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MESSAGE FROM THE GENERAL CHAIR 

Welcome to the 9th Heterogeneous Computing Workshop (HCW 2000). The field of 

heterogeneous computing continues to mature, with several focused themes evolving over the 

past few years. These include cluster computing, grid computing, and metacomputing, among 

others. The Heterogeneous Computing Workshop series offers an international forum for 

researchers in all of these overlapping areas to present their research findings and interact with 

their peers. 

I would like to thank HJ. Siegel, the Steering Committee Chair, for inviting me to be the 

General Chair. Throughout the past year, he provided me with invaluable inputs in resolving 

meeting-related issues. I also would like to thank C.S. Raghavendra, the Program Chair. He did 

an outstanding job in putting together an excellent technical program that addresses diverse 

aspects of heterogeneous computing. In addition, he assisted in resolving meeting-related issues 

including planning and publicity. It was a pleasure working with H.J. and Raghu. 

This year, the response to the call for papers was overwhelming. For the first time, we had to 

arrange parallel sessions to accommodate so many excellent papers that were submitted! I would 

like to thank Susamma Barua, IPDPS 2000 Local Arrangements Chair, for her assistance in 

arranging the meeting space for us. 

The workshop is cosponsored by the US Office of Naval Research and the DEEE Computer 

Society Technical Committee on Parallel Processing. I would like to thank Richard Freund of 

NOEMDC, Inc, for his continued support and guidance of the meeting series. 

Muthucumaru Maheswaran acted as the Publicity Chair. I would like to thank him for the 

excellent job he did in maintaining our website as well as publicizing the meeting. Denise 

Williams of the IEEE Computer Society Press deserves special mention for her efforts in putting 

together the proceedings. Finally, I would like to thank my assistant Henryk Chrostek for 

coordinating meeting related interactions over the past year. It was a pleasure to work with all of 

them. 

Viktor K. Prasanna 

University of Southern California 
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MESSAGE FROM THE PROGRAM CHAIR 

It has been a pleasure to organize the 9th Heterogeneous Computing Workshop (HCW 2000). This 

workshop is a forum to discuss the latest findings in heterogeneous computing and promising work-in- 

progress. Heterogeneous computing systems range from diverse elements within a single computer, to 

coordinated, geographically-distributed machines with different architectures. A heterogeneous 

computing system provides a variety of capabilities that can be orchestrated to execute multiple tasks with 

varied computational requirements. Applications in these environments achieve performance by 

exploiting the affinity of different tasks to different computational platforms or paradigms, while 

considering the overhead of inter-task communication and the coordination of distinct data sources and 

administrative domains. Such computing systems support information infrastructure and other terms, 

including Cluster Computing and Grid Computing, are also used to describe heterogeneous computing. 

In prior years, the HCW program had a single track of paper presentations with an invited paper 

session. This year we received many quality papers, and with the surveyed opinions of authors, we 

decided to have two parallel tracks. The technical program includes 32 papers arranged in 10 sessions 

along the two parallel tracks. Each of the submitted papers was reviewed by two program committee 

members and external reviewers. These presentations cover a range of heterogeneous computing topics, 

including grid computing and applications, scheduling algorithms, theory and modeling, and resource 

management. I would like to thank the members of the Technical Program Committee for their valuable 

and timely review work and their help in putting together the program. 

The success of a workshop such as this depends on the contributions of many individuals. First, I 

would like to thank Viktor Prasanna, the General Chair, for inviting me to be the Program Chair and for 

providing me with a number of pointers on organizational matters. Next, I would like to thank HJ. Siegel, 

the Steering Committee Chair, for his continued support on resolving meeting-related issues and for his 

help in getting the financial support for publishing the workshop proceedings. I also would like to thank 

Muthucumaru Maheswaran for publicizing this workshop through various on-line mailing lists and 

postings on the Web. I am thankful to Henryk Chrostek and Ammar Alhusaini for their help in handling 

submitted papers and in the organization of the Program Committee meeting. Finally, on behalf of the 

Program Committee, I would like to extend my gratitude to the authors, session chairpersons, and the 

reviewers who contributed to making the 9th Heterogeneous Computing Workshop a success. 

Cauligi S. Raghavendra 

The Aerospace Corporation 
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MESSAGE FROM THE STEERING COMMITTEE CHAIR 

These are the proceedings of the 9th Heterogeneous Computing Workshop, also known as HCW 2000. 
Heterogeneous computing is a very important research area with great practical impact. The topic of 
heterogeneous systems covers many types of systems. A heterogeneous system may be set of machines 
interconnected by a wide-area network and used to support the execution of jobs submitted by a large variety 
of users to process data that is distributed throughout the system. A heterogeneous system may be a suite of 
high-performance machines tightly interconnected by a fast dedicated local-area network and used to process a 
set of production tasks, where the subtasks of each task may execute on different machines in the suite. A 
heterogeneous system may also be a special-purpose embedded system, such as a set of different types of 
processors used for automatic target recognition. In the extreme, a heterogeneous system may consist of a 
single machine that can reconfigure itself to operate in different ways (e.g., in different modes of parallelism). 
All of these types of heterogeneous systems (as well as others) are appropriate topics for this workshop series. 

I hope you find the contents of these proceedings informative and interesting. I encourage you to look also at 

the proceedings of past and future Heterogeneous Computing Workshops. 

Many people have worked very hard to make this workshop happen. Cauligi "Raghu" Raghavendra, of the 
University of Southern California and The Aerospace Corporation, was this year's Program Committee Chair, 
and he assembled the excellent program and collection of papers in these proceedings. Raghu did this with the 
assistance of his Program Committee, which is listed in these proceedings. Viktor Prasanna, of the University 
of Southern California, was the General Chair, and he was responsible for the overall organization and 
administration of this year's workshop, and he did a fine job. I thank Richard F. Freund, of NOEMIX, for 
founding this workshop series, and for asking me to succeed him as Chair of the Steering Committee. 

Due to the increasing importance of this research area and the efforts of the workshop organizing 
committee, we received so many excellent submissions this year that we had to go to parallel sessions for the 
first time. While we realize this splits the audience, we did not want to rum away good papers simply because 
this is a one-day workshop (and we did not want to extend the workshop another day, conflicting with our host 

symposium's sessions). 

This year IEEE Computer Society and the Office of Naval Research (ONR) cosponsored the workshop, 
with additional support given from our industrial affiliate, NOEMIX. I thank Andre M. van Tilborg, the 
Director of the Math, Computer, & Information Sciences Division of the Office of Naval Research, for 
arranging funding for the publication of the workshop proceedings (under grant number N00014-00-1-0189). 
We greatly appreciate their continued support of our proceedings. I thank Richard F. Freund, of NOEMIX, for 

again providing the plaque given to the Program Chair in recognition of his efforts. 

This workshop is held in conjunction with the International Parallel and Distributed Processing 

Symposium (IPDPS), which is a merger of symposia formerly known as the International Parallel Processing 
Symposium (IPPS) and the Symposium on Parallel and Distributed Processing (SPDP). The Heterogeneous 
Computing Workshop series is very grateful for the constant cooperation and assistance we have received 

from the IPDPS/IPPS/SPDP organizers. 

H. J. Siegel 

Purdue University 
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Abstract 

Resource selection is fundamental to the performance 
of master/slave applications. In this paper, we address 
the problem of promoting performance for distributed mas- 
ter/slave applications targeted to distributed, heteroge- 
neous "Grid" resources. We present a work-rate-based 
model of master/slave application performance which uti- 
lizes both system and application characteristics to select 
potentially performance-efficient hosts for both the master 
and slave processes. Using a Grid allocation strategy based 
on this performance model, we demonstrate a performance 
improvement over other selection options for a representa- 
tive set of Master/Slave applications in both simulated and 
actual Grid environments. 

1. Introduction 

The master/slave paradigm is a fundamental and com- 
monly used approach for parallel and distributed applica- 
tions. In master/slave applications, a single master process 
controls the distribution of work to a set of identically oper- 
ating slave processes. The master/slave paradigm has been 
used successfully for a wide class of parallel applications 
[12] [6] [14], and is well suited as a programming model for 

* Supported in part by NSF grant #ASC-9701333, DARPA/IT0 contract 
#N66001-97-C-8531, NPACI award #ASC9619020 

tSupported in part by NSF grant #ASC-9701333, DARPA/ITO contract 
#N66001-97-C-8531, NPACI award #ASC9619020 

applications targeted to distributed, heterogeneous "Grid" 
resources[l]. 

Methods which can improve the performance of mas- 
ter/slave applications are of considerable interest to many 
people. Researchers and application developers have pre- 
viously experimented with tuning the granularity of master 
and slave processes to balance computation and communi- 
cation, varying parameters such as the number and com- 
plexity of tasks assigned to slaves, and varying the number 
of slave processes used [3] [8][16]. Note that in a homoge- 
neous environment, any processor can reasonably be chosen 
as a master or a slave, as all resources are typically consid- 
ered to be equivalent. However, in a heterogeneous Grid en- 
vironment, non-uniformity in both the peak and deliverable 
capacities of computational and communication resources 
can produce very different application execution times de- 
pending on which processor is chosen for the master and 
which processors are chosen for the slaves. 

In this paper, we address the problem of how to deter- 
mine a performance-efficient placement of master and slave 
processes running in shared, distributed and heterogeneous 
environments. In a heterogeneous environment, the choice 
of processor for the master can have a significant effect on 
total available work rate, directly impacting application per- 
formance. Our strategy for selecting a location for the mas- 
ter process involves identifying the host processor which 
allows for the largest aggregated system work rate, which 
we will define in the next section. Our strategy for select- 
ing slaves utilizes the performance capacity of the available 
computation and communication resources to determine a 

0-7695-0556-2/00 $10.00 © 2000 IEEE 



performance-efficient collection of workers. 
This paper is organized as follows: Section 2 provides 

a performance model for distributed master/slave applica- 
tions. Section 3 describes how we obtain and use input pa- 
rameters for calculating resource work capacity values in 
our performance models. Section 4 describes our algorithm 
for selecting the resources to use for the master and slave 
processes. Section 5 gives a representative set of perfor- 
mance results from our experiments, Section 6 includes a 
short discussion of some related work, and Section 7 pro- 
vides a summary of our work. 

Net3 

50 

AB CD 

Figure 1. Example network configuration. 

2. A master/slave performance model 

We consider a model of master/slave applications in 
which the primary function of the master process m is to 
pass out and collect work from a set of slave processes 
s € S.' We assume that communication patterns are simple 
and well-defined, requiring communication only between 
the master process and individual slave processes. We will 
define the application's work as a divisible set of tasks; 
where each task may require some input data and produces 
some output data. 

Tasks are completed in an application by progressing 
through four stages in the master/slave computation: 

Stage 1 is the transmission of a command to initiate a 
task on one of the slave processes, including any data 
needed by the slave to perform the computation. 

Stage 2 is the execution of the task by the designated slave. 

Stage 3 is the transmission of results from the slave back 
to the master. 

Stage 4 is any immediate processing of task results from 
the slave that must be done by the master. 

While passing through each stage in the computation, a 
particular system resource must be employed by a task for 
some period of time, after which the task can move on to 
the the next stage. As an example, we can consider the sim- 
ple network topology shown in Figure 1. If processor A in 
Figure 1 is designated as the master process, a task intended 
for slave processor B during Stage 1 will employ the use of 
network Netl to transfer required data from processor A to 
processor B. During Stage 2 the task will utilize processor 
time on B to run task computations. During Stage 3 the task 
will again utilize network Netl to transfer result data from 
B to A. Finally, during Stage 4 the task will utilize proces- 
sor time on A to process the incoming results and to prepare 
for initiating additional task transfers to B. 

'It would be straightforward to extend this work to the case in which 
the master may also perform some work as a slave. 

In constructing a performance model for master/slave 
applications, we look at the rate that applications process 
tasks. The rate at which an application cycles through tasks 
can be used as a measure of application performance, as 
faster overall cycle rates will correspond directly to reduced 
application execution times. 

If we consider the flow of tasks between a master process 
m and a slave process s, we can make the definition: 

SlaveRate(m, s) is the task completion rate occurring be- 
tween master m and slave s, in units of tasks per unit 
of time. 

For master/slave computations where there is no com- 
munication between different slave processes, the total rate 
of task completions for an application will be the sum of the 
rates arising from task completions by individual slaves. We 
define AppRate(m, S) in Equation (1) to be the rate of task 
completions by an application with master process m and a 
set of slave processes S. 

AppRate(m, S) - ^ SlaveRate(m, s) (1) 
s€S 

We can then define execution time, ExecTime(m,S), 
for an application with a master process m and the set of 
slave processes S, and where Tasks is the total number of 
tasks in the application. 

ExecTime(m, S) = Tasks/AppRate(m, S),    (2) 

Application performance can thus be derived from val- 
ues for SlaveRate(m,s). One way to solve for these 
SlaveRate values is to consider the system resource con- 
straints which bound achievable application performance. 
To illustrate the concept, we go back to our simple example 
system in Figure 1, and observe that each processor and net- 
work has been labeled with one or more numerical values. 
We define the numbers in the diagram to represent resource 
work capacities in terms of tasks per unit of time. The val- 
ues next to network links represent network work capacity 
for that network link, the upper number within each circle 



represents slave work capacity for that processor, and the 
lower number within each circle represents master work ca- 
pacity for that processor. 

Consider an application which uses processor C to host 
the master process. To solve for application performance, 
we would like to determine values for SlaveRate(C,A), 
SlaveRate{C,B) and SlaveRate(C,D). The fundamen- 
tal constraint condition to meet is that total task flow rates 
through any resource cannot exceed the capacity value of 
that resource. This means, since task flow from both pro- 
cessor A and processor B passes through network Net3 
in our example, that the sum of SlaveRate(C,A) and 
SlaveRate(C, B) can be at most 50, the capacity of Net3. 

In general, we can define the following resource work 
capacity terms for processor and network resources. All 
terms are rates with units of tasks per unit of time. 

WMasterCPu(i) = the maximum master work rate sup- 
ported by a processor i. This is determined by proces- 
sor i's capacity to perform Stage 4 computations for a 
specified application. 

WsiaveCPu(i) = the maximum slave work rate supported 
by a processor i. This is determined by processor i's 
capacity to perform Stage 2 computations for a speci- 
fied application. 

Wtfet(n) = the maximum communication rate supported 
by a network n. This is determined by network n's 
capacity to perform the Stage 1 and Stage 3 communi- 
cation of a specified application. 

Assuming we have a graph G representing network con- 
nectivity (such as the diagram in Figure 1) that allows us to 
identify which network resources are shared between dif- 
ferent task flows, and resource work capacity rates for each 
of the resources in our system, we can form a set of upper 
bounds on possible SlaveRate(m, s) values. The process 
by which the network connectivity graph G and the work 
capacity rate terms can be derived for resources in a Grid 
environment will be discussed later in section 3. 

First, to aid us in defining our upper bound constraints, 
we define a helper set constructor function: 

ShareNet(G, S, m, n) takes as input a network connec- 
tivity graph G, a set of slaves processes S, a master 
process m, and a network resource n, and returns the 
set of slave processes from S which share the use of 
network resource n when communicating with m. 

For master/slave applications, ShareNet(G,S,m,n) 
can be easily determined for a network graph G, master pro- 
cess m, set of slaves 5, and network resource n by follow- 
ing the single path in the graph G from each slave process 
s € S to the master process m, recording each path passing 
through the resource n. 

Now we can give bounds which form constraints on ap- 
plication performance, as shown below2. 

^2 SlaveRate(m, i) < WMasterCPu(m) (3) 
ies 

SlaveRate(m,i) <WSiaveCPu(i) (4) 

£ SlaveRate(m,i) <Wivet(n)      (5) 
ieShareNet(G,S,m,n) 

Our goal is to find the values of SlaveRate(m, s) which 
meet the constraints given above and which yield the largest 
value of AppRate(m, S). The solution will correspond to a 
configuration which delivers the best achievable application 
performance. 

We can frame the problem of determining val- 
ues for SlaveRate(m,s) which yield the largest 
AppRate(m,S) value as a flow-rate problem where: 
(1) the SlaveRate(m,s) values are the flows we wish 
to solve for, (2) m is the sink for all flows, (3) the set 
S of slave processes are the sources for flows, and (4) 
the flow constraints correspond to the WMasterCPu{i), 
Wsiavecpu(i), and Wfiet{n) work capacities in our target 
environment. 

Because the work flows in a master/slave computation 
form a tree rooted at the master, and because we have lim- 
ited our investigation to considering no more than one pro- 
cess hosted on each processor, efficient algorithms like the 
Maximum-Flow algorithm [5] exist for solving this prob- 
lem. This approach can be used to solve the flow-rate 
problem for several candidate processes m, finding the one 
which is expected to deliver the maximum work flow, and 
hence the best expected application performance. Section 4 
describes the implementation of one such maximum-flow 
algorithm that can be used to find the largest possible work 
flow. 

3. Modeling work capacity rates in a Grid en- 
vironment 

In order to apply our work flow performance model to 
real applications running in a Grid environment, we must 
derive a network connectivity graph G and appropriate 
values for the work capacity rate terms WMasterCPu(i), 
WSiaveCPu(i), and WNet(n). 

The flow-rate algorithm for determining application per- 
formance requires a graph G which represents the network 
connectivity between processor resources.  For wide-area 

2 Since we consider here only cases where processors can host at most 
one process from the same application, we allow the process identifier to 
be the identifier of the processor hosting it in our inequality expressions. 



Input 
Data 

Description Used 
In 

How 
Acquired 

When 
Acquired 

GraphNet Network connectivity G ENV periodically 

TsiaveCPU CPU slave task time WsiaveCPU benchmark install 

TMasterCPU CPU master task time WltfasterCPU benchmark install 

Availcpu CPU availability WsiaveCPU, 
WMasterCPU 

NWS run-time 

SizeTaskXfer Task data transfer size wNet analysis, 
logging 

application 

BWNet Network bandwidth wNet NWS run-time 

Table 1. Inputs for constructing the performance model. 

Grid environments, it might be very difficult to get com- 
plete physical network configuration data about every plat- 
form in the system. It is reasonable, however, to represent 
the target computational resources and their interconnection 
by a logical view which captures those areas where network 
constraints present potential bottlenecks to application per- 
formance. We derive a logical view of resource intercon- 
nection using a logical network configuration discovery tool 
called Effective Network Views (ENV) [13]. (Other sys- 
tems for discovery of effective system topology such as [9] 
might also be used.) The output of the ENV tool is a net- 
work graph representation where every processor belongs 
to a cluster of one or more machines. Machines in a clus- 
ter are connected together through a local network, where 
the capacity of the local network represents the limiting ca- 
pacity of a network resource shared by each machine in the 
cluster. Clusters of local networks are connected together 
in our logical representation through a single layer of non- 
local network links. This representation is suitable for use 
in graph-based analysis techniques like our maximum flow- 
rate problem, and directly translates to the network graph G 
in our flow-rate solution. 

The processor work capacity rates WsiaveCPu{i) and 
WMasterCPU (i) in our model are determined with two 
components: an application-specific component represent- 
ing the maximum performance delivered by a processor 
resource in its unloaded state, and a dynamic component 
that is determined at run-time to adjust capacity rates to 
account for current loading conditions. The application- 
specific component is obtained by running a benchmark of 
the target application code on an unloaded processor, and 
measuring the times TsiaveCPU (*) and TMasterCPU (i) that 
are required to compute a single task on processor type i by 
the slave and master processes respectively. If the task com- 

putation time is variable over time, perhaps because of data 
dependencies in the application, we take an average value 
for all task times in one run of the application benchmark. 
This value could be scaled for particular classes of data sets 
at run-time if the variation in average task run times is large 
when different data sets are used. The benchmark times 
only have to be measured once for each platform type on 
which the application is built to run, so obtaining these val- 
ues is computationally efficient. 

The dynamic component of the work capacity terms for 
processor resources is calculated with the help of real-time 
monitoring and forecasting services such as the Network 
Weather Service [19] (NWS). The NWS provides real-time 
predictions of dynamic processor availability Availcpu{i) 
(the percentage of CPU time a process can expect to get on 
processor i). Availcpu{i) describes the predicted avail- 
ability status of a processor resource, and can be generated 
independently from any particular application. This enables 
a single NWS system to provide simultaneous service to 
many applications requiring real-time information about re- 
source behavior. 

The processor work capacity rates can be calculated us- 
ing the application-specific and dynamic components as 
shown below. The input parameters for these functions are 
summarized in Table 1. 

WsiaveCPu{i) = AvailCPu(i)/TsiaveCPU {i)       (6) 

WMasterCPu(i) = Avüllcpuii) /TMasterCPu{i)        (7) 

The network work capacity rate PT/Vet («) in our model 
is also calculated using two components. One component 
is the application-specific term SizeraskXfer, which rep- 
resents the amount of data transferred between a master 
process and a slave process for each task in an application. 



If the task data transfer sizes are a variable quantity over 
time, perhaps due to data dependencies in the application, 
we must calculate an average data transfer value that rep- 
resents expected steady-state communication behavior over 
the time of an entire application run. 

The second component used in calculating network work 
capacities on a network resource n is a dynamic predic- 
tion of expected available network bandwidth BWNet(n), 
which we obtain from the NWS. The network work capac- 
ity rates can be calculated using application-specific and dy- 
namic components as shown below. The input parameters 
are again summarized in Table 1. 

WNet{n) = BWNet(n)/SizeTaskXfe (8) 

Having constructed a set of resource constraint values 
to help model the performance of a Grid environment, we 
should also discuss an obvious limitation of our approach. 
For each of the terms derived in this section, we have gen- 
erated an average-value expression for use in our steady- 
state application performance model. Yet each of the prop- 
erties being modeled might in reality exhibit considerable 
variability over time, either due to time-varying load con- 
ditions or data dependent behavior of the application being 
run. Our experience has been that despite the limitations of 
converting many variable terms to average steady-state val- 
ues, our approach still yields a performance model which 
can do a good job at estimating application performance, 
and which provides an effective tool for helping to solve the 
resource selection problem, which we discuss next. 

4. Selecting a master and the slaves 

Given the work-rate performance model described in 
Section 2 and a logical representation of the work capacities 
of Grid resources, we can now consider strategies for select- 
ing processors to host the master and slave processes. These 
are important issues for master/slave applications running 
in Grid environments, where users may be able to choose 
from among many different types of resources, and where 
availability of these resources may change over time. 

Selection of the right processor to host the master pro- 
cess can significantly impact the overall application per- 
formance, as the following section will show. Knowing 
which master placement produces the best application per- 
formance might also influence other important decisions, 
such as where to efficiently position input and output files 
for the application. Selection of the right set of processor 
resources to host the slave processes has two goals: (1) se- 
lecting enough resources from the available set to produce 
the best achievable application performance.and (2) limit- 
ing the selection to resources that will actually benefit ap- 
plication performance.   The second goal is important for 

Grid environments where resources can be shared by many 
users, and resources can be owned and managed by many 
different organizations. In these environments, it is desir- 
able that applications use only those resources they really 
need; thereby allowing limited pools of shared resources to 
satisfy the largest number of users. We will first consider 
the issue of selecting the right host for the master process. 

4.1. Master selection example 

In a heterogeneous system, selection of a location for 
the master process very strongly depends on the deliverable 
work capacity of candidate resources. Consider the logi- 
cal Grid configuration shown back in Figure 1, where four 
processors are connected by a system of three networks. We 
have labeled the network resources with values representing 
the Wxet capacity terms. The processor resources, shown 
as circles in the diagram, have been labeled with two values: 
a WsiaveCPU capacity term on top, and a WMasterCPU ca- 
pacity term on the bottom. All capacity terms are in units 
of tasks per second. 

For this simple example system, we can determine the 
assignment of the master process to a processor that gives 
us the greatest achievable work flow. If processor A is se- 
lected to host the master process, processor B is able to pro- 
vide 60 tasks/sec work rate as a slave. In addition, a max- 
imum of 50 tasks/sec worth of data can be transferred over 
network Net3, a work rate which can be supplied by proces- 
sor C. The total expected application work rate with proces- 
sor A hosting the master is therefore 110 tasks/sec. If we 
consider selecting processor C to host the master process, 
we observe that processor D can deliver a work rate of 10 
tasks/sec working as a slave. In addition, we can transfer a 
maximum of 50 tasks/sec worth of data over network Net3, 
which can be supplied by processor A. It becomes apparent 
that processor C is constrained from achieving any higher 
application work rate by the limitations on the Net3 capac- 
ity, as well as the capacity of processor C to serve as the 
master host, to no more than 60 tasks/sec. We could pro- 
ceed in a similar manner for all the processors, and derive 
expected application work rates for each candidate. Table 2 
shows one set of possible outcomes for this process. It is 
apparent from the last column in Table 2 that processor B 
is the best choice, yielding a potential application work rate 
of 130 tasks/sec. 

4.2. Selecting the master 

More generally, we have developed a basic algorithm for 
finding the best performing host for the master process. It is 
based on the well-known maximum-flow algorithm by Ford 
and Fulkerson [7]. In this algorithm, we keep augmenting 
the estimated flow rate for each master host by adding the 



Master WMasterCPU SlaveRate SlaveRate SlaveRate SlaveRate 

Location m (m) (m,A) (m,B) {m,C) (m,D) AppRate(m) 

A 200 0 60 50 0 110 

B 150 80 0 50 0 130 

C 60 50 0 0 10 60 

D 90 40 0 50 0 90 

Table 2. Work rates resulting from master placement decision. 

contributions of slave processors. Additional contributing 
slaves are selected first from those on the same local net- 
work as the master. This continues until either all of the 
slaves have been included, or no further slave work rates 
can be incorporated because of either capacity limitations 
on network resources, or capacity limitations of the master 
processor itself. If further capacity is available from pro- 
cessors on non-local networks, they are added one by one 
to the accumulated master total until no further additions 
are possible without exceeding one of the resource capaci- 
ties. Figure 2 illustrates our basic algorithm for finding the 
best performing master host. Upon termination of the algo- 
rithm, the processor with the highest calculated work rate is 
selected as the master. 

4.3. Complexity 

In deriving the complexity of our algorithm, we note 
that our simplified logical representation of network con- 
figuration reduces the entire system to sets of processors 
connected by local networks. Each of these local networks 
is then connected to other local networks by at most one 
level of remote networking. With this logical topology, 
data transfers between slaves on the same local network 
pass through only one level of networking, and encounter 
only one network resource constraint. Data transfers be- 
tween slaves located on different local networks will pass 
through at most three levels of networking, and must satisfy 
at most three networking constraints. All slave work rates 
must meet the resource constraints of the master processor. 
With this arrangement, there are at most four tests of con- 
straints in our algorithm that have to be checked for each 
master and slave pairing. 

If we have n processors in our system, then each master 
candidate can have at most n — 1 slaves, and each individual 
master work rate calculation takes 0(n) time to calculate. 
Calculating maximum work rates for all n possible mas- 
ter candidates thus takes 0(n2) time. Since our algorithm 
requires only simple compare and accumulation operations 
for each resource constraint test, the entire algorithm is ef- 
ficient for the numbers of processors and networks we cur- 
rently find in Grid environments available to a typical user. 

4.4. Selecting the slaves 

After selecting the master processor, we turn to selec- 
tion of the slave processors. The issue is to select a set of 
processors for hosting slave processes that will deliver good 
aggregate performance. One approach is to start with the set 
of slave processors found in our master selection algorithm 
that yielded the highest expected application performance. 
Our algorithm keeps track of this set in the Found(m) list, 
a list containing slaves used by the algorithm to calculate the 
maximum work rate for an application with processor m as 
the master host. Our master selection algorithm ensures that 
this set of processors results in work flows that fall within 
the constraints imposed by resource capacity limitations. 

In numerous experimental trials using the set of proces- 
sors from Found(m) as slave hosts, we observed that the 
slave processors were often not delivering the maximum 
work rate values we expected in our algorithm. Observa- 
tions of selected slaves showed the reduction in slave per- 
formance was due to the presence of unaccounted idle time, 
periods of time when slave processors were not doing use- 
ful work. An explanation for the observed idle times comes 
from observing the manner in which tasks are distributed to 
slave processors from the master. Each master/slave appli- 
cation we tested maintained a queue of available tasks on 
the master process, and distributed new tasks to individual 
slave processes upon request (a very commonly used tech- 
nique). Because of contention for shared resources, such as 
networks and the master processor, delays sometimes oc- 
curred between the time a slave processor finished one task 
and the time at which the next task appeared for processing. 
These delays appeared as idle time in our observations of 
the slaves. With a minimum set of slaves selected to achieve 
the desired work rate, the unexpected idle time in the slaves 
resulted in a reduction of the actual total work rate achieved. 

The work flow-rate performance model correctly deter- 
mines possible application performance based on resource 
capacity limits. Our master selection algorithm uses this 
performance model, and in the process identifies a set of 
slaves which delivers this performance, assuming that each 
slave delivers its maximum work rate. Experimentation has 
shown that sometimes these slaves actually deliver less than 
their predicted maximum work rates, resulting in less per- 



For all networks k 
Calculate maximum network capacity WMet{k) 

For all processors j 
Calculate maximum master processor capacity WMasterCPU(j) 
Calculate maximum slave processor capacity WSiavecpu(j) 

For each candidate master processor p on local network n 
Set sum for candidate slave work rates CandRate(p) = 0 
Set found set Found(p) to empty 
For all networks k 

Set network utilization sum NetUtil(k) = 0 
Get maximum capacity WNet (n) of local network n 
Get maximum master processor capacity WMasterCPu(p) 
While CandRate(p) < WNet(n) mdCandRate{p) < WMasterCPu{p) 

Select new processor s from same local network as p with 
the largest available WSiaveCPu(s) value 
Get slave processor capacity WSiavecpu («) 
Get fraction F of WSiaVeCPU («) that will not cause 
utilization NetUtil(n) to exceed WNet(n) 

Add F to CandRate(p) 
Add F to NetUtil(n) 
Add processor s to found set Found(p) 

Total candidate work rate CandRate{p) = mm(CandRate(p), WMasterCPu(j>)) 
Total local network utilization NetUtil(n) = CandRate{p) 
While CandRate(p) < WNet(n) and CandRate(p) < WMasterCPu(p) 

Select new processor q from outside local network with 
the largest available WSiaveCpu(q) value 
Get slave processor capacity WSiaveCPu{q) 
Get fraction F of WSiavecpu(q) that will not cause 
utilization NetUtil(i) to exceed WNet(i) for any network i 

Add F to CandRate{p) 
Add F to NetUtil(n) 
Add F to other NetUtil(k) where network fc is involved in 
communications between processors p and q 
Add processor 5 to found set Found(p) 

Select processor p with largest CandRate(p) as master 

J 
Figure 2. Algorithm for finding best processor for the master. 



formance than resource capacity constraints would allow. 
One way to get application performance back up to pre- 
dicted levels is to add additional slave processors to the 
originally selected mix, thereby raising the effective slave 
work rates achieved up to expected values. Our goal is to 
compensate for lost performance due to idle time on the in- 
dividual slave processors, while keeping the number of ad- 
ditional processors down to the minimum needed to accom- 
plish this goal. 

Our steady-state flow-rate performance model was not 
useful in helping to decide how many slaves to add to in- 
crease effective performance because it could not account 
for idle times caused by slaves waiting for new tasks to ar- 
rive. To address this shortcoming and others in our steady- 
state approaches to performance analysis, we developed a 
master/slave application performance simulator to provide 
significant new capabilities. We discuss this simulator and 
how it can be used to help solve the slave selection problem 
in the following subsections. 

4.5. An application performance simulator 

We originally developed a master/slave application per- 
formance simulator to provide detailed predictions of per- 
formance and resource behavior for applications running in 
Grid environments. One effective use we have found for this 
simulator is to help determine how many additional slave 
processors might be added to a predicted group of master 
and slave processors to make up for performance losses due 
to slave idle time. 

At its core, our simulator is a set of routines which model 
the behavior of tasks as they pass through a system com- 
prised of two kinds of resources: processors and networks. 
The resources are modeled as single servers with first-in- 
first-out input queues. Service times for the processor re- 
sources determine how long a task has control of the pro- 
cessor before relinquishing the resource to the next task 
in the input queue, and are dependent on the same pro- 
cessor availability parameters Availcpu (*) and estimated 
task execution times TsiaveCPu(i) and TMasterCPu{i) de- 
veloped earlier for our flow-rate model. Service times for 
the network resources determine how long a network re- 
source is committed to servicing data transfers for each 
task, and are dependent on the same network bandwidth pa- 
rameters BWNet(n) and size of the data transfers values 
SizeraskXfer developed for the flow-rate model presented 
earlier. In addition, all of the parameters can be adjusted to 
use either static steady-state values like those in the flow- 
rate performance model, or more dynamic data inputs such 
as statistical distributions or actual measured trace values 
from application runs. Network connectivity is represented 
using the same graph G, an output of the ENV tool, used in 
the work flow-rate performance model. 

The simulator is written in highly portable C-language 
code, with the help of a simulation library package called 
Sim++ [4]. This simulator can be easily embedded into 
other programs, such as an application scheduler, to pro- 
vide detailed predictions of application performance and 
resource utilization levels. It is particularly useful for ob- 
serving the performance impact of changing application or 
resource parameters. 

4.6. Using simulation to enhance slave selection 

Our algorithm for finding the correct set of slave proces- 
sors starts with the master processor m and the Found(m) 
set of slaves from the master selection algorithm. The sim- 
ulator is run with these machines as the target environment, 
using the same values for resource capacities as were used 
in the master selection algorithm. Results from the simu- 
lation are checked to see if any idle time on the simulated 
slaves results in a significant decrease in overall applica- 
tion performance. If a substantial performance decrease is 
found, resource utilization figures from the simulation are 
checked to see where additional processors might be added 
without exceeding existing resource constraints. If more 
slave processors are available to be added that will not vi- 
olate any known resource constraints, they are added to the 
set of found slaves. A new system configuration with the 
additional processors added in is constructed and simulated 
once again. The process of slave additions and testing by 
simulation repeats until either there are no further perfor- 
mance gains realized by adding more slave processors, or no 
more processors can be found and placed without exceed- 
ing one of the known resource capacity constraints. Figure 3 
illustrates our algorithm for finding the set of slave proces- 
sors. 

The algorithm given above makes good use of simulator 
results which calculate predicted resource utilization values 
for every resource in the system. These values allow us 
to quickly identify where in the system, if anywhere, slave 
processors might be added to improve application perfor- 
mance. In practice, the number of times the simulation cy- 
cle needs to be run is small as the process quickly converges 
to a situation where either additional performance gains are 
insignificant, or no further additions can be made without 
exceeding a resource constraint. 

5. Experimental results 

In this section, we describe experiments whose goal it 
is to test the usefulness and accuracy of our work-rate per- 
formance model and application performance simulator, as 
well as the performance of our algorithms for selecting mas- 
ter and slave processors. 
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Run master selection algorithm to get master processor m, set of slaves 
Found(m), and predicted application work rate R 

Run application performance simulator using m and Found(m) to get 
simulated work rate S and slave utilization values U(s) 

While S less than R 
Using U(s), check which slaves s in Found(m) have large 
simulated idle times 

Find additional processors A' that make up for idle time without 
exceeding any WNet{n) or WMasterCPU(m) constraints 

Add processors A' to Found(m) to form Found'(m) 

Run simulator using m and Found'(m) processors to get new 
simulated work rate S' and slave utilization values U'(s) 

US = S' or Found(m) = Found'(m) 
Return Found(m) as slave solution 

Set S equal to S', all U(s) equal to U'(s) 
Set Found(m) equal to Found'(m) 

Return Found(m) as slave solution 

Figure 3. Algorithm for finding best processors for slaves. 

We use as an application test suite three applications cho- 
sen to represent a spectrum of potential master/slave dis- 
tributed applications. The applications were selected and 
implemented to test the sensitivity of our approach to com- 
putation and communication granularity. Our master/slave 
implementation of the Mandelbrot image application is ex- 
pected to display a relatively high sensitivity to communi- 
cation constraints, as the amount of image data transferred 
during execution is large compared to the overall computa- 
tion time. At the other extreme is the NAS Parallel Bench- 
marks' EP [18] application, which performs relatively little 
data transfer compared to the time spent computing. The 
Povray [11] ray-tracing application falls somewhere in the 
middle, with the transfer of one fourth the amount of image 
data as the Mandelbrot application which was spread out 
over a longer computation time.. Each of the applications 
was initially benchmarked on all target processor types to 
produce the application-specific parameters needed for our 
performance analysis tools. The applications are summa- 
rized in Table 3. 

5.1. Experimental design 

In the experiments, we compared predicted execution 
time (resulting from our performance model), simulated 
execution time (using the application simulator), and ac- 
tual execution time (determined from experimental runs). 
All comparisons were made in a non-dedicated environ- 
ment where the load traces used for the predicted and simu- 
lated execution times were determined from the NWS load 
trace of the actual execution time runs. We used identical 
parameter inputs for network configuration, resource con- 
straints, and application characteristics in both work-flow 
analysis and performance simulation tools. In this way, we 
attempted to compare each set of execution times under the 
same environmental conditions. 

The target experimental platform was a heterogeneous 
mix of Intel processor-based machines running Linux, and 
Sun SPARC machines running Solaris located in the Paral- 
lel Computation Laboratory in the Department of Computer 
Science and Engineering at the University of California, 
San Diego. The experiments were run with all machines 
in non-dedicated mode, but outside loading from compet- 

11 



Name 
Mandelbrot 
Povray 
NBPEP 

Description 
parallel fractal image generator 
parallel implementation of popular ray-tracer 
NAS Parallel Benchmark EP variant 

Emphasis 
communication 

both 
computation 

Table 3. List of applications used in experiments. 

ing jobs was observed to be relatively light for most of the 
machines during the course of experimentation. 

5.2. Results 

In the first set of experiments, we ran the test suite of 
applications on a set of nine workstations shown in Ta- 
ble 4. For the three applications, trials were run with each 
of the nine processors being selected to run as the master 
while the other eight were included to run as slaves. In 
all cases, the work flow-rate problem was solved for each 
configuration of master and slaves to give the expected ap- 
plication execution time, shown as the light bars in Fig- 
ures 4-6. The application performance simulator was run 
for all cases to give a predicted application execution time, 
shown by the middle bars in the graphs. And finally, the 
real applications were run on each configuration and their 
execution times recorded to appear as the dark bars on the 
graphs.. Figure 4 shows the results while running the rela- 
tively communication-heavy Mandelbrot application. Fig- 
ure 5 shows the same set of execution times for the more 
balanced Povray application, while Figure 6 shows exe- 
cution times for the computation-intensive NAS Parallel 
Benchmarks' EP application. 

In these experiments, the work-rate performance model 
would have done a good job of identifying the correct mas- 
ter host to produce the fastest application execution times. 
In the Mandelbrot series of experiments, the machine thing] 
was calculated to yield the lowest execution time, which 
was confirmed in the actual application run. For this ap- 
plication the highest execution time, achieved with the ma- 
chine named lorax, took 170% longer to finish than the best 
choice. For the other two applications, the work-rate per- 
formance model estimates of execution time again showed 
results which correlated closely with actual application run 
times. For these applications, which exhibited lower de- 
pendence on network constraints, the differences between 
the worst and best performers was smaller: about 25% for 
Povray and 10% for NAS EP. The work-rate based perfor- 
mance model correctly ordered master performance for both 
communication and computation constrained applications. 
The results also show that the application performance sim- 
ulator did a good job of tracking the actual application exe- 
cution times as well. 

The experimental results show a small number of cases 

where the execution time was significantly underestimated 
for the Mandelbrot application. Analysis of experimen- 
tal results leads us to believe the discrepancy in pre- 
dicted and actual performance on the communication-heavy 
application was due to inadequate benchmarking of the 
WMasterCPU constraint terms. Actual application perfor- 
mance is worse than that predicted by both the work-flow 
model and the simulator because both tools overestimated 
the capacity of the single master process to process in- 
coming data and respond to new task requests. When the 
real master process fails to keep up with projected work 
rates, the overall application work rate is reduced and ex- 
ecution time becomes relatively larger. Improved methods 
for benchmarking master processor performance are cur- 
rently being developed to overcome this shortcoming. 

In the second set of experiments, we look at two of our 
applications: Mandelbrot and Povray. In these trials we pick 
a specific host for the master process, then run our appli- 
cation for different numbers of slave processes. We show 
measured execution times and simulated execution times 
for our two applications as we increase the number of slave 
processors. 

Figure 7 shows results with our communication- 
intensive Mandelbrot application for two different choices 
of the master host. These results show that the number 
of slaves which can beneficially be employed varies un- 
der different conditions, and is heavily constrained by the 
network speed of the master process host. Figure 8 shows 
results with the Povray application, whose performance is 
less dominated by communication costs. In our test envi- 
ronment, this application shows more scalable performance 
than Mandelbrot, but eventually also reaches a point where 
additional processors do not significantly decrease execu- 
tion time. Results are shown for only one master case be- 
cause data for other cases produces almost identical graphs. 
Results for our third application, NPB EP, are not shown 
here, but they are very similar to those for povray, with sim- 
ulation predicted run times and actual application run times 
very close for all numbers of processors. These results indi- 
cate that for our representative examples, the performance 
simulator can be a useful tool to help predict the points at 
which either additional slaves should be added to a com- 
putation to increase performance, or when additional slaves 
cease to have any useful effect. 
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Figure 5. Execution time of application while varying master host. 
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Figure 6. Execution time of computation-intensive application while varying master host. 

Name 
azulejo 
kingkong 
kongo 
lorax 
magie 
saltimbanco 
sojourner 
tandem 
thing 1  

Processor 
Intel Pentium Pro 200 
Sun UltraSPARC-Hi 333MHz 
Sun UltraSPARC 166MHz 
Sun microSPARC II 85MHz 
Intel Pentium Pro 200 
Intel Pentium 11-400 
Intel Pentium 11-266 
Intel Pentium 11-300 
Sun UltraSPARC 200MHz 

Network 
100 Mbit/s ethernet 
lOOMbit/sethernet 
100 Mbit/s ethernet 
100 Mbit/s ethernet 
10 Mbit/s ethernet 
10 Mbit/s ethernet 
10 Mbit/s ethernet 
100 Mbit/s ethernet 
100 Mbit/s ethernet 

OS 
Linux 2.0.36 
Solans 2.6 
Solaris 2.6 
Solaris 2.6 
Linux 2.1.125 
Linux 2.1.125 
Linux 2.2.9 
Linux 2.0.36 
Solaris 2.6 

Table 4. Partial list of heterogeneous mix of machines used in experiments. 

6. Related Work 

Many different approaches to predicting the performance 
of parallel applications on distributed-memory machines 
have appeared in the literature. A partial summary of some 
earlier efforts can be found in [10]. Unfortunately, these 
approaches often suffered from either limited accuracy un- 
der real-world conditions (caused by making many simpli- 
fying assumptions), or from excessive complexity when ei- 
ther constructing or using the models. Our approach to per- 
formance prediction focuses on achieving useful levels of 
prediction accuracy while limiting model complexity and 
allowing efficient measurement and quantification of impor- 
tant model parameters. 

The application of performance prediction to the prob- 

lem of resource selection has also been addressed recently 
by Weissman and Zhao [17]. In their work, Weissman and 
Zhao use heuristics to select a number of candidate config- 
urations, then employ cost functions to derive computation 
and communication times for each configuration. They then 
select the configuration yielding the lowest total cost. Our 
approach to resource selection efficiently evaluates appli- 
cation performance for different configurations using only 
simple constraint calculations. 

Subhlok, Lieu and Lowekamp [15] have looked at au- 
tomatically selecting processor nodes for applications run- 
ning on high-speed networks. For their results, Subhlok, 
Lieu and Lowekamp present algorithms which allow them 
to automatically select nodes with three different goals: 
maximizing computation capacity, maximizing communi- 
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Figure 7. Application performance with vary- 
ing numbers of slaves. 

Figure 8. Application performance with vary- 
ing numbers of slaves. 

cation capacity, or balancing computation and communica- 
tion. Their paper does not explain how the correct goal is 
selected to match specific application characteristics in or- 
der to give optimum performance. Our approach automat- 
ically determines performance bottlenecks based on both 
computation and communication constraints, and finds the 
best performing configuration for all cases. 

7. Summary 

In this paper, we have described a rate-based perfor- 
mance model for master/slave applications running on dis- 
tributed heterogeneous processors and networks. By param- 
eterizing this steady-state performance model with some 
dynamic run-time information, we are able to accurately 
predict maximum achievable application performance rates 
- even in the cases where application characteristics and re- 
source behavior are not steady over time. 

We have also described an application performance sim- 
ulator which accurately simulates the dynamic interaction 
of a master/slave application with a defined configuration 
of performance constrained resources. This simulator al- 
lows for a detailed analysis of where performance bottle- 
necks due to resource limitations may occur in an applica- 
tion. This kind of detailed information about how applica- 
tions interact with resources in a Grid environment can be 
very valuable for resource selection at application runtime, 
advanced application and platform planning, and program 

development activities. The key to our success with our 
performance prediction tools has been the identification of 
a common set of application and resource parameters which 
could be quantified and measured, and which captured both 
the static and dynamic aspects of application performance 
in Grid environments. 

Based on the effectiveness of our performance prediction 
tools, we have developed algorithms for master and slave 
resource selection on Grid platforms. These algorithms en- 
able the selection of a master processor and a set of slave 
processors which allow maximum application performance 
to occur. Actually achieving the maximum application per- 
formance in dynamic Grid environments may also require 
the use of other run-time techniques to handle issues like 
load balancing and fault tolerance. These are issues we are 
actively researching, and will be the subject of future publi- 
cations. 

Some brief experimental data was presented to verify 
that both our perforrriance prediction tools and our strate- 
gies for selecting master and slave resources were sound. 
We are currently integrating the performance tools and re- 
source selection strategies into an AppLeS [2] Grid ap- 
plication scheduler with the goal of providing an auto- 
matic mechanism for high-quality distributed master/slave 
scheduling in heterogeneous and dynamic Grid environ- 
ments. 

In the future, we would like to extend the work-rate- 
based performance model to other common classes of paral- 
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lei computing in Grid environments. We would also like to 
study whether other physical resource characteristics, such 
as available memory, might be beneficial to include in our 
constraint analyses. Our experience has shown that the idea 
of estimating application performance by accounting for ap- 
plication/resource constraints appears promising as a tool 
for enabling more effective application scheduling. 
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Abstract 
In this work we present the results of a project aimed 

at assembling an hybrid massively parallel machine, the 
PQE1 prototype, devoted to the simulation of complex 
physical models. The analysis of some of the existing 
parallel architectures has revealed that general-purpose 
machines are largely over-dimensioned and often perform 
inefficiently in grand-challenge scientific applications. 
We have thus developed an heterogeneous parallel system 
which matches task-heterogeneity with 
architecture-heterogeneity: in fact special-purpose 
massively parallel architectures, when coupled to 
general-purpose machines, are able to efficiently satisfy 
the requirements of complex scientific computing. We 
present the HW structure and the SW tools developed for 
the PQE1 prototype. Starting from the concept of 
machine-granularity and task-granularity, we show the 
necessity to exploit both high granularity and low 
granularity parallelism to efficiently use the PQE1 
system. Some examples describing application fields in 
which the PQE1 prototype has been successfully used are 
briefly described. 

1. Introduction 

Technical applications (image processing, real-time 
control,...) and simulation of complex models used in 
scientific applications (quantum chemistry, weather 
forecast, electromagnetic compatibility...) require 
sustained computational powers of the order of tens (or 
hundreds) of Gflops (lGflops = 109 floating point 
operations per second). Massively parallel processing 
seems to be the only practical way to reach these figures. 
To date, commodity off-the-shelf processors are able to 

provide peak performance in the range of 1-5-2 Gflops (for 
example, the 667 MHz Alpha 21264 chip has a peak 
performance of 1.3 Gflops [1]): hundreds of those 
processors can be coupled, for instance, up to reaching the 
desired sustained performances. 

The Accelerated Strategic Computing Initiative (ASCI, 
[2]) and the Path Forward project, finalized to build very 
powerful parallel machines to implement extremely 
complex simulations, have produced, to date, the 
installation of several general purpose platforms: 
1. ASCI Red: composed by 9,216 Pentium Pro 

processors, has 584.5 Gbytes of RAM, bi-directional 
cross-section bandwidth of 51.6 Gbyte/sec and peak 
performance of 1.8 Tflops; 
ASCI Blue Mountain: assembled with 48 Silicon 
Graphics/Cray Origin2000 servers (each is 
configured with 128 SMP processors) containing a 
total of 6,144 processors, with projected peak 
performance of 3 Tflops; 
ASCI   Blue   Pacific:   has   1,344   PowerPC   604e 
processors (332 MHz), 504 Gbytes of RAM, nodes 
connected   through   an   Omega   Network   with   a 
node-to-node bandwidth of 150MB/sec and offers a 
peak performance of 0.89 Tflops. 

Also   these   platforms,   like   the   most   widespread 
commercial parallel systems, are based on commercial 
general-purpose   computing   devices   which   allow   to 
sustain very irregular programming models. If, on one 
side, this property makes these systems well suited for 
most of the  computational  tasks  related  to  complex 
scientific applications, on the other side this can also be 
considered as their main limitation. In fact, the need of 
being general-purpose implies that these systems are 
designed   to   support   multitasking/multiuser   operative 
environments, so that most of their silicon, instead of 
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being devoted to implement computing devices, is used to 
build cache memory and control HW to manage complex 
memory hierarchies, out of order execution of 
instructions, processor scheduling and multiprocess 
environment. This fact, while enhancing system 
operability, largely decreases the efficiency per silicon 
area in floating point dominated applications, being a 
large part of the electronic devices not operative for most 
of the time [3]. 

A completely opposite approach to high performance 
scientific computing can be found in the physicists 
community, where small research groups are used to 
design by themselves dedicated machines which can 
efficiently solve their computational problems. An 
example of this approach is given by the GRAPE 
(GRAvitational PipE) system [4]: GRAPE-4, the system 
version now available, is a special purpose computer for 
astrophysical simulations (N-body gravitational problems 
requiring 0(N2) computations) with peak speed exceeding 
1 Tflops [5]. GRAPE system is a completely not 
programmable machine, allowing only to load/read 
initial/final data into/from the machine. Extreme 
specialization is the key to achieve very high efficiency in 
the use of the silicon area: in such platforms only the 
required functions are implemented, thus maximizing the 
performances per unit of volume of electronics. The 
GRAPE project is going to release a 200 TFlops computer 
[6], yielding a computational speed from 10 to 100 times 
larger than that achievable, on the same problem, in the 
platforms developed in the framework of ASCI project. 

A further example of the advantages which can be 
achieved through HW specialization is given by the APE 
project [7] launched by Italian physicists, aimed to build a 
massively parallel system to be used in Lattice Quantum 
Chromo Dynamics (LQCD). These platforms, the APE 
series (APE100 is the old system [8], APEmille is the new 
prototype which will be soon launched [9],[10]) are SIMD 
programmable systems equipped with up to 2048 Very 
Long Instruction Word (VLTW) custom processors and 
offering peak performances of lOOGflops (APE 100 
series) and 1 Tflops (the new APEmille system). In both 
cases, the machines in the largest configurations are 
easily contained in few rack-mounted containers. 

In scientific computations, most of the time is usually 
spent in the execution of quite regular codes which iterate 
(e.g. in time, frequency, space) several transformations on 
large domains of data. In such a computational scenario, 
heterogeneous computing is a very promising way to 
achieve high performances: the key idea is to connect a 
(small) general-purpose parallel machine to several, very 
powerful, specialized parallel systems. The less flexible, 
specialized machines are dedicated to provide most of the 
computational power required by the numerical programs, 
while the general-purpose machine is used to give the 
necessary flexibility to the whole system, coordinating 

tasks  and  pre/post  processing  data  produced  by  the 
specialized systems. 

Heterogeneous computing has been used to achieve the 
very high performances required when dealing with 
challenging problems: machine heterogeneity is exploited 
to match task heterogeneity, using massively parallel 
systems as dedicated, high-efficiency boosters attached to 
a single user general-purpose parallel machine. 

In this work we present the outcome of a scientific 
program aimed at developing a massively parallel hybrid 
machine. In the first part of the paper a theoretical 
framework to describe heterogeneous tasks and 
heterogeneous systems is presented. Task and machine 
granularity are introduced and their influence on the 
efficient implementation of heterogeneous tasks onto 
heterogeneous systems is discussed. Then we describe the 
PQE1 prototype, the massively parallel hybrid system 
which has been developed in our research center. Along 
with the description of the HW and the SW of the system, 
we discuss the rationale of such architecture and we 
sketch the results obtained in two different, successful 
applications of the PQE1 platform. Finally the next 
version of this hybrid prototype, now in its final design 
phase, is presented. 

2. Hierarchical Modeling of Heterogeneous 
Tasks and Systems 

An algorithm to be implemented on a parallel system 
can be represented as a labeled Control Data Flow Graph 
(CDFG) G(N,E,C_N,C_E), being 
1. N={nili=l,2 N] 

the set of functionality necessary to implement the 
algorithm, 

2. EcNxN={eif=(ni,nj)l n; sends data to nj} 
the internode communication set, 

3. C_N={c_nilc_njeX,nieN, i=l,2,...,JV} 
the node labeling set, containing the integer value 
which is a measure of the complexity of the 
functionality corresponding to n{ (e.g., the number of 
operations needed to implement nO and 

4. C_E={c_eijl c_eij6 X, eyeE} 
the channel labeling set, containing the integer value 
which is a measure of the complexity of the 
communication corresponding to ey (e.g., the number 

Data-in, ... Data_inN ini 

fi(Data_in i,.. .,Data_inNJn j, 

**    Data_out|,...,Data_outN ouij) 

N_outj 

Data_out, ... Data_outN 

Figure 1: graph node, with input and output 
edges, representing the computation nr 
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of byte sent through ey). 
Each node n; in the computation is associated to a 

functionality which transforms N_inj input data (with 
their corresponding associated data type) into N_outj 
output data (with their data type). N_in; and N_outj are, 
respectively, the input and the output degrees of n;. The 
correspondence between node n; and function fj is 
depicted in figure 1. 

In a completely similar way, a parallel system can be 
represented through a labeled graph PS(R,IN,M_R,B_IN), 
being 
1. R={rjli=l,2 r) 

the resource set (processing elements with their local 
memory, shared memory banks, I/O devices) which 
can be decomposed into basic sets, i.e. 

R={Ui=I,..,kpi}u{ui=1,..,mMi Mui=1,..,tI/0j }. 
So the parallel system resource set is constituted by 

k sets of processing elements pi; each set ps being 
characterized by the number and by the type of 
homogeneous computing devices contained in it; 
m sets of memory banks Mj, each set of memory 
banks being characterized by the number of 
memory banks, by their access time and by the 
size of each bank given (in byte) by sizeof(nij), 
mj£ Mjj 

t sets of I/O channels I/O;, each set being 
characterized by the directionality, the bandwidth 
and the number of channels contained in it. 

2. INcP0W(R)xP0W(R)={cij=({ril,...,rih},{rjl,...,rjn})l 
{ri,,...,rih} is connected to {rj, rjn}} 

the interconnection network set, where Pow(R) 
denotes the power set of R. Pow(R) is used to model 
shared interconnections: a set of homogeneous 
processors pj={p,p,...,p} sharing a memory bank 
me Mj are represented through the couple (p;,m); a 
shared bus connecting the processors of p; is 
represented by the couple (pi,Pi); a point to point 
connection with one dedicated channel between two 
not homogeneous processors is represented by the 
couple (pae pi, pbepj); 

3. M_R={m_rjl m_rj6 K ^eR, i=l,2,...,r} 
the resource labeling set, which associates to each 
resource a number measuring its performances (e.g. 
the number of flops executed per clock cycle by a 
general purpose processor pe pi, the number of clock 
cycles necessary to compute functionality / in the 
computing devices dedicated to its HW 
implementation, the access time for shared memory 
banks meM;, the bandwidth for I/O channels 
c_i/oeI/Oi); 

4. B_IN={b_Cyl b_Cij6 X, CyelN} 
the labeling set which associates the bandwidth to 
each channel eye IN. 

It is fundamental to underline that, in the cases of both 
task and  parallel  system graphs,  each  node  can  be 

modeled through another task or parallel system graph: 
such a hierarchical description of a graph allows to put in 
evidence only the degree of parallelism (and of detail) 
which the user wants to consider. All the lower level 
details are hidden at this stage of abstraction. For instance, 
a complex program can be represented through a CDFG 
in which nodes are very complex routines;' after a 
refinement step, each routine can be detailed through 
several simpler routines (for instance, an iterative solver 
can be expressed by means of Basic Linear Algebra 
Subroutines (BLAS)); going on with the zooming of 
details, each BLAS routine can be decomposed into 
(dependent, i.e. interconnected) elementary operations 
expressed in a standard imperative language (e.g., C or 
Fortran). As example of hierarchical representation of a 
parallel system, we can think to a system graph whose 
nodes are large systems (Vector Computers, Distributed 
Memory SIMD and MIMD systems, Shared Memory 
Multiprocessors, DSP and specialized computing devices) 
connected through some kind of (eventually not 
homogeneous) IN. Each node can be detailed through 
several lower level nodes (processors of the system and 
their IN) which can still be detailed through a lower level 
representation (interconnected functional units within a 
processor). A sketch of this hierarchical description is 

Figure 2: Hierarchical 
representation of a 

heterogeneous parallel 
system 

depicted in the example reported in figure 2. 

3. Task and Machine Granularity: Formal 
Definition of Heterogeneous Systems and 
Heterogeneous Tasks 

Once introduced the formal hierarchical definitions to 
model computations and parallel systems, we try to give a 
(not exhaustive) definition of task and system 
heterogeneity. We need first to introduce the fundamental 
concepts of task and machine granularity. 
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The granularity of a task is usually referred to as being 
proportional to the ratio between the computation and the 
communication times involved in the execution of the 
task [23]. This definition of granularity is, indeed, 
machine dependent, as both communication and 
computation times may vary when the task is executed on 
different architectures. Being interested to a 
heterogeneous environment, we prefer to introduce the 
concepts of machine granularity (gm) and task granularity 
(gt)- gmis a measure of the balance between computational 
and communication speed of a system and is defined as 

gm 
node peak computation speed _ PCS 

I/O bandwidth BW 

where the node peak computation speed (PCS) is the 
maximal number of operations per second executed by the 
node (usually PCS are 'expressed in terms of flops in the 
context of numerical computations). Previous definition 
can be applied to nodes at different hierarchical levels. 
Referring to figure 2, for instance, we can define the 
granularity of vector nodes, SIMD nodes and MIMD 
nodes; at this level (the system level) nodes usually have 
very high granularity gm, ranging typical computation 
speeds from few Gflops to several tens of Gflops and 
typical I/O bandwidth from tens of Mbyte/sec up to few 
Gbyte/sec (for massively system with parallel fast I/O); a 
typical   value   for   a   medium-large   system   can   be 

50x 10 
gm = JV   1W    =1QQ. When moving to a lower level of 

500 xlO6 

detail   (the   sub-system  level),   granularity  of a  node 
diminishes, as typical computation  speeds of today's 
processing elements are in the range of few hundreds of 
Mflops up to 1-2 Gflops and communication bandwidths 
range from tens up to few hundreds of Mbyte/sec; typical 
value for a high-end processing element (like the Alpha 
EV6.7)   equipped   with   a   64-bit   PCI   connection   is 

1 3x10^ gm__: = 6.5. Moving into a lower level of 
200 xlO6 

detail (the processor level, inside the processing element), 
granularity assumes a smaller value, as communication 
speed is always in the range of few hundreds of Mflops up 
to    few    Gflops,    while    communication    bandwidth 
(processor<=>memory)   ranges   from   few   hundreds   of 
Mbyte/sec up to few Gbyte/sec; for instance, a processing 
element with an EV6.7 processor (peak speed 1.3 Gflops) 
and a fast chipset for the  memory  control  (e.g  the 
Tsunami chipset, allowing an internal memory bandwidth 
of  2.6Gbyte/sec)   is   characterized   by   a   granularity 

1.3xl09    ne 
gm= g=05- 

2.6 XlO9 

We are now able to give the following 
definition of heterogeneous system: a parallel system 

is heterogeneous when 

1. it is composed by more than one computing element 
and 

2. its computing elements are based on different 
architectural paradigms (Vector systems, Distributed 
Memory/Shared Memory MIMD systems, SIMD 
systems, etc..) and/or 

3. it can be described through a hierarchical 
classification evidencing different node granularities 
throughout the hierarchical levels. 

gm is a measure of the ratio between system 
computation speed and system communication 
bandwidth. Following a similar reasoning, task 
granularity g, is defined as a measure of the balancing of 
computational and communication requirements of a task 
and is defined as 

number of computing op. n_op 
a    = -       (£) 

1    number of bytes of I/O data    n_I/0_byte 

The hierarchical classification approach, used to model 
heterogeneous tasks, can be applied also in the case of 
CDFGs. Given a CDFG with k different nodes, g,(ni) is 
the granularity of each node (i=l,2,..,k; n^N) and the 
granularity of the whole CDFG is the maximal value of 
the granularity of its composing tasks, i.e. 

gt(CDFG)=maxi=1.k(gt(ni))   (3) 

Granularity of a set of nodes is defined as the largest 
granularity in the set because it seems to be reasonable to 
represent computation/communication demands of a 
complex task through its largest component; in fact, given 
for instance a CDFG with 9 different nodes with the same 
(small) granularity 1 and one node with (large) granularity 
100, computation/communication demands are well 
represented by the value 100 (worst case). If we use an 
average value to represent the global task granularity, in 
previous example we would obtain g,= 10.9, which clearly 
underestimates the influence of the 'large' task, probably 
yielding, as we will discuss later, an inefficient 
implementation of the task on the parallel system. 

When a hierarchical representation of a CDFG is used, 
the change from the procedural level (i.e. the level in 
which nodes represent routines) to the instruction level of 
detail (nodes represent elementary instruction, e.g. basic 
C statements) determines a decrease in the node 
granularity. In fact, if we indicate with n the size (in byte) 
of the input/output parameters, the number of operations 
N_OP(n) executed by the routine has, in most cases, a 
dependency law larger than O(n), i.e. N_OP(n)>0(n). 
N_OP(n)=0(n) is a lower bound, being O(n) the number 
of elementary operations necessary to read/write input 
data (with the obvious exception of data structures already 
stored in memory and communicated through a pointer; 
however, also in this case the following inequality (4) is 
satisfied).  As a consequence, the law connecting the 
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granularity of a task to the size n of input/output data is 
given by 

„„».N^SäiOO)   (4) 
O(n) 

At the instruction level the granularity is 0(1), i.e. the 
number of bytes used to encode input and output 
parameters of one operation is a constant number (with 
very few, and particular, exceptions involving data 
movement), because elementary operations manipulate 
one or two scalar values and return another scalar value. 
As a consequence, when moving from the procedural to 
the instruction level, task granularity does not increase 
(typically diminishes). 

Other parameters characterizing nodes of CDFG, at the 
procedural level, are 

the type Te{'control-dominated', 'computation- 
dominated'}; a node is control dominated when has 
small granularity and contains a number of decision 
operations (i.e. conditional jumps) significantly larger 
than the computing operations; on the contrary, a 
node is computation dominated when has large 
granularity, 
computational paradigm; each node of the graph, 
when expressed at a lower level of detail, can be 
represented  by  means  of the   'data-parallel',   the 
'pipeline', the 'farm', the 'loop', the 'unrestricted' 
structuring constructs;  for the  description  of the 
structuring constructs, except the 'unrestricted', see 
[29]; the 'unrestricted' paradigm refers to a generic 
computation represented by means of an irregular 
CDFG. 

We are now able to give the following 
definition of heterogeneous task: a CDFG represents 

an heterogeneous task when 
1. it  is  composed  by  more  than  one  node  at  the 

'procedural' level and 
2. its   nodes   are   based   on   different   computational 

paradigms or have different types T and/or 
3. its nodes have different granularities 

4. Matching Task and System Heterogeneity 
to Maximize System Performances 

Once fixed the meaning of heterogeneity for tasks and 
systems, it is important to evaluate their mutual relation 
and to describe the associated heterogeneity parameters 
(granularity, computational/architectural paradigms, node 
type T). In this framework, it is worth investigating the 
connections among system/task granularity, heterogeneity 
and global performances. 

The granularity G, in its classical form, is defined as 
the ratio between Run time (R) and Communication time 
(C) of a given task [28], i.e. 

G: 
task execution time     _ R 

task communication time     C 
(5) 

In order to avoid a too formal explanation, far beyond 
the scope of this paper, we do not go into the details 
necessary to define task execution and communication 
times; intuitively, we consider as execution 
(communication) time the summation of all the time 
intervals in which at least one computational unit (I/O 
channel) is computing (communicating). 

Previous definition of granularity is machine 
dependent, being execution and communication times 
connected to processor speeds and I/O bandwidths. The 
previously introduced definitions of gm and gt can be used 
to make explicit this dependence; in fact G can be 
expressed as 

G = 77 gt (6) 

being rj = 
^proc 

an efficiency figure which takes into 
'/comm 

account the partial utilization of the processor speed 

V/proc) and of the bandwidth (fcomm )• In order to verify 

the validity of (6), it is sufficient to substitute in it the 
expressions of g, and gm and, with few algebraic 
operations, we obtain 

n_op 
^proc' 

G: 
^procSt 

^commSm 

n_I/0_byte 

*7comm 
PCS 

BW 

: *7proc 
n_op R 
PCS n_I/Q_byte    C 

77comm       — 

The actual value of r\ depends on the characteristics of 
tasks and on their implementation on the physical system. 
A reasonable estimation, to be confirmed through some 
experiences on a given system, is T[=0.1-H0.5. For 
instance, when dealing with tasks with large I/O packets 
(small granularity), usually communication startup time is 
negligible and r|comm=l; in such a case r|=T|proc and 
processor utilization in the range from 20% up to 60% is a 
realistic figure. 

The expression pf G as ratio between task and 
machine granularity underlines how the relative values of 
task and machine granularity are relevant to achieve high 
performances when implementing the task on an actual 
(heterogeneous) parallel system. Efficient task 
implementation requires to match two conflicting 
behaviors: that of a task with maximum parallelism (to 
minimize execution time) with the constraint of 
minimizing communication costs (overheads). The only 
information on the granularity G is not sufficient to 
determine if the implementation of the task on a machine 
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is efficient: G gives just a measure of the relative 
influence of communication overhead on system 
performances. Given an implementation of a task on a 
parallel system, efficiency reaches its maximum when, for 
a fixed degree of parallelism, communication overhead is 
minimum. In fact, indicating with R the time spent 
executing computations and with C the time spent in 
communications, and defining as efficiency the ratio 

Eff■■ 
R 

Actual Computing Time 
(7) 

where the Actual Computing Time is the elapsed time 
from the start of the parallel program till its end, the 
following inequalities hold: 

R 
EffMin=ir-7^Eff< 

R 

R + C MAX(R,C) 
= Eff Max   (8) 

which can be rewritten, introducing the granularity G, as 

= Eff Max   (9) EffMin=-n-*Eff£ ^T 
1 + — MAX(1,—) 

G G 

It is worthwhile to note that the fraction of unused 
computational resources is given by (1-Eff). The lowest 
value for the efficiency (EffMin) corresponds to the 
complete absence of overlapping between computation 
and communications; the highest value for the efficiency 
(EffMax) corresponds to a complete overlapping between 
computations and communications. In figure 3 the values 
EffMi„ anf EffMax are sketched as function of the 
granularity G. 

1-2 i 

.2 
o 
E 
ui 

-»-Min Eff 
♦ Max Eff 

0123456789     10 
Granularity 

Figure 3: Minimum and maximum efficiency values 
vs Granularity 

Actual efficiency values lie within the two plots, being 
closer to the lower or to the higher depending on the 
algorithm structure and the HW support for computation 
and communication overlapping (number of DMA 
channels, routing processors). 

G=l   indicates   equality   between   computation   and 
communication   times.   The   larger   is   G,   the   more 

negligible is the communication time with respect to 
computing time. Values of G<1 originate I/O bound 
problems. 

In order to avoid situations with processors stalling 
due to I/O operations, with a consequent strong 
decreasing of efficiency, granularity of the task should be 
greater of a certain value G0 so that efficiency results 
greater than the minimum acceptable threshold EffT. If the 
not overlapping model is assumed, the granularity must 
respect the following inequality in order to have Eff>EffT, 

G> 
_Effj_ 

1 - Eff T 

(10) 

and, evidencing dependence of G on g, and gm, we obtain 

gt EffT      1 

gm 1 - EffT 

EffT 
From previous inequality, setting    k = 

1 -EfiT 

1 

obtain  a  fundamental  relation  between   task and 
chine granularity 

gt >kgm (12) 

In the case of perfect overlapping between 
computation and communications, it is easy to verify that 
expression (12), from the position G>1, becomes 

1 
> — 

V 
(13) 

Previous expressions ensure a correct implementation 
of tasks on heterogeneous systems. The value k has to be 
estimated on the basis of 'reasonable' assumptions about 
the degree of overlapping between computations and 
communications (expression of k has been determined 
assuming the worst case, with no overlapping) and about 
the efficiency r\ which can be achieved when 
implementing the task on the system. 

The scheme to allocate a heterogeneous task onto a 
heterogeneous system is the following: 

Consider the highest levels of detail both for the 
system and the task graphs; 
Ordinate  the  node  tasks  in  descending  order  of 
computational complexity; 
For each node in the task graph, chosen according to 
previous decreasing ordering, select the system nodes 
which match, with their architectural paradigms, the 
node computational paradigm; 
Among all the candidate system nodes, choose the 
one which has the highest computational power and 
respects the relation g,>kgm; as the choice of the 
system depends on k, i.e. on the efficiency of the 
implementation of the task node on the system node, 
the process can be iterated at a lower level of detail 
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(i.e. the node is expanded (if possible) into a smaller 
granularity  CDFG  and  also  the   system  node  is 
considered   at   a   lower   level   of  detail)   until   a 
reasonable estimation for k is achieved. 
Assign the task node to the system node found in 
previous point (the choice of the system with the 
highest computational power allows to satisfy the 
tasks with highest computing requirements). 

As the previous 'recipe' does not consider the load 
balancing, some policy must be chosen to avoid the 
overloading of the most powerful systems; a method 
could be based on a cyclic allocation policy or on some 
dynamic updating of system performances (as a system 
node becomes  more  loaded,  its  computational  speed 
appear smaller to the other task nodes that must still be 
allocated).  In  order to  take  into  account precedence 
relations among nodes in the CDFG, techniques discussed 
in [23], [35] can be used. 

5. The Heterogeneous PQE1 System 

The previous discussion is aimed at stressing that a 
heterogeneous system is not a mere collection of several 
platforms used, sometimes, as a parallel system, but it is 
an integrated system that must be designed from scratch 
to behave as a heterogeneous parallel system. In fact, 
heterogeneity is a property of the problems to be solved. 
A 'well balanced' heterogeneous system will thus provide 
the best way to solve complex 'real' problems. 
Heterogeneity moreover, avoids to over-dimension a 
parallel system, as the computational power is 'dedicated' 
(according to several computational paradigms), allowing 
very high efficiency. The idea is to avoid, as much as 
possible, the use of general purpose systems just because 
they perform 'quite well' in all the problems but not 'very 
well' for any problem. On the contrary, heterogeneous 
systems could contain different 'dedicated' parallel 
systems, some of which very well suited for a certain 
class of problems, others for others different classes. In 
this way, in principle, it would be possible to have a 
system which often behaves 'very well' on a lot of 
problems, because different parts of a complex 
application could be efficiently implemented onto 
architecturally different parts of the system. Furthermore, 
on the basis of the previous analysis, specialized 
architectures are, often, less costly (in terms of silicon 
area, power consumption, volume) than general purpose 
systems. 

5.1        Rationale for the PQE1 prototype 

General-purpose parallel machines support the Single 
Program Multiple Data (SPMD) asynchronous 
programming paradigm. Their HW structure is inherently 
asynchronous and some silicon area, other than some 

time, must be wasted to manage process synchronization 
and asynchronous communications. Such a wasting of 
resources can be avoided by using synchronous machines 
to which could be efficiently allotted computational tasks 
requiring synchronous algorithms. 

On the basis of the experience gained using SIMD 
systems in several fields of technical-scientific computing 
(material science [14] [15], astrophysics [40], atmospheric 
modeling [16], image processing and compression 
[17][18], computational electromagnetic [19][20], linear 
algebra [21], neural networks [22]) we are convinced that 
SIMD architectural paradigm can efficiently express 
programs solving problems related to such fields. 
Moreover it is also preferable to the MIMD paradigm 
because many algorithms 
1. are synchronous; 
2. often require that all the processors execute the same 

instructions on different domains; 
3. need interprocessor communications executed in a 

synchronous way; 
4. do not need deep memory hierarchies thanks to the 

regular patterns of memory accesses. 
Point 1 and 3 show that, for such classes of algorithms, 

the time spent in synchronization phases, required by 
MIMD systems, is a completely unnecessary overhead 
introduced, by the asynchronous HW structure of the 
machine. This overhead is not required by SIMD 
machines with synchronous communications. Point 2 
shows that all the HW dedicated to manage different 
program flows in the processors is unnecessary, being 
sufficient one centralized controller of program flow. 
Point 4 means that cache memory and the related 
management policies are not needed in most scientific 
applications, being the 'locality' of the problem [30] 
easily controlled by the programmer through instructions 
of vector movements between main memory and an 
internal register file. Although cache memory results to be 
particularly useful in multi-programmed environments, 
where several processes are running and the fast memory 
is not large enough to keep the whole image of all the 
running processes, in most cases of scientific computing 
only one process is running and its locality is easily 
captured by the programmer through instructions which 
allow burst memory transfers, through DMA channels, 
between the slow external RAM and a fast internal 
register file (or a multi-port/multi-bank internal static 
memory). A further discussion on SIMD vs MIMD 
architectures, along with a description of SIMD/MIMD 
mixed mode systems, is reported in [27]. 

5.2       HW description of the PQE1 prototype 

The PQE1 is an 'hybrid' MIMD-SIMD platform where 
the flexibility and operability of a MIMD (distributed 
memory) architecture (the eight node Meiko/QSW CS-2) 
are  coupled  to  the  power  and  efficiency   of SIMD 

23 



machines (7 APEIOO/Quadrics systems) which enable to 
efficiently perform in small granularity tasks. 

If we take into account the 4 points listed above and 
we assume that most algorithms arising in scientific 
applications can be expressed through synchronous 
programs with synchronous communications, executing 
the same instruction on a set of different data which can 
be easily mapped onto a data parallel structure with 
regular patterns of memory access, it results very 
reasonable to allot those parts of the computation to the 
SIMD machine APEIOO/Quadrics, leaving the remaining 
tasks of the computation to be executed on the MIMD 
part. 

We used 7 APEIOO/Quadrics machines, built in 1994: 
two with 512 processors arranged as an (8x8x8) 3D torus 
and 5 with 128 processors arranged as an (8x4x4) 3D 
torus. Each computing node is based on a custom VLIW 
processor, has clock frequency fCk=25 MHz and is able to 
terminate a 'normal operation' AxB+C every clock cycle, 
so each processor executes two floating point operations 
in one clock cycle (when the pipeline is full) and has a 
peak speed of 50 Mflops; floating point are represented 
according to the IEEE 754 standard (single precision). 
Each node is connected to a data memory of 4Mbytes and 
has an internal register file (RF) with 128 registers; each 
clock cycle the processor is able to read two operands 
from RF and write one result to RF. Communications 
with other adjacent nodes, connected in the north, south, 
east, west, up and down directions are synchronous and 
memory mapped; interprocessor communication 
bandwidth is 12.5 Mbyte/sec, so the 512 (128) processor 
configuration has an aggregate bandwidth of 6.4 (1.6) 
Gbyte/sec and a peak speed of 25.6 (6.4) Gflops. 

The connection of the APEIOO/Quadrics machines to a 
MIMD system, the Meiko/QSW CS-2 [24], has been 
performed to give more flexibility to the SIMD machines. 
Each node of the MIMD platform is based on two Ultra 
Sparc processors, connected in the SMP configuration, it 
offers a peak speed of 180 Mflops and has 128 Mbytes of 
RAM. The connection between CS-2 nodes and 
APEIOO/Quadrics systems is implemented through an 
HiPPI (High Performance Parallel Interface) channel, 
which provides a bandwidth of 20 Mbyte/sec. The 
connection among the nodes of the CS-2 machine takes 
place via the Meiko/QSW proprietary network based on 
the ASIC circuits Elan/Elite and implementing a 
multistage interconnection network with Fat Tree 
topology and point-to-point bandwidth of 100 Mbyte/sec. 
The scheme of the complete prototype is shown in Fig.4. 

The PQE1 hybrid systems is thus composed by 7 
SIMD machines which allow to obtain an aggregate 
computational speed of 83.2 Gflops, 20.8 Gbyte/sec of 
bandwidth and 6.5 Gbytes of RAM. These parallel 
systems communicate through 7 HiPPI channels with a 
CS-2   machines,   so   the   communication   bandwidth 

between the two systems is 140 Mbytes/sec. The CS-2 
MIMD parallel system has 8 twin nodes, offers a peak 
speed of 1 Gflops, has 1 Gbyte of RAM and has an 
aggregate bandwidth of 800 Mbyte/sec. 

Looking at previous data, it is clear that the machine is 
strongly unbalanced, having the most of computational 
and communication speed in the SIMD part. If we analyze 
the sub-unit composed by a CS-2 node and the attached 
SIMD   machine,   seen   as   co-processing   system,the 

Figure 4: HW structure 
of the PQE1 Prototype 

resulting sub-unit granularity (at the system level) is 

gm(y4P£100-#512) = 
25.6 -10" 

20 106 
=1280 (14) 

and 
gm(^/>£100-#128) = 320 (15) 

The PQE1 system can be considered, at a first level, as 
a parallel machine with small parallelism (parallelism 
degree is 7). In order to avoid wasting of performances, at 
this level of parallelization we have to consider only very 
large granularity tasks. If we consider, for instance, the 
product of two (n x n) single precision matrices, the task 

granularity   is   given   by   gt = *L_ = H-   (2n3   is  the 
12n2     6 

number of operations required, while 12n is the number 
of byte to transfer, being necessary reading the two input 
matrices and writing the result matrix). In order to avoid 
I/O bound behavior, r|gt>gm must result; in the case of a 
128 processor machine, supposing T|=0.5 (reasonable 
value for this type of computations, using sequences of 
not independent operations of the type AxB+C), this 
corresponds to the condition n>3840. 
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The second level of parallelism can be exploited within 
the single task. The SIMD machine has granularity (at the 
sub-system level) is 

25-6    6A    A   nfl gm=—-= —= 4  (16) 
6.4     1.6 

In this case we have a lot of parallelism available 
(parallelism degree is 128 or 512) and we can deal with 
small granularity tasks. 

As stated above, the rationale for such a strong 
machine imbalance is that SIMD systems are very well 
suited to implement numerical computations, allowing to 
reach very high sustained performances. The MIMD 
nodes are not devoted to solve the 'number crunching' 
part of the problem, but to perform data pre/post 
processing and to allow communications among different 
algorithms implemented on the SIMD systems. We 
underline that typical sustained performances obtained on 
the APEIOO/Quadrics machines range from 30% to 70% 
of the peak performances, i.e. they vary from 7.7 to 18 
Gflops on the 512 node machines. 

5.3  SW description of the PQE1 prototype 

The basic modality to program PQE1 system is the 
using of a message passing paradigm (the MPI library) to 
manage the high granularity tasks allocated into the 
MIMD part. In order to allow a low-level interaction 
between CS-2 nodes and SIMD machines, a 
communication library has been devised and 
implemented. This library contains a set of commands to 
load/run programs into the SIMD machines, to 
synchronize the execution between the program running 
on the MIMD node and the program running on the 
connected SIMD system, to communicate data to/from the 
SIMD system. Due to the large granularity of the 
programs running on the SIMD nodes, no particular effort 
has been spent to reduce start-up times which, for all the 
operations, are in the order of 10 ms. 

As the MIMD system is devoted to manage the whole 
hybrid system and to increase the flexibility of the PQE1 
platform, a library implementing the functionality of a 
Distributed Virtual Shared Memory (DVSM) was 
developed [25]. This library allows to declare physically 
distributed memory areas as 'shared', thus allowing the 
user to operate on such areas with the usual operations of 
locking/unlocking and implementing atomic instructions 
to perform blocking/non-blocking read/write operations 
with synchronized/unsynchronized access. Typical times 
for locking (unlocking) an area are 60 (45) u.s; the time 
necessary to access in writing (reading) a page is 19 (50) 
M-s. Previous times do not depend on the size of the 
memory area. 

A further tool, called SkIE-CL [26], has been devised 
and implemented to improve the programmability of 

PQE1 system, is a skeleton based coordination language 
which allows to express task/data parallelism through 
some predefined schemes (pipeline, farm, map, loop). 
Once the program has been written through the available 
parallel constructs, SkIE-CL is able to generate MPI code 
to program the MIMD part of the machine, performing a 
(near)-optimal mapping of tasks on the MIMD part of the 
system, by using some analytical model of the constructs; 
furthermore SkIE-CL allows to control the SIMD systems 
by means of the communication library described above. 

Previous tools (the DVSM and the SkIE-CL) were 
jointly developed by QSW and the Information Science 
Department of University of Pisa. 

Two interesting applications using PQE1 prototype 
features, i.e. overlapping computations between the SIMÖ 
and the MIMD parts of the system can be found in [21] 
and [16]. The first refers to the implementation of Basic 
Linear Algebra Subroutines-3 on the SIMD part of the 
system. The MIMD connections are used to perform a 
block-based partitioned matrix-matrix product, being the 
sub-blocks products distributed among several SIMD 
machines. The second work is related to the 
implementation of a high resolution meteorological 
limited area model coupled with an ocean model for the 
prediction of the state of the Mediterranean Sea and of 
high water events in the Venice Lagoon. The code was 
parallelized by allotting the computation of the most time 
consuming models (the High Resolution and the Very 
High Resolution Limited Area Models) to the SIMD part 
and the resolution of the less intensive computing spectral 
wave model (WAM) to the MIMD nodes. To these nodes 
is also demanded the computation of the two dimensional 
model (POM) for the prevision of the Adriatic Sea 
circulation and, ultimately, the finite elements shallow 
water model of the Venice Lagoon. 

In the following two paragraphs we give some details 
on the implementations and the results achieved when 
using the PQE1 system to perform n-body gravitational 
computations and electromagnetic simulations. 

5.4  n-body computations 

The PQE1 architecture has been recently used for 
performing n-body (0(N2) calculations to study the 
dynamic behavior of a galactic globular cluster hosting a 
massive object (black hole) in its center [40]. Calculations 
have been carried out by exploiting a double level of 
parallelism which can be attained with the machine: the 
first, related to the SIMD parallelization of the 0(N2) 
loop, was obtained by partitioning the stellar positions 
among the different nodes and by allotting the force 
calculations on the given partition to the single SIMD 
node. The hypersystolic loop ([36],[37)] has been 
successfully used to reduce communication times within 
the force loop calculation. The second level of parallelism 
has been exploited by using the MIMD resources to 
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evaluate the black hole-stars interactions (O(N) loop) 
during the time spent by the SIMD part to evaluate the 
interstellar interactions. The concurrent use of both the 
MIMD and the SIMD parts allowed to perform the 
integration of one reference time (crossing time) of a 
system of N= 128000 stars in a CPU time of the order of 
t=72500 sec (with the SIMD part constituted by a 
platform with 512 nodes). 

5.5 Electromagnetic simulation 

We investigated the simulation of dynamic evolution 
of electromagnetic fields through the integration of 
Maxwell equations by means of the Finite Difference in 
the Time Domain (FDTD) scheme. A domain with 
(n x n x n) cells was considered. Simulating one period of 
the input signal requires Ns time steps. At the end of each 
period of the simulation (i.e. at simulation time n+Ns, 
n=0,1,...) in each cell the value 

Emax(i,j,k)=    max    (E"^) 
t=l,...,Ns     'J' 

is computed. These maximal values are then 
sub-sampled with step s and communicated to the host to 
be post-processed (for example reordered, normalized and 
stored). In order to simulate an EM phenomenon with 
frequency f=1.9 GHz on a domain with (n x n x n) cells, 
we have chosen spatial discretization A=1.5 cm and 
temporal discretization At=2.88xl0" [sec] to avoid 
numerical and modal dispersion, so Ns=19. The number of 
computations executed in one period is 

Nflops = Nsx36xn3=684n3  (17) 

Setting the sub-sampling step s-5 (i.e. two samples for 
wavelength are saved), at the end of each period the 
number of bytes to be sent is given by 

:fü?=-Ln3(18) 
[s;      125 

(2), task granularity is given by 
.3 

Nbytes= 4x 

According to 

gt = 
684n- 

125 

: 21675 (19) 

From (6), (14) and (19), assuming an efficiency in the 
implementation r|=0.2, we obtain the granularity value 
for the EM simulation executed on the 512 processor 
APE100 system 

G(APE-#512) = 
7] gt     0.2x21675 

gr 1280 
= 3.4 

and, from (6), (15) and (19) the granularity value for the 
execution on the 128 processor APE 100 system 

G(APE-#128) = 
7/ gt     0.2x21675 

gr 320 
= 13.5 

Resulting G>1 in both previous cases, the simulation 
of one period of the EM phenomenon and the 
communication of sub-sampled results does not originate 
an I/O bound problem. 

The second level of parallelism can be exploited within 
the single FDTD task. In this case we have a lot of 
parallelism available (parallelism degree is 128 or 512) 
and we can deal with small granularity tasks. For 
example, going inside the structure of the parallel FDTD 
simulation (described in [20]), 36(nc)

3 is the number of 
floating point operations executed in one time step within 
a processor where (nc x nc x nc) cells have been allocated 
and 2x6x4(nc)

2 is the number of bytes to communicate at 
each time step (3 faces with two of the Ex, Ey, Ez 

components (depending on the face) and 3 faces with two 
of the Hx, Hy, Hz, components must be communicated); in 
such a case task granularity is given by 

gt 
48(nc)

2 
(20) 

3           1 [80] 
— nr > 4=>nc > 
4   c    0.2 3 

In order to avoid an I/O bound problem, being in the 
case in which the overlapping between communications 

and computations is allowed,   gt >— gm   must result 

(eq(13)); from(13), (16) and (20) we derive the condition 

27   which  gives  the  linear 

dimensions  of the   sub-domain   in   which   the   global 
simulation domain is partitioned. 

Performances achieved in EM simulations were close 
to the value r|=0.1, which corresponds to sustained 
performances of 2.5 Gflops when using the PQE1 system 
with one 512 node SIMD machine. This quite low figure 
is due to the Absorbing Boundary Conditions (ABC), not 
discussed above, which present a very low degree of 
small granularity parallelism, thus diminishing the global 
performances of the system. 

6. Next   generation   of  the   PQE1   hybrid 
prototype 

The very interesting results obtained with the hybrid 
PQE1 prototype confirmed the validity of the approach of 
coupling specialized massively parallel systems to general 
purpose parallel machines. The PQE1 prototype, 
presented in this work, is based on HW of a previous 
technological generation: we are thus planning to design a 
new system with up-to-date components. A next system is 
planned and will be based on several images of the new 
APEmille SIMD parallel machine. The MIMD part will 
be constituted, according with recent trends in parallel 
computing with large granularity systems, by a Linux 
cluster     connected     through     a     proprietary     fast 
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interconnection network. Furthermore, the new prototype 
will allow the insertion of ad hoc designed specialized 
systems, based on programmable HW (e.g. FPGA). 

One of the main novelty of the next generation 
prototype, along with its technological improvements 
which put it in the very high-end section of today 
supercomputers, relies on the possibility to apply and test 
methodologies derived from the HW/SW co-design field. 
In fact, the capability to implement on programmable HW 
some specific classes of algorithms will allow, at compile 
time, on the basis of some cost criteria, the choice 
between SW or HW implementation of some nodes in the 
CDFG specifying the application behavior. 

6.1  The APEmille system 

APEmille, being the evolution of the 
Quadrics/APEIOO system, is a SIMD machine. The first 
prototypes have been built in 1999. Similarly to APE100, 
APEmille has a 3D toroidal topology and uses custom 
VLIW processors. Each processor, working at a clock 
frequency of 66 MHz, at every clock cycle is able to 
terminate a 'normal operation' AxB+C on complex 
numbers. As executing 8 floating point operations per 
cycle, the peak performance of an APEmille processor is 
equal to 528 Mflops. 

Each node has an internal register file with 512 
locations at 32 bits and is equipped with 32 Mbytes of 
Synchronous DRAM which can be accessed with a 
bandwidth of 528 Mbyte/sec, thus resulting in a node 
granularity, at the processor level, gm=l. 

Each node can access memory of its neighbors in the 3 
spatial directions with a bandwidth of 66Mbyte/sec, so the 
granularity of APEmille machine with p processors, at the 

u.i,-             P-528X106 

sub-system level, is gm = — = 8 
/>-66xl06 

The I/O is based on the use of one PCI channel for 
each cluster of 32 computing nodes, thus resulting in a 
granularity, at the system level, 

32-528x10°    ,„„    ,   . 
gm = — = 170,   being   100  MByte/sec   the 

lOOxlO6 

actual bandwidth measured on the PCI channel. 
The largest configuration of the APEmille is 

constituted by 2048 nodes, yielding a peak speed 
exceeding 1 Tflops. 

Other than the improvements in processor and memory 
access speeds, APEmille differs from APE 100 because 
double precision and integer operations are provided in 
the computing nodes. 

6.2  The MIMD system 

Following the evolution of high-end commodity 
processors, as computing core the ALPHA EV6.7 has 

been    chosen    because    of   its    high    computational 
performances (1.3 Gflops). 

The MIMD system will be based on 16 nodes, each 
equipped with 1 Gbyte of DRAM. The nodes are 
constituted by two EV6.7 processors connected in SMP 
configuration. Internal memory bandwidth is 2.6 
Gbyte/sec,   so   the   granularity   at  the   node   level,   is 

_2-1.3xl09     , 
Sm — o    — 1 • 

2.6xl09 

Interconnection network uses the QsNet, based on the 
Elan III network adapter and the Elite III switch. QsNet 
[31] has a fat-tree topology, as shown in figure 5 for a 128 
node system, and offers a remote access latency of 2.5 
(isec and a bandwidth of 210 Mbyte/sec. For a system 
with  p   nodes,   granularity   at   the   interval   level   is 

g 
P-2.6XW _ 

P-210X106 
= 12.4.   Granularity  at  the  system 

level has the same value, because both interprocessor 
communications and I/O operations are limited by the PCI 
speed. 

#»:.    gm.    j{§    m.    m    m    m    if* 
/m ft\\ //u /lu /n\ fiv» /}\s /m 

i* ifcri 
Figure 5: fat-tree topology (128 nodes) 

An interesting comparison enlightening the better 
performances of QsNet with respect to the Gigabit 
Ethernet and Myrinet networks are reported in [41], where 
the MPI measured latency and bandwidth are given. In 
Table 1 we summarize such values. 

Table 1: Network Comparisons 
Network Latency ((is) Bandwidth 

(MB/s) 
Fast Ethernet 50 12.5 

Gigabit Ethernet 15 125 
Myrinet 20 62 
QsNet 5 200 

6.3  Specialized system design 

In order to design specialized HW systems, we have 
developed a High Level Synthesis (HLS) methodology 
which, starting from a high level description of an affine 
iterative algorithm, allows its automatic hardware 
synthesis; theoretical basis of this approach can be found 
in [38],[39]. The HLS methodology is based on a sequence 
of steps which transform the high level description into 
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several lower level representations, until reaching the 
hardware implementation (described through a Hardware 
Description Language). Each transformation step is 
correct-by-construction, i.e. it preserve application 
semantics allowing the automatic implementation of the 
HLS methodology. In order to ensure the generation of 
correct-by-construction transformation steps, the 
algorithm high level description is given through a 
mathematical model of computation. In such a way each 
transformation step is mathematically proved to be 
correct. 

The chosen model of computation is the System of 
Affine Recurrence Equations (SARE) ([32] [33] [34]) 
which is one of the most promising model of computation 
in such fields arising in signal and image processing, 
linear algebra, scientific computing. SARE computational 
model allows the specification of an algorithm by means 
of recurrence equations. 

7. Conclusions 

In this work a brief review of the supercomputer 
scenario has been presented, discussing advantages of 
custom vs commodity system implementation. 

Some theoretical aspects involved in heterogeneous 
system design and management have been introduced. 
Particular emphasis has been devoted to definition and 
discussions of task and system granularity. After 
underlying impact of a correct matching between 
task/system granularity, they were presented some results 
obtained in a scientific project aimed to exploit the 
advantages connected both to heterogeneity and to the use 
of custom parallel architectures. The outcome of this 
project was the PQE1 hybrid parallel system. After a brief 
description of its HW and SW environment, some 
examples of its use in several application domains have 
been reported (simulation of the sea level in the Venice 
lagoon, of the dynamic of galactic globular cluster, of 
electromagnetic field evolution). 

Finally, on the basis of the experience gained while 
developing this project, the HW/SW architecture of a next 
hybrid parallel prototype has been shortly presented. 
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Abstract 

In this paper, we present the results of the NRW- 
Metacomputing task force, which has been working on the 
development of a country-wide metacomputer since 1996. 
The resulting installation is among the very few that are al- 
ready operational, have full support for heterogeneous re- 
sources, contain a decent security model, and feature an 
advanced scheduling sub-systemfor the metacomputing en- 
vironment. The NRW-M etacomputer has been implemented 
using a modular software architecture. Hence, concepts 
and components of it can be re-used by others without the 
need of having to obtain the metacomputing-software as a 
whole. Furthermore, the NRW-Metacomputer already pro- 
vides well defined interfaces for linking the system with 
other metacomputing environments to form a truly global 
computational grid. Distinctive features of this system are 
its highly scalable and fault tolerant software architecture, 
its advanced resource planning mechanisms as well as an 
integration into a DCE/DFS environment. 

1   Metacomputing  and  the  Computational 
Power Grid 

The term metacomputer was initially coined by Larry 
Smarr around 1987 [13]. According to his definition, a 
metacomputer is a network of globally distributed machines 
that are linked together by a complex software system 
which enables them to act like a single very large supercom- 
puter. The advantages of the concepts are obvious. First of 
all, a metacomputer can theoretically provide more comput- 

ing power than any existing single machine. Furthermore, 
it offers its users free choice, which machine(s) to use for a 
specific job and it helps the participating computing centers 
to distribute the load more evenly. 

Building a metacomputer however is a complex and 
difficult task. Since the concept was invented, many re- 
searchers have been working on the subject and nowadays 
there are several software systems, which all cover different 
aspects of Smarr's and Catlett's vision. Among them are 
advanced cluster management systems like CODINE [8], 
LSF [15], or CONDOR [5], which focus mainly on con- 
necting Unix workstations. Furthermore, there are a cou- 
ple of projects which take a more general approach and 
work on the integration of fully heterogeneous resources 
like e.g. supercomputers or remote data sources (e.g. satel- 
lites, weather radar, unique scientific instruments). The 
NRW-Metacomputer initiative, which is presented in this 
paper, is one of these projects. Other are e.g. GLOBUS 
[6], LEGION [10], orMSHN [11]. 

Over the time it became clear that a global metacom- 
puter which meets the definition of Smarr and Catlett and 
is as easy to use as a single workstation, is unlikely to be 
established by any single research group. The large vari- 
ety of problems that have to be solved (resource manage- 
ment, administration, accounting, security, scheduling, etc.) 
requires close cooperation between researchers from many 
different fields. This is why in the recent past a couple of 
open forums have been established, which focus on the in- 
stallation of large computational power grids* by putting to- 
gether the pieces that have been invented during seven years 
of metacomputing research all over the world [1,2]. 

In the following, we present the outcomes of the NRW- 

* Supported by a grant from the NRW Metacomputing project 
'a synonym 

tionwide power grid 
for metacomputer which emphasizes the analogy to a na- 
grid 
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Metacomputing task force [3], which has been working 
on the development of a country-wide metacomputer since 
1996. The resulting installation is among the very few that 
are already operational, have full support for heterogeneous 
resources, contain a decent security model, and features 
an advanced scheduling sub-system for the metacomput- 
ing environment. The NRW-Metacomputer has been im- 
plemented using a modular software architecture. Hence, 
both concepts or components of it can be re-used by others 
without the need of having to obtain the metacomputing- 
software as a whole. Furthermore, the NRW-Metacomputer 
already provides well denned interfaces for linking the sys- 
tem with other metacomputing environments to form a truly 
global computational grid. 

2   Architecture of the NRW-Metacomputer 

The backbone of the NRW-Metacomputer was built dur- 
ing the HPCM (high performance computer management) 
project, which provides basic infrastructure for metacom- 
puting management. It features a multi-tier architecture 
in which a server layer receives user requests from access 
modules (see Sec. 5) and forwards them to the attached re- 
sources like for example supercomputers (Fig. 1). These re- 
sources are encapsulated by so called coupling modules that 
implement an abstract service layer on top of the heteroge- 
neous hardware pool. Besides abstracting the available in- 
formation and access methods from the management, the 
coupling modules interact with the locally installed man- 
agement system of the HPC component. Although the cou- 
pling modules have to be adapted to every new kind of hard- 
ware, each implementation is based on a generic frame that 
already covers a significant amount of the required func- 
tionality. So far, there exist implementations of coupling 
modules for UNIX, CODINE [8], NQE [4], CCS [12] and 
LoadLeveler. Additional modules, as e.g. for LSF, can eas- 
ily be derived from the existing implementations. 

One of the major goals of the initiative was to develop 
a metacomputer that maintains maximum autonomy for the 
participating service centers. Hence, each institute is free to 
tailor the behavior of its coupling modules to comply with 
the local policies. For example, if a certain service shall 
be made available to the metacomputer only when the local 
machines are lightly loaded or the remote user is willing to 
pay an extra fee, the behavior of the coupling module can 
be adjusted accordingly. 

It is furthermore possible to attach completely different 
types of services to the metacomputer by using the same 
abstract service interface that defines the behavior of the 
coupling modules. For example, the scheduling services 
described in Sec. 3 integrate itself into the metacomputer 
through this interface. A similar approach could be used to 
establish a link between the NRW-Metacomputer and e.g. 

a metacomputing system in another country or even on a 
different continent. 

Communication links between the different components 
of the metacomputer are established by the so called com- 
munication layer. This is a separate module that provides 
secured communication services for both Java- and C++/C- 
based components. Currently the communication layer uses 
TCP sockets for message passing and the GSS API [9] for 
security. However, these can be easily exchanged or even 
mixed with other paradigms, if necessary. 

Another important issue for any metacomputer installa- 
tion that needs to be brought to practical use is administra- 
tion and authentication of its users. Typically, service cen- 
ters already have set high standards for the management of 
their local users and are not willing to compromise this by 
installing the metacomputer software. Hence, we decided 
to rely on the services provided by the Distributed Comput- 
ing Environment (DCE) [7], since this is a vendor supported 
product and already accepted and used by many computing 
centers (see Sec. 4). 

Much effort has been spent on designing the NRW- 
Metacomputer as a highly reliable and fault tolerant system. 
Its architecture does not contain any single point of failure. 
This could be achieved by having the distributed environ- 
ment being managed by the coordinated effort of the man- 
agement daemons. These daemons are all alike and none of 
them performs any specific tasks that are not directly related 
to the corresponding computing center. Hence, a failure at 
one node can at most render that center unavailable where 
the problem occurred. As long as there is one management 
daemon alive, the NRW-Metacomputer remains available. 

It should be noted that all management daemons actively 
contribute to the operation of the whole system. There 
are no shadow daemons that monitor the system operations 
silently until a component fails and take the place of that 
component. As a consequence, the principle of coopera- 
tive management not only increases fault tolerance but also 
helps improving the overall system performance. Clearly, 
this system architecture required some extra effort in speci- 
fying transaction protocols and during the implementation. 
The key concept here was to employ the technique of virtual 
shared memory for the metacomputer (Fig. 2). 

All information that refers to the global state of the meta- 
computer (such as the lists of active jobs or available re- 
sources) are stored in so called shared objects. These are 
object oriented encapsulations of virtual shared memory 
segments. Whenever the content of a shared object changes, 
these modifications are transparently propagated to all other 
remote instances of the same object. Internal methods of 
the shared object class ensure that the data is kept in a con- 
sistent state, even if parts of the metacomputer should fail 
while remote instances of shared objects were updated. 

The use of shared objects enables each management 
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daemon to accept incoming requests and co-ordinate their 
fulfillment by underlying metacomputing services. If one 
management daemon should fail, the remaining ones take 
over its tasks. It only becomes visible to the users that the 
state of their jobs is reverted to the last completed transac- 
tion. In most cases, this equals the current state of a job. 

3   Integrated Metacomputer-Scheduling 

Job scheduling and resource allocation are one of the 
core problems in the metacomputing architecture. The own- 
ers of HPC installations are only willing to include their 
resources into a metacomputer if the performance of their 
components will not degrade. Similarly, users expect a bet- 
ter performance for their jobs. Note that the expression per- 
formance has not been defined as different people may at- 
tach a different meaning to it. Therefore, the scheduler must 
provide a high efficiency for the metacomputer while also 
taking additional requirements into account. 

3.1   Scheduling Considerations 

The paradigms for scheduling on a metacomputer dif- 
fers significantly from job scheduling on a parallel com- 
puter. Therefore, we give in the following some properties 

of meta-scheduling that must be considered for building a 
computational power grid: 

Variable  Scheduling  Objectives:    In  common job 
scheduling there usually exists a single scheduling objective 
or performance metric that is fixed for a parallel computer 
and all its jobs. For example, this can be the minimization 
of the average response or turnaround time [?]. The objec- 
tive is typically determined by the local management system 
or by the administrator. In metacomputing this objective is 
variable. As we assume a distributed system that is not con- 
trolled by a single instance, the objective should further be 
adaptable for each resource in the metasystem. While the 
schedule target for some machines may for instance be the 
maximization of the throughput, others have the objective 
to minimize the response time. Besides the objectives for 
the resources, we must also take the needs of the user into 
account. Some user may favor the availability of specific 
resource properties like the size of the main memory while 
other may have additional constraints about the execution of 
a job. A typical example would be a deadline for a job that 
must be met while it is of no particular interest if the job is 
completed as fast as possible. For this user the minimiza- 
tion of the response time would not reflect her demands. In 
metacomputing it is necessary that user objectives are con- 
sidered. For instance, the user may only be interested in 
resources that fit her needs better than any local resources. 
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Figure 2. The NRW-Metacomputer uses virtual shared memory for its distributed management 

Therefore, the scheduling must be adaptable to generate the 
most appropriate result. 

Independent Schedulers: Usually a scheduler in meta- 
computing cannot demand exclusive control over all re- 
sources. For scheduling in metasystems, we have to cope 
with the situation that jobs may not only be submitted via 
the metacomputing interface. Hence, any limitations of the 
local management must also be considered. For instance, 
one problem is the list scheduling of most management sys- 
tems which do not provide any information about the ex- 
pected completion time of a job. Unfortunately, availability 
of this kind of information is important in distributed meta- 
systems to allow future allocation planning. Of course, if 
the local management provides additional information, the 
metacomputing scheduler should be able to utilize it. In this 
case the metacomputing management does not perform any 
local scheduling but relies on the existing system scheduler. 
The resulting schedule efficiency highly depends on the fea- 
tures of the lower-level scheduler. If a resource does not 
provide the requested features like a guaranteed completion 
time, it cannot be considered suitable for some job requests. 
This limits the usability of this resource for the metasys- 
tem. Nevertheless, the metacomputing scheduling should 
support all kind of local management systems. 

Arbitrary Resource Requests: As job requirements 
and resources in a metasystem may vary according to type 
and application, there is a need for the description of com- 
plex requests. For instance, assume two different users: 
The first user does not provide a very detailed request as 
she wants to get as many computing resources as possible. 
More restrictive requirements would only reduce the possi- 
ble resource set for her job. The other user is looking for 
very specific resources. He may have access to an alterna- 

tive set of local resources for the execution of his job and 
is therefore only looking for a better resource allocation. 
Consequently, he formulates special requirements and pref- 
erences. The meta-scheduler must support both approaches. 
The individual user should be able to influence the resource 
selection and the scheduling so that she gets the best suited 
set of resources. The attributes of a resource and therefore 
the available fields in a request should not be considered 
invariant. Different resources may have different attributes 
and features that may not be known to the scheduler at the 
time of implementation. But the system should still be able 
to handle them. 

Resource Reservation: This feature is necessary for 
some applications as well as for the consideration of re- 
source maintenance. For instance, demonstrations may re- 
quire the reservation of a resource allocation for a dedicated 
time span. It is also advantageous for the schedule to con- 
sider system downtime or restricted usage that is known in 
advance. Reservations are further needed for multi-site ap- 
plications. As there is no global scheduler instance, it must 
be possible for the local scheduler to reserve resources for 
a specific time span in order to guarantee the concurrent 
availability of resources at different locations. 

Job Execution Guarantees: In metacomputing it would 
be inefficient to schedule jobs on an ad-hoc strategy as it 
is difficult to respect several objectives by not assuming a 
central scheduler. For example, if a job does not need to be 
executed as soon as possible, this flexibility can be used to 
improve the schedule. Assume again the mentioned case of 
a job with an execution deadline. Typically, the user needs 
immediate feedback whether his requirements can be met. 
It is therefore necessary for the user to receive in advance 
guarantees about the schedule of his job so that he can react 
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accordingly. The scheduler need not always provide such 
guarantees, but it should be capable of giving them if they 
are required. Those guarantees are additional constraints in 
the scheduling of a job. 

3.2    Scheduling Architecture 

To avoid the bottleneck of a central scheduler and to in- 
crease flexibility a distributed approach is employed. To im- 
plement a distributed metacomputing scheduler we use an 
architecture which is based upon so called MetaDomains. 
All MetaDomains of a metacomputer form a redundant net- 
work. Typically, a MetaDomain is associated with local 
HPC resources and is controlled by a MetaManager, that is 
all HPC resources at one site are connected to a single Meta- 
Domain. We use these autonomous scheduling domains to 
manage the local resources and offer them to other domains. 
This concept supports the idea of a computational power 
grid, where several independent sites can join a larger net- 
work and share jobs and computing power while not loos- 
ing control over the local resources. The logical structure 
of such a scheduler is described in Fig. 3. This network can 
be dynamically extended or altered. The presented archi- 
tecture guarantees a high degree of flexibility by allowing 
different implementations. 

The MetaDomains communicate among each other by 
transmitting or requesting information about resources and 
jobs. To this end a MetaManager inquires local schedulers 
about system load and job status. A MetaManager can also 

allocate local HPC resources to requests. The distributed 
scheduling itself is based upon a brokerage and trading con- 
cept which is executed between the MetaManagers. 

In detail, a MetaDomain tries to 

• satisfy local demand if possible, 

• ask other MetaDomains for resources, if the local de- 
mand cannot be satisfied, 

• offer local HPC resources to other MetaDomains for 
suitable remote jobs, and 

• act as an intermediary for remote requests. 

Once a suitable allocation of HPC resources (including 
network resources) to a job has been found, the actual sub- 
mission is independent of the scheduler. In our architecture 
the scheduling objectives are not specified. As already men- 
tioned there may not only be a single scheduling objective in 
a metacomputer. Each HPC component can define its spe- 
cific objectives. Similarly, each user may associate specific 
constraints with his job like a deadline or a cost limit. It is 
the task of the trading system to find matches between re- 
quests and offers. This way not all users and all components 
are forced to fit into a single framework as is usually done 
in conventional scheduling. Now, it is their responsibility 
to define their own objectives. The implementation of the 
metacomputing scheduler only provides the framework for 
such a definition and it must be able to compare any request 
with any offer to find a match. 
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The selection of the best suited allocation is based on a 
comparison of the provided objective functions. The objec- 
tive function of a request is applied to an allocation in order 
to generate a value for the utility from the user's point of 
view. Similarly, the offers also provide an objective func- 
tion or a value for its utility to represent the resource's point 
of view. Now, the responsible MetaManager combines the 
objectives and determines an allocation that maximizes the 
overall objective with respect to its full schedule. It is also 
possible to provide the user with a front-end that allows in- 
teractive selection of allocations. Such a front-end can also 
be used to obtain status information about the metasystem 
with the help of the request mechanism. This information 
may help a user to generate a request which results in the 
best suited set of resources depending on the current condi- 
tion in the metasystem. 

Note that our method is not an auction system as we 
do not provide a market where several jobs compete for a 
resource. Instead our schedulers select allocations that fit 
a request best at a particular time instance. However, the 
selected allocation need not necessarily be executed. The 
MetaManager maintains a schedule with all current alloca- 
tions in its domain. Its scheduler is free to modify the cur- 
rent schedule at any time. However, changes in the current 
scheduling are only allowed as long as they do not violate 
any guarantees that have been given for a job. Requested 
guarantees are additional constraints that limit future re- 
quests for rescheduling. This procedure is used to improve 
the current schedule and to cope with resource failures or 
cancellations of jobs. The rescheduling requires new re- 
quests for offers if other allocations are not active anymore. 
Note that a valid schedule exists at every moment. Also, 
there is a tentative schedule for a job after each request and 
a following allocation. 

Any improvement of the schedule is measured by com- 
bining all objective values. To this end, the scheduler at- 
tempts to maximize the overall objective value of the sched- 
ule. As an objective function is received for every request 
and for every offer, there is a combined objective function 
or value for each allocation. The objective functions of all 
allocations together define the optimization problem. An 
improvement can be achieved for instance by moving exist- 
ing allocations while all constraints are observed. Alterna- 
tively, the scheduler can look for new allocations. The meta- 
scheduling concept further supports multi-site scheduling 
and co-allocation. However, this requires the inclusion 
of network management as just another high performance 
computing resource to provide guaranteed communication 
bandwidth between participating resources. In addition the 
local resource managers must provide offers with sched- 
ule guarantees which must be exactly met. Note that this 
scheduling strategy does not guarantee an optimal schedule 
in general, but it meets all requirements of Sec. 3.1 as sep- 

arate objectives are allowed for each resource in the meta- 
system. 

In our metacomputer scheduling concept only the local 
HPC scheduler is responsible for the load distribution on 
the corresponding HPC resource. Therefore, it can also ac- 
cept jobs from sources other than the metacomputer. The 
metacomputer scheduler only addresses the load imbalance 
between different HPC resources. However, to execute 
multi site applications, the concurrent availability of dif- 
ferent HPC resources and sufficient network bandwidth be- 
tween them becomes necessary. For reasons of efficiency 
this requires resource reservation for future time frames and 
the concept of guaranteed availability. Although most HPC 
schedulers do not presently support such an approach it can 
be implemented by using preemption (a checkpoint-restart 
facility) while still maintaining a high system load. 

In the project SCHEDULE [14] of the initiative a meta- 
computer scheduler was designed using CORBA to allow 
transparent and language independent access to distributed 
management instances. For the evaluation of different 
scheduling methods a simulation framework has further 
been implemented. It is used to compare different schedul- 
ing algorithms regarding their applicability for a metacom- 
puting network. The benefit of possible technology en- 
hancements, like for example preemption, to the quality of 
the schedule is also determined with the help of the simu- 
lator. As already mentioned, communication between re- 
sources during a multi site job execution must be taken into 
account as well. To this end the available network must 
be considered as a limited resource that is managed by the 
schedulers in the MetaDomains. The inclusion of this ob- 
jective into the scheduler is part of the future work. 

4   Data Distribution, Security and Adminis- 
tration 

Like every metacomputing system that is brought to 
practical use, the NRW-Metacomputer has to cope with a 
variety of problems. Though it runs on a large number of 
different hardware architectures, it must still provide a stan- 
dard API for the HPC components and other related soft- 
ware. Furthermore, it needs a secure mean of communica- 
tion across the public and inherently insecure Internet. It 
must also provide scalability for its servers and the neces- 
sary means of authentication. And finally, it must not im- 
pose additional overhead on its users and the administrators 
of the attached HPC-nodes. 

Hence, it was decided to use the standardized Distributed 
Common Environment (DCE) as an existing and reliable 
software solution. DCE/DFS is a middleware, created by 
the OSF and available in license for commercial usage. Cur- 
rently we are using the Versions 1.0 and 1.1 of DCE/DFS on 
Solaris, AIX and NT. Versions for IRIX and UP-UX were 
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Figure 4. Screenshot of the Java User Interface 

tested. This approach provides us with the possibility to 
include any DCE/DFS-capable system into the metacom- 
puter. There is also a project to create a free DCE/DFS port 
for Linux, but in its early state and without the DFS it is not 
usable for the NRW-Metacomputer. 

An administrative domain built on DCE is called a cell. 
DCE provides a namespace for every cell that allows easy 
access to all its resources. Cells can be connected using 
cross cell authentication to provide a secure way for sharing 
resources and to minimize administrative overhead. Thus, 
users can authenticate to any client within the DCE cell, 
submit jobs or use the provided distributed file system DFS. 

Since all computers within the metacomputer are part 
of a DCE cell, the administrative overhead is minimized 
and can be distributed throughout the metacomputer. This 
is possible because DCE uses access control lists (ACL) 
for administrative commands and functions, which allow 
privileges to be selectively granted to either individuals or 
groups. With these ACLs it is for example possible to create 
administrative accounts for special tasks, such as creating 
new users or incorporating new clients, without the need to 
have full root access to the entire cell. 

Communication within the DCE cell is secured by using 

encrypted RPC calls. Because of the restrictions to export 
encryption algorithms from the USA, the international ver- 
sion of DCE/DFS does not have this security. Hence, we 
decided to use GSS API for the HPC components to protect 
communication across the public internet. 

The use of DFS on top of the DCE environment offers 
several advantages for the NRW-Metacomputer. All users 
have a home directory, which they can access independently 
from their physical location, the compute-servers can in- 
stantly access the required input and output files, and in- 
stalled software packages are available to the whole meta- 
computer. DFS uses the DCE ACLs to offer a high level 
of security and flexibility for file or data access. It is possi- 
ble to create groups who have the same set of permissions, 
which lowers the administrative workload. The actual files 
within the DFS are stored in filesets, which can be com- 
pared to Unix filesystems or DOS partitions. These filesets 
provide key features for a distributed environment. Sev- 
eral servers can host a specific fileset to provide scalability 
and stability. The DFS-Server keeps these so called replicas 
synchronized with the original fileset. This allows fast and 
up to date access to HPC Software from all clients within 
the NRW-Metacomputer. Filesets can be backed up during 
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Figure 5. Screenshot of the Java Administration Interface 

normal system operations, they can be enlarged or even re- 
located from one DFS-Server to another without the need 
to stop the working software, which is importand for long 
running jobs. Given these facts, a centralized backup for 
all data within the cell is possible and is used for the NRW- 
Metacomputer. 

For the special needs of the NRW-Metacomputer the 
DCE internal database (registry) is used to store additional 
information like e.g. user accounts. It is planned to ex- 
pand this, so that the registry will contain all information 
needed to run the metacomputer. For instance, this may be 
information about special needs or restrictions of connected 
compute-servers or software. Using the registry offers sev- 
eral advantages, because all its data is accessible within the 
whole cell via the DCE API or online commands, and the 
database itself is scalable and fault tolerant. 

Since DCE provides an API, software can be adapted 
to use special features, such as sendmail, the apache web- 
server or samba. Furthermore, it is possible to incorporate 
DCE into any other proprietary software. DCE has a stan- 
dard command line interface, which is called dcecp, the dee 
controll programm. By using this interface in a batch mode, 
it is possible to write different kinds of administrative soft- 

ware, such as a frontend using HTML and CGI-scripts for 
webservers, or a XI1-Interface using Tcl/Tk without the 
need to directly use the API or other low-level functions 
of DCE. The dcecp itself is written using Tel, which allows 
new modules to be developed for it. 

5   Accessing the Metacomputer via the World 
Wide Web 

An important aspect of the idea of a computational 
power grid is the freedom for its users to access the sys- 
tem from wherever they want, ideally even from a hotel 
room in a remote corner of the world. Hence, we decided to 
use Java and the WWW-technology for implementing the 
user interface of the NRW-Metacomputer (Fig. 4). In or- 
der to provide the same comfort to the administrators of the 
metacomputer, the administration interface has been imple- 
mented in the same way thereby enabling both use and ad- 
ministration of the metacomputer from whereever there is 
a connection to the Internet (Fig. 5). Furthermore, both in- 
terfaces are capable of storing personal customization data 
within the metacomputer. Thus, users always find their own 
personal access interface, no matter from where the system 
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Figure 6. Current size of the NRW-Metacomputer 

is being accessed. 
The metacomputer performs its own user management, 

authentication and authorization based on the DCE infra- 
structure. Thus, users will only have to login once for each 
metacomputing session. If the machine used for accessing 
the system runs a DCE-client, users can even work with 
their private files independent from their current location. 
This is therefore the recommended way of working with 
the NRW-Metacomputer. However, if the DCE services are 
not available, user files can be transferred to and from the 
metacomputer by a set of ftp-based services, which we have 
added to the user interface (Fig. 1). 

6   Conclusions 

We have presented the NRW-Metacomputer as a work- 
ing connection of four computing centers spread all over 
Nortrhine-Westphalia, which contains heterogeneous HPC 
resources like Cray T3E, IBM SP2, Sun Enterprise, or 
Siemens hpcLine (Fig. 6). Among the important aspects of 
this system are the modular, multi-tier architecture as well 
as its powerful scheduling component and the integration 
into a DCE-based environment. Knowing that there exist 
several other metacomputing environments with similar ca- 
pabilities, we described how these projects can benefit from 
the results of the NRW-Metacomputer initiative. Possible 
aspects are the re-use of concepts or modules and the cre- 
ation of a large metacomputing environment by using the 

interfaces of the NRW-Metacomputer. 
Besides the integration of more sites into the metacom- 

puter, future work will also focus on the development and 
evaluation of improved scheduling strategies on top of the 
now existing infrastructure. Furthermore, we will employ 
the service interface of the NRW-Metacomputer to add new 
kinds of services like for example streaming video or other 
real-time data sources. 
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Abstract 

In this paper we present a distributed discovery method 
allowing individual nodes to gather information about re- 
sources in a wide-area distributed system made up of au- 
tonomous systems linked together by a network technology 
substrate. We introduce an algorithm and a model for dis- 
tributed awareness and a framework for dynamic assem- 
bly of agents monitoring network resources. Whenever an 
agent needs detailed information about individual compo- 
nents of another system it uses the information gathered by 
the distributed awareness mechanism to identify the target 
system, then creates a description of a monitoring agent ca- 
pable of providing the information about remote resources, 
and sends this description to the remote site. There an agent 
factory assembles dynamically the monitoring agent. This 
solution is scalable and suitable for heterogeneous environ- 
ments where the architecture and the hardware resources of 
individual nodes differ, the services provided by the system 
are diverse, the bandwidth and the latency of the communi- 
cation links cover a broad range. 

1. Introduction 

In this paper we address the problem of resource dis- 
covery in a wide-area distributed system made up of au- 
tonomous systems linked together by a network technology 
substrate. The system is heterogeneous, the architecture and 
the hardware resources of individual nodes differ, the ser- 
vices provided by the system are diverse, the bandwidth and 
the latency of the communication links cover a broad range. 

Individual nodes in such a distributed system may co- 
operate to accomplish tasks that require resources above 
and beyond those available in any single node, clients and 
servers may need to negotiate the quality of service, system 
administrators may wish to gather synthetic data regarding 
resource utilization to identify bottlenecks. A data intensive 
problem may generate a request to assemble dynamically a 

cluster of workstations with a compound CPU rate, mem- 
ory, and secondary storage space determined by the prob- 
lem size. A system administrator may wish to determine the 
overall secondary storage utilization in a virtual Intranet. 

Resource management in a distributed system can be del- 
egated to a subset of nodes providing site-coordination, ne- 
gotiation, resource monitoring, and other services. For ex- 
ample the Open Data Network, ODN, model [13] is based 
upon an hourglass architecture with four layers: applica- 
tions, middleware services, transport services, and bearer 
services provided by LANs, wireless networks, ATMs, 
satellite networks and so on. The architecture is conceived 
to support services ranging from teleconferencing to finan- 
cial services, from remote login to interactive education. 
In turn middleware services cover security, name services, 
multi-site coordination, file systems and so on, and use 
transport services for video, audio, text, fax, and other types 
of data. The diversity of the networking substrate, the het- 
erogeneity and autonomy of the nodes, the variety of ser- 
vices provided by the system make all aspects of resource 
management in this model rather challenging and motivate 
the desire to search for solutions that are more scalable and 
able to accommodate rapidly changing heterogeneous envi- 
ronments. 

Distributed algorithms for resource management have 
been known for some time. The flooding algorithm is used 
by routers in the Internet, broadcasting by local queries, 
known as "gossiping" [11], [15] have been used to main- 
tain consistency in replicated databases [3] and to gather 
information about system failures [4]. 

Autonomous and mobile software agents are widely re- 
garded as necessary components of large-scale distributed 
systems. Agents can facilitate access to existing services 
to thin clients, support nomadic computing, perform func- 
tions related to resource management, support negotiations 
among several parties involved in a transaction, reconfig- 
ure servers, and so on. For example mobile agents to map 
network topology were proposed in [14]. 

Autonomy implies that the agents are active objects with 
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their own tread of control, they can exhibit intelligent be- 
havior. Mobility ensures that the agents can operate in 
rapidly changing heterogeneous environments. Yet, ensur- 
ing code mobility in a heterogeneous environment when the 
architecture of the nodes is different and we have several 
operating systems installed is a non-trivial endeavor. 

The implicit assumption of agent-based solution for re- 
source discovery in a wide-area system is the existence of 
a framework for the interoperabilty of different agent fami- 
lies, like the one proposed in [1]. Throughout this paper we 
assume that a system like the one described in Section 3.1 is 
installed in every node and the system has an agent factory, 
an object able to respond to external requests and assemble 
agents based upon a description of an agent provided by the 
entity that initiated the request. 

In this paper we introduce an agent-based model for re- 
source discovery. Agents running at individual nodes learn 
about the existence of each other using a mechanism called 
distributed awareness. Each agent maintains information 
about the other agents it has communicated with over a 
period of time and exchange periodically this information 
among themselves. Whenever an agent needs detailed in- 
formation about individual components of the system we 
use the information gathered by the distributed awareness 
mechanism and then assemble dynamically agents capable 
of reporting the state of remote resources and to negotiate 
the use of these resources. The remote agent creation and 
surgery techniques discussed in Section 3.3 are general and 
allow us to alter drastically the behavior of an agent. For 
example we can add additional planes for resource nego- 
tiations with clients and with the local resource manager, 
planes to reconfigure a local server and so on. 

The contributions of this paper are an algorithm and a 
model for the distributed awareness and a framework for 
dynamic assembly of agents capable of providing detailed 
information about network resources. 

The rest of this paper is structured as follows. Section 
2 reviews some of the existing algorithms for resource dis- 
covery, presents their basic assumptions and relevant per- 
formance measures. Then it presents our distributed aware- 
ness algorithm and two models for its behavior. Section 3 
introduces the agent-based resource discovery architecture 
and describes an implementation based upon Bond [6], a 
component-based agent framework. 

2. Algorithms and Models for Distributed 
Awareness 

A first step in all applications that require some knowl- 
edge about the other nodes of a network is to learn about 
the existence of each other. We call this process "distributed 
awareness", while other authors [10] refer to it as resource 
discovery. We believe that in a heterogeneous environment 

learning about the existence of other nodes is only the first 
step in a complex process and that resource discovery re- 
quires a set of progressively more intricate interactions with 
the newly discovered object. 

2.1. Related work 

We review briefly some of the algorithms presented in 
the literature, their basic assumptions, and the proposed per- 
formance measures to evaluate an algorithm. Virtually all 
algorithms model the distributed system as a directed graph, 
in which each machine is a node and edges represent the re- 
lation "machine A knows about machine B". The network 
is assumed to be weakly connected and communication oc- 
curs in synchronous parallel rounds. 

One performance measure is the running time of the al- 
gorithm, namely the number of rounds required until ev- 
ery machine learns about every other machine. The amount 
of communication required by the algorithm is measured 
by: (a) the pointer communication complexity defined as the 
number of pointers exchanged during the course of the al- 
gorithm, and (b) the connection communication complexity 
defined by the total number of connections between pairs of 
entities. 

The flooding algorithm assumes that each node v only 
communicates over edges connecting it with a set of initial 
neighbors, T(v). In every round node v contacts all its ini- 
tial neighbors and transmits to them updates, T{v)updates 

and then updates its own set of neighbors by merging T(v) 
with the set {T(u)updates}, with u G T(v). The number of 
rounds required by the flooding algorithm is equal with the 
diameter of the graph. 

