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FINAL  REPORT 

Project Identification: AFOSR Grant F49620-96-1-0133 
Project Title: Statistical Modelling and Simulation for Microstructure in Materials Science 
Principal Investigator: Chuanshu Ji, UNC-Chapel Hill, cji@stat.unc.edu 

The main accomplishment in this project consists of two parts: (I) Reconstruction cycle in mi- 
crostructure modelling; and (II) Computation of effective properties via Markov chain Monte Carlo 
(MCMC) algorithms. 

The details are contained in Derr (1998) — a draft of Ph.D. dissertation entitled "Statistical 
modelling of microstructure with applications to effective property computation in materials science" 
by Bob Derr under the supervision of Chuanshu Ji. Several papers based on this thesis are being 
written and to be sumitted for publication. 

I. Reconstruction cycle in microstructure modelling 

• One of the most important issues in materials science is the connection between materials prop- 
erties, e.g. conductivity, elastic moduli, strength, etc. and microstructures. Along this line, many 
computer models were proposed to generate synthetic microstructures on which some numerical 
schemes, e.g. finite element, were used to calculate the materials properties of interest, assuming the 
local properties satisfy certain partial differential equations for stress/strain or diffusions. On the 
other hand, experimentation was conducted in laboratories which measures those properties from 
real materials. A significant gap exists between these two aspects of the study due to the lack of 
methodology for fitting the computer models (i.e. estimating the parameters in those models) based 
on the real microstructure data. 

Several steps were taken in this project towards bridging such a gap. A class of statistical models 
for microstructure — hard-core/soft-shell elliptical processes, simply called elliptical processes, was 
proposed, and the related modelling task was carried out via the following reconstruction cycle: 

proposed 
model 

image   processing 

real 
microstructure 

model 
fitting 

model 
checking 

fitted 
model 

WICMC   simulation 

synthetic 
microstructure 

Step 1. Descriptive data summary: microstructure image processing; 
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Step 2. Model fitting: parameter estimation in the proposed probability density; 

Step 3. Simulation from the fitted model: Markov chain Monte Carlo (MCMC) algorithms; 

Step 4. Model checking: good of fit tests, comparisons of features. 

Although this follows from the basic principle in statistical modelling, its implementation on 

models as complex as the elliptical processes is new and challenging. The main consideration in 

choosing this model class is the combination of practicality and feasibility. The hard-core assumption 

is essential in modelling microstructure since particles (grains) in 3D are nonoverlapping. The 

main technical difficulty with the hard-core assumption lies in that it induces complicated spatial 

dependence structures. The class of elliptical processes has several advantages. On one hand, it 

is rich enough to generate a great variety of synthetic microstructural patterns (see Fig. lc, Id, 

2a - 2f), because it allows variability in location, orientation, aspect ratio and size of ellipses. 

On the other hand, it is computationally manageable (although intensive), since it is still a finite- 

dimensional model (the dimensionality can be quite high). More realistic microstructures and flexible 

deformable shapes can be approximated when computational facilities permit. Although this report 

only summarizes results for the 2D elliptical processes, the extension to 3D ellipsoidal processes can 

be handled in a similar manner. 

Step 1.   Take the real microstructures in Fig.   la and lb, approximate them by nonoverlapping 

ellipses via range-oriented fitting or least-squares fitting [cf. Derr (1998)]. 

Step 2. A configuration x = {xi,... ,xn} consists n ellipses, each denoted by x» = (£i,0i,ai,&i), 

with center &, orientation 0j, major and minor half-axes a.i and bi respectively. The probability 

distribution of an elliptical process is characterized by its density f(x) with respect to a reference 

measure \i x v. Under n, {&} form a homogeneous Poisson process in a bounded region ScR2 

with the mean measure being the area m(S) of S, and under v, {(6i,a.i,bi)} are iid marks with Bi 

uniformly distributed on [0, TT], and (a*, bi) uniformly distributed over'the triangle {I < b{ < at < L}, 

where I < L are two known positive constants, to be specified in the experiment. 

