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Abstract 

Low-thrust maneuvers are evaluated by calculating changes in the orbital elements with pre- 
defined steering programs. Four pitch steering cases are considered, where the in-plane acceleration 
vector is (1) perpendicular to the orbit radius vector, (2) tangent to the orbit path, (3) perpendicular to the 
major axis of the ellipse, and (4) parallel to the major axis of the ellipse. Discontinuous thrusting is 
described using perigee- and apogee-centered burn arcs. Expressions are given for the secular rates of 
change of the orbital elements, which can be integrated numerically or in some instances solved in closed 
form to yield the AVand trip time. Maneuvers analyzed here include simultaneous eccentricity and 
inclination changes, adjusting the argument of perigee and right ascension of the ascending node 
(RAAN), phase shifting with RAAN control, and changes of the semimajor axis and eccentricity due to 
atmospheric drag. Mission applications are illustrated by orbit insertion at low, medium, and 
geosynchronous altitudes using chemical and electric propulsion, orbit disposal by re-entry or 
graveyarding, and controlling the separation distance between a target and a chase satellite in low Earth 
orbit. 
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Introduction* 

Techniques for evaluating low-thrust orbital maneuvers are of interest because of the anticipated 
near-term use of electric propulsion for tasks with significant A V such as geosynchronous orbit insertion 
and satellite disposal from low Earth orbit. Convenient analytical techniques are needed by mission 
planners to compare the AVand trip time in proposed orbit transfer scenarios. The 1961 paper by 
Edelbaum' presented optimal steering algorithms for continuous thrusting in near-circular orbits, which 
served as the starting point for many subsequent analyses to determine a steering program that minimizes 
trip time or propellant mass.2"9 However, these methods tend to be computationally intensive and may be 
more elaborate than is needed for the first phase of a trade study. In addition, designing a trajectory to 
minimize the trip time could turn out to be impractical, because the satellite may not be able to execute 
the optimal steering programs that have been envisioned for dedicated orbit transfer vehicles. 

We present calculations of the velocity increment and trip time using simple pre-defined steering 
programs and an averaging technique that ignores the short-term variation of the orbital elements. This 
is based on the low-thrust formulation of Burt10, in which the secular rate of change of one element is 
calculated by holding the others constant over one revolution. Burt's approach is extended here to the 
case of discontinuous acceleration by analyzing perigee- and apogee-centered burn arcs. Secular rates of 
change are derived analytically and integrated numerically to obtain the history of each element 
throughout the maneuver. Closed form solutions for the AV and trip time are possible in some cases. 
This allows a rapid assessment of design options for placing a satellite into the desired orbit, prior to a 
more complete optimization when the trade-space has been narrowed. After introducing the steering 
programs and secular rate expressions we present an analysis of simultaneous eccentricity and inclination 
changes, adjusting the argument of perigee and right ascension of the ascending node (RAAN), phase 
adjustments with RAAN control, and the effect of atmospheric drag on semimajor axis and eccentricity. 
Examples of mission applications include insertion at low, medium, and geosynchronous altitudes using 
chemical and electric propulsion, orbit disposal by re-entry or graveyarding, and controlling the 
separation distance between a target and a chase satellite. 

Steering Programs and Secular Rates 

In Burt's nomenclature/is the thrust per unit mass (i.e., acceleration) having three components 
that are defined using in-track, cross-track, and radial coordinates as shown in Figure 1. Here,/, is 
directed outward along the radius vector, f2 is in the orbit plane and normal to the radius vector, /3 is 
normal to the orbit plane in the direction of the angular momentum vector, and the magnitude of the 

This report is a synthesis of three conference publications: 

J. E. Pollard, "Simplified approach for assessment of low-thrust elliptical orbit transfers," Papager IEPC- 
97-160, 25th International Electric Propulsion Conference, 24-28 Aug 1997, Cleveland, Ohio. 

J. E. Pollard, "Evaluation of low-thrust orbital manueverrs," Paper AIAA-98-3486, 34th Joint Propulsion 
Conference, 13-15 July 1998, Cleveland, Ohio. 

J. E. Pollard, "Low-thrust maneuvers for LEO and MEO missions," Paper AIAA-99-2870, 35th Joint 
Propulsion Conference, 20-24 June 1999, Los Angeles, California. 
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Figure 1. Orbital elements and components of acceleration/. The direction of/i is radially outward, fz is 
in-track, and/3 is cross-track. 

acceleration is/ = yj(f{)
2 + (/2)

2 + (/3)
2 ■ Table 1 shows the rates of change of the semimajor 

axis a, eccentricity e, inclination i, right ascension of the ascending node (RAAN) Q, and argument of 
perigee co as functions of eccentric anomaly E. These rates are derived from the Lagrange planetary 
equations listed in Reference 10. Elements a and e are affected by the in-plane components/ and/, 
while i and Q. are affected by the out-of-plane component/, and ft) is affected by all three components. 
Specifying/,/, and/ as functions of £ defines the steering program and determines the relative rates of 
change of the elements. Table 2 lists/(£) and/(£) in four different pitch steering cases, where the in- 
plane acceleration vector is (1) perpendicular to the orbit radius vector, (2) tangent to the orbit path, (3) 
perpendicular to the major axis of the ellipse, and (4) parallel to the major axis of the ellipse. Cases (1) 
and (2) are used for concurrent adjustments of a and e, and they are identical in the limit of small e. Case 
(3) can change e at a constant value of a, and case (4) adjusts co while a and e are unaffected. 

