
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

REQUIREMENTS REUSE IN SUPPORT OF THE
AVIATION MISSION PLANNING SYSTEM MIGRATION

TO THE JOINT MISSION PLANNING SYSTEM

By

Eric J. Stierna

September 2000

Thesis Advisor:
Thesis Co-Advisor:

Man-Tak Shing
Neil Rowe

Approved for public release; distribution is unlimited.

20001130 052

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
September 2000

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE

Requirements reuse in support of the Aviation Mission Planning System
migration to the Joint Mission Planning System
6. AUTHOR(S)
Stierna, Eric J.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/
MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Developing correct, complete, consistent and clearly defined requirements is expensive and time-consuming, but is critical

to the success of software development. Existing written requirements represent a vast source of domain knowledge that a software
analyst can extract for the design of new systems. This thesis describes a modeling process and tool set to identify similar
requirements in two requirement documents. We tested our methods in a comparison of the Aviation Mission Planning System
(AMPS) legacy software and the new Joint Mission Planning System (JMPS). Our analysis process creates domain entities, a
requirements repository, and statistical matching information for a domain analyst to evaluate reuse potential. We automated
several key tools. Our results showed that the proposed process and tools significantly shorten the time needed to reuse software
requirements.
14. SUBJECT TERMS
Requirements Reuse, Keyword Matching, Aviation Mission Planning System, Joint Mission Planning System,
Domain Modeling, Domain Analysis

15. NUMBER OF
PAGES

128

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

19. SECURITY CLASSIFI-CATION
OF ABSTRACT
Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

11

Approved for public release; distribution is unlimited

REQUIREMENTS REUSE IN SUPPORT OF THE AVIATION MISSION PLANNING
SYSTEM MIGRATION TO THE JOINT MISSION PLANNING SYSTEM

Eric J. Stierna
Captain, United States Army

B.A., Brown University, 1989

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2000

Author:

Eric J. Stierna

Approved by:

&
J.

Man-Tak Shing, Thesis Advisor

Neil Rowe, Thesis Co-Advisor

A
Dan Boger, Chairmä

Department of Computer Science

111

IV

TABLE OF CONTENTS

I. INTRODUCTION » 1

A. REQUIREMENTS REUSE PROBLEM 3
B. THESIS OBJECTIVES AND SCOPE 5
C. APPROACH 5
D. STRUCTURE 6

II. BACKGROUND 7

A. DOMAIN ENGINEERING 7
B. REQUIREMENTS ENGINEERING 10
c. REQUIREMENTS REUSE n
D. THE REUSE ENVIRONMENT 12
E. DOMAIN THEORY 13
F. THE REUSE TOOLSET 15

1. Application Generators 15
2. Reuse Libraries 15
3. Domain Modeling Tools 16
4. Software Engineering Environments (SEE) 16
5. Formal Methods and Informal Descriptions 17

G. XML 17
H. SPEC 18

1. Original Requirement 19
2. Parsed Requirement 19
3. Selected Entity 20
4. Definition/Sense Query 20
5. Select Sense/Definition 20
6. Spec Module 20
7. SpecXML Document Format • 27

III. RESEARCH APPROACH 25

A. PROBLEM 25

IV. MANUAL MATCHING METHODOLOGY , 27

A. SELECT THE DOMAIN 28
B. COLLECT THE REQUIREMENTS 29
C. REFINE THE DOMAIN DEFINITION 30
D. IDENTIFY THE MATCHING REQUIREMENTS 30

/. Evaluate Each Requirements Document for Composite Requirements 31
2. Partition the Composite Requirements 31
3. Select Criteria for a Match 32
4. Compare the Requirements Documents 33
5. Identify Matches 33

E. IDENTIFY OVERLAPPING REQUIREMENTS 35
F. IDENTIFY UNMATCHED REQUIREMENTS 35
G. VALIDATE THE REQUIREMENT MATCHES AND OVERLAPS WITH THE STAKEHOLDERS 36
H. INTEGRATION OF REQUIREMENTS MATCHES AND OVERLAPS INTO A DOMAIN MODEL 36

V. EVALUATION OF THE MANUAL MATCHING PROCESS 39

VI. AUTOMATED MATCHING METHODOLOGY 43

A. DEVELOPMENT GOALS 43
B. LANGUAGE ZZZZZZZZZZZZZZZZZZZ.M
C. PARSING PREPARATION 44
D. WORD MATCHING 45

E. REFINEMENTS TO BASIC WORD MATCHING 47
F. MACROREQUIREMENTS ' ZZZZZZZ.4S

VII. EVALUATION OF THE AUTOMATED MATCHING PROCESS 49

A. WORD MATCHING 50
B. COMBINED FILTER MATCHING 51
C. MACROREQUIREMENT BUNDLED MATCHING 52
D. RESULTS 53

VIII. CONCLUSIONS & FUTURE WORK 55

APPENDIX A: MANUAL MATCHING PROTOTYPE 59

APPENDIX B: MANUAL MATCHING RESULTS 63

APPENDIX C: AUTOMATED TOOL SOURCE CODE 65

LIST OF REFERENCES 113

INITIAL DISTRIBUTION LIST 117

VI

I. INTRODUCTION

Whether formally or informally specified, requirements

describe what is to be built in software or hardware.

Correct, complete, consistent and clearly defined

requirements are critical to successful system development.

Requirements exist as a result of system stakeholders

conducting analysis to identify their needs for a system to

perform a given task. Requirements exist in the context of

the problem domain in which they are formulated. This

problem domain contains the external objects with which a

system must interact, concepts and knowledge that apply to

the problem, and the stakeholders that maintain perspectives

on all domain entities [BJOR98].

S -
c -
E -
-> -

Stakeholder
Conceptual Entities (Knowledge/Concepts)
Real World Entities (Physical Matter)
Stakeholder Perspective

FIGURE 1-1. Problem Domain

The scope of a problem domain depends on the domain

complexity, stakeholder understanding, and physical medium.

Building cost-effective systems using software to solve

problems with a large scope involves a multi-faceted array

of management and technical expertise. Solutions to the

problem of consistently providing such systems have been

implemented with varying degrees of success [DAVI94]. A

constant thread in each solution is the importance of

getting the requirements correct.

Domain engineering and requirements engineering address

this issue through a variety of approaches to elicit,

define, and analyze requirements in the context of the

problem domain [KOT098]. These approaches include a variety

of engineering processes that use modeling, structured

analysis, object-oriented analysis, and other methods to

create correct, well-documented models and requirements

specifications. Requirements represent a large source of

domain knowledge that can be exploited for reuse, to improve

the quality of the requirements of future software systems

[BJOR98].

In the face of dramatic improvements in computer

hardware, shortages in developer manpower, and increasing

demand for software, an ever-widening gap between

inexpensive hardware and costly software development has

formed. This gap creates a real need for improved processes

and tools to produce cost-effective software. Adaptable

requirements-reuse processes appear to be an effective

technique to provide software on the scale and at the speed

needed to meet large-scale software demands. Bjorner

[BJOR98] calls for domain models that allow non-proprietary

sharing of information about problem domains in order to lay

a foundation for a long-term solution.

The Department of Defense (DOD) uses and develops

large-scale, complex, software-based systems to accomplish

mission-critical tasks. Various agencies within DOD have

initiated domain-analysis and requirements-analysis efforts

such as STARS [SOLD92] and FODA [COHE92], but smaller

organizations have failed to integrate these experiences

into their software-development efforts.

A. REQUIREMENTS REUSE PROBLEM

Requirements reuse is important to the United States

Army Electronics Command (AEC) as it relates to the mission

to migrate the legacy Aviation Mission Planning System

(AMPS) software to interoperate with the future Joint

Mission Planning System (JMPS). The JMPS system is a

distributed mission-planning application developed using a

product-line approach in accordance with the latest DOD

interoperability requirements. The legacy AMPS software

system has requirements for the same mission-planning domain

as the JMPS system. However, AMPS is a system with a closed

architecture that contains Army-specific and aircraft-

specific requirements not in the set of JMPS requirements.

/

\

A -
J -
I -

^-"" Mission Planning Domain ^~~~^"\

- AMPS Requirements
- JMPS Requirements
- Intersection of AMPS & JMPS Requirements

FIGURE 1-2. Mission Planning Domain

Given the 1998 congressional mandate to combine the 41

different DOD mission-planning systems into the JMPS

architecture [WALE99], AEC must migrate its software to the

new mission-planning architecture. Migration of legacy

mission-planning systems to a new software architecture in a

Joint (Multi-Service) environment introduces a set of risks

to the software-development process that must be evaluated.

Evaluation of migration difficulty involves determining the

similarities and differences between requirements. Current

procedures for matching requirements between two systems are

labor-intensive and rely on extensive domain expertise of

the user and developer. A simpler, repeatable process that

improves an analyst's ability to reuse requirements from

legacy systems is desirable. In addition, the ability to

match requirements to legacy systems reduces the errors in

developing new systems.

B. THESIS OBJECTIVES AND SCOPE

This thesis develops both a manual process and tool to

automate the identification of common requirements in two

requirement documents. The outputs of both are reports that

detail the requirements overlap between the two systems. We

also identified a persistent set of domain entities ready

for integration into a domain model. The goal of this

thesis work is to provide assistance for requirements reuse

in the Joint military mission-planning domain using the best

practices from software engineering.

C. APPROACH

We used a manual matching process based on guidance

received combat developers at AEC [WALE99] to establish

initial pairs of matched requirements. We then used the

insights gained in that process to develop a tool to partly

automate requirements reuse. The Java-based tool extracts

requirements systematically for an analyst with experience

in the domain. The tool matches words between pairs of

requirements and calculates a similarity rating based on

word statistics. The tool provides the option to transform

extracted requirements and domain entities into XML text

files for integration into a reusable domain model.

D. STRUCTURE

The thesis is organized into eight chapters:

Chapter II provides background information about domain

engineering, domain analysis, requirements engineering,

requirements reuse, and XML. This information supports the

problem analysis and research approach.

Chapter III describes the research methodology used in

the thesis.

Chapter IV presents the manual matching process

methodology.

Chapter V discusses the results of the manual matching

process on the two requirements documents.

Chapter VI presents the automated matching tool (AMT)

development methodology.

Chapter VII discusses the results of the automated

matching tool on the two requirements documents.

Chapter VIII presents conclusions and future Work.

Appendix A presents the summary of the manual matching

prototype study. Appendix B presents a spreadsheet summary

of the manual matching study. Appendix C contains the

source code for the automated matching tool.

II. BACKGROUND

This chapter provides overview information on domain

engineering, requirements engineering, requirements reuse,

formal and informal analysis methods, formal specification

languages, modeling languages, and mark-up languages as they

pertain to this thesis.

Incorrect system requirements have plagued the

development of software systems since the 1960s. Failing to

provide desired functionality within budget and on time has

been all too common for most systems developed in the last

40 years [KOT098] . This has played an important role in

advancing the current' practice of domain engineering and

requirements engineering.

A. DOMAIN ENGINEERING

Domain engineering develops a precise description of a

real-world context in which a particular problem must be

solved. The stakeholders and the domain analysts negotiate

on a well-defined set of descriptions that carefully

describe the environment in which the stakeholders'

requirements exist [BORJ98]. These descriptions can be

modeled formally or informally for the analysis phase of a

spiral development process.

Examples of problem domains where domain engineering

has been important in development of software systems are:

- Transportation Systems (rail, air, bus, maritime);

- Manufacturing (marketing, production, storage);

- Financial Services (banking, insurance, securities);

and

- Health Care (medications, procedures, long-term care)

[BJOR98].

Domain engineering looks at problem instances and uses

reasoning skills to create a generic architecture and model

that describes the problem environment (domain) in an

abstract fashion. This includes domain analysis, domain

architectures, and domain abstractions.

The link between a system's requirements and its

domains is important. Many requirements specify system

constraints and operations derived from the domain rather

than system functionality [KOT098]. For example,

requirements for a particular flight simulator specify the

mass of the aircraft, its thrust-to-weight ratio, minimum

runway length, and minimum airspeed needed for takeoff.

Specification of this information is needed for all flight

simulators. This type of domain information can be derived

from a legacy system's requirements in many instances.

"Domain" has many meanings. For domain analysis,

Jackson [JACK95] defines it as "a general class of systems

for an application area such as resource management, or

airline reservations, or banking, or production control."

The application domain contains the entities (objects),

concepts, and constraints that apply to it. Esprit Inc.

[FRAN97] divides domains into three categories: real-world

domains, technology domains, and axiomatic domains. Real-

world domains concern policies, behaviors, and sociological

conventions that people use to interact. Technology domains

concern automation of a real-world manual activity or

natural process. Axiomatic domains focus on the key

patterns of system behavior that are common to a class of

applications. An example of an axiomatic domain is

boundary-condition monitoring; partitioning it from the

technological domain of a particular system with specific

boundary thresholds. This creates a reusable pattern that

can influence a class of systems.

The purpose of modeling a domain is to facilitate

knowledge reuse. Software evolution involves making reliable

changes to legacy software to add new functionality and

quality of service. This change involves risks that include

unexpected or undetected consequences, degradation of design

quality, and increased costs [ARAN93]. The lack of reusable

knowledge is estimated by Arango [ARAN93] to account for 35%

to 80% of evolution costs and for most of the risk. Luqi

[LUQI97] cites 180 billion US dollars spent in 1996 on

software development projects that were curtailed or

terminated due to lack of domain understanding or incorrect

requirements. In fact, the larger the scope of a problem

and the larger the programming team, the greater the need

for domain models to standardize vocabulary, ensure that the

problem is well understood, and ensure that requirements are

well defined in the domains.

B. REQUIREMENTS ENGINEERING

Requirements engineering involves discovering,

documenting, and maintaining a set of requirements for a

computer-based system [KOT098]. Its goal is precise partial

specifications of the domain in the form of a type space and

a set of functions for the functional requirements as well

as non-functional requirements like quality of service,

machines, and domain/machine interfaces [BJOR98].

Requirements engineering can also be defined as the

systematic and repeatable techniques used to discover,

document, resolve ambiguity and inconsistency between

conflicting views, and maintain requirements for a computer-

based system [KOT098]. These techniques may involve formal

requirements engineering that consists of the derivation,

validation, creation, and maintenance of a requirements

document for a given domain or application instance.

Outputs of requirements engineering include process models,

requirements documents, software-specification documents,

requirements-management techniques, and requirements-

modeling techniques [KOT098].

10

C. REQUIREMENTS REUSE

This thesis will examine a sub-problem of requirements

engineering known as requirements reuse. This is the

process of reusing requirements from previous systems or

domains to develop a new system. Sommerville and Sawyer

[SOMM97] distinguish direct and indirect reuse. Direct

reuse is insertion with minimal change into the requirement

set of a new system. This is difficult due to subtle domain

differences that may not manifest themselves immediately.

Proprietary knowledge issues may prevent direct reusability

of a requirement. For example, a proprietary quality-of-

service timing constraint requirement could not be reused in

a non-proprietary requirement document. Indirect reuse is

less difficult and uses an existing requirement to elicit,

analyze, and validate a requirement for a new system. It

involves a dialog with a user or a domain analyst and can

take the form of an automated matching process to identify

common domain terms, a guided discussion with users and

analysts to develop a set of requirements and goals in

Object-Oriented Analysis/Design, or an unstructured

elicitation process with users providing requirements.

