it may not be possible.

In order to provide a reasonable debugging system for
computational grid computations, the Portable Parallel/
Distributed Debugger (p2d2) project in the Numerical
Aerospace Simulation (NAS) Division of the NASA Ames

*This work was supported through NASA contract NAS 2-14303.

The screen dumps in this paper have been modified from their normal
screen appearance in order to aid reproducibility. The modifications
include color changes as well as a resizing of some components from their
defaults.

Research Center has taken their existing debugger and
extended its capabilities. The original goals of the project
in 1994 were to build a debugger that was both portable
across a variety of target machines and whose user inter-
face scaled to be able to debug a large number of processes.
(At that time we interpreted that to mean at least 256 pro-
cesses.) The result ofthat initial effort was a debugger [10]
that ran on a variety of Unix-based machines and could be
used on both MPI [15] and PVM [21] applications.

In this paper we report on the effort to enhance that
debugger to work in a computational grid environment. We
begin with a discussion of how p2d2's architecture accom-
modates the debugging of heterogeneous computations. In
section 3 we look at user interface features that enhance
scalability. Following that we discuss how p2d2 meets the
requirements imposed by a computational grid environ-
ment. In section 5 we examine how heterogeneity affects
the user interface components.

2. An architecture to support heterogeneity

Debuggers, even serial ones, are inherently nonportable.
Their basic task is to take a user request at the source level,
map it to the machine level where it can be performed, and
then map the result back to the source level. To accomplish
this they rely on information and services from a variety of
sources. For example:

• the compiler provides source line and symbol map-
ping data,

• the operating system provides services for starting
and stopping processes, and

• the computer architecture defines a trap instruction
that can be used for implementing breakpoints.

The most successful portable debugger, gdb from the
Free Software Foundation [6], defines abstract interfaces
for many low-level functions in a debugger, such as read-
ing values in another process's address space. The gdb
source distribution includes machine specific implementa-
tions for those functions, and at compile time it determines
which code needs to be present to build a debugger for a
given platform. One problem that gdb does not attempt to
solve is that of debugging heterogeneous computations,

0-7695-0556-2/00 $10.00 © 2000 IEEE
262

user
interface

distribution
manager

debugger
server

<**
remote
server

—Ja.ouVj

client
remote
server

—Ja.oun

FIGURE 1. The client-server architecture of p2d2.

where these portability issues must be solved in a way that
enables different target platforms to be available at the
same time.

In the p2d2 project we wanted to address the portability
issues at a higher level of abstraction than gdb did. We used
a client-server architecture to isolate the platform-depen-
dent code in a debugger server (see Figure 1). The server
defines a collection of C++ objects that would exist in a
debugging session, such as Process and Stack. The cli-
ent consists of those parts of the debugger that deal with
the distributed nature of the target computation and with
the user. It can be implemented in a highly portable fash-
ion. For example, if the client has a Process *p, it could
resume execution in it by invoking the operation

p->Continue().
The object collection is discussed in detail in a previous pa-
per [11].

In the initial version of p2d2 we decided to build a
debugger server based on gdb. The main reason for this
was that our debugger would be easily portable to any plat-
form where a gdb implementation existed—thus saving us
a huge amount of implementation effort. In the gdb-based
implementation of p2d2 (see Figure 2) the remote server of
Figure 1 is replaced with an instance of gdb. The debugger
server is then an implementation of the C++ objects that
uses gdb commands to perform any requested debugger
server requests. In effect, it maps operations on the C++
objects into gdb commands and then maps the gdb
response back to the object level.

To continue the example above, if the client invokes a
continue operation on a process with "p->ContinueO"
the server sends a "cont" request to the gdb controlling
that process and marks the process as "running". When that
process hits a breakpoint, gdb reports it to the debugger
server which analyzes the reason for stopping and updates
its own picture of the process state. In doing so, it may send

y-—^

^ gdb —Ja.out)

debugger
client

gdb-based
debugger server

**♦♦ 1 1 f^~\
*' gdb .—Ja.out)

FIGURE 2. The gdb-based implementation of
p2d2.

other requests to gdb, such as "where" to find out what the
runtime stack looks like. When it has completed its picture
of the process state, it notifies the client that the process has
stopped.

3. User interface basics

From a user's perspective, a debugger has two primary
functions:

• state examination, where the user can scrutinize
expression values, source code, run-time stack, and
other components of the current computational
state; and

• process control, where the user is permitted to start
execution of the target computation and to describe
circumstances under which it should stop.

The challenge in a multiprocess debugger is to provide
these functions in a way that scales well to a large number
of processes. In particular, the challenge for state examina-
tion is to provide both an abstract, top-level view of the
computation as well as information about a single process
that has the same level of detail that a serial debugger would
have. The challenge for process control is to provide a way
to propagate a single process control request, such as Con-
tinue, to a collection of processes, thereby relieving the user
from the burden of directing processes individually.

To address the state examination challenge, p2d2
defines three zooming levels, providing a varying degree of
abstraction versus detail.

• A top-level view, called the process grid, provides a
programmable display showing a few bits of infor-
mation about each of the processes in the computa-
tion.

• An intermediate-level view provides a line of text
summarizing the state of each process in a user-
selected set called the focus group.

• A low-level view provides full information about a
single, user-selected focus process.

The selection of the focus group and the focus process are
done in the process grid display. When the user changes one
of the selections, the display is updated to reflect the infor-
mation about the new focus. For example, if the user chang-
es the focus process, then all state examination displays that
are focus-process-sensitive, such as the source and stack
displays, will be updated.

To address the process control challenge, p2d2 uses the
notion of a control set, which is the collection of target pro-
cesses that are subject to process control requests. The user
has a variety of ways of setting membership in the control
set. The current membership of the control set is indicated
in the process grid display. When a process control opera-
tion such as setting a breakpoint or continuing execution is
requested, it is forwarded to all processes in the control set.

263

process grid

- ^•tfa^deUMrfrttoriWpnyn** . . W , . - , I^J
File Edit View Find Data Help

IDS
liiiii

MllliSSUIiS'l] I
BWB!B H B H |

-pid- machine —operating system— executable —state—

B> 22*433 low,

9> 228717 Ion«

10> 22*596 low

11> 22S71S lomax

mips-Bgi-lri/6.5

mipa-Bgi-irix6.5

nips-sgi-i-ix6.5

nips.-ugi-irix6.5

shock

shack

shocle

stopped

«topped

stopped

*SttippB<£t

t 65-

i S0-

write(6,*) 'Started proc tt', num_nodes

if (num_nodes .lt. NPRDCS) then
write(0,*) 'SORRY: PROGRAM ONLY WORKS FOR ', NPROCS,

' PROCESSES.'
call MPI_Finalize(ierr)
stop

end if

check for invalid combinations of dimensions and
process-grid dimensions

error = .FALSE.

if (NX - (XPROCS-l)*NXlsize .le. 0) then
print*, 'invalid combination of NX, XPROCS'
error = .TRUE,

end if
if (NY - (YPROCS-l)*NYlsize .le. 0) then

print*, 'invalid combination of NY, YPROCS'
error = .TRUE,

endif
if (NZ - (ZPROCS-l)*NZlsize .le. 0) then

print*, 'invalid combination of NZ, ZPRDCS'
error = .TRUE.

file: main.bug.F display process 226000: stopped

Step into Step over ; Step out Evaluate h Display

■„.,.„—„.,..,.„.„.„„.<„„„„„„„„—„„/,',„,. ■",„,.n„ „rr.„—.„,..,,.„r,,,,*,,,,/,/,,,,,^^.

1: in main w/ (?unknouin?) , line 96, in 'main.c'

 „.„.,..,„„.„r,„„„,„*/i> si

'WsWJi>w?xi7»'Mjii'?fyr,,r>/j'jys:'/}

25> 24
26> 25
27> 29
28> 27
29> 31
30> 30
31> 28

done

focus group

focus process

FIGURE 3. The main window of p2d2.

The main window of p2d2 is shown in Figure 3. In that
example, a Globus computation of 32 processes is being
debugged. The process grid shows all of the processes in
the computation, plus the globusmn process that initiated
the job (but does not participate in the computation). The
focus group displays one line of text for each process in the
selected column of the process grid. In the figure, the user
has selected the fourth of the nine columns. The focus pro-
cess part of the display resembles a serial debugger on the
single process selected in the process grid (the one in row
3, column 6).

Perhaps the most novel feature of the p2d2 user inter-
face is the programmability of the process grid described
earlier. This feature permits a quick scan of a large number
of processes to isolate a process behaving in an unexpected
manner. Such a process is a good candidate for closer scru-
tiny as the focus process.

This customization is achieved by having the user spec-
ify a list of predicates that should be tested in each process
and how a process should be depicted in the process grid if
the predicate is true about it. For example, in the default
view of the display, running processes are represented by
green squares and stopped processes by red ones.

P2d2 defines a collection of conditions that can be
tested. These include:

• the process is running,
• the process is on some machine M,
• an expression E evaluates to true in the process, and
• the process is stopped in user function Fj and is call-

ing non-user function F2.

The customization feature is illustrated in Figure 4. In that
example, the user suspected that a computation was dead-
locked. She paused all of the processes and then requested
that the process grid show where each process was stopped.

264

File Edit View Find Data Help

H m
m

m
m 'in

®
m

0M-M ®^ß\M
igjlilililioiiiiiili

m
0

MMl
m®

■JZ£l—HJ!ff— nf,„.7~QP.era.t..ing. s!Jstem~~ executable —state-
(sips-sgi'-'irS>

'/"'"""""W'M""/fwws/fstyjtsjsr///M.

enc
endif

if (if

ifl
a

HFSl pfpmce^häs^ited "o~[

ES] [ifprocessisinuserfüncÜänXrä^^ mesh_update_bdry_async, mpi_recv

|0"~l pfprocess Is In user function [, calling non-user fen]: ö~| mesh_update_bdry_asy nc , mp i_barr i er.
3

jAdd another easel OK Apply Reset Cancel Help

FIGURE 4. Customizing the process grid display.

The debugger constructed the customization shown in the
"Custom Grid Display Editor" window. It shows running pro-
cesses with a green square—only the globusrun startup pro-
cess is in this category. Stopped processes are depicted with
an "X" if they are in mesh_update_bdry_asynch and
calling mpi_recv; they are depicted with a "o" if they are
in that same function but calling mpi_barrier. This fea-
ture gives the user a quick way to find out what each process
is doing. In particular, in this example, the user was able to
focus in on the four processes doing an mpi_recv, and find
a communication pattern error.

In addition to providing tools for abstracting state across
a collection of process, p2d2 also provides various means
to examine specific data values in a computation. Scalar
expressions can be evaluated on each process in the control
set with the result being displayed in the output window
(the bottom pane in Figure 3). As an alternative, a scalar
data viewer allows the persistent display of scalar values
for up to 4 focus processes (Figure 5). Data values there
are updated each time a breakpoint is hit or when the focus
is shifted to another process.

Array data can be examined using the p2d2 array
viewer. It displays the array in either textual or graphical
mode for each of the focus processes. Figure 6 shows an
example of the data displayed as text. As in the scalar
viewer, the values are updated when the program reaches a
breakpoint or when the focus is shifted to another process.

FIGURE 5. Comparing data across processes.

4. Handling grid-based computations

In addition to state examination and process control fea-
tures, a successful debugger will need to automate the task
of finding and controlling all of the processes participating
in a distributed computation. The user should not be
required to filter through lists of processes running on a
large number of machines in order to determine which of
them belongs to a job.

As with serial debuggers there are two cases to consider
in acquiring initial control over processes to be debugged:

1. the computation was initiated from the debugger
when the user invoked the Run command, and

2. the user initiated the computation outside of the
debugger and then requested that the debugger
"attach" to it.

In order to handle case 1, the debugger needs to resolve a
conflict with the process starting mechanism (e.g., mpirun,
globusrun, pvmrun) that initiates the distributed computa-
tion. The conflict comes about because both the debugger
and the process starter want to control the actual fork ()
and exec () that start the individual processes. A custom-
ary way to resolve this conflict is for the process starting

1 0.99999670594733459
99999868213553433 1.0011309028502573

1.3924712029450375
1.8838093274827916
2.1795056025346566
2.4500064278991629
2.6963998955489221
2.9434680802644277
2.99408524250584
2.9983313982262767

.002157930921215

.0044529816581291

.0056868172624938

.0067432485280714

.00824037446522

.2036476633011854

.5529884260348357

.5324333452749794

1.3950617283950617

2.1851851851851851
2.4567901234567899
2.7037037037037033
2.9506172839506175 1.1975308641975309

3 1.5432098765432098
3 2.5308641975308648

FIGURE 6. Array data viewed as text
(compare with graphical view in Figure 11).

265

FIGURE 7. After the user requests a globusrun.

mechanism to allow a user-supplied proxy program (some-
times called a tasker) to perform the fork and exec. Both
pvmrun and globusrun permit the debugger to gain control
over process creation in this way.

To debug Globus jobs, p2d2 uses the tasking mecha-
nism provided by globusrun. If the debugger is going to be
used to initiate a Globus job, the user must include the
clause

(paradyn="P2D2_HOST P2D2_PORT p2d2 \
/u/p2d2/bin/gdbserver")

in the RSL script to be handed off to globusrun. This indi-
cates that /u/p2d2/bin/gdbserver should be used as a
tasker. When the user requests a Run, the following se-
quence of events happens. It is depicted in Figure 7.

1. P2d2 invokes globusrun, changing the P2D2_HOST
and P2D2_PORT strings in the RSL script to the
machine name on which p2d2 is running and the
number of a tasker contact port that it created.

2. When globusrun starts the tasker, it passes it the
machine name and port number that p2d2 wrote in
the RSL script.

3. The tasker and p2d2 then establish a socket.
4. The tasker starts the target executable and reports the

target's pid on the socket. The target sleeps.
5. P2d2 asks the tasker to start gdb and to forward an

attach request to it.
6. Gdb attaches to the target to take control.

In order to handle case 2 above, where the user requests
that the debugger attach to an existing computation, the
debugger needs:

• a list of the processes that are participating in a com-
putation, and

• a mechanism for gaining control over them.

If a tasking mechanism exists, it can be used to meet these
needs. For example, if p2d2 is to be used to attach to an ex-
isting Globus job, the job must have been started with the
"paradyn" option described previously. Then the follow-
ing steps (illustrated in Figure 8) take place.

1. Globusrun creates a tasker process for each target
process in the computation.

2. The resulting tasker processes will each create a port.
3. The port contact information from all taskers is com-

bined in a single file in the file system.
4. When the user starts up p2d2 and asks for it to attach

to the Globus processes, the debugger will retrieve
the tasker port contact information in the file.

5. P2d2 will then establish sockets with the taskers.
6. The debugger will then ask the tasker to start up a

gdb and pass an attach request to it.
7. Gdb will then attach to the target process.
Storing the tasker contact information in the file system

can be problematic. The machine where p2d2 runs may not
mount the same file system that the taskers do. In fact, the

FIGURE 8. When p2d2 attaches to an existing Globus process.

266

taskers themselves may not share a common file system.
Under Globus, the right way for the taskers to get the con-
tact information to p2d2 is to use the Metacomputing
Directory Service (MDS). We are currently modifying our
tasker to use that approach.

In our discussions so far, we have relied on a tasking
mechanism at process startup. Unfortunately the initial ver-
sion of MPI does not have such a feature, because process
creation was not part of the standard. To handle MPI jobs
when there is no tasking mechanism, p2d2 uses rsh to run a
copy of gdb on the machine where the target process exists.
There are two remaining needs:

• a list of pairs [machine, pid] for each process in the
job, and

• a way to "keep a newly started MPI process from
executing code.

The second condition allows us to handle debugger-initiat-
ed runs in an identical manner to run initiated outside of the
debugger. To handle a Run request in this scenario, p2d2 in-
vokes mpirun, which starts the processes on the remote ma-
chine. If we have a way to keep the newly started MPI
process from making progress, we can simply attach to it as
we do for runs initiated outside of the debugger.

We can address both of the needs above by using the
profiling mechanism of MPI and providing a specialized
version of MPi_init (). The MPl_init used by p2d2
does the following.

• It calls PMPi_init(), to do the normal initializa-
tion for MPI.

• The process with rank 0 gets the machine name and
process ID for all processes. It writes that data in the
file system.

• If the process was initiated from the debugger, it
goes into an infinite sleep loop.

When the debugger attaches, it establishes any necessary
breakpoints, terminates the sleep loop, and then continues
execution.

There are two minor limitations in the version of
MPl_lnit used by p2d2:

• it is not possible to debug the code that executes
before MPi_init called, and

• the user must link the application with p2d2's ver-
sion of MPl_init.

The latter condition could lead to a conflict if other libraries
want to use the profiling mechanism of MPI.

While these limitations exist, in practice they restrict
p2d2's capabilities very little. Furthermore, we are hopeful
that an mpirun based on the process control operations in
MPI-2 [15] will provide a tasking mechanism that will
eliminate the restrictions altogether.

5. Heterogeneity and the user interface

In adapting p2d2 to work in a heterogeneous computa-
tional grid environment, we found two areas that needed
more work:

• displaying what kind of machine and operating sys-
tem a process was running on, and

• providing abstract, consistent views of data across
heterogeneous processors.

The first problem was relatively easy to solve. P2d2 extracts
system type information from its debugger servers and then
displays it in two different ways, as shown in Figure 9. First,
it puts system information in the focus group display. Sec-
ond, it defines a predicate "process is on operating system
S" so system information can be displayed in the process
grid. In the example shown in Figure 9, the grid view is pro-
grammed so that processes running on IRIX are depicted as

 - machine —operating system— executable —state —locatic
!':'/>• L'""!X"" ""■'.''1'- .■'*&:' "! ' UO?.!- '■' .'. isffi!'.""-' 'A W'. "■'»'vftW'-1" ''■ 'MAih.1. ' ^"'itVJ''- • OV>L ..■•v-t**m"Ti "taw

!'»'« Mi-til Utt*mt.*®^äm&
[•/ ol |if process Is on OS matching: oj mips-sgi-irix6.5

IX a I iif process is on OS matching: sparc-sun-solaris2.6

loa I [if process isönOS matching: i386-redhat-linux

I? a I otherwise

Add another case OK Apply Reset Cancel Help

FIGURE 9. Support for heterogeneity in the process grid.

267

a "V", processes running on Solaris are indicated with an
"x", and processes running under Linux show a "o". This
results in the process grid view as shown.

To address the second problem, that of providing con-
sistent, abstract representations of program state across
heterogeneous processes, we needed to make the existing
state examination tools more robust and to provide some
new ones as well. One of the problems we ran into when
first looking at heterogeneous computations concerned pro-
viding automatic assistance for comparing the value of an
expression in processes on different architectures. Data
representation was not an issue because gdb provides the
expression's value as text. Instead the issue was that of
finding where in the process the evaluation should take
place.

Expression evaluation in p2d2 has always tried to make
sure that the user compares apples to apples. That is, when
evaluating an expression on more than one process, the
debugger attempts to use the same context in each of the
processes doing the evaluation. So, if a variable is being
evaluated in 2 processes, the evaluation will take place in
stack frames that are "similar". What this means is that the
debugger needs to compare the runtime stacks of the non-
focus processes in order to determine which frame best
corresponds to the selected frame in the focus process. In a
homogeneous environment this is not too difficult. The
problem we needed to address in a heterogeneous environ-
ment was that the runtime stacks looked somewhat differ-
ent. In particular, function names often changed slightly.
We addressed the problem by mapping function names to a
canonical form. Then stack comparison could be handled
as in the homogeneous case.

In order to increase the abstraction level of our data dis-
plays, we wanted to address the issue of displaying data
from arrays that are conceptually distributed across multi-
ple processes. Thus, p2d2's array viewer provides a mecha-
nism to give the user a global picture of a distributed array.
The local data contributions from each of the participating

processes are gathered and assembled into a global picture.
When gathering the data from different machine architec-
tures we had to take into account inconsistencies of gdb
across different compilers. An example is the "whatis"
command. For a Fortran array declared as real a (10, 5)
on a Linux platform using g77 this results in type =
real*4 (10,5). On a SGI Origin using the MlPSPro
compiler it results in type = real*4 (5,10). In this
case, p2d2 addresses the differences by reversing dimen-
sion lists on the SGI's.

Figure 10 shows a global display of a 2-dimensional
slice of the 4 dimensional array ux at a breakpoint. The
array ux is distributed across 8 processes: 4 SGI Origins, 2
processes on a Sun Solaris platform, and 2 processes on a
Linux PC cluster. The array elements that reside on the
focus process are highlighted. To make comparison sim-
pler, Figure 11 shows the local contribution from the focus
process.

In order to assemble the local contributions of a distrib-
uted array into a global picture, information about how the
data is distributed is required. If the program has been par-
allelized without the use of parallelization support tools,
p2d2 will prompt the user to provide distribution informa-
tion via a dialog box (Figure 12). At the moment only sim-
ple, structured distribution types are supported.

In cases where the program has been parallelized using
a parallelization support tool, it is often possible to retrieve
such information through the tool that has been used. Cur-
rently p2d2 supports the CAPTools [3] parallelization tool,
which was developed at the University of Greenwich.
CAPTools generates parallel code from a serial program
by performing extensive dependence analysis, logically
partitioning the data, and inserting calls to communication
routines. The analysis results gathered during this process
are stored in a data base, which is then probed by the
debugger to retrieve the required distribution information
without user intervention. Some of the information stored
in the CAPTools database is symbolic and has to be evalu-

selected plane:

• [fMresh DOV/

SS? ** W f? 55 ■ *tf." *2M m
4 * tt ' m ■SS? SiSS % % SB 3 m. SK* ■$SS 3

A w- ■Ktr *-&M %;%!&*%* 9 sä " -3 «i \%J
*W& .

-4, „: «■ ■$ *.>, ™ ;JS p ■% m & Sä n K

fT^v?1^?^?!^^

FIGURE 10. A global view of distributed data. FIGURE 11. Local array data.

268

^(^^Mbuli^fn/iumafkm

♦ Reduced memory

Global bounds:

64,16,1,6

Processor topology:

4,2,1,1

Ghost points:

2,2,2,0

Ok .Cancel Help

FIGURE 12. Specifying a distribution.

ated by p2d2 for each processor at run time. For example
the upper and lower loop bounds, which determine the
effectively used area in a local array, are stored symboli-
cally. These bounds vary with the number of processors
and are potentially different for each processor.

6. Related work

There are two commercially available distributed
debuggers of note. TotalView [5], from Etnus, is a third
party debugger that runs on a number of high performance
computing platforms. It is currently not capable of debug-
ging heterogeneous computations. Furthermore, while it
can debug thousands of processes and threads, the user
interactions are at a fairly low level. Prism [22], from Sun
Microsystems is derived from the Thinking Machines
product of the same name. It is not portable to systems
other than Sun. While its user interface led the way in scal-
ability, it too, could be more abstract.

SGFs Jessie [19] is a freely available, cross platform
development environment that provides a debugger based
on gdb and a performance analysis tool based on gprof.
Like p2d2, Jessie is aimed at providing portability. When it
comes to debugging programs consisting of multiple pro-
cesses, Jessie is limited to what gdb supports. That means
while it is possible to invoke several instances of gdb to
debug multiple processes on different machines, to our
knowledge Jessie, at this time, does not provide means to
control them in a convenient, scalable way.

Guard is a debugger developed at Griffith University,
Australia [1][2]. It provides the ability to debug programs
in a distributed and heterogeneous environment by allow-
ing control of execution of separate programs on different
machines. Like p2d2, it uses a client-server paradigm to
provide portability. A gdb-based debugger server runs on

each of the machines to control the processes. The debug-
ger servers communicate with the client via RPC. Guard
provides a command language for user interaction that
contains commands like "compare" and "assert" to com-
pare values between programs that are running on different
machines, and were possibly written in different lan-
guages. It also allows the comparison between parallel and
sequential versions of a program by providing language
constructs that enable the user to map a serial data structure
onto the equivalent parallel version.

The Distributed Array Query and Visualization (DAQV)
project [9] aims to provide a solution for the problem of
exposing distributed data structures to external tools. The
original work started as a Parallel Tools Consortium [16]
project and focused on HPF as a target language. Informa-
tion about the distributed array could be obtained via the
HPF compiler. In the second phase of the project (DAQV-
II), Fortran 90 and MPI became the primary implementa-
tion targets [8]. As in p2d2, DAQV-II requests array distri-
bution information from the user if it can not be obtained
otherwise.

The SPiDER debugging system [20] for HPF programs
uses the GDDT (Graphical Data Distribution Tool) [13] for
the display of distributed arrays. It doesn't appear to sup-
port viewing arrays distributed across a heterogeneous col-
lection of machines.

7. Project status and future work

The current p2d2 system has been demonstrated on sev-
eral target architectures and has been used to debug both
MPI and PVM applications. After the recent work to
accommodate Globus computations, it has been success-
fully used to control 128 processes running on 3 different
SGI Origins on the IPG. It has also been used on heteroge-
neous computations running under Globus (see Figure 9).

At the time of writing this paper, we have requested per-
mission from NASA to distribute p2d2 under an Open
Source copyright [17]. Those desiring up to date informa-
tion about the status of that distribution are requested to
consult the p2d2 web site [18].

In the near future, we will start using the Metacomput-
ing Directory Service (MDS) in Globus to record informa-
tion about jobs started outside the debugger. This will
enable us to attach to Globus computations without relying
on the target systems sharing a file system with the debug-
ger host.

Further in the future we may adapt p2d2 to work with
Legion [14] and Condor [4] if there is sufficient user
demand. We also plan to enhance p2d2 to find differences
between serial and distributed versions of the same code.
This could be particularly useful when computer-aided par-

269

allelization tools such as CAPTools are used to perform the

transformation.

8. Conclusions

In this paper we have described a debugger for hetero-
geneous, distributed programs. We found that a client-
server model greatly simplifies the implementation of a
debugger. The debugger's user interface has been designed
to provide a simple collective mechanism for process con-
trol, as well as multiple levels of zooming for state exami-
nation. These features facilitate the debugging of a
computation containing a large number of processes. We
also described several approaches for finding processes
participating in a distributed computation and how those
techniques could be used in a computational grid environ-

ment.

Acknowledgements

The authors would like to thank Michael Frumkin and
Warren Smith of NAS for their comments on this paper.
Warren also provided valuable help regarding our use of
the Globus system. Henry Jin of NAS and Steve Johnson of
the University of Greenwich helped with retrieving data
distribution information from the CAPTools database. Ravi
Samtaney from the California Institute of Technology pro-
vided a parallel version of the RM3d code for the solution
of Euler's equations in three dimensions, which ran in a
heterogeneous fashion under Globus.

References
[I] Abramson, D., Sosic, R., and Watson, G. "Implementation

Techniques for a Parallel Relative Debugger." Proceedings
ofPACT'96, Boston, October 1996.

[2] Abramson, D. and Watson, G. "Relative Debugging for Par-
allel Systems." Proceedings of PON 97, September 25-26,
1997, Canberra, Australia.

[3] Computer Aided Parallelization Tools (CAPTools). http: /
/captools.gre.ac.uk/ .

[4] The Condor Project, http://www.cs.wisc.edu/
condor/.

[5] Etnus, Inc. The Total View Multiprocess Debugger, http: / /
www.etnus.com/products/totalview/.

[6] The Free Software Foundation, http: //www. f sf. org/ .
[7] The Globus Project, http://www.globus.org/ .
[8] Hackstadt, S. T, Harrop, C. W., and Malony, A. D. "A

Framework for Interacting with Distributed Programs and
Data." Proceedings of the Seventh IEEE International Sym-
posium on High Performance Distributed Computing
(HPDC-7), Chicago, IL, July 28-31, 1998, pp. 206-214.

[9] Hackstadt, S. T. and Malony, A. D. "Distributed Array
Query and Visualization for High Performance Fortran."
Proceedings of Euro-Par '96, Lyon, France, August 1996.

[10] Hood, R. "Va&pldl Project: Building a Portable Distributed
Debugger." Proceedings of the SIGMETRICS Symposium on
Parallel and Distributed Tools, May 1996.

[II] Hood, R. and Cheng, D. "Accommodating heterogeneity in a
debugger—a client-server approach." Proceedings of the

Twenty-eighth Annual Hawaii International Conference on
System Sciences, Jan. 1995. [Also published in an extended
form as a chapter in Tools and Environments for Parallel and
Distributed Systems, Kluwer Academic Publishers, Norwell,
MA.]

[12] The Information Power Grid Project Plan, http: / /
www.nas.nasa.gov/~wej/IPG/.

[13] Koppler R., Grabner S., and Volkert, J. "Visualization of
Distributed Data Structures for HPF-like Languages." Scien-
tific Programming, special issue: High Performance Fortran
Comes of Age, Vol. 6, No. 1, pp. 115-126, spring 1997.

[14] The Legion Project, http://legion.virginia.edu/ .
[15] Message Passing Interface, http: //www-

unix.mcs.anl.gov/mpi/.
[16] The Parallel Tools Consortium, http://www.ptools.org.
[17] Open Source, http: //www.opensource.org .
[18] The p2d2 Project. http://www.nas.nasa.gov/Tools/

p2d2 .
[19] SGI, Inc. The Jessie Cross Platform Integrated Development

Environment, http: //oss. sgi.com/projects/
Jessie/.

[20] The SPiDER debugging system, http: //
www.par.univie.ac.at/-sowa/spider

[21] Sunderam, V. "PVM: A Framework for Parallel Distributed
Computing." Concurrency: Practice and Experience
2(4):315-339,1990.

[22] Thinking Machines Corporation. Prism User's Guide.
Thinking Machines Corporation, Cambridge, MA, Dec.
1991; also: http: //www.sun.com/servers/hpc/soft-
ware/configuration.html#prism.

Biographical sketches
Robert Hood joined the faculty of Rice University in

1982. He participated in the Rn and ParaScope research
projects, concentrating on debugging issues. After ten
years at Rice, he took a position with Kubota Pacific Com-
puter. In 1993 he joined the contract staff of the Numerical
Aerodynamic Simulation (NAS) division at the NASA
Ames Research Center and has been there since. Robert
Hood's professional interests are in debuggers for parallel
and computationally intensive programs, programming
environments, and advanced compilation systems. Most
recently, he has been leading the effort to build p2d2, a por-
table, scalable debugger.

Gabriele Jost received her doctorate in Numerical and
Applied Mathematics from the University of Goettingen,
Germany, in 1986. In 1987 she joined the Suprenum
project, a German effort to develop and market a vector-
parallel supercomputer. She has been working in the high
performance computing industry with vendors and
research institutes ever since. Her experience includes
compiler development; performance optimization of scien-
tific and engineering applications for cache-based, vector,
and parallel computer architectures; and tools and pro-
gramming environments for high performance computing.
Since November of 1998 Gabriele Jost has been a member
of the NAS Parallel Tools Team, where she works on the
design and implementation of p2d2.

270

SESSION 4-B
RESOURCE MANAGEMENT

Chair: P. Stelling, The Aerospace Corporation, USA

A Framework for Mapping with Resource Co-Allocation in
Heterogeneous Computing Systems

Ammar H. Alhusaini * and Viktor K. Prasanna*
Department of EE-Systems, EEB 200C

University of Southern California
Los Angeles, CA 90089-2562

Ph: (213)740-4483
{ammar + prasanna} @usc.edu

C.S. Raghavendra
The Aerospace Corporation

P. O. Box 29257
Los Angeles, CA 90009

Ph: (310) 336-1686
raghu@aero.org

Abstract 1. Introduction

// is often the case in Heterogeneous Computing (HC)
systems that an application requires multiple resources of
different types to be allocated simultaneously. In general,
this problem is the resource co-allocation problem. In this
paper, we develop a general framework for mapping a col-
lection of applications with resource co-allocation require-
ments. In our framework, application tasks have two types
of constraints to be satisfied: precedence constraints and re-
source sharing constraints. We use a graph theoretic frame-
work to capture these constraints. A Directed Acyclic Graph
is used to represent precedence constraints of tasks within
an application and a Compatibility Graph is used to repre-
sent resource sharing constraints among tasks of applica-
tions. Both these graphs are used to find maximal indepen-
dent sets of tasks that can be executed concurrently.

The objective of the mapping is to minimize the overall
schedule length for a given set of applications. We develop
heuristic algorithms to solve the mapping problem with re-
source co-allocation constraints. We also provide a two-
phase algorithm that can be used for run-time adaptation.
We conducted extensive simulation experiments to evaluate
the performance of our heuristic algorithms. Simulation re-
sults for our algorithms show a performance improvement
of 10% to 30% over a baseline algorithm of list schedul-
ing which considers only the precedence constraints and al-
locates tasks from the resulting order. This paper demon-
strates the importance of considering the co-allocation re-
quirements when mapping applications in heterogeneous
computing environments including grid environments.

'Supported by the DARPA/ITO Quorum Program through the Naval
Postgraduate School under subcontract number N62271-97-M-0931.

In Heterogeneous Computing (HC) systems [8, 13, 20,
25, 26], a diverse set of resources are used in a coordinated
and effective way to solve computationally challenging ap-
plications. Such systems are also called metacomputing sys-
tems [29] or computational grids [10]. In general, such HC
systems have compute resources with different capabilities,
input/output devices, data repositories, and other resources
all interconnected by heterogeneous local and wide area net-
works. A major challenge in using HC systems is to effec-
tively use all the available resources.

Mapping applications in HC system is a well researched
problem in the literature. The mapping problem is defined
as the problem of assigning application tasks to suitable re-
sources (matching problem) and ordering task executions
in time (scheduling problem) to optimize a specific objec-
tive function. Many algorithms exist for mapping applica-
tions in HC systems (for a detailed classification see [4]).
For applications consisting of several tasks and represented
by Directed Acyclic Graphs (DAGs), many static and dy-
namic mapping algorithms have been proposed. Dynamic
algorithms include the Hybrid Remapper [23], the Genera-
tional algorithm [12], as well as others [1, 18, 21]. Several
static algorithms for mapping application DAGs in HC sys-
tems are described in [19, 24, 27, 32]. Most of the previous
algorithms focus on compute resources only.

In our earlier work [2], we developed a unified resource
scheduling framework for HC systems which supports mul-
tiple resource requirements, advance reservation, and data
replication. Each application was assumed to consist of sev-
eral tasks and was represented by a DAG. A task's input data
can be data items from its predecessors and/or data sets from
data repositories. Input data sets can be accessed from one
or more data repositories. Sources of input data and the ex-
ecution times of the tasks on various machines along with

0-7695-0556-2/00 $10.00 © 2000 IEEE
273

their availability were considered simultaneously to mini-
mize the overall completion time. Although we considered
multiple resource requirements in [2], tasks were not re-
quired to access different types of resources simultaneously.

In this paper, we consider the problem of mapping a set of
applications in a HC system where application tasks require
concurrent access to multiple resources of different types.
In general, this problem is the resource co-allocation prob-
lem. For example, an interactive data analysis application
may require simultaneous access to a storage system hold-
ing a copy of the data, a supercomputer for analysis, network
elements for data transfer, and a display device for interac-
tion [11]. For such applications, co-allocation of all required
resources is necessary. A special case of this problem where
a single application requires concurrent access to a set of re-
sources in a computational grid has been considered in [5].

In this paper, we develop a general framework for map-
ping with resource co-allocation in HC systems. The frame-
work defines the system and application models and formu-
lates the co-allocation problem. Two graphs are used to rep-
resent applications: a Directed Acyclic Graph (DAG) and
a Compatibility Graph (defined in Section 3.4). DAG rep-
resentation is given initially and stay unchanged through-
out the mapping process while the compatibility graph is
updated during the mapping process. In classical mapping
problems, only DAGs are used to represent the precedence
constraints among tasks. In this paper, the co-allocation re-
quirements add another type of constraint among the tasks:
the resource sharing constraint which is captured in the com-
patibility graph. Tasks that share one or more resources
cannot be executed concurrently due to the resource shar-
ing constraints even if they have no precedence constraints
among them. Known mapping algorithms for the classi-
cal DAG scheduling problem cannot be directly used for
the above problem since they only consider the precedence
constraints. In this paper, we develop heuristic algorithms
that can be used with different allocation techniques to ef-
ficiently solve the co-allocation problem defined by our
framework.

In our approach, multiple DAGs of different applications
are combined into a single DAG. All tasks that have satisfied
the precedence constraints are ready for allocation provided
they have no resource sharing constraints. Using the com-
patibility graph, we will select tasks that can be executed
concurrently. This is achieved by finding maximal indepen-
dent sets in the compatibility graph.

Our research is part of the MSHN project [16], which
is a collaborative effort between DoD (Naval Postgraduate
School), academia (NPS, USC, Purdue University), and in-
dustry (NOEMIX). MSHN (Management System for Het-
erogeneous Networks) is designing and implementing a Re-
source Management System (RMS) for distributed hetero-
geneous and shared environments. MSHN assumes hetero-

geneity in resources, processes, and QoS requirements. Pro-
cesses may have different priorities, deadlines, and com-
pute characteristics. The goal is to schedule shared re-
sources among individual applications so that their Quality
of Service (QoS) requirements are satisfied. MSHN sup-
ports adaptive applications that can exist in several different
versions. These versions may differ in the precision of com-
putation or input data, and therefore have different values to
a user. Unlike other HC and grid projects, MSHN seeks to
determine how to meet QoS requirements of multiple appli-
cation simultaneously.

The rest of this paper is organized as follows. In next sec-
tion we give the definition of the co-allocation problem and
summarize some related work. The problem framework is
defined in Section 3. In Section 4, we give the outline of
our approach to solve the co-allocation problem using our
framework. Experimental results are given in Section 5. Fi-
nally, Section 6 gives the conclusions and future research di-
rections.

2. The Co-Allocation Problem

The co-allocation problem can be defined as the problem
of simultaneously allocating multiple resources of different
types to applications in order to meet specific performance
requirements. The need of co-allocation is a common char-
acteristic of applications running in HC environments (as
well as computational grids). For example, an application
may require a data repository, a HPC platform, multiple dis-
play devices, and communication links all to be allocated si-
multaneously.

A version of resource co-allocation has been introduced
in the high-performance distributed computing community
by the Globus project [5]. The co-allocation problem is de-
fined as the provision of allocation, configuration, and mon-
itoring/control functions for the resource ensemble required
by a single application [5]. The Globus tool-kit provides a
flexible set of co-allocation mechanisms that can be used to
construct application-specific co-allocation strategies. Only
compute resources are considered in the Globus project at
this time, to synchronize the start of complex applications
at multiple sites.

The notion of co-allocation was also considered in the
Legion project [22]. In the Legion project, an Enactor pro-
vides a mechanism to co-allocate compute and storage re-
sources (hosts and vaults) to a single application. The co-
allocation mechanism is based on advance resource reserva-
tion.

In [5] and [22], the focus is on implementation issues of
the co-allocation process. Algorithms for efficient mapping
with co-allocation requirements are not considered. Also,
both the above projects focus on executing a single appli-
cation. The problem becomes challenging when a number

274

of applications share resources.
In this paper, we study the co-allocation problem in the

context of mapping a set of applications where each applica-
tion is represented by a DAG. We consider conflicts among
tasks caused by precedence constraints as well as due to re-
source sharing. The objective is to minimize the overall
schedule length for a set of applications. One of our main
contributions in this paper is the formulation of the map-
ping problem in the presence of co-allocation requirements
for multiple applications. To the best of our knowledge,
this work is the first step towards a general framework for
mapping applications with resource co-allocation in HC sys-
tems.

3. The Framework

3.1 System Model Application 1 Application 2

We consider a heterogeneous computing system with
m compute resources (machines), M ={m\, rri2,..., mm},
and a set of r resources, R={ri,r2,...,rr}. Compute re-
sources can be HPC platforms, workstations, personal com-
puters, etc. Resource r& £ R can be a data repository,
an input/output device, etc. We assume that only one task
can use any resource (compute and non-compute resource)
at any given time. Resources are interconnected by het-
erogeneous communication links. Communication costs
are given by two matrices: MM-comm and RM -comm,
where MM^comm gives the communication cost for trans-
ferring a byte between machines and RM-comm gives the
communication cost for transferring a byte between the re-
sources in R and the machines.

We assume that an estimate of the computation time of
a given task t{ on machine rrij is available at compile-
time. These estimated computation times are given in
an Estimated Computation Time (ECT) matrix. Thus,
ECT(ti, rrij) gives the estimated computation time for task
U on machine rrij. If task 2,- cannot be executed on machine
rrij, then ECT{U, rrij) is set to infinity.

MA(rrij) gives the earliest time when machine rrij is
available and RA(rk) gives the earliest time when resource
ru is available. As the mapping proceeds, the earliest time
when a resource (rrij or r*) is available is calculated as the
finish time of the last task assigned to this resource.

3.2. Application Model

In this HC system, a set of N applications,
A-{Ai,..., AN], compete for system resources. Each
submitted application consists of several tasks and is mod-
eled by a DAG, where the nodes represent computational
requirements and the edges represent both precedence con-
straints and communication requirements. Figure 1 shows

Figure 1. An example of two application DAGs

an example of two application DAGs. We assume that the
whole set of applications to be mapped is known apriori
(static applications). The problem is to execute these N
applications as efficiently as possible. Our approach is
to combine all submitted application DAGs into a single
DAG, G = (T, E), where T represents the set of tasks to
be executed from all applications, T={t\,t2, ■ ■ -,tn}, and
E represents the data dependencies and communication
between tasks. Edge e,-j indicates that there is communi-
cation from task f ,• to tj and its weight denotes the amount
of communication. G is constructed by connecting the root
nodes (tasks) of all applications to a hypothetical zero-cost
entry node with zero-weight edges.

We assume that each task t, needs concurrent access to
a set of resources: one compute resource rrij and a number
of additional resources as specified by the set R(ti), where
R(ti) C R. The amount of data to be transferred between
ti and r/j, where r^ G R(ti), is given by DATA(ti,rk). A
task tj cannot start execution until all its required resources
are available to the task. All required resources will be allo-
cated to the task during its execution. These resources will
be available after the'task completes its execution. We as-
sume that all required resources are acquired at the same
time (atomic transaction).

We say that task £,• and task tj are incompatible if and
only if R(ti) n R{tj) ^ <j>. Incompatible tasks cannot
be executed concurrently even if they have no precedence
constrains among them. Therefore, in our framework, tasks
may be unable to run concurrently for either of the following
reasons: (1) precedence constraints, or (2) resource sharing
constraints.

275

The execution time of task U on machine rrij,
Exec(ti,rrij), depends on the computation time of U
on rrij and data transfer times between rrij and all resources
which ti needs to access during its execution. For example,
for systems that assume computation and communication
cannot be overlapped, Exec(U,mj) can be defined as

Exec(ti,mj) = ECT{ti,mj)+

YlrkeR(t,)(DATA(ti'r^ x RM-Commir^mj))

where the last term gives the total time to transfer any
required data between machine rrij and every resource
r.k G R(U)- Exec(ti,rrij) can also be defined in different
ways to consider the overlapping between computation and
communication as well as other communication models.

The average execution time of task t,■ is defined as

Task Resource Requirements
Vi v\, r2

v2 r2,r3

v3 r3,r5

v4 n,r4

v5 r4, r5, r6

v6 7*6

Table 1. An example showing 6 tasks and their
resource requirements

Exec(ti) = y^jExec(ti,mj)/m

i=i

ST(ti,m.j) and FT(U,m,j) are the earliest start time and
the earliest/mw/1 time of task U on machine rrij, respectively
if t, were to be mapped on rrij. ST(ti, rrij) is defined as

ST(ti,rrij) = max{MA(mj),Data-Pred(ti,mj)}

where Data.Pred(U,mj) is the time when task tt receives
all the needed data from all tasks in its predecessor set,
Pre(ti), if U is mapped onto machine rrij. FT(ti,rrij) is
defined as

FT(U,mj) - ST{U, rrij) + Exec(U,rrij)

3.3. Mapping Objective

Figure 2. The compatibility graph for the tasks
shown in Table 1

The objective function in our framework is to determine
an assignment (matching) of tasks to compute resources and
schedule their executions based on all resource requirements
such that the overall schedule length (or makespan) of all
submitted applications is minimized while satisfying all

1. Application-specified precedence constraints and

2. Implied resource sharing constraints.

Thus, we can define our objective function as

Minimize {max [Finish Time(Ai)] },
i=i

where Finish Time(Ai) is the completion time of appli-
cation Ai. Note that the resource sharing constraint is a dy-
namic constraint - it depends on tasks ready to be allocated
and their resource requirements.

Task Execution Time
Vi 5
v2 6
v3 2
v4 4
v5 1
v6 3

Table 2. Execution times for the tasks in Fig-
ure 2

276

3.4. Compatibility Graph

To capture the implied resource sharing constraints
among tasks that may belong to the same or different appli-
cations, we use the compatibility graph, g = [V,E), where
vertex V{ denotes task ti and edge e,-j exists if and only if ti
and tj are incompatible. Recall, task ti and task tj are in-
compatible if and only if R(ti) f~l R(tj) ^ cf>. An indepen-
dent set [6] is a set of vertices of g such that no two vertices
of the set are adjacent. An independent set is called a maxi-
mal independent set if there is no other independent set of.gr
that contains it. A maximal independent set with the largest
number of vertices among all maximal independent sets is
called a maximum independent set [6]. The maximum inde-
pendent set problem is NP-complete [15]. In our model, a
maximal independent set of g represents a maximal set of
tasks that can be executed concurrently if there is no prece-
dence constraints among them.

As an example, consider a set of 6 independent tasks.
Each task needs concurrent access to a set of resources as
specified in Table 1. The compatibility graph g for this ex-
ample is shown in Figure 2. The maximal independent sets
oig are {Vi,V5}, {V2,V5}, {V!,V3,V6}, {V2,V4,V6}, and
{V3,V4,V6}. The last three sets are maximum independent
sets.

4. Our Solution

In classical DAG scheduling problem, application DAGs
are partitioned onto levels such that each level contains inde-
pendent tasks, i.e., there are no data dependencies among the
tasks in the same level. Therefore, all tasks in the same level
can be executed concurrently. In our framework, incom-
patible tasks in the same level cannot be executed concur-
rently due to resource sharing constraints. Therefore, map-
ping algorithms for the classical DAG scheduling problem
(ex. [1, 30,18,23,9,31, 32]) cannot be directly used for our
problem.