Discontinuous thrusting is described using perigee- or apogee-centered burns over an arc 
specified by a, as shown in Figure 2. The magnitude of/and the magnitude of the out-of-plane thrust 
angle ß are held constant during each burn arc, and the in-plane and out-of-plane components of 
acceleration are 

fn=^|Uy^r(KY=fcoS\ß\, A =/sin|j8|. (1) 

When both perigee- and apogee-centered burns are used, then the sign of ß is reversed twice per 
revolution at minor axis crossings to improve the efficiency of plane change maneuvers. This requires 
cyclic yaw maneuvers or alternate firing of canted thrusters on opposite sides of the vehicle. Although it 
is feasible to introduce a slowly varying ß (as is done in Reference 1), this yields little or no benefit for 
the examples presented here. A slowly varying acceleration, such as for the case of constant thrust and 
decreasing vehicle mass, can also be incorporated into the numerical analysis if needed. 

10 



Table 1. Rates of change of the orbital elements with E, where p = 398,600.5 km3 s 

da 
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Table 2. In-plane (pitch) steering with four different choices for the in-plane acceleration vector, where 
/12=V(/>)2+(/J2=/cos)3. 

(1) Perpendicular to 
the orbit radius vector 

(2) Tangent to the 
orbit path 

(3) Perpendicular to 
the major axis of the 

ellipse 

(4) Parallel to the 
major axis of the 

ellipse 

/.(£) 0 /12 e sin E 
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/12(cos E-e) 

l-e cos £ 
/12Vl-e2 sin£ 

l-e cos £ 

fi(E) fa /12(cos £-e) 

l-e cos £ 
1   w 
yl-e cos £ 

- fn vl-e2 sin E 

l-e cos £ 
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Figure 2. Perigee- and apogee-centered burn arcs are specified in units of eccentric anomaly E where 
<£<+aor 180° -a<E< 180° + a. 

-a 

The selected steering program from Table 2 is applied to the rates of change of the orbital 
elements with respect to E in Table 1, and the resulting expressions are integrated over the burn arc to 
determine the change in each element during one revolution. Dividing these results by the orbit period r 
(see Appendix 1) yields expressions for the secular rates of change of the elements, which are listed in 
Table 3. These rates can be integrated numerically or solved in some instances to yield the AVand trip 
time in closed form. The formula in Table 3 for the buildup rate of A V is derived from the burn duration 
per revolution, 

hum = 2 y]a3/n (a + a e sin«), 

where the parameter a equals -1 for perigee burns and +1 for 

Figure 3 compares secular rates for the different steer 

(2) 

apogee burns. 

Figure 3 compares secular rates for the different steering programs as a function of burn arc. 
When the burn arc is small the steering programs for cases (1), (2), and (3) become equivalent, and hence 
there is a convergence in the secular rates of change of a and e in the limit of small a. Case (2) steering 
is more efficient than case (1) for changing a by either apogee- or perigee-centered burns, while 
changing e is better performed by case (1) in apogee burns and by case (2) in perigee burns. Case (3) has 
the in-plane acceleration perpendicular to the major axis of the ellipse, which is rather ineffective for 
changing a, but for continuous thrusting (a= 180°) it can efficiently change e while keeping a constant. 
Case (4) has the in-plane acceleration parallel to the major axis of the ellipse, which gives no change in 
a, e, i, or Q, but (unlike the other in-plane cases) does produce a change in co. Only the out-of-plane 
component of acceleration/3 affects the orientation of the orbit plane, and hence the four in-plane 
steering cases give the same results for i and Q in Table 3. The function G(u, a, e) appears in the rates 
of change of i, Q, and o), and the graph of G in Figure 4 shows that apogee burns are much more 
effective than perigee burns for adjusting these elements. This graph also indicates that plane changing 
at a fixed yaw angle is inefficient when the apogee burn arc extends over more than half of the ellipse {a 
> 90°). A maneuver to change i is best performed with (o = 0° or 180°, because the rate of change of i is 
proportional to cos (O. Similarly, a maneuver to change Q is best performed with a> = 90° or 270°. Due 
to the /-dependence of the formulas in Table 3, the rates of change of Q. and a> become infinite as the 
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inclination approaches zero, but the rate of change of the longitude of periapsis (Tl = Q. + (O) remains 
finite. 

Apogee burns Perigee burns 
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Figure 3. Comparison of in-plane steering cases (1), (2), and (3) in a geosynchronous transfer orbit with 
an apogee altitude of 35,786 km and a perigee altitude of 185 km. Secular rates of change for a and e are 
calculated from Table 3 with/= 3 x 1(T7 km/s2, and with the burn arc given by a, as defined in Figure 2. 
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Figure 4. Dependence of the function G on a, as defined in Table 3. Orbit parameters are the same as in 
Figure 3. Secular rates of change of i, Q, and co are proportional to G. 

Earth's gravitational field has a perturbing influence on Q. and wthat is expressed in Table 3 by 
the nodal regression rate N and apsidal rotation rate A. Expressions for these rates taken from Appendix 
1 are added to the secular rates of change of Q, and co due to thrusting. Apsidal rotation is a concern for 
elliptical orbit transfers that involve plane changing, because co tends to drift away from the optimal 
value (e.g., co = 0° for a Ai maneuver). The numerical examples in this report take account of Earth's 
oblateness (72 term), but ignore other perturbations such as lunar-solar gravitation, solar radiation 
pressure, and higher order terms in the geopotential. The effects of satellite eclipsing and variable 
acceleration are also neglected. 