Requirements reuse offers the potential to save money

and time by capitalizing on an existing knowledge. Kotonya

and Sommerville [KOT098] claim that 50% of all requirements

may be the same for similar systems in similar domains.

11

Requirements reuse is normally part of the requirements

elicitation phase of the development process. It may be

part of domain analysis, requirements definition, cost

estimation, or feasibility analysis [SOMM97]. It can impact

all phases of the development. Sommerville and Sawyer

[SOMM97] recommend a small team of two or three people to

develop a reuse program within a software development

organization.

D. THE REUSE ENVIRONMENT

Software reuse involves:

Employing existing assets in the software-

product development process, while preserving asset

integrity; and

- Application of existing solutions to problems of

systems development [LIM98].

Commercial practice has addressed the problem with the

product-line approach [BAT098] , and domain-specific

proprietary software environments [BJOR98]. Academic

research addressed the problem with strategies and tools

that are covered in the remainder of this chapter. However,

no single process or approach applies to all reuse

situations.

Software reuse has three parts: acquisition of a

reusable component, representing the component in a given

form, and reuse of the component to solve a particular

12

problem [MAID91b]. Requirements reuse is a subset of

software reuse, but requirements are valuable both for the

information they contain and their linkage to the other

components in the development process. A requirement

document presents a lucrative environment for the extraction

of the domain objects, functions, data, and states [DAVI94].

Textual descriptions of the problem domain are used in the

conceptual modeling process [LARM97]. Direct noun-to-

concept mapping is rarely possible due to natural-language

ambiguity. However, natural-language requirements documents

still can yield valuable information for reuse. Arango, one

of the pioneers in software reuse, proposed that a reuse

infrastructure be available to the developer, obtained

through incremental domain analysis [ARAN89].

E. DOMAIN THEORY

Domain theory defines the semantic context, boundaries,

and granularity of a given software-engineering abstraction

[SUTC98][MAID94a]. It uses models of human reasoning and

memory, a class-hierarchy structure, and the concept of

generic classes to describe the problem environment. Key

concepts of domain theory are knowledge metaschema, domain

abstractions, and matching processes.

A knowledge metaschema is a modeling language that

defines the semantics of generic classes. Examples of its

semantic primitives are key objects, agents, structure

13

objects, state transitions with respect to structure

objects, states, goals, activities, object properties,

events, state conditions (pre/post) and relationships

[SUTC94].

Domain abstractions represent the fundamental behavior,

structure, and functions of a class of domains [MAID94].

Abstractions divide the domain-analysis task into

subsections to simplify the automated analysis of

requirements. Sutcliffe and Maiden divide domain

abstractions into two model types. Object-systems models

represent domain structure and behavior; objects have

properties and states that can be affected by physical,

financial, and conceptual laws [SUTC94b]. Information-

systems models specify processes for report production,

summaries, progress checking, object queries, count, and

list functions [MAID94a].

A software-component matching process is also a key

element in a requirements-reuse effort. The process of

finding the right match can be carried out formally or

informally or with a combination of techniques. The list of

methods found in the literature include navigation

(browsing), keyword search, query, dialog-assisted search,

dialog-specified search, analogical matching, and case-based

reasoning [DAVI94][MAID93a][MAID91a].

14

Requirement matching identifies shared requirements

between two or more systems. These matched requirements

contain entities that define the core domain objects and

concepts. Analysts can use the entities to develop domain

models, identify potential product-line applications, and

determine variation between requirements.

F. THE REUSE TOOLSET

Many tools are available for domain analysis and

requirements engineering.

1. Application Generators

Application generators use design decisions of an

applications engineer for a well-specified domain to

retrieve relevant components in a software repository

[DAVI94] . An example of this is the CAPS prototype which

takes a problem specified in the PSDL language and uses a

repository of Ada modules to create an executable skeleton

for the application [IBRA96] . Application generators

typically affect reuse in the design-reuse phase rather than

the requirements-definition phase.

2. Reuse Libraries

Reuse libraries are collections of software resources

and related documentation designed to aid in software

development, reuse, and maintenance [LIM98]. Some libraries

act as domain database repositories like those used by

Sutcliffe [SUTC94a], Maiden [Maid94a], and Bjorner [BJOR98].

15

3. Domain Modeling Tools

Domain modeling tools help partition the problem

domain. An example is the DARE-COTS (Domain Analysis and

Reuse Environment) CASE tool used in the STARS program

[FRAK97] . It provides mechanisms for extracting and

recording domain knowledge from documents, code, and human

experts. It performs analysis on the acquired knowledge to

generate domain models, and creates repositories of reusable

assets for the given domains [FRAK97]. Related tools are

the Software Engineering Institute's Feature Oriented Domain

Analysis (FODA), Organon Motives' Organization Domain

Modeling (ODM), and the Paramax Systems Corporation's READS

tool [SMIT92].

4. Software Engineering Environments (SEE)

Another approach is a software-engineering environment

(SEE) to support a product-line approach to development

[HAMI93]. Its key elements are:

- Automation and tooling to support process definition

and modeling;

- Automation and tooling to support domain-specific

reuse;

Flexible framework services to support tool

integration and interoperability; and

- Standards for tool interoperability across hardware

platforms.

16

5. Formal Methods and Informal Descriptions

Problem-domain models, goals, requirements, and

functional specifications may contain a wide range of formal

or informal descriptions. Stakeholders use natural-language

descriptions, mathematical equations, and diagrammatic

descriptions for this. These descriptions contain the key

objects, concepts, and relationships that define a problem

[BERZ91] . Well-written formal descriptions provide precise,

unambiguous definitions of the laws, objects and

relationships. This structure gives an analyst the ability

to develop tools to perform automated model checking

[GREE94] and develop requirements based on a well-defined

problem space.

6. XML

Extensible Markup Language (XML) is a subset of

Standard Generalized Mark-up Language (SGML). It can

describe a class of data objects and partially describe the

behavior of applications that use those objects described in

ISO 8879:1986(E) [W3C98]. XML documents contain parsed and

unparsed data. The parsed data can be divided into

character data and markup instructions. XML documents can

be scanned to verify that a document conforms to a given

specification and that the document is well-formed

syntactically [EDDY99]. XML is under development by the XML

17

Working Group, which is a part of the World Wide Web

Consortium (W3C).

o
o
c
3
CD a
3

c
73

a» 3;

•g s

5-1
3 O
W £0

O fc?
■S a

8 *" <
a
o

3
CD
Q.

2
CD
r-»- zr

r-

■CO
<

GO
2
r-

SS 2.1

cy_ o » z aa
e'?

a

CD 3

CD ° M i
<■

o

3"
CO

3J
O

pics P3P
ii— i

L

:RDF

WÜB

FIGURE 2-1. XML Structure From
[http://www.w3.org/XML/Activity.html]

H. SPEC

Spec is a language for formal modeling of domain

objects, functions, types, and machines. The Spec Bachus

Naur Form (BNF) when used in conjunction with an XML parser

and Document Type Declaration (DTD) provides a well-formed

and validated structure that ensures the correct syntax for

domain entities. This facilitates the use of advanced tools

to analyze domain models using theorem proving and model

checking [CLAR96].

18

Transforming a natural language requirement into a

domain entity expressed in XML involves a number of steps:

> - Capturing the original text;

- Parsing it into key elements;

- Selecting an entity;

- Defining the entity;

- Selecting a domain sense;

- Building a Spec module; and

- Converting to an XML document.

Requirements can be captured with a parser designed to

recognize their syntax. The analyst then selects an entity,

defines it manually or with a definition database query,

assigns a sense, and begins construction of the Spec module.

An example from the JMPS SSS document demonstrates the

steps.

1. Original Requirement

"JMPS-018-02000. JMPS shall display the locations of

enemy airfields on any GI&S background or layers using MIL-

STD-2525B symbology."

2. Parsed Requirement

Requirement Number: JMPS-018-02000

Requirement Text: "JMPS shall display the locations of

enemy airfields on any GI&S background or layers using MIL-

STD-2525B symbology."

19

Key Terms: display locate enemy airfield GI&S

background layer MIL-STD-2525B symbology

3. Selected Entity

Domain Entity: airfield

4. Definition/Sense Query

Definition: (Query result from WordNetl.6 Database)

The noun airfield has 1 sense (no senses from tagged

texts)

1. airfield, landing field, flying field, field — (a

place where planes take off and land)

5. Select Sense/Definition

SELECTED SENSE: Sense 1

PART OF SPEECH: Noun

DEFINITION: a place where planes take off and land

SYNONYMS: landing field, flying field, field

DEFINITION/SENSE DATABASE(S): WordNet 1.6

6. Spec Module

DEFINITION airfield

CONCEPT airfield: type

CONCEPT name: type

END

20

7. SpecXML Document Format

<?xml versions"1.0" encodings"UTF-8"?>
<D0CTYPE definition_declaration SYSTEM "SPEC DTD.dtd">

<definition_declaration>

<module_DEFINITION_keyword>
DEFINITION

</module_DEFINITION_keyword>

<interface>
<NAME> airfield </NAME>

</interface>

<module_concept>
<module_CONCEPT_definition_keyword>

CONCEPT
</module_CONCEPT_definition_keyword>
<module_CONCEPT_NAME>

airfield
</module_CONCEPT_NAME>
<assignment_operator> : </assignment_operator>
<type_spec>

<parameterized_name>
<NAME> type </NAME>

</parameterized_name>
</type_spec>

</module_concept>

<module_concept>
<module_concept_definition_keyword>

CONCEPT
</module_concept_definition_keyword>
<module_concept_name> name </module_concept_name>
<assignment_operator> : </assignment_operator>
<type_spec>

<parameterized_name>
<NAME> type </NAME>

</parameterized_name>
</type_spec>

</module_concept>

<END_definition_keyword> END </END_definition_keyword>

</definition_declaration>

FIGURE 2-2. SpecXML Document

21

Spec may be used to describe the definitions and

concepts that make up a domain. A Spec module is derived

from a problem statement. The problem statement can be

broken into a set of goals that are transformed into an

environmental model through the use of DEFINTION and CONCEPT

keywords. Elaboration of the concepts can be contained in

the definition module or external modules. An example of a

problem statement from the C4ISR domain highlights the

method:

Determine the factors impacting software-based aircraft
tracking systems used in the United States military. The
goal is to identify the set of services provided by the
legacy systems in order to develop a new system that can be
configured to support the needs of each service

FIGURE 2-3. C4ISR Problem Statement Extract

An extract of the high-level goals could be expressed

in Spec as:

— Gl The tracking system should detect targets using sensors
DEFINITION goals

INHERIT sensor_concept_environment
INHERIT tds_environment
INHERIT tactical_context_environment

CONCEPT receives_nav_reports: boolean
WHERE receives_nav_reports <=> SOME(ns: navigation_sensor

gives_to(ns, nav_report, tds)),
Subtype(receives_nav_reports, activity),
periodic(receives_nav_reports),
period(receives_nav_reports) <= 5 * second,
goal(receives_nav_reports, tds)

— Gl.1 The tracking system should update its display

CONCEPT display_tds_position: boolean
WHERE display_tds_position <=>
Subtype(display_tds_position, activity),
periodic(display_tds_position),
period(display_tds_position) <= 5 * second,
displayed_to<location(nav_report), user),

22

displayed_to(heading(nav_report), user),
displayed_to(speed(nav_report), user),
goal(display_tds_position, tds)

G1.2 The tracking system should update location

CONCEPT update_vicinity: boolean
WHERE update_vicinity <=> updates(operator, tds,
vicinity), goal(update_vicinity, tds)

FIGURE 2-4. Spec Goals

23

THIS PAGE INTENTIONALLY LEFT BLANK

24

III. RESEARCH APPROACH

We used a spiral development process to answer the

questions posed by this thesis. Our research identified

requirements, developed prototype processes and tools,

tested the prototypes to validate their output, and repeated

the process. The next chapters cover the steps.

A. PROBLEM

This thesis addresses four questions:

- What kind of repeatable process can determine the

matching requirements, the partially overlapping

requirements, and the unmatched requirements that exist

between two requirements documents?

- Can an analyst's tool demonstrate greater than 20%

reduction in time needed to determine matching requirements

over a manual process?

- Can an extendible technique or tool use matching data

to provide useful input to a domain model?

Specifically, how well do the JMPS system

requirements satisfy the AMPS system requirements?

25

THIS PAGE INTENTIONALLY LEFT BLANK

26

IV. MANUAL MATCHING METHODOLOGY

Our approach had five stages: Analyze the problem;

develop a standardized manual-matching process; develop an

automated tool to simplify manual matching; evaluate the

performance improvements; and implement a method to

incorporate results into a domain model.

Initial problem analysis included meetings with

sponsors from PM AEC, conversations with domain experts

within the mission planning field, and development of a

milestone chart with interim objectives. We adapted the

high-level milestones from a collection of sources [ARAN91]

[FRAN95][SOMM97]:

- Select the domain;

- Collect the requirements;

- Refine the domain definition;

- Identify the matching requirements between the two

requirement sets;

- Identify overlapping(partially matching) requirements

between the two requirement sets;

- Identify requirements that are unique to one of the

two systems;

- Validate the requirements matches and overlaps with

the stakeholders; and

- Integrate the requirements matches and overlaps into

a domain model.

27

A. SELECT THE DOMAIN

We studied the domain of military-mission planning and

the sub-domain of automated mission-planning. Specifically,

we considered Army Aviation mission-planning and Joint

mission planning. Each has elements within the real-world,

technological, and axiomatic domains. The domain

boundaries, scope, and level of granularity were selected

based on meetings with the senior project engineer [WALE99].

Analyzing the domains required understanding each

mission-planning environment in sufficient detail to

evaluate the context of requirements. Jackson [JACK95]

describes the first step in this process as structuring and

analyzing the application domain. Our research was

expedited by a large body of knowledge in military doctrinal

publications such as MIL-STD-2525A [MILS96] and key

acquisition documents [JMPS99] [AMPS97] [AORD97].

The Aviation Mission Planning System (AMPS) is a

software-based mission-planning tool that automates aviator

mission-planning tasks. It can improve battlefield

synchronization, intelligence, and command-and-control

through communication with the Aviation Tactical Operations

Center (AVTOC) and the Army Airborne Command and Control

System (A2C2S). At the crew level, AMPS generates mission

information for pilots in hard-copy and electronic formats

for upload to aircraft via a Data Transfer System Cartridge.

28

AMPS has been proven to reduce the error, time and workload

currently associated with pre-mission planning and aircraft

subsystems' initialization tasks [AMPS97].

In contrast, the Joint Mission Planning System (JMPS)

is a more general system that provides scaleable mission-

planning software that can be tailored for specific needs,

supports a range of hardware, provides collaborative inter-

service mission planning, and enables information exchange

for geographically distributed users. The JMPS architectural

framework supports the development and maintenance of

mission-planning components for new, modified, and improved

weapon systems and operational protocols. The JMPS system

is a superset of the Air Force, Navy, and Marine Corps

mission planning systems [JMPS99].

B. COLLECT THE REQUIREMENTS

The requirements for the AMPS system comprise an

Operational Requirements Document (ORD) [AORD97], and a

System Sub-System Specification (SSS) [AMPS97]. The JMPS

requirements comprise an SSS [JMPS99], an external Interface

Requirements Specification (IRS) [JMPS99a], a Concept of

Operations (CONOPS) [JMPS99a], Use Cases [JMPS99a], and

Scenarios [JMPS99a]. All requirements were available in

electronic format. No System Requirements Specification

(SRS) was available for either system at the time of the

study. The primary sources of requirements documents were

29

the AMPS project office [WALE99] and the JMPS program web

site [JMPS99a].