The swamping algorithm allows a machine to open con- 
nections with all their current neighbors not only with the 
set of initial neighbors. The graph of the network known to 
one machine converges to a complete graph on 0(log(n)) 
steps but the communication complexity increases. Here n 
is the number of nodes in the network. 

In the random pointer jump algorithm each node v con- 
nects a random neighbor, u £ T(v) who sends F(u) to v 
who in turn merges T(v) with T(u). A version of the al- 
gorithm called the random pointer jump with back edge re- 
quires u to send back to v a pointer to all its neighbors. 
There are even strongly connected graphs that require with 
high probability H(n) time to converge to a complete graph 
in the random pointer jump algorithm. 

The Name-Dropper algorithm is proposed in [10]. Dur- 
ing each round each machine v transmits T(v) to one ran- 
domly chosen neighbor. A machine u that receives T(v) 
merges T(v) with F(u). In this algorithm after 0(log2n) 
rounds the graph evolves into a complete graph with proba- 
bility greater than 1 - l/(n°(1)). 
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2.2. Distributed Awareness; Algorithm and Models 

2.2.1    A Distributed Awareness Algorithm 

Distributed awareness is a mechanism for the nodes of a 
message-passing distributed system to learn about the ex- 
istence of each other. Each node maintains an awareness 
table and exchanges the information in this table with other 
nodes. An entry in the awareness table contains: (1) Node 
location, the IP address of a node, (2) lastHeard- 
From, the time when we last heard from the node, and (3) 
last Sync the time when the awareness information was 
last sent to the node. The awareness information is pig- 
gybacked onto regular messages exchanged between two 
nodes. 

Incoming/outgoing message handling and table merging 
are discussed now. The algorithm to add new or update ex- 
isting items is: 
for every incoming message 

find sender,   S 

if the local awareness table has an item / with 

the same node location as S 

set lastHeardFrom  of 7" as current time 

else 

add a new item initialized with S  and last- 

HeardFrom  set as current time 

if the incoming message has piggybacked awareness 

information 

execute table merging algorithm 

The table merging algorithm is: 
for each awareness item, I,   of the piggybacked 

awareness table 

if the local table has item hocal  with the same 
node location  of I 

set lastHeardFrom  of 7/oca/ with more recent 

time stamp between those of hocai  and I 

else 

add / to the local table with lastSync  set 
zero 

The outgoing message handling algorithm appends the 
local awareness table to the outgoing message: 
for an outgoing message Moutgoing  destined to a 
node N 

look up an item / with node location N  in the 

local table 

if lastSync  of / reached a specified age, 

add the local table to Moutgoing 

set lastSync  of I  as current time 

send out Moutgoing 

Notice that lastSync is checked to control the interval 
between sending awareness information and that the aware- 

ness table is periodically purged based upon lastHeard- 
From field. 

2.2.2   Deterministic and Non-deterministic Models 

Modeling and analysis of the distributed awareness algo- 
rithm is rather difficult. The problem is unstructured, in the 
general case we do not know either the network topology 
or the communication patterns among nodes thus it is rather 
difficult to simplify assumptions leading to a tractable anal- 
ysis. Yet we need to get a rough idea of the overhead in- 
curred by this method and the asymptotic properties of the 
algorithm. Intuitively we expect that after some time all 
agents will learn about the existence of all other agents. 

To model the distributed awareness we propose to use 
models similar to the ones for the spread of a contagious 
disease. An epidemic develops in a population of fixed size 
consisting of two groups the infected individuals and the un- 
infected ones. The progress of the epidemic is determined 
by the interactions between these two groups. 

We introduce first a deterministic model. Given a group 
of n nodes this simple model is based upon the assumption 
that the rate of change in agent's awareness list, is propor- 
tional with the size of the group the agent is already aware 
of, y, and also with the size of the group the agent is un- 
aware of, n - y. If k is a constant we can express this rela- 
tion as follows: 

V(t)' = kx y(t) x (n - y(t)) 

The solution of this differential equation with the initial 
condition y(Q) = 0 is: 

»(*) = 1 + (n - l)e -knt 

This function is plotted in Figure 1 and shows that after 
time T a node becomes aware of all the other nodes in the 
network. The parameter k as well as the value r can be 
determined through simulation. 

Call r/ the ratio of the awareness information exchanges 
to the total number of instances an agent communicates 
with other agents. A typical value for this parameter is 
T) = 0.001. If the amount of awareness information is only 
a fraction b, say b = 0.1 of the payload carried out dur- 
ing communication between two agents, it follows that the 
additional load due to the distributed awareness is only a 
small fraction, in our example only r\ x b = 0.01% of the 
total network traffic. 

This deterministic model allows only a qualitative analy- 
sis. Rather than the smooth transition from 0 to n we should 
expect a series of transitions each one corresponding to a 
batch of newly discovered agents. Yet this simple model 
provides some insight into the overhead incurred during the 
learning phase of the awareness mechanism we propose. 
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Once a large system is operational we can attempt to de- 
termine the parameters of the model, including the transi- 
tion probabilities, and then validate the model. The large 
number of parameters make this model very cumbersome 
for analysis of a realistic system, with a large number of 
nodes. The model is useful for theoretical studies, assum- 
ing different communication patterns, but this is beyond the 
scope of this paper. 

3. Monitoring Agents and Resource Discovery 

Figure 1. The number of agents known to a 
given agent, function of time, using a deter- 
ministic distributed awareness model. After 
time T, each agent becomes aware of all the 
other agents in the network 

A non-deterministic model is sketched below. New ac- 
quaintances occur in batches at time intervals determined 
by the overall rate of information exchange among nodes 
and by r/. Call p the probability of contact between two 
agents such that as a result of the contact the awareness list 
are modified, and let q = 1 - p. Assume that the contacts 
between agents are stochastically independent and observe 
that the probability that among the i entries in the list sup- 
plied to an agent, k, < i entries are not already in its list 
is 

(I) x pk x ql-k 

Call Y(s) the random variable denoting the number of 
entries in the list of the "typical" agent at discrete time s = 
1,2,.... Then 

P(Y(s + 1) = j\Y(s) = i)= Q x pl-i x qi 

if i > j and zero otherwise. 
The probability distribution of Y(s + 1) is independent 

of the values assumed by the random variables Y (r), r < 
s.   Therefore (F(s))s>0 is a Markov chain with states 
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Information about the resources and the state of the 
nodes of a wide area distributed system is sometimes 
needed to coordinate the activity of a group of nodes, to 
provide synthetic information about resource utilization, or 
for other needs. A common approach taken by commercial 
as well as research systems is to install on each node a mon- 
itor to gather local resource information. The local monitors 
may update periodically a centrally stored database or pro- 
vide the information on demand. Sometimes the informa- 
tion may be stored in servers hierarchically arranged. 

Several metacomputing projects [9], [7] rely on a group 
of central entities to maintain the resource information re- 
ported by local entities. Globus [9] provides a Metacomput- 
ing Directory Service where network resource information 
is stored in a tree-like structure and it is accessible using the 
Lightweight Directory Access Protocol [16]. Local moni- 
tors residing on each node report the structure and state of 
resources. Monitors have to be installed and configured for 
each site. Legion [7] uses collections as repositories for in- 
formation describing the state of the resources comprising 
the system. The collection is a database of static informa- 
tion reported by remote monitors. Resource management 
software provided by several companies including Tivoli [2] 
follow the same paradigm. 

The information provided by a local monitor is deter- 
mined at the time the monitoring program is installed. To 
provide additional information the program must be modi- 
fied and reinstalled, and also it must be non-intrusive. Often 
the information obtained from static databases is obsolete. 
These considerations justify the need to investigate alterna- 
tive means for gathering resource information. 

Using software agents for resource discovery and mon- 
itoring has several advantages over the traditional ap- 
proaches outlined above. Monitoring agents have an au- 
tonomous behavior and evolve based upon the characteris- 
tics of the local system and the requirements. Agents can 
engage in a gradual discovery process and respond to a 
changing set of requirements. They are able to adapt to the 
architecture and the operating environment of local nodes. 
An agent may decide its behavior based upon the results of 
an inference process thus the tasks assigned can be rather 
complex. 
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Now we describe an agent-based, distributed resource 
discovery architecture where agents are created at remote 
locations and modified as needed, to gather the information 
for resource management. 

3.1. Bond; a Distributed Object System 

Bond is a Java-based distributed object system and agent 
framework, with an emphasis on flexibility and perfor- 
mance. It is composed of (a) a core containing an ob- 
ject model and message oriented middleware, (b) a service 
layer containing distributed services like directory and per- 
sistent storage services, and (c) the agent framework provid- 
ing basic tools for creating autonomous agents and a set of 
reusable components, called strategies, from which devel- 
opers assemble agents with no or minimal amount of pro- 
gramming. 

Bond Core. At the heart of the Bond system there is a 
Java Bean-compatible component architecture. Bond ob- 
jects extend Java Beans by allowing users to attach new 
properties to the object during runtime, and offer a uni- 
form API for accessing regular fields, dynamic properties 
and Java Bean style setField/getField-defined vir- 
tual fields. This allows programmers the same flexibility 
like languages like Lisp or Scheme, while maintaining the 
familiar Java programming syntax. 

Bond objects are network objects; they can be both 
senders and receivers of messages. No post-processing of 
the object code as in RMI or CORBA-like stub genera- 
tion, is needed. Bond uses message passing while RMI or 
CORBA-based component architectures use remote method 
invocation. 

The system is largely independent from the message 
transport mechanism thus several communication engines 
can be used interchangeably. We currently provide TCP- 
based, UDP-based, Infospheres-based, and, separately, a 
multicast engine. Other communication engines will be im- 
plemented as needed. The API of the communication en- 
gine allows Bond objects to use any communication engines 
without changing or recompiling codes. On the other hand, 
the properties of the communication engine are reflected in 
applications as a whole. For example the UDP-based en- 
gine offers higher performance but does not guarantee reli- 
able delivery. 

All Bond objects communicate by an agent communi- 
cation language, KQML [8]. Recently XML-based inter- 
agent communication was provided as an alternative to 
KQML. Bond defines the concept of subprotocols, highly 
specialized, closed set of commands. Subprotocols gener- 
ally contain the messages to perform a specific task. Ex- 
amples of generic Bond subprotocols are property access 
subprotocol, agent control subprotocol or security subpro- 
tocol. 

Subprotocols group the same functionality of messages 
which in a remote method invocation system would be 
grouped in interface. But the larger flexibility of the mes- 
saging system allows for several new techniques which are 
difficult to implement in the remote method call case: 

• The subprotocols implemented by an object are prop- 
erties of the object, thus two objects can use the prop- 
erty access subprotocol, which is implemented by ev- 
ery Bond object, to find the common set of subproto- 
cols between them. 

• An object is able to control the internal path of a 
message delivery and to delegate the processing of 
the message to subcomponents called regular probes. 
Regular probes can be attached dynamically to an ob- 
ject as needed. 

• Messages can be intercepted before they are delivered 
to the object, thus providing a convenient way for fire 
wall, accounting, logging, monitoring, filtering or pre- 
processing. These operations are performed by sub- 
components called preemptive probes. 

• Subprotocols, like interfaces, group some functionality 
of the object, which may or may not be used during its 
lifetime. A subcomponent called autoprobe allows the 
object to instantiate a new probe, to handle an incom- 
ing message which could not be understood by existing 
probes. 

• Objects can be addressed by their unique identifier, or 
by their alias. Aliases specify the services provided by 
the object or its probes. An object can have multiple 
aliases and multiple objects can be registered under the 
same alias. The latter enables the architecture to sup- 
port load balancing services. 

These techniques can be implemented through different 
means in languages which treat methods as messages, e.g. 
Smalltalk. In Java and C++ they can be implemented at 
compile time, not at runtime, e.g. using the delegation de- 
sign pattern. Techniques from the recent CORBA specifica- 
tions e.g. the simultaneous use of DU, POA, trading service 
and others, also allow to implement a similar functionality, 
but with a larger overhead, and significantly more complex 
code. 

Bond Services. Bond provides a number of services 
commonly found in distributed object systems, like direc- 
tory, persistent storage, monitoring and security. Event, no- 
tification, and messaging services, which provide message 
passing services in remote method invocation based systems 
are not needed in Bond, due to the message-oriented archi- 
tecture of the system. 
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Some of Bond services perform differently than their 
counterparts in other middleware systems, like CORBA. 
For example, Bond never requires explicit registration of a 
new object with a service. Finding out the properties of a re- 
mote object, i.e. the set of subprotocols implemented by the 
object, is achieved by direct negotiation among the objects. 
The directory service in Bond combines the functionality of 
the naming and trading services of other systems and it is 
implemented in a distributed fashion. Objects are located 
by a search process which propagates from local directory 
to local directory. The directories are linked into a virtual 
network by a transparent distributed awareness mechanism, 
which transfers directory information by piggybacking on 
messages as discussed in the previous Section. 

Compared with the naming service implementations in 
systems like CORBA or RMI, which are based on the ex- 
istence of a name server, this approach has the advantage 
that there is no single point of failure, and the distributed 
awareness mechanism reconstitutes the network of directo- 
ries even after catastrophic failures. However, a distributed 
search can be slower than lookup on a server, especially for 
large networks. For these cases, Bond objects can be reg- 
istered to external directories, either to a CORBA naming 
service through a gateway object, or to external directory 
services based on LDAR 

3.2. Bond Agents 

The Bond agent framework is an application of the facil- 
ities provided by the Bond core layer to implement collab- 
orative network agents. Agents are assembled dynamically 
from components in a structure described by a multi-plane 
state machine [5]. This structure is described by a spe- 
cialized language called blueprint. Bond also supports 
agent description in XML. The components (strategies) are 
loaded locally or remotely, or can be specified in inter- 
pretive programming languages embedded in the blueprint 
script. The state information and knowledge base of the 
agents are collected in a single object called model of the 
world which allows for easy checkpointing and migration of 
agents. The multiplane state machine describing the behav- 
ior of agents can be modified dynamically by agent surgery, 
which will be discussed shortly. 

The behavior of the agent is described by the actions 
the agent is performing. The actions are performed by 
the strategies either as reactions to external events, or au- 
tonomously in order to pursue the agenda of the agent. The 
current state of the multiplane state machine (described by 
a state vector) is specifying the strategies active at a certain 
moment. The multiple planes are a way of expressing par- 
allelism in Bond agents. A good technique is to use them 
to express the various facets of the agents behavior: sens- 
ing, reasoning, communication/negotiation, acting upon the 

environment and so on. The transitions in the agent are 
modifying the behavior of the agent by changing the cur- 
rent set of active strategies. The transitions can be triggered 
by internal events or from external messages - these external 
messages form the control subprotocol of the agent. 

Strategies are reusable by having interface requirements. 
The Bond agent framework provides a strategy database, 
for the most commonly used tasks, like starting and con- 
trolling external agents or legacy applications. A number of 
base strategies for common tasks like dialog boxes or mes- 
sage handlers are also provided, which can be sub-classed 
by developers to implement specific functionality. External 
algorithms, especially if written in Java are usually easily 
portable to the strategy interface. 

3.3. Remote Creation and Surgery of Monitoring 
Agents 

In this section, we discuss the remote creation of an agent 
and its surgery. To illustrate the concepts outlined in Section 
3.2 we present the creation and modification of a monitor- 
ing agent. Several entities are involved in this process: a 
beneficiary agent at the site where the resource information 
is needed, an agent factory at the target site, and possibly 
a blueprint repository. The target site is identified by the 
distributed awareness or by a name or directory service. To 
install a monitoring agent on the target site, the beneficiary 
agent needs to obtains a blueprint of a monitoring agent. 
The blueprint can be retrieved from the blueprint reposi- 
tory or created dynamically by an inferencing agent given a 
set of rules and facts. After that, a message containing the 
blueprint or the location of the repository and the blueprint 
name is sent to the agent factory. Figure 2 illustrates this 
process. A Bond Resident is a container object including 
directory, communicator, and all other objects. In this ex- 
ample the message sent by the beneficiary agent contains 
the blueprint: 

(achieve :content assemble-agent 
:blueprint-program [agent blueprint]) 

The beneficiary agent in this example decides to create 
a single plane monitoring agent with the blueprint shown 
in Figure 3. Figure 4 shows the monitoring agent with one 
plane designed to gather information about the primary stor- 
age, e.g. the amount of physical memory available in the 
node, the amount of used and free storage, a list of the top 
users of memory, and so on. Notice that each plane de- 
scribes a state machine. 

The agent factory receives the message, interprets the 
blueprint, and creates a monitoring agent with one plane 
called PrimaryStorage using one strategy included in 
the blueprint as JPython program [12], associated with 
MemoryCheck state.   The complete JPython strategy is 
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Figure 2. The communication between Ben- 
eficiary Agent, the Agent Factory and the 
Blueprint Repository. Messages instructing 
the agent factory to create a monitoring agent 
(solid line) and to perform surgery (dotted 
line) are shown. 

shown in the Appendix. After creating the agent, the agent 
factory sends back an acknowledgment to the beneficiary 
agent. 

Once started, the agent performs a transition to the Mem- 
oryCheck state. The Jpython strategy identifies the op- 
erating system running on that node and invokes the sys- 
tem calls, e.g. vmstat in Unix, necessary to gather the 
information about the primary storage. If successful, the 
state machines performs a transition to the MemoryRe- 
port state with strategy ReportPS, and sends back the 
information to the beneficiary agent named in the Bene- 
f iciaryAddress of the blueprint and finishes its execu- 
tion by transition to the Done state with the End strategy. 

The primary storage map changes in real time, thus it 
might be desirable to have an agent capable of reporting the 
information periodically. In addition, it may be necessary 
to gather information about secondary storage, e.g. the total 
amount of disk space available, the amount in use, the free 
disk space, the number of file systems, etc. 

To obtain the periodic memory report and the secondary 
storage information, the agent can be modified through 
surgery as shown in Figure 5. In our example we (a) add 
another plane, called SecondaryStorage, to report the 
amount of free secondary storage space, and (b) modify the 
memory plane by adding transition from MemoryReport 
state to MemoryCheck state while deleting Done state and 
gotoEnd transition. As a result, the agent reports period- 
ically the state of the primary storage. The reporting inter- 
val is specified in the blueprint as Interval, in this case, 
5000 msec. 

To perform the surgery, we send the agent factory at the 

create agent MonitoringAgent 
plane PrimaryStroage 

add state Init with strategy InitCheck; 
add state MemoryCheck with strategy language 
python embedded {: 

def getcmdresults(cmd): 
''''Run a command and return its output 

as a string and exit value 

def vmstat(): 
''''Return the statistics 
''''from vmstat output 
1'''in form of a hashtable 

[list, exitcode] = 
getcmdresults('vmstat 1 2' 

def save(map, prefix = ''): 
''''Save a hashtable into model 

save(vmstat(), 'discover.') 
self.fsm.transition)''gotoReport''); 

:} 
add state MemoryReport with strategy ReportPS; 
add state Done with strategy End; 

internal transitions { 
from InitCheck to MemoryCheck on gotoCheck; 
from MemoryCheck to MemoryReport 

on gotoReport; 
from MemoryReport to Done on gotoDone; 

} 
model { 

BeneficiaryAddress = 
'%ResourceAgent@peter.cs.purdue.edu:2000' 

} 
end plane; 
end create. 

Figure 3. The blueprint of a monitoring agent 
designed to gather information about avail- 
able physical memory, the amount of used 
and free storage, and a list of top memory 
users 
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Figure 4. The monitoring agent built using the 
blueprint in Figure 3. The strategies associ- 
ated with every state are shown in parenthe- 
sis. 

modify agent Probing 
plane SecondaryStorage 
add state Init with strategy InitSS; 
add state StorageCheck 

with strategy MeasureSS; 
add state StorageReport 

with strategy ReportSS; 
internal transitions { 

from InitSS to StorageCheck on gotoCheck; 
from StorageCheck to StorageReport 

on gotoReport; 
from StorageReport to StorageCheck 

on gotoCheck; 

} 
end plane; 
plane PrimaryStorage 
delete state Done; 
internal transitions { 

delete from MemoryReport to Done 
on gotoEnd; 

from MemoryReport to MeamoryCheck 
on gotoCheck; 

} 
model { 

Interval = 5000; 

} 
end plane; 

Figure 5. The agent surgery script. S second 
plane, SecondaryStorage is added and state 
machine of the first plane, PrimaryStorage 
is modifyed. 

Figure 6. The agent after the surgery 

target site the following message: 

(achieve :content modify-agent :bondID [agent ID] 
:blueprint-program [agent surgery script]) 

The message contains the unique Bond ID of the agent. 
This allows the agent factory to identify the target of the 
surgery request. Figure 6 shows the monitoring agent after 
the surgery of Figure 5. Agent surgery involves the modifi- 
cation of the data structure used to control the scheduling of 
various strategies in the planes of the agent. The surgery can 
be performed while the agent is running and the blueprint of 
the modified agent can be generated. 

4. Conclusions 

Information about the topology, resources and the state 
of the nodes of a wide area distributed system is sometimes 
needed to coordinate the activity of a group of nodes, to pro- 
vide synthetic information about resource utilization, or for 
other needs. A common approach taken by commercial as 
well as research systems is to install on each node a moni- 
tor to gather local resource information. The local monitors 
may update periodically a centrally stored database or pro- 
vide the information on demand. 

Using software agents for resource discovery and mon- 
itoring has several advantages over the more traditional 
approach outlined above. Monitoring agents have an au- 
tonomous behavior and evolve based upon the characteris- 
tics of the local system and the requirements of the benefi- 
ciary agent. Agents can engage in a gradual discovery pro- 
cess and respond to a changing set of requirements. They 
are able to adapt to the architecture and the operating en- 
vironment of the local node. An agent may change its be- 
havior based upon the results of an inference process and 
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the tasks assigned to an agent can be rather complex. On 
the other hand, the amount of resources used by the agency 
may be larger than resources required by a custom-made 
monitoring system. 

In this paper we introduce an agent-based model for re- 
source discovery. Agents running at individual nodes learn 
about the existence of each other using a mechanism called 
distributed awareness. Each agent maintains information 
about the other agents it has communicated with over a 
period of time and exchange periodically this information 
among themselves. Whenever an agent needs detailed in- 
formation about individual components of the system we 
use the information gathered by the distributed awareness 
mechanism and then assemble dynamically agents capable 
of reporting the state of remote resources and to negotiate 
the use of these resources. The remote agent creation and 
surgery techniques are general and allow us to alter drasti- 
cally the behavior of an agent. 

We present two models for distributed" awareness, a de- 
terministic model that supports a qualitative analysis and a 
more intricate, quantitative model. We introduce the Bond 
system and discuss the assembly and surgery of a monitor- 
ing agent capable to report the use of primary and secondary 
storage. 

The Bond systems is available under an open source li- 
cense from http: / /bond. cs . purdue. edu. 
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6. Appendix: a JPython Strategy to Gather 
Memory Information 

add state Memorycheck with strategy language 
python embedded 

from Java.lang import Runtime, StringBuffer 
from java.io import InputStream, StringWriter 

import string 

def getcmdresults(cmd): 
 Run a command and return its output 

as a string also return the exit 
value as the tuple's second arg 
Runtime.exec() writes some nonsense 
on standard output at least in Linux 

p = Runtime.getRuntimeO .exec_(cmd) 
p.waitFor() 
output = p.getlnputStreamO 

buf = StringWriter() 
c = output.read() 
while c '.=   -1: 

buf.write(c) 
c = output.read() 

return (buf .getBuf fer () . toStringO , p.exitValueO ) 

def accustat(param): 
 Accumulate information about users 

and return a hashtable requires System V 
ps (Solaris 2.x, newest Linux) see man page 
for parameter names, try e.g. pmem 

(t it n 

[list, exitcode] 
= getcmdresults('ps -eo user,'+ param) 

if exitcode > 0: 
return None 

broken =  string.split(list, '\n') 
map = {} 
for line in broken[1:]: 

spl =  string.split(line) 
if len(spl) != 2: 
continue 
[user, param] = spl 
if map.has_key(user): 

map[user] = map[user] + string.atof(param) 
eise: 

map[user] = string.atof(param) 
return map 

def vmstat(): 
  Return the statistics from the vmstat 

output in form of a hashtable. See manual 
page for the meanings of the keys (system 
dependent although some are common). 

[list, exitcode] 
= getcmdresults)'vmstat 12') 

if exitcode > 0: 
return None 

broken =  string.split(list, '\n') 
names = string.split(brokenfl]) 
values = string.split(broken[3]) 
map = {} 
i = 0 
for name in names: 

map[name] = string.atoi(values[i]) 
i = i + 1 

return map 

def save(map, prefix = ''): 
 ' save a hashtable into the model with 

optional prefix (should include the dot) 

for name in map.keys (): 
model.set(prefix + name, map[name]) 

save(vmstat(), 'discover.') 
self.fsm.transition("gotoReport") 
:}; 
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ABSTRACT 
Management of large-scale parallel and distributed 
applications is an extremely complex task due .to 
factors such as centralized management architectures, 
lack of coordination and compatibility among 
heterogeneous network management systems, and 
dynamic characteristics of networks and application 
bandwidth requirements. The development of an 
integrated network management framework that is 
proactive, scalable and robust is a challenging 
research problem. In this paper, we present our 
approach to implement a Proactive Application 
Management System (PAMS). PAMS architecture 
consists of two main modules: Application Centric 
Management (ACM) and Management Computing 
System (MCS). The ACM module provides the 
application developers with all the tools required to 
specify the appropriate management schemes to 
manage any quality of service requirement or 
application attribute/functionality (e.g., performance, 
fault, security, etc.). The MCS provides the core 
management services to enable the efficient proactive 
management of a wide range of network applications. 
The services offered by the MCS are implemented 
using mobile agents. Furthermore, each MCS service 
can be implemented using several techniques that can 
be selected dynamically by invoking the corresponding 
mobile agent template for the service implementation. 
In this paper, we present our preliminary results of 
evaluating PAMS management services to manage the 
performance and fault tolerance execution of three 
applications of different sizes (small, medium and 
large). The experimental results demonstrate that our 
agent-based approach can lead to significant gains in 
the performance and low overhead fault management 
of parallel/distributed. For example, the overhead 
incurred in the application fault management to 
tolerate one task failure, two task failures, and three 
task failures in a medium to large size application is 
less than 0.02%. 

Salim Hariri, and Muhamad Djunaedi 
Department of Electrical and Computer 

Engineering, University of Arizona 
Tucson, AZ 85721 

{hariri, djunaedi}® ece.arizona.edu 

1. Introduction 

The emerging high speed networks and the- 
advances in computing technology are important 
driving forces to merge the communications and 
computing technologies that will result in an explosive 
growth in network complexity, size and networked 
applications. Furthermore, we are observing an 
explosive growth in network applications that use 
computing, networking and storage resources that can 
be accessed from global national and/or international 
networks. The management of such networks and their 
distributed applications has become increasingly 
complex, and unmanageable. Unfortunately, the 
current network management technologies focus on 
collecting management information and manually 
manage the network using platform-specific products. 
There has been little research toward the development 
of intelligent, efficient, proactive end-to-end 
management of large networks and their applications. 

The increased importance of network management 
for large-scale networks has stimulated research on 
novel approaches to reduce the management 
complexity and cope with dynamic management 
change. Instead of a centralized manager, multi- 
managers and their communication protocols are 
proposed such as Management by Delegation 
(MbD)[4] and Code Mobility[5]. Another approach 
replaces the manger-agent relationship among 
managers and agents with peer-to-peer relationship 
using the Common Object Request Broker 
Architecture (CORBA) has been studied in the area of 
Telecommunications Information Networking 
Architecture (TINA) framework [2]. A few web-based 
approaches to network management have emerged 
recently (JMAPI, WEBEM). [3]. 

However, distributed network management of 
applications over heterogeneous has not fully studied 
and is becoming increasingly important. Recently, 
Application Management MIB [7] and MH3 for 
Application [6] have been proposed to collect and 
store common application management information in 
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IETF. Common Information Model (CM) by DMTF 
is proposed a similar process information definition 
for WBEM [Patrck98]. Still, there has been little work 
done to achieve programmable application 
management schemes and is not well understood. 

ACM Layer 

/^{M»l^pert£(fiingSei%8^£^ 

MCS Layer 

NPM Layer 

CMISP WBEM 

ADM Appfcabon Delegated Manager 
TA1. JI: Task Agentl ..n 

TIB: Task Information Base 
SSerscf 

ArActiatcr 
Figure 1. The Runtime Architecture of the Proactive 

Application Management System. 

In this paper, we present the design and evaluation of a 
Proactive Application Management System (PAMS) 
prototype being developed at the University of 
Arizona. PAMS provides adaptive application 
management services to dynamically manage the 
performance and fault of parallel/distributed 
applications in an unreliable and heterogeneous 
computing environment. PAMS implementation is 
based on using mobile agents that can be programmed 
to maintain the quality of service requirements of 

distributed applications. We have evaluated three 
adaptive techniques to manage the performance and 
fault tolerance of distributed applications. The first 
approach is based on using active redundancy to 
improve performance and tolerate faults. The second 
approach is based on passive redundancy in which a 
set of machines is designated as backup machines to 
be used to replace any of the machines assigned to the 
application tasks in order to improve performance or 
to tolerate software/hardware failures. The third 
approach does not introduce redundancy in the system 
and it requires task migration to another machine in 
order to improve performance or to tolerate 
software/hardware failures. The preliminary results of 
applying these techniques demonstrate that our agent- 
based approach can lead to significant gains in the 
performance and low overhead fault management of 
parallel/distributed application. The organization of 
the paper is as follows. In Section 2, we give a brief 
overview of the PAMS prototype. In Section 3, we 
discuss our approach to benchmark and evaluate the 
adaptive performance management services offered by 
PAMS. In Section 4, we benchmark and evaluate the 
adaptive fault management service. 

2. Architecture    of    the    Proactive 
Application Management System (PAMS) 

The architecture of PAMS is shown in Figure 1. 
The ACM layer provides application developers with 
the tools required to specify and characterize the 
application requirements in terms of performance, 
fault, security, and also specify the appropriate 
management scheme to maintain the application 
requirements. Once the application management 
requirements are defined using the ACM tools, the 
next step is to utilize the management services 
provided by the Management Computing System 
(MCS) to build the appropriate application execution 
environment that can dynamically control the allocated 
resources to maintain the application requirements 
during the application execution. The MCS assigns 
one Application Delegated Manager (ADM) to 
manage one or more application attributes 
(performance, fault, security, etc.). For each task in the 
application, the ADM launches an appropriate Task 
Agent (TA) to monitor and manage the task execution. 
The TA monitors the task execution using appropriate 
task sensors and intervenes whenever the task 
execution on the assigned machine can not neet its 
requirements using the task actuators that can suspend, 
save task execution state, or migrate the task execution 
to another remote machine. Our approach supports 
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several strategies to maintain each task attribute. For 
example, to manage the task performance, ADM could 
use active redundancy, passive redundancy, or by 
migrating the task execution to a faster machine when 
the assigned machine becomes heavily loaded. The 
appropriate management scheme can be selected at 
runtime depending on the system state and the current 
available resources as will be discussed in further 
detail later. 
The main management activities of TA can be 
abstracted into three procedures or functions: 
Change_Detection, Analsis_Verification, and 
Adaptation_Plan. The Change_Detection procedure is 
responsible for detecting the conditions in which the 
monitored tasks deviates from the acceptable behavior 
or operation (e.g., the task performance degrades 
severely due to bursty traffic conditions, or due to 
software or hardware failures). The 
Analysis_Verification algorithm is invoked whenever 
a change is detected and to make sure that the change 
is real and not due to false alarms. Once the change 
event is verified and its type is identified, the 
Adaptation Plan procedure is invoked to execute the 
appropriate adaptation scheme. 

Proactive_Application_Management Algorithm 
1 For each Ap Ap;e ACM(Apj), 
2 Assign Application Delegated Manager ADM 
(Api) 

Lunch ADM (Api) 
While (AEE(Api) is running) do 

For each Service S;6 APi 
*i 6 {Sf„ Spcrf, Stuffy, Sconfig} 
Start Service S^ApO, 
Monitor St( Ap^ 

EndFor 
EndWhile 

EndProactive_Application_Management_Algorithm 
Figure 2 Proactive Application Management Algorithm 

Figure 2 shows the general Proactive Application 
Management Algorithm for the PAMS prototype. The 
application Execution Environment (AEE(Api)) refers 
to all the resources allocated to run a give application 
Api . While the application is running (step 4 in the 
Proactive Application Management Algorithm of 
Figure 2), the ADM starts all the task agents required 
to manage the application requirements (performance, 
security, fault, etc.) (Step 7,8 in the algorithm of 
Figure 2) and then monitor the execution of that 
application to detect any changes or deterioration 
while it is running. In what follows, we discuss PAMS 
approach  to  use   mobile   agents   to  manage  the 

performance and fault tolerance of parallel/distributed 
applications. 

3.    Adaptive    Performance    Application 
Management 

(a) Active Redunduncy 

f MCS > 

l(    fault   V   Pert.    Vsecurityjfconfigurationj J 

(b) Passive Redunduncy 

f MCS >> 
\C  faultjf  Pert,   ^Tsecurity") (configuration} I 

(c) Migration 

Figure 3 Controlling Techniques of Performance 
Management 

Performance management for distributed systems 
is complex due to the existence of many components 
that need to be monitored and controlled. Performance 
management techniques can be broadly characterized 
into two schemes: monitoring and controlling. 
Monitoring is the function that tracks the performance 
activities of the resources, networks and their 
applications. The controlling function enables 
performance  management to make adjustments  to 
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improve performance. We need algorithms and 
techniques to derive appropriate performance metrics 
[9] [10], and resource indicators for different levels of 
performance. Adjusting threshold schemes [13] and 
polling intervals [14] are the main issues in 
implementing the performance monitoring function. 
Performance statistics can be used to recognize 
potential bottlenecks or failures before they cause 
problems. Five major prediction models for 
performance predictions for parallel or distributed 
applications are discussed in [10]. With performance 
prediction, performance management schemes can 
proactively manage large and complex systems. 
Dynamic load-balancing [12] and process migration 
[11] have also been studied to provide appropriate 
performance management. 

In our application performance management, we 
monitor the execution times of an application as well 
as the resource and network utilization. In addition, we 
use redundancy techniques and task migration to 
implement the control functions required to 
dynamically manage the application performance. In 
this paper, we evaluate three techniques to manage the 
application performance: active redundancy, passive 
redundancy and migration. Each technique is 
implemented as an agent template as shown in Figure 
3. 
The active redundancy scheme duplicates the 
execution of the application on two machines (see 
Figure 3 (a)). In this scheme, the task agent will pick 
up the results from the first machine that completes the 
task execution. This approach has several advantages. 
First, lead to better performance because we always 
pick up the results from the faster machine. Second, it 
simplifies the performance management since no need 
to perform task migration or load balancing in the 
system due to load changes or bursty traffic 
conditions. 

* load <5% 

> load <99% and 
no migration 

load <99% and 
migration 

Tasks 

The passive redundancy assigns each task to a 
primary machine that will run the task and another 
machine to be used as a backup whenever the task 
performance deteriorates on the assigned machine (see 
Figure 3 (b)). The backup machine is kept-up-to-date 
in order to be ready to resume the task execution from 
the last updated checkpoint. The main advantage of 
this approach is that it needs less resources than the 
active redundancy approach. In this scheme, one 
backup machine can be used as a backup machine to 
several tasks. 

The third approach does not introduce redundancy 
and improves the performance by task migration (see 
Figure 3 (c)). However, the overhead of task migration 
is high and it should be used only for large task 
granularities where the migration overhead is 
relatively small when compared to the task execution 
time. 

«load <5% 

« load <99%, no 
redundancy 

load <99%, 
active 
redundancy 

■ load <99%, 
passive 
redundancy 

large 
size 

Tasks 

Figure 4 Application Execution with migration scheme 

Figure 5 Application Execution with Redundancy policies 

We benchmarked the overhead associated with 
implementing PAMS performance management 
service for two application types: a small application 
with an average execution time of 30 seconds and a 
large application with an average execution time of 
450 seconds. We evaluated the use migration, active 
redundancy and passive redundancy techniques to 
dynamically mange the performance of these two 
applications. If, during the application execution, the 
load on a machine suddenly increased to 99% CPU 
utilization, the migration approach was able to 
improve the performance by 25% for the small size 
application (approximately 40 seconds) and by 75% 
for the large application (approximately 308 seconds) 
as shown in Figure 4. The active redundancy 
technique achieved a 31% performance gain for the 
small application and 174% for the large application as 
shown in Figure 5. Similar results were achieved in 
the passive redundancy approach, where a 22% 
performance   gain   was   achieved   for   the   small 
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application and a 114% performance gain for the large 
application. 

4. Adaptive Fault Tolerance 

The main goal of the application fault 
management is to efficiently recover from 
hardware/software failures of the system resources. 
Redundancy is an important technique to detect and 
recover from component failures in the system. The 
redundancy can be in the form of hardware, software, 
or time [15]. As the system increases its complexity, 
more sophisticated techniques are needed to manage 
those redundancies. In addition, the fault management 
scheme must be flexible and adaptive. In SCOP [17], a 
design methodology is proposed to introduce support 
techniques to reduce the resource cost of fault-tolerant 
software, both in space and time, by providing 
designers with a flexible redundancy architecture in 
which dependability and efficiency can be adjusted 
dynamically at run time. In another work [18], the use 
of mobile agents to support adaptive fault tolerance is 
implemented. In our adaptive application fault- 
tolerance approach, we use mobile agents to efficiently 
manage the redundancy. We evaluate two redundancy 
techniques: Passive and Active redundancy. 

[®> <®)l   l®> <Ä>|    I« 
Figure 6 Active Redundancy Techniques for Fault 

Management 

In the active redundancy technique shown in 
Figure 6, we assign two identical tasks to two 
machines that are managed by two Task Agents (TAs); 
one task is designated as the primary task while the 

second one is referred to as the secondary task. In this 
scenario, the ADM doesn't need to determine the 
adaptation plan when a fault occurs. If the fault occurs 
in the primary task, the results can be picked up 
without any delay from the secondary task that 
becomes the new primary task once its task agent 
detects the failure in the primary task due to software 
or hardware failures. In addition to reducing the time 
for fault detection, active redundancy technique 
simplifies the communication between task agents. 
Figure 8 shows the overhead incurred by applying this 
redundancy scheme to adaptively manage the faults of 
three applications with three tasks each. In the small 
application case (execution time is around 60s), the 
overhead incurred in using our scheme to detect and 
recover from one task failure, two task failures, and 
three task failures are 0.10%, 0.18%, and 0.22%, 
respectively (see Figure 7). For medium and large 
applications, the overhead in managing one, two or 
three task failures is very small (less than 0.02%). 
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Figure 7 The overhead of Active Redundancy Technique 

The second approach is based on using passive 
redundancy in managing the application faults (see 
Figure 8). In this scenario, we assign the task to two 
machines: one is designated as the primary machine 
while the second machine is designated as the backup 
machine. The backup machine does not run the task as 
is done in the active redundancy case, but it is kept up- 
to-date about the task execution periodically so it can 
resume the task execution from the last checkpoint 
(update) if a fault occurred in the primary task. 
Furthermore, the backup machine could be assigned as 
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a backup machine for more than one task. This 
improves the utilization of the system resources. 
Figure 9 shows the overhead incurred in applying this 
redundancy technique to manage the faults of three 
applications. For a small application with three tasks, 
the overhead incurred to manage one task failure, two 
task failures, and three task failures are 0.18%, 0.26%, 
and 0.42%. For a medium to large size application, the 
overhead to manage one, two or three task failures is 
very small (less than 0.02%). 

It is clear from the experimental results that our 
approach is very efficient, especially, for large 
parallel/distributed applications. Furthermore, the use 
of mobile agents and agent templates, we can 
dynamically select the appropriate redundancy 
technique at runtime depending on the system load and 
number of available resources. 

Figure 8 Passive Redundancy Techniques for Fault 
Management 

5. Conclusion 

In this paper, we presented our approach to implement 
a Proactive Application Management System (PAMS). 
The PAMS architecture is based on integrated 
management framework being developed at the 
University of Arizona [8]. The experimental results of 
the PAMS management services to manage the 
performance and fault tolerance execution of three 
applications of different sizes (small, medium and 
large demonstrate that our agent-based approach can 

lead to significant gains in performance and low 
overhead in fault management. We are currently 
implementing additional services to balance the load 
across the network resources and maintain the system 
and application security requirements. 
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Abstract 

An emerging model for computational grids intercon- 
nects similar multi-resource servers from distributed sites. 
A job submitted to the grid can be executed by any of the 
servers; however, resource size or balance may be differ- 
ent across servers. One approach to resource management 
for this grid is to layer a global load distribution system on 
top of the local job management systems at each site. Un- 
fortunately, classical load distribution policies fail on two 
aspects when applied to a multi-resource server grid. First, 
simple load indices may not recognize that a resource im- 
balance exists at a server. Second, classical job selection 
policies do not actively correct such a resource imbalanced 
state. We show through simulation that new policies based 
on resource balancing perform consistently better than the 
classical load distribution strategies. 

1. Introduction 

An emerging model in high performance supercomput- 
ing is to interconnect similar computing systems from ge- 
ographically remote sites, creating a near-homogeneous 
computational grid system. Computing systems, or servers, 
are homogeneous in that any job submitted to the grid may 
be sent to any server for execution. However, the servers 
may be heterogeneous with respect to their exact resource 
configurations. For example, the first phase of the NASA 
Metacenter linked a 42-node IBM SP2 at Langley and a 

"This work was supported by NASA grant NCC2-5268 and contract 
NAS2-14303, and by Army High Performance Computing Research Cen- 
ter (AHPCRC) cooperative agreement DAAH04-95-2-0003 and contract 
DAAH04-95-C-0008. Access to computing facilities was provided by AH- 
PCRC, Minnesota Supercomputer Institute. 

144-node SP2 at Ames [7]. The two servers were homo- 
geneous in that they were both IBM SP2s, with identical or 
synchronized software configurations. However, they were 
heterogeneous on two counts: the number of nodes in each 
server, and the fact that the Langley machine consisted of 
thin nodes while the Ames machine had wide nodes. A job 
could be executed by either server without modifications, 
provided a sufficient number of nodes were available on that 
server. 

The resource manager for the near-homogeneous grid 
system is responsible for scheduling submitted jobs to avail- 
able resources such that some global objective is satisfied, 
subject to the constraints imposed by the local policies at 
each site. One approach to resource management for near- 
homogeneous computational grids is to provide a global 
load distribution system (LDS) layered on top of the local 
job management system (JMS) at each site. This architec- 
ture is depicted in Figure 1. The compute server at each 
site is managed by a local JMS. Users submit jobs directly 
to their local JMS which places the jobs in wait queues un- 
til sufficient resources are available on the local compute 
server. The global LDS monitors the load at each site. In 
the event that some sites become heavily loaded while other 
sites are lightly loaded, the LDS attempts to equalize the 
load across all serves by moving jobs among the sites. The 
JMS at each site is then responsible for the detailed allo- 
cation and scheduling of local resources to jobs submitted 
directly to it, as well as to jobs which are assigned to it by 
the global LDS. The local JMS also provides load status 
to the LDS to support load distribution decisions, as well 
as a scheduling Applications Programming Interface (API) 
to implement these decisions. For example, in the NASA 
Metacenter, a peer-aware receiver-initiated load balancing 
algorithm was used to move work from one IBM SP2 to 
the other. When the workload on one SP2 dropped below 
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Figure 1. Near-Homogeneous Metacomputing Resource Management Architecture 

a specified threshold, the peer-aware load balancing mech- 
anism would query the other SP2 to see if it had any work 
which could be transferred for execution. 

The architecture depicted in Figure 1 is conceptually 
identical to classical load balancing in a parallel or dis- 
tributed computer with two notable exceptions. First, the 
compute server at each site may be a complex combina- 
tion of multiple types of resources (CPUS, memory, disks, 
switches, and so on). Similarly, the applications submit- 
ted by the users are described by multiple resource re- 
quirements. We generalize these notions and define a 
2f-resource server and corresponding if-requirement job. 
Each server St has K resources, S?, S},..., Sf'1. Each 
job Jj is described by its requirements for each resource 
type, Jj\ J?,..., Jf~l. Note that the servers are still con- 
sidered homogeneous from the jobs' perspective, as any job 
may be sent to any server for execution. 

The second exception is that the physical configura- 
tions of the K resources for each server may be heteroge- 

neous. This heterogeneity can be manifested in two ways. 
The amount of a given resource at one server site may be 
quite different than the configuration of a server at another 
site. For example, server Si may have more memory than 
server Sj. Additionally, servers may have a different bal- 
ance of each resource. For example, one server may have 
a (relatively) large memory with respect to its number of 
CPUs while another server may have a large number of 
CPUs with less memory. 

Classical load balancing attempts to maximize system 
throughput by keeping all processors busy. We extend this 
notional goal to fully utilizing all K resources at each site. 
One heuristic for achieving this objective is to match the job 
mix at each server with the capabilities ofthat server, in ad- 
dition to balancing the load across servers. For example, if 
a server has a large shared memory, then the job mix in the 
local wait queue should be adjusted by the global LDS to 
contain jobs which are generally memory intensive. Com- 
pute intensive jobs should be moved to a server which has 
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a relatively large number of CPUs with respect to its avail- 
able memory. The goal of the LDS is to therefore balance 
the total resource demand among all sites, for each type of 
resource. 

This work investigates the use of load balancing tech- 
niques to solve the global load distribution problem for 
computational grids consisting of near-homogeneous multi- 
resource servers. The complexity of multi-resource com- 
pute servers along with the multi-resource requirements of 
the jobs cause the methods developed in past load balanc- 
ing research to fail in at least two areas. First, the defini- 
tion of the load at a given server is not easily described by 
a single load index. Specifically, a resource imbalance, in 
which the local job mix does not match the capabilities of 
the local server, is not directly detectable. This impacts the 
ability of the global LDS to match the workload at a site 
to the capabilities of the site. We propose a simple exten- 
sion to a classical load index measure based on a resource 
balancing heuristic to provide this additional level of de- 
scriptive detail. Second, once a resource imbalance is de- 
tected, existing approaches to selecting which jobs to move 
between servers fail to actively correct the problem.  We 
provide an analogous job selection policy, also based on re- 
source balancing, which heuristically corrects the resource 
imbalance. The combination of these two extensions pro- 
vides the framework for a global LDS which consistently 
outperforms existing approaches over a wide range of com- 
pute server characteristics. 

The remainder of this paper is organized as follows. Sec- 
tion 2 provides an overview of relevant past research, con- 
cluding with variants of a baseline load balancing algorithm 
drawn from the literature. Section 3 investigates the limi- 
tations of the baseline algorithms, and provides extensions 
based on the resource balancing heuristic. A description 
of our simulation environment is given in Section 4. The 
performance results of our new load balancing methods as 
compared to the baseline algorithms is also summarized in 
Section 4. Finally, Section 5 provides conclusions and a 
brief overview of our current work in progress. 

2. Preliminaries 

Research related to this effort is drawn from single server 
scheduling in the presence of multiple resource require- 
ments and general load balancing methods for homoge- 
neous parallel processing systems. 

Recent research in job scheduling for a single server has 
demonstrated the benefits of including information about 
the memory requirements of a job in addition to its CPU 
requirements [13, 14]. The generalized If-resource sin- 
gle server scheduling problem was studied in [10], where 
it was shown that simple backfill algorithms based on 
multi-dimensional packing heuristics consistently outper- 

form single-resource algorithms, with increasing K. These 
efforts all suggest that the local JMS at each site should be 
multi-resource aware in making its scheduling decisions. 
This induces requirements on the global LDS to provide a 
job mix to a local server which maximizes the success rate 
of the local server. 

The general goal of a workload distribution system is to 
have sufficient work available to every computational node 
to enable the efficient utilization of that node. A central- 
ized work queue provides every node equal access to all 
available work, and is generally regarded as being efficient 
in achieving this goal. Unfortunately, the centralized work 
queue is generally not scalable as contention for the sin- 
gle queue structure increases with the number of nodes. In 
massively parallel processing systems where the number of 
nodes was expected to reach into the thousands, this was a 
key concern. In distributed systems, the latency for query- 
ing the central queue potentially increases as the number of 
nodes is increased. Load balancing algorithms attempt to 
emulate a central work queue by maintaining a represen- 
tative workload across a set of distributed queues, one per 
compute node. In this paper, we investigate only the perfor- 
mance of load balancing across distributed queues. 

Classical load balancing algorithms are typically based 
on a load index which provides a measure of the workload 
at a node relative to some global average, and four policies 
which govern the actions taken once a load imbalance is 
detected [15]. The load index is used to detect a load im- 
balance state. Qualitatively, a load imbalance occurs when 
the load index at one node is much higher (or lower) than 
the load index on the other nodes. The length of the CPU 
queue has been shown to provide a good load index on time- 
shared workstations when the performance measure of in- 
terest is the average response time [2, 11]. In the case of 
multiple resources (disk, memory, etc.), a linear combina- 
tion of the length of all the resource queues provided an 
improved measure, as job execution time may be driven by 
more than CPU cycles [5]. 

The four policies that govern the action of a load balanc- 
ing algorithm when a load imbalance is detected deal with 
information, transfer, location, and selection. The informa- 
tion policy is responsible for keeping up-to-date load infor- 
mation about each node in the system. A global information 
policy provides access to the load index of every node, at the 
cost of additional communication for maintaining accurate 
information [1]. 

The transfer policy deals with the dynamic aspects of a 
system. It uses the nodes' load information to decide when 
a node becomes eligible to act as a sender (transfer a job 
to another node) or as a receiver (retrieve a job from an- 
other node). Transfer policies are typically threshold based. 
Thus, if the load at a node increases beyond a threshold Ts, 
the node becomes an eligible sender. Likewise, if the load 
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at a node drops below a threshold Tr, the node becomes an 
eligible receiver. Load balancing algorithms which focus 
on the transfer policy are described in [2, 15, 16]. 

The location policy selects a partner node for a job trans- 
fer transaction. If the node is an eligible sender, the location 
policy seeks out a receiver node to receive the job selected 
by the selection policy (described below). If the node is 
an eligible receiver, the location policy looks for an eligible 
sender node. Load balancing approaches which focus on 
the use of the location policy are described in [8, 9]. 

Once a node becomes an eligible sender, a selection pol- 
icy is used to pick which of the queued jobs is to be trans- 
ferred to the receiver node. The selection policy uses several 
criteria to evaluate the queued jobs. Its goal is to select a job 
that reduces the local load, incurs as little cost äs possible 
in the transfer, and has good affinity to the node to which 
it is transferred. A common selection policy is latest-job- 
arrived which selects the job which is currently in last place 
in the work queue. 

The primary difference between existing load balancing 
algorithms and our global load distribution requirements is 
that our node is actually a multi-resource server. With this 
extension in mind, we define the following baseline load 
balancing algorithm: 

• Load Index. The load index is based on the average 
resource requirements of the jobs waiting in the queue 
at a given server. This index is termed the resource 
average (RA) index. For our multi-resource server for- 
mulation, each resource requirement for a job in the 
queue represents a percentage of the server resource 
that it requires, normalized to unity. Therefore, the RA 
index is a relative index which can be used to compare 
the loads on different servers. 

• Information Policy. As the information policy is not 
the subject of this study, we choose to use a policy 
which provides perfect information about the state of 
the global system. We assume a global information 
policy with instantaneous update. 

• Transfer Policy. The transfer policy is threshold based, 
since it has been shown to provide robust performance 
across a range of load conditions. A server becomes 
a sender when its load index grows above the global 
load average by a threshold, Ts. Conversely, a server 
becomes a receiver when its load index falls below the 
global average by a threshold Tr. 

• Location Policy. The location policy is also not the 
subject of this study. Therefore, we use a simple lo- 
cation policy which heuristically results in fast con- 
vergence to a balanced load state. In the event that 
the transfer policy indicates that a server becomes a 

sender, the location policy selects the server which cur- 
rently has the least load to be the receiver. However, 
the selected server must also be an eligible receiver, 
meaning that it currently has a load which is Tr below 
the global average. Conversely, if the server is a re- 
ceiver, the location policy selects the server which cur- 
rently has the highest load that is Ts above the global 
average. If no eligible partner is found, the load bal- 
ancing action is terminated. 

• Selection Policy. A latest-job-arrived selection policy 
(LSP) is used to select a job from the sending server 
to be transferred to the receiving server. This selec- 
tion policy generally performs well with respect to 
achieving a good average response time, but suffers 
from some jobs being moved excessively. Therefore, 
each job keeps a job transfer count which records the 
number of times it has been moved. When this count 
reaches a threshold Tc, the job is no longer eligible to 
be selected for a transfer. Jobs which are already exe- 
cuting are excluded from being transferred. 

The sender initiated (SI), receiver initiated (RI), and 
symmetrically initiated (SY) algorithm variants are gener- 
ated using a transfer policy which triggers a load balancing 
action on Ts,Tr, or both, respectively. All baseline variants 
use the RA load index and the LSP job selection policy. 

3. Multi-Resource Aware Load Balancing Poli- 
cies 

In this section, we first discuss the limitations of the re- 
source average load index, RA, and the latest-job-arrived 
selection policy, LSP, of the baseline load balancing algo- 
rithms for the heterogeneous multi-resource servers prob- 
lem. We provide an example which illustrates where these 
naive strategies can fail to match the workload to the 
servers, resulting in local workloads which exhibit a re- 
source imbalance. We then provide extensions to the load 
index and the job selection policy which strive to balance 
the resource usage at each server. 

3.1. Limitations oftRA and LSP 

The resource average load index, RA, and the latest-job- 
arrived job selection policy, LSP, in the baseline algorithm 
fail in the multi-resource server load balancing context. The 
following discussion gives an example of these failures and 
provides some insight into possible new methods. Our new 
methods will be further discussed in Section 3.2. 

In past research, the index used to measure the load on 
a server with respect to multiple resources consisted of a 
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linear combination or an average of the resource require- 
ments for the actively running jobs in a time-shared sys- 
tem. A corresponding index which may be applied to batch 
queued space-shared systems is to use the average of the 
total resource requirements of the jobs waiting in the wait 
queue. However, this may not always indicate a system state 
where there exists a resource imbalance, that is, the total 
job requirements for one resource exceeds the requirements 
for the other resources. Essentially, a server with a mis- 
matched work mix will be forced to leave some resources 
idle while other resources are fully utilized, resulting in an 
inefficient use of the system as a whole. 

Figure 2(a) depicts the state of the job ready queues, 
RQo and RQi for a two-server system, S0 and Si. As- 
sume that each server has three resources, S°, S-, and Sf, 
and that the configuration for the two servers is identical, 
S° = S?, So = Si and S^ = Sf. Each of the two ready 
queues currently has two jobs. The job which arrived lat- 
est at each server is on the top of the ready queue for that 
server. For example, the latest arriving job, JL, in RQo has 
the resource requirements J° = 2, J\ = 3, and JL = 2. 
Note that the resource requirements for a job are given as 
a percentage of the total available in the server. The total 
workload for each resource, k, in a given server, Sit is de- 
noted as 

W? =    J2   (Ji )'    °<i<5>    0 < * < Ä". 
Jj€RQ< 

The resource average load index for a given server, S», is 
then given by 

RAt = Avg(Wf),    0<k<K. 

In this example, K = 3 and RA0 = RAX = 4. 
The third queue in Figure 2(a), RQAV9, represents the 

global average workload for each resource in RQo and 
RQi. The global average workload for resource k, is then 
given by 

" Ävg Avg{Wf),    0<i<S. 

Here, S = 2 and W°A WAvg = W\vg = 4, meaning 
that on average, each RQi has a total requirement of 4 per- 
cent for each resource. The global resource average load 
index is simply 

RA = Avg{Wk
Avg),    0<k<K, 

which in this example is RA = 4. Server S» is defined to be 
in a load balanced state as long as RA * (1 - Tx) < RA, < 
RA*(1 + TX), where Tx is the transfer policy threshold, as 
defined in Section 2. Since RA0 - RAX = RA, the system 
is believed to be in a load balanced state. 

Even though the RA index indicates a balanced load, it is 
clear from Figure 2(a) that the job mix in RQo has a higher 

requirement for resource Si than for resources Sg and S$. 
The result is that S0 will probably be unable to fully utilize 
resources S# and SQ as resource SQ becomes the bottleneck. 
Conversely, the job mix in RQ\ has a higher requirement 
for resources S° and S? than for S\, resulting in an ineffi- 
cient use of resource S\. Therefore, the workload at each 
server suffers from a resource imbalance. 

In order to detect this problem, we define a second load 
index, called resource balance (RB), which measures the 
resource imbalance at a given server or globally across the 
system. Namely, for server Si, 0 < i < S, 

RBt = 
MaxjWf1) _ Max(Wk) 

Avg(Wt
k RAi 

Similarly, 

RB = 
Max{Wk

Avg) _ Max{Wk
Avß)_ 

Avg{Wk
Avg) RAAvg 

0<k<K. 

0<k<K. 

Heuristically, the RB index of a server measures how bal- 
anced the job mix is with respect to their different re- 
source requirements. If the total resource requirements are 
all the same, then the local RB measure is unity, since 
Max{Wl) = Avg{Wt

k) . This corresponds to the case 
where the workload is matched to the server. The global 
RB is a measure of how well the total work in the system 
matches the capabilities of all the servers in the system. The 
goal of the load balancing algorithm is to move each server 
towards this global balanced resource level. In Figure 2(a), 
RBo = 6/4 or 1.5, while RBX = 5/4 or 1.25. Since 
RB = 4/4 or 1.0, the two servers recognize the existence 
of a resource imbalanced state. 

Once a resource imbalance is detected, the load bal- 
ancing policies must actively correct the imbalance. Fig- 
ure 2(b) shows the result of using the LSP policy to ad- 
just the resource imbalance. Server So sends its latest 
job to Si, while Si sends its latest job to S0. Note that 
the resource balance index improves on both servers, with 
RBo = 4/3.33 or 1.2, while RBX = 5/4.66 or 1.07. How- 
ever, the resource balance could have been improved even 
further, as shown in Figure 2(c), by transferring the jobs 
which best balance the workload at both servers. We refer 
to this heuristic policy as the balanced job selection policy 
or BSP. 

3.2. Resource Balancing Algorithms 

In the following discussion, we extend the baseline load 
balancing algorithm with the heuristic RB load index and 
the BSP job selection policy. In general, the goal of these 
extensions is to move the system to a state where the load is 
balanced across the servers and the job mix at each server 
matches the resource capabilities provided by that server. 
These extensions are described below. 
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Sender Initiated, Balanced Selection Policy:   SI-BSP. 
The baseline sender initiated algorithm, SI, is extended to 
SI-BSP by modifying the selection policy as follows. The 
fact that the load balancing action was triggered by the con- 
dition that the load index, RA, of a given server was above 
the global average implies that it has more work than at least 
one other server. Thus, this heavily loaded server needs to 
transfer work to another server. The BSP policy selects the 
job for transfer (out) which results in the best resource bal- 
ance of the local queue. Note that transferring a job may 
actually worsen the resource imbalance, but we proceed 
nonetheless so that the overall excess workload can be re- 
duced. Also, the resource balance at the receiving server 
may worsen as well. However, the receiving server cur- 
rently has a workload shortage, so it may be executing less 
efficiently anyway. 

Sender Initiated, RB Index, Balanced Selection Pol- 
icy: SI_RB_BSP. The SLRB.BSP algorithm extends the 
SI-BSP algorithm by including the RB load index, and mod- 
ifying the transfer and selection policies as follows. First, 
the transfer policy triggers a load balancing action based on 
RA or RB. If the action is based on RA, SLRB-BSP pro- 
ceeds as SI-BSP. However, if the action is based only on 
RB, the selection policy is further modified over that used 
for SIJBSP. The job which positively improves the resource 
balance of the local queue the most is selected for transfer 
(out). If no such job is found, no action occurs. 

Receiver Initiated, Balanced Selection Policy: RLBSP. 
The baseline receiver initiated algorithm, RI, is extended to 
RI-BSP in a fashion complementary to SI_BSP 

Receiver Initiated, RB Index, Balanced Selection Pol- 
icy: RI-RB-BSP. The RI_RBJBSP algorithm extends 
the RI-BSP algorithm in a fashion complementary to 
SI-RB-BSP. 

Symmetrically Initiated, Balanced Selection Policy: 
SYJBSP. The baseline symmetrically initiated algorithm, 
SY, is extended to SY.BSP as follows. If the transfer pol- 
icy triggers a send action, SY-BSP proceeds as SI-BSP Al- 
ternatively, if the transfer policy triggers a receive action, 
SY-BSP proceeds as RLBSP. 

Symmetrically Initiated, RB Index, Balanced Selection 
Policy: SY-RB.BSP. The SY-RB-BSP algorithm ex- 
tends the SY-BSP algorithm as follows. If the action is 
based on RA, SY.RBJBSP proceeds as SYJ3SP However, 
if the action is based only on RB, then SY-RB.BSP per- 
forms both send and receive actions using methods identi- 

cal to SI_RB-BSP and RI-RB-BSP. Heuristically, this main- 
tains the RA index but improves the RB index. 

4. Experimental Results 

The baseline and extended load balancing algorithms 
were implemented on a simulated system that is described 
in Section 4.1. The experimental results are summarized in 
Section 4.2. 

4.1. System Model 

The simulation system follows the general form of Fig- 
ure 1. The server model, workload model, and performance 
metrics are discussed below. 

Server Model. A system with 16 servers was used for the 
current set of experiments. A server model is specified by 
the amount of each of the K resource types it contains and 
the choice of the local scheduler. For all simulations, the lo- 
cal scheduler uses a backfill algorithm with a resource bal- 
ancing job selection criteria [10]. To our knowledge, this 
is the best performing local scheduling algorithm for the 
multi-resource single server problem. At this point, we as- 
sume that the jobs are rigid, meaning that they must receive 
the required resources before they can execute. We also 
assume that the execution time of a job is the same on any 
server. Simulation results are reported for a value of K = 8. 

Two independent parameters were used to specify the 
degree of heterogeneity across the servers in the simulated 
system. First, within a single server, the server resource 
correlation, Src, parameter specifies how the resources of a 
given server are balanced. This represents the intra-server 
resource heterogeneity measure. For example, assume each 
server has two resources, CPUs and memory. If a cor- 
relation value of about one were specified, then a server 
with a large memory would also have a large number of 
CPUs. Conversely, if a correlation value of about negative 
one were used, then a server with a large memory would 
probably have a low number of CPUs. Finally, a correla- 
tion value near zero implies that the resource sizes within a 
given server are unrelated. The value of the resource cor- 
relation ranged from 0.15 to 0.85 in the simulations (our 
simulator is capable of generating STC values in the range 
-1.0/(K - 1) < Src < 1.0). 

The second parameter is the server resource variance, 
Srv, which is used to describe range of sizes for a single 
resource which may be found across all of the servers. This 
represents the inter-server heterogeneity measure. Again, 
a resource variance about one implies that the number of 
CPUs found in server St will be approximately the same as 
the number of CPUs found in server Sj for 0 < i,j < S. 
In general, a resource variance of Srv = V implies that 
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the server Si with the largest amount of a resource k has 
V times as much of that resource as the server Sj which 
has the smallest amount of that resource. All other servers 
have some amount of resource k between S,* and 5-f. The 
value of the resource variance ranged from 1.2 to 8.0 for our 
experiments. 

Workload Model. The two main aspects of the simulated 
workload are the generation of multi-resource jobs and the 
job arrival rate. Recent studies on workload models have fo- 
cused primarily on a single resource — the number of CPUs 
that a job requires. Two general results from these studies 
show that the distribution of CPU requirements is gener- 
ally hyperexponential, but with strong discrete components 
at powers of two and squares of integers [3]. An addi- 
tional study investigated the distribution of memory require- 
ments on the 1024 processor CM-5 at Los Alamos National 
Laboratory. The conclusion was that memory requirements 
are also hyperexponentially distributed with strong discrete 
components. Additionally, there was a weak correlation be- 
tween the CPU and memory requirements for the job stream 
studied [4]. 

We generalize these results to a if-resource workload as 
follows. The multiple resource requirements for a job in 
the job stream are described by two parameters. The kth 
resource requirement for job j, Jj, is drawn from a hyper- 
exponential distribution with mean X*. Additionally, the 
correlation between resource requirements within a single 
job, Jrc is also specified. A single set of workload parame- 
ters was used for all of the initial simulations reported here, 
in which Xk = 0.15,0 < k < K, and the resource cor- 
relation Jrc = 0.25. Essentially, the average job requires 
15% of each resource in an average server, and its relative 
resource requirements are near random. 

Figure 3(a) shows the single resource probability distri- 
bution used for the workload. Note that the probability for 
small resource requirements is reduced over a strictly expo- 
nential distribution. We justify this modification by noting 
that small jobs are probably not good candidates for load 
balancing activity as they do not impact the local job sched- 
uler efficiency significantly (except to improve it). Fig- 
ure 3(b) shows the joint probability distribution for a dual 
resource (K = 2) system. In general, the joint probability 
distribution shown in Figure 3(b) is nearly identical for all 
pairs (i,j),0 < i,j < K, of resources in the job stream. 
This workload model has also been used to study multi- 
resource scheduling on a single server [10]. 

The job arrival rate generally affects the total load on the 
system. A high arrival rate results in a large number of jobs 
being queued at each server, while a low arrival rate reduces 
the number of queued jobs. For our initial simulations, we 
selected an arrival rate that resulted in an average of 32 jobs 
per server in the system. As each job arrives, it is sent to a 

server selected randomly from a uniform distribution rang- 
ing from 0 to S - 1. A final assumption is that the nature 
of the workload model impacts only the absolute values of 
the system performance, not the relative performance of the 
algorithms under study. 

Performance Metrics. A single performance metric, 
throughput, is our current method for evaluating these al- 
gorithms. Throughput is measured as the total elapsed time 
from when the first job arrives to when the last job departs. 

4.2. Simulation Results 

Our initial simulation results are depicted in Figures 
4(a)-(f). Recall that load balancing algorithms essentially 
try to mimic a central work queue from which any server 
can select jobs as its resources become available. Therefore, 
the performance results for the load balancing algorithms 
are normalized against the results of a system with a central 
work queue. For each graph in the figure, the x axis rep- 
resents the server resource variance parameter, Srv, as de- 
scribed previously, while the y axis represents the through- 
put of the algorithms, normalized to the throughput of the 
central queue algorithm. The following paragraphs summa- 
rize these results. 

Impact of the Resource Balancing Policies. Figures 
4(a)-(c) depict the performance of the sender initiated, re- 
ceiver initiated, and symmetrically initiated baseline and 
extended algorithms, normalized to the performance of the 
central queue algorithm. For these experiments, K = 8 and 
Src = 0.50 (resources within a server are very weakly cor- 
related). In comparing the performance of the baseline and 
the extended algorithms, we see that the extended variants 
consistently out-perform the baseline algorithm from which 
they were derived. The addition of the intelligent job se- 
lection policy, BSP, provides a 5-10% gain in the SIJBSP, 
RLBSP, and SY_BSP algorithms over the SI, RI, and SY 
algorithms, respectively. Moreover, the addition of the RB 
load index and associated transfer policy further increases 
these gains for SLRB.BSP, RI_RB_BSP, and SY_RB_BSP. 

Effects of Server Resource Correlation, Src. The jobs 
which arrive at each "server may or may not have a natu- 
ral affinity for that server. For example, if a server has a 
large memory and a few CPUs, a job which is memory in- 
tensive has a high affinity for that server. However, a job 
which is CPU intensive has a low affinity to that server. 
For a job stream with a fixed intra-job resource correla- 
tion, Jrc, the probability that an arriving job has good affin- 
ity to a server increases as Src increases. A larger natural 
affinity increases the packing efficiency of the local sched- 
ulers, improving the throughput. Figures 4(d)-(f) compare 
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the performance of the RI-RB .BSP, SI_RB_BSP, and the 
SY_RB_BSP algorithms, over the range of server resource 
correlation values, Src = {0.15,0.50,0.70}. Generally, as 
the value of STC increases, the performance of the load bal- 
ancing algorithms also improve, due to an increased proba- 
bility of natural affinity. 

The SI_RB-BSP algorithm performs slightly better than 
RIJRB_BSP at low values of Src as seen in Figure 4(d). 
However, RI.RBJBSP begins to outperform SI_RB_BSP at 
higher values of Src, as seen in Figures 4(e) and 4(f)- At low 
values of 5rc, the SI variant can actively transfer out jobs 
with low affinity, which occur with high probability, while 
the RI variant can only try to correct the affinity of their to- 
tal workload. Higher values of Srv magnify this problem. 
Therefore, the performance advantage goes to the SI vari- 
ant. For higher values of Src, the probability of good job- 
server affinity is also higher. When accompanied by higher 
Srv, the system may be thought of as having some larger 
servers and some smaller servers, with good job affinity to 
any server. In this case, the throughput of the system is 
driven by the efficiency of the larger servers. In the SI vari- 
ant, the smaller servers will tend to initiate load balancing 
actions, by sending work to the larger servers. So while the 
smaller servers may execute efficiently, the larger servers 
may not. However, in the RI variant, the larger servers will 
tend to initiate load balancing, and intelligently select which 
work to receive from the smaller servers. Now, the larger 
servers will tend to execute more efficiently. For this rea- 
son, the performance advantage goes to the RI variant. 

Impact of Server Resource Variation, Srv- As the re- 
source variation, Srv, increases in the graphs of Figure 4, 
the throughput of the load balancing algorithms drops rela- 
tive to the central queue algorithm. This is due to the fact 

that the average job size (size of the jobs resource require- 
ments) is not taken into account when selecting jobs for 
transfer. At higher server resource variances, some servers 
have a very small amount of one or more resources. How- 
ever, the average job size ending up on the servers with 
small resource capacities is the same as those ending up 
on the larger servers. The small size of the resources in 
these servers, relative to the average resource requirement 
of the arriving jobs, causes packing inefficiencies by the lo- 
cal scheduler, due to job size granularity. In the case of a 
centralized queue, the servers with small resource capacities 
are more likely to find jobs with smaller resource require- 
ments. In short, simply balancing the workload resource 
characteristics is not sufficient. Other workload character- 
istics must also be emulated in the local queues, such as the 
average job requirements relative to the server resource ca- 
pacities. This is a topic in our current work in progress and 
is briefly discussed in Section 5. 

Central Queue vs. Load Balancing. A final observation 
may be drawn from the graphs in Figure 4. Even when 
the servers are all similarly configured (e.g. Srv ~ 1 and 
Src ~ 1). there is a consistent performance gap of 15% for 
all baseline and extended load balancing algorithms with re- 
spect to the central queue algorithm. This is due to the fact 
that even if the load balancing algorithms are successful in 
balancing the load, the local scheduler at each server may 
not be able to find a job in its local queue to fill idle re- 
sources, even if such a job exists in the queue of a different 
server. Closing this gap is the subject of our current work 
and is briefly discussed in Section 5. 
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5. Summary and Work in Progress 

In this paper, we defined a workload distribution prob- 
lem for a computational grid with near-homogeneous multi- 
resource servers. First, servers in the grid have multiple 
resource capacities, and jobs submitted to the grid have re- 
quirements for each of those resources. Additionally, the 
servers are homogeneous in that any job submitted to the 
grid can be executed by any of the servers, but heteroge- 
neous in their various resource configurations. We next 
investigated a load balancing approach to workload distri- 
bution for this grid. We showed how previous baseline 
load balancing policies for single resource systems failed 
to maintain a workload at each server which had a good 
affinity towards that server. We then proposed two orthog- 
onal extensions based on the concept of resource balanc- 
ing. The basic idea of resource balancing is that the local 
scheduler is more effective in utilizing the resources of the 
local server, if the total relative resource requirements of 
all jobs in a local work queue match the relative capacities 
of the server. Our simulation results show that our policy 
extensions provided a consistent 5-15% increase in system 
throughput performance over the baseline load balancing al- 
gorithms. 

However, there is still significant room for improvement 
in the workload distribution approach. First, as the re- 
source variance between servers grows, additional work- 
load characteristics, beyond the total resource balance, must 
be taken into account when evaluating the workload for a 
given server. Specifically, we noted that the granularity 
of jobs in a local queue impacts the performance of the 
smaller servers. Intuitively, small jobs should be sent to 
small servers, and large jobs should be sent to large servers. 
Here, a large job is one that generally has large resource 
requirements, and a large server is one that generally has 
large resource capacities. Note that the size of a job is rela- 
tive to the size of the server to which it is being compared. 
Our current work in progress is investigating refinements to 
the load balancing policies which improve the affinity of the 
local workload to the local server. Note that these investi- 
gations apply to single resource servers as well. 

Second, there is a persistent performance gap between 
a central queue approach to workload distribution and our 
load balancing algorithms. Our conjecture is that even if the 
load is perfectly balanced, restricting a server, Si, to execute 
jobs only from its local queue will increase the percentage 
of time that some of Si's resources remain idle, when there 
may be a job in the queue of a different server, Sj, which 
would fit in to the idle resources of server S,. These effects 
were noted in our simulations in that even when the servers 
were all nearly identical, and an equal load was being de- 
livered to each server, the system throughput was still sig- 
nificantly below the performance of the central queue algo- 

rithm. Load balancing schemes were limited to about 85% 
of the throughput of the central queue scheme at all tested 
values of Srv and Src, as seen in Figures 4(a)-(f). 

We are further motivated to look at a more central- 
ized approach by real-world computational grids, such as 
NASA's Information Power Grid (IPG) [6]. The current 
implementation of the IPG uses services from the Globus 
toolkit to submit jobs, query their status, and query the state 
of the grid resources. Globus uses a centralized directory 
structure, the Metacomputing Directory Service (MDS) to 
store information about the status of the metacomputing 
environment and all jobs submitted to the grid. Informa- 
tion in the MDS is used to assist in the placement of new 
jobs onto servers with appropriate resources within the grid. 
While this approach is currently being used in the IPG, 
there are questions about the scalability of such a central- 
ized structure. For example, can a central structure han- 
dle hundreds of sites and thousands of jobs? How about 
fault tolerance? Our current work in progress is therefore 
investigating compromises between a single central queue 
and completely distributed queues. The general concept is 
to keep work close to the servers where it will most likely 
execute, and move work to a specific server when needed. 
Recent research in dynamic matching and scheduling for 
heterogeneous computing systems use similar approaches, 
along with heuristics for matching a job to idle server re- 
sources [12]. Our work in progress attempts to combine the 
centralized nature of current mapping approaches with our 
resource-balanced workload affinity approach. 
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Abstract 

Providing up-to-date input to users' applications is an 
important data management problem for a heterogeneous 
distributed computing environment, where each data stor- 
age location and intermediate node may have different da- 
ta available, storage limitations, and communication links 
available. Sites in the heterogeneous network request data 
items and each request has an associated deadline and pri- 
ority. In a military situation, the data staging problem in- 
volves positioning data for facilitating a faster access time 
when it is needed by programs that will aid in decision mak- 
ing. This work concentrates on solving a basic version of 
the data staging problem in which all parameter values for 
the communication system and the data request information 
represent the best known information collected so far and 
stay fixed throughout the scheduling process.  The hetero- 
geneous network is assumed to be oversubscribed and not 
all requests for data items can be satisfied. Three multiple- 
source shortest-path algorithm based procedures for find- 
ing a near-optimal schedule of the communication steps for 
staging the data are described. Each procedure can be used 
with each of three cost criteria developed here (based on 
results from earlier experiments).   A subset of the possi- 
ble procedure/cost criterion combinations are evaluated in 
simulation studies considering different priority weighting 
schemes, different average number of links used to satisfy 
each data request, and different network loadings. The pro- 
posed heuristics are shown to perform well with respect to 
upper and lower bounds. 

1. Introduction 

The DARPA Battlefield Awareness and Data Dissemina- 
tion (BADD) [15] and the Agile Information Control En- 
vironment (AICE) [2] programs include designing an in- 
formation system for forwarding (staging) data to proxy 
servers prior to their usage as inputs to a local application 
in a heterogeneous distributed computing environment, us- 
ing satellite and other communication links. The focus is 
on providing the ability to operate in a distributed server- 
server-client environment to optimize information currency 
for many critical classes of information. 

Data staging is an important data management problem 
that needs to be addressed by the BADD and AICE pro- 
grams. A simplified informal description of an example of a 
data staging problem in a military application is as follows. 
A warfighter is in a remote location with a portable com- 
puter and needs data as input for a program that plans troop 
movements. The data can include detailed terrain maps, 
enemy locations, troop movements, and current weather 
predictions. The data will be available from Washington 
D.C., foreign military bases, and other data storage loca- 
tions. Each location may have specific data available, stor- 
age limitations, and communication links. Also, each data 
request is associated with a specific deadline and priority. 
Each priority level then has a corresponding weight, so that 
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two levels can be compared analytically. Depending on the 
particular environment, there may be hundreds of warfight- 
ers, all making multiple requests. It is assumed that not 
all requests can be satisfied by their deadline. In a military 
situation, the data staging problem involves positioning da- 
ta for facilitating a faster access time when it is needed by 
programs that will aid in decision making. 

Positioning the data before it is needed can be complicat- 
ed by: the dynamic nature of data requests and network con- 
gestion; the limited storage space at certain sites; the lim- 
ited bandwidth of links; the changing availability of links 
and data; the time constraints of the needed data; the pri- 
ority of the needed data; and the determination of where 
to stage the data [16]. Also, the associated garbage collec- 
tion problem (i.e., determining which data will be deleted 
or reverse deployed to rear-sites from the forward-deployed 
units) arises when existing storage limitations become criti- 
cal [15,16]. The multiple copies provide an increased level 
of fault tolerance, in cases of links or storage locations go- 
ing off-line, and allow the scheduler to select from among 
different sources to satisfy a data request [18]. 

The simplified data staging problem addressed here re- 
quires a schedule for transmitting data between pairs of 
nodes in the corresponding communication system for sat- 
isfying as large a sum of weighted priorities as possible. 
Each node in the system can be: (a) a source machine of 
initial data items; (b) an intermediate machine for storing 
data temporarily; and/or (c) a final destination machine that 
requests a specific data item. 

It is also assumed in this simplified model of the da- 
ta staging problem that all parameter values for the com- 
munication system and the data request information (e.g., 
network configuration and requesting machines) represent 
the best known information collected so far and stay fixed 
throughout the scheduling process. It is assumed that not 
all of the requests can be satisfied by their deadlines due to 
storage capacity and communication constraints. The mod- 
el is designed to create a schedule for movement of data 
from the source of the data to a "staged" location for the da- 
ta. It is assumed that a user's application can easily retrieve 
the data from this location. 

Three multiple-source shortest-path algorithm based 
procedures for finding a near-optimal schedule of the com- 
munication steps for staging the data are described [20]. 
Each procedure can be used with each of seven cost criteria 
developed. A subset of fourteen of the possible 21 resulting 
heuristics that are expected to perform well (based on exper- 
iments in [20]) are examined in simulation studies consider- 
ing different priority weighting schemes, different average 
number of links used to satisfy each data request, and dif- 
ferent network loadings. The rationale for considering each 
of these procedures and costs is provided. The proposed 
heuristics are shown to perform well with respect to upper 

and lower bounds. Furthermore, the heuristics using a com- 
plex cost criterion are shown to allow more highest priority 
messages to be received than a simple-cost-based heuristic 
that schedules all highest priority messages first. Finally, 
an approach considering data items with "more desirable" 
and "less desirable" available versions is evaluated using a 
variable time, variable accuracy algorithm, and simulation 
results are presented. This research serves as a necessary 
step toward solving the more realistic and complicated ver- 
sion of the data staging problem involving fault tolerance, 
dynamic changes to the network configuration, ad hoc data 
requests, sensor-triggered data transfers, etc. 

The material in this paper extends the earlier work pres- 
ented in [19] by introducing three new cost criteria and two 
new bounds. This work also varies additional simulation 
parameters, including eight network loadings, three aver- 
age numbers of links used to get from a source machine to 
a destination machine, and five priority weighting schemes. 
This paper also introduces a variable time, variable accura- 
cy approach for using data items with "more desirable" and 
"less desirable" versions. 

Section 2 provides an overview of work that is related 
to the data staging problem. In Section 3, a mathematical 
model for a basic data staging problem is reviewed. Section 
4 provides a description of Dijkstra's algorithm used to find 
paths of links for transferring data items within the present- 
ed network model. Section 5 presents seven cost criteria for 
use in conjunction with different resource allocation proce- 
dures. Three multiple-source shortest-path algorithm based 
procedures for finding a near-optimal schedule of the com- 
munication steps for data staging are described in Section 6. 
These heuristics adopt the simplified view of the data stag- 
ing problem described by the mathematical model. Three 
upper bounds and three lower bounds used to evaluate the 
performance of these heuristics are presented in Section 7. 
The set of simulation studies given in Section 8 were creat- 
ed after studying the results of [19]. These new simulation 
studies examine the effects of (1) having six priority lev- 
els with five different weighting schemes, (2) varying the 
average number of links required for a data item to reach a 
destination from its source, and (3) varying the total number 
of requests that must be scheduled in a given network. In 
Section 9, an approach considering data items with "more 
desirable" and "less desirable" available versions is evalu- 
ated using a variable time, variable accuracy algorithm, and 
simulation results are presented. 

2. Related Work 
To the best of the authors' knowledge, there is currently 

no other work presented in the open literature that address- 
es the data staging problem, designs a mathematical model 
to quantify it, or presents a heuristic for solving it. Due to 
space constraints, the reader is referred to [6] for a more 
thorough discussion of the related work. A problem that is, 
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at a high level, remotely similar to data staging is the facili- 
ty location problem in management science and operations 
research (e.g., [13]). Data management problems similar to 
data staging for the BADD/AICE program are studied for 
other communication systems [1, 3, 5, 11]. Other areas that 
are somewhat related include modifying routing schemes 
[4], mapping tasks onto a suite of distributed heterogeneous 
machines (e.g., [8, 9, 21]), and earliest deadline first [7, 17] 
scheduling for real-time systems. Lastly, other research ex- 
ploring heuristics for use in the BADD/AICE environment 
have been performed [14]. All of this research is related, 
but does not develop a mathematical model like the one 
researched here nor do they examine a network similar to 
BADD-like network being used in this research. 

3. Mathematical Data Staging Model 
3.1. Model Definition 

Some of this background material is based on [20], and 
is included here for completeness. It has been expanded to 
include all of the concepts needed for the new experiments 
and results presented here. 

Consider a network topology graph Gja composed of a 
set of vertices that represent the set of machines M in the 
network and a set of directed edges that represent the set of 
communication links L. There are m machines in M, iden- 
tified as {Af [0], M[l],..., M[m - 1]}, and each can be a 
source, destination, and intermediate location for data items 
in the network. Source machines for data items are the ma- 
chines where data items are initially located within the net- 
work; these data items may eventually be transferred by the 
network to destination machines, possibly stored at interme- 
diate machines along the way. Each machine M[i] (where 
0 < i < m) also has an associated constant unused stor- 
age capacity during the time interval [tj,tj+1), Cap[i](tj). 
Note that the times tj and tj+1 may not differ by exactly 
one time unit. 

Each Communication link in this system is represented 
as one or more virtual links. A virtual link corresponds to 
a period of constant, continuous, available bandwidth from 
one machine to one other machine. Bidirectional communi- 
cation links are therefore represented as two virtual links— 
one for each direction. Nl[i,j] is the number of virtu- 
al links from machine M[i] to M[j] (where i ^ j and 
0 < i,j < m). The A;th virtual link from machine M[i] 
to M[j] is identified as L[i,j][k] (where 0 < k < Nl[i, j]). 
The virtual link L[i, j][k] also has an associated link starting 
time Lst[i,j][k]y denoting the time when it becomes avail- 
able, as well as a link ending time Let[i,j][k], which spec- 
ifies the time when the link is no longer available. 

Data items are blocks of information that can be trans- 
mitted from one machine to another. The set of data items 
with unique names or identifiers that are available on the 
machines in M is called A. Names or identifiers assigned 

to data items must be different if the contents of the data 
items are different in any way, including details such as dif- 
fering timestamps on weather maps of the same region. The 
number of distinctive data items in A is n, and individual 
unique data items are identified as {<J[0], 6[l],...,S[n-l]}. 
For a data item 6[Z] (where 0 < / < n), the size of the da- 
ta item is represented as \S[l]\. The time duration required 
to transfer data item S[l] from machine M[i] to machine 
M()'] (where i ^ j and 0 < i,j < m) via the virtual link 
L[i,j][k] (where 0 < k < Nl[i,j]) during the time interval 
[Lst[i,j][k],Let[i,j][k]] isD[i,j][k](\S[l]\). Machine M\i] 
may be a source of S[l], or an intermediate storage location 
or destination that already holds a copy of 6[l]. Machine 
Mb'] may be an intermediate storage location or a destina- 
tion. 

Let NS[l] (where 0 < I < n) represent the num- 
ber of source machines holding a copy of S[l], and 
M[Source[l,j]] represent the jth source machine for da- 
ta item S[l] (where 0 < j < NS[l] and 0 < Source[l,j] < 
m). The starting time Sst[l,j] refers to the time data item 
S[l] becomes available at its jth source machine. The re- 
moval time Srt[l, i] (where 0 < i < m) refers to the time 
data item 5[l] can be removed from machine M[i], if a copy 
of 8[l] is being stored at M[i). This allows the value of 
Cap\i](Srt[l, i]) to be increased by \6[l)\. Intermediate ma- 
chines, for example, could set Srt[l, i] to be some small time 
period 7 after the last deadline at any machine for data item 
S[l]. This would allow the storage space to be reclaimed at 
intermediate machines after the usefulness of the data item 
has expired. The scheduling heuristics do not remove a data 
item from any of its sources or destinations because this is 
considered outside the scope of responsibility of the sched- 
uler. 

Consider now a data item such as an image showing a 
map of a planned battle area. It may be possible to have 
available a higher quality version of the image that shows 
a higher level of detail, as well as a lower quality version 
showing less detail. An application requesting this data item 
would prefer to receive the higher quality image, but it may 
be that there are not enough resources (e.g., network band- 
width) available to fulfill this data request. In this event, 
however, there may be enough resources available to send 
the lower quality image, which would be better than sending 
nothing at all. 

The set Rq (where Rq C A) contains unique data items 
requested by destination machines in M. The number of 
unique data items in Rq is 2p. The higher quality data items 
are identified as {Rq[0], Rq[l], .. .,Rq[p - 1]}, and the 
lower quality data items are identified as {Rq[p\, Rq[p + 
1], ..., Rq[2p - 1]}. Here, each requested higher quality 
data item Rq[i] (where 0 < i < p) has a corresponding 
lower quality data item Rq[i + p] that may be sent in place 
of Rq[i] if system resources become limited. Note that for 
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every i there must exist exactly one j and exactly one k 
such that Rq[i] = 6[j] and Rq[i + p) = S[k]. These data 
items S[j] and S[k] are assumed for simplicity to be present 
at the same source machines, and to have the same asso- 
ciated starting times and removal times. This model also 
assumes for simplicity that \Rq[i + p]\ = \\Rq[i]\. 

The number of destination machines that request Rq[i] 
(where 0 < i < p) is denoted with Nrq[i). If 0 < 
k < Nrq[i], then M[Request[i,k]} refers to the k\h ma- 
chine that requested Rq[i] (where 0 < Request[i, k] < m). 
Each of these machines also implicitly requests Rq[i + p] 
in the event that Rq[i] cannot be sent, so that Nrq[i + 
p] = Nrq[i], and Request[i + p,k] = Request[i,k] 
for all values of k. The finishing time Rft[i, k] (and 
equivalent Rft[i + p, k}) refers to a deadline time, af- 
ter which data item Rq[i] (and Rq[i + p)) is no longer 
useful to machine M[Request[i, k}]. The requesting ma- 
chine M[Request[i, k]] also associates the data item Rq[i] 
with a numbered priority class Priority[i,k] (equal to 
Priority[i + p,k)). The highest, or most important pri- 
ority class is P, and the lowest, or least important priority 
class is 0, so that 0 < Priority[i,k] < P. In actual sys- 
tems, the deadline and priority for a data request would be 
set by some combination of the user, application, system 
administrator, and commander. 

Define a schedule as a series of communication steps, 
among the machines of M using the communication links 
in L, that transfer some or all of the data items in the 
set Rq from their respective source machines to some or 
all of their respective destination machines, possibly be- 
ing stored at intermediate machines along the way. Sup- 
pose that there are a possible distinct schedules, enumerat- 
ed {S0, Su..., SCT_i}. The fcth (where 0 < k < Nrq\j]) 
request for a data item Rq[j] (where 0 < j < 2p) is con- 
sidered satisfiable with respect to a specific schedule Sft 
(where 0 < h < a) if and only if the data item Rq[j] 
is available at machine M[Request[j,k]] at or before the 
deadline time Rft[j, k]. The set Srq[Sh] then denotes the 
set of two-tuples (j, k) such that the fcth request for the data 
item Rq\j] is satisfiable with respect to the schedule 5ft. 

There must be a way to represent the relative importance 
of a priority class a (where 0 < a < P) compared to an- 
other priority class ß (where 0 < ß < P and a ^ /?). The 
relative weight of any priority class a is denoted by W[a). 
This means that if priority class a is ten times as impor- 
tant as priority class ß, then W[a] = 10 * W[ß]. In an 
actual system, these weights would be set by the system ad- 
ministrator and commander, and would be a function of the 
current operating situation (e.g., peace or war). 

Let Worth\j,k] (where 0 < j < 2p and 
0 < k < Nrq\j}) denote a percentage of value to a 
user of data item Rq\j] sent to satisfy a request at machine 
M[Request[j,k]}. that if Rq[i] for0<i<p is sent to 

M[Request[i,k}} by its deadline, then Worth[i,k] = 1 
(meaning 100% for the preferred data version), and 
Worth[i + p, k] — 0 (meaning no additional worth 
for the second data version). If Rq[i] is not sent to 
M[Request[i,k}] by its deadline, and Rq[i + p) is 
sent to M[Request[i + p,k\] by its deadline, then 
Worth[i +p,k] = 0.25 (meaning 25% for the lower qual- 
ity version), and Worth[i,k] = 0. Now, the effect of the 
schedule Sh (where 0 < h < a) can be defined as E[Sh] = 

- (Z(j,k)esrg[sh] W[Priority[j,k}} * Worth[j,k]) 

(where 0 < j < 2p and 0 < k < Nrq[j}). The global 
optimization criterion, and hence, the objective of all of 
the heuristics presented later, is to find the schedule with 
the minimum effect, defined as min0<ft<CT £[Sft].This 
performance criterion is related to the one described in 
[12]. Another way to view this minimization is to think 
of it as trying to find the schedule of data transfers that 
produces the maximum sum of satisfied requests' priority 
weights. 

3.2. Heuristic Solution Approach 

The heuristic approach used here to create the schedule 
Sh with minimum effect E[Sh] utilizes Dijkstra's shortest 
path algorithm. This algorithm, presented in Section 4, cal- 
culates arrival times for data items and establishes paths of 
virtual links to get data items from source machines to des- 
tination machines. The paths calculated by this algorithm 
give the earliest arrival time for a given data item, based on 
the expected system resources available when the algorithm 
is run, and ignores any future competition for resources 
among the pending data requests, provided that there are 
no other data items competing for resources in the network. 
After Dijkstra's algorithm has been run for each requested 
data item (i.e., all data items in Rq), a single data item and 
one or more destination machines are selected through the 
use of a cost criterion presented in Section 5. This data item 
choice reflects a combination of its contribution to the effect 
of the schedule, and the amount of time between its arrival 
at a destination and its deadline at that destination. Network 
resources and machine storage are then allocated according 
to one of the procedures presented in Section 6, updating 
link availability times and available machine storage. This 
updating of network information will cause the arrival times 
and virtual link paths for some other data items to become 
invalid, so the heuristic process (using a cost and an alloca- 
tion procedure) is repeated again (beginning with Dijkstra's 
algorithm) using the modified network information. This 
continues until there are no more satisfiable data items in 
the network, thus producing the communication schedule. 
Results from simulation studies using this approach, which 
only considers one version of each data item (i.e., considers 
only Rq[i] where 0 < i < p, not Rq[j] where p<j<2p), 
are found in Section 8. A modified approach considering 
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both versions of a data item is contained in Section 9. 

4. Dijkstra's Shortest Path Algorithm 

The heuristics presented here utilize Dijkstra's algorithm 
[10] for finding the shortest path from one or more source 
nodes to all other nodes in a directed graph. The version 
used calculates the earliest possible available time for a data 
item Rq[i] (where 0 < i < 2p) at each machine in M, 
given a subset of machines in M that already holds a copy 
of Rq[i]. 

Define the available time AT[i,j] (where 0 < i < 2/9, 
0 < j < m) as the earliest possible time found, by ex- 
ecuting Dijkstra's algorithm, when data item Rq[i] could 
be present and available at machine M[j]. Define also the 
value of the predecessor ir[i,j] to be the two-tuple (s, k) 
(where -1 < s < m,-1 < k < Nl[s,j]) identifying the 
machine M[s] as the machine that sends data item Rq[i] to 
machine M[j] via virtual link L[s, j][k]. This predecessor 
is also determined by the execution of Dijkstra's algorithm. 
If the value of ir[i, j] is (-1, -1), this means that no ma- 
chine sends data item Rq[i] to machine M[j] via any virtual 
link. This may happen if machine M[j] is a source machine 
for data item Rq[i], or it may happen if it is not possible for 
machine M[j] to receive a copy of data item Rq[i] (possibly 
due to the unavailability of network resources). For more in- 
formation about the implementation of Dijkstra's algorithm, 
including pseudocode and examples, the reader is referred 
to [6]. 

5. Data Item Selection Cost Criteria 
5.1. Introduction 

Network resources must be allocated to data requests in 
some order; this order intuitively should include "more im- 
portant" requests and requests that are "close" to their dead- 
lines before "less important" requests and requests that are 
"not close" to their deadlines. Dijkstra's algorithm is used 
here for each data item individually, as if it were the only 
request in the system remaining to be satisfied. Thus, Di- 
jkstra's algorithm is executed for each remaining data item 
separately. Some quantitative cost must therefore be ap- 
plied so that an algorithm can evaluate the relative merit of 
any given request compared to any other request. Seven dif- 
ferent cost criteria are detailed below; each attempts to take 
into consideration both the importance of a data request, and 
how close the data request is to its deadline. 

Suppose M[r] (where 0 < r < m) is the next machine to 
receive data item Rq[i] (where 0 < i < 2p) on a path from 
M[s] (where (s,/) = ir[i,r]), which can be any machine 
already holding a copy of Rq[i], to one or more requesting 
destination machines. That is, machine M[s] holds a copy 
of data item Rq[i], and M[r] must be the next machine to 
receive Rq[i] so that M[Request[i, k]] (for one or more val- 
ues of k, where 0 < k < Nrq[i]) can ultimately receive 

Rq[i]. Let the set of values of k that satisfy this condition 
(i.e., destination machines that request Rq[i] through M[r]) 
be called Drq[i,r]. 

Assume that Rq[i] is the next data item to be allo- 
cated network resources. Let the value Sat[i, k] (where 
0 < i < 2p and 0 < A; < Nrq[i]) be 1 if Request[i, k] 
would be satisfiable, and 0 if it would not be satisfiable. 
For the simulations of Section 8, Sat[i, k] is 0 for val- 
ues of i such that p < i < 2p, thus ignoring the less 
desirable data item versions. Now, the effective priori- 
ty Efp[i, k] of data item Rq[i] at the kth requesting lo- 
cation can be defined as Sat[i, k] * W[Priority[i, k]] * 
Worth[i, k]. An urgency term, indicating how close a data 
item's available time is to its deadline time (in seconds) at 
a destination is defined as Urgency[i,k] = -Sat[i,k] * 
(Rft[i,k] - AT[i, Request[i, k]] + 1). A smaller urgen- 
cy here indicates that it is less urgent to get Rq[i] to 
M[Request[i, k]]. The "+1" in the urgency term is so that 
the urgency never becomes a small number close to zero. 

The next value that must be defined before detailing the 
cost criteria is the number of virtual links used to get from a 
machine M[s] to a destination machine M[Request[i, k}}, 
where k £ Drq[i, r]. Let this value be called Nlinks[i, k], 
and note that it reflects the number of links used in the path 
(generated by the most recent run of Dijkstra's algorithm) 
from a machine holding the data item to a machine request- 
ing the data item. 

All of the following cost functions take into account the 
priority and urgency of a data item. For all cost criteria, a 
smaller value indicates a more desirable use of communica- 
tion resources; therefore, resource allocation is performed 
by the procedures in Section 6 for the data item and desti- 
nation machine(s) with minimum cost. 

Six of the costs allow the weight assigned to the priority 
term to be varied relative to the weight assigned to the ur- 
gency term. These weighting terms are WE_ for the weight 
of the effective priority term, and Wu_ for the weight of the 
urgency term. The relative weight of these two terms com- 
pared to each other (WE/Wu) is called the EJJ ratio. 

5.2. Costs C1,C2, and C3 

Four cost criteria were developed in the previous re- 
search that combine the above effective priority and urgency 
terms. The best performing cost, C4, was the basis for the 
work presented in this paper. The definitions of Cl, C2, 
and C3 are not discussed in detail in this paper. The reader 
is referred to [20] for more information about these three; 
C4 will be discussed in more detail below. The mathemat- 
ical definitions of these three cost criterion are included for 
reference. Each cost is for sending data item Rq[i] (where 
0 < i < 2/9) to M[r] (where 0 < r < m) from M[s] via 
link L[s, r][k] (where (s, k) = ir[i, r]), in order to ultimate- 
ly try to satisfy the jth (where 0 < j < Nrq[i]) requesting 
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destination machine: 

Cl[i,j][s,rp] = -WE*Efp[i,j]-Wu*Urgency[i,j\ 

C2[i][s,r][k] = {-WE * Zj€Drq[i,r) Efp[i,j}) 

+ {-Wu * maxjeDrq[itr] Urgency[i,j]) 

C3[i][s,r][k] = 2~ij£Drq[i,r] Urgency[i,j] 

5.3. Cost C4 

The cost C4 for transferring data item Rq[i] (where 
0 < i < 2/9) to M[r] (where 0 < r < m) from M[s] via 
link L[s, r][k] (where (s, fc) = ir[i, r}), in order to ultimate- 
ly try to satisfy the jth (where j e Drq[i,r]) requesting 
destination machine(s): 

C4\i][s,r}[k] = -WE * faeDr^r] Efp[i,j\) 

~Wu (ZjzDrq^r] Urgency[i, j]j . 

This cost sums the weighted priorities of all satisfiable 
requests for data item Rq[i] on a path through machine 
M[r] and combines that with the sum of the urgency for 
those same satisfiable requests. 

5.4. Cost C4links 

Based on (74 because of its high performance in simula- 
tion tests, cost C4links is also defined for transferring data 
item Rq[i] (where 0 < i < 1p) to M[r] (where 0 < r < m) 
from M[s] via link L[s, r][k] (where (s, k) = 7r[i, r]), in or- 
der to ultimately try to satisfy the jth (where j £ Drq[i, r]) 
requesting destination machine(s): 

C4links[i\[s,r][k] = -WE * (£iei>r,M -fM&fi) 

-Wu * (j2jeDrq[i,r} Urgency[i, jfj . 

Because, for example, a data request that can be satisfied by 
using three virtual links is using three times as much net- 
work resources as a data request of the same size that can 
be satisfied by using only one virtual link, this cost divides 
the effective priority term for each requesting destination 
by the number of links used to get to that destination. If the 
effective priority associated with a data request is consid- 
ered as a measure of worth or importance to the user, then 
this first term would be considered a measure of worth per 
link. This should allow the cost criterion to better select da- 
ta items to satisfy that will make the most effective use of 
the network resources available. 

5.5. Cost C4size 

Based again on C4 because of positive simulation re- 
sults, the criterion C4size is also defined for transferring 
data item Rq[i] (where 0 < i < 2p) to M[r] (where 
0 < r < m) from M[s] via link L[s, r][k] (where (s, k) = 

n[i,r])y in order to ultimately try to satisfy the jth (where 
j £ Drq[i,r]) requesting destination machine(s): 

C4size\i][s,r][k] = -WE * (EjeDr,[i,r] liftf) 

-Wu * (EjeDrqii.r] Urgency[i,j]) . 

A data request with an effective priority p representing its 
worth to the recipient, and a size in bytes of q, then has an 
effective worth per byte of ^ Because the goal of a cost 
criterion is to identify data requests that will make the most 
effective use of network resources, the first term in CAsize 
uses this effective priority divided by data request size to 
find data items that will transmit the maximum amount of 
worth per bandwidth byte. 

5.6. Cost Cisizlnk 

Cost Cisizlnk is a combination of the ideas in CAsize 
and C4links, and gives a cost for transferring data item 
Rq[i] (where 0 < i < 2p) to M[r] (where 0 < r < m) from 
M[s] via link L[s,r][fc] (where (s,k) = n[i,r]), in order 
to ultimately try to satisfy the jth (where j G Drq[i,r]) 
requesting destination machine(s): 

C4sizlnk[i][s,r][k] — 

-WE * \2sjeDrq[i,r]  \Rq[i]\*Nlinks[i,j] ) ~ 

Wu * (EjeDrq[i,r} Urgency[i,j]) . 

By combining the size and number of virtual links used, 
this cost gives a more accurate calculation of the resources 
used by a data request. For instance, consider two data 
items Rq[i\] and Rqfa] of equal priority. Consider also 
that Rq[i2] is twice as large as Rq[h], and that it requires 
the use of three virtual links versus Rq[iiYs single virtu- 
al link. In this case, Rqfo] is requiring six times the total 
network resources required by Rq[i\] in order to satisfy the 
same priority level of request. 

6. Resource Allocation Procedures 
6.1. Introduction 

The three procedures below allocate varying amounts of 
network resources for a single data item after each run of 
Dijkstra's algorithm, based on a cost function from Section 
5. The performance of these procedures is shown in Section 
8. 

The resource allocations performed by these proce- 
dures update the following information in the system after 
scheduling Rq[i] to move, and before running Dijkstra's al- 
gorithm again: (1) the list of virtual links and their start 
and stop times, (2) the available memory capacity on any 
machines that data item Rq[i] has been placed, (3) the list 
of machines on which Rq[i] is available, and (4) the time 
at which Rq[i] can be removed from any intermediate ma- 
chines. 
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6.2. Partial Path Procedure 
Each iteration of this procedure involves: (1) perform- 

ing Dijkstra's algorithm for each data request individually; 
(2) for the valid next communication steps, determining the 
"cost" to transfer a data item to its successor in the shortest 
path; (3) picking the lowest cost data request and transfer- 
ring that data item to the successor machine (making this 
machine an additional source of that data item); (4) updat- 
ing system parameters to reflect resources used in (3); and 
(5) repeating (1) through (4) until there are no more sat- 
isfiable requests in the system. In some cases, Dijkstra's 
algorithm would not need to be executed each iteration for 
a particular data transfer, i.e., if the data transfer did not use 
resources needed for any future transfers. In this study, only 
one data item is scheduled before rerunning Dijkstra's algo- 
rithm (this applies for all three procedures). This simplified 
the implementation of the procedures without changing the 
performance of the resulting schedules. The execution time 
of the procedures is affected; however, minimizing this is 
not the main goal of the work. 

This procedure will schedule the transfer for the sin- 
gle "most important" request that must be transferred next, 
based on a cost criterion. The procedure (first described in 
[19]) is called the partial path procedure because only one 
successor machine in the path is scheduled at each itera- 
tion. If a data item is partially scheduled through the sys- 
tem and because of other scheduled transfers the request- 
ing destination's deadline is no longer satisfied, the sched- 
uled transfers remain in the system (the initial transfers were 
scheduled because the deadline could have been satisfied). 
Reasons the schedule for this now unsatisfiable request is 
not removed include: (1) in a dynamic situation, a change 
in the network could allow the request to be satisfied; and 
(2) removing the already scheduled transfers would require 
restarting the scheduling for all data requests because of 
conflicts that might have occurred. 

6.3. Full Path/One Destination Procedure 
The full path/one destination procedure uses a cost cri- 

terion to select a data request at an individual destination 
machine for resource allocation. The data item is then sent 
from its current location (machine M[s] in each of the cost 
criteria) over as many virtual links as required to reach its 
destination machine (machine M[j] for one value of j). For 
costs C4, CAlinks, C4size, and CAsizlnk, the data item 
Rq[i] with minimum cost is sent first to machine M[r], and 
if no request was satisfied, the cost is applied a second time 
for the same data item Rq[i], but setting the new M[s] (da- 
ta source machine) to the old M[r] (the machine to which 
the data was just scheduled). The minimum cost is then tak- 
en over all values of r (possible next storage locations). The 
value of r with minimum cost determines the machine M[r] 
that the data is sent to next. This process continues until the 
data item has reached one requesting destination M\j]. 

This produces a communication schedule using fewer 
executions of Dijkstra's algorithm than the partial path pro- 
cedure. The behavior of the partial path procedure showed 
that if a data item Rq[i] was selected for scheduling a trans- 
fer to its next intermediate location (a "hop"), in the follow- 
ing iteration, the same requested data item, Rq[i], would 
typically be selected again to schedule its next hop. The 
full path/one destination procedure attempts to exploit this 
trend by selecting a requested data item with a cost crite- 
rion and scheduling all hops required for the data item to 
reach its lowest cost destination before executing Dijkstra's 
algorithm again. 

The partial path procedure may construct a partial path 
(of many links) that it later cannot complete (due to net- 
work or memory resources being consumed by other re- 
quested data items). However, until this is determined, the 
part of the path constructed may block the paths of the oth- 
er requested data items, causing them to take less optimal 
paths or causing them to be deemed unsatisfiable. The full 
path/one destination procedure avoids this problem. An ad- 
vantage the partial path approach does have over the full 
path/one destination approach is that it allows the link-by- 
link assignment of each virtual link and each machine's 
memory capacity to be made based on the relative values 
of the cost criteria for the data items that may want the re- 
source. 

6.4. Full Path/All Destinations Procedure 

The full path/all destinations procedure resembles the 
full path/one destination procedure but allocates more net- 
work resources after each run of Dijkstra's algorithm. This 
procedure satisfies all requests that would benefit from 
sending data item Rq[i] from machine M[s] to M[r] (i.e., 
those in the set Drq[i,r]. Cost Cl is not used in conjunction 
with this procedure because it examines the cost of only 
one destination at a time. This approach was considered 
because it was expected to generate results comparable to 
the full path/one destination procedure, but with a smaller 
procedure execution time. 

7. Upper and Lower Bounds 
7.1. Introduction 

Finding optimal solutions to data staging tasks with real- 
istic parameter values are intractable problems. Therefore, 
it is currently impractical to directly compare the quality of 
the solutions found by the proposed heuristics with those 
found by exhaustive searches in which optimal answers can 
be obtained by enumerating all the possible schedules of 
communication steps. Also, to the best of the author's 
knowledge, there is no other work presented in the open lit- 
erature that addresses the data staging problem and presents 
a heuristic for solving it (based on a similar underlying 
model). Thus, there is no other heuristic for solving the 
same problem with which to make a direct comparison of 

81 



the heuristics presented in this document. To aid in the 
evaluation of these heuristics, a lower bound and an upper 
bound on the performance of the heuristics are provided. 

7.2. Full Path Random Dijkstra 
The lower bound called the full path random Dijkstra 

method does take into account which data requests are sat- 
isfiable when it allocates resources, allowing it to improve 
over the random Dijkstra method used in [20]. It allocates 
enough resources in one scheduling step to take a data item 
from its current location all the way to one random satis- 
fiable requesting destination before running Dijkstra's al- 
gorithm again. This method, is based on the full path/one 
destination procedure except that the next chosen transfer 
is randomly selected, instead of using a cost function. This 
bound differs from the single Dijkstra random method of 
[20] in that (1) this method checks that a requesting desti- 
nation is satisfiable before allocating any resources toward 
fulfilling it, and (2) Dijkstra's algorithm is run with updated 
communication system information after each scheduling 
step. 
7.3. Possible Satisfy Bandwidth 

The possible satisfy bandwidth bound is a tighter bound 
than the possible satisfy bound of [20]. It considers sat- 
isfiable requests, and also the total amount of bandwidth 
available in the system, NetBandwidth. This value is cal- 
culated by adding together the number of bytes that could 
be transmitted over each virtual link in the system during 
the entire time interval being simultated. Consider the set 
of requests that would be satisfiable if each was the only re- 
quest in the system. Then the one that has the largest ratio 
of priority weight to data item size is selected. Selecting 
the request that satisfies this condition guarantees that if a 
single link is used to satisfy this request, it will give the 
highest possible priority weight value per byte of network 
bandwidth used as compared to all requests remaining in 
the system. Each time a request is found, its size in bytes 
is added to the bandwidth used in the system (this assumes 
that only one virtual link is needed to satisfy this request) 
and its weighted priority is added to the weights of the oth- 
er data items that have been selected. That particular re- 
quest is then removed so that a new request can be found. 
This continues until the sum of bandwidths for the accept- 
ed requests exceeds NetBandwidth. This upper bound is 
unrealistic, however, because it does not take into account 
that more than one link may have to be used to satisfy a re- 
quest, nor does it consider the time intervals that links are 
available, nor does it consider what machines have network 
bandwidth available between them. 

8. Extended Simulation Study 
8.1. Introduction 

After the simulation study of [19] was completed, a 
new study was designed to examine the effects of varying 

some other parameters within the system. In particular, this 
new study introduces three new cost criteria and two new 
bounds, and it varies additional simulation parameters, in- 
cluding eight network loadings, three average numbers of 
links used to get from a source machine to a destination 
machine, and five priority weighting schemes. 

The results of [20] indicated that C4 was the best- 
performing cost criterion. This led to the development of 
cost criteria CAsize, CAlinks, and Cisizlnk, described in 
Section 5, for the new study. Because of the previous good 
performance of the full path/one destination procedure, it 
was implemented for the new study with all seven cost cri- 
teria described in Section 5. For comparison, the other two 
procedures in Section 6 (partial path and full path/all desti- 
nations) were also implemented for the new study with cost 
C4, for a total of nine heuristics. C\, C2, C2>, C4, 

In the previous study, all requests averaged traversing 
approximately 1.5 communication links (a communication 
link traversal count) from an initial source machine to a 
requesting destination machine. It was decided that the 
requests would be generated in a manner allowing this pa- 
rameter to be controlled and varied with three different val- 
ues in the new study. Another parameter concerning the 
data requests was the number of requests being made ver- 
sus the number of requests that the network could possibly 
fulfill. Eight different "network loads" were decided upon 
for the new simulation study, as opposed to only one in the 
earlier [20] study. In combination with the three communi- 
cation link traversal counts, there was a total of 24 different 
data request scenarios. 

For this study, it was decided that a six-level priority 
scheme would be used in place of the three-level method 
used in the previous study. This was intended to better 
reflect the priority classes present in a military environ- 
ment. Level 0 was generated with a 50% probability, level 
1 with 25%, class 2 with 12%, level 3 with 7%, level 4 
with 4%, and level 5 is generated with a 2% probability. 
These percentages were selected to reflect the fact that in a 
BADD/AICE-like environment, there would likely only be 
a small number of data requests in the highest priority class, 
and a large number of data requests at the lowest priority 
class. 

The weighting of the priority levels was changed to a 
system where the weight of each priority level was a fixed 
multiple of the weight of the priority level immediately be- 
low it. Five different values for this multiple were used for 
this study, and each was evaluated with each of the 24 data 
request scenarios above, resulting in 120 testing scenarios 
for evaluation by the 79 heuristic/E-U ratio combinations. 

As in the previous study, 40 individual test cases 
(each with a unique network configuration and set of da- 
ta requests) were generated for each testing scenario, be- 
cause a single case cannot reflect the range of possible data 
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Table 1. Network parameters used for the gen- 
eration of test cases. 

parameter min. value max. value 
# machines 14 16 

# srcs per data item 1 3 
# dests per data item 1 5 

src available time 1 sec 3600 sec 
dest deadline delay 900 sec 3600 sec 

data item size lOkBytes 100 MBytes 
machine storage 10 MBytes 20 GBytes 
# outbound links 1 4 

link bw 10kBits/sec 1.5 MBits/sec 

requests and network configurations. This resulted in the 
379,200 simulation runs described in this section. 

8.2. Generation of Test Cases 

The network parameters used to create data sets for this 
simulation study are summarized in Table 1. Actual val- 
ues were generated randomly with uniform probability be- 
tween (and including) the minimum and the maximum val- 
ues shown in the table. The "src available time" is the time 
the data item is available at all of its sources (the same time 
for all sources of that data item). The "dest deadline de- 
lay" is the deadline for the requested data item relative to 
the time it becomes available at its sources. These parame- 
ter values are intended to be representative of a subset of 
a BADD/AICE-like environment. For more information 
about how these parameters are used to generate the test 
cases, the reader is referred to [6]. 

For this simulation study, the number of data items gen- 
erated for a network was 700 times the number of machines 
in the network. After all items were generated, Dijkstra's 
algorithm was run once for each item, establishing the indi- 
vidual satisfiability of each data item at each requesting des- 
tination along with a path of communication links used to 
reach each destination. The average number of communica- 
tion links traversed from a source machine to a destination 
machine for all of the satisfiable requests is the "resulting 
average communication link traversal count."As indicated 
above, three different average link counts were generated 
(1.5,2.5, and 3.5), and for each count, 40 different networks 
and associated data requests were created with the method 
given above, resulting in a total of 120 networks with asso- 
ciated data requests. 

Now consider in the network all data requests that are 
determined to be satisfiable individually according the first 
execution of Dijkstra's algorithm. When considering each 
of these requests as if it were the only data request in the 
system, the resulting virtual link path from Dijkstra's algo- 
rithm and other known information can be used to calculate 
the bytes of bandwidth needed for each request. Then these 

bandwidths can be summed to give a value representing the 
total number of bytes of data bandwidth being requested in 
the system. Call this value ReqBandwidth. Recall now 
the value NetBandwidth calculated by summing together 
the total number of bytes that could be transmitted on each 
of the virtual links within the network during the simula- 
tion period. An oversubscription rate can then be defined 
as ReqBandwidth/NetBandwidth. If this term is larger 
than 1, the network can clearly not satisfy all requests due to 
bandwidth limitations. If the term is less than 1, bandwidth 
may not exist between the correct machines or may not be 
available during the required time to satisfy all requests. 

To examine system performance under various request 
loads, it was decided to consider networks with the follow- 
ing oversubscription rates: 25.0, 12.5, 6.2, 3.1, 1.6, 0.8, 
0.4, and 0.2. These desired data sets were created by start- 
ing with one of the networks and its associated set of data 
requests, and removing random data requests until the de- 
sired oversubscription rate was achieved. This did not sig- 
nificantly affect the average communication link traversal 
counts. It resulted in data sets consisting of the same net- 
work with eight different oversubscription rates, for each of 
the 120 networks. 

When applying the heuristics to these test cases, a variety 
of E-TJ ratios were used. For simulations run using the full 
path/one destination procedure with C4size and C4sizlnk, 
the logioiWe/Wu) used wereinf, 9, 8, 7, 6, 5, 4,-inf. 
The values of inf and —inf represent considering on- 
ly the priority term (the term weighted by WE), and 
only the urgency term (the term weighted by Wu), re- 
spectively. For simulations run using the partial path 
procedure with C4, the full path/all destinations proce- 
dure with C4, and the full path/one destination procedure 
with C4, and C4links, the log^Ws/Wu) used were 
inf, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0,  - inf. 

The last parameter that was varied in this simulation 
study was the relative weight of one level of priority com- 
pared to another. With the six priority levels of data 
requests, the approach simulated was to make the weight 
of a priority level a (where 0 < a < 5) data request be wf. 
(i.e., W[a] = oja) for some fixed value of u. The values of 
UJ simulated were 1, 2, 4, 8, and 16, and this was done for 
each of the networks and loadings mentioned above. The 
results of the simulations using these parameters are now 
presented. 

8.3. Evaluation of Simulations 

Heuristic and bound labels used in the graphs at the end 
of this subsection are summarized in Table 2. As stated 
previously, because of the good performance of the full 
path/one destination procedure and Cost C4, they were the 
focus of these new experiments. The three new costs taking 
into account data item size and the number of communica- 
tion links traversed from a source to a destination are shown 
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in Figure 1. The peak performance of the costs taking da- 
ta item size into account are further to the right (signifying 
higher E-U ratios) in the graph because those costs divide 
the effective priority term by the data item size. Due to 
space constraints, only a subset of the results from [6] ap- 
pears in this paper. 

In Figures 2 through 5, the data points for the heuristics 
used correspond to the best E-U ratio for each testing sce- 
nario (for ki/1, this is a combination of the priority and 
urgency terms). The values for the normalized vertical axis 
in all of these graphs is computed as follows. For each test 
case, the sum of the satisfied requests' weighted priorities 
for a given heuristic or bound is divided by the sum of satis- 
fied requests' weighted priorities given by the best E-U ratio 
for full_one_C4. This normalized sum is then averaged over 
the 40 network test cases to give the final value for each data 
point. 

The relative performance of the heuristics are shown in 
Figures 2 and 3. The costs considering data item size will 
tend to allocate resources for all of the smaller data items 
first, resulting in many small time intervals of link band- 
width being allocated initially. In the lightly loaded cases, 
the remainder of the link bandwidth must be used by larger 
data items, but continuously available links may not exist 
for a long enough period of time for these larger data items 
to use. In the more heavily loaded network cases, there are 
enough smaller data items available to make use of all of 
the network bandwidth without sending any of the larger 
data items. The resulting trend is that the costs incorporat- 
ing data item size have a relative decrease in performance 
for lightly oversubscribed networks, followed by a relative 
increase in performance for the heavily oversubscribed net- 
works. 

There is a general overall trend that as u increases (and 
other factors are fixed), the performance of all heuristics is 
closer to each other. This is because more of the total sum 
of priority weights of requests in the system is contributed 
by a few highest priority requests. 

The method full_one_C41inks, performed very compa- 

Table 2. Labels for heuristics and bounds 
used in the graphs of Section 8.3. 

heuristic combination label used 

partial path w/ CA partiaLC4 
full path/one dest. w/ C4 full_one_C4 

full path/one dest. w/ C4links full_one_C4links 
full path/one dest. w/ C4size full_one.C4size 

full path/one dest. w/ C4sizlnk fulLone_C4sizlnk 
full path/all dest. w/ C4 full.alLC4 

possible satisfy bandwidth possible-satisfy _bw 
full path random Dijkstra fulLrand-Dijkstra 
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Figure 1. Sample graph of the effect of varying 
the E-U ratio {WE/Wu). The data sets used 
had an average link traversal count of 2.5, a 
request over-subscription rate of 3.1, and an 
w value of 4. 

rably to full.one_C4 in all tests. There was no situa- 
tion indicated by these simulations where full_one_C4links 
should be chosen over full_one_C4, or vice versa. The par- 
tial _C4 method was also shown to perform comparably to 
the full.one.C4 method in all cases. 

The full_all_C4 method is shown to perform well for 
small oversubscription rate, but as the oversubscription rate 
increases a clear decrease in performance is seen. This 
is due to the full path/all destinations procedure allocat- 
ing resources for more than one destination simultaneously, 
where some requesting destinations may have very low pri- 
ority. 

Table 3 shows the average number of requests satisfied 
at each priority level by full_one.C4 as compared to a sim- 
ple algorithm that schedules all requests of a higher priority 
level before any requests of a lower priority level. In par- 
ticular, this algorithm was full_one_Cl with Wu = 0. For 
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Figure 2. Weighted sum of satisfied 
requests' priorities normalized at each 
over-subscription rate to the performance of 
fulLone_C4. The data sets had an average 
link traversal count of 2.5 and an u value of 4. 

oj > 1 in these tables, more requests in the top three pri- 
ority levels are being satisfied by full_one_C4 (which obeys 
the relative importance assigned to each of the priority lev- 
els set by the policy maker) than the level by level method 
(which ignores these policy requirements). The number of 
satisfied requests at the top priority level remains compa- 
rable for full_one.C4 and w > 1 because there are so few 
requests at that level that all are able to be satisfied. This 
is indicated by the fact that the level by level method can- 
not satisfy any more of the top priority requests. For ex- 
ample, even though the level by level method schedules all 
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Figure 3. Weighted sum of satisfied 
requests' priorities normalized at each 
over-subscription rate to the performance of 
full_one_C4. The data sets had an average 
link traversal count of 2.5 and an w value of 4. 

priority level 5 requests as if they were the only requests 
in the system, the total number scheduled does not exceed 
the results of full_one_C4 (for w > 1). This shows that 
full_one_C4 using urgency in addition to effective priority, 
is better than fulLone.Cl without urgency. Furthermore, 
full_one_C4 results in a higher sum of weighted priorities of 
satisfied requests than the level by level method in almost 
all cases considered in Table 3. 

In summary, a class of heuristics that compare well to 
upper and lower bounds has been developed and analyzed. 
Many heuristics perform within a few percentage points of 
each other, and this is why it is important to also consider 
the execution times of the different approaches. Further- 
more, while in general several heuristics perform compara- 
bly, if a system is known to have a particular operating en- 
vironment (e.g., oj value, oversubscription rate), there may 
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Table 3. Number requests satisfied at each 
priority level by full.one_C4 with an average 
link traversal count of 2.5 and an oversub- 
scription rate of 1.6. The "level by level" col- 
umn shows the effect of allocating resources 
for all priority class a requests before all pri- 
ority class ß requests where a > ß. 

priority 
level 

number requests satisfied 
OJ level by 

level 1 2 4 8 16 
5 4.2 8.3 8.4 8.4 8.4 8.2 
4 9.8 16.0 16.1 16.1 16.1 16.0 
3 16.4 23.4 23.4 23.1 23.5' 22.8 
2 28.8 33.8 31.2 27.0 32.5 32.5 
1 57.6 50.5 44.8 43.1 43.0 50.1 
0 118.8 81.6 82.0 85.9 84.9 78.6 

be a preference for one heuristic over another. Confidence 
intervals for some of the data points generated by test cases 
in this section can be found in [6]. 

9. Data Items With Multiple Versions 
9.1. Approach 

In this section, a variable time, variable accuracy algo- 
rithm will be presented to deal with data items with a higher 
quality and lower quality version, as mentioned in Section 
3. The higher quality data item is assumed for simplicity to 
be twice the size of the lower quality data item. The higher 
quality data item, however, has four times as much "worth" 
to the end user as the lower quality data item. This worth 
was chosen to indicate that the system should be penalized 
for selecting the lower quality data item over the higher one. 

The approach used to incorporate these lower quality da- 
ta item versions into the developed heuristics was to create 
an iterative algorithm that attempts to create a new sched- 
ule Sh with each iteration that has a smaller effect E[Sh]- 
In the first iteration, only the higher quality versions of the 
data items are considered satisfiable by the value Sat[i, k] 
(where 0 < i < 2p and 0 < A; < Nrq[i]). That is, 
Sat[i,k] (from the cost criteria of Section 5) can only be 
1 if 0 < i < p. A heuristic is then used with Dijkstra's 
algorithm to create a complete schedule of data transfers, 
which corresponds to the research described in Section 8. 

After the first iteration schedule has been determined, the 
value of Sat[j, k] (where 0 < j < p) for the second iter- 
ation is only allowed to be 1 if Request[j, k] was satisfied 
in the previous iteration. The value of Sat[j + p, k] is then 
only allowed to be 1 if Request[j, k] was not satisfied in 
the previous iteration. A complete new schedule is created 
using a heuristic with Dijkstra's algorithm. That is, if dur- 
ing iteration one a requesting destination does not receive 
its higher quality requested data item, then in the second it- 

eration, it will request the lower quality version of that data 
item instead. The schedule produced by the second itera- 
tion will then likely satisfy at least a few lower quality data 
item requests (of higher priority) in place of higher quality 
data item requests (of lower priority). The higher quality 
data item requests that are not satisfied in the second itera- 
tion then request their respective lower quality versions for 
the third iteration. This iterative process can be repeated 
as many times as allotted execution time permits, and can 
stop at any time after the first iteration and output the best 
schedule that it has generated thus far. (This assumes that 
the best schedule is kept separately after each iteration and 
that the last iteration performance may not result in the best 
schedule.) 

9.2. Costs Cl, C2, and C3 
Figures 4 and 5 include the full.one procedure with costs 

Cl, C2, C3, and C4, where iteration 1 corresponds to the 
situation without consideration of versions. The full sets of 
experiments in [6] gave insights into the behaviors of these 
costs. 