Simultaneous Eccentricity and Inclination Changes 

Adjusting e at constant semimajor axis is accomplished with in-plane acceleration perpendicular 
to the major axis of the ellipse, namely case (3) steering. When perigee- and apogee-centered burns 
occur on each revolution, the secular rate of change of e and the buildup rate of AV are 

=        Sl  '  /— (l - e2) (3a + cos« sin«), (3) 

d&V      2a f 

dt n 
(4) 

Here the maximum value of the burn arc is a =90°, because both perigee and apogee burns are used. 
Integrating Eqs. (3) and (4) gives the velocity increment and trip time, 
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AV = 
2a f At 

n 

Fß  2 a |arcsin e: 

V a cosl/31 (3 a + 

arcsm e, 

cos a sin a)' 
(5) 

The limiting cases of impulsive thrust (small a) and continuous thrust (a= 90°) can be compared using 
Eq. (5), and the result is 

AV. - ±AK. (6) 

Hence the low-thrust eccentricity change needs a 33% greater AV than the corresponding impulsive 
maneuver. 

We next evaluate the inclination change that occurs along with the change of eccentricity. Under 
the assumption that the sign of ß reverses at minor axis crossings, the secular rate of change of i is 

di 

dt 

/sin|j8|   [7-        ,  .      2(l + e2) 
 --     '     cosö) sma—* '- 

n VT" 
(7) 

Adjusting the inclination by this method is efficient only when perigee and apogee are close to the line of 
nodes, namely when co ~ 0° or 180°. Dividing Eq. (7) by Eq. (3) gives the rate of change of i with 
respect to e, 

di 

de 

2 tanj/3( |coscu| sin« 1 + e
2 

3a + cosasina    1 - e1 (8) 

Integrating Eq. (8) between the initial and final conditions under the assumption that co is constant gives 
an expression for the out-of-plane thrust angle ß that causes i and e to reach their target values 
simultaneously: 

tan|j8| = (»2   ~ h l(3 or + cos« sina) 

2cosco sina In 'e2+le,-f 
e2-le,+l 

-e2+e, 
(9) 

The argument of perigee co will vary during the orbit transfer due to the natural drift and because e may 
approach zero. However, Eq. (9) still gives a good estimate of the desired thrust angle. Figure 5 shows 
results for circularization with an inclination change that are applicable at any value of the semimajor 
axis. The AVfor circularization with an inclination change can be calculated from Eq. (5) using the ß 
values from Eq. (9). Figure 6 applies to an orbit having a 24-hour period, and it shows that for small 
eccentricities (e < 0.1) the A Vis nearly linear in Ai, and it approximates that of a pure inclination change. 
For large eccentricities (e > 0.6) the dependence of A Von Ai is less steep, because performing part of the 
inclination change at higher altitudes improves the maneuver efficiency. 
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Figure 5. Out-of-plane thrust angle for an inclination change with simultaneous circularization. Results 
are calculated fromEq. (9) with five different values of the initial eccentricity and with (o= 0° or 180°. 
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Figure 6. Velocity increment for an inclination change with simultaneous circularization using the out- 
of-plane thrust angles in Figure 5. Semimajor axis is constant at a = 42,164 km (24-hour period). 

Results are calculated from Eq. (5) with five different values of the initial eccentricity. 
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Adjusting the Argument of Perigee 

Changing co while holding a and e constant is performed using ß = 0° and case (4) steering with 
the in-plane acceleration vector parallel to the major axis of the ellipse. Assuming that perigee- and 
apogee-centered burns occur on each revolution, the secular rate of change of co is 

(-3a + cos« sin«) + A, (10) 

where A is the natural rate of apsidal rotation. By integrating Eq. (10) we obtain the velocity increment 
and trip time, 

AV = 2a/Ar = _2«Au  (H) 

n                (,   \ [aJl-e1 . .     v    nA 
sgn(Acu) J— (3« -cos« sina) + —- 

U     e f 

where Aco = co2 - cov Here AVdepends on/ because of the apsidal rotation term in Eq. (10). If the 
direction of the desired change in co is opposite to the natural drift, then the maneuver is feasible only if 
the magnitude of the first term on the r.h.s. ofEq. (10) is greater than A. On the other hand, if the natural 
drift rate is negligible compared with the rate of change due to thrusting, then the velocity increment is 

AV = J£-=L= ! ! , (12) 
V a Jl- e2  3 a - cos« sina 

which is independent off. If we use Eq. (12) to compare the limiting cases of impulsive thrust (small «) 
and continuous thrust («= 90°) for adjusting co the result is 

AV^   = |AVjm„. (13) 

This is a rare example of a low-thrust maneuver that has a smaller AV than the corresponding impulsive 
maneuver! Another way of illustrating this is by setting Eq. (10) equal to zero to obtain the velocity 
increment for canceling apsidal rotation for a time interval At, namely 

[ü      e            2a\A\At 
AV = JÜ-==- LL__, (14) 

V a Jl- e   3 « - cos« sina 

which is depicted in Figure 7 as a function of the burn arc angle. The limiting cases of impulsive (small 
a) and continuous maneuvers (a= 90°) are again related by Eq. (13). 