Initial requirement collection was conducted over four

weeks. We met stakeholders from the AMPS, JMPS, and

developer teams to determine their views of the problem

domain, obtain the required domain information, and develop

a collection strategy to ensure that we gathered a

sufficient set of requirements. This phase was important in

identifying the stakeholders responsible for writing the

requirements documents.

C. REFINE THE DOMAIN DEFINITION

Based on the research objective to determine matching

requirements, we decided to restrict the domain to entities

in the requirements documents. This does not support a

matching set of mission-planning requirements across all

systems, but it is a large step toward that goal.

Since the SSS for each system was written at a similar

level of abstraction, we matched at the SSS level.

Selecting comparable requirements was key to meaningful

matching.

D. IDENTIFY THE MATCHING REQUIREMENTS

These steps were used to identify matching

requirements:

30

Search each requirements document for composite

requirements;

- Partition the composite requirements along sub-

domain concepts;

- Select criteria for a match;

- Compare the requirements documents by selecting a

base document and a match document, and then iterating

through each requirement in the base document, evaluating

its degree of similarity to each requirement in the match

document; and

- Record matches with a high degree of similarity.

1. Evaluate Each Requirements Document for Composite
Requirements

The AMPS SSS document (44 pages/577 requirements)

contained fewer requirements than the JMPS SSS document (303

pages/3538 requirements) , but more of the AMPS requirements

were composites.

2. Partition the Composite Requirements

We evaluated the document in the context of the real-

world, technological, and axiomatic domains, reviewed the

partitioning of the document, and identified the methods

used to organize the requirements. This involved reading

similar requirements to gain a sense of the high-level

concepts and highlighting key words unique to particular

domains. We divided requirements along technological and

axiomatic differences, as shown in Figure 4-1.

31

Original Requirement
3.1.2.3.1 Protocols. To support Standardization,
Interoperability and Commonality, AMPS must be capable of
sharing data with other users, platforms and military
services. Therefore, the AMPS shall provide the capability
to format, read, interpret and display data/files via the
requisite formats of the following protocols:

* Ethernet, IEEE 802.3
* MIL-STD-1553
* ATHS/IDM/TACFIRE
* MIL-STD-188-220 {Variable Message Format (VMF)}
* MTS
* File Transfer Protocol (FTP)
* Remote Copy (RCP)
* Distributed Computing Environment

Decomposed Requirements

3.1.2.3.1 "Protocols. To support Standardization,
Interoperability and Commonality, AMPS must be capable of
sharing data with other users, platforms and military
services. Therefore, the AMPS shall provide the capability
to format, read, interpret and display data/files via the
requisite formats of the following protocols:"

3.1.2.3.1.1 Ethernet, IEEE 802.3
3.1.2.3.1.2 MIL-STD-1553
3.1.2.3.1.3 ATHS
3.1.2.3.1.4 IDM
3.1.2.3.1.5 TACFIRE
3.1.2.3.1.6 MIL-STD-188-220 {Variable Message Format

(VMF)}
3.1.2.3.1.7 MTS
3.1.2.3.1.8 File Transfer Protocol (FTP)
3.1.2.3.1.9 Remote Copy (RCP)
3.1.2.3.1.10 Distributed Computing Environment

FIGURE 4-1. Composite Requirement Decomposition

3. Select Criteria for a Match

Identifying a match pair involves determining if there

is sufficient semantic similarity to ensure that one

32

requirement's meaning is fully captured in the other

requirement. The determination involves:

reading each requirement in the context of a

document's problem domain;

- evaluating the document's structure and format;

- partitioning the document into logical sub-domains;

- evaluating the content of requirements that precede

and follow an evaluated requirement; and

- interpreting the evaluated requirement's actual

content.

Three to five keywords from each requirement were

chosen to represent the key domain concepts or entities.

These domain keywords were used to help find other related

requirements.

4. Compare the Requirements Documents

To avoid the 577 * 3538 comparisons of every

requirement from one document against every requirement from

the other, we developed a technique based on a prototype

study explained in Appendix A. The technique involves

string searching to locate other requirements with identical

keywords, supported by a table-of-contents comparison.

5. Identify Matches

Once a potential match was detected, we evaluated the

meaning of the keywords within each requirement. We

inferred meanings from their locations in each requirements

33

document, the meaning of neighboring requirements, and the

subset-superset relationships of the two requirements.

Fully matching requirements had sufficient semantic

similarity to convince the analyst that each meaning of a

keyword of one requirement is contained fully in the

explicit or inferred meanings of the matching requirement.

Our uni-directional matching process did not guarantee a

one-to-one match between the two requirements, but did

identify all AMPS requirements fully contained in both

documents. FIGURE 4-2 contains examples of completely

matched requirements.

AMPS 3.1.01 AMPS must integrate the applicable DII modules and/or

standards into its own structure.

JMPS-090-03100 JMPS shall provide initial Defense Information

Infrastructure Common Operating Environment (DII COE) compliance for

Windows NT of at least Level-6 and a goal of evolution to compliance at

Level-7.

AMPS 3.1.2.1.5 FLOPPY DISK DRIVE. The AMPS shall contain the

necessary hardware and S/W drivers required to be able to read and write

files to high density 3.5" FDs via a standard FDD.

JMPS-081-00050 JMPS shall provide the capability to support the

physical interfaces that are supported by the Windows NT 4.0 operating

system.

FIGURE 4-2. Fully Matching Requirement Examples

34

To identify all JMPS requirements fully contained in

both documents, we would repeat the process in the reverse

direction.

E. IDENTIFY OVERLAPPING REQUIREMENTS

Any matches that do not satisfy the requirements for a

complete match are tagged as partial matches. Partial

overlapping matches are requirements that do not have the

same scope as the base requirement, as shown in Figure 4-3.

AMPS 3.1.3.2.2 NEW CODE. For compatibility and supportability,

all new production code developed as AMPS S/W shall be written in the

ANSI Standard C or C++ programming language.

JMPS-016-01030 JMPS shall provide API descriptions for GI&S tools

using a language based on open standards, including Object Management

Group (OMG) Interface Definition Language (IDL).

FIGURE 4-3. Overlapping Requirement Example

F. IDENTIFY UNMATCHED REQUIREMENTS

Unmatched requirements represent functionality found

only in one system. For the AMPS and JMPS documents,

umatched requirements often indicate external interfaces to

other unique Army systems, transactions, data

representations, and devices. As shown in Figure 4-4.

35

AMPS 3.1.2.1.10.1.1 Radio Communication Networks. In order to

support transmission of information via the TCIM to IDM or ATHS equipped

aircraft or other AMPS, AMPS must provide the means to set, modify, and

delete the following Radio Network Parameters: Net Definition.

FIGURE 4-4. Unmatched Requirement Example

G. VALIDATE THE REQUIREMENT MATCHES AND OVERLAPS WITH THE
STAKEHOLDERS

The manual matching output was validated by two domain

analysts not associated with the matching project.

Corrections were made based on their input[MATH00]. About

25% of the AMPS requirements were modified by the domain

analysts. The primary reasons for modification were in the

decomposition of requirements and in the inclusion of

additional partial matching JMPS requirements.

H. INTEGRATION OF REQUIREMENTS MATCHES AND OVERLAPS INTO A
DOMAIN MODEL

The manual matching process used a relational database

(Microsoft Access) to store requirements and maintain all

matching information. FIGURE 4-5 shows a screen capture of

the forms used to display the matching data.

36

Ll!IIJUJ.IIJJ.ffWl
Jgte fefc.yjew!:fegert]farroat:;S!»ccr<felpob glixfew1 jjelp

;■ H«^w?| A fop.** ^l^yj». iii%16<vy *!»»»;|ffi a-J^l
H AMPS/JMPS Requirement liace

NEW CODE. For compatibiSty and supportabrSty. aß new
production cede developed as AMPS S/W shall be written in the
ANSI Standard C Of C++ programming language.

RequirementsNo« 13.1.3.22

Requirement Specification

l;iJMPSRe<iSp<M:«J:i|JMPS -016-01030 T]

Requirements Specification | Time I Provide!

JMPS shall provide API descriptions for GIS.S tools using a language
based on open standards, including Object Management Group (OMG)
Interface Definition Language (IDL).A

;vi GTRI
jdergj

Record: Jljjjl 1 > 1 >l l>-»| of 1

JMPS Req Spec82 j j£]ii-

„HI:

CorelCVAictaBfAVUnitlllJ
NA^^nkf»wri(7)]■
Requrement ■'.,:;

VerarM Cwr«t{r^iiue(FV
wmmriamrffl
Recrafenrent^j^r;:::i

HotoV.are(HVSoftwarelS) f
i^|«ersorir^PHogttti«*;j*
ocuroerttabc^3>ttnkn«m(?) : ;
SecuntylZ] :: •■■;

;F~U ■-.,:■ ;::-;j
:' 'iEvaluatiwSäus;" S :Sft ;=

EvaruatedWAJi*riowntrV -1

Requirements Specification Time Provider-

Recorj -«TUB äulllll® df:S77
;i*T^

Record- l<l ■ IT

JMPS Req Spec 83

1 VTnl>4or' t
2] JMPSReqSpecM 31
 *m.

Form View

rjastatttl 3jExpiorrig -AMPS ReqWoik||^Micfo«olt Access , i-fyMicto^tWad^AMPSAri. | !^^S3S-?.««f*r

FIGURE 4-5. Manual Matching Database Display

37

THIS PAGE INTENTIONALLY LEFT BLANK

38

V. EVALUATION OF THE MANUAL MATCHING PROCESS

The manual matching process identified the AMPS SSS

requirements satisfied by JMPS SSS requirements. This was

the central question for the AMPS to JMPS migration. The

manual-matching process selected the five best requirement

matches from the JMPS document for each AMPS requirement.

We used this to prototype an automated matching process,

develop matches for comparison with our automated matching

tool, and gain familiarity with the domain.

The manual matching process first identified 3538 JMPS

requirements, 397 composite AMPS requirements, 577 AMPS

requirements after partitioning, 1547 domain keywords, and

883 matching requirements. Of the 883 matches, 148 were

one-to-one and 735 were many-to-one. We had reduced the 577

AMPS requirements to 467 after a second pass to remove

requirements without domain-relevant content. Figure 5-1

shows an example.

3.1.1.1.2 Reserved.

3.1.1.2.1 Commercial Power Mode. The AMPS shall be capable of
continuous operation using power from domestic or foreign
commercial utility sources of 110-220 volts alternating
 current (AC).

FIGURE 5-1. Removed AMPS Requirement Examples

The average time to manually evaluate a requirement

varied from five to thirty minutes. Matches between

requirements in similar sections of each document were

easier to evaluate due to many domain terms nearby; these

39

helped in identifying matches with larger syntactic and

conceptual differences.

The evaluation time decreased as we gained experience

with the requirements and the document partitioning. The

total time required to match all 467 AMPS requirements to

the 3538 requirements in the JMPS document was 110.5 hours

(642 0 minutes) . The average time to match a requirement to

all requirements in the other document was fourteen minutes.

This time included the search time required to find the five

best matching requirements. We selected domain-relevant

keywords during the knowledge-acquisition process over a

two-month period but estimate that it takes about five

minutes per requirement with moderate domain expertise.

A major limitation of this manual matching process was

the lack of time available to find and evaluate all matching

pairs. Due to our self-imposed limitation of 3-5 keywords

per requirement, we primarily evaluated matching

requirements within the domains captured by the keywords.

We estimate that a manual matching process that considered

all keywords in a requirement would take three to four times

longer than the process used in our study.

In addition, we limited the time spent in the manual

matching process by selecting only the five best matching

JMPS requirements for each AMPS requirement. Our definition

of a complete match allowed for combination of up to five

40

JMPS requirements to fully satisfy an AMPS requirement.

When insufficient JMPS requirements existed to satisfy an

AMPS requirement, we classified them as partially matching

requirements. When no matching JMPS requirements were

found, we classified the AMPS requirement as unmatched.

Appendix B contains a spreadsheet breakdown of the

results of the manual matching process.

41

THIS PAGE INTENTIONALLY LEFT BLANK

42

VI. AUTOMATED MATCHING METHODOLOGY

The purpose of the automated tool is to reduce the time

an analyst spends in searching for complete and partially-

matching requirements from two requirements documents. The

tool does not make match decisions.

A. DEVELOPMENT GOALS

Based on our manual matching experience, we developed

an automated matching tool (AMT) using keyword matching.

Since searching for matches consumed most of the time in the

manual study, our goals for the tool were to:

- reduce the number of evaluated requirements;

- reduce irrelevant words from consideration in each

requirement;

- ignore as much as possible, the differences due to

grammar, tense, punctuation, and capitalization;

- provide a similarity value for rank ordering of

requirements;

- group requirements by locality for matching;

reduce bookkeeping tasks but make no matching

decisions;

- provide a solution that is platform-independent; and

minimize the customization needed for a given

requirements document.

43

We assume that the analyst is familiar with the concept

of matching requirements using unique requirements numbers.

The user will provide a key to uniquely identify each

requirement. We assume the user can perform basic tasks

with text files (i.e. open, close, save to a directory). We

assume that the user can access a Java-capable computer with

the ability to read, write, and save text files.

B. LANGUAGE

The AMT is written in Java and uses the Java Virtual

Machine (JVM) and Java Developers Kit 1.3 libraries for its

run-time execution. We selected Java as our development

language to support platform independence, be consistent

with the increasing use of Java in software development, and

permit future web-based enhancements. Java also supports

object-oriented design that enforces information hiding, a

desirable feature for large software engineering tasks.

C. PARSING PREPARATION

Converting the requirements documents into a format for

parsing was straightforward. We saved each requirements

document as a text file, removed all non-requirements text

within each document (i.e. table of contents, introduction,

glossaries, and appendices), and analyzed each document to

identify the coding for requirements numbers. The AMPS

system used numbers separated by a period like 3.2.4.1.2

44

that began with "3."; the JMPS system used alphanumeric

strings like JMPS-001-00000 that began with "JMPS-O". The

String Tokenizer method from Java was used to divide each

document up into individual word tokens. Requirement

numbers were markers for beginnings of the requirements.

D. WORD MATCHING

Determining a match between two requirements involved

word comparisons using Java. Java compares strings

lexicographically [SUN99] with the compareTo() method.

We compared strings as part of a rough measure of the

similarity between two requirements. We can use this to

rank order matched pairs. The similarity is computed in

these steps, an improvement on the classic inner-product

formula [SALT88].

- determine the number of occurrences(N) of a word(i)

within a given requirement(j) in document(a)

K)
- divide that value by the total number of occurrences

of the word within the requirements document

/(Nat)

- multiply this result by the same result computed for

a requirement in a second document(b)

45

/(to,) /(MO

- Sum the set of results for all words (Z) in the

initial requirement

1=1

(Nay)/ 1 [(Nby)/
/(Nat) * /(M>)

This total should be normalized by the relative

frequency of words in each document. Requirements matching

on infrequently occurring words should have a higher

similarity value. In addition, requirements with more words

should not have higher totals than shorter requirements with

fewer words and the same degree of correlation. The

normalization factor is:

i=i '{N%f i-i

Kl/ *
/(A*,)

So the similarity between requirement ja and jb is

SÜa>Jb) = -
ilK)/(^)]*[K)/iv&J
i=l

lp(NaM"aM*m((Nh)/(Nl>,)}

46

We calculated similarity values for every pair of

requirements with at least one common word. We stored these

results in a hashtable for recall and comparison with the

manual matching results.