The fulLone_Cl heuristic performs well except for the 
highest oversubscription rate test cases. Because cost Cl 
only considers the benefit of moving data to satisfy a single 
request, this suggests that in very highly oversubscribed net- 
works, it helps to consider multiple requesting destinations 
that would collectively benefit from a data transfer. 

The full_one_C2 method appears to suffer from its choice 
of destination machines; specifically, it allows a single des- 
tination's urgency (instead of a collective view of the urgen- 
cies) to affect which valid next step is selected. As system 
oversubscription rates increase, its relative performance de- 
creases. 

The full_one.C3 method performs consistently poorly 
for heavily oversubscribed networks. Its performance in the 
simulation studies of [20] indicated that it would not like- 
ly perform well, so this was expected. It is interesting to 
note, however that as u was increased, the relative perfor- 
mance of full_one_C3 increased as well. This suggests that 
the problem with cost C3 is indeed due to allowing the ur- 
gency factor to dominate the cost equation, because as the 
priority weight is increased, it begins to perform well. This 
is especially true for the lower oversubscription rates. 

9.3. Evaluation of Simulations 
The data sets used for these experiments were a subset 

of the data sets created for the simulation study of Section 
8. For very light loading (i.e., 0.2), all of the heuristics per- 
form similarly after the second iteration. Only the data sets 
with average link traversal counts of 2.5 were used. Five 
iterations of the variable accuracy algorithm were run. Re- 
sults from those runs under different loads is shown in Fig- 
ures 2 and 3, where Figure 2 includes the upper and lower 
bounds. It should be noted that each graph is normalized to 
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Figure 4. Weighted sum of satisfied requests' 
priorities normalized to the performance of 
fulLone_C4 in iteration 1. The data set had an 
oversubscription rate of 0.8, an average link 
traversal count of 2.5, and an u value of 4. 

the performance of full_one_C4 at the end of its first itera- 
tion, which is the same as the performance of full_one_C4 
in the study of Section 8. 

For less oversubscribed networks, the heuristics are al- 
most all able to increase their own respective performance 
with additional iterations (e.g., Figure 4). For more over- 
subscribed networks, this is not generally the case (e.g., Fig- 
ure 5). All of the cost criteria used here except C\ consider 
more than one destination as part of the cost of sending a 
data item to its next machine. The implementation of the 
multiple versions approach works against this, particularly 
at higher oversubscription rates. For example, in iteration 
one, multiple requests may contribute to the overall sum 
for a transfer to destination d\. When using multiple ver- 
sions, the destinations that receive the second version will 
no longer contribute to the sum for destination dx. Because 
of this, destination d\ 's request may no longer have a large 

Figure 5. Weighted sum of satisfied requests' 
priorities normalized to the performance of 
full_one_C4 in iteration 1. The data set had an 
oversubscription rate of 3.1, an average link 
traversal count of 2.5, and an u value of 4. 

enough sum to obtain network resources. For this reason, 
fulLone.Cl (which does not collectively consider multiple 
requesting destinations) is less inclined to decrease in per- 
formance in successive iterations after the second iteration. 

An additional reason for a lack of improvement after 
each iteration for data sets with high oversubscription rates 
is related to the large number of requests of high priority in 
the system. There are already very many data items in these 
tests with a desirable priority to select from, and the sec- 
ondary versions of data items are not any better of a choice 
than any of the primary versions of data items that are avail- 
able. 

In summary, the use of multiple versions will help some 
heuristics improve the sum of priorities satisfied in all but 
the most oversubscribed cases. The improvement obtained 
in some operator environments exceeds 10%. In almost all 
cases, the best improvement is given by the second iteration 
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of the variable time, variable accuracy algorithm. 

10. Summary and Conclusions 
Data staging is an important data management issue for 

distributed computer systems. It addresses the issues of 
distributing and storing over numerous geographically dis- 
persed locations both repository data and continually gener- 
ated data through an oversubscribed network, where not all 
data requests can be satisfied. When certain data with their 
corresponding priorities need to arrive at a site with limit- 
ed storage capacities in a timely fashion, a heuristic must 
be devised to schedule the necessary communication steps 
efficiently. 

The performance of nine heuristics were shown, and 
compared to an upper bound and a lower bound. Many 
different weighting schemes for the relative importance of 
different priority levels of requested data items were con- 
sidered. Each procedure and cost criterion was designed 
with particular advantages in mind. The results present- 
ed showed that, for the system parameters considered (e.g., 
priority weighting, oversubscription rate), the combination 
of cost C4 or C\ with the full path/one destination pro- 
cedure and C4 with the partial path procedure consistent- 
ly performed the best, when using the measure of weight- 
ed sum of priorities satisfied. Because each heuristic has 
advantages, the procedure/cost criterion pair that perform- 
s best may differ depending on the system parameters (i.e., 
the actual environment where the scheduler heuristic will be 
deployed). 

An additional novel approach using a variable time, vari- 
able accuracy method that considered multiple data item 
versions with different resource requirements was evaluat- 
ed. The use of multiple versions was shown to help some 
heuristics in all but the most oversubscribed cases; in many 
cases, the improvement was over 10%. 

In summary, a class of heuristics and cost criteria that 
compare well to upper and lower bounds were developed 
and analyzed. While in general several heuristics perform 
comparably, if a system is known to have a particular op- 
erating environment (e.g., w value, oversubscription rate), 
there may be a preference for one pair over another. 
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Abstract 

As distributed applications have become more widely 
used, they more often need to leverage the comput- 
ing power of a heterogeneous network of computer 
architectures. Modern communications libraries pro- 
vide mechanisms that hide at least some of the com- 
plexities of binary data interchange among heteroge- 
neous machines. However, these mechanisms may be 
cumbersome, requiring that communicating applica- 
tions agree a priori on precise message contents, or 
they may be inefficient, using both "up" and "down" 
translations for binary data. Finally, the seman- 
tics of many packages, particularly those which re- 
quire applications to manually "pack" and "unpack" 
messages, result in multiple copies of message data, 
thereby reducing communication performance. This 
paper describes PBIO, a novel messaging middleware 
which offers applications significantly more flexibility 
in message exchange while providing an efficient im- 
plementation that offers high performance. 

1    Introduction 

As distributed applications have become more 
widely used, they often need to leverage the comput- 
ing power of a heterogeneous network of computer 
architectures. Modern communications libraries pro- 
vide mechanisms that hide at least some of the com- 
plexities of binary data interchange among heteroge- 
neous machines. The features and semantics of these 
packages are typically a compromise between what 
might be useful to the applications and what can be 
implemented efficiently. 

For example, many packages, such as PVM[8] and 
Nexus [7], support message exchanges in which the 
communicating applications "pack" and "unpack" 
messages, building and decoding them field by field, 
datatype by datatype. Other packages, such as 
MPI[6], allow the creation of user-defined datatypes 
for messages and message fields and provide some 

amount of marshalling and unmarshalling support for 
those datatypes internally. 

The approach of requiring the application to build 
messages manually offers applications significant flex- 
ibility in message contents while ensuring that the 
pack and unpack operations are performed by opti- 
mized, compiled code. However, relegating message 
packing and unpacking to the communicating ap- 
plications means that those applications must have 
a priori agreement on the contents and format of 
messages. This is not an onerous requirement in 
small-scale stable systems, but in enterprise-scale dis- 
tributed computing, the need to simultaneously up- 
date all application components in order to change 
message formats can be a significant impediment to 
the integration, deployment and evolution of complex 
systems. 

In addition, the semantics of application-side pack/ 
unpack operations generally imply a data copy to or 
from message buffers. Such copies are known[ll, 13] 
to have a significant impact on communication sys- 
tem performance. Packages which can perform inter- 
nal marshalling, such as MPI, have an opportunity to 
avoid data copies and to offer more flexible semantics 
in matching fields provided by senders and receivers. 
However, existing packages have failed to capitalize 
on those opportunities. For example, MPIs type- 
matching rules require strict a priori agreement on 
the contents of messages. Additionally, most MPI im- 
plementations implement marshalling of user-defined 
datatypes via mechanisms that amount to interpreted 
versions of field-by-field packing. 

This paper describes PBIO(Portable Binary Input/ 
Output) [3], a multi-purpose communication middle- 
ware. In developing PBIO we have not attempted to 
recreate various higher-level communication abstrac- 
tions offered by MPI or by the Remote Service Re- 
quests of Nexus. Instead, we provide flexible hetero- 
geneous binary data transport for simple messaging 
of a wide range of application data structures, using 
novel approaches such as dynamic code generation 
(DCG) to preserve efficiency. In addition, PBIO's 
flexibility in matching transmitted and expected data 
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types provides key support for application evolution 
that is missing from other communication systems. 

This paper briefly describes PBIO semantics and 
features, and then illustrates performance metrics 
across a heterogeneous environment of Sun Sparc and 
X86-based machines running Solaris. These metrics 
are compared against the data communication mea- 
surements obtained by using MPI as a data commu- 
nication mechanism across the same network archi- 
tecture. The paper will show that the features and 
flexibility of PBIO do not impose overhead beyond 
that imposed by other communications systems. In 
the worst case PBIO performs as well as other sys- 
tems, and in many cases PBIO offers a significant 
performance improvement over comparable commu- 
nications packages. 

Much of PBIO's performance advantage is due to 
its use of dynamic code generation to optimize trans- 
lations from wire to native format. Because this is 
a novel feature in communications middleware, its 
impact on PBIO's performance is also considered in- 
dependently. In this manner, we show that for pur- 
poses of data compatibility, PBIO, along with code 
generation, can provide reliable, high performance, 
easy-to-use, easy-to-migrate, heterogeneous support 
for distributed applications. 

2    The PBIO Communication Library 

In order to conserve I/O bandwidth and reduce 
storage and processing requirements, storing and 
transmitting data in binary form is often desirable. 
However, transmission of binary data between hetero- 
geneous environments has been problematic. PBIO 
was developed as a portable self-describing binary 
data library, providing both stream and file support 
along with data portability. 

The basic approach of the Portable Binary I/O li- 
brary is straightforward. PBIO is a record-oriented 
communications medium. Writers of data must pro- 
vide descriptions of the names, types, sizes and po- 
sitions of the fields in the records they are writ- 
ing. Readers must provide similar information for the 
records they wish to read. No translation is done on 
the writer's end, our motivation being to offload pro- 
cessing from data providers (e.g., servers) whenever 
possible. On the reader's end, the format of the in- 
coming record is compared with the format expected 
by the program. Correspondence between fields in 
incoming and expected records is established by field 
name, with no weight placed on size or ordering in 
the record. If there are discrepancies in field size or 
placement, then PBIO's conversion routines perform 

the appropriate translations. Thus, the reader pro- 
gram may read the binary information produced by 
the writer program despite potential differences in: 
(1) byte ordering on the reading and writing archi- 
tectures; (2) differences in sizes of data types (e.g. 
long and int); and (3) differences in structure layout 
by compilers. 

Since full format information for the incoming 
record is available prior to reading it, the receiv- 
ing application can make run-time decisions about 
the use and processing of incoming messages about 
whom it had no a priori knowledge. However, this 
additional flexibility comes with the price of poten- 
tially complex format conversions on the receiving 
end. Since the format of incoming records is prin- 
cipally defined by the native formats of the writers 
and PBIO has no a priori knowledge of the native 
formats used by the program components with which 
it might communicate, the precise nature of this for- 
mat conversion must be determined at run-time. 

Since high performance applications can ill afford 
the increased communication costs associated with 
interpreted format conversion, PBIO uses dynamic 
code generation to reduce these costs. The cus- 
tomized data conversion routines generated must be 
able to access and store data elements, convert el- 
ements between basic types and call subroutines to 
convert complex subtypes. Measurements^] show 
that the one-time costs of DCG, and the perfor- 
mance gains by then being able to leverage com- 
piled (and compiler-optimized) code, far outweigh the 
costs of continually interpreting data formats. The 
analysis in the following section shows that DCG, 
together with native-format data transmission and 
copy reduction, allows PBIO to provide its additional 
type-matching flexibility without negatively impact- 
ing performance. In fact, PBIO outperforms our 
benchmark communications package in all measured 
situations. 

3    Evaluation 

In order to thoroughly evaluate PBIO's perfor- 
mance and its utility in high-performance commu- 
nication, we present a variety of measurements in 
different circumstances. Where possible, we com- 
pare PBIO's performance to the cost of similar op- 
erations in MPI. Additionally, we include measure- 
ments which evaluate PBIO's performance in situ- 
ations which are not supported by other communi- 
cations packages. In particular, we evaluate PBIO's 
support for application evolution and its ability to 
transmit dynamically sized data elements. 
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Figure 1: Cost breakdown for message exchange. 

3.1    Analysis  of costs  in  heterogeneous 
data exchange 

Before analyzing PBIO costs in detail, it is useful to 
examine the costs in an exchange of binary data in 
a heterogeneous environment. As a baseline for this 
discussion, we use the MPICH[10] implementation of 
MPI, a popular messaging package in cluster comput- 
ing environments. Figure 1 represents a breakdown 
of the costs in an MPI message round-trip between 
a x86-based PC and a Sun Sparc connected by 100 
Mbps Ethernet.1 The time components labeled "En- 
code" represent the time span between the applica- 
tion invoking HPI_send() and the eventual call to 
write data on a socket. The "Decode" component 
is the time span between the recv() call returning 
and the point at which the data is in a form us- 
able by the application. In generating these num- 
bers network transmission times were measured with 
NetPerf[9] and send and receive times were measured 
by substituting dummy calls for socket send() and 
recv(). This delineation allows us to focus on the en- 
code/decode costs involved in binary data exchange. 
That these costs are significant is clear from the fig- 
ure, where they typically represent 66% of the total 
cost of the exchange. 

Figure 1 shows the cost breakdown for messages of 
a selection of sizes, but in practice, message times de- 

xThe Sun machine is an Ultra 30 with a 247 MHz cpu run- 
ning Solaris 7. The x86 machine is a 450 MHz Pentium II, also 
running Solaris 7. 

pend upon many variables. Some of these variables, 
such as basic operating system characteristics that 
affect raw end-to-end TCP/IP performance, are be- 
yond the control of the application or the communica- 
tion middleware. Different encoding strategies in use 
by the communication middleware may change the 
number of raw bytes transmitted over the network, 
but those differences tend to be negligible. There- 
fore, the remainder of our analysis will concentrate 
on the more controllable sending side and receiving 
side costs. 

Another application characteristic which has a 
strong effect upon end-to-end message exchange time 
is the precise nature of the data to be sent in the 
message. It could be a contiguous block of atomic 
data elements (such as an array of floats), a stride- 
based element (such as a stripe of a homogeneous ar- 
ray), a structure containing a mix of data elements, 
or even a complex pointer-based structure. MPI, de- 
signed for scientific computing, has strong facilities 
for homogeneous arrays and strided elements. MPIs 
support for structures is less efficient than its sup- 
port for contiguous arrays of atomic data elements, 
and it doesn't attempt to supported pointer-based 
structures at all. PBIO doesn't attempt to support 
strided array access, but otherwise supports all types 
with equal efficiency, including a non-recursive sub- 
set of pointer-based structures. The message type of 
the 100Kb message in Figure 1 is a non-homogeneous 
structure taken from the messaging requirements of 
a real application, a mechanical engineering simula- 
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Figure   2:     Strings   and   dynamic   arrays   in 
PBIO. 

tion of the effects of micro-structural properties on 
solid-body behavior. The smaller message types are 
representative subsets of that mixed-type message. 

The next sections will examine PBIO's costs in ex- 
changing the same sets of messages. Subsequently, 
Section 3.5 will examine costs for other data types. 

3.2     Sending side cost 

As is mentioned in Section 2, PBIO transmits data 
in the native format of the sender. No copies or data 
conversions are necessary to prepare simple struc- 
ture data for transmission. So, while MPICH's costs 
to prepare for transmission on the Sparc vary from 
34/isec for the 100 byte record up to 13 msec for the 
100Kb record, PBIO's cost is a flat 3 //see. Of course, 
this efficiency is accomplished by moving most of the 
complexity to the receiver, where Section 3.3 tells a 
more complex story. 

As mentioned above, PBIO also supports the trans- 
mission of some pointer-based structures. In partic- 
ular, PBIO allows an element of a structure be to a 
null-terminated string, or a pointer to a dynamically 
sized array,2 as shown in Figure 2. The array ele- 
ments may be of an atomic data type or a previously 
registered structure. That there is no forward dec- 
laration mechanism or self-referentiality for structure 
types restricts PBIO from describing such things as 
linked lists. However, relatively complex structures, 
such as the one depicted in Figure 3 can be directly 
transmitted. The ability to directly transmit dynam- 
ically sized arrays is a feature that is not normally 
present in communications middleware. 

Unlike contiguous structures, pointer-based enti- 
ties do require some preparation before they are sent. 
In particular, PBIO must walk the structure to 1) 
prepare a transmission list of data blocks and their 
lengths, and 2) change all internal pointers from ad- 
dresses to offsets within the message.  The type se- 
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thill«!*! 

*C 

In the case of a dynamically sized array, the array size 
must be given by another, integer-typed, element in the base 
structure. 

Figure 3: A multi-level pointer structure that 
can be transmitted by PBIO. 

mantics ensures that there can be no circularities 
in the structure, so the 'walk' is a simple tree de- 
scent which stops when it reaches the 'leaf structures 
which contain no pointers. In order to avoid chang- 
ing the data directly, structures containing pointers 
are copied to temporary memory and the pointers 
modified there. This imposes a cost on the sender 
that is proportional to the amount of data that must 
be copied and the number of pointers that must be 
adjusted. Because no similar features are included 
in common communications libraries, we don't in- 
clude any representative measurements of these costs. 
However, we do observe that in the most common 
use of dynamic arrays, where a relatively small base 
structure holds pointers and sizes for one or more ar- 
rays, the 'walk' is a simple pass over the base struc- 
ture, the majority of the data is in the 'leaves' which 
are not copied, and the additional sender-side pro- 
cessing is not overly significant. 

3.3    Receiving side cost 

PBIO's approach to binary data exchange eliminates 
sender-side processing by transmitting in the sender's 
native format and isolating the complexity of man- 
aging heterogeneity in the receiver. Essentially, the 
receiver must perform a conversion from the vari- 
ous incoming 'wire' formats to the receiver's 'native' 
format. PBIO matches fields by name, so a conver- 
sion may require byte-order changes (byte-swapping), 
movement of data from one offset to another, or even 
a change in the basic size of the data type (for exam- 
ple, from a 4-byte integer to an 8-byte integer). 

This conversion is another form of the "marshal- 
ing problem" that occurs widely in RPC implemen- 
tations^] and in network communication. That mar- 
shaling can be a significant overhead is also well 
known[2, 14], and tools such as USC[12] attempt 
to optimize marshaling with compile-time solutions. 
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Unfortunately, the dynamic form of the marshaling 
problem in PBIO, where the layout and even the 
complete field contents of the incoming record are un- 
known until run-time, rules out such static solutions. 
The conversion overhead is nil for some homogeneous 
data exchanges, but as Figure 1 shows, the overhead 
is high (66%) for some heterogeneous exchanges. 

Generically, receiver-side overhead in communica- 
tion middleware has several components which can be 
traded off against each other to some extent. Those 
basic costs are: 

• byte-order conversion, 
• data movement costs, and 
• control costs. 
Byte order conversion costs are to some extent un- 

avoidable. If the communicating machines use differ- 
ent byte orders, the translation must be performed 
somewhere regardless of the capabilities of the com- 
munications package. 

Data movement costs are harder to quantify. If 
byteswapping is necessary, data movement can be 
performed as part of the process without incurring 
significant additional costs. Otherwise, clever design 
of the communications middleware can often avoid 
copying data. However, packages that define a 'wire' 
format for transmitted data have a harder time be- 
ing clever in this area. One of the basic difficulties is 
that the native format for mixed-datatype structures 
on most architectures has gaps, unused areas between 
fields, inserted by the compiler to satisfy data align- 
ment requirements. To avoid making assumptions 
about the alignment requirements of the machines 
they run on, most packages use wire formats which 
are fully packed and have no gaps. This mismatch 
forces a data copy operation in situations where a 
clever communications system might otherwise have 
avoided it. 

Control costs represent the overhead of iterating 
through the fields in the record and deciding what to 
do next. Packages which require the application to 
marshal and unmarshal their own data have the ad- 
vantage that this process occurs in special-purpose 
compiler-optimized code, minimizing control costs. 
However, to keep that code simple and portable, such 
systems uniformly rely on communicating in a pre- 
defined wire format, incurring the data movement 
costs described in the previous paragraph. 

Packages that marshal data themselves typically 
use an alternative approach to control, where the 
marshalling process is controlled by what amounts 
to a table-driven interpreter. This interpreter mar- 
shals or unmarshals application-defined data making 
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Figure 4:   Receiver side costs for PBIO and 
MPI interpreted conversions. 

data movement and conversion decisions based upon 
a description of the structure provided by the applica- 
tion and its knowledge of the format of the incoming 
record. This approach to data conversion gives the 
package significant flexibility in reacting to changes 
in the incoming data and was our initial choice for 
PBIO. Figure 4 shows a comparison of receiver-side 
processing costs on the Sparc for interpreted convert- 
ers used by MPICH (via the MPI_Unpack()) call and 
PBIO. PBIO's converter is relatively heavily opti- 
mized and performs considerably better than MPI, 
in part because MPICH uses a separate buffer for 
the unpacked message rather than reusing the receive 
buffer (as PBIO does). However, PBIO's receiver- 
side conversion costs still contribute roughly 20% of 
the cost of an end-to-end message exchange. While a 
portion of this conversion overhead must be the con- 
sequence of the raw number of operations involved 
in performing the data conversion, we believed that 
a significant fraction of this overhead was due to the 
fact that the conversion is essentially being performed 
by an interpreter. 

Our decision to transmit data in the sender's native 
format results in the wire format being unknown to 
the receiver until run-time, making a remedy to the 
problem of interpretation overhead difficult. How- 
ever, our solution to the problem was to employ dy- 
namic code generation to create a customized con- 
version subroutine for every incoming record type. 
These routines are generated by the receiver on the 
fly, as soon as the wire format is known, through a 
procedure that structurally resembles the interpreted 
conversion itself. However, instead of performing the 
conversion this procedure directly generates machine 
code for performing the conversion. 
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Figure 5: Receiver side costs for interpreted 
conversions in MPI and PBIO and DCG con- 
versions in PBIO. 

The execution times for these dynamically gener- 
ated conversion routines are shown in Figure 5. The 
dynamically generated conversion routine operates 
significantly faster than the interpreted version. This 
improvement removes conversion as a major cost in 
communication, bringing it down to near the level of 
a copy operation, and is the key to PBIO's ability to 
efficiently perform many of its functions. 

The cost savings achieved by PBIO through the 
techniques described in this section are directly re- 
flected in the time required for an end-to-end mes- 
sage exchange. Figure 6 shows a comparison of PBIO 
and MPICH message exchange times for mixed-field 
structures of various sizes. The performance differ- 
ences are substantial, particularly for large message 
sizes where PBIO can accomplish a round-trip in 45% 
of the time required by MPICH. The performance 
gains are due to: 

• virtually eliminating the sender-side encoding 
cost by transmitting in the sender's native for- 
mat, and 

• using dynamic code generation to customize a 
conversion routine on the receiving side (cur- 
rently not done on the x86 side). 

3.4    Details of dynamic code generation 

The dynamic code generation in PBIO is performed 
by Vcode, a fast dynamic code generation package 
developed at MIT by Dawson Engler[5]. We have 
significantly enhanced Vcode and ported it to several 
new architectures.   The present implementation we 

can generate code for Sparc (v8, v9 and v9 64-bit), 
MIPS (old 32-bit, new 32-bit and 64-bit ABIs) and 
DEC Alpha architectures. An x86 port of Vcode is in 
progress, but not yet sufficiently advanced for us to 
generate PBIO's conversion routines. Vcode essen- 
tially provides an API for a virtual RISC instruction 
set. The provided instruction set is relatively generic, 
so that most Vcode instruction macros generate only 
one or two native machine instructions. Native ma- 
chine instructions are generated directly into a mem- 
ory buffer and can be executed without reference to 
an external compiler or linker. 

Employing DCG for conversions means that PBIO 
must bear the cost of generating the code as well 
as executing it. Because the format information in 
PBIO is transmitted only once on each connection 
and data tends to be transmitted many times, con- 
version generation is not normally a significant over- 
head. Yet that overhead must still be considered to 
determine whether or not the use of DCG results in 
performance gains. 

The proportional overhead encountered in actually 
generating conversion code varies dramatically de- 
pending upon the internal structure of the record. 
This differs from the situation in Figure 5, where 
the worst-case conversion run-time is more dependent 
upon the size of the message than its structure. To 
understand this variation, consider the conversion of 
a record that contains large internal arrays. In this 
case, the conversion code consists of a few for loops 
that process large amounts of data. In comparison, 
a record of similar size consisting solely of indepen- 
dent fields of atomic data types requires custom code 
for each field. The result is that for records consisting 
solely of arrays, DCG almost always improves perfor- 
mance. For array-based records of around 200 bytes 
the time to generate and execute dynamic conversion 
code is less than the time to perform an interpreted 
conversion. At that point, DCG is a performance im- 
provement, even if the conversion routine is only used 
once. 

The situation is less clear for record formats con- 
sisting mostly of individual atomic fields. For this 
type of record, dynamically generated conversions 
run nearly an order of magnitude faster than inter- 
preted conversions, but the one-time cost of doing the 
code generation is relatively high. Obviously, if many 
records are exchanged, the costs will be amortized 
over the improved conversion times. But for one- 
time exchanges dynamic code generation for conver- 
sions may be more expensive than simple interpreted 
conversions. 
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start of proceedure bookkeeping 
save    Xsp,  -360, Xsp 

byteswap load and store the 'lvalue' field. 
clr    Xgl 
ldswa    [ XiO + y.gi ] #ASI_P_L, Xg2 
st    Xg2,   [ */.il ] 

byteswap load and store the 'dvalue'field 
mov    4,  Xgl 
ldswa [ XiO + */.gl ] #ASI_P_L, y.g2 
mov 8, */,gl 

ldswa [ y.io + y.gi ] #ASI_P_L, y.g3 
st y.g3, [ */.sp + 0x158 ] 
st y.g2, [ y.sp + ox i5c ] 
ldd [ y.sp + 0x158 ] , y.f 4 
std y.f4, [ y.ii + 8 ] 

loop to handle 'iarray' 
save 'incoming' and 'destination'pointers for later 
restoration 

st    y.iO,   [ y.sp + 0x160 ] 
st    Xil,   [ */.sp + 0x164 ] 

make regs iO and il point to start of incoming and 
destination float arrays 

add   '/.iO, Oxc, XiO 
add %il, 0x10, Xil 

setup loop counter 
mov 5, Xg3 

loop body. 
clr Xgl 
ldswa [ XiO + Xgl ] #ASI_P_L, Xg2 
st Xg2, [ Xil ] 

end of loop, increment 'incoming' and 'destination', 
decrement loop count, test for end and branch 

dec    Xg3 
add   XiO, 4, XiO 
add   Xil, 4, Xil 
cmp    Xg3, 0 
bg,a      0xl85c70 
clr    Xgl 

reload original 'incoming' and 'destination'pointers 
Id    [ Xsp + 0x160 ], XiO 
Id    [ Xsp + 0x164 ],  Xil 

end-of-procedure bookkeeping 
ret 
restore 

Figure 7: A sample DCG conversion routine. 

For the reader desiring more information on the 
precise nature of the code that is generated, we in- 
clude a small sample subroutine in Figure 7. This 
particular conversion subroutine converts message 
data received from an x86 machine into native Sparc 
data. The message being exchange has a relatively 
simple structure: 

typedef struct small_record { 
int ivalue; 
double dvalue; 
int iarray[5]; 

}; 

Since the record is being sent from an x86 and PBIO 
always sends data in the sender's native data formats 
and layout, the "wire" and native formats differ in 
both byte order and alignment. In particular, the 
floating point value is aligned on a 4-byte boundary 
in the x86 format and on an 8-byte boundary on the 
Sparc. The subroutine takes two arguments. The 
first argument in register */,i0 is a pointer to the in- 
coming "wire format" record. The second argument 
in register */,il is a pointer to the desired destination, 
where the converted record is to be written in native 
Sparc format. 

The exact details of the code are interesting for a 
couple of points. First, we make use of the SparcV9 
Load from Alternate Space instructions which can 
perform byteswapping in hardware during the fetch 
from memory. This yields a significant savings over 
byteswapping with register shifts and masks. Since 
this is not an instruction that is normally generated 
by compilers in any situation, being able to use it 
directly in this situation is one of the advantages of 
dynamic code generation. 

Second, from an optimization point of view, the 
generated code is actually quite poor. Among other 
things, it performs two instructions when one would 
obviously suffice, and unnecessarily generates an ex- 
tra load/store pair to get the double value into a float 
register. The are several reasons for this suboptimal 
code generation, including the generic nature of the 
virtual RISC instruction set offered by Vcode, the 
lack of an optimizer to repair it, and the fact that 
we have not seriously attempted to make the code 
generation better. Even when generating poor code, 
DCG conversions are a significant improvement over 
other approaches. 

Examining the generated code may also bring to 
mind another lurking subtlety in generating conver- 
sion routines: data alignment. The alignment of 
fields in the incoming record reflects the restrictions 
of the sender.  If the receiver has more stringent re- 
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Figure 8: Comparison between PBIO and MPICH in structure and array exchange time. 

MPICH PBIO 

data size total time 
send 
side 

overhead 

receive 
side 

overhead 
total time 

send 
side 

overhead 

receive 
side 

overhead 

100Kb 20.8ms 0.46 0.78 18.3 0.0028 0.034 

10Kb 3.02ms 0.083 0.20 2.52 0.0028 0.034 

1Kb 1.06ms 0.0097 0.086 0.90 0.0028 0.034 

100b .63ms 0.0056 0.076 0.52 0.0028 0.034 

Table 1: A comparison of PBIO and MPICH for homogeneous exchange of arrays 

strictions, the generated load instruction may end 
up referencing a misaligned address, a fatal error 
on many architectures. This situation would actu- 
ally have occurred in in the example shown in Fig- 
ure 7, where the incoming double array is aligned on 
a 4 byte boundary because the Sparc requires 8 byte 
alignment for 8-byte loads. Fortunately, the subop- 
timal Sparc dynamic code generator loads the two 
halves of the incoming 8-byte doubles with separate 
ldswa instructions instead of a single lddf a instruc- 
tion. 

Data alignment is generally not an issue in storing 
to the native record because it is presumably aligned 
according to the requirements of the receiving ma- 
chine. We also assume that the base addresses of 
the incoming and native records are strongly aligned. 
This leaves the offsets of the incoming record fields as 
the primary source of misalignment. Since these are 
known at code generation time, we can make static 
decisions about using efficient direct loads for aligned 
data or using potentially less efficient methods for un- 
aligned data.3 

3
 Our current code generator does not handle misaligned 

accesses, but the extension to handle them is straightforward. 

3.5    Other data types and homogeneous 
systems 

The previous sections compared PBIO's performance 
with that of MPICH in situations involving a het- 
erogeneous exchange of structures containing mixed 
types. While PBIO shows clear and significant 
performance gains over MPICH in that situation, 
MPICH might be expected to perform better in deal- 
ing with messages consisting of contiguous arrays, or 
in a homogeneous exchange where it might not use 
an XDR-based encoding scheme. 

Figure 8 shows a breakdown of MPICH and PBIO 
performance for heterogeneous transmission of a 
100Kb floating point array and compares it to the 
previously presented breakdowns for the 100Kb struc- 
ture. This figure shows that PBIO's performance 
remains essentially unchanged when the datatype is 
changed from structure to an array. MPICH perfor- 
mance does improve with contiguous arrays, but not 
to the point where it matches PBIO's performance. 
The results for smaller datatypes are similar. 

A comparison of round-trip times for contiguous ar- 
rays between homogenous machines is shown in Ta- 
ble 1.   This is one of the simplest cases in binary 
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Figure 10:   Receiver-side decoding costs with 
and without an unexpected field - homoge- 
neous case. 

communication, requiring no data conversion of any 
kind. The send and receive side overheads are tiny 
compared to the time required for network transmis- 
sion, but PBIO retains a slight edge over MPICH in 
both receive and send side overheads. These differ- 
ences largely account for the 10% or so better per- 
formance that PBIO achieves in round-trip time for 
these contiguous arrays. 

That PBIO has better performance than MPICH 
even in situations where MPICH might be expected 
to prevail is convincing evidence that PBIO's extra 
flexibility in supporting application evolution does 
not negatively impact performance in other situa- 
tions. The next section will examine PBIO's per- 
formance in the presence of application evolution. 

3.6    Performance in application evolution 

The principal difference between PBIO and most 
other messaging middleware is that PBIO messages 
carry format meta-information, somewhat like an 
XML-style description of the message content. This 
meta-information can be an incredibly useful tool 
in building and deploying enterprise-level distributed 
systems because it 1) allows generic components to 
operate upon data about which they have no a priori 
knowledge, and 2) allows the evolution and extension 
of the basic message formats used by an application 
without requiring simultaneous upgrades to all appli- 
cation components. In other terms, PBIO allows re- 
flection and type extension. Both of these are valuable 
features commonly associated with object systems. 

PBIO supports reflection by allowing message for- 
mats to be inspected before the message is received. 
It's support of type extension derives from doing field 
matching between incoming and expected records by 
name.    Because of this, new fields can be added 

to messages without disruption because application 
components which don't expect the new fields will 
simply ignore them. 

Most systems which support reflection and type 
extension in messaging, such as systems which use 
XML as a wire format or which marshal objects as 
messages, suffer prohibitively poor performance com- 
pared to systems such as MPI which have no such 
support. Therefore, it is interesting to examine the 
effect of exploiting these features upon PBIO perfor- 
mance. In particular, we measure the performance ef- 
fect of type extension by introducing an unexpected 
field into the incoming message and measuring the 
change in receiver-side processing. 

Figures 9 and 10 present receive-side processing 
costs for an exchange of data with an unexpected 
field. These figures show values measured on the 
Sparc side of heterogeneous and homogeneous ex- 
changes, respectively, using PBIO's dynamic code 
generation facilities to create conversion routines. It's 
clear from Figure 9 that the extra field has no ef- 
fect upon the receive-side performance. Transmitting 
would have added slightly to the network transmis- 
sion time, but otherwise the support of type extension 
adds no cost to this exchange. 

Figure 10 shows the effect of the presence of an 
unexpected field in the homogeneous case. Here, the 
overhead is potentially significant because the homo- 
geneous case normally imposes no conversion over- 
head in PBIO. The presence of the unexpected field 
creates a layout mismatch between the wire and na- 
tive record formats and as a result the conversion 
routine must relocate the fields. As the figure shows, 
the resulting overhead is non-negligible, but not as 
high as exists in the heterogeneous case. For smaller 
record sizes, most of the cost of receiving data is ac- 
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tually caused by the overhead of the kernel select () 
call. The difference between the overheads for match- 
ing and extra field cases is roughly comparable to the 
cost of memcpy () operation for the same amount of 
data. 

The results shown in Figure 10 are actually based 
upon a worst-case assumption, where an unexpected 
field appears before all expected fields in the record, 
causing field offset mismatches in all expected fields. 
In general, the overhead imposed by a mismatch 
varies proportionally with the extent of the mis- 
match. An evolving application might exploit this 
feature of PBIO by adding any additional at the 
end of existing record formats. This would minimize 
the overhead caused to application components which 
have not been updated. 

4    Conclusions 

Current distributed applications rely heavily on 
leveraging the computing power of heterogeneous net- 
works of computer architectures. The PBIO library is 
a valuable addition to the mechanisms available for 
handling binary data interchange among these het- 
erogeneous distributed systems. PBIO performs ef- 
ficient data translations, and supports simple, trans- 
parent system evolution of distributed applications, 
both on a software and a hardware basis. 

Rather than relegating message packing and un- 
packing operations to the communicating applica- 
tions, thus requiring a priori agreement on these 
data structures, PBIO efficiently layers and abstracts 
diversities in computer architectures. Applications 
need only agree on data by name, and previously ex- 
posed concerns such as byte ordering, architecture 
specifications, data type sizes, and compiler differ- 
ences are no longer a concern. Since PBIO uses dy- 
namic code generation rather than data interpreta- 
tion, compiler optimizations are utilized without the 
cumbersome limitations of static data structures. 

Enterprise-scale distributed computing can be im- 
plemented and deployed much more simply and effi- 
ciently using PBIO's flexibility, not only initially, but 
during the evolution of specific distributed compo- 
nents. Data elements can be incrementally to the ba- 
sic message formats of distributed applications with- 
out disrupting the operation of existing application 
components. 

The measurements in this paper have shown that 
PBIO's flexibility does not impact its performance. 
In fact, PBIO's performance is better than that of a 
popular MPI implementation in every test case, and 
significantly better in heterogeneous exchanges. Per- 

formance gains of up to 60% are largely due to: 
• virtually eliminating the sender-side encoding 

cost by transmitting in the sender's native for- 
mat, and 

• using dynamic code generation to perform data 
conversion on the receiving side. 

In short, PBIO is a novel messaging middleware 
that combines significant flexibility improvements 
with an efficient implementation to offer distributed 
applications fast heterogeneous binary data inter- 
change. 
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Abstract 

A heuristic algorithm that maps data-processing tasks 
onto heterogeneous resources (i.e., processors and links of 
various capacities) is presented. The algorithm tries to 
achieve a good throughput of the whole data-processing 
pipeline, taking both parallelism (load balance) and com- 
munication volume (locality) into account. It performs well 
both under compute-intensive and communication-intensive 
conditions. When all tasks/processors are of the same size 
and communication is negligible, it quickly distributes the 
compute load over processors and finds the optimal map- 
ping. As communication becomes significant and reveals as 
a bottleneck, it trades parallelism for reduction of commu- 
nication traffic. Experimental results using a topology gen- 
erator that models the Internet show that it performs sig- 
nificantly better than communication-ignorant schedulers. 

1. Introduction 

It is widely believed that future computing environmen- 
t will consist of geographically distributed compute- and 
data-resources connected with diverse communication ca- 
pacities, forming a so-called "computational Grid" environ- 
ment [10]. Computational elements range from a desktop 
to clusters [4, 5] to supercomputers, and links range from 
phone lines to gigabits system area networks. Both CPU 
capacity and the network connectivity are improving in a 
rapid pace, but the recent trend indicates network band- 
width increases more rapidly than CPUs. As a consequence, 
communication-intensive parallel jobs, which we are cur- 
rently able to run only on dedicated supercomputers or clus- 
ters, are likely to be hosted by a collection of desktops in 

•Also affiliated to Departement of Information Science, University of 
Tokyo. 

laboratories or even home. This brings the Grid beyond 
just an aggregation of computational horsepower and en- 
ables a qualitatively different use of it. On the other hand, 
it presents significant resource management problems to all 
levels of parallel/distributed software developments. 

One of the fundamental elements of such resource man- 
agement problems is, given an application that consists of 
many communicating tasks, to select a suitable set of re- 
sources and map its tasks appropriately. To obtain a robust 
performance across a wide range of resource configurations, 
mapping algorithms must trade load balancing for the re- 
duction of communication, and vice versa. 

In this paper, we present a graph-theoretic formulation 
of this general problem and propose its heuristic algorith- 
m. The algorithm takes as input a task graph and a re- 
source graph and outputs the mapping from tasks to pro- 
cessors. A task graph models a data processing pipeline; a 
task in a pipeline continuously receives data from adjacen- 
t tasks, processes them, and sends processed data to other 
tasks. Weights of nodes and edges represent compute and 
communication requirements of these tasks, respectively. A 
resource graph models processors and links. Weights of n- 
odes and edges represent their compute and communication 
capacities, respectively. If too many tasks are assigned on a 
processor or too much communication goes through a link, 
the processor or the link becomes a bottleneck and deter- 
mines the overall throughput of the entire pipeline. 

The key to achieving a good throughput is clustering of 
a task graph, a process which recognizes highly-connected 
components in a task graph. A cluster in a task graph repre- 
sents a set of tasks that are intensively communicating with 
each other. These tasks should be placed in a single proces- 
sor if available communication bandwidth is low. Among 
several graph clustering methods proposed in the literature 
[9,13,28], we use a simplified version of the stochastic flow 
injection method [29, 30] proposed by by Yeh et al. 

Under a simple condition in which tasks and proces- 
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sors are of a uniform weight and communication is neg- 
ligible, it guarantees to quickly give the optimal solu- 
tion, in which tasks are uniformly distributed over proces- 
sors. As communication becomes significant and reveals 
as a bottleneck, it co-locates highly communicating tasks 
to reduce communication traffic. We have implemented 
the algorithm in scripting language Python [16] and per- 
formed experiments using a simplified version of an Internet 
topology generator [7, 12] to generate a realistic resource 
graph. As we expected, our algorithm significantly out- 
performs simpler, communication-ignorant algorithms on 
communication-intensive conditions. 

The rest of the paper is organized as follows. Section 2 
gives a practical motivating scenario that we envision will 
commonly occur in emerging Grid applications. Section 3 
is devoted to the problem formulation and Section 4 de- 
scribes its algorithm. Section 5 shows experimental results. 
Section 6 mentions relationship to other work and Section 7 
summarizes the paper and states future work. 

2. A Practical Scenario 

Consider an application which reads a large volume of 
data from geographically distributed source (storage serv- 
er), processes them, and displays the result on a desktop. 
An example of such application is SARA [22], in which the 
data is surface data of the earth. Emerging distributed ap- 
plications that use geographically distributed data such as 
digital libraries [1] and scientific data archives [6] will have 
more or less this kind of structure. 

Even in this fairly simple setting, one question that aris- 
es is where the data should be processed. The best de- 
cision clearly depends on how computationally expensive 
the processing is, how much data it reads from the source 
and writes to the display, how computationally powerful are 
the desktop and the storage server, and how much band- 
width we have between these nodes. The decision is much 
more complex when we have a more involved data process- 
ing pipeline and more available resources such as parallel 
compute-servers. Finally, the availability of all these re- 
sources changes over time. For example, processing should 
be done on the desktop when the storage server is highly 
loaded. 

It can easily be seen that it is, if not impossible, difficult 
and time-consuming for individual application developers 
to implement a decision that works in a wide range of re- 
source configurations, even in a very simple case like this. 
Application-specific solutions, if any, would not generalize 
to even more complex and dynamic cases, in which we have 
hundreds of tasks that are created and ceased over time. 

3. Problem Description 

3.1. Preliminary Definitions and Notations 

Resource Graph and Task Graph: A resource graph is 
a weighted graph (both nodes and edges are weighted).1 A 
node of a resource graph represents a processor and an edge 
a link between a pair of processors. The weight of a node 
represents the processor's compute capacity (the amount of 
computation that can be performed in a unit time) and that 
of an edge the link's communication capacity (the amount 
of data that can go through the link in a unit time). 

A task graph is also a weighted graph. A node of a task 
graph represents a task and an edge a continuous communi- 
cation (stream) between a pair of tasks. The weight of a n- 
ode represents the task's compute requirement (the amount 
of computation that must be done for this task to make a unit 
progress) and that of an edge the communication require- 
ment of the connected tasks (the amount of data that must 
be communicated for these tasks to make a unit progress). 

Note that a task graph is not a traditional dependence 
graph, in which an edge s -)• t represents the fact that task 
t can start its computation only after s has finished. Rather, 
our task graph models a data processing pipeline, in which 
all tasks continuously receive pieces of data, process them, 
and then send the processed data. A typical example is a 
multimedia data processing pipeline such as Smart Kiosk 
[21, 20], in which the natural unit of work is a frame. Typi- 
cal tasks include compression, decompression, color track- 
ing, object detection, and so on. A weight of a node is the 
amount of computation performed by the task per single 
frame, whereas that of an edge the size of transferred da- 
ta per frame. 

Unlike other formulations [14, 26], our model does not 
have an explicit notion of parallelized tasks. That is, a s- 
ingle node of a task graph can be mapped only on a single 
node of a resource graph. A parallelized task can be to some 
extent modeled by many nodes that together represent a s- 
ingle logical task. 

Notations: Let G be a weighted graph. Gt is the weight 
of node i and dj the weight of edge i -» j. Gl is the 
weighted graph isomorphic to G, in which the weight of 
node i is one and that of all other nodes/edges is zero. Gi,j 

is the weighted graph isomorphic to G, in which the weight 
of the edges along the path from i to j is one and that of all 
other nodes/edges is zero (Figure 1). If there are multiple 
paths between a pair of nodes, we fix one such path. 

Let G and H be isomorphic weighted graphs. We define 
G + H as node- and edge-wise addition of their weights. 
We similarly define G-H and G/H. Let A; be a scalar, kG 

'Graphs can either be directed or undirected, but the following discus- 
sion assumes directed graphs. 
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Figure 1. A weighted graph G, Gl, and Ghj. 

denotes a graph isomorphic to G whose weights are multi- 
plied by k. 

Interpretation: As we mentioned earlier, a task graph 
models a set of tasks each of which repeatedly receives da- 
ta from other tasks, performs some computation on them 
to produce other data, and sends the produced data to oth- 
er tasks. We make it more precise by showing the pseudo 
code for a task t in a task graph G = (V, E), as shown in 
Figure 2. 

The progress rate of task t is determined by several fac- 
tors. First, t will experience a certain amount of wait time 
at the wait phase, if tasks that are sending data to t can- 
not produce data fast enough or the bandwidth from these 
tasks to t are not enough. Second, more obviously, this task 
will spend some time at the compute step. Finally, the time 
taken at the send step will be determined by outgoing band- 
width and how fast receiving tasks can consume data. 

As will be made clear in the next section, our problem 
formulation effectively makes idealizing assumptions that 
the progress rate of this task is determined by the maxi- 
mum, rather than the summation, of these three factors. For 
example, if the wait step in isolation takes 5 time units, the 
compute step 3 time units, and the send step 2, then u- 
nit-progress as a whole takes only 5 time units, rather 
than 5 + 3 + 2 = 10. This approximates a situation in 
which these three phases interleave in the infinitely fine- 
grained manner; that is, compute phase begins process- 
ing data when a single bit of data appears in the incoming 
stream, and the send phase sends data as soon as produced. 

/*G = (V,E). 
a unit work task t repeats. */ 

unit_pregress(£) 

{ 
/*(l)wait*/ 
for s G V s.t. s-->te E{ 

wait for GStt units (e.g., bytes) of data 
to arrive from s; 

} 
/* (2) compute */ 
perform Gt units of computation upon the 

received data; 
/* (3) send */ 
for u € V s.t. t -> u € E { 

send Gt,u bytes of data to u; 

} 
} 

/* a task t simply repeats unit-progress forever */ 
task(t) 

{ 
while (1){ 

unit.pr ogres s(t); 

} 
} 

Figure 2. Pseudo code for task t. 

3.2. Formulation 

We are interested in the throughput (the number of work 
units completed per unit time) of the system in equilibrium. 
Given a mapping from tasks to processors, it determines 
the amount of computation each processor must perform to 
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make all tasks complete a unit work; it is simply the summa- 
tion of task weights mapped on the processor in question. 
It similarly determines the volume of data each link must 
transfer to have all tasks make a unit-progress. By dividing 
the requirement at each node (edge) by its corresponding 
computation (communication) capacity, we have the time 
required to service requested computation/communication 
at the node (edge). We call it occupancy at the node (edge). 
The maximum occupancy over the entire graph gives us the 
time required to unit-progress all tasks. The goal is to make 
the maximum occupancy of the mapping as small as possi- 
ble. Note that an occupancy is the inverse of the number of 
unit works finished per a unit time. Thus, minimizing the 
occupancy is equivalent to maximizing the throughput. 

A more formal description follows. Let G = (VG, EG) 

be a task graph and P = (VP,EP) a processor graph. Let 
m be a mapping from VG to VP. We define the load graph 
of the mapping, denoted by L(G, P, m), as: 

L(G,P,m) = Y,GtPm{t)+   Yl   GMPm(s)'mW 

t€V (s,t)£E 

That is, a load graph is a graph whose weights represent 
the amount of computation and communication required (at 
each node and edge) to unit-progress all tasks. 

Occupancy graph of the mapping, denoted by 
0(G,P,m), is obtained by simply dividing the load 
by the capacity at each node and edge: 

0(G,P,m)=L(G,P,m)/P 

The goal is to find a mapping m that minimizes 
max(0(G, P, m))t where max(X) is the maximum weight 
over nodes and edges in graph X. Figure 3 shows an exam- 
ple of a load graph and an occupancy graph. 

Note that the above formulation effectively assumes that 
all tasks progress in the same pace; when any of the tasks 
takes x unit time to make a unit progress, all the other tasks 
also take x. In other words, resources are never used to 
make some tasks go faster than the others. This is a prac- 
tical assumption because, assuming finite communication 
buffers, any pair of communicating tasks must progress in 
the same pace in equilibrium. Consequently, for connected 
task graphs, tasks must eventually match their paces with 
all the other tasks. 

Finally, we state that this problem is NP-hard. We 
show that the corresponding decision problem TASKMAP, 
which asks if a mapping whose maximum occupancy is 
no greater than a specified limit exists, is NP-hard. There 
are several NP-hard problems that straightforwardly reduce 
to TASKMAP. Reducing Knapsack problem is particularly 
simple; we however use a reduction from the two-way graph 
partitioning problem which is also NP-hard [19], because 
we believe it better illustrates the difficulty of the problem 

30.0 

\ r 
10^0| 20.0 

S / 
10.0 

P G 
m = {(a,p),(b,q\(c,q),(d,r)Ae,s) 

p 

]S~\ 3. 
[3.1>~. 
h—(4.1 

+4.1 

/ r 
(u) (g 

s / 
(u) 

<3.2+«.2)/45.0        420S.O 

'       P ./ \   / 
2.1/10.0 5.1/20.0 

y 
<■ 5.2/15.0 
s   y 

1.1/10.0 

L(G, P, m) 0(G, P, m) 

Figure 3. Load graph and occupancy graph. 

(in particular it also shows the problem remains NP-hard 
even if we restrict all tasks to be the same size). The graph 
partitioning problem, PARTITION, takes an (unweighted) 
graph G = (V, E) and an integer c as input, and asks if there 
is a partition V = Vi + V2, such that Vi and V2 are disjoint 
and equal size (i.e., Vi H V2 = 0 and |Vi| = |V2| = |V|/2) 
and the number of edges between Vi and V2 is < c. 

Theorem 1 TASKMAP is NP-hard. 

Proof: For a given instance of PARTITION G = (V, E) 
and c, we construct an instance of TASKMAP as follows. 

• The task graph is a graph isomorphic to G, whose node 
weights and edge weights are all ones. 

• The resource graph is a graph of two nodes, whose 
weights are both | V|/2, and the weight of the edge be- 
tween the two is c. 

• The maximum occupancy is one. That is, we ask if 
there is a mapping whose maximum occupancy is no 
greater than 1. 

It is easily seen that if and only if there is such a map- 
ping, there is a solution for the original graph partitioning 
problem, and the reduction can be performed in a polyno- 
mial time (Q.E.D). 
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4. The Algorithm 

4.1. Motivating Example 

If tasks are very compute-bound (communication is al- 
most negligible), mapping is relatively straightforward, at 
least when task sizes are fairly uniform. It simply amounts 
to assigning each processor task weights roughly proportion 
to its compute capacity. Our main contribution is on cases 
where tasks are more communication intensive, thus such 
communication-ignorant mappings result in excess traffic 
that limits the performance. With increasing communica- 
tion intensity of tasks, it becomes likely that mapping tasks 
that intensively communicate with each other on the same 
processor results in a significantly better performance. 

As is the case in most combinatorial problems, the fun- 
damental difficulty in achieving such mappings lies in the 
fact that the performance as a function of mappings is quite 
discontinuous and there are many local optima; the de- 
sired mapping is quite different from one communication 
intensity to another, and mappings that are in some sense 
'between' these desired mappings are typically worse than 
both. Therefore it is difficult to move from one desired map- 
ping to another by a series of greedy moves. To illustrate 
this, consider a task graph shown in Figure 4 where all n- 
odes weigh one and all edges weigh c (a parameter). When 
c is very small, the desired mapping will typically be the 
one in which a single processor has a single task (assuming 
sufficient number of equally powerful processors). As c in- 
creases up to a certain threshold, the best mapping will typi- 
cally become the one in which a single processor is assigned 
to a single cluster of tasks (as easily perceived by humans). 
Everything between these two extremes (for example, map- 
pings in which a single processor has two tasks) are typical- 
ly worse than both. This is because, when compared to the 
first extreme (one task per processor), the amount of traffic a 
single processor sends or receives increases, thus it does not 
reduce the communication bottleneck. The communication 
bottleneck can be eliminated only by moving all tasks of a 
cluster to a single processor. This property prohibits the use 
of a simple local search strategy which tries to find a task 
t and a processor p such that moving t to p improves the 
objective function. It is quite unlikely that a series of such 
moves eventually reaches the desired extreme, whichever is 
the better. 

4.2. Overall Structure 

As is easily seen from the example just discussed, the 
key to achieving a good mapping is to recognize highly- 
connected clusters, and use this clustering information to 
guide the mapping process. Our basic approach is to linear- 
ly order tasks in such a way that tasks within a cluster are 

Figure 4. A graph with highly-connected 
subgraphs. 

close to each other, and put tasks to processors according 
to this order (as indicated by the labels in the figure). If a 
single processor is assigned to multiple tasks, they are like- 
ly to be in the same cluster, and therefore, when the tasks 
turn out to be communication-bound, processors can reduce 
communication simply by accommodating more tasks from 
the list. 

To continue the above example, we first pick up a proces- 
sor and move tasks to it from the list. As tasks are ordered 
as shown in the figure, we exclusively choose tasks from a 
cluster (labeled A) in the beginning. The remaining prob- 
lem is when we should stop this process and go onto the 
next processor. The best answer again depends on commu- 
nication intensity; when c is small, it is typically when the 
compute-load is best balanced among processors, and oth- 
erwise when one or more clusters have just moved. Details 
are given in Section 4.4. 

Our entire algorithm first obtains the appropriate order of 
tasks based on a simplified version of stochastic flow injec- 
tion method proposed in [29, 30]. Given this information, it 
obtains an initial mapping and then improves it step by step. 
The elementary procedure mentioned above is used both to 
obtain the initial mapping and to improve it. The top-level 
structure of the algorithm is illustrated in Figure 5. 

In the following sections, we first describe the cluster- 
ing algorithm to obtain the order of tasks in Section 4.3, 
the elementary procedure that moves tasks to a processor 
from the list in Section 4.4, and how to improve the map- 
ping once obtained in Section 4.5. Throughout the sections, 
G = (VG,EG) and P = (VP,EP) refer to the given task 
graph and the resource graph, respectively. As a conven- 
tion, we do not update data structures in place (we always 
rebind a variable to signify an update). Variables assigned 
in one iteration of a loop and used in the next is subscripted 
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I*G=(VG,EG): task graph. 
P = (Vp, EP) : resource graph. */ 

taskmapO 

{ 
<G = clustering(G); — (section 4.3) 
m = {};/* empty map */ 
m = map_tasks(m); — (section 4.4) 
repeat { 

m' = m; 
m =improve(m'); — (section 4.5) 

} while(0(G,P,m) < 0(G,P,m')) 

Figure 5. The overall structure of the algo- 
rithm. 

by a loop index, even though it is a single variable in the 
real program. 

Finally, we made various simplifications for the purpose 
of presentation. For example, the following algorithm cal- 
culates L(G, P, m) many times, with m's that only slightly 
differ from each other. The actual program keeps track of 
L(G, P, m) all the time and incrementally updates it as m 
changes. This kind of practical optimizations are not ex- 
plicit in the description. 

4.3. Clustering Task Graph 

The clustering algorithm is shown in Figure 6. Given a 
graph H, it first creates a tree that hierarchically decompose 
the task graph into clusters (line 3). The root of the tree rep- 
resents the entire set of nodes, whereas a leaf a singleton 
set of a node. Children of a node are partitions of the par- 
ent node, obtained by a simplified stochastic flow injection 
method as described below. Once such a tree is obtained, 
we determine a total order between nodes, <H, simply by 
traversing the tree in a depth-first order (line 4). 

The stochastic flow injection was originally proposed for 
VLSI circuit partitioning and works as follows: 

1. Randomly pick up two nodes s and t of the given graph 
G. 

2. Find the shortest path between s and t. 

3. Decrement the weights of all the edges on the path by 
a (small) constant A (i.e., inject a flow A between s 
and t). 

4. Remove edges whose weight become zero or negative. 

1:   c luster ing(fl') 
{ 

T =recursive_clustering(üf); 
<H= depth-first traversal order of T; 

5:      return <#; 

} 

recurs i ve_c luster ing(H) 
H — (V, E) I* a subgraph of the task graph */ 

10: { 
if (V is singleton (= {v})) { 

return leaf(t;) 
} else { 

Hi, ■ ■ •, Hn =clusters obtained by 
15: stochastic flow injection (see text); 

return node^ecursive-clustering^), 
• • •, recursive-clustering^,,)); 

} 

Figure 6. Clustering Task Graphs. 

5. Repeat 1-4 until the graph becomes unconnected. 

6. When graphs are disconnected, each connected com- 
ponent is a cluster. 

The intuition is that if only a small number of edges bridge 
two (or more) large clusters, such edges are likely to be 
decremented often, and the graph soon becomes disconnect- 
ed by these edges. 

In the original stochastic flow injection method, anoth- 
er phase follows to merge some of the clusters hereby ob- 
tained, but we simply skip this phase, because our purpose 
is to recursively decompose clusters until each cluster be- 
comes a singleton. We also slightly modified the above step 
1, so that a task is chosen by a probability proportional to 
its weight; this is necessary because the original stochastic 
flow injection method assumes uniform weights (as in the 
case in their application). 

4.4. The Elementary Move 

Procedure map.tasks shown in Figure 7 takes as a pa- 
rameter m, a partial mapping from tasks to processors (it 
is partial because some tasks are not mapped). It maps 
tasks not mapped in m onto Vp, by simply making a series 
of calls to a more elementary procedure map_tasks_on, 
which maps some tasks to a specified processor. 

The procedure map.tasks.on takes three parameters, 
77i, q, and Q; m is a partial mapping from tasks to pro- 
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1:   map-tasks(m) 

{ 
Q = Vp; 
while (£?#{}){ 

q = a processor £ Q; 

5: 0 = Q - { q }; 
m = map-tasks_ori(m, q, Q)\ 

} 
return m; 

} 
10: /* move some of the tasks not mapped in m to 

processor q, taking open communication and 
the balance between { q } and Q into account */ 

map_tasks_on(m, q, Q) 

15:    Umo = { 11 not mapped in m }; 
fori = l,---,|J7mo| { 

t = the minimum task E Umi_x w.r.t. <G; 

m, = mj-i [i/g]; /* add mapping t^t q*l 

umi = ^., - {*}; 
20:       0 = 0(G,P,mi); 

Ocomp = Gcomp(v, ■»imiiQ)> 
/*0Comp = Ooif(5 = {}*/ 
0_> =0-*(G,P,mi,Umi,q); 
0<_ =0^(G,P,mi,q,[/mv); 

25:       Mi = max(O,OComp,0->,O<-)'> 
} 
find i that gave minimum Mi {i = 1, 

break ties by selecting largest i. 
return mi; 

■-.Itfmol); 

30:} 

Figure 7. The elementary move operation. 

cessors, q a processor € Vp onto which some tasks are 
going to be mapped by the procedure, and Q a subset of 
Vp (q $. Q) yet unused. The goal is to put an appropri- 
ate number of tasks on q, so that we are likely to reach 
a good final mapping, if the remaining tasks are mapped 
on Q. As mentioned earlier, it puts tasks one after anoth- 
er in the order obtained by the clustering; as we add more 
tasks to q, we obtain a series of mappings m0 = m, m\ - 
m0[ti/q],m2 = mi[t2/q),- ■ ■ ,m„ = m„_i[i„/c?],2 where 
h <G h <G, ■ ■ ■, <G tn and m„ is the total mapping from 
VG to Vp. So the only question is which rrii we should 
choose. 

Let Um denote the set of tasks that are not mapped in m. 
At each step, we keep track of the following four (three in 
case of undirected graphs) values to evaluate the situation. 

• (Line 20): The current occupancy 0(G, P,rrii). 

• (Line 21): A hypothetic occupancy OCOmp- 
Ocomp{G,P,mi,Q) is an occupancy estimated 
by assuming that tasks G Umi are perfectly mapped 
on Q, ignoring communication. That is, it is simply 
the total compute requirement of these tasks over the 
total compute capacity of Q: 

Ocomp(G,P,m,Q) = Y.t€Vm 
Gt 

Spec? Pp 

For convenience we define this to be oo when Q = {}. 

(Lines 23 and 24): Hypothetic occupancies 
0-+(G,P,mi,Umi,q) and 0^{G,P,mi,q,Umi), 
which we call occupancies induced by open commu- 
nication. Given a set of tasks T and a processor q, 
we define open communication from T to q (from 
q to T) to be the total communication volume from 
tasks in T to tasks on q (from tasks on q to tasks in 
T). O-,.(G,P,m,T,q) refers to open communication 
from T to q divided by the total edge capacity adjacent 
to q. Similarly for 0<_. That is: 

0^(G,P,rn,T,q) = ^ Mv)=Q 

P, 
, and 

0^(G,P,m,q,T) = X 
P,<,)€EP 

r"-" 

6T,m(„) = ,G''* 

P.l)€EP 

When graphs are undirected, these two give the same 
value and are collectively referred to as 0o • 

At each step, we calculate the above four (or three in undi- 
rected case) values and record the maximum of them {Mi 
at line 25). The procedure returns rrii that minimizes Mt 

(lines 27-29). 
2m' = m[t/q] is an extension of m, s.t. m'(t) = q and m'(x) — 

m(x) for x ^ t. 
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The first item will be intuitive. The second one, OCOmP, 
tries to estimate how much is the final occupancy going 
to be. Given this estimate, we determine how many tasks 
should be accommodated to the current processor q. For 
example, suppose compute capacity of q is 1, the total com- 
pute capacity of Q 99, and the total compute requirement of 
tasks yet to be mapped 1,000. Ideally, we like to obtain a 
mapping whose maximum occupancy is close to 1,000/(1 + 
99) = 10. Put differently, when we compare a series of map- 
pings mi, m2, ■ ■ ; any mapping whose occupancy is below 
10 is equally good; there is no points in quitting at m^, when 
the occupancy of mi+i is still below 10. 

The third item, 0-+ (0<_) or, open communication met- 
ric is to identify m, at which the communication volume 
between tasks already mapped on q and those that are not is 
small. Keeping track of such communication is necessary 
because it is not taken into account by 0(G,P,m,i), which 
only counts tasks mapped in m;. This guides the mapping 
process, by giving following pieces of information: "rather 
than choosing an m5 at which open communication is so 
large, accommodate more tasks and choose m$, at which 
the processor is more loaded, but communication traffic is 
much smaller." Accurate estimation clearly requires not on- 
ly communication volume, but also the link bandwidth from 
q to processors that accommodate the other tasks. An ob- 
vious problem is we are yet to know how remaining tasks 
will be mapped, so we do not precisely know how much 
will the occupancy of these links be. We simply estimate 
this by: (1) calculating the total communication volume be- 
tween tasks on q and the remaining tasks, and (2) dividing 
it by the total link capacity adjacent to q. This effectively 
assumes such communication will be routed evenly across 
all adjacent links and internal links (not adjacent to a pro- 
cessor) will not be bottleneck. These assumptions, the first 
one in particular, may be optimistic and need be more so- 
phisticated when q has multiple adjacent links. In our ex- 
periments, a processor is adjacent only to a single link, thus 
this is not an issue. 

To illustrate how the procedure works, let us look at a 
process that maps tasks to a processor as shown in Figure 8. 
We start from the empty mapping and add tasks to the left 
processor, in the order indicated by the numbers. Edges 
and nodes in the task graph weigh one. The edge of the 
resource graph weighs one and the two nodes five. Figure 9 
plots O, Ocomp» and 0<_> (graphs are undirected) at every 
step. Observe that the open communication metric goes up 
and down and that Oj (the maximum of the three values) 
minimizes at m8, even though compute load between the 
two processors best balances at mn (the point where two 
graphs Ocomp and O intersect). Therefore the procedure 
will choose to put 8 tasks on the left processor, which is 
optimal. If edges of the task graph weigh much smaller 
(say, 0.1), on the other hand, the graph of 0++ will become 

Figure   8.   Example   graph   to   illustrate 
map_tasks_on. 

-Q_comp -»-O ^*-Q_<-> 

20 

IS 

10 

1      3      5      7      9     11     13     15    17     19    21 

number of tasks put on the left processor 

Figure 9. How O, Ocomp, and O^ changes as 
we put tasks to the left processor in Fig- 
ure 8. 

much lower, giving the best M» at mn. So in this case, the 
first processor will get 11 tasks, which is again optimal. 

Note that in general, for the easy case where commu- 
nication is negligible and task and processors weigh u- 
niformly (w.o.l.g. assume they weigh 1), the procedure 
map.tasks({}) is guaranteed to return the optimal map- 
ping in which no processors get more than \N/P~\ tasks, 
where N is the number of tasks and P the number of pro- 
cessors. To see this, consider what happens in the first call 
to map_tasks_on({}, q, VP - { q }). As communication 
is negligible, it simply amounts to finding the intersection 
of two graphs O = i and OCOmp = (N - i)/(P - 1). Solv- 
ing the equation O = OCOmp gives i = N/P and thus the 
best value is obtained either at \N/P] or \N/P] - 1. We 
can repeat this argument to show that this is the case for 
other processors. This property ensures our mapping proce- 
dure quickly gives a good solution for compute-mostly jobs 
without iterating improvements. 
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Other Implementation Notes: The actual implementa- 
tion of the procedure is a bit more sophisticated to avoid 
useless computation. 

• map-tasks_on quits as soon as 0(G,P,m,i) be- 
comes greater than any of Mj (J < i). Since 
0(G, P, mi) is monotonically non-decreasing with re- 
spect to i, once this condition is observed, we have: 

Mk > 0{G,P,mk) > 0(G,P,mi > Mj for all k > i. 

Thus there is no chance that we observe a better Mk 
in future. Again, this guarantees that in the easy case 
mentioned above, map_tasks_on quits as soon as it 
puts \N/P] + 1 tasks on a processor. 

• Both map-tasks and map-tasks_on optionally 
take one more parameter, u, which specifies the oc- 
cupancy they should at least achieve, map-tasks.on 
quits as soon as 0(G, P, mi) becomes greater than this 
value, map.tasks aborts the entire process as soon as 
OcomP(G, P,muQ) gets larger than u in an iteration. 
This is useful when we already know a mapping and 
try to improve it. In such circumstances, we determine 
u based on the current occupancy {e.g., u = the current 
occupancy x 0.9) and give it to map-tasks. 

4.5. Iterative Improvement 

Procedure improve in Figure 10 tries to improve a giv- 
en (total) mapping m by first removing some tasks from 
m (line 3) and then applying map-tasks to the partial 
mapping obtained this way. Obviously, the key is to iden- 
tify a small subset of tasks whose removal gives us a good 
chance to improve the mapping. A silly selection algorith- 
m could remove all the tasks from m, effectively applying 
map-tasks again from the empty mapping. 

The selection algorithm works as follows. 

1. First calculate the current max occupancy and multi- 
ply it by an acceleration factor (currently 0.75). We 
remove tasks until the resulting mapping gives max oc- 
cupancy below this value (line 10). 

2. We scan nodes and edges of the resource graph, trying 
to find an edge or a node whose occupancy is greater 
than it. 

3. If such a node is found, let p be the node. Find tasks Sj 
(i = 1,2, • • •). such that Sj is mapped on p and is not 
deleted yet. Among all such tasks, select the heaviest 
task. 

4. If such an edge is found, let / be the edge. Find pairs of 
tasks (sj, U) (i = 1,2, • ■ •). such that the route between 
Si and U (on the processor graph) uses I and either Si 

1: improve(m) 

{ 
m — remove_bottlenecks(m); 
m = map-tasks(m); 

5:      return m; 

} 

remove_bottlenecks(m) 

{ 
10:    o-0.75xma.\(O(G,P,m)); 

D = {}; /* set of deleted mappings */ 
while (max(0(G,P,m - D) > o)) { 

15: 

20: 

while (max(0(G,P,m-£>) 
L = L{G,P,m-D); 
find if any p € P and q e P s.t. Lp,q/PPtq > o; 
if found { 

select s,t£VG s.t. (s £ D or t & D), 
P£l*)Mt) = ^ and Gst is maximum; 

D = D + {(s,m(s)),(t,m(t))}; 
} else { 

there must be p € P s.t. Lp/Pp > o; 
select s € VG s.t. s g D, 

m(s) = p, and Gs is maximum; 
D = D + {(s,m{s))}; 

} 
25:     } 

return m — D; 

} 

Figure 10. The procedure to improve the 
current mapping. 
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or U is not deleted yet. Among all such pairs, select the 
most heavily communicating pairs and delete them. 

5. Repeat steps 2-4 until the occupancy becomes less than 
the target value computed at step 1. 

It basically tries to identify a set of tasks that form bottle- 
necks, tasks making the current occupancy so large. It finds 
an edge or node in the resource graph whose occupancy is 
larger than the target value calculated from the current oc- 
cupancy. If found, tasks contributing to the edge or the node 
are candidates. 

While reasonable, this algorithm still has a room for fur- 
ther improvements which we are yet to experiment with. It 
does not pay attention to communication induced between 
deleted tasks and undeleted tasks. If the communication be- 
tween them is large, attempts to moving those deleted tasks 
unavoidably induce a large communication traffic and are 
likely to fail. Among many ways to select candidate tasks, 
we like to select a set of tasks that do not intensively com- 
municate with the other tasks. If such selection cannot be 
obtained, it makes sense to co-migrate some of the other 
tasks too, even if they do not constitute the bottleneck. 

5. Experiments 

5.1. Graph Generation 

We used a simplified version of the Internet topology 
model described in [7, 12] to generate resource graphs. 
While they model WAN, MAN, and LAN, we omit MAN- 
s for simplicity and model resource graphs by two level 
(WAN and LAN) hierarchy. Given a configuration that 
describes such parameters as the number of WAN nodes, 
LANs, nodes within a LAN, and compute capacity of a pro- 
cessor, it generates a graph as follows. 

• First generate the specified number of WAN nodes and 
randomly place them in a specified rectangle. Create 
edges between all pairs of nodes, associating a cost 
proportional to its length with each edge. Then make 
the minimum spanning tree of the resulting complete 
graph. 

• Generate the specified number of LANs. For each 
LAN, first create a gateway and randomly place it in 
the specified rectangle. Connect gateway to its nearest 
WAN node. Then generate a randomly chosen number 
of nodes in the LAN. LAN is modeled as a (shallow) 
tree whose root is connected to its gateway and each 
node has a randomly chosen number of children. The 
compute capacity within a single LAN is uniform and 
chosen randomly. 

Generated Network 
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X 
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^\    LA^ ......   - 

80 

vr"" 
^ 

/ ^^ ■ 

60 «K \ 
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T* \ 

20 < \ / 

0 

 1  

** 
>          ' 

20 40 60 

Horizontal Distance 

80 100 

Figure 11. A typical resource graph used 
by the experiments. It was generated by a 
simplified Internet topology generator. 

Table 1 lists relevant parameters and Figure 11 shows a typ- 
ical graph generated by this model. A sector in the figure 
is a LAN, which has from 10 to 20 nodes. Depth of some 
sectors are one and that of others two. 

For task graphs, we generate a pipeline of parallel jobs 
for each run as follows. 

1. Randomly choose the number of tasks in a parallel job 
(m), and create a complete graph of m nodes. Nodes 
within a single parallel job are equally weighted and 
the weight is randomly chosen. 

2. Repeat the step 1 a randomly chosen number (n) of 
times and obtains complete graphs. 

3. Connect these complete graphs to form a simple 
pipeline (without branches and merges). To connec- 
t two complete graphs A and B, we simply form a 
complete bipartite graph (create an edge between ev- 
ery task in A and every task in B). Each edge weighs 
1.0/(o x b), where o and b are the number of nodes in 
A and B, respectively. The total communication vol- 
ume between two parallel jobs is always 1.0. 
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Resource Graph 
the number of WAN nodes 
the number of LANs 
bandwidth between WAN nodes 
WAN <-*■ LAN bandwidth 
LAN bandwidth 
the number of children for a LAN node 
compute capacity of a processor 

10 
10 

1000.0 
500.0 

50.0 
[5,20] 

[3.0,15.0] 
Task Graph 
the number of clusters in a task graph 
the number of tasks in a cluster 
compute requirement of a task 
(total) comm. between a pair of clusters 
communication intensity parameter 

[5,10] 
[5,10] 

[1.0,3.0] 
1.0 

c (see text) 

Table 1. Parameters used in the experi- 
ments. [a,b] means that a value is chosen 
randomly from [a, b] for each run. 

Edges within a single parallel job are equally weighted and 
the weight is chosen randomly from [1, c], where c is a pa- 
rameter that controls the communication intensity of the 
tasks. We compare performance of several algorithms for 
various values of c. 

Let us perform a rough calculation to see how communi- 
cation intensity of tasks vary according to c. Since compute 
requirement per task is from 1.0 to 3.0, and capacity per 
processor is 3.0 to 15.0, the occupancy of a processor ranges 
from 1.0/15.0 to 1.0, assuming a single processor accom- 
modates a single task. When sufficiently many tasks are 
created, one of the processors is likely to get an occupancy 
close to 1.0. On the other hand, since the number of tasks 
in a parallel job is from 5 to 10, the communication vol- 
ume per task is from 5c to 10c (ignoring inter-cluster com- 
munication, which is a fraction). Considering LAN band- 
width, which is 50.0, occupancy of an edge adjacent to a 
processor is 0.1c to 0.2c, again assuming a single task on a 
single processor. Comparing the expected node occupancy 
(« 1.0) and this value, clustering is unlikely to be necessary 
for c w 1. In this sense, for c « 1, tasks are hardly commu- 
nication intensive. For c « 16, on the other hand, an edge 
occupancy will range from 1.6 to 3.2, much larger than the 
expected processor occupancy. Therefore when c « 16, a 
good solution is likely to use clustering. 

5.2. Results 

We compare the following four algorithms for c = 1,2, 
4,8, 12, and 16. 

Base: Do not use the open communication metric de- 
scribed in Section 4.4. Also do not perform the im- 

provement phase described in Section 4.2. 

Base + improve: Do not use the open communication 
metric. Apply the improvement phase after an initial 
mapping is obtained, again without open communica- 
tion metric. 

Open: Use the open communication metric, 
perform the improvement phase. 

But do not 

Open + improve: Use the open communication metric 
and apply the improvement phase to the initial map- 
ping. 

For each value of c, we generate 32 instances of the problem 
and run the four algorithms. For each instance and for each 
algorithm, we calculate the improvement of the occupancy 
against Base. Graphs in Figure 12 show the result. A dot 
corresponds to an instance and the value represents the rela- 
tive improvement over Base (Note that in Base + improve, 
the number of dots looks much smaller than 32. This is be- 
cause results are in many cases 1; i.e., no improvement is 
observed). Figure 13 shows the average improvement over 
32 instances. 

It is clear that taking open communication into account 
becomes significant as tasks become communication inten- 
sive. As we have expected, all four algorithms perform e- 
qually well for c ss 1. Adding the iterative improvements 
to Open slightly improved performance, but not very much. 
As we have discussed in Section 4.5, our task selection al- 
gorithm is not very sophisticated yet, so we need more ex- 
periments to be conclusive. 

6. Related Work 

6.1. Task Scheduling 

There are a number of studies on task scheduling in het- 
erogeneous environments [8, 11, 15, 17, 18, 27]. To the 
author's knowledge, most of these work have been focus- 
ing on scheduling DAGs, in which a task graph represents 
dependencies between tasks. DAG scheduling problem and 
the throughput optimization problem discussed in this paper 
are quite different, both in terms of basic techniques em- 
ployed and target applications. In terms of techniques, most 
algorithms for DAG scheduling are more or less based on 
a list scheduling, whereas the basic model of the through- 
put optimization is graph partitioning. For target applica- 
tion, DAG scheduling applies to a set of many tasks that 
rarely communicate with each other, whereas the through- 
put optimization problem to tasks communicating via high- 
bandwidth streams. While both are important, we believe 
the throughput optimization problem discussed in this paper 
will increasingly become important for emerging multime- 
dia and data-intensive applications on wide area. 
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Figure 12. Improvements of the various 
methods over the Base method (Internet 
model). 
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Figure 13. Average improvements. 

Several studies on scheduling with bandwidth metrics 
have been done. Subhlok et al. [25, 26] studied optimal 
processor allocation for a set of communicating data paral- 
lel tasks, both with latency and bandwidth metrics. In their 
problem setting, performance of a task is a function of the 
number of processors allocated for that task and does not 
depend on which processors are used. They make a simi- 
lar assumption on communication performance. Therefore 
the problem amounts to determining how many processors 
should be allocated for each task. This effectively assumes 
two things. One is that processor speed is uniform. The oth- 
er is that link bandwidth is not only uniform but also very 
high, so the locations of communicating tasks do not matter. 
This will be a good model for system-area cluster, which is 
their target environment, but will not be directly applicable 
to multimedia/data-intensive applications on wide area. 

Developing applications that exhibit robust performance 
over a wide range of resource conditions have become such 
an important issue. Several frameworks have been pro- 
posed [3, 24] and many practical studies on adaptive appli- 
cations in heterogeneous environments have been conduct- 
ed [2, 23]. While such studies are certainly instructive, it is 
difficult for individual programmers to perform such studies 
for every single application. We believe that task mapping 
should be much more automated. 

6.2. Graph Partitioning 

Graph partitioning'tries to cut a graph into two ore more 
sub-graphs each of which is more connected than the en- 
tire graph. Our problem shares the common difficulty with 
this basic problem, in that moving any single node or ex- 
changing any single pair of nodes is not likely to improve 
the objective function. 

Kernighan and Lin [13] dealt with the basic two-way par- 
titioning problem to cut the graph into two graphs of exactly 
the same size and gave the basic idea to overcome the lo- 
cal optima. Fidducia and Mattheyses [9] proposed a faster 
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algorithm for a slightly different problem, in which a cer- 
tain amount of difference between the sizes of the two sub- 
graphs is accepted. Wei et al. further proposed a ratio cut 
[28], which automatically achieves a balance between a low 
cut size and a good ratio of the sub-graph sizes. Finally, Yeh 
et al. proposed multi-way partitioning based on stochastic 
flow injection method [29, 30]. 

While our current algorithm can basically use any good 
partitioning algorithm as the preprocessing of a task graph, 
the following property of the Yeh's method is particularly 
attractive for our purpose; it can not only find highly con- 
nected components from a graph, but also finds the (nega- 
tive) fact that no more natural clusters exist in a graph, in 
which case it typically divides the graph into many single- 
tons. Having only two-way partitioning, we still have to 
apply two-way partitioning recursively. This is computa- 
tionally expensive and does not improve quality. 

7. Summary and Future Work 

We have presented a heuristic algorithm for a task map- 
ping problem, which takes compute and bandwidth require- 
ments into account. The key to achieving good perfor- 
mance is clustering, a process that recognizes intensively- 
communicating tasks. We use this clustering information 
to obtain the order in which tasks should be put on proces- 
sors. Open communication metric was introduced to decide 
how many tasks should be put in a processor. The algorifh- 
m is able to incrementally improve a given mapping, mov- 
ing only those tasks that form the bottleneck. Therefore it 
can efficiently fix a significant load imbalance caused by a 
small number of tasks. We observed expected experimen- 
tal results, indicating that our communication-sensitive al- 
gorithm significantly outperforms simpler, communication- 
ignorant algorithms for communication-intensive jobs. 

We are planning to enhance this work in several ways. 
First, we are going to improve the task selection algorithm 
for incremental improvements, so that it moves clusters that 
do not intensively communicate with the rest of the tasks. 
Second, we will analyze computational complexity of the 
algorithm in detail. Third, we will try to identify other cases 
where this algorithm guarantees to produce a result within 
a constant of the optimal. Practical goals include develop- 
ing a system that automatically selects resources and maps 
tasks on wide area, which helps Grid application designer- 
s develop performance-portable Grid code. We hope this 
work serves as a sound, logical step toward achieving this 
goal. 
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Abstract 

Applications that use collections of very large, dis- 
tributed datasets have become an increasingly important 
part of science and engineering. With high performance 
wide-area networks becoming more pervasive, there is in- 
terest in making collective use of distributed computational 
and data resources. Recent work has converged to the 
notion of the Grid, which attempts to uniformly present a 
heterogeneous collection of distributed resources. Current 
Grid research covers many areas from low level infrastruc- 
ture issues to high level application concerns. However, 
providing support for efficient exploration and processing of 
very large scientific datasets stored in distributed archival 
storage systems remains a challenging research issue. 

We have initiated an effort that focuses on developing ef- 
ficient data-intensive applications in a Grid environment. In 
this paper, we present a framework, called filter-stream pro- 
gramming, that represents the processing units of a data- 
intensive application as a set of filters, which are designed to 
be efficient in their use of memory and scratch space. We de- 
scribe a prototype infrastructure that supports execution of 
applications using the proposed framework We present the 
implementation of two applications using the filter-stream 
programming framework, and discuss experimental results 
demonstrating the effects of heterogeneous resources on ap- 
plication performance. 

1. Introduction 

Increasingly powerful computers have made it possible 
for computational scientists and engineers to model physi- 
cal phenomena in greater detail. As a result, overwhelming 
amounts of experimental data are being generated by scien- 
tific and engineering simulations. In addition, large amounts 

* This research was supported by the National Science Foundation under 
Grants #ASC-9619020 (UC Subcontract #10152408), and by the Office of 
Naval Research under Grant #N66001-97-C-8534. 

of data are being gathered by sensors of various sorts, at- 
tached to devices such as satellites and microscopes. There 
are many examples of large useful datasets from simula- 
tions [26, 29, 33], sensor data [25, 28], and medical imag- 
ing [2] (pathology, MRI, CT scan, etc.). The primary goal of 
generating data through large scale simulations or sensors is 
to better understand the causes and effects of physical phe- 
nomena. Understanding is achieved through running analy- 
sis codes on the stored data, or by a more interactive visu- 
alization that relies on the ability to gain insight from look- 
ing at a complex system. Thus, both data analysis and visual 
exploration of large datasets plays an increasingly important 
role in many domains of scientific research. Decision sup- 
port database applications are similar to scientific applica- 
tions because they deal with large quantities of data (rela- 
tional data), and need to perform significant computation in 
processing the data. The value provided by decision support 
systems and data-mining algorithms depend greatly on the 
amount of data, and hence businesses are inclined to retain 
as much data as possible. 

Disks continue to become larger and cheaper making 
them commodity items. This helps to make it relatively easy 
to setup a large set of archival storage disks at a relatively 
low cost. For example, to build a large disk farm out of com- 
modity PC components for the lowest current price: $400 
for a motherboard with a Celeron or AMD K6-2 400MHz 
cpu and 64MB memory [9], four 40GB EIDE disks at $254 
each [10] and a fast ethernet interconnect (100 Mbps), a 
farm of 8 PCs can present 1.25TB of disk space for less than 
$15K. The price point is sufficiently low to enable many 
such disk collections to be setup independently at multiple 
disparate locations, where local storage needs dictate. We 
anticipate that this trend will result in the emergence of is- 
lands of data, where cheap archival storage systems will 
be used to hold large locally generated datasets. Use of 
computation farms also is important for handling very large 
datasets in a reasonable amount of time. Oftentimes, high 
performance computation farms are where the data is gen- 
erated (as in large scientific simulations), and the data may 
reside locally on the computation farm in an archival storage 
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system such as HPSS [22]. Thanks to high-performance net- 
works, increasing numbers of computation farms have be- 
come accessible across a wide-area network. These com- 
putation farms span a spectrum of widely varying config- 
urations and computation power, from relatively inexpen- 
sive network of workstations and PC clusters to very expen- 
sive high-performance machines, providing computing per- 
formance in the order of Teraflops. 

These trends combine to present a new opportunity: very 
large distributed datasets that can be used by applications 
for computationally and data intensive analysis, exploration 
and visualization. 

Consider the following scenario: A scientist wants to 
compare properties of a 3D reconstructed view of a raw 
dataset recently generated at a collaborating institution, with 
the properties of a large collection of reference datasets. The 
3D reconstruction operation involves retrieving portions of 
2D slices from the regions in question, and then perform- 
ing feature recognition and interpolating between the slices 
to extract the important 3D features. A description of these 
features and the associated properties are then compared 
against a database of known features, and some appropriate 
similarity measure is computed. The final result is the set of 
reference features found that are close in some way to those 
found in the new raw dataset, along with the corresponding 
view renderings to visualize. 

Sensor \-J 

Raw Dataset 
sensor readings 

© 
Client PC 

Figure 1.3D reconstruction/visualization sce- 
nario on distributed collection of resources. 

Consider the problems that can occur when the applica- 
tion is executed in a Grid [16] environment. That is, the re- 
quired resources (new raw dataset, reference database, and 
the scientist) are all at distributed locations in a wide-area 
network as seen in Figure 1. The reference database is likely 
to be stored in an image library, since the dataset is large and 
useful to many users. The new raw dataset is stored at the 

site where the sensor readings were taken. If the hosts con- 
taining the data are low-power archival systems that make 
the execution of the 3D reconstruction code prohibitively 
expensive, it becomes unclear how to structure the applica- 
tion for efficient execution. Ideally we would like to execute 
portions of the application at strategic points in the collec- 
tion of machines. A set of possible locations for perform- 
ing computation is indicated in the figure by question marks. 
For example, if the portion of code that performs the range 
select on the new raw dataset could be run on the host where 
the data lives, the amount of data to be transmitted over the 
wide-area network (WAN) would be reduced. The compu- 
tation farm is an ideal location for the feature recognition 
and 3D reconstruction due to the parallelism inherent in the 
codes. Given the set of features that were identified, it would 
be efficient to perform the selection of similar features from 
the reference database on the data server where the database 
is located. The low end PC where the scientist is located can 
be used to collect the 3D rendering and the similar feature 
information for interactive presentation to the scientist. 

The success of this scenario depends on the application 
allowing portions of its computation to be executed in a dis- 
tributed fashion. Beyond the mere possibility of execution 
in a distributed environment is the question of how efficient 
the application is. One interpretation of efficiency in this 
context is the ratio of useful data transmitted to the total 
amount of data transmitted between any two pieces of the 
application. For example, if an application transmitted a full 
dataset from a remote host, and discarded a large portion not 
required by subsequent processing, then this would not be 
considered efficient operation. 

We have initiated an effort to investigate and develop 
methodologies and a framework for efficient execution of 
applications that make use of distributed collections of 
datasets in a Grid environment. There are two main chal- 
lenges in developing efficient applications in a Grid environ- 
ment: 

• The Grid is composed of collections of heterogeneous 
resources. The characteristics, capacity and power 
of resources, including storage, computation, and net- 
work, vary widely. This requires that applications 
should be structured to accommodate the heteroge- 
neous nature of the Grid. 

• These distributed resources can be shared by many ap- 
plications. This requires that applications should be de- 
signed to be optimized in their use of shared resources. 

In order to address these challenges, we are investigating: 

• Methodologies and a framework for structuring appli- 
cations. In particular, we address decomposition of ap- 
plication processing into components and placement of 
these components onto a collection of heterogeneous 
resources that will aid efficient execution. 
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• Feasibility and effects of exposing application structure 
and characteristics. In particular, we address exposing 
resource requirements and the communication pattern 
between application components, and how this extra 
application structure information can be used. 

• An infrastructure for providing execution of applica- 
tions that conform to the developed framework. 

In this paper, we present a framework, called filter- 
stream programming, that represents the processing in a 
data-intensive application as a set of processing units, re- 
ferred to here as filters, which are designed to be efficient 
in their use of memory and scratch space. In this frame- 
work, data exchange between any two filters is described 
via streams, which are uni-directional pipes that deliver data 
in fixed size buffers. We describe a prototype infrastructure 
that provides support for execution of applications using the 
proposed framework. We present the implementation of two 
applications in filter-stream programming framework, and 
experimental results to demonstrate the effects of heteroge- 
neous resources on the performance of the applications. 

2. The Proposed Approach 

In this section, we present a framework, called the filter- 
stream programming model. The basic ideas are to (1) con- 
strain application components to allow for location indepen- 
dence, which is necessary for execution in a distributed envi- 
ronment, and (2) expose the application communication pat- 
tern and resource requirements, allowing a runtime system 
to aid in efficient execution. We should note that any pro- 
gramming model (e.g., message passing) modified to expose 
similar constraints could be employed in place of the filter- 
stream programming model we describe. 

The programming model used in this work is derived 
from the stream-based programming model, originally de- 
veloped for Active Disks [1, 35]. Many stream-based al- 
gorithms were developed and analyzed for Active Disks. 
These algorithms carry out a variety of data transforma- 
tions that arise in earth science applications and applications 
of standard relational database sort, select and join opera- 
tions. In this work we extend these algorithms and investi- 
gate the application of filters and the stream-based program- 
ming model in a Grid environment. 

In the filter-stream programming model, an application 
is represented by a collection of filters. A filter is a por- 
tion of the full application that performs some amount of 
work. Filters are required to pre-disclose dynamic memory 
and scratch space needs. Communication with other filters 
is solely through the use of streams. A stream is a com- 
munication abstraction that allows fixed sized untyped data 
buffers to be transported from one filter to another. An ex- 
ample set of filters for the motivating example is shown in 

Figure 2. A simple example of this model is Unix system 
pipes, where the standard output of a process is used as stan- 
dard input for another process. Unix pipes represent a linear 
chain of filters, each of which have a single input stream and 
a single output stream. The filter-stream model allows for 
arbitrary graphs of filters with any number of input and out- 
put streams. 

Q 

(view result) 

3D reconstruction 

(Extract raw J 

(_ Extract ret j 

Reference DB 

Raw Dataset 

Figure 2. 3D reconstruction application de- 
composed into filters. 

The process of manually restructuring an application us- 
ing this model is referred to as decomposing the application. 
In choosing the appropriate decomposition, we need to con- 
sider the complete data flow path from data generation to 
ultimate consumption and the target machine configuration, 
which can be a distributed collection of heterogeneous ma- 
chines. The main goal is to achieve efficient use of limited 
resources in a distributed and heterogeneous environment. 
The choice of decomposition can have a significant impact 
on efficiency and performance. Too many filters could mean 
there is not much work for individual filters, which would 
cause the system to spend much of its time moving data 
around and little time performing useful work on the data. 
Too few filters could limit the ability of the overall system 
to execute filters concurrently. Similarly, sending data over 
streams in very small pieces can make the overhead of the 
runtime system too large. If possible, an ideal granularity 
size should balance the amount of computation and commu- 
nication such that the overall processing time across all fil- 
ters does not exhibit a penalty merely because the computa- 
tion is distributed. 

Given a set of filters, the runtime mapping of filters onto 
various hosts in a wide-area grid environment is referred to 
as placement. Figure 3 shows a possible placement of the 
filters described for the motivating scenario. The choice of 
placement represents the main degree of freedom in affect- 
ing application performance by: 

• placing filters with affinity to data sources near the 
sources, 

• minimizing communication volume on slow links, 
• co-locating filters with large communication volume, 
• placing computationally intensive filters on less loaded 

hosts, 
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Figure 3. Possible placement of 3D recon- 
struction application filters. 

• pipelining application filters by concurrent execution. 

Note that a placement decision is not assumed to be static, 
and the programming model explicitly supports the notion 
of stopping a set of filters and replacing them with possibly 
a new set of filters with a different placement. 

A runtime system infrastructure is used to support the ex- 
ecution of applications that are structured in the filter-stream 
programming model. In the following sections we present a 
prototype infrastructure for executing application filters, and 
present implementations of an image processing application 
and a database application using the filter-stream program- 
ming model. 

3. Related Work 

There is a large body of hardware and software research 
on archival storage systems, including distributed parallel 
storage systems [24], file systems [34], image servers [32], 
and data warehouses [23]. Several research projects have 
focused on digital libraries and geographic information sys- 
tems [4, 20] that access collections of archival storage sys- 
tems, high-performance I/O systems [8], tertiary storage 
systems [22] and remote I/O [19, 31]. Distributed storage 
systems attempt to provide large amounts of data to dis- 
tributed clients. They present a uniform view of distributed 
data to applications, and transparently handle replicas and 
caching. This does not push the computation to the data 
as in our work, rather the data is migrated to the computa- 
tion, but can achieve a similar result with an effective re- 
placement policy and a warm cache. Another issue is finding 
the required data. The Storage Resource Broker (SRB) [31] 
provides uniform UNIX-like I/O interfaces and meta-data 
management services to locate and access collections of dis- 
tributed data resources. 

Distributed computing covers research that addresses 
ways to deal with distributed execution of application code 
in many different ways. Current work related to Grid com- 
puting [7, 14, 16] attempts to provide a uniform view into 
a collection of distributed computational, network and stor- 
age resources, and to provide services for unified, secure, ef- 
ficient and reliable access. However, providing support for 
efficient exploration and processing of very large scientific 
datasets stored in archival storage systems at distributed lo- 
cations remains a challenging research issue, and the neces- 
sity of infrastructure to provide such support was recognized 
in recent Grid forums [21]. This support of processing and 
retrieval for efficient operation is exactly what our work is 
attempting to provide. 

There is a large body of classic work on dataflow sys- 
tems. The macro dataflow model [30, 36] describes an ap- 
plication as a sets of tasks, communication edges, edge com- 
munication costs and task computation costs. PYRROS [37] 
uses this model of application behavior and manual annota- 
tions to cluster, map, and schedule computation to nodes of 
a homogeneous parallel machine. As we target a heteroge- 
neous grid environment, we expand on assumptions such as 
constant computation regardless of placement, which makes 
sense in a tightly coupled environment. There is also task 
parallel work in systems such as STRAND [12], PCN, For- 
tran M [13], and HPF [18], which are related due to the 
dataflow model and/or task parallelism used. Our work is 
different in that we are considering remote datasource affin- 
ity as a primary reason for decomposition, rather than an at- 
tempt to extract paralellism. 

4. A Prototype Infrastructure 

In this section, we describe a prototype infrastructure im- 
plementation that provides support for execution of appli- 
cations developed using the filter-stream framework. This 
work is part of the DataCutter project [6], that provides 
services for subsetting and processing multi-dimensional 
datasets stored on archival storage systems. 

4.1. Filters 

A filter is specified by the code to execute, and a descrip- 
tion of the input and output streams it will use. Currently, 
filter code is expressed using a C++ language binding by 
sub-classing a provided filter base class. This base class pro- 
vides a well-defined interface between the filter code and 
the system filter service. The description of input and out- 
put streams is specified in a separate configuration file (Fig- 
ure 4). 

Filters are constrained in several respects. First, undis- 
closed dynamic allocation of memory and local disk space 
is not allowed. Instead, the filter must pre-disclose and be 
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granted scratch memory and disk space by the runtime sys- 
tem. The granted scratch space is allocated on behalf of the 
filter by the runtime system when the filter is instantiated. 
Later, the filter may make use of the granted scratch space as 
needed. One of the potential benefits of exposing resource 
requirements in this way is that runtime system can achieve 
a better placement of filters. For example, a filter can be run 
on a machine with enough memory to avoid paging, and two 
filters requesting large scratch space can be placed on two 
different machines. In addition, the runtime system can po- 
tentially perform better scheduling of co-located filters on a 
machine. One of our goals in this project is to investigate 
and assess the potential benefits of pre-allocating memory, 
when it will really be important, and implications for struc- 
turing applications. In order to accomplish this, we plan to 
compare standard versions of target applications with filter- 
stream based implementations in subsequent work. 

The interface for filters consists of an initialization func- 
tion, a processing function, and a finalization function: 

class MyFilter: public AS.Filter.Base { 
public: 

int init(int arge, char *argv[]) {...}; 
int process(stream.t st) { ... }; 
intfinalize(void) {...}; 

} 

The init function is called when the filter is instantiated, 
and is passed parameters with the command line arguments 
used when the application was started. This is where a fil- 
ter would request scratch memory space for use during later 
processing, for example. The process function is called to 
handle data arriving on the input streams in buffers from the 
sending filter. The parameter passed to the process function 
contains arrays of descriptors for the sets of input streams 
and output streams this filter can use. The filter can only read 
and write from/to the provided streams. No new streams can 
be created by the filter at runtime. The finalize function is 
called after all processing is finished and the filter is ready to 
terminate. This is where a filter would release any resources 
in use. 

Another restriction is that a filter cannot change the 
source of its input streams nor the sinks of its output streams. 
This has two advantages. First, a filter does not need to 
handle buffering and scheduling for its own communication, 
thereby reducing the complexity of filters. Second, the loca- 
tion of filters is transparent, allowing filters to be placed at 
different locations initially and relocated as system resource 
constraints change. 

Filters are the unit of placement. Each filter can poten- 
tially be executed on a different host. In addition, a filter's 
location may change at discrete application-defined inter- 
vals during the course of execution. Note this does not imply 
true migration of code and state, but rather placement can 

be recomputed and the filter can be stopped on the original 
host and a new copy re-instantiated on the new host. There 
is a limited mechanism for a final state transfer by a sin- 
gle buffer transfer from the old instance to the new instance. 
This approach avoids many of the details involved in check- 
pointing and process migration [11], while retaining most of 
the benefits. Filters need to be structured appropriately to 
handle such events. For cases when this is not desirable, a 
filter can be pinned to a particular host, which means the fil- 
ter will always be placed on that host. This host affinity is 
useful for some situations, such as when runtime libraries or 
auxiliary data files only exist on a particular host, but does 
limit placement flexibility. 

4.2. Streams 

A stream is an abstraction used for filter communica- 
tion. Since the placement of filters is largely unknown un- 
til runtime, this mechanism is used to achieve location- 
independent filter code because stream names are used 
rather than endpoint location on a specific host. A stream 
is used to specify how filters are logically connected, and 
to provide the glue at runtime to attach an input stream for 
one filter to an output stream of another. All transfers to 
and from streams are through a provided buffer abstraction. 
A buffer represents a contiguous memory region containing 
useful data. The buffer contains a pointer to the start, the 
length of the portion containing useful data, and the maxi- 
mum size of the buffer. In the current prototype implemen- 
tation we are using TCP for stream communication, but any 
point-to-point communication library could be added, such 
as Nexus [17]. 

The streams are specified in a global sense, separate from 
the application code. For each filter, a list of input and output 
streams is required. This discloses all potential filter com- 
munication pairs for the entire execution of the application. 
Given a set of filters with stream connectivity information, 
we can build a task graph where the nodes represent the fil- 
ters, and the edges represent stream connections. For exam- 
ple, given three filters A, B and C, with data being sent from 
A to both B and C, and from B to C, the specification and re- 
sulting task graph are seen in Figure 4. Each filter in the spec 
appears in a section labeled [filter.<name>]. For each sec- 
tion, two optional entries ins and outs can appear containing 
the list of input and output stream names respectively. 

In addition to the above inter-filter streams, we allow 
for two other types of streams:1 File Streams and External 
Communication Streams. Files Streams are used to read and 
write to files stored in local scratch disk space or local per- 
manent disk storage. The file stream abstraction further in- 
sulates the filter code from specifics about the host system. 
This provides a measure of safety between co-located filters, 

'These are not yet implemented in the prototype. 
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[filter.A] 
outs = stream 1 stream3 
[filter.B] 
ins = stream 1 
outs = stream2 
[filter.C] 
ins = stream2 stream3 

(a) filter/stream spec (b) resulting graph 

Figure 4. Sample filter/stream specification. 

since one filter cannot access another filter's scratch disk 
space. The permanent disk storage presents a uniform file 
system to all filters, similar to a traditional file system. Thus 
a filter with sufficient authorization can read files in perma- 
nent disk storage written by another filter. External Commu- 
nication Streams are used to connect to, and receive connec- 
tions from legacy or other non-filter application code. 

4.3. Execution Environment 

The execution service performs all the steps necessary to 
instantiate filters on particular machines, connect all the log- 
ical stream endpoints, and call the interface functions to al- 
low filters to run. 

The description of where to instantiate filters is provided 
by a placement specification. Currently, this is statically 
generated before the application is started. An example 
placement specification for the sample filters is: 

[placement] 
A = hostl .cs.umd.edu 
B = host2.cs.umd.edu 
C = host3.cs.umd.edu 

The [placement] section is expected to contain one en- 
try for each filter. The value is simply the host to execute 
the filter on. In general, this host can be a parallel ma- 
chine, which implies multiple instances of the filter are cre- 
ated, but the prototype implementation does not yet support 
parallel filters. Security concerns have made it difficult to 
start processes on remote machines in a uniform manner. 
To solve this problem in the current prototype, an Applica- 
tion Execution Daemons (appd) must be run on every host 
used to execute filters. In the future, we plan to use exist- 
ing Globus [15] services for process creation and authenti- 
cation, in which case the Application Execution Daemons 
would not be needed. In addition, a single provided Direc- 
tory Daemon (dird), which is similar to an LDAP server, is 
used to record the contact information (host, port, pid) for 
each appd. The dird is the only process that runs on a well- 
defined host and port. All other ports are ephemeral, and 

registered with the dird to later be queried. Based on a given 
placement specification, the execution of a filter-based ap- 
plication requires contacting the appd process on each host. 
A lookup is performed to find contact information for each 
required appd. Currently, we require an application binary 
to exist on every host, which must contain at least the code 
for the filters that will execute on that host. The binary can 
contain code for all the filters, and those filters not intended 
to run on a given host will not be instantiated at runtime. 
Currently we manually compile/copy the binaries as needed, 
but convenience procedures to do this will be added in the 
future. 

The application is started by running the application bi- 
nary on some host. This will become the console process, 
which performs no application processing such as running 
filters. The console process queries the dird process to get 
the relevant appd contact information, and then sends an ex- 
ecute command to each appd. The appd executes the appli- 
cation binary on that host, which in turn contacts the console 
process and performs some initial handshaking to setup the 
stream abstractions. In the current prototype, one POSIX 
thread is created for each filter that runs on the host, and 
a new instance of the application filter object is created. 
The thread calls the init interface function passing the com- 
mand line arguments that were used when the console pro- 
cess was started. Next, the thread calls the process function. 
When this returns, all open streams are closed and the final- 
ize function is called. Any remaining filter resources are re- 
leased before the thread stops. 

The multiple threads allow for fairness across filters on a 
single host, since all threads are executed with the same pri- 
ority by the underlying operating system. No one filter can 
starve another due to the time sharing semantics of POSIX 
threads. Of course the filters do need to be thread-safe with 
respect to each other. Based on the filter-stream program- 
ming model, this should be natural for most applications. 
Filters in this model are inherently isolated and communi- 
cate via system provided buffers, thus should be fairly easy 
to make thread-safe due to the lack of shared resources. One 
problem could be common library routines. For the cases 
where no thread-safe implementations exist, we provide fil- 
ter level locks that can be used to wrap the offending calls. 
This is only an issue when thread safety problems exist be- 
tween filters that run on the same host, thus in the same pro- 
cess. For the sample placement, filters A, B and C can all 
have thread safety violations, since they are all actually run 
in separate processes on three different hosts. 

For cases when thread safety is a problem and lock wrap- 
ping will not work, the infrastructure could be augmented to 
optionally use a single thread for all filters on a given host. 
Control could use a dataflow model where scheduling is per- 
formed by the infrastructure for filters based on the arrival 
of input. Another alternative re-design is to make each filter 
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execute as a separate process, thus avoiding all threading is- 
sues at the expense of increased filter communication costs 
on the same host. The use of a thread-per-filter-instance is a 
property of the current prototype implementation, and is not 
mandated by the overall model. 

4.4. Applicability 

Our approach is intended to be applicable to many com- 
mon types of data-intensive applications that are emerging 
for use in a grid environment. The benefits of this approach 
result directly from two observations. The first is that the 
filter-stream framework exposes useful information, partic- 
ularly application communication patternand communica- 
tion volume information. The second is that expressing the 
application processing as filters enables data volume reduc- 
tion from remote data sources. These factors can be lever- 
aged to improve application efficiency at runtime. 

We recognize that the approach may not be effective for 
all application types, and are identifying characteristics that 
make applications ill-suited for this approach. Ill-suited in 
this case means performance will be no better than that of 
a generic message passing implementation, for example us- 
ing MPI [27]. The first problem occurs when applications 
have high selectivity. This means nearly all the remote data 
is needed by the application, and no significant data reduc- 
tion is achieved, which will nullify the benefits of applica- 
tion decomposition. 

Applications that lack a clear task structure are also prob- 
lematic. If the application cannot be divided cleanly into a 
set of filters, then placement choices are more limited for 
such a monolithic application. For example, if an applica- 
tion uses two remote data sources and cannot be divided into 
filters, we can execute the application at either data source 
(inputs), the client (output), or at an intermediate location. 
This will most likely be efficient only for data located at the 
execution site chosen, and inefficient for other input/output 
data sources/sinks. 

The communication pattern and volume are significant 
characteristics that enable intelligent placement to overlap 
communication with computation and reduce high volume 
on slow network links. If the pattern or volume of com- 
munication is unknown, chaotic, very fine grained, or time 
varying, then it is difficult to perform an intelligent place- 
ment. For example, a communication pattern that involves 
all possible filters and is data dependent, where the destina- 
tion for a piece of data is known only after its examination, 
will result in a conservative approximation of an all-to-all 
pattern with equal volume between all pairs of filters. There 
is no clear choice for placement in this case, because any 
possible good placement may only be known after execu- 
tion has finished and the communication activity has been 
observed. Even worse, the observed communication pattern 

and volume may not be helpful for future runs, due to non- 
determinism in such applications. Our approach assumes a 
single significant communication pattern and deterministic 
volume, which can be used for choosing placement for the 
entire execution. For the applications we are targeting, such 
as volume visualization, database decision support, and im- 
age processing, these assumptions appear to hold. 

5. Application: Image Processing 

The Virtual Microscope [2] is a query-response appli- 
cation that processes multi-dimensional image data to sat- 
isfy client queries. The dataset contains high power digi- 
tized images of microscope slides, which effectively forms 
a 3D dataset because each slide can contain multiple 2D fo- 
cal planes at different depths. Images are stored at the high- 
est magnification level, and the size of a single slide typi- 
cally varies from 100MB to bGB, compressed. The sys- 
tem is required to provide interactive response times simi- 
lar to a physical microscope, including continuously mov- 
ing the stage and changing magnification. A typical query 
allows a client to request a 2D rectangular region at a partic- 
ular magnification from within the bounds of a single focal 
plane. The processing for the query requires projecting high 
resolution data onto a grid of suitable resolution (governed 
by the desired magnification) and appropriately composit- 
ing pixels that map to a single grid point to avoid introduc- 
ing spurious artifacts into the displayed image. The Virtual 
Microscope is useful for performing operations that are diffi- 
cult with a physical microscope, such as simultaneous view- 
ing and manipulation of a single slide by multiple users, or 
remote telepathology [2] where diagnosing pathologists are 
not required to be physically located near the slide. 

5.1. Original Implementation 

The original Virtual Microscope system is composed of 
two components; a client to generate queries and display the 
results (i.e. images), and a server to process the queries. The 
server is composed of a frontend and a backend. The fron- 
tend interacts with clients; it receives queries from clients 
and forwards them to the backend. The backend consists of 
one or more processes, typically one per node of a parallel 
machine. The processing of a query is carried out entirely in 
the backend. 

In order to achieve high I/O bandwidth, each focal plane 
in a slide is regularly partitioned into data chunks, each of 
which is a rectangular subregion of the 2D image. Data 
chunks are declustered across all backend local disks to 
achieve I/O parallelism. Each pixel in a chunk is associated 
with a coordinate (in x- and y-dimensions) in the entire im- 
age. Each chunk has an associated minimum bounding rect- 
angle (MBR) based on all the pixels in the chunk. An index 
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is created using the MBR of each chunk. Since the image is 
regularly partitioned into rectangular regions, a simple com- 
putation can be used instead of a complex index search. 

During query processing, the backend process finds the 
chunks that intersect the query region, and reads them from 
the local disks. Each data chunk is stored in compressed 
form (JPEG format), and must be first decompressed. Then, 
it is clipped to the query region. Afterwards, each clipped 
chunk is subsampled to achieve the zoom level (magnifica- 
tion) specified in the query. The resulting image blocks are 
directly sent to the client. The client viewer assembles and 
displays the image blocks from each of the backend pro- 
cesses to form the query output. 

5.2. Filter Implementation 

The filter decomposition used for the Virtual Microscope 
system [6] is shown in Figure 5. This filter pipeline struc- 
ture is natural for query-response applications. The figure 
only depicts the main dataflow path of image data through 
the system; other low-volume streams related to the client- 
server protocol are not shown for clarity. The thickness of 
the stream arrows indicate the relative volume of data that 
flows on the different streams. 

Figure 5. Virtual Microscope decomposition 

In this implementation each of the main processing steps 
in the server is a filter: 

• read-data: Full-resolution data chunks that intersect 
the query region are read from disk, and written to the 
output stream. 

• decompress: Image blocks are read individually from 
the input stream. The block is decompressed using 
JPEG decompression and converted into a 3 byte RGB 
format. The image block is then written to the output 
stream. 

• clip: Uncompressed image blocks are read from the in- 
put stream. Portions of the block that lie outside the 
query region are removed, and the clipped image block 
is written to the output stream. 

• zoom: Image blocks are read from the input stream, 
subsampled to achieve the magnification requested in 
the query, and then written to the output stream. 

• view: Image blocks are received for a given query, col- 
lected into a single reply, and sent to the client using the 
standard Virtual Microscope client/server protocol. 

Figure 6 illustrates the high-level code for the zoom fil- 
ter, which has two input streams and one output stream. It 

VM_zoom::init0 { 

// Allocate output buffer from pre-allocated scratch space 
bufOut = AllocFromScratch(getOutputStreamBufferSize()); 

VM_zoom::process(stream_t &st) { 
DC.StreamBuffer *buf; 
VMQuery *query; 
VMChunk *chunk; 

// recv the query 
buf = st.insIO].read(); query = VMUnpackQuery (buf); 
// while there is data retrieved from input stream 
while ((buf = st.insll].read!)) != NULL) { 

chunk = VMUnpackchunk(buf); // extract chunk information 
zoom_chunk(chunk, query); // perform zoom operation 
buf Out = VMPackChunk (chunk); // pack chunk into buffer 
at.outs[0].write(sbufOut); // write data to output stream 
FreeToScratch(chunk->Data); 

VM_zoom::finalize() { 
PraaToScratch(bufOut); 

} 
void VM_zoom:: zoom_chunk(VHChunk *chunk, VMQuery *query) 

int rel_zoom = query->Zoom/chunk->Zoom; 
int width = chunk->width/rel_zoom; 
int height = chunk->Height/rel_zoom; 
int size = width*height"PIXELSIZE; 

char *psrc = chunk->Data; 
char *pDst = chunk->Data = AllocPromScratch(size); 
// subsample the image block 
for (j = height; j>0; —j)   { 

lor   (i = width; i>0; —i) { 
memcpylpDst, pSrc, PIXELSIZE); 
pSrc += rel_zoom*PIXELSIZE; 
pDst += PIXELSIZE; 

) 
pSrc += rel_zoom*chunk.Width*PIXELSIZE; 

) 
// update chunk metadata 
chunk->Zoom = query->Zoom; 

Figure 6. The high-level code for zoom filter. 

reads the query from stream 0 (st.ins[0]) and data chunks 
from stream 1 (st.ins[l])( and subsamples the received data 
chunks using the zoom_chunk function. The zoom filter 
uses scratch space to store results during subsampling and 
to pack the subsampled chunk into the output buffer. The 
result is written to the output stream (st.outsfO]), which con- 
nects the filters zoom and view. 

5.3. Experimental Results 

Using the filters described in Section 5.2, we have im- 
plemented a simple data server for digitized microscopy im- 
ages [6], stored in the IBM HPSS archival storage system at 
the University of Maryland. An existing Virtual Microscope 
client trace driver was used to drive the experiments. This 
driver was always executed on the same host as the view fil- 
ter, which is referred to as the client host. The server host is 
where the read-data filter is run, which is the machine con- 
taining the disks with the dataset. 

The HPSS setup has 10TB of tape storage space, 500GB 
of disk cache, and is accessed through a 10-node IBM SP. In 
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Filter Total Volume Volume Per Chunk 

read data 3.60 MB 102.52 KB 
decompress 83.42 MB 2373.04 KB 

clip 57.83 MB 1645.02 KB 
zoom (no) 57.83 MB 1645.02 KB 
zoom (8) .90 MB 25.70 KB 

Figure 7. 2D dataset and query regions. The 
table lists transmitted data sizes for q5. zoom 
(no) is for no subsampling and zoom (8) is for 
a subsampling factor of 8 (in each of the two 
spatial dimensions). 

all experiments we use a 4GB 2D compressed JPEG image 
dataset (90GB uncompressed), created by stitching together 
smaller digitized microscopy images. This dataset is equiv- 
alent to a digitized slide with a single focal plane that has 
180 A' x 180 A' RGB pixels. The 2D image is regularly par- 
titioned into 200 x 200 data chunks and stored in HPSS in a 
set of files. We defined five possible queries, each of which 
covers 5x5 chunks of the image (see Figure 7). The ex- 
ecution times we will show are response times seen by the 
visualization client averaged over 5 repeated runs. For the 
presented experiments, we eliminated the effects of retriev- 
ing data stored on tape by insuring the data was staged to the 
HPSS disk cache before each run. We are using machines 
on our local area network for experimental repeatability, and 
will switch to hosts in a wide-area Grid environment once 
application behavior is sufficiently well-understood. 

Overhead of Using Filters. The query execution times for 
the original optimized Virtual Microscope server versus the 
prototype filter implementation are shown in Figure 8. In 
this experiment the entire dataset is loaded from HPSS and 
stored on a single local disk attached to a SUN Ultra 1 work- 
station, because the original server can only access datasets 
stored on disks. The loading of the dataset took 4750 sec- 
onds (1 hour 19 minutes). The original server is run as a 
single process, and all filters in the filter-stream implemen- 
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Figure 8. Query execution times for the origi- 
nal server and the filter implementation, (sub- 
sampling factor is 8) 

tation are executed on the same uniprocessor SUN worksta- 
tion where the dataset has been pre-loaded. In both cases 
the client is run on another SUN Ultra 1 workstation con- 
nected to the local Ethernet segment. As is seen from the fig- 
ure, the filter implementation does not introduce much over- 
head compared to the optimized original server. The percent 
increase in query execution time ranges from 6% to 30% 
across all queries. The filter version contains extra work not 
present in the original server, such as flattening of the chunk 
and metadata into a linear buffer on the sending filter, and 
expanding the chunk and metadata into the same structure in 
the receiving filter. This overhead is necessary when filters 
are located on distributed machines, but could be eliminated 
for the co-located case by instead sending a pointer to an in- 
memory structure, which would eliminate much of the over- 
head. This experiment is designed to be biased against the 
filter implementation to see what the overhead is in the de- 
composed version. We should also note that the timings do 
not include the time for loading the dataset from tape, which 
can substantially increase for larger datasets and datasets 
stored in archival storage systems across a wide-area net- 
work. 

Varying the Processing. One node of the IBM SP is used 
to access the stored dataset, and the client was run on a SUN 
workstation connected to the SP node through the depart- 
ment Ethernet. We experimented with different placements 
of the filters by running some of the filters on the same SP 
node where the data is accessed, as well as on the SUN work- 
station where the client is run. 

In Figure 9 we consider varying the placement of 
the filters under different processing requirements.   Fig- 
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Figure 9. Execution time of queries under varying processing (subsampling). R,D,C,Z,V denote the 
filters read-data, decompress, clip, zoom, and view, respectively. <server>-<client> denotes the placement 
of the filters in each set. 

ures 9(a) and (b) show the query execution times when the 
image is viewed at the highest magnification (no subsam- 
pling) and when the subsampling factor is 8 (i.e. every 8th 
pixel in each dimension is output), respectively. There are 
three predominant factors in these experiments. The first 
is the placement of the most computationally intensive fil- 
ter (decompress). The second is the volume of data trans- 
mitted between the two machines. The final factor is the 
amount of data sent by the view filter to the client driver. 
Consider the first two groups of bars in the figures. The dif- 
ference between the groups within each figure is the place- 
ment of the zoom filter on the server (RDCZ-V) or client host 
(RDC-ZV). When there is no subsampling, query execution 
times remain almost the same for both placements, because 
the volume of data transfer between the server and client 
is the same in both cases. In the case of subsampling, the 
placement of the zoom filter makes a difference, because the 
volume of data sent from the server to the client decreases 
if the zoom filter is executed at the server. Now consider 
the last two groups of bars in the figures. The difference 
between the groups within each figure is the placement of 
the decompress filter (RD-CZV or R-DCZV). For no sub- 
sampling case, the time increases substantially when decom- 
press is placed on the client, because of the combined ef- 
fects of the most computationally intensive filter (decom- 
press) and the high amount of data being processed by view 
and sent to the client driver. When there is subsampling, the 
query execution time is not as high, because the amount of 
data processed by view and sent to the client driver is much 
lower. These experiments demonstrate the complex inter- 
actions between placement of computation and communica- 

tion volume. 

Varying the Server Load. In the next set of experiments 
(Figure 10), we consider varying the server load. We use 
the same experimental setup as for the previous experiment. 
In all experiments, we use a subsampling factor of 8. Fig- 
ures 10(a), (b), and (c) show query execution times when the 
server load is doubled, tripled, and quintupled, respectively. 
The different loads were emulated by artificially slowing 
down the set of filters running on the server host such that the 
total running time was delayed. For example, the zoom filter 
runs twice as long in the 2 x case because the time is delayed. 
As server load increases (or the client host becomes rela- 
tively faster), running the filters on the client host achieves 
better performance. This result is not unexpected, but the 
experiment quantifies the effect for this particular configura- 
tion. The use of a different client to server network, or hosts 
with different relative speeds would significantly change the 
observed trends and trade-off points. 

6. Application: External Sort 

External sort has a long history of research in the database 
community and has resulted in many fast algorithms [3, 5]. 
The application starts with a large unsorted data file that is 
partitioned across multiple nodes, and the output is a new 
partitioned data file that contains the same data sorted on a 
key field. The sample data file is based on a standard sort- 
ing benchmark that specifies 100 byte tuples, with the first 
10 bytes being the sort key. The distribution of the key val- 
ues is assumed to be uniform, both in terms of the unsorted 
file as a whole and for each partition. A recent record holder 
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Figure 10. Execution time of queries under varying server load. 2x means the server computation is 
delayed to double the execution time of a filter on the server, etc. (subsampling factor is 8) 

for the fastest external sort is NowSort [5], and we use the 
pipelined version of their two-pass parallel sort for our basic 
algorithm. 

The algorithm proceeds in two phases. The first phase 
generates temporary sorted runs on each node, and the sec- 
ond phase produces the output sorted partition on each node. 
During the first phase, a reader reads chunks of tuples from 
the unsorted input file on disk, and partitions the records ac- 
cording to which node it will reside on when sorted, puts 
them into in-memory buffers, and when a buffer is full, 
sends it to the correct node. A writer collects tuples from 
all nodes, and when the in-memory buffer is full, sorts it us- 
ing partial-radix sort2, and writes the sorted run to disk. This 
first phase is over when all the unsorted input files have been 
processed, and written to disk as temporary sorted runs. For 
the second phase a merge-reader reads tuples from each lo- 
cal sorted run into merge input buffers. A merger selects the 
lowest-value key among all merge input buffers and copies 
it to an output buffer, from which the merge-writer appends 
buffers to the sorted output file on disk. This phase com- 
pletes when tuples from all local runs have been merged. 

6.1. Filter Implementation 

The implementation of external sort using filters follows 
the above description. The location of the unsorted dataset 
dictates the number of nodes to be used for execution. There 
are two filters on each node, Partitioner and Sorter. The 
Partitioner filter reads buffers from the unsorted input file, 
and distributes the tuples into buckets based on the key 
value. When a bucket is full, it is sent over the stream that 
connects to the Sorter filter on the corresponding node. The 

2Makingtwo passes over the keys with a radix size of 11 -bits [3] plus a 
cleanup. 

Sorter continually reads buffers from the input streams, and 
extracts a portion of the key and appends it to a sort buffer. 
When the sort buffer becomes full, it is sorted and written 
to scratch space as a single temporary run. When all buffers 
have been read from the input streams, the merge phase be- 
gins with only the Sorter filters still executing. The Sorter 
filter then reads sorted tuples from each of the temporary run 
files and merges them into a single output buffer, and writes 
this buffer to the sorted output file on disk. 

This application is essentially a parallel SPMD program, 
with an all-to-all communication pattern. This organization 
is in contrast to the Virtual Microscope application that was 
structured as a processing chain pipeline. 

6.2. Experimental Results 

The experimental setup is a 16 node cluster of dual 
400MHz Pentium IIs with 256MB memory per node, run- 
ning Linux kernel 2.2.12. There are two interconnects, a 
shared Ethernet segment, and a switched gigabit Ethernet 
channel. We use the faster switched interconnect for all ex- 
periments, and because of a problem with the network inter- 
face cards on some of the nodes, only use a maximum of 8 
nodes in all experiments. The nodes are isolated from the 
rest of the network, and the cluster was not running other 
jobs during the experiments. Each node has a single Ultra2 
SCSI disk. All data for a particular node, including tempo- 
rary data, is stored on the single local disk. The dataset con- 
sists of a single 128MB unsorted file per node. The unsorted 
dataset was generated randomly with a uniform key distribu- 
tion. The execution time for an experiment is the maximum 
time across all nodes used for the experiment. Each exper- 
iment is repeated for 5 trials, and the execution time shown 
represents the average of the trials. Both a Partitioner and 
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Figure 11. Sort execution time as number of 
nodes is increased. The dataset size is scaled 
with the number of nodes (128MB/node). 

a Sorter filter are executed on each node used in the exper- 
iments for Figures 11 and Figures 13(a)-(d), and two Parti- 
tioner and Sorter filters are executed on some of the nodes 
in the experiments for Figures 13(e) and (f). The disk cache 
was cleared between executions to insure a cold disk cache 
for each run. Note that we are using a tightly coupled cluster 
for experimental repeatability, and will be switching to hosts 
on a wide-area Grid environment when application behavior 
is better understood. 

Scaling. The first experiment examines the scalability of 
the sort application as we increase the number of nodes and 
total dataset size. As seen in Figure 11, the application is 
well-behaved. There is good scaling due to the fast inter- 
connect not becoming saturated by the traffic generated by 
sort. This experiment demonstrates there is nothing inherent 
in the filter-stream based implementation that would other- 
wise limit its scalability. 

Varying Memory Size. In this set of experiments we vary 
the amount of memory available for filters on some of the 
nodes while keeping it constant for filters on the remaining 
nodes. Our goal is to create a heterogeneous configuration 
in a controlled way, and observe the effects of heterogeneity 
on the application performance. 

Figure 13 shows the execution times under varying mem- 
ory constraints. The solid line in all of the graphs denotes 
the base case, in which the size of the memory is reduced 
equally across all nodes, and shows the change in the ex- 
ecution time. The amount of the Full memory case is de- 
termined empirically to minimize execution time while con- 
suming the least memory (see Figure 12). Memory param- 
eters are varied by halving the full memory amount for the 
1/2 case, and halving again for the 1/4 case, etc. Constrain- 

Filter Parameter Full Memory 
Partitioner reacLsize 
single disk buffer for reading tuples from the unsorted input file 

256KB 

Partitioner bucket-Size 1 MB 
shared space for all outgoing tuple buckets, before sending to Sorter filters 

Sorter (phase 1)    keybuLsize 1 MB 
single buffer for storing extracted key and tuple pointer, before sorting and writ- 
ing the temporary run  

Sorter (phase 2)    sharedbuf 768 KB 
shared disk buffer for reading from all temporary runs during merge 

Sorter (phase 2)    outputbuf 
single disk buffer for writing sorted tuples to output file 

512KB 

Figure 12. Memory parameters used by the 
sort filters. The Full Memory column contains 
the initial value for each parameter. 

ing memory causes the filters to read/process/write data in 
smaller pieces, thus performance should suffer. As is shown 
by the solid line in the figure, the execution time increases as 
the size of the memory is decreased. In the experiments with 
heterogeneous memory configuration, we divide the eight 
nodes into two sets of four nodes. The first set of nodes re- 
tains the initial amount of memory (i.e., Full memory) for 
all runs, while the second set has their memory reduced for 
each case. The left bars for each case in each graph shows 
the maximum of the execution times on the nodes with full 
memory. Similarly, the right bar for each case in each graph 
shows the maximum of the execution times on the nodes 
with reduced memory. As is shown in Figure 13(a), we ob- 
serve performance degradation similar to the base case. The 
nodes that use a constant amount of memory finish sooner, 
but the entire job runs no faster. In this experiment, both the 
input data to the Partitioner filter and the output of the Par- 
titioner (i.e. the input data to the Sorter filter) on each node 
are regularly partitioned across all the nodes. 

