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1    Introduction 

Measurement errors are the differences between the actual desired values and the ob- 
served values. In the real world, it is usually very difficult to obtain exactly the "true" 
values. Instead, one may only get the observed values that are related to the true values 
through the measurement errors. Extra care must be taken to deal with the mesure- 
ment errors in the analysis because the data become more noisy and error-prone when 
the measurement errors are taken into consideration. 

Measurement error models are those in which one or more of the explanatory vari- 
ables cannot be observed directly and are measured with error. Fuller (1987) gave 
a comprehensive introduction to measurement error models. Carroll, Ruppert, and 
Stefanski (1995) discussed nonlinear measurement error models and the corresponding 
approaches. 

In this paper, we are concerned with a problem of selecting a treatment that has 
the strongest relationship between an explanatory variable and the response variable in 
a linear measurement error model. For the general approaches to statistical selection 
problems, references can be made to Bechhofer, Santner, and Goldsman (1996) and 
Gupta and Panchapakesan (1996). 

The following is the measurement error model that we are interested in. Suppose 
there are k treatments Hi,i = 1,..., k and n observations from each treatment. For 
each treatment IIj, i = 1,..., k and each observation j — 1,..., n, we have the following 
model: 

Yij = ßoi + ßuXij + eij,     Wij = Xij + Uij. (1) 

For each i = l,...,fc, the intercept ß0i and the slope ßu are both unknown, and 
{(Xij, Uij,€ij), 1 < j < n} are assumed independent with mean (0,0,0) and covariance 
dia,g(axxi,auui,aeei), where di&g(axxi,(Tuui,a€€i) refers to a 3x3 matrix whose diagonal 
elements are axxi, auui, and <reej while the rest of the elements are all 0. We assume that 
for each i, auu{ is known. 

We are interested in the relationship between the explanatory variable X and the 
response variable Y. However, X^ cannot be observed directly, instead we observe W^, 
which is Xij mixed with a linear error term Uij. An interesting question here is: how to 
select the treatment that has the strongest relationship between the explanatory variable 
X and the response variable Yl 

In this selection problem, the slope ßu is important. It is the rate of the change in 
the mean value of Y with respect to X and therefore a measurement of the strength of 
the relationship between X and Y. Gupta and Lin (1997) studied a selection problem 
in which the selection criterion was to select the one that has the largest slope under 
this modeling setting. 



However, sometimes the relationship between X and Y can take opposite directions 
and the k slopes can have different signs. In other words, some slopes may be negative 
while some are positive. If we stick to the criterion of selecting the largest slope in 
this situation, then we are essentially excluding the negative slopes and only considering 
those positive ones. Prom this point of view, it is necessary to broaden the scope of 
our consideration and generalize the selection problem studied in Gupta and Lin (1997). 
In this paper, we studied the problem and derived a selection procedure of which the 
selection criterion is to select the treatment that has the largest absolute value of the 
slope. 

A treatment 11; is said to be the best if the absolute value of the slope \ßu\ is the 
largest, i.e., \ßu\ = maxi<j<fc \ß\j\. Otherwise the treatment is said to be non-best. The 
selection goal is to select the best treatment. 

Let ü = {ßi = (ßn,ßi2,---,ßik)\ßii G Ä,i = l,...,fc} be the parameter space 
and a = (ai,...,ak) be an action, where a; = 0 or 1, i = l,...,fc. When action a 
is taken, a; = 1 means treatment II; is selected as the best and at = 0 means II; is 
excluded as the non-best. For i = 1,..., k, let Wt = {Wiu ..., Win), Y{ = (Yn,..., Yin), 
W = {Wi,...,Wk), and Y = (Yi,..., Ffc). Let x De tne sample space generated by 
(W, Y). Since the true order of |/9n|,..., \ßlk\ is unknown, we denote \ß\[\]\ < \ßi[i}\ < 
... < \ßi[k]\. For simplicity, we assume that \ßi[k}\ - \ßi[k-i]\ = 25 > 0, where 6 is 
unknown. 