E. REFINEMENTS TO BASIC WORD MATCHING

The Stop Word Filter removes unhelpful words (e.g.

"rather", "really", "require", "requirement") from the word

list within each requirement. This reduces the number of

word comparisons that the tool must make and reduces the

false matches. It removes 613 words and phrases that occur

commonly in the English language [ROWE99] . Most of the

words came from MARIE-2 [ROWE99] but we added certain

domain-irrelevant words that occur with a high frequency

(i.e. "JMPS", "AMPS", single characters, single digit

numbers, "requirement").

The Upper-Case Elimination Filter decreases the number

of lexicographically different words with identical spelling

but different capitalization. We used the toLowerCase()

method from Java. But we excluded acronyms from this

process, defining them as words in all capitals.

The Destemming Filter written by Rowe truncates the

suffixes of words to derive their root forms using an

algorithm adapted from Porter [PORT80]. Destemming also

reduces the number of different words in the documents.

47

We determined that most effective way to filter was to

apply in order the Stop Word Filter, The Upper-Case

Elimination Filter, and the Destemming Filter. Removing

stop words first allows proper nouns to be removed prior to

conversion to lower case; destemming is the slowest

filtering and so benefits from being last.

F. MACROREQUIREMENTS

Macrorequirements are groups of adjacent related

requirements, a concept important in the manual matching

study. Our study showed that similar sections contained

semantic matches with varying degrees of lexicographical

similarity. So we explored automatic aggregation of

requirements into Macrorequirements.■ We used a word-count

threshold to group requirements. The algorithm coalesced

requirements until the threshold was crossed. We used the

defined hierarchy of the requirements document to group

requirements and the requirement numbers to identify leaf

nodes. We grouped leaves with their parents until the

threshold was exceeded. We then computed similarity values

on Macrorequirements instead of individual requirements.

48

VII. EVALUATION OF THE AUTOMATED MATCHING PROCESS

We tested the different filters to determine their

performance improvements against manual matching. Every

pair found by automated matching that occurred in the 883

manual matches and exceeded the similarity threshold was

considered a success. The output was plotted as a recall

vs. precision curve. Recall measures the completeness of a

search [INF098]. We computed recall as the number of

successful matches divided by the number of complete or

partial matches identified in manual matching(883).

Precision measures the signal-to-noise ratio [INF098]. We

computed as the total number of successful matches divided

by the total number of matches that the tool rated with

similarity exceeding the threshold. We tabulated the number

of matched pairs with similarity values in given ranges.

The ranges were bounded by values of 0.9, 0.5, 0.1, 0.05,

0.01, 0.005, 0.001, 0.0005, and 0.0001.

49

A. WORD MATCHING

Word Parsing Totals
Similarity Precision Recall Intersection Tool
Value Count Matches
>0.9 0 0 0 10
>0.5 0.0854 0.0113 10 117
>0.1 0.0205 0.0804 71 3461
>0.05 0.0131 0.1223 108 8201
>0.01 0.0065 0.2582 228 34834
> 0.005 0.0051 0.3193 282 55097
> 0.001 0.0026 0.4088 361 138406
> 0.0005 0.0019 0.4462 394 197243
> 0.0001 0.0011 0.556 491 436478
> 0.00005 0.0008 0.5968 527 588241
>0.0 0.0005 0.7938 701 1223769

0.09 -r

0.08 ■

Word Parsing

0.06 -

c 0.05 ■
o
M
u
2
Q- 0.04 -

0.03-

\

.

|—♦— Word Parsing |

0.02 ■

0.01 -

•—t.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 9

Recall

FIGURE 7-1. Recall/Precision Curve of Word Matching

50

B. COMBINED FILTER MATCHING

Combination
Similarity
Value
>0.9
>0.5
>0.1
>0.05
>0.01
> 0.005
> 0.001
> 0.0005
> 0.0001
> 0.00005
>0.0

Filter Totals
Precision

0.0714
0.0477
0.0186
0.0128
0.0067
0.0055
0.0036
0.0030
0.0019
0.0016
0.0011

0.09

0.08

0.07

0.06

c 0.05
o

o. 0.04

0.03

0.02

0.01

Recall

0.0011
0.0170
0.0997
0.1427
0.2752
0.3477
0.5096
0.5504
0.6433
0.6670
0.7508

Intersection
Count

1
15
88
126
243
307
450
486
568
589
663

Combination Filter

Tool
Matches

14
314
4731
9816
36535
56174
124125
164144
293771
364310
629622

■

'I^S^^^^^KI^fflffl^B
I I
\\

\

\ v^
I S ■'-■ ' :--"-^--^-= ^^■■^|:-^.P:.T^-- v^: J-'rl^E^^i^^^fcSggSSfe^ —±±-*;J

-^:m:l::t:::h:-

-Combination Filter
-Word Parsing

0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000

Recall

FIGURE 7-2. Recall/Precision Curve of Combined Filter
Matching(Stop Word/Upper-Case Elimination/Destemmer)

51

C. MACROREQUIREMENT BÜNDLED MATCHING

MacroRequirement - 100 word
bundles
Similarity Precision Recall Intersection Tool Manual
Value Count Matches Matches
>0.9 0.0000 0.0000 0 0 401
>0.5 0.0000 0.0000 0 0 401
>0.1 0.0952 0.0200 8 84 401
>0.05 0.1006 0.0823 33 328 401
>0.01 0.0553 0.3641 146 2640 401
> 0.005 0.0434 0.5362 215 4956 401
> 0.001 0.0245 0.8354 335 13649 401
> 0.0005 0.0205 0.9077 364 17766 401
> 0.0001 0.0163 0.9850 395 24281 401
> 0.00005 0.0154 0.9875 396 25761 401
>0.0 0.0142 1.0000 401 28149 401

0.1200 -r

MacroRequirements

0.0800 ■

c
o

■5 0.0600 •

0.

0.0400-

■'

I-«- -MacroRequirement Filter 100 Words |

>^

0.0000 <

o.oc)00 D.2000 0.4000 0.60 00 0.8000 1.0000 1.2 DO0

Recall

FIGURE 7-3 Recall/Precision Curve of Macrorequirement
Bundled Matching

52

D. RESULTS

The total time needed to match AMPS with JMPS

requirements with the automated tool is approximately one

hour. Using the Combined Filter, the recall is 74% when

considering all matches with at least one nontrivial word in

common, with a precision of 0.0001. Even considering the

low precision, in this case the tool has reduced the

analyzable matches from 2,041,426 to 62 0,132 for a 70%

reduction.

When using the Combined Filter, the tool rated 49

correct matches with the highest similarity value for any of

the matches involving either of their requirements. This

means that the best manual match choice was rated highest by

the automated system for 8.5% of the requirements. Assuming

that evaluation of manual matches will occur at 18474 per

hour (2,041,426 matches / 110.5 hrs), the remaining manual

matching will only take 33.6 hours. This yields a 69%

improvement in the time required to analyze two documents

for matching requirements.

The tool output is a list of matched pairs in order

from highest to lowest similarity value. Each matched pair

displays the original text from the associated requirements.

The analyst inspects each match to determine if a complete

or partial match exists and progresses through the list

until a complete match is found, all partial matches are

53

identified or the list is exhausted. Figure 7-8 illustrates

a potential matched pair.

AMPS-3-1-2-1-9-1

Requirement Text: MODEMS. The AMPS shall contain the

necessary hardware and S/W drivers required to exchange

files via a standard (i.e. Hayes compatible) modem.

JMPS-006-03220

Requirement Text: JMPS Data Communications shall

support exchanges via modem on external telecommunications

circuits including worldwide commercial communications

lines, Defense Messaging System (DMS) circuits, and tactical

communications circuits.

Similarity Value = 0.3037

FIGURE 7-8. Tool Matching Output

The analyst reads the two requirements and decides that

it is a tentative partial match. They refer to the source

documents, review the context of the two requirements, and

make a final determination that it is a partial match

because of the specificity of the hardware in the AMPS

requirements.

Figure 7-3 shows an example of bundled matching with

MacroRequirements.

54

VI11.CONCLUSIONS & FUTURE WORK

The manual matching study concluded that over 7 6% of

the AMPS requirements were completely matched by the JMPS

requirements. However, the manual matching process was

restricted to consider only the best five requirements

matched on the domain keywords, which may limit

identification of partial matches for other requirements

documents. Proximity of similar requirements when

determining a match was a key factor in finding matches but

was sometimes misleading.

Our experiences showed that care should be taken if the

requirements documents contain many composite requirements.

Domain analysts must develop skills or find domain experts

who can assist in dividing the requirements into sub-domains

for analysis. This cost may offset the benefit of the reuse

effort.

Based on these results, we concluded that an automated

tool using proximity factors, but not exclusively, could

reduce the search time for potential matching requirements.

Our experiences with an automated matching tool indicated

that much time can be saved over current practices of manual

matching for requirements reuse. Through an automated

keyword-matching process that incorporates information-

retrieval techniques such as destemming, stop-word lists,

55

and case-sensitivity adjustment, the analysis time can be

reduced by 70%.

We also concluded that domain entities could be easily

identified and converted to an XML text file ready for

elaboration in the Spec formal language. We created

supporting XML documents that contained the information

needed to understand the context of the domain entity.

We provided an XML Document Type Definition(DTD) formal

model that ensures each entity in the domain model conforms

to the Spec BNF[BERZ89] and the language definitions in

[BERZ91] . We selected Spec syntax for the XML DTD because

of:

Support for inheritance: This simplified the

descriptions of each element, supports standardization, and

improves view integration on large domains.

Support for temporal logic (states): This permits

checking the model to verify conformance to a specification.

Support for mathematical theorem-proving: This allows

the domain description to be checked against axioms or

inference rules.

User familiarity: This reduces the problems associated

with the steep user learning curve as documented in

[NEIL98].

The process of analyzing a requirements document using

information-retrieval ideas in an automated process opens up

56

the possibility to capitalize on the wealth of domain

knowledge in legacy systems considered for migration to

next-generation systems. Converting these legacy-system

requirements into axiomatic domain models can reduce cost

and risk while improving time-to-market.

57

THIS PAGE INTENTIONALLY LEFT BLANK

58

APPENDIX A: MANUAL MATCHING PROTOTYPE

During the manual-matching research, a semi-formal

study was conducted to select a strategy to match

requirements. The following options were considered as

variations when selecting a match for a given requirement:

1. Conduct a manual inspection of the matching document

text using a provided index and the analyst's recall of the

matching requirement's document organization and content.

2. Use the search feature of a word-processing package

to find matches of keywords.

3. Combine the two techniques: Do an exhaustive search

for keywords followed by a manual inspection of the relevant

sections.

A semi-formal test was conducted with five requirements

on each technique for speed. The results were the same for

both techniques. The pure manual matching was conducted

first followed by a partially-automated string search. The

following set of requirements were extracted at random from

the AMPS document:

"3.1.1.5.3 Corrective Actions. The system shall

prompt the user on corrective actions required to either

resolve the detected faults or to abort the actions."

"3.1.2.1.14 LARGE SCREEN DISPLAY. The AMPS shall

contain the necessary hardware and S/W drivers required to

be able to output its display screens to an external large

59

screen display of a size and resolution suitable for

presentation to groups no smaller than 12 persons while

simultaneously displaying on the built in screen for the

operator."

"3.1.2.4.6 GLOBAL POSITIONING SYSTEM. The AMPS

shall provide the capability to convert GPS Almanac data and

waypoint data from mission route function format into the

database formats required to load GPS systems identified in

section 3.10.1."

"3.1.3.2.2 NEW CODE. For compatibility and

supportability, all new production code developed as AMPS

S/W shall be written in the ANSI Standard C or C++

programming language."

"3.2.2.5 ELECTRONIC FILE TRANSFER. The AMPS user

shall be able to transfer data to any of the media supported

by the interfaces specified in section 3.1.2.1 (e.g. DTC,

HDD, FDD, MODD, etc.) and from-to any combination of these

supported media which are appropriate to the data being

transferred."

60

Totals

AMPS Requirement Number 3.1.1.5.3 3.1.2.1.14 3.1.2.4.6 3.1.3.2.2 3.2.2.5 (min)

Base Document
Document Partitioning 1 1 1 1 1 5

Section Review 3 7 3 2 5 20

Requirement Review 1 3 5 2 3 14

Match Document
Document Partitioning 1 2 1 1 1 6

Section Review 15 7 10 10 8 50

Requirement Review 3 10 6 5 9 33

Number of Matching Requirement Numbers NONE 1 2 1 1 5

Total Time / Requirement (Minutes) 24 30 26 21 27 128

FIGURE A-l. Manu tal Search Ted mique Result s

Totals

AMPS Requirement Number 3.1.1.5.3 3.1.2.1.14 3.1.2.4.6 3.1.3.2.2 3.2.2.5 (min)

Base Document
Document Partitioning 1 1 1 1 1 5

Section Review 3 7 3 2 5 20

Requirement Review 1 3 5 2 3 14

Match Document
Document Partitioning 1 2 1 1 1 6

Section Review 0 0 0 0 0 0

Requirement Review 3 5 5 3 4 20

Number of Matching Requirement Numbers NONE 0 1 0 2 3

Total Time / Requirement (Minutes) 9 18 15 9 14 65
FIGURE A-2. String Search Matching Results

It appears the semi-automated keyword search reduced

the time to identify potential requirement matches.

However, its accuracy was definitely inferior to the manual

inspection as it had a 40% less precise result. Based on

this, the combination approach was adopted.

61

THIS PAGE INTENTIONALLY LEFT BLANK

62

APPENDIX B: MANUAL MATCHING RESULTS

AMPS/JMPS No# JMPS JMPS V1 Matches JMPS Future JMPS Mixed VVFuture JMPS Patial Match

Requirements Matchinq Results No# AMPS Req Matches Only Req Req

Current AMPS Requirements
- Non-aircraft Specific 35 27 15 12 0 1

- Aircraft Specific 70 31 10 9 12 10

• Mixed Acft/Common 10 10 8 2 0 0

- Common 281 266 184 35 47 9

SubTotal 396 334 217 58 59 20

Future AMPS Requirements
- Non-aircraft Specific 26 5 5 0 0 13

- Aircraft Specific 13 3 2 1 0 0

- Mixed Acft/Common 0 0 0 0 0 0

- Common 32 27 23 1 3 2

SubTotal 71 35 30 2 3 15

Total Requirements 467 369 247 60 62 35

Percent JMPS to AMPS Match 79.01%
Percent JMPS to V1 Match 52.89%

FIGURE B-l. Manual Matching Study Results

The term "VI", refers to version 1 release of the JMPS

software. Future refers support for future requirements not

funded for development in JMPS VI.