Notice that the total amount of memory across all nodes 
for this experiment is larger than that for the base case be- 
cause half the nodes keep full memory. For example, for the 
1/8 memory case, 350% more memory was being used in 
aggregate than for the 1/8 base case. Instead of a reduction 
in sort time, the extra memory results in a load imbalance 
between the two sets of four nodes. Hence, in the next ex- 
periment we partitioned the amount of input data for each 
node irregularly, to attempt to reduce overall execution time. 
Figure 13(b) shows that the execution time increases when 
we partition the input data based on available node mem- 
ory, i.e., full nodes have more input data than nodes with re- 
duced memory. This results from an increase in the time for 
the partitioning phase, because the Partitioner filters on the 
set of nodes with full memory have more input records to 
process. The execution time for the merge phase is effec- 
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tively unchanged, because the amount of data sent to each 
node is unchanged. Figure 13(c) shows the result of parti- 
tioning the output of the Partitioner filter (and thus the merge 
phase work) according to the memory usage of the receiv- 
ing node. This experiment, however, moves too much work 
to the nodes with full memory, so that those nodes become 
the longest running node set. To improve performance fur- 
ther, we followed two different approaches. In Figure 13(d), 
the Partitioner filter output is adjusted to balance the perfor- 
mance of both sets of nodes (approximately a 10% reduc- 
tion in the number of tuples assigned to a node for each 1/2 
reduction in memory usage). In this case, we observe bet- 
ter performance than the previous cases. In the second ap- 
proach, we partitioned both the input data and the output of 
the Partitioner filter as was done in the experiment for Fig- 
ure 13(c), but executed two Sorter and two Partitioner fil- 
ters on the nodes with Full memory to take advantage of the 
dual processors available in each node. As is seen in Fig- 
ure 13(e), the performance is better than for the previous 
cases. Finally, Figure 13(f) shows the combined effect of 
running two sets of filters on the nodes with full memory, 
and adjusting the Partitioner output to balance the workload 
across both set of nodes. As expected, this configuration 
performs better than all other cases. These experimental re- 
sults clearly show that application-level workload handling 
and careful placement of filters can deal with heterogeneity, 
which can have a significant impact on performance. Ques- 
tions that require further investigation include (1) "can we 
develop cost models for niters and for the application per- 
formance so that the placement of filters and workload han- 
dling can be done by the runtime system, with little interven- 
tion from the user?" and (2) "can we make use of expos- 
ing resource requirements and communication characteris- 
tics to develop accurate and efficient cost models?". We plan 
to work on more applications and different configurations to 
seek answers to these questions in future work. 

7. Conclusion and Future Work 

We have presented a framework, called filter-stream pro- 
gramming, for developing data-intensive applications in a 
Grid environment. This framework represents the process- 
ing in an application as a set of processing components, 
called filters. The goal is to constraint application com- 
ponents to allow for location independence, and to expose 
communication characteristics and resource requirements, 
thus enabling a runtime system to support efficient execu- 
tion of the application. We have described a prototype run- 
time infrastructure to execute applications using the filter- 
stream programming framework. We have discussed imple- 
mentations of two data-intensive applications that make use 
of our filter-stream framework, and presented experimental 
results. 

Our experimental results show that there exists a delicate 
balance, and sometimes subtle interactions with heteroge- 
neous resources, that can have a large impact on application 
performance. We plan to further investigate such interac- 
tions to develop cost models that can aid in decomposition 
of applications into filters and placement of the filters. We 
also are in the process of implementing other applications to 
use the filter-stream programming framework from applica- 
tion areas such as volume visualization, database decision 
support, and image processing. 
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Abstract 
Enforcement of a high-level statement of security policy 
may be difficult to discern when mapped through func- 
tional requirements to a myriad of possible security ser- 
vices and mechanisms in a highly complex, networked 
environment. A method for articulating network security 
functional requirements, and their fulfillment, is presented. 
Using this method, security in a quality of service frame- 
work is discussed in terms of "variant" security mecha- 
nisms and dynamic security policies. For illustration, it is 
shown how this method can be used to represent Quality of 
Security Service (QoSS) in a network scheduler benefit 
function . 

1 Introduction 

Several efforts are underway to develop middleware 
systems that will logically combine network resources to 
construct a "virtual" computational system [4] [7] [8] 
[15] . These geographically distributed, heterogeneous 
resources are expected to be used to support a heteroge- 
neous mix of applications. Collections of tasks with dispar- 
ate computation requirements will need to be efficiently 
scheduled for remote execution. Large parallelized compu- 
tations found in fields such as astrophysics [14] and meteo- 
rology will require allocation of perhaps hundreds of 
individual processes to underlying systems. Multimedia 
applications, such as voice and video will impose require- 
ments for low jitter, minimal packet losses, and isochronal 
data rates. Adaptive applications will need information 
about their environment so they can adjust to changing 
conditions. 

User acceptance of these virtual systems, for either 
commercial or military applications, will depend, in part, 
upon the security, adaptability, and user-responsiveness 

1.  This work was supported by the DARPA/ITO Quorum program. 

provided. Several of the projects engaged in building the 
middleware to create these networks are pursuing the inte- 
gration of security [6] [10] [23] and quality of service [1] 
[17] into these systems. The need for virtual networked 
systems to both adapt to varying security conditions, and 
offer the user a range of security choices is apparent. 

In the network computing context, users or user pro- 
grams may request the execution of "jobs," which are 
scheduled by an underlying control program to execute on 
local or remote computing resources. The execution of the 
job may access or consume a variety of network resources, 
such as: local I/O device bandwidth, internetwork band- 
width; local and remote CPU time; local, intermediate 
(e.g., routing buffers) and remote storage. The resource 
usages may be temporary or persistent. As there are multi- 
ple users accessing the same resources, there are naturally 
various allotment, contention, and security issues regarding 
use of those resources. 

The body of rules for resolving network security issues 
is called the network security policy, whereas the body of 
rules for resolving network contention and allotment com- 
prise a network management policy (which is sometimes 
taken to include the network security policy). These poli- 
cies consist of broad policy jurisdictions, such as schedul- 
ing, routing, access control, auditing, and authentication. 
Furthermore, these jurisdictions can be decomposed, typi- 
cally, into functional requirements, such as, "users from 
network domain A must not access site B," and "user C 
must receive a certain quality of service." The network 
management and security policies, as mapped through the 
functional requirements, may be manifested in mecha- 
nisms throughout the network, including: host computer 
operating systems, network managers, traffic shapers, 
schedulers, routers, switches and combinations thereof. As 
these mechanisms are distributed and are often obscurely 
related, there has been some interest in the ability to 
express and quantify the level of support for security policy 
and Quality of Security Service (QoSS: managing security 
and security requests as a responsive "service" for which 
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quantitative measurement of service "efficiency" is possi- 
ble) provided in networked systems. 

The purpose of this paper is to present the system devel- 
oped for the MSHN resource management system [8] for 
describing network security policy functional require- 
ments, to show how QoSS parameters and mechanisms can 
be represented in such a system, and to provide an example 
of the use of this system. The remainder of this paper is 
organized as follows. Section 2 discusses a "security vec- 
tor" for quantifying functional support of network security 
policy. Section 3 describes how the security vector can be 
used for expressing the effects of QoSS in a network- 
scheduling benefit function; and a conclusion follows in 
Section 4. 

2 Network Security Vector 

A network security policy can be viewed as an n-dimen- 
sional space of functional security requirements. We repre- 
sent this multidimensional space with a vector (S) of 
security components. Each component (S.c) specifies a 
boolean functional requirement, whereby the instantiation 
of a network job either meets (possibly trivially) or does 
not meet each of the requirements. By convention, a secu- 
rity vector's components are ordered, so they can be refer- 
enced ordinally (S.3) or symbolically (S.c). A component 
may indicate positive requirements (e.g., communications 
via node n must use encryption) as well as negative con- 
straints (e.g., users from subnet s may not use node n). 
Components can also be hierarchically grouped. [22] 
Requirements for a given security service may be repre- 
sented by one or more components (indicating a service 
sub-vector), and a security service may utilize functions 
and requirements of other services and their components. 

Some jobs can produce output in different formats, 
where a given format (e.g., high resolution video) might be 
more resource consumptive than another format (e.g., low 
resolution video). Formats may have differing security 
requirements, even within the same job. For example, a 
video-stream format may require less packet authentication 
[19] , percentage-wise, than a series of fixed images based 
on the same data. A "quality of service" scheduling mecha- 
nism might choose one format for a job over another, 
depending on varying network conditions (e.g., traffic con- 
gestion). Further, adaptive applications may select formats 
depending upon changing conditions. For example, IPSec, 
security association (SA) processing using ISAKMP under 
IKE can permit complex security choices through an SA 
payload; and the payload recipient may be given transform 
choices regarding both Authentication Header and Encap- 
sulating Security Protocol [13] . 

2.1 Notation 

The set of all jobs is represented by J. The set of all for- 
mats is represented by /. The notation Stj identifies a vector 
containing the portions of S that are applicable to job j in 
format i, and Sjj.c identifies a given component (c) of Sy. 
The relation of S to Sy is clarified further, below. The fol- 
lowing are some informal examples of security-vector 
components: 

• S. 1: user access to resource is equal to read/write; based 
on table t 

• S.2: % of packets authenticated >= 50, <= 90; inc 10 

• S.3: clearance (user) = secrecy/integrity (resource) 

• S.4: length of confidentiality encryption key >= 64, <= 
256; inc 64 

• S.5: authentication header transform in {HMAC-MD5, 
HMAC-SHA} 

• S.6: packets from domain A to domain B must be 
encrypted 

• S.7: packets from domain A cannot be sent through 
domain C 

Here, "inc 10" indicates that the range from 50 through 
90 is quantized into increments of 10, viz: 50, 60, 70, 80, 
90. Later, we will need to indicate the number of quantized 
steps in the component; to do this, one more notational ele- 
ment is introduced, [S.c]. In the above examples, [5.7] = 1, 
and [S.2] = 5. 

2.2 Variant Security Components 

When [S.c] > 1, the underlying control program has a 
range within which it may allow the job to execute with 
respect to the policy requirement. We refer to this type of 
policy, and component, as "variant." Security-variant poli- 
cies may be used within a resource management context, 
for example, to effect adaptation to varying network condi- 
tions. [18] Also, if the policy mechanism is variant, the 
control program may offer QoSS choices to the users to 
indicate their preferences with respect to a given job or 
jobs. Without variant mechanisms, neither security adapt- 
ability by the underlying control program nor QoSS are 
possible, since fixed policy mechanisms do not allow for 
changes to security within a fixed job/resource environ- 
ment. While the expression S.c may contain a compound 
boolean statement (see Section 2.3 ), by convention it may 
contain only one variant clause. 

134 



2.3 Component Structure 

For use in the examples in this discussion, a component 
has the following composition (see Table 1 for details): 

• component ::= boolean expression, variant-range-spec- 
ifier ; modifying-clause 

• boolean _expression ::= boolean_statement [(or I and) 
boolean_statement] * 

• boolean_statement ::= LHS boolean-operator RHS 

Note that it is not the focus here to elaborate on a policy 
representation language. See other efforts and works in 
progress [2] [3] [5] [16]. 

A given policy component has a value which is a bool- 
ean expression. This component may also have an instanti- 
ated value with respect to a specific job and format, which 
is either "true" or "false." A component has a left hand side 
(LHS), which is the item that is being tested; of course the 
LHS has a value as well as an instantiated value. A compo- 
nent also has a right hand side (RHS), which is what the 
LHS is tested against, as well as zero or more modifying 
clauses. Similarly to the LHS, the RHS may have a value 
(or values) which is dependent on the instantiation of the 
component. 

2.4 Dynamic Security Policies 

With a dynamic security policy, the value of a vector's 
components may depend on the network "mode" (e.g., nor- 

mal, impacted, emergency, etc.), where M is the set of all 
modes. There is, conceptually, a separate vector for each 
operational mode, represented as: Smode. Access to a pre- 
defined set of alternate security policies allows their func- 
tional requirements and implementation mechanisms to be 
examined with respect to the overall policy prior to being 
fielded, rather than depending on ad hoc methods, for 
example, during an emergency. 

Initially, every component of S has the same value in 
each of its modes. Ultimately, components may be 
assigned different values, depending on the network mode. 
For example: 

• Snormal.a: % packets authenticated >= 50, <= 90; inc 10 

• SimPacted.a: % of packets authenticated >= 20, <= 50; 
inc 10 
Note how [S.a] changes from 5 to 4 under the 
impacted mode 

• Snormal.b: user access to network node = granted; based 
on table t 

• Simpacted.b: user access to network node = granted; 
based on table t, OR UID in set of administrators 

• Semersency.b: UID in set of {administrators, policymak- 
ers} 
Or, for example, policy makers might decide that the 

policy should remain in force regardless of network mode: 
.    snormalc = ^mpacted c = s™^.c: clearance (user) 

= classification (resource) 

Table 1: Simple Component Elements 

Element Name Example S.l Example S.2 

Value user access to resource r = RW, based 
on table t 

% of packets authenticated 
>= 50, <= 90; inc 10 

Instantiated value false true 

Value of LHS user access to resource r % of packets authenticated 

Instantiated value of LHS W 70 

Boolean operator = >= 

Value of RHS RW 50 

variant range specifier none applicable <=90 

Modifying clause based on table t inc 10 
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If a mode is not specified for a component (e.g., "S.a"), 
normal mode is assumed. This will be the case (i.e., the 
mode is unspecified) for the remainder of this discussion. 

2.5 Refinements to Security Vector 

R is the set of resources [r7.. rn}. Ry is the subset of R 
utilized in executing job7 in format i. 

Tj is the requested completion time of job j. 
Security policies may be expressed with respect to prin- 

cipals (user, group or role, etc.,), applications, data sets 
(both destination and source), formats, etc., as well as 
resources in Ry. 

The definition of Sy is finally refined as follows: Sy is a 
vector that is an order-preserving projection of S, such that 
a component c from S is in Sy if and only if the value of c 
depends on format i, job ;', or any r in Ry. The number of 
components in a security vector 5,-y is [Sjß. 

2.6 Summary of Security Vector 

S is a general purpose notational system suitable for 
expressing arbitrarily complex sets of network security 
mechanisms. S can express variant policies, to allow secu- 
rity expressions of quality of service requests, and can have 
dynamic security elements to accommodate multiple situa- 
tion-based policies. In particular, S can represent both (1) 
static security requirements that may be implemented in a 
system, as well as (2) the results of running a particular job 
or set of jobs against such static requirements. The latter 
usage will be examined in the next section, to express 
QoSS in a resource management system benefit function. 

3 Network-Scheduler Benefit Function 

As discussed above, various mechanisms exist for man- 
aging contention for, and allotment of distributed network 
resources. One class of these mechanisms attempts to effi- 
ciently schedule the execution of multiple (possibly simul- 
taneous) jobs on multiple distributed computers (e.g., the 
MSHN project [8] [23] [24] [11] [17]), where each job 
requires a determinable subset of the resources. Of interest 
is a benefit function for comparing the effectiveness of 
such job scheduling mechanisms when they are presented 
with real or hypothetical "data sets" of jobs. 

Jobs are assigned priorities for use in resolving resource 
contention and allocation issues. In some systems, a job's 
priority may depend upon the particular operating mode of 
the network. [8] Also, the different data formats of a multi- 
ple-format job may have different preferences (e.g., 
assigned by a user or "hard wired" as part of the applica- 
tion or job-scheduler database), and different levels of 

resource usage. [10] [12] A network job scheduler should 
receive more credit in the benefit function for scheduling 
high priority and high preference jobs, as opposed to low 
priority or low preference jobs. That is to say, a scheduler 
is intuitively doing a better job if important jobs, as judged 
by priority and preference, receive more attention than 
unimportant jobs. How much weight the priorities and 
preferences are given is a matter of network scheduling 
policy. 

For illustration, we introduce a simple benefit function, 
B, to measure how well a scheduler meets the goals of user 
preference and system priorities (see [4] , [12] and [21] 
for other approaches). This function averages preference 
(p) and priority (P) (use of a priority and preference in 
measuring network effectiveness have been introduced for 
the MSHN project [10]). 

XIW+^) 
B= ± 

In 
Where the characteristic function X is defined for i, j as: 

Xij - 1 if format i was successfully delivered to job; 
within time Tj, else 0 
and at most one format is completed per job: 

f 
V;e7 

\ 

V; = 1 
Jobs and formats are defined as above. 

P. is the priority of job; 

0<P.<1 
The formats for a job are assigned preferences (p) by 

the user such that: 
0 <= p<= 1 
nij is the number of [format, preference} pairs 

assigned for job; 
Pij is the preference the user has assigned to format;', 

job; 
the preferences for a job add up to 1: 

mi 

;= 1 

This approach assumes that users will assign preference 
values that correspond to resource usage, since we want the 
benefit function to indicate a higher value when the sched- 
uler succeeds in scheduling "harder" jobs [12]. 
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3.1 Adding Security to the Benefit Function 

We wish the benefit function to reflect the effectiveness 
and restrictions of the security policy. First, we define the 
characteristic security function Z, for i and j: 

Zjj = 1 if the instantiated value of all components in S,-,- 
are true, else 0 

The numerator of the benefit function is multiplied by Z, 
so that no credit is given for jobs that fail to meet the secu- 
rity requirements: 

n     rrij 

II XijZij(Pj + Pij) 
B= i=li=l  

In 

Now, for variant components, we wish to be able to give 
less credit to the scheduler for fulfilling less "difficult" 
security requirements. One algorithm for expressing this is 
for each instantiated component (c) in St: to be assigned a 
security completion token (g) where 0 < g < 1. gc will 
indicate the completion token corresponding to component 
S.c. gc is defined to be the "percentage" of [S.c] met or 
exceeded by the instantiated value of the component's 
LHS (notated as S.c"): 

gc = S.c"/[S.c] 

To illustrate the calculation of gj, for component S.l: 
S.l: % of packets authenticated >= 50, <= 90; inc 10 
[S. 1] = 5 (the number of quanta in S.l),  S.l" = 3  (the 
job achieves the 3rd quantum (70)) 
gj = 3/5 = 0.6 

For invariant components, g = 1 or g = 0. A token (g) 
whose value is 0 represents a job "failing" the component's 
security policy. Recall that Z will be 0 when the job/format 
fails to meet the requirement of any security component, 
meaning that the function returns no benefit value for that 
job/format. We introduce a function (A) which averages the 
tokens of a job: 

Aij = (8l+g2 + -+gn)
/n 

where n = [S;ß — the number of components in 5,-.- 

and (0<Aij<\) 

Averages, such as A, over many different elements can 
tend to minimize the difference that is seen between differ- 
ent data sets. Therefore, we weight the tokens (g) assigned 
to individual security components to give more credence to 
components that are "more important" than others, e.g., 
reflecting network management policies. Each gn has a cor- 
responding integer weight (w„), wc > 0. So Aij becomes: 

Aij = (gl^l + g2w2 + ■■+ gnwnV(wl + w2 + ■■ + ™n) 

again (0<A,7<1) 

In the final expression of the network benefit function, A 
is added to the numerator, providing an average of security, 
priority and preference. 

n     rrij 

B= i=li = 1  
3n 

0 < B < 1 , where 1 indicates the maximum 
scheduling effectiveness. 

3.2 Applicability 

This technique for quantifying the variant security 
instantiated by a resource management system is being 
used in the MSHN project as a factor in representing the 
effectiveness of its resource assignments [10] . In the 
MSHN design, the security requirements of network 
resources (represented by S) are stored in a Resource 
Requirements Database. This database is consulted during 
the resource scheduling phase to effectively match jobs to 
resources. We expect that this measurement technique 
could also be applied to other resource management sys- 
tems, such as Condor [15] and Globus [7]. 

While different schedulers could be compared with 
respect to the individual components of B, a summary 
function such as B would be useful to automate and nor- 
malize the comparison process. Additionally, we expect 
that the security component (viz, A) in an operational sys- 
tem would be complex enough to evade effective manual 
analysis. 

4 Discussion and Conclusion 

A security vector has been presented for describing 
functional requirements of network security policies. It has 
been shown that this vector can be used for representing 
security with respect to both quality of service and a net- 
work scheduler benefit function. 

We are involved in ongoing work to organize the secu- 
rity vector into a "normal form" with sub-vectors or hierar- 
chies corresponding to security policy jurisdictions (such 
as: access control, auditing, and authentication) and to 
incorporate a costing methodology for security compo- 
nents, such as can be provided to a resource management 
system [9] . We are working to develop a means of adjust- 
ing the preference expression with a notion of the corre- 
sponding resource usage [12] . We are considering how to 
expand the security benefit function (A) to reflect user qual- 
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ity of security service choices within the range allowed by 
variant security components, and to reflect performance 
implications of redundant security mechanisms. 

The organizational security policy [20] governing the 
network may allow individuals or principals representing 
them to override rules represented by invariant security 
vector components. For example, a military commander 
might decide to forgo cryptographic secrecy mechanisms 
for a job in an emergency (e.g., to improve network perfor- 
mance), even though the system has not been configured 
with "dynamic" or "variant" security mechanisms, as 
defined herein. From the perspective of the security vector 
S and the benefit function, this is a change to or violation 
of the computer security policy. It is recommended that this 

type of policy change be audited. 
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Abstract 

Gardens is an integrated programming language and 
system designed to support parallel computing across non- 
dedicated cluster computers, in particular networks of PCs. 
To utilise non-dedicated machines a program must adapt 
to those currently available. In Gardens this is realised 
by over decomposing a program into more tasks than pro- 
cessors, and migrating tasks to implement adaptation. To 
be effective this requires efficient task migration. Fur- 
thermore, typically non-dedicated clusters contain different 
machines hence heterogeneous task migration is required. 
Gardens supports efficient task migration between hetero- 
geneous machines via meta-information which completely 
describes a task's state. By identifying different degrees of 
heterogeneity and different kinds of tasks, we are able to 
optimise task migration. The main contribution of this pa- 
per is to show how heterogeneous task migration may be 
optimised. 

1. Introduction 

In the aggregate, networks of workstations represent a 
huge and cheap unused computing resource. By their very 
nature such non-dedicated cluster computers are dynamic. 
The workstations available to a computation will typically 
change during the execution of a program as workstation 
users come and go. Thus programs must adapt to the chang- 
ing availability of workstations. 

The Gardens system [28] is an integrated programming 
language and system targeted at non-dedicated cluster com- 
puters. The goals of Gardens are: adaptation, safety, ab- 
straction and performance (ASAP!). These are realised in 
part by a modern object oriented programming language, 
Mianjin [27], a derivative of Pascal. The Gardens system 
and Mianjin programming language are custom designed 

and built; thus we have complete control over both of these. 
Gardens utilises task migration to realise adaptation. A 

program is over decomposed into more tasks than proces- 
sors and tasks are migrated in response to changing work- 
station loads. This adaptation is transparent to the program- 
mer. Typically, workstation networks comprise a collec- 
tion of different machines. Thus efficient use of such ma- 
chines entails heterogeneous computing and heterogeneous 
task migration, the subject of this paper. Task migration is 
integrated into both Gardens and the Mianjin compiler. 

Tasks communicate via a virtual shared object space. 
Tasks may reference objects belonging to other tasks, to 
communicate they invoke methods on such remote objects. 
This is the only way tasks may communicate, tasks cannot 
otherwise share data. 

The main contribution of this paper is to show how effi- 
cient heterogeneous task migration may be achieved, to re- 
alise adaptive utilisation of workstation clusters; however, it 
should be noted that there are other uses for task migration 
e.g. to implement automatic fault tolerance through migrat- 
ing tasks to disk. 

The next section summarises our techniques for achiev- 
ing heterogeneous task migration. Section 3 presents a more 
detailed look at the implementation. Some performance fig- 
ures are reported in Section 4. Section 5 presents related 
work, and the final section discusses the work and future 
directions. 

2. Task migration 

To implement task migration Gardens uses meta- 
information which fully describes a task's state. This meta- 
information is generated by the Gardens Mianjin compiler. 
The meta-information is similar to that available in Java, 
although in addition to heap objects our meta-information 
also describes stack frames. A prerequisite for task migra- 
tion is a safe language.   For example we cannot allow a 
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pointer to masquerade as an integer or vice versa since in- 
tegers and pointers may require different translation under 
task migration (see Section 3). 

Task migration is only supported at predetermined call 
points in the program. These migration points may be man- 
ually inserted by the programmer or automatically by the 
compiler. At these points the compiler generates the addi- 
tional code and meta-information to support task migration. 
This can support both preemptive and non-preemptive task 
migration. Our current compiler does not support optimised 
code, although this is currently under investigation. To sim- 
plify migration we arrange for data structures to have com- 
mon alignments and sizes across all platforms. We can do 
this since we have a custom system, language and compiler. 
A foreign language interface mechanism supports interop- 
erability, but we do not support task migration within such 
code. 

Meta-information is used to recover a task's state. A 
task's state comprises its stack, heap and global variables; 
registers and the PC are flushed to the stack. We do not 
migrate OS process state, our goal is to handle such state 
within wrapper libraries that can be migrated. The stack 
and heap are similar in that both can be viewed as collec- 
tions of tagged records. The heap contains tagged objects, 
the stack contains tagged activation records, all objects in 
stack frames are statically known at compile time. When re- 
quired, a task's state is transformed into a state suitable for 
the target machine. In general this is done lazily since the 
task may initially be saved to stable storage hence its des- 
tination may be unknown hence the information for trans- 
formation will only be available at task load time e.g. stack 
and heap base addresses. 

To make task migration efficient we use optimisations 
based on different kinds of tasks and different degrees of 
platform heterogeneity. This is described in the following 
sections. 

2.1. Different kinds of tasks 

There are three kinds of tasks in Gardens which have 
different migration requirements. These different kinds of 
tasks can be distinguished by the runtime system. 

Seed tasks are newly created tasks which have never been 
run. They comprise just the initial data passed in a 
create task operation, they have no stack nor heap and 
hence are trivial to migrate. Seed tasks are stored in a 
separate structure from other tasks until they are run, 
and hence are easily distinguished from other tasks. 

Stackless tasks have no stack. They correspond to an in- 
verted programming style as often used in event driven 
programming where control must periodically return 

to an event loop. Such tasks require only heap migra- 
tion, since their stacks are empty, which can be con- 
siderably simpler than full task migration; some early 
work on this was reported in [29]. A stackless task 
may also be a task that has completed its main thread 
of execution but has "actions" to perform or objects in 
its heap which are referenced by other tasks. 

Full tasks have stacks and heaps both of which must be mi- 
grated. These are the most expensive tasks to migrate. 

2.2. Degrees of heterogeneity 

There is a spectrum of degrees of system heterogeneity: 

0. Same architecture, statically linked code, same heap 
and stack base addresses: a completely homogeneous 
platform. For such platforms no state transformation is 
required and migration corresponds to a straight mem- 
ory copy from one machine to another. However in 
practice few modern platforms are this simple. 

1. Same platform, but different base addresses (e.g. due 
to dynamic linking and loading): since all structures 
have common sizes and alignments, and all stack 
frames have the same representation, task migration 
only requires stack and heap pointers to be adjusted 
to deal with new stack and heap base offsets. This re- 
quires meta-information to locate all pointers in stack 
frames and heap objects. 

2. Different architecture, but same word size: for heaps 
this requires stack and heap pointer adjustments as 
described above, endian adjustments, code and data 
pointer translations and type representation adjust- 
ments (e.g. for floating point types). In the case of 
migrating a stack, the stack must be rebuilt with dif- 
ferent activation record conventions, e.g. stack mark 
information, register window flushing for SPARC etc. 
This can be very expensive to perform. 

3. Different architecture and different word size: at 
present we do not address this level of heterogeneity. 
Note, some 64 bit processors are capable of running 32 
bit code which may prove useful. 

3. Implementation 

3.1. Meta-information 

All objects (records and arrays) in Gardens have an iden- 
tifying "tag" located in the two words before the logical start 
of the object in memory. One word is used for garbage col- 
lection purposes while the second points to the object's type 
descriptor; these type descriptors serve two purposes. 
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Firstly, a type descriptor holds typical runtime informa- 
tion such as dimension and element size for arrays and 
method, ancestor and pointer tables for records to enable 
construction and polymorphism. Secondly, the type de- 
scriptors contain links to complete meta-information gen- 
erated by the Gardens compiler to aid task migration. This 
meta-information maps out the size, location and type of 
fields or elements of the type in question. This allows the 
traversal of all objects at runtime. Furthermore, the meta- 
information contains a link to a descriptor for the type's 
module as well as a per-module index that is assigned to the 
type at compile time. From this, a unique module ID/per- 
module index pair may be obtained to identify the type 
across heterogeneous platforms. 

In addition to the meta-information for types, meta- 
information for procedures is generated as well. Procedural 
meta-information maps out procedure entry addresses, lo- 
cal variable and parameter information (number, type and 
frame offset), possible frame offset location of saved dis- 
play values, a module descriptor link and per-module index 
similar to those described for types. This information al- 
lows for traversal of a stack frame, given the location of a 
frame via a frame pointer and for unique identification for 
procedures, in function pointers or as instances in the stack, 
across platforms. 

Finally, the module descriptor contains compilation and 
time stamps as well as three tables mapping per-module in- 
dexes to concrete addresses. The first two tables correspond 
to the type and procedure indexes while the third table maps 
potential migration points. 

3.2. Heap migration 

Each heap segment in Gardens comprises of two logi- 
cal parts: the contiguous memory in which objects are allo- 
cated and the runtime information for managing that mem- 
ory. Having designed and implemented the Gardens com- 
piler and runtime system has allowed us to ensure that: 

1. Objects of identical type are aligned identically across 
platforms. 

2. Heap segment structure is identical across platforms. 

3. Heap runtime information is logically identical across 
platforms. 

This makes heap migration relatively simple; all that is 
required is a few changes to the heap segment's representa- 
tion. Furthermore, since all hosts in Gardens environment 
have complete information as to the characteristics (archi- 
tecture and operating system) of the other hosts, these rep- 
resentation changes may be made directly by the source or 
destination host; packing to and unpacking from an inter- 
mediate representation is avoided. 

Representation changes fall into three categories: 

1. Pointer rebasing 

2. Endian adjustment 

3. Code/Data segment address translation 

The current platforms targeted by Gardens have similar 
representation for types (floating points, booleans, etc.) so 
type adjustments are currently not necessary. 

Pointer rebasing is necessary when migrating between 
hosts with a degree of heterogeneity of (1) and (2) and in- 
volves traversal of all pointer fields within objects in the 
heap segment and adjusting any non-null pointers by an ap- 
propriate heap offset. Pointer rebasing is performed by the 
source host and, in the case of objects in the heap, requires 
only the pointer table found in the type descriptor. 

Endian adjustment requires a full traversal of all objects 
in the heap segment and performing byte swapping on fields 
of necessary size. This is only required in degree (2) cases 
in which machines are of different endian. Endian swapping 
is generally performed by the source host. 

Code/data segment address translation is also only re- 
quired in degree (2) cases. Since the layout of code and 
data segments will not be identical across heterogeneous 
platforms, pointers into the code or data segments cannot 
be simply "rebased". In Gardens, however, the only can- 
didates for code and data segment pointers in the heap are 
procedure variables and type descriptor addresses present in 
each object tag. These are replaced with procedure and type 
module ID/per-module index identifiers on the source side 
and replaced with the host specific address on the destina- 
tion side. 

Heap migration in Gardens thus breaks down into per- 
forming the above transformations to the objects in the heap 
segment and to the runtime information describing the heap 
itself. 

The objects in the heap segment may be located by scan- 
ning a heap object bitmap that is maintained by the run- 
time system for memory management and garbage collec- 
tion. The type and meta-information of each object is then 
obtained by inspecting the object's tag allowing the object 
to be traversed and transformed as necessary. 

The runtime information for the heap consists of the por- 
tion of the heap object bitmap relevant to the heap segment, 
a heap descriptor located at the start of each heap segment 
and the list of free blocks for the heap. The heap object 
bitmap contains no pointers and only needs endian adjust- 
ments; however, the heap object bitmap remains in use on 
the source host after heap migration has occurred (to mark 
objects and heap segments as remote). Therefore, endian 
adjustments on the heap object bitmap are performed by the 
destination host if necessary. The heap descriptor and free 
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block list are indistinguishable from other objects and are 
transformed correspondingly. 

3.3. Stack migration 

Stack segments in Gardens comprise of a runtime stack 
and a task descriptor. The task descriptor stores stack and 
context information along with some programmer definable 
task property objects. As with heap descriptors, transforma- 
tion of the task descriptor is straightforward. The method of 
runtime stack transformation, however, depends upon the 
degree of heterogeneity between hosts. 

Degree (0), of course, requires no modifications to the 
stack. 

Degree (1) requires only pointer rebasing as in degree 
(1) heap migration. Candidates for pointer rebasing in stack 
migration are no longer just pointer fields in structures but 
pointers in local variables and parameters, variable parame- 
ters, display pointers saved in stack frames and frame point- 
ers themselves. The stack is traversed using the instruction 
pointer (or return address) for each stack frame to obtain the 
corresponding procedure's meta-information. 

For degree (2) all three representation transformations 
described above need be performed. In addition to this, the 
layout of each of the stack frames needs to be restructured 
to match that of the destination host. To achieve this, the 
source host traverses the stack and deconstructs the stack 
into an abstract stack while performing the representation 
transformations. A list of all variable parameters that point 
into the stack and the address into the abstract stack at which 
they point is also constructed by the host. 

The abstract stack is similar to the concrete stack in some 
ways. Each concrete frame has a corresponding abstract 
frame and each abstract frame has a parameter section, stack 
mark, local variable section and workspace (for value open 
arrays and value reference records). However, the abstract 
stack format does differ from concrete stacks in the follow- 
ing manners: 

• Abstract frames are in opposite order to those in the 
concrete stack with the abstract frame pointers refer- 
ring to the following frame rather than the proceeding 
frame. 

• Along with an abstract frame pointer, each abstract 
stack mark contains module ID/per-module index 
identifier for the return address and a similar identifier 
for the procedure relevant procedure. 

• Parameters and local variables are stored in order from 
the abstract stack mark as frame offsets of parameters 
and local variables differ across platforms. 

Once the destination host has received the abstract stack, 
it rebuilds a stack specific to its architecture using a novel 

approach. For each stack frame, the parameters are first 
loaded from the abstract stack (into the concrete stack or 
the parameter registers). A context switch is performed to 
the new stack and a dummy procedure prologue is called for 
the appropriate procedure. This allocates appropriate stack 
space, updates the display vector and copies any value ar- 
rays into the appropriate position in the workspace. Context 
is switched back to the original stack and the correct re- 
turn address is inserted into the newly allocated stack frame. 
Local variables are copied to their respective positions and 
code/data segment translations are performed. Finally, the 
variable parameter list is checked to see if memory pointed 
to by a variable parameter down the stack has been copied 
to the concrete stack. If so, the variable parameter value 
is adjusted to reflect the change. The stack frame is then 
complete. 

Finally, the task descriptor requires some minor changes 
to reflect the state of the stack on the new host. 

4. Performance 

The measurements below were taken on: 233 MHz Pen- 
tium II, 96 Mb RAM running RedHat Linux v5.2 and Sun 
4 Sparc, 32 Mb RAM running Solaris 2.51. For degrees of 
heterogeneity (0) and (1), figures are specified for machines 
running Linux as specified above. For degree (2), (LS) in- 
dicates migration from Linux to Solaris and (SL) indicates 
migration from Solaris to Linux. 

The measurements are for a recursive sum program of 
approximately 40 stack frames and linked list program 
with 1000 objects in the heap. Each set of measurements 
presents the time taken for task transformation only (that is, 
no communication times are included) with the measure- 
ments split between the time taken by the source and desti- 
nation hosts to perform the transformations necessary. 

Seed Task Migi ■ation 

Degree 
Source 

(timers) 
Dest. 

(time [is) 
0 
1 

2(LS) 
2(SL) 

6 
8 
9 

11 

4 
4 
8 
4 

Stackless Task Migration (Linked List) 
Heap Stack 

Source Dest. Source Dest. 
Degree (time ms) (time ms) (time ms) (time ms) 

0 0 0 0 0 
1 0.64 0 0.03 0 

2(LS) 4.49 27.65 0.64 0.95 
2(SL) 57.20 2.46 7.83 0.05 
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Full Task Migration (Linked List) 

Degree 
0 
1 

2(LS) 
2(SL) 

Heap Stack 
Source Dest. Source Dest. 

(time ms)    (time ms)    (time ms)    (time ms) 
0 0 0 0 

0.65 0 1.06 0 
4.73 30.08 1.21 7.37 

59.38 2.47 12.47 0.83 

Full Task Migration (Recursive Sum) 

Degree 
0 
1 

2(LS) 
2(SL) 

Heap 
Source Dest. 

(time ms)    (time ms) 

Stack 
Source Dest. 

(time ms)    (time ms) 

0 
0.03 
0.03 
0.09 

0 
0 

0.82 
0.09 

0 
1.14 
1.46 

13.95 

0 
0 

10.70 
0.98 

The above figures clearly show the advantages of iden- 
tifying and targeting both the different degrees of hetero- 
geneity and different classes of tasks to migrate. 

In the context of task creation and initial load balancing, 
it is clear that seed task migration holds the greatest advan- 
tage for all degrees of heterogeneity, especially since seed 
tasks incur the smallest communication costs due to their 
size. 

Similarly, the speed up for degree (1) migration from de- 
gree (2) migration (twice as fast for stack migration, ten 
times as fast for heap migration) is considerable. The heap 
migration figures reflect the use of pointer tables for pointer 
rebasing for degree (1) migration. This suggests a similar 
pointer map should be implemented for stack frames. 

Of note are the times for the stack and task descriptor 
transformations for stackless and full task migration. The 
full task recursive sum stack transformation with 40 stack 
frames takes is only 10% to 20% slower than the full task 
linked list stack transformation. We believe this is due 
to inefficiencies in our current method of loading meta- 
information. This is further illustrated by the stack transfor- 
mation (really task descriptor transformation) figure for the 
degree (2) stackless task migration; full meta-information 
information for the programmer defined task properties ob- 
ject must be loaded whereas only pointer tables are required 
for degree (1) migration. 

5. Related Work 

There are three main approaches to task migration across 
heterogeneous platforms [32]. The first approach assumes 
that all tasks will execute on a virtual machine that is avail- 
able on all hosts in the system, for example the Java Virtual 

Machine. The second and third approaches both assume 
that tasks will execute on their host's native machine. To do 
this they need to generate meta-information on the execut- 
ing task, so that they can translate the task's execution state 
from one native machine's format to another. The second 
approach relies on code that collects this meta-information 
to be included in the task's source code. This can either ei- 
ther be done manually by the programmer or automatically 
by a pre-processor. The third approach relies on the com- 
piler and runtime system to generate the meta-information. 

The first approach is much simpler than the other two, 
as the use of a common execution environment reduces 
the problem to one that can be solved via a homoge- 
neous migration solution. This approach was initially used 
by Chameleon [12]. Today it is widely used by mo- 
bile agent systems, such as Agent TCL [16], Aglets [18], 
ARA [22], Concordia [11], Extended Facile [23], Liquid 
Software [13], Mole [2], Obliq [5], Odyssey [15], Omni- 
ware [20], Sumatra [1], TACOMA [39] and Telescript [40]. 
Despite this approach's simplicity it suffers performance 
penalties from the use of a virtual machine. Some solu- 
tions [20, 13] alleviate this problem by using "on-the-fly 
compilation" to translate parts of the task's code to native 
code. However, the native code produced is still 25 percent 
slower than regular native code [1], as they must include 
safeguards to protect the execution environment from being 
corrupted by the native code. 

The second and third approaches provide better perfor- 
mance results than the first approach, as they allow the tasks 
to execute directly on the native machine. The second ap- 
proach is more portable than the third approach, as it does 
not require a specialised compiler. However, the third ap- 
proach delivers better runtime performance as it does not 
need to generate all of its meta-information at runtime. 
In addition to this, the third approach's migration mech- 
anism is more transparent to the programmer. Examples 
of the second approach include: HMF [21], Process In- 
trospection [14], HiCaM [25], Ythreads [30], Arachne [8], 
DOME [31], PMT [32] and MpPVM [6]. Examples of 
the third approach include: Emerald [35], Tui [34], Shub, 
Dubach and Rutherford's work [9, 10], Hollander and Sil- 
berman's work [17], Distributed C [24] and porch [36]. Our 
work is based on the third approach, as it provides the most 
optimal results. 

With heterogeneous task migration, most research has 
focused on how to reconstruct the task's state [38, 3, 7, 30], 
the location of migration points [4, 35] and analysing the 
safety aspects of this approach [34, 19]. Very little research 
has been done on how to optimise migration based on dif- 
ferent kinds of tasks and different degrees of heterogeneity. 
Most of the work in this area has been done by the Univer- 
sity of Colorado at Colorado Springs [10, 33, 9]. The most 
significant contribution originating from their work is the 
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idea of ensuring that compilers generate code with the same 
data alignment rules. Our work builds on what they have 
done by providing optimised translation based on the task 
type and the degree of heterogeneity between platforms. 

6. Discussion and Further Work 

A basic heterogeneous task migration system has been 
implemented and initial results are promising. We are cur- 
rently working on a revised system using local compiler 
back-end technology which supports the migration of tasks 
utilising optimised code. To make the migration process 
even more efficient we are looking at optimising our meta- 
information. Current performance figures suggest that our 
current meta-information and corresponding traversal tech- 
niques may be over complicated. To this end, a generalised 
version of the pointer map scheme, using bitmaps to plot 
required actions for stack frames and objects is being con- 
sidered. Other methods of optimising meta-information in- 
clude compression and lazy loading. 

A general problem is how to deal with non-migrable re- 
sources such as I/O and file handles, our current solution 
is to retain remote references to them [26]. An interesting 
alternative, is to migrate tasks to the JVM where no tar- 
get mapping is defined using e.g. Java Platform Debugger 
Architecture [37]. Task migration may also be generalised 
to encompass dynamic software reconfiguration. We have 
yet to study degree 3 heterogeneity where e.g. word sizes 
and alignments of data may differ between platforms; this 
is particularly challenging. 
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Abstract 

Cluster computing is presently a major research area, 
mostly for high performance computing. The work herein 
presented refers to the application of cluster computing in a 
small scale where a virtual machine is composed by a small 
number of off-the-shelf personal computers connected by a 
low cost network. A methodology to determine the opti- 
mal number of processors to be used in a computation is 
presented as well as the speedup results obtained for the 
matrix-matrix multiplication and for the symmetric QR al- 
gorithm for eigenvector computation which are significant 
building blocks for applications in the target image process- 
ing and analysis domain. The load balancing strategy is 
also addressed. 

1. Introduction 

Several personal computer or workstation based clus- 
ter systems have been developed, from commercial off-the- 
shelf processors to high performance ones such as SMP ar- 
chitectures [3] and using high performance networks like 
Myrinet [2, 19]. Most of the work is devoted to the high 
performance computing aiming to achieve the performance 
of a specific supercomputer at a lower cost. 

Our aim is not to build a cluster of personal computers 
for parallel processing but to do parallel processing on al- 
ready existing group clusters, where each node is a desktop 
computer running the Windows operating system. These 
clusters are characterized by having a low cost network, 
such as a 10 Mbits/s Ethernet, connecting different types 
of processors, of variable processing capacity and amount 
of memory, thus forming a heterogeneous parallel virtual 
computer. Due to network restrictions, which do not allow 
simultaneous communication among several nodes, the ap- 
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plication domain is restricted to one or two dozens of pro- 
cessors. 

The need for a methodology to determine the ideal num- 
ber of processors comes also due to network restrictions, 
since as the number of processors increases the network 
acts as a communication bottleneck and the time spent in 
data exchange can overcome the benefits of more process- 
ing power. This is not usually referred in the high perfor- 
mance clusters literature, due to the usually huge problem 
size, however, in [ 17] a scheduling policy is studied for mul- 
tiprocessor systems based on that some applications cannot 
exploit the computational power available, due to hardware 
and software constraints. In [4] a performance model for 
heterogeneous processing was proposed but not in the con- 
text of processor co-operation to solve a task. 

Our motivation for a parallel implementation of lin- 
ear algebra algorithms comes from image and image se- 
quence analysis needs, posed by various application do- 
mains, which are becoming increasingly more demanding 
in terms of the detail and variety of the expected analytic re- 
sults, requiring the use of more sophisticated image and ob- 
ject models (e.g., physically-based deformable models), and 
of more complex algorithms, while the timing constraints 
are kept very stringent. 

A promising approach to deal with the above require- 
ments consists in developing parallel software to be exe- 
cuted, in a distributed manner, by the machines available in 
an existing computer network, taking advantage of the well- 
known fact that many of the computers are often idle for 
long periods of time. Jt is quite common in many organiza- 
tions that a standard network connects several general pur- 
pose workstations and personal computers, accumulating a 
very substantial computing power that, through the use of 
appropriate managing software, could be put at the service 
of the more computationally demanding applications. 

Existing software, such as the Windows Parallel Virtual 
Machine (WPVM) [1], allows building parallel virtual com- 
puters by integrating in a common processing environment 
a set of distinct machines (nodes) connected to the network. 

0-7695-0556-2/00 $10.00 © 2000 IEEE 
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Although the parallel virtual computer nodes and the under- 
lying communication network were not designed for opti- 
mized parallel operation, very significant performance gains 
can be attained if the parallel application software is con- 
ceived for that specific environment. 

This paper addresses the problem [22] of determining, 
from a pool of available nodes, which ones should be se- 
lected for building a parallel virtual computer that achieves 
the fastest application response time, and it also discusses 
the issue of computational load distribution; the study con- 
siders that the nodes available prior to running the appli- 
cation may differ from time to time, as different users and 
machines are active. At every program initiation phase, the 
highest performance computers from the available set are 
selected, in a number that is computed for optimizing the 
processing time. 

The test cases presented, a parallel matrix multiplication 
algorithm and the QR algorithm, while pertinent to many 
advanced image analysis methods, are also a common mod- 
ule in many other fields, such as in simulation problems. In 
a previously reported work [5], the step edge operator pro- 
posed by Shen and Castan [20] was also tested. 

2. Computational model 

Several computational models [23,7,14] were presented 
in order to estimate the processing time of a parallel pro- 
gram. Although they could be adapted for the cluster of 
personal computers, a specific and simplified model is pre- 
sented below. The target machine is composed by nodes 
with different processing capacities, resulting from differ- 
ent amounts of available memory and from various proces- 
sor types and versions, connected by a standard intercon- 
nection network, such as the Ethernet. Each node of the 
machine is characterized by the processor capacity S, mea- 
sured in Mflops. The network is characterized by the num- 
ber of messages that are allowed simultaneously, the band- 
width LB measured in Mbits/s, and by the existence or not 
of broadcasting capacity. 

The computational model for the virtual machine, de- 
scribing the behavior for a given algorithm, is obtained by 
summing the time spent in sequential operations Ts and the 
time spent in parallel operations Tp. Sequential operations 
include communications, data input/output and other pro- 
cessing that cannot occur in parallel due to each particular 
algorithm characteristics. Parallel operations are those that 
the time spent by one processor can be divided by p if p pro- 
cessors are used. The total processing time, as a function of 
the number of processors p and the problem size n is given 
by equation 1. 

The interconnection network is modeled by a temporal 
expression, Tc, representing the time required to transmit a 
message of no bits between two network nodes, assuming a 
distance 1 network. 

Tc = TL+nb(—+TE) (2) 

The latency time Tj, represents the time gap between the 
processor order to transmit and the beginning of transmis- 
sion and TE the packing time. The logical topology of an 
Ethernet provides a single channel, or bus, that carries Eth- 
ernet signals to all stations, allowing broadcast communica- 
tions. There is only one signal channel delivering packets 
over the network to all stations. Each message is divided 
into packets of length 46 to 1500 bytes of data (packetsize), 
to be sent sequentially and individually onto the shared 
channel. For each packet the computer has to gain access 
to the channel [21]. This division of a message into packets 
leads to a latency time'for each message that is proportional 
to the number of packets (K) into which it is split, resulting 
equation 3. 

Tco = KTL + nb(—+TE) (3) 

The value of K is given by equation 4. A typical value 
for packetsize is 1024 bytes. 

K=\: 
nb/8 

-1 1 packetsize' 

For a heterogeneous virtual machine Ti and TE depend 
on the processor speed 5. Several experiments were con- 
ducted in order to measure these parameters, for the net- 
work referred to in the results section, which is composed 
by processors as illustrated in table 1. The values were mea- 
sured for the matrix multiplication algorithm over different 
matrix sizes, resulting the average values of table 1. 

S(M flops) 244 161 60 50 49 
TL(»s/byte) 70 130 180 180 180 
TE(ßs/byte) 0.05 0.07 0.13 0.13 0.13 

TT(n,p) = Ts(n,p) + Tp(n,p) (1) 

Table 1. Processors parameters 

Although the Ethernet physically allows broadcasting 
the WPVM converts a broadcast in a p processor machine to 
p - 1 messages [1]. Therefore, to model correctly a broad- 
cast the time spent in one message has to be multiplied by 
p-1. 

Independent communications over rows or columns, ei- 
ther for 1-D or 2-D grids, can originate network collisions. 
Examples are all slave processes trying to send results to 
the master process at the same time; or for the matrices 
multiplication algorithm, in each step, the distribution of 
the matrices are independent over rows, for one matrix, and 
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over columns for the other matrix. To avoid collisions a 
set of communication routines using a ring communication 
pattern, as shown in figure 1, were developed. They allow 
processes to synchronize by establishing the order of com- 
munications according to the processes position on the grid. 

POO -O) 
t>00~-D 

Signal 

Figure 1. Communication pattern for two in- 
dependent row broadcasts 

The parallel component Tp of the computational model, 
equation 5, represents the operations that can be divided 
over a set of p processors obtaining a speedup of p, i.e. op- 
erations without any sequential part. 

TP(n,p) = 
ip(n) 

(5) 

The numerator ip(n) is the cost function of the algorithm 
measured in floating point operations (flops) as a function 
of the problem size n. For example, to multiply square ma- 
trices of size n, the cost is ip(n) = 2ra3 [8]. This oper- 
ation count does not include memory operations resulting, 
therefore, a higher complexity. To obtain a correct operation 
count one should consider the memory references made and 
have an estimation of the memory access time. The nodes of 
the virtual machine have different levels of memory (cache, 
main memory, and disk) with different access times, and 
one cannot predict how many accesses are made to each 
one. 

Figure 2 shows the processing capacity achieved by an 
161 Mflop peak performance processor for the matrix mul- 
tiplication algorithm. The computational cost is ip(n) = 
21.5n3flops. Figure 2 also shows that a non block oriented 
algorithm cannot assure a constant coefficient of ip{n), 
which is a requirement in order to be able to estimate the 
time the processors will take to execute the algorithm. From 
this point on the coefficient of tp(n) will be referred to as the 
algorithm constant ß. The value ß does not depend on the 
processor but rather is a characteristic of the algorithm. 

The denominator of equation 5 is the processing capacity 
used which is obtained by summing the individual process- 
ing capacities of the machines. For this equation to be valid 
each machine should not take more than Tp seconds to pro- 
cess its part. This assumes a perfect load balancing in the 
heterogeneous machine. 
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Figure 2. Performance of the matrix multipli- 
cation algorithm on a 161 Mflop peak perfor- 
mance processor as a function of matrix size 

3. Load balancing strategy 

In this section a static load distribution algorithm is pre- 
sented and issues related to the optimization of processing 
time in a heterogeneous environment are discussed. 

3.1. Data distribution 

To avoid the slowest processors to determine the parallel 
processing time, the load should be distributed proportion- 
ally to the capacity of each processor. The aim is to assign 
the same amount of processing time which may not corre- 
spond to the same amount of data. 

The matrices are organized in square blocks of data 
which are assigned to the processor grid. To achieve a bal- 
anced distribution in the heterogeneous machine the number 
of blocks assigned to each processor should be proportional 
to its processing capacity compared to the entire machine: 

h = 
£Z=i Sk 

(6) 

The load index lt although theoretically correct, is not fully 
applicable in practice since the number of blocks assigned 
has to be an integer value. As an example, for a machine 
composed by 6 processors of capacity {244,244, 161,161, 
60, 50} Mflops, h would be {0.265, 0.265, 0.175, 0.175, 
0.065, 0.054}. To distribute a matrix of size 1800 over a 
(1,6) processor grid the assignment would be 1800 rows by 
{477,477, 315, 315, 118, 98} columns respectively. 

The strategy implemented is to compute the number of 
blocks to assign to each processor rounding the real value 
obtained down to the nearest integer, so that some blocks 
are left to be assigned. Then, to obtain an optimal solution 
the remaining blocks are assigned one at a time to the grid 
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of processors, choosing the one that will take less time to 
finish the job. 

For the test case presented, consider a block size of 25 el- 
ements, which lead to an assignment in terms of number of 
blocks, of {19, 19,12,12,4, 3} summing 69 in a total of 72 
blocks, leaving 3 blocks unassigned. Using the time com- 
plexity analysis presented in the next section for the matrix 
multiplication algorithm, Tp = 21.5n3/5, the estimated 
computational time per processor is {135.6, 135.6, 129.8, 
129.8, 116.1, 104.5} seconds. Each block will take {7.14, 
7.14, 10.82, 10.82, 29.03, 34.83} seconds in each proces- 
sor respectively. This block processing time is summed to 
the total time each remaining block being assigned to the 
processor that would finish first. The first block is assigned 
to processor 6 and the last two blocks to processors 3 and 
4, resulting an estimated processing time of {135.6, 135.6, 
140.6, 140.6, 116.1, 139.3} seconds. A perfect load bal- 
ancing cannot be achieved, however for this block size it is 
the optimal assignment, i.e. the assignment that leads to the 
minimum processing time. Figure 9 shows the processing 
time measured for each processor. 

Another issue in data distribution for a heterogeneous 
machine is to keep the load balance in the whole algo- 
rithm. For some algorithms, such as tridiagonal reduction 
and LU factorization, in each iteration part of the matrix is 
fully computed and not visited again, the working matrix 
being smaller from step to step. This can lead to an imbal- 
ance load if the distribution is not cyclic. For the example 
above, if contiguous blocks are assigned to each processor, 
one of the fastest processors would be idle after computing 
19 blocks of the matrix , remaining 53 blocks to be pro- 
cessed. 

To overcome this load imbalance, blocks are organized 
in balanced groups. Being lf the load index of processor i, 
one define group block GB as: 

GB = 
1 

min(li) 
(7) 

If GB/Q < 2 then GB = 2/min(li), where Q is the num- 
ber of column processors. For a (P, Q) grid the algorithm 
is applied to columns and rows independently, considering 
the processing capacity by column and row respectively, as 
shown in table 2. 

For the example given above GB = 1/0.054 = 18 
blocks, giving a group block of {5, 5, 3, 3, 1, 1}. 

With this strategy it is guaranteed that from the begin- 
ning to the end of the algorithm all processors are involved 
in proportion of their load indices U, allowing an effective 
load balancing. When the last group block is being pro- 
cessed, the last 8 blocks would be computed by the slowest 
processors; it is reasonable that in cases where some pro- 
cessors cannot participate due to the lack of data, it should 
be the fastest ones doing the computation. Therefore, the 

cyclic distribution is used inside each group block. 

3.2. Data redistribution 

In order to exploit the computational capacity of the tar- 
get machine, the algorithms must be implemented in order 
to increase the computation to communication ratio, mainly 
due to the slow network. Therefore, data redistribution is 
allowed in order to switch to the optimal grid computed for 
each algorithm. Data distribution is represented by system 
independent objects, allowing the system to switch between 
two unrelated processor grids. 

The cost of redistribution is estimated by the communi- 
cation of n2 elements for a matrix of size n, which is the 
worst case, i.e. every element being allocated to a differ- 
ent processor. The redistribution algorithm starts from the 
first processor (1,1) to the last, changing data synchronously 
with the remaining processors. 

For related grids, e.g. switching from (1,6) to (1,7), the 
system evaluates if the gain in time due to the addition of 
one processor is overcome by the data redistribution time. 
In that case the grid change does not occur. 

3.3. Block size 

The block size should be chosen according to the fol- 
lowing conditions: first, it should maximize the individual 
processing capacity, that as shown in figure 2 degrades for 
a block size 1, and second, to allow the implementation of a 
load balancing distribution. For the machines tested a block 
size in the range 15 to 40 ensure an almost constant process- 
ing capacity. 

For a sequence of parallel algorithms, e.g. for eigenvec- 
tor computation where different grids are used, the block 
size should satisfy all grids in terms of load balancing since, 
although there is data redistribution, this parameter remains 
unchanged. 

3.4. Processor selection policy 

The system keeps a record of the computers enrolled in 
the parallel virtual machine ordered by decreasing compu- 
tational capacity. If only part of the machine is needed to 
execute the algorithm the computers are selected from the 
fastest to the slowest one. 

A computer is considered available for parallel process- 
ing if there is no user activity for at least half the process- 
ing time of the last parallel algorithm. If a user starts us- 
ing his/her computer during a parallel execution, the system 
does not transfer the work to another computer; it completes 
the current job and then marks the computer as unavailable. 
For the problem size addressed, whose processing time is 
expected to be of a few minutes, this policy is satisfactory. 
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4. Optimization of the processing time 4.1. Application to a homogeneous machine 

A parallel algorithm may have two aims: to obtain a 
better accuracy of results by using a more detailed domain 
which could not be possible in a single processor, usually 
due to memory limitations, or, for a given accuracy, to ob- 
tain a reduction in the processing time. The time gain ob- 
tained with the parallel algorithm is usually called Speedup 
and is defined as the quotient of the serial algorithm time 
(Ti) over the parallel algorithm time (TT). 

Speedup — — (8) 

Depending on how the serial processing time is mea- 
sured one can have different definitions of Speedup. Rel- 
ative Speedup is obtained if the serial time is the processing 
time of the parallel algorithm in a single node of the parallel 
computer. Real Speedup is obtained if the serial time is the 
processing time of the most efficient sequential algorithm 
in a single node of the parallel computer. Absolute Speedup 
is defined when the serial time is obtained for the fastest 
sequential algorithm executed in the fastest sequential com- 
puter available [ 18]. In the context of the envisaged applica- 
tions of the parallel virtual machine, we define Speedup as 
the ratio between the processing time of the serial version 
in the computer that controls the parallel execution (mas- 
ter), over the processing time of the parallel program. This 
is the effective gain as seen by the user, who has a choice 
between his/her own single machine (master) or the parallel 
virtual machine; the definition is also globally fair when the 
master computer is one of the fastest available, which is the 
case in the test cases presented below. In a parallel virtual 
machine it is quite common that each node of the computer 
network is not fully available for the user that is running 
a parallel application. The application should not schedule 
work for nodes that are in use by other users, and therefore 
it should have a record of the ones that are free. The aim 
in scheduling work for distributed processing is to obtain a 
processing time that is as small as it can be obtained for that 
particular network, even if some of the nodes are left in the 
idle state. Therefore, the relevant parameter to be consid- 
ered is the Speedup in detriment of the Efficiency, which is 
often used in other contexts. 

Given the above definitions, one can state the goal of the 
work herein reported as the determination of the optimum 
number of processors using a criterion of minimum process- 
ing time. The optimal number of processors p, which min- 
imizes TT{TI,P), is the one for which an increase on the 
serial component, due to the addition of one more proces- 
sor, will be balanced by the gain obtained on the processing 
time of the parallel component. 

For a given algorithm, characterized by the constant ß, 
and for size n matrices, p can be obtained by solving equa- 
tion 9 in order to p [5]. 

8TT 

dp 
0 (9) 

For a homogeneous machine equation 5 simplifies to 
TP(n,p) — y£~L and the communication parameters TL 

and TE assume the same value for all machines, allowing a 
straightforward solution. 

4.2. Application to a heterogeneous machine 

For a heterogeneous machine another degree of com- 
plexity is added to equation 9: first, processors have differ- 
ent computational capacities (5) and second, the communi- 
cation parameters TL and TE also vary with S, as shown in 
table 1. 

To tackle this problem one first orders the nodes by de- 
creasing value of Si (the capacity of node i), and then sched- 
ules the work from the fastest to the slowest free node, re- 
sulting the denominator of equation 5: ST(P) = Y%=\ Si- 
To compute the first derivative of TT in order to p it is re- 
quired to find the sum ST(P), which cannot be computed 
beforehand since one does not know how many processors 
will be used. The function ST(J>) increases monotonically 
with p, having a growth rate that decreases with increasing 
p, as shown in figure 3 for a machine composed by proces- 
sors of capacities {244, 244, 161, 161, 60, 50, 49} Mflops 
in decreasing order. 

M={244,244,161, 161, 60,50, 49} 

2 3 4 5 6 

Number of processors 

Figure 3. Processing capacity of the hetero- 
geneous machine as a function of the proces- 
sors used 

The aim is to approximate Sx(p) by a polynomial func- 
tion in p in order to be able to solve equation 9. A first 
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order polynomial function as used for a homogeneous ma- 
chine is not adequate here. The ideal polynomial function 
would be one that passes in all points of ST(p); however, its 
computation time may be significant for a large number of 
processors. The solution adopted was an iterative quadratic 
approximation. The first function is defined by zero and the 
extreme points of ST{P)- The iterative process allows the 
reevaluation of the cost function TT{n,p) in the neighbor- 
hood of the solution computed. In each iteration only half of 
the processors used in the last iteration are considered being 
the polynomial function defined by: if P is the total number 
of processors, p(l~^ the solution for iteration (i - 1) then 
in iteration i the function is defined by the three points of 
equation 10. 

Srtf-1 ± Pßi+1)    and   ST(p{<_1))    » = 1,2,... 
(10) 

The second degree polynomial function has the same be- 
havior as ST(P) and is written as: 

Ps(p) = ap2 + bp + d (11) 

resulting the first derivative of Tp(n,p) in order to p in: 

dTp(n,p) 

dp 
d_ 
dp 

ip(n) 
ap2 + bp + d 

= 0 (12) 

which must be solved in order to obtain the number of pro- 
cessors p that minimizes the total processing time. 

If the logical grid of processors affects the processing 
time, then changing to a 2D grid (e.g. (r, c) grid) or 3D 
(e.g. hypercube), one or two dimensions are added to the 
problem respectively. For the 2D grid the quadratic approx- 
imation with p = re becomes: 

Ps(r, c) = a(rc)2 + b{rc) + d (13) 

The communication parameters TL and TE also need 
to be modeled by a function of p in order to solve 
dTs{n,p)/dp. To transmit a message from computer A to 
B the latency and packing time depend on the speed of pro- 
cessor A. If one can predict the amount of data each pro- 
cessor will be responsible to transmit, one can estimate the 
time spent in communications by the whole machine. Ac- 
cording to the data distribution algorithm to each processor 
is allocated an amount of data proportional to its relative 
speed in the heterogeneous machine: U = Si/XX=i Sk- 
Therefore, functions to model these parameters are defined 
by equations 14 and 15, corresponding to an weighted mean 
of these values for each possibility of p processors. The val- 
ues of (Ti)j and (Tß)i are shown in table 1. 

TTL(P) = £P , U x (TL)i (14) 

TTE{P) = J2P , '•• x (T^ *—-*i=l 
(15) 

For the machine considered (figure 3), the functions 
TTL{P) and TTE(P) are shown in figures 4 and 5 respec- 
tively. In those figures it is also shown a first degree poly- 
nomial approximation to be included in Ts{n, r, c). 
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Figure 4. Approximation for TTL(p) per byte 
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Figure 5. Approximation for TTE(P) per byte 

The (r, c) configuration that minimizes the processing 
time is obtained by VTr(n,r,c) = 0. Since one wants to 
compute the ideal grid (r, c) for a given problem size n, the 
first derivative of Tx(n, r, c) in order to n is zero. Thus, the 
optimal configuration is obtained by solving the system of 
equations 16. 

dTT(n,r,c)  _ Q 
dr 

dTT(n,r,c) _ Q 
dc 

(16) 
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4.3. Applying the methodology to a matrix multi- 
plication algorithm 

The methodology presented above will be tested with an 
improved implementation of the matrix multiplication oper- 
ations [11]. Figure 6 shows an hypothetical data assignment 
for a (2,3) processor grid. For simplicity, the blocks dis- 
played are formed by contiguous data, although the block 
cyclic data distribution is used [10]. 

To compute the matrix product C = A x B, in each iter- 
ation of the algorithm each processor multiplies one column 
block of A by one row block of B, updating the correspon- 
dent block of C. The shadowed area in matrix C represents 
the block that processor (0,0) has to update in each itera- 
tion. 

x = f 

Figure 6. Matrix multiplication operations 

Considering a grid (r, c) of processors, the matrices A = 
(m,k), B = (k,l) and C = (m,l) the amount of data 
required to broadcast matrix A over the rows of processors 
is: 

m k, 
 (c 
r c 

l)rc = mk(c— 1) (17) 

Note that (c— 1) appears because the broadcast is in fact per- 
formed by sequential communications. To broadcast matrix 
B over the column of processors it is required to transmit: 

kl 
r c 

-(r — l)cr = kl(r — 1) (18) 

The time required to compute the inner loop products is 
given by: 

TP = ß- 
mlk 

(19) 
ST(r,c) 

where Sr(r, c) is the processing capacity of the heteroge- 
neous machine when re processors are used. The value ß 
for the matrix multiplication is 21.5, as given in section 2. 
The total estimated processing time, assuming square ma- 
trices of size n, is expressed as: 

TT(n,r,c)    =    ( 
n2(r + c-2) 
packetsize 

)TTL(V,C) 

+ß Ps(r,c) 
(20) 

Depending on the data types used (float or double) the 
correspondent communication factors have to represent the 
amount of data in bytes. LB is the bandwidth per byte. 

For the machine of figure 3 the quadratic approximation, 
equation 11, becomes Ps(r,c) = -17.595(rc)2 + 261.6rc. 
This approximation is close to the real curve Sr(r, c) for 
values 0 < re < 7. Outside this domain the polynomial 
function may introduce false minima in the processing time 
function. Therefore, the minimization must be restricted to 
the allowed domain by the number of processors available. 
This can be accomplished by introducing the Lagrange mul- 
tipliers [15] in the system of equations 16. An additional 
function to restrict the domain is included: 

(    dTs(n,r,c)   ,   3TP(n,r,c)  _      •. 
Or "+" dr ~ ~ÄC 

dTs(n,r,c)   ,   dTP(n,r,c) _      , 
dc ~*~ dc — ~Ar 

\(rc - 7) = 0 

(21) 

+(n2(r + c - 2)){LB~1 + TTE(r, c)) 

The following figures, 7 and 8, present results for ma- 
trices of size 1800. Figure 7 displays the communication 
estimated (Est.) and measured (Meas.) time for one and 
two rows of processors, limited to 7 processors. And fig- 
ure 8 displays the total processing time Tr(n, r, c) obtained 
by estimation with the quadratic approximation for machine 
processing capacity (Tot. E), by estimation using the exact 
processing capacity (Tot. R), and the measured time (Tot. 
M). The communication times are modeled correctly, exist- 
ing only a slight difference for some grids. The total esti- 
mated processing time differs from the measured one due to 
the quadratic approximation which underestimates the pro- 
cessing capacity in some cases and overestimates in others, 
although the behavior is similar to the measured curve and 
it does not introduce false minima in the processing time 
function. The curve obtained with the real processing ca- 
pacity of the heterogeneous machine shows that the overall 
model is correct and that the processing time can be accu- 
rately estimated. 

Solving the system of equations 21, the values of r = 
c = 2.65 are obtained for n = 1800 and LB = 
10QMbits/s. Since one wants an integer solution, it can 
be assumed c = 3 which implies r = 2, since re < 7. 
The grid (3,2) would be equivalent. Figure 8 shows that the 
minimum is obtained for grid (2,3), confirming the system 
solution, although there is an increase in the processing time 
compared to the estimation. This is the consequence of an 
imbalance grid which cannot be overcome for that machine. 
Table 2 shows the processor layout for grid (2,3). The first 
two columns of processors are equilibrated what does not 
happen for column 3, in which either processor (1,3) will 

153 



Meas .r=2 

3 4 5 6 

Columns of processors (c) 

Figure 7. Communications for the matrix mul- 
tiplication algorithm (matrix size 1800) 

150 _, , f 

3 4 5 6 
Columns of processors(c) 

Figure 8. Processing time for the matrix mul- 
tiplication algorithm (matrix size 1800) 

be underloaded or processor (2,3) will be overloaded, de- 
laying all other processors as they will be always waiting to 
communicate. 

Figure 9 shows the processing time for all processors, 
where it can be seen that processor 6 is delaying the process 
for grid (2,3). Grid (1,6) is better balanced but the ideal 
load balance is not achieved due to the data blocks indivis- 
ibility. For this network, due to processor relation in pro- 
cessing speed, a balanced load can only be achieved with 
small blocks of data. The squared block size used was 25. 
A smaller block size, e.g. 10, while improving the load bal- 
ance, would decrease the individual performance of proces- 
sors due to a sub-utilization of the processors cache mem- 
ory. 
Note that although grid (2,3) is less balanced and there is 
one processor that takes more time, it makes a better so- 

244 161 60 =465 
244 161 50 =455 

=488 =322 =110 

Table 2. Processor layout for grid (2,3) 
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Figure 9.  Matrix multiplication processing 
time 

lution than grid (1,6) due to the fact that this grid requires 
more communication time, as it can be seen in figure 7. 

5. Results 

In this section results for tridiagonal reduction (TRD), 
LU and QR factorization algorithms in the heterogeneous 
machine represented in figure 3 for an Ethernet network 
at 100 Mbits/s are presented. Figure 10 shows the perfor- 
mance of each algorithm in a single processor. The QR per- 
formance is divided by 2 for displaying purposes. As shown 
before for the matrix multiplication algorithm, the processor 
performance is kept almost constant for the block versions 
of these algorithms, for matrices greater than 400 elements. 
The correspondent ß value considered for each algorithm is 
the average in that domain. The square block size used in 
all cases varies from 15 to 40. There is some variation in the 
processor performance for a given matrix size, mainly due 
to the operating system (Windows NT) which stochastically 
has some activity; however, this represents a variation in the 
processing time below 1%. 

The estimated values presented below are obtained by 
applying the system of equations 21 using the time function 
of each algorithm respectively. 

5.1. LU factorization algorithm 

The LU factorization algorithm is applied in order to 
solve directly a system of equations. The implementation 
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Figure 10. Performance of LU, QR and TRD 
block algorithms on a 161 Mflop peak perfor- 
mance processor as a function of matrix size 

is the right-looking variant where algorithm details can be 
found in [9]. For a (r, c) grid of processors, the amount of 
data (double/float) transmitted in the parallel matrix update 
is: 

(r + c-2)- 

and the parallel processing time is: 

TP(n,r,c) = ß- 
n* 

+ 0(n2) 

(22) 

(23) 
ST(r,c) 

The ß for LU is 7.5. There is a component of complexity ra2 

correspondent to the computations made by the pivot pro- 
cessor. Figure 11 shows the processing time estimated and 
measured for a matrix of size 1800. Although it is hardly 
perceptible in the figure, the optimum value estimated for 
(r,c) is (1,5). In practice the optimum is grid (1,4), which 
outperforms grid (1,5) by only 0.5 seconds. In this case 
the difference is due to the quadratic approximation for ma- 
chine processing capacity. If the real values are used the 
estimated optimum is (1,4). 

Figure 12 shows the estimated (E) and measured (M) 
communication times for matrices of size 1200 and 1800. 
In general the communications are well modeled. The dif- 
ferences observed are less than 3 seconds. This can lead to a 
grid selection that is not the optimal one; however, since the 
processing times obtained for grids (1,4), (1,5) and (1,6) are 
69.1, 69.6 and 70.0, the main drawback would be to have 
unnecessary processors allocated. 

Figure 13 shows the load distribution for the matrix of 
size 1800. For up to 5 processors a good load balancing 
is achieved, with processors taking almost the same time 
to process the data allocated to them. The block size from 
processor (1,1) to (1,5) is 1800 rows by 500,500, 340, 340 
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Figure 11. LU processing time for a matrix of 
size 1800 
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Figure 12. Estimated (E) and measured (M) 
communications for LU algorithm 

and 120 columns respectively. Ideally they should receive 
504,504, 333, 333 and 124 columns. 

5.2. Tridiagonal reduction algorithm 

The tridiagonal reduction algorithm (TRD) is a step in 
the computation of the eigenvalues and eigenvectors of a 
symmetric matrix. Details of the algorithm can be found in 
[6]. For a (r,c) grid of processors, the amount of data to 
transmit is: 

2n(r - 1) + 4n2(rc - 1) (24) 

for computation and broadcast of Householder vectors, par- 
allel matrix update and matrix vector products. The parallel 
processing time is: 

TP(n, r, c) = ß^r-^ + 0(n2) (25) 
Sr(r,c) 

The ß for TRD is 28 and there is also a negligible term 
in n2. Figure 14 shows the processing time for a matrix 
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Figure 13. LU load distribution for a matrix of 
size 1800 
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Figure 15. Estimated (E) and measured (M) 
communications for Tridiagonal reduction al- 
gorithm 

of size 1200. For grids (1,1) to (1,4) the estimated time is 
higher than the measured one; the maximum error occurs 
for grid (1,4) which coincides with the maximum error in 
the quadratic approximation of computational capacity. The 
minimum is correctly determined as grid (1,4). Again if grid 
(1,3) was chosen the total time would be marginally higher: 
104.7 s instead of 100.0 s. To guarantee the selection of 
the best grid the scheduler can operate with real values of 
processing capacity for estimating the processing time in 
the neighborhood of the solution obtained by the system of 
equations 21. 
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Figure 14. Tridiagonal reduction processing 
time for a matrix of size 1200 

Figure 15 shows the estimated (E) and measured (M) 
communication times for matrices of size 800 and 1200. 
The more significant differences are for matrix of size 1200 
where communications are overestimated. In all cases the 
difference is below 1.1 second. 

Figure 16 shows the load distribution for the matrix of 
size 1800. For grid (1,4) a good load balancing is achieved. 
For grid (1,5) one process takes 3 seconds less than the oth- 

ers because it was assigned one block- less of size 20. The 
data allocated to each processor was 1200 rows by 340,320, 
220, 220 and 100 columns respectively; ideally it should be 
1200 by 336, 336, 222, 222, 83. Grids (1,6) and (1,7) are 
not well balanced also due to block indivisibility. 

0 10 20 30 40 50 60 
Processing time (s) 

Figure 16. Tridiagonal reduction load distri- 
bution for a matrix of size 1200 

5.3. QR iteration algorithm 

The QR iteration is the last step in the eigenvector com- 
putation sequence, preceded by the tridiagonal reduction of 
a symmetric matrix and orthogonal matrix computation. 

Synthetically, the procedure is to compute Givens rota- 
tions in order to reduce the tridiagonal matrix into a diago- 
nal one whose elements are the eigenvalues. Eigenvectors 
are computed by updating the orthogonal matrix, resulting 
from the tridiagonal operation, with the rotations. Each ro- 
tation affects only two columns of the orthogonal matrix; a 
detailed explanation is given in [12]. 
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The parallelization implemented takes advantages of the 
fact that one rotation updates only two columns without 
inter-row dependencies. For the tridiagonal reduction a col- 
umn oriented distribution is more favorable; however, that 
data allocation will imply communications between bound- 
ary columns, with the additional drawback of using cyclic 
distributions, which increase the boundary columns drasti- 
cally. A column oriented algorithm applying the technique 
of considering multiple bulges [13] was implemented, but 
only a marginal speedup, below 1.5, was obtained due to 
the fact that multiple bulges increase the number of itera- 
tions required which, associated to boundary communica- 
tions, is not suited for the slow bus network of the target 
machine. 

Alternatively, it was given the possibility of data redis- 
tribution in order to match the ideal processor grid for each 
algorithm. In this case, QR iteration was a row oriented 
strategy. 

The QR iteration has two computational tasks: one, to 
do the bulge chase of order n2, and the other to update the 
orthogonal matrix of order n3: 

TP = ß-r 
nö 

■ + 6(n2 
rn   1 \" "■" WV"   I (26) TT{r,c) 

The ß for QR is 43. The time to compute the chases is in 
fact negligible compared to the 6(n3) term (e.g., for the 
matrix of size 1600 used it takes 2.1 seconds to compute the 
chases and 721 seconds to update the matrix in a 244 Mflop 
computer). Therefore, the solution adopted was to do the 
chases in one computer (1,1), the fastest one, which at the 
end of a chase transmits the correspondent rotations to the 
remaining processors. Then, all processors update the part 
of the orthogonal matrix allocated to them without requiring 
any data exchange, i.e. true parallelism. 

Figure 17 shows the estimated and measured processing 
time for a matrix of size 1000. The difference for grid (1,4) 
is mainly due to error of the quadratic approximation which 
is maximum for 4 processors. The estimated minimum is 
6 processors; in practice it is 7 processors. This is due to 
a load imbalance occurring for 6 processors, in which there 
is a processor that takes 2 seconds more than the others, as 
shown in figure 18. 

The communications involved are only to distribute the 
Givens rotations, estimated assuming a convergence rate of 
7, as: 

in2(r - 1) (27) 

This is an estimation because the number of chases depends 
on the rate of convergence of the QR iteration. This rate is 
expected to be less than 2 [8]. The estimated values of figure 
19 were obtained with 7 = 0.9 obtained experimentally 
with the matrix used. In this algorithm the communication 
parameters TE and TL refer to the machine that computes 
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Figure 17. QR iteration processing time for a 
matrix of size 1000 
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Figure 18. QR iteration load distribution for a 
matrix of size 1000 

the Givens rotations, since it is the only emitter in the QR 
iteration. 

5.4. Symmetric eigenvector computation 

In this subsection the whole algorithm for eigenvec- 
tor computation executed in the heterogeneous machine is 
compared to a serial version [16] when executed in the 
fastest node. 

The performance metrics used to evaluate the parallel 
application is, first, the runtime, and second the speedup 
achieved. To have a fair comparison in terms of speedup, 
one defines the Equivalent Machine Number (EMN(p)) 
which considers the power available instead of the number 
of machines that, for a heterogeneous environment, is an 
ambiguous information. Equation 28 defines EMN(p) for 
p processors used, and 5i is the computational capacity of 
the processor that executed the serial code, also called the 
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Figure 19. Estimated (E) and measured (M) 
communications for QR iteration 

Stage Number of processors used GRID 

(n) 400 600  800 1000 1200 1400 1600 (pxq) 

TRD 

Q (Orth.) 

QRit 

12      3       3       4        4        4 

5      6      6       6       7        7        7 

5      6      6       6       6        6        6 

1xq 

1xq 

px1 

Speedup 1.0 1.7 2.3 2.6 2.9 3.0 3.1 

EMN 3.6 3.8 3.8 3.8 4.0 4.0 4.0 

Efficiency 0.3 0.5 0.6 0.7 0.7 0.8 0.8 

Table 3. Processors used in each stage of the 
eigenvector computation 

6. Conclusions 

master processor. 

EMN{p) 
Si 

(28) 

For the machine presented in figure 3 EMN(6) — 3.77 
and EMN(7) = 3.97, i.e. using 6 processors of the hetero- 
geneous machine is equivalent to 3.77 processors identical 
to the master processor and to 3.97 if 7 processors are used. 

Figure 20 and table 3 compare the virtual machine to the 
fastest node of the machine used to run the sequential code. 
Different grid configurations are used for the different algo- 
rithms, according to the optimal grid computed by equation 
21. 
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Figure 20. Eigenvector computation in a 7 pro- 
cessor heterogeneous machine compared 
to the sequential algorithm executed in the 
fastest node 

Briefly stated, the methodology presented in this paper 
was designed to address problems arising in the context of 
using image processing and analysis algorithms for inter- 
actively extracting important data and information from im- 
ages of a specific application domain, e.g. medical imaging. 

Currently, this activity is often conducted by exploring 
the functionality (hardware and software) of general pur- 
pose systems, which usually trade off algorithm sophistica- 
tion and user comfort; this means that more advanced image 
tools may be absent in these systems due to practical con- 
siderations. 

The main goal of the work herein presented was to take 
advantage of the existence of a network of computers (this is 
a very frequent situation in many user organizations) to try 
and move the aforementioned trade-off in the direction of 
allowing the provision of more advanced and sophisticated 
algorithms without sacrificing user comfort. 

The results presented show that, for the important linear 
algebra building blocks of many advanced image analysis 
methods, the stated goal may be accomplished; an improve- 
ment has been achieved in the execution time, by a factor of 
about 3, which may bring more image analysis tools into 
the feasible condition for new general-purpose software. 

A collection of machines with a wide range of process- 
ing capacities, from 244 to 49 Mflops in the case presented, 
can cooperate and achieve a considerable speedup in linear 
algebra algorithms. The load balancing strategy proved to 
be a determinant condition for the quality of the results. 

A methodology to determine in a computer network the 
number of active processors that minimizes the total pro- 
cessing time for a specific parallelized algorithm was pre- 
sented. The main objective is that the user of a computa- 
tionally demanding application may benefit from the com- 
putational power distributed over the network, while keep- 
ing other active users undisturbed. 

This goal can be achieved in a transparent manner for the 
user, once the modules of his/her application are correctly 
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parallelized for the target network and the performance of 
the machines in the network is known. The application, be- 
fore initiating a parallel module, determines the best avail- 
able computer composition for a parallel virtual computer to 
execute it, and then launches the module, achieving the best 
response time possible in the actual network conditions. 

Practical tests of the methodology were conducted both 
on homogeneous and heterogeneous networks, using basic 
algorithms from linear algebra; in both cases, the theoreti- 
cal values computed were confirmed by the measured per- 
formance. It was shown that a good load balancing could 
be achieved even for a heterogeneous environment, by us- 
ing an appropriate processor layout. Other generic modules 
will be parallelized and tested, so that an ever increasing 
number of image analysis methods may be assembled from 
them. Application domains other than image analysis may 
also benefit from the proposed methodology. 
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Abstract 

Task assignment and scheduling algorithms for Hetero- 
geneous computing systems can be classified as iterative 
and non-iterative techniques, and are designed to optimize 
a specific cost function defined on the system. The quality 
of the solutions generated is controlled by the nature of this 
cost metric. The common metrics that are used include min- 
imizing the overall execution time or minimizing the load on 
the maximum loaded processor. In this work, a new set of 
cost metrics have been proposed that can be used by itera- 
tive task assignment algorithms. These metrics exploit the 
fact that in iterative algorithms the mapping of the subtasks 
to the processors is known at every iteration. They reflect 
the actual scheduling cost of the application, thereby im- 
proving the quality of the solutions generated by the algo- 
rithm. The proposed metrics are evaluated using the learn- 
ing automata based iterative algorithm [15]. Observations 
are made regarding the nature of the metrics from the re- 
sults obtained. 
Key Words: Task assignment and scheduling, Heteroge- 
neous computing, Cost function. 

1   Introduction 

Efficient task assignment and scheduling is critical to 
achieving high performance in Heterogeneous Comput- 
ing(HC) systems [2, 10]. In these systems, applications are 
represented as a directed acyclic graph called the task flow 
graph(TFG), and the processing resources are represented 
as a directed graph called the processor graph(PG). The 
purpose of scheduling is to map the tasks to the available 
processors and order their execution, so that the task prece- 
dence requirements are satisfied and the schedule length is 
minimized. It has been shown that the scheduling problem 
in general is an NP-complete problem [14], and hence a 

number of heuristic algorithms have been proposed to solve 
it. 

These algorithms can be broadly classified as iterative 
and non-iterative algorithms. Proposed works in the for- 
mer category include [12, 13, 15, 17], and the algorithms in 
the latter are [1, 3, 4, 5, 6, 9, 11, 16]. The non-iterative al- 
gorithms work by exploiting the graph-theoretic properties 
of the TFG to generate a solution that optimizes a specific 
cost function. The iterative algorithms on the other hand, 
proceed by generating an initial random solution and then 
progressively improving it, subject once again to optimiz- 
ing the cost criterion. Due to the difference in approach 
of the two classes of algorithms, the influence of the cost 
metric on their ability to generate efficient solutions varies. 
But, traditionally, generic cost metrics like minimization of 
overall execution time or minimization of the load on the 
maximum loaded processor have been used for both classes 
of algorithms. In this work, we propose a new set of cost 
metrics that are applicable to the iterative algorithms. The 
proposed metrics generate solutions that are closer to the 
actual schedule time. 

The material in this paper is organized as follows. Sec- 
tion 2 begins with the required preliminaries and explains 
the system model within which the metrics have been de- 
fined. The next section describes the proposed set of cost 
functions. Section 4 evaluates these functions and makes 
observations about the efficiency based on the results ob- 
tained. The last section concludes the work. 

2   Preliminaries 

This section introduces the required preliminaries and 
describes the system model within which the proposed cost 
metrics have been defined. 

It is assumed that the application has been partitioned 
into subtasks and modeled by means of a directed acyclic 
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graph called the task flow graph. The nodes of the TFG 
correspond to the subtasks and the edges represent the data- 
dependencies between them. The nodes are represented by 
the set S and the edges by the set ETFG. Hence, 

S = {Si,0<i< |5|}and 
E        = i(hj) I si,sj £ Sand Si dependent on Sj} 

Every directed edge in the graph indicates the flow of data 
from one subtask to another. The edges are assigned a 
weight that corresponds to the number of data-units ex- 
changed between the corresponding pair of subtasks. If 
effG represents the edge weight, then: 

eTFG = < 

' # of data units excha- 
nged between s,- and Sj,     if (i',j) G ETFG; 

U, otherwise. 

The processor configuration is assumed to be modeled as 
a directed graph called the processor graph. Here, the nodes 
correspond to the processors and the edges to the communi- 
cation links between them. Let M represent the set of nodes 
and EPG the set of edges, then: 

M = {mi,0<i < |M|}and 
EPG = {(i,j) I mi,m.j G M and m,i is connected 

tom,j} 
Here again, the edges which indicate whether or not a set 
of processors are connected, are assigned weights that cor- 
respond to the cost of communicating a single unit of data 
from one processor to another. Let epf represent the edge 
weight, then: 

nPG 

' cost of communicating 
a data unit between nrii 
andmi. 

< oo, 

if (i,j) € EPG; 

otherwise. 

In addition to this information, it is assumed that the 
cost of executing each of the subtasks on the processors are 
known. These values are stored as a matrix called EJT. The 
matrix can be represented as: 

E.T = {eJ(i,j), 0<i< \S\, 0<j< \M\}. 
eJ(i, j) = execution time of subtask Si on machine 

m,i 

Since in this work we are concerned only with the iter- 
ative algorithms, there should be a means of representing 
the solution generated at every iteration. In general, the so- 
lution can be conceived as a mapping, IT, from the set of 
subtasks to the set of processors. 

■K :    S -> M. 
Let 'n' represent the iteration number.  Then the solution 
generated at iteration'n' can be represented as irn (i), where: 

7r„(i) -> indicates the machine'm'j to which subtask 
's'i is assigned to at iteration tn'. 

The representation of the system model is now complete 
and the cost functions can be defined on the system. This 
forms the subject of the next section. 

3   Proposed Cost Metrics 

The objective of iterative task assignment algorithms is 
to explore the solution space efficiently in order to seek the 
global optimal solution. The solution space is character- 
ized by the cost function defined on the system, and hence 
becomes critical to determining its performance. In these 
assignment algorithms, the process of determining the final 
solution proceeds by initially generating a random solution. 
This is then evaluated for its merit, based on which a new 
improved solution is generated in the next iteration. The 
process is repeated until the solution converges, or in other 
words when there is no further improvement in the quality 
of the solution. Hence, at each iteration of the algorithm, 
the mapping of the subtasks to the machines is known. In 
previous works, this information is neglected when trying 
to determine the solution to the assignment problem. But it 
can be utilized to explore the solution space more efficiently 
and bring the final solution closer to the actual scheduling 
cost. In this work, we propose precisely such a set of met- 
rics. 

To begin with, let us define terminologies that will help 
develop the cost metrics. For each node st G 5 in the TFG 
we associate three schedule times, for each of the machines 
mj G M a machine start time, and arrays of nodes. These 
are defined as: 

MST[j, I] ->■ the machine start time for machine mj at 
the beginning of level T. 

EST[i] -> the earliest time at which the subtask s* can 
begin its execution. 

WT[i] -> the amount of time the subtask s, has to wait 
before it can begin its execution. 

CT[i] -» the time at which the subtask st completes its 
execution. 

predi D -> an array consisting of the predecessor nodes 
of subtask Sj. 

orderjj Q -» an array that specifies the order in which 
the subtasks in level'/' and assigned to machine mj are ex- 
ecuted. 

TTjtl ->• represents the number of subtasks in order jtl Q. 

It can be readily inferred that for any node s, in the TFG, 
the completion time CT[i] at iteration 'n' can be computed 
as: 

CT[i] = EST[i] + WT\i] + eJ(i,7rn(i)) 

In order to compute MST, EST and WT of the nodes 
however, the information about the structure of the TFG is 
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needed. This is achieved by leveling the TFG. The leveliz- 
ing process is similar to the levelized min time heuristic 
proposed in [7]. The root node or nodes are first assigned, 
'level 0'. It's successor nodes, if all of their predecessors 
are in 'level 0', are assigned 'level V. The next successor 
nodes, if all of their predecessors are either in 'level 0' or 
'level 1', are assigned 'level T and so on. Finally the leaf 
nodes are assigned a level number equal to the height of the 
TFG. Now, the machine start time, earliest start time and 
the wait times of the nodes can be computed. 

The machine start time MST, refers to the time at which 
a particular machine can begin executing tasks from a par- 
ticular level. This is important, since nodes or tasks at a later 
level have to wait until all the tasks in previous levels have 
completed execution on the machines they were assigned 
to. Therefore we have: 

MST^=\Ma^ 

0, if/ = 0; 

M 
{CT[orderjti-i\k}]},    otherwise. 

Assume that a subtask Sj has 'p' predecessor nodes, rep- 
resented as defined previously by the array predi[k] with 
0 < k < p - 1. Then, 

0, ifp = 0; 
EST[i] = 

Maxp
k=0 X(k),    otherwise. 

where X(k)   =   Max{ {CT\predi[k}} + e^t%(k),i * 

<Ve*(*)Wi)}'MSTM'V]} 

To complete the calculation of the completion time for 
each of the subtasks, the wait time has to be defined. The 
wait time determines when a task will begin its execution 
and hence determines the efficiency of the cost metrics. If a 
subtask is the only task that has been mapped to a particular 
processor, then it does not have to wait to begin its execu- 
tion. It's wait time therefore will be equal to zero. But if 
more than one subtask is mapped to the same machine, then 
it's possible to order their execution so that a more optimal 
solution can be obtained. Since the TFG has task prece- 
dence constraints, only the subtasks in the same level can 
be considered for this ordering. The ordering of the sub- 
tasks determines the wait time for each of them. Here, three 
different orderings of the subtasks that result in three cost 
metrics, named CM A, CM.2, CM.Z are proposed. 

Cost Metric CM A: 
The subtasks from the same level and assigned to a partic- 
ular machine, are executed in the non-decreasing order of 
their earliest start times. For instance, if we have three sub- 

tasks si, s2 and s3, and assume that EST[1] < EST[2] < 
EST[Z], then the subtask si will be executed first, followed 
by s2 and then S3. 

Cost Metric CM.2: 
In the second cost metric, the subtasks are executed in the 
non-decreasing order of their expected execution times. For 
the aforementioned three tasks if we assume that e.t(3, j) < 
e.t(2,j) < eJ(l,j), where 4m/ is the machine to which 
they are assigned, then the subtask s3 is executed first, fol- 
lowed by s2 and si. 

Cost Metric CM.3: 
The last cost metric that is proposed here, in a way com- 
bines the ideas of the previous two cost metrics. It orders 
the subtasks in the non-decreasing order of the sum of the 
earliest execution time and the expected execution time of 
the subtasks. 

The difference in these cost metrics can be clearly un- 
derstood by means of an illustrative example. Assume that 
three subtasks s\, s2 and s3 belong to the same level in a 
TFG, and are assigned to the machine m,j. Let their earliest 
start times and expected execution times be: 

EST[1] = 4,  and e.t[l,j] = 11   timeunits. 
EST[2] = 7,  and e.t[2,j] = 6   timeunits. 
EST[3] = 18, and e.t[3,j] = 3 timeunits. 

Figure 1 shows the schedule times for the three subtasks 
based on the ordering of CM A. Here, the maximum of 
the completion times amongst the subtasks is 24 time units. 
The schedule times corresponding to the order of CM.2 
is shown in Figure 2. For this metric the maximum of the 
completion times is 38 time units. The final metric CMS, 
results in the schedule times shown in Figure 3. Here, the 
maximum of the completion times is 27 time units. There- 
fore, for the example case, the ordering of CM A offers the 
best solution as it results in the minimum schedule time(24), 
amongst the three metrics. 

The different orderings of the subtasks represented by 
the metrics can be incorporated into the generic cost metric 
by means of the wait time. The array, orderjtl\\, specifies 
the ordering of the subtasks in level I and assigned to ma- 
chine mj, as shown in the initial definitions. Now the wait 
time can be generically defined as: 

WT[orderjti[k]} 

0, if k = 0; 

{Mod(CT[k - 1] - 
EST[k]) + (CT[k       otherwise. 
-1] - EST[k])) I 2, 

where 0 < k < TTjj. 
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It can be observed that the proposed metrics are very 
similar to scheduling heuristics proposed previously in the 
literature, and can be easily confused with them. But there 
are important distinctions between the cost metrics pro- 
posed in this work and these heuristics. A scheduling heur- 
sitic works on a fixed assignment and tries to generate an 
optimal schedule of the mapped tasks so that the overall 
completion time of the application is minimized. In our ap- 
proach on the other hand, the cost metric is used to as a 
measure of efficiency for the solutions generated. This is 
then used by the iterative algorithm to move towards a bet- 
ter and more optimal solution for the assignment problem. 
There is also a clear distinction between dynamic schedul- 
ing algorithms proposed in [8] and the metrics presented in 
this work. The dynamic scheduling algorithms begin with 
an intial assignment and attempt to determine the optimal 
remapping for each of the subtasks in turn by using the 
information on subtasks that have already completed exe- 
cution and those that need to be executed. The cost met- 
rics CM A, CM .2 and CM.3, at every iteration consider 
the entire mapping of subtasks to the various machines and 
compute a cost that is as close as possible to the actual 
scheduling cost. This metric is then exploited by the algo- 
rithm to explore the solution space more efficiently. Hence, 
although the construction of the proposed metrics are simi- 
lar to scheduling heuristics, there are important distinctions 
between them. 

At every iteration of any iterative algorithm therefore, 
the completion times of each of the subtasks can be com- 
puted using one of the three proposed cost metrics. The 
objective of the algorithm would then be to minimize the 
completion time of the subtask that has the maximum com- 
pletion time. The next section present the results that were 
obtained using these cost metrics. 

4   Results and Observations 

To evaluate the proposed cost metrics, the learning au- 
tomata based iterative algorithm [15] is used, though the 
metrics can be used by any iterative assignment algorithm. 
The primary reason for using this algorithm is because it 
can be adapted for any user specified cost metric without 
requiring a change in the construction of the algorithm. A 
short description of the algorithm is presented first. 

The task assignment algorithm proposed in [15] works 
on a framework consisting of a HC system model and a 
learning automata model. The system model abstracts the 
application as a TFG and the suite of machines as a PG, 
similar to the model presented in this work. The algorithm 
can be adapted to work for any cost metric that can be de- 
fined on the system by the user. This feature is realized 
by means of the learning automata model. It is constructed 

by associatong every task in the TFG with a variable struc- 
ture stochastic automaton. The HC system model serves as 
the external environment for these automata. Six heuristics 
were investigated to construct the learning algorithm. The 
best of these heuristics is used in this work. 

The simulation environment consists of the task flow 
graph and the processor graph which are generated at ran- 
dom. The edge weights of the graphs are also assumed to be 
generated at random with equal probability over some pre- 
defined ranges. The values for these ranges are presented 
in Table 1. It is assumed that the iterations of the algorithm 
are continued until the probability of the actions of the au- 
tomata reach 0.99, or if the number of iterations reaches a 
specified user limit. In all the experiments that were con- 
ducted, the algorithm terminated due to the former reason 
indicating that the solutions were convergent. 

For the first set of experiments, the communication com- 
plexity was assumed to be low. In other words, the num- 
ber of edges in the TFG is equal to one-third the number 
of tasks. The number of processors were varied between 
2,5,10 and 20. The results obtained are presented in Fig- 
ures 4 - 7. It can be observed from the graphs that the costs 
generated by the metrics differ in their optimality. They can 
therefore be used to deliver better solutions to the assign- 
ment problem. 

The second set of experiments was conducted with a 
medium communication complexity, where the number of 
edges were equal to two-thirds that of the tasks. These re- 
sults are presented in Figures 8 - 11. A similar observation 
as the first set of experiments can be made here, proving 
once again the utility of the metrics proposed. From both 
sets of experiments, it can be seen that when the communi- 
cation complexity increases it leads to an increased differ- 
ence between the solutions generated by the metrics. The 
reason for this is that when the communication complexity 
increases the number of tasks being assigned to the same 
level also increases. Hence the different orderings of the 
proposed metrics have a greater impact on the solutions 
generated. 

On the same lines, in both sets of experiments when the 
number of tasks are low, the costs generated are equal be- 
tween the different metrics. This is due to the fact that very 
few of the tasks are a^the same level number when the total 
number of tasks are low and hence the ordering of the sub- 
tasks does not have a big impact on the solutions generated. 

In general it can be seen that the proposed metrics are 
affected by the number of subtasks in the TFG, their data 
dependencies represented as the communication complex- 
ity, and the number of processors available for scheduling. 
Since all these factors directly affect the actual schedul- 
ing cost of an application task executing in the HC system, 
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Number of tasks 10,25,50,75 and 100 
Number of machines 2,5,10 and 20 

Number of edges |S|/3and2|5|/3 
Expected execution time range 1000 

Communication time range 4 
TFG edge weight range 500 

Table 1. Parameters for generating TFG's and 
PG's 

the proposed metrics can help in providing better solutions. 
Since in the results shown, the graphs, the expected exe- 
cution time and communication time are all generated at 
random, the difference in efficiency of these metrics is not 
discernible. 

5   Conclusions 

A new set of cost metrics for iterative task assignment al- 
gorithms in HC systems were proposed. The metrics were 
developed by exploiting the fact that in iterative algorithms 
the mapping of the subtasks to the processors is known at 
all iterations. The proposed functions were evaluated using 
the learning automata based iterative algorithm [15]. The 
results obtained show that when the number of tasks in the 
TFG is low or when the communication complexity is low, 
there is not much of difference in the costs generated by 
the metrics. This difference increased when the communi- 
cation complexity was increased. Since the performance of 
the proposed metrics depend on the factors that affect the 
scheduling cost, they reflect the actual scheduling time of 
the application. Therefore they can be used to improve the 
quality of solutions for the task assignment problem in het- 
erogeneous computing systems. 
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Abstract 
In a serverless cluster of PCs or workstations, the 

cluster must allow remote file accesses or parallel I/O 
directly performed over disks distributed to all client 
nodes. We introduce a new distributed disk array, called 
the RAID-x, for use in serverless clusters. The RAID-x 
architecture is based on an orthogonal striping and 
mirroring (OSM) scheme, which exploits full-bandwidth 
and protects the system from all single disk failures. 

The performance of the RAID-x is experimentally 
proven superior to RAID-1 and NFS in the Linux cluster 
environment. We propose a new striped checkpointing 
scheme, leveraging on striped parallelism and pipelined 
writing of successive disk stripes. This RAID-x 
architecture greatly enhances the throughput, reliability, 
and availability of scalable clusters. It appeals especially 
to I/O-centric cluster applications. 

Keywords: Scalable computing, RAID architectures, 
parallel I/O, Linux clusters, disk mirroring, single 
system image, checkpointing, staggered writing, and 
fault tolerance 

1. Introduction 
Many redundant arrays of inexpensive disks (RAID) [6] 

use independent disks under the control of a single or 
multiple controllers. The TickerTAIP [3] pioneered the 
Parallel RAID architecture for supporting parallel disk I/O 
with multiple controllers. Still, these parallel disk arrays 
are implemented as a centralized I/O subsystem. These 
RAID subsystems are often attached to a storage server or 
used as network-attached disks [10]. 

For this reason, we consider the classic disk arrays as a 
centralized RAID. In contrast, this paper deals only with 
distributed RAID architectures. This concept was 
investigated by Stonebraker and Schloss [25]. The actual 
prototyping of distributed RAIDs did not start until the 
Petal [17] and the Tertiary Disk project [26]. 

A distributed RAID is constructed out of dispersed 
disks, which are physically attached to different computer 
hosts through the network connections. The Petal was built 
with a chained declustering [12]. The Tertiary Disk was 
built with a RAID-5 architecture using software support by 
the serverless xFS file system [2]. 

The architecture and performance of a new distributed 
RAID architecture, namely the RAID-x, are reported here. 
The level x is yet to be rectified with an appropriate code 
assignment by the RAID Advisory Board [22]. Our RAID- 
x differs from existing distributed RAID architectures in 
many aspects. 

First, the RAID-x is built with a new disk mirroring 
technique, called orthogonal striping and mirroring 
(OSM). The small write problem associated with RAID-5 
is completely eliminated in this OSM approach. Second, 
we use cooperative disks instead of independent disks. 

To enable true cooperation among dispersed disks, we 
have developed cooperative disk drivers (CDD) at the 
kernel level. Data consistency is maintained inside the 
CDD, instead of using a central network file system. 
Therefore, unmodified file system interface is available to 
users. Third, the RAID-x was specially designed over 
distributed disks for I/O-centric cluster computing. 

The rest of the paper is organized as follows: Section 2 
describes the Trojans cluster architecture and also presents 
an overview of distributed RAID architectures. Our 
RAID-x approach is compared with the architectural 
designs in Berkeley Tertiary Disks running the xFS, 
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Digital Petal system and Princeton TickerTAIP parallel 
RAID system. Section 3 introduces the OSM scheme and 
the RAID-x architecture. We also compare RAID-x with 
RAID-1 for designing distributed disk arrays. Section 4 
describes the architecture of the cooperative disk drivers 
and data consistency checking mechanisms. 

Section 5 presents the benchmark performance results 
obtained on the Trojans cluster. Section 6 explains the 
striped staggering checkpointing scheme we developed on 
top of RAID-x. Section 7 gives out the preliminary 
experimental results on striped checkpointing overhead 
and the analysis of reliability issue of proposed 
checkpointing scheme. Section 8 summaries the 
contributions and identifies extended research work. 

2. USC Trojans Cluster Architecture 

The prototype Trojans cluster was built with 16 
Pentium PCs (Pentium II 400MHz) running the Linux 
operating system (Redhat Linux 6.0 with kernel 2.2.5). 
These PC nodes are connected by a 100 Mbps Fast 
Ethernet switch. 

At present, each node is attached with a 10-GB disk. 
With 16 nodes, the total capacity of the disk array is 160 
GB. All 16 disks form a single I/O space. Figure la shows 
the front view of the prototype Trojans cluster. This 
cluster is connected to Internet over fiber links. 

As illustrated in Fig.lb, we subdivide the cluster nodes 
into three functional classes. The entry partition is for the 
user to access the cluster through Internet/Intranet. Nodes 
in the service partition provide the services requested by 
users. The database partition supports database or 
information accesses operations. Nodes in the three 
partitions can be dynamically reconfigured to suit special 
application demands. 

To build a distributed RAID with a SIOS, our research 
objectives are identified in three aspects: (i) A single 
address space for all data blocks in the cluster. This means 
that the users can utilize all disk storage in a cluster 
without knowing the physical locations of the data blocks 
referenced or of the files used, (ii) High scalability, 
availability, and compatibility with current cluster 
architectures and applications must be maintained, (iii) 
Remote disk I/O operations should have performance at 
least comparable to that of local disk I/O operations. 

Previous approaches to achieve SIOS were attempted at 
the user level, file-system level, and device-driver level. 
The user-level approach has the lowest cost and higher 

portability across different platforms. The Parallel Virtual 
File System (PVFS) [18] and the Remote I/O project [9] 
are two examples. However, this approach does introduce 
two problems: First, users still have to use specific APIs 
and identifiers to exploit full functionality of the packages. 
Second, using system calls to perform network and file I/O 
are too expensive to meet real-time or cluster computing 
requirements. 

(a)  A front-view of the Trojans Cluster 

Database 
Partition 

Entry 
Partitior 

Service 
Partition 

Service Flow Dataflow 

(b) I/O-centric cluster architecture 

Fig. 1. Trojans cluster built at USC Internet and 
Cluster Computing Laboratory 
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Distributed file systems provide another approach to 
achieving SIOS to the users. Users can access remote data 
as if it is accessed locally. The serverless xFS system 
developed at Berkeley [2] and the Solaris MC project are 
good examples. However, this approach has its own 
shortcomings. 

Changing the file system does not guarantee high 
compatibility with current applications. This will 
discourage the deployment of the distributed file systems 
in clusters. What we want to achieve is a SIOS with an 
unmodified file system to achieve high portability with a 
low cost/performance ratio. 

Device-driver level designs provide SIOS not only to 
the users, but also to the file system. We choose this 
approach, because it solves most of the above problems 
and shortcomings. Digital Petal project [17] uses user 
level device driver design to enable remote I/O access. 

All physically distributed disks can be viewed as a 
collection of virtual disks. Each virtual disk can be 
accessed as if it is a local disk. Petal developed a 
distributed file system, called Frangipani [27]. In Petal, the 
actual data transfer is handled at the user level. 

We have developed Cooperative Device Drivers 
(CDD). These drivers work cooperatively at the kernel 
level. Data consistency is maintained by the CDD. 
Unmodified file system is used to achieve high portability 
and compatibility. 

The development of the RAID-x architecture was 
inspired by previous projects. The pioneering RAID work 
at Berkeley [2] [6] [8] and at CMU [10], the TickerTAIP 
project [3], the Tertiary Disk project [25], chained 
declustering   [12],   and   Petal   project   [17]   all   have 

influenced our design philosophy. 

Our RAID-x design appeals especially to serverless 
clusters. The major innovation in our design lies in the 
cooperation of distributed disks in a serverless cluster 
environment. The cooperation is established at the Linux 
kernel level, rather in the user space. 

Petal and Tertiary Disk achieve the SIOS at the levels 
of user level device drivers and xFS file system, 
respectively. The Digital Petal virtual disks was built in 
1996, the Berkeley Tertiary Disk project was reported in 
1998, the Princeton TickerTAIP parallel RAID was 
designed at 1993, and our RAID-x built at USC Trojans 
project in 1999. 

The entries in Table 1 distinguish the four parallel and 
distributed RAID architectures in four aspects. All four 
I/O subsystems support SIOS, however by quite different 
mechanisms. All four parallel and distributed RAIDs 
support parallel disk I/O at the block level. 

The first distinction among the four distributed RAIDs 
lies in their architectures. The Petal virtual disk array uses 
chained declustering, Tertiary Disk applies the RAID-5, 
TickerTAIP uses parallel disk array controllers within 
single RAID server to implement parallel RAID-5, and we 
use the new RAID-x architecture. 

Our major contributions lie in the creation of the OSM 
and CDD mechanisms. The enabling mechanisms for 
SIOS are also quite different among the four architectures. 
TickerTAIP achieves SIOS by event-driven simulation 
among all the worker nodes. We realize the SIOS with 
cooperative device driver at the Linux kernel level. 

Table 1   Parallel and Distributed RAID Projects at USC, Princeton, Digital and Berkeley 

System 
Attributes 

USC Trojans 
RAID-x 

Princeton 
TickerTAIP PI 

Digital 
Petal [17] 

Berkeley Tertiary 
Disk [26] 

RAID 
Architecture 
Environment 

Orthogonal striping 
and mirroring over 
The RAID-x in a 
Linux cluster 

RAID-5 with 
multiple 
controllers in a 
single server 

Chained 
declustering in 
an Unix cluster 

RAID-5 built with 
a Solaris PC cluster 

Enabling 
Mechanism for 
SIOS 

Cooperative device 
drivers in Linux 
kernels 

Single server 
implements the 
SIOS directly 

Petal device 
drivers at user 
level 

xFS storage servers 
at file system level 

Data Consistency 
Checking 

Locks at device 
driver level 

Sequencing of 
user requests 

Supported by 
Frangipani 
file system 

Locks in the xFS 
file system 

Communication 
Mechanism 

TCP/IP 
Sockets 

Not Available UDP/IP 
Sockets 

RPCat 
user level 
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Even both Petal and RAID-x choose the device driver 
approach, their implementations are very different under 
UNIX user level and Linux kernel level. Petal does 
provide a global name space for logical disks in the 
cluster. We want to extend the global name space to each 
data block in the cluster. 

The four RAID architectures differ in their handling of 
the data consistency problem in establishing a distributed 
file management system. We implemented the lock 
mechanisms within the device drivers. Our performance 
results are generated in Linux cluster environment. 

For inter-node communications, we use the TCP/IP 
sockets. Regardless of their differences, we believe that 
hardware and software experiences learned from 
distributed RAID projects will be complementary to each 
other in many aspects. 

For parallel writes, the RAID-x has lower access times 
than RAID-1. These claims are based on benchmark 
results to be presented in section 5. To sum up, the RAID- 
x scheme demonstrates scalable I/O bandwidth with much 
reduced latency in a cluster environment. 

Using the CDDs, a cluster can be built serverless and 
offers remote disk access directly at the kernel level. 
Parallel I/O is made possible on any subset of local disks, 
because all distributed disks form a SIOS. No heavy cross- 
space system calls are needed to perform remote file 
accesses. 

3.  Orthogonal Striping and Mirroring 
Over the years, many techniques have been developed 

to overcome the small-write problem [6] [22], such as 
parity logging [24], floating parity and data [20], parity 
striping [7], disk caching disk [13], log-structured disk 
subsystem [19] and chained declustering [12]. The concept 
of OSM started with our earlier work [16]. 

In this paper, we present the design details of RAID-x 
and prove its effectiveness through experimentation. 
Figure 2 shows the architecture of RAID-x (Fig.2b) along 
with RAID-1 (Fig.2a) architectures. The original data 
blocks are denoted as Di in the unshaded boxes. The 
corresponding image blocks are distinguished with primes, 
such as Di' in the shaded boxes. The RAID-x completely 
avoids the small write problem. 

As shown in Fig.2b, data blocks in RAID-x are striped 
across the disks on the top half of the disk array. Low 
latency and high bandwidth of RAID-0 are preserved in 
RAID-x architecture. The image blocks of other data 

blocks in the same stripe are clustered in the same disk 
vertically. All image blocks occupy the lower half of the 
disk array. On a RAID-x, the images are copied and 
updated at the background, thus saving the overhead time. 

Consider the top stripe of data blocks DO, Dl, D2, and 
D3 in Fig.2b. Their image blocks DO', DI', and D2' are 
stored in Disk 3, while the image block D3' in disk 2. The 
rule is that no data block and its image should be mapped 
in the same disk. Full bandwidth is achievable in parallel 
disk I/O across the same stripe. 

For large write, the data blocks are written in parallel to 
all disks simultaneously. The image blocks are gathered as 
a long block written into the same disk with a reduced 
latency. In case of the small write of a single block, the 
writing is directed to the data block, while the image block 
is postponed to write to the disk until all the clustered 
image blocks are ready. 

DiskO       Diskl     Disk 2      Disk 3 

DO DI DO» l)V 
D2 D3 D2> ID3' 

D4 D5 !D4» IDS'*' 
D6 D7 ;T)6> I.D7'" 
D8 D9 LD8r tw-"< 
DI DI D10 If mi 

(a) Duplicated striping in RAID-1 

DiskO       Diskl        Disk 2   Diskl 

DO Dl D2 D3 

D4 D5 D6 D7 

D8 D9 D10 DU 

D9> D6' ; D.V DO' 
; D10' D7» D4' i or 

DU' D8' D5' !ä^ 

(b) Orthogonal striping and 
mirroring in RAID-x 

Fig. 2   The mirroring schemes in 
RAID-1 and RAID-x 

We define a pair of functions for the logical data block 
to physical RAID mapping: data-mapping-function and 
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mirror-mapping-function. The data-mapping-function is a 
one-to-one function which maps a logical RAID block 
address A to a physical disk address (DiskNo, StripeNo). 
Mirror-mapping-function maps the corresponding image 
block of a logical block address to a physical disk address. 
The A, DiskNo, and StripeNo count from 0. 

We define n as the number of disks in the array, k as 
the number of blocks per disk, and A as the logical RAID 
block address. Table 2 gives out the data-mapping 
function and mirror-mapping function for RAID-1 and 
RAID-x. The notation mod stands for arithmetic modulo 
operation. Table 2 also lists the expected peak 
performance of two RAID architectures. 

The maximum bandwidth of a disk array reflects the 
ideal case of parallel accesses of all useful data blocks. B 
stands for the bandwidth per disk. In the best case, a full 
bandwidth of nB can be delivered by RAID-x. The RAID- 
1 can only deliver half of the full bandwidth. The parallel 
read or parallel write time of a file of m blocks depends on 
the read or write latencies (R and W) per block, the array 
size n, and the file size m. 

The entries given in Table 2 are expected peak 
performance of parallel disk I/O operations, excluding all 
software overhead or network delays. In case of large 
reads, mR/n latency is expected to perform m/n reads 
simultaneously for RAID-x, while RAID-1 needs to 
double the latency. For small read of a single block, both 
require R time to finish the read. 

For parallel writes, as in RAID-x, the image blocks are 
clustered in one disk, written to the disk at the same time. 
That is, m/n(n-\) image blocks are written together to each 
disk. Therefore, the large write latency is reduced to mW/n 
+ m/n(n-l). 

For small writes, our RAID-x takes only W time to 
write the data block. The writing of the image blocks will 

be done later when all the stripe images are clustered at 
the same disk. This clustered writing can be done at the 
background, overlapping with the regular data writes. 

Table 2 also shows the maximum number of disk 
failures that each disk array can tolerate. The RAID-x can 
tolerate single-disk failures, RAID-1 is more robust than 
RAID-x. The experimental results in section 6 will verify 
the accuracy of the expected performance. 

Figure 3 illustrates an example of the two-dimensional 
RAID-x architecture with 3 disks attached to each node. 
The maximum number of disks attached to each SCSI 
controller is determined by the SCSI controller used. For 
Wide/Fast SCSI-II, 15 disks can be connected to one 
single SCSI controller. 

In order to implement SIOS, addresses of all the data 
blocks are linearly continuous among all the member 
disks. Only the disks with same position corresponding to 
each node belong to one stripe group. All the disks within 
stripe group can be accessed in parallel. 

Different stripe groups are independent. As all the disks 
within one node are connected through SCSI bus, different 
stripe group can be accessed in pipeline. The overlap 
degree for the different stripe group is depends on the 
property of SCSI bus used. 

The Trojans cluster is presently being upgraded to 4 
disks per node. Using 20 GB SCSI disks, the next RAID-x 
array will have 1.28 TB on 64 disks. In the future, the 
Trojans cluster will scale to hundreds of PC nodes or 
more, using next generation of microprocessors and 
Gigabit switched connections. 

Using the Fast Ethernet, the aggregate I/O bandwidth is 
at most 12.5 MB/s. As reported in section 5, we have 
achieved 9.7 MB/s bandwidth for large parallel reads. This 
represents 78% efficiency in the cluster utilization. 

Table 2 Architectural Characteristics of RAID-1 and RAID-x 
Performance Indicators 

Data Block 
mapping 

Mirror-mapping 
function 

Max. Bandwidth 
Estimates 
of Parallel 
Read/Write 
Time 

DiskNo. 
StripeNo. 
DiskNo. 

RAID-1 

A mod nil 
jlAIn) mod k 

RAID-x 

A mod« 

StripeNo. 
Read/Write 
Large Read 
Small Read 
Large Write 
Small Write 

Max. Fault Coverage 

nil + A mod nil 
(lA/n) mod k 

nB/1 
ImR/n 

R 
2mW/n 

W 
nil disk failures 

(2 Alri) mod k 
(-(Al(n - 1)) mod kll - 1) mod n 

kll + (A/(n - 1) n) (n - 1) + A mod (n - 1) 
nB 

mR/n 
R 

mW/n + m/n(n-l) 
= W 

Single disk failure 
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NodeO 

P/M 

Nodel 

CDD 

Figure 3.  Distributed RAID-x architecture, shown with a 4 x 3 configuration 

(P: processor, M: memory, CDD: cooperative disk drivers. All shaded blocks 
are mirrored images of the corresponding unshaded data blocks) 

With a 128-node cluster and 8 disks per node, the disk 
array could be enlarged to have a total capacity exceeding 
20 TB, suitable for any large-scale, database or 
multimedia applications. With an enlarged array of 128 
disks, the cluster must be upgraded to a Gigabit switched 
connection. Based on the growing I/O bandwidth, the 
Trojans cluster and its RAID-x architecture show a very 
promising future in term of scalability and availability. 

4. Cooperative Disk Drivers 

The Single I/O space (SIOS) is crucial to building 
scalable cluster of computers. A loosely coupled cluster 
use    distributed    disks    driven    by    different    hosts 

independently. The independent disk drivers handle 
distinct I/O address spaces. Without the SIOS, remote disk 
I/O must be done by a sequence of time-consuming 
system calls through a centralized file server (such as the 
use of NFS) across the cluster network. 

On the other hand, the CDDs work together to establish 
the SIOS across all physically distributed disks. Once the 
SIOS is established, all disks are used collectively as a 
single global virtual disk shown in Fig.4a. 

Each node perceives the illusion that it has several 
physical disks attached locally. Figure 4b shows the 
internal design of a CDD. Each CDD is essentially made 
from three working modules. The storage manager 
receives and processes the I/O requests from remote client 
modules. The client module redirects local I/O requests to 
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remote disk managers. 

The consistency module is responsible for maintaining 
data consistency among distributed disks. A CDD can be 
configured to run as a storage manager or as a client, or 
both at the same time. There are three possible states of 
each disk: (1) a manager to coordinate use of local disk 
storage by remote nodes, (2) a client accessing remote 
disks through remote disk managers, and (3) both of the 
above functions. 

(a) A global virtual disk with a SIOS 
formed by cooperative disks 

Cooperative Disk Driver (CDD) 

Data Consistency Module 

Communications through the network 

(b) The CDD architecture 

Figure 4 Single I/O space in RAID-x built 
at Linux kernel level. 

The Petal virtual disk array uses chained declustering, 
Tertiary Disk applies the RAID-5, and we use the new 
RAID-x architecture. The major innovations in RAID-x 
architecture lie in the creation of the orthogonal striping 
and mirroring in mapping the data blocks and their images 
on the distributed disks. 

The OSM scheme outperforms the chained declustering 
scheme mainly in parallel write operations. The RAID-x 
scheme demonstrates scalable I/O bandwidth with much 
reduced latency in a cluster environment. Both Petal and 
Tertiary Disk achieve the SIOS at the user level. We 
achieved the SIOS at the Linux kernel level. Using the 
CDDs, the cluster can be built serverless and offers remote 
disk access directly at the kernel level. 

Parallel I/O is made possible on any subset of local 
disks, because all distributed disks form SIOS. No heavy 
cross-space system calls are needed to perform remote file 
access. A device masquerading technique is adopted here. 

•Multiple CDDs run cooperatively to redirect I/O requests 
to remote disks. 

Data consistency problems arise when multiple cluster 
nodes have cached copies of the same set of data blocks. 
The xFS approach and the Frangipani approach maintain 
the data consistency at the file system level. In our design, 
data consistency checking is maintained at the disk driver 
level. 

Our approach simplifies the design and implementation 
of distributed file management services. Data consistency 
is maintained by all CDDs with higher speed and 
efficiency at the data block level. We introduced a special 
lock-group table for developing distributed file 
management services. 

Each record in this table corresponds to a group of data 
blocks that have been granted to a specific CDD client 
with write permissions. The write locks in each record are 
granted and released atomically. This lock-group table is 
replicated among the data consistency modules in the 
CDDs. Which guarantee that file management operations 
are performed atomically. 

5.  Benchmark Performance Results 

To test the cooperative operations among the CDDs 
residing on individual PCs, we use all 16 PCs as I/O 
storage servers. We use the same hardware platform to 
compare the relative performance of two disk array 
architectures: RAID-1 and RAID-x, all supported by 
CDDs. The NFS is used as a baseline for comparison 
purposes. Presently, Linux kernel version 2.2.5 supports 
the RAID-0, RAID-1, and RAID-5 configurations. 

We implemented the RAID-x based on the RAID-0 
implementation supported in the Linux kernel. This poses 
no difficulty in mapping the data blocks onto the top half 
of each disk. The mapping of the image blocks in the 
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RAID-x configuration is done by a special address 
translation subroutine residing in each CDD. To study the 
maximum I/O bandwidth of the disk array, the caches in 
the storage servers are bypassed by issuing a special sync 
command in the Linux kernel. 

For reads or writes, the file size chosen was 10MB. 
Each block (stripe unit) in the disk is 4 KB. This means 
that a 10-MB file is striped uniformly across all 16 disks 
in consecutive stripe groups. We have performed three 
benchmark experiments. 

The first two experiments measure the parallel I/O 
performance in terms of the throughput or the aggregate 
I/O bandwidth'. The first experiment tests the throughput 
of RAID-x, RAID-1 and the NFS against the number of 
client requests. The second test checks the bandwidth 
against the disk array size for RAID-1 and RAID-x. 

The distributed file system is evaluated in the third 
experiment using the standard Andrew Benchmark [11] 
consisting of a sequence of basic file system testing 
programs. There are five phases in the Andrew 
benchmark. 

The first phase recursively creates subdirectories. The 
second phase measures the data transfer capabilities by 
copying files. The third phase recursively examines the 
status of directories and the associated files. The fourth 
phase scans the contents of each file. The final phase 
compiles the files and links them together. 

5.1. Bandwidth Results and Analysis 
Figure 5 shows the performance of RAID-x, RAID-1 

and NFS architectures. The results on parallel read are 
given in Fig. 5a. In this test, each client reads a 10MB- 
long file from all the disks. Therefore, the test is truly 
focused on the parallel I/O capability of the disk array. All 
the files are set to be uncached and each client only reads 
its own private file. All read operations are performed 
simultaneously, with the help of an MPI_Barrier() call. 

The NFS throughput is limited at 2.6 MB/s regardless 
of the number of clients, due to the fact that sequential I/O 
is performed by the NFS on a central server. As the 
request number increases, the NFS becoming the 
bottleneck shows a declining performance. RAID-x 
architectures scale up to a bandwidth of 9.7 MB/s for 16 
clients. RAID-1 lags behind with a show of 6.33 MB/s for 
16 clients. 

Fig. 5b shows the write bandwidths of the RAID-x, 
RAID-1 and NFS subsystems. In this test, each client 
writes a 10MB-long file to the cache and issues a special 
syncQ call to flush the data blocks to the disks. All write 

operations among the clients are also synchronized in 
these experiments. 

The NFS scales in performance up to 4 requests. As the 
requests exceed 4, the NFS bandwidth drops to a low 
2.77MB/s. For writes of a large file, RAID-x achieves the 
better scalability with a 9.02MB/s for 16 clients. RAID-1 
saturates early to a 5.95MB/s, due to the fact that only half 
of the disks are used for data storage. 
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Fig. 5  Aggregate I/O bandwidth of RAID-x, 
RAID-1 and NFS with increasing clients 

5.2. Raw I/O Performance of RAID-x 
Raw I/O performance is plotted in Fig.6 against the 

disk array size. The results are shown for two RAID 
architectures. Again, all caches are bypassed in the 
experiments and the number of client processes is fixed at 
16. The read ranking differs  from the  write ranking 
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sharply in these plots. 

For parallel reads (Fig. 6a), the data size has very little 
effects on the relative standings of two RAIDs. It is 
important to note that the read bandwidth of RAID-x 
approaches 9.7 MB/s, about 78% of 12.5 MB/s, the limit 
of a 100 Mbps Fast Ethernet. The difference is attributed 
mainly to the CDD protocol and TCP/IP overheads 
incurred. 
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Fig. 6 Aggregate I/O bandwidth of RAID-x and 
RAID-1 with increasing disk numbers 

For parallel writes, the large write bandwidths of 
RAID-x and RAID-lare 9.02MB/s and 5.72MB/s, 
respectively. Table 3 shows the improvement factor of 16 
clients over 1 client in using the 16-node Trojans cluster. 
Comparing with Berkeley xFS results, our 1-client 
bandwidth is quite high due to well-exploited parallelism 
in 16-way striping across the disk array. 

