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Introduction, Recent Publication, Students 

With AFOSR support over several grant cycles, we developed new approaches to obtaining 

detailed information on ion-neutral processes, many of which have atmospheric relevance. To 
1   ^ 

mention a few of the studies, we coupled infrared chemiluminescence "J and laser-induced 

fluorescence4"6 detection with flowing afterglow instrumentation for the first time and characterized 

the energy disposal (product states)7,8 for a wide variety of ion-molecule reactions. We 

established rate determinations of reactions9 and electronic emissions,10'11 as well as deactivation 

processes12'13 and reactions14'15 of vibrationally state-selected reactant ions. We developed novel 

experiments to learn about the microscopic basis of mobility and alignment using state selective and 

frequency-resolved laser Doppler probing of ions in drift tubes.16"18 We measured the mobilities 

of many atmospheric cluster ions for the first time.1 " 

Recently we started a new series of experiments using ultrafast soft x-rays and ultraviolet 

high order harmonics to probe the photoelectron spectra of chemically interesting neutral species. 

In the Final Report below, we discuss the highlights of this new ultrafast soft-x-ray project. In the 

Publications list below, we include all the recent AFOSR sponsored work, from the ongoing ion 

projects through the new ultrafast soft x-ray project. The students, postdoctoral participants, and 

visiting facultyu are listed below, as well. 
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105, 5455 (1996). 
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The ultimate goal of this research was to study ultrafast processes and core level 

spectroscopy in molecular systems relevant to metal-oxidizer chemistry of interest to AFOSR. We 

developed a powerful new apparatus to provide a productive approach to obtain detailed 

information about metal reactions and metal halide dissociation processes using pump/probe 

experiments with ultrafast soft x-rays and tunable vacuum ultraviolet light. The ultrafast x-ray 

source was fully developed and characterized. It was used for photoelectron spectroscopy studies 

of stable molecules. The first ultrafast time resolved experiments were performed on the 

dissociation of stable bromine molecules, to probe the valence photoelectron spectroscopy and x- 

ray core-level photoelectron spectroscopy of dissociative states during the break-up. 

A.   Apparatus for Ultrafast Soft X-Rays 
Recent developments22"40 in ultrafast laser generation of high-order harmonics in rare 

gases now offer excellent opportunities to the experimenter for tabletop soft x-ray investigations. 

Until recently, these laser sources have been primarily the specialty of groups working on the 

harmonic generation processes themselves. These tools can now be used to address a large 

number of intriguing chemical and materials problems of wide interest. The high harmonic sources 

can now produce up to 460 eV photon energies,26 with bandwidths comparable to synchrotron 

sources and photon fluxes of >1010 per second, in a reasonably modest laboratory scale apparatus. 

The apparatus that we constructed is illustrated in Fig. 1. It consists of a 1000 Hz 

Ti: sapphire laser that produces 2.5 mJ per pulse at 800 nm with pulses of 70 fs duration, a 

piezoelectric pulsed valve, also operating at 1000 Hz, to form the jet of high density rare gas that is 



used as the nonlinear harmonic medium, a vacuum chamber to introduce gaseous samples, and a 

time-of-flight magnetic bottle electron spectrometer. In addition, the apparatus has frequency 

doubling and tripling of the Ti: sapphire fundamental pulse in nonlinear crystals to generate a 

separate photolysis pump pulse, an optical delay line, a grazing incidence grating for wavelength 

separation to select individual harmonics, a quadrupole mass spectrometer for ion mass detection, 

and necessary pulse autocorrelation and frequency-resolved optical gating measurement tools. 
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Figure 1.    Apparatus for generating high order harmonics and for photoelectron 
spectroscopy and pump/probe time-resolved studies with x-ray  harmonics. 

The philosophy in constructing the apparatus was to make a source of femtosecond soft x- 

rays that would operate at high repetition rate (1000 Hz), not necessarily state-of-the-art in terms of 

short pulse duration, photon energy (harmonic number), or pulse energy, but very reliable so that 

it operates dependably on a daily basis. This necessitated a very stable Ti:sapphire laser system 

consisting of a seed laser, grating pair pulse stretching optics, a regenerative amplifier, a two-pass 

amplifier, and pulse recompression optics. In order to maintain reasonable spectral bandwidths of 

the harmonics, a longer pulse of 70 fs was favored, and results are presented below on new 

measurements of the bandwidths, showing that the x-ray harmonics are indeed sufficiently narrow 

to perform core level and valence shell photoelectron spectroscopy. We constructed a pulsed valve 

of our own design that would operate at 1000 Hz, with high pumping speeds and differential gas 

pumping so that the gas pressure in the harmonic generation region is well-isolated from the time- 

of-flight electron spectrometer. In addition, since the path of the x-rays cannot be altered once they 



are formed and only grazing incidence on one grating is used in order to maintain the efficiency of 

the light production, all the delay line manipulations are carried out before the harmonic generation 

process (see Fig. 1). With this apparatus, we produce harmonics up to the 65th («97 eV) and use 

them for photoelectron spectroscopy with excellent signal-to-noise (100:1 in minutes). 