Adjusting the Right Ascension of the Ascending Node 

Changing Q at a rate different from the natural drift rate is done using out-of-plane thrusting 
with burn arcs centered about the apices (i.e., the maximum and minimum latitude points). In near- 
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Figure 7. Velocity increment for canceling apsidal rotation using case (4) steering with perigee- and 
apogee-centered burns specified by a. Results are calculated from Eq. (14) with average altitudes of 300, 

700, and 1400 km. 

circular orbits the velocity increment for adjusting the RAAN relative to a reference orbit is where 

AV = -.psinilAQl, 
2 \a '     ' 

(15) 

continuous out-of-plane thrusting at fixed altitude is assumed, and the direction of thrust reverses twice 
per orbit at the line of nodes. Performing plane changes in this manner is very costly in terms of 
propellant. The preferred method for adjusting Q takes advantage of the natural rate of nodal regression 
and its dependence on altitude. Transferring to lower or higher altitude changes the regression rate 
relative to the initial orbit, and a shift in Q, will build up with time. After loitering in the drift orbit the 
spacecraft returns to the initial orbit by reversing the direction of the in-plane acceleration. Figure 8 
compares the trade-off between AVand trip time for a 45° RAAN adjustment by impulsive maneuvers 
and by low-thrust spiral transfers with three different values for the spacecraft acceleration. This 
example assumes case (1) steering with both perigee- and apogee-centered burns and continuous in-plane 
thrusting (a = 90°, ß = 0°). Increasing the acceleration provides a more efficient transfer, as indicated by 
the curves for/= 0.5, 1.0, and 2.0xl0-7 km/s2. The minimum trip time for a given/is achieved when the 
drift time is zero, namely when thrusting occurs throughout the entire maneuver, as indicated by the end 
point of each curve. One application of Figure 8 is for a LEO constellation having four orbital planes at i 
= 50° with the RAAN spaced in equal increments (AQ = 45°). A satellite that has failed prematurely 
could be replaced by a spare from an adjacent plane, assuming that the long trip time for this plane 
change is a better option than putting the replacement on another launch vehicle. 

Phase shifts are performed by satellites during the build-up of constellations and to replace a 
failed spacecraft with an on-orbit spare. The strategy is to use in-plane thrusting perpendicular to the 
orbit radius to increase or decrease the altitude until half of the desired phase shift is accumulated. 
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Figure 8. Velocity increment vs. trip time for a 45° relative RAAN shift at 1400-km altitude with i = 50° 
and e = 0.001. Three different values of the low-thrust acceleration are displayed. The end-point of each 

curve is when the drift time is zero. 

Adjusting the Orbital Phase with RAAN Compensation 

Reversing the thrust direction returns the satellite to the initial altitude at the target phase. As usual, 
there is an inverse relation between trip time and AV. Loitering in a drift orbit between the inbound and 
outbound maneuvers is useful if a reduced AKand longer trip time are preferred, but the following 
example assumes there is no loitering. A complication arises at low and medium altitudes because a 
shift of the RAAN relative to the non-thrusting reference orbit occurs simultaneously with the desired 
phase shift. The RAAN shift can be compensated by including an out-of-plane thrust component that is 
constant in magnitude but reverses sign at the line of nodes, which occurs near the minor axis crossings 
when 03 = 90° or 270°. Figure 9 shows the AV and trip time for phase shifting in a near-circular orbit 
with and without RAAN control. Two symmetrical burns are performed on each revolution centered 
about the apices (maximum latitude points), with the direction of the out-of-plane thrust component 
reversing between burns, either by cyclic yaw maneuvers or by alternate firing of canted thrusters. The 
out-of-plane thrust angle ß is chosen so that the RAAN is identical to that of the reference orbit at the 
end of the phase change maneuver. The out-bound and in-bound burn times are slightly different in 
order to compensate for differential drag during the maneuver (see below for a discussion of drag 
compensation). For a 180° phase shift, the use of RAAN control increases the AVand the trip time by 
46% and requires an out-of-plane thrust angle of ß = ± 62°. Without RAAN control, a 180° phase shift 
in LEO would change the RAAN by about 0.3° relative to a non-thrusting reference orbit. 
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Repositioning at 600 km altitude, / = 60° 
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Figure 9. Velocity increment and trip time for orbital phase shifting at 600-km altitude with i = 60° and/ 
= 0.75 x 10" km/s during two symmetrical 15-minute burns per revolution. Black symbols are with 

RAAN control, and white symbols are without RAAN control. 

Circularizing a GEO Transfer Orbit 

Suppose that a spacecraft is in an elliptical transfer orbit with an apogee altitude of 35,786 km, a perigee 
altitude of 185 km, and i = 28.5°. A transfer to geosynchronous equatorial orbit (GEO) is accomplished 
by increasing the semimajor axis while bringing the eccentricity and inclination to zero. Figure 10 
shows the history of the orbital elements during a typical mission. The assumed acceleration of /= 3 x 
10"7 km/s2 corresponds to a thruster producing 50 raN per kW of input power and a satellite having a 
power-to-mass ratio of 6 W/kg. The first segment of the transfer uses case (1) steering, apogee-centered 
burns with a = 108°, and an out-of-plane thrust angle of ß = +40.4°, which takes the semimajor axis to 
the target value of 42,164 km in 97 days. The second segment uses case (3) steering, continuous thrust, 
and ß = ± 26.0° to drive the eccentricity and inclination to zero in 23 days while the semimajor axis 
remains constant. The out-of-plane thrust angle for the second segment is calculated from Eq. (9). 
Values for a and ß in the first segment are chosen to minimize the product of the total velocity increment 
and total trip time (AVx At) for the selected steering program. This is equivalent to finding the "knee" 
of the A V vs. At curve that yields a favorable trade-off between propellant mass and trip time. During the 
first segment, the argument of perigee (o changes because of the natural drift and because of the out-of- 
plane thrust component. To get around this problem we initialize at (o = -13.5° and drift toward a>~ -1° 
as i approaches zero, which maintains a good geometrical efficiency for inclination changing throughout 
the mission. The total A Vis 2.50 km/s with a 120-day trip time for this low-thrust transfer, compared 
with an impulsive (high thrust) AVof 1.84 km/s. 