A selection rule d(w,y) = (di(w,y),... ,dfc(w,y)) is a mapping defined on x, where 
di(w, y) is the probability that given W = w and Y = y, IL, is selected as the best. Also, 
£iLidi(w,y) = 1, for all (w,y) G x- In other words, only one of the k treatments will 
be selected as the best. 

We consider the following loss function: 

Tia     \ _ / 1>    if the best treatment is not selected, , , 
-1' 10,    if the best treatment is selected. ^ ' 

2    Formulation of the Selection Procedure 

Before we develop a selection procedure for this problem, let us first look at the estima- 
tion of these slopes. Fuller (1987) has shown that the ordinary least square regression 
analysis will not work in this case because the ordinary regression slope estimate is 
always biased toward 0. We will use the moment estimators instead. 

The population moments of (Wij,Y{j) satisfy 

O^i, ßyi) = {EWij, EYij) = (0, ßoi), (3) 



and 

[P'wwii ®wyii &yyi) 

=   (VarW^CoviW^Yi^VarYij) 
=     \Gxxi + &uui-> Pli&xxii Pit Oxxi 4" CedJ- (4) 

The sample means (Wi,Yi) and the sample covariances {Swwi,SWyi,Syyi), where, for 
example, 

Swyi = -^r £(Wy - Wi)Wi - %), (5) 
n      i j=i 

will be the basis of our selection procedure. 

We estimate the parameters by replacing the unknown population moments with 
their sample moments. Note that axxi should be positive. Otherwise Xij can take 
only one value for all j = 1,... , n and there is no point to study the quantitative 
relationship between X^ and Y^. Therefore, estimator a^xi should be positive as well. 
Let axxi = Swwi - auui when Swwi - auui is positive, otherwise let axxi = S^-S^yi. Also 
define 

a        J  x&wwi      Guui)     ^>wyii      "■ >^wwi       Cuui -^ ", ,   . 

\ SwliSyyii otherwise. ^ ' 

We construct selection procedure dn(w,y) = (din(w,y),d2„(w,y),... ,4„(w,y)) as 
follows: 

dB(w,y) = {1'     if lÄiHmaxi^klAjl, (7) 
[0,     otherwise, 

when W = w and Y = y are observed. In other words, the treatment associated with 
the largest estimated absolute value of the slope maxi<j<fc \ßu\ will be selected as the 
best. 

3    Performance of the Selection Procedures 

We now study the performance of the selection procedure developed in (7). A measure 
of the performance of this decision rule is the probability of making a wrong decision 
when using this rule. Since in this case the loss function is the 0-1 loss, the probability 
of making a wrong decision is the expected risk of the proposed procedure. We would 
like the probability of making a wrong decision to be as small as possible. 



Denote Pn to be the probability measure generated by the random observati 
(W,Y), and for each (w,y) G Xi let 

i* = {»| \ßu\ = max |/?y| = |/?1[fc]|, i = 1,..., k}, 

;ions 

(8) 

and 

*n = {*l \ßu\ = n
max \fi\j\, i = l,...,k}. (9) 

Lprocedure is 

(10) 

i<j<fc'   - 

Then, the expected risk of the proposed selection ] 

£(™L(£,dn(w,y)) 

E     E    Pn{»* = «,C=j} 

k k _. _ 

_      / y     / y     •» n\^    — 2, Zn — J, Owwi       CTuui > , Owwj       CUUj >      —    J- 

t=l i=l jVi Z l 

k        k . 

"i   / y     / y     * n\*    — ^> ^n — •?' '-'wwi       °uui S      ^    / 
i=l j=l,j^i 

k k . 

"I / y / y tn\l         2,     Zjj                j,      0WWj OUUJ Si ^ J 

_      / y     / y     -* n\|Pli|        |Pli| ^ "i ^wwi       ^uui -->      ~Z    i &wwj       &uuj ->      ~    j 

fc      fc a   • a 
'   / y     / y     *n\|"lj|        IPljl ^ ") ^wwi       0"uui -^      ^    j &wwj       Outy  ^      ~    J 

k k °xxi 

i=l j=l,JT^i 

k k . 