63

THIS PAGE INTENTIONALLY LEFT BLANK

64

APPENDIX C: AUTOMATED TOOL SOURCE CODE

//Title: DocObject
//Version: 1.0
//Author: Eric Stierna
//Company: NPS
//Description: This class holds the set of requirements contained in
// an instance of a requirements document.

package parseproj,-

import java.util.*;
import j ava.io.*;
import j ava.awt.*;
import j ava.awt.event.*;
import j avax.swing.*;

public class DocObject {

// Name of the document that contains the set of requirements
String docTitle = "Document Name Not Provided" ,-

// This Hashtable contains the list of requirement objects
// one requirement per hashed entry
Hashtable reqObjectList = new Hashtable();

// list of all words and the number of occurences in the document
// hashed on the word in the table
Hashtable tokenList = new Hashtable(),-

// list of requirements associated with a given word hashed on the
// word they are associated with
Hashtable tokenToReqList = new Hashtable() ;

public DocObject(String docTitleString)
{

docTitle = docTitleString;
}

public String getDocTitle()
{

return(docTitle) ,-
}

public Hashtable getReqObjectList0
{

return(reqObjectList);
}

public ReqObject getReqObject(String inputReqNum)
{

return((ReqObject)reqObjectList.get(inputReqNum));
}

// this method adds an ReqObject as an entry in the hash
// table, keyed on the requirement number
public void addReqObject(String reqNum, ReqObject newReq)
{

reqObjectList.put(reqNum, newReq);
}

// this method adds a word from the requirement Object to a
// hashtable of words in the document
public void addToTokenList(String newToken)
{

if (tokenList.containsKey(newToken))
{

RequirementWord tempWordToken =

65

}
else
{

(RequirementWord)tokenList.get(newToken);

tempWordToken.incrementWordCount();

RequirementWord newTokenRecord =
new RequirementWord(newToken);

tokenList.put(newToken, newTokenRecord)

}

// This method allows the user to look-up the requirements
// associated with each word in the document
public void addToTokenToReqList(String newToken, String reqNumber)
{

if (tokenToReqList.containsKey(newToken))
{

ReqToken tempReqToken =
(ReqToken)tokenToReqList.get(newToken);

}
else
{

}

tempReqToken.addReqNumber(reqNumber);

ReqToken newReqTokenRecord =
new ReqToken(newToken, reqNumber);

tokenToReqList.put(newToken, newReqTokenRecord),

public Hashtable getTokenList()

return(tokenList);

public Hashtable getTokenToReqList()

return(tokenToReqList);

public Vector getReqListFromToken(String wordToken)

ReqToken myToken = (ReqToken)tokenToReqList.get(wordToken)

return(myToken.getReqList()) ;

public int getTokenCount(String tokenQuery)

int tempCount = 0,-

if (tokenList.containsKey(tokenQuery))
{

RequirementWord tempWordToken = (RequirementWord)
tokenList.get(tokenQuery);

tempCount = tempWordToken.getWordCount();
}
return(tempCount) ;

}

public int getReqCount()
{

return(reqObjectList. size ()) ,-
}

public int getWordCount()
{

66

return(tokenList.size());
}

// This method is used to compute the normalization factor for
// similarity computations
public void updateReqPValForDocument()
{

ReqObject tempReqObject;

// compute the similarity value denomenator for one
// document
Enumeration ReqEnum = reqObjectList.elements();

// loop through each requirement and set the reqPVal
while (ReqEnum.hasMoreElements())
{

tempReqObject = (ReqObject)ReqEnum.nextElement();

// set the ReqPVal
tempReqObject.setReqPVal(this);

}
}

} // end of DocObject file

//Title: ReqObject
//Version: 1.0
//Author: Eric Stierna
//Company: MPS
//Description: This class holds the info contained in a requirement.

package parseproj;

import java.util.*;
import java.io.*;
import j ava.awt.*;
import j ava.awt.event.*;
import j avax.swing.*;

/**
* This class holds the info contained in a requirement.
* @ author Eric Stierna
*/

public class ReqObject {

// String container for the unique requirement number in a given
// document
String reqNumber = "Requirement Number Not Provided";

// Hashtable contains RequirementWord objects that each contain
//a unique word from the requirement and the number of occurances
//of the word in the requirement.
Hashtable tokenList = new Hashtable();

// This is equal to the sqrt of the sum of the wordPVals squared
// for a given requirement. Each WordPVal is equal to the
// number of occurances of a word in a requirement divided by the
// number of occurances of the word in the document.
double reqPVal = 0.0;

// count of the number of words in the ReqObject
// (includes duplicate words in the count)
int reqWordCount = 0;

/**
* ReqObject constructor
* @param reqNumString - the requirement number in string format
*/

public ReqObject(String reqNumString)
{

67

reqNumber = reqNumString,-
}

/ **
* ReqObject constructor
* ©param reqNumString - the requirement number in string format
* ©param stringList - list of word strings in a vector container
*/

public ReqObject(String reqNumString, Vector wordList)
{

// set the req number attribute
reqNumber = reqNumString;

Enumeration tempEnumeration = wordList.elements() ,-

// loop through the enumeration adding each element to the
// wordList hashtable using the addReqWord method
while (tempEnumeration.hasMoreElements())
{

addReqWord((String) tempEnumeration.nextElement());
}

}

* addReqWord method - adds word tokens to the reqObject Hashtable
* ©param newWord - the new word token
*/

public void addReqWord(String newWord)
{

reqWordCount = reqWordCount + 1;

// increment word count if the word already exists in the
// hashtable
if (tokenList.containsKey(newWord))
{

RequirementWord wordRecord = (RequirementWord)
tokenList .get (newWord) ,-

wordRecord.incrementWordCount();
}
// else create a new object and add it to the hashtable
else
{

RequirementWord newWordRecord =
new RequirementWord (newWord) ,-

tokenList.put(newWord, newWordRecord);
}

} // end of addToken method

/ * *

* getReqNumber method - gives access to the requirement number
* ©return reqNumber <code>String</code> returns the reqNum
*/

public String getReqNumber()
{

return (reqNumber) ,-
}

/**
* getReqPVal method - This method returns the double
* containing the PVal for a given req in a document.
* ©return reqPVal <code>double</code> returns a double
*/

public double getReqPVal()
{

return (reqPVal) ,-
}

* getTokenList method - gives access to the tokenList
* ©return tokenList <code>Hashtable</code> returns the list

68

* of tokens in a Hashtable.
V

public Hashtable getTokenList()
{

return (tokenLi st) ,-
}

* getReqWordCount method - gives access to the reqWordCount
* ©return reqWordCount <code>int</code> returns the number
* of words in the requirement.
*/

public int getReqWordCount()
C

return(reqWordCount);
}

/ **
* getTokenOccurance method - This method returns the number of
* occurances of a word within a given requirement.
* ©param checkToken - word to use for the query
* ©return tempVal <code>int</code> returns the number of
* occurances of a word
*/

public int getTokenOccurance(String checkToken)
{

int tempVal = 0;

if (tokenList.containsKey(checkToken))
{

tempVal = ((RequirementWord)
tokenList.get(checkToken)).getWordCount();

}
return(tempVal);

/ **
setReqPVal method - This method allows a document to set

* the reqPVal for its reqObjects. This method is called by the
* doc object which passes it the document's tokenList which gives
* access to the number of occurances of a word in the document.
* ©param DocTokenList - Hashtable containing a look-up table for
* word occurances in a document
*/

public void setReqPVal(DocObject owningDocument)
{

int tempCount = 0;
int totalDocTokenCount = 0;
double tempPVal = 0.0;
double summationTotal = 0.0;

// This enumeration gets the list of words that are in the
// actual requirement object.
Enumeration reqWordList = tokenList.elements 0;

// while hashtable is not empty
// iterate through the list of words
while (reqWordList-hasMoreElements())
{

// get a word
RequirementWord localWordRecord = (RequirementWord)

reqWordList.nextElement()

int tempDocCount = owningDocument.
getTokenCount(localWordRecord.getReqWordO);

// Get wordRecord's word String and use the string to
// hash into the DocTokenList hashtable to extract the
// requirementword which is then used to get the word

69

// count
if(tempDocCount != 0)
{

}
else
{

// extract the number of occurances of the word
//in the requirement
tempCount = localWordRecord.getWordCount () ,-

// divide the no# occurances of the word in the
// reg by the number of occurances in the
// document.
tempPVal = ((double) tempCount) /

((double) tempDocCount);

// raise the result to the second power
tempPVal = Math.powftempPVal, 2.0);

// add the result to a summation total
summationTotal = summationTotal + tempPVal,-

System, out.println
("Unaccounted word in Req Token List");

}

} // end while loop

// set the reqPVal
reqPVal = Math.sqrt(summationTotal) ;

} // end of setReqPVal() method

/ * *
* getTokenOccurance method - This method computes the PVal for
* each word in a reqObject. This method is called by the document
* object which passes it the word count and a string to identify
* the word.
* @param tokenString - String containing the word
* Sparam docTokenCount - int count of the occurances in the doc
* Sreturn tempVal <code>double</code> returns the PVal for the
* token.
*/

public double getTokenPVal(String tokenString,
int docTokenCount)

{
int tempCount = 0;
double tempPVal = 0.0;

if (tokenList.containsKey(tokenString))
{

RequirementWord wordRecord = (RequirementWord)
tokenList.get(tokenString);

// get the number of occurances of the word in the req
tempCount = wordRecord. getWordCount () ,-

if (docTokenCount != 0)
{

// compute the tokenPVal// compute the tokenPVal
tempPVal = ((double)tempCount /

(double)docTokenCount);
}

}
return(tempPVal);

)

} // end of ReqObject Class

//Title: RequirementWord

70

//Version: 1.0
//Author: Eric Stierna
//Company: NPS
//Description: This class contains one word(string), counter, and
// boolean flag to indicate if the word is a stop word.

package parseproj;

import java.util.*;
import java.io.*;
import j ava.awt.*;
import j ava.awt.event.*;
import j avax.swing.*;

public class RequirementWord {

String wordString = "No Word Assigned";

// The number of occurances of a word in a requirement,
int wordCount = 1;

// by default it is not a stop word,
boolean stopWord = false;

public RequirementWord(String inputString)

wordString = inputString;

public RequirementWord(String inputString, boolean stopFlag)

wordString = inputString;

if(stopFlag == true)

setStopWordO ;

public RequirementWord(String inputString, int newWordCount)

wordString = inputString;
wordCount = newWordCount;

public String getReqWordO

return (wordString) ,-

public void incrementWordCount()

wordCount++;

public void addToWordCount(int incVal)

wordCount = wordCount + incVal;

public int getWordCount()

return(wordCount) ;

private void setStopWord()

stopWord = true;

71

}

public boolean getStopWordStatus()
{
return(stopWord);
}

} // end of RequirementWord Class

//Title: ReqToken
//Version: 1.0
//Author: Eric Stierna
//Company: NPS
//Description: This class contains one word(string) and an associated
// Vector of requirement numbers or macro numbers in
// which the word occurs.
// The class prevents duplicate entries of the same
// requirement.

package parseproj;

import java.util.*;
import java.io.*;
import j ava.awt.*;
import j ava.awt.event.*;
import j avax. swing. * ,-

public class ReqToken {

String wordToken = "No Word Assigned";

// list of requirements in which the word occurs.
Vector reqList = new Vector();

public ReqToken(String inputWordToken, String inputReqNum)
{

wordToken = inputWordToken;

reqList.add(inputReqNum);

} // end reqTokenO constructor

public String getWordToken()
{

return (wordToken) ,-
}

public Vector getReqListO
{

return (reqList) ,-
}

public void addReqNumber(String inputReqNum)
{

if (!reqList.contains(inputReqNum))
{

reqList. add (inputReqNum) ,-
}

}
} // end of ReqToken Class

//Title: ReqSimObject
//Version: 1.0
//Author: Eric Stierna
//Company: NPS
//Description: This class stores matching req info.
// It contains two req numbers(strings) and a
// double to indicate the similarity between the two req.
// The first req number is the base and the second is the

72

// matching req.

package parseproj,-

import java.util.*;
import java. io. * ;
import j ava.awt.*;
import j ava.awt.event.*;
import j avax. swing. * ;

public class ReqSimObject {

private String baseReqNumString = "No Word Assigned";
private String matchReqNumString = "No Word Assigned";
private double productReqPVal = 0.0;
private double similarityVal = 0.0;
private double summationVal = 0.0;

// This comparator allows ReqSimObjects to be compared.
// Fist the baseReqObjStrings are compared (low to hi)
// Second the SimilarityValues are compared (hi to low)
// Last the matchReqObjStrings are compared (low to hi)
static final Comparator REQ_SIM_OBJ = new Comparator()
{

public int compare(Object ol, Object o2)
{
ReqSimObject rl = (ReqSimObject) ol;
ReqSimObject r2 = (ReqSimObject) o2;

int newReqNumString = rl.getBaseReqNumStringO .
compareTo(r2.getBaseReqNumString());

if (newReqNumString != 0)
{

return newReqNumString;
}
else
{

return (rl.getMatchReqNumStringf).
compareTo(r2.getMatchReqNumString()));

}
}

};

// used to create sim objects when a comma seperated
// list of matching requirements is already available,
public ReqSimObject.(String newBaseReqNumString,

String newMatchReqNumString)

{
baseReqNumString = newBaseReqNumString;
matchReqNumString = newMatchReqNumString;

}

public ReqSimObject (String newBaseReqNumString,
String newMatchReqNumString,
double newBaseReqPVal,
double newMatchReqPVal,
double newBaseTokenPVal,
double newMatchTokenPVal)

{
baseReqNumString = newBaseReqNumString;
matchReqNumString = newMatchReqNumString,-

productReqPVal = newBaseReqPVal * newMatchReqPVal;

updateSimPVal(newBaseTokenPVal, newMatchTokenPVal);
>

public String getBaseReqNumString(1
{

return(baseReqNumString);
}

73

public String getMatchReqNumString()

return (inatchReqNumString) ;

public double getSimilarityVal0

return(similarityVal);

* updateSumPVal method - computes the summation of similarity
* values corresponding to word matches between requirements
* @param currentSimObj - existing ReqSimObject
* @param newBaseTokenPVal - base document word PVal
* @param newMatchTokenPVal - match document word PVal
*/

public void updateSimPVal(double newBaseTokenPVal,
double newMatchTokenPVal)

{
summationVal = summationVal +

(newBaseTokenPVal * newMatchTokenPVal)

f (productReqPVal != 0)

similarityVal = summationVal / productReqPVal;

else

System.out.println("Attenpting to divide by zero");

}

public String getKeyO
{

return (baseReqNumString + matchReqNumString) ,-
}

} // end of ReqSimObject Class

//Title: MatchObject
//Version: 1.0
//Author: Eric Stierna
//Company: NPS
//Description: This class creates a list of matching requirements and
// their similarity value for two documents.

package parseproj ,-

import java.util. *,-
import java.io.*;
import j ava. awt. * ,-
import j ava. awt. event .*,-
import j avax.swing.*;

public class MatchObject
{

float capacity = (float)0.9;

// This Hashtable contains the list of ReqSimObjects that each
// contain an instance of a match between two requirements and
//a similarity value
Hashtable matchedReqList = new Hashtable(1000000, capacity);

// this int is used in statistical analysis to determine the
// number of matches between two sets of requirements,
int matchCount = 0;

74

// constructor allows the user to set the similarity match factor
public MatchObject(DocObject baseDoc, DocObject matchDoc)
{

// compute the similarity value denomenator for the
// base document
baseDoc.updateReqPValForDocument();

// compute the similarity value denomenator for the
// match document
matchDoc-updateReqPValForDocument();

determineMatch(baseDoc, matchDoc);

}

// constructor allows user to build a match object from a
// prematched list of requirements captured in a text file,
public MatchObject(String fileName, String reqDelimString)
{

buildMatchObjectFromPreMatchedList(fileName,
reqDelimString);