We next consider a transfer to GEO by a combination of low-thrust and impulsive maneuvers. 
In this scenario the launch vehicle places the satellite in an orbit with a variable apogee radius, a perigee 
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altitude of 185 km, and i = 27°. The on-board chemical system then fires at apogee to reach a park orbit 
having a perigee radius of 15,000 km and a variable inclination. This perigee radius is selected to 
minimize exposure to high-energy protons during the low-thrust part of the mission. The spacecraft 
travels to GEO by the same approach as in Figure 10 at an acceleration of/= 3xlO~7 km/s2. The burn arc 
angle a, the out-of-plane thrust angle ß, and the initial a> are chosen to minimize AV x At as in the 
previous example. Figure 11 shows the velocity increment as a function of trip time for the low-thrust 
maneuver with the park apogee radius and inclination displayed parametrically. For a given apogee 
radius, A Vis an increasing function of trip time, governed by the choice of park inclination (more Ai 
means a longer trip and greater AV). For a given park inclination, AVcan be either a decreasing or 
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Figure 10. Orbital elements vs. time for a GTO-to-GEO transfer with an acceleration of /= 3 x 10 7 
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Figure 11. Velocity increment vs. trip time to reach GEO from a park orbit with a perigee radius of 
15,000 km. Park apogee radius (km) and inclination (°) are specified on the graph. 

increasing function of trip time depending on park apogee radius. It may be surprising to see that the A V 
to GEO can increase as the park apogee radius increases. This is because the park orbit eccentricity 
increases with apogee radius, and the higher AVfor circularization more than offsets the lower AV 
needed to change a. One also finds that an intermediate apogee radius gives the minimum AVfor a given 
inclination (e.g., 43,000 km at i = 12°), due to the penalty associated with plane changing at lower radii. 

Typically the mission planner seeks to maximize payload mass at GEO for a given trip time, 
which is not necessarily achieved by minimizing the low-thrust AV. The spacecraft mass that the launch 
vehicle can deliver to the park orbit depends on apogee radius and inclination (i.e., decreased mass if the 
orbit is higher and less inclined). Hence, the results in Figure 11 must be combined with performance 
figures for the launch vehicle and the spacecraft chemical system to optimize the mass-vs.-time trade-off 
to GEO. This is depicted in Figure 12 for the case of an Atlas HAS booster with the park perigee radius 
fixed at 15,000 km. On-board propulsion systems are assumed to have specific impulses of 314 s 
(chemical) and 1600 s (electric). Trip times reported here do not include the time from lift-off to the end 
of the chemical orbit transfer, which is typically 2-7 days. Several interesting trends are evident in 
Figure 12. If the park orbit is confined to i = 0° (equatorial), then the best apogee radius is around 
55,000 km, and the satellite mass at GEO is 2411 kg with a 56-day trip time (an improvement of at least 
400 kg over an all-chemical propulsion system). Further mass gains are possible if the spacecraft is 
capable of changing the inclination during the low-thrust segment of the mission. A satellite mass of 
2604 kg and a 75-day trip time are achieved when the park inclination is / = 12° and the apogee radius is 
43,000 km. No additional benefit is obtained for park inclinations greater than i = 20°. Similarly, if the 
park perigee is fixed at 15,000 km, then apogee radii greater than 60,000 km are to be avoided, because 
they give a sharp reduction in GEO mass with little or no savings in trip time. 
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Figure 12. Satellite mass vs. trip time to reach GEO from an Atlas IIAS booster via a park orbit with a 
perigee radius of 15,000 km. Park apogee radius (km) and inclination (°) are specified on the graph. 

Some missions may require shorter trip times than are depicted in Figure 12, and this can be 
achieved using park perigee radii greater than 15,000 km. Figure 13 shows the same data as in Figure 
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Figure 13. Satellite mass vs. trip time to reach GEO from an Atlas IIAS booster via a park orbit with 
perigee radii of 15,000, 21,000, and 27,000 km. 
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12, along with results for two cases with higher perigee radii. The trade-off between trip time and mass 
at GEO indicated by the line in Figure 10 is 8.2 kg/day for masses in the range of 2200-2600 kg. The trip 
time of 30-70 days assumes an acceleration of /= 3x10~7 km/s2 and a favorable choice of apogee radius 
and inclination at each park perigee radius. Another important case is the transfer to GEO from a park 
orbit having a variable perigee radius, a variable inclination, and a 24-hour period so that the transfer is 
performed within view of a single ground station." Figure 14 shows the mass at GEO vs. trip time using 
the same set of performance assumptions as in Figure 12 with/= 3x10~7 km/s2. The best choice of park 
inclination is i ~ 4° for perigee radii of 21,000-33,000 km, while i ~ 8° is preferable for radii of 15,000- 
21,000 km. With these inclination choices, the mass benefit from starting the low-thrust orbit transfer at 
a lower perigee radius amounts to 7.7 kg per extra day of trip time. 
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Figure 14. Satellite mass vs. trip time to reach GEO from an Atlas IIAS booster via a park orbit with a 
24-hour period. Park perigee radius (km) and inclination (°) are specified on the graph. 