In this section, we develop a static co-allocation algo-
rithm using the framework defined in Section 3. The algo-
rithm can be used with different maximal independent set se-
lection strategies and different allocation heuristics to solve
the mapping problem with co-allocation requirements. Sev-
eral strategies for selecting maximal independent sets and
several allocation heuristics are given in this section. Also,
we provide a two-phase algorithm that performs run-time
adaptation.

4.1. The Co-Allocation Algorithm

Pseudo code for our co-allocation algorithm is shown in
Figure 3. Given a set of applications and resource require-
ments of tasks, we first find tasks that have satisfied prece-

dence constraints and then select maximal independent sets
among these for allocation. The compatibility graph is used
to find maximal independent sets. Since the maximum inde-
pendent set problem is NP-complete [15], our approach for
selecting a maximal independent set is based on first choos-
ing a critical node vc, and then finding a maximal indepen-
dent set that contains vc. Different strategies for selecting
critical nodes are given in Section 4.2.

To ensure precedence constrains are satisfied, we com-
bine all submitted applications into a single DAG, G, by us-
ing zero-weight edges to connect the root nodes (tasks) of all
applications to a hypothetical zero-cost entry node. Then we
partition the combined DAG onto / levels such that level 0
contains the entry node and level 1 contains all tasks that do
not have any predecessors in the submitted DAGs. All tasks
in level / have no successors. For each task t,- in level k, all
of its predecessors are in levels 0 to k — 1, and at least one
of them in level k-\.

Let RDY be the set of tasks that have no precedence con-
straints among them and that are ready for allocation. A task
is ready for allocation if for each predecessor all required re-
sources have been allocated. Let W be the set of ready tasks
that are waiting for allocation, and ALLOCATED be the
set of allocated tasks. After executing the algorithm, the list
SCHEDULE will give the resulting scheduling order of
tasks and the variable length will give the resulting sched-
ule length.

In steps 1 and 2 of the algorithm, we combine all submit-
ted applications into a single DAG, G, and partition G into
/ levels. Then the algorithm proceeds level-by-level as fol-
lows. For each level / of G, we construct the compatibility
graph g for all tasks in this level (step 6). g is used to find
maximal independent sets of tasks that can be executed con-
currently. The first maximal independent set of tasks to be
allocated is selected in steps 7-8 where a critical node vc is
chosen in step 7 and a maximal independent set that contains
vc is determined in step 8.

In step 10, all tasks in the selected maximal indepen-
dent set are allocated to their required resources. For the
allocation, we first find the scheduling order of the tasks.
Several heuristics are given in Section 4.3. Then, we use
this scheduling order to assign a compute resource rrij to
each task t* in order to minimize its finish time FT(i,-, rrij).
Availability times (MA(rrij) and RA(rk)) of all resources
required by task ti are updated based on FT {ti, rrij).

In steps 12-16, a new set of maximal independent tasks
among all waiting tasks is selected to be allocated at the
next allocation event. The next allocation event is calcu-
lated as the earliest finish time, FT (ti, rrij), among all al-
located tasks. An allocated task vx with the earliest fin-
ish time is identified in step 12 and then removed from the
ALLOCATED set. Initially (step 14), the set of candi-
date tasks that can be allocated next ,C, contains all waiting

277

Inputs: application DAGs, estimated computation and communication costs, and resource requirements of tasks
Outputs: the scheduling order of tasks (SCHEDULE) and the schedule length (makespan) (l eng hi) based on the given
inputs

Begin
1. Combine all submitted application DAGs into a single DAG (G)
2. Do level partitioning of G /* tasks in each level have no precedence constraints */
3. Let SCHEDULE = <f> and lenght = 0
4. For level 1 to / do
5. Initialize W to include all tasks in the current level and let ALLOCATED = <j>
6. Construct the compatibility graph g for all tasks in the current level
7. Pick a critical node vc from W I* several strategies can be used for critical node selection*/
8. Find a maximal independent set of tasks 5 from W such that vc 6 S I* g is used to find the maximal independent set */•
9. While W is not empty do
10. Allocate all tasks in S to their required resources by doing the following two steps:
10a. Find the scheduling order of the tasks and add them to SCHEDULE /* different heuristics can be used */
10b. For each task i, in S (in the scheduling order) do

- Assign a compute resource rrij to task <,• in order to minimize its finish time FT(ti,m.j)
- Update MA(mj) and RA(rk), Vrfc G R(ti), based on FT(U,mj)
- If (FT(ti,mj) > lenght) then lenght=FT{U,mj)

11. Add all tasks in S to ALLOCATED and remove them from W
12. Let vx be the allocated task with the lowest finish time
13. Remove vx from ALLOCATED
14. Let C = W, where C is the set of candidate tasks that can be allocated next
15. Remove all tasks from C that are incompatible with any allocated task
16. If(C#^)
16a. Pick a critical node vc from C such that vc is adjacent to vx in g
16b. Find a maximal independent set of tasks S from C such that vc G S
17. End (while)
18. End (for)
End

Figure 3. The co-allocation algorithm

278

tasks. The candidate set, C, is updated in step 15 by remov-
ing all tasks that are incompatible with any allocated task.
Then g is used to find a maximal independent set of tasks
from C. The algorithm repeats steps 10-16 until all tasks in
this level have been allocated.

4.2. Maxima] Independent Set Selection

Since the maximum independent set problem is NP-
complete [15], we use a heuristic approach for selecting
maximal independent sets. Our approach is based on first
selecting a critical node vc, and then finding a maximal in-
dependent set that contains vc. Critical nodes need to be se-
lected carefully.

The length of the schedule is influenced by the selection
of maximal independent sets and by the order in which these
sets are considered for scheduling. This is shown in the fol-
lowing example using the compatibility graph in Figure 2.
For this example, for the sake of simplicity, we assume that
all the resource requirements of tasks (compute and non-
compute resources) are pre-specified. Therefore, the execu-
tion times of all tasks are known apriori. These times are
shown in Table 2. Example schedules are given in Figures 4-
6. These schedules have different schedule lengths. The op-
timal length of the schedule is 11 time units. This is achieved
by schedules 2 and 3. In schedules 1 and 2, two different
maximum independent sets were selected to be scheduled
first. Schedule 1 has a length of 13 time units, while sched-
ule 2 has the optimal length. This clearly shows the impor-
tance of the order in which the maximal independent sets are
considered for scheduling. From schedule 3, we can also see
that it is not always efficient to select a maximum indepen-
dent set to be scheduled first. Schedule 3, which starts with
a maximal independent set {V2,V5} (not a maximum inde-
pendent set), has the optimal length while schedule 1, which
starts with a maximum set {V3,V4,V6}, has a non-optimal
length of 13 time units.

The idea behind our approach for selecting a maximal in-
dependent set S is to select a critical vertex vc and add it to
S which is initially empty. Then we attempt to enlarge S by
traversing g. Different strategies can be used for selecting
critical vertices. In the following we describe some of these
strategies.

51 Highest average execution time. In this strategy, we
give priority for tasks that need more time for execution
since they can be critical tasks. In HC systems, tasks
have different execution times on different machines.
Therefore, we use the average execution time Exec(ti)
as the selection criterion.

52 Highest degree. The node out-degree in a DAG has
been used in many list scheduling heuristics as a prior-
ity function. The out-degree of a node tj gives the num-

ber of tasks that have precedence constraints with <,-.
The idea is to advance the execution of tasks with high
out-degree. Thus, many tasks can be ready for mapping
once high out-degree tasks complete execution. In our
framework, the out-degree of node U in the combined
DAG G (which represents task ti) does not reflect all
dependencies between t, and other tasks since G only
captures the precedence constraints. Resource sharing
constraints should also be considered. Therefore, we
define the degree of task t,- as the sum of its out-degree
in G and its degree in g. This number gives a better
indication about the number of tasks that can be ready
for mapping once ti completes its execution, either be-
cause those tasks have a precedence or resource sharing
dependencies with ti.

53 Critical path nodes. A Critical Path (CP) in a DAG is a
path from an entry node to an exit node with the largest
completion time. We use average execution times and
average communication costs to find the critical path.
In some situations, the average execution time or the
degree of a task ti cannot reflect how important for
other tasks that t{ finishes execution as soon as possi-
ble. The successors of f ,■ may not be critical tasks and
advancing their execution may not improve the sched-
ule length. For these reasons, selecting critical path
nodes from G as critical tasks can be a good strategy.
In this paper, we implement two variations of this strat-
egy:

53.1 In this version, the task that is on the critical path
is selected as a critical task. If there is no such
task among the current set of candidate tasks, the
task with the highest average execution time is se-
lected as a critical task.

53.2 This version is similar to S3.1 except for the case
when there is no critical path node among the cur-
rent set of candidate task. In this case, the task
with the highest degree is selected as a critical
task.

54 Maximum weighted clique. In [3], a similar approach
to the compatibility graph has been used for schedul-
ing independent tasks. Each task in [3] requires si-
multaneous access to a set of pre-specified processors.
All resource (processor) requirements and all execu-
tion times were assumed to be known apriori. It has
been shown in [3] that the weight of the maximum
weighted clique in the constraint graph (compatibil-
ity graph) is a lower bound on the optimum makespan,
where the weight of each node is its execution time.
In our previous example, notice that the weight of the
maximum weighted clique (Vi and V2) is 11 and the
optimal schedule length is 11. Also notice that any se-

279

I 1 1 1 1 1 1 1 1 1 1 1 I I I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 4. Schedule 1

1 1 1 1 1 1
9 10 11 12 13 14 0 1

1 j j ! p

Figure 5. Schedule 2

i—i—i—i—i—i—i—i—i—i—i—i—i—r "i
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 6. Schedule 3

280

lected maximal independent set should contain a task
that belongs to the maximum weighted clique in or-
der to achieve the optimal schedule length. Inspired
by this observation, we can use nodes in the maxi-
mum weighted clique as candidates for selecting crit-
ical tasks. In our approach, we use the average execu-
tion times as the node weights. It is obvious that in our
model, maximum weighted clique cannot guarantee the
optimal solution but it could be a good heuristic for se-
lecting maximal independent sets.

4.3. Allocation Heuristics

After selecting a maximal independent set of tasks, care-
ful allocation of these tasks to compute resources (ma-
chines) is required to achieve our objective. Different
heuristic can be used for allocating tasks of the selected
maximal independent set S to compute resources. In the fol-
lowing we describe some of our allocation heuristics. The
idea behind our heuristics is to advance the execution of
tasks that may be critical in order to minimize the overall
schedule length.

1. Highest Average-Execution-Time First (HAETF).
In this heuristic, the average execution time is used as
a priority function to place tasks in a list. All tasks are
placed in a list in the order of non-increasing average
execution times. Using this order, each task is allocated
to the required resources such that its finish time is min-
imized.

2. Maximum Finish-Time First (MAX). For each task,
we calculate the best finish time that can be achieved.
Then we select the task with the maximum best finish
time among all tasks. The task is allocated its required
resources such that its finish time is minimized. We re-
peat until all tasks are allocated.

3. Minimum Finish-Time First (MIN). This heuristic
is similar to the Maximum Finish-Time First (MAX)
heuristic except that we select the task with the
minimum finish time instead of selecting the task with
the maximum finish time.

4. Highest Degree First (HDF). In this heuristic, all tasks
are placed in a list in descending order according to
their degrees (ties are broken arbitrarily). Then, tasks
are allocated one-by-one to the required resources such
that the finish time for each task is minimized.

4.4. Two-Phase Algorithm

algorithm can be used for the problem of mapping with re-
source co-allocation as defined in our framework as follows.

Phase 1: Compile-time mapping. At this phase, the co-
allocation algorithm described in Section 4.1 is used to
obtain an ordered list of tasks. The order of tasks in
the list is based on their scheduling order as produced
by our co-allocation algorithm. The list is obtained
by satisfying all precedence and resource sharing con-
straints with the objective of minimizing the overall
schedule length. Estimated computation and commu-
nication times are used to calculate the schedule length.

Phase 2: Run-time Adaptation. Run-time adaptation can
be useful for the cases when actual execution times dif-
fer from the estimated execution times. One way to
consider this is to scan through the ordered list obtained
in phase 1 once a task completes its execution in or-
der to find all tasks that can be executed at this time
and make local reordering. The scanning can be done
through a window of tasks with specific size k, where
*>0.

4.5. Implementation Issues

The focus of this paper is the mapping problem with re-
source co-allocation requirements in HC systems. The im-
plementation details for the co-allocation process are out-
side the scope of this paper. A good discussion of implemen-
tation issue can be found in [5]. In the following for the sake
of completeness, we briefly state our assumptions regarding
the co-allocation implementation.

We assume that a task U cannot start execution until all
its required resources are available. These resources will be
acquired at the same time. Once a task 2,- completes its ex-
ecution, all its allocated resources will be released and will
be available for other tasks. We assume that any allocation
request for any resource will be granted as long as this re-
source is available. In this paper, we do not consider the
cases of resource failures that can occur in the HC and Grid
environments.

5. Performance Evaluation

A simulator was implemented to evaluate the perfor-
mance of our co-allocation algorithms and the proposed se-
lection strategies and allocation heuristics discussed in Sec-
tion 4. In this section, we explain our simulation procedure
and give experimental results.

5.1. Simulation Procedure

We propose a two-phase algorithm for run-time adapta-
tion using our static co-allocation algorithm. The two-phase

To define the HC system, numbers of machines and re-
sources are given to the simulator as inputs. Communica-

tion costs among all resources are selected randomly from a
uniform distribution with a mean equal to ave-comm. The
communication costs are source and destination dependent.

The workload consists of randomly generated DAGs.
Random DAGs are generated as follows: The number
of tasks in the graph, noJasks, maximum out-degree of
a node, maxjoutdegree, average computation cost of a
node, ave-comp, and average message size to be transferred
among tasks, avejnsgsize, are given as inputs. First, the
computation time of each task on every compute resource is
randomly selected from a uniform distribution with a mean
equal to avg.comp. Starting with the first task, the number
of children (out-degree) is randomly selected between 1 and
maxjoutdegree. Then, children are randomly selected for
this task. The weight of each edge in the DAG is randomly
selected from a uniform distribution with a mean equal to
ave-tnsgsize. Resource requirements for each task are ran-
domly selected from available resources. The amount of
data to be transferred to/from each resource in the resource
requirements set is randomly selected from a uniform dis-
tribution with a mean equal avejdatasize. The sizes of ran-
dom DAGs range from 50 to 250 tasks with increments of
50.

DHAETF IMIN OMAX DHDF]

50 100 150 200

Number of tasks

250

Figure 7. Performance of the allocation
heuristics when using selection strategy 51

5.2. Baseline Algorithm

Many mapping algorithms exist in the literature for map-
ping DAGs in HC systems. None of these algorithms con-
sider the co-allocation problem we define in this paper.
Therefore, we will use a simple list scheduling algorithm
as a baseline algorithm to evaluate our co-allocation algo-
rithm. The baseline algorithm is a fast static algorithm for
mapping DAGs in HC environments. It partitions the tasks
in the DAG into levels using an algorithm similar to the level
partitioning algorithm described in Section 4.1. Then all the
tasks are ordered such that the tasks in level k come before
the tasks in level k +1. The tasks in the same level are sorted
in descending order based on the average execution time of
each task (ties are broken arbitrarily). The tasks are consid-
ered for mapping in this order. A task is mapped to the re-
quired resources such that its finish time is minimized.

The Baseline algorithm is similar to our algorithms in
the sense that all algorithms proceed level-by-level. In the
Docoiinp. algorithm, the scheduling order of tasks at the same

r'--'"• rin the.

I 30

m 25

I DHAETF BMIN DMAX DHDF

50 100 150 200

Number of tasks

250

Figure 8. Performance of the allocation
heuristics when using selection strategy 52

BHAETF(S1)HHAETF(S2) OHAETF(S3.1) DHAETF(S3.2) |

100 150 200

Number of tasks
250

Figure 9. Performance of the allocation
heuristics when using selection strategy 53.1

100 150 200

Number of tasks
250

Figure 11. Performance of the selection
strategies with HAETF allocation heuristic

iBHAETF BMIN DMAX DHDF

35

30

m 25

o 20

50

«ULI
100 150 200

Number of tasks
250

Figure 10. Performance of the allocation
heuristics when using selection strategy 53.2

150

Number of tasks

200 250

Figure 12. Performance of the selection
strategies with MIN allocation heuristic

5.3. Experimental Results

;BMAX(S1) BMAX(S2) DMAX(S3.1) DMAX(S3.2)

50 100 150 200

Number of tasks

250

Figure 13. Performance of the selection
strategies with MAX allocation heuristic

Our experimental results are given in Figures 7-14. The
total number of tasks were varied from 50 to 250 with in-
crements of 50. Each point in the figures is an average of
400 runs with different random DAGs. Random DAGs were
generated with max.outdegree={2,3,4,5}, ave.comp=50,
avejnsgsize=50K byte, and ave-dataj('ze=300K byte.

Figures 7- 10 show the performance results of our allo-
cation heuristics compared to the Baseline algorithm when
using different maximal independent set selection strategies.
The improvement of our heuristics over the Baseline in-
creases as the total number of tasks increases. This shows
the importance of considering co-allocation requirements in
mapping algorithms. Generally, our allocation heuristics
have relatively the same performance.

The performance results of maximal independent sets se-
lection strategies when using different allocation heuristics
are given in Figures 11- 14. As in the previous set of re-
sults, the improvement over Baseline algorithm increases as
total number of tasks increases. Also, the selection strate-
gies have relatively same performance.

In our simulation study, we found that the number of ma-
chines and the number of resources did not have a signifi-
cant impact on the performance of allocation heuristics and
selection strategies.

6. Conclusions and Future Work

.5 30

m 25

BHDF(S1) ■HDF(S2) DHDF(S3.1) DHDF(S3.2)

150

Number of tasks

Figure 14. Performance of the selection
strategies with HDF allocation heuristic

This paper proposes a novel framework for the problem
of mapping applications with resource co-allocation in HC
systems. We formulated the co-allocation problem and de-
veloped several algorithms for solving this problem using a
graph theoretic approach. Our simulation results show the
importance of considering the co-allocation requirements
during mapping decisions.

In solving our co-allocation problem, we need to find
maximal independent sets among tasks competing for sys-
tem resources. Although we considered many heuristics,
they all seem to perform equally well indicating that a sim-
ple heuristic will suffice (even though one can create patho-
logical examples for each heuristic).

In our future work, we plan to expand our framework
to consider concurrent usage of multiple compute resources
and advance resource reservations. With advance reserva-
tion, system resources can be reserved in advance for spe-
cific time intervals. Therefore, resource availability must be
expressed as a list of available time slots and mapping algo-
rithms should be insertion-based algorithms. To co-allocate
a set of resources in this case, efficient algorithms are needed
to find the best time slot when all resources are available
for the required duration. In this paper, our algorithms are

284

non insertion-based since the earliest available time for a re-
source r, is the finish time of the last task assigned to r,.

References

[1] I. Ahmad and Y. Kwok, "On parallelizing the multiproces-
sor scheduling problem," IEEE Trans, on Parallel and Dis-
tributed Systems, 10(4):414-432, Aprill 1999.

[2] A. Alhusaini, V. Prasanna, and C.S. Raghavendra,"Aunified
resource scheduling framework for heterogeneous comput-
ing environments,' ' 8th Heterogeneous Computing Work-
shop (HCW 99), pp. 156-165, April 12,1999.

[3] L. Bianco, P. Dell'Olmo, and M. Grazia Sperenza, "Nonpre-
emptive scheduling of independent tasks with prespecified
processor allocations," Naval Research Logistics, 41:959-
971,1994.

[4] T. Braun, H.J. Siegel, N. Beck, L. Boloni, M. Maheswaran,
A. Reuther, J. Robertson, M. Theys, and B. Yao, "A Taxon-
omy for describing matching and scheduling heuristics for
mixed-machines heterogeneous computing systems," Work-
shop on Advances in Parallel and Distributed Systems
(APADS), West Lafayette, IN, Oct. 1998.

[5] K. Czajkowski, I. Foster, and C. Kesselman, "Resource co-
allocation in computational grids," 7th IEEE Symposium
on High Performance Distributed Computing, pp. 219-228,
1999.

[6] N. Christofides, Graph theory: An algorithmic approach,
Academic Press, 1975.

[7] Legion Web Page, http://legion.virginia.edu
[8] M. Eshagian (ed.), Heterogeneous computing, Norwood,

MA: Artech House, 1996.
[9] M. Eshagian and Y.C. Wu, "Mapping heterogeneous task

graphs onto heterogeneous system graphs," 6th Heteroge-
neous Computing Workshop (HCW 97), pp. 147-160,1999.

[10] I. Foster and C. Kesselman, ed., The Grid: blueprint for
new computing infrastructure, Morgan Kaufmann Publish-
ers, San Francisco, CA, 1999.

[11] I. Foster, C. Kesselman, C. Lee, B. Lindeil, K. Nahrstedt,
and A. Roy, "A distributed resource management architec-
ture that support advance reservations a nd co-allocation,"
Intl. Workshop on Quality of Service, 1999.

[12] R. Freund, B. Carter, D. Watson, E. Keith, and F Mirabile,
"Generational scheduling for heterogeneous computing sys-
tems," Int'l Conf. Parallel and Distributed Processing Tech-
niques and Applications (PD PTA '96), pp. 769-778, Aug.
1996.

[13] R. Freund and H. J. Siegel, "Guest editors' introduc-
tion:Heterogeneous processing" IEEE Computer, 26(6): 13-
17, June 1993.

[14] Globus Web Page, http://www.globus.org.
[15] M. Gary and D. Johnson, Computers and intractability: A

guide to the theory of NP-completeness, W.H. Freeman and
Company, San Francisco, CA, 1979.

[16] D. Hensgen, T. Kidd, D. St.John, M. Schnaidt, H.J. Siegel, T.
Braun, M. Maheswaran, S. Ali, J. Kim, C. Irvine, T. Levin,
R. Freund, M. Kussow, M. Godfrey, A. Duman, P. Carff, S.
Kidd, V. Prasanna, P. Bhat, and A. Alhusaini, "An overview

of MSHN: the Management System for Heterogeneous Net-
works," 8th Heterogeneous Computing Workshop (HCW
99A pp. 184-198, April 12,1999.

[17] O. Ibarra and C. Kim, "Heuristic algorithms for scheduling
independent tasks on non identical processors. " Journal of
The ACM, 24(2):280-289, April 1977.

[18] M. Iverson and F. Ozguner, "Dynamic, competitive schedul-
ing of multiple DAGs in a distributed heterogeneous en vi-
ronment," 7th Heterogeneous Computing Workshop (HCW
98), pp. 70-78, March 1998.

[19] M. Iverson, F. Ozguner, and G. J. Folien, "Parallelizing ex-
isting applications in a distributed heterogeneous environ-
ment," 4th Heterogeneous Computing Workshop (HCW 95),
pp. 93-100, Apr. 1995.

[20] A. Khokhar, V. K. Prasanna, M. Shaaban, and C. L. Wang,
"Heterogeneous computing: challenges and opportunities,"
IEEE Computer, 26(6): 18-27, June 1993.

[21] C. Leangsuksun, J. Potter, and S. Scott, "Dynamic task
mapping algorithms for a distributed heterogeneous comput-
ing environm ent," 4th Heterogeneous Computing Workshop
(HCW 95), pp. 30-34, Apr. 1995.

[22] Legion Web Page, http://legion.virginia.edu.
[23] M. Maheswaran and H. J. Siegel, "A Dynamic matching

and scheduling algorithm for heterogeneous computing sys-
tems," 7th Heterogeneous Computing Workshop (HCW '98),
pp. 57-69, March 1998.

[24] P. Shroff, D. W. Watson, N. S. Flann, and R. F. Freund,
"Genetic simulated annealing for scheduling data-dependent
tasks in heterogeneous e nvironment," 5th Heterogeneous
Computing Workshop (HCW 96), pp. 98-117, Apr. 1996.

[25] H.J. Siegel, J. Antonio, R. Metzger, M. Tan, and Y. Li, " Het-
erogeneous computing," in Parallel and distributed comput-
ing handbook, A.Y Zomaya (ed.), McGraw-Hill, New york,
1996,pp.725-761.

[26] H.J. Siegel, M. Mahesewaran, and T. Braun, "Heteroge-
neous distributed computing," in Encyclopedia of electrical
and electronics engineering, J. Webster (ed.), John Wiley &
Sons, New York, to appear.

[27] G. C. Sih and E. A. Lee, "A Compile-time scheduling heuris-
tic for interconnection-constrained heterogeneous processor
architectures," IEEE Trans.on Parallel and Distributed Sys-
tems, 4(2):175-187, Feb. 1993.

[28] H. Singh and A. Youssef, "Mapping and scheduling hetero-
geneous task graphs using genetic algorithms," 5th Hetero-
geneous Computing Workshop (HCW 96), pp. 86-97 , April
15-16, 1996.

[29] L. Smarr and C. E. Catlett, "Metacomputing," Communica-
tions of the ACM, 35(6):45-52, June 1994.

[30] H. Topcuoglu, S. Hariri, and M. Wu, "Task scheduling al-
gorithms for heterogeneous processors," 8th Heterogeneous
Computing Workshop (HCW 99), pp. 3-14, April 12, 1999.

[31] R. Venkataramana and N. Ranganathan, "Multiple cost op-
timization for task assignment in heterogeneous computing
systems using learning automata," 8th Heterogeneous Com-
puting WorkshopfHCW 99), pp. 137-145,April 12,1999.

[32] L. Wang, H.J. Siegel, V. Roychowdhury, and A. Maciejew-
ski, "Task Matching and Scheduling in Heterogeneous Com-
puting Environments Using a Genet ic-Algorithm-Based
Approach," Journal of Parallel and Distributed Computing,
47(l):8-22, Nov. 1997.

285

Biographies

Ammar Alhusaini is a Ph.D. candidate in the Depart-
ment of Electrical Engineering - Systems at the University
of Southern California, Los Angeles, California, USA. His
main research interest is task scheduling in heterogeneous
environments. Mr. Alhusaini received a B.S. degree in
computer engineering from Kuwait University in 1993 and
M.S. degree in computer engineering from the University
of Southern California in 1996. Mr. Alhusaini is a member
of IEEE, IEEE Computer Society, and ACM.

Viktor K. Prasanna (V.K. Prasanna Kumar) is a Pro-
fessor in the Department of Electrical Engineering -
Systems, University of Southern California, Los Angeles.
He received his B.S. in Electronics Engineering from
the Bangalore University and his M.S. from the School
of Automation, Indian Institute of Science. He obtained
his Ph.D. in Computer Science from Pennsylvania State
University in 1983. His research interests include parallel
computation, computer architecture, VLSI computations,
and high performance computing for signal and image
processing, and vision. Dr. Prasanna has published exten-
sively and consulted for industries in the above areas. He
is widely known for his pioneering work in reconfigurable
architectures and for his contributions in high performance
computing for signal and image processing and image
understanding. He has served on the organizing committees
of several international meetings in VLSI computations,
parallel computation, and high performance computing.
He also serves on the editorial boards of the Journal of
Parallel and Distributed Computing and IEEE Transactions
on Computers. He has the founding chair of the IEEE Com-
puter Society Technical Committee on Parallel Processing.
He is a Fellow of the IEEE.

Cauligi Raghavendra is a Senior Engineering Spe-
cialist in the Computer Science Research Department at
the Aerospace Corporation. He received the Ph.D degree
in Computer Science from University of California at Los
Angeles in 1982. From September 1982 to December 1991
he was on the faculty of Electrical Engineering-Systems
Department at University of Southern California, Los An-
geles. From January 1992 to July 1997 he was the Boeing
Centennial Chair Professor of Computer Engineering at the
School of Electrical Engineering and Computer Science at
the Washington State University in Pullman. He received
the Presidential Young Investigator Award in 1985 and
became an IEEE Fellow in 1997. He is a subject area editor
for the Journal of Parallel and Distributed Computing,
Editor-in-Chief for Special issues in a new journal called
Cluster Computing, Baltzer Science Publishers, and is a
program committee member for several networks related

international conferences.

286

Heterogeneous Resource Management
for Dynamic Real-Time Systems

Eui-Nam Huh, Lonnie R. Welch
Department of Electrical

Engineering and Computer Science, Ohio University
{ehuhlwelch@ace.cs.ohiou.edu}

Behrooz A. Shirazi, Charles D. Cavanaugh
Department of Computer Science Engineering, The University of Texas at Arlington

{shirzailcavan@cs.uta.edu}

Abstract
Dynamic real-time systems face many resource man-

agement problems. This paper addresses the following
problems: (1) dynamic resource allocation to provide
QoS objectives, (2) heterogeneous resources, and (3)
non-intrusive accurate monitoring of QoS, resource
availability, and resource needs. This paper describes
the techniques of resource manager (RM) handling
above problems to support QoS of dynamic distributed
real-time systems. The contributions of this paper to
solve these problems are as follows: unification of dy-
namic resource requirements among heterogeneous
hosts, control of resources in heterogeneous environ-
ments, feasibility analysis, and dynamic load balanc-
ing/sharing. Our heuristic allocation scheme not only
allows higher workloads than random, round robin,
least load by 257%, 142%, and 36.4%, respectively,
but also improves QoS better than random, round
robin, and least load 38.6%, 28.5%, and 31.6%, re-
spectively.

1. Introduction

This paper describes techniques for managing het-
erogeneous host resources to support QoS of dynamic
distributed real-time systems. Our approach is based on
the dynamic path paradigm. A path-based real-time
subsystem (see [1], [2]) typically consists of a detec-
tion & assessment path, an action initiation path, and
an action guidance path. The paths interact with the
environment by evaluating streams of data from sen-
sors, and by causing actuators to respond (in a timely
manner) to events detected during evaluation of sensor
data streams.

An overview of our approach for RM is shown in
Figure 1. The "s/w spec" is used to describe QoS

applications

A 7

s/w spec.

Wwspec

IL

QoS managers

■f Resource managers

(instr) (ctrt\

Compute. Ww Comm. h/w

Figure 1. Resource management architecture

requirements. The "h/w spec" also defines information
about the hosts and networks such as speed, OS type,
the number of CPUs, benchmark rate, bandwidth, and
interconnected equipment. The "QoS managers" col-
lect QoS metrics, compare to s/w spec, and request
resources, if QoS violations occur. The "resource man-
ager" is the brain, which makes allocation decisions to
achieve QoS objectives.

This paper focuses on the resource management
component, and discusses a new technique for dynamic
feasibility analysis on heterogeneous resource plat-
forms. Most previous work in distributed real-time
systems assumed that all system behaviors follow a
statically known pattern (see [3] [4]). When applying
the previous work to some applications (such as ship-
board AAW systems [1][5]), problems arise with re-
spect to scalability of analysis and modeling tech-
niques; furthermore, it is sometimes impossible to

0-7695-0556-2/00 $10.00 © 2000 IEEE
287

Table 1. System resource model

SYMBOL

tl = tl(C, Pj)

CUPobs(aij, tl, Hk)

CUPuni(aij, tl, Hk)

CUP(Hi;t)

CIPCH.t)

MEMobs(aij, tl, Hk)

FAM(Hi,t)

XobsCa,, tl, Hk)

Pobs(aij, tl, Hk)

CCR(Hi)

SPECint95(Hi)

SPECfp95(Hj)

SPEC_RATE(H:)

NOTATION

name of application j in path i

workload or tactical load at cycle c in path i

the CPU user-percentage of host Hk for the application a, in path i at
work load tl,
the unified CPU user-percentage of host Hk for the application a, in
path i at work load tl
the CPU user-percentage of host H at time t

the idle-percentage of host H; at time t

the memory usage of application a, in path i on host Hk at work load tl

the free-available-memory of host Hj at time t

the execution time of application aj in path i on host Hk at work load tl

the period of application at in path i on host Hk at work load tl

CPU clock rate in MHz at host H,

the fixed point operation performance of SPEC CPU95 of host H

Threshold_CPU(Hj)

Threshold_MEM(Hj)

the floating point operation performance of SPEC CPU95 of host H,

the relative SPECCPU95 rating of host H

the CPU threshold

the memory threshold

obtain some of the parameters required by the models.
In contrast, DeSiDeRaTa RM(see [6][2]) allows the

modeling of systems that work in environments that
have unknown scenarios (such as battle environments)
(see [7]); the dynamic path paradigm is based on ob-
tainable parameters, since it evolved from the study of
existing computer systems; and the large granularity of
the path makes it more scalable than task allocation
approaches.

The new contributions of this paper are as follows:
(1) unification of dynamic resource requirements
among heterogeneous hosts, (2) control of resources in
heterogeneous environments, (3) feasibility analysis,
and (4) dynamic load balancing/sharing.

Section 2 shows the feasibility analysis and laxity
based RM approach with system model. Section 3
shows the results of experiments. Finally, Section 4 is
the summary and conclusion.

2. Laxity Based RM

In this section, the resource management approach is
explained. Basic steps of dynamic resource manage-
ment are follows: (step 1) Resource Requirement ,
(step 2) Resource Discovery, (step 3) Resource Unifi-
cation, (step 4) Feasibility Analysis, and (step 5) Opti-
mization. These steps are explained in detail in the
remainder of this section. First, a mathematical model,
which is used in the detailed explanation, is presented.

Table 1 shows the system resource model, ay and tl
represent application and workload of an application,
respectively. Indices starting with CUP stand for CPU
usage. CIP is CPU idle percentage of a host. MEM and
FAM relate to memory usage. X and P are the execu-
tion time and period of an application ay, respectively.
CCR stands for CPU clock rate of a host. The SPEC
CPU95 host benchmark consists of SPECint95 and
SPECfp95 that show relative performance of fixed and
floating point operations in a system. SPEC_RATE is
overall relative system rank Indices, Threshold, are

288

certain amount of resource to tolerate different amount
of resource requirement.

The steps taken by RM are now explained in detail.
The resource requirement step works as follows. QM
detects QoS violation by monitoring QoS of a path and
each application and requests additional resources
based on decisions. When a significant amount of
workload is observed, QM analyzes the latency of each
application. If ay uses more resources than others, or
the latency of ay is higher than minimum QoS slack,
then QM triggers request of additional resources with
another copy of the application. This is called "scale-
up" decision. When workload is not changed, but QoS
violation occurs, QM triggers migration of ay running
on the overloaded host. It is called "move" decision.

Therefore, different resource requirements should be
measured according to decisions. Hence, for "move"
decision, RM measures dynamic resource requirement
of CPU for the violated application using CUPobs(ajj, tl,
Hk) = X((aij, tl, Hk) / P(ay, tl, Hk). For the "scale-up"
decision, the resource requirement is measured by in-
terpolation and extrapolation from the initial profile for
the new workload: tl = current tl / (replicas + 1). The
resource discovery step is explained here in detail.

Monitoring of resource availability in dynamic envi-
ronments has more difficulties than in static environ-
ments, because of unknown system activation.
FAM(Hk,t), CIP(Hk,t), and CUP(Hk,t) are collected for
all host "k" once per second. And these resources are
filtered by exponential moving average(EMA) as illus-
trated below for CUP:
EMA(CUP(Hj(t)) = (l-ß)*(CUP(Hj,t)) + ß * EMA
(CUP(Hj,t-l)), where, t > 1, ß= eT.

Each resource has various scales and capacities even
in the same unit among heterogeneous platforms. In
this step, resource unification method is explained in
detail.
Definition: Resource unification produces a canonical
form of each resource metric.

RM allocates and controls resources accurately, if
each resource is unified. Consider CUPobs(aij, tl, Hk) as
resource requirement. To allocate the amount of the
resource, RM needs to analyze the requirement and
map it to target hosts. There are two approaches, static
and dynamic. The static approach uses stable system
information like benchmarks, or CPU clock rate. It will
decide relative amount of system resources efficiently
but inaccurately for dynamic environments. The dy-
namic approach of predicting execution time using
dynamic system information has high complexity for
real-time systems, as an application uses several differ-
ent resources such as I/O disk, memory, and CPU, each
of which has different performance among hosts.

Therefore, a static approach is selected as follows. For
the unification of resources, the results of a variety of
realistic SPEC CPU95 will give valuable insight into
expected real performance among heterogeneous hosts.

However, no one benchmark can fully characterize
overall system performance. SPEC CPU95 measures
the performance of CPU, memory system, and com-
piler code generation by running 18 programs that are
well designed to gather their throughput. The geomet-
ric mean is used to represent system overall perform-
ance compared to a reference machine, Sun-sparc-
10/40Mhz. This standardized set of benchmarks (SPE-
Cint95 and SPECfp95) is adaptable to the recent gen-
eration of high-performance computing efficiently
(HPC) [8]. Hence, the following formula (1) is used to
unify CPU resource, CUPuni(ay, tl, HT), onto target host,
HT from CUPobs(aij, tl, Hk) on source host, H*.

CUPum(ay, tl, HT) = CUP^Cay, tl, H,) *
SPEC_RATE(Hk) / SPEC_RATE(HT) -(1)

Where Vj, SPEC_RATE(Hj) = AVG(SPECint95(H;) /
Max(SPECint95(Hj), SPECfp95(Hi) /

Max(SPECfp95(Hj))).

Another piece of static system information, CCR(Hj)
is considered but it is inapplicable to unification of
resources, because a different number of CPU cycles
between RISC and CISC are used, and because differ-
ent VLSI technology is used, for example, Sun Ultral-
167Mhz has better performance than SPARC5-
170Mhz.

Now, the feasibility analysis steps are illustrated as
follows. The best-host approach (see [9]) without con-
sideration of resource availability does not guarantee
load balance. Therefore, this step distinguishes feasible
hosts in terms of resource availability based on the
unified resource. Furthermore, in formula (2), the
thresholds for the load balancing process include CPU
idle time and available memory; the current CPU and
memory usage of the process that is to be migrated are
compared against the thresholds to determine the desti-
nation host. If a host satisfies the condition of feasibil-
ity analysis in formula (2) and no faults are detected on
the host, then it is a candidate host.

(FeasibleCpu(Hi,t) = CIP(Hi;t) - CUP„m(ay, tl, H;)) >
Thresihold_CPU(Hi) &

(FeasibleMEM(Hi,t) = FAM(H,t) - MEM^/ay, tl, H)) >
Threshold_MEM(Hi) -(2)

Finally, the optimization step is explained. Opti-
mized resources give good information to RM for effi-
cient allocations.
Definition: Laxity is an available amount of unified
resources after allocation of requested resources deliv-
ered from QM for the violated applications.

289

1. QM request resources, CUP0b5(aij, tl, HL), MEMobs(ajj, tl, HL)
2. Get the host list, HL, including host load indices, load metrics(LM)
3. Calculate EM A of LM
4. No_of_Candidate_Host = 0 ;
5. Create Linked List of HL_CPU ;
6. Create Linked List of HL_MEM ;
7. For (k = first(HL(Hj, t)); k <= last(HL(Hi, t)))
8. CUPuni(aiJ, tl, Hk) = CUPobs(aij, tl, HÜ * SPEC_RATE(HL) / SPEC_RATE(Hk);
9. FeasibleCPu(Hk t) = CIP(Hk, t) - CUP^ay, tl, Hk) - Threshold_CPU(Hk);
10. FeasibleMEM(Hk, t) = FAM(Hk, t) - MEXWay, tl, Hk) - Threshold_MEM(Hk);
11. If(FeasiblecPu(Hk t) > 0) && (FeasibleMEM(Hk, t) > 0)
12. /Cpu(Hk,t)= FeasibleCPu(Hk. t)) * SPEC_RATE((Hk);
13. /MEM(Hk,t)= FeasibleMEM(Hk, t));
14. Append Hk and /Cpu(Hk,t) to HL_CPU ;
15. Append Hk and /MEM(Hk,t) to HL_MEM ;
16. No_of_Canidate_Host++;
17. //end if 11
18. Loop 7;
19. Sort HL_CPU in descending order of /Cpu(Hi,t)
20. Sort HL_MEM in descending order of /MEM(Hi,t)
21. If(No_of_Candidate_Host = 0)Return(Target_Host = first(HL_CPU))
22. Target_Host = first(HL_CPU);
23. While(true)
24. If((Target_Host is Alive) && (Target_Host is in top 50th percentile of HL_MEM))
25. Return (Target_Host);
26. Else Targetjiost = next(HL_CPU);
27. Loop 23 ;

Figure 2. Resource allocation algorithm

FeasibleCPu(Hi,t) is the available amount of resources
after allocation of a^. Unifying the FeasibleCPu(Hi,t)
gives the optimized resource availability. This optimi-
zation is an important QoS factor. Formula (3) and (4)
show the Laxity of CPU, /Cpu(Hi,t), and Laxity of
memory, /MEM(Hi,t).

/CPu(Hj,t) = FeasibleCPu(Hj;t) * SPEC_RATE(Hi),- (3)
/MEM(Hi.t) = FeasibleMEM(Hi,t) - (4)

Based on optimized resources, the resource allocation
schemes, max-laxity host(AMax) shown in formula (5),
and min-laxity hosttA™) shown in formula (6) are
carefully considered. Other approaches such as ran-
dom^), round-robin(rr), and least-load(W) have been
tested and compared with our allocation schemes of
resource optimization. But the least load approach (re-
sources are not unified) shown in formula (7) does not
guarantee QoS requirement as the available resources
in the supply space do not correspond to resource re-
quirement in demand space.

y\Max = MaXi(/cPu(Hi,t)) and Topi(/MEM(Hi,t), 50) - (5)
A™ = mini(/Cpu(Hi,t)) and Boti(/MEM(Hi,t),50) - (6)
U = Max, (CPI(Hi,t)*Wcpu + FAM(Hj,t)* Wmem) - (7)
where Topi(/MEM(Hi,t), 50): the host "i" is in top 50th

percentile in laxity of memory,
Boti(/MEM(Hi,t), 50): the host "i" is in bottom 50th per-

centile in laxity of memory,
WcpU+Wmem =1, Vj

In our approach, the other resource requirements like
network bandwidth, I/O disk are applicable in a similar
way. The final decision is made based on the laxity of
each resource using heuristic algorithm: find a host that
has maximum ACPU; if the host is in top 50th percentile
of the host list (sorted by AMEM(Hj,t)); select the host; if
not, examine the next host that has maximum
ACpu(Hi,t). Figure 2 explains resource allocation algo-
rithm in detail.

Instead of resource allocation, control of heteroge-
neous resources is an efficient way to provide quick
resource management. Dynamic CPU proportion
change on Linux using the Quasar scheduler [10][11]

290

and priority handling on NT and Solaris are imple-
mented in our scheme.

Furthermore, for accurate allocation, the RM should
consider not only load balance based on resource avail-
ability, but also a measure of system contention called
slowdown factor. This is ongoing study, especially in
the area of network load between two communication
nodes.

3. Experiments

We have used DynBench[12] as an assessment tool
for DeSiDeRaTa. It uses an identical scenario for ex-
periments. The experimental system parameters and
heterogeneous environment are as follows: 1 Linux
Pentium 200mhz, 1 NT Pentium-Ill 500mhz, 2 NT
Pentium-n 400mhz, 2 NT Pentium 200mhz, 2 Solaris
Sparc-5 170mhz, 2 Solaris Ultra-1 167mhz, 1 SunOS
on ULTRA10 300mhz, and lOOMhz Fast Ethernet.

The first experiment monitors and analyzes resource
requirements corresponding to step 1 in section 2. The
second experiment measures the unification ap-
proaches corresponding to step 3 in section 2. The third
experiment compares different allocation schemes cor-
responding to step 5 in section 2. Experiment details
are presented in the remainder of this section.

Experiment 1 shown in Figure 3 describes the meas-
ures of variance of execution time with different meth-
ods and different periods in (c), and variance of mem-
ory among hosts in (a) and (b). The three different
monitoring techniques, getrusage()(GRU) system call,
reading process table(PT), and ps(PSU) command, are
used. From the experiments (c), the variance of execu-
tion time measured by reading PT is high, and is de-
pendent on the monitor cycle time as the period for
accessing PT cannot exactly cover the range of process
execution time. It is impossible to collect exact re-
source usage of a process at a particular instant of time.
However, the GRU system call shows accurate process
resource usage in terms of variance of execution time.
The exponential moving average (EMA) of each
method is used for filtering. The maximum difference
of memory usage by the evaluate and decide applica-
tion(ED) on two different hosts is 48Kbytes(from (a)
and (b) in Figure 3). Hence, Threshold_MEM(Hk,t) and
Threshold_CPU(Hk,t) are necessary components to
constraint candidate host. The variances of memory
requirement of applications are measured by zero.

The second experiment described in Figure 4 shows
the difference between observed resource usage and

unified resource estimated by SPEC_RATE and
Clock_Rate(CCR). For example, the execution time is
collected on Pentium-200, and we multiply the meas-
ured execution time and SPEC_RATE/CCR of the tar-
get host, PentiumIII-500. Next we experiment with the
same scenario on PentiumIII-500 to observe actual
execution time of the process to compare with previous
estimated execution time. The difference between uni-
fied resource by CCR and the observed resource is 8%
on NT, and 3.5% on Sun. The difference of unified
resource by SPEC_RATE has 1% on NT, and 11% on
Sun.

Experiment 3 proposed three measurements - QoS
violation rate (QVR), QoS Sensitivity (QSS), and QoS
(to compare QoS characteristics by different allocation
decision algorithm as shown in Figure 5). The QVR is
the number of violations within 2 minutes by increas-
ing workload. QSS is the amount of workload to trig-
ger second violation after the first violation. QoS is the
latency of a path improved by first allocation. This
experiment shows clearly that the U approach that ig-
nores heterogeneity (proposed by Ravindran [9]) is
much worse than our scheme in terms of QVR, QSS,
and QoS. Our AMax scheme improves 26.4% better in
QoS, 36.4% better in QSS, and 60% less in QVR than
it approach.

