NPS-SW-00-001

NAVAL POSTGRADUATE SCHOOL
Monterey, California

System Engineering and Evolution Decision Support

Interim Progress Report (01/01/2000 - 09/30/2000)

By

Luqi

September 2000

Approved for public release; distribution is unlimited.
Prepared for: U.S. Army Research Office

P.O. Box 12211 . .
Research Triangle Park, NC 27709-2211

20001204 064

NAVAL POSTGRADUATE SCHOOL
- Monterey, California 93943-5000

RADM David R. Ellison .

Richard S. Elster
Superintendent

Provost

This report was prepared for U.S. Army Research Office
and funded in part by the U.S. Army Research Office.

Prepared by: Reviewed by:

VA, A

) Lugqi v
Director, Software Engineering
Automation Center

Luqi
Professor, Computer Science

Reviewed by:

Dan Boger /

Dean of Computer and Information Sciences
and Operations

Released by:

D. W. Netzer \

Associate Provost and
Dean of Research

Form Approved
OMB NO. 0704-0188

REPORT DOCUMENTATION PAGE

Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188,) Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

09/30/2000 Interim Progress Report
01/01/2000 — 09/30/2000

5. FUNDING NUMBERS
38690-MA

4. TITLE AND SUBTITLE

System Engineering and Evolution Decision Support —
Interim Progress Report (01/01/2000 — 09/30/2000)

6. AUTHOR(S)
Professor Lugqi
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
.. . REPORT NUMBER
Software Engineering Automation Center,
Naval Postgraduate School, Monterey, CA 93943 NPS-SW-00-001

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U. S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

11. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official

Department of the Army position, policy or decision, unless so designated by other documentation.

12 a. DISTRIBUTION / AVAILABILITY STATEMENT 12 b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

The objective of our effort is to develop a scientific basis for system engineering
automation and decision support. This objective addresses the long term goals of
increasing the quality of service provided complex systems while reducing development
risks, costs, and time. Our work focused on decision support for designing operations of
complex modular systems that can include embedded software. Emphasis areas included
engineering automation capabilities in the areas of design modifications, design records,
reuse, and automatic generation of design representations such as real—time schedules and
software.

15. NUMBER OF PAGES

159

14. SUBJECT TERMS

System Engineering, Decision Support, Evolution, Concurrent Engineering -

16. PRICE CODE

17. SECURITY CLASSIFICATION
OR REPORT
UNCLASSIFIED

18. SECURITY CLASSIFICATION
ON THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT
UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500

Standard Form 298 (Rev.2-89)
Prescribed by ANSI Std. 239-18
298-102

Table of Contents

I. INTERIM PROGRESS REPORT.............. ettt se 1
1. LiSt Of MaANUSCTIPScccueverieirireinieenierreetessetetessesesese e seae s seeasesssseseseseseseseseesssnssaes 1
2. SCIENtIfIC PEISONNELvviuiieieceeeeteete et 2
3. RepOrt Of INVENTIONScccoueuivirieirieietnieeeteteteteeeteee et eere e e e s e e s e e e e s es e 2
4. Scientific Progress and ACCOMPLSHMENES..........c.c.eveviuieieeieeeeieeeeeeeeeseeeeee e, 2
5. Technology Transfer...........coceeeeeeveeeeercecnivieereeeeeeeeen. e e eessse 3
II. APPENDICES........oriiiiitieniniiteiensseesessseses et tes st s s ssseeeneeaseessssesesssses s s 5
1. “Architectural Re-engineering of Janus using Object Modeling and Rapid

Prototyping” by V. Berzins, M. Shing, Lugi, M. Saluto, and J. Williams.............. 6-18
2. “Object-oriented modular architecture for ground combat simulation” by

V. Berzins, M. Shing, Lugi, M. Saluto, and J. Williams «.........ccocoevvrevereererernn. 19-31
3. “Static Analysis for Program Generation Templates” by V. Berzins................... 32-40
4. “Reuse and Re-engineering of Legacy Systems” by J. Gou and Lugi.................. 41-48
5. “A Survey of Software Reuse Repositories” by J. Gou and Lugi 49-57
6. “A Risk Assessment Model for Evolutionary Software Projects” by Lugi

ANA J.C. NOGUEITA........c.ourrierreeretereinteeiste et ceesese e et eeeees e e sese e e e se s 58-66
7. “Evolutionary Computer Aided Prototyping System (CAPS)” Luqi, V. Berzins,

M. Shing, R. Richle, and J.C. NOGUEIIA............covueeiereeeeeeeeeeeeeeeeeeee e, 67-76
8. “The Use of Computer Aided Prototyping for Re-engineering Legacy Software”

by Luqi, V. Berzins, M. Shing, M. Saluto, J. Williams, J. Guo, and B. Shultes 77-107
9. “Product Line Stakeholder Viewpoint and Validation Models” by N. Nada,

Lugqi, D. Rine, and K. Jaberc..coeueuereuuence... O OORON 108-115
10. “A Knowledge-Based System for Software Reuse Technology Practices” by

N. Nada, Luqi, D. Rine, and E. Damianiccccoeveveereeveeemeeeeeeeeeeeeeeeeeoen 116-122
11. “Risk Assessment in Software Requirement Engineering” by J.C. Nogueira,

Luqi, and V. BEIZINSceeeveruenrrinirinieeeeteeeeececsescseseeeeeaeeeseeeeees e s s 123-129
12. “Surfing the Edge of Chaos: Applications to Software Engineering” by

J.C. Nogueira, C. Jones, and LUqi........ccoeveveveriveeeeieiieeceeeeeeeeeeeeeeeeeeseeees e 130-142

- 13. “A formal Risk Assessment Model for Software Evolution” by J.C. Nogueira,

Luqi, V. Berzins, and N. Nada.......c.cccerriiieeeeieeeeseeeeeeeseeeee e e e e 143-148

14. “A Risk Assessment Model for Software Prototyping Projects” by J.C. Nogueira,

Luqi, and S. Bhattacharya........c.ccoeeeeueverereveeeeeienieeeeeeeeeeeeeeee e 149-154

Interim Progress Report

System Engineering and Evolution Decision Support

1/1/2000 - 9/30/2000

Lugi

List of Manuscripts:

V. Berzins, M. Shing, Lugi, M. Saluto, and J. Williams, "Architectural
Re-engineering of Janus using Object Modeling and Rapid Prototyping",
in Design Automation for Embedded Systems, 5(3/4), August 2000, pp.251-
263.

V. Berzins, M. Shing, Lugi, M. Saluto, and J. Williams, "Object -
oriented modular architecture for ground combat simulation", in
Proceedings of the 2000 Command and Control Research and Technology
Symposium, Naval Postgraduate School, Monterey, CA, June 26-28, 2000.

V. Berzins, "Static Analysis for Program Generation Templates", in
Proceedings of 7¢h Monterey Workshop ﬁModeling Software System
Structures in a fastly moving Scenario”, Santa Margherita Ligure,
Italy, June 13-16, 2000. also available on-line at
http://www.disi.unige.it/person/ReggioG/PROCEEDINGS/

J. Gou and Luqi, "Reuse and Re—engineering of Legacy Systems"”, in
Proceedings of the Sth World Conference on Integrated Design & Process
Technology, Dallas, TX, June 4-8,2000.

J. Guo, and Luqgi, "a Survey of Software Reuse Repositories"”, in
Proceedings of the 7th IEEE International] Conference and Workshop on
the Engineering of Computer Based Systems (IEEE ECBS'2000), Edinburgh,
Scotland, UK, April 6-7, 2000.

Lugi and J.c. Nogueira, "a Risk Assessment Model for Evolutionary
Software Projects"™, in Proceedings of 7th Monterey Workshop "Modeling
Software System Structures in a fastly moving Scenario", Santa
Margherita Ligure, Italy, June 13-16, 2000. Also available on-line at
http://www.disi.unige.it/person/ReggioG/PROCEEDINGS/

Luqgi, V. Berzins, M. Shing, R. Riehle, and J.c. Nogueira, "Evolutionary
Computer Aided Prototyping System (CAPS)", in Proceedings of the TOOLs
USA 2000 Conference, Santa Barbara, ca, July 30-August 3, 2000.

Luqgi, v. Berzins, M. Shing, M. Saluto, J. Williams, J. Guo, and B.
Shultes, "The Use of Computer Aided Prototyping for Re—engineering
Legacy Software", submitted to the IEEE Transaction on Software
Engineering.

N. Nada, Lugi, D. Rine, and K. Jaber, "Product Line Stakeholder
Viewpoint and Validation Models", in Proceedings of the Workshop on
Software Product Lines: Economics, Architectures, and Implications,
Limerick, Ireland, June 4-11, 2000.

N. Nada, Luqgi, b. Rine, and E. Damiani, "a Knowledge-Based System for
Software Reuse Technology Practices"”, ip Proceedings of the Third

International] Workshop on Intelligent Software Engineering (WISE3),
Limerick,_Ireland, June 4-11, 2000.

J.C. Nogueira, Lugi, and v. Berzins, "Risk Assessment in Software
Requirement Engineering", in Proceedings of the 5th Worild Conference on
Integrated Design ¢ Process Technology, Dallas, Tx, June 4-8,2000.

J.C. Nogueira, c. Jones, and Luqi, "Surfing the Edge of Chaos:
Applications to Software Engineerin ", in Proceedings of the 2000
Command and Control Research ang Technology Symposium, Monterey, ca,

J.C. Nogueira, Lugi, v, Berzins, and N. Nada, "a formal Risk Assessment
Model for Scftware Evolution”, ip Proceedings of the 2nd International
Workshop on Economics-priven Software Engineering Research (EDSER-2),
Limerick, Ireland, June 4-11, 2000.

J.C. Nogueira, Lugi, and s. Bhattacharya, "A Risk Assessment Model for
Software Prototyping Projects", in Proceedings of the 11th IEEE

International] Workshop on Rapid Systenm Prototyping, Paris, France, June
21-23, 2000.

Scientific Personnel:

Dr. Du Zhang, Visiting Professor, NPS.

Dr. Swapan Bhattacharya (National Research Councij Research Associate)
Dr. Jiang Guo (National Research Council Research Associate)

Dr. Jun Ge (National Research Council Research Associate)

Dr. Mikhail Auguston (National Research Council Research Associate)
Dr. Oleg Kiselyov (National Research Council Research Associate)

J.C. Nogueira, "a Formal Model for Risk Assessment in Software

Projects", Doctoral Dissertation, Software Engineering, NPS, September
2000.

Report of Inventions: N/2a

Scientific Progress and Accomplishments:

We focused on automation of design activities that appear in an
evolutionary approach to system development . Decision Support for
design Synthesis, reuse and evolution is emphasized. This research
extended recently developed formal methods in system engineering to
construct a cohesive set of formal models. These models are used to
Create and to connect automated Processes for Computer aided

prototyping, requirements validation, and design synthesis.
Mathematical models for implementing a8 set of automated and integrated
engineering automation toolg were also developed. Our work . combined

very~high-level Specification abstractions and concepts with: (1)
formal real-time models, (2) automated management of system design data
and human Iesources, (3) design transformations, (4) change merging,

(5) automated retrieval of reusable system design components, and (6)

(1) generating real-time control programs, (2) generating simulations
of subsystems, and (3) Coordinating concurrent work by engineering
teams. Our work will ensure design consistency and to alleviate
communication difficulties.

The significance of our work is to:
improve system effectiveness and flexibility,
increase engineering productivity, and
reduce system maintenance Costs.

coupled directly with requirements validation facilities. our work will
broaden the scope of engineering decision Support to include concurrent
whole-system engineering, requirement determination, and system
evolution. Automated decision Support will ensure System quality by
decreasing the human effort required. This, in turn, will minimize the
incidence of human error. The trial use of operational system
prototypes linked with software simulations of selected Subsystems
enables users to - provide feedback for validation and refinement of
System requirements prior to detailed design. Maintenance Costs can be
minimized by reducing the need to repair requirement errors after
system deployment. We provided methods for process and system re-
eéngineering at minimal cost. This was achieved by: (1) regenerating new
.variations of designs from high-level decisions. (2) combining changes,
and (3) Propagating the consequences of design modifications. These
éngineering capabilities wil] enable the Army to improve and integrate
its complex systems with reduced costs, Improved Systems can reduce
Army manpower needs while strengthening information warfare
Capabilities.

Specific Tasks accomplished in FY00 include (1) the development of a
risk assessment model for the evolutionary software process; (2) a
detailed Survey of the software reuse repositories, (3) the development
of models to Support reuse in product 1line approach, and (4) tool

Technology Transfer:

V. Berzins, member, Steering Committee, 2000 ARO/NSF/CNR Monterey
Workshop On Modeling Software System Structures in a Fastly Moving
Scenario, held in Santa Margherita Ligure, Italy, June 13-16, 2000.

V. Berzins, "Static Analysis for Program Generation Templates",
Presented at the 7tp Monterey Workshop "Mbdeling Software System
Structures in a fastly moving Scenario", Santa Margherita Ligure,

V. Berzins, "a formal Risk Assessment Model for Software Evolution", in
presented at the 2nd International Workshop on Economics-Driven

Software Engineering Research (EDSER-2), Limerick, Ireland, June 4-11,
2000.

J. Gou, "Reuse and Re—engineering of Legacy Systems", presented at the
S5th World Conference on Integrated Design & Process Technology, Dallas,
TX, June 4-8,2000.)

Lugi, "a Survey of Software Reuse Repositories”, bresented at the 7th
IEEE International Conference and Workshop on the Engineering of

Computer Based Systems (IEEE ECBS'2000), Edinburgh, Scotland, UK, April
6-7, 2000. ’

Lugi, "A Risk Assessment Model for Evolutionary Software Projects”,
presented at the 7th Monterey Workshop "Modeling Software System
Structures in a fastly moving Scenario”, Santa Margherita Ligure,
Italy, June 13-16, 2000.

Lugi, Chair of the Program Committee, the 11th IEEE International
Workshop on Rapid System Prototyping, held in Paris, France, June 21-
23, 2000.

Lugi, Co-Chair, Program Committee, 2000 ARO/NSF/CNR Monterey Workshop
On Modeling Software System Structures in a Fastly Moving Scenario,
held in santa Margherita Ligure, Italy, June 13-16, 2000.

J.C. Nogueira, "Risk Assessment in Software Requirement Engineering",
presented at the 5th World Conference on Integrated Design & Process
Technology: Dallas, TX, June 4-8,2000.

J.C. Nogueira, "Surfing the Edge of Chaos: Applications to Software
Engineering", presented at the 2000 Command and Control Research and
Technology Symposium, Monterey, CA, June 26-28, 2000.

R. Riehle, "Evolutionary Computer Aided Prototyping System (CAPS)™,
bresented at the TOOLS uUsa 2000 Conference, Santa Barbara, ca, July 30-
August 3, 2000.

R. Riehle, chair of the Tutorial Committee, the TOOLS USA 2000
Conference, Santa Barbara, CA, July 30-August 3, 2000.

M. Shing, "Object-oriented modular architecture for ground combat
simulation", bresented at the 2000 Command and Control Research and
Technology Symposium, Naval Postgraduate School, Monterey, CA, June 26—
28, 2000.

M. Shing, member of the Program Committee, the 11th IEEE International
Workshop on Rapid System Prototyping, held in Paris, France, June 21-
23, 2000.

APPENDICES

Design Automation for Embedded Systems. 3. 251-263 (2000)
£ 2000 Kluwer Academic Publishers. Boston. Marufactured in The Netherlands.

Architectural Re-engineering of Janus using‘Object
Modeling and Rapid Prototyping

VALDIS BERZINS

berzins @ cs.nps.navy.mil
Computer Science Departmen:. Nava! Postgraduate School. Monrerey, CA-939.43

MAN-TAK SHING

mantak @ cs.nps.navy.mil
Computer Science Departmen:, Naval Postgraduate School, Monterex, CA 93943

LLQI

Computer Science Department, Naval Postgraduate School. Monrerey, CA 93943

lugi€ es.nps.navy.mil

MICHAEL SALUTO dmSHT @ exmail.usmiz.army. mil
EECS Depurtment. United Stizes Military Academy, West Point, NY 10995

JULIAN WILLIAMS Julian_williams< G jsims.mi
ASIMS Joint Program Office, 12249 Science Dr.. Suite 260, Orlundo, FI 32326

Abstract. This paper describes g case study to determing whether computer-aided prototyping techniguas provide
acost-eftective means for re-en gineering legacy software, The case study consisis of developing an object-oriented
miodular architecture for the existing US Army Janus combat simulation system. and validuting the erchitecture
Vid an executable prototype using the Computer Aided Prototyping System (CAPS1. a reseurch tool dev 2loped at
tize Naval Postgraduate School. The case study showed that prototyping can be a valuable aid in the re-engineering
of fegacy systems, purticularl: in cases where radical changes to system conceptualization and softwars structure
are needed. The CAPS system enabled us to do this with a minimal amount of coding effort.

Reywords: Computer-aided prototyping. software re-engineering. software e olution. object-oriented architec-
twre. combat simulation.

1. Introduction

This paper describes a case study to determine whether computer-aided prototyping
techniques provide a cost-effective means for re-engineering legacy software [14]. The
case study consists of developing an object-oriented modular architecture for the existing
Janus(A) system [6]. and validating the architecture via an executable prototype using the
Computer Aided Prototype System (CAPS) [10, 11].

Janus(A) is a softwara-based war game that simulates ground battles between up to six
adversaries. It is an interactive, closed. stochastic. ground combat simulation that features
precise color graphics. Janus is “interactive™ in that command and contro! functions are
entered by military analysts who decide what to do in crucial situations during simulated
combat. It has gone through six major revisions since 1978. The current version of Janus
operates on Hewlett Packard workstations and consists of a large number of FORTRAN
modules (1918 FORTRAN routines. 115 C routines. and a total of 393K lines of source
code), organized as a flat structure and interconnected with one another via 129 FORTRAN

BERZINS ET AL.

COMMON blocks. resulting in a software structure that makes modification to Janus very
costly and error-prone. There is a need to modernize the Janus software into a maintain-
able and evolvable system (written in C++) and to take advantage of modem Personal
Computers to make Janus more accessible to the Army. The TRACDOC Analysis Center
(TRAC) initiated the HLA Warrior projectin 1998 tore-engineer Janus into an HLA compli-
ant. PC-based combat simulation. with improved graphical user interface, object-oriented
source code. and a modem modular architecture [13]. The Software Engineering group
at the Naval‘Postgraduate School was tasked to extract the existing functionality through
reverse engineering and to produce an object-oriented architecture that SuUpports existing
and required enhancements to Janus functionality. The architecture provides protocols for
communication between the graphical user interface and the simulation models and acts as
a blueprint for developing the C++ code.

The paper is organized as follows. We present the re-engineering process and the resultunt
object-oriented architecture in Sections 2 and 3. Section 4 describes our prototyping exper-
iment. Section 5 summarizes the lessons learned and Section 6 draws some conclusions.

2. The Re-engineering Process

Software re-engineering is the process of creating an abstract description of a system,
reasoning ubout a change at a higher level of abstraction. and then re-implementing the
system [5]. This section describes the first two activities of the re-engineering process.

2.1. Reverse-Engincering

The first step in reverse-engineering is system understanding. which was accomplilshed
Via a series of brief meetings with the client, TRAC-Monterey. We asked questions and
made notes on the system's operation and its current functionality. We paid particular
attention to the client’s view of the system to gather their ideas on its strengths. weuk-
nesses, and desired and undesired functionality. Additionally we collected copies of the
Janus User’s manual. the Janus Programmer’s Manual. the Janus Database Management
Program Manual, the Janus Software Desi gn Manual, and the Janus Algorighm Document
[6-9.12].

The next step is to abstract the system’s functionality and then produce system models
that accurately represent that functionality. Analysis of 393K lines of legacy code is a
daurting but inescapable part of the process. We recoiled from the magnitude of this
effort in the beginning of the project and relied on information contained in the Janus
manuals. In hindsight. it was a mistake that slipped the schedule of the project by serveral
months. While these documents helped us get started because they contained higher level
information and were much shorter than the code, they were much older and contained
outdated information. We should have started analyzing the source code right away and

should have persistently continued with this task in parallel with all other re-engineering
activities.

ARCHITECTURAL RE-ENGINEERING OF JANUS

selection
selection

election

current run

request_se_run_no

selection

selection request_s¢_run

current_run cenario)

db

update_current_run

current_run

request se_run_no

Fizure 1. Top-level communicution structure of the exinting Janus software.

We divided the Janus source code by directories amongst the team members to explore.
examine and gather information. Using strictly manual techniques and review procedures.
we were able to get a fairly good idea of what each subroutine was designed to do. We
also used the Software Programmers” Manual [7] to aid in understanding each subroutine’s
function. In doing so we were able to group the subroutines by functionality to get a
better understanding of the major data flows between programs. Using that knowledge, we
developed functional models from the data flows.

We used the Computer-Aided Prototyping System (CAPS). an automated tool developed
at the Naval Postgraduate School, to assist in developing the abstract modzls. CAPS
allowed us to rapidly graph the gathered data and transform it into a more readable and
usable format. Additionally, CAPS enabled us to develop our diagrams separatzly. and then
join them together under the CAPS environment. where they can be used to generate an
executable model of the architecture. Figure 1 shows the resultant top-level structure of the
existing Janus system. It consists of five subsystems—cs.dara.mgmt. scenario_db, janus,
Jaass, and postp. The cs.data_mgmt subsystem manages combat system databases. The
scenario_db subsystem manages the different scenarios and simulation runs in the system.
The janus subsystem simulates the ground battles. The Jaaws subsystem allows analysts

to perform post-simulation analysis and the postp subsystem allows Janus users to view
simulation reports.

BERZINS ET AL.

2.2, Transformation of Functional Models to Object Models

Next. we developed object models of the Janus system, using the aforementioned materials
and products to create the modules and associations amongst them. This was probably
the most difficult and most important step. It required a great deal of analysis and focus
to transform the originally scattered sets of data and functions into small. coherent and
realizable objects. each with its own attributes and operations. This was a crucial step
because we had to ensure that the classes we created accurately represented the functions
and procedures currently in the software. We first identified a set of candidate objects and
created an object model for the core elements based on the information from the Database
Management Program Manual [8] and the domain knowledge of the human experts. Then
we analyzed the source code and used the information from the Software Design Manual
[9] to add attributes and operations to the object classes. We used the HP-UNIX systems
at the TRAC-Monterey facility to run the Janus simulation software to aid in verifying
and/or supplementing the information we obtained from reviewing the source ¢ode and
documentation. This step enabled us to better analyze the simulation system. gaining
insight into its functionality and further concentrate on module definition and refinement.

2.3. Refinement of the Object Models and the Development of the Object Oriented
Architecture

During this phase of the project. the re-engineering team met several times each week
for a period of two and a half months to discuss the object models for the Janus core
elements and the object-oriented architecture for the Janus system. They presented the
findings to the Janus domain experts at least once per week to get feedback on the models
and architectures being constructed. In addition. the re-engineering team also presented
the findings to members of the OneSAF project. the Conibart2] project. and the National
Simulation Center, Many researchers have reported that domain knowledge plays a critical
role during the software re-engineering process [2—4]. Since we were not familiar with
the domain of ground combat simulation. we found that these meetings were invaluable to
our project. Our experience supports the ideas that competent engineers unfamiliar with
the application domain have an essential role in re-engineering as well as in requirements
elicitation [1]. because lack of inessential information about the application domain makes
it easier 1o find new. simpler design structures and architectural concepts to guide the re-
engineering effort. Based on the feedback from the domain experts, the re-engineering team
revised the object models for the Janus core elements and developed a 3-tier object-oriented
architecture for the Janus system (Figure 2).

3. Software Architecture for the Janus Combat Simulation System

Central to the existin 2 Janus Combat Simulation subsystem is the program RUNJAN. which
is the main event scheduler for the Janus simulation. RUNJAN determines the next sched-

uled event and executes that event. If the next scheduled event is a simulation event, -

ARCHITECTURAL RE-ENGINEERING OF JANUS

Tier 1
User Interface

JANUS
User Interface

ATARTT
Tier 2 /‘» ”’,’ l‘, ‘:. \\\‘
Applications AR :
.~ ,' ' N
Domain -~ I j X
P [';' L; \‘V N

Combat . JANUS

Systems | |\ Scenadio | | conpn || saaws | | posTe Bt

DBMS | |“3m8 Simulation

T NI 4 R4
\\~\~ .\\ \‘\ \\",: “"-
Services! el el N LT
eaa W ozt Ty
- Pass
1
DB Litilities Iaterface
Kil A
Tier 3 - w

Storage &
Networking S DISHLA

Figure 2. The proposed 3-tier object-oriented architecture.

RUNJAN advances the game clock to the scheduled time of the event and performs that

event. The existing event scheduler uses global arrays and matrices to maintain the at-

tributes of the objects in the simulation. Hence. one of the major tasks in designing an
object-oriented architecture for the Janus Combat Simulation subsystem is to distribute the
event handling functions to individual objects. Moreover. it is necessary to redefine some
event categories to eliminate redundant coding of the same or similar functions and to take
advantage of dynamic dispatching of event handling functions in the object-oriented archi-
tecture. Interactions between the simulation engine and the world modeler (the interface to

adistributed simulation network) are performed implicitly within the various event handlers

in the existing Janus. Such interactions are made explicit in the new architecture in order
to provide a uniform framework to update World Model objects during the simulation.

The new architecture uses an explicit priority queue of event objects to schedule the
simulation events. Each event object has an associated simulation object. which is the
target of the event. There are 14 event groups, which correspond to the 14 event subclasses
shown in Figure 3.

An object-oriented approach enabled us to reduce the number of event types needed in the
simulation. Depending on the subclass which an event object belongs to. the Execute method
will invoke the corresponding event handler of the associated simulation object to handle

10

BERZINS ET AL.

Event
Time_For_Event | * Simulation
Object
Execute()
ImpactEffects WriteStatus DoDirectFire] CounterBattery{ -
Execute() Execute() Execute() Execute()
DoPlan Display CheckPoint
Execute{) Execute() Execute()
Search DolndirectFire| EndSimulation UpdateHeatStatug
Execute() Execute() Execute() Execute()
MoveUpdateObj UpdateChemicalStatus ChooseDirectFireTargets
Execute() Execute() Execute()

Fizure 3. The event class hierarchy,

the event (Figure 4). The simulation object superclass defines the interface of the event
handlers for the event groups. and provides an empty body as the default implementation
for the event handlers. The methods are overridden by the actual event handler code at the
subclasses that have non-empty actions associated with the events. The above architecture
enubles a very simple realization of the main simulation loop:

initialization;

while not_empry(event_queue) loop
€ = remove_event(even _quee):
e.execute();

end loop;

Sinalization;

Note that this same code handles all kinds of events. including those for future extensions
that are vet to be designed. Event objects are created and inserted into the event queue by
the initialization procedure at the beginning of the simulation, by the constructors of new
simulation objects, and by the actions of other event handlers. Depending on the actual
implementation of when and how events are inserted into the priority event queue, it may
be riecessary to allow events to change their priorities while waiting in the queue.

World Model object subclasses (with names starting with the "WM" prefix) are created
to provide specialized methods for the world miodeler to update the objects from other
simulators. Information conceming objects local to the Janus simulator can be broadcast

11

ARCHITECTURAL RE-ENGINEERING OF JANUS

| Simulation Object
Origin
DoPlan()
MoveUpdateObj()
WriteStatus()
DoDirectFire()
Display()
CounterBattery()
Search()
ChooseDirectFireTargcts()
L’pdatcChemicalStatus()
DolndirectFire()
ImpactEffects()
UpdateHeatStatus()
CheckPoint()
EndSimulation()
l

Scenario

DoPi)

WriteStatus()
Display()
CheckPoint()
EndSimulation()

CombatUnit Barrier Minefield
MoveUpdateObj() MoveUpdatzObj() MoveUpdateObj()
DoDirectFire() O A
CounterBattery() |]
Szarch() WM_Bamier WM_Minefield
ChooscDirechireTargcts() MoveUpdaneOn: MoveUpdateOb:
CpdateChemicalStanus() MoveUpdateObj() MoveUpdateObj()
DolndirectFire()

UpdateHeatStatus() Cloud
A MoveUpdateObj()

WM_CombatUnit WM_Cloud [angﬁansmm '

MoveUpdateObj() MoveUpdateObj() 4
DoDirectFire()) []
CounterBattery() DirectFire IndizectFire
g;urch([;' FireT 0 Transaction Transaction
ooseDirectFireTargers|) —
L‘pdateChcmicaISmus() ImpactE ffects() ImpaciEffects()
DolndirectFire() l} Q
UpdateHeatStatus() WM DircctFire WM dirc'ctFi.’e
Transaction Transaction
ImpactEffects() ImpactEsfects()
Figure 4. The simulation object class hierarchy.
12

BERZINS ET AL.

. . replay_request
statstics_request =

statistics
replay _request

user_

post_ . C
interaction

processor

simulation_history is
replay _position

Fignre 3. Top-level decompaonition of the executable prototype.

over the simulation network either periodically by an active world modeler object, or by
individual local objects whenever they update their own states.

4. Development of an Executable Prototype Using CAPS

In order to validate the proposed architecture and to refine the interfaces of the Janus
subsystems, we developed an executable prototype using CAPS. Figure 5 shows the top-
level structure of the prototype. which has four subsystems: Janus, GUI. JAAWS and the
POST-PROCESSOR. Among these four subsystems. the Janus and the GUI subsystems
(depicted as double circles) are made up of sub-modules shown in Figures 6 and 7, while
the JAAWS and the POST-PROCESSOR subsystems (depicted as single circles) are mapped
directly to objects in the target language. After entering the prototype design using CAPS.
we used the CAPS execution support system to generate the code that interconnects and
controls these subsystems.

Due to time and resource limitations. we only developed the prototype for a very small
simulation run. which consists of a single object (a tank) moving on a two-dimensional
plane. three event subclasses (MoveUpdateObj. DoPlan. and EndSimulation), and one kind
of post-processing statistics (fuel consumption). In addition, a simple user interface was
developed using TAE [15] (Figure 8). The resultant prototype has over 6000 lines of
program source code and contains enough features to exercise all parts of the architecture.

13

ARCHITECTURAL RE-ENGINEERING OF JANUS

i External . .
L3327 nteraction

External

create_
user_
avents

scenario

eveni_q

cvent_q

event/q game_time

100 ms

game_time External

ev;‘n—ts

simulation_history

simulaiion_histon
ganwe_time

cvent_g

Freure 6. The JANUS subsystem of the executable proiape.

The code that handles the motion of a generic simulation object was very simple. but it
wus designed so that it would work in both two and three dimensions without modification
teurrently the initialization and the movement plan of the tank object never call for any
vertical motion). The code was also designed to be polymorphic, just as was the main event
loop. This means the same code will handle the motion of all Kinds of simulation objects
without any modifications. including even naw types of simulation objects that are part of
future enhancements to Janus and have not vet been designed or implemented.

5. Lessons Learned

Our prototyping experiment showed that the proposed object-oriented architecture allows
design issues to be localized and provides easy means for future extensions. We started
out with a prototype consisting of only two event subclasses (MoveUpdateObj and End-
Simulation) and were able to add a third event subclass (DoPlan) to the prototype without
modifying the event contro} loop of the Janus combat simulator,

We also demonstrated the use of inheritance and polymorphism to efficiently extend/
specialize the behavior of combat units. For example. to implement the MoveUpdateObj
method of a tank subclass which uses the general-purpose method from its superclass to
compute its distance traveled and a specialized algorithm to compute its fuel consumption,

14

BERZINSET AL.

first_time

scenario

External

External

statistics

100 ms

new_plan
entered

Extsrnal

replay

edit_

plan /
; T tatisti sCenirio
; | Statisties _ T replay .
i request user_interaction rchCST scenario
' y \J Y
' External External External External
Fizwre 7. The GUI subsystem of the executable prototype.
LT} 0
H
i JAAWS POST PROCESSING
{
POSITION .7 ean | ‘y . -irn0 0] r
p SFwrl furcastion 106 6
so0t.0 -
T i Calulate Fuel Con:n-puon'
- S R JANUS
c.¢
Enhr.\'orbnmuaany
el 222) I
A R x| 2220 i
- e e o] Yo -t0c0 i
o - T ' . Zater l
-soec. o)
R~ N] 3.2 £$300.9
i Replay Stantaticn” l ! Stop Simulatien I

Figure 8§ The Graphical User Interfuce of the executable prototype.

15

ARCHITECTURAL RE-ENGINEERING OF JANUS

we simply include | statement to invoke the MoveUpdateObj method of its superclass
followed by three lines of code to update its fuel consumption. Moreover. other combat
unit subclasses can be added easily to the prototype without the need to modify the event
scheduling /dispatching code.

The prototype also resulted in the following refinements to the proposed architecture:

(1) Instead of a procedure with no return value. change the Execute operation to retum
the time at which the next event is to be scheduled for the same simulation object. and
introduce a special time value “NEVER" to indicate that no next event is needed. The
proposed change turns the communication between the event dispatcher and the simu-
lation objects from a peer-to-peer communication into a client-server communication.
This change eliminates the dependency of simulation objects on details of the event

queue and allows the event dispatcher to use a single statement to schedule all recurring
events for all event types.

19

Instead of recording the history of a simulation run in terms of sets of data files.
model the simulation history as a sequence of events. The proposed change provides a
simple and uniform way to handle history records for all events. and allows the same
modular architecture to be used for real-time simulations as well as post-simulation
analysis. This also provides the greatest possible resolution for the event histories.
which implies that any quantity that could have been calculated during the simulation
can also be calculated by a post-simulation analysis of the event history. without any
loss of accuracy. It also eliminates the need for the WriteStatus event in the legacy
software. The only constraint imposed by this design refinement is that the simulation
objects associated with the events must be copied before being included in the simulation
history. to protect them from further changes of state as the simulation proceeds. This
constraint is easy to meet because the process of writing the contents of an event object
to a history file will implicitly make the required copy.

The prototyping effort also exposed a design issue—should null events appear in the
event queue? A null event is one that does not affect the state of the simulation. such as
a MoveUpdateObj event for an object that is currently stationary. The prototype version
adopted the position that such events should not be put in the event queue. since this
corresponds to scheduling policies in the legacy system. and appears at first glance to
improve efficiency. '

Our experience with the development of the prototype suggests that this decision com-
plicates the logic and may not in fact improve efficiency. In particular. the process cre-
uare new.events could be eliminated from the Janus subsystem (Figure 6) if we allowed null
events. This process scans all simulation objects once per simulation cycle to determine
if any dormant objects have become active. and if so. schedules events to handle their
new activities. The alternative is to have the constructor of each Kind of simulation object
schedule all of its initial events. and to have each event handler specify the time of next
instance of the same event even if there is nothing for it to do currently. Handlers might
still set the time of its next event to NEVER in the case of a catastrophic kill: however this
is reasonable only if it is impossible to repair or restore the operation of the units that have
sutfered a catastrophic kill.

16

BERZINS ET AL.
The reasons why this design change may improve efficiency in addition to simplifying
the code are that:

(1) the check for whether a dormant object has become active is done less often—once per
activity of that object, rather than once per simulation cycle.

(2) executing a null event is very fast—a few instructions at most, so the “unnecessary™
null events will not have much impact on execution time. and

(3) the computation to find and test all simulation objects periodically wo.uld be eliminated.

Our recommendation is to allow null events in the event queue. and to explicitly schedule
every kind of event for every object unless it is known that there cannot be any non-empty
events of that type in any possible future state of the object. For example. under the proposed

scheduling policy. immobile or irrecoverably damaged objects would not need to schedule’

future MoveUpdateObj events. but those that are currently at their planned positions would
need to do so. because a change of plan would cause them to move again in the future, even
though they are not currently moving.

6. Conclusion

Our experience in this case study suggests that prototyping can be a valuable aid in the
re-engineering of legacy systems. particularly in cases where radical changes to system
concepiualization and software structure are needed.

In particular. we found that constructin gevenavery thin skeletal instance of the proposed
new architecture raised many issues and enabled us to correct. complete. and optimize the
architecture for both simplicity and performunce. This was done before the architecture
had grown into a maze of dependent designs and implementation details. Consequently.
the changes could be realized without incurring the large cost and time delays typically
encounted later in the development. :

The computer-aided prototyping tools in the CAPS system enabled us to do this with
a minimal amount of coding effort. The bulk of the code was generated automatically,
enabling us to concentrate on system structuring issues, to consider and evaluate various
alternatives. and to improve the design while doing detailed manual implementation for
only a few pages of critical code.

The object models produced in this project have proven invaluable to the contractors
during code implementation phase of the US Army TRAC HLA Warrior project and will be
vital to the National Simulation Center Spectrum project. Additionally, our efforts will also
benefit other simulation developers. TRAC-Monterey sent the class design to Combat 21
(CB21) developers at White Sands. CB21 was able to save time and money by reusing the
object models and came up with a design that looks remarkably like ours (although much
larger). The OneSAF developers will look at the CB21 class design and reuse as much as
possible.

17

ARCHITECTURAL RE-ENGINEERING OF JANUS

Acknowledgments

¢

This research was supported in part by the U.S. Army Research Office under grant number
35037-MA and in part by a grant from the U.S. Army Training and Doctrine Analysis
Command. '

References

1. Berry. D. 1999. Formal methods: the very idea—some thoughts about why they work when they work.
Proceedings of the 1998 AROJONR/NSF/DARPA Monterex Workshop on Engincering Autonwzion for
Computer Bused Systems pp- 9-18.

2. Biggenstaff. T. 1990. Design recovery for maintenance and reuse. [EEE Compuzer 22(71: 3649,

3. Biggerstaff. T. 1990. Human-oriented conceptual ubstractions in the re-engineering of software. Proceedings
of the 12th ICSE p. 120,
Gull. H.. and Klasch, R. 1993. Capsule oriented revarse engineering for software reuse. Proceedinzs of the
Jth Evwropean Softovare Engineering Conference pp. +13—333.

3

Jacobson. L. and Lindstrorm. F. 1991, Re-engineering of old systems to an object-oriented archizectures.
' Proceedings of OOPSLAY] pp. 77-83.
' 6. Junus Version 6 User’s Manual. 1995, Simulation, Training & Instrumenzazion Command, Orland: v, Florids
o Janas 3.XJUNIX Software Programmer's Manua! 1993, Prepared for: Headyuartees TRADOC Analysis

Center, Ft. Leavenworth. Kansas. Prepared by: Titan. Inc. Applications Group. Leavenworth. Kamas. Nov.
o Janus Version 6 Datubase Management Program (CSDATA} Manual. 1993, Siniulation. Training & Instru-
meatation Command. Orlando, Florida. .
Y. Janus 3.X/UNIX Software Desien Manual. 1993, Prepared for: Headyuarers TRADOC Analysis Center.
Ft. Leavenworth. Kansas. Prepared by: Titan. Inc. Applications Group. Leavenworth, Kansas, Non,
Lugi. and Ketabchi. M. 1988. A computer-aided prototyping system. [EEE Software 3021 66=72.
tE Lugi. 1996. System engineering and computer-aided prototyping. Journa! of Systems hiegrazion—Special
Issue on Computer Aided Prototxping 611): 13~17.8. :
12. Pimper. L. and Dobbs. L. 1988. Janus Algorithm Document (Version 4.01 Lasrence Livermore National
Laboratory. California.
13. Rieger. L., and Pearman. G. 1999. Re-engineering legacy simulations for HLA-compliance. Proceedings
i of the Interservice [Industry Training Simulation and Education Conerence (1 ITSEC). Orlunds, Florida,
: December. ’

14, Shing. M., Luqi. Berzins. V.. Saluto. M.. and Williams. J. 1999. Re-engineering the Junus Combat Simulation

System. Tech. Report NPSCS-99-004 Monterey. CA: Computer Science Department. Naval Postzraduate
School, Junuary.
TAE Plus C Progranumer’s Manual (Version 5.1). 1991, Prepared for: NASA Goddard Space Flight Center.
Greenbelt, Maryland. Prepared by: Century Computing. Inc.. Laural. Maryland. April.

"

18

Object-oriented modular architecture for ground combat simulation”

V. Berzins, M. Shing, Luqi
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943
{berzins, mantak, lugi}@cs.nps.navy.mil

M. Saluto J. Williams
EECS Department JSIMS Joint Program Office
United States Military Academy 12249 Science Dr., Suite 260
West Point, NY 10996 Orlando, F1 32826
dm5447@exmail.usma.army.mil julian_williams@jsims.mil
Abstract

This paper addresses the need to modemnize the software of the US Amy Janus(A) combat
simulation system into a maintainable and evolvable structure. It describes the effective use of
computer-aided prototyping techniques for re-engineering the legacy software and presents the
resultant object models and modular architecture for the existing Janus(A) system. The object
models produced in this project have proven invaluable to the contractors during code
implementation phase of the US Army TRAC HLA Warrior project and beneficial to other
simulation developers.

1. Introduction

Re-engineering is typically needed when a system performing a valuable service must change, and
its current implementation can no longer support cost-effective changes. Legacy systems embody
substantial institutional knowledge, which include basic and refined requirements, design
decisions, and invaluable advice and suggestions from domain users that have been implemented
over the years. To effectively use these assets, it is important to employ a systematic strategy for
continued evolution of the current system to meet the ever-changing mission, technology and user
needs. However, knowledge embedded in these systems is difficult to recover after many years of
operation, evolution, and personnel change. These software systems were originally written
twenty or more years ago using what many now view as an archaic and ad-hoc methodology.
Such legacy systems usually lack accurate documentation, modular structure, and coherent
abstractions that correspond to current or projected requirements. Past optimizations and design
changes have spread design decisions that now must be changed over large areas of the code. Re-

* This research was supported in part by the U.S. Army Research Office under contract # 35037-MA and in part by the U. S.
Army Training and Doctrine Analysis Command.

19

engineering has frequently been proven to be more cost effective than new development and is
also known to better promote continuous software evolution.

Software re-engineering can be defined as the systematic transformation of an existing system into
a new form to realize quality improvements in operation, system capability, functionality,
performance, or evolvability at a lower cost, schedule, or risk to the customer. Such
Improvements often take the form of increased or enhanced functionality, better maintainability,
configurability, reusability, and/or other software engineering goals. This process involves
Tecovering existing software artifacts from the system and then re-organizing them as a basis for
future evolution of the system. The re-engineering of procedural legacy software into modern
object-oriented architectures introduces certain complexities into the software analysis process.
Since typical legacy systems were not originally designed and implemented using an object-
oriented approach, the products of reverse engineering. such as requirements or design
specifications, will probably reflect a functionally based approach. As a result, some form of
‘transformation™ of resultant information is necessary in order to use the specifications. Once a
realizable specification based on the transformed object-oriented models 1s obtained, it is often
very difficult to quickly determine if the specification is a true representation of the desired
requirements. Since legacy systems are usually re-engineered only when the existing systems need
some kind of improvement, it is unlikely that the initial versjon of the reconstructed requirements
adequately reflects current user needs. Prototyping provides a means to validate new system
requirements while simultaneously enabling prospective users to get a brief feel for aspects of the
proposed system. It is a well-established approach that can be highly effective in increasing
software quality [13]. When used in conjunction with conducting a major re-engineering effort,
prototyping can be extremely useful in assisting in many areas of software modification,
validation, risk reduction, and the refinement of user requirements.

This paper addresses the need to modemize the software of the Janus(A) systems into a
maintainable and evolvable structure. It describes the effective yse of computer-aided prototyping
techniques for re-engineering the legacy software [14] to develop an object-oriented modular
architecture for the Janus combat simulation system [16]. Janus(A) is a software-based war game
that simulates ground battles between up to six adversaries [7]. It is an Interactive, closed,
stochastic, ground combat simulation with color graphics. Janus is "interactive" in that command
and control functions are entered by military analysts who decide what to do in crucial situations
during simulated combat. The current version of Janus operates on a Hewlett Packard
workstation and consists of a large number of FORTRAN modules (1918 FORTRAN routines,
115 C routines, and a tota] of 393,000 lines of source code). The FORTRAN modules are

blocks, resulting in a software structure that makes modification to Janus very costly and error-
prone. The Software Engineering group at the Naval Postgraduate Schoo] was tasked to extract
the existing functionality through reverse engineering and to create a base-line object-oriented
architecture that Supports existing and required enhancements to Janus functionality.

20

2. Reverse Engineering

The re-architecturing process adapted in the project consists of 3 major phases: reverse
engineering, object-oriented design and design validation via prototyping (Figure 1).

Reverse Engineerine J\Ob'ect-oriented _Q““_Desion Validation
: © | Design gomin expert via Prototyping

conceptual | codceptual :
model models oriented prototype
generation modeling demonstration

domain expert

feedback,
w diagtams, ject-ori
source code, dataﬂot dxa;“ rams obj :_ jgrllented executable
design documents, structure charts * el prototype
user manual,
domain experts A/ bi iented
object-oriente: .
. . * object-
object-oriented architecture ori;med
architecture desi
functional __—W _construction esign
model — ;
generation dataflow diagrams, executable
stracture charts ; prototype

object-orientad architecture

Sforward 1o targer 00
svstem implementation

Figure 1. The object-oriented re-architecturing process

The first phase is reverse engineering. Input to this phase includes the legacy source code, design
documents, user manuals, and information from domain experts. Since the goal of the re-

(=]
System are the user manuals and the database management system manuals. These manuals were
written using the lingo of the user community and should be relatively free of implementation
details. We found the JANUS Data Base Management Program Manual [8] particularly useful
because it contains detailed information on what kind of data are needed to model the battle field

and how they are organized (logically) in the database. The top-level structure of the database is
shown in Figure 2.

21

Janus Databage

Combat Systems

Ry
General Weather Optical’Thermal
Clmracten'stics Chamc[en’s{ics Sensors
Functional CMR vs. Contrast]
Characteristics W Temperature Chemical /
Volume/Weight On-board Seekers
Detection GenFral . Barrier Delays Range Dependent Fleat Stress
Mine Vulnerability Char; acteristics Non-Arty Smoke Characteristics Chemical
POL Round Guidance VEES Capability Susceptibility
Weapons/Ordinance ~ MOPP Effects Grenades Footprints Chemical Rounds
Weapon Selection/ PH/PK Data Sets Smoke Pots BCIS Heat Stress
Firing System By Weapon Large Area Characteristics
Weapon Selection/ By Targer Generators Flyer Fuselage/Rotor
Target System Minefields Data Status
Kill Categories Dispensing Rotor Track Radij
Vulnerability to Clearing Rotor Acquisition
Indirect Fire Mine Detection / Times
Artillery Systems Duds Fuselage Probability
Indirect Fire Activation / Kij] Track
Lethalities Fuselage Radar
Arty Cloud Data X-section
Optical & Thermal Jammer/Radar
Contrast Characteristics
Smoke Grenade Jammer Effectiveness
Data Probability of Detection
Aircraft Systems Data vs. Aircraft
Radar Systems

Figure 2. The top-level structure of the Janus Database

22

mental digestion, even with too] support and judicious sampling. We should have started analysis
of the code right away and should have persistently continued this task in parallel with all other
re-engineering activities, Cross-fertilization between all the tasks would have helped us recognize
some dead-end directions earlier and would have enabled us to spend meeting time more
effectively.