"T / y     / y     •» n'i.'-'tüiuj       Guuj S:      ~    j 
i=l j=l,jYi 

* fc - ^xxz 
^    £    E    ^n{|/M - |Äi| > 5, Swwi - auui > -y

1} 
i=l j=l,j^i 

k k 

+ E E ^{lÄil-IAilx^.^,-^^^} 
z=i j=i,j^ z 

* crxxi 
-j-ZiK / y -'ni'-'iütui       Guui _; ~^    J 

i=l Z 

k a   ■ 
—     2k 2_^ Pn{|/^li — Ail > <fr) 'S'iotüi — ffum >  —7T~} 

i=l Z 



k Oxxi 

Prom above we observe that it suffices to analyze the performance of the followings 
two sequences: 

Definition 1 A sequence of selection procedures {dn(w, y)}^ is said to be asymp- 

totically optimal of order en if E(-^'L(ß,dn{w,y)) = 0(en), where e„ is a sequence of 
positive numbers such that lim^oo en — 0. 

The large sample performance of the derived selection rule dn(w, y) will be analyzed 
in two situations. 

3.1    When The a-th Moment Exists (a > 2) 

In this subsection, we suppose that the a-th (a > 2) moments of (Xij,Uij,tij) exist, 
that is, 

E\Xij\a < oo,      E\Ui:j\
a < oo,      Eleijl" < oo. (12) 

We will show that the expected risk of the proposed selection procedure converges 
to 0 at the rate of o(n_(a/2_1)). 

We introduce some useful lemmas. The first lemma is well known, a similar result 
can be found in Baum and Katz (1965). 

Lemma 1 Let X\,..., Xn be independent random variables with mean 0. Suppose for 
a fixed number a > 1, JE^lXil" < oo, for i = 1,..., n, then for any e > 0, 

P{lE^/«l>«} = o(n-(a-1)). (13) 

As a consequence of Lemma 1, we have 

Lemma 2 Let Xi,..., Xn be independent random variables with mean EXi = \x and 
variance VarX; = a2, for % - 1,..., n. Let X = \ £ Xt and S2 = ^ £(X* - X)2. 
Suppose for % = 1,..., n and a fixed number a > 2, -EIX^01 < oo, then for any e > 0, 

P{K - a2\ >e} = o(n-W2-V). (14) 

Proof. 

P{\S2
n-a2\>e}   =    P{\-}-±X2--^-X2-o2\>e} (15) 

n     l i=\ n     i 



+P{|_!L_^-^2 + (T21>1} 1!n-l n-1    ' ~ 2J 

= ^E^-O^2))!^^} 
/ i Tu       Zi 

+P{|X2-//2|>^-^2} 

= ^E(*
2
-(M

2
 + *

2
))I>^} 

+P{|X
2
-V|>^} 

for n large enough, that is, when n > max (2, [^-] + 1), we have ^| > | and | — ^a2 > 
|. From Lemma 1, we have 

h = p{\l-Y,W-(iJ + °2))\>\} (16) 
-a/2-li 

and 

o(n 

/2 = P{|X2-^|>|} (17) 

P{|(X + n)(X - fi)\ > -  and (X + p) > (2/x + 1)} 

+P{\(X + fj){X- ß)\ > -  and (X + n)< (2/x + 1)} 

<   P{(X-/x)>l} + P{4(2/x+l)|(X-^)|>e} 

From Lemma 2, we can see that 

=   oCn-^2-1)). 

Moreover, 

Pn{\ßu - ßu\ > S, Swwi - auui > -^p-} (19) 

       p /1 ^wyi /?    I ~> A   C \  &xxi -> 
—      ■'nil Q "l*l —    ' ^wwi ~ Guui ■>  —~    J 



1       jn _ -in 

>«—} 

I/,          I ^{I^E^-^^-^^E^ + ^T^ 

+Pn{|-i-*   E Wg - -^)8U("**« + auirf)| > <^f*} 
n — 1      jrj     J     n — 1 6 

:=   Jt + J2 + J3- 

For any i = 1,..., k, {WijYij,j = 1,..., n} are independent random variables with mean 
E(WijYij) = ßu<7xxi. By Holder's inequality, 