The density f(x) has a form 

f(x;\,a,b) = \nh(x;a,b)[B{^a,b)]-\ 

with 
(1) 

h{x;a,b) = I(b<bm<*nn<«)A(x) Ylgfa), 

where 

(i) ünn = max a-i, and bni =  min bi [in general, ani denotes the ith order statistics in (01,... , on)], 
l<t<n !<*<" 

and I A is the indicator function of an event A; 

(ii) A, a and b are three unknown parameters, with the assumed ranges A > 0 and I < b < a < L, 

and the sufficient statistics {n,onn,6„i}; 
••' 2 



(iii) g(xi) > 0 Vrc» and Vi, with a known function g, depends on Xj only through its area, e.g. 

g{xi) = 1, or g(xi) = a^bi, or g(xi) = (oA)-1, to give a few particular choices; 
(iv) The factor A(x) > 0 Vs includes the range restriction 0 < 0» < ir, a» > bt Vi, and the 

nonovelapping restriction, etc., but does not involve the unknown parameters; 

(v) The normalization factor is expressed as 

B(X,a,b) 

(2) 

' k 

= Y{e-mW[m(S)]k/kl} [    f       f       XXhfra^Wdtideidaidbi), 
£ JSk y[0,x]* J[b,a]»< iJl 

with the term e~m^ when k = 0. Note that B(A,a, 6) is practically a finite sum. Since every 

ellipse has a minor half-axis no less than I > 0, and the ellipses are nonoverlapping with then- 

centers distributed over the bounded region S, any configuration consists only a finite number of 

such ellipses. 
Denote the maximum likelihood estimates (MLE) for A, a and b by A, ä and b respectively. Then 

(3) ä = ann    and   & = &ni- 

The MLE A can be found by solving the equation 

(4) A—ß(A,ann,6„i) -nß(A,ann,öni) = 0, 

using Monte Carlo approximate likelihood [cf. Derr (1998)]. Alternatively, the ratio ^j^y appears 

to be a simple reasonable estimate of A. 

Step 3. To simulate spatial patterns from a target distribution defined on a large configuration space 

Q, the basic idea of MCMC is to construct a Markov process X = {Xt} such that it has the target 
distribution as its (unique) equilibrium distribution. The key is to incorporate the knowledge of the 

target distribution into the transition probability mechanism of X. A special case of MCMC — 

spatial birth-and-death processes (SBDP) — is suitable for simulation of the elliptic processes. A 

sufficient (reversibility) condition to guarantee the convergence to the equilibrium density /, with a 

birth rate b(-) and a death rate D(-), is the following detailed balance equation 

(5) f(xn)b(xn,xn+1)=f(xn+1)D(xn,xn+1)   whenever   f(xn+1) > 0, 

where the notation xn = {x\,... ,£„} indicates the number of objects in x, and the dependence of 

/ on parameters [as shown in (1)] is suppressed. 

Even with the knowledge of a fully specified / in (5), there are still many different choices for b(-) 

and D(-). One is to specify 

(6) D(xn,xn+1) = l/g{xn+1), 
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thus the birth rate accordingly by (5), 

b(xn,xn+1) = D(xn,xn+1) f(x
n+1)/f(xn) 

(j\ ( A,   if xn+i does not overlap X{ Vt = 1,... , n, 

^ 0,   otherwise. 

This can be easily implemented. 

Step 4- Checking whether data fit a proposed model can be done either in the parameter space or in 

the sample space. For the problem considered in this work, the MLEs were derived which enjoy many 

good asymptotic properties; but comparisons in the sample space might be more meaningful since 

one really wants to "see" if the synthetic microstructures resemble the real ones. The sample space 

of microstructural images has high dimensionality. Some average-based norms such as L2-norm, etc. 

often fail to highlight the difference in certain particular features which may be more relevant to 

the underlying materials. Hausdorff metric for shape comparison could be used but instead, some 

simple feature extraction was used in this project. For each of the features (location, orientation, 

aspect ratio and size), two histograms were plotted, one for the original microstructure image, one 

for the synthetic one generated from the fitted model [cf. Derr (1998)]. Some goodness of fit tests 

were conducted to compare the empirical distributions. 

Notice that there are many other mothods in materials science literature to generate synthetic 
microstructures, but they suffer from a common drawback — lack of reconstruction capability, 

because they are not tuned to real microstructures. The approach taken in this project is expected 

to make a notable impact to this area. 

II. Computation of effective conductivity via Markov chain Monte Carlo 

The great variability of local properties in heterogeneous materials makes the computation of 

global properties an important and challenging project. The result obtained in this project concerns 

computation of effective conductivity using MCMC. The approach looks promising and should work 

for computation of effective elastic moduli as well. 

The approach was originally introduced by in Brown (1955) and then extended in a number 
of papers by Torquato et al. This approach demonstrates explicitly the connection between the 

effective conductivity and the statistical distribution of microstructural features, in particular the 

fc-point probability functions (k = 1,2,...), hence it is capable of handling multiple representations 

in different length scales. It becomes quite clear that the promise of this approach relies on some 

ingenious computational techniques. 