Using manual techniques augmented with simple UNIX shell commands, we were able to walk
through the code and get a fairly good idea of what each subroutine was designed to do. We also
used the Software Programmers' Manual [6] to aid in understanding each subroutine's function.

We also had a series of brief meetings with the client, TRAC-Monterey, asking questions and
making notes on the system's operation and its current functionality. We paid attention to the
client's view of the System to gather their ideas on its strengths, weaknesses, and desired and

playing the role of "smart ignoramuses” [1]. Domain analysis has been identified as an effective
technique for software re-engineering [15]. Our experience suggests that competent engineers
unfamiliar with the application domain have an essential role in re-engineering as well as in
requirements elicitation because lack of inessential information about the application domain

makes it easier to find new, simpler design structures and architectural concepts to guide the re-
engineering effort.

3. Object-Oriented Design

Next, we developed object models and architecture of the Janus System using the aforementioned
materials and products, to create the modules and associations amongst them. Information
modeling is needed to support effective re-engineering of complex systems [4]. This was probably
the most difficult and most important phase. [t required a great deal of analysis and focus to
transform the currently scattered sets of data and functions into small, coherent and realizable
objects, each with its own attributes and operations. In performing this phase, we used our
knowledge of object-oriented analysis and applied the OMT techniques [17] and the UML
notations to create the classes and associated attributes and operations [18]. This was a crucial
phase because we had to ensure that the classes we created accurately represented the functions
and procedures currently in the software.

23

The re-engineering team met several times each week for a period of two and a half months to
discuss the object models for the Janus core data elements and the object-oriented architecture for
the Janus System. We presented the findings to the Janus domain €Xperts at least once per week
to get feedback on the models and architectures being constructed. In addition, the re-engineering
team also presented the findings to members of the OneSAF project, the Combat?21 project, and
the National Simulation Center project. We found that information from these domain experts was
essential for understanding the System, particularly in cases where the legacy code did not

Tier 1 JANUS
User Interface User Interface

Tier 2
Applications :
Domain P ; "-.,"‘
£ E v] 3 |
Combat . JANUS |
Scenario s i Core
Systems l oo } Combat JAAWS ’ POSTP ’ ¢ l
DyBMS Managemen Simulation L ! Elements
{ AN ¥, A - 7 ,
Services , Y, & 5
. Pass
DB L-nhtxesl l Interface
1 A

Tier 3 .L v
ier
Storage & ~

o Database DIS/HLA
Communication T

Figure 3. The proposed 3-tier object-oriented architecture

94

Early involvement of the stakeholders in the simulation community also pays off in the long run.
Both the National Simulation Center and Combat?] projects were able to save time and money by
reusing our work and came up with designs that look remarkably like ours (although much
larger). Now, OneSAF developers have been directed to look at the Combat21 class design and
reuse as much as possible. So, our efforts have directly benefited other simulation developers.

Based on the feedback from the domain experts, the re-engineering team revised the object
models for the Janus core elements and developed a 3-tier object-oriented architecture for the
Janus System (Figure 3). We extracted most of the data and operations from the existing Combat
System DBMS, Scenario Management, Janus Combat Simulation, JAAWS and POSTP
subsystems and encapsulated them as simulation objects in the Core Elements package, leaving
only application specific control codes that use the simulation objects in each of these five
subsystems. Figures 4 and 5 show the top level class structures of the object models of the core
elements. Details of the associated attributes and operations can be found in [2, 20] and are
omitted from these diagrams due to space limitations.

Scenario
o \ v enemy
/ 1..* X
Environment Vo Force ;elf
Command Combat
& Control Element
| * consists I I 1
Aggregate —of | Unit Barrier Minefield Cloud
' I..*
Map CAC
Symbols Overlays

Figure 4. The top-level structure of the Janus Core Elements Object Model

25

Environment

Wind
D/ Model
Elevation
<o

Terrain Weather

Wet
Data f Data Bulb
) ” \ Air
Terrain Visibility
Features Model
' —[. Extinction
Linear 2D Building Thermal Optical Coefficient
Object Object - Curve

Figure 5. The Environment Object Class

clock to the scheduled time of the event and perform that event. The existino Janus Simulation

(=}

System uses 17 different categories to characterize the events RUNJAN then handles these 17
events using the following event handlers:

1)
2)
3)
4)
)
6)
7)
8)

9)

DoPlan - Interactive Command and Control activities

Movement - Update unit positions

DoCloud - Create and update smoke and dust clouds

StateWt - Periodic activity to write unit status to disk

Reload - Plan and execute the direct fire events

Intact - Update the graphics displays

CntrBat - Detect artillery fire

Search - Update target acquisitions, choose weapons against potential targets, and
schedule potential direct fire events

DoChem - Create chemical clouds and transition units to different chemical states

10) Firing - Evaluate direct fire round impacting and execute an indirect fire mission
11) Impact - Evaluate and update the results of an indirect round impacting
12) Radar - Update an air defense radar state and schedule a direct fire event for “normal”

radar

13) Copter - Update a helicopter states

26

14) DoArty - Schedule an indirect fire mission

15) DoHeat - Update units’ heat status

16) DoCkpt - Activity to perform automatic checkpoints
17) EndJan - Housekeeping activity to end the simulation

The legacy event scheduler uses global arrays and matrices to maintain the attributes of the
objects in the simulation. Hence, one of the major tasks in designing an object-oriented
architecture for the Janus Combat Simulation Subsystem was to distribute the event handling
functions to individual objects. However, many of the current event handler categories contained
redundant code and did not seem to be very coherent with respect to the class hierarchy we
created. For example, the set of event handlers used to simulate the activities of a particular unit
to search for targets, select weapons, prepare for a direct fire engagement, and then execute that
direct fire engagement differs depending upon whether the unit has a normal radar, special radar,
or no radar at all. The legacy Janus Simulation System uses the Radar event handler to carry out
the entire procedure if the unit has normal radar. However, it uses the Search, Radar, and Reload
event handlers to carry out the procedure if the unit has special radar. Finally the system uses the
Search and Reload event handlers to conduct the procedure if the unit has no radar at all. We
conjecture that this lack of uniformity is due to a series of software modifications made by
different people at different times without full knowledge of the software structure.

It was necessary to redefine some event categories in order to reduce interdependencies between
the event handlers, to factor simulation behavior into more coherent modules, to eliminate
redundant coding of the same or similar functions and to take advantage of dynamic dispatching
of event handling functions in the object-oriented architecture. Moreover, the Janus system was
originally designed to work in isolation, and has since been adapted to interact with other
simulation systems. Interactions between the simulation engine and the world modeler (the
distributed simulation network) are performed implicitly within the various event handlers in the
existing Janus. Such interactions are made explicit in the new architecture in order to provide a
uniform framework to update World Model objects during the simulation.

The new architecture uses an explicit priority queue of event objects to schedule the simulation
events. We were able to reduce the total number of event handlers needed in the simulation, from
17 to 14, by eliminating identified redundant code (Figure 6). The 14 remaining event handlers
are as follows: ‘

1) DoPlan - Interactive Command and Control activities

2) MoveUpdateObj — Moves and update the objects in the simulation

3) Search — Searches for potential targets based on the detection devices available to the
objects

4) ChooseDirectFireTargets — Once search is complete chooses best target to engage. In
future simulations, implementations may allow users to choose targets

5) CounterBattery — Simulates counter battery radar to find potential targets

6) DoDirectFire — Executes direct fire events and updates ammunition status

7) DolndirectFire — Executes indirect fire events and updates ammunition status

8) ImpactEffects — Calculates results of round impacting

27

7

-

| /’/{

/ scenario

\ser_interaction

post_

processor

N . N -
smuansn_hutory . sirul.tim_hisnry

\,
%«m)
_/‘/

replay_respiest

replay_request

replay position

Jaaws _ POST PROCESSING
POSITION |x - 20000 l » ¥ s -1000.0 llﬂ co";.pum o
5000.0 [-
i | i R
I - Lcﬂeux-u Fuel me-ptien}
L
h T o
L . JANUS
! - ! H .
0.0 |1 . ,
i I P EnterNew Destication:
_ T Xe| 2000 i i
E—
i i : | '
: o ; l! . , Entar i
; ~5000.0 0.0 Tl some
i
1

Figure 9. The Graphical User Interface of the executable prototype

28

5. Conclusions

The missing information needed for re-engineering is related to deficiencies of the current system
at all levels, from requirements through design and implementation. Thorough and accurate
knowledge of these deficiencies is crucial for success. The clients never want the re-engineered
System to have the exactly same behavior as the legacy system - if they were satisfied, there would
be little motivation to spend time, effort, and resources on a re-engineering project. Even if a
System is being re-engineered for the ostensible goal of porting to different hardware, the desired
behavior at the interface to the hardware and Systems software will be different.

In practical situations, the requirements for the re-engineered system are different from those for
the legacy systern. Key parts of the requirements for the new System are often missing or incorrect

We also found that prototyping can contribute substantially to the process of inventing,
correcting, and refining the conceptual structures on which the architecture of the new system will
be based. Most legacy systems are too complicated for individuals to understand. We found that

issues and enabled us to correct, complete, and optimize the architecture for both simplicity and
performance. (See [3] for lessons learned from the prototyping effort.) This was done before the
architecture had grown into a maze of dependent designs and implementation details.
Consequently, the changes could be realized without incurring the large cost and time delays
typically encounted later in the development.

To be effective, prototypes must be constructed and modified rapidly, accurately, and cheaply.
The UML interaction diagrams lack the preciseness to Support automatic code generation for the

29

8. References

[1] D. Berry, Formal Methods: The Very Idea, “Some Thoughts About Why They Work When
They Work,” Proeeedings of the 199§ ARO/ONR/NSF/DARPA Monterey Workshop on
Engineering Automation for Computer Baseqd Systems, 1998, pp. 9-18.

[2] V. Berzins, M. Shing, Lugqi, M. Saluto and j. Williams, Re-engineering the Janus(4) Combas
Simulation System, Technica] Report NPS-CS-99-OO4, Computer Science Department, Navaj
Postgraduate School, Monterey, CA, January 1999

[4] O. Bray and M. Hess, “Reengineem"ng a Conﬁguration-Management System,” [EEE Software,
Vol. 12, No. 1, Jan. 1995, pp. 53-63.

[5]v. Cabaniss, B, Nguyen and J. Moregenthaler, “Tool Supporr for Planning the Restructuring
of Data Abstractions in Large Systems,” IEEE TSE, Vol. 24, No. 7, July 1998, Pp. 534-558.

[6] Janus 3 X'UNIx Sofhware Programmey's Manual, Prepared for: Headquarters TRADOC

Analysis Center, Ft, Leavenworth, Kansas. Prepared by: Titan, Inc. Applications Group,
Leavenworth, Kansas, Nov. 1993.

[7] Janus Version 6 User's Manual, Simulation, Training & Instrumentation Command, Orlando,
Florida, 1995

[8] Janus Version 6 Datg Base Management Program Manual, Simulation, Training &
Instrumentation Commang, Orlando, Florida, 1995

[9] S. Jarzabek and PK. Tan, “Design of g Generic Reverse Engineering Assistant Tool,”

Proceedings of the Second Working Conference on Reverse Engineering (WCRE"9S), 1995, pp.
61-70.

[10] B. Kraemer, Luqi, and V., Berzins, “Compositiona] Semantics of a Real-Time Prototyping

Language » IEEE Transactions on Software Engineering, Vol. 19, No. 5, May 1993, pp. 453-
477.

[11] Lugi, v, Berzins, and R. Yeh, “A Prototyping Language for Real-Time Software,” IEEE
Transactions on Software Engineering, Vol. 14, No.10, October 1988, pp. 1409-1423.

[12] Lugi and M. Ketabchi, «A Computer-Aided Prototyping System,” /EEE Software, Vol. 5,
No. 2, 1988, pp. 66-72.

30

[13] Luqgi, “System Engineering and Computer-Aided Prototyping,” Jowurnal of Systems
Integration - Special Issue on Computer Aided Prototyping, Vol. 6, No. 1, 1996, pp.15-17.

[14] Luqi, V. Berzins, M. Shing, M. Saluto, J. Williams, J. Guo and B. Shultes, “The Story of Re-
engineering of 350,000 Lines of FORTRAN Code,” Proceedings of the 1998 ARO/ONR/NSF/
DARPA Monterey Workshop on Engineering Automation Jor Computer Based Systems, Carmel,
CA, 23-26 October 1998, pp. 151-160.

[15] M. Moore and S. Rugaber, “Domain Analysis for Transformational Reuse,” Proceedings of
4th Workshop on Reverse Engineering, IEEE Computer Society, 1997, pp. 156-163.

[16] L. Rieger and G. Pearman, “Re-engineering Legacy Simulations for HLA-Compliance,”
Proceedings of the Interservice/Industry Training, Simulation and Education Conference
(I/ITSEC), Orlando, Florida, December 1999,

[17] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorenzer, The Object-Oriented
Modeling and Design, Prentice Hall. 1991.

[18] J. Rumbaugh, I. Jacobson and G. Booch, The Unified Modeling Language Reference
Manual, Addison-Wesley. Reading, MA, 1999.

[19] TAE Plus C Programmer's Manual (Version 5.1). Prepared for: NASA Goddard Space
Flight Center, Greenbelt, Maryland. Prepared by: Century Computing, Inc., Laural, Maryland,
April 1991.

[20] J. Williams and M. Saluto, Re-engineering and Prototyping Legacy Software Systems-Janus
Version 6.X, master’s thesis, Naval Postgraduate School, Dept. of Computer Science, Monterey,
CA, March 1999. '

31

Static Analysis for Program Generation Templates'

Valdis Berzins
Naval Postgraduate School
Monterey CA 93943 USA

Abstract

This paper presents an approach to achieving reliable cost-effective software via automatic program
generation patterns. The main idea is to certify the patterns once, to establish a reliability property for all
of the programs that could possibly be generated from the patterns. We focus here on properties that can
be checked via computable static analysis. Examples of methods to assure syntactic correctness and
exception closure of the generated code are presented. Exception closure means that a software module
cannot raise any exceptions other than those declared in its interface.

1. Introduction
2= _tntroduction

Our goal is to provide cost effective means for creating reliable software. We are addressing the

issue by improving the technology for automatic software generation, with particular attention to
reliability issues.

and determines a corresponding set of solution methods. Users of the proposed computer-aided software
generation system describe their particular problem using a domain specific problem modeling language
that provides concrete representations of problems in the domain. The system then automatically
determines which solution methods are applicable, customizes them to the specific problem instance
described using the modeling language, and then automatically generates a program that will solve the
specified problem.

We seek to provide tool support for the above process that can be applied to many different problem
domains, and that can generate code in any programming language. Therefore we seek uniform and
effective methods for generating software generators of the type described above, given definitions of the
problem modeling language, the target programming language, and the roles for synthesizing solution
programs. A simple architecture for this process is shown in Figure 1.

static rules in this language. We address the problems of certifying that all programs which can be

generated from a given set of rules: (1) are syntactically correct and (2) will not raise any exceptions other
than those explicitly specified in an interface description.

This is a step towards a coordinated system of static and dynamic checks, to be performed on
program synthesis rules. Our hypothesis is that the most cost effective way to improve software quality is
to systematically improve and certify the rules used to generate a domain-specific software generator.
This approach directly addresses the issue of correctly implementing given software requirements. It also
indirectly addresses the issue of getting the right requirements, because it should eventually enable rapid
prototyping of product quality systems by problem domain experts, who need not be software experts. If
the requirements are found to be inappropriate, the domain experts will simply update the problem models
and regenerate a new version of the solution software,

We will refer to the software generation patterns as templates. Qur rationale for the claim of cost
effectiveness is that the benefits of quality improvements to the templates can be extended to all past and
future applications of the generators - by regenerating the generator using the improved templates and
then regenerating the past applications. The regeneration process can be completely automated, thereby
reducing labor costs, eliminating a source of random human errors, and speeding up the process of

repairing a known fault throughout a laree family of software systems,

<

' This research was supported in part by the U. S. Army Research Office under contract/grant number
35037-MA and 40473-MA, and in part by DARPA under contract #99-F759.

32

» We can reduce quality assurance costs. The benefits increase with the number of systems

Target Lang.
Model

STMT. Language

Attribution ' Templates
Rules Analyzer Synthesizer
Generator - Generator _/
Rule senerator- Template
Language senerator Language
Software
Analyzer

Synthesizer Solution

Problem - t

Statement Program Generator arge .

Language Implementation
ctae | Language

Figure 1. Model-Based Software Generator Architecture

¢ Section 2 formalizes software generation patterns and defines a uniform construction to
obtain a template language for any target programming language.

® Section 3 describes methods for statically certifying Syntactic correctness generated code,
and gives an example.
Section 4 does the same for analysis of exceptions.
Section 5 contains comparisons to previous work

® Section 6 presents conclusions.

2. Template Languages

The purpose of a template language is to define software synthesis patterns for a given target

language. We create such languages based on a functional object model of code generation templates. We

take a functional (i.e. side-effect-free) approach because this simplifics the algebraic basis of the approach
and supports effective static analysis methods such as those presented in Section 3 and 4. 33

This is a very simple construction, but it is very expressive. In addition to providing substitution of
actual values for generic parameters, as in the generic units of Ada and the templates of C++, our

construction includes conditionals that are evaluated at code generation time, and the ability to invoke
other templates. Recursion is included.

Template_language = {template, formal_def, template_expression}

DEF_TEMPLATE(id[template], type, seq[formal_def]. template_expression):
template -~ where type°e target_language

DEF_F ORMAL(template_parameter, type): formal_def
-- declares the type of formal parameter

template_parameter < {id[any], template_expression}

lF(template_expression, template_expression, template_expression):
template_expression

APPLY(id[template]. seq[template_expression]): template_expression

template_expression < target_language

Figure 2. Template Abstract Syntax

The construction depends heavily on the use of inheritance in object-oriented modeling of
rogramming languages. The situation is illustrated in Figure 3.
prog g languag g

Figure 3. Generic Template Language

In object-oriented modeling, class-wide types® are viewed as open and extensible. Specifically, each
time we add a subclass with a new constructor, we add more instances to the class-wide type, thus
extending its value set.

We model the abstract syntax of a language using a type for each kind of semantic entity. In a
properly constructed abstract syntax, there should be one such type for each non-terminal symbol. Each
constructor of these types corresponds to a production of the grammar. Subclass relationships, denoted by
"<", specify that every instance of the subclass is also an instance of the parent class. Multiple inheritance
is allowed. For example, in line 6 of Figure 2 says that every template parameter is a kind of identifier,
and also is a kind of template expression. This kind of subclass relationship is used to incorporate

34
? This is Ada 95 terminology. The instances of a class wide type include its direct instances and those of

all its subclasses, transitively.

Subclassing is also used to interface between a target programming language and its extensions. In
Figure 2, "target-language" denotes the set of types comprising the abstract syntax of the target language.
Figure 4 shows a very simple example of a target language that illustrates how this works.

target_language = (stmt, exp)

assign(var, exp): stmt
if(exp, stmt, stmt): stmt

integer <exp -- integer literals
var < {id[any], exp} -- program variables
apply(id[function], seq[exp]): exp -- operations

subtype rule: x <y ==>id[x] < id]y] where x, y € type

! Figure 4. Example: Micro Target Language

The example in Figure 5 defines a code generation pattern that embodies Newton’s method for
polynomial evaluation, which is optimal in terms of number of evaluation steps needed. This is a very
simple example of a code generation pattern that is nevertheless realistic, because it embodies a solution
method. The example also illustrates the use of all the constructs in the template language. We use infix
syntax for the exp constructors * and + to improve legibility (e.g. x*y is short for the term apply(*, x, ¥)).

An additional benefit of considering the abstract syntax to be an algebra rather than a tree is that we
can used well-studied transformation rules. In particular we can associate equational axioms with the
programming language types that define normal forms. Figure 5 illustrates the use of such axioms as
rewrite rules that simplify the code produced by the generator in a follow-on normalization process. This
is one way to incorporate optimizations into the program generation process, which is useful for
unconditional transformations.

TEMPLATE evaluate_polynomial (v: var, c: seqfinteger]): exp
-- ¢ contains coefficients of a polynomial, lowest degree first
IF not (is_empty (c)) -- use operations of boolean and seq
THEN v * (evaluate_polynomial (v, rest(c))) + first (¢)
ELSE 0

END TEMPLATE

Template application evaluate-polynomial(x, |1, 2, 3]) generates
X*¥X*x*0+3)+2)+1

Normalization with integer rulesi * 0 =0, i + 0 = i reduces to
X*¥(x*3+2)+1

Figure 5. Example: Generation Pattern

Code generation using the template language is a very much like evaluation in a functional
programming language with call-by-value semantics. Analysis of templates can take advantage of
equational reasoning, substitution, and structural induction. The limitation to primitive recursion
facilitates the latter. The recursion in the example is structural because rest is a partial inverse for the
sequence constructor add (i.e. rest(add(x, s)) =s).

3. Svntactic Correctness of Generated Code

We treat the abstract syntax structures of the target language as the values of the abstract data types
representing the programming language. We require these types to provide a pretty printing operation that
outputs such objects as text strings according to the concrete syntax of the target language, with a
readable format. Establishing correctness of these pretty printing operations is straightforward, and in fact
their implementations can be generated from an appropriately annotated grammar for the concrete syntax.

Given trusted pretty printing operations for the object model of the target language, syntactic
correctness of the output reduces to the type-correctness of the ground terms generated by the evaluation

of the templates. This can be che
conventional type checking methods, ote t
of the constructors in the object model of the target programming language, rather than the types within
the target programming language, which may not even be a typed language. The process is illustrated
Figure 6. The computed type annotations are shown in italics. The type annotations associated with the
implicit induction ghlig
italics. The indentations of the type annotations reflect the st ivation.

TEMPLATE evaluate_polynomial (v: var, ¢: seqfinteger]): exp
IF not (is_empty (c : seqfinteger]) : boolean) - boolean
THEN +(*(vy

evaluate_polynomial
(v lvar,
rest(c: seq[integer]) : seqfinteger]) : exp
) Jexp
first (c: seq[integer]) Cinteger
; exp

) .
--term form of v* evaluate_polynomial (v, rest(c)) + first (c)
ELSE 0 Cinteger

END TEMPLATE

:var,

Types conform because integer < erpvar < exp

Relevant signatures: *(exp, exp) ‘€Xp, *(exp, exp) :exp,
first(seq[T)): T, rest(seq[T]): seq[T].
is_empt_v(seq[T]): boolean, not(boolean): boolean

Figure 6. Example: Syntactic Correctness of Generated Code

Note that induction has been carried out implicitly, as a routine step of the type checking calculation.
This is sufficient to establish partial type correctness of the templates, which implies syntactic correctness
of all code that could be generated by the template. it does not automatically guarantee total correctness,
because we still have the possibility that evaluation of the template might fail to terminate.

Total correctness s establi

example satisfies this condition because rest s a partial inverse of the com
rest(add(x,s)) = s. This means that the induction is in fact structural

@ » and hence that evaluate_polynomial
is total. Thus the template will produce Syntactically correct code for ajl input values that conform to the

We note that given declarations of the target language constructors that define the abstract syntax and

the corresponding partial inverse operations, it is straightforward to automatically check that ali recursive
calls are primitive with respect to any given paramete i

be applied uniformly and completely automatically i

4. Exception Closures for Generated Code

One common source of software failure is unhandled exceptions. This section explains a method for
certifying that all program

S generated from a gjven template cannot generate any unhandled exceptions
when placed in a context that handles a specified set of exceptions.

Our approach is to refine the type system to record the set of exceptions that might be raised by the
evaluation of any expression of the target language. A similar Structure can be used to analyze the set of
exceptions that might be rajsed by execution of a Statement of the target language.

cked using a simple type system for the template language and
N hat we are referring to the types associated with the signatures

step, where the type signature of the template itself is used, is highlighted in bold

36

The refinement replaces the single target language type exp with a parameterized family of types
exp[set{exception]]. The intended interpretation of this type structure is that evaluation of an expression
of type exp[S] might raise an exception e only if e S. Since we do not require all exceptions in S to be
producible, this family of types has a rich subclass structure defined by the following relation:

SIc 82 = exp[Sl]< exp[S2]
The type signatures of an operation are specified explicitly for argument expression type that cannot

raise any exceptions, and are extended to all other types by the following rule, which describes the
essential pattern for propagating exceptions:

F(exp[D]) : exp[S1] = f(exp[S2]): exp[S1 U $2]

The rule for operations with multiple arguments is similar. Similar rules apply to language constructs
representing exception handlers. Exception handlers follow rules of the form

(TRY exp[S1] CATCH e USE exp[S2]): exp[(S1-{e}) L S2].

Figure 7 shows the exception analysis for our running example. The parts added to the version in
Figure 6 are underlined.

TEMPLATE evaluate_polynomial (v: var, c: seq[integer]): exp [{ov£l}]
IF not (is_empty (c: seqg[integeribooleln boolean
THEN +(*(v: var
evaluate_polynomial(v: var,
rest(c: seqlintegerseylintegel). exp [{ov£l}]
first (c: seqg [integerlintegpr exd {ovfl }
-- term form of v * evaluate_polynomial (v, rest(c)) + first (c)
ELSEO: integer
END TEMPLATE

Types conform because integer < exp (] <exp[{ovfl}] and

var<exp[@] <exp[{ovfl}]

Relevant signatures: +(exp, exp): exp [{ovfl }1, *(exp, exp): exp [{ovfl}],
first(seq[T]): T, rest(seq[T]): seq[T], is_empty(seq[T]): boolean, , not(boolean): boolean

Figure 7. Exception Closure of Generated Code

Note that we require the author of the template to specify in the type declaration of a template the set
of exceptions the generated expression is allowed to raise. This acts as an induction hypothesis in our
exception analysis, which is used when analyzing the recursive call of evaluate-polynomial. It also
provides useful information for the user of the generated code.

The analysis shown in the figure establishes a partial exception closure: it guarantees that all
expressions generated by the template can at most raise only the exception ovfl representing integer
overflow.

To establish a total exception closure, we have to address clean termination of the template expansion
at program generation time. The primitive recursion check explained in the previous section guarantees
there will be no infinite recursions, so that termination is guaranteed. However, for clean termination, we
must also check that evaluation of the template will not raise any exceptions at program generation time.

Note that the analysis in Figure 7 addresses run-time exceptions. When viewed as constructors of the
abstract syntax, + and * are total operations. Overflow exceptions can oceur only when those expressions
arc evaluated, not when they are constructed.

The sequence operators first and rest are different: they are partial query methods of the abstract

Syntax, not total constructors. If applied to an empty sequence, they raise a sequence underflow exception.
However, this can occur only at program generation time, not at run time

To certify clean termination of template at program generation time requires a type refinement to
record sets of possible exceptions and an additional kind of type refinement to record domains of partial
methods such as first and rest. We can introduce a subtype nseq[T, S] < seq[T, S] consisting of the
nonempty sequences, and refine the signatures of the partial Séquence operations first and rest as follows.

first(nseq[T, @)): T[D] rest(nseq(T, @]): seq[T. 2]
first(seq[T, h: T[seq_underﬂow], rest(seq[T, @)): seq[T. { seq_underflow}]

Type analysis requires a bit of inference in this case, because we have to use the guard of the
template language conditional IF together with the rule

s : seq[T, S] and not Is-empty (s) = s: nseq[T, S]
This inference is easy because the guard matches the subtype restriction predicate for nseq[T].

This match did not occur by accident - the purpose of the guard is precisely to ensure that the
operations first and rest are used only within their domain of definition. In the interests of being able to
produce certifiably robust code, we claim that it would not be unduly burdensome to require that template
designers associate domain predicates with all partial operations, and use those domain predicates
explicitly in guards whenever they are needed to ensure the partial operators are used within their proper
domains of definition. For example, first could be associated with a domain predicate

first-ok (seq[T]) : boolean where
first-ok (s) = not (is-empty (s)).

This would enable a fast and shallow analysis of guard conditions to certify absence of exceptions in
cases like this. Some such restriction is necessary for practical engineering Support because the problem

of checking whether an unconstrained guard condition implies the domain predicates of arbitrary guarded
partial operations is undecidable.

guard condition ensures they will never arise. We suggest that it is more practical to handie a common
subset of efficiently recognizable forms, and to ask designers to work within the constraints of those
recognizable forms. We believe this would be less burdensome than the alternative of manually analyzing
the cases where a type check insensitive to guard conditions would nominate exceptions that cannot in
fact occur, and that it would lead to a more robust software by making it practical to do complete analysis

of exception closures. For example. we could require the example of F igure 7 to be written in a stylized
form that looks like the following:

IF first-ok (c) and rest-ok (c)
THEN ... first (c) ... rest (c)...

A similar type check would have to be applied to the implementations of first and rest to ensure that they
would in fact terminate cleanly whenever the domain predicates are true

S.__Comparisons to Previous Work

One of our contributions has been to formalize and abstract the idea of a program generation pattern,
to make it independent of the details of the target programming language and the process of instantiating
the patterns. The purpose of this was to create context in which systematic analysis of program
generation patterns becomes possible and in some cases becomes decidable.

Program generation patterns have been evolving for a long time. Macros are an early form of the
idea. However, macros are notoriously difficult to analyze, partially because they traditionally operate on
uninterpreted text. This makes the connection between macro definitions and the behavior they
ultimately denote complicated and potentially very indirect. The macros in LISP are an improvement
because they are based on abstract syntax trees rather than characters. However, in this context a second
source of complexity becomes apparent: a macro can expand to produce another macro, and the number

38

of expansion steps before the generated source code actually appears is potentially unbounded. This
makes the system very difficult to analyze. At the other extreme are the generic units of Ada. These are
strongly typed, clearly connected to the abstract syntax of the language, and the results of instantiating
them are easy to analyze. However, they do not allow conditional decisions at instantiation time, and are
restricted in the sense that the abstract syntax trees of all possible instantiations have exactly the same
shape, up to substitution for the formal parameters of the pattern. A language-independent version of the
idea can be found in [5], although this appears to be largely text-based.

Another aspect of our approach is to model languages as algebras rather than as abstract syntax trees.
A hint of this idea appears in [4], although it is not exploited there for enabling analysis to any significant
degree. The work of the CIP group [1] develops this idea further and takes advantage of the reasoning
structures that come with the algebraic modeling approach, such as term rewriting and generation
induction principles. This suggests extension to a full object-oriented view, which includes inheritance.
The Refine system is the earliest context we know of where grammars are treated as object models with
potential inheritance structures, although the documentation does not give any hint about the significance
of this capability. In this paper we demonstrate the usefulness of algebraic models of syntax with
inheritance, for defining language extension transformations that can be applied to all possible target
languages.

Another theme is lightweight inference [2]. We have demonstrated that some useful types of static
analysis for program generation patterns can be performed via computable and indeed reasonably
efficient methods. The processes described here can be implemented using technologies typically used in
compilers, such as object attribution rules, they terminate for all possible inputs, and do so in polynomial
time. We believe this approach will scale up to large applications, and are currently working out the
details to support a tight analysis of the efficiency of the process.

This paper has explored static analysis of meta-programs to check syntactic correctness and
exception closure of the generated code. Another kind of static analysis in this family. type checking of
meta-programs to ensure the type correctness of the generated code, is considered by another paper in this
proceedings [3].

6. _Conclusions

We believe that formal models of program generation templates can support a variety of quality
improvement processes that can help achieve cost-effective software reliability. This paper has presented
a simple example of such a formal model and two such quality improvement processes, certification of
syntactic correctness and freedom from unexpected exceptions for all programs that can be generated
from a given program generation pattern. We expect the greatest advantages of this approach to be
rcalized when it is applied to realize flexible and reliable systems in a product line approach. This
approach should be augmented with systematic methods for domain analysis that culminates in the
development of a domain-specific library of solutions embodied in a domain-specific software
architecture that is populated with components produced by model-based software generators. When the
technology matures, it should become possible for problem domain experts to specify their problem
instances in terms of familiar problem domain models, and to have reliable software solutions to their
problems automatically generated, without direct involvement of computer experts.

The economic advantage of this approach comes from the ability to automatically reap the benefits of
each quality improvement for all past and future instantiations of the template (if past applications are
regenerated). We believe that it will be profitable to explore methods for lifting many known program
analysis techniques from the level of individual programs to the level of program generation patterns.
This should be explored for a variety of issues that range from certifying absence of references to
uninitialized variables, absence of deadlock, and many others, perhaps ultimately to template-based proof
of post conditions and program termination for generated programs. :

To make this vision practical, many engineering issues must be addressed, including presentation
issues, methods for lightweight inference [2] and support for transforming and enhancing complex sets of
analysis rules. Other issues include systematic methods for dynamic analysis, testing, and debugging of
program generation rules. It is not reasonable to expect progress to occur in an instantaneous quantum
leap to perfection. A realistic process is a gradual one, where simple sets of program generation rules are
deployed, and gradually tuned, improved, certified, and extended. A key issue is enabling rule
enhancement and exception closure extension without invalidating all previous effort on analysis and
certification of the previous versions.

39

The difference between the program generation approach proposed here and current compiler

generation tools is the associated static analysis capabilities for the program generation rules. It is
possible that in the future, ultra-reliable compilers will be built using techniques derived from those
introduced in this paper.

REFERENCES

1.

)

F. Bauer, H. Ehler, A. Horsch, B. Moller, H. Partsch, O. Paukner and P. Pepper. The Munich Project
CIP. Vol. 2: The Program Transformation System CIP-S, Springer, Berlin, 1987.

V. Berzins, Light Weight Inference for Automation Efficiency , Proceedings of the 71998
ARO/ONR/NSF/DARPA Monterey Workshop on Engineering Automation for Computer Based
Systems, Monterey California, 1999.

N. Bjomner, Type Checking Meta Programs , Proceedings of the Workshop on Modeling Software
System Structures in a F. astly Moving Scenario, Santa Margherita, Italy, 2000,

T. Reps, Generating Language-Based Environments, Doctoral Dissertation, August 1982.

D. Volpano, R. Kieburtz, Software Templates , CS/E 85-011, Department of Computer Science
and Engineering, Oregon Graduate Center, 1985.

40

SN Integrated Design and Process Technology, IDPT 2000
5 Printed in the United States of America, June, 20CC
© 2000 Society for Design and Process Science

l,,',"
-\

<X
WSS

YA %

SOUIETY
N

REUSE AND RE-ENGINEERING OF LEGACY SYSTEMS'

Jiang Guo and Luqi*
Research Associate
US National Research Council CA, USA
*Department of Computer Science
US Naval Postgraduate School CA, USA

ABSTRACT software components which implement abstractions

Software reuse is widely considered to be a way to
increase the productivity and improve the quality and
reliability of new software systems. Identifying, extracting
and reengineering software components that implement
abstractions within existing systems is a promising cost-
effective way to create reusable assets and re-engineer
legacy systems. This paper summarizes our experiences
with using computer-supported methods to develop a
software architecture to support the re-engineering of the
Janus Combat Simulation System. In this effort, we have
developed an Object-Oriented architecture for the Janus
Combat Simulation subsystem, and validated the
architecture with an executable prototype. In this paper,
we propose methods to facilitate the reuse of the software
component of these systems by recovering the behavior of
the systems using systematic methods, and illustrate their
use in the context of the Janus System.

1. BACKGROUND

Rapid changes in hardware and software technology,
combined with rapid changes in requirements, require new
methods to enable the efficient evolution of current
software systems. A significant portion of these systems
are real-time control systems that typically have rigid
performance and reliability requirements. The ever

-increasing need to integrate new requirements into these

systems poses a challenging problem for the industry as it
strives to respond in a timely, accurate manner. There is a
lack of reliable methods to maintain and evolve computer
based systems.

Software reengineering is the process of
understanding existing software and improving it, for
increased or enhanced functionality, better
maintainability, configurability, reusability, or other
software engineering goals. The process involves
recovering existing software artifacts and organizing them
as a basis for future evolution of the software system.
Software reuse is a popular way to increase productivity
and improve the quality and reliability of new software
systems. Identifying, extracting and reengineering

within existing systems is a promising cost-effective way
to create reusable assets and re-engineer legacy systems.

We have explored reuse in the context of a case study
that addresses the re-engineering of the Janus System.
Janus is a software-based war game that simulates ground
battles between up to six adversaries. It is an interactive,
closed, stochastic, ground combat simulation that features
precise color graphics. Janus is “interactive” in that
command and control functions are entered by military
analysts who decide what to do in crucial situations during
simulated combat. The current version of Janus operates
on a Hewlett Packard workstation and consists of a large
number of FORTRAN modules, organized as a flat
structure and interconnected with one another via
FORTRAN COMMON blocks. This software structure
makes modification of Janus very costly and error-prone.
There is a need to modernize the Janus software into a
maintainable and evolvable system and to take advantage
of modern personal computers to make Janus more
accessible to the Army. TRAC-Monterey is re-engineering
Janus into an object-oriented software system that is
written in the C++ programming language and operates on
personal computers. Prior to rewriting Janus in C++, the
software engineering group at the Naval Postgraduate
School was asked to extract the existing functionality
through reverse engineering and to produce an object-
oriented architecture that supports existing and required
enhancements to Janus functionality.

Software systems evolve as modifications are made to
fix defects or to enhance functionality. Software that has
been involved in the evolutionary process for many years
often reaches a state where a decision must be made to
impose such major changes to the software that significant
re-engineering is required. This decision is typically based
on factors such as the state of deterioration of the
software, high modification costs resulting from reliance
of the software on outdated paradigms, ineffective
documentation, and obsolescence of hardware platforms
on which the software is housed. We have been
developing software evolution techniques for several
years, and have applied them to the Janus software, which
has many of the features listed above.

41

* This research was supported by ARO(38690-MA), ARO(35037-MA) and DARPA(99-F759).

The complexities associated with the re-engineering
of large complex systems and the non-availability of
effective conventional methods to address the
complexities suggest the need to explore new research
directions. One of the historically problematic features of
conventional methods is that the models that are produced
are typically not applicable across multiple phases of the
software development or the software re-engineering
process. The software engineer experiences both a
syntactic and semantic disconnect from one life-cycle
phase to the next. Another problematic feature is that
current methods are not sufficiently automatable to
feasibly support the re-engineering of complex systems
due to lack of effectively computable and accurate
methods for extracting and assessing the information that
must be analyzed. This research focuses on enhancing
software evolution by defining a formal framework which
includes methods and representations that are integrable
across multiple phases of the software evolution process.

The objectives of this paper are to:

* Describe a formal framework for design recovery.
Design recovery is a vital aspect of the software
evolution process. We define a formal framework for
recovering design information that facilitates the
derivation of multiple higher level abstractions with
varying levels of formality.

¢ Explore the reuse and reengineering method of the
legacy systems. The method will help to reuse the
algorithm and data information extracted from the
legacy system and reengineering the system and class
Structure through re-organizing the data and
functions.

* Investigate specification representations. System
requirements expressed with formal mathematical
representations improve the reliability and
maintainability of a systtm and extend the
opportunities for computer aid. We define a
methodology that facilitates the creation of
specifications of requirements from code.

* Report on our experiences in applying these concepts
to the re-engineering of the Janus system.

2. OBJECT ORIENTED MODEL

We are developing a methodology that establishes a
formal foundation from which to reengineer systems. The
methodology consists of two major steps: the derivation of
object-oriented design models and the derivation of formal
specifications from the design models.

1) Object-oriented design models: An object-oriented
view of a non object-oriented system provides
understanding about the behavior and relationships in
the system and facilitates the re-engineering of a
system to an object-oriented implementation [1].
Object-orientation is the amalgam of three concepts:
encapsulation, polymorphism, and inheritance.

Encapsulation is realized as a class. Classes are
instantiated to create objects, which form the basic
run-time entity. Polymorphism refers to the ability of
objects to change type during program execution, so
that generalized algorithms can be applied to many
types of objects. Inheritance defines a relation
between classes whereby the definition of a class is
based on extending and specializing the definitions of
existing classes. It encourages the reuse of classes
that are similar by allowing the tailoring of parent
classes to meet the needs of a class with similar
requirements in a way that meet the requirements of
the parent classes. Thus, “inheritance coupled with
polymorphism and dynamic binding minimizes the
amount of existing code that must be changed when
extending a system”. We have developed new
techniques to derive object representations from non
object-oriented code [2].

2) Specifications: We have developed a set of high-level
specification tools (CAPS) that formally represent the
functionality of legacy systems in an executable form
that supports prototyping. A formal specification of a
system, which is a description of a system using 2
notation with a precisely defined semantics, provides
clear and precise communication of the system
requirements by avoiding the ambiguities of natural
language, and thereby reducing design errors and
testing time. Benefits of CAPS methods are discussed
at length in [3, 4]. A process which includes the
creation of a graphic representation of a legacy
system from code will serve to not only provide
structure and accurate documentation for the system
but will also allow the system to utilize the power of
graphic specifications for the re-engineering process.
We have derived methods to express the functionality
of the legacy systems using graphic methods.

The research was motivated by the need for better
techniques for the extraction and utilization of desirable
functionality of an existing system for re-engineering,
reuse, and maintenance. The work was also motivated by
the recognition that graphic specifications are currently
being used successfully on a broad range of applications
in industry because of their potential to decrease software
costs and enhance software reliability by helping detect
errors. The abstractions will provide suitable
representations from which to forward engineer a system
and will facilitate the integration of existing requirements
with new requirements.

3. REUSING AND RE-ENGINEERING METHODS

We present a new program slicing process for
identifying and extracting code fragments implementing
functional abstractions. The process is driven by the
specification of the function to be isolated, given in terms
of a precondition and a postcondition. Symbolic execution

42

techniques are used to abstract the preconditions for the
execution of program statements and predicates. The
recovered conditions are then compared with the
precondition and the postcondition of the functional
abstraction. The statements whose preconditions are
equivalent to the pre and postconditions of the
specification are candidates to be the entry and exit points
of the slice implementing the abstraction. Once the slicing
criterion has been identified the slice is isolated using
algorithms based on dependence graphs. The process has
not been specialised for programs written in the
FORTRAN or C language. Both symbolic execution and
program slicing are performed by exploiting the Data
Flow Graph (DFG) and Control Flow Graph (CFG), a
fine-grained dependence based program representation
that can be used for most software maintenance tasks. The
work described in this paper is aiming to explore reverse
engineering and reengineering techniques for reusing
software components from existing systems.

3.1. PROGRAM SLICING AND INFORMATION
EXTRACTING

We extracted dependency and control information to
enable the definition of object models. This phase groups
together the activities of source code analysis and
produces sets of software components. Each one of these
sets is a candidate to make up a reusable module when
suitably ~ de-coupled, reengineered and possibly
generalised. This work includes code structuring, code
segmentation, dependency analysis, and finally
aggregation to produce design abstractions.

We initiated the design recovery process with a
preprocessing step that restructures code. We built on the
theory that unstructured code can be written using only D-
structures [5] and relied on existing algorithms for that
purpose [6]. Our research within this phase involves the
use of program slicing techniques for isolating code
fragments implementing functional abstractions. Program
slicing has been used both as structural and specification
driven method. As structural method, program slicing has
been used to identify external user functionalities in large
programs. The isolation of an internal domain dependent
function can be driven by its formal specification. The
specification can be used together with symbolic
execution techniques to identify a suitable slicing
criterion. Code segmentation is needed in order to reduce
the granularity and thus the complexity of the remaining
processes. We have defined a segmentation scheme that
separates the code into modular units while also removing
syntactic sugar features of the code. We have also defined
heuristics to attach in-code documentation to the
appropriate segment. For a program P the result is a set of
segments, such that SG = {sgi, sga, ... 5g:} and Pr= Usg;,
where 1 <i < n and P; represents code that is identical in
functionality to P.

Following the segmentation, we defined dependency
algorithms that analyze each sg; Specific slicing
algorithms that are modified forms of the slicing
algorithms found in [7] are employed at the statement,
construct, and block levels. These algorithms provide
information on all variables: local variables, non-local
variables, array variables, and data typing.

The results of the restructuring, segmentation, and

. dependency steps are segment design representations and

a global design representation. These representations
include traditional methods, such as call graphs, structure
charts, and hierarchical diagrams and other less
conventional representations such as variable usage and
state change descriptions. These representations serve as
input to perform object identification and to create formal
specifications of object behavior.

Results of our work include methods that recover the
design information at varying levels of granularity,
expressible in numerous forms from both data and
functional viewpoints. The data and control dependency
representations are the basis for our object extraction
research.

3.2. REUSABLE COMPONENT CONSTRUCTING

This phase groups together the activities of the
analysis of the bag of software reusable component sets
singled out in the Program Slicing and Information
Extracting phase and produces a set of reusable modules,
using reengineering techniques. Also, this phase groups
together the activities that produce the specifications of
each one of the reusable modules obtained in this phase.
Both the functional and the interface specifications must
be produced in this phase. We used object-oriented and
prototyping techniques to abstract-a formal specification
from source code modules implementing functional
abstractions. Finally, we need to classify the reusable
modules and related specifications according to a
reference taxonomy. The aim is to re-engineer legacy
systems with the reusable modules produced.

Program comprehension is the most expensive
activity of software maintenance. The different phases of a
reuse reengineering process involves comprehension
activities for understanding the structure of existing
systems, the functionality implemented by a reuse
candidate module and the reengineering effort. We present
a method for reuse reengineering existing FORTRAN or
C systems. Our goal is to create reusable software
components with object-oriented methods.

The problem of extracting encapsulated reusable
software components from legacy systems is an area of
active research. The concept of the object module as a
means of restructuring FORTRAN code into an object-
oriented style was introduced in [8]. While code structured

43

as object modules is not truly object-oriented, it marked
the beginning of progress along that path. The problem of
object identification has been approached by first
developing a formal specification of the code and then
identifying objects from the formal specification in some
methods [9]. In an informal approach, Sward translates
code to natural language descriptions and then applies
object-oriented analysis and design techniques, such as
OMT, to create the object design [10]. A design recovery
approach which automatically extracts task flow
information utilizing both source code and non-source
code information is found in Holtzblatt’s work [11]. Other
research that addresses behavior abstraction includes
object extraction and translation to C++ using data flow
analysis [12], partial evaluation for code comprehension
[13], and development of new Ada programs by reusing
FORTRAN code [14].

In other related work, a complete translation to an
intermediate form in the UNIFORM language is used in
Lano’s work [15] as a bridge to a functional description
language and then finally to a Z specification. In some
methods, COBOL code is reverse engineered to Z-++ and
then reengineered to COBOL code using refinement as a
part of the REDO (Re-engineering, Documentation, and
Validation of Systems) project [16]. A transformation
process that creates C++ code from COBOL code is given
in [17]. Other work on reverse engineering of COBOL
systtms to SSADM specifications is a part of the
RECAST (Reverse Engineering into CASE Technology)
method in which information extracted from source code
is represented in PSL to eventually produce input for the
physical design phase of SSADM [18]. In an approach
that requires a large set of transformations, Ward
translates assembler code to a wide-spectrum language
(WSL) which contains primitive statements, such as
assertions and guards; compound statements, including
sequential composition, choice and recursive procedures;
and other language extensions including a command
language, loops with multiple exits, and mutually
recursive procedures [19]. In some approaches, code
semantics are expressed as logic specifications [20].