MEO Insertion 

In the next example, the satellite is launched into an initial orbit having a variable apogee 
altitude, a perigee altitude of 167 km, and an inclination of 27°. The on-board chemical propulsion 
system fires at apogee to raise the park orbit perigee by a variable amount. The electric propulsion 
system is then used to reach a circular medium Earth orbit (MEO) at 18,000 km altitude (24,378 km 
radius) and an inclination of 27°. No plane change is performed by the on-board chemical and electric 
systems. We would like to know the spacecraft mass at the mission orbit as a function of the park 
apogee and perigee altitudes. Specific impulse for the chemical system is 326 s, as expected from the 
technology trend for storable bipropellant engines. Current performance for N2H/N204 liquid apogee 
engines is 322-324 s. For the electric system a specific impulse of 1600 s and a thrust-to-power ratio of 
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0.057 N/kW are assumed, as applies to a xenon Hall-effect thruster in this power range. The spacecraft 
has 9.2 kW of power available for propulsion at beginning of life and generates 0.524 N of thrust. 

The launch vehicle is assumed to have the performance given in Figure 15, which shows the 
spacecraft mass in the elliptical park orbit as a function of apogee radius, with curves corresponding to 
seven different values of the perigee radius. Low-thrust acceleration is calculated from this initial mass. 
For example, if the initial mass is 4000 kg, the acceleration is 1.31 x 10~7 km/s2. The length of the 
apogee-centered burn arc and the out-of-plane-thrust angle are chosen to minimize the product AVxAt, 
which yields a favorable trade-off between propellant mass and trip time. In the present case, a plane 
change is not performed, and the out-of-plane thrust angle is zero. The first segment of the transfer uses 
case (1) steering where the acceleration vector is perpendicular to the orbit radius. This proceeds until 
the semimajor axis reaches its target value, at which time the steering program changes to case (3) with 
the acceleration vector perpendicular to the major axis of the ellipse. The orbit is thereby circularized at 
a constant semimajor axis using continuous thrusting. 

Medium EELV to park orbit 

15000        20000        25000 

park apogee radius (km) 

30000 

Figure 15. Spacecraft mass delivered by a medium launch vehicle to an elliptical park orbit at 27° 
inclination. Apogee radius is the independent variable, and the seven curves correspond to different 
perigee radii. The satellite is dropped off at an initial perigee altitude of 167 km, and the on-board 

chemical system (326 s specific impulse) raises the perigee radius to the values indicated. 

Figure 16 shows the spacecraft mass at the final circular orbit as a function of trip time, with 
curves corresponding to six different values of the park apogee radius. The endpoints of these curves are 
connected by a curve representing the limiting case of a circle-to-circle spiral transfer with continuous 
thrusting. The mass benefit from the electric orbit transfer is given by the initial slope of the spiral 
transfer curve, amounting to 3.8 kg/day. A dry mass penalty of 40-80 kg would be imposed if the 
electric thrusters perform no function other than the initial orbit transfer. This is typically not the case, 
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Figure 16. Spacecraft mass delivered to a circular MEO altitude of 18,000 km at 27° inclination, plotted 
as a function of trip time. The six curves with symbols correspond to different values of the apogee. 

because the electric thrusters would also be used for stationkeeping and orbit disposal, and the dry mass 
penalty is assessed over the entire mission. A spiral transfer gives the maximum mass at MEO for a 
given trip time, assuming that no inclination change is needed. Hence, the best performance is obtained 
when the on-board chemical system circularizes the park orbit at the initial apogee altitude, and the 
electric thrusters operate continuously to raise the altitude to 18,000 km (24,378 km radius). Generally, 
an elliptical transfer will give better performance than a spiral transfer when a plane change is required 
from the on-board chemical and electric propulsion systems. This is the case in most geosynchronous 
transfers and in MEO transfers where the final inclination is different than that of the drop-off orbit. 

Atmospheric Drag 

Changes in the orbital elements produced by atmospheric drag can be calculated if the drag 
deceleration is known as a function of altitude. A detailed prediction of atmospheric density vs. altitude 
and epoch is beyond the scope of this study, and therefore a simplified approach was adopted. To 
demonstrate the orbit transfer analysis in typical missions at solar maximum conditions, drag 
deceleration/dra| was calculated for a three-axis stabilized satellite using the LIFETIME software 
developed by George Chao of The Aerospace Corporation's Astrodynamics Department.1314 Results are 
shown in Figure 17 for nine altitudes between 180 km and 700 km at i = 33° along with polynomial 
least-squares fit of log/drag vs. altitude. A linear extrapolation of this curve is used for altitudes greater 
than 700 km. Drag deceleration at any point in an arbitrary elliptical orbit can be calculated from Figure 
17 using as input the altitude given by 

27 



h = a(l - ecosE) (16) 

The solar maximum data in Figure 17 are used for all of the examples that follow, but for a real mission 
the drag deceleration would need to be calculated using the appropriate epoch, inclination, and area-to- 
mass ratio. The drag deceleration vector is tangent to the orbit path, and therefore corresponds to the 
case (2) in-plane steering program. Secular rates of change of the semimajor axis and eccentricity are 

da 

~dt 

de 

~dt 

~ * v~77 If*-* v1 
It  \ (X   o 

K  \ H o 

e2 cos2 E dE, (17) 

fdny cosg(l-gcosE) 