For this reason, the improvement factor is lower than 
that achieved by the xFS system. Again, the RAID-x 
demonstrated the highest improvement factor among the 

three distributed RAID architectures and the NFS. 

5.3. Andrew Benchmark Results 
Andrew benchmark tests the performance of a network 

file system. In this experiment, the Andrew benchmark 
was executed on four I/O subsystems with respect to 
increasing number of client requests up to 32. The 
performance is indicated by the elapsed time in executing 
Andrew benchmark on the target I/O subsystem. Figure 7 
shows the benchmark results for RAID-x and NFS. 
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Fig. 7  Elapsed time to execute the Andrew 
benchmark on the Trojans cluster 

These tests demonstrate how the underlying storage 
structures can affect'the performance of the file system 
being supported. Each local file system on the I/O nodes 
mounts the "virtual" storage device provided by the CDD. 
The number of I/O nodes is fixed at 16. Each client only 
executes its own private copy of Andrew benchmark. We 
use the Linux ext2 local file system to keep the operations 
on metadata atomic. 
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Table 3 Achievable I/O Bandwidth and Improvement Factor on Trojans Cluster 

I/O 
Operations 

NFS RAID-x 

1 Client 16 Clients Improve 1 Client 16 Clients Improve 

Large Read 2.58 MB/s 2.3 MB/s 0.89 3.36 MB/s 9.65 MB/s 2.87 

Large Write 2.11 MB/s 2.77 MB/s 1.31 3.12 MB/s 9.02 MB/s 2.89 

Small Write 2.47 MB/s 2.81 MB/s 1.34 3.22 MB/s 9.13 MB/s 2.84 

Figure 7a shows the benchmark result of NFS, while 
Figures 7b shows the results of RAID-x. It is obvious that 
the elapsed time in using NFS increases sharply with the 
number of clients, while the RAID-x scheme can sustain 
the same workload. For 16 clients, the elapsed times for 
RAID-x and NFS are 6.8 and 33 seconds, respectively. 

For 32 clients, these numbers increase to 7.41 and 75.5, 
respectively. From Fig. 7a, NFS shows a worsening 
performance especially in reading the files, scanning 
directories, and copying files operations. The RAID-x 
architectures, in contrast, do not share this weakness. 

6. Striped and Staggered Checkpointing 

The parallel I/O characteristic of distributed RAID-x 
architecture can be applied to achieve fast checkpointing 
in the cluster system. Striped checkpointing method is 
storing checkpointing file over distributed RAID-x 
system. To alleviate the network contention, the staggered 
writing skill is combined to striped checkpointing. 

Simultaneous writing of multiple processes in 
coordinated checkpointing may cause a network 
contention and I/O bottleneck problem to a central stable 
storage. As suggested by Vaidya [28], staggered writing of 
the checkpoints taken by different nodes reduces the above 
contentions. The time lag between staggered 
checkpointers can alleviate the bottleneck problem 
associated with the central stable storage. 

The basic concept of staggered checkpointing allows 
only one process to store the checkpoint at a time. A token 
is passed around to determine the timing. When a node 
receives the token, the node starts to store the checkpoint. 
After finishing checkpointing, the node passes the token to 
the next node. 

Our work on coordinated checkpointing was inspired 
by the previous works by Cao [4] and associates, Chandy 
and Lamport [5], and Vaidya [28]. In our scheme, several 
nodes within the cluster form a striped group. Only the 

nodes within the same striped group checkpoint 
simultaneously and each of the groups checkpoints in a 
staggered way. 

Figure 8 shows the concept of striped staggering in 
coordinated checkpointing on the RAID-x disk array. The 
drawing shows a 12-disk RAID-x array configured as a 2- 
dimensional structure, i.e. a 4 x 3 configuration. Each 
stripe corresponds to the degree of parallelism (DOP) in 
concurrent accesses of four disks in the 4 x 3 disk array. 

Time 

StripeO 

*" Stripe! 

y Stripe! 

C: Checkpointing overhead 

S: Synchronization overhead 

Fig. 8. Striped checkpointing with staggering 
on a distributed RAID-x 

Successive stripes are accessed in a staggered manner 
from different stripes on successive 4-disk groups, as 
demonstrated in Fig.3. Staggering implies pipelined 
accesses of the disk array. We first proposed the idea of 
striped checkpointing in [23]. There exists trade-off 
between stripe parallelism and staggering depth. 

For example, the layout in Fig. 8 can be reconfigured 
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from 4x3toa6x2 configuration, if needed. Higher DOP 
leads to higher aggregate disk bandwidth. Higher 
staggering degree can cope better the network contention 
problem. The staggered writing way can reduce the 
average checkpointing overhead. However, in the case of 
blocking algorithm, the staggered writing method also 
introduces the synchronization time. 

Although blocking algorithm is the simpler than non- 
blocking algorithm to achieve coordinated checkpointing 
in parallel processing, it suffers from large amount of 
overhead. Every node should be blocked during the 
checkpointing procedure. The basic idea is to shut down 
all processes temporary to define consistent state. After all 
the processes are blocked and all the messages are clearly 
delivered, the global checkpoints are stored. In the 
staggered writing case, the blocked time increases 
according to the number of node. 

1.21      221      321      4.21      521      621     7.21      E11 

checkpoint file size (IVB) 

Fig. 9   Checkpointing overhead of staggered 
writing on distributed RAIDs 

7.  Overhead and Reliability Analysis 

Figure 9 shows the advantage of striped staggering on 
distributed disk array, as compared with staggering in 
Vaidya scheme [28] on a centralized disk and the 
conventional approach using the NFS server. These 
preliminary results were measured on the small prototype 
Trojans cluster. 

Our striped checkpointing scheme has the lowest 
overhead, especially when the checkpoint files becomes 
very large. Through continued experiments on the 
enlarged 64-disk RAID-x cluster, we will reveal more 
experimental results on the checkpointing overhead and 
rollback recovery latency. 

Table 4 summarizes three checkpointing schemes we 
have compared in this paper. Their advantages and 
shortcomings are identified. Suitable applications for each 
checkpointing scheme are also elaborated. 

Using the OSM, each striped checkpointing file has its 
mirrored image in its local disk. For each node, transit 
failure can be recovered from its mirrored image in local 
disk. Permanent failure of a disk can be recovered from 
the striped checkpointing among the distributed disks. 

The I/O performance in a degraded mode of OSM is 
the same as the RAID-0 performance in a normal mode. 
The striped checkpointing can be read in parallel from 
RAID-x. The checkpointing recovery latency can be 
shortened gftatly. 

Table 4 Summary of Three Coordinated Checkpointing Schemes 

Checkpointing Scheme Advantages Shortcomings    • Suitable applications 

Simultaneous writing to Simple, Has network and I/O Small size of checkpoint, 
a central storage no inconsistent state contentions, NFS is single small number of nodes, 
(The NFS scheme) point of failure low I/O operation 
Staggered writing to a Eliminate the network and I/O Network bandwidth is Small size of checkpointers, 
central storage contention wasted, NFS is a single small number of nodes, 
(Vaidya scheme) point of failure low I/O operations 
Striped staggering Eliminate network and I/O Can not tolerate more Large size of checkpointers, 
checkpointing on any contentions, low checkpoint node failures within large number of nodes, 
distributed RAID overhead, fully utilize network each stripe group low communication, 
(Our scheme) bandwidth, tolerate multiple 

failures among stripe groups' 
I/O intensive applications 
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According to the mirror mapping of the OSM, the 
proposed RAID-x architecture can recover from any single 
disk failure in each stripe group. The total number of disk 
failure depends on the number of stripe groups to be 
accessed. For the 4 x 3 configuration in Fig.3, three disk 
failures in three stripe groups can be tolerated. An indepth 
analysis of the reliability of the proposed checkpointing 
RAID-x architecture is given in [23]. 

8. Conclusions 

The development of the new RAID-x architecture was 
inspired by several research projects. The xFS and the 
Tertiary Disk projects at Berkeley [26], and the Petal 
project at Compaq Digital [17], all have influenced our 
design philosophy. The main difference between our 
approach and these projects is that we use the orthogonal 
striping and mirroring (OSM) to preserve both parallel 
disk accesses and staggered (pipelined) checkpointing of 
successive stripes. 

We built data consistency checking in the device driver 
level. The CDDs work cooperatively to perform data 
transferring and consistency checking. With the support of 
CDDs, the design of a distributed file system can be 
focused on the concurrent file access policies and the 
related performance issues. In this case, the complexity of 
the distributed file system can be greatly reduced Our 
SIOS disk array separates the I/O subsystem into a 
distributed file system and a set of distributed CDDs. 

All SSI services are provided by the CDDs while the 
file system modification is reduced to a minimum. 
Furthermore, some desired SSI services for cluster 
computing can be built on top of the SIOS. In this aspect, 
the SIOS is a very powerful middleware infrastructure to 
achieve single-system image. Benchmark performance 
results show that our distributed RAID can achieve 
scalability, performance, and availability in cluster 
computing. 

The RAID-x outperforms the RAID-1 in the Linux 
cluster environment. For parallel reads with 16 active 
clients, the RAID-x achieved 9.7 MB/s throughput, 1.5 
and 3.7 times higher than using RAID-1 and NFS, 
respectively. Running the Andrew benchmark, RAID-x 
results in a 17% cut in elapsed time, compared with that 
experienced on a RAID-1. The achieved throughput 
corresponds to 78% of the peak bandwidth deliverable by 
the Fast Ethernet. Scalable I/O bandwidth makes the 
RAID-x especially appealing to I/O-centric cluster 
applications. 

The OSM mechanisms can be built not only on Linux 
PC clusters, but also on any Unix workstation clusters. 
These architectural features differ from the user-level 
designs in Berkeley Tertiary Disk and Digital Petal virtual 
disks. The new mechanisms support not only single I/O 
space, but also distributed shared memory, checkpointing, 
and distributed file management at the kernel level without 
using cross-space system calls. 

The prototype RAID-x has the following open issues 
yet to be solved in future R/D efforts. These extended 
works are among the tasks planned in the next phase of 
our Trojans cluster project. 

(1). We expect even Higher performance as we continue 
improving the CDD protocol. The current hand shaking 
protocol could be improved with prefetching techniques. 
The TCP/IP used in our prototype is known for its high 
overhead. Plan is underway to port the whole cluster 
system with a low-latency protocol, expecting to further 
reduce the communication overhead. 

(2). We plan to design a distributed file system with I/O 
load balancing capabilities along with an enlarged 
distributed disk array onto our Trojans cluster in the 
future. In addition to consider the RAID-1, RAID-5, and 
RAID-x configurations, we will also consider other 
configurations, such as RAID-10 and chained 
declustering. 

(3). Our PC nodes in the Trojans cluster act as clients 
as well as storage servers at the same time. These dual 
roles affect the performance of the I/O nodes. We believe 
that the I/O performance can be further improved with an 
enlarged cluster size. 

(4). We plan to develop a suite of middleware with 
striped staggering checkpointing to support process 
migration. Based on future Trojans cluster configuration, 
more detailed analysis of the DOP and depth of staggering 
will be conducted. 

(5). New message logging algorithms for non-blocking 
striped checkpointing will be developed to reduce 
checkpointing overhead furthermore. We also plan to 
design an application dependent checkpointing scheme to 
elaborate the efficiency of striped checkpointing. 

Lots of interesting research work can be generated out 
of a very large disk array in real-life applications. Potential 
applications are encouraged in biological sequence 
analysis, collaborative engineering design, clusters or 
grids for E-commerce, specialized digital libraries, and 
distributed multimedia processing. 
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Abstract 

A distributed heterogeneous computing (HC) system 
consists of diversely capable machines harnessed togeth- 
er to execute a set of tasks that vary in their computation- 
al requirements. Heuristics are needed to map (match and 
schedule) tasks onto machines in an HC system so as to 
optimize some figure of merit. This paper characterizes a 
simulated HC environment by using the expected execution 
times of the tasks that arrive in the system onto the different 
machines present in the system. This information is ar- 
ranged in an "expected time to compute " (ETC) matrix as a 
model of the given HC system, where the entry(i, j) is the ex- 
pected execution time of task i on machine j. This model is 
needed to simulate different HC environments to allow test- 
ing of relative performance of different mapping heuristics 
under different circumstances. In particular, the ETC mod- 
el is used to express the heterogeneity among the runtimes 
of the tasks to be executed, and among the machines in the 
HC system. An existing range-based technique to generate 
ETC matrices is described. A coefficient-of-variation based 
technique to generate ETC matrices is proposed, and com- 
pared with the range-based technique. The coefficient-of- 
variation-based ETC generation method provides a greater 
control over the spread of values (i.e., heterogeneity) in any 
given row or column of the ETC matrix than the range- 
based method. 

1. Introduction 

A distributed heterogeneous computing (HC) system 
consists of diversely capable machines harnessed togeth- 
er to execute a set of tasks that vary in their computation- 
al requirements. Heuristics are needed to map (match and 

This research was supported by the DARPA/ITO Quorum Program un- 
der the NPS subcontract numbers N62271-98-M-0217 and N62271-98-M- 
0448, and under the GSA subcontract number GS09K99BH0250. Some 
of the equipment used was donated by Intel. 

schedule) tasks onto machines in an HC system so as to op- 
timize some figure of merit. The heuristics that match a task 
to a machine can vary in the information they use. For ex- 
ample, the current candidate task can be assigned to the ma- 
chine that becomes available soonest (even if the task may 
take a much longer time to execute on that machine than 
elsewhere). In another approach, the task may be assigned 
to the machine where it executes fastest (but ignores when 
that machine becomes available). Or the current candidate 
task may be assigned to the machine that completes the task 
soonest, i.e., the machine which minimizes the sum of task 
execution time and the machine ready time, where machine 
ready time for a particular machine is the time when that 
machine becomes available after having executed the tasks 
previously assigned to it (e.g., [13]). 

The discussion above should reveal that more sophisti- 
cated (and possibly wiser) approaches to the mapping prob- 
lem require estimates of the execution times of all tasks (that 
can be expected to arrive for service) on all the machines 
present in the HC suite to make better mapping decisions. 
One aspect of the research on HC mapping heuristics ex- 
plores the behavior of the heuristics in different HC envi- 
ronments. The ability to test the relative performance of 
different mapping heuristics under different circumstances 
necessitates that there be a framework for generating simu- 
lated execution times of all the tasks in the HC system on all 
the machines in the HC system. Such a framework would, 
in turn, require a quantification of heterogeneity to express 
the variability among the runtimes of the tasks to be execut- 
ed, and among the capabilities of the machines in the HC 
system. The goal of this paper is to present a methodology 
for synthesizing simulated HC environments with quantifi- 
able levels of task and machine heterogeneity. This paper 
characterizes the HC environments so that it will be easier 
for the researchers to describe the workload and the ma- 
chines used in their simulations using a common scale. 

Given a set of heuristics and a characterization of HC 
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environments, one can determine the best heuristic to use in 
a given environment for optimizing a given objective func- 
tion. In addition to increasing one's understanding of the 
operation of different heuristics, this knowledge can help a 
working resource management system select which mapper 
to use for a given real HC environment. 

This research is part of a DARPA/ITO Quorum Pro- 
gram project called MSHN (pronounced "mission") (Man- 
agement System for Heterogeneous Networks) [7]. MSHN 
is a collaborative research effort that includes the Naval 
Postgraduate School, NOEMIX, Purdue, and University of 
Southern California. It builds on SmartNet, an implemented 
scheduling framework and system for managing resources 
in an HC environment developed at NRaD [5]. The techni- 
cal objective of the MSHN project is to design, prototype, 
and refine a distributed resource management system that 
leverages the heterogeneity of resources and tasks to deliver 
the requested qualities of service. The methodology devel- 
oped here for generating simulated HC environments may 
be used to design, analyze and evaluate heuristics for the 
Scheduling Advisor component of the MSHN prototype. 

The rest of this paper is organized as follows. A mod- 
el for describing an HC system is presented in Section 2. 
Based on that model, two techniques for simulating an HC 
environment are described in Section 3. Section 4 briefly 
discusses analyzing the task execution time information 
from real life HC scenarios. Some related work is outlined 
in the Section 5. 

2. Modeling Heterogeneity 
To better evaluate the behavior of mapping heuristics, 

a model of the execution times of the tasks on the ma- 
chines is needed so that the parameters of this model can 
be changed to investigate the performance of the heuristics 
under different HC systems and under different types of 
tasks to be mapped. One such model consists of an 
expected time to compute (ETC) matrix, where the entry(i, 
j) is the expected execution time of task i on machine j. The 
ETC matrix can be stored on the same machine where the 
mapper is stored, and contains the estimates for the expect- 
ed execution times of a task on all machines, for all the tasks 
that are expected to arrive for service over a given interval 
of time. (Although stored with the mapper, the ETC infor- 
mation may be derived from other components of a resource 
management system (e.g., [7])). In an ETC matrix, the el- 
ements along a row indicate the estimates of the expected 
execution times of a given task on different machines, and 
those along a column give the estimates of the expected ex- 
ecution times of different tasks on a given machine. 

The exact actual task execution times on all machines 
may not be known for all tasks because, for example, they 
might be a function of input data. What is typically as- 
sumed in the HC literature is that estimates of the expected 

execution times of tasks on all machines are known (e.g., 
[6, 10, 12, 16]). These estimates could be built from task 
profiling and machine benchmarking, could be derived from 
the previous executions of a task on a machine, or could be 
provided by the user (e.g., [3, 6, 8, 14, 18]). 

The ETC model presented here can be characterized by 
three parameters: machine heterogeneity, task heterogene- 
ity, and consistency. The variation along a row is referred 
to as the machine heterogeneity; this is the degree to which 
the machine execution times vary for a given task [1]. A 
system's machine heterogeneity is based on a combination 
of the machine heterogeneities for all tasks (rows). A sys- 
tem comprised mainly of workstations of similar capabil- 
ities can be said to have "low" machine heterogeneity. A 
system consisting of diversely capable machines, e.g., a col- 
lection of SMP's, workstations, and supercomputers, may 
be said to have "high" machine heterogeneity. 

Similarly, the variation along a column of an ETC matrix 
is referred to as the task heterogeneity; this is the degree to 
which the task execution times vary for a given machine [1]. 
A system's task heterogeneity is based on a combination of 
the task heterogeneities for all machines (columns). "High" 
task heterogeneity may occur when the computational need- 
s of the tasks vary greatly, e.g., when both time-consuming 
simulations and fast compilations of small programs are 
performed. "Low" task heterogeneity may typically be seen 
in the jobs submitted by users solving problems of similar 
complexity (and hence have similar execution times on a 
given machine). 

Based on the above idea, four categories were proposed 
for the ETC matrix in [1]: (a) high task heterogeneity and 
high machine heterogeneity, (b) high task heterogeneity and 
low machine heterogeneity, (c) low task heterogeneity and 
high machine heterogeneity, and (d) low task heterogeneity 
and low machine heterogeneity. 

The ETC matrix can be further classified into two cat- 
egories, consistent and inconsistent [1], which are orthog- 
onal to the previous classifications. For a consistent ETC 
matrix, if a machine mx has a lower execution time than 
a machine my for a task f*, then the same is true for any 
task tj. A consistent ETC matrix can be considered to rep- 
resent an extreme case of low task heterogeneity and high 
machine heterogeneity. If machine heterogeneity is high e- 
nough, then the machines may be so much different from 
each other in their compute power that the differences in 
the computational requirements of the tasks (if low enough) 
will not matter in determining the relative order of execu- 
tion times for a given task on the different machines (i.e., 
along a row). As a trivially extreme example, consider a 
system consisting of Intel Pentium III and Intel 286. The 
Pentium III will almost always run any given task from a 
certain set of tasks faster than the 286 provided the compu- 
tational requirements of all tasks in the set are similar (i.e., 
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low task heterogeneity), thereby giving rise to a consistent 
ETC matrix. 

In inconsistent ETC matrices, the relationships among 
the task computational requirements and machine capabili- 
ties are such that no structure as that in the consistent case 
is enforced. Inconsistent ETC matrices occur in practice 
when: (1) there is a variety of different machine architec- 
tures in the HC suite (e.g., parallel machines, superscalars, 
workstations), and (2) there is a variety of different com- 
putational needs among the tasks (e.g., readily paralleliz- 
able tasks, difficult to parallelize tasks, tasks that are float- 
ing point intensive, simple text formatting tasks). Thus, the 
way in which a task's needs correspond to a machine's ca- 
pabilities may differ for each possible pairing of tasks to 
machines. 

A combination of these two cases, which may be more 
realistic in many environments, is the partially-consistent 
ETC matrix, which is an inconsistent matrix with a consis- 
tent sub-matrix [2, 13]. This sub-matrix can be composed 
of any subset of rows and any subset of columns. As an ex- 
ample, in a given partially-consistent ETC matrix, 50% of 
the tasks and 25% of the machines may define a consistent 
sub-matrix. 

Even though no structure is enforced on an inconsistent 
ETC matrix, a given ETC matrix generated to be inconsis- 
tent may have the structure of a partially consistent ETC 
matrix. In this sense, partially-consistent ETC matrices are 
a special case of inconsistent ETC matrices. Similarly, con- 
sistent ETC matrices are special cases of inconsistent and 
partially-consistent ETC matrices. 

It should be noted that this classification scheme is used 
for generating ETC matrices. Later in this paper, it will 
be shown how these three cases differ in generation pro- 
cess. If one is given an ETC matrix, and is asked to classify 
it among these three classes, it will be called a consistent 
ETC matrix only if it is fully consistent. It will be called 
inconsistent if it is not consistent. 

Often an inconsistent ETC matrix will have some par- 
tial consistency in it. For example, a trivial case of partial- 
consistency always exists; for any two machines in the HC 
suite, at least 50% of the tasks will show consistent execu- 
tion times. 

3. Generating the ETC Matrices 

3.1. Range Based ETC Matrix Generation 

Any method for generating the ETC matrices will require 
that heterogeneity be defined mathematically. In the range- 
based ETC generation technique, the heterogeneity of a set 
of execution time values is quantified by the range of the 
execution times [2,13]. The procedures given in this section 
for generating the ETC matrices produce inconsistent ETC 
matrices. It is shown later in this section how consistent and 

(1) for/fromOto(f-l) 
(2) *[i\ = U(l,Rtask) 
(3) fory'fromOto(m-l) 
(4) e[i,j]=x[i\xU(l,Rmach) 
(5) endfor 
(6) endfor 

Figure 1. The range-based method for gener- 
ating ETC matrices. 

partially-consistent ETC matrices could be obtained from 
the inconsistent ETC matrices. 

Assume m is the total number of machines in the HC 
suite, and t_ is the total number of tasks expected to be 
serviced by the HC system over a given interval of time. 
Let U(a, b) be a number sampled from a uniform dis- 
tribution with a range from a to b. (Each invocation of 
U(a, b) returns a new sample.) Let R^t and Rmach be num- 
bers representing task heterogeneity and machine hetero- 
geneity, respectively, such that higher values for R,ask and 
Rmach represent higher heterogeneities. Then an ETC ma- 
trix e[0..(t - l),0..(m - 1)], for a given task heterogeneity 
and a given machine heterogeneity, can be generated by the 
range-based method given in Figure 1, where e[i,j] is the 
estimated expected execution time for the task / on the ma- 
chine j. 

As shown in Figure 1, each iteration of the outer for loop 
samples a uniform distribution with a range from 1 to Rtask 

to generate one value for a vector t. For each element of x 
thus generated, the m iterations of the inner for loop (Line 
3) generate one row of the ETC matrix. For the i-th iteration 
of the outer for loop, each iteration of the inner for loop 
produces one element of the ETC matrix by multiplying x[i\ 
with a random number sampled from a uniform distribution 
ranging from 1 toRmach. 

In the range-based ETC generation, it is possible to 
obtain high task heterogeneity low machine heterogeneity 
ETC matrices with characteristics similar to that of low task 
heterogeneity high machine heterogeneity ETC matrices if 
Rtask = Rmach- In realistic HC systems, the variation that 
tasks show in their computational needs is generally larg- 
er than the variation that machines show in their capabil- 
ities. Therefore it is assumed here that requirements of 
high heterogeneity tasks are likely to be more "heteroge- 
neous" than the capabilities of high heterogeneity machines 
(i.e., Rtask » Rmach)- However, for the ETC matrices gen- 
erated here, low heterogeneity in both machines and tasks 
is assumed to be same. Table 1 shows typical values for 
Rtask and Rmach for low and high heterogeneities. Tables 2 
through 5 show four ETC matrices generated by the range- 
based method.  The execution time values in Table 2 are 
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Table 1. Suggested values for RtaSk and 
flmach for a realistic HC system for high het- 
erogeneity and low heterogeneity. 

high low 

task 105 101 

machine 102 101 

much higher than the execution time values in Table 5. The 
difference in the values between these two tables would 
be reduced if the range for the low task heterogeneity was 
changed to 103 to 104 instead of 1 to 10. 

With the range-based method, low task heterogeneity 
high machine heterogeneity ETC matrices tend to have high 
heterogeneity for both tasks and machines, due to method 
used for generation. For example, in Table 5, original x 
vector values were selected from 1 to 10. When each entry 
is multiplied by a number from 1 to 100 for high machine 
heterogeneity this generates a task heterogeneity compara- 
ble to machine heterogeneity. It is shown later in Section 
3.2 how to produce low task heterogeneity high machine 
heterogeneity ETC matrices which do show low task het- 
erogeneity. 

3.2. Coefficient-of-Variation Based ETC Matrix 
Generation 

A modification of the procedure in Figure 1 defines the 
coefficient of variation, V, of execution time values as a 
measure of heterogeneity (instead of the range of execu- 
tion time values). The coefficient of variation of a set of 
values is a better measure of the dispersion in the values 
than the standard deviation because it expresses the stan- 
dard deviation as a percentage of the mean of the values 
[11]. Let c and pi be the standard deviation and mean, re- 
spectively, of a set of execution time values. Then V = c/fi. 
The coefficient-of-variation-based ETC generation method 
provides a greater control over spread of the execution time 
values (i.e., heterogeneity) in any given row or column of 
the ETC matrix than the range-based method. 

The coefficient-of-variation-based (CVB) ETC genera- 
tion method works as follows. A task vector, q, of expected 
execution times with the desired task heterogeneity must be 
generated. Essentially, q[i\ is the execution time of task i on 
an "average" machine in the HC suite. For example, if the 
HC suite consists of an IBM SP/2, an Alpha server, and a 
Sun SPARC 5 workstation, then q would represent estimat- 
ed execution times of the tasks on the Alpha server. 

To generate q, two input parameters are needed: fi,ask 

and Vtask. The input parameter, jw is used to set the av- 
erage of the values in q. The input parameter V,ask is the 
desired coefficient of variation of the values in q. The value 
of V,ask quantifies task heterogeneity, and is larger for high- 
er task heterogeneity. Each element of the task vector q is 
then used to produce one row of the ETC matrix such that 
the desired coefficient of variation of values in each row is 
Vmac)„ another input parameter. The value of Vmach quanti- 
fies machine heterogeneity, and is larger for higher machine 
heterogeneity. Thus /ju,,k, V,ask, and V,mch are the three input 
parameters for the CVB ETC generation method. 

A direct approach to simulating HC environments should 
use the probability distribution that is empirically found to 
represent closely the distribution of task execution times. 
However, no standard benchmarks for HC systems are cur- 
rently available. Therefore, this research uses a distribution 
which, though not necessarily reflective of an actual HC 
scenario, is flexible enough to be adapted to one. Such a 
distribution should not produce negative values of task ex- 
ecution times (e.g., ruling out Gaussian distribution), and 
should have a variable coefficient of variation (e.g., ruling 
out exponential distribution). 

The gamma distribution is a good choice for the CVB 
ETC generation method because, with proper constraints on 
its characteristic parameters, it can approximate two other 
probability distributions, namely the Erlang-k and Gaussian 
(without the negative values) [11, 15]. The fact that it can 
approximate these two other distributions is helpful because 
this increases the chances that the simulated ETC matrices 
could be synthesized closer to some real life HC environ- 
ment. 

The uniform distribution can also be used but is not as 
flexible as the gamma distribution for two reasons: (1) it 
does not approximate any other distribution, and (2) the 
characteristic parameters of a uniform distribution cannot 
take all real values (explained later in the Section 3.3). 

The gamma distribution [11, 15] is defined in terms of 
characteristic shape parameter, a, and scale parameter, ß. 
The characteristic parameters of the gamma distribution can 
be fixed to generate different distributions. For example, 
if a is fixed to be an integer, then the gamma distribution 
becomes an Erlang-k distribution. If a is large enough, then 
the gamma distribution approaches a Gaussian distribution 
(but still does not return negative values for task execution 
times). 

Figures 2(a) and 2(b) show how a gamma density func- 
tion changes with the shape parameter a. When the shape 
parameter increases from two to eight, the shape of the dis- 
tribution changes from a curve biased to the left to a more 
balanced bell-like curve. Figures 2(a), 2(c) and 2(d) show 
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Table 2. A high task heterogeneity low machine heterogeneity matrix generated by the range-based 
method using Rtask and Rmach values of Table 1. 

m\ mi mi ni4 m5 m6 mj 

t\ 333304 375636 198220 190694 395173 258818 376568 
h 442658 400648 346423 181600 289558 323546 380792 
ti 75696 103564 438703 129944 67881 194194 425543 
H 194421 392810 582168 248073 178060 267439 611144 
H 466164 424736 503137 325183 193326 241520 506642 
h 665071 687676 578668 919104 795367 390558 758117 
ti 177445 227254 72944 139111 236971 325137 347456 
h 32584 55086 127709 51743 100393 196190 270979 
t9 311589 568804 148140 583456 209847 108797 270100 

tio 314271 113525 448233 201645 274328 248473 170176 
hi 272632 268320 264038 140247 110338 29620 69011 
tn 489327 393071 225777 71622 243056 445419 213477 

Table 3. A high task heterogeneity high machine heterogeneity matrix generated by the range-based 
method using Rtask and Rmach values of Table 1. 

m\ WZ2 7tt3 7K4 m5 tn6 mi 
t\ 2425808 3478227 719442 2378978 408142 2966676 2890219 
h 2322703 2175934 228056 3456054 6717002 5122744 3660354 
?3 1254234 3182830 4408801 5347545 4582239 6124228 5343661 
U 227811 419597 13972 297165 438317 23374 135871 
'5 6477669 5619369 707470 8380933 4693277 8496507 7279100 
t(, 1113545 1642662 303302 244439 1280736 541067 792149 
tl 2860617 161413 2814518 2102684 8218122 7493882 2945193 
h 1744479 623574 1516988 5518507 2023691 3527522 1181276 
?9 6274527 1022174 3303746 7318486 7274181 6957782 2145689 

'10 1025604 694016 169297 193669 1009294 1117123 690846 
t\l 2390362 1552226 2955480 4198336 1641012 3072991 3262071 
tn  1  96699 882914 63054 199175 894968 248324 297691 
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Table 4. A low task heterogeneity low machine heterogeneity matrix generated by the range-based 
method using Rtask and Rmach values of Table 1. 

m i ni2 '»3 mn m5 ni(, mi 

t\ 22 21 6 16 15 24 13 

h 7 46 5 28 45 43 31 
h 64 83 45 23 58 50 38 

U 53 56 26 42 53 9 58 

h 11 12 14 7 8 3 14 

t(, 33 31 46 25 23 39 10 

ti 24 11 17 14 25 35 4 

h 20 17 23 4 3 18 20 

t9 13 28 14 7 34 6 29 

'10 2 5 7 7 6 3 7 

'u 16 37 23 22 23 12 44 

?12 8 66 47 11 47 55 56 

Table 5. A low task heterogeneity high machine heterogeneity matrix generated by the range-based 
method using Rtaak and Rmach values of Table 1. 

m\ mi mi nit m5 m6 mi 

t\ 440 762 319 532 151 652 308 

tl 459 205 457 92 92 379 60 

h 499 263 92 152 75 18 128 

h 421 362 347 194 241 481 391 

ts 276 636 136 355 338 324 255 

t(, 89 139 37 67 9 53 139 

h 404 521 54 295 257 208 539 

t% 49 114 279 22 93 39 36 

?9 59 35 184 262 145 287 277 

fio 7 235 44 81 330 56 78 

h\ 716 601 75 689 299 144 457 

t\2 435 208 256 330 6 394 419 

190 



0.05 
cc=2, ß=8 a=8, ß=8 

120 

(a) (b) 

0.025 
cx=2, ß=16 

0.012 
a=2, ß=32 

0    50   100   150  200  250  300 50   100  150  200  250  300 

(c) (d) 

Figure 2. Gamma probability density function for (a) a = 2, ß = 8, (b) a = 8, ß = 8, (c) a = 2, ß = 16 
and (d) a = 2, ß = 32. 
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(1) Otask = 1/Vtask2; Umach = 1/VmacA  I 
ßfasi = Ptask/ata.ik 

(2) for/fromOto(f-l) 
(3) g[i] = G(a/fl.vJfc, ß,a.?*) 

/* g[i] will be used as mean 
of i-th row of ETC matrix 7 

(4) ßmflcfcl»'] = q[i\/<Zmach 
I* scale parameter for i-th row */ 

(5) for 7 from 0 to (m - 1) 
(6) e[i,j] = G(amuch, ßmflCfc[']) 
(7) endfor 
(8) endfor 

(1) oc/n,jt = 1/V/a.vt2; amorft = \/vmach ; 
Pmiic/i — Pmach / &mach 

(2) for j from 0 to (m - 1) 

(3) P[j] = G(°WA, ßm«f/i) 
/* /?[;'] will be used as mean 
of >th column of ETC matrix */ 

(4) $n,.sk[j} = P[j}/tttask 
I* scale parameter for y'-th column */ 

(5) fori'fromOto(r-l) 
(6) e[i,j] = G{alask, Ksk[j}) 
(7) endfor 
(8) endfor 

Figure 3. The general CVB method for gener- 
ating ETC matrices. 

Figure 4. The CVB method for generating low 
task heterogeneity high machine heterogene- 
ity ETC matrices. 

the effect on the distribution caused by an increase in the 
scale parameter from 8 to 16 to 32. The two-fold increase in 
the scale parameter does not change the shape of the graph 
(the curve is still biased to the left); however the curve now 
has twice as large a domain (i.e., range on x-axis). 

The gamma distribution's characteristic parameters, a 
and ß, can be easily interpreted in terms of p,axk, V,ask, 
and Vmach- For a gamma distribution, o = ß>/ä , and 
fi = ßa, so that V = G//J= \/y/ä (and a = 1/V2). Then 
<W = 1/1W2 and ow*_ = \/Vmach

2. Further, because 
ft = ßa, ß = fi/a, and fW = n,ask/a,ask- Also, for task i, 

$mach[l\ = q{l\IU-mach- 
Let G(a, ß) be a number sampled from a gamma dis- 

tribution with the given parameters. (Each invocation of 
G(cc, ß) returns a new sample.) Figure 3 shows the general 
procedure for the CVB ETC generation. 

Given the three input parameters, Vtask, Vmach, and /W> 
Line (1) of Figure 3 determines the shape parameter alask 

and scale parameter ß,fl,* of the gamma distribution that will 
be later sampled to build the task vector q. Line (1) also 
calculates the shape parameter amach t0 use later in Line (6)- 
In the i-th iteration of the outer for loop (Line 2) in Figure 
3, a gamma distribution with parameters a,ask and %ask is 
sampled to obtain q[i\. Then q[i\ is used to determine the 

scale parameter ßmac/,['] (t0 be used later in Line (6^- For 

the ('-th iteration of the outer for loop (Line 2), each iteration 
of the inner for loop (Line 5) produces one element of the i- 
th row of the ETC matrix by sampling a gamma distribution 
with parameters amach and ßmac/,[f']- One complete row of 
the ETC matrix is produced by m iterations of the inner for 
loop (Line 5). Note that while each row in the ETC matrix 
has gamma distributed execution times, the execution times 
in columns are not gamma distributed. 

The ETC generation method of Figure 3 can be used to 
generate high task heterogeneity high machine heterogene- 

ity ETC matrices, high task heterogeneity low machine het- 
erogeneity ETC matrices, and low task heterogeneity low 
machine heterogeneity ETC matrices, but cannot generate 
low task heterogeneity high machine heterogeneity ETC 
matrices. To satisfy the heterogeneity quadrants of Section 
2, each column in the final low task heterogeneity high ma- 
chine heterogeneity ETC matrix should reflect the low task 
heterogeneity of the "parent" task vector q. This condition 
would not necessarily hold if rows of the ETC matrix were 
produced with a high machine heterogeneity from a task 
vector of low heterogeneity. This is because a given col- 
umn may be formed from widely different execution time 
values from different rows because of the high machine het- 
erogeneity. That is, any two entries in a given column are 
based on different values of q[i] and amwh, and may there- 
fore show high task heterogeneity as opposed to the intend- 
ed low task heterogeneity. In contrast, in a high task het- 
erogeneity low machine heterogeneity ETC matrix the low 
heterogeneity among the machines for a given task (across 
a row) is based on the same q[i] value. 

One solution is to generate what is in effect a transpose 
of a high task heterogeneity low machine heterogeneity ma- 
trix to produce a low task heterogeneity high machine het- 
erogeneity one. The transposition can be built into the pro- 
cedure as shown in Figure 4. The procedure in Figure 4 is 
very similar to the one in Figure 3. The input parameter 
litask is replaced with //,„„f;,. Here, first a machine vector, p, 
(with an average value of fJmach) is produced. Each element 
of this "parent" machine vector is then used to generate one 
low task heterogeneity column of the ETC matrix, such that 
the high machine heterogeneity present in p is reflected in 
all rows. This approach for generating low task heterogene- 
ity high machine heterogeneity ETC matrices can also be 
used with the range-based method. 
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Tables 6 through 11 show some sample ETC matrices 
generated using the CVB ETC generation method. Tables 6 
and 7 both show high task heterogeneity low machine het- 
erogeneity ETC matrices. In both tables, the spread of the 
execution time values in columns is higher than that in rows. 
The ETC matrix in Table 7 has a higher task heterogeneity 
(higher V,ask) than the ETC matrix in Table 6. This can be 
seen in a higher spread in the columns of matrix in Table 7 
than that in Table 6. 

Tables 8 and 9 show high task heterogeneity high ma- 
chine heterogeneity and low task heterogeneity low ma- 
chine heterogeneity ETC matrices, respectively. The exe- 
cution times in Table 8 are widely spaced along both rows 
and columns. The spread of execution times in Table 9 is 
smaller along both columns and rows, because both Vtask 

and Vmach are smaller. 
Tables 10 and 11 show low task heterogeneity high ma- 

chine heterogeneity ETC matrices. In both tables, the 
spread of the execution time values in rows is higher than 
that in columns. ETC matrix in Table 11 has a higher ma- 
chine heterogeneity (higher Vmach) than the ETC matrix in 
Table 10. This can be seen in a higher spread in the rows of 
matrix in Table 11 than that in Table 10. 

3.3. Uniform Distribution in the CVB Method 

The uniform distribution could also be used for the CVB 
ETC generation method. The uniform distribution's charac- 
teristic parameters a (lower bound for the range of values) 
and b (upper bound for the range of values), can be easily 
interpreted in terms of /jtask, Vlask, and Vmach. (Recall that 
Vtask = Gtasklntask and Vmach = omachlUmach)- For a uniform 
distribution, a = (b-a)/Vl2 and,u = (b + a)/2 [15]. So 
that 

a + b = 2/j (1) 

Once the task vector q has been generated, the ?'-th row of 
the ETC matrix can be generated by sampling (m times) a 
uniform distribution with the following parameters: 

a - b = -ay/12 

Adding Equations (1) and (2), 

a=n(l-VV3) 

b = 2/j — a 

(2) 

(3) 

(4) 

(5) 

(6) 

The Equations (5) and (6) can be used to generate the task 
vector q from the uniform distribution with the following 
parameters: 

atask - Mask (1 - VlaskV3) (7) 

Also, 

amach=q[i](l-VmachV3) 

bmach = 2q[i\ - amach 

bfask — 2/Utask ~ atask (8) 

(9) 

(10) 

The CVB ETC generation using the uniform distribu- 
tion, however, places a restriction on the values of Vtask and 
Vmach- Because both a,ask and amach have to be positive, it 
follows from Equations (7) and (9) that the maximum value 
for Vmach or Vtask is 1/73. Thus, for the CVB ETC gen- 
eration, the gamma distribution is better than the uniform 
distribution because it does not restrict the values of task or 
machine heterogeneities. 

3.4. Producing Consistent ETC Matrices 

The procedures given in Figures 1,3, and 4 produce 
inconsistent ETC matrices. Consistent ETC matrices can 
be obtained from the inconsistent ETC matrices generated 
above by sorting the execution times for each task on all 
machines (i.e., sorting the values within each row and do- 
ing this for all rows independently). From the inconsistent 
ETC matrices generated above, partially-consistent matri- 
ces consisting of an i x k sub-matrix could be generated by 
sorting the execution times across a random subset of k ma- 
chines for each task in a random subset of i tasks. 

It should be noted from Tables 10 and 11 that the greater 
the difference in machine and task heterogeneities, the high- 
er the degree of consistency in the inconsistent low task het- 
erogeneity high machine heterogeneity ETC matrices. For 
example, in Table 11 all tasks show consistent execution 
times on all machines except on the machines that corre- 
spond to columns 3 and 4. As mentioned in Section 1, these 
degrees and classes of mixed-machine heterogeneity can be 
used to characterize many different HC environments. 

4. Analysis and Synthesis 

Once the actual ETC matrices from a real life scenario 
are obtained, they can be analyzed to estimate the prob- 
ability distribution of the execution times, and the values 
of the model parameters (i.e., Vtask, Vmach, and fitask (or 
Vmach, if a low task heterogeneity high machine heterogene- 
ity ETC matrix is desired)) appropriate for the given real 
life scenario. The above analysis could be carried out using 
common statistical procedures [9]. Once a model of a par- 
ticular HC system is available, the effect of changes in the 
workload (i.e., the tasks arriving for service in the system) 
and the system (i.e., the machines present in the HC system) 
can be studied in a controlled manner by simply changing 
the parameters of the ETC model. 
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Table 6. A high task heterogeneity low machine heterogeneity matrix generated by the CVB method. 

Vtasfc = 0.3, Vmach = 0.1. 

m\ nit mi ni4 m5 m6 mi '«8 mi) "MO 

t\ 628 633 748 558 743 684 740 692 593 554 

h 688 712 874 743 854 851 701 701 811 864 

h 965 1029 1087 1020 921 825 1238 934 928 1042 

U 891 866 912 896 776 993 875 999 919 860 

h 1844 1507 1353 1436 1677 1691 1508 1646 1789 1251 

h 1261 1157 1193 1297 1261 1251 1156 1317 1189 1306 

ti 850 928 780 1017 761 900 998 838 797 824 

t» 1042 1291 1169 1562 1277 1431 1236 1092 1274 1305 

t9 1309 1305 1641 1225 1425 1280 1388 1268 1290 1549 

t\o 881 865 752 893 883 813 892 805 873 915 

Table 7. A high task heterogeneity low machine heterogeneity matrix generated by the CVB method. 
Vtask = 0.5, Vmach =0.1. 

m\ W22 »13 W4 ms m6 m-j m% mi) wio 

t\ 377 476 434 486 457 486 431 417 429 428 

h 493 370 400 420 502 472 475 440 483 576 

'3 745 646 922 650 791 878 853 791 756 788 

U 542 490 469 559 488 498 509 431 547 542 

t* 625 666 618 710 624 615 618 599 522 540 

t(, 921 785 759 979 865 843 853 870 939 801 

ti 677 767 750 720 797 728 941 717 686 870 

h 428 418 394 460 434 427 378 427 447 466 

t9 263 289 267 231 243 222 283 257 240 247 

tio 1182 1518 1272 1237 1349 1218 1344 1117 1122 1260 

t\\ 1455 1384 1694 1644 1562 1639 1776 1813 1488 1709 

hi 3255 2753 3289 3526 2391 2588 3849 3075 3664 3312 
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Table 8. A high task heterogeneity high machine heterogeneity matrix generated by the CVB method. 
Vtask = 0.6, Vmach = 0.6. 

m\ m.2 «13 ma, m5 m6 m-] /ng rn<) mio 
t\ 1446 1110 666 883 1663 1458 653 1886 458 1265 
ll 1010 588 682 1255 3665 3455 1293 1747 1173 1638 
h 1893 2798 1097 465 2413 1184 2119 1955 1316 2686 
h 1014 1193 275 1010 1023 1282 559 1133 865 2258 
t5 170 444 500 408 790 528 232 303 301 480 
h 1454 1106 901 793 1346 703 1215 490 537 1592 
h 579 1041 852 1560 1983 1648 859 683 945 1713 
t& 2980 2114 417 3005 2900 3216 421 2854 1425 1631 
?9 252 519 196 352 958 355 720 168 668 1017 

'10 173 235 273 176 110 127 93 276 390 103 
h\ 115 74 251 71 107 479 153 138 274 189 
t\2 305 226 860 554 394 344 68 86 223 120 

Table 9. A low task heterogeneity low machine heterogeneity matrix generated by the CVB method. 
Vtask =0.1, Vmach =0.1. 

mi mi m-i run ms tn6 mi ms mg «10 

h 985 1043 945 835 830 1087 1009 891 1066 1075 
h 963 962 910 918 1078 1091 881 980 1009 981 
t3 782 837 968 960 790 800 947 1007 1115 845 
tA 999 953 892 986 958 1006 1039 1072 1090 1030 
t5 971 972 913 1030 891 873 898 994 1086 1122 
t(, 1155 1065 800 1247 980 1103 1228 1062 1011 1005 
tl 1007 1191 964 860 1034 896 1185 932 1035 1019 
t% 1088 864 972 984 736 950 944 994 970 894 
tg 878 967 954 917 942 978 1046 1134 985 1032 

tio 1210 1120 1043 1093 1386 1097 1202 1004 1185 1226 
fn 910 958 1046 1062 952 1054 1020 1175 850 1060 
'12 930 935 908 1155 991 997 828 1062 886 831 
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Table 10. A low task heterogeneity high machine heterogeneity matrix generated by the CVB method. 
Vtask =0.1, Vmach = 0.6. 

mi mi >»3 nin m5 m6 »17 m% mt) mio 

t\ 1679 876 1332 716 1186 1860 662 833 534 804 

tl 1767 766 1327 711 957 2061 625 626 642 800 

ti 1870 861 1411 932 1065 1562 625 976 556 842 

h 1861 817 1218 865 1096 1660 587 767 736 822 

h 1768 850 1465 764 1066 1585 663 863 579 757 

t(, 1951 807 1177 914 939 1483 573 961 643 712 

ti 1312 697 1304 921 1005 1639 562 831 633 784 

h 1665 849 1414 795 1162 1593 577 791 709 774 

tg 1618 753 1283 794 1153 1673 639 787 563 744 

t\o 1576 964 1373 752 950 1726 699 836 633 764 

hi 1693 742 1454 758 961 1781 721 988 641 793 

tl2 1863 823 1317 890 1137 1812 704 800 479 848 

Table 11. A low task heterogeneity high machine heterogeneity matrix generated by the CVB method. 
Vto.h=0.1, Knach = 2.0. 

mi ni2 m3 W4 ™5 m6 mi mg m<) "*io 

'1 4784 326 1620 1307 3301 10 103 4449 228 40 

tl 4315 276 1291 1863 3712 11 91 5255 200 4/ 

h 6278 269 1493 1181 3186 12 93 4604 235 46 

U 4945 294 1629 1429 2894 14 87 4724 231 45 

h 5276 321 1532 1516 2679 12 102 4621 205 46 

h 4946 293 1467 1609 2661 10 96 3991 255 39 

ti 4802 327 1317 1668 2982 10 90 5090 252 42 

h 5381 365 1698 1384 3668 12 99 5133 242 38 

'9 5011 255 1491 1386 3061 10 94 3739 216 42 

fio 5228 296 1489 1515 3632 12 107 4682 203 38 

t\\ 5367 319 1332 1363 3393 12 72 4769 221 43 

tn 4621 258 1473 1501 3124 12 96 4091 199 44 
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This experimental set-up can then be used to find out 
which mapping heuristics are best suited for a given set of 
model parameters (i.e., Vtask, Vmach, and n,ask (or pmach)). 
This information can be stored in a "look-up table," so as 
to facilitate the choice of a mapping heuristic given a set 
of model parameters. The look-up table can be part of the 
toolbox in the mapper. 

The ETC model of Section 2 assumes that the machine 
heterogeneity is the same for all tasks, i.e., different tasks 
show the same general variation in their execution times 
over different machines. In reality this may not be true; 
the variation in the execution times of one task on all ma- 
chines may be very different from some other task. To mod- 
el the "variation in machine heterogeneity" along different 
rows (i.e., for different tasks), another level of heterogeneity 
could be introduced. For example, in the CVB ETC gener- 
ation, instead of having a fixed value for Vmach for all the 
tasks, the value of Vmach for a given task could be variable, 
e.g., it could be sampled from a probability distribution. 
Once again, the nature of the probability distribution and 
its parameters will need to be decided empirically. 

5. Related Work 

To the best of the authors' knowledge, there is currently 
no work presented in the open literature that addresses the 
problem of modeling of execution times of the tasks in an 
HC system (except the already discussed work [13]). How- 
ever, below are presented two tangentially related works. 

A detailed workload model for parallel machines has 
been given in [4]. However the model is not intended for 
HC systems in that the machine heterogeneity is not mod- 
eled. Task execution times are modeled but tasks are as- 
sumed to be running on multiple processing nodes, unlike 
the HC environment presented here where tasks run on sin- 
gle machines only. 

A method for generating random task graphs is given in 
[17] as part of description of the simulation environment 
for the HC systems. The method proposed in [17] assumes 
that the computation cost of a task ?,-, averaged over all the 
machines in the system, is available as w]. The method 
does provide for characterizing the differences in the exe- 
cution times of a given task on different processors in the 
HC system (i.e., machine heterogeneity). The "range per- 
centage" (ß) of computation costs on processors roughly 
corresponds to the notion of machine heterogeneity as p- 
resented here. The execution time, eij, of task ?,■ on machine 
rrij is randomly selected from the range, wj x (1 - ß/2) < 
eij < wj x (1 + ß/2). However, the method in [17] does not 
provide for describing the differences in the execution times 
of all the tasks on an "average" machine in the HC system. 
The method in [17] does not tell how the differences in the 
values of Wj for different machines will be modeled. That 
is, the method is [17] does not consider task heterogeneity. 

Further, the model in [17] does not take into account the 
consistency of the task execution times. 

6. Conclusions 

To describe different kinds of heterogeneous environ- 
ments, an existing model based on the characteristics of 
the ETC matrix was presented. The three parameters of 
this model (task heterogeneity, machine heterogeneity, 
and consistency) can be changed to investigate the per- 
formance of mapping heuristics for different HC systems 
and different sets of tasks. An existing range-based 
method for quantifying heterogeneity was described, and a 
new coefficient-of-variation-based method was proposed. 
Corresponding procedures for generating the ETC matrices 
representing various heterogeneous environments were 
presented. Sample ETC matrices were provided for both 
ETC generation procedures. The coefficient-ofTvariation- 
based ETC generation method provides a greater control 
over the spread of values (i.e., heterogeneity) in any given 
row or column of the ETC matrix than the range-based 
method. This characterization of HC environments will 
allow a researcher to simulate different HC environments, 
and then evaluate the behavior of the mapping heuristics 
under different conditions of heterogeneity. 
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Abstract 

We present an asynchronous Quasi-Monte Carlo (QMC) 
algorithm for numerical integration tailored for heteroge- 
neous environments. QMC techniques are better suited for 
high dimensions than adaptive methods and have generally 
better convergence properties than classical Monte Carlo 
methods. 

The algorithm focuses on the asynchronous computation 
of randomized lattice (Korobov) rules. Whereas the individ- 
ual rules disallow realistic error estimates, randomization 
provides a tool for giving confidence intervals for the mag- 
nitude of the error. The algorithm generates a sequence of 
stochastic families, using an increasing number of points, 
for the purpose of automatic termination. 

In the algorithm, each each randomized rule constitutes 
a single unit of work; a work assignment consists of a set 
of work units. Static and dynamic load balancing strategies 
are explored to keep the processors busy performing use- 
ful work while gradually calculating higher-level families 
needed to reach the desired accuracy. We present results in 
the context of a performance model for parallel programs 
executing in a heterogeneous environment. 

1. Introduction 

Sampling techniques for numerically solving integration 
problems are well established, and are particularly useful 
when solving problems of high dimensions. While syn- 
chronous parallel implementations of these techniques ap- 
pear to be straightforward on tightly coupled parallel ar- 
chitectures, various factors push for an asynchronous so- 
lution in heterogeneous, coarse-grained, network of work- 
stations (NOW) architectures. We focus on the design and 
implementation of asynchronous sampling techniques on 
these architectures, and the unique difficulties in doing so. 

This work is based on the sequential implementation by 
Genz[12]. 

The next section presents background information; Sec- 
tion 3 introduces Quasi-Monte Carlo techniques, and Sec- 
tion 4 discusses the algorithm. A performance model is out- 
lined in Section 5 and test results are given in Section 6. 

2. Background 

The goal is to calculate an approximate answer Q to the 
multivariate integral I = Jv /(x)dx, and an error bound 
Ea such that \I - Q\ < Ea < e = max{eQ,er|/|}, where 
ea and er specify absolute and relative error tolerances, re- 
spectively. The integration domain V is a d-dimensional 
hyper-rectangular region, though without loss of generality 
we assume that it is the d-dimensional unit hypercube Ud- 

When d is small (say, d < 10), adaptive partitioning 
methods, (APM) generally work well for finding highly ac- 
curate solutions. They continually divide V into smaller 
subregions, evaluating each with a quadrature rule, until an 
answer Q of the desired accuracy e is reached. We have 
done extensive work on the parallelization of adaptive meth- 
ods (see, e.g., [6]), leading to the parallel software package 
PARlNTl.0[7]. 

However, when d is large, the dimensional effect in the 
required number of evaluation points grows to an unaccept- 
able level [4]. Indeed, if a particular 1-dimensional problem 
requires s subdivisions and one considers a d-dimensional 
problem of the same degree of difficulty in each dimension, 
then one would expect to need about sd subdivisions for 
the rf-dimensional problem. Sampling techniques such as 
Monte Carlo (MC) and Quasi-Monte Carlo (QMC) methods 
are used for high dimensions. 

A previous version of PARlNT [8] allowed for multiple 
integration problems to be solved in parallel by dividing the 
processors into groups, with each group solving a single in- 
tegration problem by a parallel APM. In this version, the 
groups could also have applied QMC methods depending 
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on the type of problem. This hierarchical, two-level par- 
allelization is well-suited for problems where sets of high- 
dimensional integrals need to be calculated, such as in the 
computational finance problem treated in [17]. The hierar- 
chical system has a natural inclination towards a heteroge- 
neous implementation. The ability to easily add the QMC 
technique to the hierarchical version tightens our focus on 
finding a heterogeneous implementation of QMC methods. 

Automatic QMC techniques require a sequence of ap- 
proximations over all of Hd until an adequate answer is 
reached. Each rule is a mean of function values and can be 
obtained from a number of partial sums. Each of these can 
be calculated independently, so they form a natural starting 
point for the parallelization of the task. 

To calculate the approximations in sequence using paral- 
lel processes and a synchronous accumulation of the contri- 
butions from all processes to each element of the sequence 
would require a synchronization point for each sequence el- 
ement. On a heterogeneous network this would result in a 
large communication cost. Furthermore, on a network there 
is often a significant lag between the creation of the first and 
the last of the parallel processes, so that processes which 
started earlier would have to wait for the later ones. This 
suggests an asynchronous approach for updating the global 
results. 

3. Quasi-Monte Carlo methods 

Basic QMC methods evaluate the integrand function at 
a set of points calculated deterministically, as opposed to 
MC which evaluates the integrand at random points. QMC 
methods are classified according to the type of point set 
used. Lattice rules have been found particularly useful for 
mid-range dimensions (say, 10 < d < 20). Equidistributed 
point sequences have been used effectively in higher dimen- 
sions as well, including Richtmyer rules and low discrep- 
ancy rules such as Sobol's LPr sequences. 

We use the lattice (Korobov) and Richtmyer rules 
from [12] for low-to-moderate and for high dimensions, re- 
spectively. Their convergence properties are generally bet- 
ter than the ö{1/VN) rate of classic MC, where N is the 
number of points used. 

Let / = KN + EN be the d-variate integral of/ over 1-Ld 

with 

*" = ^E/(4v}), (1) 

where {x} = the fractional part of x and v is a predeter- 
mined generator vector with integer coefficients. The er- 
ror for a sequence of lattice rules (1) for increasing N = 
NQ,NI,... , satisfies 

_      (logAQ*7- 
N ~  (—m—}' 

where 7* is known as the index of the rules [4], for / € 
£k (k > 1), which is the class of all functions /, periodic 
with period 1 in each variable and for which the Fourier 
coefficients cm satisfy 

-k \cm\ < Cr 

for all m ^ 0, a constant C > 0 and rm = 
n^imaxjl,^!}. 

In view of the periodicity requirement, a periodizing 
transformation is applied to the original integral. 

Two drawbacks are that good lattice rules are hard to ob- 
tain in high dimensions and that the error is hard to estimate. 

Richtmyer rules satisfy EN = Ö(JV_1) for / e 
£k,  k > 1. We have I = RN + EN where 

^=^£/({*M, ,{i0d}) 
i=i 

and 0i, 82, ■ . . , 8d are d irrational numbers such that 
1,01,02, ■■■ ,0d satisfy A0 + Ai0j + • • • + \d0d ± 0 for 
rational A coefficients not all zero [4]. 

Genz [12] uses 8t = ,/irl where 7T; is the i-th prime, and 
applies the Richtmyer sequence for dimensions > 20. 

4. Algorithm 

Cranley and Patterson [3] randomize (1) to obtain a 
stochastic family of rules. Let 

1 N 
K»(ß)=vEf({-bv+w> 

i=l 
N (2) 

where ß is a uniformly distributed random vector. Using a 
random sample set of size q, 

i<N = -nY,K"Wi) (3) 
j=l 

preserves the integration properties of (1) and allows 
=    EM    = for a  standard  error estimation  by 

^TjE^i^iv^)-^)2. 
Our algorithm must calculate K^ values for succes- 

sively larger values of N until either an answer is found 
to the user-specified accuracy or the function count limit 
is reached. As these KN^K^,..., values are calcu- 
lated, the overall result is calculated as the weighted sum 

Q = (Hi ßff)/(Ei 1^7) (where KNi is weighted with 
the inverse of its corresponding squared standard error) and, 
correspondingly, E = 1.0/ (£\ ^-). The randomized lat- 
tice rules in 3 can be written as 

Kij = KNi(ßj j = 1,... , Ji <q, (4) 
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where a single /tjj represents a single unit of work in our 
algorithm. The K,J values are calculated by the worker pro- 
cesses and applied (asynchronously) to update the overall 
result KNi and error by the controller. It is thus not neces- 
sary that Ji = q in the asynchronous computation. In our 
implementation, the controller can optionally also function 
as a worker. 

To alleviate a potential erratic generation of the /c^ table, 
a successful distributed algorithm will attempt to gradually 
calculate higher-level rules as needed to reach the desired 
accuracy, while keeping all processors busy performing use- 
ful work. Particularly on a heterogeneous network of work- 
stations, in which the various processors may be operating 
at different speeds and which may haye different commu- 
nication latencies between processors, the asynchronous al- 
gorithm must perform dynamic load balancing to keep the 
processors busy. 

Our algorithm fits within the paradigm of scheduling 
tasks within a distributed system [11]. An important char- 
acteristic of this problem is that we do not know in ad- 
vance when termination will occur, as it depends upon ei- 
ther reaching the user's accuracy or the function count limit. 
There are no strict precedences among the tasks (a task be- 
ing the calculation of a K,J value), but the algorithm will 
generally perform minimal work when a full KN{ value is 
known before beginning to calculate Kjvj+1 • 

Initially, all workers independently and statically assign 
themselves an initial task for a low-level rule and report 
their answer to the controller via an update message. After 
that, the controller dynamically assigns tasks to the workers 
via work assignment messages as the updates are received. 

A work request is for the calculation of one or more 
Kij values. Since higher level rules require more function 
evaluations, a reasonable approach is to apportion the work 
into pieces of similar size based on the number of function 
points required to complete the work. A single work request 
may therefore consist of a set of K^ for multiple values of 
j and i. However, we have found that after several rows 
have been calculated, and for the computationally intensive 
problems with which we are experimenting, it is enough to 
assign K^ cells to workers one at a time, as the computation 
of each cell can require a significant amount of work. 

Note that this method of task allocation can be consid- 
ered a FIFO work assignment [11], as the statically defined 
sequence of rules (for a given q value in (3)) forms an im- 
plicit queue of tasks to be completed, and the set of work 
assignments for a worker forms its own FIFO queue. Once 
a task has been assigned to a worker, it is not transferred. 

The heterogeneity of the target parallel platform is han- 
dled automatically, in that the faster workers will finish 
work more often, and therefore are assigned more work than 
the slower processors. 

5. Performance on a heterogeneous network 

In this section we will discuss a model (of [2]) to assess 
algorithm efficiency on a heterogeneous network. 

Let the network be designated by v. The total work, W, 
is assumed constant. The work is split up overp processors, 
processor i being responsible for the part Wi of the total 
work, i.e., YH=\ Wi = W. Since we will assume a partic- 
ular ordering on the processors of the network, we refer to 
the p-processor portion of the network by vp. 

The speed of a processor (for the application) is ex- 
pressed as work performed per unit of time, i.e, the speed 
Oi of processor i is <n = Wj/Tj, where Tt is the sequential 
time for the execution of Wi on processor i. Note that the 
time Ti is proportional to the number of units of work Wi. 

The total speed of the network is YZ=\ a' for the cor" 
responding partitioning of the work. The relative network 
speed Rp{vp) with respect to reference processor p is then 
defined as 

1    f 

i=\ 

and has the meaning of the number of processors equivalent 
to the reference processor, which would together have the 
same total speed as the network vp. Furthermore, Rp{vp) 
provides a bound for the speedup which can be obtained on 
the network. 

Denoting the sequential time on reference processor p 
by T = —, the speedup of the network with respect to the 
reference processor is given by 

SM = 
T W 

T{up)      apT{up) 

anASp{vp) < Rp{vP)- Hence, the efficiency of the network, 

E{vp) = 
SP(vP) 
Rp{vp) 

<1. 

Note that it is customary to use the fastest processor as 
the reference processor in defining the speedup [16, 18]. 
Furthermore, the above model is invalid when there are dif- 
ferent types of work (which may take different times per 
unit of work on different processors). The study in [16] 
shows how this contributes to allowing superlinear speedup, 
for their decomposition of a global climate model on a het- 
erogeneous, distributed system. 

We remark that Colombet [2] extends his model by split- 
ting up the work into its different types, W = Ylj=i Wj, so 
that a cost (time) nj is incurred per unit work of type j on 
processor i. Denoting the number of units of type j work on 
processor i by wtj, the parallel time can be minimized by 

solving for minw T(up) = minwmaxf=1(^=1 njWij)- 
While imposing further that T(up) = T;,   1 < i < p, the 
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above expression becomes T// = minw(Y^'j=1 TpjWpj). 
Solving the optimization problem for w„ > 0 and denoting 
the optimal solution elements by tu*., the work assigned to 

processor i by W* = X^=1 tut. and corresponding speed 
by ai = W*/T/i, a bound for the speedup is again obtained 
by Sp(i/P) <Rp(vp). 

6. Experimental results 

6.1. Problem class 

Preliminary results were reported in [9] using static 
load balancing and Korobov rules for the calcula- 
tion of the multivariate normal distribution function 
|S|~5(27T)~5 /a e-5xTE~lxdx, where S is an d x (/sym- 
metric positive definite covariance matrix and one or more 
of the integration limits may be +00 or —00. Good accuracy 
and speedup were obtained on our LAN of Ultra-10 Sparc- 
stations and on the IBM-SP machine at Argonne National 
Laboratory. 

In [10] we reported timing results using static load bal- 
ancing on a homogeneous network, for a class of prob- 
lems based on an integral 1(f) from computational fi- 
nance [1,15], where /(x) has a Gaussian weight and a fac- 
tor of the form g(x) = 

c£ 
*=i 

((1 - Wfc(x)) + 1Vk(x)ck) n-=l (1 - Wj(x)) 

ILtott+ *;(*)) 
(5) 

where ^(x) = i0K
3

0e^
x''+-+xi\ K0 ■e-*2/2,wk{x) = 

Kl+K2tS,n-\Kzik{x)+Ki),ck = £?T* (l+t0)--»',and 
the domain of integration is Htd. The integral represents the 
current value of a security backed by mortgages of length 
(d) months with fixed monthly interest rate i0. 

In order to map the infinite domain to the d-dimensional 
unit hypercube we performed the transformation zk = 
*(£*), k = 1,... ,d, where $fc is the univariate normal 
distribution function. Note that the transformation absorbs 
the Gaussian weight. The resulting integral is fn f(z)dz 
with 

f(z)=9(*-\z1),...,<j>-\zd)). 

Using the constants C = 1, i0 = .007, a = .02 and Ki = 
.01, K2 = -.005, K3 = 10, A4 = .5 yields Caflish and 
Morokoff's "nearly linear" problem. 

6.2. Experimental environment 

We ran our tests on a network v of Sparc workstations, 
using 10 Ultra-Sparc 10's, 1 Sparc 20, and 5 Sparc 5's. We 
took an Ultra 10 as our reference machine p, and always 
considered orderings of the machines in decreasing speed. 

Table 1. Table of machines' relative perfor- 
mances 

Machine Time a/ap a „ja 
Ultra Sparc 10 123.69 1.00 1.00 
Sparc 20 228.20 1.84 0.54 
Sparc 5 571.91 4.62 0.22 

To derive speeds relative to p, we timed the sequential solv- 
ing of a reference problem on each type of machine (thus 
ensuring a benchmark containing a similar mix of instruc- 
tions as the actual algorithm tested). The problem was the 
financial problem in 50 dimensions to 10000 function eval- 
uations. Table 1 shows the results: the time (in seconds) 
for each machine to solve the reference problem, the speed 
a = W/T (using a reference workload W of 1.0), the 
relative speed a/ap, and the inverse of the relative speed 
{a„I a). 

The ratio for the Sparc 5 is 4.62, meaning that an Ultra 10 
has the same performance as 4.62 Sparc 5's, or, inversely, 
that adding a Sparc 5 to a given set of machines adds the 
power of about one-fifth of an Ultra 10. 

We present results for the financial problem solved to 
60 dimensions. The function count limit was set to 30000 
evaluations, with q (samples per lattice rule) set to 10. The 
error tolerance was set low so that termination occurred by 
reaching the function count limit. 

6.3. Speedup and efficiency results 

The speedup S„(vp) and ideal speedup R„(vp) was cal- 
culated for 1 < p < 16 as per Section 5. The graph in Fig- 
ure 1 shows the speedup results. As the processors were or- 
dered from fastest to slowest, the reduced slope in the ideal 
speedup curve represents the reduced expectations from the 
slower workstations. Figure 2 shows the same results in an 
efficiency graph. 

From the efficiency graph, one can see that we achieve 
an efficiency of about .70, and retain that efficiency through 
about 13 workstations. At that point, we are using 10 fast 
workstations, 1 medium, and 2 slow. Beyond that point we 
begin to lose efficiency. 

We believe that this loss in efficiency is due to the slower 
communication to and from the slower workstations. The 
relative speed ai/ap of workstation i only takes into ac- 
count the relative computational speed. If a workstation 
has slower communication hardware and software, then this 
workstation will work even slower than its relative speed 
can account for. As the experimental results model does not 
take this into account, it appears as a loss of efficiency. In 
these models, any form of communication, at any speed, is 
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Graph: Speedup vs. Number of Processors 

Figure 1. Speedup results 

Graph: Efficiency vs. Number of Processors 
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Figure 2. Efficiency results 
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taken to be a loss of efficiency, as the comparison is always 
to a sequential implementation that does no communication. 

Note the downward dip in efficiency and speedup at 
p = 2. We determined that having the controller participate 
in the work resulted in problems. With this option on, the 
controller would begin to calculate a Ki5 value when there 
were no updates to receive. When a task was completed, 
the controller would again look for updates. This worked 
fine in the lower rules, but as the rules became more ex- 
pensive to calculate, the controller could work for extended 
periods of time without checking for any updates. The re- 
sult was starvation loss (i.e., a loss in efficiency), where the 
workers would be waiting idle for work, and, breaking loss, 
where the update that would allow the algorithm to termi- 
nate would be waiting on an incoming message queue while 
the controller was busy. 

The fact that the controller is not working is the cause 
of the downward dip in the graphs at p = 2. A hybrid ap- 
proach is probably best, allowing for the controller to do 
smaller amounts of work at a time, especially for small val- 
ues of p, and allowing it to devote more time, as necessary, 
to controlling the workers for larger values of p. 

Breaking loss also forms a loss of efficiency, regardless 
of the issue of the controller working. As higher level rules 
are calculated, each rule requires more and more points. 
If execution terminates due to reaching the function count 
limit, then the final function count will be generally higher 
than the limit; the number of excess function values will 
be the amount required to finish the last mj. As the tasks 
require more points, this amount increases. 

Also note that our use of a non-dedicated network was 
detrimental to the overall efficiency. 

6.4. Comparisons with adaptive partitioning 

As mentioned in Section 1, adaptive partitioning tech- 
niques suffer exponentially as the number of dimensions 
increases. For a given function of moderate (say, 5 to 15) di- 
mensions, it is interesting to consider whether APM or QMC 
techniques perform better. Table 2 shows some results com- 
paring these techniques for the financial problem at 10 di- 
mensions, for varying amounts of requested accuracy. The 
ed values referenced in the table correspond roughly to the 
number of digits of accuracy requested. The function count 
limit was set to 3 million. 

The table indicates that neither method has to do much 
work initially. The QMC technique is able to handle tighter 
accuracies before going over the function limit. The APM 
blows up as soon as any partitioning is required. Note 
that given the large number of points required per cubature 
rule application (1265 points at 10 dimensions for our rules 
from [13, 14]), 3 million function evaluations corresponds 
to only about 2300 rule evaluations. 

Table 2. Table of number of function evalua- 
tions and time (in seconds), vs. requested 
accuracy, for APM and QMC 

Ed APM QMC 
Time Fen Evals Time Fen Evals 

1 0.35 1265 0.21 620 
2 0.35 1265 0.21 620 
3 0.35 1265 0.21 620 
4 0.36 1265 0.21 620 
5 >3M 0.21 620 
6 0.22 620 
7 2.83 8740 
8 58.66 181000 
9 133.41 413000 
10 >3M 

7. Conclusions and future work 

We focused on the asynchronous computation of a se- 
quence of stochastic lattice rule families using dynamic load 
balancing, and presented test results on a heterogeneous 
network. 

Further theoretical work and experimentation is needed, 
e.g., regarding the number of entries needed in a family for 
satisfactory error estimation. We also need to assess the 
quality of the weighted average of the sequence of results 
and error estimates. We are investigating the applicability 
of LPr sequences to deal with some classes of singular be- 
havior [5]. Furthermore, we intend to experiment with mod- 
ifications of the scheduling strategy. 

Finally, we are considering the incorporation of the 
asynchronous QMC methods as a significant addition to 
Parlnt [7]. 
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Abstract 

In this paper we present a scalable scheduling heuristic 
for several common classes of multi-component appli- 
cations (meta-applications). We consider this schedul- 
ing problem in a wide-area heterogeneous computing 
environment, or metasystem. The heterogeneity and 
scale of the computing environment and the heteroge- 
neity of the application make this a challenging prob- 
lem. We have studied the performance of the heuristic 
in simulation and the results are encouraging. Comple- 
tion times for three common classes of meta-applica- 
tions were within 10-20% of optimal on average with a 
worst-case variance of 60%. The results suggest that 
effective scheduling of meta-applications is possible, if 
sufficient application and system resource cost infor- 
mation is provided . 

1.0 Introduction 

Metacomputing is the seamless application of wide- 
area distributed computing resources to user applica- 
tions. A number of research groups are building low- 
level metacomputing infrastructure [2][4]. What distin- 
guishes metacomputing applications from other wide- 
area distributed applications is the objective of high- 
performance. In fact, it is the promise of performance 
greater than can be achieved using single site resources 
that makes metacomputing most attractive in solving 
complex scientific problems. The applications most 
suitable for metacomputing are often very heterogene- 
ous in structure [6]. For instance, such applications may 
include remote databases or servers, remote instru- 
ments, remote supercomputers, VR devices, and 
humans-in-the-loop. In addition to hardware heteroge- 
neity, the underlying networks that connect the differ- 
ent sites may also exhibit performance heterogeneity in 

1. This work was partially funded by NSF ACR-9996418 

both latency and bandwidth. The challenges inherent in 
heterogeneous computing are well known [3]. 

Exploiting the performance potential in metacom- 
puting environments requires effective application 
scheduling: the selection and allocation of resources to 
the application. This problem is particularly challeng- 
ing due to the heterogeneous nature of both the 
resources (machines and networks) and the application 
itself. In this paper, we consider the scheduling of meta- 
applications; applications consisting of multiple sched- 
ulable components across multiple sites with the goal of 
reduced completion time. Previous work showed that 
selecting the best single site for single component par- 
allel applications can be done efficiently [8]. The 
scheduling of multiple interacting components across 
multiple sites is a complex problem especially when the 
network capacity is assumed to vary between sites. 
Most of the metacomputing scheduling work assumes 
either communication between components can be 
ignored, or the application will be confined to run in a 
single site, or the number of sites and components are 
small enough to make a brute-force scheduling algo- 
rithm feasible. In contrast, we present a scalable sched- 
uling heuristic that has achieved excellent results 
(typically within 10% of optimal on average) in a 
detailed simulation study of three common classes of 
meta-applications. 

2.0 Meta-Application Model 

The underlying network contains a collection of 
sites connected by wide-area networks (Figure 1). The 
network sites each offer an amount of one or more 
resources (cycles, memory, disk, or other specialized 
resources) and have a point-to-point bandwidth to each 
site (bwj.j that may be different). In this paper, we char- 
acterize the site resources and network capabilities 
solely in terms of their delivered performance to appli- 
cations as in [1]. 

Meta-applications consist of a set of distinct applica- 
tion components that may communicate and interact 
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Sitel 

Site 2 

Site 3 

Site 4 

Figure 1: Network Model. 

over the course of the application. Components may be 
schedulable computations, remote servers or databases, 
remote instruments, humans-in-the-loop, etc. (Figure 
2). Computational components themselves may be 
sequential or parallel computations. Some components 
are fixed such as a remote database server and do not 
require scheduling, but may impact the scheduling of 
other components. For example, the placement of com- 
ponent B may be influenced by the amount of data 
transmitted by a database to B. If a great deal of data is 
moved, then a high-speed link between B and the data- 
base may be desired. It is also possible that other com- 
ponents are fixed due to scheduling constraints, such as 
a given program component must run in a particular 
site. 

We consider meta-applications in which the inter- 
component communication pattern is statically known 
(Figure 2) and divide meta-applications into three cate- 
gories — concurrent, parallel, and pipeline (Figure 3). 
Concurrent is the classic meta-application in which a 

set of components each running in a single site are exe- 
cuting concurrently and exchanging data. Examples 
include global climate modelling which often integrates 
several large-scale coupled computational models [5]. 
A parallel application is a special case of concurrent in 
which a component might benefit by distribution across 
multiple sites2. This normally applies to large-scale par- 
allel applications in which a task (or subcomponent) 
may be replicated an arbitrary number of times with 
minimal task interaction relative to task computation. 
Very-coarse grain SPMD computations or highly com- 
pute-intensive applications such as large parallel simu- 
lations, RSA factoring, are examples in this category. 
Finally, pipeline applications consist of a number of 
components connected in a chain-like fashion. Exam- 
ples include certain multi-disciplinary optimization 
problems in which the outputs of one program are often 

2. This is not to be confused with a component that happens to be a 
parallel computation, but would not benefit by multi-site distribution. 

Figure 2: A meta-application consisting of five components. Three computations (A, B, C), 
a database server and a VR server. The presence of an arc indicates data communication. 
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a) concurrent b) parallel c) pipeline 

Figure 3: Meta-application classes. 

fed into another [7]. In addition, applications may be 
hybrids of the above classes. For example, the applica- 
tion may be pipelined, but one of the components may 
be parallel. In this work we consider concurrent and 
pipeline applications with components confined to a 
single site. Hybrid and parallel applications are the sub- 
ject of future work. Scheduling meta-applications to 
minimize application completion time requires a cost 
model to evaluate the potential set of candidate sched- 
ules. These cost functions require information about the 
application. For each application component Q, we 
assume the following information: 

comp_amt [Cj] — the amount of computation in # of 
instructions to be executed, Cj schedulable 

comm_amt [Cj, Cj] ~ the amount of communication 
(in # of bytes transmitted) between Cj, G 

The following cost functions are constructed using 
this information and system resource information (S is a 
site, N is the number of components, n is the number of 
schedulable components, and m is the number of sites): 

comp [Q, Sk] for all (i < ri), (k < m) 

comm [Cj, Cj, Sk, S,] for all (i, j < N), (k, 1 < m) 

commjotal [Cj, Sk] for all (i < «), (k < m) 

initjime [Cj, Sk] for all (i < n), (k < m) 

The function comp gives the computation time for 
component Cs running in site Sk given the current state 
of the resources Sk is willing to provide to the applica- 
tion assuming no other component is scheduled there. If 
other components are also scheduled in Sk, then the 
comp function for these components may be degraded 
to reflect the sharing of Sk's resources. 

The function comm gives the communication time 
spent by Cj in communication with Cj when Cj and Cj 

are run in Sk and S] respectively. It has the value 0, if 
there is no communication. If multiple components are 
sharing a link, then the comm function for these compo- 
nents may be degraded to reflect the sharing of the link. 
The total communication cost for a component 
commjotal, is a function of the comm values associ- 
ated with its links. In the simplest case it would be the 
sum of these costs, but in other situations some link 
communication might be overlapped. The communica- 
tion costs will vary for different component assign- 
ments due to the heterogeneity of the underlying 
network. For example, some sites might be vBNS-con- 
nected, but others might be limited to standard Internet 
connections. The function init_time includes any start- 
up overhead which could include queue time for Sk's 
resources, time to transmit component binaries from the 
initiating site if they are not already located at Sk, etc. 
For simplicity, we will assume it is 0 and that n = N in 
the remainder of the paper. 

Numerous research groups, including ours, are 
addressing the problem of producing such cost func- 
tions using application and system resource information 
[1][9]. Here, we focus on the problem of making sched- 
uling decisions given these cost functions for three 
classes of meta-applications: pipelines in which a com- 
putation stage cannot begin until the prior stage has 
completed, and concurrent applications in which all 
component computations and inter-component commu- 
nication are either overlapped or sequential. The meta- 
application completion time TCT can be defined in 
terms of the component cost functions (where i, j, k, 1 
range over the values above): 
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(1) TCT [pipeline] = £ comp [Cv Sk]+ commjotal [Cv Cy Sk, S]] 
(2) TCT [concurrent, overlapped] = max {comp [C,, Sk], commjotal [Cv Cy Sk, Sj]} 

(3) TCT [concurrent] = max [comp [Cv Sk]+ commjotal [C;, Cj, Sk, S]]} 

Other cost functions are possible depending on the 
application. For example, pipeline computation and 
communication could be overlapped, or some of the 
components within the application may have over- 
lapped computation and inter-component communica- 
tion. These cases are the subject of future work. 

2.1 Scheduling Heuristic 

The scheduling problem is to determine an assign- 
ment of schedulable components to site resources that 
minimizes TCT. Unfortunately, this scheduling problem 
is NP-complete. An exhaustive search is not feasible 
since if there are n schedulable components and m sites, 
then there are m" possible schedules if components can 
be co-located and single components cannot span mul- 
tiple sites. We presume that while n may be small in 
practice (likely less than 10), m may grow as metacom- 
puting environments achieve large-scale deployment. 
In practice, we may only want to consider a subset of 
sites or we may limit m to include sites that contain 
resources specifically requested by the application. 

The general steps of the scheduling process are the 
following: 

1: determine candidate sites; for each site 
2: a) collect available resources from the site 
b) compute cost function estimates for each com- 
ponent from the site 

3: run scheduling heuristic to search for best compo- 
nent/site assignment 

Two scheduling heuristics have been developed, one 
suitable for compute-intensive meta-applications and 
the other for data-intensive meta-applications (a newly 
emerging class of meta-applications). In the former 
class, component-site scheduling is most critical, while 
for the latter, link scheduling (i.e. the link capacity is 
considered first) becomes important. 

TABLE 1. Simulation Parameters 

name value range/units comments 

num sites 3.. 10 this size covers today's testbeds 

comp_rate [1,10000] MIPS covers weak to powerful sites 

intra_link_rate [500, 1000] KBps - fixed value - ethernet speed 

inter_link_rate [50, 100], [100, 200], [500, 10000] KBps slow Internet up to vBNS-like 

link_variance 1,2,5,10 reflects T network heterogeneity 

affinity 1,2,5,10 reflects T component/site affinity 

appl_type concurrent w/wo overlap, pipeline 

num_components 3..8 8 should cover most meta-apps 

comp_amt [10000, 100000], [100000, 100000], 

[1000000, 10000000] MInstructions 

comp_ and comm_amt ranges cover 
medium-coarse grain apps 

comm_amt [1, 10000], [1, 100000], [1, 100000] Bytes 

col_degrade [0, 1] — real interval 0 = no degradation, 1 = linear 
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Figure 4: Performance of scheduling heuristic 

Below we present the compute-intensive heuristic. 

This heuristic considers components in decreasing 
order of computational weight: 

1. order application components by decreasing 
comp_amt value 

2. init PLACEMENT[Ci]= -1 for all components Q 
3. for each component Cj 

4. for each site Sk 

5. compute  TCT   with   PLACEMENT[Ci]=Sk, 
given PLACEMENT[Cj], j<i, unchanged 
(use Eq. 1-3 to compute TCT based on application 
type) 
6. remember best TCT and best associated site 
Sbest 
7. end for 
8. PLACEMENT[Cs]=Sbest 

9. end for 

This is a greedy algorithm with complexity 0(mn2). 
There are mn schedules and n steps to evaluate TCT (n 
links per component). We consider this heuristic to be 
scalable as n will be small in practice. It finds a single 
best candidate. The computation of T^j in step 5 is 
based on an assignment of components up to the current 

component. The comp and comm terms for unassigned 
components are set to 0 in this calculation. 

3.0 Initial Results 

We have run the scheduling heuristic over a large set 
of simulated metacomputing environments and meta- 
applications, and measured the performance of the heu- 
ristic with respect to the optimal schedule. The simu- 
lated metacomputing environment consists of a number 
of interconnected sites that provide a particular compu- 
tation and communicate rate. The communication rate 
between the different sites is also specified. A link vari- 
ance parameter is used to vary to inter-site communica- 
tion performance allowing us to simulate a truly uneven 
network. 

Meta-applications consists of a type and a number of 
components. For each component we have an amount 
of computation and an amount of communication to all 
other components. These parameters are varied to allow 
us to simulate a wide range of application granularities. 
We also provide an affinity parameter which is used to 
bias particular components to particular sites. From this 
parameter, we generate an affinity value for each com- 
ponent site pair. This allows us to simulate environ- 
ments with differing degrees of heterogeneity. This 
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parameter is used to adjust the comp value. Finally, 
when components are collocated to particular sites, we 
use a parameter to degrade the sites computing power 
to all hosted components. This value ranges from no 
effect (e.g. perhaps the site has ample resources for all 
components) to a degradation linear in the number of 
hosted components. Currently, we do not degrade inter- 
site link performance in the event that a link is shared 
since we do not yet have empirical data for this parame- 
ter. For each schedule to be evaluated, the simulator can 
easily construct comp, commjotal, and TCT from these 
parameter values. The function commjotal is defined 
to be the sum of the individual link communication 
costs for a component. 

Realistic values are chosen for the parameter ranges 
(Table 1). For example, the intra-site link rate is based 
on a typical ethernet LAN, while the inter-site rate 
ranges from Internet WAN speeds up to reported vBNS 
rates. For parameters that are specified as ranges, a ran- 
dom value uniformly distributed over the range is gen- 
erated for each simulation run. 

The results that suggest that the heuristic performs 
very effectively over the simulated parameter ranges 
for the three application classes. A simulation study of 
over 800,000 distinct environment and application 
instances was performed. For each run, we execute the 
heuristic and search for the optimal schedule. We use 
several comparison metrics: how close the heuristic is 
to the optimal on average and the maximum variance 

from optimal. The first set of results are depicted in Fig- 
ure 4. The heuristic performs best on the application 
classes in the following order: pipeline, concurrent, and 
concurrent-overlap. This order reflects increasing sensi- 
tivity of the overall completion time to the scheduling 
of a single component. Since the completion time of 
pipelines are a sum of all components, the heuristic can 
afford to schedule a few components sub-optimally. For 
the other classes, suboptimal scheduling of a single 
component can have a larger impact on the completion 
time. However, the heuristic performs quite well for all 
application classes. When the number of components is 
< 5, the heuristic is within 10% of optimal on average. 
In general, it is within 20% on average. The heuristic 
also appears to be insensitive to the heterogeneity of the 
network environment; performance is fairly flat for 
changes in link_variance and affinity parameters. The 
heuristic also performs well as the amount of computa- 
tion and communication varies. Pipeline applications 
are insensitive to these parameters, while the other 
application classes exhibit greater sensitivity. The heu- 
ristic is also sensitive to the number of sites in the envi- 
ronment, but exhibits slow degradation as the number 
of sites increases. The second set of results indicate that 
the worst-case variance from optimal is within 60% for 
all parameter ranges, and typically within 30-40% 
(Table 2). 

Table 2. Maximum variance for heuristic. Shown for each parameter value and each application class. 

Parameter 

num sites 

num_components 

comp_amt 

comm amt 

link variance 

affinity 

Max Variance for appl classes [% drift from optimal]: 
(pipeline, concurrent overlap, concurrent) 

3: (21.7,36.5, 26.8), 4: (24.5,41.9, 28.2), 5: (25.7,42.7, 28.5), 6: (25.4,45.0, 30.0), 

7: (25.6,43.4, 28.3), 8: (27.1,47.5, 25.5), 9: (28.4, 53.5, 28.5), 10: (32.4,42.6, 28.6) 

3: (19.2,19.4,12.2), 4: (23.3, 32.9, 22.6), 5: (23.7,40.4, 27.4), 6: (25.8,49.1,32.8), 

7: (27.0, 50.7, 25.6), 8: (27.0, 57.1, 38.0) 

rl: (25.8, 44.5, 27.9), r2: (22.8, 38.3, 28.3), r3: (27.8, 40.5,47.1) 

rl: (21.7, 36.5, 3.1), r2: (21.3, 35.2, 25.8), r3: (29.7, 52.6, 25.4) 

1:(25.0,40.9, 23.4), 2: (25.5, 41.9, 27.0), 5: (23.5,42.1, 29.9), 10: (23.1, 40.8, 32.2) 

1:(14.2,42.1, 28.2), 2: (21.0, 41.5, 27.8), 5: (29.1,40.2, 28.0), 10: (32.7, 42.0, 28.5) 
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4.0 Summary 

The scalability of scheduling and resource manage- 
ment strategies will become an increasingly important 
problem as Grids are scaled up. We presented a scalable 
heuristic that has performed extremely well in a simula- 
tion study of synthetic meta-applications and metacom- 
puting environments. Completion times for three 
common classes of meta-applications were within 10- 
20% of optimal on average with a worst-case variance 
of 60%. The results suggest that effective scheduling of 
meta-applications is possible, if sufficient application 
and system resource cost information is provided to the 
system. Future work includes experimental validation 
of the algorithms on a live system. We are also investi- 
gating the problem of multiple job scheduling and the 
interplay between multiple meta-applications and sin- 
gle-resource jobs. 
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Abstract 1. Introduction 

Computational Grids have become an important and 
popular computing platform for both scientific and commer- 
cial distributed computing communities. However, users of 
such systems typically find achievement of application ex- 
ecution performance remains challenging. Although Grid 
infrastructures such as Legion and Globus provide basic re- 
source selection functionality, work allocation functional- 
ity, and scheduling mechanisms, applications must interpret 
system performance information in terms of their own re- 
quirements in order to develop performance-efficient sched- 
ules. 

We describe a new high-performance scheduler that in- 
corporates dynamic system information, application re- 
quirements, and a detailed performance model in order to 
create performance efficient schedules. While the sched- 
uler is designed to provide improved performance for a 
magneto hydrodynamics simulation in the Legion Compu- 
tational Grid infrastructure, the design is generalizable to 
other systems and other data-parallel, iterative codes. We 
describe the adaptive performance model, resource selec- 
tion strategies, and scheduling policies employed by the 
scheduler. We demonstrate the improvement in application 
performance achieved by the scheduler in dedicated and 
shared Legion environments. 

This research was supported in part by DARPA Contract#N66001- 
97-C-8531, DoD Modernization Contract 9720733-00, and NSF/NPACI 
Grant ASC-9619020 

Computational Grids [7] are rapidly becoming an impor- 
tant and popular computing platform for both scientific and 
commercial distributed computing communities. Grids in- 
tegrate independently administered machines, storage sys- 
tems, databases, networks, and scientific instruments with 
the goal of providing greater delivered application perfor- 
mance than can be obtained from any single site. There 
are many critical research challenges in the development of 
Computational Grids as an effective computing platform. 
For users, both performance and programmability of the un- 
derlying infrastructure are essential to the successful imple- 
mentation of applications in Grid environments. 

The Legion Computational Grid infrastructure [11] pro- 
vides a sophisticated object-oriented programming envi- 
ronment that promotes application programmability by 
enabling transparent access to Grid resources. Legion 
provides basic resource selection, work allocation, and 
scheduling mechanisms. In order to achieve desired per- 
formance levels, applications (or their users) must inter- 
pret system performance information in terms of require- 
ments specific to the target application. Application Level 
Scheduling (AppLeS) [3] is an established methodology 
for developing adaptive, distributed programs that execute 
in dynamically changing and heterogeneous execution set- 
tings. The ultimate goal of this work is to draw upon the 
AppLeS and Legion Computational Grid research efforts to 
design an adaptive application scheduler for regular itera- 
tive stencil codes in Legion environments. 

We consider a general class of regular, data-parallel sten- 
cil codes which require repeated applications of relatively 
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constant-time operations. Many of these codes have the fol- 
lowing structure: 

Initialization 

Loop over an n-dimensional mesh 

Finalization 

in which the basic activity of the loop is a stencil based com- 
putation. In other words the data items in the n-dimensional 
mesh are updated based on the values of their nearest neigh- 
bors in the mesh. Such codes are common in scientific com- 
puting and include parallel implementations of matrix oper- 
ations as well as routines found in packages such as ScaLA- 
PACK[18]. 

In this paper we focus on the development of an adaptive 
strategy for scheduling a regular, data-parallel stencil code 
called PMHD3D on the Legion Grid infrastructure. The 
primary contributions of this paper are: 

• We describe an adaptive performance model for 
PMHD3D and demonstrate its ability to predict appli- 
cation performance in initial experiments. The perfor- 
mance model represents the application's requirements 
for computation, communication, overhead, and mem- 
ory, and could easily be extended to serve more gener- 
ally as a framework for regular iterative stencil codes 
in Grid environments. 

• We couple the PMHD3D performance model with re- 
source selection strategies, schedule selection policies, 
and deployment software to form an AppLeS sched- 
uler for PMHD3D. 

• In order to satisfy the requirements of the PMHD3D 
performance model we implement and utilize a new 
memory sensor as part of the Network Weather Ser- 
vice (NWS)[22]. The sensor collects measurements 
and produces forecasts of the amount of free memory 
available on a processor. 

• We demonstrate the ability of the AppLeS method- 
ology to provide enhanced performance for the 
PMHD3D application, using the Legion software in- 
frastructure as a platform for high-performance appli- 
cation execution. 

In the next section we discuss the structure of the target 
application and the environment that we used as a test-bed. 
In Section 3, we discuss the AppLeS we have designed for 
PMHD3D and provide a generalizable performance model. 
Section 4 provides experimental results and demonstrates 
performance improvements we achieved via AppLeS using 
Legion. In Sections 5 and 6 we review related work and 
investigate possible new directions, respectively. 

2. Research Components: 
PMHD3D and Legion 

AppLeS, NWS, 

In order to build a high-performance scheduler for 
PMHD3D we leveraged application characteristics, dy- 
namic resource information from NWS, the AppLeS 
methodology, and the Legion system infrastructure. In this 
section we explain each of these components in detail. 

2.1. AppLeS 

The AppLeS project focuses on the development of a 
methodology and software for achieving application per- 
formance via adaptive scheduling [1]. For individual ap- 
plications, an AppLeS is an agent that integrates with the 
application and uses dynamic and application-specific in- 
formation to develop and deploy a customized adaptive ap- 
plication schedule. For structurally similar classes of appli- 
cations, an AppLeS template provides a "pluggable" frame- 
work which comprises a class-specific performance model, 
scheduling model, and deployment module. An applica- 
tion from the class can be instantiated within the template 
to form a performance-oriented self-scheduling application 
targeted to the underlying Grid resources. 

AppLeS schedulers often rely on available tools in order 
to deploy the schedule or to gather information on resources 
or environment. AppLeS commonly depends on the Net- 
work Weather Service (NWS) (see Section 2.4) to provide 
dynamic predictions of resource load and availability. To- 
gether, AppLeS and the Network Weather Service can be 
used to adapt application performance to the deliverable ca- 
pacities of Grid resources at execution time. In this project 
AppLeS uses Legion to execute a schedule and the Internet 
Backplane Protocol (IBP) [13] to effectively cache the data 
coming from NWS. 

2.2. PMHD3D 

The target application for this work, PMHD3D [12, 15], 
is a magnetohydrodynamics simulation developed at the 
University of Virginia Department of Astronomy by John 
F. Hawley and ported to Legion by Greg Lindhal. The code 
is an MPI FORTRAN stencil-based application and shares 
many characteristics with other stencil codes. The code is 
structured as a three-dimensional mesh of data, upon which 
the same computation is iteratively performed on each point 
using data from its neighbors. PMHD3D alternates between 
CPU-intensive computation and communication (between 
"slab" neighbors and for barrier synchronizations). 

At startup PMHD3D reads a configuration file that spec- 
ifies the problem size and the target number of processors. 
Since the other two dimensions are fixed in PMHD3D's 
three-dimensional mesh, we refer to the height of the mesh 
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Figure 1. PMHD3D run-time scenarios with and without AppLeS. 

as the problem size. In order to allocate work among proces- 
sors in the computation the mesh is divided into horizontal 
slabs such that each processor receives a slab. For load bal- 
ancing purposes each processor can be assigned a different 
amount of work (by dividing the work into slabs of vary- 
ing height). The AppLeS scheduler determines the optimal 
height of each slab depending on the raw speed of the pro- 
cessor and on NWS forecasts of CPU load, the amount of 
free memory, and network conditions. AppLeS is dynamic 
in the sense that the data used by the scheduler is computed 
and collected just before execution, but once the schedule is 
created and implemented, the execution currently proceeds 
without interaction with the AppLeS. 

2.3. Legion 

Legion, a project at the University of Virginia, is de- 
signed to provide users with a transparent, secure, and re- 
liable interface to resources in a wide-area system, both at 
the programming interface level as well as at the end-user 
level [9, 14]. Both the programmer and the end-user have 
coherent and seamless access to all the resources and ser- 
vices managed by Legion. Legion addresses challenging 
issues in Computational Grid research such as parallelism, 
fault-tolerance, security, autonomy, heterogeneity, legacy 
code management, resource management, and access trans- 
parency. 

Legion provides mechanisms and facilities, leaving to 
the programmer the implementation of the policies to be 
enforced for a particular task. Following this idea, schedul- 
ing in Legion is flexible and can be tailored to suit applica- 

tions with different requirements. The main Legion compo- 
nents involved in scheduling are the collection, the enactor, 
the scheduler, and the hosts which will execute the sched- 
ule [5]. The collection provides information about the avail- 
able resources and the scheduler selects the resources to be 
used in a schedule. The schedule is then given to the enac- 
tor, which contacts the host objects involved in the sched- 
ule and attempts to execute the application. This scheme 
provides scheduling flexibility; for example, in case of host 
failures, the enactor can ask the scheduler for a new sched- 
ule and continue despite the failure, the collection can re- 
turn subsets of the resources depending on the user and/or 
the application, or the hosts can refuse to serve a specific 
user. 

Legion currently provides default implementations of all 
the objects described herein. Moreover, new objects can 
be developed and used rather than the default ones. Note 
that the PMHD3D AppLeS is developed "on top" of Le- 
gion, and uses default Legion objects. We would expect 
the performance improvement for such a code to conserva- 
tively bound from below that which would be achievable if 
the AppLeS were structured as a Legion object. We plan 
to eventually develop the AppLeS described here as a Le- 
gion scheduling object for a class of regular, iterative, data- 
parallel applications. 

2.4. Network Weather Service 

The Network Weather Service [17, 22] is a distributed 
system that periodically monitors and dynamically fore- 
casts the performance various network and computational 

218 



resources can deliver. NWS is composed of sensors, mem- 
ories and forecasters. Sensors measure the availability of 
the resource, for example CPU availability, and then record 
the measurement in a NWS memory. In response to a query, 
the NWS software will return a time series of measurements 
from any activated sensor in the system. This time series 
can then be passed to the NWS forecaster which predicts 
the future availability of the resource. The forecaster tests 
a variety of predictors and returns the result and expected 
error of the most accurate predictor. To obtain better per- 
formance for PMHD3D we developed a memory sensor 
that measures the available free memory of a machine. The 
sensor has been extended and is now part of NWS. 

2.5. Interactions Among System Components 

PMHD3D can directly access Legion's scheduling fa- 
cilities or can use AppLeS to obtain a more performance- 
efficient schedule. Figure 1 shows the interactions among 
components in each of these scenarios. The dotted line rep- 
resents the scheduling of a PMHD3D run without AppLeS 
facilities: the user supplies the number of processors, the 
processor list, and the associated problem size per proces- 
sor and the rest of the scheduling process is supplied by a 
default scheduler within the Legion infrastructure. 

When the application uses AppLeS for scheduling, the 
interactions among components can instead be represented 
by the solid lines in Figure 1. In this case the user sup- 
plies only the problem size of interest. AppLeS collects 
the list of available resources from the environment (via the 
Legion collection object or, in our case, via the Legion con- 
text space), and then queries NWS to obtain updated per- 
formance and availability predictions for the available re- 
sources. As the figure shows, AppLeS collects the NWS 
predictions as an IBP client: the predictions are pushed into 
the IBP server by a separate process. 

AppLeS then creates a performance-promoting adaptive 
schedule and asks the Legion scheduler to execute it. The 
schedule is adaptive because AppLeS assigns a different 
amount of work to each processor depending on their pre- 
dicted performance. As is suggested by the figure, the 
PMHD3D AppLeS is built on top of Legion facilities. A fu- 
ture goal is to integrate the AppLeS as an alternative sched- 
uler in Legion for the class of regular, data-parallel, stencil 
applications. 

3. The PMHD3D AppLeS 

The general AppLeS approach is to create good sched- 
ules for an application by incorporating application spe- 
cific characteristics, system characteristics, and dynamic 
resource performance data in scheduling decisions. The 
PMHD3D  AppLeS  draws  upon  the  general  AppLeS 

methodology [3] and the experience gained building an Ap- 
pLeS for a structurally similar Jacobi-2D application [2]. 

Conceptually, the PMHD3D AppLeS can be decom- 
posed into three components: 

• a performance model that accurately represents ap- 
plication performance within the Computational Grid 
environment; 

• a resource selection strategy that identifies poten- 
tially performance-efficient candidate resource sets 
from those that are available at run time; 

• a schedule creation and selection strategy that cre- 
ates a good schedule for each of the various candidate 
resource sets and then selects the most performance- 
efficient schedule. 

The overall strategy and organization of the scheduler 
will be discussed here but the details of each component are 
reserved for the following sections. 

An accurate performance model (Section 3.1) is funda- 
mental for the development of good schedules. The per- 
formance model is used in two important ways, the first of 
which is to guide the creation of schedules for specific re- 
source sets. For example, load balancing is a necessary con- 
dition developing an efficient schedule but is difficult or im- 
possible to achieve without an estimate of the relative costs 
of computation on various resources. An accurate perfor- 
mance model is also necessary for selection of the highest 
performance schedule from a set of candidate schedules. 

The resource selection strategy (Section 3.2) produces 
several orderings of available resources based on differ- 
ent concepts of "desirability" of resources to PMHD3D. 
Our definitions of desirability incorporate Legion re- 
source discovery results, dynamic resource availability from 
NWS, dynamic performance forecasts from NWS, and 
application-specific performance data for each resource. 
Once complete, the ordered lists of resources are passed on 
to the schedule creation and selection component of the Ap- 
pLeS. 

The schedule creation step (Section 3.3) takes the pro- 
posed resource lists and creates a good schedule for each 
based on the constraints the system and application im- 
pose. System constraints are characteristics such as avail- 
able memory of the resources while the application con- 
straints are characteristics such as the amount of memory re- 
quired for the application to remain in main memory. Once 
all schedules have been created the performance model is 
used to select the highest performance schedule (the one in 
which the execution time is expected to be the lowest). 

The decomposition of the scheduling process into these 
disjoint steps provides an overly simplistic view of the in- 
teractions between steps. In reality the scheduling process 
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16 

Rset = getResourceSet() 
NWS_data = NWS(Rset) 
C = getScheduleConstraints() 
for (balance = {0, 0.5, 1}) 

S = sort(Rset, balance, maxP) 
for (n = 2..maxP) 

sched = findSchedln, S, NWS_data, C) 
while (sched is not found) 

"Schedule constraints are too restrictive" 
relaxConstraints (C) 
sched = findSchedtn, 

endwhile 
best) 

S, NWS_data, C) 

if (cost(sched) 
best = sched 

endif 
endfor 

17 endfor 
18 run(best) 

\\ Available resources obtained from Legion 
\\ NWS forecasts of resource performance 
\\ Obtain scheduling constraints for simplex 
\\ Select for CPU power, connectivity, both 
\\ Returns list of hosts sorted by desirability 
\\ Searching for correct number of processors 
\\ Use simplex to find schedule on S using C 
\\ Simplex was unsolvable with S and C 

\\ More schedule flexibility, more possible error 
\\ Try to find schedule again 
\\ Found a feasible schedule 
\\ If best one so far keep it, else throw away 

\\ Best schedule found, run it 

Figure 2. PMHD3D AppLeS pseudo-code. 

requires more complicated interactions. To accurately rep- 
resent the true interaction of the scheduling components we 
present a pseudo-code version of the PMHD3D AppLeS 
strategy in Figure 2. The steps shown in Figure 2 will be- 
come clearer in the following sections. 

3.1. Performance Model 

The goal of the performance model is to accurately pre- 
dict the execution time of PMHD3D. Since the run-time 
may vary somewhat from processor to processor, we take 
the maximum run-time of any processor involved in the 
computation as the overall run-time. During every iteration 
each processor computes on its slab of data, communicates 
with its neighbors, and synchronizes with all other proces- 
sors. 

Formally, the running time for processor i is given by: 

Ti = Compi + Comrrii + Overi 

where Compi, Comrrii and Overt are the predicted com- 
putation time, the predicted communication time, and the 
estimated overhead for Pif respectively. 

Computation time is directly related to the units of work 
assigned to a processor (in other words the height of the 
slab) and to the speed of that processor. The computation 
time for Pi is: 

Compi = 
Xj * BMj 

Availi 

where Xi is the amount of work allocated to processor Pi 
(dynamically determined by the scheduling process), BMi 
is a benchmark for the application-specific speed of Pi's 
processor configuration, and Availi is a forecast of the CPU 
load on processor Pi (obtained from dynamic NWS fore- 
casts).   To obtain the benchmarks, we run PMHD3D on 

dedicated machines with various problem sizes and vari- 
able number of hosts. Execution times were proportional 
to problem size and are given in terms of seconds per point 
on each platform. 

Communication time is modeled as the time required 
for transferring data to neighboring processors across the 
available network. This represents communication for all 
iterations and accounts for both the time to establish a con- 
nection and the time to transfer the messages. To simplify 
the communication model, we have not attempted to di- 
rectly predict synchronization time or the time a processor 
waits for a communication partner. We hope instead to cap- 
ture the effect of these communication costs in our estimate 
of overhead costs, which we discuss shortly. Communica- 
tion time is then: 

Comrrii = MB/{bi>i+1 + 6M_i) + M * (ZM+J + h,i-i) 

where MB is the total megabytes transfered, M is the num- 
ber of messages transfered, and 6^ and kj are predictions 
of available bandwidth and latency from Pi to Pj, respec- 
tively. Predictions of available bandwidth and latency be- 
tween pairs of processors are obtained from dynamic NWS 
forecasts. To provide an estimate of the number of mes- 
sages transferred (M) and the megabytes transferred (MB) 
we examined post-execution program performance reports 
provided by Legion. For a variety of problem sizes and re- 
source set sizes the number of megabytes transferred var- 
ied by less than 5% so we used an average value for all 
runs. Data transfer does not significantly vary with prob- 
lem size because the problem size affects only the height of 
the grid while the decomposition is performed horizontally. 
Data transfer costs also do not vary with number of proces- 
sors because each processor must communicate with only 
its neighbors, regardless of the total number of processors. 
Although the number of messages transferred varied more 
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significantly from run-to-run we also used an average value 
for this variable. This approximation did not adversely af- 
fect our scheduling ability in the environments we tested; in 
cases where communication costs are more severe a model 
could be developed to approximate the expected number of 
messages transferred. 

The overhead factor Overi is included in the perfor- 
mance model to capture application and system behav- 
ior that cannot be accounted for by a simple commu- 
nication/computation model. For example, a processor 
will likely spend time synchronizing with other processors, 
waiting for neighbor processors for data communication, 
and waiting for system delays. System overheads are as- 
sociated with specifics of the hardware and Legion infras- 
tructure such as the time required to resolve the physical 
location of a data object needed by the application. The 
overhead for PMHD3D can be estimated by: 

Overt = 16 - 1.5 * probSize/1000 + 0.094P2 

where P is the number of processors involved in the com- 
putation and probSize is the height of the PMHD3D mesh. 

Overt was estimated empirically using data from 106 
individual application executions with problem sizes vary- 
ing from 1000 to 6000 and with resource set sizes vary- 
ing between 4 and 26. To determine the effect of the num- 
ber of processors on overhead runs, runs were grouped by 
problem size and the corresponding execution times plot- 
ted against number of processors. For each set of runs per- 
formed with the same problem size, a quadratic fit was per- 
formed on the difference between the actual execution time 
and the predicted execution time (without the overhead fac- 
tor). The quadratic factor varied between 0.090 and 0.096 
with a mean of 0.094 (standard deviation of 0.0022). To 
determine the effect of problem size on overhead we used 
the same runs but did a linear datafit on the predicted/actual 
execution time difference with problem size. 

3.2. Resource Selection 

Resource selection is the process of selecting a set 
of target resources (processors in this case) that will be 
performance-efficient. Finding the optimal set of resources 
requires comparing all possible schedules on all possible 
subsets of the resource pool - clearly an inefficient pro- 
cess as the resource pool becomes large. Instead, we create 
several ordered lists of resources by employing a heuristic 
to sort candidate resources in terms of several definitions 
of resource desirability. Resource desirability is based on 
how resource characteristics such as computational speed 
and network connectivity will affect the performance of 
PMHD3D. 

The resource selection process begins by querying Le- 
gion to discover the available set of resources.    Effec- 

tive evaluation of the desirability of each resource requires 
application-specific performance information as well as dy- 
namic resource performance information. As of this writ- 
ing, Legion collection objects report available resources and 
their static configurations but do not provide up-to-date dy- 
namic information on availability, load, or connectivity. Ac- 
cordingly, the list of available resources reported by Legion 
is used to query NWS for dynamic forecasts of resource 
availability, CPU load, and free memory for each host and 
of latency and bandwidth between all pairs of hosts. To ob- 
tain the computational cost per unit of the PMHD3D grid 
on each type of resource we used the benchmarking method 
described in Section 3.1. 

Once the available resource lists and the dynamic sys- 
tem characteristics are collected, the list can be ordered in 
terms of desirability. We use three definitions of desirability 
of a resource: desirability based on connectivity, desirabil- 
ity based on computational power, and desirability based 
equally on the two characteristics. Connectivity is approx- 
imated by computing the latency and bandwidth between 
the resource in question and all other resources in the re- 
source pool: as a metric we calculate the amount of time 
(seconds) it would take for the resource in question to ex- 
change a packet of size 1 byte to and from every other host. 
Computational power is measured by the time (seconds) it 
would take the host to compute 1 point for 1 iteration based 
on the NWS predictions and the benchmarks we discussed 
earlier. The balanced strategy orders the resources based on 
an average of computational power and connectivity. 

The resource set is sorted into 3 resource lists using the 
3 notions of resource desirability. We then create subsets of 
the lists by selecting the n most desirable hosts from each 
list where n = 2...maxP and n is even. We select multiple 
subsets from each list because it is often impossible to know 
the optimal number of hosts a priori. Once the subsets have 
been created the resulting group of proposed resource sets 
are passed on to the schedule creation step described in the 
next section. Although the approach described here is not 
guaranteed to find the optimal resource set, the methodol- 
ogy provides a scalable and performance-efficient approach 
to resource selection. 

3.3. Schedule Creation and Selection 

For each of the proposed resource sets, a schedule is de- 
veloped. Essentially, schedule development on a given re- 
source set for PMHD3D reduces to finding a work alloca- 
tion that provides good time balancing. As in Section 3.1 
work allocation is represented by Xi and is the height of the 
slab given to processor Pt. 

One of the most important characteristics for any solu- 
tion to this problem is time balancing: all processors should 
finish at the same time. Using the notation from Section 3.1, 
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T{ = Ti+U i e {l...(n - 1)} and, since all of the 
work must be allocated, we also have J^t z; = probSize. 
Taken together we have n equations in n unknowns and the 
problem can be solved with a basic linear solver. This ap- 
proach was successful for the Jacobi-2D AppLeS [2] but is 
not powerful enough to incorporate several additional con- 
straints required to develop good schedules for PMHD3D. 

One of the important constraints for PMHD3D perfor- 
mance is the amount of memory available for the applica- 
tion. There is a limit to the size of problem that can be 
placed on a machine because if the computation spills out 
of memory, performance can drop by two orders of magni- 
tude. To quantify this constraint a benchmark for applica- 
tion memory usage must be obtained by observing memory 
usage for varying problem sizes on each type of resource. 
Formally, this constraint becomes: 

BMmerrii * Xi < MemAvaih 

where MemAvaih is the available memory for processor 
i (provided by the NWS memory sensor) and BMmerrii is 
the memory benchmark (megabytes/unit) recorded for pro- 
cessor i's architecture. 

We formalize the work allocation constraints as a Lin- 
ear Programming problem (from now on simply LP), solv- 
able with the simplex method [6]. In short, LP solves the 
problem of finding an extreme (maximum or minimum) of 
a function f{xi ,x2,...,xn) where the unknowns have to 
satisfy a set of constraints g{xi ,x2,...,xn) > band both 
the objective function and the constraints are linear. The 
simplex is a well-known method used to solve LP prob- 
lems. The simplex formulation requires that constraints are 
expressed in standard form; that is the constraints must be 
expressed as equalities and each variable is assigned a non- 
negativity sign restriction. There is a simple procedure that 
can be used to transform LP problems into a standard form 
equivalent. 

We modified the time balancing equations to provide 
some flexibility for the constraints specification: expected 
execution time for any processor in the computation must 
fall within a small percentage of the expected total running 
time. This flexibility is beneficial, especially as additional 
constraints such as memory limits are incorporated into the 
problem formulation. The constraints are initially very rigid 
but can be relaxed in cases where no solution can be found 
given the initial constraints. The time balancing equations 
and the application memory requirements form the applica- 
tion constraints on which the simplex has to operate. The 
simplex formulation also requires specification of an objec- 
tive function where the goal of the solver is to maximize the 
objective function while satisfying the simplex constraints. 
We use X), xi as tne objective function and search for a so- 
lution where all work is allocated. 

For each of the proposed resource sets the simplex is 

used to create the best schedule possible for that resource 
set. We use a library [16] which provides a fast and easy to 
use implementation of the simplex. There are several bene- 
fits of using linear programming and the simplex method to 
create a good schedule: 

• Linear programming is well known and commonly 
used so that fast and reliable algorithms are readily 
available. 

• Once the constraints are formalized as a linear pro- 
gramming problem, adding additional constraints is 
trivial. For example, the FORTRAN compiler used to 
compile PMHD3D enforced a limit on the maximum 
size of arrays, therefore limiting the maximum units 
of work that could be allocated to any processor. This 
constraint was easily added to the problem formaliza- 
tion. 

• The linear programming problem can be extended to 
give integer solutions, although the problem then be- 
comes much more difficult. Currently the solver com- 
putes real values for work allocation and we redis- 
tribute the fractional work portions. In some problems 
a linear solution may be required for additional accu- 
racy. 

• In the case that a solution cannot be found, the simplex 
method provides important feedback. For this applica- 
tion, the simplex could not find a solution if the con- 
straints were too restrictive. In this case the simplex is 
reiterated with successively relaxed constraints until a 
solution can be reached. 

Once the proposed schedules are identified, schedule se- 
lection is surprisingly simple. The performance model is 
used to evaluate the expected execution time of each pro- 
posed schedule, and the schedule with the lowest estimated 
execution time is selected and implemented. 

4. Results 

The PMHD3D AppLeS has been implemented and we 
present results to investigate the usefulness of the method- 
ology. The goals of these experiments were to: 

• Evaluate the accuracy of our performance prediction 
model. 

• Evaluate the ability of the PMHD3D AppLeS to pro- 
mote application performance in a multi-user Legion 
environment. 

The previous sections stressed the importance of the per- 
formance model for effective scheduling. In Section 4.2 we 
explain in detail results demonstrating the accuracy of the 
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performance model. In Section 4.3 we present evidence that 
the scheduling methodology and implementation are effec- 
tive in practice. Before discussing these results we first out- 
line our experimental design. 

4.1. Experimental Design 

To evaluate the PMHD3D AppLeS, we conducted ex- 
periments on the University of Virginia Centurion Cluster, 
a large cluster of machines maintained by the Legion team 
(see [4] for more information on the cluster). The Centu- 
rion Cluster is continuously upgraded for new Legion ver- 
sion releases; during the 3-month period of the experiments, 
we used Legion versions 1.5 through 1.6.1. The cluster it- 
self is composed of 128 Alphas and 128 Dual-Pentium II 
PCs; 12 fast Ethernet switches and a gigaswitch connect 
the whole cluster. Although we employed both Alphas and 
Pentiums during the development and initial testing process, 
we had multiple difficulties with Alpha Linux kernel insta- 
bilities and a faulty network driver which made our data 
for the Alphas machines unreliable. The results presented 
here are based only on the 400 MHz Dual Pentium II ma- 
chines. We didn't employ the second processor on the Dual 
Pentium: therefore when we talk about host or machine we 
consider the machines to be uniprocessors. It is worth not- 
ing that many users only use one processor per node so that 
even a computationally intensive user will not affect CPU 
availability as much as might be expected. However, the 
two processors on each Dual Pentium machine utilize the 
same memory, sometimes leading to performance degrada- 
tion due to overloaded memory systems. Inclusion of mem- 
ory constraints in the performance model helped the Ap- 
pLeS scheduler avoid overloaded memory systems. 

We restricted our experiments to 34 machines for practi- 
cal reasons: the dynamic information collected from NWS 
includes a large amount of data, even for a relatively small 
cluster. Limiting the resource pool did not impact inves- 
tigations of application performance or schedule efficiency 
because, as will become clear, the parallelism available in 
PMHD3D for the problem sizes studied here is well below 
the 34 machine limit. As explained in Section 2.5 we used 
an IBP server running at all times at UCSD, while AppLeS 
acted as an IBP client retrieving the forecasts. This setup 
allowed us to obtain updated predictions for a large number 
of resources in a reasonable amount of time. On average it 
took less than 4 seconds to retrieve the data, with a mini- 
mum of 2.5 seconds and a maximum of 8.5 seconds. 

To test the performance of PMHD3D under a variety 
of conditions, experiments were typically performed with 
maximum resource set sizes (from now on called resource 
pool or simply pool) of 4,6...26 and problem sizes of 
1000,2000...6000. Problem size is the height of the data 
grid used by PMHD3D. The pool is the maximum num- 

ber of machines the scheduler is allowed to employ. We 
test varying pool sizes to simulate conditions under which 
a user may be limited to a certain number of resources by 
cost or access considerations. Although our overall resource 
pool contains 34 machines in total, the maximum pool size 
we simulate is only 26. This choice was practical: we fre- 
quently found unavailable or inaccessible machines in our 
overall resource pool and so were never able to access all 
34 machines at one time. Note also that the scheduler may 
determine that utilizing the entire pool is not the most per- 
formance efficient choice. In this case the pool is larger than 
the number of target resources. 

The experiments presented in Section 4.2 were con- 
ducted under unloaded conditions while those presented in 
Section 4.3 were conducted under loaded conditions. The 
ambient load present during most of our loaded runs con- 
sisted of heavy use of some machines and light use of oth- 
ers. In order to investigate application performance we 
report performance results based on application execution 
time. However, there is a cost associated with using Ap- 
pLeS to develop a schedule. We analyzed 43 runs in detail 
and the dominant scheduling cost is associated with query- 
ing the Legion Collection and the Legion context space. 
The time required to access NWS and IBP is on average less 
than 4 seconds. Once the system and performance informa- 
tion has been collected, the AppLeS required on average 
roughly 1 second to order the resources, create schedules, 
and select the best schedule. 

4.2. Performance Model Validation 

The performance model is the basis for determining a 
good work allocation and, more importantly, provides the 
basis for selecting a final schedule among those that have 
been considered. We tested model accuracy for a variety of 
problem sizes and target resource sets (see Figure 3). For 
the 62 runs shown in this figure the model accurately pre- 
dicts execution time within 1.5%, on average. The perfor- 
mance model consistently achieved this level of accuracy 
for other runs taken under similar conditions. Notice that as 
the problem size becomes larger, the smallest pool that we 
test also increases (i.e. the smallest pool for a problem size 
of 2000 is of size 4 while for a problem size of 6000 it is 
12). This experimental setup was required by a limit in the 
g77 FORTRAN compiler we employed: no more than 507 
work units could be allocated to any one processor during 
the computation. 

Figure 3 demonstrates the importance of selecting an ap- 
propriate number of target resources for PMHD3D. For ex- 
ample, for a problem size of 1000 the minimal execution 
time is achieved when the application is run on 10 proces- 
sors. If fewer processors are used, the amount of work per 
processor is high and the overall execution time is higher. 

223 



120 

110 

100 

10 12 14 16 18 
Number of processors 

20 22 24 26 

Figure 3. Model predictions (dashed lines) and observed execution time {solid lines) for a variety of 
problem sizes and pool sizes. 

Table 1. Number of resources to target for 
various problem sizes under unloaded con- 
ditions. Optimal is the best choice, range in- 
dicates close to optimal choices. 
Size       1000     2000      3000      4000      5000      6000 

Hosts 
Range 

10 
8-12 

12 
12-14 

14 
14-16 

16 
14-18 

18 18 
16-18     18-20 

If more processors are used, the added communication and 
system overheads cannot be offset by the advantage of the 
additional computational power. Significantly, the perfor- 
mance model accurately tracks the knee (i.e. inflection 
point) in the curve and is thus capable of predicting the cor- 
rect number of target resources, at least under these con- 
ditions. We report the optimal number of target resources 
for all problem sizes tested in Table 1. As will be obvious 
in Section 4.3, the optimal number of processors may vary 
with resource performance and dynamic system conditions 
as well as with problem size. 

Figure 4 demonstrates the scheduling advantage of accu- 
rately predicting the correct number of processors to target. 
In these experiments the PMHD3D AppLeS was allowed to 
select any number of processors up to the maximum pool 

size. The PMHD3D AppLeS selects the maximum num- 
ber of resources for each resource pool up to and including 
a size of 18. For resource pools of size 20 and larger the 
optimal number of hosts is 18 and the PMHD3D AppLeS 
correctly selects only 18 hosts. 

-*- Execution Time 
-0-   Predicted Execution Time 
x    Pool Size Chosen 

»151 

12 14 16 18 20 22 
Maximum Allowed Processors 

24 

Figure 4. PMHD3D AppLeS predicted and ac- 
tual execution times for a problem size of 
5000. 

4.3. Performance Results 

Once we verified that the performance model is accu- 
rate in a predictable environment (i.e. where resources 
are dedicated), we turned our attention to considering the 

224 



performance of the AppLeS in a more dynamic, unpre- 
dictable, multi-user environment. We begin by investigat- 
ing the ability of PMHD3D AppLeS to compare available 
resources and select desirable hosts (computationally fast, 
well-connected, or both). To provide a comparison point we 
test the performance of another available scheduler, namely 
the default Legion scheduler. We conducted experiments in 
runs, namely back-to-back PMHD3D executions using the 
same resource pool and the same problem size but utiliz- 
ing the PMHD3D AppLeS scheduler first and the default 
Legion scheduler second. 

140 

120 

noo 

-0- Execution Time w/o AppLeS 
-*- Execution Time w/ AppLeS 
-Q-   Predicted Execution Time 

;A.,.A: -.A-.-A.-^.j) 

10 15 20 
Maximum Allowed Processors 

25 

Figure 5. PMHD3D performance attained with 
and without the AppLeS scheduler for a prob- 
lem size of 1000. 

In Fig. 5 we show a series of runs comparing the 
two schedulers for a problem size of 1000. Clearly, the 
PMHD3D AppLeS provides a performance advantage for 
all resource set sizes tested. However, it is notable that the 
two execution time curves follow the same trend only when 
the resource pool is in the range of 4-12 hosts. When more 
resources are added to the pool the execution time achieved 
with the PMHD3D AppLeS remains constant while the de- 
fault Legion scheduler execution time diverges. The default 
Legion scheduler allocates all available resources, a less 
than optimal strategy for PMHD3D. In Table 2 we report 
the typical number of processors selected by AppLeS for 
different problem sizes and resource set sizes. 

For pool sizes of 4 - 12 performance achieved via the 
PMHD3D AppLeS is consistently 20 - 25 seconds lower 
than that achieved via the default scheduler. In this range 
of pool sizes, the PMHD3D AppLeS selects the maximum 
number of hosts available and so uses the same number of 
resources as the default Legion scheduler. The performance 
advantage is achieved by selecting "desirable" resources, 
i.e. resources that are computationally fast and/or well- 
connected. Figure 6 illustrates the load of all available ma- 
chines just before scheduling occurred for the 18-processor 
run shown in Figure 5. Clearly, the PMHD3D AppLeS se- 
lects lightly loaded hosts (i.e. those hosts with high avail- 
ability) while the default scheduler selects several loaded 
hosts. It is the load on these selected machines that causes 

Table 2. Hosts chosen by PMHD3D AppLeS. 
The Legion default scheduler always selects 
the maximum number of hosts. 

Problem Size 
Max Hosts     1000     2000 4000 5000     6000 

4 
6 
8 
10 
12 
14 
16 
18 
20 
22 
24 
26 

4 
6 
8 
10 
10 
10 
10 
10 
10 
10 
10 
10 

4 
6 
8 
10 
12 
12 
12 
12 
12 
12 
14 
14 

10 
12 
14 
14 
16 
14 
14 
14 
14 

10 
12 12 
14 14 
16 16 
16 18 
18 20 
18 20 
18 18 
18 18 

a performance disadvantage for the default scheduler. In a 
more heterogeneous network environment the connectivity 
of the hosts would also play an important role in host selec- 
tion and resulting performance. 

We obtained 83 runs comparing the default Legion 
scheduler to the PMHD3D AppLeS for a variety of problem 
sizes (1000-6000) and pool sizes (4-26). Figure 7 shows a 
histogram of the percent improvement the PMHD3D Ap- 
pLeS achieved over the default Legion scheduler for the 83 
runs (the average improvement was 30%). 