4. Conclusion and Future Study

This paper presents 5 solutions of resource alloca-
tion for dynamic real-time systems. Our AMm scheme
not only allows higher workloads than ra, rr, and U
by 257%, 142%, and 36.4%, respectively, but also im-
proves QoS better than ra, rr, and tt by 38.6% 28.5%
31.6%, respectively. Controlling heterogeneous re-
sources using CPU proportion change and priority
change is useful for the server programs. The effi-
ciency of resource allocation in terms of QoS objec-
tives for scalable and moveable clients is better than
that of the control. Ongoing work includes finding a
specific solution of the resource management for hard-
real time applications, Predictive RM, Proactive RM,
and QoS negotiation. Also, heterogeneous network
resource monitoring and allocation, and the decision
mechanism between allocation and control is an im-
portant issue in providing QoS requirements.

291

Average Memory Usage on Ultra 5

5000 6000

tactical load

Average Memory Usage on UHral

5000 6000

tactical lead

(a) MEM(ay, tl, Sun-Ultra-5) (b) MEM(aij, tl, Sun-Ultra-1)

EXEC. TIME VARIANCES

variance

tactical load

path period and technique
(GRU=getrusage; PT=proc table;

EMA PT=exp. Mov. Avg. PT;
PSU=ps_usage; EMA PSU=exp. Mov. Avg. PSU)

(c) Variance of execution time

Figure 3. The Dynamic measures of monitored resource requirement

292

Comparison of Unified Resource on Unix
Workstation

1000 ' 1500 ' 2000 ' 2500 '

-observed
resource req.

- Unified resource
req. by
Spec_Rate

-unified resource
req. by
aock_Rate

TbeCörrparisonof Uified Resource on
NT workstation

 i

1000 ' 1500 ' 2000 2500 tl

-♦- observed resource
req

■*- unified resoure req
bySpec_Rgte

-A-Unified resource req
byClcck_Ffete

(a) Pentium (200MMX) vs Pentium-Ill (500Mhz) (b) Ultra-10(300Mhz) vs Ultra-1 (140Mhz)

Figure 4. Resource unification by SPEC_RATE and Clock_Rate

QoS Sensitivity

least-load random round max-laxity min-laxity
robin

Qos Violation Rate

least-load random round robin max-laxity min-laxity

(a) QSS (b) QVR

QoS

900

600
500
400
300
200
100

X-Jt-^S^C^S^^w^X

"i1 TI'"''Y T"''"i"''

♦ least-load

-■—random

 round robin

-X—max-laxity

-*—min-laxity

1 23456789 10 11

(c) QoS

Figure 5. Comparison of resource management schemes

References:

[1] L. R. Welch, B. Ravindran, R. Harrison, L. Madden, M.
Masters and W. Mills, "Challenges in Engineering Distrib-
uted Shipboard Control Systems", The IEEE Real-Time Sys-
tems Symposium, December 1996.

[2] L.R Welch, B. Ravindran, B. Shirazi and C. Bruggeman,
"Specification and Analysis of Dynamic, Distributed Real-

Time Systems", in Proceedings of the 19?h IEEE Real-Time
Systems Symposium, 72-81, IEEE Computer Society Press,
1998.

[3] J. Stankovic, and K. Ramamritham, Advances in Real-
Time Systems, IEEE Computer Society Press, April 1992.

[4] S. Son, Advances in Real-Time Systems, Prentice Hall,
1995.

293

[5] High performance distributed computing, http://www.
nswc.navy.mil /hiperd/index.html

[6] L.R. Welch, P V. Werme, B. Ravindran, L. A. Fontenot,
M.W.Masters, D. W. Mills, and B. Shirazi, "Adaptive QoS
and Resource Management Using A posteriori Workload
Characterizations", IEEE Real-time Application System,
1999.

[7] Gary Koob, "Quorum", Proceedings of the DARPA ITO
General PI Meeting, pages A-59 to A-87, October 1996.

[8] OSG group, SPEC CPU95 Benchmark,
http://www.spec.org.

[9] Binoy Ravindran, "Modeling and Analysis of Complex,
Dynamic Distributed Real Time- System", Thesis, Computer
science and engineering, The University of Texas at Arling-
ton, 1998.

[10] Ashvin Goel, David Steere, Calton Pu, Jonathan Wal-
pole, "Adaptive Resource Management via Modular Feed-
back Control", http://www.cse.ogi.edu/DISC/ projects/
quasar/publications, html.

[11] David C. Steere, Ashvin Goel, Joshua Gruenberg, Dy-
lan McNamee, Calton Pu, and Jonathan Walpole, "A Feed-
back-driven Proportion Allocator for Real-Rate Scheduling",
Operating Systems Design and Implementation (OSDI), Feb
1999.

[12] L.R. Welch and B. Shirazi, "A Dynamic Real-Time
Benchmark for Assessment of QoS and Resource Manage-
ment Technology", IEEE Real-time Application System,
1999.

294

Biographies:

Eui-Nam Huh is currently a Ph.D. student in School of
Electrical Engineering and Computer Science at Ohio
University. His current research area is resource man-
agement on dynamic distributed real-time systems. He
received his Master of Computer Science degree in
computer science engineering from The University of
Texas at Arlington in 1995 and Bachelor degree in
computer science and statistics from Pusan National
University in 1990. He worked for Korea Fidelity and
Surety Company as a programmer (online) and net-
work administrator for 3 years (1990-1993). He had
full time faculty position at computer science depart-
ment in Korean Sahmyook University for 2 years
(1996-1997). He had developed a high performance
distributed system for the academy service while in
Korean Sahmyook University.

for distributed resource management, and a dynamic
real-time benchmark suite that has characteristics
similar to experimental shipboard computing systems.
He has succeeded at transition and integration of De-
SiDeRaTa technology into the High Performance Dis-
tributed Computing (HiPer-D) laboratory at the Naval
Surface Warfare Center. Furthermore, DeSiDeRaTa
technology has been selected for inclusion in the Quo-
rum reference implementation. In addition to his work
with DARPA, Dr. Welch's research has in adaptive
resource management for real-time distributed systems
been funded by numerous contracts from the Navy and
the Army. Additionally, he was appointed as a Summer
Faculty Fellow by the US Army in 1991, and by the
US Navy during the summers of 1993, 1994 and 1995.
During the 1995-1996 academic year, he served as a
Visiting Research Scientist at the Naval Surface War-
fare Center in Dahlgren, VA. Welch received an "Ae-
gis Excellence Award" from the United States Navy in
1998 for his contributions in dynamic resource man-
agement to the High Performance Distributed Com-
puting (HiPer-D) and SC-21 programs.

Dr. Welch is involved in many ACM and IEEE ac-
tivities, and he has published over 70 articles in profes-
sional conferences and journals. He is the founder and
Steering Committee Chair of the International Work-
shop on Parallel and Distributed Real-Time Systems.
Additionally, he serves on the editorial boards of The
Journal of Parallel and Distributed Computing Prac-
tices and The International Journal of Mini- and Micro-
Computers, and he has been Guest Editor of several
journal special issues, including ACM OOPS Messen-
ger (issue on Object-Oriented Real-time Systems), and
The Journal of Parallel and Distributed Computing
(issue on Parallel and Distributed Real-time Systems).

Lonnie R. Welch is a Professor in The School of
Electrical Engineering and Computer Science (EECS)
at Ohio University (OU). He received the Ph.D. degree
in Computer and Information Science from the Ohio
State University in 1990. Previously, he was a faculty
member at the University of Texas at Arlington and at
the New Jersey Institute of Technology. As Director of
the Laboratory for Parallel and Distributed Real-time
Systems, he conducts research in the areas of real-time
systems, distributed computing, security, soft-
ware/systems engineering, and dependability.

As PI of the DARPA/Quorum DeSiDeRaTa proj-
ect, he has invented the dynamic path paradigm for
addressing dynamic resource management for distrib-
uted mission critical real-time systems; the primary
products of the DeSiDeRaTa project are middleware

Behrcoz A. Shirazi is a Professor and Chair of the
Computer Science and Engineering Department at
UTA. Before joining UTA in 1990 he was on the fac-
ulty of Computer Science and Engineering at Southern
Methodist University. Dr. Shirazi has conducted re-
search in the areas of software tools, distributed real-
time systems, scheduling and load balancing, and par-

295

allel and distributed systems over the past fifteen years.
He has advised 12 PhD, 56 MS, and 40 BS students
and has published over 100 papers in these areas. Dr.
Shirazi's research has been sponsored by grants from
NSF, DARPA, AFOSR, Texas Instruments, E-
Systems, Mercury Computer Systems, and Texas ATP
for a total of more than $2.5M. He has been a Guest-
Editor of a special issue of the Journal of Parallel and
Distributed Computing and a Track Coordinator of the
HJCSS'93 Conference, both on "Scheduling and Load
Balancing Issues". He is the leading author of an IEEE
Press book entitled "Scheduling and Load Balancing in
Parallel and Distributed Systems". Dr. Shirazi is cur-
rently on the editorial board of the Journal of Parallel
and Distributed Computing. He is the principal founder
of the IEEE Symposium on Parallel and Distributed
Processing and has served on the program committee
of many international conferences. He has received
numerous teaching and research awards and has served
as an IEEE Distinguished Visitor (1993-96) as well as
an ACM Lecturer (1993-97).

Charles D. Cavanaugh is currently a Ph.D. candidate in
computer science at The University of Texas at Ar-
lington. His current area of research is distributed real-
time systems. He received his Master of Science and
Bachelor of Science degrees summa cum laude in
computer science from The University of Texas at Ty-
ler in 1997 and 1995, respectively; and he received his
Associate of Arts degree magna cum laude in interdis-
ciplinary studies from Tyler Junior College in 1993.
He is a member of the Tau Beta Pi Engineering Honor
Society, the IEEE Computer Society, and the ACM.

296

A Cost/Benefit Model for Dynamic Resource Sharing

Dimitrios Katramatos
Dept. of Computer Science

University of Virginia
Charlottesville VA, 22903

dk3x@cs.virginia.edu

Deepak Saxena, Nehal Mehta, Steve J. Chapin
Dept. of Electrical Engineering and Computer Science

Syracuse University
Syracuse, NY 13244

{deepakas,nvmehtaaq} @hotmail.com, chapin@ecs.syr.edu

Abstract

The use of multicomputer clusters composed of cheap
workstations connected by high-speed networks is common
in modern high-performance computing. However, operat-
ing system research in such environments has lagged. Our
research aims at enhancing the functionality of the operat-
ing system by providing management functions that allow
dynamic resource sharing and performance prediction in a
clustered environment supporting distributed shared mem-
ory and multithreading. Central to this approach is the
development of a parametric cost model that can predict
the performance ramifications of policy choices and allow
applications and middleware to adapt to the computing en-
vironment and achieve better performance.

1 Introduction

The goal of our research is to develop and evaluate a
parametrical cost/benefit model to be used as a decision-
making tool for managing dynamic system resource sharing
in an environment of high-performance heterogeneous clus-
ters. Multicomputer clusters are capable of achieving com-
putational rates equal or higher than those of conventional
supercomputers. However, the performance these systems
deliver to applications is usually just a fraction of their max-
imum capacity, even in cases of applications that can theo-
retically achieve much higher computation rates. Software
inefficiency has to be blamed for this phenomenon. We are
developing mechanisms that better share system resources
and promote parallelization of tasks. These mechanisms
allow applications to self-adapt to the varying availability
of system resources according to their own varying resource
requirements and thus run more efficiently.

The key idea in this research is the notion of cost, in
terms of execution time, and the ramifications of certain op-
erating system services (including process/thread creation,
process/thread placement, and inter-process communica-

tion). This cost varies with several parameters such as ap-
plication requirements, application behavior, time, system
configuration, and network topology. Realistic prediction of
the cost of system services and choices gives an application
the ability to make its own decisions regarding the execution
environment that best suits its needs.

We are therefore developing a parametric cost model
for predicting the cost of certain operating system services
while taking into account system characteristics and appli-
cation information, as well as a set of software extensions to
the operating system to support the function of this model
and facilitate the dynamic sharing of system resources. The
result will be an operating system with flexible resource
control, able to deliver a higher percentage of underlying
system performance to applications and middleware.

Section 2 of this paper presents the motivation for this
work, section 3 the hardware and software environment un-
der consideration, and section 4 the family of applications
of interest. Section 5 describes our approach in more detail,
while section 6 discusses related work. Section 7 gives a
brief summary.

2 Motivation

In recent years there has been a new trend in high-
performance computing: the use of multicomputers built
from common, off-the-shelf components. These systems
are capable of sustaining computation rates that rival or
surpass the rates sustained by conventional supercomputers,
but the demonstrated performance is just a fraction of the
maximum theoretical performance. For example, the Cen-
turion cluster of phase I achieved 3.7 sustained gigaflops
on 49 CPUs during a run of an ocean modeling applica-
tion [1]. This code gets just 650 megaflops on a single Cray
T90 CPU. While this comparison is encouraging, Centurion
of phase I had a maximum capacity of over 60 gigaflops.
While it would be naive to expect to sustain a rate of com-
putation approaching the maximum, there is certainly room
to improve the performance substantially, for several cat-

0-7695-0556-2/00 $10.00 © 2000 IEEE
297

egories of applications. We identify software overhead as
one of the primary culprits in this reduced performance is-
sue. To overcome this overhead we have each software layer
expose to higher layers information describing the behavior
of the individual layer and implications that behavior has
for performance. Also, the application provides information
regarding its own behavior to lower software layers as hints
to let them better estimate the impact on performance.

Our approach chooses to work from the bottom up, be-
cause all applications, regardless of middleware system, use
the operating system. By adding a set of services to the
operating system, if possible only as user-level modules for
reasons of portability, we aim to allow dynamic resource
sharing and also provide a resource consumer (not neces-
sarily only an application) with information about the cost
of a specified operation. For example, runtime systems will
be able to get information to make service guarantees to
applications, and applications will be able to self-adapt to
various system configurations and varying resource avail-
ability. Load balancing environments will be able to better
estimate system efficiency and better understand the effect
various task mappings have on performance. In these envi-
ronments dynamic granularity control will also be possible.
Finally, smart compilers will be able to take into account
operating system cost information during the compilation
phase of an application to optimize the executable code for
specific system configurations and loads. To complement
this, it will also be possible to have an application loader
that will take into account application supplied information
and create the most suitable environment within a system's
limits for running a specific application.

3 The Hardware and Software Environment

The environment in which the problem is considered is
a distributed system consisting of a variety of nodes con-
nected with networks of various speeds. We view such a
system as having a physical and a logical organization.

The physical organization of the system is based on the
principle of hierarchical clustering [13]. Groups of neigh-
boring nodes form local clusters. Local clusters can be
grouped together and form second level superclusters, sec-
ond level supercluster groups can form third level superclus-
ters, etc. (see figure 1). The main criterion for forming the
various hierarchy echelons is the cost of communications—
these echelons reflect the underlying networks. That is,
echelon 0 corresponds to communications between proces-
sors of the same node (intra-node)—if nodes have more
than one processor—which have hardware shared memory
and thus the least cost for sharing information. Echelon 1
corresponds to intra-cluster communication, echelon 2 to
cross-cluster communication between clusters of the same
2nd level supercluster, echelon 3 to cross-cluster communi-

cation between clusters of different 2nd level superclusters,
etc. Another way to think of this organization is as a system
map.

Figure 1. A clustered multicomputer - physi-
cal clustering

Over the physical clusters is laid an organization of log-
ical clusters. The nodes of a logical cluster share infor-
mation using distributed shared memory. Note the differ-
ence between physical and logical clusters: physical clus-
ters are defined by the physical organization of a system,
mainly by the nature of the interconnecting network, and
are fixed; logical clusters are groups of processors that share
memory using software-based distributed shared memory
(DSM) and can change dynamically. Such a cluster can be
a portion of a physical cluster, a whole physical cluster, or
it can span several physical clusters incorporating parts or
the whole of them (see figure 2)).

An important aspect of the environment is the support
for threads and for distributed shared memory. The elemen-
tary computing entity here is the thread and an application
includes a dynamically changing number of threads. The
enhanced operating system provides a single address space
for the threads of an application. This address space is vis-
ible by a number of processors within the logical cluster
structure and the threads are mapped on these processors
without the knowledge of the application. Thread migra-
tion is possible in this environment, as well as migration
of thread groups, even whole applications, within (intra-
cluster) or between logical clusters.

The choice of software DSM as the means of forming a
logical cluster is a trade-off between raw performance and
ease of programming. The pros and cons of the message
passing and the distributed shared memory paradigm are
known and there have been numerous publications in this

298

Figure 2. Logical clustering

area. We believe that there is a lot of room for improv-
ing the performance of certain categories of applications on
multicomputer clusters. We expect that careful use of DSM
in combination with cost/benefit prediction and dynamic
adaptation to resource demand/availability will demonstrate
definite performance improvements over the current figures
without sacrificing usability and programming ease on the
altar of performance. In any case, the idea of using a cost
model to predict the cost/benefit of certain operating sys-
tem operations is independent of using one paradigm or the
other and can contribute in all cases to the better adminis-
tration of a system's resources.

4 The Applications

The type of application of interest is a parallel applica-
tion with high resource demands, such as a large scientific
simulation. This type of application usually presents a dy-
namic change of resource requirements, that is, it presents
irregularity: "data structures, communication patterns, or
computation are not defined by simple, repeating struc-
tures" [4].

Our computational model mixes shared-memory pro-
gramming (done with threads) with distributed-memory
programming (done with a message passing environment
such as MPI). Our initial work was to support Pthreads, the
POSIX-standard threads library, but we are moving to sup-
port the emerging standard for multiprocessing, OpenMP,
in conjunction with MPI.

As an example of this application type, consider a
weather simulation, tracking the progress of a storm front
as it moves across a landscape which has been mapped onto
a grid. Each grid cell can be mapped onto a multithreaded
MPI process. The grid cells containing the storm front

will require the most computation, and as the front moves,
the computational hotspots will move across the grid. To
achieve good performance, we want to rebalance the work-
load. Historically this has been done either through data
migration or computational migration.

Static thread allocation for an application with dynamic
resource requirements leads either to processors sitting idle,
when resource usage is overestimated, or to delay from load
imbalance when usage is underestimated. Clearly, such
a computation can only be performed efficiently with the
combination of a load balancing technique with dynamic
granularity control [3]. Using our approach, one can add
extra computational power within the address space of a
hotspot, thus spreading the load to more threads. In the
example of storm front simulation, we can add threads to
the cells containing the front (these new threads might be
put on local processors, remote processors via DSM in an
expanded logical cluster, or we might even choose to mi-
grate the entire process to a larger SMP and add threads
there). Once the front passes, the extra threads are no longer
necessary and can be killed, freeing the occupied proces-
sors. Each multithreaded MPI process can be assigned to
a logical cluster with a certain number of nodes that share
memory and provide the illusion of a single address space
to the threads of the process, while each thread runs on a
different CPU. The MPI processes communicate with cross-
cluster messages. Processors can be dynamically added
to/removed from each logical cluster in response to load
variations.

5 Our Approach

Our work is based on Linux, which is the de facto stan-
dard for free software cluster operating systems. This has
the obvious advantage of allowing us to add code to the ker-
nel as we deem necessary. We are building two sets of soft-
ware to support our needed functionality: kernel extensions
and user-level libraries. Our work to date has focused on
determining the required functionality, and the line between
what should go in the kernel and what should go in the user
library is not yet set.

5.1 Additional Functionality

We are augmenting Linux with heterogeneous dis-
tributed shared memory and multithreading functionality.
Functionality similar to the Mermaid prototype [8] is de-
sired as well as conformation to the OpenMP standard [17]
and the popular Pthreads interface.

The additional functionality that we are currently adding
to the system is as follows:

1. Add a thread or a group of threads to an existing shared
address space.

299

Cost model parameters
(qualitative representation)

Speed %

System
information %

Application
information %

■ 90-100

■ 80-90

070-80

■ 60-70

050-60

■ 40-50

O 30-40

D 20-30

■ 10-20

□ 0-10

Figure 3. The main parameters of the cost model

2. Add a processor or remove a processor from a shared
address space.

3. Dynamically migrate a thread from one processor to
another. The target processor should automatically be
added to the shared address space, if not already in-
cluded, and the source processor should possibly be
removed, if no other thread runs on it. Removing
a processor from an address space might not always
be desirable as it can cause thrashing on processor
add/remove.

4. Form, modify, manage, and cancel a logical cluster of
nodes. These functions will correspondingly create,
modify, manage, and delete the necessary data struc-
tures that need to be maintained to support logical clus-
ters.

5. Evaluate cost functions to estimate the cost/benefit of
performing certain operations, as for example to cre-
ate/cancel a cluster, add/remove a processor to/from
an address space, start/kill a thread on a specific pro-
cessor, and migrate a thread, which may result to the
inclusion of the target processor in the shared address
space and/or the removal of the source processor, as
mentioned above.

5.2 The Cost/Benefit Model

The operating system extensions are mechanisms, not
policies. Policy decisions will be made either in middleware
layers or by the application itself, e.g. whether or not to add
a thread to a running process. To assist the higher software
layers in making these decisions, we have developed a cost
model so that the operating system can accurately predict
the ramifications of policy decisions.

Our cost model moves qualitatively along three axes: the
first axis has as parameter the amount of system information
taken into account; the second axis, the amount of applica-
tion information; and the third, the speed of the cost esti-
mation. Figure 3 represents a qualitative picture of the cost
model behavior. The accuracy of the model is generally
inversely proportional to the speed of the estimation. The
speed of the model depends on the type and quantity of
application and system information that must be processed.
Accuracy increases and speed decreases as the volume of
information increases. The cost of a cost estimation has to
be low when compared with the benefit that a correct policy
decision will offer. On the other hand, the estimated cost
needs to be accurate enough to enable correct decisions.
Clearly, this is a complex problem and there are several fac-
tors that need to be considered. Therefore, the cost model
needs to be parametric and provide for various trade-offs of

300

accuracy for speed.
In its simplest form, the cost model views the cost of

operations as set of discrete cost classes. This classification
is of the least accuracy and maximum speed and it works
when a fast answer is needed and no information is available
from the application side. As an example, in a system with
two clusters where one cluster is formed by dual-processor
x86 boxes and assuming 3 cost classes, the cost of adding
a thread to the second processor of a node belongs to class
#0. The cost of adding a thread to a new (unused) processor
in the local cluster belongs to cost class #1. The cost to
migrate a thread to the neighboring cluster is of class #2,
the highest. Here the accuracy of the model is the lowest as
it relies only on basic system information.

In its richest form, the model can provide a set of cost
information about an operation and the impact this opera-
tion will have on the performance of the application. For
this purpose, it is necessary to combine information from
both the system and the application. The system maintains
a vector of state and cost information by directly access-
ing information maintained by the operating system kernels
and by periodically running a set of suitable benchmarks
to measure other important cost-affecting quantities, like
communication latencies or node loads (cf. the Network
Weather Service [26]). The application passes in a descrip-
tion of its behavior, e.g. memory access patterns, thread
running patterns, acceptable delays, etc. Statistical informa-
tion, gathered during previous runs of the application, can
help identify its behavior when this behavior is not known
in advance. The cost model combines the supplied informa-
tion to produce a cost rating, a quantity that can be used in
comparing the cost of different system operations.

B

o o
o o
o o
oo
o o

o o
o o
o o
o o
o o

o o
o o

o o|
o o
o o
o o
o o

oo
o o
o o

o o
o o
o o
o o
o o

o o
o o
o o
o o
o o

6/0 4/2 0/6

running on six processors of cluster A, which form a logical
cluster, with six threads, one per processor (see figure 4)).
Suppose that at a certain phase during execution the appli-
cation wants to spawn another group of six threads. Would
it be better to use six processors of cluster A (4 free ones
and two already running a thread each), use the remaining 4
processors of cluster A and two more from cluster B, or use
six processors of cluster B instead? Cross-cluster communi-
cation is more expensive than intra-cluster communication
so the first option seems more attractive than the second and
the second more attractive than the third. However, this is
not necessarily the best order. The first option suffers from
the fact that two processors have to run two threads each.
Also, what is of highest benefit depends on how the appli-
cation behaves. If the new group of threads works in close
cooperation with the initial thread group, then the first op-
tion is probably better. If the group of these six new threads
performs a separate task and communicates infrequently
with the initial thread group, that is, data shared between
the two groups are infrequently accessed, then the third
option is probably better. This is because the infrequent
communication between the two thread groups keeps the
communication cost low. In this case, if the second option
were chosen, the frequent communication between the two
threads running on cluster B with the other four on cluster A
would impose a heavy increase in the communication cost.

The following is a cost rating estimation for the three
thread placement options considered. Since a highly de-
tailed estimation would be too long to present here, certain
simplifying assumptions are necessary. The first assump-
tion is that the system costs are identical for all processors.
A more detailed estimation would include the cost of per-
forming certain operations on each individual node, or type
of node. A second assumption is that the costs for sending
messages are estimated using the basic LogP model [16]).
Consider now the following costs:

s cost to start a thread on a processor,

e cost to include a processor in a shared address space,

er cost to include a processor that belongs to a neighboring
cluster in a shared address space,

Ci cost for sending a message across the intra-cluster net-
work,

cc cost for sending a message across the cross-cluster net-
work, Cc > Cj,

Figure 4. Three possible configurations

For example, consider two neighboring (physical) clus-
ters, A and B, with 10 processors each, and an application

Let the application supply information about itself in the
form of two weight factors, wg, and wT. wg expresses the
percentage of accesses to variables shared between the new
group of threads, and wr, expresses the percentage of ac-
cesses to variable shared between the old and the new thread

301

groups. Wg +wr = 100%. The application declares that the
threads of the new group communicate frequently with each
other by having wg » wT, that is, intra-group communica-
tion is much more frequent than between groups. We'd like
to compare the three basic thread group placement options,
in the present case all six threads on cluster A (option 6/0),
four threads on cluster A and two on B (option 4/2) or all
six on cluster B (option 0/6).

The first thing to estimate is the overhead for spawning
the new thread group: for the 6/0 option 6(s + f e), for the
4/2 option 6(s + f e + |er), and for the 0/6 option 6(s + er).
Since er > e, the 0/6 option has more overhead than the 4/2
option, and that in turn more than the 6/0 option, which is
expected.

This overhead is not enough to make a decision. Here
the cost rating has to have at least two parts, a fixed part, the
overhead, and a variable part, a rating for the communica-
tion and the running cost.

For estimating the communication cost rating, assume
that TO is the number of messages associated with the access
of shared data by threads of the new group per time unit
(message rate). Then the 6/0 option has a rating of m{wg +
wT)ci = mci. For the 4/2 option assume a split factor k
to distinguish between the messages send within A and B
and those that cross the boundary between them. That is,
k% of messages are intra-cluster within clusters A and B,
and (1 - k)% cross-cluster between A and B. Then the cost
rating is m{kci + (1 - k)cc). Finally, for the 0/6 option the
rating is m(wgCi + wrcc) To compare the rating of 0/6 to
that of 4/2 we subtract the first from the second. After the
calculations we obtain TO(CC - Ci)(wg - k). Because cc >
Ci and wg » wr this quantity is positive when wg > k.
Having wg < k is incompatible with the assumption that
the threads of the new group communicate frequently with
each other and infrequently with the old group; the value
of wg is close to 100% and a value for k approaching wg

would mean that the communication between the subgroup
of the two threads and that of the four threads is infrequent,
in direct contrast with the above assumption. Thus, the cost
rating for the 4/2 option is higher than that of the 0/6 option.
In turn, the cost rating of 0/6 is higher, but only slightly,
than 6/0. So far, 6/0 has the lowest overhead and cheapest
communications, with 0/6 second and 4/2 last.

To make the final decision, it is necessary to estimate the
cost of running for the three options. Assume a time period
At During this period the new thread group causes the
sending of TO At messages. Also assume that during At the
maximum number of thread instructions available for exe-
cution are It and that a processor can execute x instructions
per time unit.

For cases 4/2 and 0/6, each thread will take It/x time.
For the 6/0 case, two of the threads are running essentially
at half speed x/2 since they run on already occupied proces-

Centurion
(ethernet)

288 nodes max capacity

n, n ri nn i
12-port GBps switch'

24-porl lOOMBps switch'

Figure 5. Centurion, ethernet connections

sors. Assuming that in general we have CPU-bound threads,
these two threads will take double the time of the other four
threads, ~f-, probably delaying their work (the interference
pattern of the threads is another factor to take into account
for more accurate estimations). It can be concluded now
that option 0/6 is probably the best choice, because it has
almost the same communication cost rating with 6/0 but half
the running cost rating, and in the long run the overhead can
be ignored.

There are other factors that can affect the cost of each
option. For example, if clusters A and B contain processors
of different architectures, cross-cluster communication may
be much more expensive than before, due to the necessary
data conversions. This cost can be counterbalanced if the
processors of cluster B are faster than the ones of cluster A,
thus providing for higher execution rates. Finally, one has
to take into account the effect of the already existing load of
the processors and the network as it changes with time, as
there can be other applications or tasks sharing the system
resources.

5.3 The Experimental Computing Environment

The hardware we are using for experimentation is a
metacluster comprising the Centurion machine [2] and the
Syracuse Orange Grove cluster. Centurion has 256 nodes,
with 128 533MHz DEC Alpha nodes and 128 400MHz dual
Pentium II nodes. Each node is connected to a 100Mbps fast
ethernet switch and multiple such switches are joined via
gigabit ethernet switches (see figure 5). The initial 64 Al-
pha nodes are also joined in a complex mesh by a 1.2Gbps
Myrinet fabric (see figure 6). The Orange Grove cluster
has 16 533MHz DEC Alpha nodes and 48 450MHz dual
Pentium III nodes, and has a system area network similar to
Centurion's. Figure 7 presents a simplified overall view of

302

the total system. The only real restriction is that each CPU
needs to run the modified Linux system.

to operating systems, distributed shared memory, and other
relevant areas.

16 Compaqs
not yet in place

Figure 6. Myrinet connected part of Centurion

Centurion
Cethernet)

J: 1Z1 IZl £-11_I L

12-port GBps switch1

24-port lOOMBps switch

288 nodes max capacity

■VA

Stonesoup
cluster

_????????
"ooAAAooo'

Syracuse

■ cluster

Figure 7. The experimental system

6 Related Work

Much of research work has been and is being dedicated
to issues related to clusters of commodity workstations. Our
approach is novel, to the best of our knowledge, in the way
it supports clustering, in providing the mechanisms for dy-
namic resource sharing in this framework, and most of all
for using cost models to estimate the cost/benefit of certain
o.s. operations and aid in decision making. The current
section presents work related to our research with respect

6.1 Related Work in Operating Systems

The first work of interest is a research project of the
Computer Systems Research Institute of the University
of Toronto, Canada, targeted to hierarchically structured
NUMA clusters [14] Part of this project was the design and
construction of the Hector hierarchically structured shared
memory multiprocessor. Hurricane is the operating system
that was specially developed for Hector. The structure of
this operating system reflects the structure of the multipro-
cessor. Hurricane uses tight coupling within a local cluster
and loose coupling within clusters. Operating system ser-
vices are designed to take advantage of high speed connec-
tions and locality of data. Cluster size is determined stati-
cally. Processes of an application are scheduled on the same
cluster, unless there is a benefit for a job to span multiple
clusters. Within a cluster load is balanced at a fine granular-
ity and cross-cluster scheduling performs coarse-grain load
balancing by assigning and migrating processes to specific
clusters. Tests of the system have shown that applications
need to be adapted to Hector/Hurricane to perform well.

The computing environment targeted in our research is
substantially different from the Hector/Hurricane environ-
ment. The Hector/Hurricane approach was an attempt to
create a cost-effective, scalable NUMA machine, utilizing
specially designed hardware. Experimenting with hardware
is not in our intentions. Although the targeted environment
maintains the notion of tightly-coupled sub-clusters within
a larger hierarchical system, there is no hardware support
for shared memory, except for the case of a multiprocessor
PC box. Also, architecture homogeneity is not necessary,
the cluster hierarchy is not of fixed depth, and the (logi-
cal) cluster size is not determined statically. However, there
are several lessons from the Hector/Hurricane approach that
can be useful to us, e.g. that the factors found to be crucial
for application performance depend on application behavior
and system behavior. This is exactly what our work inves-
tigates. The fact that applications needed to be specifically
adapted to run efficiently on Hector under Hurricane under-
lines the importance of having operating systems that can
provide the necessary Information and allow applications to
self-adapt to the dynamically changing resource availability
of a system.

A more recent work is the Berkeley Network of Worksta-
tions (NOW) project [18]. This project is targeted at work-
station clusters and includes operating-system level work
software such as the GLUnix layer [19]. GLUnix is a multi-
user, user-level system for a cluster of workstations. It is
designed to provide transparent remote execution by main-
taining a single-system image across an entire cluster and

303

supports interactive parallel and sequential jobs and load
balancing. The proposed research differs in that it is not
dedicated to single-cluster but to hierarchically clustered
systems with several cluster levels. Although it is possi-
ble to provide a single-system image across clusters and
levels of hierarchy, the approach taken here is to provide
the users with the necessary data to make informed choices
about state sharing issues. In any case, increasing the de-
gree of sharing is usually accompanied by a decrease in
performance, and users may be willing to sacrifice trans-
parency for performance. GLUnix supports load balancing
through intelligent job placement but doesn't support task
migration nor any form of dynamic resource sharing based
on cost/benefit prediction.

6.2 Related Work in Distributed Shared Memory

There is a vast variety of research works on distributed
shared memory (DSM). A possible classification of DSM
systems can be based on:

• the level of implementation (user, kernel, hybrid),

• the coherence protocols (SRSW, MRSW, MRMW,
etc.),

• the consistency model (sequential, processor, release,
etc.).

Three general techniques have been used [20]. The
first technique simulates a multiprocessor by using a mod-
ified pagefault trap to do paging over the network, e.g.
IVY [23]. The second technique focuses on shared vari-
ables rather than pages. The programmer is required to an-
notate the shared variables with their anticipated access pat-
terns. These annotations are then used by the DSM runtime
system for selecting the most suitable coherence protocol.
This technique is used in Munin [5]. The third technique
is object-oriented and requires a high-level programming
model, e.g. Linda [21], Orca [22].

Relatively few approaches have dealt with the issue of
heterogeneity. Mermaid [8] is an implementation of hetero-
geneous DSM as an extension to the IVY system. Accord-
ing to Mermaid's creators, heterogeneous DSM is feasi-
ble and presents comparable performance to homogeneous
DSM. However, many issues need to be addressed due to
heterogeneity.

Providing yet another DSM system is not in the scope
of our research. Our main interest is in developing a DSM
system that can provide cluster-oriented functionality and
cost data on typical DSM operations. The preferred way to
follow here is to adopt an existing system and subsequently
modify and augment it to serve the intended purposes. Sev-
eral decisions need to be made, but the main direction is

to adopt the simplest approach possible, decide the level of
implementation, and add the minimum functionality neces-
sary. In this sense, the IVY and Mermaid systems seem
to be attractive. The issue of fully supporting heterogene-
ity remains open, because forming clusters with machines
of heterogeneous architectures or sharing memory among
clusters containing homogeneous hardware but of different
architecture from cluster to cluster are options of high com-
plexity and questionable performance. The Munin approach
is also attractive because of the focus on the different access
patterns of shared variables. Because shared variable ac-
cess patterns constitute an important parameter of the cost
model, it would be interesting to see the impact the utiliza-
tion of such a DSM approach has on performance. How-
ever, the use of a Munin-like system requires additional pro-
grammer effort, the annotations of shared variables, which
is not particularly desirable here if it means many modifica-
tions to already existing programs.

Several other works on DSM need to be mentioned here,
because they contain useful elements for our work. Iftode
et al. [6] study the sharing patterns of applications running
on DSM systems and identify several factors affecting per-
formance. Lu et al. [7] add limited compiler support and
modifications to TreadMarks [24] to eliminate unnecessary
computation and communication during the execution of
irregular applications. Yoon and Malek [9] propose the cre-
ation of a single address space per running program instead
of a global address space shared by all processing nodes.
This is similar to the definition of logical clusters with the
difference that not only one program can run on a logical
cluster, no matter what effect this fact has on performance.
Kim and Vaidya [10] propose an adaptive DSM system
where statistics about memory accesses, collected over a
sampling period, are used for determining the protocol that
has the minimum cost for each memory page. Erlichson
et al. [11] present a kernel-level implementation of DSM
on an 8-node, 8-processors/node cluster and study the cost
of DSM primitives and the effects of clustering on perfor-
mance. Finally, Quarks [12] is a relatively new simple DSM
approach. Quarks is a descendant of Munin and is aimed at
reducing the communication overhead. Its basic abstraction
is that of shared regions, which are page-aligned byte ranges
of variable length. For this DSM system there exists a freely
available Linux port.

6.3 Other Relevant Works

In terms of functionality, the most closely related work
to our approach is the Scalable Concurrent Programming
Library (SCPlib) [4] of the Scalable Concurrent Program-
ming Laboratory at Syracuse University. SCPlib is the de-
scendant of the concurrent graph library [25] and is aimed at
supporting irregular applications on parallel hardware. The

304

library provides heterogeneous communication and file I/O,
load balancing, and dynamic task granularity control. The
user needs to supply a set of special support routines for
the library to successfully perform migration of tasks and
granularity adjustments. The load balancing mechanism is
based on the concept of heat diffusion [3]. Communication
cost is taken into account when deciding task movements.

Our work is targeted at a more general and complex en-
vironment than SCPlib. The goal is to provide function-
ality for a hierarchy of clusters and help applications and
middleware make decisions by estimating as accurately as
possible, or to the desired degree of accuracy, the cost of
certain operating system services especially when dynam-
ically sharing resources. In view of this, the proposed re-
search can address all issues covered by SCPlib. Although
load balancing is not in the scope of our research, the use
of the cost model can greatly facilitate a sophisticated load
balancing mechanism by providing the cost of various task
placement options when deciding how to redistribute the
load and not only the cost of communications. Also, SCPlib
is based on message-passing whereas we support DSM and
mixed mode computations.

Another research work, which has common ground with
the proposed research, is that by Kravets et al. [15]. This
work proposes a cooperative solution to the dynamic man-
agement of communication resources. In this solution, ap-
plication requirements, expressed in the form of "payoff"
functions, and network resource availability, expressed in
the form of service availability curves, are taken into ac-
count by a configurable communication layer. The goal is to
better exploit communication resources by allowing appli-
cations and networks to adapt to each other. Our approach
has as ultimate goal to allow applications to self-adapt to
the changing availability of all system resources and doesn't
focus specifically on the communication layer.

7 Summary

Modern clusters connected by high-speed networks are
capable of outperforming supercomputers, but the perfor-
mance delivered to scientific applications is only a frac-
tion of this maximum. Identifying software overhead as
a key reason for this discrepancy, we have described our
approach to solving this problem. We focus on an hardware
environment with hierarchically organized clusters of com-
puting nodes. In this environment we form logical groups
of nodes by using software DSM and multithreading, and
augment the capabilities of the operating system with dy-
namic resource sharing primitives and a decision-making
framework based on a parametrical cost/benefit model. The
model works for a variety of situations with data availability
ranging from minimal to high. Our goal is to predict the per-
formance ramifications of policy choices and thus to allow

applications and middleware to adapt to their computing
environment and achieve better overall performance.

References

[1] G. Lindahl, S. Chapin, N. Beekwilder, A. Grimshaw.
Experiences with Legion on the Centurion Cluster.
Technical Report CS-98-27, Department of CS, Uni-
versity of Virginia, 1998

[2] Centurion: The Legion project testbed.
http://legion.Virginia.EDU/centurion

[3] J. Watts, M. Rieffei, S. Taylor. Dynamic Management
of Heterogeneous Resources. In High Performance
Computing: Grand Challenges in Computer Simula-
tion, pp.151-6, April 1998.

[4] SCP Laboratory.
Scalable Concurrent Programming Library.
http://www.scp.syr.edu/html/scpJibrary.html

[5] J. Bennett, J. Carter, W Zwaenepoel. Munin: Dis-
tributed Shared Memory based on type-specific mem-
ory coherence. In Proceedings of the Second ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pp. 168-176, March 1990.

[6] L. Iftode, J. PalSingh, K. Li. Understanding applica-
tion performance on shared virtual memory systems.
In Proceedings of the 23rd annual international sym-
posium on Computer architecture, pp.122-133,1996.

[7] H. Lu, A. Cox, S. Dwarkadas, R. Rajamony,
W. Zwaenepoel. Compiler and software distributed
shared memory support for irregular applications. In
Proceedings of the Sixth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
pp.48-56,1997.

[8] S. Zhou, M. Stumm, K. Li, D. Wortman. Heteroge-
neous Distributed Shared Memory. In IEEE Transac-
tions on Parallel and Distributed Systems, Vol.3, No.5,
pp.540-554, September 1992.

[9] M. Yoon, M. Malek. Configurable Shared Virtual
Memory for Parallel Computing. Technical Report
CS-TR-94-21, University of Texas, Austin, July 1994.

[10] J. Kim, N. Vaidya. A cost-comparison approach for
adaptive distributed shared memory. In Proceedings of
the 1996 international conference on Supercomputing,
page 44, 1996.

[11] A. Erlichson, N. Nuckolls, G. Chesson, J. Hennessy.
SoftFLASH: analyzing the performance of clustered

305

distributed virtual shared memory. In Proceedings of
the Seventh International Conference on Architectural
Support for Programming Languages and Operating
Systems, pp.210-220,1996.

[12] M. Swanson, L. Stoller, J. Carter. Making Distributed
Shared Memory Simple, Yet Efficient. To appear in the
Proceedings of the Third International Workshop on
High-Level Parallel Programming Models and Sup-
portive Environments, March 1998.

[13] R. Unrau, M. Stumm, O. Krieger. Hierarchical Clus-
tering: A Structure for Scalable Multiprocessor Op-
erating System Design. Technical Report CSRI-268,
Computer Systems Research Institute,.University of
Toronto, March 1992.

[14] R. Unrau, O. Krieger, B. Gamsa, M. Stumm. Hierar-
chical Clustering: A Structure for Scalable Multipro-
cessor Operating System Design. Journal of Super-
computing, 1995.

[15] R. Kravets, K. Calvert, K. Schwan. Payoff-Based
Communication Adaptation based on Network Ser-
vice Availability. In Proceedings of IEEE Multimedia
Systems '98,1998.

[16] D. Culler, R. Karp, D. Patterson, A. Sahay, E. Santos,
K. Schauser, R. Subramonian, T. von Eicken. LogP:
a Practical Model of Parallel Computation. In Com-
munications of the ACM, Vol.30, No.ll, pp.79-85,
November 1996.

[17] OpenMP
OpenMP C and C++ Application Program Interface,
Version 1.0, October 1998.
http ://w w w. openmp. org

[18] The Berkeley NOW project.
http://now.cs.berkeley.edu

[19] GLUnix: A Global Layer Unix for NOW.
http://now.cs.berkeley.edu/Glunix/glunix.html

[20] A. Tanenbaum. Distributed Operating Systems.
Prentice-Hall, Inc., 1995.

[21] D. Gelernter. Generative Communication in Linda. In
ACM Transactions on Programming Languages and
Systems, vol.7,pp.80-l 12, January 1985.

[22] H. Bai, M. Kaashoek, A. Tanenbaum. Orca: A Lan-
guage for Parallel Programming of Distributed Sys-
tems. In IEEE Transactions on Software Engineering,
vol.18, pp. 190-205, March 1992

[23] K. Li. IVY: A Shared Virtual Memory System for Par-
allel Computing. In Proceedings of the International
Conference on Parallel Processing, pp.94-101, Au-
gust 1988.

[24] C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu,
R. Rajamony, W. Yu, W Zwanenepoel. TreadMarks:
Shared Memory Computing on Networks of Work-
stations. In IEEE Computer, Vol.29, No.2, pp. 18-28,
February 1996.

[25] S. Taylor, J. Watts, M. Rieffei, M. Palmer. The Con-
current Graph: Basic Technology for Irregular Prob-
lems. In IEEE Parallel and Distributed Technology,
4(2):15-25,1996.

[26] R. Wolski. Dynamically Forecasting Network Perfor-
mance to Support Dynamic Scheduling Using the Net-
work Weather Service. In Proceedings of the Sixth
International Symposium on High-Performance Dis-
tributed Computing (HPDC-6), August 1997.

Steve Chapin is an Associate Professor of Electrical
Engineering and Computer Science at Syracuse University.
Prior to joining Syracuse, he served on the faculties of the
University of Virginia and Kent State University. He re-
ceived his Ph.D. in Computer Science from Purdue Univer-
sity in 1993.

Deepak Saxena and Nehal Mehta are M.S. students in
the department of Electrical Engineering and Computer Sci-
ence at Syracuse University.

Dimitrios Katramatos is a Ph.D. candidate at the Uni-
versity of Virginia. He received his M.S. in Computer Sci-
ence from Kent State University.

306

SESSION 5-A
DESIGN TOOLS

Chair: S. Singh, Oregon State University, USA

The HARNESS PVM-Proxy: gluing PVM applications to distributed object
environments and applications

Mauro Migliardi and Vaidy Sunderam
Emory University, Dept. of Math & Computer Science

1784 N. Decatur Rd. #100
Atlanta, GA, 30322, USA

{om, vss} @mathcs.emory.edu

Abstract
Metacomputing frameworks have received renewed

attention of late, fueled both by advances in hardware and
networking, and by novel concepts such as computational
grids. HARNESS is an experimental metacomputing
system based upon the principle of dynamic
^configurability not only in terms of the computers and
networks that comprise the virtual machine, but also in the
capabilities of the VM itself. These characteristics may be
modified under user control via a "plug-in" mechanism
that is the central feature of the system. The system's
capabilities have been used to develop a PVM
compatibility suite, i.e. a set of plug-ins that allow users to
run PVM applications of top of HARNESS. In this paper
we describe the PVM-Proxy plug-in: a plug-in capable of
gluing PVM applications to distributed object
environments.