Research that involves the extraction of modules and
reusable components from legacy code includes
algorithms that construct a hierarchical structure from an
implementation description [21], methods to identify
abstract data types based on user defined data types [22],
direct slicing to extract specific types of code segments
[23], identification of cliches to recover program design
[24], program segmentation based on focusing and
factoring operations on COBOL code [25, 26], and
component identification based on formal parameter types
and global variables [27]. Methods to abstract the
behavior of programs by deriving mathematical
expressions from prime programs are found in Hausler’s
work [28]. An enabling technology which represents
software in the form of annotated abstract syntax trees in a
persistent object-oriented database and then uses an

executable specification language for analysis is described
in Markosian’s work [29].

We use an incremental approach based on graph-
theoretic and set-theoretic concepts. We have investigated
reusable component constructed from procedural code to
produce intermediate representations from functional and
data viewpoints. We then use the intermediate
representation to define a high-level object view of the
legacy system. Our code and concept abstraction methods
include the identification of candidate objects along with
their associated attributes and methods.

Our object extraction algorithms are based on the
following object model for object O:
0 =<A, MD>
A={A, A y» Ap}
MD = {MD|,MD, , MD}
where A represents attributes and MD represents
operations that act on members of A. Our approach is both
data-driven and bottom-up. The granularity of a program
is viewed at the program, subroutine, and statement levels;
however, the primary focus for the unit of functionality is
the subroutine. Using the parameters necessary for the
execution of each subroutine, the goal is to find the
smallest set of parameters needed to obtain the strongest
cohesive unit, which becomes a candidate set of attributes
for an object type.

We use a greedy approach to the derivation of the A
component of O which considers both actual parameters
and global variables. To partition the set of actual
parameters, AP, where

AP={AP AP,, AP}

a graph-theoretic approach is used. We define an
undirected graph G with nodes AP;, 1 <i £ n and with
edges connecting AP; and AP; if the two parameters both
occur in at least one subroutine call. A weight function,
W, is then defined to give values to the edges of G. W is
computed for all pairs of parameters, AP;, AP; € AP, with
respect to each subroutine invocation. A constant is used
to indicate positive, negative or null contribution to
cohesiveness. We define a weighted adjacency matrix M
where the value of each M(i, j) is the cumulative value of
W(AP;, AP)) over all subroutine invocations. Thus, M(i, j)
represents a measure of the degree to which parameters
AP;and AP, are functionally related.

Following the derivation of the weighted adjacency
matrix, an initial set of object attributes is determined by
using a threshold approach. The potential threshold values
are the non-negative real numbers r, such that r € M. For
each r, the transitive closure is computed to obtain the
attribute sets that are related at that threshold level. The
objective is to select the threshold level that produces the
largest data sets with the strongest cohesion. Domain
knowledge used by a design engineer is encouraged for
the selection of the optimal threshold level.

44

Building on the actual parameter analysis, a similar
approach for determining strength among global variables
is used. Issues related to the global variables, including
aliasing, were resolved. After the determination of the
attributes, the method component for an object is
determined. We use a state change approach to attach
methods to objects. In order to derive the state change
information needed, we modified the concept of program
slicing from its original definition in Weiser’s paper [7].
We perform slicing for each attribute set on 2 subset of the
subroutines and the resultant set becomes a method in the
corresponding object.

The result of applying these algorithms is a set of
candidate objects. Class abstractions need to be defined
over this set to take advantage of the abstraction and
inheritance features of object orientation. We have only
begun to investigate the class abstraction process.
Enhancement of the class abstraction methods is a part of
our ongoing work.

3.3. JANUS (A) CASE STUDY

The objective of the case study was to re-engineer an
object-oriented architecture for the Janus(A) legacy
system. The first step in our process, system and
requirements understanding, took the form of a series of
brief meetings with the client, TRAC-Monterey, which
also included a short demonstration of the current
software system. We asked questions and made notes on
the system’s operation and its current functionality. We
paid particular attention to the client’s view of the system
to gather their ideas on its strengths, weaknesses, and
desired and undesired functionality. Additionally we
collected copies of the Janus User’s Tutorial manual,
Janus User Manual, the Software Design Manual from a
previous version of Janus (3.X/UNIX), and the Janus
Version 6.88 Release Notes. Our goal was to gather as
much information as we could about the currently existing
system to aid in gaining a clearer understanding of its
present functionality. The intent of this procedure was to
ensure that the system’s current functionality was not lost
nor misrepresented in the transformation into a more
abstract, modular format, and to identify aspects of current
system functionality that did not match user needs.

The focus of the re-engineering effort was to
abstractly capture the system’s functionality and then
produce system models that would most accurately
represent that functionality, while factoring out
independent concerns and aspects that were likely to
change.

Ammed with the Janus source code, we proceeded to
divide the code by directories amongst the team members.
Each team member was assigned roughly six to seven
directories to explore, examine and gather information.
Using manual techniques supported by UNIX commands

and review procedures, we were able to get a fairly good
idea of what each subroutine was designed to do. We also
used the Software Programmers’ Manual to aid in
understanding each subroutine’s intended function. In
doing so we were able to group the subroutines by
functionality to get a better understanding of the major
data flows between programs.

Using that knowledge, we developed functional
models from the data flows. We used an automated tool
known as CAPS [3], Computer-Aided Prototyping
Systems, version 2.0, developed by Professor Luqi and the
Software Engineering group at the Naval Postgraduate
School, to assist in developing the abstract models. CAPS
.allowed us to rapidly graph the gathered data and
transform it into a more readable and usable format.
Additionally, CAPS enabled us to develop our diagrams
separately with the associated information flows and
stream definitions, and then join them together under the
CAPS environment, where they can be used to generate an
executable model of the architecture.

Next, we proceeded to develop object models of the
Janus System using the aforementioned materials and
products, to create the modules and associations amongst
them. This was probably the most difficult and most
important step. It required a great deal of analysis and
focus to transform the currently scattered sets of data and
functions into small, coherent and realizable objects, each
with its own attributes and operations. In performing this
step, we used our knowledge of object-oriented analysis
and applied the OMT techniques and the UML notations
to create the classes and associated attributes and
operations. This was a crucial step because we had to
ensure that the classes we created accurately represented
the functions and procedures currently in the software.
We used the HP-UNIX systems at the TRAC-Monterey
facility to run the Janus simulation software to aid in
verifying and/or supplementing the information we
obtained from reviewing the source code and
documentation. This step enabled us to better analyze the
simulation system, gaining insight into its functionality
and further concentrate on module definition and
refinement.

During this phase of the project, the re-engineering
team met several times each week for a period of two and
a half months to discuss the object models for the Janus
core elements and the object-oriented architecture for the
Janus System. They presented the findings to the Janus
domain experts from TRAC-Monterey and Rolands &
Associates at least once per week to get feedback on the
models and architectures being constructed. In addition,
the re-engineering team also presented the findings to
members of the OneSAF project, the Combat21 project,
and the National Simulation Center. Based on the
feedback from the domain experts, the re-engineering
team revised the object models for the Janus core elements
and developed a 3-tier object-oriented architecture for the

45

Janus System. This revision required creative human
effort, as described next.

We used our approach to reuse the information
extracted from the old system. The most important type of
reuse was reuse of implicit domain models. We reused the
domain analysis and knowledge since the domain was
stable across the re-engineering transformations. This
greatly reduced the time and effort that needed be spent on
domain related work, such as the analysis of the domain
dependent functions. Second was reuse of implementation
concepts. This kind of reuse included the user
functionalities, functional abstraction, task flow, and user
interface specifications. Third was the reuse of data
models. The reuse of data models was very helpful to re-
organize the data information although we needed to
transform the old data structures into new data structures.
Fourth was the reuse of algorithms. The code could not be
reused directly because it had to be transformed into
another language (Ada). However, the main algorithms
were the same ~ we did not need to redesign the
algorithms, we just rewrote them in new languages.

The new architecture of Janus uses an explicit priority
queue of event objects to schedule the simulation events.
Each event object has an associated simulation object,
which is the target of the event. There are 14 event groups,
which correspond to the 14 event subclasses. An object
oriented approach enabled us to reduce the number of
event types needed in the simulation, compared to the
legacy code. Depending on the subclass to which an event
object belongs, the "execute" method will invoke the
corresponding event handler of the associated simulation
object to handle the event. The simulation object
superclass defines the interface of the event handlers for
the event groups, and provides an empty body as the
default implementation for the event handlers. The
methods are overridden by the actual event handler code
at the subclasses that have non-empty actions associated
with the events.

This approach enables the same code to handle all
kinds of events, including those for future extensions that
are yet to be designed. Event objects are created and
inserted into the event queue either by the initialization
procedure at the beginning of the simulation, by the
constructors of simulation objects, or by the actions of
other event handlers. Depending on the actual
implementation of when and how events are inserted into
the priority event queue, it may be necessary to allow
events to change their priorities while waiting in the
queue. The priority of an event is determined by the time
at which the event is supposed to occur, and by event type
in case more than one event is scheduled at the same time.

One of the objectives of the reengineering effort was
to add the capability for a Janus simulation to interact with
other simulations in a distributed environment. To
accomplish this, World Model object subclasses were

created to provide specialized methods for the world
modeler to update objects from other simulators.
Information concerning objects local to the Janus
simulator can be broadcast over the simulation network,
either periodically by an active world modeler object, or
by individual local objects whenever they update their
own states.

3.4. EVALUATION OF RESULTS

We tested our methods for identifying objects on a set
of programs ranging from 500 lines of code to 10,000
lines of code. As a part of our test bed, we used programs
from the Janus (A) which were developed by DoD. Our
test protocol was to begin the testing process with small
programs so that the dependency and slicing information
could be validated manually. The testing strategy was to
choose test programs that exhibit different code
characteristics, particularly related to the use of global
variables. We were able to manually verify the accuracy
of the extraction routines on small systems.

We then applied the methodology to medium-sized
programs and evaluated the results. Our evaluation
process included the identification of a set of metrics
against which to measure the designs. Metrics in the
reverse engineering area are sparse. We adopted the
approach of measuring our success using the following

. three metrics:

M.1 Functional equivalence of newly created and original
designs.

M.2 Quality of newly created design.

M.3 Reuse rate of the original program.

M.1 Functional equivalence of newly created and
original designs

The design of a program S1 is functionally equivalent to
the design of program S2 if when they are executed with
identical inputs, they produce identical outputs. This is a
critical measure. To assess the functional equivalence of
our abstracted designs, we implemented the designs in an
object-oriented environment and then ran test cases on the
new and the old systems. Based on our test cases, the test
systems were functionally equivalent.

M.2 Quality of new designs

Our view of a significant metric is the quality of the
resulting design; however, measuring quality is far from
straightforward. We based our findings in this area on the
traditional view of design quality in terms of
modifiability, modularity, levels of abstraction, loose
coupling, and high cohesion [30]. We also considered
metrics that have been derived specifically for object-
oriented designs, including depth of inheritance tree
(DIT), number of children (NOC), response for a class

46

(RFC), and lack of cohesion in methods (LCOM) [31].
Coupling can be measured by DIT and NOC; cohesion
can be measured by LCOM; abstraction measured by DIT
and NOC; modifiability can be measured by RFC and
LCOM; and modularity measured by DIT and NOC.

For our case studies, we found low measures for both
DIT and NOC which is expected based on the
conservative view of creating the subclasses, medium
measure for RFC due to global variable usage, low LCOM
because the methodology insures cohesion in the creation
of the objects. Thus, the designs were low on coupling,
high on cohesion, and generally good on modifiability.

M.3 Reuse rate of orginal program

Reuse rate of the program is measured by the percent of
the program that is actually utilized in the extraction
process. If reuse rate is not 100%, one of two cases
occurs: 1) some of the system functionality may not be
preserved, or 2) statements not extracted represent dead
code. However, 100% reuse rate does not imply functional
equivalence, and vice versa. The reuse rate for our test
programs was in all cases greater than 40%. This measure
gives another perspective from which to assess the quality
of the newly created design abstractions.

4. CONCLUSION

Successful re-engineering requires a delicate balance
between creative concepts for requirements enhancement
and computer aid. Bottom-up tools can help guide this
creative process and help to ensure its accuracy.

Our experience in this case study suggests that
prototyping and reuse can be a valuable aid in re-
engineering of legacy systems, particularly in cases where
radical changes to system conceptualization and software
structure are needed.

In particular, we found that constructing even a very
thin skeletal instance of the proposed new architecture
raised many issues and enabled us to correct, complete,
and optimize the architecture for both simplicity and
performance.

The computer-aided prototyping tools in the CAPS
system enabled us to do this with a minimal amount of
coding effort. The bulk of the code was generated
automatically, enabling us to concentrate on system
structuring issues, to consider and evaluate various
alternatives, and to improve the design while doing
detailed manual implementation for only a few pages of
critical code. :

REFERENCES

[1] Rivera, R., “Knowledge-Based Metalangauge-Based
Object Abstraction for Automatic Program
Transformation”, Proceedings of the 4th Systems Re-
engineering Technology Workshop, 1994, pp. 319-
326. :

(2] Jiang Guo and Lugi, “Object Modeling to Re-
engineering Legacy Systems”, Proceedings of the 11"
International Conference on Software Engineering
and Knowledge Engineering, Kaiserslautern,
Germany, June 1999, pp. 346-353.

[3] Luqi, "Computer-Aided Prototyping - Status and
Experiments", Proceedings of International
Symposium and Workshop on New Models Jfor
Software Architecture, Kanazawa, Japan, Nov. 8,
1993, pp. 23-30.

[4] Luqi, "Software Evolution via Rapid Prototyping",
IEEE Computer, vol. 22, no. 5, May 1989, pp. 13-25.

[5] Dijsktra, E. W., A Discipline of Programming,
Prentice Hall, 1976.

[6] Boehm, C and Jacopii, G., “Flow Diagrams, Turing
Machines, and Languages with only Two Formation
Rules”, Communications of the ACM, vol. 9, no. 5,
May, 1966, pp. 366-371.

[7] Weiser, M., “Program Slicing”, IEEE Transactions
on Software Engineering, vol. SE-b, No.4, July, 1984,
pp. 352-357.

[8] Zimmer, J. A., “Restructuring for Style”, Software
Practice and Experiencé, vol. 20, no. 4, 1990, pp.365-
389.

[9] Gannod, G. C. and Cheng, B. H. C., “A Two-Phase
Approach to Reverse Engineering Using Formal
Methods”, Proceedings of Formal Methods in
Programming and Applications Conference, June,
1993, pp. 335-348.

[10] Sward, R. E., and Steigerwald, R. A., “Issues in
Reengincering from Procedural to Object-Oriented
Code”, Proc. 4" Systems Re-engineering Technology
Workshop”, 1994, pp. 327-333.

[11] Holtzblatt, L. J., Piazza, R. L., Reubenstein, H. B.,
Roberts, S., and Harris, D. R., “Design Recovery for
Distributed Systems”, JEEE Transactions on Software
Engineering, vol. 23, no. 7, July, 1997, pp. 461 - 472.

(12] Ong, C. L. and Tsai, W. T., “Class and Object
Extraction from Imperative Code”, Journal of Object-
Oriented Programming, April, 1993, pp. 58-68.

(13] Blazy, Snadrine, and Facon, P., “Partial Evaluation
as an Aid to the Comprehension of FORTRAN
Programs”, “Proceedings of 2nd Workshop on
Program Comprehension, 1993, pp. 46-54.

[14] Wilkening D, Loayll, E., Pitarys, M, and Littlejohn,
K., “A Reuse Approach to Computer-Assisted
Software Re-engineering,” Proceedings of the
Systems Re-engineering Technology Workshop, 1994,
pp- 83-90.

47

{15] Lano, K. and Haughton, H., “Integrating Formal and
Structured Methods in Reverse Engineering”,
Proceedings of the Working Conference on Reverse
Engineering, Baltimore, MD. May, 1993, pp. 17-26.

[16] Bowen, J. P., and Hanchey, Michael G., “Ten
Commandments of Formal Methods”, IEEE
Computer, April 1995, pp. 56-63.

[17] Leite, J.C., Sant, M., and Prado, A., “Porting
COBOL Programs Using a Transformational
Approach”, Journal of Software Maintenance, vol. 9,
no. 1, 1997, pp. 3-30.

(18] Edwards, H. and Munro, M., “RECAST: Reverse
Engineering from COBOL to SSADM
Specifications”, Proceedings of 5th Int. Conference
on Software Engineering, pp. 499-508.

[19] Ward, M. P., and Bennett, K. H., “A Practical
Program Transformation System for Reverse
Engineering”, Proceedings of Working Conference on
Reverse Engineering, 1992, pp. 212-221.

{20] Gannod, G. C. and Cheng, B.H.C, “Using Informal
and Formal Techniques for the Reverse Engineering
of C Programs”, Proc. 3rd Working Conference on
Reverse Engineering, 1996, pp. 249-258.

{21] Choi, S. C. and Scacchi, W., “Extracting and
Restructuring the Design of Large Systems”, JEEE
Software, January, 1990, pp. 66-73.

[22] Canfora, G., Citile, A. and Munro, M., “A Reverse
Engineering Method for Identifying Reusable
Abstract Data Types”, Proceedings of the Working
Conference on Reverse Engineering, May, 1993, pp.
73-82.

[23] Cutillo, F., Fiore, P and Visaggio, G., “Identification
and Extraction of Domain Independent Components

in Large Programs”, Proceedings of Working
Conference on Reverse Engineering, 1993, pp. 83-92.

[24] Rich, C. and Wills, L., “Recognizing a Program’s
Design: A Graph-Parsing Approach”, IEEE Software,
Jan. 1990, pp. 82-90.

[25] Ning, J. Q., Engberts, A. and Kozaczynski, W,
Recovering Reusable Components from Legacy
Systgems by Program Segmentation”, Proceedings of
Working Conference on Reverse Engineering, 1993,
pp. 64-72.

[26] Ning J. Q. Engberts, A., and Kozaczynski, W.,
“Automated Support for Legacy Code
Understanding”, Communications of the ACM, vol.
37, no. 5, May, 1994, pp. 50-57.

[27] Liu, Sying-Syang and Wilde, N., “Identifying
Objects in a Conventional Procedural Language: An
Example of Data Design Recovery”, Proc. 1990
Conference on Software Maintenance, pp. 266-271.

[28] Hausler, Phillip A. and Pleszkock, Mark G., “Using
Function Abstraction to Understand Program
Behavior”, IEEE Software, Jan. 1990, pp. 55-64.

[29] Markosian, Lawrence, Newcomb, P. Brand, R,
Burson, S. and Kitzmiller, T., “Using an Enabling
Technology to Reengineer Legacy Systems”,
Communications of the ACM, vol. 37, no. 5, May,
1994, pp. 58-70.

[30] Achee, B. L. and Carver, D. L., “Creating Object-
Oriented Designs From Legacy Code”, Journal of
Systems and Software, February 1997, pp. 30-41.

[31] Chidamber, S. R., and Kemerer, C. F., “A Metrics
Suite for Object-Oriented Design”, J[EEE
Transactions on Software Engineering, vol. 20, no. 6,
June, 1994.

48

A Survey of Software Reuse Repositories”

Jiang Guo
Research Associate
US National Research Council
NPS/CS, Monterey, CA 93943, USA

Gj@cs.nps.navy.mil

Abstract

Reuse libraries are organizations of personnel,
procedures, tools, and software components directed
toward facilitating software component reuse to meet
specific cost-effectiveness and productivity goals. The
paper gives a survey of the major software reusable
component repositories. This survey will be a base to
develop future efficiently searchable, user-friendly, useful,
and well-organized repositories.

1. Introduction

Reuse libraries are directed toward facilitating
software life cycle component reuse to meet cost-
effectiveness and productivity goals [1]. The principal
rationale for the existence of a reuse library is to provide
ready access to reusable components by the staff of
development and maintenance organizations, and to
support system composition and rapid prototyping [2, 3].
The number of cases in which library systems are
successfully being used to maintain code and other
reusable software life cycle components continues to
increase. It is essential that the library system support
developers and other users in the process of locating,
retrieving, comparing, and maintaining reusable software
components.

Reuse libraries are only one critical element of

successful reuse program. In the past, reuse has primarily
been the result of opportunistic success, where one
program was able to take advantage of the efforts of
another. There must be a paradigm shift from current
software engineering and development practices to a
software engineering process in which software reuse is
institutionalized and becomes an inseparable part of the
software development process. Reuse must be systematic,
driven by a demand for software components identified as
a result of domain analysis and architecture development.
Reuse needs to be treated as an integral part of engineering
and acquisition activities. Most importantly, it is essential
that an organizational infrastructure be implemented to

* This research was supported by ARO(38690-MA) and DARPA(99-F759).

Lugi _
Department of Computer Science .,
US Naval Postgraduate School

Monterey, CA 93943, USA
Lugi@cs.nps.navy.mil

manage domains, define products and standards, establish
ownership criteria, allocate investment resources, and
direct the establishment and population of reuse libraries.
An effective infrastructure will guide reuse activities to
avoid duplication of effort, impose necessary
standardization, and ensure library population is user
demand-driven.

2. Library Mechanism

Usually, critical reuse library capabilities include the
following:

- automated library system with a Graphical User
Interface, for browsing, searching and retrieval;

- standard component framework (e.g., to include
purpose, functional description, certification level, key
environmental constraints, historical results of usage
and legal restrictions);

- effective classification scheme for each domain; and,

- thorough system and component documentation.

Each library system must be designed to provide as
much automated support as possible to users in
identification, comparison, evaluation, and retrieval of
similar reusable components. Support for adapting,
transforming, and specializing components is desirable. It
must also provide a range of support to users in locating
and comparing the relative reusability of individual library
components. Furthermore, the system must be readily
available to system developers if it is to be used, and must
support access from a variety of platforms. As the library
acquires significant number of Reusable Software
Components (RSCs), an automated search and retrieval
system becomes indispensable [4, 5, 6]. Whatever tool is
used, the library must have a way to classify RSCs so that
a user can quickly find what is wanted without frustration
and delay. Sophisticated, expert system, knowledge-based
approaches and new technologies for high-speed text
search are the subjects of current research efforts.
Generally speaking, software reusable component retrieval

49

methods include browsing, keyword searching, facet
approach, syntactic matching, and semantic matching {1].

Standard component frameworks help ease the
process of comprehension and comparison of similar
components, and include data such as relative numeric
measures for reusability, reliability, maintainability and
portability [7]. Inclusion of testing and component
documentation provides additional information to help the
potential user gauge the effort required to tailor the
component for reuse.

Effective classification schemes are essential to assist
the user in locating and comparing library components,
and to speed the process of identifying appropriate
components for the task at hand [8, 9]. Finally, system and
component documentation complete the cycle of
evaluation, and enable the reuser to determine which
components have reuse potential with regard to specific
requirements, and to fully comprehend the process of
obtaining components for reuse in a new application.

In addition, other equally important requirements have
been identified that require resolution in order to support
cohesive, wide reuse. These include I) integration of
library capabilities and procedures within the system
development and acquisition process; 2) identification and
support of specific requirements associated with the
security and integrity of reusable components
implementing Trusted Computing Base (TCB) or other
security capabilities; and 3) intercommunication and
interoperabllity among diverse library systems. Experience
has shown that these requirements can only be resolved
through the combination of developing technology,
standard procedures and evolution or revision of existing
policies.

There are different communities for which a
repository is necessary, and each community has
somewhat different repository requirements. These
communities include the national or horizontal
communities; the local or, internal communities, and a
number of domain-specific vertical communities [10].

3. Library Operation

The reuse library, while essential, is but one
ingredient in a successful reuse program. Experience has
shown that actual support of reuse activities within a target
domain must include a range of programmatic and
technological support that includes domain analysis
activities, user indoctrination and training, metrics
collection and analysis, reuse engineering support, and
component certification and reengineering.

The importance of domain analysis activities as an
initial step in implementation of a reuse library cannot be
over-emphasized. Domain analysis activities are
considered to be an integral part of providing reuse support
to various programs. Standard products of domain analysis
include identification of high-demand categories of

reusable components, domain-specific models and
architectures, and domain specifications and taxonomies.
These direct products also provide the basis for
development of long-term implementation plans and
domain knowledge bases.

In order to measure reuse success, the library must
collect and analyze considerable data in a continuing
assessment of the library's procedures and tools, the
usefulness of its RSC collection, the accuracy of RSC
classifications, and the general responsiveness of the
library to the needs of users.

The library staff receives direction in the form of
specific operational objectives, principally aimed at
making software reuse cost-effective. In addition to
ensuring that RSCs are available, the library is in a
position to provide other support to help ensure that the
benefits of reuse are realized, including the distribution of
published manuals like Standards and Guidelines and user
documentation for library tools. In addition, on-call
assistance should be made available to users. Reuse
engineering support encompasses a wide range of
engineering activity. These activities will include working
within individual system development and maintenance
efforts to assist in (I) identification, selection and
reapplicatlon of existing reusable software components,
(2) quantification of potential savings or cost avoidance as
a result of reuse, and (3) design and implementation of
software products that will themselves be reusable in
future efforts. '

Another key area is thorough library system
documents. Documentation has proven to be an essential
aspect in establishing and operating a library.

4. Some Reusable Software Component
Repositories

4.1. Commercial Repositories

e -+1Reuse Repository

The +1Reuse system was developed by +1 Software
Engineering Co. in California {31]. It is now running on
Sun Workstation platforms. Operating system is Solaris.
GUTI is based on OpenWindows, Motif, and CDE.

The +1Reuse system supports reuse repositories
created and maintained by the user, project-wide "filtered"
repositories under strict quality controls, and selective
reuse. Selective reuse enables reuse of any submodel from
an existing or re-engineered +1Environment project. In a
sense, every +1Environment project is a reuse library.
Selective reuse significantly improves a user’s ability to
reuse all source code and documentation from all previous
projects and at any granularity. (To the best of our
knowledge, they are the only company to support this
feature.)

50

The +1Reuse system supports reuse of: design,
documentation, source code, header files, test cases, test
shell scripts, expected test results, and modeling
information.

All source code reversed engineered or developed
using the +l1Environment can be reused. -+1Reuse
addresses reuse issues such as reuse of source code under
configuration management and duplicate file names.
+1Reuse supports three forms of reuse: User-Defined
Reuse Library, Filtered Reuse Library, and Selective
Reuse. Since a programmer's productivity can be increased
by reusing existing code and documentation, +1Reuse
helps to make all source code, documentation, header files,
and test files reusable by its support of submodels. After a
submodel has been selected, +1Reuse copies the submodel
and its associated files to the new project and helps to
resolve a number of problems which may arise (e.g.,
identical file names and files checked in under
configuration management).

e Software Asset Library Management System
(SALMS)

SALMS is a system for classifying, describing, and
querying reusable assets {32]. Reuse of software assets at
all phases of the software engineering life-cycle is
recognized as being one of the major enablers for
productivity and quality improvements. However, 2
common inhibitor to company-wide reuse is often the lack
of visibility of reusable assets within the developer
community.

A central repository for reusable assets provides a
solution to this problem. The main purpose of such
repository is to provide mechanisms for classification and
storage of software assets, along with techniques for
efficiently retrieving them.

SALMS (Software Asset Library Management
System) is a software product which provide these
mechanisms. It fills the gap between development for-
reuse activities (building, acquiring, or re-engineering of
reusable assets) and the development with-reuse activities
(using reusable assets in the creation of new software
products). It plays a central role in the implementation of a
company's reuse program.

In addition, SALMS also provides features for the
requirement management activity, and for the creation and
management of a company's technical library. SALMS can
be distributed over customer’s network of PCs or UNIX
workstations and thus be accessible by all developers
within a software organization. The user interface is based
on WEB Technology.

In SALMS, an asset can be viewed as a collection of
artifacts produced throughout the life-cycle, such as
requirements, architecture models, design specifications,
source code, or test scripts.)

e Automated Software Reuse Repository (ASRR)

The Automated Software Reuse Repository (ASRR)
tool provides users with a searchable repository of reuse
information [33]. It consists of two main parts, the
administration tool and the reuse repository. The
administration portion of the tool performs user
administrative functionality including: the ability to add,
delete, or change users and their attributes. The attributes
include the following: security levels, group and security
permissions to add, edit and delete modules. The reuse
repository allows the user to upload modules and store
them in a searchable repository.

The ASRR provides the following functions:

- Program Control. Provides complete login control for
the ASRR.

- Protection. The ASRR can limit a user's edit, delete,
viewing, add, upload and download module
permissions through the administration portion of the
tool.

- Security. The ASRR tool provides extra security for
inactive users by logging them out of the ASRR after
a 30-minute period of inactivity.

- Easy Access to Reuse Items. The ASRR tool allows
registered users flexibility in searching for reuse items
in the reuse repository by allowing the users to search
for strings of words using “not”, “or”, or “and” in
searching. '

- Reuse Information Readily Available for Users.
Specific information is available for reuse module
items including the platforms utilized, ease of reuse
and any additional information obtained from users.

e The Universal Repository

The Universal Repository was developed by Unisys
[34]. It is designed to help customers move forward into a
repository-based development environment.

The Universal Repository, which is based on object-
oriented principles, can function as the backbone of a
flexible = workgroup or enterprise development
environment. At the core of this repository is the
Repository Services Model (RSM) - which can encompass
representations of all tools, database management systems
(DBMSs), programming languages, business rules, and
data.

Customers can extend the Universal Repository by
adding their own models based on the structures provided
in the RSM. The summation of all models defined in a
repository is called the information model. Each part of
customers’ development environment becomes an
integrated piece of the whole when customers use the
models encompassed within the information model. This
unified view enables both developers and customers to
achieve inter-tool integration.

51

In addition to its modeling capabilities, the Universal
Repository offers features that enhance customers’
development environment, manage organizational
information, and make such information available to
everyone in a customers’ organization. '

Unisys is dedicated to improving customers’ product
lines with the Universal Repository. Support and training
are available to help customers quickly adopt this new
technology. By providing a shared catalog of all software
components, a repository promotes reuse. It makes it easy
to locate and access components for reuse in multiple
applications. Reusing software components can enhance
quality. Customers can develop, validate, and verify a
component for use in one product. When customers reuse
that component, they expend less time and fewer resources
to validate and verify that component for use in other
products [11]. A single change to correct a defect in a
reused component is reflected in all tools using that
component. Such consistency among products ensures
their integration and interoperability when you port them
to different operating platforms.

e AIRS

AIRS is an Al-based library system for software
reuse, which was developed by E.J. Ostertag, J.A. Hendler,
R. Prieto-Diaz, C. Braun [12]. AIRS allows a developer to
browse a software library in search of components that
best meet some stated requirement. A component is
described by a set of (feature,term) pairs. A feature
represents a classification criterion, and is defined by a set
of related terms [10, 12]. AIRS also allows representation
of packages, that is, logical units that group a set of related
components. As with components, packages are described
in terms of features. Unlike components, a package
description includes a set of member components.
Candidate reuse components (and packages) are selected
from the library based on the degree of similarity between
their descriptions and a given target description [13].
Similarity is quantified by a non-negative magnitude
(called distance) that represents the expected effort
required to obtain the target given a candidate. Distances
are computed by functions called comparators. Three such
functions are presented: subsumption, closeness, and
package comparators. The AIRS classification approach is
based on a formalization of the concepts and is similar to
faceted classification [44]. The functionality of a prototype
implementation of the AIRS system is illustrated by
application to two different software libraries: a set of Ada
packages for data structure manipulation, and a set of C
components for use in Command, Control, and
Information Systems.

¢ Reuse Library Toolset (RLT)

EVB Software Engineering, Inc. announced the
commercial release of the Reuse Library Toolset (RLT) in
1994 [35]. RLT is a system for creating and managing
collections of reusable assets independent of programming
language, design method, or development process. To
represent all life-cycle assets RLT employs the Extended
Faceted Classification System, controlled keyword,
attribute value (frames), and asset interdependencies.

Experience has shown that the cost of producing
software is significantly reduced when reuse is an integral
part of the process. RLT supports all reuse oriented tasks,
from library management through domain analysis to asset
search and retrieval. With its intuitive graphical user
interface, RLT is easy for beginners to learn, yet provides
powerful functionality for advanced users with complex
needs.

RLT provides reuse and library metrics, client-server
architecture, and ability to exchange library information
across multiple platforms and databases. These include:
DEC Alpha OSF1, HP/UX, SGI, SunOS, Solaris,
Informix, Oracle, and Sybase. Additional platforms have
been supported in 1995 include: Windows 3.1/NT and
0S/2.

RLT's open architecture allows easy integration with
existing CASE and development tools, such as structure
design tools, versioning systems and configuration
management systems.

* HSTX Reuse Repository

The HSTX Reuse Repository was developed by
Hughes STX Corporation [36]. The mechanisms are
designed so users can search/browse the contents of the
Reuse Repository for what they need and submit
contributions to the Reuse Repository librarian through
WWW pages.

4.2. Government Repositories

* Defense Software Repository System (DSRS)

The DSRS is an automated repository for storing and
retrieving Reusable Software Assets (RSAs) [14]. The
DSRS software now manages inventories of reusable
assets at seven software reuse support centers (SRSCs).
The DSRS serves as a central collection point for quality
RSAs, and facilitates software reuse by offering
developers the opportunity to match their requirements
with existing software products.

DSRS accounts are available for Government
employees and contractor personnel currently supporting
Government projects. The Account Request Form must be
approved and signed by the requestor's Government
Project Manager prior to submission to the SRP. The
Customer Assistance Office (CAO) is the SRP point of

52

contact for both technical and non-technical information
and support.

The Defense Software Repository System (DSRS)
supports reusable asset classification to comply with
published guidance (DoD 8020.1-M and TAFIM), support
domain engineering, establish more effective asset
searching, and increase interoperability. The DoD software
community is trying to change its software engineering
model from its current software cycle to a process-driven,
domain-specific, architecture-based, repository-assisted
way of constructing software [15]. In this changing
environment, the DSRS has the highest potential to
become the DoD standard reuse repository because it is the
only existing deployed, operational repository with
multiple interoperable locations across DoD. Seven DSRS
locations support nearly 1,000 users and list nearly 9,000
reusable assets. The DISA DSRS alone lists 3,880 reusable
assets and has 400 user accounts.

DSRS is adaptable to additional types of reusable
assets and better methods of describing them. The
description of repository assets is called classification.
This paper reports the results and recommendations of a
study of classification methods for storage and retrieval of
Reusable Assets (RAS) in the DSRS. The Defense
Software Repository System (DSRS) reusable asset
classification is changing to achieve policy compliance,
support domain engineering, establish more effective asset
searching, and increase interoperability.

The far-term strategy of the DSRS is to support a
virtual repository. These interconnected repositories will
provide the ability to locate and share reusable components
across domains and among the services. An effective and
evolving DSRS is a central requirement to the success of
the DoD software reuse initiative. Evolving DoD
repository requirements demand that DISA continue to
have an operational DSRS site to support testing in an
actual repository operation and to support DoD users. The
classification process for the DSRS is a basic technology
for providing customer support [16]. This process is the
first step in making reusable assets available for
implementing the functional and technical migration
strategies.

e Library Interoperability Demonstration (LID)

The Library Interoperability Demonstration (LID) is a
prototype library system [17, 18]. It is used to illustrate
how monolithic reuse libraries can be decomposed into
distinct, functional layers connected by open interfaces,
such as those specified by Asset Library Open
Architecture Framework (ALOAF). It is a collaboration
between SAIC and Unisys. The demonstration shows how
the physical storage of assets can be separated from the
cataloging of assets, and how a user can choose a single,
local, user interface tool to access multiple reuse libraries.

The STARS Program developed a specification of an
ALOAF to support an "open systems" approach to
constructing asset libraries. The ALOAF evolved to
incorporate interfaces specifically intended for
interoperability, culminating in the release of ALOAF
Version 1.2 [19]. The LID builds upon the open interfaces
provided by ALOAF, its associated Asset Interchange
Language (AIL), PCTE, OSF/Motif, and POSIX. As
shown in the LID Software Architecture diagram, a reuse
library can be divided into three distinct layers which are
connected via open interfaces, thus providing opportunities
for interoperability at each layer. The three layers are:

- User Interfaces. The demonstration includes two user
interface tools: a graphical browser derived from the
Unisys Reuse Library Framework (RLF) and a text-
based browser modeled after SPS's InQuisiX reuse
library system. Both tools are built upon Ada bindings
to OSF/Motif.

- Asset Catalogs. The demonstration shows two asset
catalogs. The first catalog is derived from the Unisys
collection of ASW components, and resides on an
IBM RISC System/6000 at the STARS Technology
Center. The second catalog is derived from SAIC's
collection of flight simulator components, and resides
on an IBM RISC System/6000 at the SAIC offices in
Orlando, FL. The interface between each of the
catalogs and the user interface tools is defined by the
ALOAF.

- Asset Storage. In the demonstration, the storage of
assets is provided by the AFS cell at the STARS
Technology Center. Neither catalog stores assets
itself; instead, both catalogs "subcontract” the storage
function to the AFS server.

¢ Integrated - Computer Aided Software
Engineering (I-CASE)

I-CASE was developed by Air Force Reuse Center
(AFRC) [38]. The Air Force Reuse Center is the Air Force
Management Information Systems (MIS) repository for
reusable software assets. These assets are primarily Ada
source code modules consisting of Government and
commercial packages. The library has over 1,200 assets
including many assets of the system life-cycle, such as
requirements, designs, documentation and source code.
Integrated Computer-Aided Software Engineering (I-
CASE) provides a contract for DoD users to purchase an
integrated set of tools that will automate many of the MIS
software development activities over the entire software
development and maintenance life-cycle. I-CASE also
provides the support elements necessary to implement,
operate, and maintain the I-CASE environment (ie.,
training, maintenance, and technical support). The overall
strategy of this project is to automate reuse¢ processes
through an Integrated-Computer Aided Software
Engineering (I-CASE) environment. The specific strategy

53

is to implement these reuse processes within a workflow
environment to certify or re-engineer reusable assets as
quickly as possible. The EVB Reuse Library Tool (RLT),
supplied as part of I-CASE, is used as the reuse repository
tool.

¢ Multimedia Oriented Repository Environment
(MORE)

As the World Wide Web (WWW) becomes very
popular among internet users, an increasing number of
public repositories are using the WWW to promote their
services. The Electronic Library Services and Applications
(ELSA) project is the operational part of the Repository
Based Software Engineering (RBSE) program [20]. RBSE
is a National Aeronautics and Space Administration
(NASA) sponsored program dedicated to introducing and
supporting common, effective approaches to designing,
building, and maintaining software systems by using
existing software assets stored in a specialized library or
repository.

In addition to operating a software lifecycle
repository, RBSE promotes software engineering
technology transfer, academic and instructional support for
reuse programs, the use of common software engineering
standards and practices, software reuse technology
research, and interoperability = between reuse
libraries/repositories.

During its life cycle, the ELSA project responded to
emerging technologies, the growing sophistication of its
client base, and industry trends by advancing the
capabilities of its management software. Thus, ELSA
stands as a customer-driven environment employing an
advanced library management mechanism, MORE
(Multimedia Oriented Repository Environment).

ELSA replaced AdaNet on August 31, 1994 when the
first public access to its new service was granted. The
library is the operational part of the Repository Based
Software Engineering (RBSE) program which is a NASA
sponsored initiative in software reuse. In a timeframe of
approximately two weeks, ELSA transitioned its library
holdings and accompanying metadata from a monolithic
X-Windows based system to MORE. The improved
interface employs client/server technology and is
accessible through the WWW. MORE is a public domain,
metadata based repository tool employing the WWW as its
sole user interface. It consists of a set of application
programs which operate together with a stock httpd server
to provide access to a database of metadata [21]. The
entire interface, client browsing and searching, repository
definition, data entry and other administrative functions,
are provided through stock Web clients.

Repository assets are classified using a collection
(topic) and class (type) paradigm. According to their
subject matter, they are included in the collections or
subordinate collections that best represent domain

coverage. The assets are also classified by media or
information type through the class approach. Thus, users
can view the information from a top-down perspective
through the hierarchy of collections or across collections
by the hierarchy of classes.

MORE was designed to support this collection and
class model. Navigation is achieved through the activation
of high-level hypertext links which ultimately lead to
metadata or assets themselves. Searching (Natural
Language or Pattern Match) is performed against
information provided in the metadata [22, 23, 24]. This
combination provides users with a reliable and efficient
means of accessing a high volume of assets.

Administrative functions are specifically designed to
meet librarians' needs. For instance, assets are stored in
"developmental” mode which provides a cleanroom
environment for the performance of population and/or
certification activities. Developmental assets are only
available for viewing by librarians. Following the
completion of these processes, each asset is promoted to
"production” mode and is therefore accessible to the
general user population.

Each collection can have one or more groups
associated with it that are authorized to access the assets
and subcollections making up the collection. Groups in
turn are made up of sets of users and other groups; all
defined through the librarian interface. Users not
transitively a member of a designated group for a given
collection will never see the collection, or its contents,
through any of the browser or search mechanisms. This
mechanism supports the definition of multiple virtual
repositories in a single physical repository, reducing
administrative overhead and allowing direct sharing of
assets.

® Asset Source for Software Engineering Technology
(SAIC/ASSET)

Asset Source for Software Engineering Technology
(SAIC/ASSET) offers products and services in digital
library support, electronic commerce and software
engineering with an emphasis on reengineering and reuse
[26]. SAIC/ASSET, established by Advanced Research
Projects Agency (ARPA) as a subtask under the Software
Technology for Reliable Systems (STARS) program, is
transitioning to a private enterprise as a division of Science
Applications International Corporation (SAIC).

SAIC/ASSET's primary mission is to provide a
distributed support system for software reuse with the
Department of Defense (DoD) and to help foster a
software reuse industry within the United States.
SAIC/ASSET's initial and current focus is on software
development tools, reusable components and documents
on software development methods. SAIC/ASSET is
participating in interoperation with other reuse libraries
such as:

54

e Comprehensive Approach for Reusable Defense

Software (CARDS)
¢ Ada and Software Reuse Information Clearmghouse

Defense Software Repository System (DSRS)

* Electronic Library Services & Applications Lobby

(ELSA)

The goals SAIC/ASSET are pursuing involve:

» Creating a focal point for software reuse information
exchange
¢ Advancing the technology of software reuse

Providing an electronic marketplace for reusable

software products to the evolving national software

reuse industry.

To achieve these goals, SAIC/ASSET operates the
Worldwide Software Reuse Discovery (WSRD) Library.
The WSRD Library is populated with quality reusable
software components which can be distributed to its
subscribers. WSRD contains over 700 assets available to
over 1500 users throughout the world. The library
specializes in software lifecycle artifacts and documents
written specifically to promote software reuse and
development. SAIC/ASSET users have access to other
components stored in the CARDS and DSRS reuse
libraries. Through the WSRD, users can search, browse
and download asset catalogs in over 30 domains.
SAIC/ASSET's World Wide Web pages, located at
http://source.asset.com/, describe products and services
offered through SAIC/ASSET, as well as information
related to software reuse.

¢ The Public Ada Library (PAL)

Since 1984, the Ada Software Repository (ASR) has
been a major, publicly available source of Ada code. Now
called the Public Ada Library (PAL) {27], it provides more
than 100 megabytes of programs, components, tools,
general information, and educational materials on Ada. It
also contains materials on the Very High Speed Integrated
Circuit (VHSIC) Hardware Description Language
(VHDL), which is based on Ada.

For those with access to the Internet, the PAL can be
accessed via the File Transfer Protocol (FTP). The PAL is
located on the wuarchive.wustl.edu host, and on mirror
sites at ftp.cnam.fr and ftp.cdrom.com. Also, the PAL can
be obtained on disk, tape, and compact-disk read-only
memory (CD-ROM).

Additionally, the PAL can be accessed by means of
such Internet services as: the Network File System (NFS),
which allows computers to share files across a network;
archive, a system of querying anonymous-FTP sites; and
gopher, via gopher servers wuarchive.wustl.edu and
gopher.wustl.edu.

* CAPS Software Reusable Component Repository

CAPS (Computer Aided Prototyping System) is a
research project developed by the Software Engineering
Group led by Prof. Luqi at Naval Postgraduate School
[39]. Initial implementation of CAPS software base was

“first explored in 1988 [40]. An implementation of the

software base was accomplished in 1991 by using
ONTOS, an object oriented data base management system
that provides an interface to C++ for customization and
flexibility [41]. The CAPS software base is being changed
to a software component repository since 1998 [1]. The
CAPS component repository supports two critical
functions, component storage and component retrieval.
Much effort has been made to improve the component
retrieval method [42, 43]. To the best of our knowledge,
CAPS Repository is the only one that supports profile
matching and signature matching. It provides high
precision and recall retrieval method at same time [1]. The
CAPS repository is still under construction. A prototype
has been developed to verify the performance of the
retrieval methods [1].

e The Ada Library and the Reuse Library at the
Defense Information Systems Agency (DISA)

The Ada Library and the Reuse Library at the Defense
Information Systems Agency (DISA) are public, non-
lending, reference libraries for all professionals, students,
and researchers seeking information on the Ada
programming language and on software reuse [37]. The
number of books and articles on Ada and on reuse grows
daily. Also, there is a wealth of information available on
the Internet and on the World Wide Web. Putting the Net
together with the Ada and Reuse Libraries makes a very
powerful research tool.

Both Libraries collect and hold information found in
documents, books, conference proceedings, newspaper and
journal articles, and other multimedia material.

The Libraries can provide assistance in two ways:
helping users find publications in each library, and
conducting on-line searches for published information
available elsewhere. Users can access these resources in
person, and via the Web, or they can call DISA to request
a search.

Over the Web, go to http://sw-eng.falls-church.va.us.
There, click on "Library" at the main page of either the
AdalC or the ReuselC. Users can search database by title,
author, subject, or publisher.

5. Comparison

Commercial reusable component repositories usually
are integrated into a CASE environment [28, 29].
Currently, some major repositories (ASSET, PAL, and
DSRS) begin to use web-based techniques to provide
services. They are utilizing flat files written in HyperText
Markup Language (HTML). Electronic Library Services

55

and Applications (ELSA) has gone a step further by using
the Multimedia Oriented Repository Environment

Following are some comparison results for all the
repositories listed above.

(MORE).
Features Web- Integrated into Security Retrieval Methods
Based | CASE Environment Control
+1 Reuse Repository Y Y Browsing
SALMS Y Y Y Keywords
ASRR Y Keywords
The Universal Repository Y Y Browsing and Keywords
AIRS Y Facets Approach
RLT Y Keywords
HSTX Reuse Repository Y Y Keywords
DSRS Y Y Keywords
LID Y Keywords
I-CASE Y Y Keywords
MORE : Y Y Keywords
ASSET Y Y Y Keywords
PAL Y Y Keywords
CAPS Y Browsing, Keywords, Profile & Signature Matching
Ada Library and Reuse Library (DISA) Y Y Browsing and Keywords

6. Conclusion

Web-based reuse is the trend of software component
repositories supported by the government. To be a part of
an integrated CASE environment is the trend of
commercial software component repositories. Usually, the
aim of the first one is to provide a service within a domain,
organization, or area, such as ASSET for DoD, DSRS for
DISA etc. This kind of repository is used in a wide scope.
The aim of the second is to provide an integrated CASE
environment for 2 software development organization. So,
this kind of repository is generally a part of CASE
environment and is used in a relatively narrow scope.