Note that in a few runs there was little or no advantage 
to using the PMHD3D AppLeS. In these cases the proces- 
sors were essentially idle and the pool size was below the 
optimal number so that the schedulers selected the same 
number of processors. In one run the PMHD3D AppLeS- 
determined schedule was considerably slower than that de- 
termined by the default Legion scheduler. In this case the 
scheduler created a schedule based on incorrect system in- 
formation: NWS forecasts of CPU availability were unable 
to a predict a sudden change in load on several machines 
and the resulting schedule was poorly load balanced. 

The Legion default scheduler was designed to provide 
general scheduling services, not the specialized services we 
include in the PMHD3D AppLeS. It is therefore not sur- 
prising that the AppLeS is better able to promote applica- 
tion performance. In fact, the PMHD3D AppLeS could be 
developed as a Legion object for scheduling regular, iter- 
ative, data-parallel computations, and this is a focus of fu- 
ture work. Using the PMHD3D AppLeS and the Legion de- 
fault scheduling strategy as extremes, we wanted to explore 
a third alternative for scheduling - that of what a "smart 
user" might do: In a typical user scenario for a cluster of 
machines a user will have access to a large number of ma- 
chines and will typically do a back-of-the-envelope static 
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Figure 6. A snapshot of CPU availability taken 
during scheduling for the 18-processor run 
shown in Figure 5. 
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Figure 8. Performance obtained by three 
schedulers when each was given access to 
at most 26 processors. 
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Figure 7. Range of performance improvement 
obtained by PMHD3D AppLeS. 

calculation to determine an appropriate number of target re- 
sources given the granularity of the application. Although a 
user may correctly determine the number of hosts to target, 
accurate information on resource load and availability will 
be difficult or impossible to obtain and interpret prior to or 
at compile-time. 

To simulate this user scenario, we developed a third 
scheduling method called the smart user. The smart user 
selects an appropriate number of hosts but does not select 
hosts based on desirability. Experiments were performed 
for problem sizes ranging from 1000 to 6000 with a pool 
size of 26 hosts. Figure 8 shows the performance obtained 
by the PMHD3D AppLeS, the default Legion scheduler, 
and that obtained by the smart user. In these experiments, 
the PMHD3D AppLeS provides a significant performance 
advantage over both alternatives. 

5. Related Work 

The PMHD3D AppLeS is an adaptation and extension of 
previous work targeting the structurally similar Jacobi-2D 
application ([2],[3]). Jacobi-2D is a data-parallel, stencil- 
based iterative code, as is PMHD3D. Both applications al- 
low non-uniform work distribution, however Jacobi-2D em- 
ploys strip decomposition (using strip widths) for its 2- 

dimensional grid while PMHD3D employs slab decompo- 
sition (using slab height) for its 3-dimensional grid. While 
the applications are structurally similar, PMHD3D required 
tighter constraints on memory availability and a more com- 
plex performance model. Additionally, PMHD3D was tar- 
geted for a much larger resource set (34 machines vs. 8). 
The availability of a larger resource pool for this work mo- 
tivated the introduction of the quadratic overhead term in 
the PMHD3D performance model. Previous AppLeS work 
has not included the additional overhead of using extra ma- 
chines in scheduling decisions. 

As part of our previous work, we developed an AppLeS 
for Complib and the Mentat distributed programming en- 
vironment. Complib implements a genetic sequencing al- 
gorithm for libraries of sequences. It is particularly diffi- 
cult to schedule because of its highly data dependent exe- 
cution profile. The implementation of Complib we chose 
was for Mentat [8] which is an early prototype of the Le- 
gion Grid software infrastructure. By combining a fixed 
initial distribution strategy (based on a combination of ap- 
plication characteristics and NWS forecasts) with a shared 
work-queue distribution strategy, the Complib AppLeS was 
able to achieve large performance improvements in dif- 
ferent Grid settings [20]. In addition to AppLeS for Le- 
gion/Mentat applications, we have developed AppLeS for a 
variety of Grid infrastructures and applications [19, 21, 7]. 

In [10], the authors describe a scheduler targeting data 
parallel "stencil" applications that use the Mentat program- 
ming system. They specifically examine Gaussian elimi- 
nation using a master/slave work-distribution methodology. 
While it is difficult to compare the performance of each sys- 
tem, their approach differs from AppLeS in that it requires 
more extensive modification of the application and it does 
not incorporate dynamic information. 
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6. New Directions 

An ultimate goal is to offer the PMHD3D AppLeS agent 
within the Legion framework as a default scheduler for it- 
erative, regular, stencil-based distributed applications. In 
particular, the scheduler's performance model is flexible 
enough to incorporate the requirements and constraints of 
other stencil applications and the characteristics of other 
platforms. To use this model for other appropriate appli- 
cations, good predictions of megabytes transferred, number 
of messages initiated, overhead factor, benchmarks for pro- 
gram CPU and memory utilization over the different target 
architectures, as well as access to dynamic system infor- 
mation from NWS or a similar system would be required. 
Once obtained, these characteristics are used as inputs to 
the model without changing the model structure. 

Portability and heterogeneity are also important. The 
AppLeS itself is written in C and Perl and has been com- 
piled successfully and executed on various architectures and 
systems (Pentium, Alpha, Linux and Solaris). Initial results 
indicate that the scheduler can be used effectively on dif- 
ferent target environments without changes to the structure 
of the performance model. For example, we used mpich on 
a local cluster for initial development and debugging. The 
schedule worked well with only the previously described 
changes in model input parameters. 
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Abstract 

Recently, we presented two very low-cost approaches to 
compile-time list scheduling where the tasks' priorities 
are computed statically or dynamically, respectively. For 
homogeneous systems, these two algorithms, called FCP 
and FLB, have shown to yield a performance equivalent to 
other much more costly algorithms such as MCP and ETF. 
In this paper we present modified versions of FCP and 
FLB targeted to heterogeneous systems. We show that 
the modified versions yield a good overall performance, 
which is generally comparable to algorithms specifically 
designed for heterogeneous systems, such as HEFT or 
ERT. There are a few cases, mainly for irregular problems 
and large processor speed variance, where FCP and FLB's 
performance drops down to 32% and 63%, respectively. 
Considering the good overall performance and their very 
low cost however, FCP and FLB are interesting options 
for scheduling very large problems on heterogeneous sys- 
tems. 

Keywords: compile-time task scheduling, list schedul- 
ing, low-cost, heterogeneous systems 

1    Introduction 

Heterogeneous systems have recently become widely 
used as a cheap way of obtaining a parallel system. Clus- 
ters of workstations connected by high-speed networks, 
or simply the Internet are common examples of hetero- 

geneous systems. However, in order to obtain high- 
performance from such a system, both compile-time and 
runtime support is necessary, in which scheduling the ap- 
plication to the parallel system is a crucial factor. The 
problem, known as task scheduling, has been shown to be 
NP-complete [3]. 

The general problem of task scheduling has been exten- 
sively studied, mainly for homogeneous systems. Various 
heuristics have been proposed, including list algorithms 
[4, 11, 12, 13, 20], multi-step algorithms [14, 15, 22], 
duplication based algorithms [7, 2, 1], genetic algo- 
rithms [18], algorithms using local search [21], bin pack- 
ing [19], or graph decomposition [6]. Within all these ap- 
proaches, list scheduling has been shown to have a good 
cost-performance trade-off, as considering its low cost, 
the performance is still very good [8, 13, 12]. The low- 
cost is a key issue for large problems, in which even a 
0{V2) algorithm, where V is the number of tasks, may 
have a prohibitive cost. 

Task scheduling has also been studied in the specific 
context of heterogeneous systems ([5, 9, 10, 16, 17]). It 
has been shown that minimizing the tasks' completion 
time throughout the schedule is preferable to minimizing 
the tasks' start time [10, 17]. With respect to list schedul- 
ing algorithms, one can note that most of them can be eas- 
ily modified to meet the task's completion time minimiza- 
tion criterion, and thus obtain good performance also in 
the heterogeneous case (e.g., HEFT [17] and ERT [9] are 
the versions using the tasks' completion time as the task 
priority of MCP [20] and ETF [4], respectively). How- 
ever, two very low-cost list scheduling algorithms that we 
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proposed recently, namely FCP (Fast Critical Path) [13] 
and FLB (Fast Load Balancing) [12], cannot be modi- 
fied in such an easy way without sacrificing their com- 
petitively low cost. 

In this paper we present the modifications required to 
obtain a good performance from FCP and FLB in het- 
erogeneous systems. We show that the modified ver- 
sions of FCP and FLB yield a good overall performance, 
which is generally comparable to algorithms specifically 
designed for heterogeneous systems, such as-HEFT (Het- 
erogeneous Earliest-Finish-Time) [17] and ERT (Earliest 
Task First) [9]. There are a few cases, mainly for irregular 
problems and wide processor speed ranges, in which FCP 
and FLB's performance drops down to 32% and 63%, re- 
spectively. Considering their very low cost and reason- 
ably good performance, we believe that FCP and FLB are 
interesting options for task scheduling in heterogeneous 
systems, especially for large problems where scheduling 
time would otherwise be prohibitive. 

This paper is organized as follows: The next two sec- 
tions briefly describe the scheduling problem, and the 
FCP and FLB algorithms, respectively. In Section 4 we 
study their performance for heterogeneous systems. Sec- 
tion 5 concludes the paper. 

current task to any exit task, where the path length is the 
sum of the computation and communication costs of the 
tasks and edges belonging to the path. A task is said to be 
ready if all its parents have finished their execution. Note 
that at any given time the number of ready tasks never 
exceeds W. A task can start its execution only after all its 
messages have been received. 

As a distributed system we assume a set V of P pro- 
cessors connected in a clique topology in which inter- 
processor communication is assumed to perform with- 
out contention. The processors' computing speeds differ 
and are represented as fractions of the slowest processor 
speed. We assume that the task execution time is pro- 
portional with the speed of the processor it is executed 
on, and consists of the computation cost multiplied by the 
processor speed. 

In our algorithms, an important concept is that of the 
enabling processor of a ready task t, EP(t), which is the 
processor from which the last message arrives. Given a 
partial schedule and a ready task t, the task is said to be of 
type EP if its last message arrival time is greater than the 
ready time of its enabling processor and of type non-EP 
otherwise. Thus, an EP type task starts the earliest on its 
enabling processor. 

2   Preliminaries 

The task scheduling algorithm input is a directed acyclic 
graph Q = (V, £), that models a parallel program, where 
V is a set of V nodes and 8 is a set of E edges. A node 
in the DAG represents a task, containing instructions that 
execute sequentially without preemption. Each task is as- 
sumed to have a computation cost. The edges correspond 
to task dependencies (communication messages or prece- 
dence constraints) and have a communication cost. The 
communication-to-computation ratio (CCR) of a paral- 
lel program is defined as the ratio between its average 
communication and computation costs. If two tasks are 
scheduled to the same processor, the communication cost 
between them is assumed to be zero. The task graph 
width (W) is defined as the maximum number of tasks 
that are not connected through a path. 

A task with no input edges is called an entry task, while 
a task with no output edges is called an exit task. The 
task's bottom level is defined as the longest path from the 

3    The Algorithms 

List scheduling algorithms use two approaches to sched- 
ule tasks. The first category is the static list schedul- 
ing algorithms (e.g., MCP [20], DPS [11], HEFT [17], 
FCP [13]) that schedule the tasks in the order of their pre- 
viously computed priorities. A task is usually scheduled 
on the processor that gives the earliest start time for the 
given task. Thus, at each scheduling step, first the task is 
selected and afterwards its destination processor. 

The second approach is dynamic list scheduling 
(e.g. ETF [4], ERT [9], FLB [12]). In this case, the tasks 
do not have a precomputed priority. At each scheduling 
step, each ready task is tentatively scheduled to each pro- 
cessor, and the best <task, processor> pair is selected 
(e.g., the ready task that starts the earliest on the proces- 
sor where this earliest start time is obtained for ETF, or 
the ready task that finishes the earliest on the processor 
where this earliest finish time is obtained for ERT). Thus, 
at each step both the task and its destination processor are 
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selected at the same time. 
Both static and dynamic approaches of list schedul- 

ing have their advantages and drawbacks in terms of the 
schedule quality they produce. Static approaches are more 
suited for communication-intensive and irregular prob- 
lems, where selecting important tasks first is more crucial. 
Dynamic approaches are more suited for computation- 
intensive applications with a high degree of parallelism, 
because these algorithms focus on obtaining a good pro- 
cessor utilization. 

FCP (Fast Critical Path) [13] and FLB (Fast Load Bal- 
ancing) [12] significantly reduce the cost of the static and 
dynamic list scheduling approaches, respectively. In the 
next two sections, we describe both algorithms and we 
outline the differences between them and previous list 
scheduling algorithms. 

3.1   FCP 

Static list scheduling algorithms have three important 
steps: (a) task priorities computation, that takes at least 
0(E + V) time, since the whole task graph has to be 
traversed, (b) task selection according to their priori- 
ties, that takes 0(V\ogW) time, and (c) processor se- 
lection, that selects the "best" processor for the previ- 
ously selected task, usually the processor where the cur- 
rent task starts/finishes the earliest. Processor selection 
takes 0((E + V)P) time, since each task is tentatively 
scheduled to each processor. Thus, the highest complex- 
ity steps are the task and processor selection steps, which 
determine the 0{V log (W) + (E+V)P) time complexity 
of the static list scheduling algorithms 

In FCP, the processor selection complexity is signifi- 
cantly reduced by restricting the choice for the destina- 
tion processor from all processors to only two proces- 
sors: (a) the task's enabling processor, or (b) the processor 
which becomes idle the earliest. In [13] we prove that the 
start time of a given task is minimized by selecting one 
of these two destination processors. The proof is based 
on the fact that the start time of a task t on a candidate 
processor p is defined as the maximum between (a) the 
time the last message to t arrives, and (b) the time p be- 
comes idle. As the above-mentioned processors minimize 
the two components of the task's start time, respectively, 
it follows that one of the two processors minimizes the 
task's start time.  Consequently, the algorithm's perfor- 

mance is not affected, while the time complexity is dras- 
tically reduced from 0((E + V)P) to 0(V log (P) + E). 

The task selection complexity can be reduced by main- 
taining only a constant size sorted list of ready tasks. 
Thus, we sort as many tasks as they fit in the fixed size 
sorted list, while the others are stored in an unsorted FIFO 
list which has an 0(1) access time. The time complex- 
ity of sorting tasks using a list of size H decreases to 
0(V logH) as all the tasks are enqueued and dequeued 
in the sorted list only once. We have found that for 
FCP, which uses bottom level as task priority, a size of 
P is required to achieve a performance comparable to 
the original list scheduling algorithm (see Section 4). A 
sorted list size of P results in a task sorting complexity of 
O(VlogP). 

Using the described techniques for task sorting and 
processor selection the total time complexity of FCP 
(0(V log (P) + E)) is clearly a significant improvement 
over the time complexity of typical list scheduling ap- 
proaches with statically computed priority. 

3.2   FLB 

In FLB, at each iteration of the algorithm, the ready task 
that can start the earliest is scheduled to the processor on 
which that start time is achieved. Note that FLB uses the 
same task selection criterion as in ETF. In contrast to ETF 
however, the preferred task and its destination processor 
are identified in 0(log(W) + log(P)) time instead of 
0{WP). 

To select the earliest starting task, pairs of a ready task 
and the processor on which the task starts the earliest need 
to be considered. As shown earlier, in order to obtain the 
earliest start time of a ready task on a partial schedule, 
the given task must be scheduled either (a) to the task's 
enabling processor, or (b) to the processor becoming idle 
the earliest. 

Given a partial schedule, there are only two pairs task- 
processor that can achieve the minimum start time for a 
task: (a) the EP type task t with the minimum estimated 
start time EST(t, EP(t)) on its enabling processor, and 
(b) the non-EP type task t' with the minimum last message 
arrival time LMT(t') on the processor becoming idle the 
earliest. The first case minimizes the earliest start time 
of the EP type tasks, while the second case minimizes the 
earliest start time of the non-EP type tasks. If in both cases 
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Figure 1: Miniature task graphs 

the same earliest start time is obtained, the non-EP type 
task is preferred, because the communication caused by 
the messages sent from the task's predecessors are already 
overlapped with the previous computation. Considering 
the two cases discussed above guarantees that the ready 
task with the earliest start time will be identified. A formal 
proof is given in [12]. 

To reduce the complexity even further, the same 
scheme as in FCP can be used. Instead of maintaining all 
EP and non-EP tasks sorted, only a fixed number of tasks 
are stored sorted, while the other are stored in FIFO order. 
The FLB's complexity is reduced to 0(V log (P) + E), 
while the performance is maintained at a level comparable 
to using the fully sorted task lists (see Section 4). 

3.3   The Modifications 

As mentioned earlier, task scheduling algorithms for het- 
erogeneous systems perform better when they sort tasks 
by their finish time rather than start time. The reason is 
that sorting by finish time implicitly takes into considera- 
tion processor speeds. However, in order to maintain their 
very low complexity, FCP and FLB must sort the tasks 
according to their start time. As a consequence, the pro- 
cessor speed is not considered when scheduling a non-EP 
task, but only the time the processors becomes idle. 

To overcome this deficiency, we change the priority cri- 
terion for processors for both FCP and FLB. Instead of 
using the time the processor becomes idle the earliest as a 
priority, we now use the sum of the processor idle time and 

the mean task execution time. Using this priority scheme, 
we are now able to incorporate the processor speed when 
selecting the processor for a non-EP task. This is a raw 
approximation of finding the processor where a non-EP 
type task finishes the earliest. 

In FLB, we also modify the task priority for the EP-type 
tasks. The EP-type tasks are sorted by their finish time on 
their enabling processor instead of their start time. 

Finally, for both FCP and FLB, we change the final 
choice between the two candidate tasks, by selecting the 
task finishing the earliest instead of the task starting the 
earliest. 

Note, that all these modifications of FCP and FLB do 
not involve any extra cost compared to the original ver- 
sions. As a consequence, the cost of both FCP and FLB 
is maintained at the same very low level. 

4    Performance Results 

The FCP and FLB algorithms are compared with 
ERT (Earliest Task First) [9] and HEFT (Heterogeneous 
Earliest-Finish-Time) [17]. ERT (0(W(E + V)P)) and 
HEFT (0{V\ogW + (E + V)P)) are well-known and 
have been shown to obtain competitive results in hetero- 
geneous systems [9, 17]. 

For both FCP and FLB we used two versions. The first 
version uses fully sorted task lists. For this first version, 
FCP and FLB have exactly the same scheduling criteria 
as MCP and ETF, respectively. The second version uses 
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Figure 2: Cost comparison 

partially sorted priority lists of size P. We call the first 
version of the algorithms FCP-f and FLB-f, and the sec- 
ond FCP-p and FLB-p, respectively. 

We consider task graphs representing various types of 
parallel algorithms. The selected problems are LU decom- 
position ("LU"), Laplace equation solver ("Laplace") and 
a stencil algorithm ("Stencil"). For each of these prob- 
lems, we adjusted the problem size to obtain task graphs 
of about 2000 nodes. For each problem, we varied the 
task graph granularities, by varying the communication- 
to-computation ratio (CCR). The values used for CCR 
are 0.2 and 5.0. For each problem and each CCR value, 
we generated 5 graphs with random execution times and 
communication delays (i.i.d. uniform distribution with 
unit coefficient of variation), the results being the aver- 
age over the 5 graphs (in view of the low overall variance, 
5 samples are sufficient). Miniature task graphs samples 
of each type are shown in Figure 1. 

We schedule the task graphs on 2, 4, 8, 16 and 32 
processors. For each P, we use 10 heterogeneous con- 
figurations in which the processors' speed are uniformly 
distributed over the following intervals: [8,12], [6,14] 
and [4,16]. Thus, the total number of test configura- 
tions is 3 (problems) x 2 (CCR) x 5 (sample graphs) x 
5 (processor ranges) x 10 (processor configurations) x 
3 (processor intervals) = 5500. 

4.1   Running Times 

In Fig. 2 the average running time of the algorithms 
is shown in CPU seconds as measured on a Pentium 

Pro/300MHz PC with 64Mb RAM running Linux 2.0.32. 
ERT is the most costly among the compared algorithms. 
Its cost increases from 72 ms for 2 processors up to 11 s 
for 64 processors (we do not include ERT's running times 
for P > 16 in Figure 2 due to their too much higher val- 
ues). HEFT's cost also increases with the number of pro- 
cessors, but it is significantly lower. For P = 2, it runs 
for 17 ms, while for P = 64, the running time is 279 ms. 

Both versions of the FCP and FLB have considerably 
lower running times. FCP-p's running time is the lowest, 
varying from 16 ms for P = 2 to 25 ms for P = 64. 
FCP-f varies from 21 ms for P = 2 to 24 ms for P = 64. 
One can note that for larger number of processors both 
versions of FCP have the same running times. The reason 
is that the ready tasks fit in the sorted part of the FCP-f's 
priority list. 

FLB has a slightly higher cost compared to FCP, be- 
cause of the more complicated task and processor selec- 
tion schemes. The running times vary around 26 ms and 
24 ms for FLB-f and FLB-p, respectively. Their running 
times do not vary significantly with the number of proces- 
sors. One can note that for larger number of processors, 
FCP and FLB's running times tend to become similar. 

4.2   Scheduling Performance 

In this section we study how the FCP and FLB algorithms 
perform. We first compare FCP and FLB's performance 
to ERT and HEFT's performance, with respect to gran- 
ularity, problem type and processor heterogeneity. Next, 
we show the speedups achieved by FCP and FLB. 
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Figure 3: Performance comparison with respect to the problem 
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For performance comparison, we use the normalized 
schedule length (NSL), defined as the ratio between the 
schedule length of the given algorithm and the schedule 
length of ERT. 

In Figure 3 we study the algorithms' performance with 
respect to the problem type by comparing the schedule 
lengths averaged over the three processor speed intervals. 
One can note that for both FCP and FLB, the partial 
versions obtain performance similar to the full versions. 
Therefore we will further refer only to the partial versions 
of FCP and FLB. 

One can note that the overall performance of FCP is 
comparable to ERT's performance, although at a much 
lower cost. For problems involving a large number of fork 
and join tasks, such as LU and Laplace, for a large number 
of processors ERT performs better, up to 16% for both 
coarse and fine-grain cases (Laplace, P = 32). For all 
the other cases (i.e., for regular problems, such as Stencil, 
or for small number of processors) FCP performs equal 
or better compared to ERT, up to 8% (Stencil, P = 32) 
and 7% (LU, P = 16) for coarse and fine-grain problems, 

respectively. 
Compared to HEFT, FCP is outperformed for problems 

involving a large number of fork and join tasks, such as 
LU and Laplace, for a large number of processors, with 
up to 27% (Laplace, P = 32) and 23% (LU, P = 32) 
for coarse and fine-grain cases, respectively. However, 
in all the other cases (i.e., for regular problems, such as 
Stencil, or for small number of processors) FCP performs 
comparable to HEFT. 

FLB's performance is generally worse, being outper- 
formed by ERT, HEFT and FCP by up to 46%, 57%, and 
30% (all for coarse-grain Laplace, P = 32%), respec- 
tively. However, even for FLB, the performance becomes 
comparable to the other three algorithms for regular prob- 
lems, such as Stencil, or small number of processors. 

In Figure 4 we study the influence of the heterogene- 
ity to the performance. The results are averaged over the 
LU, Laplace and Stencil problems. Again, both FCP and 
FLB obtain similar performance for the full and partial 
versions. 

Again, the overall performance of FCP is comparable 
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to ERT's performance. For a large processor speed vari- 
ance (i.e., 4 - 16) and for a large number of processors 
ERT performs better, up to 15% and 12% for coarse and 
fine-grain cases (4 - 16 processor speed range, P = 32), 
respectively. For all the other cases (i.e., small processor 
speed variance, or for small number of processors) FCP 
performs equal or even better compared to ERT, up to 8% 
and 12% (both for Stencil, P = 16) for coarse and fine- 
grain problems, respectively. 

Compared to HEFT, FCP is also outperformed for a 
large processor speed variance and for a large number of 
processors, with up to 28% and 26% (both for 4-16 pro- 
cessor speed range, P — 32) for coarse and fine-grain 
cases, respectively. However, for small processor speed 
variance, or for small number of processors, FCP's per- 
formance tends to become comparable to HEFT. 

FLB's performance is generally worse, being outper- 
formed by ERT, HEFT and FCP with up to 50%, 63%, and 
35% (all for 4-16 processor speed range, coarse-grain 
problems, P = 32%), respectively. However, even for 

FLB, the performance becomes comparable to the other 
three algorithms for regular problems, such as Stencil, or 
small number of processors. 

One can note that for heterogeneous systems, the ver- 
sions using fully and partially sorted priority lists perform 
comparable for both FCP and FLB. Similar to homoge- 
neous systems, a partially sorted list of size P yields com- 
petitive results, while the scheduling complexity becomes 
extremely low: 0(V log (P) + E). 

Figures 5 and 6 show the speedups achieved for the 
FCP and FLB algorithms respectively. Although FCP per- 
forms better, the two algorithms perform similar with re- 
spect to problem type, granularity and processor speed 
range. For Stencil the speedup is almost linear. How- 
ever, for LU and Laplace the speedup starts leveling off 
for more than 32 processors. The reason is that LU 
and Laplace have a large number of fork and join nodes, 
and as a consequence a limited parallelism, while Sten- 
cil is a regular problem with a large and constant paral- 
lelism. Also, one can note that for a large processor speed 

235 



CCR 
1/5 

CCR 
5/1 

"1      2     4      8     16    32    P 
Processor      . ., 
speed range 4~10 

1      2     4      8     16    32    P 

6-14 

2     4      8     16    32    P 

8-12 

Figure 5: FCP-p Speedup 

CCR 
5/1 

S1 
32 

k                                                  S 

 -j,        32 

CCR 
1/5 

16 

8 

4 

2 

 -/£*    " 
• ^            2 

1 r —a»-    1 

16    32    P 1      2     4 
Processor , .. 
speed range 4_1° °~l* 

Figure 6: FLB-p Speedup 

16    32 " P     "1      2     4      8     16    32 

S 

32 

16 

236 



variance (i.e., 4 - 16) and a large number of processors 
(P — 32) the speedup is lower compared to a small pro- 
cessor speed variance. Also, for fine-grain problems, the 
speedup is lower for a large number of processors. In 
both cases the reason is that there are not enough tasks 
to fully utilize the existing processors, and, as FCP and 
FLB are not specifically designed for heterogeneous pro- 
cessors, they do not always select the faster processors 
first. 

5   Conclusion 

In this paper we investigate the performance of the low- 
cost static list scheduling algorithm FCP and dynamic list 
scheduling algorithm FLB, modified to schedule applica- 
tions for heterogeneous systems. We show that making 
minimal modifications that do not affect their very low 
cost, FCP and FLB still obtain good performance in het- 
erogeneous systems, at a cost that is considerably below 
typical scheduling algorithms for heterogeneous systems. 

We show that the performance of the modified versions 
of FCP and FLB is generally comparable to algorithms 
specifically designed for heterogeneous systems, such as 
HEFT and ERT. There are only a few cases, mainly for 
irregular problems and large processor speed variance, 
where FCP and FLB's performance drops down to 32% 
and 63%, respectively. 

Considering the overall performance and their very low 
cost compared to the other algorithms, we believe FCP 
and FLB to be interesting compile-time candidates for 
heterogeneous systems, especially considering the large 
problem sizes that are used in practice. 
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Abstract 

Computational Grids are becoming an increasingly im- 
portant and powerful platform for the execution of large- 
scale, resource-intensive applications. However, it remains 
a challenge for applications to tap into the potential of Grid 
resources in order to achieve performance. In this paper, we 
illustrate how work queue applications can leverage Grids 
to achieve performance through coallocation. We describe 
our experiences developing a scheduling strategy for a pro- 
duction tomography application targeted to Grids that con- 
tain both workstations and parallel supercomputers. 

Our strategy uses dynamic information exported by a 
supercomputer's batch scheduler to simultaneously sched- 
ule tasks on workstations and immediately available super- 
computer nodes. This strategy is of great practical inter- 
est because it combines resources available to the typical 
research lab: time-shared workstations and CPU time in 
remote space-shared supercomputers. "We show that this 
strategy improves the performance of the tomography appli- 
cation compared to traditional scheduling strategies, which 
target the application to either type of resource alone. 

This research was supported in part by NSF grants ASC- 
9701333 and ASC-9318180, DoD Modernization contract 9720733-00, 
NPACI/NSF award ASC-9619020 and Cooperative Agreement ANI- 
9807479,   NIH/NCR grants  RR04050 and RR08605,   CAPES grant 

1. Introduction 

The aggregation of heterogenous resources into a Com- 
putational Grid [9] provides a powerful platform for the ex- 
ecution of large-scale resource-intensive applications. The 
simultaneous use of heterogeneous resources can greatly 
improve the performance of many applications, and permits 
researchers to run applications at the very large problem 
sizes critical to the discovery of new results. Although we 
are gaining considerable experience in the development of 
infrastructures which integrate distributed, heterogeneous 
resources, we have less experience developing applications 
which can leverage the distributed resources of the Grid to 
improve performance. 

One application which has profited from leveraging the 
processing power of the Computational Grid is the Paral- 
lel Tomography (GTOMO) application being used in pro- 
duction at the National Center for Microscopy and Imaging 
Research (NCMIR). GTOMO is an embarrassingly-parallel 
application implemented with a work queue scheduling 
strategy. It uses Globus [10] services to perform a 3-D re- 
construction from a series of images produced by NCMIR's 
electron microscope. As is the case with many laborato- 
ries, NCMIR owns a limited number of workstations (which 
are used as desktop machines and as a platform for parallel 
processing) and has access to supercomputer time. In this 

DBE2428/95-4, and DARPA/ITO under contract #N66001-97-C-8531. 

0-7695-0556-2/00 $10.00 © 2000 IEEE 
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paper, we describe a coallocation strategy for using both 
supercomputers and interactive workstation clusters to im- 
prove the execution performance ofGTOMO within the con- 
text of a typical lab environment. 

The scheduling strategy for GTOMO works at the 
application-level to target the application to both interactive 
workstation clusters and supercomputers. In an interactive 
workstation cluster, typically a time-shared computational 
platform, jobs begin execution immediately but share the 
CPU and network with other competing processes. In con- 
trast, job submissions to a supercomputer, typically a space- 
shared computational platform, must wait in a batch queue 
until the desired number of the machine's processors be- 
come available for dedicated use. The time an application 
spends waiting in the queue impacts its turnaround time, 
the time elapsed from the submission of the application by 
the user until all of the results are available. Because the 
queue wait time can be quite lengthy [20], an application's 
turnaround time can be relatively large compared to its exe- 
cution time.1 Furthermore, the queue wait times make it dif- 
ficult to use supercomputers and workstations concurrently, 
a strategy that could increase the processing power avail- 
able to an application. Our strategy avoids unpredictable 
queue time delays by adaptively submitting requests to the 
supercomputer that can start running immediately. 

The adaptive scheduler developed for GTOMO is framed 
as an AppLeS [2]. An AppLeS application scheduler inte- 
grates with the target application to develop a schedule for 
deploying the application in a shared, dynamic Grid envi- 
ronment [3,23, 22]. The scheduler makes predictions of the 
performance the application may experience on prospec- 
tive resources at execution time. Using these predictions, 
a potentially performance-efficient schedule for the appli- 
cation is identified and deployed. We developed a simple 
and effective coallocation strategy for the GTOMO AppLeS 
which targets both supercomputers and interactive worksta- 
tions. Our experiments show that the GTOMO AppLeS 
coallocation strategy improves the turnaround time of the 
application over strategies which target either interactive 
workstations alone or a parallel supercomputer alone. We 
believe that the GTOMO AppLeS coallocation strategy will 
be effective for other work queue applications as well. 

The next section provides a brief description of 
GTOMO. Section 3 describes our coallocation strategy for 
scheduling GTOMO over workstations and supercomput- 
ers. Section 4 presents the results of comparing our strategy 
against other scheduling alternatives. Section 5 discusses 
related work. Section 6 concludes the paper and discusses 
future work. 

'in practice, queue times may range from seconds to days. 

2. GTOMO Structure 

Tomography allows for the reconstruction of the 3-D 
structure of an object based on 2-D projections through it 
taken at different angles. Electron microscopy is a classical 
use for tomography. Biological specimens on the cellular 
and sub-cellular level are viewed with an electron micro- 
scope and their images are recorded at a number of differ- 
ent angles. These images are then aligned and reconstructed 
into 3-D volumes using analytic and iterative tomographic 
techniques [18]. 

Reconstructing a typically sized volume using a simple 
algorithm (filtered back-projection) currently takes several 
hours on a workstation. NCMIR-researchers have been in- 
terested in increasing the computation speed of the recon- 
struction for two reasons. First, they want to make use 
of more elaborate tomographic algorithms, which produce 
more refined 3-D volumes. These algorithms are more com- 
putationally intensive than the algorithms currently used. 
Second, NCMIR is interested in on-line tomography where 
the volume is rendered while the biologist is still collecting 
data on the microscope. This provides immediate feedback 
about the specimen being viewed and thus may prompt the 
researcher to change the experiment as a whole, or just some 
parameters of it (e.g., orientation and/or number of projec- 
tions). For this to be useful, a rough reconstruction would 
have to finish in 5 to 10 minutes. No single processor can 
achieve this presently, which led the NCMIR researchers to 
explore parallelism. 

The tomography application is highly amenable to par- 
allelism. Because specimens are only rotated about a single 
axis as images are acquired, for any slice orthogonal to the 
axis of rotation, all information for that slice falls onto a sin- 
gle line on each of the projections (see Figure 1). More im- 
portantly, any such slice can be reconstructed independently 
of projection information for the rest of the volume. This 
makes the reconstruction embarrassingly parallel. There- 
fore, the the tomographic reconstruction can naturally be 
implemented as a work queue. In our implementation, we 
use Globus services to support efficient application execu- 
tion within a heterogeneous, distributed environment. 

The structure of GTOMO is depicted in Figure 2. There 
are four types of application processes: driver, reader, 
writer, and ptomo. The driver controls the work queue: 
it assigns one work unit or slice to a free ptomo until no 
more slices remain. The driver is invoked by the user and 
starts up the other processes. The reader and writer are I/O 
processes and hence have direct access to the user file sys- 
tem. The reader reads input files off the disk and sends them 
to the ptomos for processing. The writer receives output 
files from ptomos and writes them to disk. Note that the 
reader and writer enable GTOMO to run across different 
file system domains. The ptomo receives input files from a 
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Figure 1. Projection geometry relating to a single-axis tilting experiment (from [12]) 

reader, does all the computational work, and sends output 
to a writer. In this study, we use one reader, one writer, and 
any number of ptomos. Due to the multi-threaded nature of 
Globus' Nexus communications library, one reader can ser- 
vice I/O requests for many ptomos simultaneously, and the 
same applies to the writer. 

3. Scheduling GTOMO 

Generally speaking, the set of potential resources avail- 
able to GTOMO consists of workstations w\,..., wu and su- 
percomputers si,..., sa. A request to run a process p on 
workstation w causes p to start immediately, but p time- 
shares w with other processes. To use a supercomputer 
s, one has to specify how many processors n will execute 
copies of p and for how long t. The n copies of p do not 
necessarily start immediately; they might wait in the queue 
for an indeterminate amount of time until n nodes become 
available for t seconds. However, supercomputer processes 
run over dedicated resources once they are acquired. 

Scheduling a GTOMO job consists of (i) choosing the 
requests to send to both supercomputers and workstations, 
and (ii) assigning work for the ptomos. For (ii), we use the 
work queue strategy shown in Figure 2 that assigns work on 
demand. For the first, we have to determine performance- 
efficient values of n and t for each available supercomputer 
s. Our goal is to select n and t in a way that minimizes 
GTOMO's turnaround time. Note that difficulty in pre- 
dicting supercomputer queue wait times make it difficult to 

find an optimal n and t [8, 20, 14]. We avoid the queue 
time prediction problem by using supercomputer nodes that 
are immediately available. Therefore, we minimize the 
turnaround time of GTOMO by scheduling its execution at 
once on workstations and any immediately available super- 
computer nodes. 

We assume that the supercomputer scheduler can provide 
us with the maximum values of n and t for which execution 
can begin immediately. In our implementation, this infor- 
mation is supplied by the showbf command provided with 
the Maui Scheduler [15], a scheduler available for the IBM 
SP2. The showbf command returns a set of backfill win- 
dows, bi,...,bg. Each bi = (n, t) where n nodes are available 
for immediate execution for the next t seconds. 

The GTOMO AppLeS scheduler uses the following al- 
gorithm to schedule the ptomos: 

for i = 1 to a: 
b = showbf (Sj) ; 
for j = 1 to 0: 

start bj . n ptomos on Sj for time bj.t 
for i = 1 to u: 

start ptomo on Wi 

Therefore, if backfill windows are available on any of the 
supercomputers, the job will be coallocated on those idle 
supercomputer nodes and workstations. If no backfill win- 
dows are returned by any of the supercomputers, the job 
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Figure 2. Application components of GTOMO. Solid lines represent transfer of input and output. 
Dotted lines denote control connections 

will run only on workstations. The reader is scheduled on 
the machine where the input data is located and the writer 
is scheduled on the machine where the output data will be 
placed. 

Note that the nodes immediately available in the SP2 
may not be available for the full duration of the application. 
Therefore, the GTOMO AppLeS scheduler has to cope with 
ptomo processes that detach themselves from the applica- 
tion before execution has completed. We have added a fault 
recovery mechanism to GTOMO, which enables us to treat 
this problem as a ptomo failure. Whenever a ptomo fails, 
the slice it was processing is returned to the work queue. 
We can use such a simple scheme because processing a slice 
has no side effects. The advantage of reducing this problem 
to fault recovery is, of course, that it also covers real faults. 

4. Experimental Results 

We denote the GTOMO AppLeS scheduling strategy as 
SP2Immed/WS since it adaptively combines both the im- 
mediately available SP2 nodes and workstations. In order 
to ascertain how this strategy performs, we compared it 
against other possible scheduling strategies: using worksta- 
tions only (WS), using only the nodes that are immediately 

available in the SP2 (SPHmmed), and requesting a predeter- 
mined number of nodes in the SP2 and probably waiting for 
them in the queue (SP2Queue). WS and SP2Queue respec- 
tively are the standard ways to use a cluster of workstations 
and a parallel supercomputer. 

We ran experiments on a cluster of 7 workstations avail- 
able in the Parallel Computation Laboratory (PCL) at U.C. 
San Diego and on the San Diego Supercomputer Center's 
SP2, one of the supercomputers available to NCMIR scien- 
tists. The PCL workstation cluster includes one 200 MHz 
UltraSPARC 2, a 110 MHz Sparc 5, a 85 MHz Sparc 5, and 
four 400 MHz Pentium IIs. The workstations are connected 
by a mixture of 10 and 100 Mbit/s ethernet subnets. The SP 
has 128 thin node POWER2 processors running at 160 MHz 
where processor pairs are interconnected by a 110 MB/s bi- 
directional network [21]. Other users were present on all 
resources during the experiments. Our dataset consisted of 
300 slices; each input slice was 238 KB and the output slice 
was 1.2 MB. 

We note that it is problematic to design experiments 
which compare multiple scheduling strategies under the 
same load and queue conditions for multi-user production 
environments. In such environments, the load and availabil- 
ity of resources change over time, so reproducibility of the 
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same ambient load conditions is generally not an option. In 
contrast, it is possible to achieve reproducibility using sim- 
ulation, but it may be difficult to represent dynamic load 
variation in complex heterogeneous systems authentically. 

For our experiments, we performed sets of runs of 
SP2Immed, SP2Immed/WS, WS, and SP2Queue back-to- 
back 2 hoping that experiments within the same set would 
enjoy roughly similar load conditions. Moreover, we moni- 
tored the number of free nodes in the SP2 and used this in- 
formation to discard execution sets in which the nodes avail- 
able to SP2Immed/WS and SP2Immed differed by more 
than two. In this case, we considered the load conditions 
for strategies in the same set to be different. This was the 
case in 37 (out of 100) experiment sets. We therefore ended 
up with 63 valid experiment sets. 

There are two other details to note in the design of our 
experiments. First, when we use only the resources immedi- 
ately available in the SP2, it might be that there are no nodes 
available to execute the application. In this case, we did not 
run the set of experiments until the necessary resources be- 
came available. This happened 9 times out of 63 attempts. 
Notice that by excluding this retry time, we present opti- 
mistic turnaround times for the SP2Immed method. A user 
using this method would have experienced longer delays. 

Second, we needed to decide on n and t when we used 
the SP2 in the traditional way (i.e., SP2Queue). Note that 
the determination of the best n requires an accurate queue 
time prediction. Since such predictions are not available, 
we rotated among values of n likely to be used by GTOMO 
users: 8, 16, and 32 nodes. We then executed benchmarks 
on the SP2 to determine the average processing time of 
one slice, £&. This enabled us to conservatively determine 
t given n (a conservative estimate is needed because a job 
is killed when its execution exceeds t) using the following: 

and SP2Immed/WS acquired in each set of experiments is 
shown in Figures 3-5(b). 

We see that the SP2Immed/WS strategy yielded the best 
performance in all cases except one (Figure 4, run 8). Fur- 
ther study indicated contention on the reader and writer due 
to the selection of too many ptomos (in this experiment set, 
we received the highest number of immediately available 
SP2 nodes). A future scheduler improvement would be to 
model the contention and incorporate it into the GTOMO 
AppLeS. 

We also assess the variability of each strategy using the 
coefficient of variance, cv, which measures the amount of 
variance relative to the mean [7]. It is defined as follows: 

standard deviation 
mean 

The SP2Immed/WS strategy exhibited the lowest cv in all 
groups of experiments. Table 2 shows the mean, coeffi- 
cient of variance, minimum, and maximum values for each 
strategy in each group of experiments. Table 2(a) shows 
the results of the experiment sets where SP2Queue used 
8 nodes, Table 2(b) shows the results for 16 nodes, and 
Table 2(c) shows the results for 32 nodes. As expected, 
SP2Queue's c„ is quite large due to the unpredictable wait 
times in the queue. While its turnaround time was some- 
times close to SP2ImmedAVS (544s for SP2Queue vs. 601s 
for SP2Immed/WS for the one time it beat SP2Immed/WS), 
its worst time was more than two orders of magnitude 
greater than SP2Immed/WS (88,323s for SP2Queue vs. 
601s for SP2Immed/WS). Also, we note that the SP2Immed 
strategy had a high cv in the SP2Queue(8) results due to 
the variability of number of nodes acquired. This variabil- 
ity was amortized in the SP2Immed/WS strategy because of 
the relatively low c„ of WS. 

t = 2x 
U x number of slices 5. Related Work 

The results of the 63 experimental sets are parti- 
tioned into three groups using the number of nodes re- 
quested for SP2Queue: SP2Queue(8), SP2Queue(16), and 
SP2Queue(32). Figure 3 shows the results of the experi- 
ment sets in which SP2Queue used 8 nodes, Figure 4 shows 
the results for 16 nodes, and Figure 5 shows the results for 
32 nodes. Figures 3-5(a) depict the turnaround times of 
the different strategies (WS, SP2Immed/WS, SP2Immed, 
and SP2Queue). Each set of bars in the figure depicts a 
set of four executions, one under each of the four strate- 
gies. Since several of the SP2Queue turnaround times did 
not fit on the graphs, Table 1 displays the turnaround times 
for the SP2Queue runs. The number of nodes SP2Immed 

2We used a 5 minute interval between experiments to ensure that the 
Maui scheduler had time to update its availability information. 

The GTOMO code is also used in the Computed Micro- 
tomography (CMT) Project at Argonne National Labora- 
tory (ANL) [26, 27]. In contrast to NCMIR, projections 
are collected from a x-ray source at the Advanced Photon 
Source (APS) located at ANL. Their work has focused on 
on-line tomography where data is collected at APS, trans- 
ferred to a 128 node SGI Origin 2000 for processing, and 
then transferred back to the user for visualization. Cur- 
rently, they are able to deliver a reconstructed image to the 
user within minutes after data acquisition has completed. 
The CMT and NCMIR versions of GTOMO are currently 
being integrated as part of the NPACI Telescience Alpha 
Project [25]. 

Application scheduling for Grids is a recent and very ac- 
tive area. Existing work has focused primarily on resource 
discovery and scheduling [4, 17, 10, 28] and coallocation 
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run 8 nodes 16 nodes 32 nodes 

1 685.0235 591.2153 1293.9811 
2 759.2754 581.2684 532.6011 
3 698.2693 20483.5053 536.9106 
4 3077.8569 723.0844 541.6972 

5 701.3900 17268.0273 658.2000 
6 708.8977 2097.6415 565.0041 

7 691.5886 579.8207 27480.0918 
8 1805.0212 543.7824 9868.9585 
9 6163.5884 581.0620 2267.3595 
10 687.5382 615.1581 614.1135 
11 689.0494 793.9383 17735.0314 

12 682.3540 9193.4053 39286.8783 
13 700.8448 742.4905 34642.5641 
14 4625.1468 2164.4710 1120.0531 

15 1260.1495 621.3329 88322.6571 

17 3249.5812 574.9321 1809.4320 
18 710.8228 593.0303 664.4993 

19 718.0481 1203.5411 6815.6301 
20 721.3216 575.2712 607.1331 
21 719.9383 33715.8070 29675.0315 
22 707.4284 580.8794 
23 717.6290 

Table 1. Turnaround times for SP2Queue 

strategy mean Cv min max 

SP2Immed 1946.68 2.10 504.81 19694.46 
SP2Immed/WS 437.99 0.17 346.71 554.50 
WS 775.98 0.19 596.26 1133.44 
SP2Queue 1430.94 1.05 682.35 6163.59 

(a) SP2Queue(8) results 

strategy mean Cv min max 

SP2Immed 660.58 0.28 502.75 1105.61 
SP2Immed/WS 402.31 0.17 342.03 600.98 
WS 777.53 0.19 588.76 1127.03 
SP2Queue 4515.41 1.94 543.78 33715.81 

(b) SP2Queue(16) results 

strategy mean Cv min max 

SP2Immed 659.30 0.33 500.24 1262.72 
SP2Immed/WS 397.37 0.12 342.70 519.13 
WS 789.69 0.20 587.68 1128.41 
SP2Queue 13251.89 1.66 532.60 88322.66 

(c) SP2Queue(32) results 

Table 2. Summary results of experiments 
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among workstations [3,1, 19,22,23,9]. The work reported 
herein extends the target domain for GTOMO by targeting 
both parallel supercomputers and interactive resources si- 
multaneously. 

6. Discussion and Conclusions 

In this work, we show how to combine workstations and 
supercomputers to run GTOMO, a work queue application 
used in production at NCMIR. Our solution automatically 
selects all resources immediately available across the sys- 
tem. We leverage the Maui Scheduler to obtain informa- 
tion on immediately available SP2 nodes. This strategy has 
the advantage of not requiring predictions of how long re- 
quests wait in the supercomputer queue. Our experimental 
results show that the GTOMO AppLeS scheduling strategy 
consistently outperforms three other strategies that can be 
used for scheduling in an typical laboratory setting where 
researchers have access to a local cluster of workstations 
and supercomputer time. 

We have learned three interesting lessons about Compu- 
tational Grids in general as a result of this effort. First, the 
interface exported by the resource scheduler has great im- 
pact on application schedulers. In fact, we can implement 
our strategy in a very straightforward manner thanks to the 
Maui Scheduler's showbf command. On the other hand, 
the Maui Scheduler (as with other supercomputer sched- 
ulers, for that matter) precluded us from trying something 
more sophisticated due to the difficulty in predicting queue 
times for supercomputer requests. Emerging efforts such 
as S3 [6], GARA [11], and more generally, the Grid Forum 
Scheduling Working Group [ 13] are working to change this. 

Second, evaluating solutions for real applications run- 
ning over production environments has proven to be diffi- 
cult due to the impossibility of reproducing the system load 
and queue conditions for comparison runs. Others have en- 
countered the same problem. Indeed, a simulation environ- 
ment specifically targeted toward Grids such as the Bricks 
project [24], the MicroGrid [16], or the work described 
in [5] would be very useful. 

Third, fault tolerance is likely to be even more important 
in Grid computing than it is in parallel computing. For our 
solution in particular, fault recovery was a natural way to 
deal with the time expiration of SP2 requests. In general, 
using autonomous and distributed resources increases the 
chance that some component of the application will fail. 

The GTOMO AppLeS scheduler has been incorporated 
with the production version of GTOMO at NCMIR and is 
used daily be researchers. Current work involves extending 
the applicability of the scheduler to additional resources and 
different scenarios of the application. 
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Abstract 

This paper examines the issues surrounding efficient ex- 
ecution in heterogeneous grid environments. The perfor- 
mance of a Linux cluster and a parallel supercomputer is 
initially compared using both benchmarks and an applica- 
tion. With an understanding of how benchmark and appli- 
cation performance is affected by processor and intercon- 
nect speed, a comparison is made with the bandwidth and 
latencies available in a grid testbed. Of significant concern 
is the fact that the available communication bandwidth and 
latencies have a dynamic range of 3 to 4 orders of mag- 
nitude while processor speeds have a range of about one 
half order of magnitude. Also, while both processor speed 
and network bandwidth are increasing very rapidly, simple 
propagation delay will become more significant in the net- 
work latencies seen by many grid applications. That is to 
say, the pipes in a grid will be getting fatter but not commen- 
surately shorter. How are we to effectively utilize such an 
infrastructure? Clearly an attractive approach is to require 
sufficient concurrency in the application such that a coarse- 
grain, data-driven model of execution can be used to hide 
latencies while hopefully keeping context switching over- 
heads low. If the "spatial component" of an application 
is understood, then runtime systems could also apply estab- 
lished techniques like caching, compression, estimation and 
speculative pre-fetching. Ideally this low-level performance 
management should be encapsulated in an easy-to-use ab- 
straction. 

1    Introduction 

Cluster computing has been gaining wide acceptance 
over single-machine, massively parallel computing due to 

its undeniable cost-effectiveness for suitable applications 
[4]. Since clusters are built from commodity hardware, 
however, they typically have slightly slower processors 
and lower communication bandwidths than "big iron" ma- 
chines. Hence, suitability in this context means simply that 
either (1) an application must be more tolerant of higher 
communication costs, or (2) the user's "mission require- 
ments" are lenient enough to accept the lower performance 
at a much lower dollar cost. 

The increasing potential of grid computing, however, 
means that users and applications will be faced with envi- 
ronments that have an even greater heterogeneity of com- 
munication abilities. [8]. While this potential includes the 
flexible harnessing of resources on a scale not previously 
considered for individual applications, it also means that 
achieving efficient use of those resources will be harder than 
ever. This paper endeavors not to present any solutions to 
this problem but to quantitatively demonstrate the bounds of 
the problem as motivation for exploring candidate program- 
ming and execution models that can effectively operate in a 
grid environment. 

We will do this by comparing the performance of a paral- 
lel machine, a cluster, and a grid testbed by several means. 
These are specifically the Cray T3E [13], a Pentium clus- 
ter with fast ethernet, and the Globus GUSTO testbed [7], 
which are representative of their respective classes. (Dif- 
ferent examples of each class could be used but the funda- 
mental relationships between them would not be altered.) 
The Cray T3E used here is the T3E-1200 at the CEWES 
Major Shared Resource Center in Vicksburg, Mississippi. 
It has 512 DEC Alpha 21164 processors clocked at 600 
MHz. with 128 MB of memory per processor. Its 3D torus 
dedicated interconnect is capable of 650 MB/sec. (theoret- 
ical peak) in both directions. The cluster used here is at 
the Aerospace Corporation. It has fourteen Intel Pentium 
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II processors clocked at 400 MHz. running Red Hat Linux 
with 192 MB of memory per processor. They are connected 
by 100 Mbit/sec. fast ethernet through a Baystack 450-24T 
switched ethernet hub. The Globus GUSTO testbed is dis- 
tributed across many adminstative sites and includes a large 
variety of machines. The current configuration of GUSTO 
can always be examined by using the Metacomputing Di- 
rectory Service (MDS) Browser on the Globus web site 
(www.globus.org). 

These "machines" (including the grid) will be compared 
using parallel benchmarks, a parallel application, and a dis- 
tributed performance monitoring tool. We will look at the 
relative processing speeds and communication speeds. We 
then discuss the implications of achieving efficiency in an 
increasingly heterogeneous computing infrastructure. 

2   A Benchmark Comparison 

To compare the performance of a Linux cluster and a par- 
allel supercomputer, we use the NAS Parallel Benchmarks 
[12]. These benchmarks were developed by the Numeri- 
cal Aerodynamics Simulation (NAS) group at NASA Ames 
with the goal of being able to make more reliable quanti- 
tative performance comparisons among parallel machines. 
These benchmarks consist of numerical kernels for a wide 
range of computing problems. Rather than a single "micro- 
benchmark" that may exercise only one aspect of a machine, 
these benchmarks were chosen to exercise all aspects of 
a machine, individually and in combination. Specifically 
these benchmarks exercise communication, integer compu- 
tation and floating-point computation. 

For brevity and conciseness, we only need to present the 
results of two benchmarks that illustrate the major differ- 
ence between these two platforms. For each benchmark, 
the per processor performance is plotted as a function of 
the number of nodes. These two benchmarks involve inte- 
ger computation, so the measurement metric is millions of 
operations per second per node: Mop/sec/node. This allows 
the relative performance and scalability on each platform to 
be shown in one graph. For each benchmark, there are also 
three classes, A, B, and C, that correlate to three different 
problem sizes, with A being the smallest and C being the 
largest. Hence, for each benchmark graph, there are three 
curves (one for each class) for both platforms. For con- 
sistency and ease of comparison, the same point symbol is 
used for each platform. The same line style is used for each 
benchmark class. 

Figure 1 shows the Random Number Generation bench- 
mark. This is an "embarrassingly parallel" benchmark since 
the parallel tasks (generating random numbers) are com- 
pletely independent, i.e., after the tasks are started, there is 
absolutely no communication or synchronization between 
nodes. As expected, both platforms show good scaling (flat 

curves). The Alpha processors, however, are approximately 
4x faster than the Pentium IIs. 

Figure 2 shows the Integer Sorting benchmark. Integer 
sorting is not a computationally complex task since it pri- 
marily requires the comparison of integers. It can, however, 
require massive amounts of communication as data values 
are relocated to their sorted positions. Here we see that the 
T3E exhibits not only faster processing but also much bet- 
ter communication scaling. For the cluster, the per-node 
performance falls off dramatically as the number of nodes 
increases. 

These two benchmarks dramatically illustrate the per- 
formance differences between parallel and distributed com- 
putations that are compute-bound versus communication- 
bound. In the sorting benchmark, the communication band- 
width is clearly dominating the overall performance. In 
terms of relative performance and scalability, the other NAS 
Parallel Benchmarks fall inbetween these two extremes. 

3   An Application Comparison 

In this section, we use an application to compare the 
performance of these two platforms. That application 
is ALSINS (Aerospace Launch Systems Implicit Navier- 
Stokes), a computational fluid dynamics (CFD) code devel- 
oped by the Fluid Mechanics Department at Aerospace and 
used to investigate flow fields of the Delta-II and Titan-IV 
launch vehicles [16, 15]. 

CFD works by discretizing the space around a physical 
object into "cells" and computing the flux of material be- 
tween cells by solving the Navier-Stokes equations for a 
sequence of time steps until the solution has converged to 
a final state. CFD is typically parallelized by decompos- 
ing the discretized spatial domain and assigning different 
blocks to different processors. The algorithm has an iter- 
ative structure consisting of (1) exchanging neighbor data, 
(2) computing the minimum time step among all blocks, 
and (3) computing the flux for the current time step. For 
ALSINS, this is implemented using MPI. 

With this basic structure, there are two hard synchroniza- 
tions per iteration: exchanging neighbor data and the mini- 
mum time reduction. Aside from potential synchronization 
delays, the minimum time reduction is a very quick opera- 
tion since it only involves finding the minimum of a single 
floating-point time step value across all nodes. The time re- 
quired for communication and the local flux computation, 
however, depends on the data block size allocated to each 
node. Note that it is possible to improve efficiency by over- 
lapping communication and computation for a given itera- 
tion. The rate of convergence for the solution depends on 
the geometry of the test case and can be on the order of 
105 iterations. The speed at which iterations can be com- 
puted depends on the total size of the discretized space and 
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the number and speed of the processing nodes used on the 
problem. 

The test case computed using ALSINS is the flow field 
around the base of a Centaur launch vehicle with both en- 
gines running with exhaust plumes. Figure 3 shows a flow 
field computation done on the Pentium cluster. 

ALSINS performance was measured and analyzed us- 
ing NetLogger [14], a tool developed at Lawrence Berke- 
ley Lab for analyzing distributed systems. NetLogger logs 
timestamped, application-defined events either locally or to 
a remote logging daemon. The NetLogger visualization 
tool, nlv, can subsequently display these events as grouped, 
color-coded sets of events, called lifelines, overtime. Other 
events or statistics associated with a scalar values, such as 
cpu load, can be also be displayed as loadlines. 

ALSINS with the Centaur Double Nozzle test case was 
run on both platforms in two versions using overlapped and 
non-overlapped communication. The NetLogger visualiza- 
tion display for two representative iterations of the over- 
lapped code version on the Pentium cluster is shown in 
Figure 4. This shows the color-coded, per-iteration life- 
lines for each node. Each lifeline consists of six events 
tags: REDUCE.TAU, START.COMM, START-SOLVER, 
SOLVER-DONE, COMM_DONE, and COPIES_DONE. 
Loadlines for the utilization (number of processors actively 
engaged in communication or computation) and the effi- 
ciency (utilization over the duration of the computation) are 
also shown. 

These results show us that per iteration, ALSINS is 
«2.9x faster on the T3E than on the cluster (4.75 seconds 
vs. 1.63 seconds). Part of this difference is due to the faster 
processors on the T3E and also a memory subsystem aug- 
mented with stream buffers. Of this iteration time, however, 
there is «19% idle time due to the load imbalance. Hence, 
there is an efficiency of «81% where processors are busy 
doing communication or computation. On the cluster, com- 
munication takes «16% of the iteration time. On the T3E, 
communication takes «2%. 

4   A Bandwidth ^benchmark Comparison 

It is certainly not news that communication bandwidth 
plays a direct role in determining parallel application per- 
formance. But in the scope of emerging computational in- 
frastructures, however, what is the depth of the communica- 
tion hierarchy? What is the range of impact that communi- 
cation infrastructures can have, will have, on distributed, 
parallel applications? We examine this question in two 
parts. First, we do a simple MPI bandwidth test between the 
Pentium cluster and the T3E. Second, we compare these re- 
sults with a histogram of host pair bandwidths on the Globus 
GUSTO testbed [7]. 

The MPI bandwidth test program we used tests a variety 

of communication patterns with differing number of nodes 
and different data volumes (message sizes). We ran this pro- 
gram on both the Pentium cluster and the T3E. For brevity 
and conciseness, we present only the most relevant data in 
Table 1. In this particular test, bidirectional communica- 
tion occurs among all nodes simultaneously for two to eight 
nodes. This means that every node is sending and receiving 
a 1 MB message from all other nodes at the same time to 
stress the limits of performance. 

The cluster is theoretically capable of 100 Mbit/sec. or 
12.5 MB/sec. For two nodes, a bidirectional bandwidth of 
over 10 MB/sec, or 80 Mbit/sec, is achieved. This is the 
expected end-to-end result since overhead in the message- 
passing process, e.g., buffer copying and device driver 
scheduling, etc., means that an application will always see 
less bandwidth than the physical medium is "clocked" at; in 
this case, fast ethcrnet. Note, however, that as more nodes 
are added to the test, the realized bandwidth sinks to about 
4 MB/sec. This indicates that contention for resources is 
occurring somewhere. (While the hub is technically non- 
blocking, it may still have a backplane that is becoming sat- 
urated as the aggregate bandwidth demand increases.) For 
the T3E, we see that two nodes arc capable of over 300 
MB/sec. For eight nodes, the average bidirectional band- 
width is still over 200 MB/sec. This means that the ded- 
icated communication hardware on the T3E is 30x to 50x 
faster than fast ethcrnet in a cluster. (This might lead one to 
conclude that much of a large machine's cost is in its dedi- 
cated interconnect.) 

How do these bandwidths compare with that typically 
available in a grid environment? To answer this question, 
we made use of the Gloperf network performance data that 
is periodically uploaded into the Globus Metacomputing 
Directory Service (MDS) [6]. The MDS is based on the 
Lightweight Directory Access Protocol (LDAP) and pro- 
vides an information naming scheme and repository for all 
manner of grid computing information, e.g., available hosts, 
number of nodes, current load, network interfaces, gate- 
keeper contact information, etc. It is also used to record 
bandwidth and latency data periodically measured between 
host pairs by Gloperf. 

Gloperf [10] is a simple tool that is automatically de- 
ployed on each Globus host. At Globus boot-time, the 
Gloperf daemon will register itself in the MDS and then 
query the MDS for all other Gloperf daemons. The daemon 
will then make periodic bandwidth and latency tests with all 
other daemons and store the results in the MDS. (The initial 
implementation of Gloperf did measurements between all 
pairs which does, of course, result in non-scalable behavior. 
The latest implementation uses a simple group scheme to 
produce hierarchies of measurements.) 

The actual Gloperf measurement mechanism is bor- 
rowed from netperf.   Gloperf is configured to perform a 
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Figure 3. The Centaur Double Nozzle Test Case Computed on a Pentium Cluster. 
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Cluster Bandwidth, MB/sec. 
Avg. NodeO Nodel Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 

10.348 10.379 10.317 
8.076 10.225 6.957 7.047 

8.730 10.028 7.561 9.910 7.421 

7.869 9.979 7.941 6.675 8.135 6.616 

6.472 6.689 6.216 7.035 6.207 6.354 6.333 

6.778 8.355 7.276 6.483 5.868 7.194 6.445 5.822 

4.489 6.072 4.907 4.948 4.426 4.167 3.942 3.727 3.726 

T3E Bandwidth, MB/sec. 
Avg. NodeO Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 

319.252 319.101 319.402 
253.973 253.161 253.259 255.498 

224.496 218.161 211.452 241.411 226.958 

194.584 194.335 190.279 219.954 183.446 184.905 

203.172 215.007 181.744 242.082 184.683 213.967 181.548 

222.200 231.971 193.002 282.610 198.681 238.679 217.750 192.702 

211.705 212.216 191.008 236.182 200.079 235.900 222.200 205.023 191.024 

Table 1. Bandwidth tests for T3E and Cluster. 

10-second, TCP "packet-blasting" test and measure the data 
volume sent. Gloperf also measures the number round-trips 
that can be made in a 10-second period. The sequence of 
hosts and test types (bandwidth and latency) are random- 
ized in order. Since Gloperf does untuned TCP testing from 
the user-level, it essentially observes the same end-to-end 
performance that an application would see. 

To extract the Gloperf data from the MDS, a simple pro- 
gram would periodically snapshot the MDS Gloperf data 
into log files. Scripts were then used to extract just the band- 
width and latency data and eliminate duplicates. Figure 5 
shows histograms of Gloperf bandwidth and latency mea- 
surements on GUSTO beginning in August and continuing 
through October, 1999. This represents 18615 unique mea- 
surements between 3405 unique host pairs over 138 unique 
hosts; mostly in North America but including a few in Eu- 
rope, Asia, and Australia. Note that these histograms em- 
ploy log-sized bins that make the mode of the distributions 
much more evident. While it was not uncommon to ob- 
serve bandwidths as high as 96 Mbits/sec, the median band- 
width for this distribution is 2.2 Mbits/sec. and the 90th per- 
centile is 15.1 Mbits/sec. While the latency distribution has 
a much narrower (rhinokurtotic) mode, common latencies 
span three orders of magnitude. Here, the median is 57.35 
msec, and 90% of the latencies are above 5.5 msec. 

It is clear that in a grid environment that can include clus- 
ters and "big iron" machines, there can be a 3 to 4 order of 
magnitude dynamic range in the bandwidth and latencies 
available to an application. 

5   Discussion and Implications 

What are the implications of these observations for het- 
erogeneous cluster performance and grid performance? The 
argument can be made that there is a much greater dynamic 
range in the the available communication bandwidths than 
there is in processor speeds; 3 to 4 orders of magnitude ver- 
sus one half order of magnitude. We note that since the 
graphs in Figure 5 represent capacity that is shared among 
other non-Globus traffic, one could argue that in terms of 
a shared resource, processors could exhibit the same range 
of available cycles. A counter-argument, however, is that 
one typically has greater control over the compute resources 
rather than the network; even if one does not have com- 
plete control of the processors, the processors may be batch 
scheduled. Regardless of such arguments, in many cases 
there will be a significant differential between the available 
processor speeds and network speeds. 

What is the implication of this processor-network dif- 
ferential? We note that processor speeds have been in- 
creasing according to Moore's Law (doubling every 18 
months). Memory bandwidth, however, has been increas- 
ing much more slowly, by some estimates as little as 7% 
per year. To cope with this processor-memory differential, 
hardware designers have had use increasingly larger caches 
and to employ numerous techniques to overlap operations 
to hide latency, such as speculative execution, prefetching, 
and hardware multithreading. This has also motivated the 
research in Processing-In-Memory (PIM) architectures [9] 
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where much higher bandwidths between memory and the 
processing units can be realized. 

Fortunately network bandwidths seem to be increasing 
at least as fast as Moore's Law, if not faster, since around 
1994 (A.W. - After Web). Unfortunately this improvement 
in bandwidth will not affect the speed of light. A signifi- 
cant part of latencies present in a grid is simply propaga- 
tion delay. As an example, the end-to-end, application-level 
message-passing latency between Los Angeles and Chicago 
can already be as much as 33% propagation delay. Clearly 
this limits the reduction in latencies that are physically pos- 
sible in a grid computing environment. Hence, in ten years 
time, we might expect the bandwidth distribution in Fig- 
ure 5 to move to the right by an order of magnitude. While 
the possible relative reduction in latency will depend on the 
geographic separation among the compute resources, it is 
safe to say that many latencies in the latency distribution 
will not decrease as much. The bottom-line is that pipes 
will get fatter but not commensurately shorter. 

How exactly will this relative change in bandwidths, 
latencies and processing speeds affect application perfor- 
mance? Work done by Martin, et al., is relevant to this ques- 
tion [11]. They examined the effect of latency, overhead and 
bandwidth on cluster performance. For this work, latency is 
defined as the end-to-end delay in sending a message from 
its source to its destination. Overhead is denned as the time 
that a processor is engaged in message transmission or re- 
ceipt during which it cannot do anything else. Bandwidth is 
inversely defined in terms of the "gap" between consecutive 
message sends, i.e., messages per unit time. 

For a set of applications on an UltraSPARC cluster us- 
ing Myrinet A set of applications were run on an Ultra- 
SPARC cluster using Myrinet where the LANai processor 
on the Myricom network interface card was used to emulate 
a range of latencies, bandwidths and overhead. The appli- 
cations in this experimental context were much more sen- 
sitive to overhead than to bandwidth or latency. For these 
applications, one is forced to conclude that since the ad- 
ditional per message overhead was unavoidable, it directly 
affected the application's running time, while at least part of 
the additional latency was naturally overlapped or hidden by 
the structure of the application. It was also shown that the 
applications had relatively modest bandwidth requirements 
compared to the dedicated network's capacity. Most appli- 
cations did not slow-down significantly until the bandwidth 
was effectively reduced to approximately 12% of its normal 
capacity. Indeed, even the increased latencies in this clus- 
ter were well below those found in a grid and the reduced 
bandwidths were above the 90th percentile. In a general 
grid environment, these results would be different. 

In the light of these considerations, the next question to 
ask is "How tightly coupled do distributed, heterogeneous 
grid applications need to be or can be?" Clearly not all ap- 

plications are tightly coupled or need to be, in the sense 
that a CFD code is tightly coupled. Applications that con- 
nect unique resources, such as X-ray sources, with visual- 
ization devices, such as CAVEs, typically rely on a func- 
tional decomposition that is more tolerant of the dynamic 
range of bandwidth within a machine and between ma- 
chines. Nonetheless, all distributed applications will run 
better with faster networks. This is not news. In the con- 
text of the World Wide Web, most people probably feel that 
downloads are too slow. In part, the notion of quality of ser- 
vice is to provide a "floor" to the performance that a user 
receives from a shared resource, e.g., a network. 

The opinion is also held that flexibility is actually more 
important for grid applications than performance manage- 
ment. For a large class of applications, this will be true.^ 
The grid is being designed to make it as easy as possible to 
compose disparate resources such as specialized databases, 
unique instruments, and embedded systems. For another 
large class of applications, however, the grid holds the 
promise of applying very large amounts of aggregate com- 
pute power to very large problems that is not economically 
feasible any other way. Hence, what can be done to manage 
performance across these bandwidths and latencies? 

Cluster computing can, again, be used as a point of de- 
parture. Several projects have been reported that deal with 
programming clusters of SMPs, or clumps, where the het- 
erogeneity of in-memory communication vs. network com- 
munication is the central issue. The SIMPLE model [2], for 
example, provides a simple set of collective operations that 
are handled by different modules for intra-node and inter- 
node communication. KeLP and its Data Mover [5, 1] take 
a different approach. KeLP defines a set of meta-data ab- 
stractions, such as Region, Map, FloorPlan and Mo- 
tionPlan, that capture the geometry of block-structured 
decomposition and the resulting data dependencies in par- 
allel execution. The current Data Mover implementation 
uses a private MPI communicator and asynchronous point- 
to-point messages to actually move the data. 

An important issue for communication libraries or run- 
time systems that support higher-level semantics, however, 
is that of irregular communication; communication that 
does not follow a regular, geometric pattern and may be dy- 
namic and not known until run-time. This issue has been 
faced by the High Performance Fortran (HPF) community 
for some time. This has given rise to an inspector-executor 
paradigm where an inspector routine does a run-time analy- 
sis of array accesses for communication and derives a com- 
munication schedule that is then used by the executor rou- 
tine to actually perform the communication. Since the in- 
spector routine can be very time-consuming, there has been 
work done on minimizing its overhead and reusing any 
schedules produced [3]. 

For some applications, it will be best to use a program- 
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ming model that does not hide the heterogeneity of the un- 
derlying resources and requires the application builder to 
hand-code the application to the resources. There are, of 
course, great benefits in not having to hand-code applica- 
tions to tolerate bandwidths and latencies. For these situa- 
tions, dealing with a heterogeneous infrastructure means ad- 
dressing the fundamental problems of (1) data locality and 
(2) scheduling, where scheduling in this context means both 
communication and execution scheduling which are, in fact, 
interdependent. A clearly attractive approach is to require 
sufficient concurrency in the application such that a coarse- 
grain, data-driven model of execution can be used. The 
initial challenge is to hide latency with concurrency while 
keeping context switching overheads low. The next chal- 
lenge is to encapsulate this low-level performance manage- 
ment into an easy-to-use package or component. If this is 
possible, then other established techniques such as caching, 
compression, estimation and speculative pre-fetching, could 
also be used. 

Finally we note that applications tend to have their own, 
natural "problem architecture" and some, by their very na- 
ture, are more tightly coupled than others. As soon as a 
distributed implementation is considered, it imparts a three- 
dimensional or spatial "density distribution" to the compu- 
tation. This density and the available bandwidth and latency 
become part of the algorithmic complexity governing per- 
formance. Some applications will have unavoidable spa- 
tial constraints that will be best addressed by recasting the 
problem and its solution in a more loosely coupled fash- 
ion. The Barnes-Hut algorithm, for example, solves the 
N-Body problem in less than 0(n2) complexity by repre- 
senting space with an octree such that from any given body, 
groups of far away bodies can be represented as a point 
source. 

The challenge for grids and heterogeneous computing, 
however, is to minimize the class of applications that have 
to be recast by developing systems and runtimes that under- 
stand the "spatial component" of an application and can act 
accordingly to provide the best overall performance with the 
available communication resources. This is one of the goals 
of the Grid Forum's Advanced Programming Models Work- 
ing Group (www.gridforum.org). The need for such "spa- 
tial component" management will only increase as systems 
like long-latency satellite networks and low-power mobile 
networks come online with high-performance compute sys- 
tems such as hardware multithreaded processors that toler- 
ate deep memory hierarchies. 
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Abstract 
The Portable Parallel/Distributed Debugger project at 

the NASA Ames Research Center has built a debugger for 
applications running on heterogeneous computational 
grids. It employs a client-server architecture to simplify the 
implementation, and its user interface has been designed to 
provide process control and state examination functions on 
computations with a large number of processes. The 
debugger can find processes participating in distributed 
computations even when those processes were not created 
under debugger control. In addition to working in a com- 
putational grid environment, these techniques also work on 
other distributed memory jobs such as those initiated by 
mpirun. 

1. Introduction 

While tools for debugging computationally intensive 
programs have improved substantially in the last few years 
[5] [22], there are two areas where further improvement is 
needed. First, existing tools do not cope well with applica- 
tions running on heterogeneous computing platforms. Sec- 
ond, they do not provide sufficiently abstract and scalable 
operations for examining and controlling execution. 

This combination of inadequacies is particularly felt by 
programmers building applications to run on large-scale 
computational grids, such as NASA's Information Power 
Grid (IPG) [12]. The IPG is based on the Globus toolkit [7] 
and can give an application access to a variety of comput- 
ing resources across the country. Debugging such a compu- 
tation using existing techniques is at best very tedious. In 
the worst case, it may not be possible. 

In order to provide a reasonable debugging system for 
computational grid computations, the Portable Parallel/ 
Distributed Debugger (p2d2) project in the Numerical 
Aerospace Simulation (NAS) Division of the NASA Ames 

*This work was supported through NASA contract NAS 2-14303. 

The screen dumps in this paper have been modified from their normal 
screen appearance in order to aid reproducibility. The modifications 
include color changes as well as a resizing of some components from their 
defaults. 

Research Center has taken their existing debugger and 
extended its capabilities. The original goals of the project 
in 1994 were to build a debugger that was both portable 
across a variety of target machines and whose user inter- 
face scaled to be able to debug a large number of processes. 
(At that time we interpreted that to mean at least 256 pro- 
cesses.) The result ofthat initial effort was a debugger [10] 
that ran on a variety of Unix-based machines and could be 
used on both MPI [15] and PVM [21] applications. 

In this paper we report on the effort to enhance that 
debugger to work in a computational grid environment. We 
begin with a discussion of how p2d2's architecture accom- 
modates the debugging of heterogeneous computations. In 
section 3 we look at user interface features that enhance 
scalability. Following that we discuss how p2d2 meets the 
requirements imposed by a computational grid environ- 
ment. In section 5 we examine how heterogeneity affects 
the user interface components. 

2. An architecture to support heterogeneity 

Debuggers, even serial ones, are inherently nonportable. 
Their basic task is to take a user request at the source level, 
map it to the machine level where it can be performed, and 
then map the result back to the source level. To accomplish 
this they rely on information and services from a variety of 
sources. For example: 

• the compiler provides source line and symbol map- 
ping data, 

• the operating system provides services for starting 
and stopping processes, and 

• the computer architecture defines a trap instruction 
that can be used for implementing breakpoints. 

The most successful portable debugger, gdb from the 
Free Software Foundation [6], defines abstract interfaces 
for many low-level functions in a debugger, such as read- 
ing values in another process's address space. The gdb 
source distribution includes machine specific implementa- 
tions for those functions, and at compile time it determines 
which code needs to be present to build a debugger for a 
given platform. One problem that gdb does not attempt to 
solve is that of debugging heterogeneous computations, 
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FIGURE 1. The client-server architecture of p2d2. 

where these portability issues must be solved in a way that 
enables different target platforms to be available at the 
same time. 

In the p2d2 project we wanted to address the portability 
issues at a higher level of abstraction than gdb did. We used 
a client-server architecture to isolate the platform-depen- 
dent code in a debugger server (see Figure 1). The server 
defines a collection of C++ objects that would exist in a 
debugging session, such as Process and Stack. The cli- 
ent consists of those parts of the debugger that deal with 
the distributed nature of the target computation and with 
the user. It can be implemented in a highly portable fash- 
ion. For example, if the client has a Process *p, it could 
resume execution in it by invoking the operation 

p->Continue(). 
The object collection is discussed in detail in a previous pa- 
per [11]. 

In the initial version of p2d2 we decided to build a 
debugger server based on gdb. The main reason for this 
was that our debugger would be easily portable to any plat- 
form where a gdb implementation existed—thus saving us 
a huge amount of implementation effort. In the gdb-based 
implementation of p2d2 (see Figure 2) the remote server of 
Figure 1 is replaced with an instance of gdb. The debugger 
server is then an implementation of the C++ objects that 
uses gdb commands to perform any requested debugger 
server requests. In effect, it maps operations on the C++ 
objects into gdb commands and then maps the gdb 
response back to the object level. 

To continue the example above, if the client invokes a 
continue operation on a process with "p->ContinueO" 
the server sends a "cont" request to the gdb controlling 
that process and marks the process as "running". When that 
process hits a breakpoint, gdb reports it to the debugger 
server which analyzes the reason for stopping and updates 
its own picture of the process state. In doing so, it may send 
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FIGURE 2. The gdb-based implementation of 
p2d2. 

other requests to gdb, such as "where" to find out what the 
runtime stack looks like. When it has completed its picture 
of the process state, it notifies the client that the process has 
stopped. 

3. User interface basics 

From a user's perspective, a debugger has two primary 
functions: 

• state examination, where the user can scrutinize 
expression values, source code, run-time stack, and 
other components of the current computational 
state; and 

• process control, where the user is permitted to start 
execution of the target computation and to describe 
circumstances under which it should stop. 

The challenge in a multiprocess debugger is to provide 
these functions in a way that scales well to a large number 
of processes. In particular, the challenge for state examina- 
tion is to provide both an abstract, top-level view of the 
computation as well as information about a single process 
that has the same level of detail that a serial debugger would 
have. The challenge for process control is to provide a way 
to propagate a single process control request, such as Con- 
tinue, to a collection of processes, thereby relieving the user 
from the burden of directing processes individually. 

To address the state examination challenge, p2d2 
defines three zooming levels, providing a varying degree of 
abstraction versus detail. 

• A top-level view, called the process grid, provides a 
programmable display showing a few bits of infor- 
mation about each of the processes in the computa- 
tion. 

• An intermediate-level view provides a line of text 
summarizing the state of each process in a user- 
selected set called the focus group. 

• A low-level view provides full information about a 
single, user-selected focus process. 

The selection of the focus group and the focus process are 
done in the process grid display. When the user changes one 
of the selections, the display is updated to reflect the infor- 
mation about the new focus. For example, if the user chang- 
es the focus process, then all state examination displays that 
are focus-process-sensitive, such as the source and stack 
displays, will be updated. 

To address the process control challenge, p2d2 uses the 
notion of a control set, which is the collection of target pro- 
cesses that are subject to process control requests. The user 
has a variety of ways of setting membership in the control 
set. The current membership of the control set is indicated 
in the process grid display. When a process control opera- 
tion such as setting a breakpoint or continuing execution is 
requested, it is forwarded to all processes in the control set. 
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write(6,*)   'Started proc  tt', num_nodes 

if (num_nodes .lt. NPRDCS) then 
write(0,*) 'SORRY: PROGRAM ONLY WORKS FOR ', NPROCS, 

' PROCESSES.' 
call MPI_Finalize(ierr) 
stop 

end if 

check for invalid combinations of dimensions and 
process-grid dimensions 

error = .FALSE. 

if (NX - (XPROCS-l)*NXlsize .le. 0) then 
print*, 'invalid combination of NX, XPROCS' 
error = .TRUE, 

end if 
if (NY - (YPROCS-l)*NYlsize .le. 0) then 

print*, 'invalid combination of NY, YPROCS' 
error = .TRUE, 

endif 
if (NZ - (ZPROCS-l)*NZlsize .le. 0) then 

print*, 'invalid combination of NZ, ZPRDCS' 
error = .TRUE. 

file: main.bug.F display process 226000: stopped 
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done 

focus group 

focus process 

FIGURE 3. The main window of p2d2. 

The main window of p2d2 is shown in Figure 3. In that 
example, a Globus computation of 32 processes is being 
debugged. The process grid shows all of the processes in 
the computation, plus the globusmn process that initiated 
the job (but does not participate in the computation). The 
focus group displays one line of text for each process in the 
selected column of the process grid. In the figure, the user 
has selected the fourth of the nine columns. The focus pro- 
cess part of the display resembles a serial debugger on the 
single process selected in the process grid (the one in row 
3, column 6). 

Perhaps the most novel feature of the p2d2 user inter- 
face is the programmability of the process grid described 
earlier. This feature permits a quick scan of a large number 
of processes to isolate a process behaving in an unexpected 
manner. Such a process is a good candidate for closer scru- 
tiny as the focus process. 

This customization is achieved by having the user spec- 
ify a list of predicates that should be tested in each process 
and how a process should be depicted in the process grid if 
the predicate is true about it. For example, in the default 
view of the display, running processes are represented by 
green squares and stopped processes by red ones. 

P2d2 defines a collection of conditions that can be 
tested. These include: 

• the process is running, 
• the process is on some machine M, 
• an expression E evaluates to true in the process, and 
• the process is stopped in user function Fj and is call- 

ing non-user function F2. 

The customization feature is illustrated in Figure 4. In that 
example, the user suspected that a computation was dead- 
locked. She paused all of the processes and then requested 
that the process grid show where each process was stopped. 
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FIGURE 4. Customizing the process grid display. 

The debugger constructed the customization shown in the 
"Custom Grid Display Editor" window. It shows running pro- 
cesses with a green square—only the globusrun startup pro- 
cess is in this category. Stopped processes are depicted with 
an "X" if they are in mesh_update_bdry_asynch and 
calling mpi_recv; they are depicted with a "o" if they are 
in that same function but calling mpi_barrier. This fea- 
ture gives the user a quick way to find out what each process 
is doing. In particular, in this example, the user was able to 
focus in on the four processes doing an mpi_recv, and find 
a communication pattern error. 

In addition to providing tools for abstracting state across 
a collection of process, p2d2 also provides various means 
to examine specific data values in a computation. Scalar 
expressions can be evaluated on each process in the control 
set with the result being displayed in the output window 
(the bottom pane in Figure 3). As an alternative, a scalar 
data viewer allows the persistent display of scalar values 
for up to 4 focus processes (Figure 5). Data values there 
are updated each time a breakpoint is hit or when the focus 
is shifted to another process. 

Array data can be examined using the p2d2 array 
viewer. It displays the array in either textual or graphical 
mode for each of the focus processes. Figure 6 shows an 
example of the data displayed as text. As in the scalar 
viewer, the values are updated when the program reaches a 
breakpoint or when the focus is shifted to another process. 

FIGURE 5. Comparing data across processes. 

4. Handling grid-based computations 

In addition to state examination and process control fea- 
tures, a successful debugger will need to automate the task 
of finding and controlling all of the processes participating 
in a distributed computation. The user should not be 
required to filter through lists of processes running on a 
large number of machines in order to determine which of 
them belongs to a job. 

As with serial debuggers there are two cases to consider 
in acquiring initial control over processes to be debugged: 

1. the computation was initiated from the debugger 
when the user invoked the Run command, and 

2. the user initiated the computation outside of the 
debugger and then requested that the debugger 
"attach" to it. 

In order to handle case 1, the debugger needs to resolve a 
conflict with the process starting mechanism (e.g., mpirun, 
globusrun, pvmrun) that initiates the distributed computa- 
tion. The conflict comes about because both the debugger 
and the process starter want to control the actual fork () 
and exec () that start the individual processes. A custom- 
ary way to resolve this conflict is for the process starting 
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FIGURE 6. Array data viewed as text 
(compare with graphical view in Figure 11). 
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FIGURE 7. After the user requests a globusrun. 

mechanism to allow a user-supplied proxy program (some- 
times called a tasker) to perform the fork and exec. Both 
pvmrun and globusrun permit the debugger to gain control 
over process creation in this way. 

To debug Globus jobs, p2d2 uses the tasking mecha- 
nism provided by globusrun. If the debugger is going to be 
used to initiate a Globus job, the user must include the 
clause 

(paradyn="P2D2_HOST P2D2_PORT p2d2 \ 
/u/p2d2/bin/gdbserver") 

in the RSL script to be handed off to globusrun. This indi- 
cates that /u/p2d2/bin/gdbserver should be used as a 
tasker. When the user requests a Run, the following se- 
quence of events happens. It is depicted in Figure 7. 

1. P2d2 invokes globusrun, changing the P2D2_HOST 
and P2D2_PORT strings in the RSL script to the 
machine name on which p2d2 is running and the 
number of a tasker contact port that it created. 

2. When globusrun starts the tasker, it passes it the 
machine name and port number that p2d2 wrote in 
the RSL script. 

3. The tasker and p2d2 then establish a socket. 
4. The tasker starts the target executable and reports the 

target's pid on the socket. The target sleeps. 
5. P2d2 asks the tasker to start gdb and to forward an 

attach request to it. 
6. Gdb attaches to the target to take control. 

In order to handle case 2 above, where the user requests 
that the debugger attach to an existing computation, the 
debugger needs: 

• a list of the processes that are participating in a com- 
putation, and 

• a mechanism for gaining control over them. 

If a tasking mechanism exists, it can be used to meet these 
needs. For example, if p2d2 is to be used to attach to an ex- 
isting Globus job, the job must have been started with the 
"paradyn" option described previously. Then the follow- 
ing steps (illustrated in Figure 8) take place. 

1. Globusrun creates a tasker process for each target 
process in the computation. 

2. The resulting tasker processes will each create a port. 
3. The port contact information from all taskers is com- 

bined in a single file in the file system. 
4. When the user starts up p2d2 and asks for it to attach 

to the Globus processes, the debugger will retrieve 
the tasker port contact information in the file. 

5. P2d2 will then establish sockets with the taskers. 
6. The debugger will then ask the tasker to start up a 

gdb and pass an attach request to it. 
7. Gdb will then attach to the target process. 
Storing the tasker contact information in the file system 

can be problematic. The machine where p2d2 runs may not 
mount the same file system that the taskers do. In fact, the 

FIGURE 8. When p2d2 attaches to an existing Globus process. 
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taskers themselves may not share a common file system. 
Under Globus, the right way for the taskers to get the con- 
tact information to p2d2 is to use the Metacomputing 
Directory Service (MDS). We are currently modifying our 
tasker to use that approach. 

In our discussions so far, we have relied on a tasking 
mechanism at process startup. Unfortunately the initial ver- 
sion of MPI does not have such a feature, because process 
creation was not part of the standard. To handle MPI jobs 
when there is no tasking mechanism, p2d2 uses rsh to run a 
copy of gdb on the machine where the target process exists. 
There are two remaining needs: 

• a list of pairs [machine, pid] for each process in the 
job, and 

• a way to "keep a newly started MPI process from 
executing code. 

The second condition allows us to handle debugger-initiat- 
ed runs in an identical manner to run initiated outside of the 
debugger. To handle a Run request in this scenario, p2d2 in- 
vokes mpirun, which starts the processes on the remote ma- 
chine. If we have a way to keep the newly started MPI 
process from making progress, we can simply attach to it as 
we do for runs initiated outside of the debugger. 

We can address both of the needs above by using the 
profiling mechanism of MPI and providing a specialized 
version of MPi_init (). The MPl_init used by p2d2 
does the following. 

• It calls PMPi_init(), to do the normal initializa- 
tion for MPI. 

• The process with rank 0 gets the machine name and 
process ID for all processes. It writes that data in the 
file system. 

• If the process was initiated from the debugger, it 
goes into an infinite sleep loop. 

When the debugger attaches, it establishes any necessary 
breakpoints, terminates the sleep loop, and then continues 
execution. 

There are two minor limitations in the version of 
MPl_lnit used by p2d2: 

• it is not possible to debug the code that executes 
before MPi_init called, and 

• the user must link the application with p2d2's ver- 
sion of MPl_init. 

The latter condition could lead to a conflict if other libraries 
want to use the profiling mechanism of MPI. 

While these limitations exist, in practice they restrict 
p2d2's capabilities very little. Furthermore, we are hopeful 
that an mpirun based on the process control operations in 
MPI-2 [15] will provide a tasking mechanism that will 
eliminate the restrictions altogether. 

5. Heterogeneity and the user interface 

In adapting p2d2 to work in a heterogeneous computa- 
tional grid environment, we found two areas that needed 
more work: 

• displaying what kind of machine and operating sys- 
tem a process was running on, and 

• providing abstract, consistent views of data across 
heterogeneous processors. 

The first problem was relatively easy to solve. P2d2 extracts 
system type information from its debugger servers and then 
displays it in two different ways, as shown in Figure 9. First, 
it puts system information in the focus group display. Sec- 
ond, it defines a predicate "process is on operating system 
S" so system information can be displayed in the process 
grid. In the example shown in Figure 9, the grid view is pro- 
grammed so that processes running on IRIX are depicted as 

 - machine —operating system— executable —state  —locatic 
!':'/>• L'""!X"" ""■'.''1'- .■'*&:' "! ' UO?.!- '■' .'.   isffi!'.""-' 'A W'. "■'»'vftW'-1" ''■ 'MAih.1.   ' ^"'itVJ''-      • OV>L ..■•v-t**m"Ti "taw 

!'»'« Mi-til Utt*mt.*®^äm& 
[•/ ol   |if process Is on OS matching: oj   mips-sgi-irix6.5 

IX a I   iif process is on OS matching: sparc-sun-solaris2.6 

loa I   [if process isönOS matching: i386-redhat-linux 

I? a I   otherwise 

Add another case OK Apply Reset Cancel Help 

FIGURE 9. Support for heterogeneity in the process grid. 
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a "V", processes running on Solaris are indicated with an 
"x", and processes running under Linux show a "o". This 
results in the process grid view as shown. 

To address the second problem, that of providing con- 
sistent, abstract representations of program state across 
heterogeneous processes, we needed to make the existing 
state examination tools more robust and to provide some 
new ones as well. One of the problems we ran into when 
first looking at heterogeneous computations concerned pro- 
viding automatic assistance for comparing the value of an 
expression in processes on different architectures. Data 
representation was not an issue because gdb provides the 
expression's value as text. Instead the issue was that of 
finding where in the process the evaluation should take 
place. 

Expression evaluation in p2d2 has always tried to make 
sure that the user compares apples to apples. That is, when 
evaluating an expression on more than one process, the 
debugger attempts to use the same context in each of the 
processes doing the evaluation. So, if a variable is being 
evaluated in 2 processes, the evaluation will take place in 
stack frames that are "similar". What this means is that the 
debugger needs to compare the runtime stacks of the non- 
focus processes in order to determine which frame best 
corresponds to the selected frame in the focus process. In a 
homogeneous environment this is not too difficult. The 
problem we needed to address in a heterogeneous environ- 
ment was that the runtime stacks looked somewhat differ- 
ent. In particular, function names often changed slightly. 
We addressed the problem by mapping function names to a 
canonical form. Then stack comparison could be handled 
as in the homogeneous case. 

In order to increase the abstraction level of our data dis- 
plays, we wanted to address the issue of displaying data 
from arrays that are conceptually distributed across multi- 
ple processes. Thus, p2d2's array viewer provides a mecha- 
nism to give the user a global picture of a distributed array. 
The local data contributions from each of the participating 

processes are gathered and assembled into a global picture. 
When gathering the data from different machine architec- 
tures we had to take into account inconsistencies of gdb 
across different compilers. An example is the "whatis" 
command. For a Fortran array declared as real a (10, 5) 
on a Linux platform using g77 this results in type = 
real*4 (10,5). On a SGI Origin using the MlPSPro 
compiler it results in type = real*4 (5,10). In this 
case, p2d2 addresses the differences by reversing dimen- 
sion lists on the SGI's. 

Figure 10 shows a global display of a 2-dimensional 
slice of the 4 dimensional array ux at a breakpoint. The 
array ux is distributed across 8 processes: 4 SGI Origins, 2 
processes on a Sun Solaris platform, and 2 processes on a 
Linux PC cluster. The array elements that reside on the 
focus process are highlighted. To make comparison sim- 
pler, Figure 11 shows the local contribution from the focus 
process. 

In order to assemble the local contributions of a distrib- 
uted array into a global picture, information about how the 
data is distributed is required. If the program has been par- 
allelized without the use of parallelization support tools, 
p2d2 will prompt the user to provide distribution informa- 
tion via a dialog box (Figure 12). At the moment only sim- 
ple, structured distribution types are supported. 

In cases where the program has been parallelized using 
a parallelization support tool, it is often possible to retrieve 
such information through the tool that has been used. Cur- 
rently p2d2 supports the CAPTools [3] parallelization tool, 
which was developed at the University of Greenwich. 
CAPTools generates parallel code from a serial program 
by performing extensive dependence analysis, logically 
partitioning the data, and inserting calls to communication 
routines. The analysis results gathered during this process 
are stored in a data base, which is then probed by the 
debugger to retrieve the required distribution information 
without user intervention. Some of the information stored 
in the CAPTools database is symbolic and has to be evalu- 
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FIGURE 10. A global view of distributed data. FIGURE 11. Local array data. 
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FIGURE 12. Specifying a distribution. 

ated by p2d2 for each processor at run time. For example 
the upper and lower loop bounds, which determine the 
effectively used area in a local array, are stored symboli- 
cally. These bounds vary with the number of processors 
and are potentially different for each processor. 

6.  Related work 

There are two commercially available distributed 
debuggers of note. TotalView [5], from Etnus, is a third 
party debugger that runs on a number of high performance 
computing platforms. It is currently not capable of debug- 
ging heterogeneous computations. Furthermore, while it 
can debug thousands of processes and threads, the user 
interactions are at a fairly low level. Prism [22], from Sun 
Microsystems is derived from the Thinking Machines 
product of the same name. It is not portable to systems 
other than Sun. While its user interface led the way in scal- 
ability, it too, could be more abstract. 

SGFs Jessie [19] is a freely available, cross platform 
development environment that provides a debugger based 
on gdb and a performance analysis tool based on gprof. 
Like p2d2, Jessie is aimed at providing portability. When it 
comes to debugging programs consisting of multiple pro- 
cesses, Jessie is limited to what gdb supports. That means 
while it is possible to invoke several instances of gdb to 
debug multiple processes on different machines, to our 
knowledge Jessie, at this time, does not provide means to 
control them in a convenient, scalable way. 

Guard is a debugger developed at Griffith University, 
Australia [1][2]. It provides the ability to debug programs 
in a distributed and heterogeneous environment by allow- 
ing control of execution of separate programs on different 
machines. Like p2d2, it uses a client-server paradigm to 
provide portability. A gdb-based debugger server runs on 

each of the machines to control the processes. The debug- 
ger servers communicate with the client via RPC. Guard 
provides a command language for user interaction that 
contains commands like "compare" and "assert" to com- 
pare values between programs that are running on different 
machines, and were possibly written in different lan- 
guages. It also allows the comparison between parallel and 
sequential versions of a program by providing language 
constructs that enable the user to map a serial data structure 
onto the equivalent parallel version. 

The Distributed Array Query and Visualization (DAQV) 
project [9] aims to provide a solution for the problem of 
exposing distributed data structures to external tools. The 
original work started as a Parallel Tools Consortium [16] 
project and focused on HPF as a target language. Informa- 
tion about the distributed array could be obtained via the 
HPF compiler. In the second phase of the project (DAQV- 
II), Fortran 90 and MPI became the primary implementa- 
tion targets [8]. As in p2d2, DAQV-II requests array distri- 
bution information from the user if it can not be obtained 
otherwise. 

The SPiDER debugging system [20] for HPF programs 
uses the GDDT (Graphical Data Distribution Tool) [13] for 
the display of distributed arrays. It doesn't appear to sup- 
port viewing arrays distributed across a heterogeneous col- 
lection of machines. 

7. Project status and future work 

The current p2d2 system has been demonstrated on sev- 
eral target architectures and has been used to debug both 
MPI and PVM applications. After the recent work to 
accommodate Globus computations, it has been success- 
fully used to control 128 processes running on 3 different 
SGI Origins on the IPG. It has also been used on heteroge- 
neous computations running under Globus (see Figure 9). 

At the time of writing this paper, we have requested per- 
mission from NASA to distribute p2d2 under an Open 
Source copyright [17]. Those desiring up to date informa- 
tion about the status of that distribution are requested to 
consult the p2d2 web site [18]. 

In the near future, we will start using the Metacomput- 
ing Directory Service (MDS) in Globus to record informa- 
tion about jobs started outside the debugger. This will 
enable us to attach to Globus computations without relying 
on the target systems sharing a file system with the debug- 
ger host. 

Further in the future we may adapt p2d2 to work with 
Legion [14] and Condor [4] if there is sufficient user 
demand. We also plan to enhance p2d2 to find differences 
between serial and distributed versions of the same code. 
This could be particularly useful when computer-aided par- 
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allelization tools such as CAPTools are used to perform the 

transformation. 

8. Conclusions 

In this paper we have described a debugger for hetero- 
geneous, distributed programs. We found that a client- 
server model greatly simplifies the implementation of a 
debugger. The debugger's user interface has been designed 
to provide a simple collective mechanism for process con- 
trol, as well as multiple levels of zooming for state exami- 
nation. These features facilitate the debugging of a 
computation containing a large number of processes. We 
also described several approaches for finding processes 
participating in a distributed computation and how those 
techniques could be used in a computational grid environ- 

ment. 
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Abstract 1. Introduction 

// is often the case in Heterogeneous Computing (HC) 
systems that an application requires multiple resources of 
different types to be allocated simultaneously. In general, 
this problem is the resource co-allocation problem. In this 
paper, we develop a general framework for mapping a col- 
lection of applications with resource co-allocation require- 
ments. In our framework, application tasks have two types 
of constraints to be satisfied: precedence constraints and re- 
source sharing constraints. We use a graph theoretic frame- 
work to capture these constraints. A Directed Acyclic Graph 
is used to represent precedence constraints of tasks within 
an application and a Compatibility Graph is used to repre- 
sent resource sharing constraints among tasks of applica- 
tions. Both these graphs are used to find maximal indepen- 
dent sets of tasks that can be executed concurrently. 

The objective of the mapping is to minimize the overall 
schedule length for a given set of applications. We develop 
heuristic algorithms to solve the mapping problem with re- 
source co-allocation constraints. We also provide a two- 
phase algorithm that can be used for run-time adaptation. 
We conducted extensive simulation experiments to evaluate 
the performance of our heuristic algorithms. Simulation re- 
sults for our algorithms show a performance improvement 
of 10% to 30% over a baseline algorithm of list schedul- 
ing which considers only the precedence constraints and al- 
locates tasks from the resulting order. This paper demon- 
strates the importance of considering the co-allocation re- 
quirements when mapping applications in heterogeneous 
computing environments including grid environments. 

'Supported by the DARPA/ITO Quorum Program through the Naval 
Postgraduate School under subcontract number N62271-97-M-0931. 

In Heterogeneous Computing (HC) systems [8, 13, 20, 
25, 26], a diverse set of resources are used in a coordinated 
and effective way to solve computationally challenging ap- 
plications. Such systems are also called metacomputing sys- 
tems [29] or computational grids [10]. In general, such HC 
systems have compute resources with different capabilities, 
input/output devices, data repositories, and other resources 
all interconnected by heterogeneous local and wide area net- 
works. A major challenge in using HC systems is to effec- 
tively use all the available resources. 

Mapping applications in HC system is a well researched 
problem in the literature. The mapping problem is defined 
as the problem of assigning application tasks to suitable re- 
sources (matching problem) and ordering task executions 
in time (scheduling problem) to optimize a specific objec- 
tive function. Many algorithms exist for mapping applica- 
tions in HC systems (for a detailed classification see [4]). 
For applications consisting of several tasks and represented 
by Directed Acyclic Graphs (DAGs), many static and dy- 
namic mapping algorithms have been proposed. Dynamic 
algorithms include the Hybrid Remapper [23], the Genera- 
tional algorithm [12], as well as others [1, 18, 21]. Several 
static algorithms for mapping application DAGs in HC sys- 
tems are described in [19, 24, 27, 32]. Most of the previous 
algorithms focus on compute resources only. 

In our earlier work [2], we developed a unified resource 
scheduling framework for HC systems which supports mul- 
tiple resource requirements, advance reservation, and data 
replication. Each application was assumed to consist of sev- 
eral tasks and was represented by a DAG. A task's input data 
can be data items from its predecessors and/or data sets from 
data repositories. Input data sets can be accessed from one 
or more data repositories. Sources of input data and the ex- 
ecution times of the tasks on various machines along with 
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their availability were considered simultaneously to mini- 
mize the overall completion time. Although we considered 
multiple resource requirements in [2], tasks were not re- 
quired to access different types of resources simultaneously. 

In this paper, we consider the problem of mapping a set of 
applications in a HC system where application tasks require 
concurrent access to multiple resources of different types. 
In general, this problem is the resource co-allocation prob- 
lem. For example, an interactive data analysis application 
may require simultaneous access to a storage system hold- 
ing a copy of the data, a supercomputer for analysis, network 
elements for data transfer, and a display device for interac- 
tion [11]. For such applications, co-allocation of all required 
resources is necessary. A special case of this problem where 
a single application requires concurrent access to a set of re- 
sources in a computational grid has been considered in [5]. 

In this paper, we develop a general framework for map- 
ping with resource co-allocation in HC systems. The frame- 
work defines the system and application models and formu- 
lates the co-allocation problem. Two graphs are used to rep- 
resent applications: a Directed Acyclic Graph (DAG) and 
a Compatibility Graph (defined in Section 3.4). DAG rep- 
resentation is given initially and stay unchanged through- 
out the mapping process while the compatibility graph is 
updated during the mapping process. In classical mapping 
problems, only DAGs are used to represent the precedence 
constraints among tasks. In this paper, the co-allocation re- 
quirements add another type of constraint among the tasks: 
the resource sharing constraint which is captured in the com- 
patibility graph.   Tasks that share one or more resources 
cannot be executed concurrently due to the resource shar- 
ing constraints even if they have no precedence constraints 
among them.   Known mapping algorithms for the classi- 
cal DAG scheduling problem cannot be directly used for 
the above problem since they only consider the precedence 
constraints. In this paper, we develop heuristic algorithms 
that can be used with different allocation techniques to ef- 
ficiently solve the co-allocation problem defined by our 
framework. 

In our approach, multiple DAGs of different applications 
are combined into a single DAG. All tasks that have satisfied 
the precedence constraints are ready for allocation provided 
they have no resource sharing constraints. Using the com- 
patibility graph, we will select tasks that can be executed 
concurrently. This is achieved by finding maximal indepen- 
dent sets in the compatibility graph. 

Our research is part of the MSHN project [16], which 
is a collaborative effort between DoD (Naval Postgraduate 
School), academia (NPS, USC, Purdue University), and in- 
dustry (NOEMIX). MSHN (Management System for Het- 
erogeneous Networks) is designing and implementing a Re- 
source Management System (RMS) for distributed hetero- 
geneous and shared environments. MSHN assumes hetero- 

geneity in resources, processes, and QoS requirements. Pro- 
cesses may have different priorities, deadlines, and com- 
pute characteristics. The goal is to schedule shared re- 
sources among individual applications so that their Quality 
of Service (QoS) requirements are satisfied. MSHN sup- 
ports adaptive applications that can exist in several different 
versions. These versions may differ in the precision of com- 
putation or input data, and therefore have different values to 
a user. Unlike other HC and grid projects, MSHN seeks to 
determine how to meet QoS requirements of multiple appli- 
cation simultaneously. 

The rest of this paper is organized as follows. In next sec- 
tion we give the definition of the co-allocation problem and 
summarize some related work. The problem framework is 
defined in Section 3. In Section 4, we give the outline of 
our approach to solve the co-allocation problem using our 
framework. Experimental results are given in Section 5. Fi- 
nally, Section 6 gives the conclusions and future research di- 
rections. 

2. The Co-Allocation Problem 

The co-allocation problem can be defined as the problem 
of simultaneously allocating multiple resources of different 
types to applications in order to meet specific performance 
requirements. The need of co-allocation is a common char- 
acteristic of applications running in HC environments (as 
well as computational grids). For example, an application 
may require a data repository, a HPC platform, multiple dis- 
play devices, and communication links all to be allocated si- 
multaneously. 

A version of resource co-allocation has been introduced 
in the high-performance distributed computing community 
by the Globus project [5]. The co-allocation problem is de- 
fined as the provision of allocation, configuration, and mon- 
itoring/control functions for the resource ensemble required 
by a single application [5]. The Globus tool-kit provides a 
flexible set of co-allocation mechanisms that can be used to 
construct application-specific co-allocation strategies. Only 
compute resources are considered in the Globus project at 
this time, to synchronize the start of complex applications 
at multiple sites. 

The notion of co-allocation was also considered in the 
Legion project [22]. In the Legion project, an Enactor pro- 
vides a mechanism to co-allocate compute and storage re- 
sources (hosts and vaults) to a single application. The co- 
allocation mechanism is based on advance resource reserva- 
tion. 

In [5] and [22], the focus is on implementation issues of 
the co-allocation process. Algorithms for efficient mapping 
with co-allocation requirements are not considered. Also, 
both the above projects focus on executing a single appli- 
cation. The problem becomes challenging when a number 
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of applications share resources. 
In this paper, we study the co-allocation problem in the 

context of mapping a set of applications where each applica- 
tion is represented by a DAG. We consider conflicts among 
tasks caused by precedence constraints as well as due to re- 
source sharing. The objective is to minimize the overall 
schedule length for a set of applications. One of our main 
contributions in this paper is the formulation of the map- 
ping problem in the presence of co-allocation requirements 
for multiple applications. To the best of our knowledge, 
this work is the first step towards a general framework for 
mapping applications with resource co-allocation in HC sys- 
tems. 

3. The Framework 

3.1    System Model Application 1 Application 2 

We consider a heterogeneous computing system with 
m compute resources (machines), M ={m\, rri2,..., mm}, 
and a set of r resources, R={ri,r2,...,rr}. Compute re- 
sources can be HPC platforms, workstations, personal com- 
puters, etc. Resource r& £ R can be a data repository, 
an input/output device, etc. We assume that only one task 
can use any resource (compute and non-compute resource) 
at any given time. Resources are interconnected by het- 
erogeneous communication links. Communication costs 
are given by two matrices: MM-comm and RM -comm, 
where MM^comm gives the communication cost for trans- 
ferring a byte between machines and RM-comm gives the 
communication cost for transferring a byte between the re- 
sources in R and the machines. 

We assume that an estimate of the computation time of 
a given task t{ on machine rrij is available at compile- 
time. These estimated computation times are given in 
an Estimated Computation Time (ECT) matrix. Thus, 
ECT(ti, rrij) gives the estimated computation time for task 
U on machine rrij. If task 2,- cannot be executed on machine 
rrij, then ECT{U, rrij) is set to infinity. 

MA(rrij) gives the earliest time when machine rrij is 
available and RA(rk) gives the earliest time when resource 
ru is available. As the mapping proceeds, the earliest time 
when a resource (rrij or r*) is available is calculated as the 
finish time of the last task assigned to this resource. 

3.2. Application Model 

In this HC system, a set of N applications, 
A-{Ai,..., AN], compete for system resources. Each 
submitted application consists of several tasks and is mod- 
eled by a DAG, where the nodes represent computational 
requirements and the edges represent both precedence con- 
straints and communication requirements. Figure 1 shows 

Figure 1. An example of two application DAGs 

an example of two application DAGs. We assume that the 
whole set of applications to be mapped is known apriori 
(static applications). The problem is to execute these N 
applications as efficiently as possible. Our approach is 
to combine all submitted application DAGs into a single 
DAG, G = (T, E), where T represents the set of tasks to 
be executed from all applications, T={t\,t2, ■ ■ -,tn}, and 
E represents the data dependencies and communication 
between tasks. Edge e,-j indicates that there is communi- 
cation from task f ,• to tj and its weight denotes the amount 
of communication. G is constructed by connecting the root 
nodes (tasks) of all applications to a hypothetical zero-cost 
entry node with zero-weight edges. 

We assume that each task t, needs concurrent access to 
a set of resources: one compute resource rrij and a number 
of additional resources as specified by the set R(ti), where 
R(ti) C R. The amount of data to be transferred between 
ti and r/j, where r^ G R(ti), is given by DATA(ti,rk). A 
task tj cannot start execution until all its required resources 
are available to the task. All required resources will be allo- 
cated to the task during its execution. These resources will 
be available after the'task completes its execution. We as- 
sume that all required resources are acquired at the same 
time (atomic transaction). 

We say that task £,• and task tj are incompatible if and 
only if R(ti) n R{tj) ^ <j>. Incompatible tasks cannot 
be executed concurrently even if they have no precedence 
constrains among them. Therefore, in our framework, tasks 
may be unable to run concurrently for either of the following 
reasons: (1) precedence constraints, or (2) resource sharing 
constraints. 
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The execution time of task U on machine rrij, 
Exec(ti,rrij), depends on the computation time of U 
on rrij and data transfer times between rrij and all resources 
which ti needs to access during its execution. For example, 
for systems that assume computation and communication 
cannot be overlapped, Exec(U,mj) can be defined as 

Exec(ti,mj) = ECT{ti,mj)+ 

YlrkeR(t,)(DATA(ti'r^ x RM-Commir^mj)) 

where the last term gives the total time to transfer any 
required data between machine rrij and every resource 
r.k G R(U)- Exec(ti,rrij) can also be defined in different 
ways to consider the overlapping between computation and 
communication as well as other communication models. 

The average execution time of task t,■ is defined as 

Task Resource Requirements 
Vi v\, r2 

v2 r2,r3 

v3 r3,r5 

v4 n,r4 

v5 r4, r5, r6 

v6 7*6 

Table 1. An example showing 6 tasks and their 
resource requirements 

Exec(ti) = y^jExec(ti,mj)/m 

i=i 

ST(ti,m.j) and FT(U,m,j) are the earliest start time and 
the earliest/mw/1 time of task U on machine rrij, respectively 
if t, were to be mapped on rrij. ST(ti, rrij) is defined as 

ST(ti,rrij) = max{MA(mj),Data-Pred(ti,mj)} 

where Data.Pred(U,mj) is the time when task tt receives 
all the needed data from all tasks in its predecessor set, 
Pre(ti), if U is mapped onto machine rrij. FT(ti,rrij) is 
defined as 

FT(U,mj) - ST{U, rrij) + Exec(U,rrij) 

3.3. Mapping Objective 

Figure 2. The compatibility graph for the tasks 
shown in Table 1 

The objective function in our framework is to determine 
an assignment (matching) of tasks to compute resources and 
schedule their executions based on all resource requirements 
such that the overall schedule length (or makespan) of all 
submitted applications is minimized while satisfying all 

1. Application-specified precedence constraints and 

2. Implied resource sharing constraints. 

Thus, we can define our objective function as 

Minimize {max [Finish Time(Ai)] }, 
i=i 

where Finish Time(Ai) is the completion time of appli- 
cation Ai. Note that the resource sharing constraint is a dy- 
namic constraint - it depends on tasks ready to be allocated 
and their resource requirements. 

Task Execution Time 
Vi 5 
v2 6 
v3 2 
v4 4 
v5 1 
v6 3 

Table 2. Execution times for the tasks in Fig- 
ure 2 
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3.4. Compatibility Graph 

To capture the implied resource sharing constraints 
among tasks that may belong to the same or different appli- 
cations, we use the compatibility graph, g = [V,E), where 
vertex V{ denotes task ti and edge e,-j exists if and only if ti 
and tj are incompatible. Recall, task ti and task tj are in- 
compatible if and only if R(ti) f~l R(tj) ^ cf>. An indepen- 
dent set [6] is a set of vertices of g such that no two vertices 
of the set are adjacent. An independent set is called a maxi- 
mal independent set if there is no other independent set of.gr 
that contains it. A maximal independent set with the largest 
number of vertices among all maximal independent sets is 
called a maximum independent set [6]. The maximum inde- 
pendent set problem is NP-complete [15]. In our model, a 
maximal independent set of g represents a maximal set of 
tasks that can be executed concurrently if there is no prece- 
dence constraints among them. 

As an example, consider a set of 6 independent tasks. 
Each task needs concurrent access to a set of resources as 
specified in Table 1. The compatibility graph g for this ex- 
ample is shown in Figure 2. The maximal independent sets 
oig are {Vi,V5}, {V2,V5}, {V!,V3,V6}, {V2,V4,V6}, and 
{V3,V4,V6}. The last three sets are maximum independent 
sets. 

4. Our Solution 

In classical DAG scheduling problem, application DAGs 
are partitioned onto levels such that each level contains inde- 
pendent tasks, i.e., there are no data dependencies among the 
tasks in the same level. Therefore, all tasks in the same level 
can be executed concurrently. In our framework, incom- 
patible tasks in the same level cannot be executed concur- 
rently due to resource sharing constraints. Therefore, map- 
ping algorithms for the classical DAG scheduling problem 
(ex. [1, 30,18,23,9,31, 32]) cannot be directly used for our 
problem. 

In this section, we develop a static co-allocation algo- 
rithm using the framework defined in Section 3. The algo- 
rithm can be used with different maximal independent set se- 
lection strategies and different allocation heuristics to solve 
the mapping problem with co-allocation requirements. Sev- 
eral strategies for selecting maximal independent sets and 
several allocation heuristics are given in this section. Also, 
we provide a two-phase algorithm that performs run-time 
adaptation. 

4.1. The Co-Allocation Algorithm 

Pseudo code for our co-allocation algorithm is shown in 
Figure 3. Given a set of applications and resource require- 
ments of tasks, we first find tasks that have satisfied prece- 

dence constraints and then select maximal independent sets 
among these for allocation. The compatibility graph is used 
to find maximal independent sets. Since the maximum inde- 
pendent set problem is NP-complete [15], our approach for 
selecting a maximal independent set is based on first choos- 
ing a critical node vc, and then finding a maximal indepen- 
dent set that contains vc. Different strategies for selecting 
critical nodes are given in Section 4.2. 

To ensure precedence constrains are satisfied, we com- 
bine all submitted applications into a single DAG, G, by us- 
ing zero-weight edges to connect the root nodes (tasks) of all 
applications to a hypothetical zero-cost entry node. Then we 
partition the combined DAG onto / levels such that level 0 
contains the entry node and level 1 contains all tasks that do 
not have any predecessors in the submitted DAGs. All tasks 
in level / have no successors. For each task t,- in level k, all 
of its predecessors are in levels 0 to k — 1, and at least one 
of them in level k-\. 

Let RDY be the set of tasks that have no precedence con- 
straints among them and that are ready for allocation. A task 
is ready for allocation if for each predecessor all required re- 
sources have been allocated. Let W be the set of ready tasks 
that are waiting for allocation, and ALLOCATED be the 
set of allocated tasks. After executing the algorithm, the list 
SCHEDULE will give the resulting scheduling order of 
tasks and the variable length will give the resulting sched- 
ule length. 

In steps 1 and 2 of the algorithm, we combine all submit- 
ted applications into a single DAG, G, and partition G into 
/ levels. Then the algorithm proceeds level-by-level as fol- 
lows. For each level / of G, we construct the compatibility 
graph g for all tasks in this level (step 6). g is used to find 
maximal independent sets of tasks that can be executed con- 
currently. The first maximal independent set of tasks to be 
allocated is selected in steps 7-8 where a critical node vc is 
chosen in step 7 and a maximal independent set that contains 
vc is determined in step 8. 

In step 10, all tasks in the selected maximal indepen- 
dent set are allocated to their required resources. For the 
allocation, we first find the scheduling order of the tasks. 
Several heuristics are given in Section 4.3. Then, we use 
this scheduling order to assign a compute resource rrij to 
each task t* in order to minimize its finish time FT(i,-, rrij). 
Availability times (MA(rrij) and RA(rk)) of all resources 
required by task ti are updated based on FT {ti, rrij). 

In steps 12-16, a new set of maximal independent tasks 
among all waiting tasks is selected to be allocated at the 
next allocation event. The next allocation event is calcu- 
lated as the earliest finish time, FT (ti, rrij), among all al- 
located tasks. An allocated task vx with the earliest fin- 
ish time is identified in step 12 and then removed from the 
ALLOCATED set. Initially (step 14), the set of candi- 
date tasks that can be allocated next ,C, contains all waiting 
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Inputs: application DAGs, estimated computation and communication costs, and resource requirements of tasks 
Outputs: the scheduling order of tasks (SCHEDULE) and the schedule length (makespan) (l eng hi) based on the given 
inputs 

Begin 
1. Combine all submitted application DAGs into a single DAG (G) 
2. Do level partitioning of G      /* tasks in each level have no precedence constraints */ 
3. Let SCHEDULE = <f> and lenght = 0 
4. For level 1 to / do 
5. Initialize W to include all tasks in the current level and let ALLOCATED = <j> 
6. Construct the compatibility graph g for all tasks in the current level 
7. Pick a critical node vc from W      I* several strategies can be used for critical node selection*/ 
8. Find a maximal independent set of tasks 5 from W such that vc 6 S     I* g is used to find the maximal independent set */• 
9. While W is not empty do 
10. Allocate all tasks in S to their required resources by doing the following two steps: 
10a. Find the scheduling order of the tasks and add them to SCHEDULE      /* different heuristics can be used */ 
10b. For each task i, in S (in the scheduling order) do 

- Assign a compute resource rrij to task <,• in order to minimize its finish time FT(ti,m.j) 
- Update MA(mj) and RA(rk), Vrfc G R(ti), based on FT(U,mj) 
- If ( FT(ti,mj) > lenght) then lenght=FT{U,mj) 

11. Add all tasks in S to ALLOCATED and remove them from W 
12. Let vx be the allocated task with the lowest finish time 
13. Remove vx from ALLOCATED 
14. Let C = W, where C is the set of candidate tasks that can be allocated next 
15. Remove all tasks from C that are incompatible with any allocated task 
16. If(C#^) 
16a. Pick a critical node vc from C such that vc is adjacent to vx in g 
16b. Find a maximal independent set of tasks S from C such that vc G S 
17. End (while) 
18. End (for) 
End 

Figure 3. The co-allocation algorithm 
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tasks. The candidate set, C, is updated in step 15 by remov- 
ing all tasks that are incompatible with any allocated task. 
Then g is used to find a maximal independent set of tasks 
from C. The algorithm repeats steps 10-16 until all tasks in 
this level have been allocated. 

4.2. Maxima] Independent Set Selection 

Since the maximum independent set problem is NP- 
complete [15], we use a heuristic approach for selecting 
maximal independent sets. Our approach is based on first 
selecting a critical node vc, and then finding a maximal in- 
dependent set that contains vc. Critical nodes need to be se- 
lected carefully. 

The length of the schedule is influenced by the selection 
of maximal independent sets and by the order in which these 
sets are considered for scheduling. This is shown in the fol- 
lowing example using the compatibility graph in Figure 2. 
For this example, for the sake of simplicity, we assume that 
all the resource requirements of tasks (compute and non- 
compute resources) are pre-specified. Therefore, the execu- 
tion times of all tasks are known apriori. These times are 
shown in Table 2. Example schedules are given in Figures 4- 
6. These schedules have different schedule lengths. The op- 
timal length of the schedule is 11 time units. This is achieved 
by schedules 2 and 3. In schedules 1 and 2, two different 
maximum independent sets were selected to be scheduled 
first. Schedule 1 has a length of 13 time units, while sched- 
ule 2 has the optimal length. This clearly shows the impor- 
tance of the order in which the maximal independent sets are 
considered for scheduling. From schedule 3, we can also see 
that it is not always efficient to select a maximum indepen- 
dent set to be scheduled first. Schedule 3, which starts with 
a maximal independent set {V2,V5} (not a maximum inde- 
pendent set), has the optimal length while schedule 1, which 
starts with a maximum set {V3,V4,V6}, has a non-optimal 
length of 13 time units. 

The idea behind our approach for selecting a maximal in- 
dependent set S is to select a critical vertex vc and add it to 
S which is initially empty. Then we attempt to enlarge S by 
traversing g. Different strategies can be used for selecting 
critical vertices. In the following we describe some of these 
strategies. 

51 Highest average execution time. In this strategy, we 
give priority for tasks that need more time for execution 
since they can be critical tasks. In HC systems, tasks 
have different execution times on different machines. 
Therefore, we use the average execution time Exec(ti) 
as the selection criterion. 

52 Highest degree.   The node out-degree in a DAG has 
been used in many list scheduling heuristics as a prior- 
ity function. The out-degree of a node tj gives the num- 

ber of tasks that have precedence constraints with <,-. 
The idea is to advance the execution of tasks with high 
out-degree. Thus, many tasks can be ready for mapping 
once high out-degree tasks complete execution. In our 
framework, the out-degree of node U in the combined 
DAG G (which represents task ti) does not reflect all 
dependencies between t, and other tasks since G only 
captures the precedence constraints. Resource sharing 
constraints should also be considered. Therefore, we 
define the degree of task t,- as the sum of its out-degree 
in G and its degree in g. This number gives a better 
indication about the number of tasks that can be ready 
for mapping once ti completes its execution, either be- 
cause those tasks have a precedence or resource sharing 
dependencies with ti. 

53 Critical path nodes. A Critical Path (CP) in a DAG is a 
path from an entry node to an exit node with the largest 
completion time. We use average execution times and 
average communication costs to find the critical path. 
In some situations, the average execution time or the 
degree of a task ti cannot reflect how important for 
other tasks that t{ finishes execution as soon as possi- 
ble. The successors of f ,■ may not be critical tasks and 
advancing their execution may not improve the sched- 
ule length. For these reasons, selecting critical path 
nodes from G as critical tasks can be a good strategy. 
In this paper, we implement two variations of this strat- 
egy: 

53.1 In this version, the task that is on the critical path 
is selected as a critical task. If there is no such 
task among the current set of candidate tasks, the 
task with the highest average execution time is se- 
lected as a critical task. 

53.2 This version is similar to S3.1 except for the case 
when there is no critical path node among the cur- 
rent set of candidate task. In this case, the task 
with the highest degree is selected as a critical 
task. 

54 Maximum weighted clique. In [3], a similar approach 
to the compatibility graph has been used for schedul- 
ing independent tasks. Each task in [3] requires si- 
multaneous access to a set of pre-specified processors. 
All resource (processor) requirements and all execu- 
tion times were assumed to be known apriori. It has 
been shown in [3] that the weight of the maximum 
weighted clique in the constraint graph (compatibil- 
ity graph) is a lower bound on the optimum makespan, 
where the weight of each node is its execution time. 
In our previous example, notice that the weight of the 
maximum weighted clique (Vi and V2) is 11 and the 
optimal schedule length is 11. Also notice that any se- 
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lected maximal independent set should contain a task 
that belongs to the maximum weighted clique in or- 
der to achieve the optimal schedule length. Inspired 
by this observation, we can use nodes in the maxi- 
mum weighted clique as candidates for selecting crit- 
ical tasks. In our approach, we use the average execu- 
tion times as the node weights. It is obvious that in our 
model, maximum weighted clique cannot guarantee the 
optimal solution but it could be a good heuristic for se- 
lecting maximal independent sets. 

4.3. Allocation Heuristics 

After selecting a maximal independent set of tasks, care- 
ful allocation of these tasks to compute resources (ma- 
chines) is required to achieve our objective. Different 
heuristic can be used for allocating tasks of the selected 
maximal independent set S to compute resources. In the fol- 
lowing we describe some of our allocation heuristics. The 
idea behind our heuristics is to advance the execution of 
tasks that may be critical in order to minimize the overall 
schedule length. 

1. Highest Average-Execution-Time First (HAETF). 
In this heuristic, the average execution time is used as 
a priority function to place tasks in a list. All tasks are 
placed in a list in the order of non-increasing average 
execution times. Using this order, each task is allocated 
to the required resources such that its finish time is min- 
imized. 

2. Maximum Finish-Time First (MAX). For each task, 
we calculate the best finish time that can be achieved. 
Then we select the task with the maximum best finish 
time among all tasks. The task is allocated its required 
resources such that its finish time is minimized. We re- 
peat until all tasks are allocated. 

3. Minimum Finish-Time First (MIN). This heuristic 
is similar to the Maximum Finish-Time First (MAX) 
heuristic except that we select the task with the 
minimum finish time instead of selecting the task with 
the maximum finish time. 

4. Highest Degree First (HDF). In this heuristic, all tasks 
are placed in a list in descending order according to 
their degrees (ties are broken arbitrarily). Then, tasks 
are allocated one-by-one to the required resources such 
that the finish time for each task is minimized. 

4.4. Two-Phase Algorithm 

algorithm can be used for the problem of mapping with re- 
source co-allocation as defined in our framework as follows. 

Phase 1: Compile-time mapping. At this phase, the co- 
allocation algorithm described in Section 4.1 is used to 
obtain an ordered list of tasks. The order of tasks in 
the list is based on their scheduling order as produced 
by our co-allocation algorithm. The list is obtained 
by satisfying all precedence and resource sharing con- 
straints with the objective of minimizing the overall 
schedule length. Estimated computation and commu- 
nication times are used to calculate the schedule length. 