For the simple illustration purpose, consider a two-phase composite material represented by the 

2D domain S and follow the notation in Part I. The phase i itself is homogeneous with constant 

electrical conductivity Oi > 0, i = 1,2. Assume the phase 1 region, J?i C S, is precisely covered 

by the configuration x with n nonoverlapping grains (e.g. ellipses), and i?2 = S\R\ is the phase 2 
4 



region. Define the local conductivity 

(8) a(z) = (7iI{zeRi) + ^{zeJM'    z e S- 

Hence a(z), z G S is a random field resulting from the random distribution of x. 

Materials scientists are interested in the effective behavior of heterogeneous media. In this setting, 

if there is a homogeneous medium, the effective medium 5*, whose conductivity a* is close to the 

conductivity of S when measured on a large space scale, then a* is called the effective conductivity. 

There are two issues. The first one is to justify the exitence of a* — the averaging, called 

homogenization, takes place so that the complex small scale random structure is replaced by an 

asymptotically equivalent homogeneous deterministic structure. Papanicolaou (1995) is an excellent 

survey for the related homogenization theory. 
The second issue, computation of a*, is practically more relevant in materials science. Fol- 

lowing the perturbation expansion approach originally developed by Brown (1955), Torquato and 

his collaborators made significant contributions to this problem [cf. Torquato (1985), Sen and 
Torquato (1989), Torquato and Sen (1990), and Torquato (1991)]. The perturbation expansion for 

d-dimensional media (in particular, d = 2 or 3) given in these papers is expressed as 

(11)        (fcftiJV-^urV + fd-lteU]  = 9iÄ;U-£ 4^-.        *¥>], »,.7 = 1,2, 
fc=2 

where the tensor coefficients Ak   are represented as integrals: 

for k = 2, 

(12) ^ = Mh)LT*-^-^d^ 
where the subscript 6 on the integral indicates that it is carried out with the exclusion of an infini- 

tesimal neighborhood of z\ (i.e. a tiny d-dimensional sphere centered at z\); 

and for k > 3, 

(13) Af = (-1)*??-' '-L^]" f...f(ra...n.„.Bti*, dzk 

The notation in (11), (12) and (13): 

• qi is the volume (area) fraction of phase i; 

• Each zm 6 5, as a d-dimensional column vector, has norm \zm\, m = 1,... , k; 

• rm_i,m   =   \zm - 2m_!|-d-2[ d (zm - zm_i)(zm - zm-i)* - \zm ~ zm-i\2 U ] is the dipole- 
dipole interaction tensor, where zl represents the transpose of z (thus a row vector), and U the unit 

dyadic [see Nemat-Nasser and Hori (1993) Section 15 for the basic tensor notation and terms], (the 

integrand T12 • • • Tk-\,k • Dl
k is a function of z\,... , zk); 
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For the determinant 

(14) Dk = 

K* pi 
"2,2 0 0 

Ks pi 
■^3,3 0 

pt,k-i r2,k-l 
pi •      Pt-2 

P\,k P* Pl,k ■   PL 

0 

0 

Pk-2,k-l     Pk-l,k-l 

P* rk-l,k 

its entry i^liTn2 is the probability that all (m2 - mi + 1) points zmi, zmi+i,... , 2m2 are contained 

in the phase i region Ri, where mi, m2 = 1,... , k and mi < m2. 

Numerical computation of A^' is crucial and intensive, especially for large k. Most of the previous 

works were limited to the derivation of lower-order bounds (for k < 5). These bounds provided useful 

approximations of the conductivity for certain special cases of microstructure, but the result in the 

related error estimate was lacking and the gap between the available bounds and the true value of 

conductivity remained large in many situations. Therefore, the need for solving the long-standing 

open problem of deriving higher-order approximations (k > 5) of Aj^' for a variety of microstructures 

became more urgent. In this regard, this work has made good progress in: 

(i) estimating the fe-point probability function Pj fc for a wide range of z\,... ,Zk, based on MCMC 

simulation; 

(ii) developing some recursive formulas to reduce the fc-point probability function to a sequence of 

two-point probability functions, thus the computational speed is significantly improved [cf.   Derr 

(1998)]; 
(iii) calculating the high-dimensional multiple integral involved in A£' by Monte Carlo methods. 

Plasma-sprayed coating 

Plasma-sprayed coating (see Fig. 3a and 3b) is an important application in which the relationship 

between microstructure and properties can be studied. The approach developed in this project 

appears promising for the quatitative study of coating microstructures and computation of thermal 

conductivity. Only partial results are available right now. This is still a part of ongoing research. 