}

private void determineMatch(DocObject baseDoc,
DocObject matchDoc)

{

// Temp variables for casting and computations
ReqObject tempReqObject;
ReqObject tempReqObjectBase;
ReqObject tempReqObjectMatch;

RequirementWord tempWordTokenBase;

double tempReqPValBase = 0.0;
double tempTokenPValBase = 0.0;
double tempReqPValMatch = 0.0;
double tempTokenPValMatch = 0.0;
double tempSimilarityVal = 0.0;

String hashString = "NA";

// declare a new enumeration to loop through all ReqObjects
//in the base document
Enumeration baseReqEnum = baseDoc.getReqObjectList().
elements();

// get list of ReqObjects from baseDoc DocObject
// loop through the list of req objects matching each
// requirement
// with 0..* requirements from the matchDocument
while (baseReqEnum.hasMoreElements0)
{

// get a baseDoc ReqObject
tempReqObjectBase =

(ReqObject)baseReqEnum.nextElement();

// get the the reqPVal for the baseDoc ReqObject
tempReqPValBase = tempReqObjectBase.getReqPVal();

// declare an enumeration of the list of word tokens
// that are contained in the requirement object
Enumeration baseWordEnum = tempReqObjectBase.

getTokenList().elements();

// loop through the list of words in each ReqObject
// computing the SimilarityVal between each matched
// requirement
// and storing it in a ReqSimObject. Store all

75

// ReqSimObjects
//in the Hashtable
while (baseWordEnum.hasMoreElementsO)
{

// get a RequirementWord from a baseDoc
// ReqObject
tempWordTokenBase = (RequirementWord)

baseWordEnum.nextElement () ,-

// only perform this block of code if there is a
// match between the word and at least one req
// in
// the match document.
if (matchDoc.getTokenToReqList().containsKey(

tempWordTokenBase.getReqWord()))
{

// get the number of occurances of the
// word in the document and use the value //to get
the
// tokenPVal for the word(baseDoc)
tempTokenPValBase =

tempReqObjectBase.getTokenPVal(
tempWordTokenBase.getReqWord(),
baseDoc.getTokenCount(
tempWordTokenBase.getReqWord())) ,-

// declare an enumeration of the list of
// req that are related to that token.
Enumeration newMatchReqEnum =

(matchDoc.getReqListFrömToken(
tempWordTokenBase.getReqWord())).elements();

II use the enumerated list of matching
// requirements
11 to loop through the list of
// requirements getting
// each requirement object in turn.
while (newMatchReqEnum.hasMoreElements())
{

// get a ReqObject from the matchDoc
tempReqObjectMatch = (

matchDoc.getReqObj ect(
(String)newMatchReqEnum.nextElement()));

// get the tokenPVal for the word in
// the ReqObject
// uses the word from the outer
// while loop to do the
// look-up
tempTokenWalMatch =

tempReqObjectMatch.
getTokenPVal(tempWordTokenBase.getReqWord(),
matchDoc.getTokenCount(tempWordTokenBase.

getReqWord()));

// check the hashTable if a matching
// ReqSimObject
// is found then execute the sumPVal
// method
// hash on the concatenation of the
// two
// requirement number strings
if (matchedReqList.containsKey!
tempReqObj ectBase.getReqNumber() +
tempReqObj ectMatch.getReqNumber()))
{

// use the reqNumbers as a key
// to hash into
// the ReqSimObject Hashtable
// and get the

76

// matching ReqSimObject,
// execute updateSimPVal
//on the ReqSimObject by
// passing in the two
// tokenPVals
((ReqSimObject)matchedReqList.

get (ternpReqOb j ectBase. getReqNumber ()
+

ternpReqObjectMatch.getReqNumber())).
updateSimPVal(tempTokenPValBase,

tempTokenPValMatch);

}
// else get the reqPVal for the
// ReqObject, execute
// the updateSimVal method and
// create a newReqSimObject with the //
gathered info else
{

// get the the reqPVal for the //
ReqObject
tempReqPValMatch =
tempReqObjectMatch.

getReqPVal();

// create a newReqSimObject
// using all six
// parameters: 2 req numbers,
// 2 reqPVal,
ReqSimObject newReqSimObject =

new ReqSimObject(
tempReqObj ectBase.getReqNumber(),
tempReqObjectMatch.getReqNumber(),

tempReqPValBase,
tempReqPValMatch,
tempTokenPValBase,
tempTokenPValMatch);

// store the ReqSimObject in
// the matchedReqList
// Hashtable

matchedReqList.put(tempReqObjectBase.
getReqNumber() +

tempReqObjectMatch.getReqNumber(),
newReqSimObject);

matchCount++;
} // end else

// exit the while loop when no more
// ReqObjects remain in the list
}

} // end of if strucutre check for base req word

// with no more matching req from the list in matchDoc
// exit the loop when no more words in the ReqObject
// remain in
// the list
}
// exit the loop when no more ReqObjects in the
// DocObject remain in
// the list

}

} // end of determineMatch() method

public Hashtable getMatchedReqList()
{

return(matchedReqList) ;
}

77

// outputs matching req list
// assumes the matching method has allready been performed
public void matchListOutput(String outputFileName)
{

try
{

// open the file to write to
BufferedWriter outputText = new BufferedWriter(

new FileWriter(outputFileName));

// create a TreeSet Object and use the ReqSimObject
// comparator to sort all added contents
TreeSet sortedMatchList =

new TreeSet(ReqSimObject.REQ_SIM_OBJ);

II add all matching requirements to the TreeSort
sortedMatchList.addAll(

matchedReqList.values());

// create an iterator to use to output an ordered
// list
Iterator mylterator = sortedMatchList.iterator0;

// temp var to hold the req number
String reqNumHdr = null;

// loop until all elements in the TreeSort have been
// visited.
while (mylterator.hasNext0)
{

// extract a ReqSimObject fromthe iterator
ReqSimObject tempObject =

(ReqSimObject) mylterator.next();

// write to output file
outputText.write(tempObject.getBaseReqNumStringl));

outputText.write("\t" +
tempObj ect.getMatchReqNumString() +
"\t" + tempObject.getSimilarityVal());

outputText.newLine();

}
outputText.close();

} // end of try

catch(FileNotFoundException e)
{
}

catch(IOException e)
{
}

} // end of matchListOutput

// extracts requirements from a text file and creates a match
// object. The text file must contain a list of requirements,
// one per line. The method finds the first delimiter that
// uniquely identifies a requirement and matches each token on
// subsequent lines until the end of the file or another
// delimiter is encountered
private void buildMatchObjectFromPreMatchedList

(String fileName,
String reqDelimString)

{
try // Lvl 1

78

// read in the fileName
BufferedReader inputText = new BufferedReadert

new FileReader(fileName));

// declarations/initializations
String si = "Dummy String";
String baseReqNum = "NA";
String delimString = "\n";

// loop until the readline method sets si to null
while (si != null)
{

try // Lvl 2
{

// read in a line from the file
si = inputText. readLine () ;

// tokenize the line
StringTokenizer st =

new StringTokenizer(si,
delimString);

// loop while more tokens exist
while(st.hasMoreTokens())
{

// get a copy of the current token
String newWord = st .nextTokenO ,-
// if the token alleady exists in
// the hash table
if (newWord.regionMatch.es (true,

0,
reqDelimString,
0,
reqDelimString.length()))

{

)
else
{

baseReqNum = newWord;

// create a new Requirement
// word object
ReqSimObject newSimObject =

New
ReqSimObject(baseReqNum,

newWord);
// enter it into the hash
// table
matchedReqList.put(baseReqNum
+ newWord, newSimObject);
matchCount++ ;

}
} // end while(hasMoreTokens)

) // end of try Lvl 2

catch(IOException e)
{

si = null;
}
catch(NullPointerException e)
{
}

' } // end of while(si != null)
// close the input file
inputText.close();

} // end of try Lvl 1
catch(FileNotFoundException e)
{

79

}
catch(IOException e)
{
}

} // end of buildMatchObjectFromPreMatchedList() method

public int getMatchCount()
{

return(matchCount);
}

} // end of matchObject file

//Title: MacroRequirement
//Version: 1.0
//Author: Eric Stierna
//Company: NPS
//Description: This class is a container for a group of requirements
// and their words.

package parseproj ,-

import java.util.*;
import java.io.*;
import j ava.awt.*;
import j ava.awt.event.*;
import j avax. swing. * ,-

/**
* This class is a container for a group of requirements
* and their words.
* @ author Eric Stierna
*/

public class MacroRequirement
{

private String macroNumber = "DefaultMacroNumber";
private Vector reqList = new Vector();
private Hashtable wordList = new Hashtable();
private int wordCourit = 0;
private double macroPVal = 0.0;
private int macroLevel = 1;

private boolean isBundled = false;

* MacroRequirement constructor
* dparam macroNumber - the unique number to id the macro req
*/

public MacroRequirement(String newMacroNumber)
{

macroNumber = newMacroNumber,-
}

/**
* MacroRequirement constructor
* @param macroNumber - the unique number to id the macro req
* dparam newReq - the first requirement object is added to the
* macro requirement.
*/

public MacroRequirement(String newMacroNumber, ReqObject newReq)
{

macroNumber = newMacroNumber;
addRequirement(newReq);

}

/**
* MacroRequirement constructor
* Sparam macroNumber - the unique number to id the macro req
* @param oldMacro - the old macro requirement to be bundled with

* the new MacroRequirement

80

*/
public MacroRequirement(String newMacroNumber,

MacroRequirement oldMacro)
{

macroNumber = newMacroNumber,-
addMacroRequirement(oldMacro);

}

public void addRequirement(ReqObject newReq)
{

setMacroLevel(newReq);
reqList.add(newReq.getReqNumber());
updateWordList(newReq.getTokenList());

}

public void addMacroRequirement(MacroRequirement oldMacro)
{

this.macroLevel = oldMacro.getMacroLevel0;
Enumeration newReqList = oldMacro.getReqList0.elements 0;

while(newReqList.hasMoreElements())
{

this.reqList.add(newReqList.nextElement());
}

updateWordList(oldMacro.getWordList());
}

private void updateWordList(Hashtable reqWordList)
{

Enumeration wordEnum = reqWordList.elementsO ;

while (wordEnum.hasMoreElements())
{

RequirementWord tempReqWord = (RequirementWord)
wordEnum.nextElement();

if (wordList.containsKey(tempReqWord.getReqWord()))
{

RequirementWord oldWord = (RequirementWord)
wordList.get(tempReqWord.getReqWord());

}
else
{

oldWord.addToWordCount(tempReqWord.getWordCount());

RequirementWord newWord =
new RequirementWord(tempReqWord.getReqWord()

tempReqWord.getWordCount());

wordList.put(newWord.getReqWord(), newWord);
}

}
// end of updateWordList()

public String getMacroNurriber()

return(macroNumber);

public Vector getReqList0

return(reqList) ;

public Hashtable getWordList()

return(wordList) ;

public int getMacroWordCount()

return(wordCount);

81

}

public double getMacroPVal()
{

return(macroPVal);
}

/ * *

* setRegPVal method - This method allows a MasterMacro to set
* the macroPVal for its MacroRequirements. This method is called
* by the MasterMacroRequirement
* object which passes it the document's tokenList to give access to the
* number of occurances of a word in the document.
* ©param DocTokenList - Hashtable containing a look-up table for word
* occurances in a document
*/

public void setReqPVal(DocObject owningDocument)
{

int tempCount = 0;
int totalDocTokenCount = 0;
double tempPVal = 0.0;
double summationTotal = 0.0;

// This enumeration gets the list of words that are in the
// actual requirement object.
Enumeration reqWordList = wordList.elements();

// while hashtable is not empty
// iterate through the list of words
while (reqWordList.hasMoreElements())
{

// get a word
RequirementWord localWordRecord = (RequirementWord)

reqWordList.nextElement();

int tempDocCount = owningDocument.
getTokenCount(localWordRecord.

getReqWord()) ;
// Get wordRecord's word String and use the string to
// hash into the DocTokenList hashtable to extract the
// requirementWord which is then used to get the word
// count
if(tempDocCount != 0)
{

// extract the number of occurances of the word in the
// requirement
tempCount = localWordRecord.getWordCount();

// divide the no# occurances of the word in the req by the
// number of occurances in the document.
tempPVal = ((double) tempCount) / ((double) tempDocCount) ,-

// raise the result to the second power
tempPVal = Math.pow(tempPVal, 2.0);

}
else
{

// add the result to a summation total
summationTotal = summationTotal + tempPVal;

System.out.printlnf"Unaccounted word in Req Token List");
}

} // end while loop

// set the reqPVal
macroPVal = Math.sqrt(summationTotal);

82

} // end of setReqPVal() method

/ **
* getTokenOccurance method - This method computes the PVal for each
* word in a MacroRequirement. This method is called by the
* MasterMacroReguirement
* which passes it the word count and a string to identify the word
* @param tokenString - String containing the word
* @param docTokenCount - int count of the occurances in the doc
* ©return tempVal <code>double</code> returns the PVal for the token
*/

public double getTokenPVal(String tokenString,
int docTokenCount)

{
int tempCount = 0;
double tempPVal = 0.0;

if (wordList.containsKey(tokenString))
{

RequirementWord wordRecord = (RequirementWord)

wordList.get(tokenString);

// get the number of occurances of the word in the req
tempCount = wordRecord.getWordCount();

if (docTokenCount != 0)
{

// compute the tokenPVal// compute the tokenPVal
tempPVal = ((double)tempCount / (double)docTokenCount) ;

}
}
return(tempPVal);

}

public int getMacroLevel()
{

return(macroLevel);
}

public void setMacroLevel(ReqObject newReqObj)
{

Vector levelList = new Vector(),-

// convert the requirement number to a character array
char[] stringToCharArray = newReqObj.getReqNumber().

toCharArray();

// remove all non-digits from the char array and
// insert each digit into a vector to hold the remainder of
// the requirement number
for(int i=0; i<stringToCharArray.length; i++)
{

Character newChar = new Character(stringToCharArray[i]);
if (newChar.isDigit(stringToCharArray[i]))
{

newChar = new Character(StringToCharArray[i]);
levelList.add(newChar);

}
}

// loop control variable for trimming zeros off the end of
// the JMPS req numbers
boolean moreZeros = true;
int vectorlndex = levelList.size() - 1;

while (moreZeros == true)
{

Character myChar = (Character)
levelList.elementAt(vectorlndex);

if (myChar.charValue() == 0)

83

}
else
{

}

levelList.remove(vectorlndex);
vectorlndex--;

moreZeros = false;

macroLevel = levelList .size () ,-
}

public void setMacroNumber(String bundledNumber)
{

macroNumber = bundledNumber;
}

public boolean getlsBundledO
{

return(isBundled),-
}

public void setlsBundledTrue()
{

isBundled = true;
}

} // end of MacroRequirement() Class

//Title: MasterMacroRequirement
//Version: 1.0
//Author: Eric Stierna
//Company: NPS
//Description: This object contains the macroRequirements for a given
// document.

package parseproj ,-

import java.util.*;
import java.io.*;
import java.awt.*;
import j ava.awt.event.* ;
import j avax. swing. * ,-

* @ author Eric Stierna
*/

public class MasterMacroRequirement
{

private String macroName = "DefaultMasterMacroNumber";

// Contains a look-up list of all MacroRequirements given the
// MacroNumber

private Hashtable macroList = new Hashtable () ,-

// Contains a look-up of all MacroRequirements that contain a
// given Requirement. Given a requirement number string, the