1 Introduction

HARNESS [1] is a metacomputing framework that is
based upon several experimental concepts, including
dynamic reconfigurability and fluid, extensible, virtual
machines. The underlying motivation behind HARNESS
is to develop a metacomputing platform for the next
generation, incorporating the inherent capability to
integrate new technologies as they evolve. The first
motivation is an outcome of the perceived need in
metacomputing systems to provide more functionality,
flexibility, and performance, while the second is based
upon a desire to allow the framework to respond rapidly to
advances in hardware, networks, system software, and
applications. Both motivations are, in some part, derived
from our experiences with the PVM [2] system, whose
monolithic design implies that substantial re-engineering
is required to extend its capabilities or to adapt it to new
network or machine architectures.

HARNESS attempts to overcome the limited flexibility

of traditional software systems by defining a simple but
powerful architectural model based on the concept of a
software backplane. The HARNESS model is one that
consists primarily of a kernel that is configured, according
to user or application requirements, by attaching "plug-in"
modules that provide various services. Some plug-ins are
provided as part of the HARNESS system, while others
might be developed by individual users for special
situations, while yet other plug-ins might be obtained from
third-party repositories. By configuring a HARNESS
virtual machine using a suite of plug-ins appropriate to the
particular hardware platform being used, the application
being executed, and resource and time constraints, users
are able to obtain functionality and performance that is
well suited to their specific circumstances. Furthermore,
since the HARNESS architecture is modular, plug-ins may
be developed incrementally for emerging technologies
such as faster networks or switches, new data compression
algorithms or visualization methods, or resource allocation
schemes - and these may be incorporated into the
HARNESS system without requiring a major re-
engineering effort.

HARNESS' reconfiguration capabilities allowed us to
design and implement a PVM compatibility suite, i.e. a set
of plug-ins that emulate the services provided by PVM
demons and allows users to run unchanged PVM
applications on top of HARNESS. The native distributed
object programming model of HARNESS on which the
compatibility suite is based has been leveraged to
introduce a high level of modularity in the design of the
compatibility suite. This modularity allows introducing
new technologies and new services into PVM without
requiring a complete redesign of the demon itself.

However, the compatibility suite only allows execution
of traditional message passing PVM applications that
cannot directly take advantage of the underlying
distributed object infrastructure, while our perceived goal
was to provide a seamless connection for PVM users to
distributed objects technology.

0-7695-0556-2/00 $10.00 © 2000 IEEE
309

Level 4

Applications
Change theNet ofchtiputatianal
resources enrolled in the DVM

Baseline

Level 3
Services arc plugged-in to form the

Level 2
Heterogeneous Computational Resources Joins fte DVM

Level 1

Figure 1 Abstract model of a HARNESS Distributed Virtual Machine

In this paper we describe the PVM-Proxy plug-in, a
HARNESS plug-in that is able to bridge the gap between
traditional PVM applications and HARNESS native
distributed object infrastructure. This plug-in appears as a
standard PVM task to any running PVM application, but is
able to interface directly to distributed objects applications
translating messages coming from the PVM side into RMI
or CORBA procedure calls and procedure calls coming
from the distributed object applications back into PVM
messages. This plug-in can be used to make complete
distributed object applications such as our reusable
simulation framework [3] appear as PVM tasks to PVM
applications, actually allowing traditional PVM
applications to take complete advantage of the capabilities
of the HARNESS system.

The full paper will be structured as follows: in section 2
we will give a detailed description of the HARNESS
metacomputing framework and of its main architectural

features; in section 3 we will describe the HARNESS
PVM compatibility suite; in section 4 we will describe the
architectural and implementation details of the HARNESS
PVM-Proxy plug-in; in section 5 we will show how our
system can be used to glue together heterogeneous
applications using a distributed MPEG coder as an
example application; finally, in section 6 we will provide
some concluding remarks.

2 HARNESS System Architecture

The fundamental abstraction in the HARNESS
metacomputing framework is the Distributed Virtual
Machine (DVM) (see figure 1, level 1). Any DVM is
associated with a symbolic name that is unique in the
HARNESS name space, but has no physical entities
connected to it. Heterogeneous Computational
Resources may enroll into a DVM (see figure 1, level 2)

310

at any time, however at this level the DVM is not ready
yet to accept requests from users. To get ready to interact
with users and applications the heterogeneous
computational resources enrolled in a DVM need to load
plug-ins (see figure 1, level 3). A plug-in is a software
component implementing a specific service. By loading
plug-ins a DVM can build a consistent service baseline
(see figure 1, level 4). Users may reconfigure the DVM at
any time (see figure 1, level 4) both in terms of
computational resources enrolled by having them join or
leave the DVM and in terms of services available by
loading and unloading plug-ins.

The main goal of the HARNESS metacomputing
framework is to achieve the capability to enroll
heterogeneous computati'onal resources into a DVM and
make them capable of delivering a consistent service
baseline to users. This goal require the programs building
up the framework to be as portable as possible over an as
large as possible selection of systems. The availability of
services to heterogeneous computational resources derives
from two different properties of the framework: the
portability of plug-ins and the presence of multiple
searchable plug-in repositories. HARNESS implements
these properties mainly leveraging two different features
of Java technology. These features are the capability to
layer a homogeneous architecture such as the Java Virtual
Machine (JVM) [4] over a large set of heterogeneous
computational resources, and the capability to customize
the mechanism adopted to load and link new objects and
libraries. However, the adoption of the Java language as
the development platform for the HARNESS
metacomputing framework has given us several other
advantages:
• it allowed us to develop the framework as a collection

of cooperating objects with consistent boundaries
(Java Classes) and to guarantee to users an 00
development environment;

• it allowed us to define a clear and consistent boundary
for plug-ins, in fact each plug-in is required to appear
to the system as a Java class;

• it allowed us to implement all the entities in the
framework adopting a robust multithreaded
architecture;

• it allows users to develop additional services both in a
passive, library-like flavor and in an active thread-
enabled flavor;

• it provided us an Object Oriented mechanism to
require services from remote computational resources
(Java Remote Method Invocation [5]);

• it provided us a generic methodology to transfer data
over the network in a consistent format (Java Object
Serialization [6]);

• it allowed us to provide to users the definition of
interfaces to be implemented by plug-ins
implementing the basic services;

• it allowed us to tune the trade-off between portability
and efficiency for the different components of the
framework.

This last capability is extremely important, in fact,
although portability at large is needed in all the
components of the framework, it is possible to distinguish
three different categories among the components that
requires different level of portability. The first category is
represented by the components implementing the
capability to manage the DVM status and load and unload
services. We call these components kernel level services.
These services require the highest achievable degree of
portability, as a matter of fact they are necessary to enroll
a computational resource into a DVM. The second
category is represented by "very commonly used services
(e.g. a general, network independent, message passing
service or a generic event notification mechanism). We
call these services basic services. Basic services should be
generally available, but it is conceivable for some
computational resources based on specialized architecture
to lack them. The last category is represented by highly
architecture specific services. These services include all
those services that are inherently dependent on the specific
characteristics of a computational resource (e.g. a low-
level image processing service exploiting a SIMD co-
processor, a message passing service exploiting a specific
network interface or any service that need architecture
dependent optimization). We call these services
specialized services. For this last category portability is a
goal to strive for, but it is acceptable that they will be
available only on small subsets of the available
computational resources. These different degrees of
required portability and efficiency over heterogeneous
computational resources can optimally leverage the
capability to link together Java byte code and system
dependent native code enabled by the Java Native
Interface (JNI) [7]. The JNI allows to develop the parts of
the framework that are most critical to efficient application
execution in ANSI C language and to introduce into them
the desired level of architecture dependent optimization at
the cost of increased development effort [8] [9].

The use of native code requires a different
implementation of a service for each type of
heterogeneous computational resource that need to deliver
that service. This fact implies a development effort
multiplied for each plug-in including native code.
However, if a version of the plug-in for a specific
architecture is available, the HARNESS metacomputing
framework is able to fetch and load it in a user transparent
fashion, thus users are screened from the necessity to
control the set of architectures their application is
currently running on. To achieve this result HARNESS
leverages the capability of the JVM to let users redefine
the mechanism used to retrieve and load both Java classes
bytecode and native shared libraries. In fact, each DVM in

311

the framework is able to search a set of plug-ins
repositories for the desired library. This set of repositories
is dynamically reconfigurable at run-time, users can add
new repositories at any time.

The kernel level services of a Harness DVM are
delivered by a distributed system composed of two
categories of entities:
• a DVM status server, unique for each DVM;
• a set of Harness kernels, one and only one running on

each computational resource currently enrolled or
willing to be enrolled into a DVM.

To achieve the highest possible degree of portability for
the kernel level services both the kernel and the DVM
status server are implemented as pure Java programs. We
have used the multithreading capability of the Java Virtual
Machine to exploit the intrinsic parallelism of the different
tasks the two entities have to perform, and we have built
the framework as a set of Java packages.

Control messages and DVM status changes not related
to the discovery-and-join protocol or the recover-from-
failure protocol, are exchanged through a star shaped set
of reliable unicast channels whose center is the DVM
status server. These connections are implemented through
the communication commodities delivered by the java.net
package. It is important to notice that neither the star
topology, nor the use of the java.net package are
constraints imposed to all the communication services in
the framework. On the contrary, user level communication
services may adopt the connection topology that best suit
their needs and are not required to use the java.net package
to implement these commodities. For this reason, neither
the star topology interconnecting the kernels and the DVM
Server, nor the fact that the java.net package is used
represent a major bottleneck in the Harness
metacomputing framework. The kernels and the DVM
server interacts to guarantee a consistent evolution of the
status of the DVM both in front of users requesting new
services to be added and in front of computational
resources or network failures. This consistency is enforced
by means of a set of protocols executed during the
different phases of the DVM life.

A DVM may be started in three different ways:
• starting a DVM server;
• starting a kernel;
• starting an application.

In the first case, a user invokes the execution of the
main method of the Java H_Server class from the
edu.emory.mathcs.harness package providing as a
parameter the name of the DVM this server is starting. The
DVM server reads the configuration file harness.defaults
to see if the user wants to use server based implementation
or a multicast implementation of the HARNESS name
space. In the former case the server gets from the same
configuration file the port and address of the HARNESS
name server the user wants to adopt and connects to it to

register its presence. In the latter case it executes a hashing
function to map the DVM name into a multicast IP address
and port. Then it starts to multicast on the channel I'm
alive packets and to listen for incoming packets.

In name-server mode the DVM server can get two types
of packets:
• probe requests from the name-server;
• join requests from kernels.
Probe request are sent by the naming service every time it
is requested to provide information about a DVM server.
Before sending it's current data the name server validates
them with a probe message. If the server receives a join
packet then it generates a TCP connection to the sender
kernel and it starts the Join protocol.

In multicast mode the DVM server can get three types
of packets:
• I'm alive packets from a DVM server;
• join packets from kernels;
• query packets from applications.

The server checks the source address of any I'm alive
packet it receives. If the packet comes from another server
the server multicasts a train of I'm alive packets to notify
its presence to the other server and then it exits. This will
enforce the kernels running on computational resources
enrolled in the DVM to start the server regeneration
protocol and to regenerate a new, single server. This
mechanism prevents the existence of multiple DVM
servers with partial or outdated information and guarantees
that a single DVM server is active in a DVM.

If the server receives a join packet then it generates a
TCP connection to the sender kernel and it starts the Join
protocol.

If the server receives a query packet then it checks if a
kernel exists on the computational resource from which
the application is querying. If a kernel is already active,
then the server provides to the querying application the
port number on which the kernel accepts connections from
applications, otherwise it provides a null reply.

The second way to start a Harness DVM is to invoke
the main method of the Main class in the
edu.emory.mathcs.harness package providing as a startup
parameter the name of the DVM the kernel wants to enroll
into. The kernel reads the configuration file
harness.defaults to check if the user wants to use server
based implementation or a multicast implementation of the
HARNESS name space. In the former case the kernel gets
from the same configuration file the port and address of
the HARNESS name server the user wants to adopt, it
connects to it and asks if there is a DVM server for the
DVM it wants to join. If there is one it sends a join request
to it, if there is none it starts the DVM regeneration
protocol.

In the latter case, the kernel executes the hash function
to map the DVM name into an IP multicast address and
port and sends send a Join packet on that channel. The

312

kernel performs three tries before giving up. After three
tries have timed out without a DVM server activating a
TCP connections the kernel assume no DVM server exists
and spawns a new JVM to start a new DVM server. Then
he starts again sending the Join packet.

The third way to start a Harness DVM is to instantiate
the class H_core or H_RMIcore from the package
edu.emory.mathcs.harness in an application providing the
DVM name as a parameter. The H_RMIcore class
constructor hashes the DVM name to obtain a port for the
HARNESS RMI registry. The HARNESS RMI registry
provides to the H_RMIcore class an RMI reference for the
local kernel. If it cannot connect to that port, the
H_RMIcore class assumes that no kernel for the given
DVM is active on the local host and starts a new one.

The H_core class constructor executes the hashing
function and drops a query packet on the multicast
channel. If no answer comes back or if the answer says
that no kernel is active on the computational resource the
constructor spawns a new JVM starting a kernel and sets a
flag to avoid starting a new one even in the case of another
failed set of tries. The possibility of two or more
applications racing to spawn to or more kernels on the
same computational resource is prevented by the Join
protocol.

The DVM server initiates the join protocol each time it
receives a multicast join packet. The Join packet contains
the IP address and a port number onto which the willing-
to-join kernel is accepting a TCP connection. The first step
of the join protocol is the instantiation of a TCP
connection between the DVM server and the Joining
kernel. Then the DVM server waits for the kernel to
provide its baseline. At this point the server performs two
checks: the baseline check and the uniqueness check. The
baseline check consists of checking the compatibility of
the kernel with the current implementation of the DVM
server. The uniqueness check consists of checking that no
other kernel has already joined from the same
computational resource. In case of failure of one of these
two checks an error message is sent back, the protocol
terminates with a failure and the connection is closed. If
the kernel passes both controls then the DVM servers
checks if the kernel is Joining back after a failure
(computational resource or network crash) or if the
computational resource has never been enrolled in the
DVM before. If the computational resource is coming
back from a crash the DVM server sends to the kernel a
crash token message and a copy of its pre-crash status,
otherwise it sends a new token message. The following
step is to get from the kernel its current status and to send
back to it the current status of the DVM.

At this point the Join protocol is successfully
completed, the DVM server generates a Join event that is
distributed as described in next section while the kernel is
now enrolled in the DVM.

The leave protocol is much simpler that the Join protocol.
The leave protocol is always started by a kernel. A TCP
connection between the kernel is guaranteed to be active,
as a matter of fact it is not possible to start the Leave
protocol before a successful completion of the Join
protocol. The kernel sends an explicit Leave message to
the DVM server and then closes the TCP connection. The
DVM server generates a Leave event that is distributed to
all the remaining kernels.

The status of the DVM consists of the set of
computational resources currently enrolled in the DVM,
the set of services available on each enrolled
computational resource as well as the DVM's baseline.
We call baseline of a DVM the minimum set of services a
computational resource must be able to deliver in order to
join the DVM. The dynamic nature of the framework
make this state an evolving entity, thus the framework
keeps it up to date and available for queries from any
application or service in the DVM. It is important to notice
that information about the applications currently using
services or internal status of an application is not part of
the DVM status and loosing track of it does not in any way
compromise the existence of the DVM in itself. Any form
of application tracking and check-pointing, while highly
desirable for many applications, is a service in itself and
the framework does not need to incorporate it in its status.

The Harness metacomputing framework guarantees that
all the events that changes the status of the DVM are
received by all the kernels enrolled in the DVM in the
same order. In the current implementation the Total Order
(TO) protocol is implemented adopting the DVM server as
a central ordering entity and exploiting the stream nature
of TCP connections to avoid subsequent losses of order.
Although very simple, a centralized implementation of the
TO protocol has in general two negative features:
• the central entity is a single point of failure;
• the central entity is a bottleneck.

However, these two problems do not represent a major
flaw in the design and efficiency of our framework. In
fact, the single point of failure is limited to the incapability
of the framework to retrieve after a DVM server crash the
status of a previously crashed kernel and the central
bottleneck does not influences application level
communication services. The status of a DVM as it is
defined in the Harness metacomputing framework consists
of the sum of the stati of each enrolled kernel. Each event
that changes the status of the DVM changes the status of a
kernel in a way that is recorded by the kernel itself with
the only exception being the case of a kernel crash. Thus it
is not possible for an event, except for kernel crash events,
to get lost in a DVM server crash. On the contrary, in the
case of a DVM server crash it is possible to reconstruct
completely the current status of the DVM simply
obtaining from every surviving kernel a copy of its current
status.

313

User Setup
public int login(Java.lang.String, Java.lang.String)
public int logout()
public boolean setCResourceMapping(H_pname)
public boolean setServiceMapping(H_pname)

DVM Manipulation
public java.lang.String getNameO
public H_StringKeyedTable getArchs()
public H_crname getAHosts()[]
public java.util.Enumeration getHostsO
public H_RetVal grabHost(H_crname[], H_QoS)
public H_RetVal deleteHostf H_crname[], H_QoS);
public void kill()

Plug-ins Manipulation
public H_RetVal getlnterfaceDescriptor(H_phandle)
public H_RetVal load(H_pname, H_crname[], H_QoS)
public H_RetVal unload(H_phandle[], H_QoS)

Information Gathering
public H_Info getlnfoO
public java.util.LinkedList getAll(H_pname)
public java.util.LinkedList getAll(H_pname, H_crname)
public java.util.LinkedList getAll(java.lang.Class)
public java.util.LinkedList getAll(java.lang.Class, H_crname)
public H_phandle getAny(H_pname)
public H__phandle getAny(H_pname, H_crname)
public H_phandle getAny(java.lang.Class)
public H_phandle getAnyfjava.lang.Class, H_crname)
public java.util.LinkedList getPlugins(H_crname)

Figure 2 Functional interface provided by the Java class H_RMIcore.

It is important to notice that the fact that this
reconstruction process is not able to keep track of crashed
kernels does not mean that applications relying on services
delivered by the crashed kernels will have as their only
choice to stop and fail. Reliable distributed check-pointing
of application's status and restart of failing services are
services themselves, thus their behavior in the event of
kernel crashes is not constrained by the DVM status and
the reconstruction of the DVM status is not concerned
with them.

To evaluate the bottleneck represented by the star
topology, it is important to notice that it involves only
events requiring DVM status changes, as a matter of fact
any traffic generated by user application exchanging data
is not required to flow through the DVM server. The only
events that the DVM status server needs to process are:
• a kernel joining the DVM;
• a kernel leaving the DVM;
• a kernel crash;

• the addition of a service to the DVM.
Thus the DVM server represents only a marginal

bottleneck in the Harness metacomputing framework.
The current release of HARNESS provides 4

mechanisms for applications to interact with a HARNESS
kernel:

• the H_RMIcore Java class that provides a set of
fully object oriented methods and communicates
with the kernel by means of RMI;

• the H_core Java class that provides the same
functional interface as the H_RMIcore class on top
of a string oriented protocol;

• a C library that exploits the JNI to invoke the
methods of the above mentioned Java class;

• a language independent, string oriented protocol on
top of a TCP reliable connection.

In figure 2 you can see the functional interface provided
by the Java class H_RMIcore. The functions can be
divided in four groups: user setup, DVM manipulation,

314

HJJSER
username
password
H_ISROOTLiKE <present if this user is equivalent to root absent otherwise>
HLOADABLECLASSES
<classname or packagename as in import statement in Java files>

H.ENDLOADABLECLASSES
H.ACXESSIBLEPLUGINS
<classname or packagename as in import statement in Java files>

H.ENDACCESSIBLEPLUGINS
HREPOSITORIES
<repository URL>

H_ENDREPOSrrcaUES
HENDUSER

Figure 3 Syntax of the harness.policy file.

plug-ins manipulation and information gathering. A user
need to log into the DVM to be allowed performing any
other operation. The DVM stores the couple user name-
password so that the same user will be recognized at log-in
independently from the kernel he is loggin-in from. A user
can set up a resource mapper service and a service mapper
service. The resource mapper service performs a
translation from a user-defined naming scheme into the
HARNESS naming scheme for the names of the
computational resources. The service mapper service
performs a translation from a user-defined naming scheme
into the HARNESS naming scheme for the names of the
plug-ins. Thus it is possible to build user-defined naming
schemes on top of the basic HARNESS naming scheme
both for computational resources and for plug-ins. The
only constraint is the need for a complete mapping from
the user-defined scheme to the HARNESS scheme. As an
example, we developed a simple resource mapper that is
able to translate architecture-names into instances of that
architecture available at Emory. Once logged-in a user can
access all the other functionality provided to grab and
remove hosts from the DVM, load and unload plug-ins
and query the status of the DVM. The capability to request
a service (e.g. deleting a host) does not imply that the
system will fulfill the request, in fact every HARNESS

kernel is configured at bootstrap with security options.
These options define:
• which user is the root user for the local kernel;
• if root user access is required to force the kernel to

leave a DVM;
• which plug-ins each user can load;
• which plug-ins each user can access;
• which repositories the kernel can retrieve plug-ins

from.
It is important to notice that each kernel can set a different
set of users who have root access to it. Thus, it is possible
both to have a global system administrator for clusters
owned by a single entity and to have a different
administrator for each node of a DVM composed of
personal workstations.
The sets of plug-ins loadable and accessible for each user
are defined through a security configuration file, namely
the harness.policy file. In figure 3 you can see the syntax
of the harness.policy file, while in figure 4you can see an
example instance of it. If a user is not explicitely cited in
the policy file he is associated by default to user
NOBODY. Thus it is possible to establish a minimum
access level for anonymous users by means of the user ID
NOBODY. A plug-in can be unloaded only by the user
who loaded it or by the local root user. Thus it is not

315

HUSER
MAURO
Harness
HJSROOTUKE
H_LOADABLECLASSES
edu.emory. mathcs.harness. *
helloHamess.*
cgrowtM.*
H_ENDLDADABLECLASSES
H_ACCESSIBLEPLUGINS
edu.emory.mathcs.harness. *
helloHamess.*
cgrowtM.*
H_ENDACCESSIBLEPLUGINS
H_REPOSITORIES
http://www.mathcs.ernory.edu/harness/REPOSITORY/
http://www. mathcs.emory.edu/~om/REPOSITORY/
H_ENDREPOSITORIES
H_ENDUSER

H_USER
NOBODY
NOBODY
H_LOADABLECLASSES
edu.emory.mathcs.harness. *
helloHamess.*
H_ENDLOADABLECLASSES
H_ACCESSIBLEPLUGINS
edu.emory.mathcs.hamess. *
helloHamess.*
cgrowth4.*
H_ENDACCESSIBLEPLUGINS
H_REPOSIT0RIES
http://www.mathcs.emory.edu/hamess/REPOSITORY/
H_ENDREPOSITORIES
H_ENDUSER

Figure 4 An example harness.policy file.

possible for a non-root user to remove a plug-in that is part • requiring no changes into PVM applications to run in
of another user's application. the new environment;

• minimizing the amount of changes to be inserted in the
3 The Design Of a PVM plug-in for a application side PVM library;
HARNESS DVM * achieving a modular design for the services provided

by the PVM daemon.

The design of our PVM compatibility suite had three u,We achie/ed these goals by designing a set of plug-ins
, . .. able to understand the original PVM library to PVM main objectives: D J

316

RMI calls from oilier demons

AWepts connections from tasks

V V V
Jpymd intaface _: _ j*ymdjn mterfä« ^ jPTOl£Uiiilerf ic^

LOAD FROM HARNESS SIDE

To and from tasks /^~~~\
'-Socket} - {-Sacket-}- /-Socket-)- -

PVMD start-up
checks all necessary generic plug-: us
are present. Loads them if necessar /.

Init system, start other plugin camponi nts

Accepter Threads

PVM information manager
Local host table tracks locaTchange!

Execute distributed election to regene ate
Master

Status Querying

PVM Plug-in

Notify ma ;ter death

Harness to PVM event translator

ask deaths ~—

Global Host table
(ONLY ON MASTER)
Merges local host tables

Local Update

Interpretate task messages

Request services of other plugfins
to service these requeste-^-^

User Level Message Passing Service

Urlicast Multicast

Group Translatiomit

PVM TID management unit

-\
PVM- -T1D based routing unit

, ! ,'-^-^tJnae!iverable messages

Refoble Event poster; ; Generic PlUg-inSJ Generic process spawning ana
managing plug-in !

■
I

i i

G en eric point-to-pamt reliable
transport plug-in

RMI calls to Jpvmdjn interface
^-Update master info structure

Figure 5

RMI calls to Jpvmd_m interface
Quay master host table

Architecture of the HARNESS PVM Plug-in

RMI calls to Jpvmd_m interface
Merge local status into global status

daemon protocol and to duplicate the services provided by
the original PVM daemon. This approach provides
complete compatibility with PVM legacy code, both in C
and in FORTRAN, and requires only one change in the
PVM library on the application side, namely the adoption
of internet domain sockets for the communication channel
between the library and the daemon.

Thus to run a legacy PVM application in the Harness
PVM environment it is only necessary to link the original
object code with the modified version of the library.

In our implementation, the services provided by the
PVM daemons to applications are delivered by dedicated
modules and general purpose Harness plug-ins such as a

process-spawning plug-in and a message-passing plug-in
(see figure 5). In figure 6 we show the actual sequence of
the events in the Harness PVM startup, while figure 7
shows the chain of events serving an add_host request. At
PVM startup a special PVM application (i.e. the
HARNESS-PVM console) starts up the PVM demon by
issuing to the Harness kernel the command to load the
main PVMD plug-in. This plug-in takes care to request the
Harness kernel to load the services that are required to
provide full PVM compatibility. When a task requests an
add-host operation the local PVMD plug-in translates it
into a request for the remote Harness kernel to load the
main PVMD plug-in which then takes care of requesting

317

Console starts

Console starts up
Harness and loads
PVMD plug-in

Harness kernel loads
PVMD plug-in

() Message Pas sing

(23 Poster

() Spawner

PVMD
plug-in Inits internal data structures

Synch with other demons (if any) thrbugh
harness queries

PVMD ph^-inchreki for pasar«
of iKqywasd generic plqg-ilE uri loads
them if necessary

Figure 6 Sequence of events at Harness PVM startup

the loading of the other needed plug-ins.
The current version of the plug-in provides only the

services required to emulate a completely functional
subset of PVM daemon's capabilities. This subset
includes:
• all the process control PVM commands;
• the pvm_parent, pvm_tidtohost and pvm_error

information commands;
• all the message buffers commands;
• all the point-to-point sending commands;
• all the receive commands.
Multicast and group operations are currently not
supported, however the development of these services as
additional pluggable module is in progress.

Direct routing is supported as it completely bypasses
the PVM demons and is completely implemented in the
original PVM library.

The modularity of the design will easily let us
substitute any plug-in with new versions in order to
provide an enhanced version of the service. As an
example, it will be easy to load a new version of the
database plug-in to provide an extended system querying
capability. Besides, the Harness capability to hot swap
services allows run-time tuning of services to the set of
hosts enrolled in the virtual machines, e.g. a specific
version of message-passing plug-in can be loaded at run-
time if a new communication fabric becomes available.

This design also has the following additional
advantages. The first one derives from the fact that the
message-passing service provided by the message-passing
plug-in needs only to peek at the destination field of a
message in order to route it and does not need to know

anything about the actual content of the message. This is
beneficial for two reasons:
• the marshalling and un-marshalling of the data types is

performed inside the Harness PVM library in C or
Fortran thus we don't incur in the typical marshalling
inefficiency due to the strong typedness of Java;

• it is extremely easy to substitute the message passing
plug-in with another plug-in optimized to a specific
communication fabric (be it a proprietary local
network or an unreliable Internet connection) because
they only need to move arrays of bytes.
Another benefit of our design is the fact that PVM

applications can rely on the Harness capability to soft-
install applications to move executable and libraries to the
hosts in the VM. Thus it is not necessary to install the
application and PVM itself on all the hosts of the VM, the
Harness loader will do it as long as they are available on
any host in the Harness DVM or on any one of the enlisted
repositories.

A third, very important benefit of our design is the
removal of the single point of failure represented by the
master PVM daemon. In fact, providing PVM
compatibility on top of the Harness system by means of a
set of cooperating plug-ins, allowed us to exploit the
Harness event subscription/notification service to
implement a distributed control algorithm in the
information management plug-ins. This algorithm is
capable of reconstructing a consistent, up-to-date version
of the PVM status after the crash of any daemon.

The performance delivered by the HARNESS PVM
plug-in is still not on par with the original PVM. In
particular, due to the fact that the PVM plug-in shares the

318

PVMD plug-in forwards
request to load PVMD
plug-in to remote Harness
kernel

t J Message Passing
() Nottfior

() Poster

(~) Spawner

Inits internal dak structures
Synch with other demons (if any) thi)ough
harness queries

PVMD plug-in chads for praence
of ffiquued generic plug-ire and loads
themif JKssaiy

I Figure 7 Sequence of events performed to service an add_host request.

JVM with any other plug-in on the same host, the
performance degradation is extremely sensitive to the
other activities currently on-going in the HARNESS
DVM. To cope with this problem we are currently
studying a mechanism to force HARNESS to dedicate a
complete JVM to the components composing the PVM
demon and applications. It is our opinion that such a
mechanism will allow removing the dependency of the
HARNESS PVM plug-in performance to external
applications without compromising the modularity and
expandability achieved so far.

4 The PVM-Proxy plug-in

The PVM-Proxy plug-in implement a generic
translation of PVM user messages into function calls
according to a user-defined protocol that can be plugged in
the Proxy itself as a behavioral object. This arbitrary
protocol takes care of interpreting the messages coming

from the PVM side in order to generate the correct actions.
The simplest possible protocol contains only data packet
that need to be processed by the distributed object
application connected to the PVM-Proxy. The restrictions
that we need to impose onto a PVM task in order to be
able to hot swap it are:
• the original task needs to be able to checkpoint itself;
• the original task must not be currently using the direct-

routing capability of the PVM system.
The first restriction is a direct consequence of the fact

that the original task will be substituted and there is no
way to remove it. However, this restriction applies only if
the PVM task is being swapped out during the execution.
In the next section we will show how it is possible to
remove it in the case in which a component of a PVM
application is substituted at start-up time.

The second restriction, on the contrary, depends on our
implementation of the PVM compatibility suite, in fact it
derives from the fact that we left the original PVM library

319

Input Frames

L >

Motion
Estimation

MASPAR
Array Proc.

SIMD
Execution

">
Kanatauri

'PVM ^

Discrete
Cosine
Transfcurj

PVM
Font-end

Transputer
Array

MIMD
Execution

>
Vector Quantization,
Huffman encoding

PVM
Task

Workstation

Output
Stream

^>

SISD
Execution

Figure 8 Macro-block architecture of the original SM-IMP coder

untouched and unaware of the changes that we introduced
in the demons. However, we plan to remove this
restriction in future versions of the PVM compatibility
suite.

To execute the actual run-time substitution it is
necessary to perform the following steps:
1. notify the PVM plug-in that all the traffic toward the

given task has to be held;
checkpoint the PVM task;
load in HARNESS the PVM proxy plug-in;
kill the original PVM task;
give the saved status to the proxy plug-in;
tag the PVM task TID in the PVM plug-in with the
proxy attribute and store the handle of the actual plug-
in;
invalidate the possibly cached references to the
swapped out task in all the components of the PVM
plug-in;

8. remove the hold on the traffic toward the task.
The execution of the PVM application will continue

undisturbed with the exception that every other PVM task
will experience a temporary lag in the responsiveness of
the swapped task while HARNESS performs the above
described steps.

As soon as the proxy plug-in is in place it can start
acting as a bridge between the legacy application and any
HARNESS service such as the HARNESS reusable
simulation. This capability allows extending legacy PVM
simulation with distributed components technology and
can be used to evolve a long-running application (e.g. a
climate simulation) according to the results obtained.

7.

The PVM proxy can be also used to substitute obsolete
components of a distributed application at start-up time.
This process requires the application to be capable of
pausing between the set-up phase and the actual execution.
However, it removes the requirement for the task to be
substituted to be able to checkpoint its status, in fact, the
actual substitution takes place before the tasks are
initialized with the zero state. The actual sequence of steps
for a start-up time task substitution is as follows:
1. notify the PVM plug-in that all the traffic toward the

given task has to be held;
2. load in HARNESS the PVM proxy plug-in;
3. kill the original PVM task;
4. tag the PVM task TID in the PVM plug-in with the

proxy attribute and store the handle of the actual plug-
in;

5. remove the hold on the traffic toward the task.
The PVM-proxy plug-in automatically redirects all the
messages sent to the original task to the proxied task. Thus
the new implementation begins execution directly from the
zero state and there is no need for the original task to be
able to checkpoint itself.

5 An Example Use: Removing the Obsolete
Components in a Distributed MPEG Coder

In this section we will describe how we have used the
PVM-proxy plug-in to substitute the obsolete components
of a legacy application, namely a distributed MPEG-1
coder [10] targeted at the heterogeneous parallel SM-IMP
testbed architecture [11].

320

 _

Input Frames Output
Stream

i—> Motion j-
Estimation <-

i r\ Discrete
Cosine
Tjans£otm

' PVM >
i Proxy i

 >
Vector Quantization,

—'\

PVM ^\
. Proxy J

i^ V

(
PVM ^
Task) ir

HARNESS
farmer

i

HARNESS
farmer

Workstation

3 ags of work

Execution
Bags of work

Execution
SISD

Execution

1 :igure 9 Mi icrc -block archite cture of the h MRNESS coder based on the PVM-proxy plug -in

MPEG-1 is an ISO standard for motion picture
compression [12]. The algorithm defined in the standard
requires the execution of several steps most of which are
very computationally intensive. Thus it is very well suited
to a distributed pipelined implementation. The SM-IMP
project developed a prototype distributed MPEG coder for
its heterogeneous SIMD-MIMD parallel architecture. This
coder divided the MPEG algorithm in a sequence of
pipelined steps. Each of these steps was performed by the
component of the parallel architecture whose
computational paradigm was best suited to the kind of
parallelism of the computational step itself. The different
activities were glued together using the PVM message
passing service. The main parallelizable steps identified by
the SM-IMP coder were:

• motion estimation;
• discrete cosine transform.

The former step was performed on a MASPAR MP1
SIMD array processor [13], while the latter step was
performed by a MIMD transputer based multiprocessor.
The remaining interconnecting steps were implemented as
sequential PVM tasks.
To prove the feasibility of PVM tasks substitution by
means of the PVM-proxy plug-in:
1. we substituted the obsolete parallelized components

of the coder with a new distributed farmer/workers
implementation based on the HARNESS reusable
simulation framework [14]

2. we connected the components by means of the PVM-
proxy plug-in.

In figure 8 you can see the macro-block architecture of the

original SM-IMP coder and in figure 9 the macro-block
architecture of the new one.
The presence of the PVM-proxy plug-in introduces a non
negligible overhead. However, in our example the original
PVM task has been substituted by a the farmer plug-in.
This plug-in shares a JVM with both the PVM-plug-in and
the PVM-proxy plug-in. Thus, all the data flowing through
the PVM demon with destination the proxied task do not
need to perform another hop through the TCP stack to
reach it. This fact largely compensates the overhead
introduced by the PVM-proxy plug-in.

6 Concluding remarks

In the field of metacomputing, features and capabilities
are, by definition, subject to constant change. One possible
approach to achieve the insulaton of applications from this
aspect of platform evolution is to employ a model that is
extremely abstract. However, this approach usually leads
to very inefficient systems. Our alternative strategy is to
build flexibility in the metacomputing framework itself, by
permitting software-based reconfiguration in response to
both new technological developments and application
program requirements.'As an example of this flexibility, in
this paper we have described the PVM-Proxy plug-in. This
plug-in leverages the HARNESS capability to reconfigure
the services and programming environments provided by a
Distributed Virtual Machine to transparently connecting
legacy PVM applications to other Harness applications.
This capability allows substituting obsolete components of
a legacy application without requiring any change in the

321

remaining components of the application.
To prove our claim we have adopted as an example a

PVM legacy application, namely an MPEG-1 coder, that
was targeted to an obsolete heterogeneous parallel
architecture. We successfully substituted the two main
components of the PVM legacy application with newly
developed modules based on the farmer/workers paradigm
and Java distributed object technology.

We believe that this methodology endows applications
with a great deal of flexibility and the capability to adapt
to changing needs both in terms of evolving hardware and
software. Besides, Besides, our experiments with the
PVM-proxy plug-in show that the overhead introduced by
this degree of flexibility does not significantly
compromise performance. Nevertheless, future work will
aim at further reducing this overhead.

7 References

1 M. Migliardi, V. Sunderam, A. Geist, J. Dongarra,
Dynamic Reconfiguration and Virtual Machine
Management in the Harness Metacomputing System, Proc.
of ISCOPE98, pp. 127-134, Santa Fe', New Mexico (USA),
December 8-11,1998.

2 A. Geist, A. Beguelin, J. Dongarra, W. Jiang, B. Mancheck
and V. Sunderam, PVM: Parallel Virtual Machine a User's
Guide and Tutorial for Networked Parallel Computing,
MIT Press, Cambridge, MA, 1994.

3 M. Migliardi and V. Sunderam, Distributed,
Reconfigurable Simulation in Harness, Proc. of
PDPTA'99, pgg. 730-736, Las Vegas, June 28-July 1,
1999.

4 T. Lindholm and F. Yellin, The Java Virtual Machine
Specification, Addison Wesley, 1997.

5 Sun Mycrosystems, Remote Method Invocation
Specification, available on line at
http://java.sun.eom/products/jdk/l.2/docs/guide/rmi/index.
html, July 1998.

6 Sun Mycrosystems, Object Serialization Specification,
available on line at
http://java.sun.eom/products/jdk/l.2/docs/guide/serializatio
n/index.html

7 S. Liang, The Java Native Interface: Programming Guide
and Reference, Addison Wesley, 1998.

8 V. Getov, S. Flynn-Hummel and S. Mintchev, High
Performance Parallel Programming in Java: Exploiting
Native Libraries, to appear on Concurrency: Practice and
Experience, 1998.

9 S. Mintchev and V. Getov, Automatic Binding of Native
Scientific Libraries to Java, Proceeding of ISCOPE97,
December, 1997.

10 M. Migliardi, M. Maresca, Performance Evaluation of the
SM-IMP Architecture: a Parallel, Heterogeneous, Image
Processing Oriented Architecture, Proc. of the International
Symposium on Problems of Modular Systems and
Networks, St. Petersburg (Russia), June 26-30,1995.

11 M. Migliardi, Parallel Heterogeneous Architectures for
Image and Signal Processing and Coding, Ph.D. thesis (in
Italian), National Library of Italy, Rome, February 1995.

12 MPEG-1 Standard, ISO/IEC International Standard 11172-
2.

13 J. Nickolls, The design of the MasPar MP1: a cost effective
massively parallel computer, Proceedings of Compcon
Spring 1990, San Francisco 26/2 2/3 1990.

14 M. Migliardi, V. Sunderam, Distributed, Reconfigurable
Simulation in Harness, Proc. of PDPTA '99 pgg. 730-736,
Las Vegas, June 28- July 1,1999.

Biographies

Mauro Migliardi is born in Genoa (Italy) in 1966. He
got a Laurea degree in Electronic Engineering from the
University of Genoa in 1991 and a PhD in Computer
Engineering from the University of Genoa in 1995.

From 1995 to 1997 he has been a research associate at
the University of Genoa where he studied hybrid SIMD-
MIMD computers for image processing in research
projects funded by the EU and the Italian government.

In 1998 and 1999 he has been a research associate at
Emory University and one of the main investigators in the
HARNESS heterogeneous metacomputing project.

Currently he is an assistant professor at the University
of Genoa.

His main research interests are parallel, distributed,
heterogeneous computing systems and architectures,
metacomputing and high performance networking.

Vaidy Sunderam is Professor of Computer Science at
Emory University, Atlanta, USA.
His current and recent research focuses on aspects of
distributed and concurrent computing in heterogeneous
networked environments. He is one of the principal
architects of the PVM system, in addition to several other
software tools and systems for parallel and distributed
computing.
He has received several awards for teaching and research,
including the IEEE Gordon Bell prize for parallel
processing.
Recently his research activities have included novel
techniques for multithreaded concurrent computing, input-
output models and methodologies for distributed systems,
and integrated computing frameworks for collaboration.

322

MoBiDiCK: A Tool for Distributed Computing on the Internet

Moyez Dharsee
Samuel Lunenfeld Research Institute,

Toronto, ON, Canada
dharsee@mshri. on. ca

Christopher W. V. Hogue
Samuel Lunenfeld Research Institute,

Toronto, ON, Canada
hogue@mshri. on. ca

Abstract
We have developed a software tool called MoBiDiCK
ultimately intended for distributed computing. In this
report we detail the design and show results using the
core components of MoBiDiCK running two different
clients on a local cluster. MoBiDiCK is a database
driven system that can be used to marshal a large number
of processors across the Internet in order to have them
collaborate on a single computation. These utilize a
message-passing API and control synchronization
formalism we have developed that uses the HTTP
standard and Web servers. CGI programs on the
volunteer processors perform the computations. The
problem domains best served by MoBiDiCK are parallel
computing problems that are CPU-bound (not I/O-
bound), and require minimal inter-process
communication. The parallel tasks that we present
include analysis of databases of three dimensional protein
structures and Monte-Carlo simulations for ab-initio
protein folding.

1. Introduction

We are principally interested in the protein folding
problem and our motivation to build a distributed
computing system arises from our fundamental desire to
engineer software systems that have the computational
capacity to tackle the high-dimensional problem of
protein folding. We are not alone in the pursuit of
computational resources, as IBM research has recently
announced a project under their "Deep Computing"
division to build a massive new computer specifically for
the protein folding problem, one that will achieve petaflop
performance in five years[l].

We have been designing optimized software for
protein folding for some time and we have recently

published a report of the first fast all-atom method for
generating plausible protein structures in real space[2],
and demonstrated that the program, FOLDTRAJ, has
0(NlogN) time complexity in protein length.

FOLDTRAJ embodies over 10 years of software
design and development work. FOLDTRAJ is an
application developed using the National Center for
Biotechnology Information (NCBI) software development
toolkit[3]. The NCBI SDK comprises source code used in
many bioinformatics applications such as Entrez, an
integrated bioinformatics database; BLAST, a tool for
searching DNA and protein sequence databases; Cn3D, a
tool for three-dimensional molecular structure
visualization; Sequin, an annotation tool for sequence
databases, and a growing number of Web based
applications including the PubMed system, one of the top
scientific sites on the Internet. Within the NCBI toolkit
lies rich source code resources including a suite of tools
written in C for ASN.l data specification, encoding,
decoding and code generation, a comprehensive HTTP
protocol interface, as well as our own work on a
comprehensive programming interface for 3-D structure
applications known as MMDB-API[4].

To tackle the protein folding problem, we wish to use
FOLDTRAJ on thousands, possibly tens of thousands of
computers. Distributed computing has already been
explored for other large problems. Cryptographers
studying brute-force methods to crack encryption schemes
have already laid much of the groundwork for distributed
computing[5]. The SETI@home project (Search for
Extra-Terrestrial Intelligence) has demonstrated that over
a million processors across the Internet can be brought to
bear on a very large problem and that people are eager to
volunteer spare CPU cycles for such causes[6].
FOLDTRAJ has been carefully implemented so that it
runs on a large number of computing platforms including
NT and several UNIX variants, making it an ideal client
for distributed computing.

0-7695-0556-2/00 $10.00 © 2000 IEEE 323

The potential of the Internet as an infrastructure for
distributed computing has been predicted to reach exaop
performance in the year 2007, perhaps exceeding the
performance of massively parallel supercomputers at that
time by up to three orders of magnitude[7]. Current
efforts have already demonstrated that reasonable coarse-
grained parallelism can be achieved using processors in
the Web.

MoBiDiCK is the Modular Big Distributed Computing
Kernel. Our goal in designing MoBiDiCK was to allow us
to marshal our own in-house computing resources (Sun
and SGI servers, workstations, a Beowulf cluster,
secretarial and laboratory computers). The system's
design, however, allows any computer with an Internet
connection and the ability to run HTTP server software to
participate in a distributed computation.

The development of applications for heterogeneous
computing environments can be undertaken in a variety of
ways. Some methods require the adoption of a particular
programming model, as in Java and MPI, that is coupled
with a specific computing environment, like the Internet
or a local network of workstations. Other approaches offer
underlying communication and management
infrastructures that can integrate various existing software
models, as exemplified by the Globus project[8]. The
MoBiDiCK effort fits best in the middle of this spectrum.
MoBiDiCK is neither an infrastructure nor a
programming model, rather it is the middleware to
connect the two. The communication technology used by
MoBiDiCK is far from novel: TCP/IP, HTTP and CGI are
long standing Internet standards, and the idea of using
Internet-connected hosts for distributed computing dates
back several years.

Many scientific computations are essentially iterative,
that is, the same set of instructions are repeatedly applied
to elements in the problem domain space. These types of
programs often lend themselves well to a distributed
approach, in which the problem domain is divided among
a set of nodes that simultaneously, and more or less
independently, execute the same program. One of our
goals is to minimize the effort required to introduce this
kind of parallelism into existing code. We address this by
providing methods to enable an application to operate as a
CGI program in a distributed environment, without
hampering the application's ability to be used in a stand-
alone environment.

Finally, we sought to build a database driven system.
The benefits of a database driven system include
scalability of the system from cluster computing to wide-
area and globally distributed computing, as well as
providing records of past performance of applications that
can be used to set up initial load balancing and improve
the overall scheduling of distributed computing tasks.

2. Enabling Technologies

2.1. Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) was
introduced around 1990 to address the need for
consistency in the manner in which computers connected
to the Internet should exchange information, and has since
evolved to become a de facto standard and the most
widely used protocol on the Internet. HTTP relies on
TCP/IP, in which IP (Internet Protocol) serves as an
addressing scheme for naming and identifying Internet
hosts, and TCP (Transmission Control Protocol) provides
routing, error detection, error recovery, sequence control
and sequence flow mechanisms for data transmitted from
one host to another[9].