Phase 2: Run-time Adaptation. Run-time adaptation can 
be useful for the cases when actual execution times dif- 
fer from the estimated execution times. One way to 
consider this is to scan through the ordered list obtained 
in phase 1 once a task completes its execution in or- 
der to find all tasks that can be executed at this time 
and make local reordering. The scanning can be done 
through a window of tasks with specific size k, where 
*>0. 

4.5. Implementation Issues 

The focus of this paper is the mapping problem with re- 
source co-allocation requirements in HC systems. The im- 
plementation details for the co-allocation process are out- 
side the scope of this paper. A good discussion of implemen- 
tation issue can be found in [5]. In the following for the sake 
of completeness, we briefly state our assumptions regarding 
the co-allocation implementation. 

We assume that a task U cannot start execution until all 
its required resources are available. These resources will be 
acquired at the same time. Once a task 2,- completes its ex- 
ecution, all its allocated resources will be released and will 
be available for other tasks. We assume that any allocation 
request for any resource will be granted as long as this re- 
source is available. In this paper, we do not consider the 
cases of resource failures that can occur in the HC and Grid 
environments. 

5. Performance Evaluation 

A simulator was implemented to evaluate the perfor- 
mance of our co-allocation algorithms and the proposed se- 
lection strategies and allocation heuristics discussed in Sec- 
tion 4. In this section, we explain our simulation procedure 
and give experimental results. 

5.1. Simulation Procedure 

We propose a two-phase algorithm for run-time adapta- 
tion using our static co-allocation algorithm. The two-phase 

To define the HC system, numbers of machines and re- 
sources are given to the simulator as inputs. Communica- 



tion costs among all resources are selected randomly from a 
uniform distribution with a mean equal to ave-comm. The 
communication costs are source and destination dependent. 

The workload consists of randomly generated DAGs. 
Random DAGs are generated as follows: The number 
of tasks in the graph, noJasks, maximum out-degree of 
a node, maxjoutdegree, average computation cost of a 
node, ave-comp, and average message size to be transferred 
among tasks, avejnsgsize, are given as inputs. First, the 
computation time of each task on every compute resource is 
randomly selected from a uniform distribution with a mean 
equal to avg.comp. Starting with the first task, the number 
of children (out-degree) is randomly selected between 1 and 
maxjoutdegree. Then, children are randomly selected for 
this task. The weight of each edge in the DAG is randomly 
selected from a uniform distribution with a mean equal to 
ave-tnsgsize. Resource requirements for each task are ran- 
domly selected from available resources. The amount of 
data to be transferred to/from each resource in the resource 
requirements set is randomly selected from a uniform dis- 
tribution with a mean equal avejdatasize. The sizes of ran- 
dom DAGs range from 50 to 250 tasks with increments of 
50. 
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Figure   7.   Performance   of  the   allocation 
heuristics when using selection strategy 51 

5.2. Baseline Algorithm 

Many mapping algorithms exist in the literature for map- 
ping DAGs in HC systems. None of these algorithms con- 
sider the co-allocation problem we define in this paper. 
Therefore, we will use a simple list scheduling algorithm 
as a baseline algorithm to evaluate our co-allocation algo- 
rithm. The baseline algorithm is a fast static algorithm for 
mapping DAGs in HC environments. It partitions the tasks 
in the DAG into levels using an algorithm similar to the level 
partitioning algorithm described in Section 4.1. Then all the 
tasks are ordered such that the tasks in level k come before 
the tasks in level k +1. The tasks in the same level are sorted 
in descending order based on the average execution time of 
each task (ties are broken arbitrarily). The tasks are consid- 
ered for mapping in this order. A task is mapped to the re- 
quired resources such that its finish time is minimized. 

The Baseline algorithm is similar to our algorithms in 
the sense that all algorithms proceed level-by-level. In the 
Docoiinp. algorithm, the scheduling order of tasks at the same 
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Figure   8.   Performance   of  the   allocation 
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Figure  11.   Performance  of  the  selection 
strategies with HAETF allocation heuristic 
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5.3. Experimental Results 
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Figure   13.   Performance  of  the  selection 
strategies with MAX allocation heuristic 

Our experimental results are given in Figures 7-14. The 
total number of tasks were varied from 50 to 250 with in- 
crements of 50. Each point in the figures is an average of 
400 runs with different random DAGs. Random DAGs were 
generated with max.outdegree={2,3,4,5}, ave.comp=50, 
avejnsgsize=50K byte, and ave-dataj('ze=300K byte. 

Figures 7- 10 show the performance results of our allo- 
cation heuristics compared to the Baseline algorithm when 
using different maximal independent set selection strategies. 
The improvement of our heuristics over the Baseline in- 
creases as the total number of tasks increases. This shows 
the importance of considering co-allocation requirements in 
mapping algorithms. Generally, our allocation heuristics 
have relatively the same performance. 

The performance results of maximal independent sets se- 
lection strategies when using different allocation heuristics 
are given in Figures 11- 14. As in the previous set of re- 
sults, the improvement over Baseline algorithm increases as 
total number of tasks increases. Also, the selection strate- 
gies have relatively same performance. 

In our simulation study, we found that the number of ma- 
chines and the number of resources did not have a signifi- 
cant impact on the performance of allocation heuristics and 
selection strategies. 

6. Conclusions and Future Work 
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Figure   14.   Performance  of  the  selection 
strategies with HDF allocation heuristic 

This paper proposes a novel framework for the problem 
of mapping applications with resource co-allocation in HC 
systems. We formulated the co-allocation problem and de- 
veloped several algorithms for solving this problem using a 
graph theoretic approach. Our simulation results show the 
importance of considering the co-allocation requirements 
during mapping decisions. 

In solving our co-allocation problem, we need to find 
maximal independent sets among tasks competing for sys- 
tem resources. Although we considered many heuristics, 
they all seem to perform equally well indicating that a sim- 
ple heuristic will suffice (even though one can create patho- 
logical examples for each heuristic). 

In our future work, we plan to expand our framework 
to consider concurrent usage of multiple compute resources 
and advance resource reservations. With advance reserva- 
tion, system resources can be reserved in advance for spe- 
cific time intervals. Therefore, resource availability must be 
expressed as a list of available time slots and mapping algo- 
rithms should be insertion-based algorithms. To co-allocate 
a set of resources in this case, efficient algorithms are needed 
to find the best time slot when all resources are available 
for the required duration. In this paper, our algorithms are 
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non insertion-based since the earliest available time for a re- 
source r, is the finish time of the last task assigned to r,. 
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Abstract 
Dynamic real-time systems face many resource man- 

agement problems. This paper addresses the following 
problems: (1) dynamic resource allocation to provide 
QoS objectives, (2) heterogeneous resources, and (3) 
non-intrusive accurate monitoring of QoS, resource 
availability, and resource needs. This paper describes 
the techniques of resource manager (RM) handling 
above problems to support QoS of dynamic distributed 
real-time systems. The contributions of this paper to 
solve these problems are as follows: unification of dy- 
namic resource requirements among heterogeneous 
hosts, control of resources in heterogeneous environ- 
ments, feasibility analysis, and dynamic load balanc- 
ing/sharing. Our heuristic allocation scheme not only 
allows higher workloads than random, round robin, 
least load by 257%, 142%, and 36.4%, respectively, 
but also improves QoS better than random, round 
robin, and least load 38.6%, 28.5%, and 31.6%, re- 
spectively. 

1. Introduction 

This paper describes techniques for managing het- 
erogeneous host resources to support QoS of dynamic 
distributed real-time systems. Our approach is based on 
the dynamic path paradigm. A path-based real-time 
subsystem (see [1], [2]) typically consists of a detec- 
tion & assessment path, an action initiation path, and 
an action guidance path. The paths interact with the 
environment by evaluating streams of data from sen- 
sors, and by causing actuators to respond (in a timely 
manner) to events detected during evaluation of sensor 
data streams. 

An overview of our approach for RM is shown in 
Figure 1. The "s/w spec" is used to describe QoS 

applications 

A   7 

s/w spec. 

Wwspec 

IL 

QoS managers 

■f Resource managers 

(instr) (ctrt\ 

Compute. Ww Comm. h/w 

Figure 1. Resource management architecture 

requirements. The "h/w spec" also defines information 
about the hosts and networks such as speed, OS type, 
the number of CPUs, benchmark rate, bandwidth, and 
interconnected equipment. The "QoS managers" col- 
lect QoS metrics, compare to s/w spec, and request 
resources, if QoS violations occur. The "resource man- 
ager" is the brain, which makes allocation decisions to 
achieve QoS objectives. 

This paper focuses on the resource management 
component, and discusses a new technique for dynamic 
feasibility analysis on heterogeneous resource plat- 
forms. Most previous work in distributed real-time 
systems assumed that all system behaviors follow a 
statically known pattern (see [3] [4]). When applying 
the previous work to some applications (such as ship- 
board AAW systems [1][5]), problems arise with re- 
spect to scalability of analysis and modeling tech- 
niques; furthermore, it is sometimes impossible to 
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Table 1. System resource model 

SYMBOL 

tl = tl(C, Pj) 

CUPobs(aij, tl, Hk) 

CUPuni(aij, tl, Hk) 

CUP(Hi;t) 

CIPCH.t) 

MEMobs(aij, tl, Hk) 

FAM(Hi,t) 

XobsCa,, tl, Hk) 

Pobs(aij, tl, Hk) 

CCR(Hi) 

SPECint95(Hi) 

SPECfp95(Hj) 

SPEC_RATE(H:) 

NOTATION 

name of application j in path i 

workload or tactical load at cycle c in path i 

the CPU user-percentage of host Hk for the application a, in path i at 
work load tl,  
the unified CPU user-percentage of host Hk for the application a, in 
path i at work load tl  
the CPU user-percentage of host H at time t 

the idle-percentage of host H; at time t 

the memory usage of application a, in path i on host Hk at work load tl 

the free-available-memory of host Hj at time t 

the execution time of application aj in path i on host Hk at work load tl 

the period of application at in path i on host Hk at work load tl 

CPU clock rate in MHz at host H, 

the fixed point operation performance of SPEC CPU95 of host H 

Threshold_CPU(Hj) 

Threshold_MEM(Hj) 

the floating point operation performance of SPEC CPU95 of host H, 

the relative SPECCPU95 rating of host H 

the CPU threshold 

the memory threshold 

obtain some of the parameters required by the models. 
In contrast, DeSiDeRaTa RM(see [6][2]) allows the 

modeling of systems that work in environments that 
have unknown scenarios (such as battle environments) 
(see [7]); the dynamic path paradigm is based on ob- 
tainable parameters, since it evolved from the study of 
existing computer systems; and the large granularity of 
the path makes it more scalable than task allocation 
approaches. 

The new contributions of this paper are as follows: 
(1) unification of dynamic resource requirements 
among heterogeneous hosts, (2) control of resources in 
heterogeneous environments, (3) feasibility analysis, 
and (4) dynamic load balancing/sharing. 

Section 2 shows the feasibility analysis and laxity 
based RM approach with system model. Section 3 
shows the results of experiments. Finally, Section 4 is 
the summary and conclusion. 

2. Laxity Based RM 

In this section, the resource management approach is 
explained. Basic steps of dynamic resource manage- 
ment are follows: (step 1) Resource Requirement , 
(step 2) Resource Discovery, (step 3) Resource Unifi- 
cation, (step 4) Feasibility Analysis, and (step 5) Opti- 
mization. These steps are explained in detail in the 
remainder of this section. First, a mathematical model, 
which is used in the detailed explanation, is presented. 

Table 1 shows the system resource model, ay and tl 
represent application and workload of an application, 
respectively. Indices starting with CUP stand for CPU 
usage. CIP is CPU idle percentage of a host. MEM and 
FAM relate to memory usage. X and P are the execu- 
tion time and period of an application ay, respectively. 
CCR stands for CPU clock rate of a host. The SPEC 
CPU95 host benchmark consists of SPECint95 and 
SPECfp95 that show relative performance of fixed and 
floating point operations in a system. SPEC_RATE is 
overall relative system rank Indices, Threshold, are 
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certain amount of resource to tolerate different amount 
of resource requirement. 

The steps taken by RM are now explained in detail. 
The resource requirement step works as follows. QM 
detects QoS violation by monitoring QoS of a path and 
each application and requests additional resources 
based on decisions. When a significant amount of 
workload is observed, QM analyzes the latency of each 
application. If ay uses more resources than others, or 
the latency of ay is higher than minimum QoS slack, 
then QM triggers request of additional resources with 
another copy of the application. This is called "scale- 
up" decision. When workload is not changed, but QoS 
violation occurs, QM triggers migration of ay running 
on the overloaded host. It is called "move" decision. 

Therefore, different resource requirements should be 
measured according to decisions. Hence, for "move" 
decision, RM measures dynamic resource requirement 
of CPU for the violated application using CUPobs(ajj, tl, 
Hk) = X((aij, tl, Hk) / P(ay, tl, Hk). For the "scale-up" 
decision, the resource requirement is measured by in- 
terpolation and extrapolation from the initial profile for 
the new workload: tl = current tl / (replicas + 1). The 
resource discovery step is explained here in detail. 

Monitoring of resource availability in dynamic envi- 
ronments has more difficulties than in static environ- 
ments, because of unknown system activation. 
FAM(Hk,t), CIP(Hk,t), and CUP(Hk,t) are collected for 
all host "k" once per second. And these resources are 
filtered by exponential moving average(EMA) as illus- 
trated below for CUP: 
EMA(CUP(Hj(t))    = (l-ß)*(CUP(Hj,t)) + ß * EMA 
(CUP(Hj,t-l)), where, t > 1, ß= eT. 

Each resource has various scales and capacities even 
in the same unit among heterogeneous platforms. In 
this step, resource unification method is explained in 
detail. 
Definition: Resource unification produces a canonical 
form of each resource metric. 

RM allocates and controls resources accurately, if 
each resource is unified. Consider CUPobs(aij, tl, Hk) as 
resource requirement. To allocate the amount of the 
resource, RM needs to analyze the requirement and 
map it to target hosts. There are two approaches, static 
and dynamic. The static approach uses stable system 
information like benchmarks, or CPU clock rate. It will 
decide relative amount of system resources efficiently 
but inaccurately for dynamic environments. The dy- 
namic approach of predicting execution time using 
dynamic system information has high complexity for 
real-time systems, as an application uses several differ- 
ent resources such as I/O disk, memory, and CPU, each 
of which has different performance  among hosts. 

Therefore, a static approach is selected as follows. For 
the unification of resources, the results of a variety of 
realistic SPEC CPU95 will give valuable insight into 
expected real performance among heterogeneous hosts. 

However, no one benchmark can fully characterize 
overall system performance. SPEC CPU95 measures 
the performance of CPU, memory system, and com- 
piler code generation by running 18 programs that are 
well designed to gather their throughput. The geomet- 
ric mean is used to represent system overall perform- 
ance compared to a reference machine, Sun-sparc- 
10/40Mhz. This standardized set of benchmarks (SPE- 
Cint95 and SPECfp95) is adaptable to the recent gen- 
eration of high-performance computing efficiently 
(HPC) [8]. Hence, the following formula (1) is used to 
unify CPU resource, CUPuni(ay, tl, HT), onto target host, 
HT from CUPobs(aij, tl, Hk) on source host, H*. 

CUPum(ay, tl, HT) = CUP^Cay, tl, H,) * 
SPEC_RATE(Hk) / SPEC_RATE(HT)     -(1) 

Where Vj, SPEC_RATE(Hj) = AVG(SPECint95(H;) / 
Max(SPECint95(Hj), SPECfp95(Hi) / 

Max(SPECfp95(Hj))). 

Another piece of static system information, CCR(Hj) 
is considered but it is inapplicable to unification of 
resources, because a different number of CPU cycles 
between RISC and CISC are used, and because differ- 
ent VLSI technology is used, for example, Sun Ultral- 
167Mhz has better performance than SPARC5- 
170Mhz. 

Now, the feasibility analysis steps are illustrated as 
follows. The best-host approach (see [9]) without con- 
sideration of resource availability does not guarantee 
load balance. Therefore, this step distinguishes feasible 
hosts in terms of resource availability based on the 
unified resource. Furthermore, in formula (2), the 
thresholds for the load balancing process include CPU 
idle time and available memory; the current CPU and 
memory usage of the process that is to be migrated are 
compared against the thresholds to determine the desti- 
nation host. If a host satisfies the condition of feasibil- 
ity analysis in formula (2) and no faults are detected on 
the host, then it is a candidate host. 

(FeasibleCpu(Hi,t) = CIP(Hi;t) - CUP„m(ay, tl, H;)) > 
Thresihold_CPU(Hi) & 

(FeasibleMEM(Hi,t) = FAM(H,t) - MEM^/ay, tl, H)) > 
Threshold_MEM(Hi) -(2) 

Finally, the optimization step is explained. Opti- 
mized resources give good information to RM for effi- 
cient allocations. 
Definition: Laxity is an available amount of unified 
resources after allocation of requested resources deliv- 
ered from QM for the violated applications. 
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1. QM request resources, CUP0b5(aij, tl, HL), MEMobs(ajj, tl, HL) 
2. Get the host list, HL, including host load indices, load metrics(LM) 
3. Calculate EM A of LM 
4. No_of_Candidate_Host = 0 ; 
5. Create Linked List of HL_CPU ; 
6. Create Linked List of HL_MEM ; 
7. For (k = first(HL(Hj, t)); k <= last(HL(Hi, t))) 
8. CUPuni(aiJ, tl, Hk) = CUPobs(aij, tl, HÜ * SPEC_RATE(HL) / SPEC_RATE(Hk); 
9. FeasibleCPu(Hk t) = CIP(Hk, t) - CUP^ay, tl, Hk) - Threshold_CPU(Hk); 
10. FeasibleMEM(Hk, t) = FAM(Hk, t) - MEXWay, tl, Hk) - Threshold_MEM(Hk); 
11. If(FeasiblecPu(Hk t) > 0) && (FeasibleMEM(Hk, t) > 0) 
12. /Cpu(Hk,t)= FeasibleCPu(Hk. t)) * SPEC_RATE((Hk); 
13. /MEM(Hk,t)= FeasibleMEM(Hk, t)); 
14. Append Hk and /Cpu(Hk,t) to HL_CPU ; 
15. Append Hk and /MEM(Hk,t) to HL_MEM ; 
16. No_of_Canidate_Host++; 
17. //end if 11 
18. Loop 7; 
19. Sort HL_CPU in descending order of /Cpu(Hi,t) 
20. Sort HL_MEM in descending order of /MEM(Hi,t) 
21. If(No_of_Candidate_Host = 0)Return(Target_Host = first(HL_CPU)) 
22. Target_Host = first(HL_CPU); 
23. While(true) 
24. If((Target_Host is Alive) && (Target_Host is in top 50th percentile of HL_MEM)) 
25. Return (Target_Host); 
26. Else Targetjiost = next(HL_CPU); 
27. Loop 23 ; 

Figure 2. Resource allocation algorithm 

FeasibleCPu(Hi,t) is the available amount of resources 
after allocation of a^. Unifying the FeasibleCPu(Hi,t) 
gives the optimized resource availability. This optimi- 
zation is an important QoS factor. Formula (3) and (4) 
show the Laxity of CPU, /Cpu(Hi,t), and Laxity of 
memory, /MEM(Hi,t). 

/CPu(Hj,t) = FeasibleCPu(Hj;t) * SPEC_RATE(Hi),- (3) 
/MEM(Hi.t) = FeasibleMEM(Hi,t)   - (4) 

Based on optimized resources, the resource allocation 
schemes, max-laxity host(AMax) shown in formula (5), 
and min-laxity hosttA™) shown in formula (6) are 
carefully considered. Other approaches such as ran- 
dom^), round-robin(rr), and least-load(W) have been 
tested and compared with our allocation schemes of 
resource optimization. But the least load approach (re- 
sources are not unified) shown in formula (7) does not 
guarantee QoS requirement as the available resources 
in the supply space do not correspond to resource re- 
quirement in demand space. 

y\Max = MaXi(/cPu(Hi,t)) and Topi(/MEM(Hi,t), 50) - (5) 
A™ = mini(/Cpu(Hi,t)) and Boti(/MEM(Hi,t),50) - (6) 
U = Max, (CPI(Hi,t)*Wcpu + FAM(Hj,t)* Wmem ) - (7) 
where Topi(/MEM(Hi,t), 50): the host "i" is in top 50th 

percentile in laxity of memory, 
Boti(/MEM(Hi,t), 50): the host "i" is in bottom 50th per- 

centile in laxity of memory, 
WcpU+Wmem =1,   Vj 

In our approach, the other resource requirements like 
network bandwidth, I/O disk are applicable in a similar 
way. The final decision is made based on the laxity of 
each resource using heuristic algorithm: find a host that 
has maximum ACPU; if the host is in top 50th percentile 
of the host list (sorted by AMEM(Hj,t)); select the host; if 
not, examine the next host that has maximum 
ACpu(Hi,t). Figure 2 explains resource allocation algo- 
rithm in detail. 

Instead of resource allocation, control of heteroge- 
neous resources is an efficient way to provide quick 
resource management. Dynamic CPU proportion 
change on Linux using the Quasar scheduler [10][11] 
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and priority handling on NT and Solaris are imple- 
mented in our scheme. 

Furthermore, for accurate allocation, the RM should 
consider not only load balance based on resource avail- 
ability, but also a measure of system contention called 
slowdown factor. This is ongoing study, especially in 
the area of network load between two communication 
nodes. 

3. Experiments 

We have used DynBench[12] as an assessment tool 
for DeSiDeRaTa. It uses an identical scenario for ex- 
periments. The experimental system parameters and 
heterogeneous environment are as follows: 1 Linux 
Pentium 200mhz, 1 NT Pentium-Ill 500mhz, 2 NT 
Pentium-n 400mhz, 2 NT Pentium 200mhz, 2 Solaris 
Sparc-5 170mhz, 2 Solaris Ultra-1 167mhz, 1 SunOS 
on ULTRA10 300mhz, and lOOMhz Fast Ethernet. 

The first experiment monitors and analyzes resource 
requirements corresponding to step 1 in section 2. The 
second experiment measures the unification ap- 
proaches corresponding to step 3 in section 2. The third 
experiment compares different allocation schemes cor- 
responding to step 5 in section 2. Experiment details 
are presented in the remainder of this section. 

Experiment 1 shown in Figure 3 describes the meas- 
ures of variance of execution time with different meth- 
ods and different periods in (c), and variance of mem- 
ory among hosts in (a) and (b). The three different 
monitoring techniques, getrusage()(GRU) system call, 
reading process table(PT), and ps(PSU) command, are 
used. From the experiments (c), the variance of execu- 
tion time measured by reading PT is high, and is de- 
pendent on the monitor cycle time as the period for 
accessing PT cannot exactly cover the range of process 
execution time. It is impossible to collect exact re- 
source usage of a process at a particular instant of time. 
However, the GRU system call shows accurate process 
resource usage in terms of variance of execution time. 
The exponential moving average (EMA) of each 
method is used for filtering. The maximum difference 
of memory usage by the evaluate and decide applica- 
tion(ED) on two different hosts is 48Kbytes(from (a) 
and (b) in Figure 3). Hence, Threshold_MEM(Hk,t) and 
Threshold_CPU(Hk,t) are necessary components to 
constraint candidate host. The variances of memory 
requirement of applications are measured by zero. 

The second experiment described in Figure 4 shows 
the difference between observed resource usage and 

unified resource estimated by SPEC_RATE and 
Clock_Rate(CCR). For example, the execution time is 
collected on Pentium-200, and we multiply the meas- 
ured execution time and SPEC_RATE/CCR of the tar- 
get host, PentiumIII-500. Next we experiment with the 
same scenario on PentiumIII-500 to observe actual 
execution time of the process to compare with previous 
estimated execution time. The difference between uni- 
fied resource by CCR and the observed resource is 8% 
on NT, and 3.5% on Sun. The difference of unified 
resource by SPEC_RATE has 1% on NT, and 11% on 
Sun. 

Experiment 3 proposed three measurements - QoS 
violation rate (QVR), QoS Sensitivity (QSS), and QoS 
(to compare QoS characteristics by different allocation 
decision algorithm as shown in Figure 5). The QVR is 
the number of violations within 2 minutes by increas- 
ing workload. QSS is the amount of workload to trig- 
ger second violation after the first violation. QoS is the 
latency of a path improved by first allocation. This 
experiment shows clearly that the U approach that ig- 
nores heterogeneity (proposed by Ravindran [9]) is 
much worse than our scheme in terms of QVR, QSS, 
and QoS. Our AMax scheme improves 26.4% better in 
QoS, 36.4% better in QSS, and 60% less in QVR than 
it approach. 

4. Conclusion and Future Study 

This paper presents 5 solutions of resource alloca- 
tion for dynamic real-time systems. Our AMm scheme 
not only allows higher workloads than ra, rr, and U 
by 257%, 142%, and 36.4%, respectively, but also im- 
proves QoS better than ra, rr, and tt by 38.6% 28.5% 
31.6%, respectively. Controlling heterogeneous re- 
sources using CPU proportion change and priority 
change is useful for the server programs. The effi- 
ciency of resource allocation in terms of QoS objec- 
tives for scalable and moveable clients is better than 
that of the control. Ongoing work includes finding a 
specific solution of the resource management for hard- 
real time applications, Predictive RM, Proactive RM, 
and QoS negotiation. Also, heterogeneous network 
resource monitoring and allocation, and the decision 
mechanism between allocation and control is an im- 
portant issue in providing QoS requirements. 

291 



Average Memory Usage on Ultra 5 

5000    6000 

tactical load 

Average Memory Usage on UHral 

5000    6000 

tactical lead 

(a) MEM(ay, tl, Sun-Ultra-5) (b) MEM(aij, tl, Sun-Ultra-1) 

EXEC. TIME VARIANCES 

variance 

tactical load 

path period and technique 
(GRU=getrusage; PT=proc table; 

EMA PT=exp. Mov. Avg. PT; 
PSU=ps_usage; EMA PSU=exp. Mov. Avg. PSU) 

( c ) Variance of execution time 

Figure 3. The Dynamic measures of monitored resource requirement 

292 



Comparison of Unified Resource on Unix 
Workstation 

1000 '    1500 '   2000 '    2500 ' 

-observed 
resource req. 

- Unified resource 
req. by 
Spec_Rate 

-unified resource 
req. by 
aock_Rate 

TbeCörrparisonof Uified Resource on 
NT workstation 

 i 

1000 ' 1500 ' 2000 2500 tl 

-♦- observed resource 
req 

■*- unified resoure req 
bySpec_Rgte 

-A-Unified resource req 
byClcck_Ffete 

(a) Pentium (200MMX) vs Pentium-Ill (500Mhz) (b) Ultra-10(300Mhz) vs Ultra-1 (140Mhz) 

Figure 4. Resource unification by SPEC_RATE and Clock_Rate 

QoS Sensitivity 

least-load    random round      max-laxity  min-laxity 
robin 

Qos Violation Rate 

least-load      random     round robin   max-laxity    min-laxity 

(a) QSS (b) QVR 

QoS 

900 

600 
500 
400 
300 
200 
100 

X-Jt-^S^C^S^^w^X 

"i1 TI'"''Y T"''"i"'' 

♦    least-load 

-■—random 

 round robin 

-X—max-laxity 

-*—min-laxity 

1    23456789   10 11 

(c) QoS 

Figure 5. Comparison of resource management schemes 
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Abstract 

The use of multicomputer clusters composed of cheap 
workstations connected by high-speed networks is common 
in modern high-performance computing. However, operat- 
ing system research in such environments has lagged. Our 
research aims at enhancing the functionality of the operat- 
ing system by providing management functions that allow 
dynamic resource sharing and performance prediction in a 
clustered environment supporting distributed shared mem- 
ory and multithreading. Central to this approach is the 
development of a parametric cost model that can predict 
the performance ramifications of policy choices and allow 
applications and middleware to adapt to the computing en- 
vironment and achieve better performance. 

1   Introduction 

The goal of our research is to develop and evaluate a 
parametrical cost/benefit model to be used as a decision- 
making tool for managing dynamic system resource sharing 
in an environment of high-performance heterogeneous clus- 
ters. Multicomputer clusters are capable of achieving com- 
putational rates equal or higher than those of conventional 
supercomputers. However, the performance these systems 
deliver to applications is usually just a fraction of their max- 
imum capacity, even in cases of applications that can theo- 
retically achieve much higher computation rates. Software 
inefficiency has to be blamed for this phenomenon. We are 
developing mechanisms that better share system resources 
and promote parallelization of tasks. These mechanisms 
allow applications to self-adapt to the varying availability 
of system resources according to their own varying resource 
requirements and thus run more efficiently. 

The key idea in this research is the notion of cost, in 
terms of execution time, and the ramifications of certain op- 
erating system services (including process/thread creation, 
process/thread placement, and inter-process communica- 

tion). This cost varies with several parameters such as ap- 
plication requirements, application behavior, time, system 
configuration, and network topology. Realistic prediction of 
the cost of system services and choices gives an application 
the ability to make its own decisions regarding the execution 
environment that best suits its needs. 

We are therefore developing a parametric cost model 
for predicting the cost of certain operating system services 
while taking into account system characteristics and appli- 
cation information, as well as a set of software extensions to 
the operating system to support the function of this model 
and facilitate the dynamic sharing of system resources. The 
result will be an operating system with flexible resource 
control, able to deliver a higher percentage of underlying 
system performance to applications and middleware. 

Section 2 of this paper presents the motivation for this 
work, section 3 the hardware and software environment un- 
der consideration, and section 4 the family of applications 
of interest. Section 5 describes our approach in more detail, 
while section 6 discusses related work. Section 7 gives a 
brief summary. 

2   Motivation 

In recent years there has been a new trend in high- 
performance computing: the use of multicomputers built 
from common, off-the-shelf components. These systems 
are capable of sustaining computation rates that rival or 
surpass the rates sustained by conventional supercomputers, 
but the demonstrated performance is just a fraction of the 
maximum theoretical performance. For example, the Cen- 
turion cluster of phase I achieved 3.7 sustained gigaflops 
on 49 CPUs during a run of an ocean modeling applica- 
tion [1]. This code gets just 650 megaflops on a single Cray 
T90 CPU. While this comparison is encouraging, Centurion 
of phase I had a maximum capacity of over 60 gigaflops. 
While it would be naive to expect to sustain a rate of com- 
putation approaching the maximum, there is certainly room 
to improve the performance substantially, for several cat- 
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egories of applications. We identify software overhead as 
one of the primary culprits in this reduced performance is- 
sue. To overcome this overhead we have each software layer 
expose to higher layers information describing the behavior 
of the individual layer and implications that behavior has 
for performance. Also, the application provides information 
regarding its own behavior to lower software layers as hints 
to let them better estimate the impact on performance. 

Our approach chooses to work from the bottom up, be- 
cause all applications, regardless of middleware system, use 
the operating system. By adding a set of services to the 
operating system, if possible only as user-level modules for 
reasons of portability, we aim to allow dynamic resource 
sharing and also provide a resource consumer (not neces- 
sarily only an application) with information about the cost 
of a specified operation. For example, runtime systems will 
be able to get information to make service guarantees to 
applications, and applications will be able to self-adapt to 
various system configurations and varying resource avail- 
ability. Load balancing environments will be able to better 
estimate system efficiency and better understand the effect 
various task mappings have on performance. In these envi- 
ronments dynamic granularity control will also be possible. 
Finally, smart compilers will be able to take into account 
operating system cost information during the compilation 
phase of an application to optimize the executable code for 
specific system configurations and loads. To complement 
this, it will also be possible to have an application loader 
that will take into account application supplied information 
and create the most suitable environment within a system's 
limits for running a specific application. 

3   The Hardware and Software Environment 

The environment in which the problem is considered is 
a distributed system consisting of a variety of nodes con- 
nected with networks of various speeds. We view such a 
system as having a physical and a logical organization. 

The physical organization of the system is based on the 
principle of hierarchical clustering [13]. Groups of neigh- 
boring nodes form local clusters. Local clusters can be 
grouped together and form second level superclusters, sec- 
ond level supercluster groups can form third level superclus- 
ters, etc. (see figure 1). The main criterion for forming the 
various hierarchy echelons is the cost of communications— 
these echelons reflect the underlying networks. That is, 
echelon 0 corresponds to communications between proces- 
sors of the same node (intra-node)—if nodes have more 
than one processor—which have hardware shared memory 
and thus the least cost for sharing information. Echelon 1 
corresponds to intra-cluster communication, echelon 2 to 
cross-cluster communication between clusters of the same 
2nd level supercluster, echelon 3 to cross-cluster communi- 

cation between clusters of different 2nd level superclusters, 
etc. Another way to think of this organization is as a system 
map. 

Figure 1. A clustered multicomputer - physi- 
cal clustering 

Over the physical clusters is laid an organization of log- 
ical clusters. The nodes of a logical cluster share infor- 
mation using distributed shared memory. Note the differ- 
ence between physical and logical clusters: physical clus- 
ters are defined by the physical organization of a system, 
mainly by the nature of the interconnecting network, and 
are fixed; logical clusters are groups of processors that share 
memory using software-based distributed shared memory 
(DSM) and can change dynamically. Such a cluster can be 
a portion of a physical cluster, a whole physical cluster, or 
it can span several physical clusters incorporating parts or 
the whole of them (see figure 2)). 

An important aspect of the environment is the support 
for threads and for distributed shared memory. The elemen- 
tary computing entity here is the thread and an application 
includes a dynamically changing number of threads. The 
enhanced operating system provides a single address space 
for the threads of an application. This address space is vis- 
ible by a number of processors within the logical cluster 
structure and the threads are mapped on these processors 
without the knowledge of the application. Thread migra- 
tion is possible in this environment, as well as migration 
of thread groups, even whole applications, within (intra- 
cluster) or between logical clusters. 

The choice of software DSM as the means of forming a 
logical cluster is a trade-off between raw performance and 
ease of programming. The pros and cons of the message 
passing and the distributed shared memory paradigm are 
known and there have been numerous publications in this 
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Figure 2. Logical clustering 

area. We believe that there is a lot of room for improv- 
ing the performance of certain categories of applications on 
multicomputer clusters. We expect that careful use of DSM 
in combination with cost/benefit prediction and dynamic 
adaptation to resource demand/availability will demonstrate 
definite performance improvements over the current figures 
without sacrificing usability and programming ease on the 
altar of performance. In any case, the idea of using a cost 
model to predict the cost/benefit of certain operating sys- 
tem operations is independent of using one paradigm or the 
other and can contribute in all cases to the better adminis- 
tration of a system's resources. 

4   The Applications 

The type of application of interest is a parallel applica- 
tion with high resource demands, such as a large scientific 
simulation. This type of application usually presents a dy- 
namic change of resource requirements, that is, it presents 
irregularity: "data structures, communication patterns, or 
computation are not defined by simple, repeating struc- 
tures" [4]. 

Our computational model mixes shared-memory pro- 
gramming (done with threads) with distributed-memory 
programming (done with a message passing environment 
such as MPI). Our initial work was to support Pthreads, the 
POSIX-standard threads library, but we are moving to sup- 
port the emerging standard for multiprocessing, OpenMP, 
in conjunction with MPI. 

As an example of this application type, consider a 
weather simulation, tracking the progress of a storm front 
as it moves across a landscape which has been mapped onto 
a grid. Each grid cell can be mapped onto a multithreaded 
MPI process.   The grid cells containing the storm front 

will require the most computation, and as the front moves, 
the computational hotspots will move across the grid. To 
achieve good performance, we want to rebalance the work- 
load. Historically this has been done either through data 
migration or computational migration. 

Static thread allocation for an application with dynamic 
resource requirements leads either to processors sitting idle, 
when resource usage is overestimated, or to delay from load 
imbalance when usage is underestimated. Clearly, such 
a computation can only be performed efficiently with the 
combination of a load balancing technique with dynamic 
granularity control [3]. Using our approach, one can add 
extra computational power within the address space of a 
hotspot, thus spreading the load to more threads. In the 
example of storm front simulation, we can add threads to 
the cells containing the front (these new threads might be 
put on local processors, remote processors via DSM in an 
expanded logical cluster, or we might even choose to mi- 
grate the entire process to a larger SMP and add threads 
there). Once the front passes, the extra threads are no longer 
necessary and can be killed, freeing the occupied proces- 
sors. Each multithreaded MPI process can be assigned to 
a logical cluster with a certain number of nodes that share 
memory and provide the illusion of a single address space 
to the threads of the process, while each thread runs on a 
different CPU. The MPI processes communicate with cross- 
cluster messages. Processors can be dynamically added 
to/removed from each logical cluster in response to load 
variations. 

5   Our Approach 

Our work is based on Linux, which is the de facto stan- 
dard for free software cluster operating systems. This has 
the obvious advantage of allowing us to add code to the ker- 
nel as we deem necessary. We are building two sets of soft- 
ware to support our needed functionality: kernel extensions 
and user-level libraries. Our work to date has focused on 
determining the required functionality, and the line between 
what should go in the kernel and what should go in the user 
library is not yet set. 

5.1   Additional Functionality 

We are augmenting Linux with heterogeneous dis- 
tributed shared memory and multithreading functionality. 
Functionality similar to the Mermaid prototype [8] is de- 
sired as well as conformation to the OpenMP standard [17] 
and the popular Pthreads interface. 

The additional functionality that we are currently adding 
to the system is as follows: 

1. Add a thread or a group of threads to an existing shared 
address space. 
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Figure 3. The main parameters of the cost model 

2. Add a processor or remove a processor from a shared 
address space. 

3. Dynamically migrate a thread from one processor to 
another. The target processor should automatically be 
added to the shared address space, if not already in- 
cluded, and the source processor should possibly be 
removed, if no other thread runs on it. Removing 
a processor from an address space might not always 
be desirable as it can cause thrashing on processor 
add/remove. 

4. Form, modify, manage, and cancel a logical cluster of 
nodes. These functions will correspondingly create, 
modify, manage, and delete the necessary data struc- 
tures that need to be maintained to support logical clus- 
ters. 

5. Evaluate cost functions to estimate the cost/benefit of 
performing certain operations, as for example to cre- 
ate/cancel a cluster, add/remove a processor to/from 
an address space, start/kill a thread on a specific pro- 
cessor, and migrate a thread, which may result to the 
inclusion of the target processor in the shared address 
space and/or the removal of the source processor, as 
mentioned above. 

5.2   The Cost/Benefit Model 

The operating system extensions are mechanisms, not 
policies. Policy decisions will be made either in middleware 
layers or by the application itself, e.g. whether or not to add 
a thread to a running process. To assist the higher software 
layers in making these decisions, we have developed a cost 
model so that the operating system can accurately predict 
the ramifications of policy decisions. 

Our cost model moves qualitatively along three axes: the 
first axis has as parameter the amount of system information 
taken into account; the second axis, the amount of applica- 
tion information; and the third, the speed of the cost esti- 
mation. Figure 3 represents a qualitative picture of the cost 
model behavior. The accuracy of the model is generally 
inversely proportional to the speed of the estimation. The 
speed of the model depends on the type and quantity of 
application and system information that must be processed. 
Accuracy increases and speed decreases as the volume of 
information increases. The cost of a cost estimation has to 
be low when compared with the benefit that a correct policy 
decision will offer. On the other hand, the estimated cost 
needs to be accurate enough to enable correct decisions. 
Clearly, this is a complex problem and there are several fac- 
tors that need to be considered. Therefore, the cost model 
needs to be parametric and provide for various trade-offs of 
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accuracy for speed. 
In its simplest form, the cost model views the cost of 

operations as set of discrete cost classes. This classification 
is of the least accuracy and maximum speed and it works 
when a fast answer is needed and no information is available 
from the application side. As an example, in a system with 
two clusters where one cluster is formed by dual-processor 
x86 boxes and assuming 3 cost classes, the cost of adding 
a thread to the second processor of a node belongs to class 
#0. The cost of adding a thread to a new (unused) processor 
in the local cluster belongs to cost class #1. The cost to 
migrate a thread to the neighboring cluster is of class #2, 
the highest. Here the accuracy of the model is the lowest as 
it relies only on basic system information. 

In its richest form, the model can provide a set of cost 
information about an operation and the impact this opera- 
tion will have on the performance of the application. For 
this purpose, it is necessary to combine information from 
both the system and the application. The system maintains 
a vector of state and cost information by directly access- 
ing information maintained by the operating system kernels 
and by periodically running a set of suitable benchmarks 
to measure other important cost-affecting quantities, like 
communication latencies or node loads (cf. the Network 
Weather Service [26]). The application passes in a descrip- 
tion of its behavior, e.g. memory access patterns, thread 
running patterns, acceptable delays, etc. Statistical informa- 
tion, gathered during previous runs of the application, can 
help identify its behavior when this behavior is not known 
in advance. The cost model combines the supplied informa- 
tion to produce a cost rating, a quantity that can be used in 
comparing the cost of different system operations. 
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running on six processors of cluster A, which form a logical 
cluster, with six threads, one per processor (see figure 4)). 
Suppose that at a certain phase during execution the appli- 
cation wants to spawn another group of six threads. Would 
it be better to use six processors of cluster A (4 free ones 
and two already running a thread each), use the remaining 4 
processors of cluster A and two more from cluster B, or use 
six processors of cluster B instead? Cross-cluster communi- 
cation is more expensive than intra-cluster communication 
so the first option seems more attractive than the second and 
the second more attractive than the third. However, this is 
not necessarily the best order. The first option suffers from 
the fact that two processors have to run two threads each. 
Also, what is of highest benefit depends on how the appli- 
cation behaves. If the new group of threads works in close 
cooperation with the initial thread group, then the first op- 
tion is probably better. If the group of these six new threads 
performs a separate task and communicates infrequently 
with the initial thread group, that is, data shared between 
the two groups are infrequently accessed, then the third 
option is probably better. This is because the infrequent 
communication between the two thread groups keeps the 
communication cost low. In this case, if the second option 
were chosen, the frequent communication between the two 
threads running on cluster B with the other four on cluster A 
would impose a heavy increase in the communication cost. 

The following is a cost rating estimation for the three 
thread placement options considered. Since a highly de- 
tailed estimation would be too long to present here, certain 
simplifying assumptions are necessary. The first assump- 
tion is that the system costs are identical for all processors. 
A more detailed estimation would include the cost of per- 
forming certain operations on each individual node, or type 
of node. A second assumption is that the costs for sending 
messages are estimated using the basic LogP model [16]). 
Consider now the following costs: 

s cost to start a thread on a processor, 

e cost to include a processor in a shared address space, 

er cost to include a processor that belongs to a neighboring 
cluster in a shared address space, 

Ci cost for sending a message across the intra-cluster net- 
work, 

cc cost for sending a message across the cross-cluster net- 
work, Cc > Cj, 

Figure 4. Three possible configurations 

For example, consider two neighboring (physical) clus- 
ters, A and B, with 10 processors each, and an application 

Let the application supply information about itself in the 
form of two weight factors, wg, and wT. wg expresses the 
percentage of accesses to variables shared between the new 
group of threads, and wr, expresses the percentage of ac- 
cesses to variable shared between the old and the new thread 
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groups. Wg +wr = 100%. The application declares that the 
threads of the new group communicate frequently with each 
other by having wg » wT, that is, intra-group communica- 
tion is much more frequent than between groups. We'd like 
to compare the three basic thread group placement options, 
in the present case all six threads on cluster A (option 6/0), 
four threads on cluster A and two on B (option 4/2) or all 
six on cluster B (option 0/6). 

The first thing to estimate is the overhead for spawning 
the new thread group: for the 6/0 option 6(s + f e), for the 
4/2 option 6(s + f e + |er), and for the 0/6 option 6(s + er). 
Since er > e, the 0/6 option has more overhead than the 4/2 
option, and that in turn more than the 6/0 option, which is 
expected. 

This overhead is not enough to make a decision. Here 
the cost rating has to have at least two parts, a fixed part, the 
overhead, and a variable part, a rating for the communica- 
tion and the running cost. 

For estimating the communication cost rating, assume 
that TO is the number of messages associated with the access 
of shared data by threads of the new group per time unit 
(message rate). Then the 6/0 option has a rating of m{wg + 
wT)ci = mci. For the 4/2 option assume a split factor k 
to distinguish between the messages send within A and B 
and those that cross the boundary between them. That is, 
k% of messages are intra-cluster within clusters A and B, 
and (1 - k)% cross-cluster between A and B. Then the cost 
rating is m{kci + (1 - k)cc). Finally, for the 0/6 option the 
rating is m(wgCi + wrcc) To compare the rating of 0/6 to 
that of 4/2 we subtract the first from the second. After the 
calculations we obtain TO(CC - Ci)(wg - k). Because cc > 
Ci and wg » wr this quantity is positive when wg > k. 
Having wg < k is incompatible with the assumption that 
the threads of the new group communicate frequently with 
each other and infrequently with the old group; the value 
of wg is close to 100% and a value for k approaching wg 

would mean that the communication between the subgroup 
of the two threads and that of the four threads is infrequent, 
in direct contrast with the above assumption. Thus, the cost 
rating for the 4/2 option is higher than that of the 0/6 option. 
In turn, the cost rating of 0/6 is higher, but only slightly, 
than 6/0. So far, 6/0 has the lowest overhead and cheapest 
communications, with 0/6 second and 4/2 last. 

To make the final decision, it is necessary to estimate the 
cost of running for the three options. Assume a time period 
At During this period the new thread group causes the 
sending of TO At messages. Also assume that during At the 
maximum number of thread instructions available for exe- 
cution are It and that a processor can execute x instructions 
per time unit. 

For cases 4/2 and 0/6, each thread will take It/x time. 
For the 6/0 case, two of the threads are running essentially 
at half speed x/2 since they run on already occupied proces- 
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Figure 5. Centurion, ethernet connections 

sors. Assuming that in general we have CPU-bound threads, 
these two threads will take double the time of the other four 
threads, ~f-, probably delaying their work (the interference 
pattern of the threads is another factor to take into account 
for more accurate estimations). It can be concluded now 
that option 0/6 is probably the best choice, because it has 
almost the same communication cost rating with 6/0 but half 
the running cost rating, and in the long run the overhead can 
be ignored. 

There are other factors that can affect the cost of each 
option. For example, if clusters A and B contain processors 
of different architectures, cross-cluster communication may 
be much more expensive than before, due to the necessary 
data conversions. This cost can be counterbalanced if the 
processors of cluster B are faster than the ones of cluster A, 
thus providing for higher execution rates. Finally, one has 
to take into account the effect of the already existing load of 
the processors and the network as it changes with time, as 
there can be other applications or tasks sharing the system 
resources. 

5.3    The Experimental Computing Environment 

The hardware we are using for experimentation is a 
metacluster comprising the Centurion machine [2] and the 
Syracuse Orange Grove cluster. Centurion has 256 nodes, 
with 128 533MHz DEC Alpha nodes and 128 400MHz dual 
Pentium II nodes. Each node is connected to a 100Mbps fast 
ethernet switch and multiple such switches are joined via 
gigabit ethernet switches (see figure 5). The initial 64 Al- 
pha nodes are also joined in a complex mesh by a 1.2Gbps 
Myrinet fabric (see figure 6). The Orange Grove cluster 
has 16 533MHz DEC Alpha nodes and 48 450MHz dual 
Pentium III nodes, and has a system area network similar to 
Centurion's. Figure 7 presents a simplified overall view of 
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the total system. The only real restriction is that each CPU 
needs to run the modified Linux system. 

to operating systems, distributed shared memory, and other 
relevant areas. 

16  Compaqs 
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Figure 6. Myrinet connected part of Centurion 
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Figure 7. The experimental system 

6   Related Work 

Much of research work has been and is being dedicated 
to issues related to clusters of commodity workstations. Our 
approach is novel, to the best of our knowledge, in the way 
it supports clustering, in providing the mechanisms for dy- 
namic resource sharing in this framework, and most of all 
for using cost models to estimate the cost/benefit of certain 
o.s. operations and aid in decision making. The current 
section presents work related to our research with respect 

6.1   Related Work in Operating Systems 

The first work of interest is a research project of the 
Computer Systems Research Institute of the University 
of Toronto, Canada, targeted to hierarchically structured 
NUMA clusters [14] Part of this project was the design and 
construction of the Hector hierarchically structured shared 
memory multiprocessor. Hurricane is the operating system 
that was specially developed for Hector. The structure of 
this operating system reflects the structure of the multipro- 
cessor. Hurricane uses tight coupling within a local cluster 
and loose coupling within clusters. Operating system ser- 
vices are designed to take advantage of high speed connec- 
tions and locality of data. Cluster size is determined stati- 
cally. Processes of an application are scheduled on the same 
cluster, unless there is a benefit for a job to span multiple 
clusters. Within a cluster load is balanced at a fine granular- 
ity and cross-cluster scheduling performs coarse-grain load 
balancing by assigning and migrating processes to specific 
clusters. Tests of the system have shown that applications 
need to be adapted to Hector/Hurricane to perform well. 

The computing environment targeted in our research is 
substantially different from the Hector/Hurricane environ- 
ment. The Hector/Hurricane approach was an attempt to 
create a cost-effective, scalable NUMA machine, utilizing 
specially designed hardware. Experimenting with hardware 
is not in our intentions. Although the targeted environment 
maintains the notion of tightly-coupled sub-clusters within 
a larger hierarchical system, there is no hardware support 
for shared memory, except for the case of a multiprocessor 
PC box. Also, architecture homogeneity is not necessary, 
the cluster hierarchy is not of fixed depth, and the (logi- 
cal) cluster size is not determined statically. However, there 
are several lessons from the Hector/Hurricane approach that 
can be useful to us, e.g. that the factors found to be crucial 
for application performance depend on application behavior 
and system behavior. This is exactly what our work inves- 
tigates. The fact that applications needed to be specifically 
adapted to run efficiently on Hector under Hurricane under- 
lines the importance of having operating systems that can 
provide the necessary Information and allow applications to 
self-adapt to the dynamically changing resource availability 
of a system. 

A more recent work is the Berkeley Network of Worksta- 
tions (NOW) project [18]. This project is targeted at work- 
station clusters and includes operating-system level work 
software such as the GLUnix layer [19]. GLUnix is a multi- 
user, user-level system for a cluster of workstations. It is 
designed to provide transparent remote execution by main- 
taining a single-system image across an entire cluster and 
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supports interactive parallel and sequential jobs and load 
balancing. The proposed research differs in that it is not 
dedicated to single-cluster but to hierarchically clustered 
systems with several cluster levels. Although it is possi- 
ble to provide a single-system image across clusters and 
levels of hierarchy, the approach taken here is to provide 
the users with the necessary data to make informed choices 
about state sharing issues. In any case, increasing the de- 
gree of sharing is usually accompanied by a decrease in 
performance, and users may be willing to sacrifice trans- 
parency for performance. GLUnix supports load balancing 
through intelligent job placement but doesn't support task 
migration nor any form of dynamic resource sharing based 
on cost/benefit prediction. 

6.2   Related Work in Distributed Shared Memory 

There is a vast variety of research works on distributed 
shared memory (DSM). A possible classification of DSM 
systems can be based on: 

• the level of implementation (user, kernel, hybrid), 

• the coherence protocols (SRSW, MRSW, MRMW, 
etc.), 

• the consistency model (sequential, processor, release, 
etc.). 

Three general techniques have been used [20]. The 
first technique simulates a multiprocessor by using a mod- 
ified pagefault trap to do paging over the network, e.g. 
IVY [23]. The second technique focuses on shared vari- 
ables rather than pages. The programmer is required to an- 
notate the shared variables with their anticipated access pat- 
terns. These annotations are then used by the DSM runtime 
system for selecting the most suitable coherence protocol. 
This technique is used in Munin [5]. The third technique 
is object-oriented and requires a high-level programming 
model, e.g. Linda [21], Orca [22]. 

Relatively few approaches have dealt with the issue of 
heterogeneity. Mermaid [8] is an implementation of hetero- 
geneous DSM as an extension to the IVY system. Accord- 
ing to Mermaid's creators, heterogeneous DSM is feasi- 
ble and presents comparable performance to homogeneous 
DSM. However, many issues need to be addressed due to 
heterogeneity. 

Providing yet another DSM system is not in the scope 
of our research. Our main interest is in developing a DSM 
system that can provide cluster-oriented functionality and 
cost data on typical DSM operations. The preferred way to 
follow here is to adopt an existing system and subsequently 
modify and augment it to serve the intended purposes. Sev- 
eral decisions need to be made, but the main direction is 

to adopt the simplest approach possible, decide the level of 
implementation, and add the minimum functionality neces- 
sary. In this sense, the IVY and Mermaid systems seem 
to be attractive. The issue of fully supporting heterogene- 
ity remains open, because forming clusters with machines 
of heterogeneous architectures or sharing memory among 
clusters containing homogeneous hardware but of different 
architecture from cluster to cluster are options of high com- 
plexity and questionable performance. The Munin approach 
is also attractive because of the focus on the different access 
patterns of shared variables. Because shared variable ac- 
cess patterns constitute an important parameter of the cost 
model, it would be interesting to see the impact the utiliza- 
tion of such a DSM approach has on performance. How- 
ever, the use of a Munin-like system requires additional pro- 
grammer effort, the annotations of shared variables, which 
is not particularly desirable here if it means many modifica- 
tions to already existing programs. 

Several other works on DSM need to be mentioned here, 
because they contain useful elements for our work. Iftode 
et al. [6] study the sharing patterns of applications running 
on DSM systems and identify several factors affecting per- 
formance. Lu et al. [7] add limited compiler support and 
modifications to TreadMarks [24] to eliminate unnecessary 
computation and communication during the execution of 
irregular applications. Yoon and Malek [9] propose the cre- 
ation of a single address space per running program instead 
of a global address space shared by all processing nodes. 
This is similar to the definition of logical clusters with the 
difference that not only one program can run on a logical 
cluster, no matter what effect this fact has on performance. 
Kim and Vaidya [10] propose an adaptive DSM system 
where statistics about memory accesses, collected over a 
sampling period, are used for determining the protocol that 
has the minimum cost for each memory page. Erlichson 
et al. [11] present a kernel-level implementation of DSM 
on an 8-node, 8-processors/node cluster and study the cost 
of DSM primitives and the effects of clustering on perfor- 
mance. Finally, Quarks [12] is a relatively new simple DSM 
approach. Quarks is a descendant of Munin and is aimed at 
reducing the communication overhead. Its basic abstraction 
is that of shared regions, which are page-aligned byte ranges 
of variable length. For this DSM system there exists a freely 
available Linux port. 

6.3   Other Relevant Works 

In terms of functionality, the most closely related work 
to our approach is the Scalable Concurrent Programming 
Library (SCPlib) [4] of the Scalable Concurrent Program- 
ming Laboratory at Syracuse University. SCPlib is the de- 
scendant of the concurrent graph library [25] and is aimed at 
supporting irregular applications on parallel hardware. The 
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library provides heterogeneous communication and file I/O, 
load balancing, and dynamic task granularity control. The 
user needs to supply a set of special support routines for 
the library to successfully perform migration of tasks and 
granularity adjustments. The load balancing mechanism is 
based on the concept of heat diffusion [3]. Communication 
cost is taken into account when deciding task movements. 

Our work is targeted at a more general and complex en- 
vironment than SCPlib. The goal is to provide function- 
ality for a hierarchy of clusters and help applications and 
middleware make decisions by estimating as accurately as 
possible, or to the desired degree of accuracy, the cost of 
certain operating system services especially when dynam- 
ically sharing resources. In view of this, the proposed re- 
search can address all issues covered by SCPlib. Although 
load balancing is not in the scope of our research, the use 
of the cost model can greatly facilitate a sophisticated load 
balancing mechanism by providing the cost of various task 
placement options when deciding how to redistribute the 
load and not only the cost of communications. Also, SCPlib 
is based on message-passing whereas we support DSM and 
mixed mode computations. 

Another research work, which has common ground with 
the proposed research, is that by Kravets et al. [15]. This 
work proposes a cooperative solution to the dynamic man- 
agement of communication resources. In this solution, ap- 
plication requirements, expressed in the form of "payoff" 
functions, and network resource availability, expressed in 
the form of service availability curves, are taken into ac- 
count by a configurable communication layer. The goal is to 
better exploit communication resources by allowing appli- 
cations and networks to adapt to each other. Our approach 
has as ultimate goal to allow applications to self-adapt to 
the changing availability of all system resources and doesn't 
focus specifically on the communication layer. 

7   Summary 

Modern clusters connected by high-speed networks are 
capable of outperforming supercomputers, but the perfor- 
mance delivered to scientific applications is only a frac- 
tion of this maximum. Identifying software overhead as 
a key reason for this discrepancy, we have described our 
approach to solving this problem. We focus on an hardware 
environment with hierarchically organized clusters of com- 
puting nodes. In this environment we form logical groups 
of nodes by using software DSM and multithreading, and 
augment the capabilities of the operating system with dy- 
namic resource sharing primitives and a decision-making 
framework based on a parametrical cost/benefit model. The 
model works for a variety of situations with data availability 
ranging from minimal to high. Our goal is to predict the per- 
formance ramifications of policy choices and thus to allow 

applications and middleware to adapt to their computing 
environment and achieve better overall performance. 
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Abstract 
Metacomputing frameworks have received renewed 

attention of late, fueled both by advances in hardware and 
networking, and by novel concepts such as computational 
grids. HARNESS is an experimental metacomputing 
system based upon the principle of dynamic 
^configurability not only in terms of the computers and 
networks that comprise the virtual machine, but also in the 
capabilities of the VM itself. These characteristics may be 
modified under user control via a "plug-in" mechanism 
that is the central feature of the system. The system's 
capabilities have been used to develop a PVM 
compatibility suite, i.e. a set of plug-ins that allow users to 
run PVM applications of top of HARNESS. In this paper 
we describe the PVM-Proxy plug-in: a plug-in capable of 
gluing PVM applications to distributed object 
environments. 

1 Introduction 

HARNESS [1] is a metacomputing framework that is 
based upon several experimental concepts, including 
dynamic reconfigurability and fluid, extensible, virtual 
machines. The underlying motivation behind HARNESS 
is to develop a metacomputing platform for the next 
generation, incorporating the inherent capability to 
integrate new technologies as they evolve. The first 
motivation is an outcome of the perceived need in 
metacomputing systems to provide more functionality, 
flexibility, and performance, while the second is based 
upon a desire to allow the framework to respond rapidly to 
advances in hardware, networks, system software, and 
applications. Both motivations are, in some part, derived 
from our experiences with the PVM [2] system, whose 
monolithic design implies that substantial re-engineering 
is required to extend its capabilities or to adapt it to new 
network or machine architectures. 

HARNESS attempts to overcome the limited flexibility 

of traditional software systems by defining a simple but 
powerful architectural model based on the concept of a 
software backplane. The HARNESS model is one that 
consists primarily of a kernel that is configured, according 
to user or application requirements, by attaching "plug-in" 
modules that provide various services. Some plug-ins are 
provided as part of the HARNESS system, while others 
might be developed by individual users for special 
situations, while yet other plug-ins might be obtained from 
third-party repositories. By configuring a HARNESS 
virtual machine using a suite of plug-ins appropriate to the 
particular hardware platform being used, the application 
being executed, and resource and time constraints, users 
are able to obtain functionality and performance that is 
well suited to their specific circumstances. Furthermore, 
since the HARNESS architecture is modular, plug-ins may 
be developed incrementally for emerging technologies 
such as faster networks or switches, new data compression 
algorithms or visualization methods, or resource allocation 
schemes - and these may be incorporated into the 
HARNESS system without requiring a major re- 
engineering effort. 

HARNESS' reconfiguration capabilities allowed us to 
design and implement a PVM compatibility suite, i.e. a set 
of plug-ins that emulate the services provided by PVM 
demons and allows users to run unchanged PVM 
applications on top of HARNESS. The native distributed 
object programming model of HARNESS on which the 
compatibility suite is based has been leveraged to 
introduce a high level of modularity in the design of the 
compatibility suite. This modularity allows introducing 
new technologies and new services into PVM without 
requiring a complete redesign of the demon itself. 

However, the compatibility suite only allows execution 
of traditional message passing PVM applications that 
cannot directly take advantage of the underlying 
distributed object infrastructure, while our perceived goal 
was to provide a seamless connection for PVM users to 
distributed objects technology. 

0-7695-0556-2/00 $10.00 © 2000 IEEE 
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Figure 1 Abstract model of a HARNESS Distributed Virtual Machine 

In this paper we describe the PVM-Proxy plug-in, a 
HARNESS plug-in that is able to bridge the gap between 
traditional PVM applications and HARNESS native 
distributed object infrastructure. This plug-in appears as a 
standard PVM task to any running PVM application, but is 
able to interface directly to distributed objects applications 
translating messages coming from the PVM side into RMI 
or CORBA procedure calls and procedure calls coming 
from the distributed object applications back into PVM 
messages. This plug-in can be used to make complete 
distributed object applications such as our reusable 
simulation framework [3] appear as PVM tasks to PVM 
applications, actually allowing traditional PVM 
applications to take complete advantage of the capabilities 
of the HARNESS system. 

The full paper will be structured as follows: in section 2 
we will give a detailed description of the HARNESS 
metacomputing framework and of its main architectural 

features; in section 3 we will describe the HARNESS 
PVM compatibility suite; in section 4 we will describe the 
architectural and implementation details of the HARNESS 
PVM-Proxy plug-in; in section 5 we will show how our 
system can be used to glue together heterogeneous 
applications using a distributed MPEG coder as an 
example application; finally, in section 6 we will provide 
some concluding remarks. 

2 HARNESS System Architecture 

The fundamental abstraction in the HARNESS 
metacomputing framework is the Distributed Virtual 
Machine (DVM) (see figure 1, level 1). Any DVM is 
associated with a symbolic name that is unique in the 
HARNESS name space, but has no physical entities 
connected to it. Heterogeneous Computational 
Resources may enroll into a DVM (see figure 1, level 2) 
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at any time, however at this level the DVM is not ready 
yet to accept requests from users. To get ready to interact 
with users and applications the heterogeneous 
computational resources enrolled in a DVM need to load 
plug-ins (see figure 1, level 3). A plug-in is a software 
component implementing a specific service. By loading 
plug-ins a DVM can build a consistent service baseline 
(see figure 1, level 4). Users may reconfigure the DVM at 
any time (see figure 1, level 4) both in terms of 
computational resources enrolled by having them join or 
leave the DVM and in terms of services available by 
loading and unloading plug-ins. 

The main goal of the HARNESS metacomputing 
framework is to achieve the capability to enroll 
heterogeneous computati'onal resources into a DVM and 
make them capable of delivering a consistent service 
baseline to users. This goal require the programs building 
up the framework to be as portable as possible over an as 
large as possible selection of systems. The availability of 
services to heterogeneous computational resources derives 
from two different properties of the framework: the 
portability of plug-ins and the presence of multiple 
searchable plug-in repositories. HARNESS implements 
these properties mainly leveraging two different features 
of Java technology. These features are the capability to 
layer a homogeneous architecture such as the Java Virtual 
Machine (JVM) [4] over a large set of heterogeneous 
computational resources, and the capability to customize 
the mechanism adopted to load and link new objects and 
libraries. However, the adoption of the Java language as 
the development platform for the HARNESS 
metacomputing framework has given us several other 
advantages: 
• it allowed us to develop the framework as a collection 

of cooperating objects with consistent boundaries 
(Java Classes) and to guarantee to users an 00 
development environment; 

• it allowed us to define a clear and consistent boundary 
for plug-ins, in fact each plug-in is required to appear 
to the system as a Java class; 

• it allowed us to implement all the entities in the 
framework adopting a robust multithreaded 
architecture; 

• it allows users to develop additional services both in a 
passive, library-like flavor and in an active thread- 
enabled flavor; 

• it provided us an Object Oriented mechanism to 
require services from remote computational resources 
(Java Remote Method Invocation [5]); 

• it provided us a generic methodology to transfer data 
over the network in a consistent format (Java Object 
Serialization [6]); 

• it allowed us to provide to users the definition of 
interfaces to be implemented by plug-ins 
implementing the basic services; 

• it allowed us to tune the trade-off between portability 
and efficiency for the different components of the 
framework. 

This last capability is extremely important, in fact, 
although portability at large is needed in all the 
components of the framework, it is possible to distinguish 
three different categories among the components that 
requires different level of portability. The first category is 
represented by the components implementing the 
capability to manage the DVM status and load and unload 
services. We call these components kernel level services. 
These services require the highest achievable degree of 
portability, as a matter of fact they are necessary to enroll 
a computational resource into a DVM. The second 
category is represented by "very commonly used services 
(e.g. a general, network independent, message passing 
service or a generic event notification mechanism). We 
call these services basic services. Basic services should be 
generally available, but it is conceivable for some 
computational resources based on specialized architecture 
to lack them. The last category is represented by highly 
architecture specific services. These services include all 
those services that are inherently dependent on the specific 
characteristics of a computational resource (e.g. a low- 
level image processing service exploiting a SIMD co- 
processor, a message passing service exploiting a specific 
network interface or any service that need architecture 
dependent optimization). We call these services 
specialized services. For this last category portability is a 
goal to strive for, but it is acceptable that they will be 
available only on small subsets of the available 
computational resources. These different degrees of 
required portability and efficiency over heterogeneous 
computational resources can optimally leverage the 
capability to link together Java byte code and system 
dependent native code enabled by the Java Native 
Interface (JNI) [7]. The JNI allows to develop the parts of 
the framework that are most critical to efficient application 
execution in ANSI C language and to introduce into them 
the desired level of architecture dependent optimization at 
the cost of increased development effort [8] [9]. 

The use of native code requires a different 
implementation of a service for each type of 
heterogeneous computational resource that need to deliver 
that service. This fact implies a development effort 
multiplied for each plug-in including native code. 
However, if a version of the plug-in for a specific 
architecture is available, the HARNESS metacomputing 
framework is able to fetch and load it in a user transparent 
fashion, thus users are screened from the necessity to 
control the set of architectures their application is 
currently running on. To achieve this result HARNESS 
leverages the capability of the JVM to let users redefine 
the mechanism used to retrieve and load both Java classes 
bytecode and native shared libraries. In fact, each DVM in 
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the framework is able to search a set of plug-ins 
repositories for the desired library. This set of repositories 
is dynamically reconfigurable at run-time, users can add 
new repositories at any time. 

The kernel level services of a Harness DVM are 
delivered by a distributed system composed of two 
categories of entities: 
• a DVM status server, unique for each DVM; 
• a set of Harness kernels, one and only one running on 

each computational resource currently enrolled or 
willing to be enrolled into a DVM. 

To achieve the highest possible degree of portability for 
the kernel level services both the kernel and the DVM 
status server are implemented as pure Java programs. We 
have used the multithreading capability of the Java Virtual 
Machine to exploit the intrinsic parallelism of the different 
tasks the two entities have to perform, and we have built 
the framework as a set of Java packages. 

Control messages and DVM status changes not related 
to the discovery-and-join protocol or the recover-from- 
failure protocol, are exchanged through a star shaped set 
of reliable unicast channels whose center is the DVM 
status server. These connections are implemented through 
the communication commodities delivered by the java.net 
package. It is important to notice that neither the star 
topology, nor the use of the java.net package are 
constraints imposed to all the communication services in 
the framework. On the contrary, user level communication 
services may adopt the connection topology that best suit 
their needs and are not required to use the java.net package 
to implement these commodities. For this reason, neither 
the star topology interconnecting the kernels and the DVM 
Server, nor the fact that the java.net package is used 
represent a major bottleneck in the Harness 
metacomputing framework. The kernels and the DVM 
server interacts to guarantee a consistent evolution of the 
status of the DVM both in front of users requesting new 
services to be added and in front of computational 
resources or network failures. This consistency is enforced 
by means of a set of protocols executed during the 
different phases of the DVM life. 

A DVM may be started in three different ways: 
• starting a DVM server; 
• starting a kernel; 
• starting an application. 

In the first case, a user invokes the execution of the 
main method of the Java H_Server class from the 
edu.emory.mathcs.harness package providing as a 
parameter the name of the DVM this server is starting. The 
DVM server reads the configuration file harness.defaults 
to see if the user wants to use server based implementation 
or a multicast implementation of the HARNESS name 
space. In the former case the server gets from the same 
configuration file the port and address of the HARNESS 
name server the user wants to adopt and connects to it to 

register its presence. In the latter case it executes a hashing 
function to map the DVM name into a multicast IP address 
and port. Then it starts to multicast on the channel I'm 
alive packets and to listen for incoming packets. 

In name-server mode the DVM server can get two types 
of packets: 
• probe requests from the name-server; 
• join requests from kernels. 
Probe request are sent by the naming service every time it 
is requested to provide information about a DVM server. 
Before sending it's current data the name server validates 
them with a probe message. If the server receives a join 
packet then it generates a TCP connection to the sender 
kernel and it starts the Join protocol. 

In multicast mode the DVM server can get three types 
of packets: 
• I'm alive packets from a DVM server; 
• join packets from kernels; 
• query packets from applications. 

The server checks the source address of any I'm alive 
packet it receives. If the packet comes from another server 
the server multicasts a train of I'm alive packets to notify 
its presence to the other server and then it exits. This will 
enforce the kernels running on computational resources 
enrolled in the DVM to start the server regeneration 
protocol and to regenerate a new, single server. This 
mechanism prevents the existence of multiple DVM 
servers with partial or outdated information and guarantees 
that a single DVM server is active in a DVM. 

If the server receives a join packet then it generates a 
TCP connection to the sender kernel and it starts the Join 
protocol. 

If the server receives a query packet then it checks if a 
kernel exists on the computational resource from which 
the application is querying. If a kernel is already active, 
then the server provides to the querying application the 
port number on which the kernel accepts connections from 
applications, otherwise it provides a null reply. 

The second way to start a Harness DVM is to invoke 
the main method of the Main class in the 
edu.emory.mathcs.harness package providing as a startup 
parameter the name of the DVM the kernel wants to enroll 
into. The kernel reads the configuration file 
harness.defaults to check if the user wants to use server 
based implementation or a multicast implementation of the 
HARNESS name space. In the former case the kernel gets 
from the same configuration file the port and address of 
the HARNESS name server the user wants to adopt, it 
connects to it and asks if there is a DVM server for the 
DVM it wants to join. If there is one it sends a join request 
to it, if there is none it starts the DVM regeneration 
protocol. 

In the latter case, the kernel executes the hash function 
to map the DVM name into an IP multicast address and 
port and sends send a Join packet on that channel. The 
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kernel performs three tries before giving up. After three 
tries have timed out without a DVM server activating a 
TCP connections the kernel assume no DVM server exists 
and spawns a new JVM to start a new DVM server. Then 
he starts again sending the Join packet. 

The third way to start a Harness DVM is to instantiate 
the class H_core or H_RMIcore from the package 
edu.emory.mathcs.harness in an application providing the 
DVM name as a parameter. The H_RMIcore class 
constructor hashes the DVM name to obtain a port for the 
HARNESS RMI registry. The HARNESS RMI registry 
provides to the H_RMIcore class an RMI reference for the 
local kernel. If it cannot connect to that port, the 
H_RMIcore class assumes that no kernel for the given 
DVM is active on the local host and starts a new one. 

The H_core class constructor executes the hashing 
function and drops a query packet on the multicast 
channel. If no answer comes back or if the answer says 
that no kernel is active on the computational resource the 
constructor spawns a new JVM starting a kernel and sets a 
flag to avoid starting a new one even in the case of another 
failed set of tries. The possibility of two or more 
applications racing to spawn to or more kernels on the 
same computational resource is prevented by the Join 
protocol. 

The DVM server initiates the join protocol each time it 
receives a multicast join packet. The Join packet contains 
the IP address and a port number onto which the willing- 
to-join kernel is accepting a TCP connection. The first step 
of the join protocol is the instantiation of a TCP 
connection between the DVM server and the Joining 
kernel. Then the DVM server waits for the kernel to 
provide its baseline. At this point the server performs two 
checks: the baseline check and the uniqueness check. The 
baseline check consists of checking the compatibility of 
the kernel with the current implementation of the DVM 
server. The uniqueness check consists of checking that no 
other kernel has already joined from the same 
computational resource. In case of failure of one of these 
two checks an error message is sent back, the protocol 
terminates with a failure and the connection is closed. If 
the kernel passes both controls then the DVM servers 
checks if the kernel is Joining back after a failure 
(computational resource or network crash) or if the 
computational resource has never been enrolled in the 
DVM before. If the computational resource is coming 
back from a crash the DVM server sends to the kernel a 
crash token message and a copy of its pre-crash status, 
otherwise it sends a new token message. The following 
step is to get from the kernel its current status and to send 
back to it the current status of the DVM. 

At this point the Join protocol is successfully 
completed, the DVM server generates a Join event that is 
distributed as described in next section while the kernel is 
now enrolled in the DVM. 

The leave protocol is much simpler that the Join protocol. 
The leave protocol is always started by a kernel. A TCP 
connection between the kernel is guaranteed to be active, 
as a matter of fact it is not possible to start the Leave 
protocol before a successful completion of the Join 
protocol. The kernel sends an explicit Leave message to 
the DVM server and then closes the TCP connection. The 
DVM server generates a Leave event that is distributed to 
all the remaining kernels. 

The status of the DVM consists of the set of 
computational resources currently enrolled in the DVM, 
the set of services available on each enrolled 
computational resource as well as the DVM's baseline. 
We call baseline of a DVM the minimum set of services a 
computational resource must be able to deliver in order to 
join the DVM. The dynamic nature of the framework 
make this state an evolving entity, thus the framework 
keeps it up to date and available for queries from any 
application or service in the DVM. It is important to notice 
that information about the applications currently using 
services or internal status of an application is not part of 
the DVM status and loosing track of it does not in any way 
compromise the existence of the DVM in itself. Any form 
of application tracking and check-pointing, while highly 
desirable for many applications, is a service in itself and 
the framework does not need to incorporate it in its status. 

The Harness metacomputing framework guarantees that 
all the events that changes the status of the DVM are 
received by all the kernels enrolled in the DVM in the 
same order. In the current implementation the Total Order 
(TO) protocol is implemented adopting the DVM server as 
a central ordering entity and exploiting the stream nature 
of TCP connections to avoid subsequent losses of order. 
Although very simple, a centralized implementation of the 
TO protocol has in general two negative features: 
• the central entity is a single point of failure; 
• the central entity is a bottleneck. 

However, these two problems do not represent a major 
flaw in the design and efficiency of our framework. In 
fact, the single point of failure is limited to the incapability 
of the framework to retrieve after a DVM server crash the 
status of a previously crashed kernel and the central 
bottleneck does not influences application level 
communication services. The status of a DVM as it is 
defined in the Harness metacomputing framework consists 
of the sum of the stati of each enrolled kernel. Each event 
that changes the status of the DVM changes the status of a 
kernel in a way that is recorded by the kernel itself with 
the only exception being the case of a kernel crash. Thus it 
is not possible for an event, except for kernel crash events, 
to get lost in a DVM server crash. On the contrary, in the 
case of a DVM server crash it is possible to reconstruct 
completely the current status of the DVM simply 
obtaining from every surviving kernel a copy of its current 
status. 
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User Setup 
public int login(Java.lang.String, Java.lang.String) 
public int logout() 
public boolean setCResourceMapping( H_pname) 
public boolean setServiceMapping( H_pname) 

DVM Manipulation 
public java.lang.String getNameO 
public H_StringKeyedTable getArchs() 
public H_crname getAHosts()[] 
public java.util.Enumeration getHostsO 
public H_RetVal grabHost( H_crname[], H_QoS) 
public H_RetVal deleteHostf H_crname[], H_QoS); 
public void kill() 

Plug-ins Manipulation 
public H_RetVal getlnterfaceDescriptor(H_phandle) 
public H_RetVal load( H_pname, H_crname[], H_QoS) 
public H_RetVal unload( H_phandle[], H_QoS) 

Information Gathering 
public H_Info getlnfoO 
public java.util.LinkedList getAll( H_pname) 
public java.util.LinkedList getAll( H_pname, H_crname) 
public java.util.LinkedList getAll(java.lang.Class) 
public java.util.LinkedList getAll(java.lang.Class, H_crname) 
public H_phandle getAny( H_pname) 
public H__phandle getAny( H_pname, H_crname) 
public H_phandle getAny(java.lang.Class) 
public H_phandle getAnyfjava.lang.Class, H_crname) 
public java.util.LinkedList getPlugins(H_crname) 

Figure 2 Functional interface provided by the Java class H_RMIcore. 

It is important to notice that the fact that this 
reconstruction process is not able to keep track of crashed 
kernels does not mean that applications relying on services 
delivered by the crashed kernels will have as their only 
choice to stop and fail. Reliable distributed check-pointing 
of application's status and restart of failing services are 
services themselves, thus their behavior in the event of 
kernel crashes is not constrained by the DVM status and 
the reconstruction of the DVM status is not concerned 
with them. 

To evaluate the bottleneck represented by the star 
topology, it is important to notice that it involves only 
events requiring DVM status changes, as a matter of fact 
any traffic generated by user application exchanging data 
is not required to flow through the DVM server. The only 
events that the DVM status server needs to process are: 
• a kernel joining the DVM; 
• a kernel leaving the DVM; 
• a kernel crash; 

•     the addition of a service to the DVM. 
Thus the DVM server represents only a marginal 

bottleneck in the Harness metacomputing framework. 
The current release of HARNESS provides 4 

mechanisms for applications to interact with a HARNESS 
kernel: 

• the H_RMIcore Java class that provides a set of 
fully object oriented methods and communicates 
with the kernel by means of RMI; 

• the H_core Java class that provides the same 
functional interface as the H_RMIcore class on top 
of a string oriented protocol; 

• a C library that exploits the JNI to invoke the 
methods of the above mentioned Java class; 

• a language independent, string oriented protocol on 
top of a TCP reliable connection. 

In figure 2 you can see the functional interface provided 
by the Java class H_RMIcore. The functions can be 
divided in four groups: user setup, DVM manipulation, 
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HJJSER 
username 
password 
H_ISROOTLiKE <present if this user is equivalent to root absent otherwise> 
HLOADABLECLASSES 
<classname or packagename as in import statement in Java files> 

H.ENDLOADABLECLASSES 
H.ACXESSIBLEPLUGINS 
<classname or packagename as in import statement in Java files> 

H.ENDACCESSIBLEPLUGINS 
HREPOSITORIES 
<repository URL> 

H_ENDREPOSrrcaUES 
HENDUSER 

Figure 3 Syntax of the harness.policy file. 

plug-ins manipulation and information gathering. A user 
need to log into the DVM to be allowed performing any 
other operation. The DVM stores the couple user name- 
password so that the same user will be recognized at log-in 
independently from the kernel he is loggin-in from. A user 
can set up a resource mapper service and a service mapper 
service. The resource mapper service performs a 
translation from a user-defined naming scheme into the 
HARNESS naming scheme for the names of the 
computational resources. The service mapper service 
performs a translation from a user-defined naming scheme 
into the HARNESS naming scheme for the names of the 
plug-ins. Thus it is possible to build user-defined naming 
schemes on top of the basic HARNESS naming scheme 
both for computational resources and for plug-ins. The 
only constraint is the need for a complete mapping from 
the user-defined scheme to the HARNESS scheme. As an 
example, we developed a simple resource mapper that is 
able to translate architecture-names into instances of that 
architecture available at Emory. Once logged-in a user can 
access all the other functionality provided to grab and 
remove hosts from the DVM, load and unload plug-ins 
and query the status of the DVM. The capability to request 
a service (e.g. deleting a host) does not imply that the 
system will fulfill the request, in fact every HARNESS 

kernel is configured at bootstrap with security options. 
These options define: 
• which user is the root user for the local kernel; 
• if root user access is required to force the kernel to 

leave a DVM; 
• which plug-ins each user can load; 
• which plug-ins each user can access; 
• which repositories the kernel can retrieve plug-ins 

from. 
It is important to notice that each kernel can set a different 
set of users who have root access to it. Thus, it is possible 
both to have a global system administrator for clusters 
owned by a single entity and to have a different 
administrator for each node of a DVM composed of 
personal workstations. 
The sets of plug-ins loadable and accessible for each user 
are defined through a security configuration file, namely 
the harness.policy file. In figure 3 you can see the syntax 
of the harness.policy file, while in figure 4you can see an 
example instance of it. If a user is not explicitely cited in 
the policy file he is associated by default to user 
NOBODY. Thus it is possible to establish a minimum 
access level for anonymous users by means of the user ID 
NOBODY. A plug-in can be unloaded only by the user 
who loaded it or by the local root user. Thus it is not 
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HUSER 
MAURO 
Harness 
HJSROOTUKE 
H_LOADABLECLASSES 
edu.emory. mathcs.harness. * 
helloHamess.* 
cgrowtM.* 
H_ENDLDADABLECLASSES 
H_ACCESSIBLEPLUGINS 
edu.emory.mathcs.harness. * 
helloHamess.* 
cgrowtM.* 
H_ENDACCESSIBLEPLUGINS 
H_REPOSITORIES 
http://www.mathcs.ernory.edu/harness/REPOSITORY/ 
http://www. mathcs.emory.edu/~om/REPOSITORY/ 
H_ENDREPOSITORIES 
H_ENDUSER 

H_USER 
NOBODY 
NOBODY 
H_LOADABLECLASSES 
edu.emory.mathcs.harness. * 
helloHamess.* 
H_ENDLOADABLECLASSES 
H_ACCESSIBLEPLUGINS 
edu.emory.mathcs.hamess. * 
helloHamess.* 
cgrowth4.* 
H_ENDACCESSIBLEPLUGINS 
H_REPOSIT0RIES 
http://www.mathcs.emory.edu/hamess/REPOSITORY/ 
H_ENDREPOSITORIES 
H_ENDUSER 

Figure 4 An example harness.policy file. 

possible for a non-root user to remove a plug-in that is part       •   requiring no changes into PVM applications to run in 
of another user's application. the new environment; 

•   minimizing the amount of changes to be inserted in the 
3 The Design Of a PVM plug-in for a application side PVM library; 
HARNESS DVM *   achieving a modular design for the services provided 

by the PVM daemon. 

The design of our PVM compatibility suite had three        u,We achie/ed these goals by designing a set of plug-ins 
, .    .. able to understand the original PVM library to PVM main objectives: D J 
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daemon protocol and to duplicate the services provided by 
the original PVM daemon. This approach provides 
complete compatibility with PVM legacy code, both in C 
and in FORTRAN, and requires only one change in the 
PVM library on the application side, namely the adoption 
of internet domain sockets for the communication channel 
between the library and the daemon. 

Thus to run a legacy PVM application in the Harness 
PVM environment it is only necessary to link the original 
object code with the modified version of the library. 

In our implementation, the services provided by the 
PVM daemons to applications are delivered by dedicated 
modules and general purpose Harness plug-ins such as a 

process-spawning plug-in and a message-passing plug-in 
(see figure 5). In figure 6 we show the actual sequence of 
the events in the Harness PVM startup, while figure 7 
shows the chain of events serving an add_host request. At 
PVM startup a special PVM application (i.e. the 
HARNESS-PVM console) starts up the PVM demon by 
issuing to the Harness kernel the command to load the 
main PVMD plug-in. This plug-in takes care to request the 
Harness kernel to load the services that are required to 
provide full PVM compatibility. When a task requests an 
add-host operation the local PVMD plug-in translates it 
into a request for the remote Harness kernel to load the 
main PVMD plug-in which then takes care of requesting 
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Console starts 

Console starts up 
Harness and loads 
PVMD plug-in 

Harness kernel loads 
PVMD plug-in 

( ) Message Pas sing 

(23 Poster 

(    ) Spawner 

PVMD 
plug-in Inits internal data structures 

Synch with other demons (if any) thrbugh 
harness queries 

PVMD ph^-inchreki for pasar« 
of iKqywasd generic plqg-ilE uri loads 
them if necessary 

Figure 6 Sequence of events at Harness PVM startup 

the loading of the other needed plug-ins. 
The current version of the plug-in provides only the 

services required to emulate a completely functional 
subset of PVM daemon's capabilities. This subset 
includes: 
• all the process control PVM commands; 
• the    pvm_parent,    pvm_tidtohost    and    pvm_error 

information commands; 
• all the message buffers commands; 
• all the point-to-point sending commands; 
• all the receive commands. 
Multicast and group operations are currently not 
supported, however the development of these services as 
additional pluggable module is in progress. 

Direct routing is supported as it completely bypasses 
the PVM demons and is completely implemented in the 
original PVM library. 

The modularity of the design will easily let us 
substitute any plug-in with new versions in order to 
provide an enhanced version of the service. As an 
example, it will be easy to load a new version of the 
database plug-in to provide an extended system querying 
capability. Besides, the Harness capability to hot swap 
services allows run-time tuning of services to the set of 
hosts enrolled in the virtual machines, e.g. a specific 
version of message-passing plug-in can be loaded at run- 
time if a new communication fabric becomes available. 

This design also has the following additional 
advantages. The first one derives from the fact that the 
message-passing service provided by the message-passing 
plug-in needs only to peek at the destination field of a 
message in order to route it and does not need to know 

anything about the actual content of the message. This is 
beneficial for two reasons: 
• the marshalling and un-marshalling of the data types is 

performed inside the Harness PVM library in C or 
Fortran thus we don't incur in the typical marshalling 
inefficiency due to the strong typedness of Java; 

• it is extremely easy to substitute the message passing 
plug-in with another plug-in optimized to a specific 
communication fabric (be it a proprietary local 
network or an unreliable Internet connection) because 
they only need to move arrays of bytes. 
Another benefit of our design is the fact that PVM 

applications can rely on the Harness capability to soft- 
install applications to move executable and libraries to the 
hosts in the VM. Thus it is not necessary to install the 
application and PVM itself on all the hosts of the VM, the 
Harness loader will do it as long as they are available on 
any host in the Harness DVM or on any one of the enlisted 
repositories. 

A third, very important benefit of our design is the 
removal of the single point of failure represented by the 
master PVM daemon. In fact, providing PVM 
compatibility on top of the Harness system by means of a 
set of cooperating plug-ins, allowed us to exploit the 
Harness event subscription/notification service to 
implement a distributed control algorithm in the 
information management plug-ins. This algorithm is 
capable of reconstructing a consistent, up-to-date version 
of the PVM status after the crash of any daemon. 

The performance delivered by the HARNESS PVM 
plug-in is still not on par with the original PVM. In 
particular, due to the fact that the PVM plug-in shares the 
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I Figure 7 Sequence of events performed to service an add_host request. 

JVM with any other plug-in on the same host, the 
performance degradation is extremely sensitive to the 
other activities currently on-going in the HARNESS 
DVM. To cope with this problem we are currently 
studying a mechanism to force HARNESS to dedicate a 
complete JVM to the components composing the PVM 
demon and applications. It is our opinion that such a 
mechanism will allow removing the dependency of the 
HARNESS PVM plug-in performance to external 
applications without compromising the modularity and 
expandability achieved so far. 

4 The PVM-Proxy plug-in 

The PVM-Proxy plug-in implement a generic 
translation of PVM user messages into function calls 
according to a user-defined protocol that can be plugged in 
the Proxy itself as a behavioral object. This arbitrary 
protocol takes care of interpreting the messages coming 

from the PVM side in order to generate the correct actions. 
The simplest possible protocol contains only data packet 
that need to be processed by the distributed object 
application connected to the PVM-Proxy. The restrictions 
that we need to impose onto a PVM task in order to be 
able to hot swap it are: 
• the original task needs to be able to checkpoint itself; 
• the original task must not be currently using the direct- 

routing capability of the PVM system. 
The first restriction is a direct consequence of the fact 

that the original task will be substituted and there is no 
way to remove it. However, this restriction applies only if 
the PVM task is being swapped out during the execution. 
In the next section we will show how it is possible to 
remove it in the case in which a component of a PVM 
application is substituted at start-up time. 

The second restriction, on the contrary, depends on our 
implementation of the PVM compatibility suite, in fact it 
derives from the fact that we left the original PVM library 
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Figure 8       Macro-block architecture of the original SM-IMP coder 

untouched and unaware of the changes that we introduced 
in the demons. However, we plan to remove this 
restriction in future versions of the PVM compatibility 
suite. 

To   execute   the   actual   run-time   substitution   it   is 
necessary to perform the following steps: 
1.    notify the PVM plug-in that all the traffic toward the 

given task has to be held; 
checkpoint the PVM task; 
load in HARNESS the PVM proxy plug-in; 
kill the original PVM task; 
give the saved status to the proxy plug-in; 
tag the PVM task TID in the PVM plug-in with the 
proxy attribute and store the handle of the actual plug- 
in; 
invalidate  the  possibly   cached   references   to   the 
swapped out task in all the components of the PVM 
plug-in; 

8.    remove the hold on the traffic toward the task. 
The execution of the PVM application will continue 

undisturbed with the exception that every other PVM task 
will experience a temporary lag in the responsiveness of 
the swapped task while HARNESS performs the above 
described steps. 

As soon as the proxy plug-in is in place it can start 
acting as a bridge between the legacy application and any 
HARNESS service such as the HARNESS reusable 
simulation. This capability allows extending legacy PVM 
simulation with distributed components technology and 
can be used to evolve a long-running application (e.g. a 
climate simulation) according to the results obtained. 

7. 

The PVM proxy can be also used to substitute obsolete 
components of a distributed application at start-up time. 
This process requires the application to be capable of 
pausing between the set-up phase and the actual execution. 
However, it removes the requirement for the task to be 
substituted to be able to checkpoint its status, in fact, the 
actual substitution takes place before the tasks are 
initialized with the zero state. The actual sequence of steps 
for a start-up time task substitution is as follows: 
1. notify the PVM plug-in that all the traffic toward the 

given task has to be held; 
2. load in HARNESS the PVM proxy plug-in; 
3. kill the original PVM task; 
4. tag the PVM task TID in the PVM plug-in with the 

proxy attribute and store the handle of the actual plug- 
in; 

5. remove the hold on the traffic toward the task. 
The PVM-proxy plug-in automatically redirects all the 
messages sent to the original task to the proxied task. Thus 
the new implementation begins execution directly from the 
zero state and there is no need for the original task to be 
able to checkpoint itself. 

5 An Example Use: Removing the Obsolete 
Components in a Distributed MPEG Coder 

In this section we will describe how we have used the 
PVM-proxy plug-in to substitute the obsolete components 
of a legacy application, namely a distributed MPEG-1 
coder [10] targeted at the heterogeneous parallel SM-IMP 
testbed architecture [11]. 
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MPEG-1 is an ISO standard for motion picture 
compression [12]. The algorithm defined in the standard 
requires the execution of several steps most of which are 
very computationally intensive. Thus it is very well suited 
to a distributed pipelined implementation. The SM-IMP 
project developed a prototype distributed MPEG coder for 
its heterogeneous SIMD-MIMD parallel architecture. This 
coder divided the MPEG algorithm in a sequence of 
pipelined steps. Each of these steps was performed by the 
component of the parallel architecture whose 
computational paradigm was best suited to the kind of 
parallelism of the computational step itself. The different 
activities were glued together using the PVM message 
passing service. The main parallelizable steps identified by 
the SM-IMP coder were: 

• motion estimation; 
• discrete cosine transform. 

The former step was performed on a MASPAR MP1 
SIMD array processor [13], while the latter step was 
performed by a MIMD transputer based multiprocessor. 
The remaining interconnecting steps were implemented as 
sequential PVM tasks. 
To prove the feasibility of PVM tasks substitution by 
means of the PVM-proxy plug-in: 
1. we substituted the obsolete parallelized components 

of the coder with a new distributed farmer/workers 
implementation based on the HARNESS reusable 
simulation framework [14] 

2. we connected the components by means of the PVM- 
proxy plug-in. 

In figure 8 you can see the macro-block architecture of the 

original SM-IMP coder and in figure 9 the macro-block 
architecture of the new one. 
The presence of the PVM-proxy plug-in introduces a non 
negligible overhead. However, in our example the original 
PVM task has been substituted by a the farmer plug-in. 
This plug-in shares a JVM with both the PVM-plug-in and 
the PVM-proxy plug-in. Thus, all the data flowing through 
the PVM demon with destination the proxied task do not 
need to perform another hop through the TCP stack to 
reach it. This fact largely compensates the overhead 
introduced by the PVM-proxy plug-in. 

6 Concluding remarks 

In the field of metacomputing, features and capabilities 
are, by definition, subject to constant change. One possible 
approach to achieve the insulaton of applications from this 
aspect of platform evolution is to employ a model that is 
extremely abstract. However, this approach usually leads 
to very inefficient systems. Our alternative strategy is to 
build flexibility in the metacomputing framework itself, by 
permitting software-based reconfiguration in response to 
both new technological developments and application 
program requirements.'As an example of this flexibility, in 
this paper we have described the PVM-Proxy plug-in. This 
plug-in leverages the HARNESS capability to reconfigure 
the services and programming environments provided by a 
Distributed Virtual Machine to transparently connecting 
legacy PVM applications to other Harness applications. 
This capability allows substituting obsolete components of 
a legacy application without requiring any change in the 
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remaining components of the application. 
To prove our claim we have adopted as an example a 

PVM legacy application, namely an MPEG-1 coder, that 
was targeted to an obsolete heterogeneous parallel 
architecture. We successfully substituted the two main 
components of the PVM legacy application with newly 
developed modules based on the farmer/workers paradigm 
and Java distributed object technology. 

We believe that this methodology endows applications 
with a great deal of flexibility and the capability to adapt 
to changing needs both in terms of evolving hardware and 
software. Besides, Besides, our experiments with the 
PVM-proxy plug-in show that the overhead introduced by 
this degree of flexibility does not significantly 
compromise performance. Nevertheless, future work will 
aim at further reducing this overhead. 
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Abstract 
We have developed a software tool called MoBiDiCK 
ultimately intended for distributed computing. In this 
report we detail the design and show results using the 
core components of MoBiDiCK running two different 
clients on a local cluster. MoBiDiCK is a database 
driven system that can be used to marshal a large number 
of processors across the Internet in order to have them 
collaborate on a single computation. These utilize a 
message-passing API and control synchronization 
formalism we have developed that uses the HTTP 
standard and Web servers. CGI programs on the 
volunteer processors perform the computations. The 
problem domains best served by MoBiDiCK are parallel 
computing problems that are CPU-bound (not I/O- 
bound), and require minimal inter-process 
communication. The parallel tasks that we present 
include analysis of databases of three dimensional protein 
structures and Monte-Carlo simulations for ab-initio 
protein folding. 

1. Introduction 

We are principally interested in the protein folding 
problem and our motivation to build a distributed 
computing system arises from our fundamental desire to 
engineer software systems that have the computational 
capacity to tackle the high-dimensional problem of 
protein folding. We are not alone in the pursuit of 
computational resources, as IBM research has recently 
announced a project under their "Deep Computing" 
division to build a massive new computer specifically for 
the protein folding problem, one that will achieve petaflop 
performance in five years[l]. 

We have been designing optimized software for 
protein folding for some time and we have recently 

published a report of the first fast all-atom method for 
generating plausible protein structures in real space[2], 
and demonstrated that the program, FOLDTRAJ, has 
0(NlogN) time complexity in protein length. 

FOLDTRAJ embodies over 10 years of software 
design and development work. FOLDTRAJ is an 
application developed using the National Center for 
Biotechnology Information (NCBI) software development 
toolkit[3]. The NCBI SDK comprises source code used in 
many bioinformatics applications such as Entrez, an 
integrated bioinformatics database; BLAST, a tool for 
searching DNA and protein sequence databases; Cn3D, a 
tool for three-dimensional molecular structure 
visualization; Sequin, an annotation tool for sequence 
databases, and a growing number of Web based 
applications including the PubMed system, one of the top 
scientific sites on the Internet. Within the NCBI toolkit 
lies rich source code resources including a suite of tools 
written in C for ASN.l data specification, encoding, 
decoding and code generation, a comprehensive HTTP 
protocol interface, as well as our own work on a 
comprehensive programming interface for 3-D structure 
applications known as MMDB-API[4]. 

To tackle the protein folding problem, we wish to use 
FOLDTRAJ on thousands, possibly tens of thousands of 
computers. Distributed computing has already been 
explored for other large problems. Cryptographers 
studying brute-force methods to crack encryption schemes 
have already laid much of the groundwork for distributed 
computing[5]. The SETI@home project (Search for 
Extra-Terrestrial Intelligence) has demonstrated that over 
a million processors across the Internet can be brought to 
bear on a very large problem and that people are eager to 
volunteer spare CPU cycles for such causes[6]. 
FOLDTRAJ has been carefully implemented so that it 
runs on a large number of computing platforms including 
NT and several UNIX variants, making it an ideal client 
for distributed computing. 
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The potential of the Internet as an infrastructure for 
distributed computing has been predicted to reach exaop 
performance in the year 2007, perhaps exceeding the 
performance of massively parallel supercomputers at that 
time by up to three orders of magnitude[7]. Current 
efforts have already demonstrated that reasonable coarse- 
grained parallelism can be achieved using processors in 
the Web. 

MoBiDiCK is the Modular Big Distributed Computing 
Kernel. Our goal in designing MoBiDiCK was to allow us 
to marshal our own in-house computing resources (Sun 
and SGI servers, workstations, a Beowulf cluster, 
secretarial and laboratory computers). The system's 
design, however, allows any computer with an Internet 
connection and the ability to run HTTP server software to 
participate in a distributed computation. 

The development of applications for heterogeneous 
computing environments can be undertaken in a variety of 
ways. Some methods require the adoption of a particular 
programming model, as in Java and MPI, that is coupled 
with a specific computing environment, like the Internet 
or a local network of workstations. Other approaches offer 
underlying communication and management 
infrastructures that can integrate various existing software 
models, as exemplified by the Globus project[8]. The 
MoBiDiCK effort fits best in the middle of this spectrum. 
MoBiDiCK is neither an infrastructure nor a 
programming model, rather it is the middleware to 
connect the two. The communication technology used by 
MoBiDiCK is far from novel: TCP/IP, HTTP and CGI are 
long standing Internet standards, and the idea of using 
Internet-connected hosts for distributed computing dates 
back several years. 

Many scientific computations are essentially iterative, 
that is, the same set of instructions are repeatedly applied 
to elements in the problem domain space. These types of 
programs often lend themselves well to a distributed 
approach, in which the problem domain is divided among 
a set of nodes that simultaneously, and more or less 
independently, execute the same program. One of our 
goals is to minimize the effort required to introduce this 
kind of parallelism into existing code. We address this by 
providing methods to enable an application to operate as a 
CGI program in a distributed environment, without 
hampering the application's ability to be used in a stand- 
alone environment. 

Finally, we sought to build a database driven system. 
The benefits of a database driven system include 
scalability of the system from cluster computing to wide- 
area and globally distributed computing, as well as 
providing records of past performance of applications that 
can be used to set up initial load balancing and improve 
the overall scheduling of distributed computing tasks. 

2. Enabling Technologies 

2.1. Hypertext Transfer Protocol 

The Hypertext Transfer Protocol (HTTP) was 
introduced around 1990 to address the need for 
consistency in the manner in which computers connected 
to the Internet should exchange information, and has since 
evolved to become a de facto standard and the most 
widely used protocol on the Internet. HTTP relies on 
TCP/IP, in which IP (Internet Protocol) serves as an 
addressing scheme for naming and identifying Internet 
hosts, and TCP (Transmission Control Protocol) provides 
routing, error detection, error recovery, sequence control 
and sequence flow mechanisms for data transmitted from 
one host to another[9]. 

To access a document on some host, the user sends a 
request through a client program, such as a Web browser, 
to a HTTP daemon running on the host. The daemon, or 
Web server, processes the request and returns output back 
to the client. Authentication and access control functions 
are provided by the Web server to secure private data. 
Both client and server software must conform to the 
HTTP specification for the transmission and execution of 
requests. 

The motivation for HTTP was to bring together and 
share disparate information located on geographically 
distributed machines. A shared document is attributed a 
Uniform Resource Identifier (URI) that denotes the 
document's location in the network, by identifying the 
computer's IP address and the file path. Files can be 
accessed directly with the URI and can be interconnected 
by reference links embedded in the document using the 
Hypertext Markup Language (HTML). Documents whose 
content is not plain-text can also be accessed. The 
Multimedia Internet Mail Extensions, (MIME) is applied 
to HTTP to identify a file format with a specific M1ME- 
type and to inform the client about the type of data being 
requested[9]. 

2.2. Common Gateway Interface 

Along with the ability to provide access to static 
documents, i.e. those represented by individual files on 
local storage, Web servers must also be able to produce 
dynamic content which depends on specific user input. 
For example, the Web server must be able to accept a 
search key from the user, perform a database query, and 
return the search results. Such capabilities transcend the 
scope of a general-purpose Web server. The Common 
Gateway Interface (CGI) was established to address the 
need for HTTP software to produce executable 
content[10]. When the client's HTTP request refers to an 
executable file, rather than a static one, the Web server 
launches the application as a new, separate, server-side 
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process. Input parameters required by the CGI program 
are appended to the request; the Web server simply passes 
these on to the application, often by way of environment 
variables. When the application completes, the server 
returns its output back to the client. CGI guidelines 
provide an API for the manner in which data should be 
exchanged between an application and a HTTP daemon. 
Since this API is purely syntactic, a CGI executable can 
be programmed using nearly any language or platform. 

An important drawback of CGI is that a separate 
process must be started by the Web server for each client 
request. Process creation and initialization overhead can 
cause a significant performance bottleneck if multiple 
consecutive requests must be served. A CGI program also 
competes for system resources with other processes, 
including the HTTP server itself. Furthermore, HTTP is a 
stateless protocol that does not directly support the saving 
of information between requests. 

The FastCGI open protocol addresses these drawbacks 
by enabling a CGI program to persist across multiple 
HTTP requests, thereby reducing process creation and 
initialization overhead and allowing state information to 
be maintained between requests[l 1]. The FastCGI 
application library facilitates new application 
development and easy migration of existing CGI 
programs. It also supports a distributed configuration 
whereby a program can be invoked remotely by the Web 
server over a TCP/IP connection. As a future direction, 
we intend to use the FastCGI application library for the 
migration and further development of MoBiDiCK 
modules. 

3. System Design 

3.1. System architecture 

MoBiDiCK is a CGI-based approach to distributed and 
parallel computing. It operates on a set of nodes 
interconnected by a TCP/IP network. A node is simply a 
networked computer that can act as a Web server, i.e. it 
should be able to support the correct execution of HTTP 
server software. This requires that it be assigned a static 
or dynamic IP address. Network and node characteristics 
may affect performance, but there are no specific 
hardware or operating system requirements other than 
those imposed by HTTP server software. A node can be a 
standard workstation, a cluster node, or a multiprocessor. 
Local resource requirements such as disk space, memory, 
network and I/O bandwidth are commensurate to a 
particular computation. As a general guideline, 
applications are designed to minimize local resource 
consumption. 
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Figure 1. System architecture 

In the simplest configuration, a kernel server is 
designated such that it can reach all processing nodes 
through HTTP; that is, Web servers running on the nodes 
should be able to process HTTP requests received from 
the kernel server. Five kernel modules are installed on the 
kernel server: Dispatcher, Status, Statekeeper, Collector, 
and DataManager. These are distinct CGI applications 
that carry out system and data management functions such 
as node registration, task definition, task mapping, job 
monitoring, fault tolerance, load balancing, task 
migration, output collection and cleanup. TaskApp 
modules, which are also CGI-driven applications, run on 
the nodes; one or more TaskApp modules may be 
installed on a given node, each embodying a distinct 
computational problem. For a computation to be 
distributed over a set of nodes, a corresponding TaskApp 
must be installed as a working CGI program in the Web 
server's published directory tree. Figure 1 illustrates the 
general system architecture. 

Interactions between CGI modules involve only one or 
two consecutive HTTP requests. For example, when a 
computation is required of a node, the Dispatcher sends a 
request to the node's Web server, then simply terminates. 
Jjust before starting the subtask, the newly launched CGI 
process on the node responds by sending an 
acknowledgement request back to the kernel server. This 
invokes a new Dispatcher CGI process which records the 
acknowledgement and immediately exits. Meanwhile, the 
TaskApp process continues with the computation. 

Data management is driven by a relational database 
implemented with the CodeBase API (Sequiter Software, 
Alberta, Canada, www.sequiter.com), an efficient library 
of high- and low-level data management functions that, 
when integrated with the kernel modules, provide a fully- 
functional, platform-independent embedded relational 
data management system. Access overhead is minimal 
since all database functions are performed through API 
procedure calls from within the application source code, 
and updates and queries do not require explicit 
connections to an  external  database  engine[12].  The 
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database is used to hold and manage all system data, 
including descriptive and statistical information pertaining 
to nodes and computations, input parameter values, and 
output files. 

The kernel's modularity allows CPU, I/O and network 
resources to be optimized. System management functions 
can be distributed by spreading the kernel modules across 
multiple servers. For example, a distributed kernel 
configuration may comprise four servers: the Dispatcher 
is installed on one server, the Collector on a second, 
Status and Statekeeper on a third, and the DataManager 
on a fourth server. The database disk is remotely mounted 
by each server and shared. The use of a multiprocessing 
kernel server is an alternative configuration that may 
benefit CPU bandwidth as kernel modules can run 
simultaneously on several processors. I/O contention 
during output collection can be minimized by high- 
performance storage solutions such as SCSI, RAID, and 
FibreChannel. 

3.2. Communication model 

MoBiDiCK modules communicate by embedding 
messages within HTTP "GET" and "POST" requests. 
Figure 2 illustrates the general communication model 
between a module m, running on node N| behind HTTP 
server Sb and a module m2 running on node N2 behind 
HTTP server S2. The steps involved in transmitting a 
message from mi to m2 are outlined below. 

1. 
2. 

4. 

5. 

6. 
7. 

m, opens a TCP connection, C, between N, and N2 

m, sends a HTTP request containing message, M, for 
m2 over C 
S2 receives the request, starts m2, and passes the 
request to m2 
m2 extracts M from request, processes M, and writes 
a reply R to stdout stream 
S2 captures R, attaches an HTTP header to it, and 
sends it over C 
m, receives the response from S2 and reads R 
mi closes C 

N, 1,2 

6,7 

„      1 
b'     1 

1 

. 

N2 •jjp»       j 
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Figure 2. Module communication m, and m2 are CGI modules 
running on nodes N, and N2, behind HTTP servers S, and S2. 

Modules m, and m2 designate any two CGI programs 
on any two nodes. For example, m, can represent the 
Dispatcher and m2 a TaskApp module on a compute node, 
the    message   transmitted    between    them    being   a 

computation request. Only HTTP server S2 on the 
receiving node participates in the exchange, while S, 
remains idle. 

This framework does not preclude other 
communication models within a TaskApp module, such 
as MPI message-passing primitives and other 
programming models like PVM and Linda, as well as new 
parallel application development models. 

3.3. Task definition 

A task conceptually represents an entire computation. 
A task's attributes hold various characteristics of an 
associated TaskApp, such as application filename, node 
filesystem path, and input and output requirements. A 
particular execution of a task is an instance. An instance 
inherits the task's attributes and parameters, and has its 
own attributes such as start and end times, total execution 
time, and the set of nodes performing the instance. 
Runtime options such as output collection and logging are 
also associated with an instance. 

Once instantiated, the task is partitioned to produce a 
set of subtasks that are mapped to the set of nodes 
selected to perform the desired computation. A subtask 
inherits the attributes and task parameters of its associated 
instance. Each subtask represents a unique TaskApp 
process. Dispatching a task consists of sending subtask 
requests to the nodes and launching the TaskApp 
processes. While a TaskApp is running, its corresponding 
subtask is active; a complete subtask represents a process 
that executed successfully; a subtask is incomplete if the 
process did not finish executing due to user intervention, 
node failure, or communication failure. A task instance is 
active as long as there remain nodes executing subtasks, 
and complete only when all subtasks have been 
completed. 

Input arguments required by a task are specified by 
task parameters. A task parameter can be an integer, real, 
Boolean, or string, and can be constant or variable. A 
constant parameter is assigned a single specified value for 
all subtasks. A variable parameter has an associated range 
which represents the parameter's value space, delimited 
by start and end points. The range's distribution defines 
the manner in which the range should be divided among 
subtasks. An incremental distribution signifies that a 
specified step function should be applied to the range to 
calculate subtask parameter values. A partitioned 
distribution divides the range into a series of subranges, 
with each subrange being assigned to a subtask. The 
upper boundary and lower boundary parameter types are 
system-defined dependent parameters associated with the 
subrange boundaries of a partitioned parameter. A 
dependent parameter can also be defined as a 
mathematical or logical function of other parameters. 
Task attributes and parameter information is defined 
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through  a browser  user  interface  and  stored  in the 
database by the DataManager. 

3.4. Node registration 

A processing node is registered and scheduled using a 
browser interface, invoking the DataManager module to 
record the information in a database. Registration 
involves providing key attributes such as host name or IP 
address, CPU type and speed, number of CPUs, operating 
system, disk and main memory capacity, as well as 
contact information (in the case of a volunteer processor). 
Once registered, a processor can be scheduled by 
selecting the hourly time slots during which it will be 
available for each day of the week. The processor's 
participation can also be restricted by specifying which 
tasks it is available to perform. 

This is an all-or-none scheduling model: a processor 
participates in a computation only when its schedule 
allows. The all-or-none model is well suited for people 
who wish to volunteer a known and fixed amount of CPU 
time, such as the times outside regular business hours for 
an office computer. By contrast, nodes that participate in 
the SETI@home project run a computation selectively 
through a specified "nice" value that assigns a local 
scheduling priority to the process[6], and restricting 
access to the node at some point in time requires explicit 
user intervention. 

3.5. Task execution 

A distributed computation is requested from the 
Dispatcher through a browser interface. Once invoked, the 
Dispatcher initiates interactive node selection by 
compiling a list of candidate nodes for the task. A node's 
candidacy for a given task is determined by the following 
conditions: 

Registration: the node is registered in the database 
Participation: the node is registered to participate in 
the task 
Accessibility:   access   to   the   node   is   currently 
permitted by the node's schedule 
Connectivity: the node is reachable by the Dispatcher 
Configuration: the TaskApp is operational on the 
node 

Registration and participation are verified simply by 
querying the database: a node must be registered in the 
database if it is to be used at all, and the selected task 
must appear in the node's participation list to indicate its 
"willingness" to perform the task. Accessibility is 
determined by looking at the node's access schedule to 
see if the node is currently accepting requests and if it will 
remain   usable   for   a   sufficient   amount   of  time. 

Connectivity and configuration are determined in a single 
handshaking step whereby the Dispatcher sends a "test" 
request to the TaskApp on the node. If no response is 
received from the node, or if an error is encountered in 
establishing a connection, then neither condition is met. If 
the node's Web server responds with an error then 
connectivity is achieved but the node fails to meet the 
configuration condition. If a correct response is received 
from the TaskApp then it is concluded that the node's 
Web server was able to launch the TaskApp successfully 
and therefore the node fulfills both conditions. 

Other node selection conditions can be specified by a 
user to further constrain node candidacy, such as cut-off 
values for node rating, storage space, total main and 
temporary memory, and number of CPUs. Selection can 
be restricted to specific categories of nodes, such as local, 
remote, dedicated, or shared. Manual selection of specific 
nodes can also be done to bypass preset conditions. 

After node selection is settled, the Dispatcher is 
prompted to carry out the task mapping phase by 
partitioning the task into subtasks and mapping the 
subtasks to selected nodes. More than one subtask may be 
assigned to a node, as may be desired for a 
multiprocessor; a node's subtask-to-CPU relationship is 
definable in its registration information and can be 
modified by the user prior to dispatching. 

Task mapping incorporates an initial load balancing 
step that computes the load of each subtask based on the 
associated node performance rating. Subtask load 
represents a fraction of the task's total workload that 
should be allotted to the node to which the subtask is 
mapped. A node's rating can be obtained by running a 
benchmarking TaskApp module that measures the node's 
ability in floating-point and integer arithmetic, memory 
access, disk access, and communication. If the rating is 
known, subtask load can be calculated as follows. 

For a set of processing nodes ph p2,..., p„ with 
corresponding ratings r,, r2,..., r„, the weighted rating for 
Pi is, 

R. 5  0> 
Ki        E (r,,..., /•„) 

Subtask load is obtained by dividing a node's weighted 
rating by the number of subtasks assigned to that node. 
Hence subtask load for node p-, that is assigned k subtasks 
is, 

R (2) 

In the parameter allocation step, task parameters are 
inherited by each subtask and values are assigned to these 
parameters. The value assigned to a subtask parameter 
depends primarily on the parameter's type. If it is a 
constant then it simply takes on the value defined for the 
task. If it is a variable parameter with a partitioned 
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numerical range, then the value is found by applying the 
subtask load to this range. For example, given a numerical 
parameter, X, with a range delimited by lower boundary 
xL and upper boundary xy, the value of X for node p, is, 

Xj - L;(xu - xL). (3) 

The mapping process can be repeated if the user 
wishes to modify node candidacy conditions or task 
attributes and parameters. At the user's request, the 
Dispatcher begins the computation by sending subtask 
requests to the selected nodes. A subtask request is 
successful if the Dispatcher receives a confirmation 
message from the TaskApp module. If all requests are 
successful, the task instance is in the active state. 

Node 

^■IJI 
SelcctloA Task Ma Mapping 

Subtasks 

Figure 3. Task execution The Dispatcher partitions and distributes 
tasks to currently scheduled nodes, while the Collector gathers subtask 
results. During the execution of a task, the Status and Statekeeper 
modules ensure fault-tolerance, load-balancing and correct scheduling. 

If the task is successfully launched, The Dispatcher 
invokes a new Status process and a new Statekeeper 
process to monitor the TaskApp processes. During its 
execution, a TaskApp regularly updates a local 
SubtaskStatus file (shown in Figure 1) with subtask 
progress information. Fault-tolerance during a 
computation is assured by the Status module by 
periodically downloading each node's SubtaskStatus file. 
If a subtask fails to complete on a node, the Status module 
re-assigns  the  subtask.  The  Statekeeper's  role  is  to 

monitor node schedule overflows and maintain dynamic 
load-balancing. It can reschedule subtasks by terminating 
existing subtasks and starting new ones, thus maintaining 
the computation in the "all-or-none" state according to 
each node's schedule in the database. It can remap the 
entire task to a new set of nodes if too many schedule 
conflicts are encountered during a computation or if node 
availability changes dramatically. 

Local output files produced by a TaskApp are recorded 
in an OutputList file. When a TaskApp completes a 
subtask, it sends a completion request to the Collector. 
The Collector updates the subtask's status in the database, 
obtains the OuputList from the node, gathers the output 
files from the node and stores them in the database if 
required. The Collector is capable of storing arbitrary data 
objects as binary files in the database, and iterators are 
provided in the API for summarizing or combining results 
once the dispatched subtasks are all completed. After all 
output has been received, the Collector sends a cleanup 
request to the TaskApp, asking it to delete the output files 
it produced on the node's filesystem, as reported in the 
TaskApp's OutputList. 

3.6. Task API 

Task modules are programmed using the Task API, 
itself integrated with NCBI Toolkit libraries. The Task 
API facilitates the development of platform-independent, 
CGI-enabled applications which can be operated both as 
stand-alone executables through a regular command-line 
interface, and as CGI programs that can be invoked by a 
Web server daemon when it receives a client's HTTP 
request to run the application. In other words, the use of 
the Task API does not restrict the application to the 
MoBiDiCK system. Using the same executable, the user 
can choose to perform the computation manually, or to 
install the program behind HTTP servers on a set of nodes 
so that the task can be distributed using the MoBiDiCK 
kernel. The core Task API functions are shown in Table 
1. 

This flexibility is achieved by formally defining input 
parameters in the TaskApp program code. Each task 
parameter is defined in a TaskArg structure. The members 
of the TaskArg structure contain, among other 
information, a parameter's command line tag, CGI field 
name, type (integer, string, boolean, etc.), range of 
allowed values, and default value if any. A set of task 
parameters is defined by declaring an array of TaskArg 
structures. Parameter values are obtained by the 
application with the GetTaskArgs function, which detects 
the input method (terminal or HTTP), and accordingly 
reads, validates and copies parameter values in the 
TaskArg array for subsequent access. 

Many computations consist of a main loop that iterates 
over a fixed and predetermined range of values, such as a 
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sequence of numbers, a list of strings, or a collection of 
records. Tracking the progress of these types of programs 
is achieved by calling the TaskSetSize function prior to 
entering the main loop, and by placing a call to the 
Tasklterate function in the loop body. TaskSetSize sets 
the "problem size", e.g. the total number of iterations to 
be performed in the main loop. Each time Tasklterate is 
called, the loop's progress is computed by dividing the 
current iteration number by the total number of iterations. 
The progress is thus the percentage of the loop that has 
been completed. If the time required for each iteration is 
more or less uniform (the loop body is deterministic), then 
progress is proportional to the computation's current 
running time by a more less constant value. When the 
loop body is non-deterministic, as is the case for random- 
walk algorithms, the progress still provides a measure of 
where in the loop the process is currently positioned. 
Subtask progress is written to a SubtaskStatus file in the 
Web server's published directory tree. This file is 
periodically obtained by the Status kernel module while it 
monitors the computation. 

To communicate with a running TaskApp process, 
messages or signals can be placed in its SubtaskStatus 
file. For example, when the Statekeeper module must 
cancel an active subtask, it invokes a "kill" TaskApp 
process on the node, requesting it to interrupt the 
execution of the subtask. The kill process writes a 
"cancel" signal to the appropriate SubtaskStatus file. The 
signal is detected and carried out in the Tasklterate 
function at the next iteration of the subtask process, as it 
reads the SubtaskStatus file before updating it. Thus 
Tasklterate not only reports a subtask's progress to the 
kernel, but also serves to communicate with a TaskApp 
process during execution. 

Table 1. Core Task API functions 

GetTaskArgs GetTaskID 

InitTask GetlnstanceNum 

TaskSetSize GetSubtaskID 

Tasklterate TaskLogWrite 

Tasklnterrupt ErrLogPostEx 

RecordOutput TaskComplete 

GetlnputMethod 

Output produced by a TaskApp is written in the form 
of one or more output files on the compute node's 
filesystem. If output is to be collected by the kernel 
server, the RecordOutput function is used to record the 
names of files to be collected in an OutputList file written 
in a Web-published directory on the node. At the end of 
its computation, a TaskApp process informs the Collector 

module that output is ready to be collected. After 
obtaining the OuputList file from the compute node, the 
Collector proceeds to get all the files contained in 
OutputList and stores them in the central database or other 
specified storage area. 

Core library functions provided in Task API are listed 
in Table 1. Several other routines are also available as part 
of the NCBI SDK, on top of which the Task API is built, 
such as ASN.l encoding, which we use in the 
FOLDTRAJ TaskApp module. The general structure of a 
TaskApp program is shown in Figure 4. A simple set of 
rules, outlined below, must be followed in order to 
produce TaskApp programs that can correctly interact 
with the kernel. 
a) Define all input parameters in the TaskArg array, 

allowing the TaskApp to receive arguments from the 
Dispatcher. 

b) 

c) 

d) 

e) 

Obtain input arguments with GetTaskArgs. This 
enables the program to get arguments from either the 
command-line console or from the Web server. If 
invoked by the Dispatcher, the TaskApp also obtains 
required MoBiDiCK arguments (e.g. Task ID, 
Dispatcher and Collector IP addresses). 

Use InitTask to initialize the computation. Node- 
specific settings are read from a TaskApp 
configuration file; log files are initialized. 

Set the size of the computation with TaskSetSize 
prior to main loop. 

Call Tasklterate in main loop to record subtask 
progress information and read signals from other 
modules. 

function and variable definitions 

TaskArg array definition 

main(„) { 

GetTaskArgs (...) ; 

InitTask () ; 

TaskSetSize(_) ; 

mainLoop { 

Tasklterate(); 

RecordOutput (_.) ; 

} 

RecordOutput0; 

TaskComplete0; 

}"     

Figure 4. TaskApp structure and core Task API functions 
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f) Use RecordOutput to report all output files produced 
during the computation. This enables output 
collection (by the Collector module) as well as output 
cleanup. 

g) Call TaskComplete before exiting. This invokes the 
Collector to collect output, request output cleanup, 
and record timing and status information. 

h)   If the TaskApp must exit prematurely during the 
computation, use Tasklnterrupt. 

i)    Record informational and error messages in subtask- 
specific    log    files    using    TaskLogWrite    and 
ErrLogPostEx. 

4. Results 

4.1. RAMAPLOT 

Using the Task API we developed a TaskApp module 
called RAMAPLOT. This program uses three- 
dimensional protein structure information from NCBI's 
Molecular Modeling Database (MMDB) to generate a 
Ramachandran plot for the structure, which is a graph of 
the distribution of the protein's a-carbon bond angles in 
angular 2-D space (written as a GIF file). We performed 
this task using 15 nodes on our Beowulf cluster, each 
node configured with two Intel Pentium II 400MHz 
processors, 512Mb of RAM, the RedHat Linux operating 
system, and the Apache HTTP server. The nodes were 
interconnected by a 100Base-T network. The kernel 
server was a Sun Sparc Ultra-1 running Solaris 2.6. The 
MMDB database was copied to each node's hard disk. 

The goal of the task was to generate one 
Ramachandran plot for each of 851 protein structures in 
the MMDB. Two input parameters, dbsize and dbstart, 
were defined for the RAMAPLOT task. The partitioned 
parameter, dbsize, represents the number of records to be 
processed, ranging from 1 to 851 (corresponding to the 
first and last record indexes of the database, respectively). 
dbstart is defined as a lower boundary for the subranges 
of dbsize serving to inform the program of the starting 
database record number. We performed 15 instances of 
the RAMAPLOT task, starting with a single node and 
adding an additional node for every new instance. Only 
one CPU per node was used. Execution time, speedup, 
and efficiency were determined for each instance and are 
summarized in Table 2 and plotted in Figures 5, 6 and 7. 

Table 2. RAMAPLOT timing results using MoBiDiCK 

Instance Subtasks Time (s) Speedup Efficiency 

1 1 714 0.972 97.2 

2 2 378 1.84 92.0 

3 3 265 2.62 87.2 

4 4 195 3.57 89.1 

5 5 165 4.20 84.1 

6 6 144 4.82 80.3 

7 7 116 6.01 85.8 

8 8 106 6.55 81.9 

9 9 107 6.47 71.9 

10 10 96 7.19 71.9 

11 11 79 8.79 79.9 

12 12 87 8.00 66.7 

13 13 76 9.09 69.9 

14 14 66 10.49 74.9 

15 15 69 10.07 67.1 

Speedup is defined as the ratio TP/TS, where TP is 
parallel execution time and Ts is the best serial execution 
time. Ts, obtained by running RAMAPLOT on one cluster 
node through a command-line interface, was found to be 
695 seconds. Efficiency is defined as the ratio So/Smax of 
observed speedup over ideal speedup, with Smax always 
equal to the number of nodes. 
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Figure 5. Execution time for RAMAPLOT. The task was 
repeated by varying number of nodes. 

A steady speedup was obtained as the number of nodes 
was incremented from 1 to 15. The use of all 15 nodes 
yielded a speedup of 10.1, corresponding to 67.5% 
efficiency. 
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Figure 6.     Speedup for RAMAPLOT.  Ideal speedup is 
represented by the broken line. 

An increase in the number of subtasks raises the 
probability that any two subtasks complete at the same. 
This leads to increased network and I/O contention on the 
kernel server as subtask completion requests invoke 
Collector processes. These effects are reflected in Figure 
7 by a regular decrease in efficiency as the number of 
nodes rises. An average efficiency of 80.0% was achieved 
over all 15 instances. 
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Figure 7. Efficiency for RAMAPLOT 

4.2. FOLDTRAJ 

Much of our work is dedicated to the protein folding 
problem. This problem in the field of structural biology 
represents our inability to computationally predict the 
three-dimensional conformation of arbitrary proteins 
given only primary amino-acid (AA) sequence 
information. Given an input file known as a "trajectory 
distribution" containing angular 2-D space amino-acid 
frequency information about a particular protein, 
FOLDTRAJ can generate a number of random yet 
chemically valid protein conformers, placing each in a 
separate output file in binary ASN.l or ASCII PDB 
format. The correctness of a predicted structure, important 

in developing methods to score the fitness of generated 
proteins, is measured by calculating its Root Mean 
Squared Deviation (RMSD) relative to the protein's 
native fold. 

FOLDTRAJ was developed independently and 
intended to be used both as a stand-alone application and 
in a distributed computing framework. We used the Task 
API to migrate FOLDTRAJ to operate as a TaskApp 
under MoBiDiCK. Integration with the Task API also 
enabled the same FOLDTRAJ executable to be operated 
through an HTML-based interface in both stand-alone and 
client-server modes. 