The long-term.goal of the CAPS project [1] is to
provide a distributed software component repository to
support the development of prototype systems through
intranet technology. So, it will combine the advantages of
commercial component repositories and government
supported repositories. This developing research system is
an example of future software repositories.

References

[1] Luqi and Jiang Guo, "Toward Automated Retrieval for a
Software Component Repository”, Proceedings of IEEE
International Conference and Workshop on the
Engineering of Computer Based Systems (IEEE ECBS),
Nashville, USA, March 7-12, 1999. Pp. 99-105.

{21 A.Mili, R. Mili, and R Mittermeir, *'Storing and retrieving
software components: A refinement based system," in Proc.
16th Int'l Conf. on Software Engineering, (Sorrento, Italy),
pp. 91-100, May 1994,

[3] B:Fischer, M. Kievernagel, and W. Struckmann,""VCR: A
VDM-based software component retrieval tool,” in Proc.

(4]

3]
(6]

(7]

(8]

(]

[10]

(11

[12]

ICSE-17 Workshop on Formal Methods Application in
Software Engineering Practice, 1995.

-J. Penix, P. Baraona, and P. Alexander, '*Classification and

retrieval of reusable components using semantic features,"
in Proceedings of the 10th Knowledge-Based Software
Engineering Conference, pp. 131-138, Nov. 1995.

A. M."Zaremski, Signature and Specification Matching.
PhD thesis, Carnegie Mellon University, Jan. 1996.

A. M. Zaremski and J. M. Wing, **Specification matching
of software components,” in 3rd ACM SIGSOFT
Symposium on the Foundations of Software Engineering,
Oct. 1995.

J. Penix and P. Alexander, “'Design representation for
automating software component reuse,” in Proceedings of
the first intemational workshop on Knowledge-Based
systems for the (re)Use of Program libraries, Nov. 1995.

R. McDowell, and J. Solderitsch, *"The Reusability Library
Framework," Proceedings of the Unisys Defense Systems
Software Engineering Symposium, January 1990.

R. McDowell and K. Cassell, *"The RLF Librarian: A
Reusability Librarian Based on Cooperating Knowledge-
Based Systems," Proceedings of the 4th Annual Rome Air
Development Center Knowledge-Based Software Assistant
Conference, Utica, NY, September 1989.

Eichmann, D., T. McGregor and D. Danley, "Integrating
Structured Databases Into the Web: The MORE System,"
First International Conference on the World Wide Web,
Geneva, Switzerland, May 25-27, 1994, pages 369-378.

M. A. Dumin, K. Terry, and R. Sullins, *"Establishing a
Repository for Enterprise Wide Software Reuse,” in
Proceedings Fifth Annual Workshop on Software Reuse
Education and Training, July 29 - August 1 1996.

G. Arango and R. Prieto-Diaz, "Domain Analysis Concepts
and Research Directions", Domain Analysis and Software
System Modeling, R. Prieto-Diaz and G. Arango eds.,
IEEE Computer Society, 1991.

56

{13]

(14]

[15]

[16]

{17

(18]

[19]
{20]

{21]

(22]

(23]

24]

[25]

{26]
[27]
[28]

[29]

J.-J. Jeng and B. H. C. Cheng, “'A formal approach to
using more general components,” in Proceedings of the Sth
Knowledge-Based Software Engineering Conference, pp.
90-97, September 1994.

DSRS - Defense Technology for Adaptable, Reliable
Systems URL:http://ssed].ims.disa.mil/srp/dsrspage.html

STARS - Software Technology for Adaptable, Reliable
Systems URL: http://www.stars.ballston.paramax.com/
index.html

D. E. Perry and S. S. Popovitch, “Inquire: Predicate-based
use and reuse," in Proceedings of the 8th Knowledge-Based
Software Engineering Conference, pp. 144-151, September
1993.

D. Garlan, "Research Directions in Software Architecture”,
ACM Computing Surveys, 27(2), June 1995.

R. Girardi, "Towards Effective Software Abstractions for
Application Engineering", in Procs. NASA Focus on Reuse
workshop, Sept. 1996.

Asset Library Open Architecture Framework, Version 1.2;
STARS-TC-04041/001/02; 14 August 1992.

ELSA - Electronic Library Services & Applications URL:
http://rbse.mountain.net/ELSA/

L. S. Levy, "A metaprogramming method and its economic
justification”, IEEE Trans. Softw. Eng. SE-12(2), Feb.
1996, pp. 272-277.

R. Girardi and B. Ibrahim, "Using English to Retrieve
Software", The Journal of Systems and Software, Special
Issue on Software Reusability September 1995.

R. Girardi, "Classification and Retrieval of Software
through their Descriptions in Natural Language"”, Technical
report, University of Geneva - CUI, December 1995.

R. T. Price and R. Girardi. A class retrieval tool for an
object-oriented environment. In Procs. 3rd Conf.

Technology on object-Oriented Languages and Systems,

pages 26-36, November 1990.

M. Simos, “The Growing of an Organon: A Hybrid
Knowledge-Based Technology and Methodology for
Software Reuse,” Proceedings of 1988 National Institute
for Software Quality and Productivity (NISQP) Conference
on Software Reusability, April 1988, pp. E-1 through E-25.

ASSET - Asset Source for Software Engineering
Technology URL: http://source.asset.com/asset.html
PAL - Public Ada Library
http://web.cnam.fr/Languages/Ada/PAL/

CARDS - Comprehensive Approach to Reusable Defense
Software URL: http://dealer.cards.com/

COSMIC - NASA's Software Technology Transfer Center
URL: http://www.cosmic.uga.edu/

URL:

[30]

(31]

(32]

(33]

[34]

(35]

[36]

[37]

[38]

(39]

[40]

[41]

[42]

(43]

[44]

J.-J. Jeng and B. H. C. Cheng, ""Using formal methods to
construct a software library,” in Proceedings of 4th
European Software Engineering Conference, Lecture Notes
in Computer Science, vol. 717, pp. 397-417, September
1993.

+1 Software Engineeering Corporate Mission, URL
htp://www_plus-one.com/company .htm!

Elisabetta Morandin, “SALMS v5.1: A System for
Classifying, Describing, and Querying about Reusable
Software Assets”, The Proceedings of 5th International
Conference on Software Reuse (ICSR '98).

Project Management Tool Suite System (Automated
Software Reuse Repository), URL http://wv.ewa.com-
/srr_overview . html

Universal Repository, URL

http://www.marketplace.unisys.com/urep/

Reuse Library Toolset of EVB Software Engineering,
http://gopher.metronet.com:70/0/newprod/by-vendor/E-
/evb_software_e/941208.01

The HSTX Software Reuse
selsvr.stx.com/~eryg/swreuse/home.html

STARS Q9 BASELINE Ada LIBRARY, Technical
Reports on the Software Reuse CFCSE-IC http:/dii-
sw.ncr.disa.mil/ReuselC/guidelines/ReusabilityGuidelines.
html

Robert Rutherford, “Reuse on I-CASE,” Proceedings of
Fifth Annual Workshop on Software Reuse Education and
Training, July 29, 1996 - August 1, 1996.
http://www.asset.com/WSRD/conferences/proceedings/su
mmary/-summary.html

Lugqi, and M. Ketabchi, “A Computer-Aided Prototyping
System,” IEEE Transactions on Software Engineering,
October 1988.

Robert Steigerwald, Luqi, and John McDowell, “CASE
Tool for Reusable Software Component Storage and
Retrieval in Rapid Prototyping,” Information and Software
Technology, pp. 698-705, 1991.

Scott Dolgoff, “Automated Interface for Retrieving
Reusable Software Components”, Master’s Thesis, Naval
Postgraduate School, September 1992.

Doan Nguyen, “An Architectural Model for Software
Component Search”, Ph.D. Dissertation, Naval
Postgraduate School, December 1995.

Jeffrey Herman, “Improving Syntactic Matching for Multi-
Level Filtering,” M.S. Thesis, Naval Postgraduate School,
September 1997.

Rubin Prieto-Diaz, “Implementing Faceted Classification
for Software Reuse”, Communication of the ACM, pp. 89-
97, May 1991.

Repository,

57

A Risk Assessment Model for Evolutionary Software Projects’

Luqi, J. Nogueira
Naval Postgraduate School
Monterey CA 93943 USA

Abstract

Current early risk assessment techniques rely on subjective human judgments and
unrealistic assumptions such as fixed requirements and work breakdown structures. This is a
weak approach because different people could arrive at different conclusions from the same
scenario even for projects with a stable and well-defined scope, and such projects are rare. This
paper introduces a formal model to assess the risk and the duration of software projects
automatically, based on objective indicators that can be measured early in the process. The
model has been designed to account for significant characteristics of evolutionary software
processes, such as requirement complexity, requirement volatility and organizational efficiency.
The formal model based on these three indicators estimates the duration and risk of evolutionary

software processes. The approach supports (a) automation of risk assessment and, (b) early
estimation methods for evolutionary software processes.

1. Introduction

Software applications have grown in size and complexity covering many human activities of
importance to society. The report of the President s Information Advisory Committee calls
software the new physical infrastructure of the information age . Unfortunately, the ability to
build software has not increased proportionately to demand [Hall, 1997. pp xv]. and shortfalls in
this regard are a growing concern. According to the Standish group. in 1995 84% of software
projects finished over time or budget, and $80 billion - $100 billion is spent annually on
cancelled projects in the US. Developing software is still a high-risk activity.

There have been many approaches to improving this situation, mostly focused on Increasing
productivity via improvements in technology or management. Although better productivity is
certainly welcome, closer examination shows that these efforts address only half of the problem.
A project gets over time or over budget if actual performance does not match estimates. Current
estimation techniques are far from reliable. and tend to systematically produce overly optimistic
estimates. More accurate early estimates could help reduce wasted resources associated with
overruns and cancelled projects in two ways: if costs are known to be too high at the outset, the
scope of the project could be reduced to enable completion within time and budget, or it could

be cancelled before it starts, and instead the resources could be used to successfully complete
other feasible projects.

This paper therefore focuses on improved risk assessment for software projects. We address
project risks related to schedule and budget, and focus mostly on completion time of the project.
Current risk assessment standards are weak because they rely on subjective human expertise,
assume frozen requirements, or depend on metrics difficult to measure until it is too late. This
paper describes a formal risk assessment model based on metrics and sensitive to requirements
volatility. Further details can be found in [Nogueira 2000]. The model is specially suited for
evolutionary prototyping and incremental software development.

Section 2 defines the problem we are addressing. Section 3 analyzes relevant previous work.

Section 4 presents and evaluates our project risk model. Section 5 outlines how systematic risk
assessment fits into iterative prototyping. Section 6 concludes.

' This research was supported in part by the U. S. Army Research Office under contract/grant number
35037-MA and 40473-MA, and in part by DARPA under contract £99-F759.

58

2. The Problem

As the range and complexity of computer applications have grown, the cost of software
development has become the major expense of computer-based systems [Boehm 1981],
[Karolak 1996]. Research shows that in private industry as well as in government environments,
schedule and cost overruns are tragically common [Lugi 1989, Jones 1994, Boehm 1981].
Despite improvements in tools and methodologies, there is little evidence of success in
improving the process of moving from the concept to the product, and little progress has been
made in managing software development projects [Hall, 1997]. Research shows that 45 percent
of all the causes for delayed software deliveries are related to organizational issues
[vanGenuchten 1991]. A study published by the Standish Group reveals that the number of
software projects that fail has dropped from 40% in 1997 to 26% in 1999. However, the

percentage of projects with cost and schedule overruns rose from 33% in 1997 to 46% in 1999
[Reel 1999].

Despite the recent improvements introduced in software processes and automated tools, risk
assessment for software projects remains an unstructured problem dependent on human
expertise [Boehm 1988, Hall 1997]. The acquisition and development communities, both
governmental and industrial, lack systematic ways of identifying, communicating and resolving
technical uncertainty [SEI 1996].

This paper explores ways to transform risk assessment into a structured problem with
systematic solutions. Constructing a model to assess risk based on objectively measurable
parameters that can be automatically collected and analyzed is necessary. Solving the risk
assessment problem with indicators measured in the early phases would constitute a great
benefit to. software engineering. In these early phases, changes can be made with the least
impact on the budget and schedule. The requirements phase is the crucial stage to assess risk
because: a) it involves a huge amount of human interaction and communication that can be
misunderstood and can be a source of errors; b) errors introduced at this phase are very
expensive to correct if they are discovered late; c) the existence of software generation tools can
diminish the errors in the development process if the requirements are correct; and d)
requirements evolve introducing changes and maintenance along the whole life cycle.

Part of the problem is misinterpreting the importance of risk management. It is usually and
incorrectly viewed as an additional activity layered on the assigned work, or worse, as an
outside activity that is not part of the software process [Hall 1997, Karolak 1996]. One of the
goals of our research is to integrate a risk assessment model with previous research on CAPS? at
NPS [Ham 99]. This integration is required in order to capture metrics automatically in the
context of a modern evolutionary prototyping and software development process. This should
provide project managers with a more complete tool that can enable improved risk assessment
without interfering with the work of a project s software engineers.

C

A second source of problems in risk management is the lack of tools [Karolak 1996]. The
main reason for this lack of tools is that risk assessment is apparently an unstructured problem.
To systematize unstructured problems it is necessary to define structured processes. Structured
processes involve routine and repetitive problems for which a standard solution exists.
Unstructured processes require decision-making based on a three-phase method (intelligence,
design, choice) [Turban et al 1998]. An unstructured problem is one in which none of the three
phases is structured. Current approaches to risk management are highly sensitive to managers
perceptions and preferences, which are difficult to represent by an algorithm. Depending on the
decision-maker’s attitude towards risk, he or she can decide early with little information, or can
postpone the decision, gaining time to obtain more information, but losing some control.

A third source of risk management problems is the confusion created by the informal use of
terms. Often, the software engineering community (and most parts of the project management

N
2 CAPS stands for Computer Aided Prototyping System [Lugqi 1988].

59

community [Wideman 1992]) uses the term "risk" casually. This term is often used to describe
different concepts. It is erroneously used as a synonym of "uncertainty" and "threat" [SEI 1996,
Hall 1997, Karolak, 1996]. Generally, software risk is viewed as a measure of the likelihood of
an unsatisfactory outcome and a loss affecting the software from different points of view:
project, process, and product [Hall 1997, SE] 1996). However, this definition of risk is
misleading because it confounds the concepts of risk and uncertainty. In general, most parts of
decision-making in software Processes are under uncertainty rather than under risk. Uncertainty
is a situation in which the probability distribution for the possible outcomes is not known.

In this paper the term "risk" Is reserved to indicate the probabilistic outcome of a succession
of states of nature, and the term “threat" is used to identify the dangers that can occur. We
define risk to be the product of the value of an outcome times its probability of occurrence. This
outcome could be either positive (gain) or negative (loss). This abstraction permits one to

address not only the classical risk management issue, but also to discover opportunities leading
to competitive advantage.

important threats and a statistical analysis to choose the shape of the probability distribution and
relate its parameters to readily measurable metrics.

3. _Related Work

There are three main groups of research related to risk:

* Assessing Software Risk by Measuring Reliability. This group follows a probabilistic

b

because the software product is mostly complete and development resources are mostly
gone at the time when reliability of the product can be assessed by testing.

checklists [SEI, 1996, Hall 1997, Charette 1997, Jones 1994] or scoring techniques [Karolak
1996]. Paradoxically, SEI defines software technical risk as a measure of the probability and
severity of adverse effects in developing software that does not meet its intended functions
and performance requirements [SEL, 1996). However, the term "probability” is misleading
in this case because the probability distribution is unknown.

¢ Macro Model Approaches: A third group of researchers uses well known estimation
models to assess how risky a project could be. The widely used methods COCOMO

unchanged, and require an estimation of the size of the final product as input for the models
[Londeix 1987]. This size cannot be actually measured until late in the project.

The standard tools used to control al] types of projects, including PERT, CPM, and Gantt,
do not consider coordination and communication overhead. Such models represent sequential
interdependencies through explicit representation of precedence relationships between activities.
This simplified vision of a project cannot address the dynamics created by reciprocal
requirements of information in concurrent activities, exception management, and the impact of

60

actor interactions. Since the missing factors increase time requirements, the estimates resulting
from these generic project estimation models are overly optimistic.

These issues are addressed by Vit Project [Levitt 1999, Thomsen et al. 1999]. Vit Project is
applicable to projects in which a) all activities in the project can be predefined; b) the
organization is static, and all activities are pre-assigned to actors in the static organization; c) the
exceptions to activities result in extra work volume for the predefined activities and are carried
out by the pre-assigned actors; and d) actors are assumed to have congruent goals. The model is
well suited for simulating organizations that deal with great amounts of information processing
and coordination. Such characteristics are extremely relevant in software processes [Boehm,
1981]. However, this approach requires a fixed work breakdown structure, and therefore does
not apply at the early stages when requirements are changing and the set of tasks comprising the
project are still uncertain.

By using informal risk assessment models, using estimation models based on optimistic
assumptions that require parameters difficult to provide until late, and using optimistic project
control tools, project managers condemn themselves to overrun schedules and cost.

4. The Proposed Project Risk Model

Our approach is based on metrics automatically collectable from the engineering database
from near the beginning of the development. The indicators used are Requirements Volatility
(RV), Complexity (CX), and Efficiency (EF).

Requirement Volatility (RV): RV is a measure of three characteristics of the requirements: a) the
Birth-Rate (BR), that is the percentage of new requirements incorporated in each cycle of the
evolution process; b) the Death-Rate (DR), that is the percentage of requirements dropped in
each cycle; and c) the Change-Rate (CR) defined as the percentage of requirements changed
from the previous version. A change in one requirement is modeled as a birth of a new
requirement and the death of another, so that CR is included in the measured values of BR and
DR. RV is calculated as follows: RV = BR + DR.

Complexity (CX): Complexity of the requirements is measured from a formal specification. A
requirements representation that supports computer-aided prototyping. such as PSDL [Luqi
1996], is useful in the context of evolutionary prototyping. We define a complexity metric
called Large Granularity Complexity (LGC) that is calculated as follows: LGC =0 + D + T,
where for PSDL O is the number of atomic operators (functions or state machines), D is the
number of atomic data streams (data connections between operators), and T is the number of
abstract data types required for the system. Operators and data streams are the components of a
dataflow graph. This is a measure of the complexity of the prototype architecture, similar in
spirit to function points but more suitable for modeling embedded and real-time systems. The
measure can also be applied to other modeling notations that represent modules, data
connections, and abstract data types or classes. We found a strong correlation between the
complexity measured in LGC and the size of PSDL specifications (correlation coefficient R =
0.996). Most important, we also found a strong correlation (R = 0.898) between the complexity
measured in LGC and the size of the final product expressed in non-comment lines of Ada code,
including both the code automatically created by the generator and the code manually
introduced by the programmers.

Efficiency (EF): The efficiency of the organization is measured using a direct observation of the
use of time. EF is calculated as a ratio between the time dedicated to direct labor and the idle
time: EF = Direct Labor Time / Idle Time. We found that this easily measurable quantity was a
good discriminator between high team productivity and low team productivity in a set of
simulated software projects [Nogueira 2000].

61

We validated and calibrated our model with a series of simulated software projects using
Vit Project. This tool was chosen because of the inclusion of communications and exceptions in
its project dynamics model, and because it has been extensively validated for many types of
engineering projects, including software engineering projects. The input parameters for the
simulated scenarios were RV, EF and CX, and the observed output was the development time.
Given that the proposed model uses parameters collected during the early phases and given that
Vit Project requires a complete breakdown structure of the project, which can be done only in
the late phases, there was a considerable time gap between the two measurements. This time gap

is less than for a post-mortem analysis, but it is sufficient for model calibration and validation
purposes.

The simulation results were analyzed statistically, with the finding that the Weibull
probability distribution was the best fit for all the samples. A random variable x is said to have a
Weibull distribution with parameters ¢, B and y (with o > 0, B > 0) if the probability distribution
function (pdf) and cumulative distribution function (cdf) of x are respectively:

[0, x<y

pdf: fix; o, B,) = {
(@/B) (x -1)*" exp(-((x - 7/B)"), X2y
[0, X < y

cdf: F(x; o, B, y) = {
L —exp((x)/ B)) X2Y.

The random variable under study, x, can be interpreted as development time in our context.
The shape parameter o controls the skew of the pdf, which is not symmetric. We found that this
is mostly related to the efficiency of the organization (EF). The scale parameter B stretches or
compresses the graph in the x direction. We found that this parameter is related to the efficiency
(EF), requirements volatility (RV), and complexity (CX) measured in LGC. The shifting
parameter v is shifts the origin of the curves to the right. We found that it is mostly related to the
complexity measured in LGC.

Based on best fit to our simulation results, the model parameters can be derived from the
project metrics using the following algorithm:

If (EF > 2.0) then o = 1.95;
Y = 22 * 0.32*% (13*1n(LGC)-82);
B=vy /(5.71+(RV—20)*0.046);
else o = 2.5;
Y = 22 * 0.85*(13*1n(LGC)-82);

B =17 /(5.47-(RV-20)%0.114) ;
end if;

The model estimates the following cumulative probability distribution for project completion on
or before time x:

P(x) =1 - exp(-(((x - 7)/B)™)) // where x is time in days

This equation can be inverted to obtain the schedule length needed to have a probability P of
completing within schedule, with the following result.

X =Y + B(-1n(1-p))¥/=

The probability P can be interpreted as a degree of confidence in the ability of the project to
successfully complete within a schedule of length x. Applying the above equation to estimate
the development time needed for a 95% chance of completion within schedule for 16 different

62

scenarios simulated using Vit Project, we observed a standard error of 22 days. The worst case
Wwas an error of 60 days for a project of 520 days (12%). The comparison of estimated time and
simulated time is shown below.

) -

S 600

g .

£ 50 s

5

B 400

£

8 30 T —

3 - * t= duration

g 2w £ i | - estimated |—

=

£ 1 e

= L4

L‘S 0 T T T T T T ¥ -1
0 100 200 300 400 500 600 700
Simulated project completion time, daydays

5. Integrating Risk Assessment into Prototyping

The model presented in the previous section is designed to support an iterative prototyping
and software development process. In this process, an initial problem statement. a prototype
demo or problem reports from a deployed software product trigger an issue analysis, followed
by formulation of proposed requirements changes, and specification of a proposed adjustment to
the software requirements, which can be Initially empty. At this point in each cycle, the project
manager should perform a risk assessment step. The results of the risk assessment step guide the
degree of detail to which requirements enhancements are demonstrated, and the set of
requirements issues to be considered in the next prototyping cycle, if any.

' REQUIREMENTS SPECIFICATION / =zcFL

I AN;\TL;(SIS] DESIGN e 21357
|

STEP

RISK RISK 7 MODULE

ASSESS. + ASSESSMENT 1 IMPLEMENT.
vent / STEP STEP

ISSUE CPTHZA PRODUCT
ANALYSIS TIoNS IMPLEMENT.
STEP / STEP

TN

PROTOTYPE/ / \ PROGRAM
CRITICI5MS ? PRODUCT g { crccoans . INTEGRATION
DEMO STEP \\ STEP

e

63

customers or marketing departments to decide how much they really want possible
improvements, in the context of the resulting time and cost estimates. Systematic cost/benefit
analysis becomes possible only with the availability of reasonably accurate estimates.

The risk assessment step can thus provide a balancing force to stabilize the requirements
formulation process. In the absence of information on how much potential enhancements will
cost, stakeholders are prone to unrealistic requirements amplification — of course they would
always like to have a better system, no matter how good the existing one is, if you do not ask

them to pay for the improvements. The proposed risk assessment steps can provide a realistic

willing to pay for, if any. It is not necessarily the case that the set of criticisms elicited by the
final round of prototype demonstrations is empty — that is true only in an idealized world with
adequate budgets and patient customers.

6. Conclusion

This paper introduces a formal risk assessment model for software projects based on
probabilities and metrics automatically collectable from the project baseline. The approach
enables a project manager to evaluate the probability of success of the project very early in the
life cycle, during an iterative requirements formulation process, based on well-defined
Mmeasurements rather than just guesswork or subjective judgments.

For more than twenty years, estimation standards have been characterized by a common
limitation: the requirements should be frozen in order to make estimates. This model presented

in this paper removes this important limitation, facing the reality that requirements are
inherently variable.

The model is perfectly suited for any evolutionary software process because it follows the
same philosophy. The risk assessment and estimation steps are conducted at each evolutionary
cycle with increasing knowledge and decreasing variance. The research formalizes an

64

improvement in the evolutionary software process, introducing a risk assessment step that can
be automated, and that can help shape the planning of the project in the early stages when there
is still substantial freedom to allocate available time and budget.

References

[Boehm 1981]
[Boehm 1988]

[Charette 1997]

[Gilb 1977]
[Hall 1997]

[Ham 1999]

>[J ones 1994]
[Karolak 1996]

[Levitt 1999]

[Londeix 1987]
[Luqi 1988]
[Luqi 1989]
[Lugi 1996]
[Lyu 1995]
[Musa 1998]
[Nogueira 2000]
[Putnam 1980]
[Reel 1999]
[SEI 1996]

[Schneidewind 1975]

[Turban et al 1998]

[vanGenuchten 1991]

[Wideman 1992]

B. Boehm, Software Engineering Economics, Prentice Hall, 1981.

B. Boehm, A Spiral Model of Software Development and
Enhancement, Computer, May 1988.

R. Charette, K. Adams, & M. White, Managing Risk in Software
Maintenance, JEEE Software, May-June, 1997.

T. Gilb, Software Metrics, Winthrop Publishers, Inc., 1977.

E. Hall, Managing Risk, Methods Jor Software Systems Development,
Addison Wesley, 1997.

M. Hamn, V. Berzins, ‘Luqi, Computer-Aided Software Evolution

Based on a Formal Model, Proceedings of the Thirteenth

International Conference on Systems Engineering, Las Vegas,
Nevada, August 9-12, 1999, pp. CS: 55-60.

C. Jones, Assessment and Control of Software Risks, Yourdon Press
Prentice Hall, 1994.

D. Karolak, Software Engineering Management, 1EEE Computer

Society Press, 1996.

R. Levitt, The ViteProject Handbook: A User’s Guide to Modeling
and Analyzing Project Work Processes and Organizations, Vit '
1999.

B. Londeix, Cost Estimation Jor Software Development, Addison-
Wesley, 1987.

Luqi, M. Ketabchi, A Computer Aided Prototyping System, JEEE
Software, Vol. 5, No. 2, p. 66-72, March 1988.

Lugi, Software Evolution Through Rapid Prototyping, TEEE
Computer, May 1989.

Luqi, Special Issue: Computer-Aided Prototyping, Journal of Systems
Integration, Vol. 6, Nos. 1-2, March 1996.

M. Lyu, Software Reliability Engineering, 1EEE Computer Society
Press. 1995,

J. Musa, Software Reliability Engineering: More Reliable Software,
Faster Development and Testing, McGraw-Hill, 1998.

J. Nogueira, 4 Formal Risk Assessment Model for Software Projects,
Ph.D. Dissertation, Naval Postgraduate School, 2000.

L. Putnam, Software Cost Estimating and Life-cycle Control: Getting
the Software Numbers, IEEE Computer Society Press, 1980.

J. Reel, Critical Success Factors in Software Projects, IEEE
Software, May - June 1999.

Software Engineering Institute, Software Risk Management,
Technical Report CMU/SEI-96-TR-012, June 1996.

N. Schneidewind, Analysis of Error Processes in Computer Software,
Proceedings of the International Conference on Reliable Software,
IEEE Computer Society, 21-23 April 1975, p 337-346.

E. Turban and J. Aronson, Decision Support Systems and Intelligent
Systems, Prentice Hall, 1998.

M. van Genuchten, Why is Software Late? An Empirical Study of the
Reasons for Delay in Software Development, IEEE Transactions on
Software Engineering, June, 1991.

R. Wideman, Risk Management: 4 Guide to Managing Project Risk
Opportunities, Project Management Institute, 1992.

65

[Alt+99]

[Ber+97]

[BirTau98]

[BroRun99]

[FIPA]
[Har+99]

[IEEE1220]

[Rob+00]

[SEI99]

[Sta99]
[WalUng91]

[Wan+99]

Althoff, K., Birk, A, Hartkopf, S., Miiller, W., Nick, M., Surmann, D.,
and Tautz, C., "Managing Software Engineering Experience for
Comprehensive Reuse", Proceedings of the Eleventh International
Conference on Software Engineering and Knowledge Engineering,
Kaiserslautern, Gemmany, 1999.

Berzins, V., Ibrahim, O., Lugi: "A Requirements Evolution Model for
Computer Aided Prototyping", Proceedings of the 9th International
Conference on Software Engineering and Knowledge Engineering,
Madrid, Spain, 1997.

Birk, A. and Tautz, C., "Knowledge Management of Software Engineering
Lessons Learned", Proceedings of the Tenth International Conference on
Software Engineering and Knowledge Engineering, San Francisco Bay,
California, USA, 1998.

Broomé, M. and Runeson, P., "Technical Requirements for the
Implementation of an Experience Base", Proceedings of the Eleventh
International Conference on Software Engineering and Knowledge
Engineering, Kaiserslautern, Germany, 1999.

Foundation for Intelligent Physical Agents. http://www.cselt.stet.it/fipa/.

Harn, M., Berzins, V., and Lugqi, "Computer-Aided Software Evolution
Based on a Formal Model", Proceedings of the 13th International.
Conferer_lce on Systems Engineering, Las Vegas, NV, USA, 1999.

IEEE Std 1220-1998, IEEE Standard Jor Application and Management of
the Systems Engineering Process, Institute of Electrical and Electronics
Engineers, 1998.

Robinson, M., Kovalainen, M., and Auramiiki, E., "Diary as Dialogue in
Papermill Process Control", Communications of the ACM, Vol. 43, No. 1,
January 2000.

Software Engineering Institute, Capability Maturity Model®-Integrated-

Systems/Software Engineering: Staged Representation - Volume 1,
Version 0.2b, 1999,

Statz, J., "Leverage Your Lessons", IEEE Software, Vol. 16. No. 2, IEEE,
1999.

Walsh, J. and Ungson, G., "Organizational Memory", Academy of
Management Review", Vol. 16., No. 1, January 1991.

Wangenheim, C., Althoff, K., and Barcia, R., "Intelligent Retrieval of
Software Engineering Experienceware", Proceedings of the Eleventh
International Conference on Software Engineering and Knowledge
Engineering, Kaiserslautern, Germany, 1999.

66

Evolutionary Computer Aided Prototyping System (CAPS)’

Luqi, V. Berzins, M. Shing, R. Riehle and J. Nogueira
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5118
{lugqi, berzins, mantak}@cs.nps.navy.mil
[rdriehle, jenogue}@nps.navy.mil

Abstract

This paper describes a distributed development environment, CAPS (Computer-Aided
Prototyping System), to support rapid prototyping and automatic generation of source code
based on designer specifications in an evolutionary software development process. The CAPS
system uses a fifth-generation prototyping language to model the communication structure,
timing constraints, I/O control, and data buffering that comprise the requirements for an
embedded software system. The language supports the specification of hard real-time systems
with reusable components from domain specific component libraries. CAPS has been used
successfully as a research tool in prototyping large real-time control systems (e.g. the
command-and-control station, cruise missile flight control system, missile defense systems) and
demonstrated its capability to support the development of large complex embedded software.

1. Introduction

Studies have shown that early parts of the system development cycle such as requirements
and design specifications are especially prone to errors [1]. Problems originated in the early
stages often have a lasting influence on the reliability. safety and cost of the system.
Evolutionary prototyping offers an iterative approach to requirements engineering to alleviate
the problems of uncertainty, ambiguity and inconsistency inherent in the process. Moreover,
prototyping can improve the capture of change in requirements and assumptions during the
development process. This effect is particularly observed in projects involving multiple
stakeholders with different points of view [4, 15].

Evolutionary driven computer aided software engineering (CASE) tools for computer-aided
prototyping provide logical assessment of the consistency and clarity of requirements and
specifications. Prototypes facilitate the requirements phase in any type of software projects.
Particularly. in real-time applications where severe time constraints impose more challenges,
the use of prototypes helps to describe the requirements in a clear, precise, consistent and
executable format. Prototypes can demonstrate system scenarios to the affected parties as a way
to: 2) collect criticisms and feedback for updated requirements; b) early detection of deviations
from users’ expectations; c) trace the evolution of the requirements; d) improve the
communication and integration of the users and the development personnel; and e) provide

" This research was supported in part by the U. S. Army Research Office under contract/grant number 35037-MA
and 40473-MA.

67

early warning of mismatches between proposed software architectures and the conceptual
structure of requirements.

The benefits of prototyping are widely accepted. All modern life cycle models such as
Boehm's spiral [2]. Lugqi's graph model [9], rapid application development (RAD), etc. are
based on prototyping. Experience suggests that building and integrating software by
mechanically processable formal models leads to cheaper, earlier and more reliable products
[13]. Bernstein estimated that for every dollar invested in prototyping, one can expect a $1.40
return within the life cycle of the system development [3]. To be effective, prototypes must be
constructed and modified rapidly, accurately, and cheaply. Software for rapid and inexpensive
construction and modification of prototypes makes it feasible [10, 11].

2. The Computer Aided Prototyping System (CAPS)

The Computer-Aided System (CAPS), a research too} developed at the Naval Postgraduate
School. is an integrated set of software tools that generate source programs directly from high
level requirements specifications (Figure 1) [8]. CAPS provides the following kinds of support
to the prototype designer: a) timing feasibility checking via the scheduler: b) consistency
checking and automated assistance for project planning, configuration management, scheduling,
designer task assignment, and project completion date estimation via the Evolution Control
system; ¢) computer-aided design completion via the editors; d) computer-aided software reuse
via the software base; and e) automatic generation of wrapper and glue code via the execution
support system.

CAPS
l
. Software Execution Project
Editors Base Support Control
PSDL editor Translator Evolution Control
Ada editor Scheduler . Change Merger
GUI editor Compiler Risk Assessment

Figure 1. The CAPS rapid prototyping environment

The efficacy of CAPS has been demonstrated in many research projects (e.g. the command-
and-control station, cruise missile flight control system, SIDS wireless acoustic monitor, and
missile defense systems) at the Naval Postgraduate School and other facilities.

There are four major stages in the CAPS rapid prototyping process: software system design,
construction, execution, and requirements evaluation/modification (Figure 2).

The initial prototype design starts with an analysis of the problem and a decision about
which parts of the proposed system are to be prototyped. Requirements for the prototype are
then generated, either informally (e.g. English) or in some formal notation. These requirements
may be refined by asking users to verify their completeness and correctness.

After some requirements analysis, the designer uses the CAPS PSDL editor to draw dataflow
diagrams annotated with nonprocedural control constraints as part of the specification of a
hierarchically structured prototype, resulting in a preliminary, top-level design free from
programming level details. The user may continue to decompose any software module until its

68

components can be realized via reusable components drawn from the software base or new
atomic components.

This prototype is then translated into the target programming language for execution and
evaluation. Debugging and modification utilize a design database that assists the designers in
managing the design history and coordinating change, as well as other tools shown in Figure 1.

Generate initial
requirements

Prototype

* Reusable DBMS
| Construct/ modify | . Software Son Desi
> ; « oftware esign
prototype design >

P = Database | Database
Lt T PP, =*="
: / :
Modify E Generate target :'
requirements : source code o
! ¢ Execution !
1
! Support !
‘ Demonstrate System
: '
1]
) 1

Figure 2. Iterative prototyping process in CAPS

3. Application of CAPS in an eVolutionary software process

3.1 CAPS as a Requirements Ehgineering tool

The requirements for a software system are expressed at different levels of abstraction and
with different degrees of formality. The highest level requirements are usually informal and
imprecise, but they are understood best by the customers. The lower levels are more technical,
precise, and better suited for the needs of the system analysts and designers, but they are further
removed from the user's experiences and less well understood by the customers. Because of the
differences in the kinds of descriptions needed by the customers and developers, it is not likely
that any single representation for requirements can be the “best” one for supporting the entire
software development process. CAPS provides the necessary means to bridge the
communication gap between the customers and developers. The CAPS tools are based on the
Prototype System Description Language (PSDL), which is designed specifically for specifying
hard real-time systems [6, 7]. It has a rich set of timing specification features and offers a
common baseline from which users and software engineers describe requirements. The PSDL
descriptions of the prototype produced by the PSDL editor are very formal, precise and
unambiguous. meeting the needs of the system analysts and designers. The demonstrated
behavior of the executable prototype, on the other hand, provides concrete information for the
Customer to assess the validity of the high level requirements and to refine them if necessary.

69

3.2 CAPS as a System Testing and Integration tool

Unlike throw-away prototypes, the process supported by CAPS provides requirements and
designs in a form that can be used in construction of the operational system. The prototype
provides an executable representation of system requirements that can be used for comparison
during system testing. The existence of a flexible prototype can significantly ease system
testing and integration. When final implementations of subsystems are delivered, integration
and testing can begin before all of the subsystems are complete by combining the final versions
of the completed subsystems with prototype versions of the parts that are still being developed.

3.3 CAPS as an Acquisition tool

Decisions about awarding contracts for building hard real-time systems are risky because
there is little objective basis for determining whether a proposed contract will benefit the

hard real-time system developers, is also very useful to the customers. Acquisition managers
can use CAPS to ensure that acquisition efforts stay on track and that contractors deliver what
they promise. CAPS enables validation of requirements via prototyping demonstration, greatly
reducing the risk of contracting for real-time systems

3.4 CAPS as a Risk Assessment tool

The use of prototypes introduces a problem for project planning because of the uncertain
number of prototyping cycles required before constructing the product and the amount of

complexity that should be covered at each cycle. Many existing project management and

estimation techniques are based on linear layouts of activities. CPM and PERT techniques are
not well suited to deal with cycles because they are based on acyclic digraphs.

Figure 3 shows a typical evolutionary prototyping software process that is a directed graph
with two cycles. Initially, the analysts collect a set of issues, which represent concerns and
preliminary goals of the customers, and transform them into a more elaborated level of
description called requirements using a requirements analysis step. The requirements are
transformed into specifications, probably in PSDL, during the specification design step. In the
module implementation step the specifications are automatically converted into code using an
appropriate CASE tool such CAPS. The program integration step transforms the modules
obtained by the generator are integrated into a program, possibly adding code created by
programmers and reusable components. This step includes integration testing and debugging.
The program is demonstrated to the customer as a prototype. There are two possible outcomes:
a) the customer is not satisfied and introduces criticisms, or b) the product matches the needs
and expectations of the customer. In the first case, the process continues by analyzing the
criticisms during an issue analysis step that produces new issues closing the external cycle in
the graph. In the second case, the prototype contains all the required functionality, so a set of
optimizations is introduced during a product implementation step. The resulting product is
presented again to the customer during a product demo step closing the internal cycle of the
graph.

We improved the evolutionary prototyping software process by introducing a new vertex in
the graph to contain the risk assessment step (Figure 4) [14]. A risk assessment step can be
automatically done after the completion of the specifications. CAPS provides the automation
needed to derive the complexity of the product from the PSDL specifications. This derivation

70

will be used together with personnel and organizationa! information, and with metrics of
requirements collected from the baselines, to produce the risk assessment. The requirements
analysis step integrates these measures with issues in the issue analysis steps.

Requirements Requi Specification i
- quire Specifi-
Analysis Step ments —> Design Step > cfﬁons
Module
Implement Step
* - Product
Issue Analysis Implement Ste
Step P P
Prototype/Product v Program
Demo Step “«4— [Programs | ¢—— Integration Step

Figure 3. A typical evolutionary prototyping software process.

Requirements Require. Specification Specifi-
€ - pecifi

Analysis Step mecr]\ts > Design Step > cations

\ Risk Assessment Moﬁu]e

' Step Implement Step
r 4
Issue Analysis) Product
Step Implement Step

?

Prototype/Product Program
Demo Step +—— <€——| Integration Step

Figure 4. The improved evolutionary prototyping software process.

4. A simple example: prototyping a C3I workstation

To create a first version of a new prototype, users can select “New” from the “Prototype”
pull-down menu of the CAPS main interface. The user will then be asked to provide the name
of the new prototype (say “c3i_system™) and the CAPS PSDL editor will be automatically
invoked with a single initial root operator (with a name same as that of the prototype).

CAPS allows the user to specify the prototype requirements as augmented dataflow graphs.
Using the drawing tools provided by the PSDL editor, the user can create the top-level dataflow
diagram of the c3 i_system prototype as shown in Figure 5. The ¢3 i_system prototype is
modeled by nine modules, communicating with each other via data streams. To model the
dynamic behavior of these modules. the dataflow diagram is augmented with control and timing
constraints. For example, the user may want to specify that the weapons_interface module has a
maximum response time of 3 seconds to handle the event triggered by the arrival of new data in
the weapon_status_data stream, and only writes output to the weapon_emrep stream if the
status of the weapon_status_data is damage. service_required, or out_of_ammunition. CAPS
allows the user to specify these timing and control constraints using the pop-up operator
property menu (Figure 6), resulting in a top-level PSDL program shown in Figure 7.

To complete the specification of the c3 I_System prototype, the user must specify how each
module will be implemented by choosing the implementation language for the module via the
Operator property menu. The implementation of a module can be in either the target
programming language or PSDL. A module with an implementation in the target programming
language is called an atomic operator. A module that is decomposed into a PSDL
implementation is called a composite operator. Module decomposition can be done by selecting
the corresponding operator in the tree-panel on the left side of the PSDL editor.

The user may choose to implement all nine modules as atomic operators (using dummy
components) in the first version, so as to check out the global effects of the timing and control
constraints. Then, he/she may choose to decompose the comms_interface module into more
detailed subsystems and implement the sub-modules with reusable components, while leaving
the others as atomic operators in the second version of the prototype, and so on.

To facilitate the testing of the prototypes, CAPS provides the user with an execution support
system that consists of a translator, a scheduler and a compiler. Once the user finishes
specifying the prototype, he/she can invoke the translator and the scheduler from the CAPS
main interface to analyze the timing constraints for feasibility and to generate a supervisor
module for each subsystem of the prototype in the target programming language. Each
supervisor module consists of a set of driver procedures that realize all the control constraints, a
high priority task (the static schedule) that executes the time-critical operators in a timely
fashion, and a low priority dynamic schedule task that executes the non-time-critical operators
when there is time available. The supervisor module also contains information that enables the
compiler to incorporate all the software components required to implement the atomic operators
and generate the binary code automatically. The translator/scheduler also generates the glue
code needed for timely delivery of information between subsystems across the target network.

72

EEiPSDL Editor : c3i_system padi

® (D c3t_system
"] comms_ink
] weapons_int
{D comms_irter
O track_gatans
lD user_jmertac
() weapons_int
{D sensors_ie
M navigation_
[Jsensors
input_link_mmeg
weapon_stat
sensor_data
position_cata
pasion_gata
sensor_add te
oul_tracks
tod_netivnts _y
tdd_fiver
teeminate tar

B e o TS,

e _emissian
ted_archive_s

§ ol transmi d.

0 ns

fonms_link#

comms_edd_track

input_link message

0 ns

coams inrerface weapons_interface

A weappn_status_data
ted ehissidn compzrol
ternfnars trdns

initiata_trans

conxs_enmdil p¢d_transait_command § aqp s
track fdatabase wanager user fincerface weapons interface
UL tracks 2spons_scatrep
f veapons_enre]
tdd_filter pons_earep
- Ciys (stytus
position_data _gTatys
sensoredd_track s
nk43 esarus
e
8 ns s2n3or_data 0 zs
03ition_data
; . A nsor
navigation systenm sen3ors_intertace sensors

Figure 5. Top-level dataflow diagram of the ¢3i_system.

Nams

Operator Output Guad . - E3
Vrevs of £z Naperator Ot Guzrd Equation

QUTPUT weapons_emrep
IF weancn_statys_data.statys = damaged
OR weapon_status_data status = semce_renuired
OR weanon_status_cata status = oul_of_ammunition

Figure 6. P

Op-up operator property menu

73

OPERATOR c3i_system
SPECIFICATION
DESCRIPTION
{This module implemenrts a simplified version of
a generic C3I workstation.}
END
IMPLEMENTATION
GRAPH
0 ms 0 m3 .
input_link message
fonms_1ink] ace
comns_sdd_track f c oj;trol weappn_status_data
ork/ setup
A
: c_}zchw:_setup
-;, d_transait_comuand
track {datebase_wmanager user Anterface interface
] AUt tracks
\JA weapons_enrep
/ciws_;_"st@
position_dzta : drag 15
twE_stazus
nk43 mearys
'lo ns Sensor_dats 0 ms
5 X d’/-_'-_\‘“-.
Osition_data it T~
I sors
navigation_systen sené{\i:i.jxt}eface sensors
DATA STREZNM
== Type declarations for the data Streams in the graph go here.
CONTROL CONTRZINTS
OPERATOR ccmms_links
PERIOD 3020C MS
OPERATOR ravigation_system
PERIOD 30C00 MS
BUT
OPERATOR sensors WeZDORS_emrep
PERIOD 30000 MS If weapor._status_data.status
= darmaged
OPERATOR weapons_systems OR weapor._status_data.status
PERIOD 30000 M = service_required
OF weapon_status_data.status
= out of ammunition
END

Figure 7. Top-level specification of the c3i_system

For prototypes which require sophisticated graphic user interfaces. the CAPS main interface
provides an interface editor to interactively sculpt that interface. In the final version of the
c3i_system prototype, we choose to decompose the comms_interface, the
track_database_manager and the user_interface modules into subsystems, resulting in
hierarchical design consisting of 8 composite operators and twenty-six atomic operators. The
user interface of the prototype has a total of 14 panels, four of which are shown in Figure 8. The
corresponding Ada program has a total of 10.5K lines of source code. Among the 10.5K lines

74

of code, 3.5K lines come from supervisor module that was generated automatically by the

translator/scheduler and 1.7K lines that were auto

[12].

matically generated by the interface editor

T e T WA MENG o

- PERIODIC TRACK REPORT

NAME 1

L TNANMEZ

R i N‘AM.E_:»' V

2 I NAME_Q

" BY: " INAME_S_

I 1

SUBJECI'TRACK '7 g e
| TRACK ciassEs [: Amj tsﬁamc?.i: S
FF CLASSB ,: FRIENDL?}ENEU;I‘RAL -
) [HosTE || W UNKNOWN] B

110000.0

" RANGE:

|__arcHIVESETUP] [TRACK FILTER VALUE]

L. DisPLavTRacks | [wEAPONS STATUS |

[_EMconsTatus | [NETWORKSETUP K

[_MESSAGEEDITOR | [READ MESSAGE]

[PERIODIC TRACK RPT| [TERMTRACK RPT §

S AT WEAPONS SSTATUS. 5. v] b

MkiS Status : OUT_OF_AMMUNITION

Ciws Status RgApf

Gun Status "READY

. Tws Status READY

TIME: | 13:5334 LAT: 7351

- OBSERVER TIME

Jiconinss” | @zos |

=

1 C

st

B
g
&

i "Eztmv | [eia

[comnts | [1sseus |

ICIEI [s

| B &=

E

| 1351:08 |

Hur
i

; COMMS

I;"n-sms |

'Eo.n : [la:so | =1

(1255 |

r_
8
g
g
12}

[13:38:38

Enpcow

Ee.;: | [

LI
i
L]

!
7

Nl
8
g
5

|]

[

|
|,,
Nica
| =1 =
|
]
|

[eas” |

(a2 | vksm.a

4]
!