1.   High Harmonic Spectra 

The high order harmonic generation process in rare gases has a different mechanism than 

the usual sum and difference frequency or four wave mixing in nonlinear optics. The laser is 

focused to 1014-1015 W cm"2 in a high density of a rare gas (=1018 cm"3) in a pulsed jet. The 

process qualitatively involves driving an electron away from the ionic core of the rare gas and then, 

on the opposite cycle of the light, driving the electron back into the core, whereupon the harmonic 

light can be generated. The light is produced with similar efficiency over a large number of odd 

harmonics up to some cutoff energy. The fact that only odd harmonics are produced results from 

momentum matching in an isotropic medium. Figure 2 shows an example of our high harmonic 

spectra using neon and argon as the medium. These spectra are from photoelectrons generated on 

a piece of platinum that samples the harmonic light while tilting the grazing incidence grating to 

scan the harmonics across a slit. The path between the harmonic generation region and the detector 

is completely evacuated so as not to absorb the light. In neon, the odd harmonics up to the 61st at 
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Figure 2.    High harmonics generated in neon and argon.    Note the lower cutoff in 
argon and the overlapping orders of the grating in the neon spectrum. 



92 eV are observed, followed by an abrupt cutoff; there is some overlapping of higher harmonics 

in the region of the lower ones that arises from a higher order of the grating. Higher harmonic 

numbers are achievable with Ne, compared to Ar, because of its higher ionization potential and 

hence its ability to withstand higher power densities of the ultrafast laser without ionization. 

However, there is greater efficiency of the harmonic generation process with Ar. 

2. Magnetic Bottle Time-of-Flight Electron Spectrometer 

The magnetic bottle time-of-flight electron spectrometer41'42 is based on a design of 

Neumark and co-workers43 (Fig. 3), with an additional adaptation to shift the kinetic energies of 

the electrons from high to low values by a retarding grid system41'44 to obtain high kinetic energy 

resolution even for high velocity electrons.  The advantages of this system are the ability to collect 

a large solid angle of the emitted electrons and the elimination of stray electron signals by confining 

the zone of collection to a very small region around the high field magnets. The intrinsic resolution 

of our magnetic bottle is measured to be AE/E of 4%. 

microchannel plate 

low-field 
magnetic coil 

to multichannel sealer 

electron time-of-flight 
spectrometer 

quadrupole mass 
spectrometer 

inlet 

high-field 
magnets 

Figure 3.     Detail of magnetic bottle time-of-flight electron spectrometer. 

With the magnetic bottle spectrometer shown and the range of high harmonics generated by 

the ultrafast laser, we obtain excellent photoelectron spectra from all the gases introduced thus far. 

Figure 4 shows an early low resolution example of the typical xenon photoelectron spectra 

obtained with a variety of single harmonics (43rd to 61st). In these spectra there are transitions 

that can be assigned to three basic kinds of processes: ejection of core level 4d electrons, ejection 

of valence shell 5s and 5p electrons, and ejection of Auger electrons. The 4d, 5s and 5p electron 

energies shift to shorter flight times with increasing photon energy, but the Auger electrons do not. 



The Auger processes involve first ejection of a photoelectron, then another electron fills the vacated 

orbital, followed by ejection of a 3rd electron with the characteristic energy difference between the 

energy required for ejection of the electron from that orbital and the energy gained by the electron 

that fills the vacated orbital. We show more detail on this below by tuning the energy of the 

photon to a Rydberg resonance in the Auger process. 
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Figure 4.    Sample photoelectron spectra vs. arrival time for xenon with selected 
harmonics, 43rd to 61st, showing the 4d core electron features, the 5s and 5p valence 
electron peaks, and Auger transitions, which do not shift with photon energy. 
Acquisition of typical spectra requires only a few minutes of data collection. 

3.   Chirped Pulse Effect on Harmonics 

In addition to characterizing many details about how to generate and optimize the high 

harmonic process, which are not described here, we also investigated the effect of pulse chirp on 

the harmonic spectra (chirp is the process where the frequency of the ultrafast pulse sweeps from 

high to low or low to high over the duration of the pulse). The magnitude of the pulse chirp itself 

is characterized by frequency-resolved optical gating45 to determine the amount of chirp. Fig. 5 

shows a sequence of ultraviolet photoelectron spectra of NO taken with the 7th harmonic, both 

chirped and unchirped. It can be seen that the photoelectron energies shift to higher values when 

the chirp is negative (which means the blue frequencies precede the red) and shifts to lower values 

when the chirp is positive (red frequencies precede the blue). These frequency shifts are in 

agreement with theoretical considerations that indicate the harmonics are most likely produced 

during the leading edge of the femtosecond laser pulse. The shifts are considerable, suggesting 
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that good control over the frequency chirp and tuning of the ultrafast laser is essential. 