Figure 8. Task definition and mapping of FOLDTRAJ. 
The definition includes general task information and parameter 
information (top left frame). Four dual-processor nodes are selected 
(top-right frame). The task has been partitioned into 8 subtasks, each 
mapped to a node's processor. Subtask parameters are inherited from 
the task and assigned values (middle frame). The task can be re- 
partitioned after editing the task or modifying node selection (through 
menu in bottom frame). 

An example task definition and mapping for 
FOLDTRAJ is shown in Figure 8. The task has three 
significant parameters: filein, numstruc and fstart. The 
first, filein, is a constant string parameter that holds the 
name of the input file; in the figure, the input filename 
"lvii" corresponds to the 36 amino-acid Villin headpiece 
protein, a small protein we use for testing. The 
partitioned integer parameter, numstruc, is the total 
number of structures to be generated; its range is set from 
1 to 500,000, signifying that half a million structures are 
to be generated. The integer parameter/start denotes the 
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starting structure number and is set as a lower boundary 
of numstmc, with the same range. The example instance 
was mapped to four of our dual-processor cluster nodes, 
using both CPUs per node, resulting in 8 subtasks as 
shown in Figure 8. Subtask loads are equal (0.125) since 
the nodes were rated equally. Sincere/« is constant, each 
subtask is assigned the same value. The range of numstruc 
is divided equally among the 8 subtasks. A subtask's 
fstart value informs the TaskApp where in the range it 
should start numbering its structures and is used to 
produce unique output filenames. 

Using MoBiDiCK we regularly perform distributed 
FOLDTRAJ computations to carry out prediction 
experiments on various proteins. Figure 9 plots the results 
of four such experiments. In each, 50,000 protein 
structures were generated using 15 of our dual-processor 
cluster nodes. The frequency distribution of the resulting 
Root Mean Squared Deviation values indicate the 
accuracy of protein backbone atom prediction of random 
protein conformers made with FOLDTRAJ. From this 
ongoing testing we are obtaining a better understanding of 
the relationship between sample size, protein size and 
how well entities in the sampled protein ensembles fit the 
true structure of a protein. 
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Figure 9. RMSD frequency distribution of random protein 
structures generated with FOLDTRAJ. Each curve represents a 
separate instance of FOLDTRAJ generating 50,000 structures using 30 
subtasks on 15 nodes; protein name, size in number of amino-acids 
(AA), and execution time are indicated for each experiment. 

5. Related work 

Existing cluster computing tools that are publicly 
available include PVM (Parallel Virtual Machine) and 
MPI (Message Passing Interface). Commonly used on 
LANs and clusters of workstations, these systems provide 
resource encapsulation and monitoring functions, and 
transparent heterogeneity utilities through a messaging 
API. PVM provides a high-level system for a user to 
coordinate tasks spread across a network of heterogeneous 
workstations. The set of nodes is perceived as a single 

virtual machine through a message-passing abstraction 
and a library of functions for task creation and 
management 13] [ 14]. 

Other systems aside from the more widely used PVM 
and MPI are numerous and many of their aspects can be 
directly compared with MoBiDiCK. Their applications to 
cluster and distributed computing have provided us with a 
useful study, including Globus, SuperWeb, Condor, 
Linda, Piranha, NOW, Legion, WebOS, Atlas, ParaWeb, 
Bayanihan, Popcorn, Charlotte, JPVM, RMI, CORBA, 
Javelin, Nimrod, Clustor, JICE, LSF. At the time we 
began building MoBiDiCK (Oct. 1997) it was not clear to 
us that other systems were capable of doing the multiple 
duty that FOLDTRAJ required for distributed computing 
over the Internet with clients at this level of 
sophistication. We therefore set out to develop 
MoBiDiCK with goals that it provide an integrated 
environment for process control as shown in Figure 8, and 
be capable of large scale, high performance, database- 
driven, heterogeneous distributed computing. 

6. Future Directions 

6.1. Estimating subtask execution time 

In general, the execution time of a subtask on a node is 
influenced by (1) subtask load and (2) node rating. 
Subtask load is a computed fraction of the total work to be 
done in the task. Node rating is a measure of a node's 
performance as determined by a benchmarking procedure 
that incorporates limiting factors associated with network 
bandwidth and congestion, CPU performance, memory 
and storage availability, and I/O efficiency. A node's 
rating is directly proportional to this measured 
performance. 

The execution time T of subtask, S, with load L 
assigned to a node with rating R can be estimated by 
T = /»F(L)/R. F is the task's time complexity as a function 
of subtask load. If known, F can be supplied as an 
attribute of the task and saved in the database. The 
constant h is given by F(Li)/R, where Li is the average 
subtask load over previous instances (with the same 
parameter definitions) and R is the average rating of all 
nodes that computed these subtasks. h thus captures a 
task's performance history over all previous instances and 
nodes. Since timing and node rating information are 
stored in the database for every task instance, k can be 
quickly updated after each task execution, keeping its 
value readily available to the Dispatcher to calculate T 
during the node selection phase of future instances. 

6.2. Selective fault tolerance 

The problem of managing distributed computations on 
a collection of heterogeneous nodes is challenging: both 
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the availability and performance of nodes are 
unpredictable, and effective mechanisms must exist to 
detect and handle failures. Fault-tolerance duties in 
MoBiDiCK are centralized at the kernel level, instead of 
being distributed as in PVM. This is because in a 
distributed computing model the authority granted to 
compute on a node is much more limited. Malfunctions 
that occur during a computation are abstracted from the 
TaskApp, which in many cases is favorable to the 
application developer since it removes the burden of 
appropriately responding to failures. Two conditions 
should remain satisfied throughout the execution of a 
task: the task will complete and performance is 
maximized. 

Task completion is ensured by detecting and 
remedying process-level and node-level failures. Process 
failure occurs when a running TaskApp program is 
prematurely terminated either by the process itself due to 
execution error, by the operating system, by the HTTP 
server, or by direct user intervention at the node console. 
Causes of node failure include operating system 
instability, faulty hardware, HTTP server malfunction or 
misconfiguration, and communication link breakdown. 

To detect and respond to such occurrences, the 
Dispatcher invokes the Status module as soon as a task is 
dispatched. Status carries out monitoring, fault detection 
and fault recovery functions for an active task instance. 
From each node performing a task, Status periodically 
downloads the SubtaskStatus file produced by the 
TaskApp process. This file contains a current percentage- 
done progress of the assigned subtask; the subtask's 
database record is updated with each new progress value. 
Process failure is suspected if no change in subtask 
progress is observed over a sufficient length of time. If the 
SubtaskStatus file cannot be obtained from the node's 
HTTP server after several attempts, node failure is 
suspected. Node failure implies the failure of all active 
subtasks assigned to the node. 

The Status module can respond to subtask failure in a 
variety of ways. The exact measures to be taken can be 
user-specified before and during the computation. 
Possible fault recovery behaviors are: 

(a) Carry on with the computation 
The remaining subtasks are left running and the 
failure is disregarded. 

(b) Cancel execution 
Status sends a "cancel" signal to the participating 
nodes in order to terminate the remaining subtasks for 
the instance. The computation is terminated and no 
further action is taken. 

(c) Restart the execution 
The instance is cancelled as in (b) and the Dispatcher 
is invoked to launch a new instance, replacing the 
faulty nodes with new ones if possible. 

(d) Re-allocate the failed subtask 
This can be done in at least two ways: 
• reassign or migrate the subtask to a new node if 

one is available, or 
• redistribute the subtask's load to other active 

nodes. 

6.3. Task migration 

The all-or-none model that MoBiDiCK uses offers 
some unique cases to consider for task migration. The 
access period represents how long a node is available at a 
given point in time; it is computed from the node 
schedule, a block of 24x7 cells representing each hour in 
the week. For example, if a node's access schedule 
permits use from 6 p.m. to 11 p.m. on a given day then, at 
8:30 p.m. the same day, the access period is 2.5 hours. A 
schedule overflow occurs when the time to completion of 
a TaskApp process running on a node exceeds the node's 
access period. During a computation, a Statekeeper kernel 
process periodically scans the database to detect possible 
schedule overflows, by checking a subtask's progress 
(updated by the Status module) against the access period 
of the node performing the subtask. If an overflow is 
anticipated, the subtask is migrated to another node by the 
Statekeeper, by invoking a new Dispatcher process to re- 
send the failed subtask. 

Prior to task dispatching, an initial load balancing step 
determines the load of each subtask based on the rating of 
the associated node. Yet a node's performance may vary 
during the computation due to, for example, increased 
CPU or I/O contention, causing a TaskApp process to 
slow down. If left unchecked, this can lead to significant 
idle time and hence reduced speedup. To avoid this, we 
intend to equip the Statekeeper module with dynamic load 
balancing and migration functions through which the load 
of a slow subtask can be wholly or partially transferred to 
faster nodes. 

6.4. Other directions 

In addition to the above work showing the use of 
MoBiDiCK in a controlled cluster environment, further 
components are being implemented to allow wide 
distributed computing. 

6.4.1. Accessing clusters with hierarchical  kernels. 
Many Beowulf clusters are set up using IP addresses in 
the 192.168.x.x or other non-public ranges. This 
precludes them from being seen over the Internet and used 
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in the MoBiDiCK system described so far. However most 
are configured with a "gateway" node, which is usually 
the cluster "head" and has a public IP address and is set 
up to use IP masquerading so that nodes can access the 
Internet. We have devised a method to allow MoBiDiCK 
to operate on these clusters, forming "clusters of clusters". 
This is a configuration that consists of a root kernel and 
several child kernels that manage computations on local 
site nodes only. Since the Dispatcher and other kernel 
modules are already CGI modules, they can themselves be 
made into TaskApp processes, and arranged in a 
hierarchy. A child kernel receives a single subtask from a 
parent kernel. The parent kernel sees the child kernel as 
a single multiprocessor system with a subtask load based 
on the cumulative rating of the child kernel's local nodes. 
The child Dispatcher interprets the subtask as a local task, 
and thus applies the same partitioning and mapping 
mechanisms as the parent Dispatcher. Output is first 
collected locally; the child Collector then passes local 
output to its parent Collector. Child Status and 
Statekeeper modules maintain fault-tolerance and task 
migration locally, while sending periodic summary 
progress reports to their parent counterparts. This 
configuration may enable nodes hidden behind firewalls 
as well as internal cluster nodes to participate in 
distributed computations through the child kernel. This 
approach may also be taken on large multiprocessor SMP 
machines; it is not limited to cluster use. It may also be 
used to enhance scalability by distributing the task 
management load to multiple servers and making it easier 
to manage a large number of nodes. 

6.4.2. Kernel redundancy. To avoid single points of 
failure, kernel modules can be mirrored across several 
failover servers. Nodes are made aware of alternate kernel 
locations so that if one server fails, another can assume 
task management and output collection functions. 

6.4.3. FastCGI. Performance of kernel modules may be 
significantly improved by migrating them to the FastCGI 
extension. This will be of particular benefit to the 
Collector module. Under standard CGI, a new Collector 
process is created for each subtask completion request, 
hence repeatedly incurring process creation and 
initialization overhead. Under FastCGI, one or just a few 
persistent Collector processes would handle all requests. 

6.4.4. Volunteer computing. We hope to involve the 
general public in our distributed protein folding 
experiments, by asking them to register their Web server 
nodes and volunteer idle CPU cycles. The node access 
schedule gives full control to node administrators and 
owners as to when and how long their nodes can be used. 
Additional security features, such as Web server level 

authentication, will be required in the kernel modules to 
ensure safe access of volunteer nodes. 

7. Summary 

We presented MoBiDiCK as a tool for distributed 
computing based on well established protocols, HTTP and 
CGI. The relatively high communication latencies of 
these protocols over the Internet render the system to be 
most suitable for data-parallel tasks that are CPU- 
intensive and that require minimal inter-node 
communication. Node accessibility is controlled by a real- 
time access schedule. A central relational database is used 
to hold static information about nodes and tasks, as well 
as dynamic data relating to node availability and task 
progress. The database also stores useful task timing 
information that can be used to build performance reports 
and histories of past computations, which in turn can 
serve to predict and optimize the performance of future 
instances. We reported the development of two TaskApps, 
RAMAPLOT and FOLDTRAJ. The former yielded 
encouraging speedup and efficiency results using a local 
cluster of Web server nodes, despite I/O contention on the 
kernel node during collection of output. This problem is, 
however, not unique to our system. FOLDTRAJ is an 
application we regularly employ in the MoBiDiCK 
environment in order to perform our computational 
protein folding experiments. We are continuing with our 
development of MoBiDiCK and look forward to carry on 
with our future directions. 
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Abstract 

RsdEditor is a graphical user interface which produces 
specifications of computational resources. It is used in the 
RSD (Resource and Service Description) environment for 
specifying, registering, requesting and accessing resources 
and services in a metacomputer. 

RsdEditor was designed to be used by the administra- 
tors and users of metacomputing environments. At the ad- 
ministrator level, the GUI is used to describe the available 
computing and networking components of a metacomputer. 
At the user level RsdEditor can be used to specify which 
characteristics of the computational resources are needed 
to execute a meta-application. 

This paper is organized as follows: Section 1 introduces 
the RsdEditor. Section 2 briefly describes the RSD environ- 
ment, and Section 3 highlights various features and imple- 
mentation issues of the RsdEditor. 

Keywords:   Metacomputing, Resource Management, Re- 
source and Service Description. 

1. Introduction 

RsdEditor is a graphical user interface for specifying 
metacomputer resources. It was developed by CNUCE- 
CNR in cooperation with PC2 Paderborn as part of the 

Metacomputer On-Line (MOL) project [1]. MOL exploits 
the Computing Center Software (CCS) [2, 3] in order to 
manage the resources of a computing center. Within CCS, 
the resource and service description language RSD [4] is 
used to describe the metacomputer resources managed by 
CCS. 

RsdEditor provides a user-friendly visual support to au- 
tomatically generate ASCII files. These are structured ac- 
cording to the RSD language which describes the specified 
resources by using the graphical features of the interface. 
RsdEditor was designed to be used by administrators and 
users of a metacomputer. 

As shown in Figure 1, system administrators use the 
RsdEditor to specify particular characteristics of the meta- 
computer's resources (computational nodes, networks, soft- 
ware services, etc.). Specifically the administrator can 
assign attributes such as type and number of processors, 
memory size, software environments, architectural classes, 
latency, or bandwidth to the available computational re- 
sources. Likewise, users can specify which characteris- 
tics of the computational resources are needed to execute 
their meta-application. This phase is not intended to select 
specific resources but to indicate the general attributes be- 
longing to a class of resources. The specifications made 
by the administrator and the user can be used to generate 
two graphs representing the metacomputer's configuration 
and the user's requirements, respectively. The allocation of 
the resources needed to execute the meta-application on the 
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Figure 1. The use of the specifications gener- 
ated by RsdEditor 

metacomputer is a question of mapping the user graph onto 
the metacomputer graph. 

Several mapping algorithms [5, 6, 7, 8] have been put 
forward to solve this problem. 

The RSD resource specification file, automatically gen- 
erated by RsdEditor, is analyzed by a parser to obtain Ab- 
stract Data Type (ADT) objects [4]. ADT objects can only 
be accessed through the RsdAPIwhich provides an abstract 
interface to the RSD data structures. As shown in Figure 1, 
the mapping of the task graph onto the available resources 
as generated by the mapping algorithm is used by CCS to 
start and control the execution of a meta-application. 

2. RSD Environment 

RsdEditor is part of the RSD environment [4] that pro- 
vides services and tools for specifying, registering, request- 
ing and accessing computer resources in heterogeneous 
computing environments. RSD is comprised of three ma- 
jor components: 

• a compiler system that transforms resource descrip- 
tions into ADTs (described in [4]), 

• an ADT object library with API (outlined in [4]), 

• a graphical user interface and editor RsdEditor (de- 
scribed in this paper). 

In RSD, resources and services are represented by hier- 
archical graphs with attributed nodes and edges describing 
static and dynamic properties such as communication band- 
width, message latency, or CPU load. Tools exist for end- 
users as well as for system administrators (Figure 2). 

ft 
Administrator 

Figure 2. RSD environment 

The output of the graphical RsdEditor is sent through 
the RsdParser which generates abstract data objects that can 
be stored or submitted for further processing by (remote) 
resource management systems. In addition, ASCII RSD 
files can also be translated by the parser into abstract ob- 
jects. By bundling objects with the corresponding methods 
the data can be interpreted and manipulated on other ma- 
chines. Internal RSD objects can only be accessed through 
the RsdAPIwhich provides the data structures with an ab- 
stract interface. For later modification, the data structures 
are re-translated into their original form with the graphical 
and textual components. This is possible because the in- 
ternal data representation also contains a description of the 
component's graphical layout. 

2.1   Textual versus Graphical Interface 

RsdEditor has been designed to provide a user-friendly 
alternative to the textual RSD representation [4]. From a 
theoretical point of view, both representations are equiva- 
lent. In fact, the RsdEditor output is parsed and compiled by 
the same RSD compiler system used for the language rep- 
resentation. Hence, RsdEditor is no more expressive than 
the language. On the other hand, it is easy to prove that 
the language is no more expressive than RsdEditor by look- 
ing at the more advanced features of the language, such as 
dynamic attributes and macros. 

Dynamic attributes [4] provide a means of handling dy- 
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namic data that are obtained at runtime. For example, when 
running a WAN distributed application, the optimal (re- 
mapping of the processes may depend on the current net- 
work performance. For this purpose, dynamic attributes 
provide up-to-date information on the current network sta- 
tus. When a dynamic attribute (keyword DYNAMIC) is 
parsed, the compiler system generates a corresponding ob- 
ject with appropriate access methods. These are then used 
by the dynamical data manager at runtime to provide up-to- 
date data in a synchronous or asynchronous way. Dynamic 
attributes can be specified in the same way in the RsdEditor 
and in the textual representation. 

One feature not included in the RsdEditor are macros. 
In the textual representation, they provide a shortcut for te- 
dious repetitive declarations. 

In RsdEditor, this is done by copying the corresponding 
edges or (hyper-)nodes. 

2.2   RSD Tools in CCS 

Maximizing the system utilization, and maintaining a 
high degree of system independence for improved portabil- 
ity and easier adaptation to new systems have been the two 
main goals of the CCS [3] project. CCS tackles these two 
conflicting goals by splitting the scheduling process into 
two parts. Figure 3 depicts the RSD flow in CCS. 

The hardware independent part is located in the Queue 
Manager (QM). It has no information on the mapping con- 
straints such as the minimum cluster size, or the location of 
I/O-nodes. The hardware dependent task is performed by 
the Machine Manager (MM). It verifies whether a schedule 
computed by the QM can be mapped onto the hardware at 
the specified time. 

The RSD tools are used in the CCS management sys- 
tem for describing system resources and user requests. At 
boot time, all CCS components read the RSD specification 
created by the administrator and extract the relevant infor- 
mation (by use of the RsdAPT). For example, the MM reads 
the machine topology and attributes, whereas the QM only 
extracts information such as the number of PEs or the avail- 
able operating system(s). 

The UI (User Interface) generates an RSD description 
from the user's parameters (or from a given RSD descrip- 
tion) and sends the description to the Access Manager (AM). 

The AM, which is responsible for authentication, au- 
thorization, and accounting, checks whether the request 
matches the administrator's given limits and forwards it to 
the QM. 

The QM extracts the information, computes a schedule 
and sends it to the MM. MM verifies this schedule by map- 
ping the user given RSD description against the static (e.g. 
topology) and dynamic (e.g. PE availability) information 
on the system resources. If there is no mapping possible, 

UI   I   • • • I   UI   II Administrator 

I Retearcc Reqaett 
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Figure 3. RSD flow in the CCS system. 

the MM returns an alternative schedule. QM either accepts 
this schedule or uses it to compute a new one. 

Although all CCS components are based on RSD, in the 
past we disguised the complexity of the RSD language by 
an easy-to-use command line interface. There was no need 
for a versatile resource description facility because most of 
the systems were homogeneous, their topologies simple and 
regular, and nearly all applications ran on only one system. 

With the trend of metacomputing (now often called grid 
based computing), resource description has become more 
and more important, because now the system (instead of 
the user) decides which of the available resources are used. 
Hence, the users need a convenient tool to specify their re- 
quests, and the applications need an API to negotiate their 
requirements with the resource management system. 

The RSD systems fulfill both requirements by providing 
the RsdEditor and the RsdAPI, respectively. 

2.3   Related Work 

Like RSD, the Globus [9] resource specification lan- 
guage RSL [10], its corresponding metacomputer directory 
service MDS [10] and the underlying LDAP services have 
also been devised for specifying distributed resources. 

However, the Globus approach is somewhat asymmet- 
ric: it uses RSL for specifying resource requests and LDAP 
(based on X.500) for specifying resource offers. 

RSD, in contrast, uses the same representation for both 
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purposes, thereby allowing us to use common graph match- 
ing mechanisms for brokerage. 

The brokerage aspect is emphasized in the ClassAds ap- 
proach used in the Condor [11] framework for matching re- 
source offers with requests. Compared to RSD, the Clas- 
sAds project focuses on protocols for advertising resources 
and on the matchmaking process, rather than on the spec- 
ification aspect. As a result, the expressions used in the 
ClassAds seem to be less powerful than our hierarchical, 
graph-based RSD expressions. 

The Resource Cataloging and Distribution System 
RCDS [12] developed at the University of Tennessee is an- 
other interesting approach. RCDS supports flexible, scal- 
able, and secure access to various types of data (e.g. files) 
on WAN connected computers. 

Resources are named by URNs (Uniform Resource 
Names) which provides stable names for resources which 
may change in content or location over time. This is 
achieved by putting resolution servers between the location 
dependent URLs and the end user. 

A middle software layer guarantees integrity and persis- 
tence of resources in an environment of dynamically chang- 
ing information. 

3. RsdEditor: Features and Implementation 

Figure 4 shows the RsdEditor starting window. Cur- 
rently, it is possible to choose between two different lan- 
guages, English and Italian. Moreover, it can operate in 
Administrator or User mode. 

Seli'cl luiiyuaijL-: 

mjagkm No* m* Mam» n» "ftmfetia m> 

: User   ''_.■ Administrator 

NarotN  [utente| 

I'usswunJ: 

implemented by: Maure Michetotti - Simone NanneUi 

Start Exit 

Figure 4. RsdEditor Start Window 

Figure 5 depicts an example of a working session. A 
status bar is shown at the bottom of the window in which 
error and information messages are displayed. The central 
part of the window, called the workspace, is the working 
area for the graphical resource specification. 

Figure 5. Example of a work session 

The menu bar contains the following items: File, Op- 
tions, Node, Edge, Preferences, Tree, Topologies, and 
Help. 

File enables the creation/editing of a resource specifica- 
tion file. 

Options displays the current RSD file, refreshes the 
workspace, etc.. 

Node allows the creation, editing, or deletion of a node 
or hypernode (a node containing other nodes in a recursive 
way). In the RSD syntax a node represents a computational 
resource characterized by graphical and RSD attributes. 

Figures 6 and 7 show the definition of the graphical char- 
acteristics and the assignment of RSD attributes to a node, 
respectively. 

The RSD syntax requires each node to have at least one 
port (a node's interface toward other nodes) in order to link 
it to another node by using an edge. RSD attributes can be 
assigned to a port (see Figure 8). 

RSD allows nodes to be defined recursively and to cre- 
ate hypernodes. A hypernode contains the specifications of 
other resources such as nodes, physical and virtual edges. 
On the left hand side of Figure 5 the hypernodes and nodes 
are indicated by the letters H and N, respectively. 

Edge enables theicreation, editing, or deletion of a 
physical or virtual edge. A physical edge represents a link 
between two nodes. The RSD syntax permits uni- or bi- 
directional physical edges. By using the windows shown in 
Figures 9 and 10 it is possible to select a port connected by 
an edge (binding). 

The edge binding is an RSD syntax constraint. There- 
fore, the ports must be defined before the binding. The no- 
tion of a virtual or vertical edge is used to provide a link 
between different levels of a hierarchy in the specification 
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Figure 6. Specification of the graphical prop- 
erties of a node 

Figure 7. Specification of the RSD attributes 
of a node 

graph. A virtual edge is defined using the windows shown 
in Figures 11 and 12, and it is represented by an arrow (see 
Figure 5). 

Preferences permits the definition of various graphical 
features, such as size, shape, color, etc. 

Tree enables the managing of the resource tree. This tree 
is shown in a synoptical way; it is thus useful for the user 
who can see and navigate each level of the resource specifi- 
cation tree. On the left hand side of Figure 5 an example of 
a resource specification tree is shown. 

Topologies allows the creation, editing, or deletion 
of nodes representing some of the most common ho- 
mogeneous interconnection topologies (Ring, Grid, Star, 
Torus). Figure 13 shows an example specifying a Grid 
composed of 4 x 8 nodes. This prevents the user from hav- 
ing to manually specify 32 nodes and 52 edges. 

Help accesses the on-line manual. 

RsdEditor saves the current resource specifications by 
creating two files: filename. rsd and filename. gui con- 
taining the resource specifications in RSD syntax and the 
formal descriptions of graphical objects, respectively, file- 
name is the name specified by the user when the resource 
specification is created. 

The graphical interface provides the option of importing 
and exporting resource specifications, some of which may 
have been previously recorded, in order to reuse them. As 
shown in Figure 14 RsdEditor allows the RSD code, pro- 
duced during a specification phase, to be displayed. 

For portability reasons, RsdEditor was implemented in 
Java [13, 14] and it has been tested successfully on Mi- 
crosoft Windows (98, NT), RedHat Linux and Sun Solaris. 
The modular structure adopted to implement RsdEditor fa- 
cilitates its maintenance and extension. 

A more detailed description of the RsdEditor functions 
can be found in [15, 16]. 

4. Example of RsdEditor Utilization 

As an example of how RsdEditor can be used, we show 
how to describe the computing resources of a computing 
center. Figure 15 shows the structure of the Paderborn Cen- 
ter for Parallel Computing. There are four parallel com- 
puters (CC.48, GCeLSystem, SCL64 and GCPP.64) con- 
nected by Ethernet, and a computer (Uranus) acting as gate- 
way towards the outside world. 

As sketched in Figure 16, each parallel computer (repre- 
sented by a torus icon) and the gateway are connected to a 
central node representing the Ethernet hub. Those nodes are 
included in a hypernode denoted as Paderborn.Park. In 
order to specify the attributes of each computer the windows 
shown in Figures 13 need to be used. 

The complete resource description automatically pro- 
duced by RsdEditor is shown in the following. It is worth 
highlighting the usefulness of RsdEditor by looking at the 
pages containing the RSD code. In fact, the resource speci- 
fications made by the RSD language is a relatively long and, 
potentially error prone, task. 
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Attributes: 
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Resource Description Produced by RsdEditor 

ROOTNODE Paderbom_Park 
{ 
NODE Ethernet 
{ 

PORT Ethl { Type = Ethernet 
PORT Eth2 { Type = Ethernet 
PORT Eth3 { Type = Ethernet 
PORT Eth4 { Type = Ethernet 
PORT Eth5 { Type = Ethernet 
PORT Eth6 { Type = Ethernet 

Bandwidth = 100; 
}; 
NODE Uranus 
{ 

PORT Ethernet; 
PORT ATM; 

); 
NODE CC_48 
{ 

CONST n = 2; 
CONST m = 24; 

Figure 9. Specification of the RSD attributes 
of a physical edge 

FOR j=l TO m DO 
EDGE Edge_$i_$j_to_$i_$( (j + 1) MOD m) 
{ 

NODE Torus_$i_$j PORT cc48 <=> 
NODE Torus_$i_$((j+1) MOD m) PORT cc48 

>; 

OD 

FOR j=l TO m-1 DO 
FOR i=l TO n DO 

EDGE Edge_$i_$j_to_$((i+1) MOD n)_$j 
{ 

NODE Torus_$i_$j PORT cc48 <=> 
NODE Torus_$((i+1) MOD n)_$j PORT cc48 

}; 

OD 

FOR i=l TO n DO 
FOR i=l TO n DO 

NODE Torus_$i_$j 
{ 

PORT CC48; 
IF ((i = l) && (j=D) THEN 

PORT CC_48-Esterna; 
FI 

CPU = PowerPC- 
Memory = 64MByte; 
PeakPerformance = 12,76GFlops; 
SysOp = AIX4 .1 ; 

}; 

ASSIGN Torus_l_l PORT CC_48-Esterna; 
}; 
NODE GCel_System 
{ 

OD 

CONST n = 32; 
CONST m = 32; 

FOR i=l TO n DO 
FOR i=l TO n DO 

NODE Torus_$i_$j 
{ 

PORT TransputerLink; 
IF ((i=l) && (j=l)) THEN 

PORT GCel-Esterna; 
FI 

FOR i=l TO n-1 DO 
CPU = T805; 
Memory = 4MByte; 
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Figure 11. Specification of the RSD attributes 
of a virtual edge 

Figure 10. Specification of the RSD attributes 
of a physical edge 

PeakPerformance = 4.4GFlops; 

OD 

FOR i = l TO n-1 DO 
FOR j = l TO m DO 

EDGE Edge_$i_$j_to_$i_$((j+1) MOD m) 
{ 

NODE Torus_$i_$j PORT TransputerLink <=> 
NODE Torus_$i_$((j+1) MOD m> 

PORT TransputerLink; 

}; 

OD 

FOR j=l TO m-1 DO 
FOR i = l TO n DO 

EDGE Edge_$i_Sj_to_$((i+1) MOD n)_Sj 
{ 

NODE Torus_$i_$j PORT TransputerLink <=> 
NODE Torus_$((i+1) MOD n)_$j 

PORT TransputerLink; 

}; 
OD 

PORT gcpp; 
IF ((i = l) && (j = D) THEN 

PORT GCPP-Esterna; 
FI 

CPU = PowerPC601; 
CPUNumber = 2; 
Memory = 32MByte; 
PeakPerformance = 5.12GFlops; 

OD 

FOR i=l TO n-1 DO 
FOR j=l TO m DO 

EDGE Edge_$i_$j_to_$i_$((j+1) MOD m) 
{ 

NODE Torus_$i_$j PORT gcpp <=> 
NODE Torus_$i_S ( (j + D MOD m) PORT gcpp; 

}; 

OD 

FOR j=l TO m-1 DO 
FOR i = l TO n DO 

EDGE Edge_$i_$j_to_$((i+1) MOD n)_$j 
{ 

NODE Torus_$i_$j PORT gcpp <=> 
NODE Torus_S((i+1) MOD n)_$j PORT gcpp; 

}; 

ASSIGN Torus_l_l PORT GCel-Esterna; 

}; 
NODE GCPP_64 
{ 

CONST n = 4; 
CONST m = 8; 

FOR i = l TO n DO 
FOR i=l TO n DO 

NODE Torus_$i_$j 

OD 

ASSIGN Torus_l_l PORT GCPP-Esterna; 
}; 
NODE   SCI_64 
{ 

CONST  n  =   4; 
CONST m =   8; 

FOR   i = l   TO  n  DO 
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Figure 12. Specification of the RSD attributes 
of a virtual edge 

Figure 13. Supported topologies 

FOR i=l TO n DO 
NODE Torus_$i_$j 
{ 

PORT Sci64; 
IF ((i=l) £.& <j=l)> THEN 

PORT SCI_64-Esterna; 
FI 

CPU = Pentiumll; 
CPUNumber = 2; 
Memory = 256MByte; 
PeakPerformance = 19.2GFlops; 

}; 

OD 

FOR i=l TO n-1 DO 
FOR j=l TO m DO 

EDGE Edge_$i_$j_to_$i_$( (3 + 1) MOD m) 
{ 

NODE Torus_$i_$j PORT sci64 <=> 
NODE Torus_$i_$((j+1) MOD m) PORT sci64; 

Bandwidth = 500MByte/s; 

OD 

FOR j=l TO m-1 DO 
FOR i=l TO n DO 

EDGE Edge_$i_$j_to_$((i+1) MOD n)_$j 
{ 

NODE Torus_$i_$j PORT sci64 <=> 
NODE Torus_$((i+1) MOD n)_$j PORT sci64; 

Bandwidth = 500MByte/s; 

{ 
NODE Uranus PORT Ethernet <=> NODE Ether- 

net PORT Ethl; 
Type = Ethernet; 

}; 

EDGE Edgel 
{ 

NODE Ethernet PORT Eth2 <=> 
NODE GCel_System PORT GCel-Esterna; 

Type = Ethernet; 

EDGE Edge2 
{ 

NODE Ethernet PORT Eth3 <=> NODE SCI_64 PORT SCI_64- 
Esterna; 

Type = Ethernet; 
}; 

EDGE Edge3 
{ 

NODE Ethernet PORT Eth4 <=> NODE GCPP_64 PORT GCPP- 
Esterna; 

Type = Ethernet; 
}; 

EDGE Edge4 
{ 

NODE Ethernet PORT Eth5 <=> NODE CC_48 PORT CC_48- 
Esterna; 

Type = Ethernet; 
}; 

ASSIGN NODE Uranus PORT ATM; 

} 

5. Summary 

ASSIGN Torus_l_l PORT SCI_64-Esterna; 

EDGE EdgeO 

In this paper we have presented RsdEditor, a graphical 
editor for specifying computational resources and services 
in distributed environments. Computing components (com- 
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Paderbotn_Paik 

CC_48 GCeLSystem 

Ethernet 

SQ_64 GCPP_64 

ATM 

Figure 15. Example: structure of a computing 
center (Paderborn Park). 

puters, processors) are represented by nodes and their inter- 
connects (WAN, LAN, or internal computer links) by edges. 
Both may be attributed. 

Compared to other approaches RSD is used by both, 
users and administrators, thereby allowing the use of simple 
graph matching algorithms for mapping resource requests 
onto resource offers. 

RsdEditor currently generates (via the RSD language) 
C++ objects. For improved portability, we plan to adapt Rs- 
dEditor to generate XML code. In addition, work is under 
way to implement resource brokers with different strategies 
on top of the RSD framework. 
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Abstract 

The Computational Grid provides a promising plat- 
form for the efficient execution of parameter sweep ap- 
plications over very large parameter spaces. Scheduling 
such applications is challenging because target resources 
are heterogeneous, because their load and availability 
varies dynamically, and because independent tasks may 
share common data files. In this paper, we propose an 
adaptive scheduling algorithm for parameter sweep ap- 
plications on the Grid. We modify standard heuristics 
for task/host assignment in perfectly predictable envi- 
ronments (TVTax-min, Min-min, Sufferagej, and we pro- 
pose an extension of Sufferage called XSufferage. Using 
simulation, we demonstrate that XSufferage can take 
advantage of file sharing to achieve better performance 
than the other heuristics. We also study the impact of 
inaccurate performance prediction on scheduling. Our 
study shows that: (i) different heuristics behave dif- 
ferently when predictions are inaccurate; (ii) increased 
adaptivity leads to better performance. 

1. Introduction 

Fast networks make it possible to aggregate CPU, 
network and storage resources into Computational 
Grids [8].   Such environments can be used effectively 

This research was supported in part by NSF Grant ASC- 
9701333, NASA/NPACI Contract AD-435-5790, DARPA/ITO 
under contract #N66001-97-C-8531, and CNRS/INRIA project 
ReMaP 

to support very large-scale runs of distributed appli- 
cations. An ideal class of applications for the Grid is 
the class of parameter sweep applications, applications 
structured as a set of multiple "experiments", each of 
which is executed with a distinct set of parameters. 

Executing a parameter sweep on the Grid involves 
the assignment of tasks to resources.   Although the 
experiments (or tasks) of a parameter sweep applica- 
tion are independent, a number of issues make schedul- 
ing such applications challenging.   First, resources in 
the Grid are typically shared so that the contention 
created by multiple applications creates dynamically 
fluctuating delays and qualities of service.   In addi- 
tion, Grid resources are heterogeneous and may not 
perform similarly for the same application. Moreover, 
although parameter sweep tasks are independent, they 
may share common input files which reside at remote 
locations, hence the performance-efficient assignment 
and scheduling of the application must include con- 
sideration of the impact of data transfer times. Previ- 
ous work [3] has demonstrated that run-time, adaptive, 
application-scheduling based on dynamic information 
about the status of computing resources is a good gen- 
eral approach for achieving performance on the Grid. 

In [20], three heuristics (Max-min,  Min-min and 
Sufferage) were proposed for the scheduling of indepen- 
dent tasks in single-user, homogeneous environments. 
In this paper, we modify existing heuristics to 
schedule parameter sweep applications with file 
I/O requirements, we propose an extended ver- 
sion of Sufferage, XSufferage, and we study the 
impact of inaccurate performance prediction on 
scheduling. We integrate these heuristics into a gen- 

0-7695-0556-2/00 $10.00 © 2000 IEEE 
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eral adaptive scheduling algorithm and compare them 
in various simulated computing environments and for 
various application scenarios. We will use a standard 
performance metric to evaluate our heuristics: the ap- 
plication makespan [22], i.e. the time between the first 
input files is sent to a computational server and the last 
output file is returned to the user. Our ultimate goal is 
to include our adaptive scheduling algorithm in a soft- 
ware framework, a Parameter Sweep Template (PST), 
developed as part of the AppLeS project [13]. PST will 
be the subject a a future paper. 

In a Grid environment it is usually difficult to obtain 
accurate predictions for computing and networking re- 
source performance; moreover most scheduling heuris- 
tics make use of such predictions. We designed a simu- 
lator that allows us to experiment with different levels 
of performance prediction accuracy. In this paper we 
present a preliminary study of the effect of increasing 
inaccuracy on the heuristics under consideration and 
discuss how adaptivity can be used to promote perfor- 
mance in Grid environments. 

This paper is organized as follows. In Section 2, 
we present our models for both the application and 
the underlying Grid environment. In Section 3, we 
present our scheduling algorithm. Section 4 focuses on 
the different task/host assignment heuristics whereas 
Sections 5 discusses adaptivity and performance pre- 
diction accuracy. Section 7 references related research 
work, and Section 8 concludes the paper. 

2.  A Scheduling Model for Parameter 
Sweeps on the Grid 

2.1. Application Model 

We define a parameter sweep application as a set 
of n independent sequential tasks {Ti}j=i,..,n. By inde- 
pendent we mean that there are no inter-task commu- 
nications or data dependencies (i.e. task precedences). 
We assume that the input to each task is a set of files 
and that a single file might be input to more than one 
task. In our model, without loss of generality, each 
task produces exactly one output file. Figure 1 shows 
an example with input file sharing among tasks. We 
assume that the size of each input and output file is 
known a-priori. 

This model is motivated by our primary target appli- 
cation for PST: MCell [29], a micro-physiology applica- 
tion that uses 3-D Monte-Carlo simulation techniques 
to study molecular bio-chemical interactions within liv- 
ing cells. An MCell run is composed of multiple Monte- 
Carlo simulations for cell regions whose geometries are 
described in (potentially very large) files. For instance, 

Input 
files 

Tasks 

Output 
files 

Figure 1. Application Model 

MCell can be used to study the trajectories of neuro- 
transmitters in the 3-D space between two cell mem- 
branes for different deformations of the membranes, 
where each deformation is described in a geometry file. 
Additional files of variable sizes are also needed for de- 
scribing the initial locations of different molecules. The 
model described above is adequate for our purpose and 
should be general enough to accommodate other appli- 
cations (e.g. general Monte-Carlo simulations). 

MCell users and developers anticipate large-scale 
runs that contain tens of thousands of tasks with each 
task processing hundreds of MBytes of input and out- 
put data, with various task-file usage patterns. Fur- 
thermore, research work outside the scope of this paper 
addresses the question of steerable MCell runs when 
users can add new tasks on-the-fly, and modify the 
computational targets of existing tasks. Such runs will 
lead to fairly intricate task-file usage patterns and a 
model as general as the one we describe will be needed 
to study scheduling issues in the presence of computa- 
tional steering. 

2.2. Grid Model 

We assume that the Computational Grid available 
to the user has the following topology: it is a set of 
k clusters of computing resources {Cj}j=i,..,k that are 
accessible to the user via k distinct network links. This 
is a logical topology, and this work does not attempt to 
take into account the actual physical network topology 
of the Grid. Our intent is to model a wide-area sys- 
tem, such as a Worldwide Flock of Condors [24] for in- 
stance. Each cluster contains a certain number of hosts 
where a host can be any computing platform, from a 
single-processor workstation to an MPP system, and 
is available for computation.   From now on, we call 

350 



Cluster 

Storage 

Storage 

User's host 
and storage 

Storage 

Figure 2. Environment Models 

both hosts and network links resources. We do not im- 
pose any constraint on the performance characteristics 
of the resources and our simulator allows for arbitrary 
performance variation. The only requirement is that 
for each computation and file transfer, an estimate of 
running time is available. On interactive hosts, the 
estimate is the task execution time whereas on batch 
resources, it is the turnaround time (defined as the 
waiting time plus the execution time). Such estimates 
can be provided by the user, computed from analytical 
models or historical information, or provided by facili- 
ties such as the Network Weather Service (NWS) [31], 
ENV [28], Remos [19], Grid services such as those found 
in Globus [10], or computed from a combination of the 
above. Recent work shows that the accuracy of the per- 
formance estimates have an impact on the effectiveness 
of scheduling heuristics and that information about the 
probability distribution of the estimates should be ex- 
ploited for scheduling [18, 26]. We explore scenarios for 
different levels of estimate accuracy in Section 5. 

We assume that a storage facility (e.g. NFS, 
GASS [9], IBP [23]) is available at each cluster so that 
files can be shared among the processes running on dif- 
ferent hosts in the cluster. For the first implementation 
of PST, we are planning to use IBP for storage man- 
agement. Figure 2 shows an example of a Grid of a 
Grid with three clusters. In this work we assume that 
all input files are initially stored on the user's host, 
that all output files must be returned to this location, 
and that there are no inter-cluster file exchanges. We 
assume for now that once assigned, tasks do not mi- 
grate between resources. This scenario fits the current 
usage of several real-life, parameter sweep applications 
(e.g. MCell, INS2D [25]), and we leave alternate usage 
scenarios for future work. In this work we ignore pos- 
sible storage constraints and assume unlimited storage 
space. Our model assumptions are discussed in the fol- 

lowing section, but we believe that they make it possi- 
ble to obtain initial meaningful results about a realistic 
environment while keeping the simulation tractable. 

2.3. Model Discussion 

Our Grid model makes several simplifying assump- 
tions. Even though we allow network links to have ar- 
bitrary dynamic performance characteristics, we do not 
model network contention caused by the application it- 
self. Instead we view the network as a set of distinct 
links emanating from the user's host and that can all be 
used in parallel. We believe that this assumption will 
need to be relaxed in future work. Since our purpose is 
not simulation per se, we will aim at using simulators 
developed by other research groups. For instance, the 
Micro-Grids simulator [15], when it becomes available, 
will allow us to precisely simulate network contention 
and study its impact on our current results. 

Similarly, we do not take into account contention 
within a cluster for shared file access. Our justifica- 
tion is that wide-area file transfer cost dominate the 
cost of file access within the cluster, even in the pres- 
ence of contention. While this is true in certain envi- 
ronments, it is certainly not general and we will need 
to enhance our own simulator so that it can simulate 
model contention for shared storage. For instance, this 
will be necessary to simulate high-bandwidth wide-area 
research networks such as the vBNS. At the moment 
we are planning to deploy the PST software on non- 
dedicated commercial wide-area networks with many 
clusters and we believe our simulation results will hold 
in those environments. The assumption of unlimited 
storage is realistic for current runs of MCell on our 
current testbed, but that assumption will be relaxed in 
future versions of our scheduling algorithm. 

Our Grid model also assumes that there are no di- 
rect network links between clusters in the sense that 
file transfers cannot be performed by our scheduling 
algorithm between clusters. In other words, the only 
authoritative source of input files is the user's host. 
This prevents schedulers from making some optimiza- 
tions when disseminating input files among the clus- 
ters. However, no heuristic we study in this paper is 
able to support such optimizations as this would re- 
quire a considerably more precise understanding of the 
network. Our next step in this research will be to use 
a more complete network model and to consider any 
storage device for any file retrieval. This will allow not 
only for more flexible application scenarios, but also 
for the investigation of more sophisticated scheduling 
algorithms. 
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schedule() { 

(1) 
(2) 
(3) 

(4) 
(5) 

(6) 

compute the next scheduling event 
create a Gantt Chart, G 
foreach computation and file transfer currently underway 

compute an estimate of its completion time 
fill in the corresponding slots in G 

select a subset of the tasks that have not started execution: T 
until each host has been assigned enough work 

heuristically assign tasks to hosts (filling slots in G) 
convert G into a plan 

Figure 3. Scheduling Algorithm Skeleton 

3. Adaptive Scheduling for 
Parameter Sweeps 

3.1. The Scheduling Algorithm 

We call our scheduling algorithm schedule(). The 
general strategy is that it takes into account resource 
performance estimates to generate a plan for the assign- 
ing file transfers to network links and tasks to hosts. 
To account for the Grid's dynamic nature, scheduleO 
can be called repeatedly so that the schedule can be 
modified and refined. We denote the points in time 
at which scheduleO is called scheduling events, ac- 
cording to the terminology in [20]. We assume that at 
each scheduling event our scheduler has knowledge of: 
(i) the current topology of the Grid (number of clus- 
ters, number of hosts in those clusters, network and 
CPU loads), (ii) the number and location of copies of 
all input files, and (iii) the list of computations and file 
transfers currently underway or already completed. 

Figure 3 shows the general skeleton for scheduleO 
whose steps can be described as follows: 

(1) determines the time of the next scheduling event. 
This can take into account environment behavior 
to increase or decrease the scheduling event fre- 
quency. A higher frequency means a higher adap- 
tivity but also a higher scheduling cost. 

(2) creates a Gantt chart [7], G, that will be used to 
keep track of task/host assignments. G contains 
as many columns as resources. Figure 4 shows 
an example of a Gantt chart for an environment 
containing two clusters with respectively two and 
three hosts. 

(3) inserts slots corresponding to tasks that are cur- 
rently running into the chart. Two examples are 
shown on Figure 4 as black-filled rectangular slots 
at the beginning of the chart (one file transfer and 
one computation). 

(4) performs a task-space reduction that can be used 
to reduce schedule()'s execution time. This will 
be necessary for runs of real parameter sweep ap- 
plications since we expect them to contain thou- 
sands of tasks. 

(5) is the core of the algorithm, determining which 
task should be performed on which host. This 
step is detailed in Section 4. Examples of slot as- 
signments are depicted on Figure 4 in gray. In this 
example, input file transfers are scheduled on the 
network link to cluster 2, the computation is then 
scheduled on a host within that cluster, and the 
output file is scheduled to be returned to the user's 
host. 

(6) converts the Gantt chart into a plan, or a sequence 
of instructions. These instructions can then pro- 
vide a schedule for deployment with Grid software 
services (for job submission and monitoring, data 
motion, etc.). 

3.2. Discussion 

Several steps of our scheduling algorithm can be im- 
plemented independently and this makes it possible 
to experiment with different techniques and strategies. 
Our ultimate goal is to instantiate the algorithm so 
that it is optimized for specific environments and ap- 
plications.   Furthermore, this instantiation should be 
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Resources 

Figure 4. Sample Gantt chart 

as dynamic and automatic as possible as the algorithm 
should be able to reconfigure itself on-the-fly to accom- 
modate changing Grid conditions. 

Step (1) allows for dynamic adjustment of the 
scheduling event frequency. A higher frequency leads to 
more adaptivity and should be better for unstable Grid 
environments. However, a higher frequency also means 
that schedule () is called more frequently. Depending 
on the computational cost of the scheduling, a high fre- 
quency might not be desirable. In the case of the PST 
software, a processor is usually dedicated to scheduling. 
Furthermore, given the granularity of the applications 
we are considering, there should be no need for very 
high frequencies. However, steps (3) and (5) might in- 
clude remote access to Grid information services (e.g. 
NWS [31]) to perform performance prediction. It may 
then become necessary to reduce the scheduling event 
frequency because of latencies associated with Grid ser- 
vices. One can envision algorithms to dynamically tune 
the frequency in step (1). For instance, one could com- 
pute the deviation of the computation from what was 
planned during the previous call to schedule(). Large 
deviations suggest higher frequencies whereas low de- 
viations suggest that the frequency can be decreased. 

Step (3) obtains estimates for completion of ongoing 
file transfers and computations in order to start filling 
in slots in the Gantt chart. This is a little different 
from estimating just running times because more infor- 
mation is available. It is indeed conceivable that more 
precise forecasting techniques can be used because the 
required prediction is in the near future and because 
there are ways to compute percentage to completion. 
It may be that applications provides means to check on 
computation progress (this is however not the case for 
MCell). More generally, techniques using historical in- 

formation from Grid services can lead to estimations of 
the percentage to completion. We have started exper- 
imenting with such techniques and will present results 
in a subsequent paper. 

Step (5) in Figure 3 states that tasks are assigned 
to hosts until "enough" work has been assigned. Like 
step (4), this is intended to limit the time spent com- 
puting the schedule. Indeed, it makes little sense to 
assign tasks to hosts for times that are well beyond 
the next scheduling event since the schedule will be re- 
evaluated then. Since real runs will not be perfectly 
predictable, it is good practice to leave some margin of 
error and assign work until after the next scheduling 
event so that resources are utilized even if the perfor- 
mance predictions were pessimistic. 

Step (6) processes the Gantt chart and transforms it 
into a set of task lists associated to each resource. The 
Grid infrastructure software in use is then responsible 
for sequencing file transfers and computations on the 
appropriate resources. Here there is some latitude for 
some choices concerning the actual implementation of 
the task sequencing. It may be that, due to unexpected 
performance misprediction, some resource cannot exe- 
cute the next task on its list but could execute one 
of the subsequent ones. For instance, a file transfer for 
the output of a task that is unexpectedly lagging might 
cause a network link to stay unused. A solution is to 
relax the ordering of the list and allow subsequent file 
transfers to be performed immediately. 

Our experience indicates that allowing output file 
transfers to be delayed until they can effectively occur 
is usually a good idea as it allows for better network 
bandwidth utilization while not disrupting the overall 
schedule to a great extent. This is the scheme used by 
schedule () in this paper. Further experiments would 
be required in order to investigate the trade-offs be- 
tween resource utilization and schedule disruption. 

Steps (1) and (5) use dynamic information about 
the status of the Grid resources and are key to the al- 
gorithm efficacy. Our main focus in this paper is 
step (5) of the algorithm and our results are pre- 
sented in the following section. We also present pre- 
liminary experiments concerning step (1) in Section 5. 

4.   Performing   Task/Host   Assignment 
Decisions 

4.1. Heuristics 

We must identify heuristics that are applicable in 
Grid environments to perform assignment of file trans- 
fers to network links and of computations to hosts. 
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Moreover these heuristics must be reasonably compu- 
tationally inexpensive with respect to the duration of 
a typical application task. Three simple heuristics for 
scheduling independent tasks for a uniform single-user 
environment are proposed in [17, 20]: Min-min, Max- 
min, and Sufferage. These three heuristics iteratively 
assign tasks to processors by considering all tasks not 
scheduled and computing Minimum Completion Times 
(MCTs). For each task, this is done by tentatively 
scheduling it to each resource, estimating the task's 
completion time, and computing the minimum com- 
pletion time over all resources. For each task, a metric 
is computed using these MCTs, and the task with the 
"best" metric is assigned to the resource that lets it 
achieve its MCT. The process is then repeated until all 
tasks have been scheduled. 

Min-min uses the Minimum MCT as a metric, mean- 
ing that the task that can be complete the earliest 
is given priority. The motivation behind Min-min is 
that assigning tasks to hosts that will execute them 
the fastest will lead to an overall reduced makespan. 
Max-min's metric is the Maximum MCT. The expecta- 
tion is to overlap long-running tasks with short-running 
ones. The rationale behind Sufferage is that a host 
should be assigned to the task that would "suffer" the 
most if not assigned to that host. For each task, its 
sufferage value is defined as the difference between its 
best MCT and its second-best MCT. Tasks with high 
sufferage value take precedence. Note that this def- 
inition of sufferage is a little different from the one 
presented in [20]. We found our definition easier to 
implement and experiments showed no differences be- 
tween our version of sufferage and the one in [20]. We 
modified all three heuristics so that they (i) include 
input and output data transfer times when computing 
MCTs and (ii) take into account the fact that some files 
may already be present on remote storage devices. In 
addition, we implemented an extended version of the 
Sufferage heuristic: XSufferage. 

In XSufferage the sufferage value is computed not 
with MCTs, but with cluster-level MCTs, i.e. by com- 
puting the minimum MCTs over all hosts in each clus- 
ter. Our first intuition was that Sufferage should be a 
nice way to exploit file locality issues without any a- 
priori analysis of the task-file dependence pattern. The 
idea is that if a file required by some task is already 
present at a remote cluster, that task would "suffer" 
if not assigned to a host in that cluster, provided the 
file is large compared to the available bandwidth on 
the cluster's network link. The sufferage value would 
then be a simple way of capturing such situations and 
ensuring maximum file re-use. This is somewhat rem- 
iniscent of the idea of task/host affinities introduced 

in [20], where some hosts are better for some tasks but 
not for others. 

However that early experiments showed that the 
Sufferage heuristic as described above does not lead 
to makespans as good as the ones we expected. This 
can be explained easily. Assume that a task, say T0, 
requires a large input file that is already stored on a 
remote cluster. If that cluster contains two (or more) 
hosts with nearly identical performance, which is often 
the case in practice, then both those hosts can achieve 
nearly the same MCT for that task. If the file is of 
significant size compared to network bandwidths avail- 
able, then it is likely that those two hosts lead to the 
best and second-best MCTs for T0. This means that 
the sufferage value will be close to zero, giving the task 
low priority. Other tasks may be scheduled in its place, 
generate load on the hosts in the cluster, and eventually 
force T0 to be scheduled on some other cluster, thereby 
requiring an additional file transfer. This can have a 
dramatic impact on the overall application makespan 
as it leads to poor file re-use among tasks, especially in 
wide-area bandwidth-constrained environments. 

We solved this problem in XSufferage by using a 
modified sufferage value definition. For each task and 
for each cluster we compute the task's MCT only for 
hosts in the given cluster and call that value the cluster- 
level MCT. The cluster-level sufferage value is com- 
puted as the difference between the best and second- 
best cluster-level MCT. The task with the highest 
cluster-level sufferage is given priority and is sched- 
uled to the host that achieves the earliest MCT within 
the cluster that achieves the earliest cluster-level MCT. 
Appendix 8 gives formal descriptions of Max-min, Min- 
min, Sufferage, and XSufferage. 

4.2. Simulating Parameter Sweeps 
in Grid Environments 

In order to evaluate the efficacy of the heuristics de- 
scribed earlier we developed a Grid parameter sweep 
simulator. At present, little software is available for 
Grid simulation. Among the most promising work, 
the Bricks project [30] addresses the question of simu- 
lating heterogeneous distributed environment for the 
purpose of evaluating scheduling strategies, but no 
public implementation is available at the moment. 
Furthermore, Bricks targets "global computing sys- 
tems" [5, 27, 11, 10] rather than application sched- 
ulers. It assumes constant task and data arrival rates 
to servers and uses queuing theory in an attempt to 
model many users who asynchronously interact with a 
global computing system. By contrast, our simulator 
is purely event-driven which is more appropriate in our 
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framework where the scheduler knows all tasks a-priori 
and is in charge of only one application. The Micro- 
Grids [15] project will also be of interest for gaining 
insight on how our simulation results hold under more 
realistic assumptions. At present, it cannot be used 
to perform large numbers of runs of large-scale appli- 
cations as it emulates the Grid rather than simulates 
runs of the application. However, Micro-Grids uses a 
network simulator that could help us model network 
traffic more accurately by taking into account physi- 
cal network topology and link contention due to that 
topology. 

Our simulator allows us to compare heuristics un- 
der the same load conditions, in a reproducible man- 
ner, for a wide variety of system states and application 
scenarios. In addition; we verified the accuracy of our 
simulated results by comparing experimental runs in 
shared, production environments with similarly loaded 
simulation application execution times. Our simula- 
tor takes as input schedule(), a task/host assign- 
ment heuristic, a description of the application tasks 
and input /output files, and a description of the Grid 
topology with performance characteristics of Grid re- 
sources. These characteristics can be constant values, 
samples from random distributions, or traces from the 
NWS [31]. In this work we use only NWS traces as 
they lead to more realistic models. The simulator also 
allows for adding and removing resources dynamically, 
but we do not perform any experiments with transient 
resources in this paper. The output of the simulator is 
a makespan value based on the set of input parameters. 
More details on the simulator can be found in [6]. 

4.3. Simulation Results 

4.3.1. Random Grids and Applications 

In order to perform a fair comparison of task/host se- 
lection heuristics we generated 1000 simulated Grids 
and 2000 simulated applications. We then randomly 
picked Grid/application pairs among the 2,000,000 pos- 
sible, and ran our simulator for each pair with all 
heuristics. The simulations in this section assume 100% 
accurate performance estimation and scheduling events 
occur every 500 seconds. The expectation is that com- 
puting statistical characteristics of makespans achieved 
by each heuristic is representative if the sample size is 
large enough, that is if enough Grid/application pairs 
are simulated. Before presenting the results, let us de- 
scribe how Grids and applications were generated. 

In what follows we denote by U(x,y) the discrete 
integer uniform probability distribution on the interval 
[x, y] where x and y are integers. Each Grid contains 
a U(2,12) number of clusters and each of those clus- 

ters contains a 1/(2,32) number of hosts. The perfor- 
mance of each host is modeled by a CPU load trace 
randomly picked among 50 different actual traces ob- 
tained from the NWS for various hosts. Each trace is 
then shifted by a random offset, so that two hosts using 
the same CPU trace do not exhibit the same behavior 
at the same time. Similarly network link performance 
is modeled by randomly picking latency/bandwidth 
traces among 20 different NWS traces. All the NWS 
traces that we use for simulations in this paper typi- 
cally span 4 days of real time and were obtained for 
hosts in various US research institutions and for net- 
work links between these institutions (commercial In- 
ternet or vBNS). Traces were collected during the first 
week of November 1999. 

In accordance with typical MCell scenarios we gen- 
erate applications as sets of independent Monte-Carlo 
simulations, with the tasks of a simulation sharing a 
(potentially large) input data file for describing 3-D 
geometries. All tasks take as input one additional file 
of 1 KByte and generate an output file of 10 KBytes. 
An application is composed of a (7(2,10) number of 
Monte-Carlo simulations, with each simulation com- 
posed of a U(20,1000) number of tasks. Each task 
requires a U(100,300) number of seconds of compu- 
tation on an unloaded base CPU. Finally, the size 
in KBytes of the geometry file associated with each 
Monte-Carlo simulation is U (400,100000), meaning 
that those files can reach the size of approximatively 
95 MBytes. These distributions are representative of 
what can be expected from real MCell applications. We 
generated one-thousand applications following exactly 
this method, and we also generated another thousand 
by adding random file/task dependencies. The idea is 
to create some perturbation of the regular structure of 
the file/task dependency graph and investigate if such 
a perturbation has an impact on the relative perfor- 
mances of the different task/host selection heuristics. 
The perturbation consisted in adding a number of ran- 
dom additional dependencies on the order of one fifth of 
the total number of tasks. Even though such perturba- 
tions take us away from typical MCell applications, it 
can be interesting to see how they affect the heuristics. 

The results are summarized in Table 4.3 for both 
standard applications and applications with file/task 
dependencies perturbation. For each scheduling heuris- 
tic (including a self-scheduled workqueue [12]) and for 
each type of application, the table contains three per- 
formance values. The results are computed over 1000 
random Grid/application pairs. We use the geomet- 
ric mean of the makespans rather than the arithmetic 
mean to account for the fact that, depending on the 
Grid and the application, makespans in the sample 
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Table 1. Results for Random Grid/Application pairs 

Scheduling 
No Perturbation Perturbation 

Geometric Av. Degradation Average Geometric Av. Degradation Average 
Mean (sec) from Best (%) Rank Mean (sec) from Best (%) Rank 

Max-min 2390 17.3 3.1 2549 18.9 3.1 
Min-min 2452 21.2 3.0 2619 23.2 3.0 
Sufferage 2329 14.1 2.8 2505 16.7 2.9 
XSufferage 2174 6.2 1.8 2316 7.9 1.8 
Workqueue 2850 42.2 4.3 3091 48.1 4.2 

space can be of different orders of magnitude (one large 
makespan could easily dominate the arithmetic mean). 

The second performance value is the " average degra- 
dation from the best" which is a measure of how far a 
heuristic is from the best heuristic on average. For each 
heuristic, it is computed as the arithmetic mean over all 
Grid/application pairs of the relative difference of the 
makespans for that heuristic and for the best heuristic. 
The smaller that value, the closer the heuristic to being 
the best one on average. 

The third performance value is the "average rank" of 
a heuristic over all Grid/application pairs. The average 
rank is computed as the arithmetic mean of the rank (1 
to 5), where the heuristic leading to the best makespan 
is of rank 1 and the one leading to the worst makespan 
is of rank 5. 

These three different performance values all have 
slightly different interpretations and make it possible 
to gain a clear understanding of how the heuristics 
compare with one another. For instance, it could be 
that heuristic 1 is the best one in most cases, and that 
heuristic 2 is the second-best one in most cases as well. 
In that case, their average ranks will be close to 1 and 2 
respectively. This might lead us to think that heuristic 
one is preferable. However, it is possible that the av- 
erage degradation from best are respectively 20% and 
5%. For instance, it can be that when heuristic 1 is not 
the best one it is far worse than the best one, whereas 
heuristic 2 might not be best often, but is never far 
behind the best one in practice. In that case, we would 
probably conclude that heuristic 2 is preferable. 

The main message from Table 4.3 is that XSuffer- 
age is the best heuristic as it leads to the best geo- 
metric mean, average degradation from the best, and 
average rank for perturbed and non-perturbed appli- 
cations. Its average degradation from the best is at 
least twice smaller than that of any other heuristics for 
standard applications and applications with perturba- 
tion. Its average rank is better than any other by 1 
unit. Note that the workqueue, in these experiments, 

is the least efficient scheduling algorithm as its average 
rank is larger than 4 units. Max-min and Sufferage are 
comparable with a slight advantage to Max-min, and 
Min-min seems less efficient. 

Note that all the results in Table 4.3 are averages 
over a large number of experiments. In the following 
sections we will see cases where Min-min leads to good 
makespans when compared to Max-min and Sufferage. 
We claim that the experimental results presented in 
this section are sufficient to show that XSufferage is 
the one of the four heuristics that leads to best sched- 
ules for parameter sweep applications, given the models 
described in Section 2. 

4.3.2. Varying Shared File Sizes 

Figure 5(a) show simulation results for the following 
application and Grid. The application consists of 1600 
tasks, where each task takes as input a 10K un-shared 
file and one of eight identical shared files, each shared 
by 200 tasks. All tasks are identical in terms of compu- 
tational cost (200 seconds on an unloaded base CPU) 
and produce a 10K output file. This application set- 
ting is comparable to what some of our target param- 
eter sweep applications require. We simulate a Grid 
such as one that could realistically be used by a user 
based at UCSD. That Grid contains 5 clusters contain- 
ing respectively 6, 6, 8, 20, and 20 hosts. The perfor- 
mance characteristics of the hosts are based on actual 
CPU traces obtained via the Network Weather Service. 
The network links are also modeled from NWS traces 
obtained over the course of a day between a worksta- 
tion at UCSD and several remote sites accessible by 
commercial Internet links or the vBNS. Bandwidths 
on these links varies from as little as 6 KBytes/sec 
to 600 KBytes/sec depending on the link and on the 
time of the day. In terms of bandwidth averages, one 
can classify two of the links as fast (500 KBytes/sec), 
three of the links as moderate (between 100 and 200 
KBytes/sec), and one as slow (50 KBytes/sec).   One 
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Figure 5. Makespan vs.  shared file size for 
different heuristics 

of the two large 20-host clusters is accessible via a fast 
link. For large shared file sizes on the graphs, the av- 
erage ratio between file transfer time and computation 
time for one task is about 3 on a fast link and 30 on 
a slow link. For the smallest shared file sizes in our 
study, that ratio is about 0.2 on a fast link and 2 on 
a slow link. For these experiments, the interval be- 
tween scheduling events was always 500 seconds, and 
we assumed 100% accurate performance estimations. 

The graph in Figure 5 plots makespans vs. shared 
file shared file sizes between 10 and 150 MBytes for 
the four heuristics and the self-scheduled workqueue. 
For very small shared file sizes (up to 100 KBytes, not 
plotted on the graph), the workqueue leads to better 
makespans than other heuristics when files are so small 
that the effect of file sharing becomes negligible. How- 
ever, the workqueue quickly becomes inefficient when 
shared file size increases. The other heuristics perform 
similarly for small shared file sizes but one can see on 
the graph that XSufferage performs at least about 20% 
better than Min-min and 40% better than Max-min 
and Sufferage for a file size of 150 MBytes. We obtained 
similar results with different Grid configurations. We 
also performed experiments with much larger file sizes. 
Even though those experiments are not very realistic 
given the current networking capabilities they provide 
information about what happens when file re-use is the 
only constraint for achieving good scheduling. The re- 

sults showed that XSufferage constantly outperforms 
all other heuristics by at least 50%. These results show 
that XSufferage does a better job at capturing and tak- 
ing advantage of file sharing patterns to maximize file 
re-use. 

5. Adaptive Scheduling 

5.1. Quality of Information 

A new avenue of research that we are beginning to 
explore is the study of Quality of Information (Qol) on 
scheduling, that is the impact of the performance es- 
timation accuracy and other qualitative attributes on 
different scheduling strategies . We expect different 
heuristics to react differently to degrading levels of ac- 
curacy and that strategies that do not depend on per- 
formance estimation and forecast (e.g. self-scheduled 
ones [16]) will be more performance-efficient when Qol 
is low. Low Qol can also be accounted for in adap- 
tive scheduling algorithms such as schedule(). The 
following section presents our first simulation results 
for different levels of Qol and for increasingly adaptive 
versions of schedule(). 

Our initial model for simulating different levels of 
Qol is simple. Our simulator allows us to obtain 100% 
accurate estimates for all file transfer or computational 
times and we add random noise to those estimates to 
simulate inaccurate performance estimates. For each 
estimate used by the scheduling algorithm we intro- 
duce a percentage error that is uniformly distributed 
on the interval [—p, +p] where p is a value between 
0% and 100%. Perfectly accurate Qol corresponds to 
p = 0, whereas p = 10 means that every 100% accurate 
estimate will be randomly increased or decreased by up 
to 10%. 

This model is sufficient for obtaining initial results 
concerning the impact of Qol on the scheduling of pa- 
rameter sweep applications, however it makes two as- 
sumptions that are not realistic for real forecasting ser- 
vices that will be deployed in Computational Grids. 
First, it assumes that Qol behavior is the same for 
all estimates (for file transfer times and computational 
times) and for all resources. This is clearly not the case 
as network behavior is significantly different from CPU 
behavior for performance prediction purposes [32], and 
some resources will generally be more predictable than 
others on a regular basis. Second, it assumes that 
Qol behavior does not depend on whether a forecast 

The term "quality of Information is used to describe qual- 
itative aspects of performance predictions in the Performance 
Prediction Engineering Project [14]. 
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is needed for an event in the short-term or in the long- 
term. For instance, our model uses the same error 
model for predicting a file transfer time if the transfer 
is initiated in the next minute or in an hour. A more 
realistic model should probably try to capture some 
decay of the Qol as predictions become more and more 
long-term. Note that this issue becomes less critical 
for high scheduling event frequencies. Future work will 
aim at providing a more realistic model of Qol based 
on experiments with deployed Grid services, such as 
the Network Weather Service [31], and with a variety 
of Grid resources. 

5.2. Simulation Results 

Figure 6 shows simulation results for four different 
scheduling event frequencies and decreasing Qol levels. 

We use the same simulated Grid as the one used 
in Section 4.3.2 and the application is modeled after 
an MCell computation that performs eight moderate- 
size Monte-Carlo simulations (100 tasks each) for eight 
different geometry configurations of a neuro-muscular 
junction. Geometry files are on the order of 40 MBytes, 
meaning that network transfer times for those files take 
on average 80 seconds on a fast link and about 800 
seconds on a slow link. The average task computational 
time over all hosts is about 110 seconds, can be as fast 
at 90 seconds, and as slow as 350 seconds depending 
on the host and on its load when the task is running 
(as simulated by an offset in an NWS CPU load trace). 

All data points in the graphs of Figure 6 are com- 
puted as the average makespan over 50 simulated runs. 
This is necessary since we introduce random noise to 
performance estimates in order to simulate different 
levels of Qol. All graphs plot average makespans vs. 
values of p (defined in Section 5.1, for the heuristics 
presented in Section 4.1 as well as for a self-scheduled 
workqueue algorithm. Since the workqueue does not 
make use of performance estimates it is not sensitive 
to Qol. It is shown as a horizontal solid line on the 
four graphs (with a makespan of 1730 seconds). The 
variances associated with the 50 samples for each data 
point were small for all heuristics: coefficients of varia- 
tions were on the order of 5%. 

Graph 6(a) plots results when there is only one 
initial scheduling event, meaning that the scheduling 
algorithm is not adaptive. All heuristics but Max- 
min lead to better makespans than the workqueue for 
perfect Qol (p = 0), but their performance degrades 
very rapidly when p increases. Max-min leads to the 
worst makespans, but over all, all heuristics lead to 
makespans at least 40% larger than the workqueue 
when p is greater than 50. This result is not surprising 

as the cumulative errors of performance estimates im- 
pact the computations of the various MCTs required 
by the heuristics. 

Graph 6(b) shows the results when there is a 
scheduling event every 500 seconds, or 3 times dur- 
ing each run of the application in this case. One can 
notice that some heuristics outperform the workqueue 
for values of p up to 20. Max-min and Sufferage exhibit 
less performance as soon as the Qol is not perfect. 

Graph 6(c) shows the results when there is a schedul- 
ing event every 250 seconds, or between 5 and 8 times 
for each run depending on the heuristic being used. 
The effect observed on graph 6(b) is more pronounced 
in that heuristics become more tolerant to low Qol 
thanks to increased adaptivity, even though Max-min 
still leads to large makespans. Sufferage outperforms 
the workqueue for values of p lower than 30, whereas 
Min-min and XSufferage lead to better makespan than 
the workqueue for all values of p. For perfect accuracy, 
XSufferage outperforms workqueue by as much as 25%. 

Finally, Graph 6(d) shows results for scheduling 
events every 125 seconds, or between 11 and 14 times 
per run. Sufferage now outperforms the workqueue for 
p up to 80, whereas Min-min and XSufferage keep bene- 
fiting from increased adaptivity. The results show little 
improvements for higher scheduling frequencies. This 
is due to the granularity of the application: since tasks 
take at least 90 seconds, little can be gained by calling 
schedule() more than once every 125 seconds. For 
"good" Qol (p < 5%), XSufferage always outperforms 
Min-min. 

Note that these results are preliminary and that it 
is difficult to use them to rank the different heuristics 
according to their respective robustness to inaccurate 
performance predictions. It will be necessary to per- 
form experiments for large numbers of different Grid 
configurations and application structures as was done 
in Section 4.3.1. A future paper will contain results 
from such experiments as well as a more in-depth study 
of Qol issues. 

Note also that in these experiments we assume that 
the Qol does not depend on the scheduling event fre- 
quency (see the discussion in Section 5.1). However, 
a high scheduling frequency implies that the heuristics 
do not use long-term predictions (see the discussion 
on step (5) in Section 3.2). Assuming that short-term 
predictions are typically more accurate than long-term 
predictions, higher scheduling frequencies lead to im- 
proved Qol. On Graph 6(d) we show simulation results 
for values of p up to 100, but we expect that in reason- 
ably stable Grid environments with appropriate fore- 
casting services, the performance estimation error will 
not be as large as +/- 100% for short-term predictions. 
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The left part of the graph should be more representa- 
tive of what we can expect for real systems. 

Finally, the scheduling event frequency impacts the 
performance of the adaptive algorithm even for perfect 
Qol. For instance, XSufferage has an average makespan 
around 1550 seconds for p = 0 and scheduling events 
every 500 seconds, whereas that average makespan be- 
comes lower than 1400 seconds for larger frequencies. 
All heuristics but Max-min achieve better makespan 
for higher frequencies in the case of perfect Qol. This 
is rather counter-intuitive as one would expect that 
perfect Qol would not mandate any adaptivity at all. 
The fact is that applying those heuristics on small 
sets of tasks leads to better scheduling decisions and 
shorter makespans. As tasks complete, successive calls 
to schedule () apply'the heuristics to the decreasing 
sets of tasks, leading to better overall makespans. This 
suggests that calling the scheduling algorithm repeat- 
edly is a good idea for Sufferage, Min-min, and XSuf- 
ferage, even if the environment is very predictable. 

6. Summary of Simulation Results 

The simulation results in Section 4.3.1 showed that 
XSufferage is on average a better heuristic than the 
traditional Max-min, Min-min, Sufferage, and self- 
scheduled workqueue for scheduling parameter sweep 
applications such as MCell on Computational Grids, 
provided the models of Section 2 hold. We believe that 
Xsufferage leads to better results because it better cap- 
tures the file/task dependencies of the application and 
leads to improved file re-use. This claim is supported 
by the results in Section 4.3.2. Indeed, all experiments 
we have conducted with very large shared files seem 
to indicate that XSufferage leads to better makespans 
than its contenders. Finally, the preliminary study 
of Quality of Information and adaptivity in Section 5 
showed that all heuristics can benefit from increased 
adaptivity and from increased Qol. The results seem 
to indicate that XSufferage leads to very good results 
for good Qol and compares well with other heuristics 
for poor Qol. 

It is always difficult to make general statements 
about the relative efficiency of scheduling algorithms 
since the space of possible Grid configurations and ap- 
plication structures is very large. The solution is to 
sample both the Grid and the application space as 
much as possible as was done in Section 4.3.1. Future 
work will contain such sampling for experiments similar 
to the ones presented in Section 4.3.2 and 5 in order to 
make the results concerning shared file sizes and Qol 
more general. Ironically, performing such large-scale 
simulations in the Grid/application space is itself a pa- 

rameter sweep application and we will probably use the 
PST software to distribute it on a real computational 
Grid. 

7. Related Work 

A large number of research papers address the ques- 
tion of mapping sets of tasks onto sets of processors in 
a view to minimizing overall execution time. Many of 
these papers address the case where tasks are indepen- 
dent [17, 12,16, 20]. Scheduling heuristics found in [20] 
were adapted to our framework as discussed in Sec- 
tion 4. All these papers make simplifying assumptions 
for task execution times (constant, following a trun- 
cated Gaussian distribution, etc.) and none of them 
take into account data storage issues. 

The work described in [2] focuses on scheduling ap- 
plications structured as DAGs on heterogeneous sets 
of processors and uses heuristics that are related to 
Max-min and Min-min for Level-by-Level scheduling 
of the graphs. However, special attention is paid to 
data storage issues which makes that work related to 
the research presented in this paper. A major differ- 
ence between our work and the development in [2] is 
that the latter assumes constant perfectly predictable 
performance characteristics for resources as should be 
available in advanced reservation QoS environments. 
Also, the different application structures (Parameter 
Sweep vs. DAGs) lead to many differences between 
the models in this paper and in [2]. For instance, data 
repositories are located anywhere on the network (as 
opposed within a cluster) and datasets are pre-staged 
to these repositories. Finally, [4] contains a survey 
that encompasses several heuristics in addition to the 
ones described in [20]. We will consider these heuris- 
tics in our future work. This work contrasts to others 
in that we: (i) take into account application data stor- 
age; (ii) model shared, heterogeneous computational 
and network resources with realistic dynamic perfor- 
mance characteristics; (iii) study the impact of the ac- 
curacy of performance prediction; (iv) introduce a new 
heuristic for scheduling parameter sweep applications 
(XSufferage). 

This work is also related to our work on an AppLeS 
Parameter Sweep Template (PST) in that the results 
in this paper provide a good justification that XSuffer- 
age should be implemented as part of the PST sched- 
uler. PST will provide with a practical way to deploy 
and schedule parameter sweep on the computational 
Grid using available software infrastructures and will 
be described in a future paper. PST itself is related 
to the Nimrod project [1]. Nimrod targets parameter 
sweep applications but its scheduling approach is dif- 
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ferent from ours as it is based on deadlines and on a 
Grid economy model. Also, to the best of our knowl- 
edge, Nimrod does not take into account dynamic Grid 
conditions or file locality constraints for scheduling. In 
fact, the work in this paper and our work on the PST 
software should be applicable to Nimrod and one can 
envision an implementation of PST as a Nimrod mod- 
ule. 

8. Conclusion and Future Work 

In this paper we have proposed an adaptive schedul- 
ing algorithm for parameter sweep applications in Grid 
environments. In particular, we address the case of 
applications where tasks can share input files (e.g. 
MCell [29]) and the case of non-dedicated Computa- 
tional Grids that span non-dedicated wide-area net- 
works. After precisely defining our application and 
Grid model, we adapted three standard heuristics for 
performing task/host assignment (Max-min, Min-min, 
Sufferage) and proposed an extension of the Sufferage 
heuristic, XSufferage. We also introduced the notion 
of Quality of Information (Qol) to account for inac- 
curacies in performance predictions. We use simula- 
tion to compare the four heuristics and a self-scheduled 
workqueue algorithm in multiple settings with vari- 
ous shared files sizes, levels of Qol, application struc- 
tures, Grid topologies and resources. The simulation 
results demonstrated that: (i) XSufferage leads to bet- 
ter schedules on average by quite a large margin; (ii) In- 
creased adaptivity benefits all four heuristics even for 
perfect Qol; (iii) XSufferage leads to better schedules 
for larger shared file sizes; (iv) XSufferage is as tolerant 
as the other heuristics to poor Qol and more efficient 
for good Qol. 

Future work will provide improvements to our mod- 
els such as more realistic network and storage models 
(encompassing shared-storage and link contention, and 
limited storage space), and alternate application usage 
scenarios. We will also study the concept of Qol fur- 
ther by investigating realistic Qol models and perform- 
ing more Qol-related experiments with our simulator. 
New heuristics such as the ones found in [4, 21] will 
considered for implementing step (5) of our algorithm. 
As discussed in Section 3.2, all steps of the algorithm 
can lead to new research in different directions (per- 
formance prediction and forecasting, task-space reduc- 
tion, trade-offs between schedule disruption vs. maxi- 
mum resource utilization). Also, the algorithm can be 
adapted to provide ways to perform adaptive schedul- 
ing for other classes of applications by using different 
heuristics in step (5). Finally, we will incorporate the 
results here, as well as many of these future improve- 

ments, into a practical programming environment and 
adaptive scheduler for parameter sweep applications on 
the Grid, an AppLeS Parameter Sweep Template. We 
believe that such software will provide a useful first step 
in achieving performance and programmability for ap- 
plications in Grid environments. 
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Appendix A: 
Task/host Selection Heuristics 

Let Hj,k denote the fctn host within the jtn cluster 
and C{Ti,Hjtk) the estimated completion time of task 
Ti on host -Hj.fc. Let us define the argmin operator: 

Definition:    Given a function / from Mn into JR, 

/(argminx6Ä«/(a:)) = minx6JR» f(x). 

The operator denotes one of the possible vectors that 
achieves the minimum of the function /. The way ties 
are broken is left the implementation and in this work 
they are broken randomly. An argmax operator can 
be defined in a similar fashion. Assuming a task set T, 
we can now describe each heuristic as follows: 

Min-min 

while (T jt 0) 
foreach (Ti G T) 

{c?\h{p)=Mgmmj,k{C{Ti,Hj,k)) 
end foreach 
s = argmini(C,(7i,Fc(i)h(1))) 
assign Ts to H <u   <D 

T = T- 
end while 

Max-min 

{Ts} 

while (T ^ 0) 
foreach (Tt € T) 

(cf\hf))=avgmmj<k(C(Ti,Hj,k)) 
end foreach 
s = argmax;(C(Ti,#m   (D)) 

assign Ts to H <D . <I> 

T = T - {Ts} 
end while 
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Sufferage 

while (T ^ 0) 
foreach (T{ € T) 

{cf\hf]) = &rgmmhk{C{TuHj<k)) 

[c^M?) = axgpm.^tkHthn(C(Ti,Hj,k)) 

sufi = C(Ti,Hc(2)thm) - C{Ti,Hcmhm) 

end foreach 
s = axgmzxi(sufi) 
assign Ts to H' m . (i> 

T = T - {Ts} 
end while 

XSufferage 

tuMe (T ^ 0) 
/oreacft (Tf € T) 

foreach cluster j 

hi,j = argmink(C(Ti,Hjtk)) 
end foreach 

cj^argmin^T«,^,,)) 

cf] = argminj^c(i)(C(Ti,Fj,hi J) 

*»U = C{TuH^th      )-C{Tt,Hcwh      ) 
1 i,c- t, c .   ' 

end foreach 
s = argmax^su/i) 
assign Ts to il <D , 

■     . 

T = T - {Ts} 
end wMe 

.(i) 
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Abstract*—In this paper, we propose to use a 
duplication based approach in scheduling tasks to a 
heterogeneous cluster of PCs. In duplication based 
scheduling, critical tasks are redundantly 
scheduled to more than one machine in order to 
reduce the number of inter-task communication 
operations. The start times of the succeeding tasks 
are also reduced. The task duplication process is 
guided given the system heterogeneity in that the 
critical tasks are scheduled or replicated in faster 
machines. The algorithm has been implemented in 
our prototype program parallelization tool for 
generating MPI code executable on a cluster of 
Pentium PCs. Our experiments using three 
numerical applications have indicated that 
heterogeneity of PC cluster, being an inevitable 
feature, is indeed useful for optimizing the 
execution of parallel programs. 

Keywords: Scheduling, task graphs, algorithms, 
parallel processing, heterogeneous systems, PC 
cluster computing, task duplication, resource 
management. 

1 Introduction 

Recently we have witnessed an increasing 

interest in employing a network of PCs connected 

by a high-speed network to tackle many 

computationally intensive parallel applications [9], 

[18]. Parallel processing using a cluster of 

machines, also commonly called cluster computing, 

enables a much larger community of users than ever 

before to efficiently tackle many difficult 

optimization   problems   on   a   readily   available 

t This research was jointly supported by a research initia- 
tion grant from HKU CRCG under contract number 
10202518, a research grant from the Hong Kong 
Research Grants Council under contract number HKU 
7124/99E, and a seed funding grant from HKU URC 
under contract number 10203010. 

platform [9], [18]. However, realizing the goal of 

efficient cluster computing entails handling a 

number of resource management chores [18]. One 

of the most important problems is the scheduling of 

tasks. Indeed, to effectively harness the aggregate 

computing power of such a heterogeneous cluster, it 

is crucial to judiciously allocate and sequence the 

tasks on the machines. In a broad sense, the 

scheduling problem exists in two forms: dynamic 

and static. In dynamic scheduling, few assumptions 

about the parallel program can be made before 

execution, and thus, scheduling decisions have to 

be made on-the-fly. The goal of a dynamic 

scheduling algorithm as such includes not only the 

minimization of the program completion time but 

also the minimization of scheduling overhead, 

which represents a significant portion of the cost 

paid for running the scheduler. In a cluster of PCs 

environment, such dynamic scheduling algorithms 

usually employ the so-called "idle-cycle-stealing" 

approach [5] which attempts to dynamically 

balance the work load evenly across all the 

machines. However, when the objective of 

scheduling is to minimize the execution time of a 

parallel application, such dynamic scheduling 

strategies are not suitable. 

On the other hand, the approach of using static 

scheduling algorithms [11], [12], [22], which can 

afford to use longer time to generate an optimized 

schedule off-line, is particularly effective for many 

scientific applications such as the adaptive 

simulation of N-body problem, object recognition 

using iterative image processing algorithms, and 
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some other numerical applications [1], [3], [4], 

[13], [14], [19], [25] because the characteristics of 

such applications can be determined at compile- 

time. A parallel program, therefore, can be 

represented by a directed acyclic task graph [3], in 

which the node weights represent task processing 

times and the edge weights represent data 

dependencies as well as the communication times 

between tasks [3], [6]. The static scheduling 

problem is, in general, NP-complete [5], [8] and 

there have been many heuristics suggested in the 

literature for scheduling a parallel machine. 

However, the problem of scheduling tasks to a 

cluster is a relatively less explored topic. 

Specifically, there are two difficult research issues 

to be tackled in the scheduling problem for cluster 
computing: 

1) Communication overhead: The 
communication overhead in a network of 
PCs is still very significant relative to the 
processing power of the machines [9]. Thus, 
to avoid offsetting the gain from 
parallelization by excessive communication 
overhead, the tasks should be scheduled in 
such a manner that the number of 
communications is kept small. 

2) Heterogeneity: In a PC cluster, which 
typically undergoes continual upgrading, 
heterogeneity in the hardware configuration 
is unavoidable. Heterogeneity can be a 
potential problem for some highly regular 
applications (e.g., some data parallel 
problems). However, it has been 
demonstrated that heterogeneity is useful for 
further enhancing the performance of 
irregularly structured parallel application 
[7], [21], by exploiting the affinity of 
different tasks to different machines. 

In this study, we propose to use a duplication 

approach to scheduling the tasks to the cluster. In 

duplication based scheduling, critical tasks are 

redundantly scheduled to more than one machines 

in order to reduce the number of inter-task 

communication operations. The start times of the 

succeeding tasks are also reduced. There have been 

many duplication approaches suggested in the 

literature [1], [10], [15], [16], [17], [20]. However, 

all these methods are designed for homogeneous 

parallel architectures. Furthermore, the previous 

approaches are all evaluated based on simulations 

rather than using real applications with a 

parallelizing compiler. In our proposed approach, 

the task duplication process is guided by tracking 

the critical path of the task graph given the system 

heterogeneity in that the critical tasks are scheduled 

or replicated in faster machines. Task duplication is 

indeed particularly effective for heterogeneous 

systems because the overall completion time of an 

application is usually determined by a subset of 

tasks (i.e., the critical-path, discussed in detailed in 

Section 2) which can be scheduled to execute 

efficiently on the faster machines. We have 

implemented this duplication based scheduling 

algorithm in the parallel code generator of a 

prototype program parallelization tool [2], which 

generates MPI code executable on a network of 

Pentium PCs. The system on which we tested our 

approach is shown schematically in Figure 1. Our 

experiments using several real applications have 

demonstrated that the duplication technique is very 

effective in reducing the completion time of the 

applications on a heterogeneous cluster of Pentium 

II PCs connected via a Fore Fast Ethernet switch. 

The remainder of this paper is organized as 

follows. In the next section, we describe in detail 

the model used and the design considerations of the 

duplication algorithm. Section 3 includes the results 

of our performance study. The last section 

concludes the paper. 
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Figure 1: System support for high-performance computing on a heterogeneous cluster. 

2 Scheduling for a Heterogeneous PC 
Cluster 

In this section, we first describe our scheduling 

model, followed by a discussion of the duplication 

techniques employed in our scheduling module of 

the parallel code generator. 

2.1 The Model 

A parallel program is composed of n tasks 

{Tv T2, ..., Tn} in which there is a partial order: 

Tj < Tj implies that 7 ■ cannot start execution until 

7, finishes due to the data dependency between 

them. Thus, a parallel program can be represented 

by a directed acyclic task graph [3]. Parallelism 

exists among independent tasks—7, and Tj are 

said to be independent if neither 7, < Tj nor 

T: < Tj. Each task 7, is associated with a nominal 

execution cost x, which is the execution time 

required by  7,   on a reference machine in the 

heterogeneous system. Similarly, a nominal 

communication cost c/y is associated with the 

message Mtj from 7, to Tj. Assume there are e 

messages where (n - 1) < e < n2 so that the task 

graph is a connected graph. 

To model heterogeneity of the target system 

which consists of m processors {P,, P2, ■■-, Pm} , 

heterogeneity factors are used. For example, if a 

task Tj is scheduled to a processor Px, then its 

actual execution cost is given by hixxt where hix is 

the heterogeneity factor which is determined by 

measuring the difference in processing capabilities 

(e.g., speed) of processor Px and the reference 

machine with respect to task 7,. Similarly, if a 

message Mtj is scheduled to the communication 

link L between processors Px and Py, its actual 

communication cost is given by h'jjXyCjj. An 

example parallel program graph is shown in 

Figure 2. 
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Figure 2: A Gaussian elimination task graph. 

The start time and finish time of a message M • ■ 
from Ti to Tj on a communication link L are 

denoted by MST(Mijt Lxy) and MFT(Mtj, Lxy), 

respectively. Obviously, we have: 

MFT(Mu,Lxy) = MSTWpL^ + h' ijxyCij 

The start time of a task Tt on processor Px is 

denoted by ST(Tjt Px) which critically depends on 

the task's data ready time (DRT). The DRT of a 

task is defined as the latest arrival time of messages 

from its predecessors. The finish time of a task Tt 

is given by FT{Tit Px) = ST{Tt, Px) + hixii. The 

objective of scheduling is to minimize the 

maximum FT, which is called the schedule length 

(SL). 

2.2 Parallel Code Generation with Duplication 
Based Scheduling 

The proposed duplication scheduler is designed 

as a core module in the CASCH (Computer-Aided 

SCHeduling) tool [2]. The system organization of 

the CASCH tool is shown in Figure 3. It generates 

a task graph from a sequential program, uses a 

scheduling algorithm to perform scheduling, and 

then generates the parallel code in a scheduled form 

for a cluster of workstations. The timings for the 

tasks and messages are assigned through a timing 

database which was obtained through profiling of 

the basic operations [2], [6]. As soon as the task 

graph is generated, the duplication based scheduler 

is invoked. 
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To minimize the overall execution time of the 

application on the cluster, the scheduler first 

determines which tasks are more critical so that 

they need to be scheduled to start at earlier time 

slots, possibly by duplicating their ancestors. In a 

task graph, the critical-path (CP), which consists of 

tasks forming the longest path, is such an important 

structure because the tasks on the CP potentially 

determine the overall execution time. To determine 

whether a task is a CP task, we can use two 

attributes: t-level (top level) and b-level (bottom 

level) [13], [24]. The b-level of a task is the length 

of the longest path beginning with the task. The t- 

level of a task is the length of the longest path 

reaching the task. Thus, all tasks on the CP have the 

same value of (t-level + b-level), which is equal to 

the length of the CP. Based on this observation, we 

can easily partition the parallel program into three 

categories: CP (critical path), IB (in-branch), and 

OB (out-branch) tasks. The IB tasks are ancestors 

of CP tasks but are not CP tasks themselves. The 

OB tasks are neither CP nor IB tasks and as such, 

are relatively less important. This partitioning can 

be performed in 0{e) time because the t-level and 

b-level of all tasks can be computed by using depth- 

first search. A task with a larger b-level implies that 

it is followed by a longer chain of tasks, and thus, is 

given a higher priority. A procedure is outlined 

below for constructing a scheduling list based on 

the partitioning. 

ALOGRITHM 1: CONSTRUCTION OF SCHEDULING 
LIST 

Input: a program task graph with  n   tasks 
{TvT2,...,Tn} 
Output: a serial order of the tasks 

1. compute the t-level and b-level of each task 
by using depth-first search; 

2. identify the CP; if there are multiple CPs, 
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select the one with the largest sum of 
execution cost and ties are broken 
randomly; 

3. put the CP task which does not have any 
predecessor to the first position of the 
serial order; 

4. i <r- 2; Tx <r- the next CP task 
5. while not all the CP tasks are included do 

6. if Tx has all its predecessors in the serial 
order then 

7. put Tx at position i and increment /; 
8. else let T be the predecessor of Tx 

which is not in the serial order and has the 
largest b-level (ties are broken by choosing 
the predecessor with a smaller t-level); 

9. if T has all its predecessors in the 
serial order then put T at position i and 
increment i; otherwise, recursively 
include all the ancestors of T in the serial 
order such that the tasks with a larger b- 
level are included first; 

10. repeat the above step until all the 
predecessors of Tx are in the serial order; 

11. put Tx at position i and increment i; 
12. Tx <- the next CP task; 
13. append all the OB tasks to the serial order 

in descending order of b-level; 
Using the above scheduling list, we can 

determine which tasks have to be considered first in 

the duplication process. During scheduling, the CP 

tasks are always considered first. However, we 

cannot attempt to schedule the CP tasks unless all of 

their ancestor tasks, which need not be CP tasks 

themselves, are scheduled. Thus, we use a recursive 

approach. For each CP task, we first recursively 

check whether its ancestors are scheduled. If not, 

then the candidate for scheduling will be changed to 

the unscheduled ancestor which is at the earliest 

position on the scheduling list. To actually schedule 

a task, we try to minimize its finish time by 

attempting to schedule it to the fastest machine. 

Duplication is employed for the minimization of 

finish times in that as many ancestors as possible 

are inserted before the task. The duplication process 

will stop when the finish time of the task starts to 

increase or the time slot has been used up. The order 

of selecting ancestors for duplication is governed 

by the scheduling list. The heterogeneity factors hix 

are also used for determining the finish times. After 

all the CP tasks are scheduled (and hence all the IB 

tasks), the OB tasks are considered for scheduling. 

To avoid using an excessive number of machines, 

we attempt to schedule the OB tasks without using 

duplication. This is useful because the OB tasks 

usually do not affect the overall completion time 

and, thus, need not be scheduled to finish as soon as 

possible. However, if such a conservative approach 

fails—that is, the overall completion time is 

increased by scheduling a certain OB task without 

using duplication, then the same recursive 

duplication process will be applied to the OB task. 

The whole duplication based task scheduling 

process is summarized in Alogrithm 2 below. 

ALOGRITHM 2: HETEROGENEOUS DUPLICATION 
BASED SCHEDULING 

Input: a program task graph with  n   tasks 
{T{, T2, ..., Tn},   a   heterogeneous   system 
with m machines {/>,, P2, ...,Pm}, and the 
relative speeds of the machines; 
Output: a duplication based schedule 

1. Construct the scheduling list (use 
Alogrithm 1); 

2. For each CP task, first recursively schedule 
each of its unscheduled ancestor IB tasks 
to a machine so that they can finish as soon 
as possible by trying to duplicate on the 
machine as many ancestors as the time slot 
allows (use the heterogeneity factors hix 

for determining the finish times); the order 
of selecting tasks for duplication is 
governed by the scheduling list; finally 
apply the same recursive duplication 
process to the CP task itself; 

3. Without using any duplication, schedule 
each of the remaining tasks (i.e., OB tasks) 
to the fastest machine provided that the 
schedule length does not increase; if this 
fails,     employ     recursive     duplication 
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technique to schedule the OB task; 

To illustrate how the heterogeneity of the 

machines is exploited, consider in Figure 4 the two 

schedules of the Gaussian elimination task graph 

(shown earlier in Figure 1). The schedule on the left 

is the best schedule without duplication using 

homogeneous machines. On the right is a schedule 

using six heterogeneous machines in which P2 is of 

the same speed as the machines in the left schedule, 

while P0 and P] are two times and 1.3 times faster 

than P2, respectively. The remaining machines are 

slower than P2 ■ We can see that the CP of the task 

graph is scheduled to the fastest machine P0. The 

critical IB tasks, T4 and T5, are also scheduled to 

finish as early as possible on fast machines P{ and 

P2, respectively, by duplicating 7,. The resulting 

schedule has an overall completion time of 182 

units which is significantly smaller than that of the 

homogeneous schedule without duplication (330 

units)^. Due to space limitations, detailed steps of 

producing the two schedules are not shown. 

After a symbolic schedule is generated, the code 

generator is invoked to actually implement the 

schedule using the SPMD (Single Program 

Multiple Data) model [2], [23]. The program 

statements or procedures constituting a task 7, are 

allocated to the specified machine P} for execution 

using conditional statements checking the ID of the 

machine, as shown in Figure 5. Data structures 

associated with a task are also replicated. The 

output of the code generator is a C program in 

which MPI communication primitives are inserted. 

The resulting parallel program is then compiled and 

executed on the cluster of workstations. 

3 Performance Results 

We have implemented the duplication based 

t In the homogeneous case, the scheduler is also given six 
machines. However, to arrive at the best schedule 
shown, it needs only three. 

scheduling algorithm in the code generator module 

of the CASCH tool (see Figure 3), which is 

executable on a Linux-based Pentium II PC in our 

cluster. We have parallelized several numerical 

applications on CASCH. Here, we present and 

discuss some preliminary results obtained by 

measuring the execution time of three applications: 

Gaussian elimination, Gauss-Seidel algorithm, and 

N-Body problem. By varying the problem sizes 

(i.e., the dimensions of the matrices in these 

applications, from 32 to 256) and the granularities 

(from 1-column block to 8-column block, using 1- 

D decomposition), we generated four task graphs 

for each application with roughly 100, 200, 400, 

and 800 tasks. 

Our heterogeneous cluster consists of twelve 

PCs: eight Pentium II 333 MHz with 32 MB 

memory and four Pentium II450 MHz with 64 MB 

memory. The PCs are connected by a Fore Fast 

Ethernet switch. All the experiments were 

performed using eight PCs but with different 

configurations: (1) eight homogeneous machines 

(i.e., all are Pentium II 333 MHz); (2) five Pentium 

II 333 MHz plus two Pentium II 450 MHz; (3) two 

Pentium II 333 MHz plus four Pentiume II 450 

MHz. The aggregate computing power of the three 

configurations are approximately the same because 

we found that a Pentium II 450 MHz is about 1.5 

times faster than a Pentium II 333 MHz. The 

rationale behind selecting these configurations is 

that we wanted to investigate the benefit of 

heterogeneity. These configurations are denoted as 

8S (for eight slow machines), 2F+5S (two fast plus 

five slow machines), and 4F+2S (four fast plus two 

slow machines), respectively. Ten different runs for 

each size of the three applications were done and 

the average application execution times were noted. 

These average execution times of the three 

applications are shown in Figure 6. As can be seen, 
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if (mynode() == j) { 

/* execution of task i */ 

Figure 5: SPMD implementation of a schedule. 

heterogeneity has a significant impact on the 

overall execution time of an application in that 

using more fast machines (albeit the total number of 

machines is smaller), in general, can speedup the 

application considerably. The improvement in the 

Gaussian elimination application is the most 

remarkable. This can be explained by the fact that 

the Gaussian elimination graph has a distinctive 

critical-path (see Figure 2), the tasks on which can 

be scheduled to the fastest machine. On the other 

hand, as the Gauss-Seidel task graph has many 

intersecting critical-paths [23], the duplication 

approach is less effective in exploiting the 

advantage of heterogeneity. The improvement of 

the heterogeneous approaches for the N-Body 

problem, which has a slightly less regular task 

graph structure [23], is also considerable. 

4 Conclusions and Future Work 

In this paper, we have presented a duplication 

based approach in scheduling tasks to a 

heterogeneous cluster of PCs. The scheduling 

algorithm works by recursively duplicating critical 

tasks to the faster machines in order to minimize the 

finish times. The algorithm has been implemented 

in our prototype program parallelization tool for 

generating MPI code executable on a cluster of 

Pentium PCs. Our experiments using three 

numerical applications have indicated that 

heterogeneity of PCs cluster is indeed useful for 

optimizing the execution of parallel programs. One 

important issue related to using a PC cluster is fault- 

tolerance. Unlike a tightly couple parallel 

architecture (e.g., the IBM SP2), a PC in a cluster 

may experience intermittent failure, possibly due to 

user reboots. Thus, the task schedule has to be fault- 

tolerant so that the application can finish its 

execution even in the presence of such faults. We 

believe that task duplication, augmented with 

check-pointing and roll-back recovery techniques, 

is a viable approach to achieve this goal. A 

performance model is being developed to 

quantitatively analyze the merits of this approach. 
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Abstract 

The Min-min algorithm is a simple algorithm. It runs 
fast and delivers good performance. However, the Min-min 
algorithm schedules small tasks first, resulting in some load 
imbalance. In this paper, we present an algorithm which 
improves the Min-min algorithm by scheduling large tasks 
first. The new algorithm, Segmented min-min, balances the 
load well and demonstrates even better performance in both 
makespan and running time. 

1. Introduction 

A heterogeneous computing environment utilizes a suite 
of different machines interconnected by high-speed net- 
works to execute different computationally intensive appli- 
cations that have diverse computational requirements [8,12, 
13]. The general problem of mapping tasks to machines has 
been shown to be NP-complete [10]. Many useful heuris- 
tics to perform this mapping function have been developed. 
Among many sophisticated algorithms, the Min-min algo- 
rithm [10] is a simple algorithm which runs fast and delivers 
satisfactory performance. It selects from all tasks the task 
that minimizes the completion time on a machine. In most 
situations, it maps as many tasks as possible to their first 
choice of machine. However, the Min-min algorithm is un- 
able to balance the load well since it usually schedules small 
tasks first. In this paper, we propose a simple alternative of 
the Min-min algorithm by scheduling large tasks first. The 
proposed algorithm retains the advantage of the Min-min 
algorithm and achieves good load balance at the same time. 

This paper presents the new algorithm, named the Seg- 
mented min-min algorithm. In section 2, previous heuristic 
algorithms are reviewed. Section 3 presents the new algo- 

rithm. Section 4 exhibits the simulation model and experi- 
mental results. Section 5 concludes the paper. 

2. Previous Heuristics 

In this section, we review a set of heuristic algorithms 
which schedule meta-tasks to heterogeneous computing 
systems. A meta-task is defined as a collection of inde- 
pendent tasks with no data dependences. Meta-tasks are 
mapped onto machines statically; each machine executes a 
single task at a time. For static mapping, it is assumed that 
the number of tasks, t, and the number of machines, m, are 
known a priori. 

A large number of heuristic algorithms have been de- 
signed to schedule tasks to machines on heterogeneous 
computing systems. In [2], eleven commonly used algo- 
rithms have been evaluated, listed as follows. 

OLB : Opportunistic Load Balancing (OLB) assigns each 
task, in arbitrary order, to the next available ma- 
chine [1, 7, 8]. 

UDA : User-Directed Assignment (UDA) assigns each 
task, in arbitrary order, to the machine with the best 
expected execution time for the task [1,7]. 

Fast Greedy : Fast Greedy assigns each task, in arbitrary 
order, to the machine with the minimum completion 
time for that task [1]. 

Min-min : In Min-min, the minimum completion time for 
each task is computed respect to all machines. The task 
with the overall minimum completion time is selected 
and assigned to the corresponding machine. The newly 
mapped task is removed, and the process repeats until 
all tasks are mapped [1, 7, 10]. 

0-7695-0556-2/00 $10.00 © 2000 IEEE 
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Max-min : The Max-min heuristic is very similar to the 
Min-min algorithm. The set of minimum completion 
times is calculated for every task. The task with overall 
maximum completion time from the set is selected and 
assigned to the corresponding machine [1, 7, 10]. 

Greedy : The Greedy heuristic is literally a combination 
of the Min-min and Max-min heuristics by using the 
better solution [1, 7]. 

GA : The Genetic algorithm (GA) is used for searching 
large solution space. It operates on a population of 
chromosomes for a given problem. The initial popula- 
tion is generated randomly. A chromosome could be 
generated by any other heuristic algorithm. When it is 
generated by Min-min, it is called "seeding" the popu- 
lation with Min-min [15, 14]. 

SA : Simulated Annealing (SA) is an iterative technique 
that considers only one possible solution for each 
meta-task at a time. SA uses a procedure that prob- 
abilistically allows solution to be accepted to attempt 
to obtain a better search of the solution space based on 
a system temperature [5, 11]. 

GSA : The Genetic Simulated Annealing (GSA) heuristic 
is a combination of the GA and SA techniques [3]. 

Tabu : Tabu search is a solution space search that keeps 
track of the regions of the solution space which have 
already been searched so as not to repeat a search near 
these areas [6, 9]. 

A* : A* is a tree search beginning at a root node that is 
usually a null solution. As the tree grows, intermediate 
nodes represent partial solutions and leaf nodes repre- 
sent final solutions. Each node has a cost function, and 
the node with the minimum cost function is replaced 
by its children. Any time a node is added, the tree is 
pruned by deleting the node with the largest cost func- 
tion. This process continues until a complete mapping 
(a leaf node) is reached [4]. 

The experimental results from [2] show that OLB, UDA, 
Max-min, SA, GSA, and Tabu do not produce good sched- 
ules in general. Min-min, GA, and A* are able to deliver 
good performance. The difference between the completion 
times of the schedules (makespans) generated by these three 
algorithms is within 10%. GA is consistently better than 
Min-min by a few percents, since it is seeding the popula- 
tion with a Min-min chromosome. A*, on the other hand, 
produces better or worse schedules than Min-min and GA 
in different situations. Among the three algorithms, Min- 
min is the fastest algorithm, GA is much slower, and A* is 
very slow. For 512 tasks and 16 machines, the running time 

of Min-min is about 1 second, GA 30 seconds, and A* 1200 
seconds [2]. 

Min-min is a simple algorithm, fast, and able to deliver 
good performance. Even GA has to be "seeding" the popu- 
lation with a Min-min chromosome to obtain its good per- 
formance. Min-min schedules the "best case" tasks first and 
generates relatively good schedules. The drawback of Min- 
min is that it assigns the small task first. Thus, the smaller 
tasks would execute first and then a few larger tasks execute 
while several machines sit idle, resulting in poor machine 
utilization. We propose a simple method to enforce large 
tasks to be scheduled first. Tasks are partitioned into seg- 
ments according to their execution times. The segment with 
larger tasks is scheduled first with the Min-min algorithm 
being applied within the segment. This is called Segmented 
min-min (Smm). 

3. The Segmented Min-Min Algorithm 

Every task has a ETC (expected time to compute) on a 
specific machine. If there are t tasks and m machines, we 
can obtain a t x m ETC matrix. ETC(i,j) is the estimated 
execution time for task i on machine j. 

The Segmented min-min algorithm sorts the tasks accord- 
ing to ETCs. The tasks can be sorted into an ordered list by 
the average ETC, the minimum ETC, or the maximum ETC. 
Then, the task list is partitioned into segments with the equal 
size. The segment of larger tasks is scheduled first and the 
segment of smaller tasks last. For each segment, Min-min 
is applied to assign tasks to machines. The algorithm is de- 
scribed as follows. 

Segmented min-min (Smm) 
1. Compute the sorting key for each task: 

SUB-POLICY 1 —Smm-avg: Compute the average 
value of each row in ETC matrix 

keyi = Y,ETC{i,i)/m. 

SUB-POLICY 2 — Smm-min: Compute the mini- 
mum value of each row in ETC matrix 

keyi = mmETC(i, j). 
j 

SUB-POLICY 3 — Smm-max: Compute the maxi- 
mum value of each row in ETC matrix 

key, = maxETC(i,j). 
j 

2. Sort the tasks into a task list in decreasing order of 
their keys. 

3. Partition the tasks evenly into N segments. 
4. Schedule each segment in order by applying Min-min. 
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Different from the Min-min algorithm, Segmented min- 
min performs task sorting before scheduling. Sorting im- 
plies that larger tasks are promoted to be scheduled earlier. 
Then, Min-min is applied locally within each segment. The 
problem here is how to define the sorting key. Tasks with 
long execution time deserve promotion to early scheduling. 
However, in a heterogeneous system, the execution time of 
a task varies in different machines. Therefore, we test three 
sub-policies by defining the execution time of a task as the 
average, the minimum, or the maximum of its ETCs. 

The third step of the Segmented min-min algorithm par- 
titions tasks into N segments. Determining the optimal 
value of iV is a trade-off. More segments result in better 
load balance. On the other hand, too many segments will 
lose advantages of the Min-min algorithm. Intuitively, as 
long as we partition the tasks into a few segments, such as 
large, medium, and small tasks, the load can be balanced 
fairly well. Experimental results confirm this as shown in 
Figure 1 where the curves show the improvement of Smm- 
avg over Min-min for different values of N. Each point in 
these curves is the average of five runs. In general, the op- 
timal value of N is relevant to the ratio c = —. When c 
is large, Min-min performs well. For small c, which means 
the number of tasks per machine is not large, the optimal 
value of N is about 4 or 5. Therefore, we fix the value of 
N to 4, which means that we always partition the tasks into 
four segments. 

Improve 
ment 

6 N 

4. Experiments 

4.1. Performance Comparison 

For the experimental studies, we use the same method 
in [2] to generate the test set. The parameters include Con- 
sistent, Inconsistant, or Semi-Consistant; High or Low Task 
Heterogeneity; and High or Low Machine Heterogeneity. 
For details, see [2]. All experiment results are based on 512 
tasks, 16 or 32 machines, 100 trails and N = 4. The results 
for 16 machines are shown in Tables I to XII and that for 32 
machines are shown in Tables XIII to XXIV. In these tables, 
the second column shows the utilization of machines which 

?     idle trXYIXG 
is defined as 1 - ^makes?an. The third column is the 
makespan (the completion time) of schedules. The fourth 
column is the improvement of each Segmented min-min al- 
gorithm over the Max-min algorithm and the fifth column 
is that over the Min-min algorithm. The last column shows 
the running time of each algorithm. 

4.2. Discussion 

From these results, we found that the Segmented min- 
min algorithm is able to balance the load very well com- 
pared to the Max-min and the Min-min algorithms. The 
system utilization of Min-min is relatively low while that 
of Segmented min-min is very high. This is because Seg- 
mented min-min schedules larger tasks first and smaller 
tasks can run in parallel with large tasks. Although the 
Max-min algorithm produces very good load balancing, it 
does not schedule tasks to their "best case." Thus, its perfor- 
mance is far worse than that of the Segmented min-min al- 
gorithm. Higher system utilization makes three Segmented 
min-min algorithms better than Min-min in almost all cases. 
Smm-avg enhances the performance of Min-min from 2% to 
12%. Smm-min shows better performance than Smm-avg in 
some cases but is worse than Smm-avg in most cases. Smm- 
max is worse than Smm-avg in almost all cases. Thus, we 
use Smm-avg for the Segmented min-min algorithm, which 
improves the Min-min algorithm by 6.1 % in average. 

In addition, the running time of the Segmented min-min 
algorithm is much less than Min-min. This is not difficult to 
explain because Min-min spends the large amount of time 
to search entire matrix to map one task each time, while 
Segmented min-min, taking advantage of the divide-and- 
conquer strategy, only searches the minimum value within 
a single partition. In summary, this partitioning method im- 
proves the makespan and running time simultaneously. 

Figure 1. The N Value. 
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Table 1.16 Machines, Inconsistent, Low Task, Low Machine Heterogeneity 

Algorithm 
System 

Utilization 
Makespan 

(xl03Sec.) 
Improvement 
over Max-min 

Improvement 
over Min-min 

Running 
Time (Sec.) 

Max-min 99.9% 5.425 - - 1.19 

Min-min 91.0% 2.915 - - 1.06 

Smm-avg 98.1% 2.767 96.0% 5.3% 0.33 

Smm-min 98.4% 2.746 96.3% 6.1% 0.33 
Smm-max 97.8% 2.784 94.9% 4.7% 0.33 

Table II. 16 Machines, Inconsistent, Low Task, High Machine Heterogeneity 

Algorithm 
System 

Utilization 
Makespan 

(xl05Sec.) 
Improvement 
over Max-min 

Improvement 
over Min-min 

Running 
Time (Sec.) 

Max-min 99.8% 2.513 - - 1.19 
Min-min 83.3% 1.214 - - 1.06 
Smm-avg 96.9% 1.113 125.8% 9.1% 0.33 
Smm-min 98.2% 1.064 136.2% 14.2% 0.33 
Smm-max 95.9% 1.135 121.4% 7.0% 0.33 

Table III. 16 Machines, Inconsistent, High Task, Low Machine Heterogeneity 

Algorithm 
System 

Utilization 
Makespan 

(xl04Sec.) 
Improvement 
over Max-min 

Improvement 
over Min-min 

Running 
Time (Sec.) 

Max-min 99.9% 15.943 - - 1.20 
Min-min 91.0% 8.588 - - 1.07 
Smm-avg 98.2% 8.139 95.9% 5.5% 0.33 
Smm-min 98.5% 8.087 97.1% 6.2% 0.33 
Smm-max 97.9% 8.190 94.7% 4.8% 0.33 

Table IV. 16 Machines, Inconsistent, High Task, High Machine Heterogeneity 

Algorithm 
System 

Utilization 
Makespan 
(xl06Sec.) 

Improvement 
over Max-min 

Improvement 
over Min-min 

Running 
Time (Sec.) 

Max-min 99.8% 7.375 - - 1.20 
Min-min 83.4% 3.573 - - 1.07 
Smm-avg 96.8% 3.279 124.9% 8.9% 0.33 
Smm-min 98.3% 3.131 135.5% 14.1% 0.33 
Smm-max 95.9% 3.344 125.5% 6.9% 0.33 
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Table V. 16 Machines, Consistent, Low Task, Low Machine Heterogeneity 

Algorithm 
System 

Utilization 
Makespan 

(xl03Sec.) 
Improvement 
over Max-min 

Improvement 
over Min-min 

Running 
Time (Sec.) 

Max-min 99.9% 7.415 - - 1.22 
Min-min 94.0% 5.857 - - 1.07 
Smm-avg 98.6% 5.705 30.0% 2.7% 0.33 
Smm-min 98.2% 5.813 27.6% 0.7% 0.33 
Smm-max 98.4% 5.749 29.0% 1.9% 0.33 

Table VI. 16 Machines, Consistent, Low Task, High Machine Heterogeneity 

Algorithm 
System 

Utilization 
Makespan 
(xl05Sec.) 

Improvement 
over Max-min 

Improvement 
over Min-min 

Running 
Time (Sec.) 

Max-min 99.9% 4.125 - - 1.23 
Min-min 89.0% 2.866 - - 1.07 
Smm-avg 97.7% 2.805 47.1% 2.1% 0.33 
Smm-min 96.7% 2.910 42.3% -2.0% 0.33 
Smm-max 97.2% 2.867 43.9% 0.0% 0.33 

Table VII. 16 Machines, Consistent, High Task, Low Machine Heterogeneity 

Algorithm 
System 

Utilization 
Makespan 
(xl05Sec.) 

Improvement 
over Max-min 

Improvement 
over Min-min 

Running 
Time (Sec.) 

Max-min 100.0% 2.181 - - 1.24 
Min-min 93.9% 1.725 - - 1.08 
Smm-avg 98.6% 1.679 29.9% 2.8% 0.33 
Smm-min 98.2% 1.710 27.5% 0.9% 0.33 
Smm-max 98.4% 1.693 28.8% 1.9% 0.33 

Table VIII. 16 Machines, Consistent, High Task, High Machine Heterogeneity 

Algorithm 
System 

Utilization 
Makespan 

(xl06Sec.) 
Improvement 
over Max-min 

Improvement 
over Min-min 

Running 
Time (Sec.) 

Max-min 99.9% 12.152 - - 1.24 
Min-min 88.9% 8.437 - - 1.07 
Smm-avg 97.7% 8.258 47.2% 2.2% 0.33 
Smm-min 96.7% 8.564 41.9% -1.5% 0.33 
Smm-max 97.4% 8.430 44.2% 0.0% 0.33 
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Table IX. 16 Machines, Semi-Consistent, Low Task, Low Machine Heterogeneity 

Algorithm 
System 

Utilization 
Makespan 

(xl03Sec.) 
Improvement 
over Max-min 

Improvement 
over Min-min 

Running 
Time (Sec.) 

Max-min 99.9% 6.339 - - 1.21 
Min-min 91.8% 3.745 - - 1.07 
Smm-avg 98.2% 3.595 76.3% 4.2% 0.33 
Smm-min 98.1% 3.624 74.9% 3.3% 0.33 
Smm-max 98.0% 3.624 74.9% 3.3% 0.33 

Table X. 16 Machines, Semi-Consistent, Low Task, High Machine Heterogeneity 

Algorithm 
System 

Utilization 
Makespan 

(xl05Sec.) 
Improvement 
over Max-min 

Improvement 
over Min-min 

Running 
Time (Sec.) 

Max-min 99.8% 3.199 - - 1.21 
Min-min 84.4% 1.664 - - 1.07 
Smm-avg 96.8% 1.569 103.9% 6.1% 0.33 
Smm-min 96.5% 1.593 100.8% 4.5% 0.33 
Smm-max 96.3% 1.590 101.2% 4.6% 0.33 

Table XI. 16 Machines, Semi-Consistent, High Task, Low Machine Heterogeneity 

Algorithm 
System 

Utilization 
Makespan 
(xl05Sec.) 

Improvement 
over Max-min 

Improvement 
over Min-min 

Running 
Time (Sec.) 

Max-min 99.9% 1.862 - • - 1.21 
Min-min 91.7% 1.104 - - 1.07 
Smm-avg 98.2% 1.058 76.0% 4.4% 0.33 
Smm-min 98.1% 1.066 74.7% 3.5% 0.33 
Smm-max 98.0% 1.067 74.5% 3.4% 0.33 

Table XII. 16 Machines, Semi-Consistent, High Task, High Machine Heterogeneity 

Algorithm 
System 

Utilization 
Makespan 
(xl06Sec.) 

Improvement 
over Max-min 

Improvement 
over Min-min 

Running 
Time (Sec.) 

Max-min 99.9% 9.370 - - 1.21 
Min-min 84.6% 4.882 - - 1.07 
Smm-avg 96.9% 4.619 102.9% 5.7% 0.33 
Smm-min 96.6% 4.693 99.7% 4.0% 0.33 
Smm-max 96.5% 4.673 100.5% 4.7% 0.33 
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Table XIII. 32 Machines, Inconsistent, Low Task, Low Machine Heterogeneity 

Algorithm 
System 

Utilization 
Makespan 

(xl03Sec.) 
Improvement 
over Max-min 

Improvement 
over Min-min 

Running 
Time (Sec.) 

Max-min 99.5% 1.954 - - 2.23 
Min-min 85.1% 1.294 - - 2.16 
Smm-avg 93.1% 1.199 63.0% 7.9% 1.16 
Smm-min 93.9% 1.188 64.5% 8.9% 1.10 
Smm-max 92.6% 1.206 62.0% 7.3% 1.10 

Table XIV. 32 Machines, Inconsistent, Low Task, High Machine Heterogeneity 

Algorithm 
System 

Utilization 
Makespan 

(xl04Sec.) 
Improvement 
over Max-min 

Improvement 
over Min-min 

Running 
Time (Sec.) 

Max-min 98.8% 6.395 - - 2.24 
Min-min 68.0% 3.959 - - 2.16 
Smm-avg 81.8% 3.523 81.5% 12.4% 1.16 
Smm-min 79.3% 3.678 73.9% 7.6% 1.10 
Smm-max 82.1% 3.502 82.6% 13.0% 1.10 

Table XV. 32 Machines, Inconsistent, High Task, Low Machine Heterogeneity 

Algorithm 
System 

Utilization 
Makespan 

(xl04Sec.) 
Improvement 
over Max-min 

Improvement 
over Min-min 

Running 
Time (Sec.) 

Max-min 99.5% 5.755 - - 2.23 
Min-min 85.2% 3.804 - - 2.16 
Smm-avg 93.2% 3.525 63.3% 7.9% 1.16 
Smm-min 93.9% 3.498 64.5% 8.7% 1.10 
Smm-max 92.4% 3.556 61.8% 7.0% 1.10 

Table XVI. 32 Machines, Inconsistent, High Task, High Machine Heterogeneity 

Algorithm 
System 

Utilization 
Makespan 

(xl06Sec.) 
Improvement 
over Max-min 

Improvement 
over Min-min 

Running 
Time (Sec.) 

Max-min 99.8% 1.882 - - 2.21 
Min-min 67.9% 1.167 - - 2.16 
Smm-avg 81.7% 1.038 74.3% 12.4% 1.16 
Smm-min 79.5% 1.079 74.4% 8.2% 1.09 
Smm-max 81.2% 1.044 80.3% 11.8% 1.09 
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Table XVII. 32 Machines, Consistent, Low Task, Low Machine Heterogeneity 

Algorithm 
System 

Utilization 
Makespan 
(xl03Sec.) 

Improvement 
over Max-min 

Improvement 
over Min-min 

Running 
Time (Sec.) 

Max-min 99.8% 3.502 - - 2.26 

Min-min 88.4% 3.129 - - 2.18 
Smm-avg 94.8% 2.982 17.4% 4.9% 1.17 

Smm-min 93.4% 3.025 15.8% 3.4% 1.09 
Smm-max 94.1% 3.005 16.5% 4.1% 1.09 

Table XVIII. 32 Machines, Consistent, Low Task, High Machine Heterogeneity 

Algorithm 
System 

Utilization 
Makespan 
(xl05Sec.) 

Improvement 
over Max-min 

Improvement 
over Min-min 

Running 
Time (Sec.) 

Max-min 99.7% 1.707 - - 2.27 
Min-min 76.4% 1.296 - - 2.18 
Smm-avg 89.3% 1.245 37.1% 4.1% 1.17 
Smm-min 87.0% 1.279 33.5% 1.3% 1.10 
Smm-max 87.9% 1.260 35.5% 2.9% 1.09 

Table XIX. 32 Machines, Consistent, High Task, Low Machine Heterogeneity 

Algorithm 
System 

Utilization 
Makespan 

(xl04Sec.) 
Improvement 
over Max-min 

Improvement 
over Min-min 

Running 
Time (Sec.) 

Max-min 99.9% 10.305 - - 2.27 
Min-min 88.5% 9.196 - - 2.19 
Smm-avg 94.8% 8.775 17.4% 4.8% 1.18 
Smm-min 93.6% 8.887 16.6% 3.5% 1.10 
Smm-max 94.1% 8.849 16.5% 3.9% 1.09 

Table XX. 32 Machines, Consistent, High Task, High Machine Heterogeneity 

Algorithm 
System 

Utilization 
Makespan 
(xl06Sec.) 

Improvement 
over Max-min 

Improvement 
over Min-min 

Running 
Time (Sec.) 

Max-min 99.8% 5.016 - - 2.26 
Min-min 76.5% 3.814 - - 2.18 
Smm-avg 89.3% 3.668 36.8% 4.0% 1.18 
Smm-min 87.0% 3.768 33.1% 1.2% 1.09 
Smm-max 87.9% 3.717 34.9% 2.6% 1.09 
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Table XXI. 32 Machines, Semi-Consistent, Low Task, Low Machine Heterogeneity 

Algorithm 
System 

Utilization 
Makespan 

(xl03Sec.) 
Improvement 
over Max-min 

Improvement 
over Min-min 

Running 
Time (Sec.) 

Max-min 99.6% 2.586 - — 2.23 
Min-min 85.1% 1.773 - - 2.19 
Smm-avg 92.8% 1.674 54.5% 5.9% 1.17 
Smm-min 92.2% 1.679 54.0% 5.6% 1.09 
Smm-max 92.3% 1.683 53.7% 5.3% 1.09 

Table XXII. 32 Machines, Semi-Consistent, Low Task, High Machine Heterogeneity 

Algorithm 
System 

Utilization 
Makespan 

(xl04Sec.) 
Improvement 
over Max-min 

Improvement 
over Min-min 

Running 
Time (Sec.) 

Max-min 99.3% 10.230 - - 2.22 
Min-min 66.4% 6.121 - - 2.20 
Smm-avg 84.3% 5.604 82.5% 9.2% 1.19 
Smm-min 84.6% 5.714 79.0% 7.1% 1.09 
Smm-max 82.6% 5.682 80.0% 7.7% 1.09 

Table XXIII. 32 Machines, Semi-Consistent, High Task, Low Machine Heterogeneity 

Algorithm 
System 

Utilization 
Makespan 

(xl04Sec.) 
Improvement 
over Max-min 

Improvement 
over Min-min 

Running 
Time (Sec.) 

Max-min 99.7% 7.603 - - 2.23 
Min-min 85.1% 5.226 - - 2.20 
Smm-avg 92.8% 4.925 54.3% 6.1% 1.19 
Smm-min 92.4% 4.937 54.2% 5.9% 1.10 
Smm-max 92.1% 4.967 53.1% 5.2% 1.10 

Table XXIV. 32 Machines, Semi-Consistent, High Task, High Machine Heterogeneity 

Algorithm 
System 

Utilization 
Makespan 

(xl06Sec.) 
Improvement 
over Max-min 

Improvement 
over Min-min 

Running 
Time (Sec.) 

Max-min 99.3% 3.012 - - 2.22 
Min-min 66.3% 1.797 - - 2.19 
Smm-avg 84.1% 1.645 83.1% 9.2% 1.18 
Smm-min 84.5% 1.682 79.0% 6.8% 1.09 
Smm-max 82.8% 1.674 80.0% 7.3% 1.10 
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5. Concluding Remarks 

The Segmented min-min algorithm starts from a set of 
large tasks while Min-min starting from small tasks. Smm 
can balance the load very well and runs faster. We will com- 
pare it in the near future to the Genetic algorithm that de- 
livered the best performance among eleven selected algo- 

rithms. 
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