@

|
[135008 |
|

[

] j:n.t‘ }

=

ff -s3228 ll;[; 2608 [[z]

PTI o
g .
wn

] [13as0s | -

1 =]

[128s | '

[eoms] [5i5] [

|

= S |

| 135108

g
g
3

=

:
[o]

|
SO

st i;u,] 'Eu.é‘ |

Em.u |

]

[Z]
1

0
:
E1

i 13:38:03

|52 |

=N fea |

|
3820
|
|

L4 L2

z .
=3

R

[135338

s b

"|§z:s.s !:vliz&n |

FEOE]

) Ll:-4834 |

=]

|1280) ‘

s keS|

" | sENSOR

i
H

..Esu | R [=2 '

4.’.’.'. =
g
ai-
-]

i

| 13:52:39 [

Etzf.x] [oa ; |

EEg

Figure 8. User interface of the c3i_system

o

75

To evaluate the benefits derived from the practice of computer-aided prototyping within the
software acquisition process, we conducted a case study in which we compared the cost (in
dollar amounts) required to perform requirements analysis and feasibility study for the c3i
system using the Mil-Std 2167A process, in which the software is coded manually, and the
rapid prototyping process, where part of the code is automatically generated via CAPS [5].

We found that, even under very conservative assumptions, using the CAPS method resulted
in a cost reduction of $56,300, a 27% cost saving. Taking the results of this comparison, then
projecting to a mission control software system, the command and control segment (CCS), we
estimated that there would be a cost saving of 12 million dollars. Applying this concept to an

engineering change to a typical component of the CCS software showed a further cost savings
of $25.,000.

5. Conclusion

CAPS has been used successfully as a research tool in prototyping large war-fighter control

systems and demonstrated its capability to support the development of large complex embedded
software. Specific payoffs include:

(1) Formulate/validate requirements via prototype demonstration and user feedback,
(2) Assess feasibility of real-time system designs,

(3) Enable early testing and integration of completed subsystems,

(4) Support evolutionary system development, integration and testing,

(5) Reduce maintenance costs through systematic code generation,

(6) Produce high quality. reliable and flexible software,

(7) Avoid schedule overruns.

6. References

[1] B. Boehm, Software Engineering Economics. Prentice Hall, 1981.

[2] B. Boehm. “A Spiral Model of Software Development and Enhancement™. /EEE Computer, 21(3), pp. 61-72,
1988.

[3] L. Bernstein, “Forward: Importance of Software Prototyping ", Journal of Systems Integration - Special Issue on
Computer Aided Prototyping. 6(1). pp. 9-14. 1996.

[4] J. Conklin and M. Begeman. “GIBIS: A Hypertext Tool for Exploratory Policy Discussion™, ACM Transactions
on Office Information Systems. 6(4). pp. 303-331, 1988.

{51 M. Ellis, Computer-dided Prototvping Systems (CAPS) within the software acquisition process: a case study,
Master’s thesis, Naval Postgraduate School, Monterey, California, June 1993.

[6] B. Kraemer, Luqi and V. Berzins, “Compositional Semantics of a Real-Time Prototyping Language™, /EEE
Transaction on Sofiware Engineering. 19(3). pp. 453-477, 1993.

[71 Lugi. V. Berzins and R. Yeh. “A Prototyping Language for Real-Time Software™, IEEE Transaction on
Software Engineering. 14(10), pp. 1409-1423, 1988.

[8] Luqi and M. Ketabchi, A Computer-Aided Prototyping System™, JEEE Software, 5(2). pp. 66-72, 1988.

[9] Lugqi. “A Graph Model for Software Evolution™, IEEE Transactions on Software Engineering, 16(8), pp. 917-
927. 1990.

[10] Luqgi and W. Royce, “Status Report: Computer-Aided Prototyping™, /EEE Software, 9(6), pp. 77-81, 1991.

[11] Lugi. “Computer-Aided Software Prototyping”, IEEE Computer, 24(9). pp. 111-112. 1991.

{12] Lugi. “Computer-Aided Prototyping for a Command-and-Control System Using CAPS™, IEEE Software, 9(1),
pp. 56-67, 1992.

(13] Lugi and J. Goguen, “Formal methods: promises and problems™, /EEE Software, 14(1). pp. 73-85, 1997.

[14] J. Nogueira, 4 Formal Model for Risk Assessment in Software Projects. Doctoral Dissertation, Software
Engineering, Naval Postgraduate School, Sept. 2000.

[15] B. Ramesh and Lugqi, “Process Knowledge Based Rapid Prototyping Requirements Engineering”, Journal of
Systems Integration, 5(2). pp. 157-177, 1995.

The Use of Computer Aided Prototyping for
Re-engineering Legacy Software

Luqi, V. Berzins, M. Shing, M. Saluto, J. Williams
J. Guo and B. Shultes

Abstract

Re-engineering is typically needed when a system performing a valuable service must
change, and its current implementation can no longer support cost-effective changes. The
process of re-engineering old procedural software to a modern object-oriented
architecture introduces certain complexities into the software analysis process. The direct
products of reverse engineering, such as requirements or design specifications, are likely
to have a functionally based structure. As a result, some transformation of the recovered
requirements and design specifications is necessary in order to obtain specifications for
the new structures. It is often very difficult to quickly determine if the transformed
specification is a true representation of the desired requirements. This paper discusses the
effective use of computer-aided prototyping techniques for re-engineering legacy
software, and presents results of a case study which showed that prototyping can be a
valuable aid in re-engineering of legacy systems, particularly in cases where radical
changes to system conceptualization and software structure are needed. The CAPS

system enabled us to do this with a minimal amount of coding effort.

77

1. INTRODUCTION
Legacy systems embody substantia] institutional knowledge, which includes basic and

refined requirements, design decisions, and invaluable advice and suggestions from

domain users that have been implemented over the years. To effectively use these assets,

it is important to employ a systematic strategy for continued evolution of the current
System to meet the ever-changing mission, technology and user needs. Re-engineering
has frequently been proven to be more cost effective than new development and is also
known to better promote continuous software evolution.
| However, the institutional knowledge implicit in a legacy system is difficult to
recover after many years of operation, evolution, and personne] change. These software
Systems were originally written twenty or more years ago using what many now view
archaic and ad-hoc methods. Such legacy systems usually lack accurate documentation,
modular structure, and coherent abstractions that correspond to current or projected
requirements. Past optimizations and design changes have spread design decisions that
NoW must be changed over large areas of the code, and may have introduced
inconsistencies and faults.

Software re-engineering can be defined as the Systematic transformation of ap
existing system into a new form to realize quality improvements, such as increased or
enhanced functionality, better maintainability, configurability, reusability, performance,

or evolvability at a reduced cost, schedule. or risk to the Customer. This process involves

78

Some transformation of the recovered information is necessary in order to obtain an
object-oriented model. It is often very difficult to obtain a transformed specification that
accurately represents the desired requirements.

Since legacy Systems are usually re-engineered only when the existing systems neéd
some kind of improvement, it is unlikely that the initia] version of the reconstructed
requirements adequately reflects current user needs. Prototyping provides a means to
identify and validate changes to system requirements while simultaneously enabling
prospective users to get a feel for new aspects of the proposed system. It is a well-
established approach that can be highly effective in increasing software quality [15].
When used in conjunction with conducting a major re-engineering effort, prototyping can
be extremely useful in assisting in many areas of software modification, validation, risk
reduction, and the refinement of new software architectures and user requirements.

This paper describes a case study that illustrates the effective use of computer-aided
prototyping techniques for re-engineering legacy software [3. 16]. The case study
consists of developing an object-oriented modular architecture for the existing US Army
Janus(A) combat simulation system [19], and validating the architecture via an
executable prototype using the Computer Aided Prototyping System (CAPS), a research
tool developed at the Naval Postgraduate Schoo] [14]. Janus(A) is a software-based war
game that simulates ground battles between up to six adversaries [9]. It is an interactive,
closed, stochastic, ground combat simulation with color graphics. Janus is "interactive" in
that command and contro] functions are entered by military analysts who decide what to
do in crucial sifuations during simulated combat, The curreni version of Janus operates on

a Hewlett Packard workstation and consists of over 350,000 lines of FORTRAN code.

79

another via 129 FORTRAN COMMON blocks, resulting in a software structure that

makes modification to Janus very costly and error-prone. The Software Engineering

group at the Naval Postgraduate Schoo] Wwas tasked to extract the existing functionality .

through reverse engineering and to create a base-line object-oriented architecture that

Supports existing and required enhancements to Janus functionality.
The paper presents the re-architecturing process and the resultant object-oriented
architecture in Sections 2 and 3. Section 4 describes the use of computer aided

prototyping to validate the resultant architecture and Section 5 draws some conclusions.

2. REVERSE ENGINEERING

The re-architecturing process used in the case study consists of 3 major phases: reverse

engineering, object-oriented design and design validation via prototyping (Figure 1).

Reverse Engineerine Object-oriented - Design Validation
— | Desien 4. expen | Via Prototyping
feedback ‘

domain

conceptual ; object- .
model models oriented prototype
generation i modeling demonstration

domain expert
i feedback

source code dataflow diagrams. object-oriented
design documents, structure charts
user manual, i

domain experts

executable
prototype

. object-oriented
i architecture

object-
oriented
modeling

object-oriented
architecture
construction

functional
mode!
generation

dataflow diagrams,
straicture charts

executable
prototype

object-oriented architecture forward to targer 00
> Svstem implementation

Figure 1. The object-oriented re-architecturing process.

80

The first phase is reverse engineering. Input to this phase includes the legacy source

code, design documents, user manuals, and information from domain experts. Since the

goal of the initial re-engineering effort is to duplicate the functionality of the existing

system within a modular, extensible architecture and to reuse domain concepts, models
and algorithms instead of the existing code, we should avoid including any
requirements/constraints that are consequences of issues related to FORTRAN
implementation. The best places to extract domain concepts from the existing system are
the user manuals and the database management system manuals. These manuals were
written using the lingo of the user community and should be relatively free of
implementation details. We found the JANUS Data Base Management Program Manual
[10] particularly useful because it contains detailed information on what kind of data are
needed to model the battlefield and how they are organized (logically) in the database.
The top-level structure of the database is shown in Figure 2.

Not shown in Figure 2 are the interdependencies between the data, whereby data
entered in one category affect directly or indirectly the data in other categories. For
example, the barrier delay attributes of the Engineer Data depend on specific weather
conditions derived from the Weather Data and system functional characteristics derived
from the System Data. The overall network of interdependencies is highly complex and
can only be understood through construction and analysis of a functional model of the

existing Janus software.

81

Janus Database

l

—

Detection

Mine Vulnerability

POL

Weapons/Ordinance

Weapon Selection/
Firing System

Weapon Selection/
Target System

Kill Categories

Vulnerability to
Indirect Fire

Artillery Systems

Indirect Fire
Lethalities

Arty Cloud Data

Optical & Thermal
Contrast

Smoke Grenade
Data

Aircraft Systems

Radar Systems

Characteristics
Round Guidance
MOPP Eftects
PH/ PK Data Sets

By Weapon

By Target

Barrier Delays
Non-Arty Smoke
VEES

Grenades
Smoke Pots
Large Area
Generators
Minefields
Dispensing
Clearing
Mine Detection /
Duds
Activation / Kl

Symbols l l Combat Systems ' Terrain
Systems Weather Sensor
General Weather Optical/Thermal
Characteristics Characteristics Sensors
Functional . CMR vs. Contrast .
Characteristics Weapons Englneer Temperature Chemlcal /
Volume/Weight G On-board Seekers Heat Stress

Range Dependent

Characteristics Chemical o
Capability Sus_cepnbxhty

Footprints Chemical Rounds
BCIS Heat Stress

Characteristics

Flyer Fuselage/Rotor
Data Status

Rotor Track Radii

Rotor Acquisition
Times

Fuselage Probability
Track

Fuselage Radar
X-section

Jammer/Radar
Characteristics

Jammer Effectiveness

Probability of
Detection Data vs.
Aircraft

Figure 2. The top-level structure of the Janus Database.

Analysis of the legacy implementation is a daunting but inescapable part of this step.
If printed out at 60 lines per page, 350,000 lines would fi]] almost 6000 pages. We
recoiled from the magnitude of this effort and analyzed the Janus User's manual [9], the
Janus Programmer's Manual [7], the Janus Software Design Manual [8], and the Janus

Algorithm Document [18] instead. These documents helped us get started because they

82

complexity requires time for mental digestion, even with tool support and judicious

sampling. We should have started analysis of the code right away and should have

directions earlier and would have enabled us 1o spend meeting time more effectively.

Using manual techniques augmented with simple UNIX shell commands, we were
able to walk through the code and get a fairly good idea of what each subroutine was
designed to do. We also used the Software Programmers' Manual [7] to aid in
understanding each subroutine's function. In doing so we were able to group the
subroutines by functionality to get a better understanding of the major data flows between
programs and develop functional moaels from the data flows, We used CAPS to assist in
developing the abstract models. CAPS allowed us to rapidly graph the gathered data and
transform it into a more readable and usable format. Additionally, CAPS enabled us to
concurrently dévelop our diagrams, and then join them together under the CAPS
environment, where they can be used to generate an executable model.

We also had a series of brief meetings with the client, TRAC-Monterey, asking

83

familiar with the aomain of ground combat simulation, we were using these meetings to
determine the requirements of this domain, often playing the role of "smart ignoramuses”
[4]. Domain analysis has been identified as an effective technique for software re-
engineering [17]. Our experience suggests that competent engineers unfamiliar with the
application domain have an essential role in re-engineering as well as in requirements
elicitation because lack of inessential information about the application domain makes it

easier to find new, simpler design structures and architectural concepts to guide the re-

engineering effort.

3. OBJECT-ORIENTED DESIGN
Next, we developed dbject models and architecture of the Janus System using the
aforementioned materials and products, to create the moduies and associations amongst
them. Information modeling is needed to support effective re-engineering of complex
systems {5]. This was probably the most difficult and most important phase. It required a
great deal of analysis and focus to transform the currently scattered sets of data and
functions into small, coherent and realiéable objects, each with its own attributes and
operations. In performing this phase, we used our knowledge of object-oriented analysis
and applied the OMT techniques [20] and the UML notations to create the classes and
associated attributes and operations [21]. This was a crucial phase because we had to
ensure that the classes we created accurately represented the functions and procedures
currently in the software.

Restructuring software to identify data abstractions is a difficult part of the process.
Transformations for meaning-preserving restructuring can be useful if tool support is

available [6]. We used the HP-UNIX systems at the TRAC-Monterey facility to run the

84

Janus simulation software to aid in verifying and supplementing the information we
obtained from reviewing the source code and documentation. This step enabled us to
better analyze the simulation system, gaining insight into its functionality and further
concentrate on module definition and refinement.

The re-engineering team met several times each week for a period of two and a half
months to discuss the object models for the Janus coré data elements and the object-
oriented architecture for the Janus System. We presented the findings to the Janus domain
experts at least once per week to get feedback on the models and architectures being
constructed. In addition, the re-engineering team also presented the findings to members
of the OneSAF project, the Combat?1 project, and the National Simulation Center
project. We found that information from these domain experts was essential for
understanding the system, particularly in cases where the legacy code did not correspond
to stakeholder needs. This supports the hypothesis advanced in [11] that the involvement
of domain experts is critical for nontrivial re-engineering tasks.

Early involvement of the stakeholders in the simulation community also paid off in
the long run. Both the National Simulation Center and Combat?1 projects were able to
save time and money by reusing our work and came up with designs that look remarkably
like ours (although much larger). Now. OneSAF developers have been directed to look at
the Combat21 class design and reuse as much as possible. So, our efforts have directly
benefited other simulation developers.

Based on the feedback from the domain experts, the re-engineering team revised the
object models for the Janus core elements and developed a 3-tier object-oriented

architecture for the Janus System (Figure 3).

85

Tier 1 JANUS
User Interface User Interface
T AT AR
Tier 2
Applications
Domain o ‘," \ \‘\\
P L v' N Y T
Combat . . JANUS
Scenario - Core
Systems o Combat JAAWS POSTP
DBMS Management Simulation L Elements
~“\ F\‘
Sen’icesl
Tier 3
Storage &

Communication %

Note: Lines showing the dependency of the Combat Systems DBMS, Scenario Management, JANUS
Combat Simulation, JAAWS, POSTP, DB Ul
Elements packages are omitted firom the di

tilities and Pass Interface subsystems on the Core
agram to keep it clear and simple.

DIS/HLA

F

igure 3. The proposed 3-tier object-oriented architecture.

We extracted most of the data and operations from the existing Combat System
DBMS, Scenario Management,

Janus Combat Simulation, JAAWS and POSTP
subsystems and encapsulated them as simulation objects in the Core Elements package,

leaving only application specific control codes that use the simulation objects in each of
these five subsy

stems. Figures 4 and 5 show the top level class structures of the object

models of the core elements. Details of the associated attributes and operations can be

found in [2, 23] and are omitted from these diagrams due to space limitations.

86

Scenario

o

)

enemy

Environment o| Foree o
%
Command Combat
& Conrrol Element
* consists | I |]
Aggregate |[—20 | unic | | Barrier | [Minefield | | Clond
1.*
Map CAC
Symbols Overlays
Figure 4. The top-level structure of the Janus Core Elements Object Model.
Environment
Wind
/ Model
Elevation .
——— Terrain Weather S Wet
Data f Data Bulb
: s Air
Terrain Visibility Model
Features [Q\
[] Extinction
; Thermal Optical Coefficient
Linear 2D Building Curve
Object Object

Figure 5. The Environment Object Class.

87

Central to the Janus Combat Simulation Subsystem is the program RUNJAN, which
is the main event scheduler for the sirhulation. RUNJAN determines the next scheduled
event and executes that event. If the next scheduled event is a simulation event, RUNJAN
will advance the game clock to the scheduled time of the event and perform that event.

The existing Janus Simulation System uses 17 different categories to characterize the

events. RUNJAN then handles these 17 events using the following event handlers:
1) DOPLAN - Interactive Command and Control activities

2) MOVEMENT - Update unit positions

3) DOCLOUD - Create and update smoke and dust clouds

4) STATEWT - Periodic activity to write unit status to disk

5) RELOAD - Plan and execute the direct fire events

6) INTACT - Update the graphics displays

7) CNTRBAT - Detect artillery fire

8) SEARCH - Update target acquisitions, choose weapons against potential targets,

and schedule potential direct fire events
9) DOCHEM - Create chemical clouds and transition units to different chemical states
10) FIRING - Evaluate direct fire round impacting and execute indirect fire missions
11) IMPACT - Evaluate and update the results of an indirect round impacting

12) RADAR - Update an air defense radar state and schedule direct fire events for

“normal’” radar

13) COPTER - Update helicopter states

14) DOARTY - Schedule indirect fire missions
15) DOHEAT - Update unit’s heat status
16) DOCKPT - Activity to record automatic checkpoints

17) ENDIJAN - Housekeeping activity to end the simulation

The existing event scheduler uses global arrays and matrices to maintain the attributes
of the objects in the simulation. Hence, one of the major tasks in designing an object-
oriented architecture for the Janus Combat Simulation Subsystem was to distribute the
event handling functions to individual objects. However, many of the current event
handler categories contained redundant code. They did not seem to be independent of
each other and were not consistent with the class hierarchy we created. For example, the
set of event handlers used to simulate the activities of a particular unit to search for
targets, select weapons, prepare for a direct fire engagement, and then execute that direct
fire engagement differs depending upon whether the unit has a normal radar, special
radar, or no radar at all. The existing Janus Simulation System uses the RADAR event
handler to carry out the entire procedure if the unit has normal radar. However, it uses
the SEARCH, RADAR, and RELOAD event handlers to carry out the procedure if the
unit has special radar. Finally the system uses the SEARCH and RELOAD event
handlers to conduct the procedure if the unit has no radar at all. We conjecture that this
lack of uniformity is due to a series of software modifications made by different people at
different times without full knowledge of the software structure. The example also
illustrates another problem: the legacy event handlers were not designed to perform

independent tasks, and had complicated interactions with each other.

89

It was necessary to redefine some event categories in order to reduce
interdependencies between the event handlers, to factor simulation behavior into more
coherent modules, to eliminate redundant coding of the same or similar functions and to
take advantage of dynamic dispatching of event handling functions in the object-oriented
architecture. Moreover, the Janus system was originally designed to work in isolation,
and has since been adapted to interact with other simulation systems. Interactions
between the simulation engine and the world modeler (the interface to the distributed
simulation network) are performed implicitly within the various event handlers in the
existing Janus. Such interactions are made explicit in the new architecture in order to
provide a uniform framework to update World Model objects during the simulation.

The new architecture uses an explicit priority queue of event objects to schedule the
simulation events. We were able to reduce the total number of event handlers needed in
the simulation, from 17 to 14, by eliminating identified redundant code (Figure 6). The

14 remaining event handlers are as follows:
1) DOPLAN - Interactive Command and Control activities
2) MOVE_UPDATE_OBJ — Move and update the objects in the simulation

3) SEARCH - Search for potential targets based on the detection devices available to

the objects

4) CHOOSE_DIRECT FIRE_TARGETS — Once search is complete, choose best

target to engage. In future simulations, implementations may allow users to choose

targets

5) COUNTERBATTERY - Simulate counter battery radar to detect artillery fire

90

6)

7

8)

9)

10)

11)

12)

13)

14)

DO_DIRECT_FIRE — Execute direct fire events and update ammunition status
DO_INDIRECT_FIRE - Execute indirect fire events and update ammunition status
IMPACT_EFFECTS - Calculate results of round impacting
UPDATE_HEAT_STATUS - Update unit’s heat status

UPDATE_CHEMICAL STATUS - Update unit’s chemical status

DISPLAY - Update the graphics display

WRITE_STATUS - Periodic activity to write units status to disk

CHECK_POINT - Activity to record automatic checkpoints

END_SIMULATION - Activity to end the simulation

We tried to make the actions of the new event handlers independent and orthogonal.

Independent means that one event handler does not invoke or depend on the action of

another. Orthogonal means that the purpose of one event handler is completely separate

from that of another. Although our architecture does not completely meet these goals, it

comes much closer to them than the legacy design does. We believe that these properties

of the architecture are desirable because they impose a partitioned structure on the system

that aids future enhancements and modifications. If an enhancement affects only one kind

of event, then it becomes relatively easy to isolate the affected part of the code. If suitable

naming conventions are followed, relatively low-tech tool support will be adequate for

helping system maintainers find the parts of the code that must be understood and

modified to make a future change to the system.

91

Event

Time_For_Event | * Simulation
Object
Execute()
ImpactEffects WriteStatus DoDirectFire] CounterBattery
Execute() Execute() Execute() Execute()
DoPlan Display CheckPoint
Execute() Execute() Execute()
Search DolndirectFire EndSimulation UpdateHeatStatug
Execute() Execute() Execute() Execute()
MoveUpdateObj UpdateChemicalStatus ChooseDirectFireTargets
Execute() Execute() Execute()

Figure 6. The event class hierarchy.

Every event has an associated simulation object in the new architecture. This
associated object is the target of the event. Depending on the subclass to which an event
object belongs, the “execute” method of the event w
handler of the associated simulation object (Figure 7). The simulation object superclass
defines the interface of the event handlers for the event groups. At the highest level, it
provides an empty body as the default implementation for the event handlers. Events are
dispatched to the appropriate subclass. If there is something more specific that needs to

be done for instances of the subclass, the event handler of the subclass overrides the

inherited method in order to simulate the desired behavior.

ill invoke the corresponding event

92

Simulation Object

Origin

DoPlan()
MoveUpdateObj()
WriteStatus()
DoDirectFire()

Display()
CounterBattery()
Search()
ChooseDirectFireTargets()
UpdateChemicalStatus()
DolndirectFire()
ImpactEftects()
UpdateHeatStatus()
CheckPoint()
EndSimulation()

7

Scenario

DoPlan()
WriteStatus()
Display()
CheckPoint()
EndSimulation()

l CombatElement I

CombatUnit

MoveUpdateObj()
DoDirectFire()
CounterBattery()

Search()
ChooseDirectFireTargetsi)
UpdateChemicalStatus()
DolndirectFire()
UpdateHeatStatus()

A
I

WM CombatUnit

MoveUpdateObj()
DoDirectFire()
CounterBattery()
Search()
ChooseDirectFireTargets()
UpdateChemicalStatus()
DolndirectFire()
UpdateHeatStatus()

Barrier Minetield
MoveUpdateObj() MoveUpdateObj()
; e
WM_Barrier WM_Minefield
MoveUpdateObj() MoveUpdateObj()

Cloud

MoveUpdateObj()

1

I FiringTransaction l

WM_Cloud
MoveUpdateObj() [
[1
DirectFire IndirectFire
Transaction Transaction
ImpactEttects() ImpactEftects()

§

i

WM_DirectFire
Transaction

WM_IndirectFire
Transaction

ImpactEftects()

ImpactEffects()

Figure 7. The simulation object class hierarchy.

93

The above architecture enables a very simple realization of the main simulation loop:
initialization;
while not_empty(event_queue) loop
e = remove_event(event queue);
e.execute();
end loop,
finalization;

Note that this same code is used to handle all of the event handlers, including those
for future extensions that have not yet been designed. Event objects with associated
simulation objects are created and inserted into the event queue by the initialization
procedure, the constructors of simulation objects, and the actions of other event handlers.
Depending on the actual event, events are inserted into an event priority queue based on
time and priority.

Our newly designed architecture eli'minates the need for the simulation loop to know
what kind of object it is handling. Thus when adding an object type not yet designed, the
simulation loop does not require additioﬁal code to invoke the new object’s event
handlers. By localizing all changes to the newly added object class, our architecture

eliminates the possibility of introducing errors into the existing parts of the simulation.

4. DESIGN VALIDATION VIA PROTOTYPING

The process of transforming a design developed using the functional appfoach into an
object-oriented design introduces risks of unintentionally altering system behavior. In the
context of our case study, the resultant object oriented architecture and the new event

dispatching control structure are areas of high risk since they differ significantly from the

94

functional design of the legacy software. UML provides two ways to model behavior.
One is to capture the behavior of individual objects over time using state machines, and
the other is to capture the interactions of a set of objects in the system using sequence
diagrams and collaboration diagrams. While state machines are precise, they only focus
on a single object at a time and is hard to understand the behavior of the system as a
whole. The sequence diagrams and the collaboration diagrams, on the other hand, lack a
formal semantics for precise description of the system behaviors.
One way to reduce the risk is to validate the dynamic behavior of the proposed
-architecture and to refine the interfaces of subsystems via prototyping at fhe early design
stage. To be effective, prototypes must be constructed and modified rapidly. accurately,
and cheaply. Computer aid for constructing and modifying prototypes makes this feasible
[15]. The CAPS system is an integrated set of software tools that generate source
programs directly from high-lével requirement specifications.

Due to time and resource limitations, we developed a prototype for only a very small
simulation run, which consists of a single object (a tank) moving on a two-dimensional
plane, three event subclasses (move, do_plan, and end_simulation). and one kind of post-
processing statistics (fuel consumption).

We developed an executable prototype using CAPS. Figure 8 shows the top-level
structure of the prototype, which has four subsystems: janus, gui, jaaws and the
post_processor. Among these four subsystems, the janus and the gui subsystems
(depicted as double circles) are made up of sub-modules as shown in Figures 9 and 10,
while the jaaws and the post_processor subsystems (depicted as single circles) are

mapped directly to modules in the target language. After entering the prototype design

95

into CAPS, we used the CAPS execution support system to generate the code that
interconnects and controls these subsystems. In addition, a simple user interface was
developed using CAPS/TAE [22] (Figure 11). The resultént prototype has over 6000
lines of program source code, most of which was automatically generated, and contains
enough features to exercise all parts of the architecture. The code that handles the motion
of a generic simulation object was very simple, but it was designed so that it would work
in both two and three dimensions without modification (currently the initialization and
the movement plan of the tank object never call for any vertical motion). The code was
also designed to be polymorphic. just as was the main event loop. This means the same
code will handle the motion of all kinds of simulation objects without any modifications,

including new types of simulation objects that are part of currently unknown future

enhancements to Janus and have not yet been designed or implemented.

_.PSDL Editor: warrtor

replay_request

replay_request

-

4!"&@

A

post_
processer

sirulation_history simdatian_history replay_positien

Figure 8. Top-level decomposition of the executable prototype.

96

sirulation_history

irlation_history

fx!nm‘l

\ 50 ws
scatistcs 'a':\ \I
event_
Fe ‘\mitoy'
displey) N—
st
N
farat_tire
s
Anitial
Reenario,
scenario
T interaction
Extemal
get_ Y
st
External eplay_cequast
ftnti:!ics_rm:t
Extemal

External

Figure 10. The GUI subsystem of the executable prototype.

97

JAAWS POST PROCESSING

POSITION |x = 2000.0 | lv = ~1000.0
J l}'ual Consumption = 126.0 l
Saw.0 [- [

I Calculate Fuel Coempti_ou_l

JANUS

EstarNewDestination:

R B e 0y, . -
Replay Simulation Stop Simulation

Figure 11. The Graphical User Interface of the executable prototype

Our prototyping experiment showed that the proposed object-oriented architecture
allows design issues to be localized and provides easy means for future extensions. We
started out with a prototype consisting of only two event subclasses (move and
end_simulation) and were able to add a third event subclass (do_plan) to the prototype
without modifying the event control loop of the Janus combat simulator.

We also demonstrated the use of inheritance and polymorphism to efficiently
extend/specialize the behavior of combat units. For example, the move_update object
method of a tank subclass uses the general-purpose method from its superclass to
compute its distance traveled and a specialized algorithm to compute its fuel
consumption. We simply include one statement to invoke the move_update object
method of its superclass followed by three lines of code to update its fuel consumption.

Moreover, other combat unit subclasses can be added easily to the prototype without the

98

need to modify the event scheduling/dispatching code and usually without modifying

existing event handlers.

The issues raised by the design of the prototype also resulted in the following

refinements to the proposed architecture:

1.

N

Extend the interface of the Execute Event operation to return the time at which the
next event is to be scheduled for the same simulation object, and introduce a special
time value “NEVER?” to indicate that no next event is needed. The proposed change
turns the communication between the event dispatcher and the simulation objects
from a peer-to-peer communication into a client-server communication. This change
eliminates dependencies of event handlers on event queue detaiis and allows the event

dispatcher to use a single statement to schedule all recurring events for all event

types.

Instead of recording the history of a simulation run in sets of data files, model the
simulation history as a sequence of events. The proposed change provides a simple
and uniform way to handle history records for all events, and allows the same
modular architecture to be used for real-time simulations as well as post-simulation
analysis. It also eliminates the need for the write-status event, reducing the number of
events still further. This approach provides the greatest possible resolution for the
event histories, which implies that any quantity that could have been calculated
during the simulation can also be calculated by a post—simﬁlation analysis of the event
history, without any loss of accuracy. The only constraint imposed by this design
refinement is that the simulation objects in the events must be copied before being

included in the simulation history, to protect them from further changes of state as the

99

simulation proceeds. This constraint is easy to meet in a full-scale implementation

because the process of writing the contents of an event object to a history file will

implicitly make the required copy.

The prototyping effort also exposed a design issue - should null events appear in the
event queue? A null event is one that does not affect the state of the simulation, such as a
move event for an object that is currently stationary. The prototype version adopted the
position that such events should not be put in the event queue, since this corresponds to
current scheduling policies in Janus, and appears at first glance to improve efficiency.

Our experience with the development of the prototype suggests that this decision
complicates the logic and may not in fact improve efficiency. In particular, the process
create_new_events (see Figure 9) could be eliminated if we allowed null events. This
process scans all simulation objects once per simulation cycle to determine if any
dormant objects have become active, and if so, schedules events to handle their new
activity. The alternative is to have the constructor of each kind of simulation object
schedule all of its initial events, and to have each event handler specify the time of next
instance of the same event even if there is nothing for it to do currently. Handlers might
still set the time of its next event to NEVER in the case of a catastrophic kill; however
this is reasonable only if it is impossible to repair or restore the operation of the units that
have suffered a catastrophic kill. The reasons why this design change may improve

efficiency in addition to simplifying the code are that:

1. the check for whether a dormant object has become active is done less often - once

per activity of that object, rather than once per simulation cycle,

100

2. executing a null event is very fast - a few instructions at most, so the “unnecessary”

null events will not have much impact on execution time, and

3. the computation to find and test all simulation objects periodically would be
eliminated.

We recommend allowing null events in the event queue, and explicitly scheduling
every kind of event for every object unless it is known that there cannot be any non-
empty events of that type in any possible future state of the object. For example, under
the proposed scheduling policy, immobile or irrecoverably damaged objects would not
need to schedule future move events, but those that are currently at their planned
positions would need to do so, because a change of plan could cause them to move again

in the future, even though they are not currently moving. The resulting architecture

enables a very simple realization of the main simulation.

5. CONCLUSION

Our conclusion is that substantial and usefu] computer aid for re-engineering is possible
at the current state of the art. Human analysts and domain experts must also play an
important part of the process because much of the information needed to do a good job is
not present in the software artifacts to be re-engineered. Success depends on cooperation
between skilled people and appropriate software tools.

The missing information needed for re-engineering is related to deficiencies of the
current system at all levels, from requirements through design and implementation.
Thorough and accurate knowledge of these deficiencies is crucial for success. The clients
never want the re-engineered system to have the exactly same behavior as the legacy

system - if they were satisfied, there would be little motivation to spend time, effort, and

101

resources on a re-engineering project. Even if a system is being re-engineered for the
ostensible goal of porting to different hardware, the desired behavior at the interface to
the hardware and systems software will be different.

In practical situations, the requirements for the re-engineered system are different
from those for the legacy system. Key parts of the requirements for the new system are
often missing or incorrect in the legacy documents. Some of that information is present
only in the minds of the clients, often fragmented and scattered across members of many
different organizations. Communication is a large part of the process, and that
communication cannot be automated away, although it can be enhanced by appropriate
use of prototyping. We found that the most important communications were those
regarding newly recognized requirements issues, and that such recognition were often
triggered by discussions between people with different areas of expertise.

Uncertainties about the true requirements play a central role in both re-engineering
and the development of new systems. We therefore hypothesized that prototyping could
play a valuable role in re-engineering efforts. Our experience in the case study reported
here support that hypothesis.

We also found that prototyping can contribute substantially to the process of
inventing, correcting, and refining the conceptual structures on which the architecture of
the new system will be based. Most legacy systems are too complicated for individuals to
understand.

This maze of details hides potential opportunities for simplifying and regularizing the

conceptual structure of the system to be re-engineered, and makes it difficult to recognize

102

deficiencies in design and architectura] structure. The amplification process implic.it in
constructing skeletal prototypes helps expose such opportunities.

We found that there are fundamental conceptual errors embodied in the legacy
structures and algorithms. Some of those errors were exposed when structural
asymmetries and irregularities are discovered in the process of extracting a model of the
legacy software. Others were discovered only with the help of the oversimplified models
that are common in the early stages of prototyping a proposed new architecture.
Constructing a small and simple instance of the proposed architecture raises many of the
main design issues, and the simplicity of the model makes it much easier to consider and
evaluate alternative designs to find improved structures.

To be effective, prototypes must be constructed and modified rapidly, accurately, and
cheaply. The UML interaction diagrams lack the preciseness to support automatic code
generation for the executable prototype. This weakness can be remedied by the use of the
prototype language PSDL [12, 13] and the CAPS prototyping' environment, which
provide effective means to model the system’s dynamic behavior in a form that can be

easily validated by user via prototype demonstration.

ACKNOWLEDGEMENT

The authors thank Dr. David'Hislop, COL Michael McGinnis, MAJ Gerald Pearman,
MAJ LeRoy Jackson, MAJ William Murphy, SFC Cary Augustine, Harold Yamauchi
and Bill Caldwell for their help and support for the project. This research was supported
in part by the U.S. Army Research Office under contract # 35037-MA and in part by the

U. S. Army Training and Doctrine Analysis Command.

103

REFERENCES

(1]

[2]

(3]

[4]

(5]

(6]

1. Baxter and M. Mehlich, “Reverse Engineering is Reverse Forward Engineering,”
Proceeding of the 4th Workshop on Reverse Engineering, IEEE Computer Society,
1997, pp. 104-113.

V. Berzins, M. Shing, Luqi, M. Saluto and J. Williams, Re-engineering the
Janus(4) Combat Simulation System. Technical Report NPS-CS-99-004, Computer
Science Department, Naval Postgraduate School, Monterey, CA, January 1999.

V. Berzins, M. Shing, Luqi, M. Saluto and J. Williams, “Architectural Re-
engineering of Janus using Object Modeling and Rapid Prototyping,” to be
published in the journal Design Automation Jor Embedded Systems.
A preliminary version of the paper also appeared in Proceedings of the 10th IEEE
International Workshop in Rapid Systems Prototyping. Clearwater Beach, F lorida,
16-18 June 1999, pp- 216-221.

D. Berry, Formal Methods: The Very Idea. “Some Thoughts About Why They
Work When They Work,” Proceedings of the 1998 ARO/ONR/NSF/DARPA
Monterey Workshop on Engineering Automation Jor Computer Based Systems,
1998, pp. 9-18.

O. Bray and M. Hess, “Reengineering a Configuration-Management System,” IEEE
Software, Vol. 12, No. 1, Jan, 1995, pp. 55-63.

V. Cabaniss, B. Nguyen and J. Moregenthaler. “Tool Support for Planning the
Restructuring of Data Abstractions in Large Systems,” IEEE TSE, Vol. 24, No. 7,

July 1998, pp. 534-558.

104

[7]

(8]

(9]

[10]

[11]

(12]

[13]

(14]

Janus 3. X/UNIX Soﬁware Programmer's Manual, Prepared for: Headquarters
TRADOC Analysis Center, Ft. Leavenworth, Kansas. Prepared by: Titan, Inc.
Applications Group, Leavenworth, Kansas, Nov. 1993.

Janus 3.X/UNIX Software Design Manual, Prepared for: Headquarters TRADOC
Analysis Center, Ft. Leavenworth, Kansas. Prepared by: Titan, Inc. Applications
Group, Leavenworth, Kansas, Nov. 1993.

Janus Version 6 User's Manual, Simulation, Training & Instrumentation Command,
Orlando. Florida, 1995.

Janus Version 6 Data Base Management Program Manual, Simulation, Training &
Instrumentation Command, Orlando, Florida, 1995.

S. Jarzabek and P.K. Tan. “Design of a Generic Reverse Engineering Assistant
Tool,” Proceedings of the Second Working Conference on Reverse Engineering

(WCRE'93), 1995, pp. 61-70.

B. Kraemer, Luqi, and V. Berzins, “Compositional Semantics of a Real-Time
Prototyping Language,” IEEE Transactions on Software Engineering, Vol. 19, No.

5, May 1993, pp. 453-477.

Lugi, V. Berzins, and R. Yeh. “A Prototyping Language for Real-Time Software,”
IEEE Transactions on Software Engineering, Vol. 14, No.10, October 1988, pp.
1409-1423.

Luqi and M. Ketabchi, “*A Computer-Aided Prototyping System,” IEEE Software,

Vol. 5, No. 2, 1988, pp. 66-72.

[15] Lugqi, “System Engineering and Computer-Aided Prototyping,” Journal of Systems

[16]

[17]

[18]

[19]

(20]

[21]

(22]

Integration - Special Issue on Computer Aided Prototyping, Vol. 6, No. 1, 1996,
pp.15-17.

Luqi, V. Berzins, M. Shing, M. Saluto, J. Williams, J. Guo and B. Shultes, “The

Story of Re-engineering of 350,000 Lines of FORTRAN Code,” Proceedings of the
1998 ARO/ONR/NSF/DARPA Monterey Workshop on Engineering Automation for
Computer Based Systems, Carmel, CA, 23-26 October 1998, pp. 151-160.

M. Moore and S. Rugaber, “Domain Analysis for Transformational Reuse,”
Proceedings of 4th Workshop on Reverse Engineering, IEEE Computer Society,
1997, pp. 156-163.

J. Pimper and L. Dobbs, Janus Algorithm Document, Version 4.0, Lawrence

Livermore National Laboratory, California, 1988.

L. Rieger and G. Pearman, “Re-engineering Legacy Simulations for HLA-
Compliance,” Proceedings of the Interservice/Industry T) raining, Simulation and

Education Conference (/ITSEC), Orlando, Florida, December 1999,

J. Rumbaugh. M. Blaha, W. Premerlani. F. Eddy and W. Lorenzer, Object-Oriented

Modeling and Design, Prentice Hall, 1991.

J. Rumbaugh. I. Jacobson and G. Booch, The Unified Modeling Language
Reference Manual, Addison-W, esley, Reading, MA, 1999.

TAE Plus C Programmer’s Manual (Version 3.1). Prepared for: NASA Goddard
Space Flight Center. Greenbelt, Maryland. Prepared by: Century Computing, Inc.,

Laural, Maryland, April 1991.

106

[23] J. Williams and M. Saluto, Re-engineering and Prototyping Legacy Sofiware

Systems-Janus Version 6.X, master’s thesis, Naval Postgraduate School, Dept. of

Computer Science, Monterey, CA, March 1999.

107

Product Line Viewpoint and Validation Models

Nadar Nada, Lugi
Naval Postgraduate School
C.S. Dept. Code CS/ 833 Dyer Rd.
Monterey, CA. 93943 USA
+1 831 656 4075
nnada,luqi@cs.nps.navy.mil

ABSTRACT

A product line is a group of systems sharing a common,
managed set of features that satisfy specific needs of a
selected market or mission. In the product line approach,
management, system developers. and a reuse team are
interested in some views of the product line. In this paper
a model is defined to present product lines, its derived
products, and common assets used in these product lines.
The model is used to convey views of interest to different
stakeholders: management, system developers, and a
reuse team in the product line approach. Its purpose is to
capture information and present this information about
organizations’ product lines. and make it visible to the
stakeholders inside and outside organizations.
Management can use the model when producing new
products of a product line, negotiating with customers.
and assessing the benefits of adopting the product line
approach. Product line developers can use the model
when developing products of a product line. A reuse team
can use the mode! through asset identifications, ensuring a
successful use of asset base in and across product lines.
and assessing the level of reuse.

Keywords

Product fine. Product line architecture. COTS.
Organizational components, Stakeholders, and System-
unique components.

1 INTRODUCTION

Organizations that develop similar products are adopting
the product line or product family approach to deploy
systems faster, at a low cost, and a high quality. Systems
are produced in a product line using common architecture
and assets that are used across products. Organizations
reuse common assets, integrated assets, etc. that would

Khaled Jaber
Case Western Reserve Univ.
C.S. Dept./10900 Euclid Ave.
Cleveland, OH. 44106 USA
+1 8602149
Jjaber@lucent.com

David Rine
George Mason University
C.S. Dept. MS 4A5
Fairfax, VA 22030
+1 703 993 1546
drine@gmu.edu

otherwise have to be needlessly repeated for each system.

Each stakeholder, i.e. management, systems developers,
and reuse team is interested in a particular view of the
product line. Management. for example, might be
interested in viewing products of a product line to
estimate time and schedules. Systems developers might
be interested in a view of a product line looking for
common assets. The reuse team might be interested in a
view of a product line to assess the level of reuse in a
product line. These are some of the interesting views.

We are presenting a product line viewpoint model that
shows different views of the product line, its derived
products, and common assets used. Also we are showing
how the model conveys particular views interesting to
management, systems developers. and reuse team.

-

Section 2 describes the product line concept. Section 3
describes the product line model. Section 4 describes
views captured by the model. Section 5 is an empirical
model for product line validation. Section 6 represents a
repository support. Section 7 is the conclusion.

2 PRODUCT LINE CONCEPT

A product line is defined as a group of products sharing a
common, managed set of features that satisfy specific
needs of a selected market or mission [1, 4]. Products in
the product line are engineered through customization
from base requirements and standard product line
architectures, and integration of common components
rather than using system-unique software [2].

The product line architecture is one of the important
assets shared by the systems in a product line. It provides
the structure for building systems in the product line. All

_ products are based on the product line architecture.

Product line assets are used across products in the product
line. Product line assets depend on the solutions common
to the products in a product line. Reusing these solutions
reduces or eliminates work that otherwise would be
required to build each product [3].

In the product line development, a dual life-cycle model
can be used in which domain engineering is the process
used to create domain artifacts useful across the entire

108

Table 1 The Viewpoint and Attribute Template.

Yiewpoint Tem plate

Reference “The viewpoint name
Attributes Attributes providing view point information]
Tasks A reference to a set of event scenarios describing
how viewers interact with the product line and their tasks
Sub-views The names of sub-viewpoints
l——> Attributes Template
Yiew Entities Attributes
Product line Name, owner, intended market.
Product Name, contact person, customer(s).
Product line | Contact person, release number. number of times reused. development
architecture release time. number of staff. used architectural style. inter-component used
communication mechanisms, operating systems(s)and platform(s).
Product release Customers. release number. contact person. development time,

development cost, when developed, number of staff, status, operating
system(s) and platform(s).

COTS component | Name. vendor, release number. contact person. cost, number of times
release reused, operating s¥stem(s) and platform(s).
Organizational Name, release number. contact person. developed internally or externally,
component release development cost, number of times reused. development time. number of
staff, operating system(s) and platform¢(s).
System-unique Name: release number. contact person. development cost, development
component release time. and number of staff, operating svstem«s) and platform(s).
Has Usec
. Has ; Product | = f Product Line | by Specify Common
E.""’"" Lwne Archi e component
ne Architecture Release Dcsqnpyqr?
: 1 ! Anterface
1
Comforms 1 Has
to
Has
Used
by Belonys
i 1 | to
: Uses -
Product s Product i ;‘;‘::::: = g::f:nrlm = C ;
. P !
Release 1 Architecture | Used Release ! Comp:::@f .
1 1 1 b
i
: Could
Used b
by
coTs .
Component '_Co mponeru .
System -
Mighe e Comportient -.
N 1 Has t

I'se

Figure 1 Product Line Views Model

109

product line, and application engineering is the process
used to produce a single product by adapting the domain-
wide assets [1].

3 PRODUCT LINE VIEWS MODEL .

A product line model that shows different views of a
product line, its derived products, and common assets used
is presented in this section, It defines entities and
relationships between these entities to present product Jines.
It presents different ways to viewing a product line
keeping in mind enhancement, modification, other models,
other entities and relationships. Figure 1 depicts the model.
The following sections describe the product line views-
point model.