To access a document on some host, the user sends a
request through a client program, such as a Web browser,
to a HTTP daemon running on the host. The daemon, or
Web server, processes the request and returns output back
to the client. Authentication and access control functions
are provided by the Web server to secure private data.
Both client and server software must conform to the
HTTP specification for the transmission and execution of
requests.

The motivation for HTTP was to bring together and
share disparate information located on geographically
distributed machines. A shared document is attributed a
Uniform Resource Identifier (URI) that denotes the
document's location in the network, by identifying the
computer's IP address and the file path. Files can be
accessed directly with the URI and can be interconnected
by reference links embedded in the document using the
Hypertext Markup Language (HTML). Documents whose
content is not plain-text can also be accessed. The
Multimedia Internet Mail Extensions, (MIME) is applied
to HTTP to identify a file format with a specific M1ME-
type and to inform the client about the type of data being
requested[9].

2.2. Common Gateway Interface

Along with the ability to provide access to static
documents, i.e. those represented by individual files on
local storage, Web servers must also be able to produce
dynamic content which depends on specific user input.
For example, the Web server must be able to accept a
search key from the user, perform a database query, and
return the search results. Such capabilities transcend the
scope of a general-purpose Web server. The Common
Gateway Interface (CGI) was established to address the
need for HTTP software to produce executable
content[10]. When the client's HTTP request refers to an
executable file, rather than a static one, the Web server
launches the application as a new, separate, server-side

324

process. Input parameters required by the CGI program
are appended to the request; the Web server simply passes
these on to the application, often by way of environment
variables. When the application completes, the server
returns its output back to the client. CGI guidelines
provide an API for the manner in which data should be
exchanged between an application and a HTTP daemon.
Since this API is purely syntactic, a CGI executable can
be programmed using nearly any language or platform.

An important drawback of CGI is that a separate
process must be started by the Web server for each client
request. Process creation and initialization overhead can
cause a significant performance bottleneck if multiple
consecutive requests must be served. A CGI program also
competes for system resources with other processes,
including the HTTP server itself. Furthermore, HTTP is a
stateless protocol that does not directly support the saving
of information between requests.

The FastCGI open protocol addresses these drawbacks
by enabling a CGI program to persist across multiple
HTTP requests, thereby reducing process creation and
initialization overhead and allowing state information to
be maintained between requests[l 1]. The FastCGI
application library facilitates new application
development and easy migration of existing CGI
programs. It also supports a distributed configuration
whereby a program can be invoked remotely by the Web
server over a TCP/IP connection. As a future direction,
we intend to use the FastCGI application library for the
migration and further development of MoBiDiCK
modules.

3. System Design

3.1. System architecture

MoBiDiCK is a CGI-based approach to distributed and
parallel computing. It operates on a set of nodes
interconnected by a TCP/IP network. A node is simply a
networked computer that can act as a Web server, i.e. it
should be able to support the correct execution of HTTP
server software. This requires that it be assigned a static
or dynamic IP address. Network and node characteristics
may affect performance, but there are no specific
hardware or operating system requirements other than
those imposed by HTTP server software. A node can be a
standard workstation, a cluster node, or a multiprocessor.
Local resource requirements such as disk space, memory,
network and I/O bandwidth are commensurate to a
particular computation. As a general guideline,
applications are designed to minimize local resource
consumption.

Nods

H
22 TaskApp

T
T

P

'
S

e Subtask
r Status

V ■

e
r ■%

Output Output
Ust files

Figure 1. System architecture

In the simplest configuration, a kernel server is
designated such that it can reach all processing nodes
through HTTP; that is, Web servers running on the nodes
should be able to process HTTP requests received from
the kernel server. Five kernel modules are installed on the
kernel server: Dispatcher, Status, Statekeeper, Collector,
and DataManager. These are distinct CGI applications
that carry out system and data management functions such
as node registration, task definition, task mapping, job
monitoring, fault tolerance, load balancing, task
migration, output collection and cleanup. TaskApp
modules, which are also CGI-driven applications, run on
the nodes; one or more TaskApp modules may be
installed on a given node, each embodying a distinct
computational problem. For a computation to be
distributed over a set of nodes, a corresponding TaskApp
must be installed as a working CGI program in the Web
server's published directory tree. Figure 1 illustrates the
general system architecture.

Interactions between CGI modules involve only one or
two consecutive HTTP requests. For example, when a
computation is required of a node, the Dispatcher sends a
request to the node's Web server, then simply terminates.
Jjust before starting the subtask, the newly launched CGI
process on the node responds by sending an
acknowledgement request back to the kernel server. This
invokes a new Dispatcher CGI process which records the
acknowledgement and immediately exits. Meanwhile, the
TaskApp process continues with the computation.

Data management is driven by a relational database
implemented with the CodeBase API (Sequiter Software,
Alberta, Canada, www.sequiter.com), an efficient library
of high- and low-level data management functions that,
when integrated with the kernel modules, provide a fully-
functional, platform-independent embedded relational
data management system. Access overhead is minimal
since all database functions are performed through API
procedure calls from within the application source code,
and updates and queries do not require explicit
connections to an external database engine[12]. The

325

database is used to hold and manage all system data,
including descriptive and statistical information pertaining
to nodes and computations, input parameter values, and
output files.

The kernel's modularity allows CPU, I/O and network
resources to be optimized. System management functions
can be distributed by spreading the kernel modules across
multiple servers. For example, a distributed kernel
configuration may comprise four servers: the Dispatcher
is installed on one server, the Collector on a second,
Status and Statekeeper on a third, and the DataManager
on a fourth server. The database disk is remotely mounted
by each server and shared. The use of a multiprocessing
kernel server is an alternative configuration that may
benefit CPU bandwidth as kernel modules can run
simultaneously on several processors. I/O contention
during output collection can be minimized by high-
performance storage solutions such as SCSI, RAID, and
FibreChannel.

3.2. Communication model

MoBiDiCK modules communicate by embedding
messages within HTTP "GET" and "POST" requests.
Figure 2 illustrates the general communication model
between a module m, running on node N| behind HTTP
server Sb and a module m2 running on node N2 behind
HTTP server S2. The steps involved in transmitting a
message from mi to m2 are outlined below.

1.
2.

4.

5.

6.
7.

m, opens a TCP connection, C, between N, and N2

m, sends a HTTP request containing message, M, for
m2 over C
S2 receives the request, starts m2, and passes the
request to m2
m2 extracts M from request, processes M, and writes
a reply R to stdout stream
S2 captures R, attaches an HTTP header to it, and
sends it over C
m, receives the response from S2 and reads R
mi closes C

N, 1,2

6,7

„ 1
b' 1

1

.

N2 •jjp» j

b :c 4fn2

Figure 2. Module communication m, and m2 are CGI modules
running on nodes N, and N2, behind HTTP servers S, and S2.

Modules m, and m2 designate any two CGI programs
on any two nodes. For example, m, can represent the
Dispatcher and m2 a TaskApp module on a compute node,
the message transmitted between them being a

computation request. Only HTTP server S2 on the
receiving node participates in the exchange, while S,
remains idle.

This framework does not preclude other
communication models within a TaskApp module, such
as MPI message-passing primitives and other
programming models like PVM and Linda, as well as new
parallel application development models.

3.3. Task definition

A task conceptually represents an entire computation.
A task's attributes hold various characteristics of an
associated TaskApp, such as application filename, node
filesystem path, and input and output requirements. A
particular execution of a task is an instance. An instance
inherits the task's attributes and parameters, and has its
own attributes such as start and end times, total execution
time, and the set of nodes performing the instance.
Runtime options such as output collection and logging are
also associated with an instance.

Once instantiated, the task is partitioned to produce a
set of subtasks that are mapped to the set of nodes
selected to perform the desired computation. A subtask
inherits the attributes and task parameters of its associated
instance. Each subtask represents a unique TaskApp
process. Dispatching a task consists of sending subtask
requests to the nodes and launching the TaskApp
processes. While a TaskApp is running, its corresponding
subtask is active; a complete subtask represents a process
that executed successfully; a subtask is incomplete if the
process did not finish executing due to user intervention,
node failure, or communication failure. A task instance is
active as long as there remain nodes executing subtasks,
and complete only when all subtasks have been
completed.

Input arguments required by a task are specified by
task parameters. A task parameter can be an integer, real,
Boolean, or string, and can be constant or variable. A
constant parameter is assigned a single specified value for
all subtasks. A variable parameter has an associated range
which represents the parameter's value space, delimited
by start and end points. The range's distribution defines
the manner in which the range should be divided among
subtasks. An incremental distribution signifies that a
specified step function should be applied to the range to
calculate subtask parameter values. A partitioned
distribution divides the range into a series of subranges,
with each subrange being assigned to a subtask. The
upper boundary and lower boundary parameter types are
system-defined dependent parameters associated with the
subrange boundaries of a partitioned parameter. A
dependent parameter can also be defined as a
mathematical or logical function of other parameters.
Task attributes and parameter information is defined

326

through a browser user interface and stored in the
database by the DataManager.

3.4. Node registration

A processing node is registered and scheduled using a
browser interface, invoking the DataManager module to
record the information in a database. Registration
involves providing key attributes such as host name or IP
address, CPU type and speed, number of CPUs, operating
system, disk and main memory capacity, as well as
contact information (in the case of a volunteer processor).
Once registered, a processor can be scheduled by
selecting the hourly time slots during which it will be
available for each day of the week. The processor's
participation can also be restricted by specifying which
tasks it is available to perform.

This is an all-or-none scheduling model: a processor
participates in a computation only when its schedule
allows. The all-or-none model is well suited for people
who wish to volunteer a known and fixed amount of CPU
time, such as the times outside regular business hours for
an office computer. By contrast, nodes that participate in
the SETI@home project run a computation selectively
through a specified "nice" value that assigns a local
scheduling priority to the process[6], and restricting
access to the node at some point in time requires explicit
user intervention.

3.5. Task execution

A distributed computation is requested from the
Dispatcher through a browser interface. Once invoked, the
Dispatcher initiates interactive node selection by
compiling a list of candidate nodes for the task. A node's
candidacy for a given task is determined by the following
conditions:

Registration: the node is registered in the database
Participation: the node is registered to participate in
the task
Accessibility: access to the node is currently
permitted by the node's schedule
Connectivity: the node is reachable by the Dispatcher
Configuration: the TaskApp is operational on the
node

Registration and participation are verified simply by
querying the database: a node must be registered in the
database if it is to be used at all, and the selected task
must appear in the node's participation list to indicate its
"willingness" to perform the task. Accessibility is
determined by looking at the node's access schedule to
see if the node is currently accepting requests and if it will
remain usable for a sufficient amount of time.

Connectivity and configuration are determined in a single
handshaking step whereby the Dispatcher sends a "test"
request to the TaskApp on the node. If no response is
received from the node, or if an error is encountered in
establishing a connection, then neither condition is met. If
the node's Web server responds with an error then
connectivity is achieved but the node fails to meet the
configuration condition. If a correct response is received
from the TaskApp then it is concluded that the node's
Web server was able to launch the TaskApp successfully
and therefore the node fulfills both conditions.

Other node selection conditions can be specified by a
user to further constrain node candidacy, such as cut-off
values for node rating, storage space, total main and
temporary memory, and number of CPUs. Selection can
be restricted to specific categories of nodes, such as local,
remote, dedicated, or shared. Manual selection of specific
nodes can also be done to bypass preset conditions.

After node selection is settled, the Dispatcher is
prompted to carry out the task mapping phase by
partitioning the task into subtasks and mapping the
subtasks to selected nodes. More than one subtask may be
assigned to a node, as may be desired for a
multiprocessor; a node's subtask-to-CPU relationship is
definable in its registration information and can be
modified by the user prior to dispatching.

Task mapping incorporates an initial load balancing
step that computes the load of each subtask based on the
associated node performance rating. Subtask load
represents a fraction of the task's total workload that
should be allotted to the node to which the subtask is
mapped. A node's rating can be obtained by running a
benchmarking TaskApp module that measures the node's
ability in floating-point and integer arithmetic, memory
access, disk access, and communication. If the rating is
known, subtask load can be calculated as follows.

For a set of processing nodes ph p2,..., p„ with
corresponding ratings r,, r2,..., r„, the weighted rating for
Pi is,

R. 5 0>
Ki E (r,,..., /•„)

Subtask load is obtained by dividing a node's weighted
rating by the number of subtasks assigned to that node.
Hence subtask load for node p-, that is assigned k subtasks
is,

R (2)

In the parameter allocation step, task parameters are
inherited by each subtask and values are assigned to these
parameters. The value assigned to a subtask parameter
depends primarily on the parameter's type. If it is a
constant then it simply takes on the value defined for the
task. If it is a variable parameter with a partitioned

327

numerical range, then the value is found by applying the
subtask load to this range. For example, given a numerical
parameter, X, with a range delimited by lower boundary
xL and upper boundary xy, the value of X for node p, is,

Xj - L;(xu - xL). (3)

The mapping process can be repeated if the user
wishes to modify node candidacy conditions or task
attributes and parameters. At the user's request, the
Dispatcher begins the computation by sending subtask
requests to the selected nodes. A subtask request is
successful if the Dispatcher receives a confirmation
message from the TaskApp module. If all requests are
successful, the task instance is in the active state.

Node

^■IJI
SelcctloA Task Ma Mapping

Subtasks

Figure 3. Task execution The Dispatcher partitions and distributes
tasks to currently scheduled nodes, while the Collector gathers subtask
results. During the execution of a task, the Status and Statekeeper
modules ensure fault-tolerance, load-balancing and correct scheduling.

If the task is successfully launched, The Dispatcher
invokes a new Status process and a new Statekeeper
process to monitor the TaskApp processes. During its
execution, a TaskApp regularly updates a local
SubtaskStatus file (shown in Figure 1) with subtask
progress information. Fault-tolerance during a
computation is assured by the Status module by
periodically downloading each node's SubtaskStatus file.
If a subtask fails to complete on a node, the Status module
re-assigns the subtask. The Statekeeper's role is to

monitor node schedule overflows and maintain dynamic
load-balancing. It can reschedule subtasks by terminating
existing subtasks and starting new ones, thus maintaining
the computation in the "all-or-none" state according to
each node's schedule in the database. It can remap the
entire task to a new set of nodes if too many schedule
conflicts are encountered during a computation or if node
availability changes dramatically.

Local output files produced by a TaskApp are recorded
in an OutputList file. When a TaskApp completes a
subtask, it sends a completion request to the Collector.
The Collector updates the subtask's status in the database,
obtains the OuputList from the node, gathers the output
files from the node and stores them in the database if
required. The Collector is capable of storing arbitrary data
objects as binary files in the database, and iterators are
provided in the API for summarizing or combining results
once the dispatched subtasks are all completed. After all
output has been received, the Collector sends a cleanup
request to the TaskApp, asking it to delete the output files
it produced on the node's filesystem, as reported in the
TaskApp's OutputList.

3.6. Task API

Task modules are programmed using the Task API,
itself integrated with NCBI Toolkit libraries. The Task
API facilitates the development of platform-independent,
CGI-enabled applications which can be operated both as
stand-alone executables through a regular command-line
interface, and as CGI programs that can be invoked by a
Web server daemon when it receives a client's HTTP
request to run the application. In other words, the use of
the Task API does not restrict the application to the
MoBiDiCK system. Using the same executable, the user
can choose to perform the computation manually, or to
install the program behind HTTP servers on a set of nodes
so that the task can be distributed using the MoBiDiCK
kernel. The core Task API functions are shown in Table
1.

This flexibility is achieved by formally defining input
parameters in the TaskApp program code. Each task
parameter is defined in a TaskArg structure. The members
of the TaskArg structure contain, among other
information, a parameter's command line tag, CGI field
name, type (integer, string, boolean, etc.), range of
allowed values, and default value if any. A set of task
parameters is defined by declaring an array of TaskArg
structures. Parameter values are obtained by the
application with the GetTaskArgs function, which detects
the input method (terminal or HTTP), and accordingly
reads, validates and copies parameter values in the
TaskArg array for subsequent access.

Many computations consist of a main loop that iterates
over a fixed and predetermined range of values, such as a

328

sequence of numbers, a list of strings, or a collection of
records. Tracking the progress of these types of programs
is achieved by calling the TaskSetSize function prior to
entering the main loop, and by placing a call to the
Tasklterate function in the loop body. TaskSetSize sets
the "problem size", e.g. the total number of iterations to
be performed in the main loop. Each time Tasklterate is
called, the loop's progress is computed by dividing the
current iteration number by the total number of iterations.
The progress is thus the percentage of the loop that has
been completed. If the time required for each iteration is
more or less uniform (the loop body is deterministic), then
progress is proportional to the computation's current
running time by a more less constant value. When the
loop body is non-deterministic, as is the case for random-
walk algorithms, the progress still provides a measure of
where in the loop the process is currently positioned.
Subtask progress is written to a SubtaskStatus file in the
Web server's published directory tree. This file is
periodically obtained by the Status kernel module while it
monitors the computation.

To communicate with a running TaskApp process,
messages or signals can be placed in its SubtaskStatus
file. For example, when the Statekeeper module must
cancel an active subtask, it invokes a "kill" TaskApp
process on the node, requesting it to interrupt the
execution of the subtask. The kill process writes a
"cancel" signal to the appropriate SubtaskStatus file. The
signal is detected and carried out in the Tasklterate
function at the next iteration of the subtask process, as it
reads the SubtaskStatus file before updating it. Thus
Tasklterate not only reports a subtask's progress to the
kernel, but also serves to communicate with a TaskApp
process during execution.

Table 1. Core Task API functions

GetTaskArgs GetTaskID

InitTask GetlnstanceNum

TaskSetSize GetSubtaskID

Tasklterate TaskLogWrite

Tasklnterrupt ErrLogPostEx

RecordOutput TaskComplete

GetlnputMethod

Output produced by a TaskApp is written in the form
of one or more output files on the compute node's
filesystem. If output is to be collected by the kernel
server, the RecordOutput function is used to record the
names of files to be collected in an OutputList file written
in a Web-published directory on the node. At the end of
its computation, a TaskApp process informs the Collector

module that output is ready to be collected. After
obtaining the OuputList file from the compute node, the
Collector proceeds to get all the files contained in
OutputList and stores them in the central database or other
specified storage area.

Core library functions provided in Task API are listed
in Table 1. Several other routines are also available as part
of the NCBI SDK, on top of which the Task API is built,
such as ASN.l encoding, which we use in the
FOLDTRAJ TaskApp module. The general structure of a
TaskApp program is shown in Figure 4. A simple set of
rules, outlined below, must be followed in order to
produce TaskApp programs that can correctly interact
with the kernel.
a) Define all input parameters in the TaskArg array,

allowing the TaskApp to receive arguments from the
Dispatcher.

b)

c)

d)

e)

Obtain input arguments with GetTaskArgs. This
enables the program to get arguments from either the
command-line console or from the Web server. If
invoked by the Dispatcher, the TaskApp also obtains
required MoBiDiCK arguments (e.g. Task ID,
Dispatcher and Collector IP addresses).

Use InitTask to initialize the computation. Node-
specific settings are read from a TaskApp
configuration file; log files are initialized.

Set the size of the computation with TaskSetSize
prior to main loop.

Call Tasklterate in main loop to record subtask
progress information and read signals from other
modules.

function and variable definitions

TaskArg array definition

main(„) {

GetTaskArgs (...) ;

InitTask () ;

TaskSetSize(_) ;

mainLoop {

Tasklterate();

RecordOutput (_.) ;

}

RecordOutput0;

TaskComplete0;

}"

Figure 4. TaskApp structure and core Task API functions

329

f) Use RecordOutput to report all output files produced
during the computation. This enables output
collection (by the Collector module) as well as output
cleanup.

g) Call TaskComplete before exiting. This invokes the
Collector to collect output, request output cleanup,
and record timing and status information.

h) If the TaskApp must exit prematurely during the
computation, use Tasklnterrupt.

i) Record informational and error messages in subtask-
specific log files using TaskLogWrite and
ErrLogPostEx.

4. Results

4.1. RAMAPLOT

Using the Task API we developed a TaskApp module
called RAMAPLOT. This program uses three-
dimensional protein structure information from NCBI's
Molecular Modeling Database (MMDB) to generate a
Ramachandran plot for the structure, which is a graph of
the distribution of the protein's a-carbon bond angles in
angular 2-D space (written as a GIF file). We performed
this task using 15 nodes on our Beowulf cluster, each
node configured with two Intel Pentium II 400MHz
processors, 512Mb of RAM, the RedHat Linux operating
system, and the Apache HTTP server. The nodes were
interconnected by a 100Base-T network. The kernel
server was a Sun Sparc Ultra-1 running Solaris 2.6. The
MMDB database was copied to each node's hard disk.

The goal of the task was to generate one
Ramachandran plot for each of 851 protein structures in
the MMDB. Two input parameters, dbsize and dbstart,
were defined for the RAMAPLOT task. The partitioned
parameter, dbsize, represents the number of records to be
processed, ranging from 1 to 851 (corresponding to the
first and last record indexes of the database, respectively).
dbstart is defined as a lower boundary for the subranges
of dbsize serving to inform the program of the starting
database record number. We performed 15 instances of
the RAMAPLOT task, starting with a single node and
adding an additional node for every new instance. Only
one CPU per node was used. Execution time, speedup,
and efficiency were determined for each instance and are
summarized in Table 2 and plotted in Figures 5, 6 and 7.

Table 2. RAMAPLOT timing results using MoBiDiCK

Instance Subtasks Time (s) Speedup Efficiency

1 1 714 0.972 97.2

2 2 378 1.84 92.0

3 3 265 2.62 87.2

4 4 195 3.57 89.1

5 5 165 4.20 84.1

6 6 144 4.82 80.3

7 7 116 6.01 85.8

8 8 106 6.55 81.9

9 9 107 6.47 71.9

10 10 96 7.19 71.9

11 11 79 8.79 79.9

12 12 87 8.00 66.7

13 13 76 9.09 69.9

14 14 66 10.49 74.9

15 15 69 10.07 67.1

Speedup is defined as the ratio TP/TS, where TP is
parallel execution time and Ts is the best serial execution
time. Ts, obtained by running RAMAPLOT on one cluster
node through a command-line interface, was found to be
695 seconds. Efficiency is defined as the ratio So/Smax of
observed speedup over ideal speedup, with Smax always
equal to the number of nodes.

700

6O0

_500

| 400

%
3 300

I
200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Nod«

Figure 5. Execution time for RAMAPLOT. The task was
repeated by varying number of nodes.

A steady speedup was obtained as the number of nodes
was incremented from 1 to 15. The use of all 15 nodes
yielded a speedup of 10.1, corresponding to 67.5%
efficiency.

330

Figure 6. Speedup for RAMAPLOT. Ideal speedup is
represented by the broken line.

An increase in the number of subtasks raises the
probability that any two subtasks complete at the same.
This leads to increased network and I/O contention on the
kernel server as subtask completion requests invoke
Collector processes. These effects are reflected in Figure
7 by a regular decrease in efficiency as the number of
nodes rises. An average efficiency of 80.0% was achieved
over all 15 instances.

1.2

1.1

1

0.9

0.8

J0.7
c
■S 0.6

Ü 0.5

0.4

0.3

0.2

0.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

NodM

Figure 7. Efficiency for RAMAPLOT

4.2. FOLDTRAJ

Much of our work is dedicated to the protein folding
problem. This problem in the field of structural biology
represents our inability to computationally predict the
three-dimensional conformation of arbitrary proteins
given only primary amino-acid (AA) sequence
information. Given an input file known as a "trajectory
distribution" containing angular 2-D space amino-acid
frequency information about a particular protein,
FOLDTRAJ can generate a number of random yet
chemically valid protein conformers, placing each in a
separate output file in binary ASN.l or ASCII PDB
format. The correctness of a predicted structure, important

in developing methods to score the fitness of generated
proteins, is measured by calculating its Root Mean
Squared Deviation (RMSD) relative to the protein's
native fold.

FOLDTRAJ was developed independently and
intended to be used both as a stand-alone application and
in a distributed computing framework. We used the Task
API to migrate FOLDTRAJ to operate as a TaskApp
under MoBiDiCK. Integration with the Task API also
enabled the same FOLDTRAJ executable to be operated
through an HTML-based interface in both stand-alone and
client-server modes.

Figure 8. Task definition and mapping of FOLDTRAJ.
The definition includes general task information and parameter
information (top left frame). Four dual-processor nodes are selected
(top-right frame). The task has been partitioned into 8 subtasks, each
mapped to a node's processor. Subtask parameters are inherited from
the task and assigned values (middle frame). The task can be re-
partitioned after editing the task or modifying node selection (through
menu in bottom frame).

An example task definition and mapping for
FOLDTRAJ is shown in Figure 8. The task has three
significant parameters: filein, numstruc and fstart. The
first, filein, is a constant string parameter that holds the
name of the input file; in the figure, the input filename
"lvii" corresponds to the 36 amino-acid Villin headpiece
protein, a small protein we use for testing. The
partitioned integer parameter, numstruc, is the total
number of structures to be generated; its range is set from
1 to 500,000, signifying that half a million structures are
to be generated. The integer parameter/start denotes the

331

starting structure number and is set as a lower boundary
of numstmc, with the same range. The example instance
was mapped to four of our dual-processor cluster nodes,
using both CPUs per node, resulting in 8 subtasks as
shown in Figure 8. Subtask loads are equal (0.125) since
the nodes were rated equally. Sincere/« is constant, each
subtask is assigned the same value. The range of numstruc
is divided equally among the 8 subtasks. A subtask's
fstart value informs the TaskApp where in the range it
should start numbering its structures and is used to
produce unique output filenames.

Using MoBiDiCK we regularly perform distributed
FOLDTRAJ computations to carry out prediction
experiments on various proteins. Figure 9 plots the results
of four such experiments. In each, 50,000 protein
structures were generated using 15 of our dual-processor
cluster nodes. The frequency distribution of the resulting
Root Mean Squared Deviation values indicate the
accuracy of protein backbone atom prediction of random
protein conformers made with FOLDTRAJ. From this
ongoing testing we are obtaining a better understanding of
the relationship between sample size, protein size and
how well entities in the sampled protein ensembles fit the
true structure of a protein.

0.16 I I

0.14 ■

0.12 I V

i
1VII (Villin Headpiece)
36 AA. 201 mln

c
5 0.08

?
"■ 0.06

IBNR(Barnase)
y' 110 AA, 606 min

/^\ y 111M(Myoglobin)

/ /VNL 154 AA. 1100 min

0.04 - / / /\\~"\ s 1ALU (lnterleukin-6)
/ / / \ \.\-^ 186 AA, 1159 mln

0.02 -

0 - i i n i i i 11 < *Mi i i i i ii i M iTn IT'TMTT'M ! I II I ! I I

0 10 20 30 40 50 60 70 80
RMSD (Angstroms)

Figure 9. RMSD frequency distribution of random protein
structures generated with FOLDTRAJ. Each curve represents a
separate instance of FOLDTRAJ generating 50,000 structures using 30
subtasks on 15 nodes; protein name, size in number of amino-acids
(AA), and execution time are indicated for each experiment.

5. Related work

Existing cluster computing tools that are publicly
available include PVM (Parallel Virtual Machine) and
MPI (Message Passing Interface). Commonly used on
LANs and clusters of workstations, these systems provide
resource encapsulation and monitoring functions, and
transparent heterogeneity utilities through a messaging
API. PVM provides a high-level system for a user to
coordinate tasks spread across a network of heterogeneous
workstations. The set of nodes is perceived as a single

virtual machine through a message-passing abstraction
and a library of functions for task creation and
management 13] [14].

Other systems aside from the more widely used PVM
and MPI are numerous and many of their aspects can be
directly compared with MoBiDiCK. Their applications to
cluster and distributed computing have provided us with a
useful study, including Globus, SuperWeb, Condor,
Linda, Piranha, NOW, Legion, WebOS, Atlas, ParaWeb,
Bayanihan, Popcorn, Charlotte, JPVM, RMI, CORBA,
Javelin, Nimrod, Clustor, JICE, LSF. At the time we
began building MoBiDiCK (Oct. 1997) it was not clear to
us that other systems were capable of doing the multiple
duty that FOLDTRAJ required for distributed computing
over the Internet with clients at this level of
sophistication. We therefore set out to develop
MoBiDiCK with goals that it provide an integrated
environment for process control as shown in Figure 8, and
be capable of large scale, high performance, database-
driven, heterogeneous distributed computing.

6. Future Directions

6.1. Estimating subtask execution time

In general, the execution time of a subtask on a node is
influenced by (1) subtask load and (2) node rating.
Subtask load is a computed fraction of the total work to be
done in the task. Node rating is a measure of a node's
performance as determined by a benchmarking procedure
that incorporates limiting factors associated with network
bandwidth and congestion, CPU performance, memory
and storage availability, and I/O efficiency. A node's
rating is directly proportional to this measured
performance.

The execution time T of subtask, S, with load L
assigned to a node with rating R can be estimated by
T = /»F(L)/R. F is the task's time complexity as a function
of subtask load. If known, F can be supplied as an
attribute of the task and saved in the database. The
constant h is given by F(Li)/R, where Li is the average
subtask load over previous instances (with the same
parameter definitions) and R is the average rating of all
nodes that computed these subtasks. h thus captures a
task's performance history over all previous instances and
nodes. Since timing and node rating information are
stored in the database for every task instance, k can be
quickly updated after each task execution, keeping its
value readily available to the Dispatcher to calculate T
during the node selection phase of future instances.

6.2. Selective fault tolerance

The problem of managing distributed computations on
a collection of heterogeneous nodes is challenging: both

332

the availability and performance of nodes are
unpredictable, and effective mechanisms must exist to
detect and handle failures. Fault-tolerance duties in
MoBiDiCK are centralized at the kernel level, instead of
being distributed as in PVM. This is because in a
distributed computing model the authority granted to
compute on a node is much more limited. Malfunctions
that occur during a computation are abstracted from the
TaskApp, which in many cases is favorable to the
application developer since it removes the burden of
appropriately responding to failures. Two conditions
should remain satisfied throughout the execution of a
task: the task will complete and performance is
maximized.

Task completion is ensured by detecting and
remedying process-level and node-level failures. Process
failure occurs when a running TaskApp program is
prematurely terminated either by the process itself due to
execution error, by the operating system, by the HTTP
server, or by direct user intervention at the node console.
Causes of node failure include operating system
instability, faulty hardware, HTTP server malfunction or
misconfiguration, and communication link breakdown.

To detect and respond to such occurrences, the
Dispatcher invokes the Status module as soon as a task is
dispatched. Status carries out monitoring, fault detection
and fault recovery functions for an active task instance.
From each node performing a task, Status periodically
downloads the SubtaskStatus file produced by the
TaskApp process. This file contains a current percentage-
done progress of the assigned subtask; the subtask's
database record is updated with each new progress value.
Process failure is suspected if no change in subtask
progress is observed over a sufficient length of time. If the
SubtaskStatus file cannot be obtained from the node's
HTTP server after several attempts, node failure is
suspected. Node failure implies the failure of all active
subtasks assigned to the node.

The Status module can respond to subtask failure in a
variety of ways. The exact measures to be taken can be
user-specified before and during the computation.
Possible fault recovery behaviors are:

(a) Carry on with the computation
The remaining subtasks are left running and the
failure is disregarded.

(b) Cancel execution
Status sends a "cancel" signal to the participating
nodes in order to terminate the remaining subtasks for
the instance. The computation is terminated and no
further action is taken.

(c) Restart the execution
The instance is cancelled as in (b) and the Dispatcher
is invoked to launch a new instance, replacing the
faulty nodes with new ones if possible.

(d) Re-allocate the failed subtask
This can be done in at least two ways:
• reassign or migrate the subtask to a new node if

one is available, or
• redistribute the subtask's load to other active

nodes.

6.3. Task migration

The all-or-none model that MoBiDiCK uses offers
some unique cases to consider for task migration. The
access period represents how long a node is available at a
given point in time; it is computed from the node
schedule, a block of 24x7 cells representing each hour in
the week. For example, if a node's access schedule
permits use from 6 p.m. to 11 p.m. on a given day then, at
8:30 p.m. the same day, the access period is 2.5 hours. A
schedule overflow occurs when the time to completion of
a TaskApp process running on a node exceeds the node's
access period. During a computation, a Statekeeper kernel
process periodically scans the database to detect possible
schedule overflows, by checking a subtask's progress
(updated by the Status module) against the access period
of the node performing the subtask. If an overflow is
anticipated, the subtask is migrated to another node by the
Statekeeper, by invoking a new Dispatcher process to re-
send the failed subtask.

Prior to task dispatching, an initial load balancing step
determines the load of each subtask based on the rating of
the associated node. Yet a node's performance may vary
during the computation due to, for example, increased
CPU or I/O contention, causing a TaskApp process to
slow down. If left unchecked, this can lead to significant
idle time and hence reduced speedup. To avoid this, we
intend to equip the Statekeeper module with dynamic load
balancing and migration functions through which the load
of a slow subtask can be wholly or partially transferred to
faster nodes.

6.4. Other directions

In addition to the above work showing the use of
MoBiDiCK in a controlled cluster environment, further
components are being implemented to allow wide
distributed computing.

6.4.1. Accessing clusters with hierarchical kernels.
Many Beowulf clusters are set up using IP addresses in
the 192.168.x.x or other non-public ranges. This
precludes them from being seen over the Internet and used

333

in the MoBiDiCK system described so far. However most
are configured with a "gateway" node, which is usually
the cluster "head" and has a public IP address and is set
up to use IP masquerading so that nodes can access the
Internet. We have devised a method to allow MoBiDiCK
to operate on these clusters, forming "clusters of clusters".
This is a configuration that consists of a root kernel and
several child kernels that manage computations on local
site nodes only. Since the Dispatcher and other kernel
modules are already CGI modules, they can themselves be
made into TaskApp processes, and arranged in a
hierarchy. A child kernel receives a single subtask from a
parent kernel. The parent kernel sees the child kernel as
a single multiprocessor system with a subtask load based
on the cumulative rating of the child kernel's local nodes.
The child Dispatcher interprets the subtask as a local task,
and thus applies the same partitioning and mapping
mechanisms as the parent Dispatcher. Output is first
collected locally; the child Collector then passes local
output to its parent Collector. Child Status and
Statekeeper modules maintain fault-tolerance and task
migration locally, while sending periodic summary
progress reports to their parent counterparts. This
configuration may enable nodes hidden behind firewalls
as well as internal cluster nodes to participate in
distributed computations through the child kernel. This
approach may also be taken on large multiprocessor SMP
machines; it is not limited to cluster use. It may also be
used to enhance scalability by distributing the task
management load to multiple servers and making it easier
to manage a large number of nodes.

6.4.2. Kernel redundancy. To avoid single points of
failure, kernel modules can be mirrored across several
failover servers. Nodes are made aware of alternate kernel
locations so that if one server fails, another can assume
task management and output collection functions.

6.4.3. FastCGI. Performance of kernel modules may be
significantly improved by migrating them to the FastCGI
extension. This will be of particular benefit to the
Collector module. Under standard CGI, a new Collector
process is created for each subtask completion request,
hence repeatedly incurring process creation and
initialization overhead. Under FastCGI, one or just a few
persistent Collector processes would handle all requests.

6.4.4. Volunteer computing. We hope to involve the
general public in our distributed protein folding
experiments, by asking them to register their Web server
nodes and volunteer idle CPU cycles. The node access
schedule gives full control to node administrators and
owners as to when and how long their nodes can be used.
Additional security features, such as Web server level

authentication, will be required in the kernel modules to
ensure safe access of volunteer nodes.

7. Summary

We presented MoBiDiCK as a tool for distributed
computing based on well established protocols, HTTP and
CGI. The relatively high communication latencies of
these protocols over the Internet render the system to be
most suitable for data-parallel tasks that are CPU-
intensive and that require minimal inter-node
communication. Node accessibility is controlled by a real-
time access schedule. A central relational database is used
to hold static information about nodes and tasks, as well
as dynamic data relating to node availability and task
progress. The database also stores useful task timing
information that can be used to build performance reports
and histories of past computations, which in turn can
serve to predict and optimize the performance of future
instances. We reported the development of two TaskApps,
RAMAPLOT and FOLDTRAJ. The former yielded
encouraging speedup and efficiency results using a local
cluster of Web server nodes, despite I/O contention on the
kernel node during collection of output. This problem is,
however, not unique to our system. FOLDTRAJ is an
application we regularly employ in the MoBiDiCK
environment in order to perform our computational
protein folding experiments. We are continuing with our
development of MoBiDiCK and look forward to carry on
with our future directions.

8. References

[1] IBM, Corp. "Blue Gene" to Tackle Protein Folding Grand
Challenge. http://www.research.ibm.com/news/detail/-
bluegene.html

[2] Feldman, H.J., Hogue, C.W.V. A Fast Method to Sample
Real Protein Conformational Space. Proteins: Structure,
Function, and Genetics, 2000. In Press.

[3] Ostell, J and et al. NCBI Software Development ToolKit.
(6.0). ftp://ftp.ncbi.nlm.nih.gov/toolbox/.

[4] Hogue, C.W.V. Cn3D: A New Generation of Three
Dimensional Molecular Structure Viewer.
Trends.Biochem.Sci., 22:314-316, 1997.

[5] Distributed.net website, http://www.distributed.net/.

[6] Search for Extra-Terrestrial Intelligence; SETI@home
website, http://www.seti.org/science/setiathome.html.

[7] Fox, G.and Furmanski. W. Computing on the Web: New
Approaches to Parallel Processing; Petaop and Exaop
Performance in the Year 2007. IEEE Internet Computing,
1(2), March-April 1997.

[8] Foster, I., Kesselman, C. Globus Project, 2000.
http://www.globus.org.

334

[9] Fielding, R., Gettys, J., Mogul, J., Frysyk, H., Masinter, L.,
Leach, P. and T. Berners-Lee. Hypertext Transfer Protocol
- HTTP/1.1. RFC 2616, Network Working Group, World
Wide Web Consortium, June 1999.

[10] Coar, K., Robinson, D. The WWW Common Gateway
Interface Version 1.1. NCSA Internet-draft in progress.
Linked from http://Web.Golux.Com/coar/cgi/. June 1999.

[11] Open Market, Inc. FastCGI: A High-Performance Web
Server Interface. White paper. Linked from
http ://www. fastcgi. com.

[12] Sequiter Software Inc. CodeBase (Version 6): Database
Management for Programmers, Getting Started, p 1-7.

[13] Geist, G., Kohl, J., Papadopoulos, P., Scott, S. Beyond
PVM 3.4: What We've Learned, What's Next, and Why. J
Proceedings of EuroPVM-MPI 97, November 1997.

[14] Pacheco, P. Parallel Programming with MPI. Morgan
Kaufmann Publishers Inc., San Francisco, pp 245-269,
1997.

Moyez Dharsee is a Senior Bioinformatics Developer
with the Samuel Lunenfeld Research Institute, where he
currently manages the MoBiDiCK project. He obtained
his B.Sc. in Computer Science from the University of
Toronto in 1998.

Christopher W. V. Hogue is a Principal Investigator at
the Samuel Lunenfeld Research Institute (SLRI), Toronto,
Canada, where he is cross-appointed with the Department
of Biochemistry at the University of Toronto. He obtained
his B.Sc. in Biochemistry in 1990 from the University of
Windsor and his Ph.D. in Biochemistry at the University
of Ottawa while working in the laboratories of the
National Research Council in the area of time-resolved
protein fluorescence spectroscopy. Prior to joining SLRI,
Chris worked as a postdoctoral researcher at the U.S.
National Institutes of Health in the National Center for
Biotechnology Information (NCBI) where the GenBank
sequence database is maintained and distributed. At
NCBI, Chris helped develop a new three-dimensional
structure database called MMDB and wrote Cn3D, a
widely used program for visualizing biological molecules.

335

RsdEditor: A Graphical User Interface for Specifying Metacomputer
Components

R. Baraglia, D. Laforenza
CNUCE - Instituto del Consiglio Nazionale delle Ricerche

Via S. Maria, 36 -1-56100 Pisa, Italy
e-mail: (Ranieri.Baraglia, Domenico.Laforenza)@cnuce.cnr.it

A. Keller
Paderborn Center for Parallel Computing

Fürstenallee 11, 33102 Paderborn, Germany
e-mail: kel@upb.de

A: Reinefeld
Konrad-Zuse-Zentrum für Informationstechnik Berlin

Takustr. 7, D-14195 Berlin-Dahlem, Germany
e-mail: ar@zib.de

Abstract

RsdEditor is a graphical user interface which produces
specifications of computational resources. It is used in the
RSD (Resource and Service Description) environment for
specifying, registering, requesting and accessing resources
and services in a metacomputer.

RsdEditor was designed to be used by the administra-
tors and users of metacomputing environments. At the ad-
ministrator level, the GUI is used to describe the available
computing and networking components of a metacomputer.
At the user level RsdEditor can be used to specify which
characteristics of the computational resources are needed
to execute a meta-application.

This paper is organized as follows: Section 1 introduces
the RsdEditor. Section 2 briefly describes the RSD environ-
ment, and Section 3 highlights various features and imple-
mentation issues of the RsdEditor.

Keywords: Metacomputing, Resource Management, Re-
source and Service Description.

1. Introduction

RsdEditor is a graphical user interface for specifying
metacomputer resources. It was developed by CNUCE-
CNR in cooperation with PC2 Paderborn as part of the

Metacomputer On-Line (MOL) project [1]. MOL exploits
the Computing Center Software (CCS) [2, 3] in order to
manage the resources of a computing center. Within CCS,
the resource and service description language RSD [4] is
used to describe the metacomputer resources managed by
CCS.

RsdEditor provides a user-friendly visual support to au-
tomatically generate ASCII files. These are structured ac-
cording to the RSD language which describes the specified
resources by using the graphical features of the interface.
RsdEditor was designed to be used by administrators and
users of a metacomputer.

As shown in Figure 1, system administrators use the
RsdEditor to specify particular characteristics of the meta-
computer's resources (computational nodes, networks, soft-
ware services, etc.). Specifically the administrator can
assign attributes such as type and number of processors,
memory size, software environments, architectural classes,
latency, or bandwidth to the available computational re-
sources. Likewise, users can specify which characteris-
tics of the computational resources are needed to execute
their meta-application. This phase is not intended to select
specific resources but to indicate the general attributes be-
longing to a class of resources. The specifications made
by the administrator and the user can be used to generate
two graphs representing the metacomputer's configuration
and the user's requirements, respectively. The allocation of
the resources needed to execute the meta-application on the

0-7695-0556-2/00 $10.00 © 2000 IEEE
336

(User) C Administrator)

(fist/Editor)

k
(RsdEditor)

ADT ADT

Hupping }J
_JS
Allocation |.

■ ■ ■
*#»«"»

Resource 'Manager
fees;

Figure 1. The use of the specifications gener-
ated by RsdEditor

metacomputer is a question of mapping the user graph onto
the metacomputer graph.

Several mapping algorithms [5, 6, 7, 8] have been put
forward to solve this problem.

The RSD resource specification file, automatically gen-
erated by RsdEditor, is analyzed by a parser to obtain Ab-
stract Data Type (ADT) objects [4]. ADT objects can only
be accessed through the RsdAPIwhich provides an abstract
interface to the RSD data structures. As shown in Figure 1,
the mapping of the task graph onto the available resources
as generated by the mapping algorithm is used by CCS to
start and control the execution of a meta-application.

2. RSD Environment

RsdEditor is part of the RSD environment [4] that pro-
vides services and tools for specifying, registering, request-
ing and accessing computer resources in heterogeneous
computing environments. RSD is comprised of three ma-
jor components:

• a compiler system that transforms resource descrip-
tions into ADTs (described in [4]),

• an ADT object library with API (outlined in [4]),

• a graphical user interface and editor RsdEditor (de-
scribed in this paper).

In RSD, resources and services are represented by hier-
archical graphs with attributed nodes and edges describing
static and dynamic properties such as communication band-
width, message latency, or CPU load. Tools exist for end-
users as well as for system administrators (Figure 2).

ft
Administrator

Figure 2. RSD environment

The output of the graphical RsdEditor is sent through
the RsdParser which generates abstract data objects that can
be stored or submitted for further processing by (remote)
resource management systems. In addition, ASCII RSD
files can also be translated by the parser into abstract ob-
jects. By bundling objects with the corresponding methods
the data can be interpreted and manipulated on other ma-
chines. Internal RSD objects can only be accessed through
the RsdAPIwhich provides the data structures with an ab-
stract interface. For later modification, the data structures
are re-translated into their original form with the graphical
and textual components. This is possible because the in-
ternal data representation also contains a description of the
component's graphical layout.

2.1 Textual versus Graphical Interface

RsdEditor has been designed to provide a user-friendly
alternative to the textual RSD representation [4]. From a
theoretical point of view, both representations are equiva-
lent. In fact, the RsdEditor output is parsed and compiled by
the same RSD compiler system used for the language rep-
resentation. Hence, RsdEditor is no more expressive than
the language. On the other hand, it is easy to prove that
the language is no more expressive than RsdEditor by look-
ing at the more advanced features of the language, such as
dynamic attributes and macros.

Dynamic attributes [4] provide a means of handling dy-

337

namic data that are obtained at runtime. For example, when
running a WAN distributed application, the optimal (re-
mapping of the processes may depend on the current net-
work performance. For this purpose, dynamic attributes
provide up-to-date information on the current network sta-
tus. When a dynamic attribute (keyword DYNAMIC) is
parsed, the compiler system generates a corresponding ob-
ject with appropriate access methods. These are then used
by the dynamical data manager at runtime to provide up-to-
date data in a synchronous or asynchronous way. Dynamic
attributes can be specified in the same way in the RsdEditor
and in the textual representation.

One feature not included in the RsdEditor are macros.
In the textual representation, they provide a shortcut for te-
dious repetitive declarations.

In RsdEditor, this is done by copying the corresponding
edges or (hyper-)nodes.

2.2 RSD Tools in CCS

Maximizing the system utilization, and maintaining a
high degree of system independence for improved portabil-
ity and easier adaptation to new systems have been the two
main goals of the CCS [3] project. CCS tackles these two
conflicting goals by splitting the scheduling process into
two parts. Figure 3 depicts the RSD flow in CCS.