In aircraft engines plasma-sprayed metallic coatings protect turbine blades from highly corrosive 

environments, and plasma-sprayed ceramics insulate other engine parts from high temperatures [cf. 

Herman (1988)]. The powdered coating material, carried in a stream of gas such as argon, is injected 

into the jet of plasma from a plasma gun. The flame accelerates the particles, and they are melted by 

its high temperature. The molten droplets are propelled onto the target surface, where they solidify 

and accumulate to form a thick, tenaciously bonded protective coating. Particles continue to rain 

down at a rate that depends on the area to be covered and how fast the gun moves over the surface. 
6 



Transmission electron microscopy helps examine the internal structure of particles and coatings; 

scanning electron microscopy reveals overall shapes and textures. The internal structure — a mosaic 

of crystalline grains — contains many flaws, suggesting that each particle solidifies extremely quickly, 

in perhaps a millionth of a second. Ceramic coatings in particular reveal a multitude of flaws. They 

are riddled with cracks formed as the ceramic cooled and are honeycombed with voids filled with air 

trapped in the deposit. Such flaws can doom a coating exposed to mechanical stress. If they extend 

all the way through the coating, they also make it useless for protection against corrosion. 

Strangely, it is porosity that suits plasma-sprayed ceramic coatings to one of their most important 

applications: as thermal-barrier coatings, which are insulating coatings for metal parts exposed to 

very high temperatures in gas turbines and other kinds of engines. For one thing, porosity increases a 

ceramic's insulating ability. Moreover, porosity and microcracks could enhance strain tolerance. This 
is because a ceramic is brittle in the first place, pores do not weaken the material but instead toughen 

it by interrupting the propagation of the cracks that inevitably form as the material is strained. By 

retaining lubricants, pores also benefit some plasma-sprayed coatings designed to protect against 

wear. There is trade-off, however, that such voids could be fatal to many wear-resistant metallic 

coatings and coatings meant to prevent their substrate from corroding or oxidizing. Some multi- 

layered coatings are used now in which vacuum plasma spraying yields a dense, void-free metallic 

coating, followed by ceramic thermal-barrier coatings. 
To control the degree of porosity in different coatings when processing the materials, an important 

step is the quantification of porosity. Fig. 3a and 3b show the complex porosity distribution. The 

empirical estimate of porosity was obtained via image processing. Extensive lab experiments were 

conducted at NIST. However, modelling the coating microstructure appears very difficult. A starting 
point is to use a similar models to Fig. 2c to simulate the fibre process in which nearly horizontal 

fibres imitate gaps between coating particles, while nearly vertical fibres may represent microcracks. 

Then the horizontal and vertical components of the effective thermal conductivity tensor can be 

calculated using the method in Part II. The numerical calculation can be compared with the results 

of lab tests in the study of such coatings as a thermal barrier. Similar studies in calculation of 

mechanical properties of coatings will be pursued also. 
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Figure 1: (a) (Processed) SEM image of in-situ toughened S13N4 ceramic crystals 
grown in a sintering process, (b) Mortar (concrete) — sands mixed in a cement 
paste: the large irregular grains are sands; the smaller circular particles are bubbles 
or pores; the laminate is a concrete mixture; and there is a narrow interfacial zone 
between the rocks which keeps two rocks from actually touching, (c) Synthetic 
microstructure simulated from an elliptical process fitted by the SisN4 image data 
(a), (d) Synthetic microstructure simulated from a mordified elliptical process 
fitted by the mortar image data (b). The modification involves coding all ellipses 
into two different types, in which the sands are outlined while the pores are filled 
in black. 
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Figure 2: The fibres (line segments) in (a), (b) and (c) are actually narrow ellipses 
(aspect ratio 0.005) with lengths uniformly distributed in [0.01,0.1]: (a) randomly 
oriented fibres; (b) fibre orientation constrained to be within JT/8 of the vertical; 
(c) fibre orientation constrained within TT/16 of the vertical or horizontal. The 
ellipses in (d), (e) and (f) are samples of SBDP using different forms of g(-) in the 
death rate (6): (d) constant #(■); (e) </(•) inversely proportional to the size of the 
ellipses: (f) g(-) proportional to the size of the ellipses. 
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(a) 
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Figure 3: (a) is taken from Geary (1980) which shows the microstructure of an 
aluminum-oxide coating (the upper thick dark layer) over a nickel-aluminum bond 
coating (the lower thin light layer), (b) is a microstructure (with width 50 /xm) of 
Zirconia ZrO-i coating. 