3.1. Product Line Overview

A product line is defined as a group of products sharing a
common, managed set of features that satisfy specific needs
of a selected market or mission [1, 4). A product line has a
group of products associated with it; it has a 1:M relation
with its products. A product line has a common architecture
associated with it; it has a 1:] relation with its architecture,

3.2. Product Line Architecture

Product line architecture provides the structural elements
and their interfaces by which the system is composed out of
the product line {18]. Products are customized using the
product line architecture. Product line architecture might
evolve during the product line [ife cycle. New releases of
the product line architecture could be seen and this is due to
change in customers’ requirements, new technologies,
design fixes, etc. It has a 1:M relationship with its releases.
The early releases of product line architecture specifv the
common components used in the product line architecture;
they could specify the functionality needed by these
components and might specify their interfaces. An M: N
relationship is established between product line architecture
release and common component description/interface. A fter
common components are developed, later releases of
product line architecture might refer directly to common
component releases. A product line architecture release is
used by many products’ releases; it has a |:M relationship
with their architectures.

3. 3. Products

Products in a product line are engineered through
customization from base requirements, standard product
line architectures and integration of common components,
and might use system unique components. Each product is
associated with its releases, Each product release has
architecture associated with it called product release
architecture. Product has a I:!M relationship with its
releases, whereas, product release has a 1:1 relation with its
architecture.

3. 4. Product Release Architecture

Product release architecture is derived from the product line
architecture release and must conform to the product line
architecture release. It uses many common components
described by the product line architecture release; for each
common component used, it uses one of the releases of that
component. In addition, it might use many system-unique
components; for each system-unique component used, it
uses a release of that component.

3.5. Components

Components are the building blocks of products in a
product line and are classified into two categories: a
common component and System-unique component. A
common component is used across products of a product
line and could be a commercial-off-the-shelf (COTS)
component or an organizational component. Organizational
components refer to common components developed by the
product line organization. They could be developed
internally by the organization owning the product line or
externally by a different organization within the business
unit of which the organization is a part. A system-unique
component is used in specific products. Both types of
components, common and system-unique, could have
releases associated with them and have a 1:M relationship
with their releases. They are used in many product releases
and have an M: N relationship with product architecture
release.

3. 6. Viewpoint Attributes

Entities in the viewpoints have some interesting attributes.
Table 1 represents the viewpoint and attributes template.
Organizations that adopt the product line approach might
be interested in other attributes; these attributes can be
added to the table. The attributes listed in table 1 are used
to support the views described at section 4 in this paper.

4 PRODUCT LINE VIEWPOINT MODEL

In the product line approach, product Lines share several
different views that are interesting to management, system
developers, and a reuse team. Other interesting views might
be possible.

4.1. Management View

Management of an organization that adopts the product line
approach has authority, vision, and leadership. It manages
the development of products in a product line. They
manage staffing, training, cost, directions, and schedules
through the product line cycle. They have a clear vision
about the direction of a product line. They interact with
customers and make business decisions.

Management in the product line approach can be interested
in the products derived from a product line, customers of
these products, and customer contact persons. Also they
can be interested in cost. contact persons, time intervals,
and staffing for products and assets used in these products.

110

Identification

Figure 2. Viewpoin

Table 2. Experimental Model P

A 4 y
Viewpoint ﬁ_!

Structuring

iewpoint Viewpoint

Documentation

t Development Phases

hases for Product Line Validation

Phase Function Data Collection Methods
1. Adoption Assessment Survey, Legacy

2. Planning & Management Measurment & Control Survey, Legacy

3. Utilization Monitring Case Study, Project Monitor
4. Expansion Adaptation Case Study. Survey, Legacy

This data is supported by the mode. Management can use
this data when producing a new product of a product line,
negotiating with customers, and assessing the benefits of
adopting the product line approach.

The structural of management view and its relationships
presented by the model answers questions related to what
are the products of a product line and assets used in these
products. Attributes used in model’s entities answer
questions related to who is the customer. contact person,
time interval, cost, staffing, etc., of products in a product
line.

4.2. Reuse Team View

A reuse team of an organization that adopts a product line
approach supports reuse across product lines. They support
reuse of components through asset identification. W ith
systems developers they ensure successful use of asset
bases in and across product lines. They assess the reuse
level across product lines. Reuse team can be interested in
viewing product lines, their derived products, and reusable
assets (product line architectures and components) used in a
product line. They can also be interested in the number of
times an asset is reused, and the type of components used in
a product line.

The structural of reuse team view and its relations
presented by the model shows products of a product line
and assets used in these products. Attributes used in the
model’s entities answer question related to the type of

components used, number of times an asset is reused.

The reuse team can use this information through asset
identification, ensuring a successful use of asset base in and
across product lines, and assessing the level of reuse.

4.3. Systems Developers View

System developers in the product line approach are also
interested in viewing product lines, their derived products,
the product line architecture, its evolution, assets used and
their evolution, the operating system(s) and platform(s) are
used, components types, their interfaces.

The structural of system developers view and its relations
presented by the model shows the products derived in a
product line, the product line architecture, its evolution,
components used and their evolution. Attributes used in the
model’s entities answer questions related the contact person
of an asset, components interface, component type,
operating system(s) and platform(s).

4.4. Viewpoints Development

We used the method called VORD [17] for the
development of viewpoints. Also, this method is principally
intended for requirements discovery and analysis, it
includes steps that help to translate this analysis into a
viewpoint. We considered only the first three stages of the
VORD method concerned with viewpoint identification,
structuring, and documentation.

a- Viewpoint Identification involves discovering

111

stakeholder viewpoint and identifying the specific
attributes, tasks, and sub-viewpoints.

b- Viewpoint Structuring involves grouping related
viewpoints into a hierarchy. Common viewpoints are
provided at higher levels in the hierarchy and are
inherited by lower-level viewpoints.

¢- Viewpoints documentation involves refining the
description of the identified viewpoints.

Viewpoints and attributes information in VORD are
collected using standard forms. The form used for
viewpoint information (the viewpoint template) and
attributes information (attributes template) are shown in
Table 1.

The viewpoints and attributes templates, as well as the
viewpoint hierarchy diagrams are developed during the
three phases shown in Table 1. The templates are used to
structure the information collected. and in general a
template cannot be completely filled in during single
activity.

5 EMPIRICAL MODEL FOR PRODUCT LINE
VALIDATION

In this section an experimental integrated model for
product line pilot project planning, measurement. and
assessment is presented. This section discusses how
qualitative and quantitative process and product line goals
are established based on customer and business needs. The
process of flow-down of goals to the level of processes and
the experimental pilot model is described. Table 2. presents
the empirical and engineering model phases for product
line validation.

5.1. Making the Product Line Adoption Decision

Product line adoption is defined in the context of an
organization rationale to agree, sponsor, commit, or
allocate resources for initiating a product line plan or
project. Product line utilization is defined in the context of
an organization as the creation of assets with the specific
“intention” to be reused as well as the utilization of assets
that had been specifically created with the “intention” of
being reused. Product line management is defined in the
context of an organization that manages the creation,
utilization, and evolution (i.e., maintenance) of reusable
assets. The application of software reuse technologies to
planned products (both new and existing) and planned
product lines is an indicator that software reuse adoption is
strongly correlated with organizational opportunities.

Most software development organizations operate
according to marketing and finance strategies. An
organization wishing to improve its financial status may
look for new or extended opportunities in software product
markets. Product line is one possible approach that may be
used to leverage decreased time to such markets with
decreased effort and increased product quality.,

So the first step is to make the product line adoption
decision based on some empirically validated software
reuse reference model (RRM) [Nada 97]. This in turn will
lead to a set of decisions balancing market opportunities
with market risks. This step will also identify reuse
opportunities, reuse objectives, costs, constraints, and
options.

For adoption decision organizations conduct an analytical
study to decide either to adopt certain product line process
or technology or not. This study. collects both qualitative
and quantitative benchmark data on the product line
approach.

The adoption phase includes several steps to evaluate the
technical and organizational aspects of the introduced
product line process or technology.

5.1.1 Organization context

Organization context describes the environment in which
the organization exists or existed when it launched the
product line effort. The following lists common factors that
are used in the adoption phase to evaluate the existing
environment before applying the product line approach.
The following factors will be used to record and evaluate
the context environment of organizations adopted the
product line approach. Also it used by organizations
exploring the transition to the product line approach.

Process or technology objective. To adopt the product
line approach; the objective of developing product lines
needs to be addressed and defined. This includes defining
the scope of the product line, how long the organization has
been building product lines, and the product line life cycle.

Costs/benefits. Organizations that already adopted these
processes or technologies should have data related to the
costs and benefits of this adopting. Organizations that are
thinking to adopt a software reuse approach might not have
data about the cost of adopting this technology, but the
benefits of software reuse approach should be defined.
Cost varies based on the size and the number of products in
the organization, the technical experience, organization
structure needed, skills and training, and tools.

Commonalties and variabilities. Organizations exploring
the transition to software reuse approach should identify
which products can be ‘considered and what their
commonalties and variabilities

Common architecture. Organizations exploring software
reuse approach should consider the feasibility of common
architecture for their products. Also the style of the
architecture might be defined, e.g. layered architecture,
client server architecture, etc.

Assets used. In software reuse development approach
products are assembled using common set of assets and
might use system unique assets. Assets could be domain

112

models, communication protocol descriptions, user
interface descriptions, code components, type of common
components that developed internally or by using Off-The-
Shelf “COTS” components, application generators, domain
knowledge, test plans and procedures, requirement
descriptions, performance models, metrics, etc.
Organizations adopted the software reuse approach records
the common assets used in their products. Organizations
exploring the transition to the product line approach should
define what are the common assets exist.

Level of reuse. One of the benefits of adopting software
reuse is increasing the level of software assets reuse in
organizations. Organizations adopting reuse approach
should have or find other organizations darta related to the
percentage of reuse achieved in adopting the this approach.
Also the type of reuse used, for example. horizontal reuse
or vertical reuse. Horizontal reuse represents wide domain
width reuse, i.e. a component that can be used in many
applications. Vertical reuse represents a narrow domain
width reuse, i.e. a component that can be used in one
application.

Organization structure. The organization's structure for
developing one-at-a-time systems might not be suitable to
product line development. Adopting a product line
approach has an impact on organization structure. This
factor defines the impact of the new structure needed to
adopt the product line approach. The impact might be low,
medium, or high.

Process. Process used in developing one-at-a-time systéms
will not be suitable to the product line development. As
part of adopting reuse technology, existing process might
be modified and new processes need to be in place, e.g.
customer interface process, software development
processes, etc. This factor defines the impact on the
organization processes by adopting new approach, what
type of the processes need to be changed, and what type of
new processes needed.

Training. Transitioning to new processes or technology
requires skilled personnel to achieve a successful
transitioning. This factor defines the type of training
needed, e.g. in house training, external consultant, etc. Also
it defines who needs training, e.g. management, systems
developers, etc.

Tools. This factor defines which tools are needed in
software development, e.g. tools to assemble products,
configuration management tools, tools to record the
progress of the product line development, etc.

Software reuse assessment is the main function of this
phase. Historical methods are used to collect data, e.g.,
survey and/or legacy

5.2. Product Line Planning
Organizations use this phase as a plan for the transition to

product line software development approach. Organizations
can use this phase to record, evaluate, and assess the
planning for the product line approach. Organizations
intending to adopt software reuse use this phase to put the
software reuse in practice.

The following include the implementation plan for software
reuse approach; a list of common factors is described in this
section as part of the planning phase.

Management Support. Building software products is not
just an engineering agenda, it precipitates changes in
personnel, personnel management, incentives, customer
interface, scheduling, budgeting, and a whole host of
management practices. It is a new vigorously and actively
supports the transition, the effort will fail. Software reuse
Strategy means that organizations and managers have less
direct control . over their product developments and
increased dependency on other organizations to understand
their requirements and provide acceptable solutions. Giving
up this control and the necessary dollars to support product
line technology and application development may be
difficult. Organizations adopted the software reuse
approach should record their experience of the management
support. evaluate, and assess that support.

Cultural change. The software reuse concepts should be
defined and understood by people of organizations
adopting this new approach. A particular attitude that had
to be overcome was the one-at-a-time mentality of building
a system for its own sake rather than as a contributing
effort to the organization’s strategic goal of fielding and
building up a base set of core assets. Software reuse
terminology should be defined and understood across
organization.

Organization structure. Adopting new technology or
process has an impact on the organizational structure. For
example organizations develop product line has a structure
different than organizations develop one-at-a-time systems.
Some organizations has a product line structure where a
marketers group relate product line capabilities to
prospective customers; relate customer needs to asset and
application developers. A core assets group develops
architecture and other assets for product line. An
application group deliver systems to customer. There are
different players in the product line approach and they
should have different skills to launch the product line
approach. Transitioning to the product line approach
requires the organization’s structure and players in the
product line approach to be defined.

Training and processes. Transitioning to software reuse
involve education and training on the part of management
and technicians. Managers need to support the business
motivation and strategy of the software reuse approach.
They need to understand and role of the infrastructure
technologies, understand how to monitor progress and

113

identify potential problems within their area of the
program. Different type of training might be needed:
Formal training, on-the-job mentoring from external
consultants, etc.

New processes are needed to develop a product line is
different from processes used in developing one-at-a-time
systems. These processes might be customer interface
processes, development process, resource ownership
processes, etc.

Training and processes changes should be defined in the
transition to the product line approach.

New technologies. Technologies allow organizations to
stay a competitive edge. Some of the technologies, for
example, used in the production of product line are domain
engineering and application engineering. Domain
engineering used to create artifacts useful across the entire
product line. Application engineering is used to produce a
single product by adopting the domain-wide assets. Other
technologies, for example, using CORBA, COM, etc.
These technologies need to be defined in the transitioning
to software reuse development approach.

Tools support: Using tools to support the new
development approach increase organizations’ productivity.
Some organizations use tools that are used to assemble
products together. Others use tool to capture domain
knowledge, etc. These type of tools used needs to be
defined in the transition phase.

Software reuse measurement is the main function of this
phase. Historical methods are used to collect data, e.g.,
survey and/or legacy.

5.3. Utilization and Management

Product line utilization is defined in the context of an
organization as the creation of assets with the specific
“intention” to be reused and the utilization of assets that
had been specifically created with the “intention” of being
reused.

The next step is to decide upon the levels of the RRM
utilization and management and to look closely at any
significant changes or impacts on both top and middle
management. This step includes the assessment of an
organization’s willingness to adopt the RRM, the
implementation levels, and the incremental investment
strategies.

3.3.1 The Product Line Utilization.

Asset Utilization The objective of processes in this family
is to utilize existing assets in software development and
evolution (i.e,, maintenance) activities. The processes for
this family consist of developing or selecting criteria for
asset identification, modifying or tailoring selected asset(s),
and integrating the selected asset in the system under
development or evolution

This step is the actual production phase by applying
evolutionary approach (Boehm Spiral Life-Cycle Model)
to the reuse plan implementation. Our early research results
have shown that software development organizations at a
high success (capability) level usually carry out several
pilot (experimental) projects to help them in the
construction of a prototype repository, component model
definition, components classification scheme definition,
domain model, common architecture, and product-line as
follows:

1. Develop a prototype (pilot project)
IL. Learn and evaluate of risk versus opportunities

(including assessment of effort. quality, schedule, tools,
and procedures)

lI. Expand prototype to a safer version of product line
with the necessary adjustment

Repeat step (I1) and (I1) until you achieve a stable product
line version,

This approach to the successful learning and evolving the
RRM within an organization is like the Boehm Spiral Life-
Cycle Mode! [8] applied to the RRM implementation plan.

3.3.2 Product Line Management

Reuse management is defined in the context of an
organization that manages the creation. utilization, and
evolution (i.e., maintenance) of reusable assets.

Asset Management and Control: The objective of processes
in this family is to develop and organize collection(s) of
quality reusable assets, define and develop services and
capabilities to access these assets (i.e., for asset utilization
processes), and establish, support, and enact a broker role
for asset developers (i.e., from asset creation) and asset
consumers (i.e., from asset utilization).

The reuse management and control is based on the classic
plan. enact, and learn cycle. The plan, enact, learn cycle in
the reuse management idiom is based on the following
principles as described in the STARS CFRP [11].

Software reuse monitoring is the main function of this
phase. Observational and historical methods are used to
collect data, e.g., survey, case study, historical analyze
and/or legacy

5.4. Product Line Expansion

In this phase, organizations look for new product
opportunities and asses the customer needs and reuse
future plan.

Determining and evolving the future objectives, straiegy,
and scope of a reuse program, resulting in selection of a set
of suitable domains and products lines in which to apply
reuse within an organization. Planning. establishing,
monitoring and evaluating Reuse engineering idiom (asset

creation, asset management, and asset utilization) projects
addressing the selected domains and product lines. Looking
for new market opportunities, market analyze, and assess
the future financial plans.

Software reuse adaptation is the main function of this
phase. Observational and historical methods are used to
collect data, e.g., survey, case study, historical analysis
and/or legacy.

6 REPOSITORY SUPPORT

Organizations adopting the product line approach can use a
repository to implement the model. The repository
supporting the product line approach can capture the
entities and their related attributes. and the relationships
between these entities to covey the model’s views. A web-
based repository is a good choice to implement the model.
It provides and easy access for many users internally or
externally to organizations developing product lines. The
Web-based repository can model the entities, some of their
related attributes, and relationships as Hyper-text links to
present a complete picture of the entire product line.

7 CONCLUSIONS

Organizations that produce similar systems are moving
towards implementing the product line approach. Products
in the product line approach are engineered through
customization from base requirements and product line
architectures, integration of common components and
system-unique components.

The model! described in this paper is intended to capture a
view of the product line. its derived products. and assets
used in the product line. The model is defined to present
views interested to management, system developers. and a
reuse team in the product line approach.

REFERENCES

1. Bass, L., Clements, P., Cohen. S., Northrop, L.. and
Withey, J., “Product Line Practice Workshop Report™.
June 1997.
http://www.sei.cmu.edu/about/website/indexes/site[nde
x/siteIndexTRnum.htm!.

2. Cohen, S., Fridman, S. Martin. L., Poyer, T,
Solderitsch, N., and Webster, R.. “Concept of
Operations for the ESC Product Line Approach”, Sept.
1996.

3. Brown, A, and Wallnay, K., “Engineering of
Component-Based Systems”, Proceedings of the 2™
IEEE International Conference on Engineering of
Complex Systems, 1996. IEEE Computer Society
Press 1996.

4. Brownswod, L., and Clements, P.. “A Case Study in
Successful Product Line Development™, Oct. 1996,
http://www.sei.cmu.edu/about/website/indexes/sitelnde
x/sitelndexTRnum.htm]

W

10.

EREE

Clements, P.. “Report of the Reuse and Product Lines
Working Group of WISRS”, Aug. 1997,
http://www.sei.cmu.edu/about/website/indexes/sitelnde
x/siteIndexTRnum.html

Fraks, W., “Success Factors of Systematic Reuse”,
IEEE software, Sept. 1994,

N. Nada, Software Reuse-Oriented Functional
Framework, Ph.D. Dissertation, George Mason
University, fall 1997. ’

Perry. D.. “generic Architecture Descriptions for
Product Lines”, http://www.bell-labs.com/usr/dep

D. Rine and R. Sonnemann, “Investments in Reusable
Software: A Study of Software Reuse Investment
Success Factors”, The Journal of Systems and
Software, Vol. 41, pp. 17-32. 1998.

D. Rine and N. Nada
http://www., gmu.edu/depts/survey.

URL-

Shaw, M., and Garlan, D., “Software Architecture”,
Prentice-Hall, Inc., 1996. ’

Software Technology for Adaptable. Reliable Systems
(STARS), "STARS Conceptual Framework for Reuse
Process (CFRP)", CDRL A018, Oct. 1993

Sommerville, I, Software Engineering. 5th Edition.
Addison-Wesley, New York, (1996).

. The Software Evolution and Reuse Consortium,

“Solutions for Software Evolution and Reuse”, SER
Deliverable SER-D2-A, 1995.

Withey, J.. “Investment Analysis of Software Assets
for Product Lines™, Nov. 1996,
http://www.sei.cmu.edu/about/website/indexes/sitelnde
x/siteIndexTRnum.html|

. M. Zelkowitz, “Experimental Models for Validating

Technology™, IEEE Computer, May 1998.

- Kotonya and Summerville, Requirements Engineering,

Wiley, 1992

- G. Bootch, J. Rumbaugh, I. Jacobson, “The Unified

Modeling Language User Guide”, Addison Wesley,
1999.

115

A Knowledge-Based System for Software Reuse
Technology Practices

N. Nada and L. Lugi
Naval Postgraduate Schoo]
Computer Science Department
Monterey, CA 93943
Phone: (831) 656-4075
Fax: (831) 656-3225
Email: nnada@cs.nps.navy.mil

ABSTRACT

The practicing and researching software engineering
communities are still in need of professional practice
resources and on-line tutoring systems that can be easily
used to identify lessons learned and reuse experiences from
successful enterprises based upon a validated software
reuse reference model for the software reuse process within
the general software development life-cycle. This paper
presents a public Case-Based System using a validated
Software Reuse Reference Model (CBS-RRM). A CBS-
RRM allows the software engineers to improve reuse
practices by being tutored with selected course material
based on the user profile. This material is combined with
actual practice-based knowledge derived from different
positive cases from software development organizations'
reuse practices. A CBS-RRM provides software engineers
with a way to be tutored using positive lessons learned by
other organizations. Our research focuses on achieving
more effective means for software development
organizations to find alternative educational (training)
solutions to problems in successful practice of reuse. The
paper focused only on the CBS module.

Keywords

Case-Based Reasoning Systems, Intelligent Tutoring,
Distance Leaming, Learning Environments, Web-Based
Training Systems.

1 OVERVIEW

1.1 Intelligent Tutoring Systems

Traditional intelligent tutoring systems are based on the
assumptions that a student's thinking process can be
modeled, traced, and corrected.

D. Rine, E. Damiani, S. Tuwaim
George Mason University
Computer Science Department
Fairfax, VA. 22030
Phone: (703) 993-1530
Fax: (703) 993-1710
Email: drine@cs.gmu.edu

Based on the principles of Computer Assisted Instruction
(CAI), intelligent tutoring systems would allow for a
generic model that can be used for any individual. There
are four main components of an intelligent tutoring system.
The student module (1) consists of the incorrect and
incomplete knowledge that a student begins with. The
expert module (2) contains the correct, expert-like
knowledge that is to be transferred and learned. This
transfer of learning occurs as a two-way communication
process, made possible through (3) the graphical user
interface (GUI). The pedagogical element (4) is the basis of
the instruction, and it determines what instruction will be
given at which point. Some intelligent tutoring systems go
further, and incorporate full simulation as part of the
instruction.

The term "intelligent"” refers to the system'’s ability to know
what to teach, when to teach it, and how to teach it. It must
have the capacity to understand, learn, reason, and problem
solve. It must be capable of identifying a student's strengths
and weaknesses and establish a training plan that is
consistent with these results. It can pick up relevant
learning information from the student (such as learning
style), and apply the best means of instruction for that
particular individual. Throughout the instruction, the
System makes judgments about what the student knows and
how well she/he is processing the information. The
instruction can then be tailored to the student's needs. [31,
3,6,22]

116

1.2 Software Reuse Reference Model (SRRM)

In recent years, reusability has become an important factor
in the process of software development. In fact, the
availability of reusable assets in development phases
provides valuable support to design and implementation
with software architectures by improving productivity,
quality, and time-to-market [14]. Industry has demonstrated
that reuse of software assets will provide a basis for
dramatic improvements in quality and reliability, speed of
delivery, and in long-term decreases in costs for software
development and maintenance. Some researchers estimate
that even with a less than 50% reuse rate, component-based
software development leads to reliability improvement as
‘much as ten times that of development that is not
component-based [7].

Opportunistic software asset reuse will not always succeed
if it is not based upon a supporting reference model for
developing software [33]. Hence. a Software Reuse
Reference Model (SRRM) may be considered as a key
starting element to implement, realize, and quantify such
savings. The SRRM needs to include both technical and
organizational activities required to implement reuse
successfully.

1.3 Case-Based Systems (CBS)

Case-Based Systems (CBSs) offer a knowledge architecture
system for managing, sharing and accessing knowledge. A
CBS unifies many previous forms of Knowledge
management into a single intuitive mechanism. CBSs
“support such diverse knowledge types as structured data.
free-text documents, activity patterns. and expert system
knowledge bases. CBSs unify access methods such as
query-by-example, free-text retrieval, decision trees, and
case-based reasoning (CBR).

There are two primary benefits to the use of CBSs. The first
is to provide access to a broad spectrum of on-line
knowledge through a single access method. The second is
that CBSs are fundamentally superior for certain types of
access, especially ad-hoc searches for relevant knowledge
to help answer a question or resolve a problem.

The CBS approach uses the technique of comparing a
current situation (e.g. company profile) to a library of
known solutions (e.g. successful professional practices).
CBS has been applied to a range of classification and
construction tasks. It is particularly useful in tasks where a
formal set of rules, patterns, or algorithms for generating
solutions is difficult to obtain, but where examples of
correct solutions are readily available. These "previous
solutions" are stored as "cases" in a case base. The case
base can be used for multiple purposes, including training
and human and automated decision-making. Because of
this, a CBS can keep pace with a changing environment by
adding and improving cases, eliminating the need for

repeated software upgrades performed by knowledge
engineers. Because of the simple knowledge representation,
using case study templates and patterns, little expertise is
required to maintain the CBS. The CB manager does not
need to be a programmer (1,5, 24, 30]

1.4 CBS and SRRM Correlation

It is necessary for software developers to have systematic
procedures supported by a CBS and a validated SRRM to
provide a real starting point for good software assets reuse
and adoption decisions, utilization decisions, and
management activities. In addition to a SRRM, an
organization interested in moving into a reuse-oriented
software development methodology also needs more
detailed knowledge about how to implement the SRRM in
the organization. Hence, access to a CBS with this more
detailed knowledge would be very useful.

It is important for software reuse practitioners and new
enterprises that are interested in adopting software reuse to
access lessons learned, access more detailed knowledge
about how to implement the SRRM in the organization, and
access reuse experience of successful enterprises based
upon a validated SRRM for the software reuse process.
Accessing these three kinds of knowledge is but a first step
in an iterative software improvement environment. Usually,
it is important to know what lessons and experiences lead
to improved software development. But it is equally
important to be able to implement and practice the skills
behind these lessons and experiences so that, by doing and
not just knowing, measured improvements will .occur.
Hence, a second step is building an educational
environment, based upon individual tutoring, where the

- knowledge accessed in the CBS can be incorporated into

individualized learning based on implementation and
practice of those skills that will, in turn, lead to measured
improvement. Measured improvement can, in turn, lead to
increased software assets quality and increased process
productivity. Section 2.3 describes such a total CBS-SRRM
educational environment where learning based upon
individualized tutoring can take place.

The existence of a publicly accessed Reuse CB (National
Reuse CB), via our CBS-RRM will help software industry
and academia capture best practice-based knowledge
derived from different software development organizations’
reuse programs and activities. This reusable set of best
practices available by use of our proposed CBS-SRRM
could provide software industry and academia with a
systematic way to capture and access the lessons learned by
other organizations. This will promote recurrence of good
reuse practices and improve current reuse processes by
increased software quality and decreased effort and time to
market.

117

Having a set of case studies that can be used to derjve
solutions to reuse problems from prior lessons learned will
help to carry out the following: (1) Describe current
problems and identify ways to avoid them in the future. (2)
Predict opportunities and possible successes in applying
reuse. (3) Derive new knowledge from ongoing research
projects. (4) Better leverage best reuse practices. (5) Avoid
unnecessary risks. (6) Better Justify technical and business
reuse decisions.

Our assertion is that the case studies and lessons learned
would be reused more often if organizations that have
successfully adopted, utilized, and managed reuse could
indirectly help organizations with similar environments,
problems, or situations, and are interested in adopting or
researching software assets reuse, locate the information
about best software assets reuse practices and decisions
about whether or not to adopt, utilize and/or manage
software development based upon reuse.

2 WHAT IS MISSING

Referring to our previous research in the area of software
assets reuse [Nada 97, 27], the practicing and researching
software engineering communities are still in need of the
following professional practice resources:

* A publicly accessed CBS for the software engineering
community that can be easily used to identify lessons
leamed and reuse experiences from successful
enterprises based upon a validated software reuse
reference model for the software reuse sub-process
within the general software development processes.

® Use of an applicable. conceptualized, effective, and
validated software assets Reuse Reference Model that
considers and incorporates all technical and non-
technical aspects of the software reuse process.
On-line Software Reuse Self-Assessment system.

® On-line Software Reuse Individualized Distance
Learning system.

* Identification of effective software assets reuses
processes and products metrics.

» Identification of standardized reuse practices, i.e.
systematic software reuse methodology.

3 CBS-SRRM KNOWLEDGE BASED TUTORING
SYSTEM

Based on the principles of Computer Assisted Instruction
(CAI), CBS-SRRM tutoring systems would allow for a
generic model that can be used for any individual who is
involved in software development and engineering [31].

3.1 CBS-SRRM Overview

Our current project, funded by the NSF, investigates
effective public Case-Based System (CBS) tool-kits using a
validated Software Reuse Reference Model (SRRM).

CBS-SRRM allows the software engineer to improve reuse
practice by capitalizing on effective practice-based
knowledge derived from different software development
organizations' reuse practices. CBS-SRRM provides
software engineers with a way to utilize lessons learned
by other organizations. The system also promotes
recurrence of good reuse practices.

The research focuses on a more effective means for
software development organizations to find alternative
solutions to problems in successful practice of reuse. We
demonstrate that developing a CBS-SRRM that will allow
software developers to learn how organizations similar to
theirs have successfully adopted, utilized and managed this
technology can support improved reuse practices. The plan
is to research, develop, and make publicly available what
our affiliates and we have learned through our evolving set
of case studies, surveys. interviews, and experimental
results. This plan is carried out by researching and
developing a publicly accessible reuse practices CBS for
the software engineering community, using lessons learned
and reuse experiences from successful enterprises based
upon a validated SRRM that incorporates important
technical, organizational, and cultural factors needed in
adopting, utilizing. and managing reuse technology.

3.2 CBS-SRRM Objectives

The main objective of this research is to develop a tutoring
system including a knowledge-based web-based distance
assessment module that is technically supported by Case-
Based Reasoning (CBR) technology.

The objective is to motivate software developers to access a
web-based tutoring system including an assessment module
that will help them improve their software development
process using reuse practices. The practical implication is
to provide trainees with a demonstration of a more
efficient, more effective, and publicly accessed assessment
and teaching package that will enhance their learning
outcomes, increase their productivity, and improve their
products’ quality in shorter time.

We have collected. and continue to collect, data from
industry on actual processes used and experiences with
software reuse. This data is collected and then presented
on the Web in a standard form based on a validated model.
The CBS-RRM also provides interface to allow users to
describe their own environment and objectives and to
receive the data corresponding to the recorded projects that
best match their profile. Work such as this can be of great
value for developers who are under increasing economic
pressure to avoid building each new system from the
ground up. It is also of value to the research community as
an empirical basis for the validation of claims and methods
related to software reuse.

118

3.3 A CBS-SRRM Tutoring System

There are four main components of the tutoring system. (1)
The student profiling module that will qualify the student
for a certain software engineering domain. and identify the
student’s or trainee’s (user’s) organization size. (2) The
assessment module that will examine and assess the user’s
previous software reuse experience and his/her organization
reuse potential, capability, RRM level, and the depth of
users’s knowledge and experience in reuse. This step will
be followed by a pre-test to evaluate the student/trainee
background knowledge on reuse; our prototype can identify
3 levels: initial, middle, or advanced. Based on the
outcome of the previous two modules and the resuits of the
user’s pre-test, the student will be assigned to a certain
level of training material. (3) The CBS module will use the
profiling information to match the student with several case
studies, and present the best software reuse practices that
have been used by similar organizations. This module
contains the correct, expert-like knowledge that is to be
transferred and learned. (4) The fourth module contains the
course material that fulfills the users’ needs and matches
their profile.

The current CBS-SRRM tutoring system allows software
developers to learn how organizations similar to theirs have
successfully adopted. utilized, and managed improved
reuse practices enterprises based upon a validated SRRM
that incorporates important technical, organizational, and
cultural factors needed in adopting, utilizing, and managing
reuse technology. We are researching, developing, and
making publicly available what our affiliates and we have
learned through our evolving set of case studies, surveys,
and interviews, thereby making it available to the whole
software engineering community.

3.4 CBS-SRRM Architecture

Using a web-based Distance Assessment and Tutoring
system combined with the CBR system will provide tools
to allow students and supervisors to have a good
educational system to improve the individual's skills and
knowledge in software reuse. The CBS-SRRM
Architecture is depicted in Fig. 1. The remaining part of
this paper will focus only on the CBS module.

Input Students Profiling Output
WWW Rosters
student e Course
population Content
LEVEL

Reuse Assessment

Courses Content

¢ Knowledge
» Skills

e Know
e Do

A

Fig. 1 CBS-SRRM Architecture

119

3.4.1 Searching Requirements of the Best Practices C BS

Believing that analogues may provide a way to predict
results based upon what has been true in the past, the
CBS’s searching mechanism will be developed along the
lines of searching systems. It will maintain a CB of cases
that represent the performance of best-practiced software
reuse. When the partially known profile of a new
organization is presented to the CBS, the search engine will
search the CB, find the case(s) of organization(s) and
its/their profile(s) that is/are most similar with the profile of
the new organization, and finally predict the level of
practice of the organization in the CB that will be the leve]

of practice assigned to the new organization. We adopted
the following CBS Architecture (Fig. 2) [37].
! Logerg and
H Adaructrstion
CUENT | SERVER ; "
i
T ? ' 7
l CassPont
TP tor the v Pencts . . CazePony
i e

papia
I

Fie

Fig. 2 CBS Architecture

3.4.2 Reuse Practice Cases: Development of CB Study
Subjects

The participant subjects are software development
organizations who (1) have already been case study
participants and who are initially in our CB of best
practices, and (2) are considering adopting, utilizing and
managing software reuse. Nada worked on the
identification and evaluation of new CB subjects. Initially,
each organization will constitute a case that contains the
profile of certain user attributes. Cases that include ali of
this information will comprise the space of CB cases. Cases
that are lacking the final software reuse practice level
assigned, but contain at least a subset of ‘the remaining
information, will be considered as test (input) cases. The
choice of organizations that will comprise the CB cases and
the organizations that will comprise the test cases will be
‘pseudo-random’.

The CBS’s task, researched and developed by our team,
will be to find an appropriate value for the level of reuse
practice attribute of an input case; therefore, this attribute is

considered the solution data for a particular case in this
domain.

3.4.3 Matching Requirements of the Best Practices CBS
During testing of the CBS’s predictive power using new
subjects, the CBS search engine will need to use matching
methods [2,38, 9, 23,34]. Based on the methods used to
establish the similarity between certain new test cases and
current CB cases, the CBS will compare corresponding
features one at a time.

Each test case will contain six features, The first two of
these features will be used to identify the particular
organization type to which a certain organization belongs.
The remaining four features will denote the partially known
organization type software reuse practice level of the same
organization, and they will be used as indexing features.
These four features are the organization’s reuse practice
levels in the first, second, and third stages of reuse
adoption, utilization. and management, and the
organization’s practice level at the end of the evaluation
period. Given this partially known organization type’s
reuse practice level, i.e., given a test case, the CBS’s task
will be to predict the organization’s practice level within
the class of the given organization type.

This will be done by using the case CB in order to find the
case or cases that are most similar to the test case.
Similarity will be determined by comparison of
corresponding indexing features. For example,
corresponding indexing features with identical numerical
values will receive a similarity count of 1 while
corresponding features such that the absolute value of their
difference is greater than, e.g., 10 percent will receive a
similarity count of 0. If the difference is less than, e.g. 10
percent then the similarity count will be a numerical value
between 0 and 1. The sum of the similarity counts for each
feature will constitute the degree of similarity between two
cases; therefore, the maximum possible match value
between two cases will be equal to the number of case
features. For example, the previously shown CB and test
cases exhibit a certain (e.g. 70) percent matching
confidence since their degree of similarity is 70 percent.

4 CONCLUSION

This paper focused only on the CBS module. The paper
presents a public CBS using a validated Software Reuse
Reference Model (SRRM). A CBS-SRRM allows the
software engineer to improve reuse practice by being
tutored with selected course material based on the student
profile. This material is combined with actual practice-
based knowledge derived from different positive cases
from software development organizations' reuse practices.
A CBS-SRRM provides software engineers with a way to
be tutored using positive lessons learned by other

120

organizations. Qur research focuses on achieving more
effective means for software development organizations to
find alternative educational (training) solutions to problems
in successful practice of reuse.

Our future work will focus on presenting and integrating a
comprehensive CBS knowledge-based tutoring system that
supports distance learning and reuse self-assessment in
combination with CBR and empirically validated SRRM.

REFERENCES

1. Aamodt, A, and Plazas, E. “Case-Based Reasoning:
Foundational Issues, Methodological Variations, and
System Approaches.” Al Communications 7(1) (1994):
39-52.

)

Goguen, J.; Nguyen, J.; Meseguer, J.; Lugi, L; Zhang.
D.; Berzins, V. “Software Component Search.” Journal
of Systems Integration (special issue on Computer
Aided Prototyping) Vol. 6. No. 2 (1996): 93-134.

3. Hall, P. & Wood, P. “Intelligent Tutoring Systems: A
Review for Beginners.” Canadian Journal of
Educational Communication 19(2) 1990: 107-123.

4. Jaber.,, K. Nada, N., and Rine, D. “Towards the
Design and Integration of Multi-Use Components.”
Proceedings of the International Conference on
Information Systems Analysis_and Synthesis, July
1998.

5. Kolodner, Janet L. Case-Based Reasoning. San
Francisco, California: Morgan Kaufmann, 1993,

6. Lavurillard, D. “The Pedagogical Limitations of
Generative Student Models.” Instructional Science, 17
(1989): 235-250.

7. Lim, W. “Effects of Reuse on Quality, Productivity,
and Economics.” IEEE Software September 11(5)
(1994): 23-30.

8. Lim, W. Managing Software Reuse. Englewood
Cliffs, NJ: Prentice-Hall, 1998.

9. Luqgi, Y. Lee. “Towards Automated Retrieval of
Reusable Software Components.” Proceedings of the
AAAl Workshop on Artificial Intellicence and
Automated Program Understanding. San Jose. CA.

July 13. 1992. 85-88.

10. McDowell. A Reusable Component Retrieval System
for Prototyping. MS Thesis, Naval Postgraduate
School, September 1991. ‘

18.

19.

. McClure, C. The Three Rs of Software Engineering:

Reengineering - Repository - and Reusability.
Englewood Cliffs, NJ: Prentice-Hall, 1992.

. Morisio, M., Ezran, M., and Tully, C. “Introducing

Reuse in Companies: A Survey of European
Experiences.” Proceedings of the 1999 Symposium on
Software Reuse. ICSE-99. IEEE and ACM, 1999.

. Nada, N., Rine, D., and Tuwaim, S. “Best Software

Reuse Practices Require Reusable Software
Architecture in Product Line Development.”
Proceedings of the Second Workshop on Software
Architectures in Product Line Acquisitions, June 1998.

. Nada. N., and Rine, D. “Software Reuse Reference

Model: Development and Validation.” International
Conference on Software Reuse, Victoria. Canada, June
1998.

. Nada. N., Rine, D., and Tuwaim, S. “Practices in

Organizational Structure for Software Reuse.”
Proceedings of International Conference on
Information Systems Analysis and Svnthesis, July
1998.

. Nada, N., Jaber, K, and Al-Daijv, E. “A Product-Line

Model.” Object-Oriented Programming Systems,
Languages, and _ Applications (OOPSLA'98),
Vancouver, Canada, October 1998.

. Nada, N., and Rine, D. “Modeling and Designing

Global Data and Information Systems Under Software
Reuse Emerging Technologies.” Fourth International
Conference On Computer Science and Informatics
(CS&I'98), Special Session on Software Reuse,
October 1998.

Nada, N. and Rine, D. “Component Management
Infrastructure: A Component-Based Software Reuse
Reference Model.” Proceedings of the ICSE98
International Workshop _on Component-Based
Software Engineering, Japan.

Nada, N., Rine, D., and Jaber, K. “Towards
Components-Based Software Development.”
Proceedings of European Reuse Workshop (ERW'98).
Spain, November 1998.

. Nada, N.. Rine, D., and Jaber., K. “Using Adapters to

Reduce Interaction Complexity in Reusable
Component-Based Software Development.”
Proceedings of the Symposium on _Software
Reusability (SSR'98). in conjunction withe the
International Conference on Software Engineering
(ICSE'99), Los Angeles. May, 1999.

121

N
(")

24.

26.

("2
W

. Sommerville, 1. Software Engineering.

- Nada, N. and Jaber, K. “Experimental Model to

Validate Software Reuse Technology.” Proceedings of
the International Symposium on Computer and

Information Sciences (ISCIS'99). Izmir. Turkey,
October 18-20. 1999,
. Newman, D. “Is a Student Mode] Necessary?

Apprenticeship as a Model for Intelligent Tutoring
Systems.” Proceedings of the Fourth International
Conference on Artificial Intellicence and Education,
1989. 177-184.

- Nguyen, D. An_Architectural Model for Software

Component _ Search Ph.D. Dissertation.
Postgraduate School, December 1993.

Naval

Riesbeck, C. and Schank, R. Inside Case-Based
Reasoning. Hillsdale, N.J.: Lawrence Erlbaum, 1989,

. Rine, D. and Sonnemann. “Investments in Reusable

Software: A Study of Software Investment Success
Factors.” Journal of Systems and Software vol. 41
(1998): 17-32.

Rine, D.. Nada, N.. and Tuwaim. S. “Practices in
Organizational ~ Structure for Software Reuse.”
Proceedings of the IEEE SCI Conference, vol. 1, 1998.

. Rine, D., and Nada, N. “A Validated Software Reuse

Reference Model Supporting Component-Based
Management.” Proceedings of ICSE9S, Japan.

. Rine, D. and Nada, N. “Software Reuse Reference

Model: Development and Validation.” Journal of
Information and Software Technology, in press,
(1999).

- Rine, D. and Nada, N. “An Empirical Study of a

Software Reuse Reference Model.” journal submission
under review, (1999).

. Schank, R., Riesbeck, C., and Kass. A. Inside Case-

Based Explanation. Hillsdale,

Erlbaum, (1994).

NJ.: Lawrence

.Schnackenberg, H. Class Notes, Introduction to

Educational Computing (ETEC 560/660), Concordia
University, Montreal, Canada, (1999),

. Sonnemann, R. Exploratory Study of Software Reuse

Success Factors. Ph.D. Dissertation, George Mason
University, Fairfax, Virginia, Spring, (1995).

5th Edition,

New York: Addison-Wesley, 1996.

(3]
(9]

- Steigerwald, R., Lugqi, L., McDowell, J. “A CASE

Tool for Reusable Software Component Storage and
Retrieval in Rapid Prototyping.” Information and
Software Technology England, Vol. 38, No. 9, 698-
706, Nov. (1991).

- Steigerwald, R. Reusable Software Compdnent

Retrieval via Normalized Aleebraic Specifications.
Ph.D. Dissertation, Naval Postgraduate School,
December (1991).

. Herman, J. Improvine Syntactic Matching for Multi-

Level Filtering. MS Thesis, Naval Postgraduate
School, September (1997).

. Inference Inc., K-Commerce Users Manual.

122

Integrated Design and Process Technology, IDPT 1999
Printed in the United States of America, June, 2000
© 1999 Society for Design and Process Science

e

KRR

RISK ASSESSMENT IN SOFTWARE REQUIREMENT ENGINEERING !

Juan C. Nogueira, Lugqi, Valdis Berzins
Department of Computer Science
Naval Pbstgraduate School
Monterey, CA

ABSTRACT

In 1994 Gibbs claimed that “despite 50 years of
progress, the software industry remains years—perhaps
decades—short of the mature engineering discipline
needed to meet the demands of an information-age soci-
ety.” Many researchers have treated the problem using
different approaches: tools, formal methods, prototyping,
software processes, etc. However, this assertion remains
true today. This paper considers the problem from the
point of view of requirement engineering and risk as-
sessment. We present an improvement to the evolutionary
prototyping process model.

1. Introduction

In complex software systems, reliability is an impor-
tant aspect of software quality that has been elusive in
practice. Since more and more human activities and sys-
tems are dependent on software, achieving the appropri-
ate level of reliability in a consistent and economical way
is crucial. Software failures inconvenience people at best,
and in extreme cases can kill them.

Much reliability research has been conducted study-
ing the behavior of a system after it is operable. This
work has strong theoretical statistical foundations and
many of these models have been shown to be very accu-
rate. However, post-mortemn analysis of the behavior of a
system gives insights too late to be useful for software
development.

This paper describes a way to improve reliability of
systems from the beginning of the process. Studies have
shown that early parts of the system development cycle
such as requirements and design specifications are espe-

cially prone to errors. Problems originating in the early
stages often have a lasting influence on the reliability,
safety and cost of the system. In early stages we cannot
directly assess reliability of products that do not exist yet,
but we can assess risks that could contribute in the future
to the lack of reliability, quality and usefulness of the
system.

Evolutionary prototyping offers an iterative approach
to requirement engineering to alleviate the problems of
uncertainty, ambiguity and inconsistency inherent in the
process. Moreover, prototyping can improve the capture
of change in requirements and assumptions during the
development process. This effect is particularly notorious
in projects involving multiple stakeholders with different
points of view.

Computer Aided Prototyping System (CAPS) [1]isa
CASE tool that provides a collection of techniques and
languages for computer-aided prototyping, including
logical assessment of the consistency and clarity of re-
quirements and specifications. CAPS methods involve the
use of real-time constraints and abstract modeling to de-
scribe the requirements in a clear, precise, consistent and
executable format. Prototypes can be applied to demon-
strate system scenarios to the affected parties as a way to:
a) collect criticisms and feedback that are sources for new
requirements; b) early detection of deviations from users’
expectations; c) trace the evolution of the requirements;
and d) improve the communication and integration of the
users and the development personnel.

2. CAPS (Computer Aided Prototyping Sys-
tem)

Real time systems present special difficulties in terms
of requirement engineering. Some requirements are diffi-
cult for the user to provide and for the analysts difficult to
determine. The best way to discover these hidden re-
quirements is via prototyping. CAPS is a tool specially
suited for this task. It has a graphical easy to understand
interface that maps to a specification language, which in

! This research was supported by the US Army Research Office under grant #38690-MA and grant #40473-MA.

123

turns generates Ada code. The main components of

CAPS are:

(@) The prototype system description language (PSDL).
PSDL is based on data flow under real-time con-
straints. It uses an enhanced data flow diagram that
includes non-procedural control and timing con-
straints.

(b) User interface based on a graphic editor with a pal-
ette of objects that include operators, inputs, out-
puts, data flows and operator loops. A search engine
helps the designer to find reusable components.