The hardware independent part is located in the Queue
Manager (QM). It has no information on the mapping con-
straints such as the minimum cluster size, or the location of
I/O-nodes. The hardware dependent task is performed by
the Machine Manager (MM). It verifies whether a schedule
computed by the QM can be mapped onto the hardware at
the specified time.

The RSD tools are used in the CCS management sys-
tem for describing system resources and user requests. At
boot time, all CCS components read the RSD specification
created by the administrator and extract the relevant infor-
mation (by use of the RsdAPT). For example, the MM reads
the machine topology and attributes, whereas the QM only
extracts information such as the number of PEs or the avail-
able operating system(s).

The UI (User Interface) generates an RSD description
from the user's parameters (or from a given RSD descrip-
tion) and sends the description to the Access Manager (AM).

The AM, which is responsible for authentication, au-
thorization, and accounting, checks whether the request
matches the administrator's given limits and forwards it to
the QM.

The QM extracts the information, computes a schedule
and sends it to the MM. MM verifies this schedule by map-
ping the user given RSD description against the static (e.g.
topology) and dynamic (e.g. PE availability) information
on the system resources. If there is no mapping possible,

UI I • • • I UI II Administrator

I Retearcc Reqaett
(-RSD Object)

Figure 3. RSD flow in the CCS system.

the MM returns an alternative schedule. QM either accepts
this schedule or uses it to compute a new one.

Although all CCS components are based on RSD, in the
past we disguised the complexity of the RSD language by
an easy-to-use command line interface. There was no need
for a versatile resource description facility because most of
the systems were homogeneous, their topologies simple and
regular, and nearly all applications ran on only one system.

With the trend of metacomputing (now often called grid
based computing), resource description has become more
and more important, because now the system (instead of
the user) decides which of the available resources are used.
Hence, the users need a convenient tool to specify their re-
quests, and the applications need an API to negotiate their
requirements with the resource management system.

The RSD systems fulfill both requirements by providing
the RsdEditor and the RsdAPI, respectively.

2.3 Related Work

Like RSD, the Globus [9] resource specification lan-
guage RSL [10], its corresponding metacomputer directory
service MDS [10] and the underlying LDAP services have
also been devised for specifying distributed resources.

However, the Globus approach is somewhat asymmet-
ric: it uses RSL for specifying resource requests and LDAP
(based on X.500) for specifying resource offers.

RSD, in contrast, uses the same representation for both

338

purposes, thereby allowing us to use common graph match-
ing mechanisms for brokerage.

The brokerage aspect is emphasized in the ClassAds ap-
proach used in the Condor [11] framework for matching re-
source offers with requests. Compared to RSD, the Clas-
sAds project focuses on protocols for advertising resources
and on the matchmaking process, rather than on the spec-
ification aspect. As a result, the expressions used in the
ClassAds seem to be less powerful than our hierarchical,
graph-based RSD expressions.

The Resource Cataloging and Distribution System
RCDS [12] developed at the University of Tennessee is an-
other interesting approach. RCDS supports flexible, scal-
able, and secure access to various types of data (e.g. files)
on WAN connected computers.

Resources are named by URNs (Uniform Resource
Names) which provides stable names for resources which
may change in content or location over time. This is
achieved by putting resolution servers between the location
dependent URLs and the end user.

A middle software layer guarantees integrity and persis-
tence of resources in an environment of dynamically chang-
ing information.

3. RsdEditor: Features and Implementation

Figure 4 shows the RsdEditor starting window. Cur-
rently, it is possible to choose between two different lan-
guages, English and Italian. Moreover, it can operate in
Administrator or User mode.

Seli'cl luiiyuaijL-:

mjagkm No* m* Mam» n» "ftmfetia m>

: User ''_.■ Administrator

NarotN [utente|

I'usswunJ:

implemented by: Maure Michetotti - Simone NanneUi

Start Exit

Figure 4. RsdEditor Start Window

Figure 5 depicts an example of a working session. A
status bar is shown at the bottom of the window in which
error and information messages are displayed. The central
part of the window, called the workspace, is the working
area for the graphical resource specification.

Figure 5. Example of a work session

The menu bar contains the following items: File, Op-
tions, Node, Edge, Preferences, Tree, Topologies, and
Help.

File enables the creation/editing of a resource specifica-
tion file.

Options displays the current RSD file, refreshes the
workspace, etc..

Node allows the creation, editing, or deletion of a node
or hypernode (a node containing other nodes in a recursive
way). In the RSD syntax a node represents a computational
resource characterized by graphical and RSD attributes.

Figures 6 and 7 show the definition of the graphical char-
acteristics and the assignment of RSD attributes to a node,
respectively.

The RSD syntax requires each node to have at least one
port (a node's interface toward other nodes) in order to link
it to another node by using an edge. RSD attributes can be
assigned to a port (see Figure 8).

RSD allows nodes to be defined recursively and to cre-
ate hypernodes. A hypernode contains the specifications of
other resources such as nodes, physical and virtual edges.
On the left hand side of Figure 5 the hypernodes and nodes
are indicated by the letters H and N, respectively.

Edge enables theicreation, editing, or deletion of a
physical or virtual edge. A physical edge represents a link
between two nodes. The RSD syntax permits uni- or bi-
directional physical edges. By using the windows shown in
Figures 9 and 10 it is possible to select a port connected by
an edge (binding).

The edge binding is an RSD syntax constraint. There-
fore, the ports must be defined before the binding. The no-
tion of a virtual or vertical edge is used to provide a link
between different levels of a hierarchy in the specification

339

Node properties SCIES

USD Attributes Ports

b Emmy

<•> Filled

Round

©Square

IHuile ±hu: 80

\mr-KmmmmtMMm

30 40 50 CO 7

Ctilur:

0 80 90100

Black ▼ others

Times Roman ■»■ 12 <• \oi«.

OK Cancel

Jode properties» lälPw

Graphic pro pert teTj.jBffiilj Ports

Node name: LabA 1
Attribute

SysOp ▼! Linux -1 |A<§

Attribute Value
SysOp Linux

New«. | [»elfte

OK Cancel

Figure 6. Specification of the graphical prop-
erties of a node

Figure 7. Specification of the RSD attributes
of a node

graph. A virtual edge is defined using the windows shown
in Figures 11 and 12, and it is represented by an arrow (see
Figure 5).

Preferences permits the definition of various graphical
features, such as size, shape, color, etc.

Tree enables the managing of the resource tree. This tree
is shown in a synoptical way; it is thus useful for the user
who can see and navigate each level of the resource specifi-
cation tree. On the left hand side of Figure 5 an example of
a resource specification tree is shown.

Topologies allows the creation, editing, or deletion
of nodes representing some of the most common ho-
mogeneous interconnection topologies (Ring, Grid, Star,
Torus). Figure 13 shows an example specifying a Grid
composed of 4 x 8 nodes. This prevents the user from hav-
ing to manually specify 32 nodes and 52 edges.

Help accesses the on-line manual.

RsdEditor saves the current resource specifications by
creating two files: filename. rsd and filename. gui con-
taining the resource specifications in RSD syntax and the
formal descriptions of graphical objects, respectively, file-
name is the name specified by the user when the resource
specification is created.

The graphical interface provides the option of importing
and exporting resource specifications, some of which may
have been previously recorded, in order to reuse them. As
shown in Figure 14 RsdEditor allows the RSD code, pro-
duced during a specification phase, to be displayed.

For portability reasons, RsdEditor was implemented in
Java [13, 14] and it has been tested successfully on Mi-
crosoft Windows (98, NT), RedHat Linux and Sun Solaris.
The modular structure adopted to implement RsdEditor fa-
cilitates its maintenance and extension.

A more detailed description of the RsdEditor functions
can be found in [15, 16].

4. Example of RsdEditor Utilization

As an example of how RsdEditor can be used, we show
how to describe the computing resources of a computing
center. Figure 15 shows the structure of the Paderborn Cen-
ter for Parallel Computing. There are four parallel com-
puters (CC.48, GCeLSystem, SCL64 and GCPP.64) con-
nected by Ethernet, and a computer (Uranus) acting as gate-
way towards the outside world.

As sketched in Figure 16, each parallel computer (repre-
sented by a torus icon) and the gateway are connected to a
central node representing the Ethernet hub. Those nodes are
included in a hypernode denoted as Paderborn.Park. In
order to specify the attributes of each computer the windows
shown in Figures 13 need to be used.

The complete resource description automatically pro-
duced by RsdEditor is shown in the following. It is worth
highlighting the usefulness of RsdEditor by looking at the
pages containing the RSD code. In fact, the resource speci-
fications made by the RSD language is a relatively long and,
potentially error prone, task.

340

Nocfe properties RJBÖ

f Graphic properties RSD Attributes

Add

He move

Altnhiitp

Attribute Value
Typo Ethemut

jNiwy j&eletc

OK Cancel

Figure 8. Specification of port attributes

Edge properties BlS5S

;;;:HtöejaWie:; ■" ,-: Edge3

Source: MacchinaD Target: LabB
® unidirectional O Bidirectional

Attributes:

Type •w ATM ▼ j Add

Attribute Value
Type Ethernet

New... Delw

OK Cancel

Resource Description Produced by RsdEditor

ROOTNODE Paderbom_Park
{
NODE Ethernet
{

PORT Ethl { Type = Ethernet
PORT Eth2 { Type = Ethernet
PORT Eth3 { Type = Ethernet
PORT Eth4 { Type = Ethernet
PORT Eth5 { Type = Ethernet
PORT Eth6 { Type = Ethernet

Bandwidth = 100;
};
NODE Uranus
{

PORT Ethernet;
PORT ATM;

);
NODE CC_48
{

CONST n = 2;
CONST m = 24;

Figure 9. Specification of the RSD attributes
of a physical edge

FOR j=l TO m DO
EDGE Edge_$i_$j_to_$i_$((j + 1) MOD m)
{

NODE Torus_$i_$j PORT cc48 <=>
NODE Torus_$i_$((j+1) MOD m) PORT cc48

>;

OD

FOR j=l TO m-1 DO
FOR i=l TO n DO

EDGE Edge_$i_$j_to_$((i+1) MOD n)_$j
{

NODE Torus_$i_$j PORT cc48 <=>
NODE Torus_$((i+1) MOD n)_$j PORT cc48

};

OD

FOR i=l TO n DO
FOR i=l TO n DO

NODE Torus_$i_$j
{

PORT CC48;
IF ((i = l) && (j=D) THEN

PORT CC_48-Esterna;
FI

CPU = PowerPC-
Memory = 64MByte;
PeakPerformance = 12,76GFlops;
SysOp = AIX4 .1 ;

};

ASSIGN Torus_l_l PORT CC_48-Esterna;
};
NODE GCel_System
{

OD

CONST n = 32;
CONST m = 32;

FOR i=l TO n DO
FOR i=l TO n DO

NODE Torus_$i_$j
{

PORT TransputerLink;
IF ((i=l) && (j=l)) THEN

PORT GCel-Esterna;
FI

FOR i=l TO n-1 DO
CPU = T805;
Memory = 4MByte;

341

Edge properties f5QE3^^^B0PI Virtual edge properties OBaEa

f RSD properties

Select the ports for the edge

Source ports:
D ■*■

Destination ports:
B ▼

Cancel

D BIND B

OK Cancel

Virtual edge name:Virtual2

Source: LabB

Target: CIMUCE

OK Cancel

Figure 11. Specification of the RSD attributes
of a virtual edge

Figure 10. Specification of the RSD attributes
of a physical edge

PeakPerformance = 4.4GFlops;

OD

FOR i = l TO n-1 DO
FOR j = l TO m DO

EDGE Edge_$i_$j_to_$i_$((j+1) MOD m)
{

NODE Torus_$i_$j PORT TransputerLink <=>
NODE Torus_$i_$((j+1) MOD m>

PORT TransputerLink;

};

OD

FOR j=l TO m-1 DO
FOR i = l TO n DO

EDGE Edge_$i_Sj_to_$((i+1) MOD n)_Sj
{

NODE Torus_$i_$j PORT TransputerLink <=>
NODE Torus_$((i+1) MOD n)_$j

PORT TransputerLink;

};
OD

PORT gcpp;
IF ((i = l) && (j = D) THEN

PORT GCPP-Esterna;
FI

CPU = PowerPC601;
CPUNumber = 2;
Memory = 32MByte;
PeakPerformance = 5.12GFlops;

OD

FOR i=l TO n-1 DO
FOR j=l TO m DO

EDGE Edge_$i_$j_to_$i_$((j+1) MOD m)
{

NODE Torus_$i_$j PORT gcpp <=>
NODE Torus_$i_S ((j + D MOD m) PORT gcpp;

};

OD

FOR j=l TO m-1 DO
FOR i = l TO n DO

EDGE Edge_$i_$j_to_$((i+1) MOD n)_$j
{

NODE Torus_$i_$j PORT gcpp <=>
NODE Torus_S((i+1) MOD n)_$j PORT gcpp;

};

ASSIGN Torus_l_l PORT GCel-Esterna;

};
NODE GCPP_64
{

CONST n = 4;
CONST m = 8;

FOR i = l TO n DO
FOR i=l TO n DO

NODE Torus_$i_$j

OD

ASSIGN Torus_l_l PORT GCPP-Esterna;
};
NODE SCI_64
{

CONST n = 4;
CONST m = 8;

FOR i = l TO n DO

342

Ttiisf edge properties lau BEST

RSD Properties

Source ports: Export with name:

Bind Cancel

OK Cancel

Ht.tlm Nunth***'.*

r..-t*rn iinri^l

o*~ ! cancWl

«likfliHi ^^^^^■SSSBEIS

object:

^ -
MWbuU _-li__y"11«'

Typ*
--«J™—.

igMffflSfe'-ji;] B>?^e :

f oi" rciVcel'j

ilfcM IJHTHTiFffil
jTuwItov l||Si|lf Ed»», [m*j

OfcJMil;

/u: 1 -
Attribut» Üiü» fl

CPU npambm "'|^,
lAsmory 148 j|§j
SyaOb iLinux
HirdOISp J43 H

p
New . ■

o« | meal

TsMUav Nod«

: CWirmil Part:

«i lnMi-l»4e Part!

.OrHeWr«

i iQridlntoin J

Attribute _1 «•*») i

|
:..??=_: f mt... 1

c»«il

Figure 12. Specification of the RSD attributes
of a virtual edge

Figure 13. Supported topologies

FOR i=l TO n DO
NODE Torus_$i_$j
{

PORT Sci64;
IF ((i=l) £.& <j=l)> THEN

PORT SCI_64-Esterna;
FI

CPU = Pentiumll;
CPUNumber = 2;
Memory = 256MByte;
PeakPerformance = 19.2GFlops;

};

OD

FOR i=l TO n-1 DO
FOR j=l TO m DO

EDGE Edge_$i_$j_to_$i_$((3 + 1) MOD m)
{

NODE Torus_$i_$j PORT sci64 <=>
NODE Torus_$i_$((j+1) MOD m) PORT sci64;

Bandwidth = 500MByte/s;

OD

FOR j=l TO m-1 DO
FOR i=l TO n DO

EDGE Edge_$i_$j_to_$((i+1) MOD n)_$j
{

NODE Torus_$i_$j PORT sci64 <=>
NODE Torus_$((i+1) MOD n)_$j PORT sci64;

Bandwidth = 500MByte/s;

{
NODE Uranus PORT Ethernet <=> NODE Ether-

net PORT Ethl;
Type = Ethernet;

};

EDGE Edgel
{

NODE Ethernet PORT Eth2 <=>
NODE GCel_System PORT GCel-Esterna;

Type = Ethernet;

EDGE Edge2
{

NODE Ethernet PORT Eth3 <=> NODE SCI_64 PORT SCI_64-
Esterna;

Type = Ethernet;
};

EDGE Edge3
{

NODE Ethernet PORT Eth4 <=> NODE GCPP_64 PORT GCPP-
Esterna;

Type = Ethernet;
};

EDGE Edge4
{

NODE Ethernet PORT Eth5 <=> NODE CC_48 PORT CC_48-
Esterna;

Type = Ethernet;
};

ASSIGN NODE Uranus PORT ATM;

}

5. Summary

ASSIGN Torus_l_l PORT SCI_64-Esterna;

EDGE EdgeO

In this paper we have presented RsdEditor, a graphical
editor for specifying computational resources and services
in distributed environments. Computing components (com-

343

Fde Oftiow Nod» B4p PrtfvciK»

• |Ä)CHUa

^.HKlllBSB

£.MlCfclMC
» jflTofelaglM

TTMM
IL: »■
TTTorui

• a MKMMD

#■-#■■•■»

< ^a^^i^MM^y^^^

FOfl M TO t-1 DO
FORM TO»-I DO

I
NOOEGriUiJjPWra

lyp.KT*

FOBJ.TTOB-1DO

liü^^uMOH

Figure 14. RSD code generation

Paderbotn_Paik

CC_48 GCeLSystem

Ethernet

SQ_64 GCPP_64

ATM

Figure 15. Example: structure of a computing
center (Paderborn Park).

puters, processors) are represented by nodes and their inter-
connects (WAN, LAN, or internal computer links) by edges.
Both may be attributed.

Compared to other approaches RSD is used by both,
users and administrators, thereby allowing the use of simple
graph matching algorithms for mapping resource requests
onto resource offers.

RsdEditor currently generates (via the RSD language)
C++ objects. For improved portability, we plan to adapt Rs-
dEditor to generate XML code. In addition, work is under
way to implement resource brokers with different strategies
on top of the RSD framework.

Acknowledgements

The authors would like to thank the Master Thesis stu-
dents who worked with us during the design and the devel-
opment phases of RsdEditor. In particular, thanks are due
to Simone Nannetti and Mauro Micheletti. Moreover, we
would like to thank Giancarlo Bartoli, technical manager at
the CNUCE Parallel Computing Laboratory.

References

[1] A. Reinefeld, R. Baraglia, T. Decker, J. Gehring,
D. Laforenza, F. Ramme, T. Römke, J. Simon. The
MOL Project: An Open Extensible Metacomputer.
Proc. Heterogenous Computing Workshop HCW'97,
IEEE Computer Society Press, pp. 17-31.

[2] CCS: Computing Center Software.
http://www.uni-paderborn.de/pc2/projects/ccs.

[3] A. Keller, A. Reinefeld. CCS Resource Management
in Networked HPC Systems. Proc. Heterogeneous
Computing Workshop HCW'98 at IPPS, Orlando,
pp. 44-56.

[4] M. Brune, A. Reinefeld, J. Varnholt. A Resource
Description Environment for Distributed Comput-
ing Systems. Proc. 8th Intern. Sympos. High-
Performance Distributed Computing HPDC'99, Re-
dondo Beach, 1999, 279-286.

[5] R.R. Freund. Optimal selection theory for super-
concurrency. In Proceedings of Supercomputing 89,
p.699-703, 1989.

[6] T.D. Braun, HJ. Siegel, N. Beck, L.L. Boloni,
M. Maheswaran, A.I. Reuther, J.P. Robertso, M.D.
Theys, B. Yao, D. Hensgen, R.F. Freund. A Com-
pasrison Study of Static Mapping Heuristics for a
Class of Meta-task on Heterogeneous Computing
Systems 8th IEEE Heterogeneous Computing Work-
shop, IEEE Computer Society Press, April 1999.

[7] M.M. Eshaghian, Y.C. Wu. Heterogeneous Task
Graphs onto Heterogeneous System Graphs Proceed-
ings of Sixth Heterogeneous Computing Workshop,
IEEE Computer Society Press, 1:147-160, April
1997.

[8] R. Baraglia, D. Laforenza, A. Panciatici, F. Ravaglia
A Suboptimal Mapping of Parallel Applications on
Metacomputers. Proceedings of IASTED Interna-
tional Conference, Parallel and Distributed Comput-

344

Figure 16. Resources description, of the
Paderborn Park Hypernode.

[16] M. Michelotti, S. Nannetti. Un'interfacciagraßcaper
la deßnizione e descrizione delle risorse e servizi di
un metacomputer. Tesi di Laurea (in Italian), Univer-
sitä degli Studi di Pisa, Facoltä di Scienze MM. FF.
NN., Febbraio 1999.

Biographies

Ranieri Baraglia graduated in Computer Sciences in
1982 at the University of Pisa, Italy. He is currently a re-
searcher at CNUCE, an Institute of the Italian National Re-
search Council (CNR) in Pisa, where he is a member of the
Parallel Processing Group. He was a contract professor at
the Department of Mathematics at Perugia University from
1991 to 1996 where he taught operating systems and paral-
lel architectures. Ranieri Baraglia has been involved in both
Italian and European projects. His main research interests
are in the fields of heterogeneous computing and parallel
algorithms and applications. He is a member of IEEE and
ACM.

ing and Systems, Cambridge Massachusetts, USA,
November 3-6,1999.

[9] I. Foster, C. Kesselman. The Globus Project: A Sta-
tus Report. Proc. IPPS/SPDP '98, Heterogeneous
Computing Workshop, Orlando, pp. 4-18, 1998.

[10] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman,
S. Martin, W. Smith, S. Tuecke. A Resource Man-
agement Architecture for Metacomputing Systems.
Proc. IPPS/SPDP '98, Workshop on Job Scheduling
Strategies for Parallel Processing, Orlando, 1998.

[11] M. Livny, R. Raman. High-Throughput Resource
Management. In The Grid: Blueprint for a new com-
puting infrastructure, ed. I. Foster and C. Kesselman,
San Francisco, Morgan Kaufmann, 1998.

[12] K. Moore, S. Browne, J. Cox, and J. Gettler. Re-
source Cataloging and Distributed Systems. Univ. of
Tennessee, Techn. Report, January 1997.

[13] The Java™ Development Kit (JDK™).
http://java.sun.com/products/jdk/.

[14] Jason J. Manger. Essential Java*. McGraw-Hill,
1998.

[15] R. Baraglia, D. Laforenza, M. Michelotti, S. Nan-
netti. RsdEditor: un'interfaccia grafica per la speci-
fica delle risorse in un metacomputer. Descrizione
e guida per l'utilizzo. CNUCE-CNR Technical Re-
port CNUCE-B4-1999-013 (in Italian. Translation
into English is in progress), 1999.

Axel Keller received his diploma in computer science
from the University of Paderborn in 1993. He is currently
working as a technical associate for the Paderborn Center
for Parallel Computing.

Domenico Laforenza is currently a researcher at
CNUCE, Institute of the Italian National Research Coun-
cil (CNR) in Pisa where he is responsible of the Advanced
Computing Department. He also has a joint appointment at
the Department of Computer Science of University of Pisa
as professor of Parallel Applications. Dr. Laforenza has
written numerous technical and scientific papers and has
served as a program committee member and organiser of
many national and international workshops and conferences
related to High Performance Computing. He is a member
ofAICA and IEEE.

Alexander Reinefeld is the head of the Computer Sci-
ence department at Konrad-Zuse Supercomputing Cen-
ter (ZIB) in Berlin, Germany, and a professor for Par-
allel and Distributed Systems at the Humboldt Univer-
sity Berlin. From 1992 to 1998, he was managing direc-
tor of the Paderborn Center for Parallel Computing, Ger-
many. His research interests focus on parallel and distibuted
high-performance computing, parallel programming mod-
els, performance benchmarking, and applications in dis-
crete optimization. He is a member of IEEE, ACM and GI.

345

SESSION 5-B
SCHEDULING II

Chair: I. Ahmad, Hong Kong University of Science and Technology, China

Heuristics for Scheduling Parameter Sweep Applications
in Grid Environments

Henri Casanova* Arnaud Legrand* Dmitrii Zagorodnov* Francine Berman*

Computer Science and Engineering Department
University of California, San Diego, USA

[casanova, dzagorod, berman]@cs. ucsd. edu
f Laboratoire de l'Informatique et du Parallelisme

Ecole Normale Superieure de Lyon, France
alegrand@ens-lyon.fr

Abstract

The Computational Grid provides a promising plat-
form for the efficient execution of parameter sweep ap-
plications over very large parameter spaces. Scheduling
such applications is challenging because target resources
are heterogeneous, because their load and availability
varies dynamically, and because independent tasks may
share common data files. In this paper, we propose an
adaptive scheduling algorithm for parameter sweep ap-
plications on the Grid. We modify standard heuristics
for task/host assignment in perfectly predictable envi-
ronments (TVTax-min, Min-min, Sufferagej, and we pro-
pose an extension of Sufferage called XSufferage. Using
simulation, we demonstrate that XSufferage can take
advantage of file sharing to achieve better performance
than the other heuristics. We also study the impact of
inaccurate performance prediction on scheduling. Our
study shows that: (i) different heuristics behave dif-
ferently when predictions are inaccurate; (ii) increased
adaptivity leads to better performance.

1. Introduction

Fast networks make it possible to aggregate CPU,
network and storage resources into Computational
Grids [8]. Such environments can be used effectively

This research was supported in part by NSF Grant ASC-
9701333, NASA/NPACI Contract AD-435-5790, DARPA/ITO
under contract #N66001-97-C-8531, and CNRS/INRIA project
ReMaP

to support very large-scale runs of distributed appli-
cations. An ideal class of applications for the Grid is
the class of parameter sweep applications, applications
structured as a set of multiple "experiments", each of
which is executed with a distinct set of parameters.

Executing a parameter sweep on the Grid involves
the assignment of tasks to resources. Although the
experiments (or tasks) of a parameter sweep applica-
tion are independent, a number of issues make schedul-
ing such applications challenging. First, resources in
the Grid are typically shared so that the contention
created by multiple applications creates dynamically
fluctuating delays and qualities of service. In addi-
tion, Grid resources are heterogeneous and may not
perform similarly for the same application. Moreover,
although parameter sweep tasks are independent, they
may share common input files which reside at remote
locations, hence the performance-efficient assignment
and scheduling of the application must include con-
sideration of the impact of data transfer times. Previ-
ous work [3] has demonstrated that run-time, adaptive,
application-scheduling based on dynamic information
about the status of computing resources is a good gen-
eral approach for achieving performance on the Grid.

In [20], three heuristics (Max-min, Min-min and
Sufferage) were proposed for the scheduling of indepen-
dent tasks in single-user, homogeneous environments.
In this paper, we modify existing heuristics to
schedule parameter sweep applications with file
I/O requirements, we propose an extended ver-
sion of Sufferage, XSufferage, and we study the
impact of inaccurate performance prediction on
scheduling. We integrate these heuristics into a gen-

0-7695-0556-2/00 $10.00 © 2000 IEEE
349

eral adaptive scheduling algorithm and compare them
in various simulated computing environments and for
various application scenarios. We will use a standard
performance metric to evaluate our heuristics: the ap-
plication makespan [22], i.e. the time between the first
input files is sent to a computational server and the last
output file is returned to the user. Our ultimate goal is
to include our adaptive scheduling algorithm in a soft-
ware framework, a Parameter Sweep Template (PST),
developed as part of the AppLeS project [13]. PST will
be the subject a a future paper.

In a Grid environment it is usually difficult to obtain
accurate predictions for computing and networking re-
source performance; moreover most scheduling heuris-
tics make use of such predictions. We designed a simu-
lator that allows us to experiment with different levels
of performance prediction accuracy. In this paper we
present a preliminary study of the effect of increasing
inaccuracy on the heuristics under consideration and
discuss how adaptivity can be used to promote perfor-
mance in Grid environments.

This paper is organized as follows. In Section 2,
we present our models for both the application and
the underlying Grid environment. In Section 3, we
present our scheduling algorithm. Section 4 focuses on
the different task/host assignment heuristics whereas
Sections 5 discusses adaptivity and performance pre-
diction accuracy. Section 7 references related research
work, and Section 8 concludes the paper.

2. A Scheduling Model for Parameter
Sweeps on the Grid

2.1. Application Model

We define a parameter sweep application as a set
of n independent sequential tasks {Ti}j=i,..,n. By inde-
pendent we mean that there are no inter-task commu-
nications or data dependencies (i.e. task precedences).
We assume that the input to each task is a set of files
and that a single file might be input to more than one
task. In our model, without loss of generality, each
task produces exactly one output file. Figure 1 shows
an example with input file sharing among tasks. We
assume that the size of each input and output file is
known a-priori.

This model is motivated by our primary target appli-
cation for PST: MCell [29], a micro-physiology applica-
tion that uses 3-D Monte-Carlo simulation techniques
to study molecular bio-chemical interactions within liv-
ing cells. An MCell run is composed of multiple Monte-
Carlo simulations for cell regions whose geometries are
described in (potentially very large) files. For instance,

Input
files

Tasks

Output
files

Figure 1. Application Model

MCell can be used to study the trajectories of neuro-
transmitters in the 3-D space between two cell mem-
branes for different deformations of the membranes,
where each deformation is described in a geometry file.
Additional files of variable sizes are also needed for de-
scribing the initial locations of different molecules. The
model described above is adequate for our purpose and
should be general enough to accommodate other appli-
cations (e.g. general Monte-Carlo simulations).

MCell users and developers anticipate large-scale
runs that contain tens of thousands of tasks with each
task processing hundreds of MBytes of input and out-
put data, with various task-file usage patterns. Fur-
thermore, research work outside the scope of this paper
addresses the question of steerable MCell runs when
users can add new tasks on-the-fly, and modify the
computational targets of existing tasks. Such runs will
lead to fairly intricate task-file usage patterns and a
model as general as the one we describe will be needed
to study scheduling issues in the presence of computa-
tional steering.

2.2. Grid Model

We assume that the Computational Grid available
to the user has the following topology: it is a set of
k clusters of computing resources {Cj}j=i,..,k that are
accessible to the user via k distinct network links. This
is a logical topology, and this work does not attempt to
take into account the actual physical network topology
of the Grid. Our intent is to model a wide-area sys-
tem, such as a Worldwide Flock of Condors [24] for in-
stance. Each cluster contains a certain number of hosts
where a host can be any computing platform, from a
single-processor workstation to an MPP system, and
is available for computation. From now on, we call

350

Cluster

Storage

Storage

User's host
and storage

Storage

Figure 2. Environment Models

both hosts and network links resources. We do not im-
pose any constraint on the performance characteristics
of the resources and our simulator allows for arbitrary
performance variation. The only requirement is that
for each computation and file transfer, an estimate of
running time is available. On interactive hosts, the
estimate is the task execution time whereas on batch
resources, it is the turnaround time (defined as the
waiting time plus the execution time). Such estimates
can be provided by the user, computed from analytical
models or historical information, or provided by facili-
ties such as the Network Weather Service (NWS) [31],
ENV [28], Remos [19], Grid services such as those found
in Globus [10], or computed from a combination of the
above. Recent work shows that the accuracy of the per-
formance estimates have an impact on the effectiveness
of scheduling heuristics and that information about the
probability distribution of the estimates should be ex-
ploited for scheduling [18, 26]. We explore scenarios for
different levels of estimate accuracy in Section 5.

We assume that a storage facility (e.g. NFS,
GASS [9], IBP [23]) is available at each cluster so that
files can be shared among the processes running on dif-
ferent hosts in the cluster. For the first implementation
of PST, we are planning to use IBP for storage man-
agement. Figure 2 shows an example of a Grid of a
Grid with three clusters. In this work we assume that
all input files are initially stored on the user's host,
that all output files must be returned to this location,
and that there are no inter-cluster file exchanges. We
assume for now that once assigned, tasks do not mi-
grate between resources. This scenario fits the current
usage of several real-life, parameter sweep applications
(e.g. MCell, INS2D [25]), and we leave alternate usage
scenarios for future work. In this work we ignore pos-
sible storage constraints and assume unlimited storage
space. Our model assumptions are discussed in the fol-

lowing section, but we believe that they make it possi-
ble to obtain initial meaningful results about a realistic
environment while keeping the simulation tractable.

2.3. Model Discussion

Our Grid model makes several simplifying assump-
tions. Even though we allow network links to have ar-
bitrary dynamic performance characteristics, we do not
model network contention caused by the application it-
self. Instead we view the network as a set of distinct
links emanating from the user's host and that can all be
used in parallel. We believe that this assumption will
need to be relaxed in future work. Since our purpose is
not simulation per se, we will aim at using simulators
developed by other research groups. For instance, the
Micro-Grids simulator [15], when it becomes available,
will allow us to precisely simulate network contention
and study its impact on our current results.

Similarly, we do not take into account contention
within a cluster for shared file access. Our justifica-
tion is that wide-area file transfer cost dominate the
cost of file access within the cluster, even in the pres-
ence of contention. While this is true in certain envi-
ronments, it is certainly not general and we will need
to enhance our own simulator so that it can simulate
model contention for shared storage. For instance, this
will be necessary to simulate high-bandwidth wide-area
research networks such as the vBNS. At the moment
we are planning to deploy the PST software on non-
dedicated commercial wide-area networks with many
clusters and we believe our simulation results will hold
in those environments. The assumption of unlimited
storage is realistic for current runs of MCell on our
current testbed, but that assumption will be relaxed in
future versions of our scheduling algorithm.

Our Grid model also assumes that there are no di-
rect network links between clusters in the sense that
file transfers cannot be performed by our scheduling
algorithm between clusters. In other words, the only
authoritative source of input files is the user's host.
This prevents schedulers from making some optimiza-
tions when disseminating input files among the clus-
ters. However, no heuristic we study in this paper is
able to support such optimizations as this would re-
quire a considerably more precise understanding of the
network. Our next step in this research will be to use
a more complete network model and to consider any
storage device for any file retrieval. This will allow not
only for more flexible application scenarios, but also
for the investigation of more sophisticated scheduling
algorithms.

351

schedule() {

(1)
(2)
(3)

(4)
(5)

(6)

compute the next scheduling event
create a Gantt Chart, G
foreach computation and file transfer currently underway

compute an estimate of its completion time
fill in the corresponding slots in G

select a subset of the tasks that have not started execution: T
until each host has been assigned enough work

heuristically assign tasks to hosts (filling slots in G)
convert G into a plan

Figure 3. Scheduling Algorithm Skeleton

3. Adaptive Scheduling for
Parameter Sweeps

3.1. The Scheduling Algorithm

We call our scheduling algorithm schedule(). The
general strategy is that it takes into account resource
performance estimates to generate a plan for the assign-
ing file transfers to network links and tasks to hosts.
To account for the Grid's dynamic nature, scheduleO
can be called repeatedly so that the schedule can be
modified and refined. We denote the points in time
at which scheduleO is called scheduling events, ac-
cording to the terminology in [20]. We assume that at
each scheduling event our scheduler has knowledge of:
(i) the current topology of the Grid (number of clus-
ters, number of hosts in those clusters, network and
CPU loads), (ii) the number and location of copies of
all input files, and (iii) the list of computations and file
transfers currently underway or already completed.

Figure 3 shows the general skeleton for scheduleO
whose steps can be described as follows:

(1) determines the time of the next scheduling event.
This can take into account environment behavior
to increase or decrease the scheduling event fre-
quency. A higher frequency means a higher adap-
tivity but also a higher scheduling cost.

(2) creates a Gantt chart [7], G, that will be used to
keep track of task/host assignments. G contains
as many columns as resources. Figure 4 shows
an example of a Gantt chart for an environment
containing two clusters with respectively two and
three hosts.

(3) inserts slots corresponding to tasks that are cur-
rently running into the chart. Two examples are
shown on Figure 4 as black-filled rectangular slots
at the beginning of the chart (one file transfer and
one computation).

(4) performs a task-space reduction that can be used
to reduce schedule()'s execution time. This will
be necessary for runs of real parameter sweep ap-
plications since we expect them to contain thou-
sands of tasks.

(5) is the core of the algorithm, determining which
task should be performed on which host. This
step is detailed in Section 4. Examples of slot as-
signments are depicted on Figure 4 in gray. In this
example, input file transfers are scheduled on the
network link to cluster 2, the computation is then
scheduled on a host within that cluster, and the
output file is scheduled to be returned to the user's
host.

(6) converts the Gantt chart into a plan, or a sequence
of instructions. These instructions can then pro-
vide a schedule for deployment with Grid software
services (for job submission and monitoring, data
motion, etc.).

3.2. Discussion

Several steps of our scheduling algorithm can be im-
plemented independently and this makes it possible
to experiment with different techniques and strategies.
Our ultimate goal is to instantiate the algorithm so
that it is optimized for specific environments and ap-
plications. Furthermore, this instantiation should be

352

Resources

Figure 4. Sample Gantt chart

as dynamic and automatic as possible as the algorithm
should be able to reconfigure itself on-the-fly to accom-
modate changing Grid conditions.

Step (1) allows for dynamic adjustment of the
scheduling event frequency. A higher frequency leads to
more adaptivity and should be better for unstable Grid
environments. However, a higher frequency also means
that schedule () is called more frequently. Depending
on the computational cost of the scheduling, a high fre-
quency might not be desirable. In the case of the PST
software, a processor is usually dedicated to scheduling.
Furthermore, given the granularity of the applications
we are considering, there should be no need for very
high frequencies. However, steps (3) and (5) might in-
clude remote access to Grid information services (e.g.
NWS [31]) to perform performance prediction. It may
then become necessary to reduce the scheduling event
frequency because of latencies associated with Grid ser-
vices. One can envision algorithms to dynamically tune
the frequency in step (1). For instance, one could com-
pute the deviation of the computation from what was
planned during the previous call to schedule(). Large
deviations suggest higher frequencies whereas low de-
viations suggest that the frequency can be decreased.

Step (3) obtains estimates for completion of ongoing
file transfers and computations in order to start filling
in slots in the Gantt chart. This is a little different
from estimating just running times because more infor-
mation is available. It is indeed conceivable that more
precise forecasting techniques can be used because the
required prediction is in the near future and because
there are ways to compute percentage to completion.
It may be that applications provides means to check on
computation progress (this is however not the case for
MCell). More generally, techniques using historical in-

formation from Grid services can lead to estimations of
the percentage to completion. We have started exper-
imenting with such techniques and will present results
in a subsequent paper.

Step (5) in Figure 3 states that tasks are assigned
to hosts until "enough" work has been assigned. Like
step (4), this is intended to limit the time spent com-
puting the schedule. Indeed, it makes little sense to
assign tasks to hosts for times that are well beyond
the next scheduling event since the schedule will be re-
evaluated then. Since real runs will not be perfectly
predictable, it is good practice to leave some margin of
error and assign work until after the next scheduling
event so that resources are utilized even if the perfor-
mance predictions were pessimistic.

Step (6) processes the Gantt chart and transforms it
into a set of task lists associated to each resource. The
Grid infrastructure software in use is then responsible
for sequencing file transfers and computations on the
appropriate resources. Here there is some latitude for
some choices concerning the actual implementation of
the task sequencing. It may be that, due to unexpected
performance misprediction, some resource cannot exe-
cute the next task on its list but could execute one
of the subsequent ones. For instance, a file transfer for
the output of a task that is unexpectedly lagging might
cause a network link to stay unused. A solution is to
relax the ordering of the list and allow subsequent file
transfers to be performed immediately.

Our experience indicates that allowing output file
transfers to be delayed until they can effectively occur
is usually a good idea as it allows for better network
bandwidth utilization while not disrupting the overall
schedule to a great extent. This is the scheme used by
schedule () in this paper. Further experiments would
be required in order to investigate the trade-offs be-
tween resource utilization and schedule disruption.

Steps (1) and (5) use dynamic information about
the status of the Grid resources and are key to the al-
gorithm efficacy. Our main focus in this paper is
step (5) of the algorithm and our results are pre-
sented in the following section. We also present pre-
liminary experiments concerning step (1) in Section 5.

4. Performing Task/Host Assignment
Decisions

4.1. Heuristics

We must identify heuristics that are applicable in
Grid environments to perform assignment of file trans-
fers to network links and of computations to hosts.

353

Moreover these heuristics must be reasonably compu-
tationally inexpensive with respect to the duration of
a typical application task. Three simple heuristics for
scheduling independent tasks for a uniform single-user
environment are proposed in [17, 20]: Min-min, Max-
min, and Sufferage. These three heuristics iteratively
assign tasks to processors by considering all tasks not
scheduled and computing Minimum Completion Times
(MCTs). For each task, this is done by tentatively
scheduling it to each resource, estimating the task's
completion time, and computing the minimum com-
pletion time over all resources. For each task, a metric
is computed using these MCTs, and the task with the
"best" metric is assigned to the resource that lets it
achieve its MCT. The process is then repeated until all
tasks have been scheduled.

Min-min uses the Minimum MCT as a metric, mean-
ing that the task that can be complete the earliest
is given priority. The motivation behind Min-min is
that assigning tasks to hosts that will execute them
the fastest will lead to an overall reduced makespan.
Max-min's metric is the Maximum MCT. The expecta-
tion is to overlap long-running tasks with short-running
ones. The rationale behind Sufferage is that a host
should be assigned to the task that would "suffer" the
most if not assigned to that host. For each task, its
sufferage value is defined as the difference between its
best MCT and its second-best MCT. Tasks with high
sufferage value take precedence. Note that this def-
inition of sufferage is a little different from the one
presented in [20]. We found our definition easier to
implement and experiments showed no differences be-
tween our version of sufferage and the one in [20]. We
modified all three heuristics so that they (i) include
input and output data transfer times when computing
MCTs and (ii) take into account the fact that some files
may already be present on remote storage devices. In
addition, we implemented an extended version of the
Sufferage heuristic: XSufferage.

In XSufferage the sufferage value is computed not
with MCTs, but with cluster-level MCTs, i.e. by com-
puting the minimum MCTs over all hosts in each clus-
ter. Our first intuition was that Sufferage should be a
nice way to exploit file locality issues without any a-
priori analysis of the task-file dependence pattern. The
idea is that if a file required by some task is already
present at a remote cluster, that task would "suffer"
if not assigned to a host in that cluster, provided the
file is large compared to the available bandwidth on
the cluster's network link. The sufferage value would
then be a simple way of capturing such situations and
ensuring maximum file re-use. This is somewhat rem-
iniscent of the idea of task/host affinities introduced

in [20], where some hosts are better for some tasks but
not for others.

However that early experiments showed that the
Sufferage heuristic as described above does not lead
to makespans as good as the ones we expected. This
can be explained easily. Assume that a task, say T0,
requires a large input file that is already stored on a
remote cluster. If that cluster contains two (or more)
hosts with nearly identical performance, which is often
the case in practice, then both those hosts can achieve
nearly the same MCT for that task. If the file is of
significant size compared to network bandwidths avail-
able, then it is likely that those two hosts lead to the
best and second-best MCTs for T0. This means that
the sufferage value will be close to zero, giving the task
low priority. Other tasks may be scheduled in its place,
generate load on the hosts in the cluster, and eventually
force T0 to be scheduled on some other cluster, thereby
requiring an additional file transfer. This can have a
dramatic impact on the overall application makespan
as it leads to poor file re-use among tasks, especially in
wide-area bandwidth-constrained environments.

We solved this problem in XSufferage by using a
modified sufferage value definition. For each task and
for each cluster we compute the task's MCT only for
hosts in the given cluster and call that value the cluster-
level MCT. The cluster-level sufferage value is com-
puted as the difference between the best and second-
best cluster-level MCT. The task with the highest
cluster-level sufferage is given priority and is sched-
uled to the host that achieves the earliest MCT within
the cluster that achieves the earliest cluster-level MCT.
Appendix 8 gives formal descriptions of Max-min, Min-
min, Sufferage, and XSufferage.

4.2. Simulating Parameter Sweeps
in Grid Environments

In order to evaluate the efficacy of the heuristics de-
scribed earlier we developed a Grid parameter sweep
simulator. At present, little software is available for
Grid simulation. Among the most promising work,
the Bricks project [30] addresses the question of simu-
lating heterogeneous distributed environment for the
purpose of evaluating scheduling strategies, but no
public implementation is available at the moment.
Furthermore, Bricks targets "global computing sys-
tems" [5, 27, 11, 10] rather than application sched-
ulers. It assumes constant task and data arrival rates
to servers and uses queuing theory in an attempt to
model many users who asynchronously interact with a
global computing system. By contrast, our simulator
is purely event-driven which is more appropriate in our

354

framework where the scheduler knows all tasks a-priori
and is in charge of only one application. The Micro-
Grids [15] project will also be of interest for gaining
insight on how our simulation results hold under more
realistic assumptions. At present, it cannot be used
to perform large numbers of runs of large-scale appli-
cations as it emulates the Grid rather than simulates
runs of the application. However, Micro-Grids uses a
network simulator that could help us model network
traffic more accurately by taking into account physi-
cal network topology and link contention due to that
topology.

Our simulator allows us to compare heuristics un-
der the same load conditions, in a reproducible man-
ner, for a wide variety of system states and application
scenarios. In addition; we verified the accuracy of our
simulated results by comparing experimental runs in
shared, production environments with similarly loaded
simulation application execution times. Our simula-
tor takes as input schedule(), a task/host assign-
ment heuristic, a description of the application tasks
and input /output files, and a description of the Grid
topology with performance characteristics of Grid re-
sources. These characteristics can be constant values,
samples from random distributions, or traces from the
NWS [31]. In this work we use only NWS traces as
they lead to more realistic models. The simulator also
allows for adding and removing resources dynamically,
but we do not perform any experiments with transient
resources in this paper. The output of the simulator is
a makespan value based on the set of input parameters.
More details on the simulator can be found in [6].

4.3. Simulation Results

4.3.1. Random Grids and Applications

In order to perform a fair comparison of task/host se-
lection heuristics we generated 1000 simulated Grids
and 2000 simulated applications. We then randomly
picked Grid/application pairs among the 2,000,000 pos-
sible, and ran our simulator for each pair with all
heuristics. The simulations in this section assume 100%
accurate performance estimation and scheduling events
occur every 500 seconds. The expectation is that com-
puting statistical characteristics of makespans achieved
by each heuristic is representative if the sample size is
large enough, that is if enough Grid/application pairs
are simulated. Before presenting the results, let us de-
scribe how Grids and applications were generated.