-Jl - e2 cos2 E 
dE, (18) 

where/drag is a function of a, e, and E. Drag-induced rates of change of a and e in Eqs. (17) and (18) are 
added to the thrust-induced rates of change to generate numerical results. In this treatment, /, &, and co 
are unaffected by drag. 
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Figure 17. Logarithm of atmospheric drag deceleration for circular orbits with i = 33° for a 130-kg 
spacecraft The solar array is sun-pointing with an area of 2.9 m2, and the 1.0-m3 spacecraft body is nadir- 

pointing. The atmospheric density model is MSIS90 at solar-maximum conditions.13'14 
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LEO Insertion 

A key parameter in optimizing the deployment of Jow Earth orbit (LEO) constellations is the 
altitude at which satellites are dropped off by the launch vehicle. Lower drop-off altitude means a 
greater launch vehicle throw weight along with a higher AVto reach the mission orbit. If the spacecraft 
uses an electric propulsion system, then lowering the drop-off altitude causes A V to increase because of 
the additional time spent fighting atmospheric drag (this is in addition to the extra AVdue only to the 
altitude change). Figures 18 and 19 show the low-thrust AVand trip time to reach a mission orbit at 800- 
km altitude as a function of the drop-off altitude and the spacecraft acceleration. Continuous thrusting is 
assumed, and the initial and final eccentricities are 0.0020 and 0.0001. The spacecraft cannot perform 
the climb-out if the drag force exceeds the thrust, and this is exemplified by the upturn in the AV and trip 
time curves as the drop-off altitude decreases. For initial altitudes greater than 400 km the drag force is 
small, and A Vis nearly independent of thrust acceleration, namely 

AV = fM 
ni   Aa 

(19) 
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Figure 18. Velocity increment vs. initial mean altitude for co-planar transfer to an 800-km circular orbit 
with three values for the spacecraft acceleration. 
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Co-planar transfer to 800-km altitude 
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Figure 19. Trip time vs. initial mean altitude for co-planar transfer to an 800-km circular orbit with three 
values for the spacecraft acceleration. 

Orbit Disposal 

Large numbers of satellites are being launched into low Earth orbit (LEO) for applications such 
as personal communications, messaging, multimedia, and remote sensing. This could lead to a serious 
problem from orbital debris unless the satellites are removed from the mission orbit at the end of life. At 
GEO this task is accomplished by transferring to a 200-300 km higher altitude "graveyard" orbit, with a 
AVof 3.6 m/s per 100 km of altitude increase (this value applies to impulsive and low-thrust maneuvers). 
End-of-life disposal from LEO can be a demanding task in terms of A V for which high specific impulse 
thrusters are well suited. One method of disposal is by thrusting to lower the perigee of an initially 
circular orbit to the point where atmospheric drag will quickly lower the apogee until re-entry occurs. 
Alternatively, the spacecraft can be moved to the graveyard altitudes of 2000-2500 km, which have few 
other uses because of the severity of the natural radiation environment. For re-entry, we assume that 
mission ends when the semimajor axis reaches 6628 km, i.e., 250-km mean altitude. Apogee-centered 
burns are performed with a burn-arc angle of a= 105°, which is a reasonable compromise between 
saving propellant mass and reducing the trip time. Figure 20 shows a typical de-orbit altitude profile in 
which the eccentricity initially increases due to perigee-lowering and then decreases as drag lowers the 
apogee. Figure 21 shows the re-entry and graveyarding AVas a function of trip time for initial altitudes 
of 400-1600 km. For a given initial altitude the re-entry AV decreases slightly as the spacecraft 
acceleration is decreased, because there is a greater length of time for drag to contribute to the maneuver. 
Assuming that trip time is not a significant issue for orbit disposal, the choice of re-entry vs. 
graveyarding can be decided on the basis of AV. Propellant mass is minimized by choosing re-entry 

30 



when the initial altitude is less than 1200 km and graveyarding when the initial altitude is greater than 
1300 km. 

De-orbit from circular LEO 
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Figure 20. De-orbiting from an 800-km circular orbit via apogee-centered burn arcs with/= 0.75 x 10 7 

km/s2. The velocity increment is 218 m/s, and 57 days are required to reach a mean altitude of 250 km. 

Disposal from circular LEO 
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Figure 21. Velocity increment vs. trip time for disposal from near-circular orbits with initial altitudes of 
400-1600 km. The spacecraft acceleration is/= 0.75 x 10~7 km/s2. The graveyard orbit has a circular 

altitude of 2000 km. 
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Drag Compensation for Co-Orbiting Satellites 

Controlling the in-track separation between co-orbiting satellites in LEO is required for missions 
such as stereo Earth-observation and formation flying. Rather than use thrusting to fully compensate the 
drag-induced altitude decay, it is usually sufficient to counteract the differential drag force between 
satellites having unequal area-to-mass ratios. We wish to evaluate the AVand thrusting time for 
differential drag compensation and for maneuvers to adjust the in-track separation. If the orbits are near- 
circular and gravitational perturbations are neglected, then the mean motion n and its secular rate of 
change dn/dt are given by 

n = 
dM 

dt 

In 

T 
(20) 

dn _     3 n da _     3 / 

dt 2 a dt a 
(21) 

where M is the mean anomaly, and/is the vector sum of thrust plus drag acceleration. The thrust vector 
is assumed to be tangent to the orbit path. Integrating Eq. (21) yields the mean motion in the presence of 
constant thrusting, 

dM 

dt 
GL = IJL 

V«3"U = tUV-2/(,-,0), (22) 

where a0 is the orbit radius at the starting time t0. In terms of the mean anomaly difference AM, the rate 
of change of the in-track separation between two satellites in a common orbit plane is 

dAM 1* 1" dt Vo2' iaf 

dAM 1" 1» 