(¢) The software database system provides a repository
for reusable PSDL components.

(d) The execution support system consists of a transla-
tor, scheduling mechanisms, execution monitors,
and a debugger.

The prototyping process consists of prototype con-
struction and modification (evolution) based on evolving
requirements and code generation. Both construction and
modification are exploratory activities with a common
target: to satisfy multiple users with different and often
conflicting points of view. Requirement engineering is a
consensus driven activity in which mechanisms for con-
flict resolution and traceability of requirement evolution
represent critical success factors.

3. REMAP (Representation and Mainte-
nance of Process Knowledge)

The REMAP model [2] represents the conflict reso-
lution of requirements in a multiple stakeholder environ-
ment. It is an improvement of the IBIS model introduced
by [3]. Figure 1 shows the conceptual model of REMAP.

Requirements are the main input and output of each
demonstration of the prototype. Initially, a small set of
requirements is collected. The requirements generate con-
troversy between different stakeholders. The argumenta-
tion process is covered by the extension to the IBIS
model. The primitives of IBIS are issues, positions and
arguments. Issues are questions or concerns. Positions
represent the points of view of different stakeholders.
Arguments can support or object to positions, and are
based on assumptions. Design decisions resolve issues
introducing constraints, which define design artifacts.

modifies o leads to

—" |

generates
1BIS

generalizes [! Le— replaces

i Issue ;
respond J
Suggested by 4

supports/objects i

Position (- Arg

* dependson__}
ualifies

seidgts resdives

IRIS

Assumption

H
l

Decision |

“ depends on

!

generalizes >

engrates
sy
f

! .
[Constraint

creates
removes depends on

modifies

Design

Figure1: REMAP model

The requirement engineering process transforms ini-
tial requirements that usually are informal and imprecise
into more technical and precise specifications. Specifica-
tions are required for practical development purposes and
can be understood by engineers. However, they are not
well understood by users. So, it is necessary to provide 2
full spectrum of descriptions. For that reason, the primi-
tives of REMAP have been integrated into the graph
model [4] in successive efforts [5] and [6].

4. The Graph Model

The graph model is a data graph model for evolution
that records dependencies and supports automatic project
planning, scheduling, and configuration management. The
evolution process is represented by a graph that at any
given moment models the current and the past state of the
software system as well as planned future states.

The model views a software evolution process as a
partially ordered set of steps. Steps represent activities
required to produce the system. A step has states that
reflect the dynamic progression of the activity from the
moment that it is proposed to the moment it is completed
or abandoned.

The graph model has experienced its own evolution
process. Luqgi [1] introduced a primitive version of the
model. Mostov and Lugi [7, 4] refined and elaborated the
model. In [4], the notion of hypergraph was introduced to

124

realize automated software evolution in multidimensional
phases. Further refinements including scheduling and
team coordination, were introduced by {8]. Conflict reso-
lution of requirements and criticisms introduced by
Ramesh [2] and Ibrahim [5]. Lugi [9] extended the graph
model to a hierarchical hypergraph that improved the
traceability of the dependencies and introduced the con-
cept of hyper-requirements. Finally, Harn extended the
model to a relational hypergraph model [6].

5. Risk assessment driven software evolu-

tion

Experience suggests that building and integrating
software by mechanically processable formal models
leads to cheaper, and more reliable products sooner.
Software development processes such the hypergraph
model for software evolution, or the spiral model [10],
have improved the state of the art. However, they have a
common weakness: risk assessment.

In the software evolution domain risk assessment has
not been addressed as part of the model. In the various
enhancements and extensions the graph model did not
include risk assessment steps, hence risk management
remains as a human-dependent activity that requires ex-
pertise.

In the evaluation of the spiral model, one of the diffi-
culties mentioned by Boehm was: “Relying on risk-
assessment expertise. The spiral model places a great
deal of reliance on the ability of software developers to
identify and manage sources of project risk." "...Another
concern is that a risk-driven specification will also be
people-dependent.” [10].

Many researches have addressed the problem of risk
assessment following the perspective of the traditional
disciplines. The tools for risk assessment are guidelines
for practices, checklists, taxonomies of risk factors and
few metrics. All these methods work fine IF carried out
by a human educated on risk assessment AND with
enough experience. Unfortunately, such resources are
really scarce. :

From the point of view of software engineering, it is
necessary to create a method to support the decision-
making process during the early stages of the life cycle,
when changes can be made with less impact on the budget
and schedule. In our vision, software risk management
deals with how to administrate complexity and how to
assign resources. We propose to separate risk assessment
into three classes: resource risk, process risk and product
risk.

Resource risk is the amount of project risk created by
threats imposed by available resources. It is affected by
organizational, operational, managerial and contractual

parameters such as outsourcing, personnel, time and
budget. The literature is abundant in this area [11, 12].
Various approaches use subjective techniques such as
guidelines and checklists {13], [11], which require the
opinion of an expert even when they could be supported
by metrics. [12] has introduced a more rigorous method.
In this approach, the risk is viewed as a three dimensional
entity that depends on schedule risk schedule, cost risk
and technical risk.

The process risk is the amount of the project risk
caused by management work procedures such as plan-
ning, quality assurance, and configuration management. It
is also caused by technical work procedures related to the
software processes such as requirements, analysis, design,
code generation, testing, etc. The more complex a process
is, the more difficult it is to manage. More education,
training, standards, reviews, and communication are re-
quired. Consequently, complexity grows. Software proc-
ess complexity has been partially addressed by research
in terms of subjective assessments about maturity level
and expertise [13, 11, 14]. However, we seek a more pre-
cise and objective method. Several approaches to study
process complexity in a static way have been introduced
in the field of management. Simulation can be used to
measure the complexity of the dynamics of the processes.

Finally, product risk is related to the final character-
istics of the product, its conformance with specifications
and requirements, its reliability and customer satisfaction.

We think that there exists 2 dependency between
these classes of risk. The success of the project depends
on its own characteristics and in the success of the prod-
uct and the process. The success of the process depends
on itself as well as in the success of the project and the
product. And the success of the product depends on itself
and on the success of the project and the process. The
dependencies among the three areas constitute an equiva-
lence relation because the symmetric, transitive and re-
flexive properties apply. In our view, this reflects the fact
that resources, process and product are different facets of
the same entity: the project.

Dealing with threats, the decision-maker can apply
the following strategies:

¢ Risk absorption, which is to assume the conse-
quences of the risk as a constraint.

¢ Risk avoidance, which eliminate the possibility of the
risk following turn around solutions avoiding the
threat.

* Risk prevention, which is the typical situation. Pro-
tection, mitigation and anticipation are the key fac-
tors to reduce risk.

¢ Risk transfer, which implies the shift of the conse-
quences of the risk to another organization.

125

¢ Risk contingency, which implies the use of reserve
resources to mitigate an actual threat according to a
previously established contingency plan.

6. The proposed model for risk assessment

Transforming the unstructured problem of risk as-
sessment leads to an objective method able to be trans-
lated into an algorithm. In order to structure the problem,
we decompose risk assessment of an engineering project
in two different visions. First, a micro-vision is required
for threat resolution. This micro-vision risk assessment
relates to the identification of the threats, the decision-
making process to address the problem, and the formal-
ization of the solution in a plan.

The micro vision is necessary but not sufficient be-
cause it is impossible to manage a project without a
global scenario. Hence, a macro vision approach is also
required. The macro vision approach relates to the inte-
gration of the evaluation made for each of the threats. The
macro-vision risk assessment of the project includes three
risk components: process, product and resources.

6.1. Micro-vision

The decision-maker is positioned on the root of a de-
cision tree, where each branch represents a-course of ac-
tion that implies costs and probabilities of success. When
a threat is identified, two possible choices are available:
to avoid the threat or to deal with it. Avoiding a threat is
usually associated with represent some costs. Typically,
avoiding a threat implies finding a turn around that can
have effects on schedule, budget or even on functionality.

If the decision-maker opts to deal with the threat,
then three possible courses of action are available: to pre-
vent, to wait, or to transfer the threat. Prevention and
transfer could have associated costs. The waiting strategy
postpones the use of resources in the hope that the threat
will not appear, trying to trade information for time.

Even if applying prevention, there is no absolute
guarantee that the threat will not appear. In these cases
the decision-maker can apply a contingency plan that
introduces new costs. Again the contingency plan cannot
guarantee absolute effectiveness.

If we know or can estimate the probability of each
branch representing a state of nature, it is possible to cal-
culate the expected outcome for each one as the weighted
sum of outcomes. So, we can arrive to the root with a
value for the expected cost. The path that produces an
optimal expected solution contains the recommended
course of action.

To solve the uncertainties, subjective estimation of
the probabilities of occurrence of the different states of
nature can be applied. This approach is easy to implement

but requires a great deal of experience to judge accurately
the success probability of each alternative. Group consen-
sus techniques (like the Delphi method) are usually very
helpful in such situations.

Decisions trees based on the expected monetary
value (EMV) could lead to bad decisions because in the
most common case the decision-maker is confronted with
a multiattribute problem. Moreover, different people have
different attitudes toward risk. This issue is applying util-
ity theory. The decision-maker must provide his estima-
tion of return for each attribute related to the decision, as
a vector R = (R1, R2, ..., Rn). The decision-maker must
introduce also his preferences as a weight vector W =
(W1, W2, ..., Wn). The outcomes of each attribute are
given by Ali, such that;

n
,where TWi=1
i=0
The outcome for each alternative is then calculated
as a function of the sum of the attributes (A1, A2, ..., An)
converted to a value between 0 and 1, where 1 is given to
the best outcome and 0 to the worst.

Ai=Wi*Ri

6.2. Macro-vision

As we stated previously, the macro-vision approach
integrates the assessments done for each of the identified
threats. Moreover, the macro-vision risk can be used to
find threats in an automated way. The risk assessment for
the project is done by the integration of three risk factors
(process, resources and product), plus two customization
factors (decision-maker's perceptions of the environment
and decision-maker's preferences).

The process introduces risk as consequence of its re-
quirements and characteristics: complexity, technology
required, budget required, schedule required, and person-
nel skills required. The process provides the description
of its environment and the theoretical requirements to
execute it.

The resources represent the actual allowances in per-
sonnel, tools, budget and schedule. The resources impose
constraints that may not match the process requirements.
These mismatches are a source for threats that can be
identified automatically.

The product introduces its own risk in terms of quan-
titative and qualitative attributes. We identified two basic
product-risk factors: requirement conflicts, and require-
ment complexity. The second one is consequence of the
functional complexity of the requirements and the quality
target defined in terms of reliability, maintainability and
usefulness.

The risk assessment of the project can be structured
as the evaluation of the complexities and the degree of

126

mismatch from the product and process characteristics, to
the resource constraints. The process of collecting risk
metrics can be automated at least for the principal factors.
Hence, project risk can be assessed using an automated
tool.

7. Metrics

Metrics are a key factor in the identification of
threats. Without metrics it is not possible to provide early
alerts of risks. In this section we describe a set of metrics
that support our risk identification strategy. All the met-
rics presented here are well formed, in the sense that they
present the following strengths:
¢ Robust in terms of the verification of their outputs.

¢ Repeatable. Different observers would arrive at the
same measurement regardless of the number of repeti-
tions.

o Simple. We use the least number of parameters suffi-
cient to obtain an accurate measurement.

¢ Easy to calculate. They do not require complex algo-
rithms or processes.

o Automatically collected. There is no need of human
intervention.

7.1 Metrics for Requirements

We define birth rate (BR) as the percentage of new
requirements incorporated in each cycle of the evolution
process. This metric shows the explosion of new require-
ments as a percentage.

BR % = (NR/TR) * 100, where

NR
TR = total number of requirements

TR = PR + NR, where PR denotes the number of re-
quirements in the previous version.

= number of new requirements,

We define death rate (DR) as the percentage of re-
quirements that are dropped by the customer in each cy-
cle of the evolution process.

DR % = (DelR / TR) * 100, where

DelR = number of requirements deleted,

TR = total number of requirements (before deletion) = PR
+NR.

We define change-rate (CR) as the percentage of re-
quirements changed from the previous version.
CR (%) = (ModR / TR) * 100
where ModR = number of requirements changed.

From the point of view of the metrics, a change on a
requirement can be viewed as a death of the old version

and a birth of the new one. This simplification does not
imply that we lose the history of the evolution. The trace-
ability of the evolution remains in the hypergraph model.

100%
|
|
growing volatile
2
©
e
5
stable shrinking
5
0% :
0% 10% 100%
death-rate

Figure 2: Evolution of requirements in a project

The simplification just described, enables us to com-
pare birth rate and death rate in a two-dimensional plot
that shows four regions: stability region, growing region,
volatility region and shrinking region (fig. 2). The graph
is double logarithmic, so the borders of the four regions
are in the 10% value. Each of these regions has different
risk connotations.

The arrow shows the normal evolution of a project as
the time goes by. During early stages, it is normal for
projects to be in the growing region. However, if the pro-
ject continues in this region after many cycles, or return
to this region after visiting other regions, something
wrong is happening. The first case, this is an indicator
that the requirement engineering is not efficient; hence
some corrective action should be applied. The second
case, shows evidence of late discovery of some cluster of
hidden requirements.

After some cycles, the project should be in the vola-
tile region. If the project does not evolve into the stability
region, then there is evidence that the requirements engi-
neering activity is not being efficient and some corrective
action is mandatory. It is important to analyze the evolu-
tion of the stakeholder's issues and criticisms. It could be
also the case that stakeholders have changed their minds.

If the project evolves to the shrinking region, and the
requirements engineering is working properly, there is
evidence that the customers are cutting down the project.
This can be an indicator of a severe cut in the budget.

Finally, any involution to a previous region should be
considered as evidence of threats. In such cases a detailed
analysis is required to assess the causes of the anomaly.

127

This set of metrics can be collected automatically
form the hypergraph and can give early alerts of the
threats.

7.2 Metrics for Complexity

Complexity has a direct impact on quality because the
likelihood that a component fails is directly related to its
complexity. The quality of the product can only be de-
termined at the end of the process. Hence, it is important
to measure the complexity as predictor.

Real time systems present special difficulties in terms
of requirement engineering. Some requirements are diffi-
cult for the user to provide and for the analysts difficult to
determine. The best way to discover these hidden re-
quirements is via prototyping. CAPS is a CASE tool spe-
cially suited for this task. ‘

The prototyping process consists of prototype con-
struction and modification (evolution) based on evolving
requirements and code generation. Both construction and
modification are exploratory activities with a common
target: to satisfy multiple users with different and often
conflicting points of view. Requirement engineering is a
consensus driven activity in which mechanisms for con-
flict resolution and traceability of requirement evolution
represent critical success factors.

Specifications written in PSDL, the prototyping lan-
guage used in CAPS, are suitable for being analyzed to
compute their complexity. In PSDL code we observe the
following components: types, operators, data streams and
constraints. Types are declarations of abstract data types
required for the system. Operators and data streams are
the components of a dataflow graph. Finally, constraints
represent guard conditions and real-time constraints that
the system must support.

We define two complexity metrics for PSDL: Fine
Granularity Complexity metric (FGC), and Large Granu-
larity Complexity metric (LGC). The reason to compute
different metrics is because we want to detect two classes
of threats. First, we need to be aware of operators that are
too complex. High complexity on one operator could be
caused by poor design and possible can be solved by fur-
ther decomposition. Second, we require a metric to com-
pute the total complexity of the system.

FGC expresses the complexity of each operator in
the system and is a function of the fan-in and fan-out data
streams related to the operator.

FGC = fan-in + fan-out

LGC expresses the complexity of the system as a
function of the number of operators, data streams, and

types.
LGC=0+D+T

PSDL LOC vs Large Granularity Complexity (LGC)

y =0.0722x - 1.576
R? = 0.9924

° 200 400 §00 800
i PSDL LOC

1000 1200 1400;

Figure 3: Correlation between PSDL and LGC

We examined the correlation between LGC and size
of the specifications and the code. We observed a very
strong correlation between PSDL lines of code and LGC
(R = 0.996) (fig. 3). The correlation between non-
comment Ada lines of code of the projects with their
complexity measured using LGC, we observe a strong
correlation also (R = 0.898) (fig. 4). Our complexity met-
ric correlates better with PSDL than with Ada. The rea-
son for this difference is because CAPS automatically
generates PSDL. On the other hand, even if CAPS gener-
ates part of the Ada code, the designer can add and mod-
ify the generated code introducing more variability. The
following graph shows the correlation observed for the
same set of projects.

Ada NCLOC vs Large Granularity Complexity

Ada NCLOC

i
!
! (LGC)
i
§ ¥ =00312x- 46857
! 160 Rlzpanes
‘ 80
i Q60

«
P * *

[}
o 500 1000 1500 2000 2500 3000

Figure 4: Correlation between NCLOC (Ada) and LGC

A caveat of this study is that our sample is too small.
It includes all information we have available at the mo-
ment. However, the study suggests the possibility to esti-
mate code size in terms of requirement complexity with
useful levels of accuracy.

8. Integration with the graph model

The graph mode!l has advantage of being easily ex-
pandable. The model is based on a hypergraph G = (N, E,
I, O) where N is a set of nodes that represent the software
components and related documents; E is a set of edges
that represent the steps or tasks required by the process; I
and O are functions that permit the navigation forward
and backward in the graph. Risk assessment activities can
easily be incorporated to the model by the extension of

128

the class of edges. Figure 5 represents the software evo-
lutionary prototyping software process. Figure 6 shows
the proposed software process improvement. From the
specifications we can derive the complexity of the prod-
uct. This information is used together with personnel and
organizational information, and with metrics of require-
ments collected from the baselines, to produce the risk
assessment. The risk assessment step integrates these
measures with issues created by the application of the
REMAP model in the issue analysis steps. The automated
risk assessment provides the decision-maker with objec-
tive and reliable information.

9. Conclusion

We introduced a framework and metrics able to
structure the risk assessment problem and to solve it by
automated tools.” Further experiments should be con-
ducted to validate our preliminary observations on com-
plexity and size.

We found a method to solve the problem of human
dependency in risk assessment. This method was de-
signed for the graph model, however it can be customized
to any evolutionary prototyping software process.

REQUIRE- SPEC!FICAHON C{;

| REQUIREMENTS |
I ANAL [T R ——

sﬁv:ls ' \ MENTS f STE CATIONS
) _/ — //

L.
/ R MODULE

| sSuEs - IMPLEMENT
\ steP
PRODUCT
Rt IMPLEMENT.
sTEP
— | L

\\ PROTOTYPES PROGRAM
CRITICISMS ~tmrmrmrmmmes PRODUCT
DEMO STEP

Figure 5: The evolutionary prototyping software
process

INTEGRATICN

\ \J sTer

/\ SPECIFICATION
REQuIRE. DESIGN wmm——mp ZECRL

REQUIREMENTS
ANALYSIS
STEP

7
7
| s !
RISK | RISK 7/ MODULE |
ASSESS: . ASSESSMENT 4 IMPLEMENT. |
Y MENT | STEP STEP
. , :
ISSUE y PRODUCT
ANALYSIS ol ol S—— mm.eusn' { moowes
sTEP \oTons
/ : PROTOTYPE/ i PRoGRAM |
{ cameisus : PRODUCT m'scru':on i
\ i pemosTep

Figure 6: The proposed process

References

{13 Luqi. Software Evolution Through Rapid Prototyping.

IEEE Computer. May, 1989.
[2] Ramesh, B. and Lugi. Process Knowledge Based Rapid

Prototyping for Requirements Engineering. Journal of
Systems Integration, 5 (157-177) 1995.

{3] Conklin, J. and Begeman, M. GIBIS: A Hypertext Tool
for Exploratory Policy Discussion. ACM Transactions
on Office Information Systems. Vol. 6. October, 1988.

[4] Lugi. A Graph Model for Software Evolution. IEEE
Transactions on Software Engineering. Vol. 16 No. 8.
August, 1990.

3[5] Ibrahim, O. A Model and Decision Support Mechanism

for Software Requirements Engineering. Ph.D. Disserta-
tion. NPS. Monterey, California. 1996.

(6] Ham, M. Relayional Hypergraph Model. PhD Dissserta-
tion. NPS. Monterey, California. 1999.

{71 Mostov, Lugi and Hefner. A Graph Model of Software
Maintenance. Technical Report NPS52-90-014. De-
partment of Computer Science. NPS. Monterey, CA.
August 1989.

i[8] Badr, S. A Model and Algorithms for a Software Evolu-

tion Control System. PhD Dissertation, Computer Sci-
ence Department. NPS. Monterey, CA. 1993.

[9] Lugi and Goguen, J. Formal Methods: Promises and
Problems. IEEE Software. January, 1997.

[10] Boehm, B. A Spiral Model of Software Development
and Enhancement. Computer. May, 1988.)

[11] Hall, E. Managing Risk. Methods for Software Systems
Development. Addison Wesley, 1997.

{12] Karolak, D. Software Engineering Management. IEEE
Computer Society Press, 1996.

[13] Sofiware Engineering Institute. Software Risk Manage-
ment. Technical Report CMU/SEI-96-TR-012. June,
1996.

[14] Humphrey, W. Managing the Software Process. Addi-
son-Wesley, 1989.

129

Surfing the Edge of Chaos: Applications to Software Engineering

Juan C. Nogueira
Carl Jones
Luqi
Naval Postgraduate School
2, University Circle
Monterey, CA. 93943 USA
=1 (831) 656 2093
jenoguei’ nps.navy.mil

Abstract

This paper discusses the problems of software engineering as the weakest link in the development
of systems capable of achieving information superiority. Fast changes in technology introduce ad-
ditional difficulties in terms of strategic planning, organizational structure, and engineering of
software development projects. In such complex environment, a new way of thinking is required.
We analyze the introduction of complex adaptive systems as an alternative for planning and
change. The strategy of competition on the edge of chaos is analyzed showing the risks and the
skills required navigating on the edge. We discuss the feasibility of using this theory in software
engineering as an alternative to bureaucratic software development processes. We present also
some recommendations that could help to acquire competitive advantage in software develop-
ment, hence achieve information superiority.

1. Introduction

As software systems increased in complexity. software development evolved form a primitive art
into software engineering. Methodologies and software tools were developed to help develop-
ment processes. Most of the present tendencies (DOD-STD-2167A. [SO-9001, SEL.CMM) try to
standardize processes, emphasizing planning and structure (Humphrey. 1990). Some authors criti-
cize those approaches stating that they underestimate the dynamics of the software development
(Bach, 1994), (Abdel-Hamid, 1997). Others question that activities such as research and devel-
opment are not addressed by TQM principles (Dooley et al.. 1994).

In 1994 Gibbs claimed “despite 50 years of progress, the software industry remains years—
perhaps decades—short of the mature engineering discipline needed to meet the demands of an
information-age society.” Many researchers have treated the problem using different approaches:

tools, formal methods, prototyping. software processes, etc. However, this assertion remains true
today.

The typical software engineering process is a succession of decision problems trying to transform
a set of fuzzy expectations into requirements, specifications, designs, and finally code and docu-
mentation. The traditional waterfall software process failed to accomplish their purpose because it
applied a method valid for well-defined and quasi-static scenarios. This hypothesis is far from the
reality. Today, modem software processes (Boehm, 1988). (Lugi, 1989) are based on evolution

130

and prototyping. These approaches recognize the fact that software development presents an ill-
defined decision problem and they fail in assessing automatically the risk.

In our view, software development projects present special characteristics that require to be
solved in order to achieve an improvement in the state of the art. These particularities affect the
strategic planning. the organizational structure, and the engineering applied to software. In these
three areas chaos theory can provide clues for possible solutions.

2. The strategic planning issue

Traditional approaches to strategic planning emphasize picking a unique strategy according to the
competitive advantages of each organization. Porter’s five-force approach (Porter, 1980), as-
sumes that there exists some degree of accuracy in the prediction of which industries and which
strategic positions are viable and for how long.

In a high-velocity scenario the assumption of a stable environment is t00 restrictive. Customers,
providers, competitors, and potential competitors, as well as substitute products are evolving
faster than expected. The introduction of new information technology tools, the Internet and the
globalization of the markets are contributing to this phenomenon, and nothing seems to reverse
the process. The failure of long-term strategic planning is not a failure of management; it is the
normal outcome in a complex and unpredictable environment. A growing number of consultants
and academics (Santosus. 1998). (Brown & Eisenhardt, 1999) are looking at complexity theory.
to help decision-makers improve the way they lead organizations.

How useful could a map of a territory that is constantly changing its topography be? In fast
changing environments, survival requires a refined ability to sense the external variables. Tradi-
tional approaches rely on strategic planning and vision. However, in unstable environments plan-
ning would not be effective because it is impossible to predict the scenario's evolution in terms of
markets, technologies, customer's needs. etc. Organizations relying only on one vision supported
by a tight planning. risk paying little attention to the future. Consequently. their sensing organs are
blind to foresight the future. A certain amount of inertia and commitment to the plans is required
to prevent erratic changes caused by reaction diverse variables.

If the time window of the opportunities is shrinking. a different form of thinking is required. The
present technological situation can be described as a fast succession of short-term niches. The
ability to change is the key of success for surviving in such a variable environment. In a systemic
approach, the General Systems Theory establishes that organizations are systems whose viability
depends on some basic behaviors (von Bertalanfy, 1976):

() Ability to sense changes in the environment. This is the most primitive form of intelligence, if
it is not present the probabilities of survive are minimum.

(b) Ability to adapt to a new environment modifying the internal structure and behavior. The sys-
tem tries to auto-regulate to survive the crisis in hostile scenarios. or take advantage of the
opportunities in favorable ones.

(c) Ability to learn from the past, anticipating the auto-regulation behaviors and structure before
the environment change. This ability requires intelligence able to infer conclusions from the
past according to the context of the variables sensed on the present.

131

(d) Ability to introduce changes in the environment, making it more favorable to the system's

needs. In this case, the system has developed the technology (know how and tools) to exert
power over the environment.

Any mechanical or computing system has some or all of these abilities. We find these same abili-
ties in any form of life. The more developed the system is, the more of the above characteristics
has. Darwin's Evolution Theory validates this line of reasoning. Natural selection, acting on inher-
ited genetic variation through successive generations over the time is the form of evolution.
Variation is the way used by biological systems to probe the environment presenting many alter-
natives. some of them ending on failure but a few very successful. This process is an inefficient
but very effective way of improvement.

Experiments can provide a certain amount of knowledge about the future. In some sense. probes
are mutations in small scale that can cause only small losses. The results give insights to discover
new options to compete in the future and stimulate creative thinking. The research investment
pays dividends when a new way of competition is discovered altering the status quo's rules.

When the changes in the environment occur too fast, sensing the variables becomes more difficult.
It is possible that a specialized organ was not able to react on time to record the metric and
transmit the alert. In this case. the System starts to lose information threatening its own viability.
When the changes in the environment are too drastic, even if the sensor organs detect the change,
the inference organs may not be able to determine an effective course of action because they do
not have a previous experience. or because the decision-making process requires more time. This
situation also threats the viability of the system in the long run. The effects of drastic variations
and high rate of change over systems can be visualized with simple experiments: a) increasing the
speed of transmission in a communication channel beyond some limit wil} provoke the lost of part

or the entire message, b) modifying the pH in the soil beyond a certain limit can cause the death of
a plant.

The same syndrome can be recognized in any type of organization. We purpose to employ a new
strategy. "Competing on the Edge” is a new theory defines'strategy as the creation of a relentless
flow of competitive advantages that, taken together, form a semi-coherent strategic direction
(Brown & Eisenhardt, 1999). The key driver for superior performance is the ability to change,
reinventing the organization constantly over the time. This factor of success can be applied to
software engineering as well as to other decision problems with similar characteristics.

If the environment is moving, like in surfing. the best way to remain in equilibrium is by being in
the rhythm. Successful corporations such as Intel or Microsoft are in perpetual movement,
launching new products with certain rthythm. Intel is faithful to its founder's (Moore) law: the

power of the microprocessors double every eighteen months. Microsoft has a proportional pace
on the software sector.

132

3. The organizational issue

The second unresolved issue is organizational. We think that many of the problems on current

software projects have organizational roots. This opinion is also supported by (van Genutchen,
1991)" and (Capers Jones, 1994)?.

Perrow (Burton et al., 1998), introduced a two-
dimensional classification of the technology

(Fig. 1). The first dimension is the analyzability p

of the problem varying from well defined to ill H-g=tired craft rén routine
defined. The second dimension is the task vari- %oﬂwar
ability, which means the number of expected roslem /
exceptions in the tasks. N4

In our view, a third dimension is required to Viell-che fire rouging ernering
model the dynamics of the problem. In general,

any technological scenario will change its ana-

lyzability and its variability with time. This is Few esceptichs Mar excspiions
the case for software engineering develop- Tazk variabify

ments. During the initial stages the problem is
ili-defined and many exceptions occur. After
several evolution cycles, usually comprising
several prototypes, the requirements become clear and the problem drift gradually into the engi-

neering quadrant. In figure 1. the gray oval represents the projection of the software problems in a
two dimensional space.

Figure 1: Perrow’s classification of
technology

This kind of scenarios require highly skilled personnel, low formalization and centralization, high
information processing demand, and coordination obtained through meetings is required. In our
opinion software engineering is not the only discipline in this quadrant. The challenges imposed by
hyper competition create similar characteristics than in software engineering developments. So,
the rules of engagement proved effective for one discipline could result useful in the other.

A second line of research (Burton & Obel, 1998). introduced a classification based on four-
variable model: equivocality, environmental complexity. uncertainty and hostility. Equivocality is

“the existence of multiple and conflicting interpretations™, it is a measure of the lack of knowl-

edge or the level of ignorance whether a variable exists in the space. Uncertainty is the lack of
knowledge about the likelihood of values for the known variables. Environmental complexity is
the number of factors in the environment affecting the organization and their interdependency.
Finally, hostility is “the level of competition and how malevolent the environment is. "

In Table 1, we disregard the fourth variable: hostility. Hostility is a discontinuity of the environ-
ment. When it is high, then it overrules other factors. In highly hostility scenarios only a highly
centralized organization (“regular army™). or a low-formal-low-complex organization (“guerilla™)
are the possible alternatives.

' Van Genuchten found that 45% of all the causes for delayed software are related to organizational issues.

: Capers Jones found that on military software developments the two more common threats are excessive paper-
work (90% of the time) and low productivity (85%¢ of the tima).

133

Software development scenarios usually correspond to high equivocality, high environmental
complexity and high uncertainty scenarios (dark gray in the matrix), which correspond to low
formalization and low organizational complexity, with centralization inverse to the environmental
complexity. The recommended organization could be ad hoc or matrix with coordination by inte-

grator or group meeting. The information exchange is rich and abundant. The incentive policy
should be based on results.

Equivocality Enviromental Uncertainty Formalization | Organizational ! Centraliza-
Complexity Complexity | tion

Low Low Low High Medium i High
Low Low High Medium High i Medium
Low High Low High Medium ! Medium
Low High | High Medium High | Low
High Low Low Medium Medium i High
High Low High Low Low ' High
High High Low Medium Medium § Low
High High l High Low Low Low

Table 1: Burton & Obel classification

Understanding these organizational characteristics inherent of software projects is required to cre-
ate a more fitted software process. The application of a quasi-chaotic process keeps the organiza-
tion in continuous movement with positive effects its internal behavior. The rhythmic change
avoids manager's tendency to slow down the process or introduce changes too often. The periodic
changes create small amounts of chaos that maintain the organization in the edge.

4. The engineering issues

Despite 50 years of progress. the software industry remains immature to meet the demands of an
information-age economy. Many researches have treated the problem using different approaches:
formal methods, prototyping. software processes, etc. However, the problem remains open today.

The third unresolved issue is a set of engineering problems conceming software processes, risk
assessment, and reuse.

4.1. The software process problem

Studies have shown that early parts of the system development cycle such as requirements and
design specifications are especially prone to error (Luqi. 1989). Problems originating in the early
stages often have a lasting influence on the reliability. safety and cost of the system. This effect is
particularly notorious in projects involving multiple stakeholders with different points of view.
Evolutionary software processes offer an iterative approach to requirement engineering to allevi-
ate the problems of uncertainty, ambiguity and inconsistency inherent in software developments.
Experience suggests that building and integrating software by mechanically processable formal
models leads to cheaper. faster and more reliable products. Moreover, prototyping can improve
the capture of change in requirements and assumptions during the development process. Proto-
types are useful to demonstrate svstem scenarios to the affected parties as a way to: a) collect
criticisms and feedback that are sources. for new requirements; b) enable early detection of devia-

134

tions from users' expectations; c) trace the evolution of the requirements; and d) improve the
communication and integration of the users and the development personnel.

Despite the unquestionable benefits of evolutionary software processes, we have some concems.
The first concern is that prototyping poses a problem to project planning because of the uncertain
number of cycles required to construct the product. Most project management and estimation
techniques are based on linear layouts of activities, so they do not fit completely.

Second, evolutionary software processes do not establish the maximum speed of the evolution. If
the evolutions occur too fast, without a period of relaxation, it is certain that the process will fall
into chaos. On the other hand if the speed is too slow then the productivity could result affected.
The correct rhythm for software processes has not been researched and remains on the hands of
the project manager.

Third. software processes should be focused on fexibiliny and extensibility rather than in high
qualin. This assertion sounds scary. However, we should prioritize the speed of the development
over zero defects. Extending the development in order to reach high quality could result in 2 late
delivery of the product, when the opportunity niche has disappeared. This paradigm shift is im-
posed by the competition on the edge of chaos.

4.2. The risk assessment and estimation problems

Developing software is still a high-risk activity. Despite the advances in technology and tools. lit-
tle progress has been done in improving the management of sofrware development projects. Part
of the problem is misinterpretation of the importance of risk management that is usually viewed as
an extra activity lavered on the assigned work, or worst, as an outside activity that is not part of
the software process (Hall. 1997), (Karolak, 1996).

Software development processes such the hypergraph model for software evolution (Luqi, 1989),
or the spiral model (Boehm, 1988), improved the state of the art. However. all of them have a
common weakness: risk assessment.

On the software evolution domain, risk assessment has not been addressed as part of the model.
In the various enhancements and extensions, the graph model did not include risk assessment
steps: hence risk management remains as a human-dependent activity that requires expertise.

On the evaluation of the spiral model, one of the difficulties mentioned by Boehm was: "Relyving
on risk-ussessment expertise, the spiral model pluces a great deal of reliance on the abiliry of
software developers to identify and manage sources of project risk.” (Boehm, 1988).

Many researches have addressed the problem of risk assessment following only one perspective.
The available tools for risk assessment are guidelines for practices. checklists, taxonomies of risk
factors and few metrics. All these methods work fine if a) there is a human educated on risk as-
sessment, and b) he/she has enough experience. Such resources are very scarce and it is difficult
to leverage their expertise over large organizations.

The main line of previous research has addressed the problem in parallel with the development
process using informal methods. Basically the proposed methodologies are lists of practices and
checklists (SEI, 1996), (Hall, 1997) or scoring techniques (Karolak, 1996) that are dependent on
human expertise.

135

The second weakness on risk assessment is caused by the difficulties in estimate the development
tiem. The industry has been using three classes of tools to estimate effort and time that can be ap-

plied at different moments during the life cycle, each category being more precise than the previ-
ous one but arriving later on the life cycle:

a) Very early estimations. This category includes very crude approximations done during the be-
ginning of the process usually by subjective comparisons using previous projects.

b) Macro models. This category includes Basic COCOMO, COCOMO II (application composi-
tion model), Putnam, Function Points, etc. The estimation is done after completing the re-
quirements phase.

¢) Micro models. This category includes intermediate and detailed COCOMO, COCOMO 11
(early design and post-architecture models), and Pert'CPM/Gantt techniques. The estimation
is done after the design when it is possible to have a work breakdown structure. The project
estimate is the integration of all module estimates.

A detailed discussion of these techniques is outside the scope of this paper; the details can be read
in (Albrecht. 1979 and 1983). (Boehm, 1981 and 2000), (Londeix. 1987), (Putnam. 1980. 1992,

1996, and 1997). None of these techniques consider the following characteristics of software pro-
jects:

a) Requirement volatility

b) Personnel volatility

¢) Time consumed by communications, exceptions and noise in the process. All the methods use
size as an input parameter via some kind of derivation from complexity. In many cases the

methods to compute such complexities and sizes are questionable (Kitchenham, 1993 and
1997), (Kemerer. 1993).

Recently, NPS developed a formal model for risk identification and assessment for evolutionary
software processes that solves the problems of automation. human dependency. and estimation
(Nogueira et al. 2000). This research is focused on studying software project risk assessment from
a different perspective, viewing risk assessment as the prediction of success of the project given a
set of characteristics, a probabilistic model based on Weibull distribution. and leaming from each
successive cycle on the process.

4.3. The reuse problem

Even if the industry claims for the use of flexible and extensible architectures from which reusable
components could be integrated as a way of generating applications, the reality is that the stan-
dard does not exist. Different architectures are competing for becoming the de facto standard.
Microsoft proposes the Distributed network Architecture (DNA) based on DCOM and ActiveX.
Sun and other OMG members propose the Enterprise Computing Platform (ECP) based on 110P

- and CORBA. Each alternative presents advantages and disadvantages and it is not easy to fore-
cast the winner.

136

5. The edge of chaos

The edge of chaos is “a natural state benwveen order and chaos. a grand compromise benveen
structure and surprise” (Kauffman, 1995). Chaos theory describes a specific range of irregular

behaviors in systems that move or change (James, 1996). Chaotic does not mean random. The

primary feature distinguishing chaotic from random behavior is the existence of one ore more at-
tractors. Without the existence of such attractors the quasi-chaotic scenarios could not be repeat-
able. It is important to realize that a chaotic system must be bounded. nonlinear. non-periodic and
sensitive to small disturbances and mixing. If a system has all these properties can be driven into
chaos.

We have the tendency to think that the order is the ideal state of nature. This could be a big mis-
take. Research on organizational theory (Stacey, Nonaka, Zimmerman); management (Stacey.
Levy); and economics (Arthur) support the theory that operation away from equilibrium generates
creativity, self-organization processes and increasing returns (Roos, 1996). Absolute order means
the absence of variability; consequently this behavior could be very dangerous in environments
with high equivocality. In such scenarios. a better approach could be a restless series of changes
aiming competitive advantage niches, which globally form a semi-coherent strategic direction.

Change occurs when there is some structure so that the change can be organized. but not so rigid
that it cannot occur. Too much chaos. on the other hand. can make umpossible the coordination
and coherence. Lack of structure does not always mean disorder. Let illustrate this idea with an
example. We can agree that there is little structure in a flock of migratory ducks in a lake. How-
ever. few minutes after they start flying some order appear and the flock creates a V shape forma-
tion. This self-organized behavior occurs because a loose form of structure exists. Experiments
with intelligent agents governed by three rules (a) try to maintain a minimum distance from the
other objects in the environment, including other agents; b) try to match the speed of other agents
in the vicinity: and ¢) try to move toward the perceived center of mass of the agents in the vicin-
ity), show the same behavior. Independently of the starting position of the agents. they always end
up in a flock. Even if an obstacle disturbs the formation, the pseudo-order is recovered some time
later. This self-organized behavior emerges despite the absence of leadership and without an ex-
plicit order to form a flock.

A more interesting example is the behavior of software development teams. A recent article
(Cusumano, 1997), describes the strategies of Microsoft to manage large teams as small teams.
Dr. Cusumano says "What Microsoft tries to do is allow many small teams and individuals
enough freedom to work in parallel yet still function as one large team. so they can build large-
scale products relatively quickly and cheaply. The teams adhere to a Sfew rigid rules that enforce
a high degree of coordination and communication.” This is an exact description of the emerging
behavior in a complex adaptive system. It is self-adaptive because the agents realize the adjust-
ment to the environment, and it is emergent because it arises from the system and can only be
partly predicted. As in the example of the ducks. few rules of interaction between the agents (in
this case people) generate a performing behavior. The three rigid rules at Microsoft are: a) devel-
opers integrate their work daily forcing the synchronization and testing of the work; b) developers
responsible for bugs must fix them immediately. and are responsible for the next day integration:
and c) milestone stabilization is sacred.

137

Complex adaptive systems, as the one Just described, are made up with multiple interacting
agents. The emergence of the complex behavior requires three conditions. First. it is required the
existence of more than one agent. Second, the agents must be sufficiently different to each other
such that their behavior is not exactly the same in al] cases. When agents behave exactly the same

way exhibit predictable, not complex, behavior. Finally, complex adaptive behavior only occurs in
the edge of chaos.

6. Some of the risks of being in the edge of chaos

Limiting the structure in organizations can be useful in situations when innovation is critical or
when is required to revitalize bureaucracies. However, if the structure is debilitated beyond a cer-
tain minimum. it can conduct to an undesired state. Some traits can alert the eminence of such an-
archic situation known as the “chaos trap” (Brown & Eisenhardt, 1999): a) emerging of a rule-

breaking culture, b) missing deadlines and unclear responsibilities and goals, and ¢) random com-
munication flows.

On the other hand focusing in hierarchy and disciplined processes, emphasis on schedules. plan-
ning and job descriptions may conduct to a steady inert bureaucracy. Organizations in such state
react too late failing to capture shifting strategic opportunities. This is the case of a “bureaucratic
trap”, where there are also some observable wamning traits: a) rule-following culture. b) rigid
structure, tight processes and job definitions. and ¢) formal communication as the only channel.

The alternative is “surfing” the edge of chaos avoiding both attractors. That requires limited struc-
ture combined with intense interaction benween the agents, giving enough flexibilin: to develop
surprising and adaptive behavior. Organizations in this state are characterized by having an adap-
tive culture. People expect and anticipate changes. A second characteristic is that the few key ex-

isting structures are never violated. Finally. real time communication is required throughout the
entire organization.

Being in the edge of the chaos implies an unstable position. Some perturbations can cause the rup-
ture of this delicate equilibrium and the fall into one of the two steady states. A potential perturba-
tion factor is the organizational collaboration style. Too much collaboration can disturb the per-
formance of each agent and consequently. the whole system is affected. On the other hand. too
little collaboration destroys the advantage of acting organized and leads to paralysis.

Another sources of perturbation are the tendency to be tight to the past and cultural idiosyncrasy-.
or by contrary, to loose the link with the past. In one case, the change becomes impossible. In the
other case, the assets from previous experiences are not capitalized. The equilibrium point is
called regeneration. In such unstable state, mutation can occur. Therefore the inherited character-
istics that give competitive advantage in a certain scenario can be perpetuated, and new variations
are introduced. If too little variation exists, natural selection fails. This process parmits that com-
plex adaptive systems change over the time following a Darwinian pattern.

(Kauffman, 1993) introduced the concept of fitness landscape. We can understand this concept
observing the behavior of species. In the competition for survival, species attempt to alter their
genetic make-up by taking adaptation trying to move to higher "fitness points” where their viabil-
ity will be enhanced. Species that are not able to reach higher points on their landscapes may be
outpaced by competitors who are more successful in doing so. If that occurs the risk of extinction

138

increases. The same principle applies between predator and prey. Each development in the abili-

ties of one species generates an improvement on the abilities of the other. This concept is called
co-evolution.

Certain higher fitness points have more value to some species than to others. The contribution a
new gene can make to a species’ fitness depends on genes the species already has. As more com-
plicated is the genetic pattern (more evolved). the probability of conflict of a new adaptation in-
creases slowing down the speed of variations.

Natural selection is an effective. but not generally efficient way to evolve. The process requires
some amount of mutation to avoid the sudden convergence on suboptimal characteristics. Some
of the characteristics lost in the past can be reintroduced being useful in the new scenario. Many
errors are committed during this blind process. A more efficient wayv to evolve is by recombina-
tion of the pool of genes using genetic algorithms. This technique has been applied to improve the
performance of robots, however the idea can be used to improve the competencies of organiza-
tions. If too much or too less variation occurs the result always conduct to the failure of the Sys-
tem.

7. Application in software engineering

Chaos in software development comes from various sources: a) the intrinsic variable nature of
requirements, b) the changes introduced by new technologies. ¢) the dynamics of the software
process, and d) the complex nature of human interaction. These non-linear characteristics plus the
condition of edge of chaos are sufficient for the development of complex adaptive systems in
which the agents are collaborative developer teams.

In software development scenarios equivocality. environmental complexity and uncertainty are
usually high. The suggested organizational structure to deal with such scenarios (Burton & Obel,
1998) should have low formalization and organizational complexity. centralization inverse to the
environmental complexity, and rich and abundant information exchange. The recommended or-
ganization should be ad hoc or matrix. with coordination by integrator or group meeting. This or-
gariizational style is difficult to achieve when the organizations are large. A clear solution to this
problem was recognized at Microsoft (Cusumano, 1997): a) parallel developments by small teams
with continuous synchronization and periodically stabilization. b) software evolution processes
where the product acquires new features in increments as the project proceeds rather than at the
end of a project, c) testing conducted in parallel as part of the evolution process, and d) focus
creativity by evolving features and "fixing" resources. Cusumano observed that small development
teams were more productive because: a) fewer people on a team have better communication and
consistency of ideas than large teams. and b) in research, engineering and intellectual work indi-
vidual productivity has big variance. Software development requires teamwork, more specifically
organized work. So we require understanding the dynamics of organizations as artificial social
entities that exist to achieve a specific purpose, in this case to develop software. Such organiza-
tions are made up of individuals who accomplish diverse desegregate activities that require coor-
dination and consequently information exchange. '

A shift from the traditional long-term development organizations is required. Virtual teams cre-
ated as temporary dynamic project-oriented structures, with a composition of skills matching ex-

139

actly the objectives could improve the current performances. Such virtual organizations are not

exposed to bureaucratic loads and do not require to absorb the cost of permanent staff (Sene-
gupta & Jones. 1999).

Larger developments could be achieved by parallel projects loosely coupled sharing a common
architecture such CORBA or DCOM. This paradigm enables the possibility of managing large de-

veloping organizations as if they were small. In such scenarios, the benefits of complex adaptive

systems will occur at two levels. First at the micro level, that is inside each small project, where
the agents are individuals. Second. at the macro level, where the agents are parallel collaborative
projects.

8. Conclusion

Complex adaptive systems appear as the most attractive way to deal with changing environments.
Besides some indicators introduced by (Brown & Eisenhardt, 1999), the academic research is not
mature enough to assert a methodology for competition on the edge. Some enterprises, such as

Microsoft and Intel, seem to have discovered and applied this form of strategy since many years
ago, but little information have permeated.

We propose a drastic change in the software processes using the benefits of programming in the
small to programming in the large. More even. we state the quality-driven paradigm should be
revised. and that the objective should be shorter delivery times, flexibility and expansibility.

Despite the obvious differences in terms of hostility, we found several similarities between war
and software development scenarios. A depth research is required to evaluate the applicability of

this theory to different fields in which uncertainty is a key factor peace keeping operations, joint
C'L and irregular warfare.

References

(Abdel-Hamid. 1997) Abdel-Hamid. T. Lessons Learned from Modeling the Dynam-
ics of Software Development. Edited by Kemerer, C. McGraw
Hill 1997,

(Albrecht, 1979) Albrecht, A. Measuring Application Development Productivity.
Proceedings IBM. October 1979.