In what follows we denote by U(x,y) the discrete
integer uniform probability distribution on the interval
[x, y] where x and y are integers. Each Grid contains
a U(2,12) number of clusters and each of those clus-

ters contains a 1/(2,32) number of hosts. The perfor-
mance of each host is modeled by a CPU load trace
randomly picked among 50 different actual traces ob-
tained from the NWS for various hosts. Each trace is
then shifted by a random offset, so that two hosts using
the same CPU trace do not exhibit the same behavior
at the same time. Similarly network link performance
is modeled by randomly picking latency/bandwidth
traces among 20 different NWS traces. All the NWS
traces that we use for simulations in this paper typi-
cally span 4 days of real time and were obtained for
hosts in various US research institutions and for net-
work links between these institutions (commercial In-
ternet or vBNS). Traces were collected during the first
week of November 1999.

In accordance with typical MCell scenarios we gen-
erate applications as sets of independent Monte-Carlo
simulations, with the tasks of a simulation sharing a
(potentially large) input data file for describing 3-D
geometries. All tasks take as input one additional file
of 1 KByte and generate an output file of 10 KBytes.
An application is composed of a (7(2,10) number of
Monte-Carlo simulations, with each simulation com-
posed of a U(20,1000) number of tasks. Each task
requires a U(100,300) number of seconds of compu-
tation on an unloaded base CPU. Finally, the size
in KBytes of the geometry file associated with each
Monte-Carlo simulation is U (400,100000), meaning
that those files can reach the size of approximatively
95 MBytes. These distributions are representative of
what can be expected from real MCell applications. We
generated one-thousand applications following exactly
this method, and we also generated another thousand
by adding random file/task dependencies. The idea is
to create some perturbation of the regular structure of
the file/task dependency graph and investigate if such
a perturbation has an impact on the relative perfor-
mances of the different task/host selection heuristics.
The perturbation consisted in adding a number of ran-
dom additional dependencies on the order of one fifth of
the total number of tasks. Even though such perturba-
tions take us away from typical MCell applications, it
can be interesting to see how they affect the heuristics.

The results are summarized in Table 4.3 for both
standard applications and applications with file/task
dependencies perturbation. For each scheduling heuris-
tic (including a self-scheduled workqueue [12]) and for
each type of application, the table contains three per-
formance values. The results are computed over 1000
random Grid/application pairs. We use the geomet-
ric mean of the makespans rather than the arithmetic
mean to account for the fact that, depending on the
Grid and the application, makespans in the sample

355

Table 1. Results for Random Grid/Application pairs

Scheduling
No Perturbation Perturbation

Geometric Av. Degradation Average Geometric Av. Degradation Average
Mean (sec) from Best (%) Rank Mean (sec) from Best (%) Rank

Max-min 2390 17.3 3.1 2549 18.9 3.1
Min-min 2452 21.2 3.0 2619 23.2 3.0
Sufferage 2329 14.1 2.8 2505 16.7 2.9
XSufferage 2174 6.2 1.8 2316 7.9 1.8
Workqueue 2850 42.2 4.3 3091 48.1 4.2

space can be of different orders of magnitude (one large
makespan could easily dominate the arithmetic mean).

The second performance value is the " average degra-
dation from the best" which is a measure of how far a
heuristic is from the best heuristic on average. For each
heuristic, it is computed as the arithmetic mean over all
Grid/application pairs of the relative difference of the
makespans for that heuristic and for the best heuristic.
The smaller that value, the closer the heuristic to being
the best one on average.

The third performance value is the "average rank" of
a heuristic over all Grid/application pairs. The average
rank is computed as the arithmetic mean of the rank (1
to 5), where the heuristic leading to the best makespan
is of rank 1 and the one leading to the worst makespan
is of rank 5.

These three different performance values all have
slightly different interpretations and make it possible
to gain a clear understanding of how the heuristics
compare with one another. For instance, it could be
that heuristic 1 is the best one in most cases, and that
heuristic 2 is the second-best one in most cases as well.
In that case, their average ranks will be close to 1 and 2
respectively. This might lead us to think that heuristic
one is preferable. However, it is possible that the av-
erage degradation from best are respectively 20% and
5%. For instance, it can be that when heuristic 1 is not
the best one it is far worse than the best one, whereas
heuristic 2 might not be best often, but is never far
behind the best one in practice. In that case, we would
probably conclude that heuristic 2 is preferable.

The main message from Table 4.3 is that XSuffer-
age is the best heuristic as it leads to the best geo-
metric mean, average degradation from the best, and
average rank for perturbed and non-perturbed appli-
cations. Its average degradation from the best is at
least twice smaller than that of any other heuristics for
standard applications and applications with perturba-
tion. Its average rank is better than any other by 1
unit. Note that the workqueue, in these experiments,

is the least efficient scheduling algorithm as its average
rank is larger than 4 units. Max-min and Sufferage are
comparable with a slight advantage to Max-min, and
Min-min seems less efficient.

Note that all the results in Table 4.3 are averages
over a large number of experiments. In the following
sections we will see cases where Min-min leads to good
makespans when compared to Max-min and Sufferage.
We claim that the experimental results presented in
this section are sufficient to show that XSufferage is
the one of the four heuristics that leads to best sched-
ules for parameter sweep applications, given the models
described in Section 2.

4.3.2. Varying Shared File Sizes

Figure 5(a) show simulation results for the following
application and Grid. The application consists of 1600
tasks, where each task takes as input a 10K un-shared
file and one of eight identical shared files, each shared
by 200 tasks. All tasks are identical in terms of compu-
tational cost (200 seconds on an unloaded base CPU)
and produce a 10K output file. This application set-
ting is comparable to what some of our target param-
eter sweep applications require. We simulate a Grid
such as one that could realistically be used by a user
based at UCSD. That Grid contains 5 clusters contain-
ing respectively 6, 6, 8, 20, and 20 hosts. The perfor-
mance characteristics of the hosts are based on actual
CPU traces obtained via the Network Weather Service.
The network links are also modeled from NWS traces
obtained over the course of a day between a worksta-
tion at UCSD and several remote sites accessible by
commercial Internet links or the vBNS. Bandwidths
on these links varies from as little as 6 KBytes/sec
to 600 KBytes/sec depending on the link and on the
time of the day. In terms of bandwidth averages, one
can classify two of the links as fast (500 KBytes/sec),
three of the links as moderate (between 100 and 200
KBytes/sec), and one as slow (50 KBytes/sec). One

356

12000|-

11000

10000

9000

8000

$ 7000

c
£ 6000
0)
0)

7§ 5000
E

4000

3000

2000

Max-min
-©- Min-min
-*- Sufferage
-A- XSufferage
— Workqueue

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Shared File size (MByte)

Figure 5. Makespan vs. shared file size for
different heuristics

of the two large 20-host clusters is accessible via a fast
link. For large shared file sizes on the graphs, the av-
erage ratio between file transfer time and computation
time for one task is about 3 on a fast link and 30 on
a slow link. For the smallest shared file sizes in our
study, that ratio is about 0.2 on a fast link and 2 on
a slow link. For these experiments, the interval be-
tween scheduling events was always 500 seconds, and
we assumed 100% accurate performance estimations.

The graph in Figure 5 plots makespans vs. shared
file shared file sizes between 10 and 150 MBytes for
the four heuristics and the self-scheduled workqueue.
For very small shared file sizes (up to 100 KBytes, not
plotted on the graph), the workqueue leads to better
makespans than other heuristics when files are so small
that the effect of file sharing becomes negligible. How-
ever, the workqueue quickly becomes inefficient when
shared file size increases. The other heuristics perform
similarly for small shared file sizes but one can see on
the graph that XSufferage performs at least about 20%
better than Min-min and 40% better than Max-min
and Sufferage for a file size of 150 MBytes. We obtained
similar results with different Grid configurations. We
also performed experiments with much larger file sizes.
Even though those experiments are not very realistic
given the current networking capabilities they provide
information about what happens when file re-use is the
only constraint for achieving good scheduling. The re-

sults showed that XSufferage constantly outperforms
all other heuristics by at least 50%. These results show
that XSufferage does a better job at capturing and tak-
ing advantage of file sharing patterns to maximize file
re-use.

5. Adaptive Scheduling

5.1. Quality of Information

A new avenue of research that we are beginning to
explore is the study of Quality of Information (Qol) on
scheduling, that is the impact of the performance es-
timation accuracy and other qualitative attributes on
different scheduling strategies . We expect different
heuristics to react differently to degrading levels of ac-
curacy and that strategies that do not depend on per-
formance estimation and forecast (e.g. self-scheduled
ones [16]) will be more performance-efficient when Qol
is low. Low Qol can also be accounted for in adap-
tive scheduling algorithms such as schedule(). The
following section presents our first simulation results
for different levels of Qol and for increasingly adaptive
versions of schedule().

Our initial model for simulating different levels of
Qol is simple. Our simulator allows us to obtain 100%
accurate estimates for all file transfer or computational
times and we add random noise to those estimates to
simulate inaccurate performance estimates. For each
estimate used by the scheduling algorithm we intro-
duce a percentage error that is uniformly distributed
on the interval [—p, +p] where p is a value between
0% and 100%. Perfectly accurate Qol corresponds to
p = 0, whereas p = 10 means that every 100% accurate
estimate will be randomly increased or decreased by up
to 10%.

This model is sufficient for obtaining initial results
concerning the impact of Qol on the scheduling of pa-
rameter sweep applications, however it makes two as-
sumptions that are not realistic for real forecasting ser-
vices that will be deployed in Computational Grids.
First, it assumes that Qol behavior is the same for
all estimates (for file transfer times and computational
times) and for all resources. This is clearly not the case
as network behavior is significantly different from CPU
behavior for performance prediction purposes [32], and
some resources will generally be more predictable than
others on a regular basis. Second, it assumes that
Qol behavior does not depend on whether a forecast

The term "quality of Information is used to describe qual-
itative aspects of performance predictions in the Performance
Prediction Engineering Project [14].

357

is needed for an event in the short-term or in the long-
term. For instance, our model uses the same error
model for predicting a file transfer time if the transfer
is initiated in the next minute or in an hour. A more
realistic model should probably try to capture some
decay of the Qol as predictions become more and more
long-term. Note that this issue becomes less critical
for high scheduling event frequencies. Future work will
aim at providing a more realistic model of Qol based
on experiments with deployed Grid services, such as
the Network Weather Service [31], and with a variety
of Grid resources.

5.2. Simulation Results

Figure 6 shows simulation results for four different
scheduling event frequencies and decreasing Qol levels.

We use the same simulated Grid as the one used
in Section 4.3.2 and the application is modeled after
an MCell computation that performs eight moderate-
size Monte-Carlo simulations (100 tasks each) for eight
different geometry configurations of a neuro-muscular
junction. Geometry files are on the order of 40 MBytes,
meaning that network transfer times for those files take
on average 80 seconds on a fast link and about 800
seconds on a slow link. The average task computational
time over all hosts is about 110 seconds, can be as fast
at 90 seconds, and as slow as 350 seconds depending
on the host and on its load when the task is running
(as simulated by an offset in an NWS CPU load trace).

All data points in the graphs of Figure 6 are com-
puted as the average makespan over 50 simulated runs.
This is necessary since we introduce random noise to
performance estimates in order to simulate different
levels of Qol. All graphs plot average makespans vs.
values of p (defined in Section 5.1, for the heuristics
presented in Section 4.1 as well as for a self-scheduled
workqueue algorithm. Since the workqueue does not
make use of performance estimates it is not sensitive
to Qol. It is shown as a horizontal solid line on the
four graphs (with a makespan of 1730 seconds). The
variances associated with the 50 samples for each data
point were small for all heuristics: coefficients of varia-
tions were on the order of 5%.

Graph 6(a) plots results when there is only one
initial scheduling event, meaning that the scheduling
algorithm is not adaptive. All heuristics but Max-
min lead to better makespans than the workqueue for
perfect Qol (p = 0), but their performance degrades
very rapidly when p increases. Max-min leads to the
worst makespans, but over all, all heuristics lead to
makespans at least 40% larger than the workqueue
when p is greater than 50. This result is not surprising

as the cumulative errors of performance estimates im-
pact the computations of the various MCTs required
by the heuristics.

Graph 6(b) shows the results when there is a
scheduling event every 500 seconds, or 3 times dur-
ing each run of the application in this case. One can
notice that some heuristics outperform the workqueue
for values of p up to 20. Max-min and Sufferage exhibit
less performance as soon as the Qol is not perfect.

Graph 6(c) shows the results when there is a schedul-
ing event every 250 seconds, or between 5 and 8 times
for each run depending on the heuristic being used.
The effect observed on graph 6(b) is more pronounced
in that heuristics become more tolerant to low Qol
thanks to increased adaptivity, even though Max-min
still leads to large makespans. Sufferage outperforms
the workqueue for values of p lower than 30, whereas
Min-min and XSufferage lead to better makespan than
the workqueue for all values of p. For perfect accuracy,
XSufferage outperforms workqueue by as much as 25%.

Finally, Graph 6(d) shows results for scheduling
events every 125 seconds, or between 11 and 14 times
per run. Sufferage now outperforms the workqueue for
p up to 80, whereas Min-min and XSufferage keep bene-
fiting from increased adaptivity. The results show little
improvements for higher scheduling frequencies. This
is due to the granularity of the application: since tasks
take at least 90 seconds, little can be gained by calling
schedule() more than once every 125 seconds. For
"good" Qol (p < 5%), XSufferage always outperforms
Min-min.

Note that these results are preliminary and that it
is difficult to use them to rank the different heuristics
according to their respective robustness to inaccurate
performance predictions. It will be necessary to per-
form experiments for large numbers of different Grid
configurations and application structures as was done
in Section 4.3.1. A future paper will contain results
from such experiments as well as a more in-depth study
of Qol issues.

Note also that in these experiments we assume that
the Qol does not depend on the scheduling event fre-
quency (see the discussion in Section 5.1). However,
a high scheduling frequency implies that the heuristics
do not use long-term predictions (see the discussion
on step (5) in Section 3.2). Assuming that short-term
predictions are typically more accurate than long-term
predictions, higher scheduling frequencies lead to im-
proved Qol. On Graph 6(d) we show simulation results
for values of p up to 100, but we expect that in reason-
ably stable Grid environments with appropriate fore-
casting services, the performance estimation error will
not be as large as +/- 100% for short-term predictions.

358

(a) one single scheduling event (b) scheduling events every 500 sec

2800

~2600f-

0)
Ä
c
Q.240O
CO
O

CO

„2200
O)
CO

« 2000 -

-+- Max-min
-O- Min-min
-*- Sufferage
-A- XSufferage
— Workqueue

» 1800 -

c
a
&1750H
o

CO

£ 1700h
<D
D)

fc 1650

CO

i-*-"-^ r-

-f- Max-min
-©- Min-min
-*- Sufferage
-A- XSufferage
— Workqueue

i l l
40 50 60

p: Qol error bound (%)
30 40 50 60 70

p: Qol error bound (%)

(c) scheduling events every 250 sec

30 40 50 60 70

p: Qol error bound (%)

(d) scheduling events every 125 sec

1750

^

1700

CO
~1650

CO
a
CO

•S 1600
Co
E
CD
O)
CO 1550
i_
ID

CO

loOtf

—\— Max-min
-0- Min-min
-*- Sufferage
-A- XSufferage
— Workqueue

14orf " i I \ I i
40 50 60 70

p: Qol error bound (%)
100

Figure 6. Simulation results for various levels of Qol and adaptivity

359

The left part of the graph should be more representa-
tive of what we can expect for real systems.

Finally, the scheduling event frequency impacts the
performance of the adaptive algorithm even for perfect
Qol. For instance, XSufferage has an average makespan
around 1550 seconds for p = 0 and scheduling events
every 500 seconds, whereas that average makespan be-
comes lower than 1400 seconds for larger frequencies.
All heuristics but Max-min achieve better makespan
for higher frequencies in the case of perfect Qol. This
is rather counter-intuitive as one would expect that
perfect Qol would not mandate any adaptivity at all.
The fact is that applying those heuristics on small
sets of tasks leads to better scheduling decisions and
shorter makespans. As tasks complete, successive calls
to schedule () apply'the heuristics to the decreasing
sets of tasks, leading to better overall makespans. This
suggests that calling the scheduling algorithm repeat-
edly is a good idea for Sufferage, Min-min, and XSuf-
ferage, even if the environment is very predictable.

6. Summary of Simulation Results

The simulation results in Section 4.3.1 showed that
XSufferage is on average a better heuristic than the
traditional Max-min, Min-min, Sufferage, and self-
scheduled workqueue for scheduling parameter sweep
applications such as MCell on Computational Grids,
provided the models of Section 2 hold. We believe that
Xsufferage leads to better results because it better cap-
tures the file/task dependencies of the application and
leads to improved file re-use. This claim is supported
by the results in Section 4.3.2. Indeed, all experiments
we have conducted with very large shared files seem
to indicate that XSufferage leads to better makespans
than its contenders. Finally, the preliminary study
of Quality of Information and adaptivity in Section 5
showed that all heuristics can benefit from increased
adaptivity and from increased Qol. The results seem
to indicate that XSufferage leads to very good results
for good Qol and compares well with other heuristics
for poor Qol.

It is always difficult to make general statements
about the relative efficiency of scheduling algorithms
since the space of possible Grid configurations and ap-
plication structures is very large. The solution is to
sample both the Grid and the application space as
much as possible as was done in Section 4.3.1. Future
work will contain such sampling for experiments similar
to the ones presented in Section 4.3.2 and 5 in order to
make the results concerning shared file sizes and Qol
more general. Ironically, performing such large-scale
simulations in the Grid/application space is itself a pa-

rameter sweep application and we will probably use the
PST software to distribute it on a real computational
Grid.

7. Related Work

A large number of research papers address the ques-
tion of mapping sets of tasks onto sets of processors in
a view to minimizing overall execution time. Many of
these papers address the case where tasks are indepen-
dent [17, 12,16, 20]. Scheduling heuristics found in [20]
were adapted to our framework as discussed in Sec-
tion 4. All these papers make simplifying assumptions
for task execution times (constant, following a trun-
cated Gaussian distribution, etc.) and none of them
take into account data storage issues.

The work described in [2] focuses on scheduling ap-
plications structured as DAGs on heterogeneous sets
of processors and uses heuristics that are related to
Max-min and Min-min for Level-by-Level scheduling
of the graphs. However, special attention is paid to
data storage issues which makes that work related to
the research presented in this paper. A major differ-
ence between our work and the development in [2] is
that the latter assumes constant perfectly predictable
performance characteristics for resources as should be
available in advanced reservation QoS environments.
Also, the different application structures (Parameter
Sweep vs. DAGs) lead to many differences between
the models in this paper and in [2]. For instance, data
repositories are located anywhere on the network (as
opposed within a cluster) and datasets are pre-staged
to these repositories. Finally, [4] contains a survey
that encompasses several heuristics in addition to the
ones described in [20]. We will consider these heuris-
tics in our future work. This work contrasts to others
in that we: (i) take into account application data stor-
age; (ii) model shared, heterogeneous computational
and network resources with realistic dynamic perfor-
mance characteristics; (iii) study the impact of the ac-
curacy of performance prediction; (iv) introduce a new
heuristic for scheduling parameter sweep applications
(XSufferage).

This work is also related to our work on an AppLeS
Parameter Sweep Template (PST) in that the results
in this paper provide a good justification that XSuffer-
age should be implemented as part of the PST sched-
uler. PST will provide with a practical way to deploy
and schedule parameter sweep on the computational
Grid using available software infrastructures and will
be described in a future paper. PST itself is related
to the Nimrod project [1]. Nimrod targets parameter
sweep applications but its scheduling approach is dif-

360

ferent from ours as it is based on deadlines and on a
Grid economy model. Also, to the best of our knowl-
edge, Nimrod does not take into account dynamic Grid
conditions or file locality constraints for scheduling. In
fact, the work in this paper and our work on the PST
software should be applicable to Nimrod and one can
envision an implementation of PST as a Nimrod mod-
ule.

8. Conclusion and Future Work

In this paper we have proposed an adaptive schedul-
ing algorithm for parameter sweep applications in Grid
environments. In particular, we address the case of
applications where tasks can share input files (e.g.
MCell [29]) and the case of non-dedicated Computa-
tional Grids that span non-dedicated wide-area net-
works. After precisely defining our application and
Grid model, we adapted three standard heuristics for
performing task/host assignment (Max-min, Min-min,
Sufferage) and proposed an extension of the Sufferage
heuristic, XSufferage. We also introduced the notion
of Quality of Information (Qol) to account for inac-
curacies in performance predictions. We use simula-
tion to compare the four heuristics and a self-scheduled
workqueue algorithm in multiple settings with vari-
ous shared files sizes, levels of Qol, application struc-
tures, Grid topologies and resources. The simulation
results demonstrated that: (i) XSufferage leads to bet-
ter schedules on average by quite a large margin; (ii) In-
creased adaptivity benefits all four heuristics even for
perfect Qol; (iii) XSufferage leads to better schedules
for larger shared file sizes; (iv) XSufferage is as tolerant
as the other heuristics to poor Qol and more efficient
for good Qol.

Future work will provide improvements to our mod-
els such as more realistic network and storage models
(encompassing shared-storage and link contention, and
limited storage space), and alternate application usage
scenarios. We will also study the concept of Qol fur-
ther by investigating realistic Qol models and perform-
ing more Qol-related experiments with our simulator.
New heuristics such as the ones found in [4, 21] will
considered for implementing step (5) of our algorithm.
As discussed in Section 3.2, all steps of the algorithm
can lead to new research in different directions (per-
formance prediction and forecasting, task-space reduc-
tion, trade-offs between schedule disruption vs. maxi-
mum resource utilization). Also, the algorithm can be
adapted to provide ways to perform adaptive schedul-
ing for other classes of applications by using different
heuristics in step (5). Finally, we will incorporate the
results here, as well as many of these future improve-

ments, into a practical programming environment and
adaptive scheduler for parameter sweep applications on
the Grid, an AppLeS Parameter Sweep Template. We
believe that such software will provide a useful first step
in achieving performance and programmability for ap-
plications in Grid environments.

Acknowledgements

The authors would like to thank the reviewers for
their insightful comments as well as members of the
AppLeS group for their help.

Appendix A:
Task/host Selection Heuristics

Let Hj,k denote the fctn host within the jtn cluster
and C{Ti,Hjtk) the estimated completion time of task
Ti on host -Hj.fc. Let us define the argmin operator:

Definition: Given a function / from Mn into JR,

/(argminx6Ä«/(a:)) = minx6JR» f(x).

The operator denotes one of the possible vectors that
achieves the minimum of the function /. The way ties
are broken is left the implementation and in this work
they are broken randomly. An argmax operator can
be defined in a similar fashion. Assuming a task set T,
we can now describe each heuristic as follows:

Min-min

while (T jt 0)
foreach (Ti G T)

{c?\h{p)=Mgmmj,k{C{Ti,Hj,k))
end foreach
s = argmini(C,(7i,Fc(i)h(1)))
assign Ts to H <u <D

T = T-
end while

Max-min

{Ts}

while (T ^ 0)
foreach (Tt € T)

(cf\hf))=avgmmj<k(C(Ti,Hj,k))
end foreach
s = argmax;(C(Ti,#m (D))

assign Ts to H <D . <I>

T = T - {Ts}
end while

361

Sufferage

while (T ^ 0)
foreach (T{ € T)

{cf\hf]) = &rgmmhk{C{TuHj<k))

[c^M?) = axgpm.^tkHthn(C(Ti,Hj,k))

sufi = C(Ti,Hc(2)thm) - C{Ti,Hcmhm)

end foreach
s = axgmzxi(sufi)
assign Ts to H' m . (i>

T = T - {Ts}
end while

XSufferage

tuMe (T ^ 0)
/oreacft (Tf € T)

foreach cluster j

hi,j = argmink(C(Ti,Hjtk))
end foreach

cj^argmin^T«,^,,))

cf] = argminj^c(i)(C(Ti,Fj,hi J)

*»U = C{TuH^th)-C{Tt,Hcwh)
1 i,c- t, c . '

end foreach
s = argmax^su/i)
assign Ts to il <D ,

■ .

T = T - {Ts}
end wMe

.(i)

References

[1] D. Abramson and J. Giddy. Scheduling Large Para-
metric Modelling Experiments on a Distributed Meta-
computer. In PCW'97, Sep. 1997.

[2] A. Alhusaini, V. Prasanna, and C. Raghavendra. A
Unified Resource Scheduling Framework for Hetero-
geneous Computing Environments. In Proceedings
of the 8th IEEE Heterogeneous Computing Workshop
(HCW'99), pages 156-165, Apr. 1999.

[3] F. Berman. The Grid, Blueprint for a New computing
Infrastructure, chapter 12. Morgan Kaufmann Pub-
lishers, Inc., 1998. Edited by Ian Foster and Carl
Kesselman.

[4] R. Braun, H. Siegel, N. Beck, L. Boloni, M. Mah-
eswaran, A. Reuther, J. Robertson, M. Theys, B. Yao,
D. Hensgen, and R. Freund. A Comparison Study of
Static Mapping Heuristics for a Class of Meta-tasks
on Heterogeneous Computing Systems. In Proceed-
ings of the 8th Heterogeneous Computing Workshop
(HCW'99), pages 15-29, Apr. 1999.

[5] H. Casanova and J. Dongarra. NetSolve: A Network
Server for Solving Computational Science Problems.

The International Journal of Supercomputer Applica-
tions and High Performance Computing, 1997.

[6] H. Casanova, A. Legrand, D. Zagorodnov, and
F. Berman. Using Simulation to Evaluate Scheduling
Heuristics for a Class of Applications in Grid Environ-
ments. Technical Report RR1999-46, Ecole Normale
Superieure de Lyon, France, Sep. 1999.

[7] W. Clark. The Gantt chart. Pitman and Sons, London,
3rd edition, 1952.

[8] I. Foster and C. Kesselman, editors. The Grid,
Blueprint for a New computing Infrastructure, Mor-
gan Kaufmann Publishers, Inc., San Francisco, USA,
1998.

[9] I. Foster, C. Kesselman, J. Tedesco, and S. Tuecke.
GASS: A Data Movement and Access Service for Wide
Area Computing Systems. In Proceedings of the Sicth
workshop on I/O in Parallel and Distributed Systems,
May 1999.

[10] I. Foster and K. Kesselman. Globus: A Metacomput-
ing Infrastructure Toolkit. International Journal of
Supercomputer Applications, 11(2):115-128, 1997.

[11] A. Grimshaw, A. Ferrari, F. Knabe, and
M. Humphrey. Wide-area computing: Resource
sharing on a large scale. In IEEE Computer 32(5),
volume 32(5), May 1999. page 29-37.

[12] T. Hagerup. Allocating Independent Tasks to Parallel
Processors: An Experimental Study. Journal of Par-
allel and Distributed Computing, 47:185-197, 1997.

[13] http://apples.ucsd.edu.
[14] http://apples.ucsd.edu/perf.html.
[15] http://www csag.ucsd.edu/projects/grid/microgrid.html.
[16] S. F. Hummel, J. Schmidt, R. N. Uma, and J. Wein.

Load-sharing in heterogeneous systems via weighted
factoring. In Proceedings of the 8th Annual ACM
Symposium on Parallel Algorithms and Architectures,
pages 318-328, June 1996.

[17] O. H. Ibarra and C. E. Kim. Heuristic algorithms for
scheduling independent tasks on nonindentical proces-
sors. Journal of the ACM, 24(2):280-289, Apr. 1977.

[18] T. Kidd and D. Hensgen. Why the Mean is Inadequate
for Accurate Scheduling Decisions. In Proceedings of
the 3rd International Symposium on Parallel Archi-
tectures, Algorithms, and Networks (ISPAN'99), Jun.
1999.

[19] B. Lowekamp, N. Miller, D. Sutherland, T. Gross,
P. Steenkiste, and J. Subhlok. A Resource Query In-
terface for Network-Aware Applications. In Proceed-
ings of the 7th IEEE Smposium on High-Performance
Distributed Computing, July 1998.

[20] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen,
and R. Freund. Dynamic Matching and Scheduling
of a Class of Independent Tasks onto Heterogeneous
Computing Systems. In 8th Heterogeneous Computing
Workshop (HCW'99), Apr. 1999.

[21] M. Mitzenmacher. How useful is old information. In
Proceedings of the 16th ACM Symposium on Principles
of Distributed Computing, pages 83-91, 1997.

[22] M. Pinedo. Scheduling: Theory, Algorithms, and Sys-
tems. Prentice Hall, Englewood Cliffs, NJ, 1995.

362

[23] J. Plank, M. Beck, W. Elwasif, T. Moore, , M. Swany,
and R. Wolski. The Internet Backplane Protocol:
Storage in the Network. In Proceedings of NetSore'99:
Network Storage Symposium, Internet2, 199.

[24] J. Pruyne and M. Livny. A Worldwide Flock of Con-
dors : Load Sharing among Workstation Clusters .
Journal on Future Generations of Computer Systems,
12, 1996.

[25] S. Rogers and D. Ywak. Steady and Unsteady Solu-
tions of the Incompressible Navier-Stokes Equations.
AIAA Journal, 29(4):603-610, Apr. 1991.

[26] J. Schopf and F. Berman. Stochastic Scheduling . In
Proceedings of SuperComputing'99, Portland, 1999.

[27] S. Sekiguchi, M. Sato, H. Nakada, S. Matsuoka, and
U. Nagashima. Ninf : Network based Information Li-
brary for Globally High Performance Computing. In
Proc. of Parallel Object-Oriented Methods and Appli-
cations (POOMA), Santa Fe, pages 39-48, February
1996.

[28] G. Shao, F. Breman, and R. Wolski. Using Effec-
tive Network Views to Promote Distributed Applica-
tion Performance. In Proceedings of the 1999 Interna-
tional Conference on Parallel and Distributed Process-
ing Techniques and Applications, 1999.

[29] J. Stiles, T. Bartol, E. Salpeter, , and M. Salpeter.
Monte Carlo simulation of neuromuscular transmit-
ter release using MCell, a general simulator of cellular
physiological processes. Computational Neuroscience,
pages 279-284, 1998.

[30] A. Takefusa, S. Matsuoka, H. Nakada, K. Aida, and
U. Nagashima. Overview of a performance evaluation
system for global computing scheduling algorithms.
In Proceedings of the 8th IEEE International Sym-
posium on High Performance Distributed Computing
(HPDC8), pages 97-104, Aug 1999.

[31] R. Wolski. Dynamically Forecasting Network Perfor-
mance Using the Network Weather Service. In 6th
High-Performance Distributed Computing Conference,
pages 316-325, August 1997.

[32] R. Wolski, N. Spring, and J. Hayes. Predicting the
CPU Availability of Time-shared Unix Systems on the
computational Grid. In Proceedings of the 8th IEEE
International Symposium on High Performance Dis-
tributed Computing (HPDC8), Aug 1999.

Henri Casanova is a Computer Science and
Engineering project scientist at the University of
California, San Diego. His research interests include
all areas of metacomputing, and in particular theoret-
ical models for the efficient scheduling of distributed
application in computational Grid environments. He
received his BS from the Ecole Nationale Superieure
d'Electrotechnique, d'Electronique, d'Informatique
et d'Hydraulique de Toulouse (ENSEEIHT), his MS
from the Universite Paul Sabatier, Toulouse, and his
PhD from the University of Tennessee, Knoxville.

Arnaud Legrand is a Computer Science graduate
student at the Ecole Normale Superieure, the leading
French scientific research and teaching institution,
Lyon, France. He is interested in parallelism, meta-
computing and numerical simulation and is currently
working at the Laboratoire de l'lnformatique et du
Parallelisme (Parallel Computing Laboratory, ENS
Lyon) on linear algebra algorithms that are taylored
to heterogeneous environments.

Dmitrii Zagorodnov is currently pursuing a PhD at
the Department of Computer Science and Engineering
at the University of California, San Diego. He has
received B.S. and M.S. degrees in computer science
from the University of Alaska Fairbanks in 1995 and
1997, respectively. His current research interest is in
fault tolerance for distributed systems.

Francine Berman is a Professor of Computer Science
and Engineering at U. C. San Diego, Senior Fellow at
the San Diego Supercomputer Center, Fellow of the
ACM, and founder of the Parallel Computation Lab-
oratory at UCSD. Her research interests over the last
two decades have focused on parallel and distributed
computation, and in particular the areas of program-
ming environments, tools, and models that support
high-performance computing. She received her B.A.
from the University of California, Los Angeles, and her
M.S. and Ph.D. from the University of Washington.

363

Parallel Program Execution on a Heterogeneous
PC Cluster Using Task Duplication

YU-KWONG KWOK

Department of Electrical and Electronic Engineering
The University of Hong Kong, Pokfulam Road, Hong Kong

Email: ykwok@eee.hku.hk

Abstract*—In this paper, we propose to use a
duplication based approach in scheduling tasks to a
heterogeneous cluster of PCs. In duplication based
scheduling, critical tasks are redundantly
scheduled to more than one machine in order to
reduce the number of inter-task communication
operations. The start times of the succeeding tasks
are also reduced. The task duplication process is
guided given the system heterogeneity in that the
critical tasks are scheduled or replicated in faster
machines. The algorithm has been implemented in
our prototype program parallelization tool for
generating MPI code executable on a cluster of
Pentium PCs. Our experiments using three
numerical applications have indicated that
heterogeneity of PC cluster, being an inevitable
feature, is indeed useful for optimizing the
execution of parallel programs.

Keywords: Scheduling, task graphs, algorithms,
parallel processing, heterogeneous systems, PC
cluster computing, task duplication, resource
management.

1 Introduction

Recently we have witnessed an increasing

interest in employing a network of PCs connected

by a high-speed network to tackle many

computationally intensive parallel applications [9],

[18]. Parallel processing using a cluster of

machines, also commonly called cluster computing,

enables a much larger community of users than ever

before to efficiently tackle many difficult

optimization problems on a readily available

t This research was jointly supported by a research initia-
tion grant from HKU CRCG under contract number
10202518, a research grant from the Hong Kong
Research Grants Council under contract number HKU
7124/99E, and a seed funding grant from HKU URC
under contract number 10203010.

platform [9], [18]. However, realizing the goal of

efficient cluster computing entails handling a

number of resource management chores [18]. One

of the most important problems is the scheduling of

tasks. Indeed, to effectively harness the aggregate

computing power of such a heterogeneous cluster, it

is crucial to judiciously allocate and sequence the

tasks on the machines. In a broad sense, the

scheduling problem exists in two forms: dynamic

and static. In dynamic scheduling, few assumptions

about the parallel program can be made before

execution, and thus, scheduling decisions have to

be made on-the-fly. The goal of a dynamic

scheduling algorithm as such includes not only the

minimization of the program completion time but

also the minimization of scheduling overhead,

which represents a significant portion of the cost

paid for running the scheduler. In a cluster of PCs

environment, such dynamic scheduling algorithms

usually employ the so-called "idle-cycle-stealing"

approach [5] which attempts to dynamically

balance the work load evenly across all the

machines. However, when the objective of

scheduling is to minimize the execution time of a

parallel application, such dynamic scheduling

strategies are not suitable.

On the other hand, the approach of using static

scheduling algorithms [11], [12], [22], which can

afford to use longer time to generate an optimized

schedule off-line, is particularly effective for many

scientific applications such as the adaptive

simulation of N-body problem, object recognition

using iterative image processing algorithms, and

364
0-7695-0556-2/00 $10.00 © 2000 IEEE

some other numerical applications [1], [3], [4],

[13], [14], [19], [25] because the characteristics of

such applications can be determined at compile-

time. A parallel program, therefore, can be

represented by a directed acyclic task graph [3], in

which the node weights represent task processing

times and the edge weights represent data

dependencies as well as the communication times

between tasks [3], [6]. The static scheduling

problem is, in general, NP-complete [5], [8] and

there have been many heuristics suggested in the

literature for scheduling a parallel machine.

However, the problem of scheduling tasks to a

cluster is a relatively less explored topic.

Specifically, there are two difficult research issues

to be tackled in the scheduling problem for cluster
computing:

1) Communication overhead: The
communication overhead in a network of
PCs is still very significant relative to the
processing power of the machines [9]. Thus,
to avoid offsetting the gain from
parallelization by excessive communication
overhead, the tasks should be scheduled in
such a manner that the number of
communications is kept small.

2) Heterogeneity: In a PC cluster, which
typically undergoes continual upgrading,
heterogeneity in the hardware configuration
is unavoidable. Heterogeneity can be a
potential problem for some highly regular
applications (e.g., some data parallel
problems). However, it has been
demonstrated that heterogeneity is useful for
further enhancing the performance of
irregularly structured parallel application
[7], [21], by exploiting the affinity of
different tasks to different machines.

In this study, we propose to use a duplication

approach to scheduling the tasks to the cluster. In

duplication based scheduling, critical tasks are

redundantly scheduled to more than one machines

in order to reduce the number of inter-task

communication operations. The start times of the

succeeding tasks are also reduced. There have been

many duplication approaches suggested in the

literature [1], [10], [15], [16], [17], [20]. However,

all these methods are designed for homogeneous

parallel architectures. Furthermore, the previous

approaches are all evaluated based on simulations

rather than using real applications with a

parallelizing compiler. In our proposed approach,

the task duplication process is guided by tracking

the critical path of the task graph given the system

heterogeneity in that the critical tasks are scheduled

or replicated in faster machines. Task duplication is

indeed particularly effective for heterogeneous

systems because the overall completion time of an

application is usually determined by a subset of

tasks (i.e., the critical-path, discussed in detailed in

Section 2) which can be scheduled to execute

efficiently on the faster machines. We have

implemented this duplication based scheduling

algorithm in the parallel code generator of a

prototype program parallelization tool [2], which

generates MPI code executable on a network of

Pentium PCs. The system on which we tested our

approach is shown schematically in Figure 1. Our

experiments using several real applications have

demonstrated that the duplication technique is very

effective in reducing the completion time of the

applications on a heterogeneous cluster of Pentium

II PCs connected via a Fore Fast Ethernet switch.

The remainder of this paper is organized as

follows. In the next section, we describe in detail

the model used and the design considerations of the

duplication algorithm. Section 3 includes the results

of our performance study. The last section

concludes the paper.

365

profiling
information

application
program

compilation & task
graph generation
module

task graph

scheduling & code
generation module

Ö
O
o

schedule

run-time support
module

run-time statistics

network of
heterogeneous
machines

parallel
code

.exe

Figure 1: System support for high-performance computing on a heterogeneous cluster.

2 Scheduling for a Heterogeneous PC
Cluster

In this section, we first describe our scheduling

model, followed by a discussion of the duplication

techniques employed in our scheduling module of

the parallel code generator.

2.1 The Model

A parallel program is composed of n tasks

{Tv T2, ..., Tn} in which there is a partial order:

Tj < Tj implies that 7 ■ cannot start execution until

7, finishes due to the data dependency between

them. Thus, a parallel program can be represented

by a directed acyclic task graph [3]. Parallelism

exists among independent tasks—7, and Tj are

said to be independent if neither 7, < Tj nor

T: < Tj. Each task 7, is associated with a nominal

execution cost x, which is the execution time

required by 7, on a reference machine in the

heterogeneous system. Similarly, a nominal

communication cost c/y is associated with the

message Mtj from 7, to Tj. Assume there are e

messages where (n - 1) < e < n2 so that the task

graph is a connected graph.

To model heterogeneity of the target system

which consists of m processors {P,, P2, ■■-, Pm} ,

heterogeneity factors are used. For example, if a

task Tj is scheduled to a processor Px, then its

actual execution cost is given by hixxt where hix is

the heterogeneity factor which is determined by

measuring the difference in processing capabilities

(e.g., speed) of processor Px and the reference

machine with respect to task 7,. Similarly, if a

message Mtj is scheduled to the communication

link L between processors Px and Py, its actual

communication cost is given by h'jjXyCjj. An

example parallel program graph is shown in

Figure 2.

366

Figure 2: A Gaussian elimination task graph.

The start time and finish time of a message M • ■
from Ti to Tj on a communication link L are

denoted by MST(Mijt Lxy) and MFT(Mtj, Lxy),

respectively. Obviously, we have:

MFT(Mu,Lxy) = MSTWpL^ + h' ijxyCij

The start time of a task Tt on processor Px is

denoted by ST(Tjt Px) which critically depends on

the task's data ready time (DRT). The DRT of a

task is defined as the latest arrival time of messages

from its predecessors. The finish time of a task Tt

is given by FT{Tit Px) = ST{Tt, Px) + hixii. The

objective of scheduling is to minimize the

maximum FT, which is called the schedule length

(SL).

2.2 Parallel Code Generation with Duplication
Based Scheduling

The proposed duplication scheduler is designed

as a core module in the CASCH (Computer-Aided

SCHeduling) tool [2]. The system organization of

the CASCH tool is shown in Figure 3. It generates

a task graph from a sequential program, uses a

scheduling algorithm to perform scheduling, and

then generates the parallel code in a scheduled form

for a cluster of workstations. The timings for the

tasks and messages are assigned through a timing

database which was obtained through profiling of

the basic operations [2], [6]. As soon as the task

graph is generated, the duplication based scheduler

is invoked.

367

X-Windows GUI

i
Task Symbolic
Information Table

Performance Evaluation
Module

Sequential User Program

I
/^Compilation module "^
l^JLexer and parser) _J

Task Graphs
Generator J

c Scheduling & Mapping

Communications
Insertion

c Code Generator J
Performance Reports D

Weight Estimator

Cluster 2

Cluster 1

Computations
Timings

Communications
Timings

Input/Output
■ Timings

Scheduling &
Mapping
Algorithms

Figure 3: The organization of the CASCH tool.

To minimize the overall execution time of the

application on the cluster, the scheduler first

determines which tasks are more critical so that

they need to be scheduled to start at earlier time

slots, possibly by duplicating their ancestors. In a

task graph, the critical-path (CP), which consists of

tasks forming the longest path, is such an important

structure because the tasks on the CP potentially

determine the overall execution time. To determine

whether a task is a CP task, we can use two

attributes: t-level (top level) and b-level (bottom

level) [13], [24]. The b-level of a task is the length

of the longest path beginning with the task. The t-

level of a task is the length of the longest path

reaching the task. Thus, all tasks on the CP have the

same value of (t-level + b-level), which is equal to

the length of the CP. Based on this observation, we

can easily partition the parallel program into three

categories: CP (critical path), IB (in-branch), and

OB (out-branch) tasks. The IB tasks are ancestors

of CP tasks but are not CP tasks themselves. The

OB tasks are neither CP nor IB tasks and as such,

are relatively less important. This partitioning can

be performed in 0{e) time because the t-level and

b-level of all tasks can be computed by using depth-

first search. A task with a larger b-level implies that

it is followed by a longer chain of tasks, and thus, is

given a higher priority. A procedure is outlined

below for constructing a scheduling list based on

the partitioning.

ALOGRITHM 1: CONSTRUCTION OF SCHEDULING
LIST

Input: a program task graph with n tasks
{TvT2,...,Tn}
Output: a serial order of the tasks

1. compute the t-level and b-level of each task
by using depth-first search;

2. identify the CP; if there are multiple CPs,

368

select the one with the largest sum of
execution cost and ties are broken
randomly;

3. put the CP task which does not have any
predecessor to the first position of the
serial order;

4. i <r- 2; Tx <r- the next CP task
5. while not all the CP tasks are included do

6. if Tx has all its predecessors in the serial
order then

7. put Tx at position i and increment /;
8. else let T be the predecessor of Tx

which is not in the serial order and has the
largest b-level (ties are broken by choosing
the predecessor with a smaller t-level);

9. if T has all its predecessors in the
serial order then put T at position i and
increment i; otherwise, recursively
include all the ancestors of T in the serial
order such that the tasks with a larger b-
level are included first;

10. repeat the above step until all the
predecessors of Tx are in the serial order;

11. put Tx at position i and increment i;
12. Tx <- the next CP task;
13. append all the OB tasks to the serial order

in descending order of b-level;
Using the above scheduling list, we can

determine which tasks have to be considered first in

the duplication process. During scheduling, the CP

tasks are always considered first. However, we

cannot attempt to schedule the CP tasks unless all of

their ancestor tasks, which need not be CP tasks

themselves, are scheduled. Thus, we use a recursive

approach. For each CP task, we first recursively

check whether its ancestors are scheduled. If not,

then the candidate for scheduling will be changed to

the unscheduled ancestor which is at the earliest

position on the scheduling list. To actually schedule

a task, we try to minimize its finish time by

attempting to schedule it to the fastest machine.

Duplication is employed for the minimization of

finish times in that as many ancestors as possible

are inserted before the task. The duplication process

will stop when the finish time of the task starts to

increase or the time slot has been used up. The order

of selecting ancestors for duplication is governed

by the scheduling list. The heterogeneity factors hix

are also used for determining the finish times. After

all the CP tasks are scheduled (and hence all the IB

tasks), the OB tasks are considered for scheduling.

To avoid using an excessive number of machines,

we attempt to schedule the OB tasks without using

duplication. This is useful because the OB tasks

usually do not affect the overall completion time

and, thus, need not be scheduled to finish as soon as

possible. However, if such a conservative approach

fails—that is, the overall completion time is

increased by scheduling a certain OB task without

using duplication, then the same recursive

duplication process will be applied to the OB task.

The whole duplication based task scheduling

process is summarized in Alogrithm 2 below.

ALOGRITHM 2: HETEROGENEOUS DUPLICATION
BASED SCHEDULING

Input: a program task graph with n tasks
{T{, T2, ..., Tn}, a heterogeneous system
with m machines {/>,, P2, ...,Pm}, and the
relative speeds of the machines;
Output: a duplication based schedule

1. Construct the scheduling list (use
Alogrithm 1);

2. For each CP task, first recursively schedule
each of its unscheduled ancestor IB tasks
to a machine so that they can finish as soon
as possible by trying to duplicate on the
machine as many ancestors as the time slot
allows (use the heterogeneity factors hix

for determining the finish times); the order
of selecting tasks for duplication is
governed by the scheduling list; finally
apply the same recursive duplication
process to the CP task itself;

3. Without using any duplication, schedule
each of the remaining tasks (i.e., OB tasks)
to the fastest machine provided that the
schedule length does not increase; if this
fails, employ recursive duplication

369

technique to schedule the OB task;

To illustrate how the heterogeneity of the

machines is exploited, consider in Figure 4 the two

schedules of the Gaussian elimination task graph

(shown earlier in Figure 1). The schedule on the left

is the best schedule without duplication using

homogeneous machines. On the right is a schedule

using six heterogeneous machines in which P2 is of

the same speed as the machines in the left schedule,

while P0 and P] are two times and 1.3 times faster

than P2, respectively. The remaining machines are

slower than P2 ■ We can see that the CP of the task

graph is scheduled to the fastest machine P0. The

critical IB tasks, T4 and T5, are also scheduled to

finish as early as possible on fast machines P{ and

P2, respectively, by duplicating 7,. The resulting

schedule has an overall completion time of 182

units which is significantly smaller than that of the

homogeneous schedule without duplication (330

units)^. Due to space limitations, detailed steps of

producing the two schedules are not shown.