0.8 1.0 1.2 1.4 
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Figure 5.    Effect of chirped pulses on the photoelectron spectra of NO with the 7th 
harmonic.    ( )    no chirp, (•••)  positive chirp, (—)  negative  chirp. 

4.    Harmonic Bandwidths from Photoelectron Spectroscopy 

For the studies carried out here, it is essential that the energy resolution of the individual 

high harmonics be as narrow as possible, so that the features in the photoelectron spectra will be 

well-resolved. There are relatively few studies of the energy bandwidths of individual harmonics, 

and it is known that the bandwidths depend strongly on the pulse duration and the particular laser. 

In addition, there is no theoretical treatment for lasers with 70 fs pulse duration or longer. Thus 

we performed the first comprehensive study of the energy bandwidths. 

Fig. 7 shows the photoelectron spectrum of NO taken with the 9th harmonic of a long 

pulse (5 ns) Nd: YAG laser (tripled in crystals and tripled again by four-wave mixing) and with the 

7th harmonic of the ultrafast laser. The linewidth of the long pulse laser contributes almost no 

bandwidth to the energy resolution; it can be seen in the figure that the features are much narrower 

with this laser. The long pulse laser establishes the energy resolution of the magnetic bottle time- 

of-flight electron spectrometer, which is AE/E of 4%. The increased energy bandwidth of the 

electrons ejected with the ultrafast laser from the same transition in NO provides a direct measure 

of the bandwidth of the high harmonic. The same type of measurement is repeated with many 

different harmonics. In one type of measurement, only those transitions that give very low kinetic 
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energy electrons were used, and in another set of measurements the retarding grid system in the 

magnetic bottle spectrometer was used to shift the high electron kinetic energies to lower values to 

obtain good resolution of the magnetic bottle spectrometer. The results of this latter large series of 

9.4 9.8 
Binding Energy [eV] 

Figure 6.    Bandwidth of NO with long pulse YAG ( ) and ultrafast harmonics  (—). 

energy bandwidth measurements are shown in Fig. 7.46 It can be seen that the bandwidths of the 

various harmonics are approximately 0.1 eV for the lowest harmonics and increase to as much as 

0.4-0.5 eV for the highest harmonics measured. These exciting results show that excellent 

resolution can be obtained directly from the harmonics of the laser without further need for an 

additional high resolution monochromator, which would distort the time resolution. 
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Figure 7.    Measured bandwidths of individual harmonics.    The symbols represent 
different species ionized.    All  experiments utilize the retarding grids.46 



12 

B.    Ultraviolet Photoelectron and X-Ray Photoelectron Spectroscopy 
of Stable Molecules and Atoms 

We embarked on a series of survey measurements of photoelectron spectra of neutral atoms 

and molecules, as a precursor to setting up the first time-resolved pump/probe experiment. 

1.   Photoelectron Spectra of Rare Gases and Small Molecules 

Surveys of core and valence shell photoelectron spectra were acquired for simple species 

such as He, Ar, Kr, Xe, N2, NO, and Brr Fig. 8 shows a few examples for Xe and Br2, taken 

with low and high harmonics. Note that the spectra are remarkably free of electrons produced by 

scattered light. The resolution in our Br2 spectrum is not as good as some of the published 

ultraviolet photoelectron spectra,47 since our spectrum was limited by the bandwidth of the laser. 

However, additional improvements are anticipated, as discussed later. Both valence shell and core 

levels can be probed, depending on the particular measurements that are carried out. These results 

contain different information as will be discussed in more detail in the proposal below. 
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Figure 8.    Spectrum of Xe and Br2 with various harmonics,    (a) Xe with the 11th 
harmonic, (b) Xe with the 47th harmonic, (c) Br2 with the 49th harmonic.    In the 
panel to the right is shown a schematic of the basic idea that the electrons arise from 
either valence shells, such as in (a) or inner shells, such as (b) and (c), depending on 
the  photon  energy. 
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More important from the standpoint of the AFOSR experiments to be performed here are 

results for metal-halogen molecules. Fig. 9 shows the ultraviolet photoelectron spectrum of 

Al2Br6, a bridge-bonded dimer of AlBr3. This group of peaks has an energy consistent with the 

orbitals of the four terminal Br atoms; at higher photon energies, features from the bridge-bonded 

Br atoms are expected. In new experiments to be performed, the Al2Br6 will be dissociated to 

measure the changes in the photoelectron and core level spectra of the excited state dissociative 

potential as a function of time. 

c 
3 

O 

c 

W 

Br 
\ 

Br 

Al Br 
/ 

/ 

Br Al 

Br V 
Br.     /BT

\     /Br 

Al Al 

10.5 11.0 11.5 12.0 
Binding energy [eV] 

Figure 9.    Ultraviolet photoelectron spectrum of AI Br    taken with the 9th harmonic. 