// hashtable returns a macroReqNumber String.
private Hashtable reqToMacroList = new Hashtable () ,-

// Contains a look-up of all MacroRequirements that contain a
// given word. Given a word string, the

// hashtable returns a list of matching MacroRequirements.
private Hashtable wordToMacroList = new Hashtable!);

// global counter used to define unique macroNumbers
private int numberCount = 0;

84

// Points to the current MacroRequirement
private MacroRequirement currentMacro = new

MacroRequirement("emptyMacro");

private Vector tempList = new Vector!);

/**
* MasterMacroRequirement constructor
*/

public MasterMacroRequirement(String newMacroName)

macroName = newMacroName;

public Hashtable getMacroList0

return(macroList);

public MacroRequirement getMacroReqlString macroReqNumber)

return((MacroRequirement)macroList.get (macroReqNumber)) ;

// The boolean helps this method deal with the last requirements
public void add(ReqObject newReqObj, boolean lastReqObj)
{

MacroRequirement nextMacro = new MacroRequirement("MacroReq-" +
macroName + "-" + numberCount, newReqObj);

numberCount++;

// when peer is found
if(currentMacro.getMacroLevel() == nextMacro.getMacroLevel0)

{
System.out.printlnt"Peer");

// add the MacroRequirement to a temporary list
tempList.add(nextMacro);

currentMacro = nextMacro;

if(lastReqObj)
{

if(!tempList.isEmptyO)
{

System, out.println("track-subordinates");

//add the entire temp list to the current MacroRequirement
Enumeration tempEnum = tempList.elements));

// add all MacroReq in the temp list
while(tempEnum.hasMoreElements())
{

// create a new MacroReq to hold the list of Requirements
MacroRequirement newMacro = new MacroRequirement("MacroReq-" +

macroName + "-* + numberCount);
numberCount++;

newMacro.addMacroRequirement(
(MacroRequirement)tempEnum.nextElement());

// add the new MacroRequirement to the macroList HashTable
macroList.put(newMacro.getMacroNumber(), newMacro);

//add the words to the WordToMacro Look-up hashtable
addWordsFromMacro(newMacro);

// add the requirements from the new MacroRequirement to the
// requirement to Macro look-up table
addToReqToMacroList(newMacro);

85

System.out.printin("Test" + newMacro.getMacroNumber());
}

}
}

}
// when subordinate is found
else if (currentMacro.getMacroLevel() < nextMacro.getMacroLevel;))
{

if(lastReqObj)
{

if (! tempList.isEmpty())
{

System.out.println("track-subordinates");

//add the entire temp list to the current MacroRequirement
Enumeration tempEnum = tempList.elements () ,-

// add all MacroReq in the temp list
while(tempEnum.hasMoreElements())
{

// create a new MacroReq to hold the list of Requirements
MacroRequirement newMacro = new MacroRequirement("MacroReq-"

macroMame + "-" + numberCount);
numberCount++ ,-

newMacro.addMacroRequirement(
(MacroRequirement) tempEnum. nextElement ()) ,-

// add the new MacroRequirement to the macroList HashTable
macroList .put (newMacro.getMacroNumber () , newMacro) ,-

//add the words to the WordToMacro Look-up hashtable
addWordsFromMacro(newMacro);

// add the requirements from the new MacroRequirement to the
// requirement to Macro look-up table
addToReqToMacroList(newMacro);

System.out.println("Test" + newMacro.getMacroNumber());
}

}
}

System.out.printlnt"Subordinate");

// clear the list - we've found a more distant leaf
tempList.clear();

// add the subordinate MacroRequirement to a temporary list
tempList.add(nextMacro);

currentMacro = nextMacro;
}
// when a superordinate is found
else if (currentMacro.getMacroLevel() > nextMacro.getMacroLevel())
{

if(!tempList.isEmpty())
{
System.out.printlnt"Super-Ordinate");

//add the entire temp list to the current MacroRequirement
Enumeration tempEnum = tempList .elements () ,-

// create a new MacroReq to hold the list of Requirements
MacroRequirement newMacro = new MacroRequirement("MacroReq-" +

macroName + " -" + numberCount) ,-
numberCount++ ,-

// add all MacroReq in the temp list
while(tempEnum.hasMoreElements())

86

{
newMacro.addMacroRequirement(

(MacroRequirement)tempEnum.nextElement ());
}

// add the new MacroRequirement to the macroList HashTable
macroList.put(newMacro.getMacroNumber(), newMacro);

//add the words to the WordToMacro Look-up hashtable
addWordsFromMacro(newMacro);

// add the requirements from the new MacroRequirement to the
// requirement to Macro look-up table
addToReqToMacroList (newMacro) ,-

System.out.println("Test" + newMacro.getMacroNumber());

// clear the tempList so that we don't backtrack
tempList.clear();

// set pointers
currentMacro = nextMacro;

} // end of add() method

public void outputMasterData()
{

Enumeration tempEnum = macroList.elements () ,-
while (tempEnum.hasMoreElements())
{

System.out.println("Req is:" + ((MacroRequirement)tempEnum.
nextElement()).getMacroNumber());

}
}

public void updateMacroPVals(DocObject myDoc)
{

MacroRequirement tempReqObject;

// compute the similarity value denomenator for one
// MasterMacroRequirement
Enumeration ReqEnum = macroList.elements();

// loop through each requirement and set the reqPVal
while (ReqEnum.hasMoreElements())

tempReqObject = (MacroRequirement)ReqEnum.nextElement0;

// set the ReqPVal
tempReqObject.setReqPVal(myDoc);

}
}

// This method allows the words from an existing requirement
// to be added to a MacroRequirement

public void addWordToMacroList(String newMacroNumber,
ReqObject newReq)

{
Enumeration reqListEnum = newReq.getTokenList0.elements();

while (reqListEnum.hasMoreElementsO)
{

RequirementWord tempReqWord = (RequirementWord)
reqListEnum.nextElement 0 ;

if (wordToMacroList.containsKey(tempReqWord.getReqWord()))
{

87

ReqToken tempReqToken =

(ReqToken)wordToMacroList.get(tempReqWord.getReqWord()) ;

tempReqToken.addReqNumber(newMacroNumber);
}
else
{

newMacroNumber),

}

ReqToken newReqTokenRecord =
new ReqToken(tempReqWord.getReqWord().

wordToMacroList.put(tempReqWord.getReqWord(),
newReqTokenRecord);

// This method allows the words from an existing MacroRequirement
// to be added to the MasterMacroList
private void addWordsFromMacro(MacroRequirement newTempMacro)

// create an enumeration of the new MacroRequirement's WordList
Enumeration wordListEnum = newTempMacro.getWordList().elements();

// while more words remain
while (wordListEnum.hasMoreElements())
{

RequirementWord tempReqWord = (RequirementWord)
wordListEnum.nextElement () ,-

// check to see if a look-up exists in the hash table
if (wordToMacroList.containsKey(tempReqWord.getReqWord0))
{

ReqToken tempReqToken =

(ReqToken)wordToMacroList.get(tempReqWord.getReqWord()),-

// Assign the macro to the word
tempReqToken. addReqNumber (newTempMacro. getMacroNumber ()) ,-

}
// if not create a new entry-

else
{

ReqToken newReqTokenRecord =
new ReqToken(tempReqWord.getReqWord(), newTempMacro.

getMacroNumber()) ;

wordToMacroList.put(tempReqWord.getReqWord() ,
newReqTokenRecord);

public Vector getWordToMacroList(String wordKey)
{

if (wordToMacroList.containsKey(wordKey))
{

return(((ReqToken)wordToMacroList.get(wordKey)).
getReqList ()) ,-

}
else
{

}
}

return(null);

private void addToReqToMacroList(MacroRequirement tempMacro)
{

Enumeration reqEnum = tempMacro.getReqList () .elements () ,-

88

while (reqEnum.hasMoreElements())
{

reqToMacroList.put((String)reqEnum.nextElement(),
tempMacro. getMacroNumber ()) ;

}
}

// This method adds all requirements from a macroReq to a
// bundled requirement
private void addReqsFromMacro(MacroRequirement newTempMacro)
{

Enumeration reqListEnum = newTempMacro.getReqList().elements();

while (reqListEnum.hasMoreElements())
{

reqToMacroList.put((String)reqListEnum.nextElement(),
newTempMacro.getMacroNumber());

}
)

public String getMacroNumberFromReqToMacroList(String reqNum)
{

returnt(String)reqToMacroList.get(reqNum));
}

} // end of MasterMacroRequirement Class

//Title: Word Parsing
//Version: 1.0
//Author: Eric Stierna
//Company: NPS
//Description: This class parses a text file into a hash table and
// stores all instances of unique words from the document
// along with the number of occurances of each word.
// Additional capabilities can be enabled to allow it to //

interact with the Wordnet 1.6 db and return word sense

package parseproj;

import Java.util.*;
import j ava.io.*;
import j ava.awt.*;
import j ava.awt.event.*;
import j avax.swing.*;

import j ava.awt.font.*;
import j ava.awt.geom. *;
import javax.swing.border.*;

public class WordParseMacroReq {

public WordParseMacroReq()
{
}

// tokenizes a preprocessed text file (one word per line)
// into a hash table and sets a boolean flag to indicate if it
// is a stop word (stop word = don't output)

static private void fileReadAndParse(String fileName,
Hashtable wordTable,
boolean stopFlag)

{
try // Lvl 1
{
// read in the fileName

BufferedReader inputText = new BufferedReader(
new FileReader(fileName)) ,-

// declarations/initializations
String delimString = "\n";

89

object

String si = "NA" ;

// loop until the readline method sets si to null
while (si != null)
{

try // Lvl 2
{

// read in a line from the file
si = inputText.readLine();

// tokenize the line
StringTokenizer st =

new StringTokenizer(si, delimString);

// loop while more tokens exist in tokenizer
while (st.hasMoreTokens ())

{
// get a token from the tokenizer
String s3 = st .nextTokenf) ,-

// if the token already exists in the hash table
if (wordTable.containsKey(s3))

{
// get a copy of the hashed onject
Object s2 = wordTable.get(s3);

if (s2 instanceof RequirementWord)
{

// cast object as a RequirementWord

(RequirementWord) s2;

RequirementWord wordRecord

wordRecord.incrementWordCount().

object

stopFlag);

}
else
{

// create a new Requireemnt word

RequirementWord newWordRecord =
new RequirementWord(s3,

// enter it into the hash table
wordTable.put(s3, newWordRecord),-

)
) // end while(hasMoreTokens)

} // end of try Lvl 2

catch(IOException e)
{

si = null;
}
catch(NullPointerException e)
{
}

} // end of while(si i= null)

// close the input file
inputText.close();

} // end of try Lvl 1
catch(FileNotFoundException e)

{
}

catch(IOException e)
{
}

} // end of fileReadAndParse method

// builds a list of the original requirements while converting

90

// the requirement numbers to the proper format. The requiremnts
// are stored in a hashtable for look-up withthe req number as
// the keys,
static private void buildUnalteredReqList(String fileName,

Hashtable
unalteredReqList,

String

adjReqNumString,
char[] reqNumPunc,
String

reqDelimString)
{

try // Lvl 1
{
// read in the fileName

BufferedReader inputText = new BufferedReader(
new FileReader(fileName)) ;

II declarations/initializations
String delimString = " \t\n\r\f;

String si = "Loop until null";

// stores requirement tokens till saved
Vector tokenList = new Vector (),-

// flag indicates that the first requirement
// has been encountered
boolean firstReq = true;

// holds requirement number while the requirement
// text is stroed in the vector
String reqNum = "NA" ,-

// loop until the readline method sets si to null
while (si != null)
{

try // Lvl 2
{

// read in a line from the file
si = inputText.readLine();

// tokenize the line - true indicates that all
// delimiters should be returned as tokens
StringTokenizer st =

new StringTokenizerfsl, delimString, true);

// loop while more tokens exist in tokenizer
whi le(st.hasMoreTokens())
{

// get a token from the tokenizer
String s3 = st.nextTokenO;

// checks each token to determine if the
// reqDelimString occurs in the token
// starting with the first index
if (s3.regionMatches(true,

0,
reqDelimString,

n
reqDelimString.length()))

{

number

s3. replace (reqNumPunc [0] , reqNumPunc [1]) ,-

// if the string occurs then
// adds appendstring to token
s3 = adjReqNumString + s3;

// changes the punctuation in a req

91

encountered
// first req number has been

if (firstReq == true)
{

}
else
{

tokenList. elements () ,-

the req

reqNum;

(enumTokenList.hasMoreElements())

collectionString +

enumTokenList.nextElement();

hashtable

key-

unaltered Req

collectionString) ;

reqNum = s3;
firstReq = false;

Enumeration enumTokenList

// declare a string to hold

// text
String collectionString =

while

{
collectionString =

" " + (String)

}

// fill the unalteredReqList

// reqNum is the req number

// collectionString is the

unalteredReqList.put(reqNum,

// prep for next requirement.
reqNum = s3 ;
tokenList. clear () ,-

}
else
{

}
tokenList.add(s3);

} // end while(st.hasMoreTokens())

} // end of try Lvl 2

catch(IOException e)
{

si = null;
}
catch(NullPointerException e)
{

} // end of while(si != null)

// handles the last requirement
if (!tokenList.isEmptyO)
{

Enumeration enumTokenList = tokenList.elements();
// declare a string to hold the req
// text
String collectionString = reqNum;

while (enumTokenList.hasMoreElements())
{

92

collectionString = collectionString +
" " + (String)

enumTokenList.nextElement()
}

// fill the unalteredReqList hashtable
// reqNum is the req number key
// collectionString is the unaltered Req
unalteredReqList.put(reqNum, collectionString) ,-

/ close the input file
inputText.close();

; // end of try Lvl 1
catch(FileNotFoundException e)

catch(IOException e)

} // end of buildUnalteredReqList method

// modifies the source document by converting the document into
// one word per line, removing the delimiters and removing all
// stop words,
static private void preProcess(String inFileName,

String outFileName,
String delimString,
Hashtable wordTable,
int caseSelect)

try // Lvl 1
{
// read in the fileName

BufferedReader inputText = new BufferedReader)
new FileReader(inFileName));

// open the output file buffer stream
BufferedWriter outputText = new BufferedWriter(
new FileWriter(outFileName));

// declarations/initializations
String si = "Dummy String";
String tokenTest;

// loop until the readline method sets si to null
while (si != null)
{

try // Lvl 2
{

si = inputText.readLine();

delimiters

causes all

if (caseSelect == 1)
{

// tokenizes the file based on the string of

// passed into the method, true parameter

// delimiters to be returned as tokens
StringTokenizer st =

new StringTokenizer(si, delimString);

while(st.hasMoreTokens())
{

tokenTest = st.nextToken();

(!tokenTest.equals(tokenTest.toUpperCase()))

tokenTest.toLowerCase();

93

if

{
tokenTest

// removes all stop word tokens

(iwordTable.containsKey(tokenTest))

the output stream

}
// removes all stop word tokens

if

{
// writes reamining tokens to

}
else
{

delimiters

causes all

outputText.write(tokenTest) ;
outputText.newLine();
}

} // end while(hasMoreTokens)

// tokenizes the file based on the string of

// passed into the method, true parameter

// delimiters to be returned as tokens
StringTokenizer st =

new StringTokenizer (si, delimString) ,-

while(st.hasMoreTokens())
{

(iwordTable.containsKey(tokenTest))

the output stream

tokenTest = st.nextToken();

// removes all stop word tokens
if

// writes reamining tokens to

outputText.write(tokenTest) ;
outputText .newLine () ,-
}

} // end while(hasMoreTokens)

} // end of try Lvl 2

catch(IOException e)
{

si = null;
}
catch(NullPointerException e)
{
}
catch(NoSuchElementException e)
{

} // end of while(si ! = null)

// close the input file
inputText. close () ,-
outputText.close();

} // end of try Lvl 1
catch(FileNotFoundException e)

catch(IOException e)
{
}

} // end of preProcess method

// adds unique header to each req
static private void appendPreProcess(String inFileName,

outFileName,
String

94

searchString,

appendString)
{

searchString

first index

try // Lvl 1
{
// read in the fileName

BufferedReader inputText = new BufferedReader(
new FileReader(inFileName));

BufferedWriter outputText = new BufferedWriter(
new FileWriter(outFileName));

// declarations/initializations
String si = "Dummy String";
String tokenTest;

// loop until the readline method sets si to null
while (si != null)
{

try // Lvl 2
{

si = inputText.readLine();
StringTokenizer st =

new StringTokenizer(si);

whi1e(s t.hasMoreTokens())
{

String

String

tokenTest = st.nextTokenf);

// checks each token to determine if the

// occurs in the token starting with the

if (tokenTest.regionMatches(true,

searchString,

0,

delimter string

in these two chars in

req num

searchString.length()))

// if the string occurs then
// adds appendstring to token
tokenTest = appendString + tokenTest;
// customized bit of code because the

// does not remove hyphens
// ** need to add capability to pass

//a char array.
// changes all periods to dashes in

outputText.write(tokenTest.replace('.','-'));
outputText.newLine();
}
else
{

outputText.wri te(tokenTest);
outputText.newLine();

}
} // end while(hasMoreTokens)

} // end of try Lvl 2

catch(IOException e)
{

si = null;

95

catch(NullPointerException e)
{
}
catch(NoSuchElementException e)
{
}

} // end of while(si != null)

// close the input file
inputText .close () ,-
outputText.close() ;

} // end of try Lvl 1
catch(FileNotFoundException e)
{
}
catch(IOException e)
{
}

} // end of appendPreProcess method

// ReqPreProcessor method divides a req document into requirement
// objects.