ElWijYij^2 < ^ElWi^ElYijl« < oo, (20) 

therefore, we have 

h = Pn{\- J2(WijYij - ßuaxxi)\ > VLZ18^} (2i) 

(-a/2-1) > 0(n(-a,2-D) 

Since 

WiYi - ßxiWf (22) 

WiiY-ßuWi) 

Wi(ßoi + ei + ßnÜi) 

ßoiWi + tiWi + ßuXiÜi + ßiiOf, 

we observe that 

r2 ^ /i i  ^     ^ — 1 ^ ö"x.xi </2 = Pn{\ßoiWi + exWi + ßuXiUi + ßuÜ* - -ßU(TWi\ > ^-^5^} 
n n        6 

<   Pnilßomy^ö^} (23) 



+Pn{\e-m > ^<^f } 

+Pn{\ßuXiÜi\ > ^^} 

+Pn{\ßuÜf - -ßuauui\ > —6^f} 
n n       24 

<     Pn{|ÄH^|>^^} 

+PBW>^^} + PB{W>^^} 

+Pn{\ßli(0!-^wa)\>^5^}. 

Then by Lemma 1, we have 

=   o(n-(Q-x)), 

v2      1        x. -   n ~ 1 -O"* 

(24) 

Pn{\ei\>J^Ö^} = o(n-^-% (25) 

Pn{|^|>J^^} = o(n-^)), (26) 

pn{i^i > v V5^}=°(n_(Q_i))' (2?) 

Pn{|\/ÄÄ| > V V^} = °^(a_1))' (28) 



<     Pn{\ßnÜf\ > —^ - -ßuC7uui} 
n       24      n 

=    Pn{\JKiÜi\ > t/—*^ - -ßliVuui} v V    n       24      n 
-(«-i)l =   o(n 

Therefore, J2 = o{n-^a-^). Similarly, 

J3   =   Pn{|IAi^^.-/3H(crxxi + a„ui)|>^^^} (30) 
J=i 

=   o(n-(a/2-x)). 

Hence, by combining the above arguments, we have the following theorem. 

Theorem 1  The selection procedure dn(w, y), defined in (7), is asymptotically optimal 
with a convergence rate of order o(n~^2~^) under condition (12). That is, 

EWUPMV,*)) = o(n-W2-V). (31) 

3.2    When The Moment Generating Function Exists 

In this subsection, we suppose the moment generating functions of {X?-,t/'?-,e|7-} exist 
in a neighborhood of the origin, that is, for — T <t<T, 

Eetxl < oo,     Eetu% < oo,     Eeu» < oo. (32) 

where T is a positive constant. 

We first introduce the following lemma, which can be found in Petrov (1995). 

Lemma 3 Let {Xi,..., Xn} be independent random variables with mean EXi = 0, i = 
1,..., n. Suppose there exist positive constants gi,...,gn and T such that 

EetXi < e9it2'2      (t = l,...,n) (33) 

for -T <t<T. Let Gn = £?=i gu then 

The following lemma clarifies the probabilistic meaning of the conditions of Lemma 3. 

Lemma 4 Let X be a random variable with mean EX = 0. The following two assertions 
are equivalent: 

10 



(I) There exist positive constants g and H such that 

Eetx < egtV2 f()r _ H < t < H, (35) 

(II) There exists a positive constant T such that 

Eetx < oo for - T < t < T. (36) 

Proof. It is clear that (I) implies (II). We now prove that (II) also implies (I). If (II) 
holds, then the random variable X has the moments of all orders, and the following 
relation holds: 

log Eetx = ^aH2 + o{t2) (37) 

as t ->■ 0, where a2 = EX2. For any constant g > a2, the inequalities logEetx < gt2/2 
and Eetx < e9*12 hold for all sufficiently small t, that is, (I) is true. This completes the 
proof of Lemma 4. As we can see in the proof, we can always set g — 2a2. 

We further assume that the 4-th moments of {Xij,Uij,€ij} are uniformly bounded, 
that is, there exists a positive constant C such that 

EXfjKC, EU^<C, Ee%<C. (38) 

We can see from (38) that EW±, EY± and £(Wij-Yy)2 are all bounded. 