After a symbolic schedule is generated, the code

generator is invoked to actually implement the

schedule using the SPMD (Single Program

Multiple Data) model [2], [23]. The program

statements or procedures constituting a task 7, are

allocated to the specified machine P} for execution

using conditional statements checking the ID of the

machine, as shown in Figure 5. Data structures

associated with a task are also replicated. The

output of the code generator is a C program in

which MPI communication primitives are inserted.

The resulting parallel program is then compiled and

executed on the cluster of workstations.

3 Performance Results

We have implemented the duplication based

t In the homogeneous case, the scheduler is also given six
machines. However, to arrive at the best schedule
shown, it needs only three.

scheduling algorithm in the code generator module

of the CASCH tool (see Figure 3), which is

executable on a Linux-based Pentium II PC in our

cluster. We have parallelized several numerical

applications on CASCH. Here, we present and

discuss some preliminary results obtained by

measuring the execution time of three applications:

Gaussian elimination, Gauss-Seidel algorithm, and

N-Body problem. By varying the problem sizes

(i.e., the dimensions of the matrices in these

applications, from 32 to 256) and the granularities

(from 1-column block to 8-column block, using 1-

D decomposition), we generated four task graphs

for each application with roughly 100, 200, 400,

and 800 tasks.

Our heterogeneous cluster consists of twelve

PCs: eight Pentium II 333 MHz with 32 MB

memory and four Pentium II450 MHz with 64 MB

memory. The PCs are connected by a Fore Fast

Ethernet switch. All the experiments were

performed using eight PCs but with different

configurations: (1) eight homogeneous machines

(i.e., all are Pentium II 333 MHz); (2) five Pentium

II 333 MHz plus two Pentium II 450 MHz; (3) two

Pentium II 333 MHz plus four Pentiume II 450

MHz. The aggregate computing power of the three

configurations are approximately the same because

we found that a Pentium II 450 MHz is about 1.5

times faster than a Pentium II 333 MHz. The

rationale behind selecting these configurations is

that we wanted to investigate the benefit of

heterogeneity. These configurations are denoted as

8S (for eight slow machines), 2F+5S (two fast plus

five slow machines), and 4F+2S (four fast plus two

slow machines), respectively. Ten different runs for

each size of the three applications were done and

the average application execution times were noted.

These average execution times of the three

applications are shown in Figure 6. As can be seen,

370

o
co
co
II

c
03
_l

fl)
3

TJ
CO
n
o

CO

I T7

'12

'13

il T.

I 1

I i I I

ho

1 1

114 I

16 1

I—I 1
I—r^—I
I 18 1

M1

'16

rs$v&mk MMM&wm.

(a) Schedule with homogeneous machines.

Pi p2 p3

W*m®?.KU-,xzs;i®®v&

CM
CO

c
V
_i
o
3

■o

u
CO

'9

Tio

"T7
'16

Tie
Ua-

T

i T11
'15

I T5

1 T. 16

(b) Schedule with heterogeneous machines.

Figure 4: The effect of heterogeneity.

371

if (mynode() == j) {

/* execution of task i */

Figure 5: SPMD implementation of a schedule.

heterogeneity has a significant impact on the

overall execution time of an application in that

using more fast machines (albeit the total number of

machines is smaller), in general, can speedup the

application considerably. The improvement in the

Gaussian elimination application is the most

remarkable. This can be explained by the fact that

the Gaussian elimination graph has a distinctive

critical-path (see Figure 2), the tasks on which can

be scheduled to the fastest machine. On the other

hand, as the Gauss-Seidel task graph has many

intersecting critical-paths [23], the duplication

approach is less effective in exploiting the

advantage of heterogeneity. The improvement of

the heterogeneous approaches for the N-Body

problem, which has a slightly less regular task

graph structure [23], is also considerable.

4 Conclusions and Future Work

In this paper, we have presented a duplication

based approach in scheduling tasks to a

heterogeneous cluster of PCs. The scheduling

algorithm works by recursively duplicating critical

tasks to the faster machines in order to minimize the

finish times. The algorithm has been implemented

in our prototype program parallelization tool for

generating MPI code executable on a cluster of

Pentium PCs. Our experiments using three

numerical applications have indicated that

heterogeneity of PCs cluster is indeed useful for

optimizing the execution of parallel programs. One

important issue related to using a PC cluster is fault-

tolerance. Unlike a tightly couple parallel

architecture (e.g., the IBM SP2), a PC in a cluster

may experience intermittent failure, possibly due to

user reboots. Thus, the task schedule has to be fault-

tolerant so that the application can finish its

execution even in the presence of such faults. We

believe that task duplication, augmented with

check-pointing and roll-back recovery techniques,

is a viable approach to achieve this goal. A

performance model is being developed to

quantitatively analyze the merits of this approach.

References

[1] I. Ahmad and Y.-K. Kwok, "On Exploiting
Task Duplication in Parallel Program
Scheduling," IEEE Trans. Parallel and
Distributed Systems, vol. 9, no. 9, pp. 872-892,
Sept. 1998.

[2] I. Ahmad, Y.-K. Kwok, M.-Y. Wu, and W.
Shu, "CASCH: A Software Tool for Automatic
Parallelization and Scheduling of Programs on
Multiprocessors," IEEE Concurrency,
accepted for publication and scheduled to
appear in 2000.

[3] M. Cosnard and M. Loi, "Automatic Task
Graphs Generation Techniques," Parallel
Processing Letters, vol. 5, no. 4, pp. 527-538,
Dec. 1995.

[4] M. Cosnard, M. Marrakchi, Y. Robert, and D.
Trystam, "Parallel Gaussian Elimination on An
MIMD Computer," Parallel Computing, vol. 6,
pp. 275-296, 1988.

[5] H. El-Rewini, T.G. Lewis, and H.H. Ali, Task
Scheduling in Parallel and Distributed
Systems, Englewood Cliffs, New Jersey:
Prentice Hall, 1994.

[6] T. Fahringer, "Compile-Time Estimation of
Communication Costs for Data Parallel
Programs," J. Parallel and Distributed
Computing, vol. 39, pp. 46-65, 1996.

[7] R.F. Freund and HJ. Siegel, "Heterogeneous
Processing," IEEE Computer, vol. 26, no. 6, pp.

372

100 200 300 400 500 600 700 800

graph size

(a) Gaussian elimination

o
0)
E
o>
E
4-»

c
.0

o
<D
X
o
c
o
(0
o
Q. a
(0 2000!

100 200 300 400 500 600 700 800

graph size

(b) Gauss-Seidel

16000

14000

12000

10000

8000

6000

4000

2000

8S -B-
2F+5S X
4F+2S -*-

100 200 300 400 500 600 700 800

graph size

(c) N-body

Figure 6: The average execution time of the three
applications with three different cluster configurations.

13-17, June 1993.

[8] M.R. Garey and D.S. Johnson, Computers and
Intractability: A Guide to the Theory of NP-
Completeness, W.H. Freeman and Company,
1979.

[9] K. Hwang, X. Zu, and C.L. Wang, "Viable
Approaches to Realizing Single System Image

in Multicomputer Clusters," IEEE
Concurrency, accepted for publication and to
appear.

[10]B. Kruatrachue and T.G. Lewis, "Grain Size
Determination for Parallel Processing," IEEE
Software, vol. 5, no. 1, pp. 23-32, Jan. 1988.

[11]Y.-K. Kwok and I. Ahmad, "Dynamic Critical

373

Path Scheduling: An Effective Technique for
Allocating Tasks Graphs to Multiprocessors,"
IEEE Trans. Parallel and Distributed Systems,
vol. 7, no. 5, pp. 506-521, May 1996.

[12]—, "Benchmarking and Comparison of the
Task Graph Scheduling Algorithms," Journal
of Parallel and Distributed Computing,
accepted for publication and scheduled to
appear in 1999.

[13]—, "Static Scheduling Algorithms for
Allocating Directed Task Graphs to
Multiprocessors," ACM Computing Surveys,
accepted for publication and to appear in 2000.

[14]M.G. Norman and P. Thanisch, "Models of
Machines and Computation for Mapping in
Multicomputers," ACM Computing Surveys,
vol. 25, no. 3, pp. 263-302, Sept. 1993.

[15]M.A. Palis, J.-C. Liou, and D.S.L. Wei, "Task
Clustering and Scheduling for Distributed
Memory Parallel Architectures," IEEE Trans.
Parallel and Distributed Systems, vol. 7, no. 1,
pp. 46-55, Jan. 1996.

[16]C. Papadimitriou and M. Yannakakis, "Toward
an Architecture Independent Analysis of
Parallel Algorithms," SI AM J. Computing, vol.
19, no. 2, pp. 322-328, Apr. 1990.

[17]G.-L. Park, B. Shirazi, and J. Marquis, "DFRN:
A New Approach for Duplication Based
Scheduling for Distributed Memory
Multiprocessor Systems," Proc. 11th Int'l
Parallel Processing Symposium, pp. 157-166,
Apr. 1997.

[18]G.F. Pfister, In Search of Clusters, second
edition, Englewood Cliffs, New Jeresy:
Prentice Hall, 1998.

[19]V. Sarkar, Partitioning and Scheduling Parallel
Programs for Multiprocessors, MIT Press,
Cambridge, MA, 1989.

[20]B. Shirazi, H. Chen, and J. Marquis,
"Comparative Study of Task Duplication Static
Scheduling versus Clustering and Non-
Clustering Techniques," Concurrency:
Practice and Experience, vol. 7, no. 5, pp. 371-

390, Aug. 1995.

[21]H.J. Siegel, H.G. Dietz, and J.K. Antonio,
"Software Support for Heterogeneous
Computing," ACM Computing Surveys, vol.
28, no. 1, pp. 237-239, Mar. 1996.

[22]G.C. Sih and E.A. Lee, "A Compile-Time
Scheduling Heuristic for Interconnection-
Constrained Heterogeneous Processor
Architectures," IEEE Trans. Parallel and
Distributed Systems, vol. 4, no. 2, pp. 75-87,
Feb.1993.

[23]M.-Y. Wu and D.D. Gajski, "Hypertool: A
Programming Aid for Message-Passing
Systems," IEEE Trans. Parallel and
Distributed Systems, vol. 1, no. 3, pp. 330-343,
July 1990.

[24]T. Yang and A. Gerasoulis, "List Scheduling
with and without Communication Delays,"
Parallel Computing, vol. 19, no. 12, pp. 1321-
1344, Dec. 1993.

[25]A.Y. Zomaya, M. Clements, and S. Olariu, "A
Framework for Reinforcement-Based
Scheduling in Parallel Processor Systems,"
IEEE Trans. Parallel and Distributed Systems,
vol. 9, no. 3, pp. 249-260, Mar. 1998.

Author Biography:
Yu-KWONG KWOK received his BSc degree in
computer engineering from the University of Hong
Kong in 1991, the MPhil and PhD degrees in
computer science from the Hong Kong University
of Science and Technology in 1994 and 1997,
respectively. Currently, he is an assistant professor
in the Department of Electrical and Electronic
Engineering at the University of Hong Kong.
Before joining the University of Hong Kong, he
was a visiting scholar for one year in the parallel
processing laboratory at the School of Electrical
and Computer Engineering at Purdue University.
His research interests include mobile computing,
wireless networking, software support for parallel
and distributed computing, heterogeneous cluster
computing, and distributed multimedia systems.
He is a member of the IEEE Computer Society and
the ACM. For more information about Kwok, visit
http://www.eee.hku.hk/~ykwok.

374

Segmented Min-Min: A Static Mapping Algorithm for Meta-tasks on
Heterogeneous Computing Systems

Min-You Wu and Wei Shu
Department of Electrical and Computer Engineering

University of New Mexico

Hong Zhang
Department of Electrical and Computer Engineering

University of Central Florida

Abstract

The Min-min algorithm is a simple algorithm. It runs
fast and delivers good performance. However, the Min-min
algorithm schedules small tasks first, resulting in some load
imbalance. In this paper, we present an algorithm which
improves the Min-min algorithm by scheduling large tasks
first. The new algorithm, Segmented min-min, balances the
load well and demonstrates even better performance in both
makespan and running time.

1. Introduction

A heterogeneous computing environment utilizes a suite
of different machines interconnected by high-speed net-
works to execute different computationally intensive appli-
cations that have diverse computational requirements [8,12,
13]. The general problem of mapping tasks to machines has
been shown to be NP-complete [10]. Many useful heuris-
tics to perform this mapping function have been developed.
Among many sophisticated algorithms, the Min-min algo-
rithm [10] is a simple algorithm which runs fast and delivers
satisfactory performance. It selects from all tasks the task
that minimizes the completion time on a machine. In most
situations, it maps as many tasks as possible to their first
choice of machine. However, the Min-min algorithm is un-
able to balance the load well since it usually schedules small
tasks first. In this paper, we propose a simple alternative of
the Min-min algorithm by scheduling large tasks first. The
proposed algorithm retains the advantage of the Min-min
algorithm and achieves good load balance at the same time.

This paper presents the new algorithm, named the Seg-
mented min-min algorithm. In section 2, previous heuristic
algorithms are reviewed. Section 3 presents the new algo-

rithm. Section 4 exhibits the simulation model and experi-
mental results. Section 5 concludes the paper.

2. Previous Heuristics

In this section, we review a set of heuristic algorithms
which schedule meta-tasks to heterogeneous computing
systems. A meta-task is defined as a collection of inde-
pendent tasks with no data dependences. Meta-tasks are
mapped onto machines statically; each machine executes a
single task at a time. For static mapping, it is assumed that
the number of tasks, t, and the number of machines, m, are
known a priori.

A large number of heuristic algorithms have been de-
signed to schedule tasks to machines on heterogeneous
computing systems. In [2], eleven commonly used algo-
rithms have been evaluated, listed as follows.

OLB : Opportunistic Load Balancing (OLB) assigns each
task, in arbitrary order, to the next available ma-
chine [1, 7, 8].

UDA : User-Directed Assignment (UDA) assigns each
task, in arbitrary order, to the machine with the best
expected execution time for the task [1,7].

Fast Greedy : Fast Greedy assigns each task, in arbitrary
order, to the machine with the minimum completion
time for that task [1].

Min-min : In Min-min, the minimum completion time for
each task is computed respect to all machines. The task
with the overall minimum completion time is selected
and assigned to the corresponding machine. The newly
mapped task is removed, and the process repeats until
all tasks are mapped [1, 7, 10].

0-7695-0556-2/00 $10.00 © 2000 IEEE
375

Max-min : The Max-min heuristic is very similar to the
Min-min algorithm. The set of minimum completion
times is calculated for every task. The task with overall
maximum completion time from the set is selected and
assigned to the corresponding machine [1, 7, 10].

Greedy : The Greedy heuristic is literally a combination
of the Min-min and Max-min heuristics by using the
better solution [1, 7].

GA : The Genetic algorithm (GA) is used for searching
large solution space. It operates on a population of
chromosomes for a given problem. The initial popula-
tion is generated randomly. A chromosome could be
generated by any other heuristic algorithm. When it is
generated by Min-min, it is called "seeding" the popu-
lation with Min-min [15, 14].

SA : Simulated Annealing (SA) is an iterative technique
that considers only one possible solution for each
meta-task at a time. SA uses a procedure that prob-
abilistically allows solution to be accepted to attempt
to obtain a better search of the solution space based on
a system temperature [5, 11].

GSA : The Genetic Simulated Annealing (GSA) heuristic
is a combination of the GA and SA techniques [3].

Tabu : Tabu search is a solution space search that keeps
track of the regions of the solution space which have
already been searched so as not to repeat a search near
these areas [6, 9].

A* : A* is a tree search beginning at a root node that is
usually a null solution. As the tree grows, intermediate
nodes represent partial solutions and leaf nodes repre-
sent final solutions. Each node has a cost function, and
the node with the minimum cost function is replaced
by its children. Any time a node is added, the tree is
pruned by deleting the node with the largest cost func-
tion. This process continues until a complete mapping
(a leaf node) is reached [4].

The experimental results from [2] show that OLB, UDA,
Max-min, SA, GSA, and Tabu do not produce good sched-
ules in general. Min-min, GA, and A* are able to deliver
good performance. The difference between the completion
times of the schedules (makespans) generated by these three
algorithms is within 10%. GA is consistently better than
Min-min by a few percents, since it is seeding the popula-
tion with a Min-min chromosome. A*, on the other hand,
produces better or worse schedules than Min-min and GA
in different situations. Among the three algorithms, Min-
min is the fastest algorithm, GA is much slower, and A* is
very slow. For 512 tasks and 16 machines, the running time

of Min-min is about 1 second, GA 30 seconds, and A* 1200
seconds [2].

Min-min is a simple algorithm, fast, and able to deliver
good performance. Even GA has to be "seeding" the popu-
lation with a Min-min chromosome to obtain its good per-
formance. Min-min schedules the "best case" tasks first and
generates relatively good schedules. The drawback of Min-
min is that it assigns the small task first. Thus, the smaller
tasks would execute first and then a few larger tasks execute
while several machines sit idle, resulting in poor machine
utilization. We propose a simple method to enforce large
tasks to be scheduled first. Tasks are partitioned into seg-
ments according to their execution times. The segment with
larger tasks is scheduled first with the Min-min algorithm
being applied within the segment. This is called Segmented
min-min (Smm).

3. The Segmented Min-Min Algorithm

Every task has a ETC (expected time to compute) on a
specific machine. If there are t tasks and m machines, we
can obtain a t x m ETC matrix. ETC(i,j) is the estimated
execution time for task i on machine j.

The Segmented min-min algorithm sorts the tasks accord-
ing to ETCs. The tasks can be sorted into an ordered list by
the average ETC, the minimum ETC, or the maximum ETC.
Then, the task list is partitioned into segments with the equal
size. The segment of larger tasks is scheduled first and the
segment of smaller tasks last. For each segment, Min-min
is applied to assign tasks to machines. The algorithm is de-
scribed as follows.

Segmented min-min (Smm)
1. Compute the sorting key for each task:

SUB-POLICY 1 —Smm-avg: Compute the average
value of each row in ETC matrix

keyi = Y,ETC{i,i)/m.

SUB-POLICY 2 — Smm-min: Compute the mini-
mum value of each row in ETC matrix

keyi = mmETC(i, j).
j

SUB-POLICY 3 — Smm-max: Compute the maxi-
mum value of each row in ETC matrix

key, = maxETC(i,j).
j

2. Sort the tasks into a task list in decreasing order of
their keys.

3. Partition the tasks evenly into N segments.
4. Schedule each segment in order by applying Min-min.

376

Different from the Min-min algorithm, Segmented min-
min performs task sorting before scheduling. Sorting im-
plies that larger tasks are promoted to be scheduled earlier.
Then, Min-min is applied locally within each segment. The
problem here is how to define the sorting key. Tasks with
long execution time deserve promotion to early scheduling.
However, in a heterogeneous system, the execution time of
a task varies in different machines. Therefore, we test three
sub-policies by defining the execution time of a task as the
average, the minimum, or the maximum of its ETCs.

The third step of the Segmented min-min algorithm par-
titions tasks into N segments. Determining the optimal
value of iV is a trade-off. More segments result in better
load balance. On the other hand, too many segments will
lose advantages of the Min-min algorithm. Intuitively, as
long as we partition the tasks into a few segments, such as
large, medium, and small tasks, the load can be balanced
fairly well. Experimental results confirm this as shown in
Figure 1 where the curves show the improvement of Smm-
avg over Min-min for different values of N. Each point in
these curves is the average of five runs. In general, the op-
timal value of N is relevant to the ratio c = —. When c
is large, Min-min performs well. For small c, which means
the number of tasks per machine is not large, the optimal
value of N is about 4 or 5. Therefore, we fix the value of
N to 4, which means that we always partition the tasks into
four segments.

Improve
ment

6 N

4. Experiments

4.1. Performance Comparison

For the experimental studies, we use the same method
in [2] to generate the test set. The parameters include Con-
sistent, Inconsistant, or Semi-Consistant; High or Low Task
Heterogeneity; and High or Low Machine Heterogeneity.
For details, see [2]. All experiment results are based on 512
tasks, 16 or 32 machines, 100 trails and N = 4. The results
for 16 machines are shown in Tables I to XII and that for 32
machines are shown in Tables XIII to XXIV. In these tables,
the second column shows the utilization of machines which

? idle trXYIXG
is defined as 1 - ^makes?an. The third column is the
makespan (the completion time) of schedules. The fourth
column is the improvement of each Segmented min-min al-
gorithm over the Max-min algorithm and the fifth column
is that over the Min-min algorithm. The last column shows
the running time of each algorithm.

4.2. Discussion

From these results, we found that the Segmented min-
min algorithm is able to balance the load very well com-
pared to the Max-min and the Min-min algorithms. The
system utilization of Min-min is relatively low while that
of Segmented min-min is very high. This is because Seg-
mented min-min schedules larger tasks first and smaller
tasks can run in parallel with large tasks. Although the
Max-min algorithm produces very good load balancing, it
does not schedule tasks to their "best case." Thus, its perfor-
mance is far worse than that of the Segmented min-min al-
gorithm. Higher system utilization makes three Segmented
min-min algorithms better than Min-min in almost all cases.
Smm-avg enhances the performance of Min-min from 2% to
12%. Smm-min shows better performance than Smm-avg in
some cases but is worse than Smm-avg in most cases. Smm-
max is worse than Smm-avg in almost all cases. Thus, we
use Smm-avg for the Segmented min-min algorithm, which
improves the Min-min algorithm by 6.1 % in average.

In addition, the running time of the Segmented min-min
algorithm is much less than Min-min. This is not difficult to
explain because Min-min spends the large amount of time
to search entire matrix to map one task each time, while
Segmented min-min, taking advantage of the divide-and-
conquer strategy, only searches the minimum value within
a single partition. In summary, this partitioning method im-
proves the makespan and running time simultaneously.

Figure 1. The N Value.

377

Table 1.16 Machines, Inconsistent, Low Task, Low Machine Heterogeneity

Algorithm
System

Utilization
Makespan

(xl03Sec.)
Improvement
over Max-min

Improvement
over Min-min

Running
Time (Sec.)

Max-min 99.9% 5.425 - - 1.19

Min-min 91.0% 2.915 - - 1.06

Smm-avg 98.1% 2.767 96.0% 5.3% 0.33

Smm-min 98.4% 2.746 96.3% 6.1% 0.33
Smm-max 97.8% 2.784 94.9% 4.7% 0.33

Table II. 16 Machines, Inconsistent, Low Task, High Machine Heterogeneity

Algorithm
System

Utilization
Makespan

(xl05Sec.)
Improvement
over Max-min

Improvement
over Min-min

Running
Time (Sec.)

Max-min 99.8% 2.513 - - 1.19
Min-min 83.3% 1.214 - - 1.06
Smm-avg 96.9% 1.113 125.8% 9.1% 0.33
Smm-min 98.2% 1.064 136.2% 14.2% 0.33
Smm-max 95.9% 1.135 121.4% 7.0% 0.33

Table III. 16 Machines, Inconsistent, High Task, Low Machine Heterogeneity

Algorithm
System

Utilization
Makespan

(xl04Sec.)
Improvement
over Max-min

Improvement
over Min-min

Running
Time (Sec.)

Max-min 99.9% 15.943 - - 1.20
Min-min 91.0% 8.588 - - 1.07
Smm-avg 98.2% 8.139 95.9% 5.5% 0.33
Smm-min 98.5% 8.087 97.1% 6.2% 0.33
Smm-max 97.9% 8.190 94.7% 4.8% 0.33

Table IV. 16 Machines, Inconsistent, High Task, High Machine Heterogeneity

Algorithm
System

Utilization
Makespan
(xl06Sec.)

Improvement
over Max-min

Improvement
over Min-min

Running
Time (Sec.)

Max-min 99.8% 7.375 - - 1.20
Min-min 83.4% 3.573 - - 1.07
Smm-avg 96.8% 3.279 124.9% 8.9% 0.33
Smm-min 98.3% 3.131 135.5% 14.1% 0.33
Smm-max 95.9% 3.344 125.5% 6.9% 0.33

378

Table V. 16 Machines, Consistent, Low Task, Low Machine Heterogeneity

Algorithm
System

Utilization
Makespan

(xl03Sec.)
Improvement
over Max-min

Improvement
over Min-min

Running
Time (Sec.)

Max-min 99.9% 7.415 - - 1.22
Min-min 94.0% 5.857 - - 1.07
Smm-avg 98.6% 5.705 30.0% 2.7% 0.33
Smm-min 98.2% 5.813 27.6% 0.7% 0.33
Smm-max 98.4% 5.749 29.0% 1.9% 0.33

Table VI. 16 Machines, Consistent, Low Task, High Machine Heterogeneity

Algorithm
System

Utilization
Makespan
(xl05Sec.)

Improvement
over Max-min

Improvement
over Min-min

Running
Time (Sec.)

Max-min 99.9% 4.125 - - 1.23
Min-min 89.0% 2.866 - - 1.07
Smm-avg 97.7% 2.805 47.1% 2.1% 0.33
Smm-min 96.7% 2.910 42.3% -2.0% 0.33
Smm-max 97.2% 2.867 43.9% 0.0% 0.33

Table VII. 16 Machines, Consistent, High Task, Low Machine Heterogeneity

Algorithm
System

Utilization
Makespan
(xl05Sec.)

Improvement
over Max-min

Improvement
over Min-min

Running
Time (Sec.)

Max-min 100.0% 2.181 - - 1.24
Min-min 93.9% 1.725 - - 1.08
Smm-avg 98.6% 1.679 29.9% 2.8% 0.33
Smm-min 98.2% 1.710 27.5% 0.9% 0.33
Smm-max 98.4% 1.693 28.8% 1.9% 0.33

Table VIII. 16 Machines, Consistent, High Task, High Machine Heterogeneity

Algorithm
System

Utilization
Makespan

(xl06Sec.)
Improvement
over Max-min

Improvement
over Min-min

Running
Time (Sec.)

Max-min 99.9% 12.152 - - 1.24
Min-min 88.9% 8.437 - - 1.07
Smm-avg 97.7% 8.258 47.2% 2.2% 0.33
Smm-min 96.7% 8.564 41.9% -1.5% 0.33
Smm-max 97.4% 8.430 44.2% 0.0% 0.33

379

Table IX. 16 Machines, Semi-Consistent, Low Task, Low Machine Heterogeneity

Algorithm
System

Utilization
Makespan

(xl03Sec.)
Improvement
over Max-min

Improvement
over Min-min

Running
Time (Sec.)

Max-min 99.9% 6.339 - - 1.21
Min-min 91.8% 3.745 - - 1.07
Smm-avg 98.2% 3.595 76.3% 4.2% 0.33
Smm-min 98.1% 3.624 74.9% 3.3% 0.33
Smm-max 98.0% 3.624 74.9% 3.3% 0.33

Table X. 16 Machines, Semi-Consistent, Low Task, High Machine Heterogeneity

Algorithm
System

Utilization
Makespan

(xl05Sec.)
Improvement
over Max-min

Improvement
over Min-min

Running
Time (Sec.)

Max-min 99.8% 3.199 - - 1.21
Min-min 84.4% 1.664 - - 1.07
Smm-avg 96.8% 1.569 103.9% 6.1% 0.33
Smm-min 96.5% 1.593 100.8% 4.5% 0.33
Smm-max 96.3% 1.590 101.2% 4.6% 0.33

Table XI. 16 Machines, Semi-Consistent, High Task, Low Machine Heterogeneity

Algorithm
System

Utilization
Makespan
(xl05Sec.)

Improvement
over Max-min

Improvement
over Min-min

Running
Time (Sec.)

Max-min 99.9% 1.862 - • - 1.21
Min-min 91.7% 1.104 - - 1.07
Smm-avg 98.2% 1.058 76.0% 4.4% 0.33
Smm-min 98.1% 1.066 74.7% 3.5% 0.33
Smm-max 98.0% 1.067 74.5% 3.4% 0.33

Table XII. 16 Machines, Semi-Consistent, High Task, High Machine Heterogeneity

Algorithm
System

Utilization
Makespan
(xl06Sec.)

Improvement
over Max-min

Improvement
over Min-min

Running
Time (Sec.)

Max-min 99.9% 9.370 - - 1.21
Min-min 84.6% 4.882 - - 1.07
Smm-avg 96.9% 4.619 102.9% 5.7% 0.33
Smm-min 96.6% 4.693 99.7% 4.0% 0.33
Smm-max 96.5% 4.673 100.5% 4.7% 0.33

380

Table XIII. 32 Machines, Inconsistent, Low Task, Low Machine Heterogeneity

Algorithm
System

Utilization
Makespan

(xl03Sec.)
Improvement
over Max-min

Improvement
over Min-min

Running
Time (Sec.)

Max-min 99.5% 1.954 - - 2.23
Min-min 85.1% 1.294 - - 2.16
Smm-avg 93.1% 1.199 63.0% 7.9% 1.16
Smm-min 93.9% 1.188 64.5% 8.9% 1.10
Smm-max 92.6% 1.206 62.0% 7.3% 1.10

Table XIV. 32 Machines, Inconsistent, Low Task, High Machine Heterogeneity

Algorithm
System

Utilization
Makespan

(xl04Sec.)
Improvement
over Max-min

Improvement
over Min-min

Running
Time (Sec.)

Max-min 98.8% 6.395 - - 2.24
Min-min 68.0% 3.959 - - 2.16
Smm-avg 81.8% 3.523 81.5% 12.4% 1.16
Smm-min 79.3% 3.678 73.9% 7.6% 1.10
Smm-max 82.1% 3.502 82.6% 13.0% 1.10

Table XV. 32 Machines, Inconsistent, High Task, Low Machine Heterogeneity

Algorithm
System

Utilization
Makespan

(xl04Sec.)
Improvement
over Max-min

Improvement
over Min-min

Running
Time (Sec.)

Max-min 99.5% 5.755 - - 2.23
Min-min 85.2% 3.804 - - 2.16
Smm-avg 93.2% 3.525 63.3% 7.9% 1.16
Smm-min 93.9% 3.498 64.5% 8.7% 1.10
Smm-max 92.4% 3.556 61.8% 7.0% 1.10

Table XVI. 32 Machines, Inconsistent, High Task, High Machine Heterogeneity

Algorithm
System

Utilization
Makespan

(xl06Sec.)
Improvement
over Max-min

Improvement
over Min-min

Running
Time (Sec.)

Max-min 99.8% 1.882 - - 2.21
Min-min 67.9% 1.167 - - 2.16
Smm-avg 81.7% 1.038 74.3% 12.4% 1.16
Smm-min 79.5% 1.079 74.4% 8.2% 1.09
Smm-max 81.2% 1.044 80.3% 11.8% 1.09

381

Table XVII. 32 Machines, Consistent, Low Task, Low Machine Heterogeneity

Algorithm
System

Utilization
Makespan
(xl03Sec.)

Improvement
over Max-min

Improvement
over Min-min

Running
Time (Sec.)

Max-min 99.8% 3.502 - - 2.26

Min-min 88.4% 3.129 - - 2.18
Smm-avg 94.8% 2.982 17.4% 4.9% 1.17

Smm-min 93.4% 3.025 15.8% 3.4% 1.09
Smm-max 94.1% 3.005 16.5% 4.1% 1.09

Table XVIII. 32 Machines, Consistent, Low Task, High Machine Heterogeneity

Algorithm
System

Utilization
Makespan
(xl05Sec.)

Improvement
over Max-min

Improvement
over Min-min

Running
Time (Sec.)

Max-min 99.7% 1.707 - - 2.27
Min-min 76.4% 1.296 - - 2.18
Smm-avg 89.3% 1.245 37.1% 4.1% 1.17
Smm-min 87.0% 1.279 33.5% 1.3% 1.10
Smm-max 87.9% 1.260 35.5% 2.9% 1.09

Table XIX. 32 Machines, Consistent, High Task, Low Machine Heterogeneity

Algorithm
System

Utilization
Makespan

(xl04Sec.)
Improvement
over Max-min

Improvement
over Min-min

Running
Time (Sec.)

Max-min 99.9% 10.305 - - 2.27
Min-min 88.5% 9.196 - - 2.19
Smm-avg 94.8% 8.775 17.4% 4.8% 1.18
Smm-min 93.6% 8.887 16.6% 3.5% 1.10
Smm-max 94.1% 8.849 16.5% 3.9% 1.09

Table XX. 32 Machines, Consistent, High Task, High Machine Heterogeneity

Algorithm
System

Utilization
Makespan
(xl06Sec.)

Improvement
over Max-min

Improvement
over Min-min

Running
Time (Sec.)

Max-min 99.8% 5.016 - - 2.26
Min-min 76.5% 3.814 - - 2.18
Smm-avg 89.3% 3.668 36.8% 4.0% 1.18
Smm-min 87.0% 3.768 33.1% 1.2% 1.09
Smm-max 87.9% 3.717 34.9% 2.6% 1.09

382

Table XXI. 32 Machines, Semi-Consistent, Low Task, Low Machine Heterogeneity

Algorithm
System

Utilization
Makespan

(xl03Sec.)
Improvement
over Max-min

Improvement
over Min-min

Running
Time (Sec.)

Max-min 99.6% 2.586 - — 2.23
Min-min 85.1% 1.773 - - 2.19
Smm-avg 92.8% 1.674 54.5% 5.9% 1.17
Smm-min 92.2% 1.679 54.0% 5.6% 1.09
Smm-max 92.3% 1.683 53.7% 5.3% 1.09

Table XXII. 32 Machines, Semi-Consistent, Low Task, High Machine Heterogeneity

Algorithm
System

Utilization
Makespan

(xl04Sec.)
Improvement
over Max-min

Improvement
over Min-min

Running
Time (Sec.)

Max-min 99.3% 10.230 - - 2.22
Min-min 66.4% 6.121 - - 2.20
Smm-avg 84.3% 5.604 82.5% 9.2% 1.19
Smm-min 84.6% 5.714 79.0% 7.1% 1.09
Smm-max 82.6% 5.682 80.0% 7.7% 1.09

Table XXIII. 32 Machines, Semi-Consistent, High Task, Low Machine Heterogeneity

Algorithm
System

Utilization
Makespan

(xl04Sec.)
Improvement
over Max-min

Improvement
over Min-min

Running
Time (Sec.)

Max-min 99.7% 7.603 - - 2.23
Min-min 85.1% 5.226 - - 2.20
Smm-avg 92.8% 4.925 54.3% 6.1% 1.19
Smm-min 92.4% 4.937 54.2% 5.9% 1.10
Smm-max 92.1% 4.967 53.1% 5.2% 1.10

Table XXIV. 32 Machines, Semi-Consistent, High Task, High Machine Heterogeneity

Algorithm
System

Utilization
Makespan

(xl06Sec.)
Improvement
over Max-min

Improvement
over Min-min

Running
Time (Sec.)

Max-min 99.3% 3.012 - - 2.22
Min-min 66.3% 1.797 - - 2.19
Smm-avg 84.1% 1.645 83.1% 9.2% 1.18
Smm-min 84.5% 1.682 79.0% 6.8% 1.09
Smm-max 82.8% 1.674 80.0% 7.3% 1.10

383

5. Concluding Remarks

The Segmented min-min algorithm starts from a set of
large tasks while Min-min starting from small tasks. Smm
can balance the load very well and runs faster. We will com-
pare it in the near future to the Genetic algorithm that de-
livered the best performance among eleven selected algo-

rithms.

Acknowledgments

The authors would like to thank the anonymous review-
ers for their thorough comments which caused us to im-
prove the presentation and level of detail. This research
was partially supported by NSF grants CCR-9505300 and

CCR-9625784.

References

[1] R. Armstrong, D. Hensgen, and T. Kidd. The relative per-
formance of various mapping algorithms is independent of
sizable variances in run-time predictions. In 7th IEEE Het-
erogeneous Computing Workshop (HCW '98), pages 79-87,
Mar. 1998.

[2] T. Braun, H. Siegel, N. Beck, L. Boloni, M. Maheswaran,
A. Reuther, J. Robertson, M. Theys, B.Yao, D. Hensgen, and
R. Freund. A comparison study of static mapping heuris-
tics for a class of meta-tasks on heterogeneous computing
systems. In 8th IEEE Heterogeneous Computing Workshop
(HCW '99), pages 15-29, Apr. 1999.

[3] H. Chen, N. S. Flann, and D. W. Watson. Parallel genetic
simulated annealing: a massively parallel SIMD approach.
IEEE Transactions on Parallel and Distributed Computing,
9(2): 126-136, Feb. 1998.

[4] K. Chow and B. Liu. On mapping signal processing al-
gorithms to a heterogeneous multiprocessor system. In
ICASSP 91, pages 1585-1588, May 1991.

[5] M. Coli and P. Palazzari. Real time pipelined system design
through simulated annealing. Journal of Systems Architec-
ture, 42(6-7):465^75, Dec. 1996.

[6] I. D. Falco, R. D. Balio, E.Tarantino, and R. Vaccaro. Im-
proving search by incorporating evolution principles in par-
allel tabu search. In IEEE Conference on Evolutionary Com-
putation, pages 823-828, 1994.

[7] R. Freund, M. Gherrity, S. Ambrosius, M. Campbell,
M. Halderman, D. Hensgen, E. Keith, T. Kidd, M. Kus-
sow, J. Lima, F. Mirabile, L. Moore, B. Rust, and H. Siegel.
Scheduling resources in multi-user, heterogeneous, comput-
ing environments with SmartNet. In 7th IEEE Heteroge-
neous Computing Workshop (HCW '98), pages 184-199,
Mar. 1998.

[8] R. F. Freund and H. J. Siegel. Heterogeneous processing.
IEEE Computer, 26(6):13-17, June 1993.

[9] F. Glover and M. Laguna. Tabu Search. Kluwer Academic
Publishers, 1997.

[10] O. Ibarra and C. Kim. Heuristic algorithms for scheduling
independent tasks on nonidentical processors. Journal of the
ACM, 77(2):280-289, Apr. 1977.

[11] S. Kirkpatrick, J. C. D. Gelatt, and M. P. Vecchi. Optimiza-
tion by simulated annealing. Science, 220(4598):671-680,
May 1983.

[12] M. Maheswaran, T. D. Braun, and H. J. Siegel. Encyclope-
dia of Electrical and Electronics Engineering, chapter Het-
erogeneous Distributed Computing. John wiley & sons,
1999.

[13] H. J. Siegel, H. G. Dietz, and J. K. Antonio. The Computer
Science and Engineering Handbook, chapter Software sup-
port for heterogeneous computing, pages 1886-1909. CRC
Press, 1997.

[14] H. Singh and A. Youssef. Mapping and scheduling hetero-
geneous task graphs using genetic algorithms. In 5th IEEE
Heterogeneous Computing Workshop (HCW '96), pages 86-
97, Apr. 1996.

[15] L. Wang, H. J. Siegel, V. P. Roychowdhury, and A. A. Ma-
ciejewski. Task matching and scheduling in heterogeneous
computing environments using a genetic-algorithm-based
approach. Journal of Parallel and Distributed Computing,
47(1):1-15, Nov. 1997.

Biographies

Min-You Wu is an Associate Professor in the Depart-
ment of Electrical and Computer Engineering at the Uni-
versity of New Mexico. He received the M.S. degree from
the Graduate School of Academia Sinica, Beijing, China,
and the Ph.D. degree from Santa Clara University, Califor-
nia. He has held various positions at University of Illinois at
Urbana-Champaign, University of California at Irvine, Yale
University, Syracuse University, State University of New
York at Buffalo, and University of Central Florida. His
research interests include parallel and distributed systems,
compilers for parallel computers, programming tools, VLSI
design, and multimedia systems. He has published over 80
journal and conference papers in the above areas and edited
two special issues on parallel operating systems. He is a se-
nior member of IEEE and a member of ACM. He is listed
in International Who's Who of Information Technology and
Who's Who in America.

Wei Shu received the Ph.D. degree from the University
of Illinois at Urbana-Champaign in 1990. Since then, she
worked at Yale University, the State University of New York
at Buffalo, and University of Central Florida. She is cur-
rently an Associate Professor in the Department of Electri-
cal and Computer Engineering, University of New Mexico.
Her current interests include dynamic scheduling, resource
management, runtime support systems for parallel and dis-
tributed processing, multimedia networking, and operating
system support for large-scale distributed simulation. She

384

is a senior member of IEEE and a member of ACM.

Hong Zhang is a graduate student and Teaching Assis-
tant in the Department of Electrical and Computer Engi-
neering at the University of Central Florida. She received
her Bachelor of Science degree in Electrical Engineering
from Zhejiang University, Hangzhou, P.R. China, in 1986.
She worked as a software engineer in the Computer Cen-
ter of the Institute of High Energy Physics from 1987-1997,
mainly engaged in design and maintenance of the computer
system. Her research interests include distributed algo-
rithms, computer networks and database management. She
will get her master degree in May, 2000.

385

AUTHOR INDEX

Alhusaini, A 273

Ali,S 185

Ali,S 185

Arcipiani, L 17

Baraglia, R 336

Barbosa, J 147

Beck,N 75

Beitz, A 140

Berman,F 3,216,241,349

Beynon, M 116

Bitten, C 31

Bölöni,L 43

Casanova, H 349

Cavanaugh, C 287

Celino, M 17

Chapin, S 297

Chien, A 102

Ciobanu,M 200

Cime, W 241

Dail,H 216

Daley, L : 90

deDoncker, E 200

DeMatteis,C 253

Dharsee, M 323

Djunaedi, M 53

Eisenhauer, G 90

Ellisman, M 241

Frey,J 241

Gehring, J 31

Grimshaw, A 216

Guadagni, R 17

Guan,Y 200

Hariri, S 53

Hensgen, D 185

Ho,R 171

Hogue,C 323

Hood, R 262

Huh,E-N 287

Hwang, K 171

Irvine, C 133

Jin,H 171

Jost,G 262

Jun,K 43

Jurczyk, M 75

Karypis, G 60

Katramatos, D 297

Keller, A 336

Kent, S 140

Kesselman, C 241

Kim,Y 53

Kumar, V 60

Kurc,T 116

Kwok, Y-K 364

Laforenza, D 336

Lee,C 253

Legrand, A 349

Leinberger, W 60

Levin, T 133

Maheswaran, M 185

Marinescu, D 43

386

Marongiu, A 17

Mathis, A 17

Mehta,N 297

Migliardi, M 309

Novelli, P 17

Obertelli, G 216

Padilha, A 147

Palacz, K 43

Palazzari, P 17

Prasanna, V 273

Rädulescu, A 229

Raghavendra, C 273

Ranganathan, N 160

Reinefeld, A 336

Ro,W 171

Roe, P 140

Rosato, V 17

Saltz, J116

Saxena, D 297

Schwiegeishohn, U 31

Shao, G 3

Shirazi, B 287

Shu,W 375

Siegel, H 75,185

Smallen,S 241

Stepanek, J 253

Su,M-H 241

Sunderam, V 309

Sussman, A 116

Taura, K 102

Tavares, J 147

Theys,M 75

van Gemund, A 229

Venkataramana, R 160

Wang,J 253

Weissman, J 209

Welch, L 287

Wolski, R 3, 216, 241

Wu, M-Y 375

Yahyapour, R 31

Young, S 241

Zagorodnov, D 349

Zanny, R 200

Zhang, H 375

387

NOTES

NOTES

NOTES

COMPUTER
SOCIETY

Press Activities Board

Vice President and Chair:
Carl K. Chang
Dept.ofEECS(M/C154)
The University of Illinois at Chicago
851 South Morgan Street
Chicago, IL 60607
ckchang@eecs.uic.edu

Editor-in-Chief
Advances and Practices in Computer Science and
Engineering Board
Pradip Srimani
Colorado State University, Dept. of Computer Science
601 South Hows Lane
Fort Collins, CO 80525
Phone: 970-491-7097 FAX: 970-491-2466
srimani@cs.colostate.edu

Board Members:
Mark J. Christensen
Deborah M. Cooper - Deborah M. Cooper Company
William W. Everett - SPRE Software Process and Reliability Engineering
Haruhisa Ichikawa - NTT Software Laboratories
Annie Kuntzmann-Combelles - Objectif Technologie
Chengwen Liu - DePaul University
Joseph E. Urban - Arizona State University

IEEE Computer Society Executive Staff
T. Michael Elliott, Executive Director and Chief Executive Officer

Angela Burgess, Publisher

IEEE Computer Society Publications

The world-renowned IEEE Computer Society publishes, promotes, and distributes a
wide variety of authoritative computer science and engineering texts. These books are
available from most retail outlets. Visit the Online Catalog, http: I lcomputer.org, for a
list of products.

IEEE Computer Society Proceedings

The IEEE Computer Society also produces and actively promotes the proceedings of
more than 141 acclaimed international conferences each year in multimedia formats
that include hard and softcover books, CD-ROMs, videos, and on-line publications.

For information on the IEEE Computer Society proceedings, send e-mail to
cs.books@computer.org or write to Proceedings, IEEE Computer Society, P.O. Box 3014,
10662 Los Vaqueros Circle, Los Alamitos, CA 90720-1314. Telephone +1 714-821-8380.
FAX +1 714-761-1784.
Additional information regarding the Computer Society, conferences and
proceedings, CD-ROMs, videos, and books can also be accessed from our
web site at http://computer.org/cspress

Revised 9 November 1999