2.   Satellite Transitions in He 

The photoelectron spectrum of He with fairly energetic photons can produce the He+ ion in 

excited states, so-called satellite transitions. The cross sections of these transitions are very small, 

but well known.48 Fig. 10 shows a photoelectron spectrum of He taken with the 61st harmonic at 

92 eV, in which two satellite transitions are clearly observed. The inset shows that the satellite 

transitions involve two electrons, where one is removed and the other makes a transition to an 

excited state of the product ion. From the known density of He, the photoelectron count rates, and 

the cross sections for these satellite transitions, we estimate the 61st harmonic has 105 photons per 

pulse that reach the small focal volume of the magnetic bottle spectrometer. At 1000 Hz, this 

means there are 108 photons per second. Since this spectrum was taken with a spherical grating 

used for harmonic separation, the x-ray output is focused to a broad line, rather than a point. In 

new work, we will soon be using a toroidal grating, which will improve the focus of the harmonic 
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light into a very small spot, and the photon flux is expected to increase by 100-fold. 
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Figure 10.    Photoelectron spectrum of He with the 61st harmonic showing the 
satellite transitions.    The retarding grids were not used here. 

3.   Tuning to Rydberg Resonances in Auger Transitions of Xe 

In Xe, as noted above, there are Auger processes that occur, where creation of an inner- 

shell hole is followed by a rearrangement of the electrons. One of the outer electrons fills the hole, 

and another outer shell electron is ejected. The kinetic energy of this Auger electron is determined 

by the energy difference between the inner and outer shell electrons that participate. For photon 

energies below the threshold for direction ionization, it is known that the precise energy of the 

photon can induce a resonance to a Rydberg state (instead of direct ejection of the first electron), 

which is also followed by Auger decay with altered Auger electron energies.49 This is due to an 

additional Coulomb interaction between the outgoing Auger electron and the electron in the 

Rydberg orbital. Fig. 11 shows a result of tuning our high harmonic wavelength to the energy of a 

Rydberg resonance for an Auger process in Xe by adjusting the fundamental wavelength of the 

Ti:sapphire laser to 791 nm. The resonant Auger structure appears with the adjustment of this 

photon energy. Here the tuning from 800 nm to 791 nm for the 43rd harmonic results in a shift of 

only 0.76 eV in the harmonic energy. If one tunes beyond the Rydberg resonance, the structure of 

the Auger transitions changes significantly. Work is in progress to explore other aspects of these 

Rydberg resonances within Auger transitions. 
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Figure 11.    Photoelectron spectrum of Xe with the 43rd harmonic showing effect of 
tuning the individual harmonic to the Auger resonance transition.    (—) 800 nm 
fundamental,   (•••) 791 nm fundamental.    The inset shows the type of Auger electron 
transition responsible for one peak in the spectrum. 

C. Ultrafast Dissociation of Stable molecules 

In recent studies at the end of this project, the first ultrafast dissociation signals were obtained for 

bromine molecules. In these experiments the bromine is dissociated with 400 nm femtosecond 

pulses and the photoelectron spectra are probed with the 17th harmonic of the Ti: sapphire laser at 

47 nm. Successful cross correlation signals were first obtained in rare gases to determine the 

spatial and time overlap of the soft x-ray pulses with the 400 nm pump pulses. This is done by the 

process of above threshold ionization. Then the photoelectron spectra of bromine molecules at 

several time delays after the laser pulse were obtained (Fig. 12). A clear signature of the bromine 

atoms appearing is time is observed by two new peaks in the spectra. These first spectra were time 

broadened by the grating that was used to separate the harmonics. The time broadening of the 

probe pulse was 450 fs. Therefore the results of these experiments have not yet been interpreted 

until the time resolution could be improved, since the bromine dissociation is expected to occur in 

about 100 fs. With a new dual grating technique recently built into the system, the phase fronts of 

the pulses are presently being recompressed and new experiments will be performed shortly to 

obtain accurate spectra during the dissociation of the molecule. 
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Figure 12    Time dependent signals of bromine dissociaton.    The new peaks are due to 
Br atoms during the dissociation. 
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