We analyze Pn{Swwi - auui < ^} first. 

+Pnlw\ > \ - y) 

+P{W\>yfi) 
:=   K, + K2, 

for n large enough, that is, when n > max (2, [^i] + 1), we have — § > § and § - -a2 > 
€ . Since for j = 1,..., n, E{W^ - awwi) = 0 and for -T/2 < t < T/2, 

Eein < Ee^x-+U^ < E(e^xh2^) = E(e^xh)E(e2^j) < oo. (40) 

11 



By Lemma 3 and Lemma 4, we have 

1 A 
Ki = P{\-J2(Wi-CTwwi)\>j} (41) 

re-(nV/32Gn))       if€<2TGn/n, 
- je-(r«/8)«> ife>2TGn/n, 

where Gn is twice the sum of the n variances of (W? — aWWi), j — l,...,n.   Since 
(EWfpj — 1,... ,n) are bounded, Gn — 0{n). Therefore, 

Ki = P{\^t(Wi-^i)\>j} (42) 

re-(nV/32Gn))       ife<2TG„/n, 
- |e-(re/8)n> ife>2TGn/n, 

=   0(e-c^in), 

where c^ is a positive constant. Similarly, for — T <t<T, 

Eetw^ < Ee^ < Ee^w^ < oo. (43) 

K2 = P{\Wi\ > yj\} (44) 

=   0(e_c*2n), 

where c*K2 is also a positive constant. 

Next we consider Pn{\ßu - ßu\ > 5, Swwi - auui > ^f1}. We have 

Pn{\ßu ~ ßu\ > 8, Swwi - auui > -—-} (45) 

^    Pnil^^W^ --^ßli(rxxi\ > 5?f-} 

+Pn{\-JL
1WiYt - -^-rßuWf - -^—ßii(yuui\ > 5a-f-} 

n— 1 n — 1 n — 1 6 

+Pn{\ 7ßli E W$ ~ -^-rßlii^i + °uui)\ > 6^} n — 1     r^    ^     n — 1 6 

:=   Li + L2 + L3. 

For any i = 1,..., k, {WijYij,j = 1,..., n} are independent, by Cauchy-Schwarz's 
inequality, we have, for -T/2 < t < T/2, 

Ee*^y« < Eel^^l < E^P1 < ^Ee^'iEe^ < 00. (46) 

12 



Besides, for each i and j, the variance of WijYij is bounded, therefore, 

In   =   Pnil-itiWtiYtj-ßua^Z—sZf-} (47) 
ix • ^ n        D 

=   0(e-c^n), 

where c*Ll is a positive constant. Next we analyze L2 and L3. Similarly, 

L2   <   P„{|ÄMW-| > ^*^f} (48) 

+Pn{k-i|>J
!L-^^} + Pn{|^|>     M       ^ n       24 J        "u    " - V    n       24 

+Pn{|VS^I > J—S^T-y + PnUyfcm > J—6?* n       24 '       -^-v-"  " - V    n       24 

V2        1 M \  W       1 f ^zxi' +Pn{\ßli{U? ~ -Ouui)\ >  ■J—lö^} 
ft lb Zi^x 

0(e-c'^n), 

and 

is   =   P»{|-Äii;wg-Äi(o-«*i + ^«i)|>!L-i^} (49) 
Tl        j=-[ Tl D 

=   0(e~cUn), 

where c£2 and c£3 are positive constants. Hence, by the above argument, if we set 
c* = rnm{c*Kl,c*K2,c*Ll,c*L2,c*L3), then c* > 0. We have the following theorem. 

Theorem 2 The selection procedure dn(w,y), as defined in (7), is asymptotically 
optimal with convergence rate of order 0(e~c*n) under conditions (32) and (38). That 
is, 

E™L(ß,dn(y,y)) = O^"), (50) 

where c* > 0 is defined as above. We consider two special situations next. 

Two special situations. 