(23) 

dt ' a2n \aL -3 ('-*„) a2n 

A 
al. °; 

(24) 

where al0 and a20 are the orbit radii of satellites 1 and 2 at the starting time t0. Here/, and/2 are each the 
vector sum of thrust acceleration plus drag deceleration as given in Figure 17. For the special case of 
continuous thrusting where the initial orbit radii are equal, Eq. (24) is equivalent to the rate of phase 
shifting given in Edelbaum's Eq. (34).' In this case, integrating Eq. (24) yields a simple expression for 
the mean anomaly difference as a function of time, 

AM = AM0 - 3(/2-/,) 
2an 

(<'-'.'). (25) 

Numerical results are obtained by integrating Eq. (23) simultaneously with equations for the 
rates of change of the satellite altitudes and the rate of A V build-up. The examples in Figs. 22 and 23 are 
for near-circular orbits where satellite 1 is assumed to be passive, and satellite 2 has a maneuvering 
capability. Satellite 2 has an area-to-mass ratio that is 10% greater than that of satellite 1, and hence its 
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Figure 22. Changing the in-track separation between two co-orbiting satellites in the presence of 
atmospheric drag. Thrust acceleration of satellite 2 is 0.75 x 10"7 km/s2 during two symmetrical 15- 

minute burns per revolution. The AVfor this maneuver is 3.94 m/s and the trip time is 1.96 days. 
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Figure 23. Controlling the separation distance between two co-orbiting satellites over a 1-year mission. 
Satellite 1 is passive, while satellite 2 (which has a 10% greater area-to-mass ratio) uses periodic 
thrusting to raise its altitude above that of satellite 1. The AVfor the 1-year mission is 5.3 m/s. 
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altitude decays more rapidly. Figure 22 shows a maneuver to increase the in-track separation from 100 
km to 600 km in 2.0 days beginning at an altitude of 600 km. Tangential thrusting by satellite 2 
decreases the altitude until half the desired phase shift is accumulated. Reversing the thrust direction 
returns satellite 2 to the altitude of satellite 1. Maneuvers are performed with two symmetrical burns per 
revolution to maintain a near-circular orbit. Each burn is nominally 15 minutes duration, but the 
outbound leg and the inbound leg have burn times that differ slightly (< 2%) to compensate for 
differential drag during the maneuver. When the thrust vector points in the (+) in-track direction for 
altitude raising, a greater than nominal impulse is required because the drag deceleration vector is in the 
(-) in-track direction. Conversely, for altitude lowering a less than nominal impulse is needed. There is 
no compensation following the maneuver, so that the in-track separation continues to increase slowly 
after the target value of 600 km is reached. 

Figure 23 is an example of differential drag compensation between two satellites over a 1-year 
mission starting at 600-km altitude and concluding at 497 km. Periodic maneuvers are performed by 
satellite 2 to match the average rate of altitude decay of satellite 1. At the start of a cycle, satellite 2 is 
1000 km ahead of satellite 1 and 0.4-0.7 km lower in altitude. Two 15-minute burns per orbit with/= 
0.75 x 10~7 km/s2 are repeated over 4-6 revolutions to raise the relative altitude by 0.8-1.4 km, from 
which point satellite 2 decays back to its initial relative altitude. Separation distance decreases in the 
first half of the drift period, returning to the initial 1000-km separation at the end, with closest approach 
occurring when the satellites are at the same altitude. The cycle time decreases from 51 days initially to 
29 days on the last cycle, because the increase in drag force requires more frequent corrections. In this 
example the separation distance varies by ± 397 km averaged over the mission. For a tighter tolerance 
the maneuvers must be performed more often, but the build-up rate of A Vis independent of separation 
tolerance. Figure 24 shows the dependence of cycle time on altitude and separation tolerance. For 
example, to achieve a tolerance of ± 100 km the cycle time is 7 days at 400-km altitude and 45 days at 
700-km altitude. 
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Figure 24. Separation tolerance vs. cycle time for differential drag compensation by two co-orbiting 
satellites having area-to-mass ratios that differ by 10%. Results are displayed at four circular altitudes 

with solar maximum conditions. 
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Appendix 1 

From Reference 12, the mean mean-motion n and the natural drift rates of Q and co (i.e., nodal 
regression and apsidal rotation) are 

n = 

N 

rrr r     a      2                         "j 

3 l + f/2\(l-!sin2/)Vl-e2 
2
    ^ 

dQ. 

dt 
3 ,  ^   - = —7, —- n cosi, 2   V 

(Al) 

(A2) 

dto 
A = = —Jj-^n ^4-5 sin *J, 

A 
(A3) 

where p = a(l - e2), Earth's equatorial radius is re = 6378.137 km, the second zonal harmonic of the 
geopotential is J2 = 0.00108263, and the orbit period is T = 2n/n . In this report, the analytical results 
for secular rates of change of the elements under various steering programs assume that the period is 
X -Ln-^a"III. This approximation enables the derivation of closed-form solutions for the velocity 
increment and trip time. For numerical solutions the secular rates can be modified to incorporate the J2 

effect on T, although the magnitude of this effect is quite small. 
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