(Albrecht, 1983) Albrecht, A. and Gaffney, J. Software Function Source Lines of
Code and Development Effort Prediction. IEEE Transactions
Software Engineering. SE-9, 1983.

(Bach, 1994) Bach, J. The Immaturity of the CMM. American Programmer,
September 1994.

(Boehm, 1981) Boehm, B. Software Engineering Economics. Prentice Hall,
1981.

(Boehm, 1988) Boehm. B. A Spiral Model of Software Development and En-

hancement. Computer. May, 1988.

140

(Brown & Eisenhardt, 1999)

(Burton & Obel, 1998)

(Cusumano, 1997)

(Dooley. 1994)

(Hall, 1997)
(Humphrey, 1990)
(James, 1996)
(Karolak. 1996)
(Kauffman, 1995)

(Kemerer, 1993)

(Kitchenham, 1993)

(Kitchenham, 1997)

(Londeix, 1987)

(Luqt, 1989)

(Nogueira et al., 2000)

(Porter, 1980)
(Putnam. 1980)

(Putnam, 1992)

Brown, S. and Eisenhardt, K. Competing on the Edge. Strategy
as Structured Chaos. Harvard Business School Press, 1999.

Burton. R. and Obel. B. Strategic Organizational Diagnosis ans
Design. Developing Theory for Application. Second Edition.
Kluwer Academic Publishers, 1998.

Cusumano, Michael How Microsoft Makes large Teams Work
Like Small Teams. Sloan Management Review. Fall, 1997.

Dooley, K. and Flor, R. "Success and Failure in Total Quality
Management Initiatives”, Proceeding of the Chaos Network,
Denver, 1994.

Hall, E. Managing Risk. Methods for Software Systems Devel-
opment. Addison Wesley, 1997.

Humphrey, Watts. Managing the Software Process. Addison-
Wesley, 1990.

James. G. E. Chaos Theory. The Essentials for Military Appli-
cations. Naval War College. The Newport Papers. 1996.

Karolak, D. Software Engineering Management. IEEE Com-
puter Society Press, 1996.

Kauffman, Stuart. At Home in the Universe. Oxford University
Press. 1995.

Kemerer, C. Reliability of Function Points Measurements: A
Field Experiment. Communications of ACM, Vol 36 No 2.
1993.

Kitchenham, B., Kansala. K. Inter-item Correlations among
Function Points. First International Software metrics Sympo-
sium. JEEE Computer Society Press. 1993.

Kitchenham, B., Linkman. S. Estimates, Uncertainty, and Risk.
IEEE Software. May-June. 1997.

Londeix, B. Cost Estimation for Software Development. Addi-

son-Wesley, 1987.

Luqi. Software Evolution Through Rapid Prototyping. IEEE
Computer. May, 1989.

Nogueira, J.C., Luqi, and Berzins. V. A Formal Risk Assess-
ment Model for Software Evolution. Paper submitted to SEKE
2000.

Porter, Michael. Competitive Strategy. Free Press, 1930.

Putnam, L. Software Cost Estimating and Life-cycle Control:
Getting the Software Numbers. IEEE Computer Society Press.
1980. ‘

Putnam, L. and Myers, W. Measures for Excellence. Reliable

141

(Putnam, 1996)

(Putnam, 1997)

(Roos, 1996)

(Santosus, 1998)
(SEI 1996)

(Senegupta & Jones, 1999)

(von Bertalanfy, 1976)

Software On Time Within Budget. Yourdon Press, 1992.

Putnam, L. and Myers, W. Executive Briefing. Controlling
Software Development. IEEE Computer Society Press. 1996.

Putnam, L. and Myers, W. Industrial Strength Software. Effec:

tive Management Using Measurement. IEEE Computer Society -

Press, 1997.

Roos, Johan. The Poised Organization: Navigating Effectively
on Knowledge Landscapes, 1996.
http://www.imd.ch ‘fac/roos‘paper po.html

Santosus, Megan. Simple, Yet Complex. Business Management
CIO Enterprise Magazine. April 13, 1998.

Software Engineering Institute. Software Risk Management.
Technical Report CMU/SEI-96-TR-012. June, 1996.

Sengupta. K. and Jones Carl R. Creating Structures for Net-
work-Centric Warefare: Perspectives from Organizational The-
ory. Command & Control Researc & Technology Symposium.
CCRP 1999. Naval War College, 1999.

von Bertalanfy, L. General System Theory: Foundations, De-
velopment. Applications. Braziller. 1976.

142

A Formal Risk AsseSsment Model for Software Evolution

Juan C. Nogueira
Lugi
Valdis Berzins
Nader Nada

Naval Postgraduate School
2, University Circle.
Monterey, CA. 93943 USA
+1 833 656 2093

[enogueiid nps.nevimil

ABSTRACT

The current state of the art techniques of risk assessment
rely on checklists and human expertise. This constitutes a
weak approach because different people could arrive at
different conclusions from the same scenario. The
difficulty on estimating the duration of projects applying
evolutionary software processes contributes to add
intricacy to the risk assessment problem. This paper
introduces a formal method to assess the risk and the
duration of software projects automatically. The method
has been designed according the characteristics of
evolutionary software processes. We introduce a set of
metrics to measure productivity. requirement volatility
and complexity. We construct a formal method based on
these three indicators to estimate the duration and risk of
evolutionary software processes. The approach introduces
benefits in two fields: a) automation of risk assessme
and. b) carly estimation method for evolutionary sottware
processes.

Keywords
Risk. software metrics. estimation models

INTRODUCTION

Despite progress in formal methods, prototyping. and
evolutionary software processes. risk assessment rernains
as an open issuc dependent on human expertise. Software
development processes such the hypergraph model for
software evolution [13]. or the spiral model [3]. have a
common weakness: risk assessment. In the software
evolution domain. risk assessment has not been addressed
as part of the model. In the various enhancements and
extensions. the graph modal did not include risk
assessment steps, hence risk management remains as a
human-dependent activity that requires expertise. In the
cvaluation of the spiral model, one of the difficulties
mentioned by Boehm was: “Relving on risk-ussessment
expertise. the spival model places a great deal of reliunce
on the abilitv of software developers to identify and
manage sources of project risk.” [3].

Many researches [9. 6, 20] have addressed the problem of
risk assessment following guidelines. checklists,

taxonomics of risk factors. and few metrics. All these
othods work fine if a) they are applied by a human

educated on risk assessment. and b he she has enough

practices is human dependency. As a coroliary.
assessment could not be consistent because different
experts could arrive at different conciusions from the
same scenario.

Our research is focused on transforming the present state
of the art about risk assessment into a formal method. This
paper introduces an automated and formal software
project risk assessment model. based on early metrics and
probabilities designed for evolutionary software
processes.

THE PROBLEM

Studics have shown that early parts of the system
development evcle such as requirements and design
specitications are especially prone to error [15]. Problems
originating in the early stages often have a lasting
influcnee on the reliability. safety and cost of the system.
This effect is particularly notorious in projects involving
multiple stakeholders with different points of view.
Evolutionary software processes offer an iterative
approach to requirement enginéering 0 alleviate the
problems of uncertainty, ambiguity and inconsistency
inherent in software developments. Moreover. prototyping
can improve the capture of changs in requirements and
assumptions during the development process. Prototypes
are useful to demonstrate system scenarios to the affected
parties as a way to: a) collect criticisms and feedback that
are sources for new requirements: b) enable early
detection of deviations from users’ expactations: ¢) trace
the evolution of the requirements: and d) improve the
communication and integration of the users and the
development personnel.

Despite the unquestionable beneflts of evolutionary
software processes. we have two concemns. First, the
automated risk assessment issue has not been resolved. It
is usually viewed as an extra activity layered on the
assigned work. or worst. as an outside activity that is not
part of the software process [6. 9]. The main line of

* This reseurch was supported by the US Army Research Oftice under grant £38690-MA and grant =10473-MAL

143

previous rescarch has addressed the problem in paraliel
with the development process using informal methods.
Basically the proposed methodologies are lists of practices
and checklists [20. 6] or scoring techniques [9] that are
dependent on human expertise.
The second concern is that prototyping poses a problem to
project planning because of the uncertain number of
cycles required to construct the product. The industry has
been using three classes of tools to estimate effort and
time that can be applied at different moments during the
life cycle. each category being more precise than the
previous one but arriving later:

a) Very early estimations. This category includes verv
crude approximations done during the beginning of
the process usually by subjective comparisons using
previous projects.

b) Macro models. This category includes Basic
COCOMO, COCOMO il (application composition
model). Putnam, Function Points, etc. The estimation
is done after completing the requirements phase.

¢) Micro models. This category includes intermiediate
and detailed COCOMO. COCOMO 11 (early dasign
and post-architecture models), and Pert’'CPM Gannt
techniques. The estimation is done afier the design
when it is possible to have a work breakdown
structure. The project estimate is the integration of all
module estimates based on linear lavouts of activities,
so they do not fit completely with evolutionary
software processes.

A detailed discussion of these techniques is outside the

scope of this paper: the details can be read in 1. 2. 4. 6.

14, 16, 17. 18, 19]. None of these techniques consider the

following characteristics of software projects: a)

requirement volatility. b) personnel volatility, and ¢j time
consumed by communications, exceptions and noisc in the
process. All the mcthods use size as an input parameter
via some kind of derivation from complexity. In many
cases the methods to compute such complexities and sizes
are questionable {10, 11, 12].

METRICS

In this section we describe a small set of metrics that
support our risk identification strategy (requirements,
personnel and complexity). We choose metrics presenting
the following characteristics: a) robustness. b)
repeatability. ¢) simplicity in terms of the number of
parameters, d) easy to calculate, and e) automaticaily
collectable.

Metrics for requirements

We purpose three metrics for requirements: a) birth-rate.
b) death-rate. and ¢) change-rate. We define birth-rute
(BR) as the percentage of new requirements incorporated
in each cycle of the evolution process. This metric shows
the introduction of new requirements as a percentage.

We define death-rute (DR) as the percentage of
requirements that are dropped by the customer in each
cycle of the evolution process.

We define change-rate (CR) as the percentage of
requirements changed from the previous cyele.

From the point of view of the metrics. a change in a
requirement can be viewed as a death of the old version
and a birth of the new one. The simplification just
described enables comparison of birth-rate and death-rate
in a bi-dimensional plot that shows four regions: stability
region. growing region. volatility region and shrinking
region (fig. 1). Each of these regions has different risk
connotations. The arrow shows the normal evolution of a
project as time goes by, During early stages, it is normal
for projects to be in the growing region. However, if the
project remains in this region after many cycles. or retumns
1o this region after visiting other regions., something
wrong happens. The first case is an indicator that the
requirement engineering is not efficicnt: hence some
corrective action should be applied. The second case
shows evidence of late discovery of some cluster of
hidden requirements.

After some cyeles, the project should be in the volatile
region. If the project does not evolve into the stability
region. then there is evidence that the requirements
engineering activity is not efficient and some corrective
action may be needed. It is important w analyze the
evolution of the stakcholdars' issues and criticisms. It
could be also the case that stakeholders have changed their
minds. If the project evolves to the shrinking region, and
the requirements engineering is working right, there is
evidence that the customers are cutting down the project.
This can be an indicator of a severe cut in the budget.
Finally. .any retum to a previous region should be
considered as evidence of threats. In such cases a detailed
analysis is required to assess the causes of the anomaly.
This set of metrics can be collected automatically from the

[

schema. requircment volatility is related to two risk
factors: the product and the process.

growing =

birth-rate

stable shrirking

4 o EET
g an o]

death-rate
Figure 1: Evolution of requirements

Metrics for fitness

We require measure the fit between people and their roles
in the software process. In order to measure personnel
both quantitative and qualitative metrics are required. A
skill match between person and job is required to estimate
the speed in processing information and rate of
exceptions. On the quantitative side it is important to
measure the number of people and the tumover. This last
one provides information about the expected productivity
losses due to training. learming curves and
communications. This set of metrics is difticult to collect

144

because people are very reluctant to being measured.
During the simulations we found that there exists an easier
way to measure the productivity fitness observing the ratio
between direct working time and idle time as we wil}
discuss in 6.1. Fitness is related to two risk factors: the
resources and the process.

Metrics for complexity

Complexity has a direct impact on quality because the
likelihood that a component fails is directly relazed to its
complexity. The quality of the preduct can only be
determined at the end of the process. Hence. it is
important to measure the complexity as an early predictor
to provide 2 way to assess the duration of the project given
some’indicators collected during the requirements phase.
In such conditions. code is not available, so the only
possible measurements should come from the
specification. Complexity is related to one risk factor: the
product.

Research on Function Points (FP) [1. 2] showed that there
exists 2 clear relation between complexity and size in
terms of lines of code. However. FP are not well suited for
real time systems or object-oriented developments [10, 11.
12}

Forma! specifications are suitable for being analvzed to
compute their complexity. We conducted experiments
trying to derive complexity from formal specifications
created by CAPS (Computer Aided Prototyping System)
[15]. The tool gencrates specifications in a structured
language called Prototyping Specification Design
Language (PSDL). PSDL code has the following
components: types. operators, data streams and
constraints. Types are declarations of abstract data types
required for the system. Operators are state machines and
data streams represent the communication links between
them. Both operators and data streams are the components
of a dataflow graph. Finally. constraints represent the real-
time constraints that the system must support. The too!
generates Ada code form PSDL specifications.

We defined two complexity metrics for PSDL: a) Fine
Granulurity Complexity metric (FGC). and b) Lorge
Granularity Complexity metric (LGC). The reason to
compute differeat metrics is because we want to detect
two classes of threats. First, we need to be aware of
excessively complex operators. High complexity of one
operator could be caused by poor design and possibly can
be solved by further decomposition. Second, we require a
metric to compute the total complexity of the system.

FGC expresses the complexity of each operator in the
system and is the sum of the fan-in and fan-out data
streams related to the operator (FGC = fan-in + fan-out).
LGC expresses the complexity of the system as a function
of the number of operators (0), data streams (D), and
types (TH(LGC=0+D+T).

We found a strong correlation between PSDL lines of
code and LGC (R = 0.996. fig. 2). If we compare the Ada
non-comment lines of code of the projects with their
complexity measured using LGC. we observe a strong
corrclation also (R = 0.898. fig.3). Our complexizy metric
correlates better with PSDL than with Ada becauss CAPS

automaticaliy generates PSDL; on the other hand. even if
CAPS generates part of the Ada code, the designer can
add and modifv the generated code, introducing more
variability. The size of the project in thousands of non-
comment lines of cods can be estimated as:

KLOC = (32 LGC - 130) 1000 [Eq. 1]

As the complexity grows. the ratio treads to
approximately 32 LOC for each unit of LGC. This finding
provided us with a method to compute the size of the
projects given an early measure of their complexity. This
conversion is required 1 compare our approach with
Putnam’s and Boehm's approaches because they require

Ada NCLOC vs Large Granularity Complexity
(LGC)

Ll

Lce

o6 oo
S8

\

o

H L 1”nE 1522 ¢ 287 e
Ada NCLOC

Figure 2: Correlation between PSDL and LGC

PSDL LOC vs Large Granularity Complexity
{LGC)

1GC

: 263 L) 620 520 125D 1200 1450

PSDL LOC
__Figure 3: Correlation between Ada code and LGC

the size as an input parameter. A caveat of this study is
that our sample is small. but it includes all the information
we have at the current time. However, the study suggests
the possibility of estimating size in terms of complexity
with a useful degree of accuracy.

THE RISK ASSESSMENT MODEL

A probability distribution from the Weibull family can be
used to model the development time given the risk factors
discussed above. The probability density function and
cumulative density function for the model are:

[O. X<’[
pdf=fix:v. o B) =4
e (BN x-p*" expl-[tx-9 B x27

[Eq. 2]

fo. X<y
cdf: Fix v o By = 4

L1 - exp[-{tx-p'B1Y. x>y
{Eq. 3]
where:

a) X is the random variable under study. In our case. X
can be interpreted as development time.

145

b) @ is a shape parameter. It determines the width of the
peak of the distribution and the expected error. We
can associate this behavior with the efficiency of the
project, which depends on characteristics of the
process and the resources.

¢) B is a scale parameter that stretches or compresses the
graph in the x direction and hence controls the
thickness of the tail. This parameter models the extra
work introduced by new requirements or changes in
requirements.

d) Note that the functions start at x = 0. We require a
third parameter to shift the curves to the right. For
that reason we introduce a location parameter .
which is function of the already discovered system
complexity.

CALIBRATION OF PARAMETERS

To calibrate productivity («) and requirement’s volatility
(B). we conducted simulations with VitdProject 8, 13)
using the following scenarios (fig. 4). Each scenario name
consists of three letters describing the value for each of
the three variables under study: productivity ().
requirements’ volatiliy (B). and complexity (y). Each
letter could have two values: high (H) or low {L). The too!
was configured to run 100 simulations for each scenario.
and the organizational parameters were set to match the
characteristics of software development.

b) Indirect. Time spent in activitics supporting the work
such as meetings. coordination. information
exchanges. etc. In ViteProject terminology. it is
Known as coordination time.

¢} Idie. Time spent without work to do. waiting for some
input. In ViteProject terminology. it is known as
waiting time.

d) Personal. Time spent doing anything except the other
categories. ViteProject does not compute this
category of time. However, it is loosely related to the
noise parameter.

If we examine the time distibution of these categories we
can observe a remarkable pattem that differentiates high
productivity scenarios from the low productivity ones.
This effect is independent of the other two variables of the
simulation. Hence. this suggests that the time distribution
can be a good indicator for the parameter ¢

Figure 5 presents the distribution times for the eight
scenarios simulated. A pattem of time distributions can be
clearly observed. Scenarios with low productivity have a
percentage of idle time greater than 13% of the total
development time.

We can recognize low productivity scenarios also by the
ratio of the percentage of direct time over percentage of
idle time. which we call productive ratio (PR):

PR = ¢ = Direct”s " Idle% [Eq. 5]

For high productivity scenarios 2.0 < PR < 6.0. and for
low productivity scenarios 0.8 < PR < 2.0.

_Scenario [Productivite Reg, volatitity | Complexiny
_LLL Low Low Low
_LLH Low Low Hivh
_LHL Low Hich [ow
LHH Low High Hich
_HLL Hich Low Low
~HLH Hich Low Hich
_HHL Hich Hich Low
_HHH High High Hich

Figure 4: Scenario’s characteristics

To analyze the effect of productivity, we compared the
results of the simulations of the following scenarios: LLL
vs HLL. LLH vs HLH. LHL vs HHL. and LHH vs HHH.
We found that for high productivity scenarios (Hxx) the
development time improved by 60%,.

To analyze the effect of requirement volatility, we
compared the results of the simulations of the following
scenarios: LLL vs LHL. LLH vs LHH. HLL vs HHL. and
HLH vs HHH. We found that high requirement volatility
(xHx) degraded the development time by 20%.

To analyze the effect of complexity. we compared the

results of the simulations of the following scenarios: LLL

vs LLH. LHL vs LHH. HLL vs HLH. and HHL vs HHH.

We found that high complexity (xxH) degrade the

development time by 30%.

6.1 Productivity (o)

Literature in productivity classifies time spent at work into

four categories:

a) Direct. Time spent working and correcting errors on
the product. In ViteProject terminology, it is the sum
of work and rework.

3 Direct Bindirect O idle

Figure 5: Time distribution from each scenario

We observed that using PR as the value of c. the model

behaves as the simulations. That is on high productivity

suenarios the total development is 60% shorter than in low

productivity ones. The reasons why the ratio PR is related

to productivity require further study. However, we

conjecture the reason could be related to:

a) Fitof job and people skills.

b) People tummover. generating noise and productivity
losses derived from training and learn’ng curves.

¢) Number of people. influencing the productivity by
excess or default of working force:

In the model the use of @ ranging from 0.8 (low

productivity) to 6 (highest productivity). corresponds to

the results observed in the simulations.

146

6.2 Requirement’s volatility (B)

B. the extra delay factor caused by requirements’ volatility
(late requirements and changes in previous requirements).
is obtained by the following formula:

B =INT(BR + DR)/ 10) {Eq. 6]
increase on the

Our simulations showed a 20°
development time when the requirement’s volatility is
high.

6.3 Complexity (y)

Having found a complexiry metric suited for our purpose.
the next step was to find for the existence of some sort of
relationship between LGC and development time.

We conducted a simple experiment using the conversion
ratio [Eq. 1] to obuain the size inputs for the sample. We
used sample points from 1000 LGC to 30000 LGC. which
means sample projects from 32 KLOC to almost I1MLOC.
We compute the average estimation for the development
time using COCOMO and Putnam. The sample points are
plotted with a smoothing thick line. The logarithmic
trendline is plotted as a thin red line. We found a strong
logarithmic correlation (R* = 0.9699) with the following
function (Fig. 6).

Time (months) =y =13 Ln(LGC) - 82

Months

[- -

< 5003 19CCy 15229 2306LC 23900 23nTC 3itin
Complexity LGC

Figure 6: Comiplexity-time corrclation

This equation gives a conservative estimation for projects
between 4000 and 20000 LGC (128 and 640 KLOC of
Ada). The estimation seems to be too optimistic for
projects smaller than 2000 LGC or greater than 23000
LGC. Figure 9 shows the effects of complexity over
different scenarios. The development time increases by
20% when the complexity is high.

6.4 The complete model

Our mode! requires three parameters (¢t B.) that can be
derived from metrics automatically collected from the
development environment (Eq. 5, 6 and 7). If the
development environment does not have the functionality
to collect metrics, then a manual procedure could provide
the data. Using these values in Eq.3 we obtain the
probability of finishing the project at any given time (x in
months) (Fig. 7). The model enables to refine the
_estimation form the knowledge captured at each

1. Algracht, A.

evolutionary cyele. As the development progress ¥
increases (known complexity) and B decreases (less tail).

CONCLUSION

We introduced a formal method for risk assessment that
solves the issue of human dependency. characteristic of
the current risk assessment methodologies. This method is
supporied by a small set of metrics that can be
automaiically collected from the development
environmeant.

One of the metrics introduced. productivity ratio,
constitui2s an objective method to assess the productivity
level of 2n organization without subjective judgement of
experts.

—e— Prob(finish a: x) —pzf

>

. 4
¢ 232 /
-

x (mon:ns)

Figure 7: Distribution functions

We inaduced a complexity metric well suited for real-

time svsi2ms that has strong correlation with development

time. Although. this metric was developed specifically for

PSDL. the method can be generalized for other

methodologies using Object Points or number of classes

instead of LGC.

An interssting side effect of the model is that provides an

fasy wzy to estimate, very early in the life cycle. the

duratior of a project. and indirectly. its cost. This method

enables 21 earlier assessment of the duration of the project

and soi~2s the problems of:

a) Human dependency on risk assessmen:. and

b) Diffculties in estimating time on evolutionary
prasanvping software processes.

Further research is required to generalize the method for

farger svstems and for different domains.

REFERENCES

Measuring Application Development
Productivity. Proceedings IBM. October 1979.

2. Albracht, A, and Gatfney, J. Software Function

Source Lines of Code and Development Effort

Prediction. IEEE Transactions Software Enginzering,

SE-9. 1983.

Bozkzm, B. A Spiral Model of Sofiware Development

an¢ Enhancement. Computer. May, 1988,

4. Bosxm. B. Software Engincering
Prezzice Hall, 1981,

5. Bozhm. B., Madachy R.. Selby. R. Cost Models for
Futurs Software Lifs Cycle Processes: COCOMO
2.6. hitp://sunset.usc.edu’COCOMOII cocomo.htm!

6. Hal. E. Managing Risk. Methods for Software
Systiams Development. Addison Wesley. 1997.

7. Humphrey. W. Managing the Software Process.

L

Economics.

147

o

20.

Addison-Wesley, 1989,

Jin. Y. and Levi. R. (Dzpartment of Civil
Engineering. Stanford University). The Virtual
Design Team. Paper to appear in Computational and
Mathemetical Organization Theory. 1996,

Karolak. D. Software Engineering Management.
IEEE Computer Sociery Press. 1996,

. Kitchenham. B., Kansala. K. Intar-item Correlations

among Function Points. First International Software
metrics Symposium. [EEE Computer Society Press.
1993,

. Kitchenham. B.. Linkman. S. Estimates. Uncertaingy.

and Risk. IEEE Software. Mav-Juns, 1997.

. Kemerer, €. Reliability of Function Points

Measurements: A Field Experiment. Communications
of ACM, Vol 36 No 2. 1993,

. The ViteProject Handbook: A User's Guide w

Modzlling and Anaivzing Project Work Processes and
Organizations. Vité €. 1999,

Londzix, B. Cost Estumation for Software
Development. Addison-Weslev. 1987.

Lugi and Ketabchi. M. A Computer-Aided
Prototyping System. [EEE Software. March. 1988,
Putnam. L. Software Cost Estimating and Life-cycle
Control: Getting the Sofiware Numbers. IEEE
Computer Society Press. 1930,

7. Putnam. L. and Myers. W, Measures for Excellence.

Reliable Software Or Time Within Budget. Yourdon
Press. 1992.

. Putnam. L. and Myvers. W. Executive Briefing.

Controlling Software Development. IEEE Computer
Socicty Press. 1996.

- Pumam. L. and Mvers. W. Industrial Strength

Software. Effective Management Using
Measurement. IEEE Compurter Society Press, 1997,
Software Engineering Institute. Software Risk
Management. Technical Report CMUSEI-96-TR-
012. June, 1996.

148

A Risk Assessment Model for Software Prototyping Projects'

Juan Curlos Nogueira
Jenoguei@nps.navy.mil

Luqi
luqi@cs.nps.navy.mil

Swapan Bhattacharya
swapan @cs.nps.navy.mil

Naval Postgraduate School
2. University Circle
Monterey, CA. 93943 USA

Abstract

Software prototvping processes have contributed 1o de-
velop cheaper. fuster and more reliable products. However,
despite the advances in technology, little progress has been
done in improving the management of software protorping

development projects. Rescarch shows that 45 percent of

all the causes for delaved software deliveries are related 1o
oreanizationa! issues (1] This paper addresses the risk
assessment issue, introducing merries and a model that con
be integrated with prototyping development processes.

1. Introduction

Despite 50 scars of progress. the software industry re-
muins immature to meet the demands of an information-
age cconomy. Many rescarches have treated the problem
using different approaches: formal methods. prototyping.
software processes. cte. However, this assertion remains
true taday. Experience suggests that building and integrat-
ing software by mechanically processable formal models
leads to cheaper. faster and more reliable products [2].
Software development processes such the hypergraph
maodel for software evolution [2], or the spiral model [3].
have improved the state of the art. However. they have a
common weakness: risk assessment. On the software evolu-
tion domain. risk assessment has not been addressed as part
of the model. In the various enhancements and extensions.
the graph model did not include risk assessment steps.
hence risk management remains as a human-dependent
activity that requires expertise. On the evaluation of the
spiral model. one of the difficulties mentioned by Bochm
was: "Relving on risk-assessment expertise. the spiral

model places a grear deal of reliance on the abiliry of soft-
ware developers 1o identifs und manage sources of project
risk.” [3].

Muny researches have addressed the problem of risk as-
sessment following the perspective of the traditional disci-
plines. The mailable tools for risk assessment are guide-
lines for practices. checklists, taxonomies of risk factors
and foew metrics. All these methods work fine if a) there is a
human cducated on risk assessment. and by he/she has
cnough experience. Such resources are very scarce. Our
research is focused on software project risk assessment,
which in other words is the prediction of success of the pro-
ject. The only way to evaluate the degree of success of a
project is: a) to compare the planned and actual schedules:
b) to compare the planned and actual costs: and ¢) to com-
parc the planned znd actual product characteristics. An
emergent branch of sottware engineering has covered this
last part: software reliability. However. we think that more
emphasis put on in the first two. We believe that evolution-
ary prototyping provides the most promising context 1o

address these issues.

I.1. Impact of evolutionary software processes

Studies have shown that carly parts of the system devel-
opment cycle such as requirements and design specifica-
tions are especially prone to errors [2]. Problems originat-
ing in the carly stages often have a lasting influence on the
reliability, satety and cost of the system. This effect is par-
ticularly notorious in projects involving multiple stake-
holders with different points of view. Evolutionary proto-
typing offers an iterative approach to requirement engineer-
ing to alleviate the problems of uncertainty, ambiguity and
inconsistency inherent in the process. Moreover, prototyp-

! This rescarch was supported by the US Army Rescarch Office under grant #38690-MA and grant #30473-MA.

. 0-7695-0668-2/00 $10.00 © 2000 IEEE

149

ing can improve the capture of change in requirements and
assumptions during the development process.
Evolution-driven CASE tools for computer-aided proto-
typing provide logical assessment of the consistency and
clarity of requirements and specifications. The use of proto-
types facilitates the requirement phase in any type of soft-
ware projects. Particularly. in real-time applications where
scvere time constraints impose more challenges. the use of
prototypes facilitates to describe the requirements in a
clear. precise, consistent and executable format. Prototypes
are useful to demonstrate system scenarios to the affected
partics as a way to: a) collect criticisms and feedback that
are sources for new requircments: b) carly detection of de-
viations from users’ expeciations: ¢) trace the evolution of
the requirements: and di improve the communication and
integration of the users and the deselopment personnel.

Despite the unquestionable benefits of protoiyping. we
have two concerns. First. the risk assessment issuc has not
been solved. The sccond concern is that protolyping poses a
problem to project planning because of the uncertain num-
ber of cycles required constructing the product. Most parts
of project management and estimation techniques are based
on lincar layouts of activities. so they do not fit completely.

1.2.The estimation problem

In order 1o assess the risk in o project. it is necessary to
have an idea of the effort und time involved. The industry
has been using three clusses of tools (o estimate eftort and
time that can be applied at ditferent moments during the
lite cycle. each category Feing more precise than the previ-
ous onc but arriving later:

) Very carly estimations. This category includes very
crude approximations done during the beginning of the
process usually by subizctive comparisons using previ-
ous projects.

b) Macro models. This category includes Basic
COCOMO. Putnam. Function Points. etc. The estima-
tion is done afier completing the requirements phasc.

¢) Micro models. This category includes intermediate and
detailed COCOMO. and Pert/CPM/Gantt techniques.
The estimation is donz2 after the design when it is pos-
sible 10 have a work breakdown structure. The project
estimate is the integration of all module estimates.

Itis not our intention 10 discuss these techniques. the de-
tails can be read in [4]. [3). [6] and [7). However we high-
light the assumptions for COCOMO and Putnam’s meth-
ods. COCOMO assumes:

(1) The development period starts at the beginning of the
design phase. That meuns that the requirements phase
is already done.

(2) The estimation covers only the direct-charged labor. In
other words, time spent in meelings and communica-
tion is not considered.

(3) The model assumes that a rather optimistic working-
time of 152 hours of productive work per month.

(4) The model assumes that the project will enjoy "good
management.”

(5) Finally. the model assumes that the requirements will
remain unchanged. This is a really restrictive assump-
tion that does not match the evolutionary prototyping
process.

The other de facto standard, Putnam’s model, is based on
the following assumptions:

(1) A development project is a finite sequence of purpose-
ful. wemporally ordered activities, operating on a ho-
mogeneous set of problem clements, to meet a specified
set of objectives.

(2) The number of problem elements is unknown but fi-
nite.

(3) Problems are detected. recognized and solved by apply-
ing effort.

(4) The occurrence of problem solving follows a Poisson
process.

(3) The number of people working in the project is propor-
tional to the number of problems ready to solve at that
time.

(6) The requirements are done, which is very restrictive
considering evolutionary software processes.

None of these techniques consider the following charac-
teristics of software projects: a) requirement volatility, b)
personnel volatility, and ¢) time consumed by communica-
tions. exceptions and noise in the process. All the methods
use size as inpul parameter via some kind of derivation
from complexity. In many cases the methods to compute
such complexities and sizes are questionable. Recently,
Stanford University [7] developed a new generation micro-
model estimation tool (VitéProject) that addresses some of
our concerns. This tool is useful but requires a complete
work breakdown of the project, thus it is useful to control
the project but cannot be used for early estimations. How-
ever, itis very useful to simulate different scenarios. We are
using this approach to calibrate our model.

2. Metrics

Metrics is a key factor in the identification of threats.
Without metrics it is not possible to provide early alerts of
risks. In this section we describe a set of metrics that sup-
port our risk identification strategy. We decided to use a

150

small set of metrics prescnting the following characteris-
tics: a) robustness, b) repeatability, ¢) simplicity in terms of
the number of paramcters. d) easy to calculate. and e)
automnatically collectable.

2.1. Metrics for Requirements

We define birth rate (BR) as the percentage of new re-
quirements incorporated in each cycle of the evolution
process. This metric shows the explosion of new require-
ments as a percentage.

BR = (NR/ TR) * 100. where

NR = number of new requirements,

(Eq. 1)

TR =total number of requirements (including NR).

We define death rate (DR) as the percentage of re-
quirements that are dropped by the customer in cach cycle
of the evolution process.

DR =(DciR/ TR) * 100. where (Eg. 2)

DelR = number of requirements deleted.

TR = total number of requirements (betore deletion)

We define change-rare (CR) ax the pereentage of re-
quirements changed from the previous version.

CR = (MR /TR) * 100. where

ModR = number of requirements changed.

(Eg. 3)

TR = total number of requirements.

100%
growing volatile i
i
g / :
I o10% {
£ d |
stable shrinking |
!
f
0%
0% 10% 100%
death-rate

Figure 1: Evolution of requirements

From the point of view of the metrics, a change on a re-
quirement can be viewed as a death of the old version and a
birth of the new one. The simplification just described. en-
ables to compare birth rate and death ratc in a bi-
dimensional plot that shows four regions: stability region.
growing region, volatility region and shrinking region.
Each of these regions has different risk connotations. There
is a normal evolution of the project as the time goes by.
During early stages, it is normal for projects being in the

growing region. However. if the project continues in this
region after many cycles. or return to this region after visit-
ing other regions. then something wrong could happen. In
the first case, the requirement engineering could not be
efficient. The sccond casc could show evidence of late dis-
covery of some cluster of hidden requirements. After some
cycles, the project should leave the volatile region. If the
project evolves to the shrinking region. and the require-
ments engineering is working right. there is evidence that
the customers are cutting down the project. This can be the
indicator of a severe cut in the budget. Finally. any involu-
tion to a previous region should be considered as evidence
of threats. In such cases a detailed analysis is required to
assess the causes of the anomaly.

2.2. Metrics for Personnel

In order to measure personnel both guantitative and
gualitative metrics are required. The skill match between
person and job is required to estimate the speed in process-
ing information and rate of exceptions. On the quantitative
side we propose 1o measure the number of people and the
turnover, This last one provides information about the ex-
pected productivity losses due to training. learning curves
and communications.

2.3. Metrics for Complexity

Complexity -has a direct impact on quality because the
likelihood that a component fails s directly related o its
complexity. The quality of the product can only be deter-
mined at the end of the process. Hence. it is important to
measure the complexity as predictor. This particularly use-
tul in real time systems. which present special difticulties
in terms of requirement engineering. Some requirements
are difficult for the user o provide and for the analysts dit-
ficult to determine. The best way to discover these hidden
requirements is via prototyping. Computer Aided Prototyp-
ing System (CAPS) (2] is a CASE tool specially suited for
this task. It has a graphical easy to understand interface and
mapped to a specification language, which in turns gener-
ates Ada code.

The prototyping process consists of prototype construc-
tion and modification (evolution) based on evolving re-
quirements and code generation. Both construction and
modification are exploratory activities with a common tar-
get: 1o satisfy multiple users with different and often con-
flicting points of view. Reguirement engineering is a con-
sensus driven activity in which mechanisms for conflict
resolution and traceability of requirement evolution repre-
sent critical success factors.

151

Formal specifications are suitable for being analyzed 10
compute their complexity. In the case of CAPS. the 1ool
generates specifications in a structured language called
Prototyping Specification Design Language (PSDL). PSDL
code has the following tokens: Iypes. operators, data
streams and constraints. Types are declarations of abstract
data types required for the system. Operators and data
streams are the components of a dataflow graph. Finally,
constraints represent the real-time constraints that the sys-
lem must support.

r

Ada NCLOC vs Large Granularity Complexity {LGC)

¥=0C312x. 48857

s apanes

iLGC

] Eov 10 1R s 2500 R

Aca NCLOC

Figure 2: Correlation between non-comment Ada lines
of code and LGC

We detine two complexity metrics for PSDL: Fine
Grunularity Complexity metric (FGC). and Large Granular-
ity Complexity metric (LGC). The reason to compute dif-
ferent metrics is because we want 1w detect two classes of
threats. First. we need to be aware of operators that are too
complex. High complexity on one operator could be caused
by poor design and possible can be solved by further de-
composition. Second. we require a metric to compute the
total complexity of the systern,

FGC cvpresses the complexity of cach operator in the
system and is a function of the fun-in and fan-out duta
streams refuted to the operator.

FGC = fan-in + fan-out (Eq. 4)

LGC expresses the complexity of the system as a func-
tion of the aumber of operators (O). data streams {D). and
types (T).

LGC=0+D=+T

We examinad the correlation between LGC and size of the
specifications and the code. We observed a very strong cor-
relation betw.een PSDL lines of code and LGC (R = 0.996).
The correlation between Ada non-comment lines of code of
the projects with their complexity measured using LGC. we
observe a strong correlation also (R = 0.898) (Fig. 2). Even
if CAPS gencrates part of the Adu code. the designer can
add and maodity the generated code introducing more vari-
ability. The following graph shows the correlation observed
for the same set of projects. The size of the project in thou-
sands of non-comment lines of code can be estimated as:

(Eq. 5)

KLOC = (32 LGC + 150) / 1000 (Eq. 6)

3. The proposed model

From the point of view of software engineering, it is
necessary to create the methodology to solve the decision-
making process during the early stages of the life cycle,
when changes can be done with less impact on the budget
and schedule. The most significant causes of software pro-

Ject failures are: lack of understanding of user’s needs. ill

defined scopes, poor management of project changes.
changes in the chosen technology. changes in business
needs. unrealistic deadlines, user’s resistance. foss of spon-
sorship. lack of personnel skills. and poor management.
From those pathologies. we conducted causal analysis arriv-
ing to the three risk factors that we will discuss.

We propose to divide risk management in three activities:
risk identification. risk assessment and risk resolution, Risk
identification is the set of techniques designed to alert and
identity possible threats. Risk assessment is the quantitative
analysis of the probabilities and impacts of the identified
threats. Risk resolution is the application of resources and
eftort to avoid. transfer. prevent. mitigate or assume the
risks.

In order o achicve risk management. an organization re-
quires & minimum fevel of maturity that can be associated
with CMM level 2 [8]. If an organization is not able o col-
lect metries. any attempt 1o tormally identify and assess
risks is impossible.

3.1. The risk major components

In our vision. soltware risks could be controlied it we
could master how to administrate uncertainty. complexity
and resources. Transforming the unstructured problem of
risk assessment Ieads to a formal method able to be trans-
lated into an algorithm. In order 1o structure the problem,
we proceeded to analyze the problem decomposing project
risk into simpler parts. We used causal analysis to find the
primitive threat factors. We identified three major factors:
process risk, resource risk and product risk. Each of these
factors introduces risks by themselves but mainly due to the
interaction hetween them.

Resource risk. is affected by organizational. operational,
managerial and contractual parameters such as resources,
outsourcing. personnel. time and budget amony others. The
Iiterature is abundant in this area. Various approaches use
subjective techniques such as guidelines and checklists [9].
HOL. [11]. which require expert’s opinion even when they
could be supported by metrics.

152

EERE i S e e S

Engineering development work procedures such as soft-
ware development. planning. quality assurance. and con-
figuration management cause process risk. The more com-
plex a process is. the more difficult it is to manage. and the
more education, training. standards. reviews. and commu-
nication are required. Consequently. complexity grows. The
software process complexity has been partially covered by
rescarch in terms of subjective assessments about maturity
level and expertise [9]. [10], [11]. However. we require a
morc precise and objective method.

Finally. product risk is related to the final characteris-
tics of the product. its complexity. its conformance with
specifications and requirements, its reliability and customer
satisfaction. The product introduces its own risk factors in
terms of quantitative and qualitative attributes. We identi-
fied two basic product-risk factors: requircment stability.
and requirement complexity. Requirement stability s
measurable using the set of metrics previously described.
Due to lack of structure in informal requirements. it is nee-
essary to transform them into specifications in order to
compute complexity. Other product characteristios such as
reliability and maintainability are not of interest to identity
and assess risk on carly stages, Reliability can be measured
only after completion or almost completion. Maintainability
can be measured only after the design is started. Buth
measures are usetul to control the project in future phases.
These estimations are useful in order to: a) identify the
trade-oft function between error reduction and cost of error
reduction. b) provide quantitative basis for accepting or
rejecting software during functional testing. and ¢) provide
quantitative basis for deciding whether additional testing i
warranted based on the cost of error removal. '

The process provides the deseription of its environment
and the theoretical requirements o exccute it. Conse-
guently. the process introduces threats due to its require-
ments and characteristics: complexity. technology required.
budget required. schedule required. and personnel skills
required. The resources represent the actual allowances in
personnel. toals. budget and schedule. They impose con-
straints that could not match the process requirements. The
productivity is consequence of the matching of these two
facets of the project. '

The decomposition created by causal analysis revealed: a)
a method to identify risks by comparing the degree of mis-
matching between the product and process characteristics,
against the resource constraints: and b) candidate indicators
to be used in an estimation model.

3.2. The formulation

We can consider software projects as experiments where
its cost and schedule are the output measures. We know

S A iy ST AN A

that software projects tend to overrun costs and schedule
(this fact has been proved by research and industry). There
are two possible ways to interpret the result of the experi-
ment. One hypothesis is that this behavior is abnormal. and
a consequence of lack of process maturity (SEIVCMM ap-
proach). Another hypothesis is that this could be a "false-
abnormal” behavior assumed abnormal as conscquence of
inappropriate measurements.

How do we create a macro model that considers the pre-
vious concerns and is able to be used during the evolution-
ary prototyping stages ot the process? Our hypothesis is that
a Weibull's family distribution can model each of the evolu-
tion cycles. Lets discuss the meaning of cach of the vari-
ables in the function:

X is the random variable under study. In our case, x can be
interpreted as development time.

¢ is a shape purameter.. It reduces the variability narrowing
the shape of the pdf.

B is a scale parameter that stretches or compresses the
graph in the v direction.

We require a third parameter () to shift the curves to the
right as consequence of system’s conceptual compleaity
reflecting learning/truining delays. The functions for the
pdf und cdf are then respectively:
0. x< Y
fix:v. . Br= 1 (Eq. 7y
LBy (x -0 Veapi-fix - B L x 2y

[0.x< Y
Foxiya By= 3 tEq. 8)
L1 -expl-lix-7/B1Y). x2v

The development lite cyvele can be visualized a succession
ol prototyping developments with increasing functionality
followed by a final optimization that produces the system.
Each of these phases has the same activity patiern. so its
reasonable to suppose that the delivery time for cach one
has a probability distribution from the same Weibull tamily
but with different parameters.

During each prototyping cycle a certain number of prob-
lem cvents occur. A problem event is an effort-consuming
situation that introduces a certain amount of functional
complexity to be solved (caused by a new requirement. a
change on a requirement. or as the consequence of rework),
and a certain amount of information exchange.

We suppose that the occurrence of problem events in
cach cycle follows a Poisson distribution with different
mean for each cycle. So. the entire develepment life cycle is
a non-homogencous Poisson process. We assumed this dis-
tribution because:

153

{2) Therce eaists a certain rate of occurrence of events.

(b) The prohability of more than one event oceurring in a
time interval depends on the length of the interval,

(¢) The number of events during one time interval is inde-
pendent of the number received prior this time interval.

4. Validation

Our model has been calibrated and validated in two
ways: a) internal consistency proved by mathematics and
statistics: and b) black box validation by comparing its out-
puts in duration and effort with other available models.
Figure 3 shows a comparison of duration estimates using
COCOMO. Putnani and this model. Our model gives a
conservative estimation for projects between 4000 and
20000 LGC (128 and 640 KLOC of Ada). For the compari-
son. we converted from LGC to Ada lines of non-comment
code using (Eq.6). and then we applied the obtained size to
COCOMO and Putnam’s model. The estimation seems 1o
be (oo optimistic for projects smaller than 2000 LGC or
greater than 25000 L.GC.in month.

i —COoCcoMO Purgm me=—Nogueira |

Figure 3: Comparison with COCOMO and

Putnam methods

5. Conclusions

W2 addressed the issue of human dependency in risk as-
sessmient of the evolutionary software processes incorporat-
ing &n automated risk assessment method integrated with
cvolutionary prototyping. Our approach provides a way to
structure and automate the assessment of risk. The pro-
pos2d model addresses part of the limitations of the tradi-
tionzl estimation methods. We are calibrating the modcl
usinz simulutions with VitéProject. Software development
is still a human dependent activity requiring lots of human
communication. and without appropriate managerial deci-
sion support tools. software engineering will remain in its
present state. We think that we require improving our
knowledge about the internal phenomenology of the soft-
ware life eycle. Tt is in the human aspects of the software

process where the bottleneck is located now. Automated
risk assessment tools should consider these aspects. With-
out such knowledge, prototyping issues such as incomplete
specifications. system complexity and development time
will remain unpredictable.

References

[1] Van Genuchten. M. Why is Software Late? An Empirical
IEEE Transactions on Software Engineering. June. 1991,

[2] Luqi and Goguen. J. Formal Methods: Promises and Prob-
lems. IEEE Software. January, 1997.

(3] Bochm. B. A Spiral Model of Software Development and
Enhancement. Computer. May, 1988.

{4) Bochm. B. Software Engineering Economics. Prentice
Hall. 1981,

(5] Putnam. L. and Myers, W. Industrial Strength Software.
IEEE Computer Society Press. 1997.

{6] Londeix. B. Cost Estimation for Software Developmen:.
Addison-Wesley. 1987.

{7] The ViteProject Handbook. Vité ©. 1999,

8] Carr. M. Risk Management may not be for evervone. [EEE
Software, May - June 1997.

tv] Software Engineering Institute. Software Risk Manage-

{10]

{in]

f12]

ment. CMU/SEIL96-TR-012. June. 1996.

Hall. E. Munaging Risk. Methods for Software Systems
Development. Addison Wesley, 1997,

Karolak. D. Software Engincering Management. IEEE
Computer Society Press. 1996.

Humphrey. W, Managing the Software Process. Addison-
Wesley, 19R0.

154

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

Dudley Knox Library, Code 52
Naval Postgraduate School
Monterey, CA 93943-5100

Research Office, Code 09
Naval Postgraduate School
Monterey, CA 93943-5000

Dr. David Hislop

U.S. Army Research Office

P.O. Box 12211

Research Triangle Park, NC 27709-2211

Dr. Man-Tak Shing, CS/Sh _
Computer Science Department

Naval Postgraduate School
Monterey, CA 93943

Dr. Valdis Berzins, CS/Be
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Dr. Luqi, CS/Lq

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

155