1. {(Xij,Uij,eij),l < j < n} are normally distributed. In this case, {(Xij, Uij, e^)} 
are i.i.d. N3((0,0,0),di&g(axxi,cruui,<7eei)). Since (Xfj/axxi, Uyauuh Cy/o^) follow x2 

distributions, their moment generating functions exist. By Theorem 2, the selection 
procedure dn(w, y) in this case is asymptotically optimal with the rate of convergence of 
order 0(e~c*n). 

2. {(Xij,Uij,Cij),l < j < n} are bounded. Then conditions (32) and (38) always 
hold and therefore, the selection procedure d„(w,y) is asymptotically optimal with the 
convergence rate of order 0(e~c*n). 

13 



4    Simulations 

We carried out a simulation study to investigate the performance of the selection proce- 
dure dn. The expected risk E^ ~ - L(/3, dn(w, y)) is used as a measure of the performance 
of the selection rule. In this study, we considered normal distributions and there are 
i = 3 treatments. The simulation scheme is described as follows: 

1. For each j = 1,..., n and i = 1,2 and 3, we generated independent random observa- 
tions (Xij, Uij, 6ij) from multivariate normal iV3((0,0,0)T, dia,g(axxi, aUUi, aeei)). 

2. Let Wij == X^ + Uij and Yij = ß0i + ßuXij + e^. 

3. Based on (Wij,Yij), we obtained the estimator of ßu, then made the selection using 
dn and computed D(W,Y) which is as follows: 

,        . _ J1,       if we make a wrong selection, ,    . 
^ ~ ' _'     10,       if we make a correct selection. ^    ' 

4. Step 1, 2 and 3 were repeated 10000 times. With each set of observations, Ö(W, Y) 
would be either 0 or 1, as we might make a right or wrong decision. When we take the 
sample (w, y) repeatedly, by the law of large numbers, the average of £>(W, Y) would 

be getting very close to the expected risk E^-'^-'L(ß,dn(w,y)) and can be used as an 
estimator of the expected risk when the number of iterations is large enough. 

We specified the number of iterations to be 10000 to make sure that the deviation 
between the estimated value and the true value is less than 0.01 with 95% confidence. 
The following is a brief introduction to the power calculation in this study. We are 
interested in the unknown probability of making a wrong decision. So we take the 
sample repeatedly and each time the result can be either right or wrong. Therefore, we 
have a binomial setting here: we use the sample proportion (denoted by p) to estimate 
the population proportion (denoted by p). When the number of iterations (denoted by 
N) is large enough, 

p-p 

J p(i-p) 
N 

iV(0,l). 

With 95% confidence, \p - p\ < 2^/2Üz£l. When iV = 10000, since p{\ - p) < 0.25, 

|^p|<2.Mi_lrt< OM       0.01 
iy    ' - V    iv    -     V loooo 

This is the reason why the number of iterations was set to be 10000. The results from 
the simulation study are listed in Table 1 for the case where 

Vxxl = 0"xx2 = <7XX3 = 1, 
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&uul — &uu2 — &uu3 — 1) 

Ott\ = <7«2 = &teZ = 1, 

A)l = A)2 = A>3 = 0, 

/on = 0.4,Ä2 = 0.5,/313 = -0.6. 

and 

n   =   10,20,30,40,50,60,70,80,90,100,200,300,400,500, (52) 

600,700,800,900,1000,1100,1200,1500,2000. 

The curve of the estimated probability of making a wrong decision with respect to 
n is attached in Figure 1 at the end of this paper. It bears out our conclusions that the 
rate of convergence of the probability of making a wrong decision should be 0(e~c*n) in 
this case. 
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Table 1 

n A 
10 0.5443 

20 0.4851 

30 0.4425 

40 0.3926 

50 0.3667 

60 0.3578 

70 0.3334 

80 0.3219 

90 0.2862 

100 0.2743 

200 0.1627 

300 0.1103 

400 0.0684 

500 0.0488 

600 0.0315 

700 0.0271 

800 0.0246 

900 0.0163 

1000 0.0139 

1100 0.0089 

1200 0.0064 

1500 0.0035 

2000 0.0004 
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Figure 1: Figure 1 
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