// ***Note the inFileName File must begin with a req number.
// Each requirements must begin with common delimiter.
// use the appendPreProcess method to do this

// The method takes three strings and a document object(container):
// String inFileName - Name of the source file (designed to work with a text
// document)
// String delimString - character(s) used to identify tokens
// *note: could be made more robust by passing a boolean to indicate
// if the delim is discarded. Currently it is not discarded.
// String reqDelimString - string used to identify the start of a req
static public void reqPreProcess(String inFileName,

String delimString,
String

reqDelimString,
DocObject

newDocument,
MasterMacroRequirement newMasterMacroReq,

boolean oneWayFlag)
{

try // Lvl 1
{
// read in the fileName

BufferedReader inputText = new BufferedReader(
new FileReader(inFileName));

// declarations/initializations
String si = "Dummy String";
String tokenTest;
String reqNum = "Req Number Not Set";

boolean firstReq = true;

Vector tempTokenList = new Vector();

// loop until the readline method sets si to null
while (si != null)
{

try // Lvl 2
{

si = inputText. readLine () ,-
StringTokenizer st =

new StringTokenizer(si, delimString);

while(st.hasMoreTokens())
{

tokenTest = st.nextToken();

96

reqDelimString,

0,

create

vector list

newDocument.addReqObj ect(reqNum,

newRequirement);

// checks for the start of a new requirement
if (tokenTest.regionMatches(true,

reqDelimString.length()))

// when not the first req number

//a req object
if (firstReq == false)
{

// create req object with

ReqObject newRequirement =
new ReqObject(reqNum,

tempTokenList);
// add req to document

newMasterMacroReq.add(newRequirement,false),

new set

which

strings

ReqObject

number to

tokenToReqLi s t

newDocument.addToTokenToReqList(

tokenTest,

reqNum);

}
else
{

// capture the new req number
reqNum = tokenTest,-
// clear the vector for the

// of tokens
tempTokenList.clear() ;

)
// capture req number
// set flag to start token capture
else
{

reqNum = tokenTest;
firstReq = false;

if (firstReq == false)
{

// add tokens to the temp list

// stores token in a vector of

// for creation of each new

tempTokenList.add(tokenTest);

if (oneWayFlag)
{

// add token and req

// documentmaster

97

master word
// add token to document

// token list

newDocument.addToTokenList(tokenTest),-

}

} // end while(hasMoreTokens)
st = null;

// end of try Lvl 2
catch(lOException e)

si = null;

catch(NullPointerException e)

catch(NoSuchElementException e)

} // end of while(si != null)
// handles the last requirement
if (!tempTokenList.isEmpty())
{

// create req object with vector list
ReqObject newRequirementl =

new ReqObject(reqNum, tempTokenList);
// add req to document
newDocument.addReqObj ect(reqNum, newRequirementl)
newMasterMacroReq.add(newRequirementl,true);
tempTokenList.clear () ,-

}

/ close the input file
inputText. close () ,-

// end of try Lvl 1
atch(FileNotFoundException e)

atch(lOException e)

} // end of reqPreProcess method

// Special Processor method to provide the sense of each
// word in a "\r" delimited list.
static private void senseProcess(String inFileName,

{
String outFileName)

try // Lvl 1
{
// read in the fileNames

BufferedReader inputText = new BufferedReader(
new FileReader (inFileName)) ,-

BufferedWriter outputText = new BufferedWriter(
new FileWriter (outFileName)) ,-

// declarations/initializations
String si = "Dummy String" ,-
String s2;

String delimString = "\r";

// loop until the readline method sets si to null
while (si != null)
{

try // Lvl 2
{

si = inputText.readLine0;

//tokenize based on the return at the end of the line
StringTokenizer st =

new StringTokenizerfsl, delimString);

while(st.hasMoreTokens())
{

s2 = st .nextTokenO ;
outputText.wri te(s2) ;

outputText.newLine();
outputText.newLine() ;

// getSenseOfWord(s2,outputText),-
outputText.newLine();
outputText.newLine();

} // end while(hasMoreTokens)
} // end of try Lvl 2

catch(IOException e)
{

si = null;
}
catch(NullPointerException e)
{
}
catch(NoSuchElementException e)
{
}

} // end of while(si != null)

// close the input file
inputText.close();
outputText.close();

) // end of try Lvl 1
catch(FileNotFoundException e)
{
}
catch(IOException e)
{
}

) // end of specPreProcess method
*/
/* // outputs a list of hashed requirements records

static private void wordListOutput(String fileName,
■ Hashtable

wordTable)
{
try
{

BufferedWriter outputText = new BufferedWriterf
new FileWriter(fileName));

RequirementWord wordRecord;

Enumeration wordList = wordTable.elements 0;

while (wordList.hasMoreElementsO)
{

wordRecord = (RequirementWord) wordList.nextElement0;
if(IwordRecord.getStopWordStatusO)
{
String output = wordRecord.getReqWordO ;
String tokenCount = wordRecord.getWordCount().toStringO;
outputText.write(output + "," + "\t" +"\t");
outputText.write(tokenCount);
outputText.newLine();
}
} // end of while (wordList.hasMoreElementsO)

outputText.close();
} // end of try

catch(FileNotFoundException e)

99

{
}

catch(IOException e)
{
}

} // end of wordListOutput
*/
/* // outputs matching req list

// assumes the matching method has allready been performed
// receives a list of requirement objects and an outputFileName
static public void reqListOutput(String outputFileName,

reqList)
{

try
{
BufferedWriter outputText = new BufferedWriter(

new FileWriter(outputFileName));

ReqObject reqRecord;
Hashtable reqMatchList;
RequirementWord tempWord;
Enumeration totalReqList = reqList.elements();
Enumeration enumMatchList;
Object s2;

while (totalReqList.hasMoreElements{))
{

// get a req from the list
reqRecord = (ReqObject) totalReqList.nextElement0;

// create an enumeration of the matching req
enumMatchList = reqRecord.getMatchList().elements() ;

// output requirement number
outputText.write(reqRecord.getReqNumber());
outputText.newLine();

while (enumMatchList.hasMoreElements())
{
s2 = enumMatchList.nextElement();

if (s2 instanceof RequirementWord)
{

tempWord = (RequirementWord)s2,•
outputText.write(" " +

tempWord.getReqWord()

tempWord. getWordCount ()) ;

Vector

outputText.newLine();

}

*/
/*

} // end of while (totalReqList.hasMoreElements())
outputText. close () ;
} // end of try

catch(FileNotFoundException e)
{
}

catchdOException e)
{
}

} // end of reqListOutput

// This method wraps a simple method developed by Oliver Steele
// Copyright 1998 by Oliver Steele.

// The wrapper allows the method to take a given word and output

100

// the sense into the BufferedWriter.

// Changes include a generic string in lieu of the example word used
//to compute senses, changing the output from the console to an
// output file using BufferedWriter, and adding a try/catch to handle
// situations where the word has no sense with output feedback to the
// BufferedWriter.

// Changes made by Eric Stierna, Naval Postgraduate School
// Aug 2000

static private void getSenseOfWord(String sensedword,
BufferedWriter

outputText)
{
try

{
DictionaryDatabase dictionary = new FileBackedDictionary();
IndexWord word = dictionary.lookupIndexWord(POS.NOUN, sensedword);

try
{
Synset [] senses = word. getSenses () ,-

int taggedCount = word.getTaggedSenseCount {) ,-

outputText.writeC'The " + word.getPOSO.getLabel0 + * " + word.getLemmaO
+ " has " + senses.length + " sense" + (senses.length == 1 ? "" : "s") + " ");

outputText.write("{");

if (taggedCount == 0)
{

outputText.write("no senses from tagged texts");
}
else

outputText.write)"first " + taggedCount + " from tagged texts");
}

outputText.write(")\n\n");

for (int i = 0; i < senses.length; ++i) {
Synset sense = senses[i];
outputText. write!"" + (i + 1) + ". " + sense. getLongDescriptionO) ;

}
}
catch(Exception e)

outputText.write("No sense found in db for " + sensedword + ".");
}

}
catch(IOException e)
{

System.out.println("IOException!!!");
.)

} // end of getsense method
*/

// outputs matching req list
// assumes the matching method has allready been performed
static public void resultComparisonOutput(MatchObject manMatchObject,

MatchObject
autoMatchObj ect,

String outFileName,
String

outReqFileName)
{
try

101

BufferedWriter outputText = new BufferedWriter(
new FileWriter (outFileName)) ,-

BufferedWriter outputMatchList = new BufferedWriter!
new FileWriter(outRegFileName));

// get the Hashtable, then create an
// iterator to step through each manual req
Enumeration autoEnum = autoMatchObject.

getMatchedReqList().elements(

// intersection of matches divided by the manual matches
double matchPrecision = 0.0;

// intersection of matches divided by the manual matches
double matchRecall = 0.0;

int simArray[] = new int[11];
int matchArray[] = new int[11];
double simlncrementn = { 0.00005, 0.00005, 0.0001, 0.0005, 0.001,

0.005, 0.01, 0.05, 0.1, 0.5, 0.9};

// loop till all manual matches have been evaluated
// against the auto matches,
while (autoEnum.hasMoreElements())
{

ReqSimObject tempObject =
(ReqSimObject) autoEnum.nextElement();

if(manMatchObject.getMatchedReqList().
containsKey(tempObj ect.getKey()))

{

if (tempObject.getSimilarityVal0 > simlncrement[10])

++matchArray[10] ;

f (tempObject.getSimilarityVal() > simlncrement[9])

++matchArray[9] ,-

f (tempObject.getSimilarityVal() > simlncrement[8])

++matchArray[8];

f (tempObject.getSimilarityVal() > simlncrement[7])

++matchArray[7] ,-

f (tempObject.getSimilarityVal() > simlncrement[6])

++matchArray[6];

f (tempObject.getSimilarityVal() > simlncrement[5])

++matchArray[5];

f (tempObject.getSimilarityVal() > simlncrement[43)

++matchArray [4],-

f (tempObject.getSimilarityVal() > simlncrement[3])

++matchArray[3];

f (tempObject.getSimilarityVal() > simlncrement[2])

102

}
else
{

++matchArray[2] ,-

if (tempObject.getSimilarityVaK) > simlncrement[1])

++matchArray[l];

if (tempObject.getSimilarityVaK) <= simlncrement[0])

++matchArray[0];

outputMatchList.write(tempObj ect.getBaseReqNumString() +
"," + tempObject.getMatchReqNumStringO + "," +
tempObject.getSimilarityVal()) ;

outputMatchList.newLineO;

if (tempObject.getSimilarityVal() > simlncrement[10])

++simArray[10];

f (tempObject.getSimilarityVal() > simlncrement[9])

++simArray[9];

f (tempObject.getSimilarityVaK) > simlncrement[8])

++simArray[8];

f (tempObject.getSimilarityVaK) > simlncrement[7])

++simArray[7];

f (tempObject.getSimilarityVal() > simlncrement[6])

++simArray[6];

f (tempObject.getSimilarityVaK) > simlncrement[5])

++simArray[5];

f (tempObject.getSimilarityVal() > simlncrement[4])

++simArray[4];

f (tempObject.getSimilarityVaK) > simlncrement[3])

++simArray[3];

f (tempObject.getSimilarityVaK) > simlncrement[2])

++simArray(2];

f (tempObject.getSimilarityVaK) > simlncrement[1])

++simArray[l];

f (tempObject.getSimilarityVaK) <= simlncrement[0])

++simArray[0];

int i = 10;
while(i>=0)

if (manMatchObject.getMatchCountO != 0)
{

matchRecall = (double)matcnArray[i]/

103

matchArray[i]);

(double)manMatchObject.getMatchCount();
}
if ((simArray[i] + matchArray[i]) != 0)
{

matchPrecision = (double(matchArray [i]/
(double)(simArray[i] +

}
System.out.printlnO ;
System.out.printlnl"Similiarity Value: " + simlncrement [i]) ,-
System.out.println("Total Manual Matches = "

+
manMatchObject.getMatchCount());

System.out.println("Total Matches Found by Tool(Base Case)= '
+ (simArray[i] +

matchArray[i])) ;
System.out.println("Intersection Count = "

+ matchArray[i]) ;
System.out.println("Precision = " + matchPrecision) ,-
System.out.println("Recall = " + matchRecall);

outputText.write(matchPrecision + "," + matchRecall + "," +
matchArray[i] + "," + (simArray[i] + matchArray[i])) ;

outputText.newLine() ;

i--;
}
outputText.close();
outputMatchList.close() ;

} // end of try
catch(FileNotFoundException e)
{
>

catch(IOException e)
{
}
} // end of resultComparisonOutput

static public void macroResultComparisonOutput
(MacroMatchObj ect

manMatchObject,
MacroMatchObj ect

autoMatchObject,
String outFileName,
String

outReqFileName)
{
try
{

BufferedWriter outputText = new BufferedWriter(
new FileWriter(outFileName));

BufferedWriter outputMatchList = new BufferedWriter(
new FileWriter(outReqFileName));

// get the Hashtable, then create an
// iterator to step through each manual req
Enumeration autoEnum = autoMatchObject.

getMatchedReqList().elements();

// intersection of matches divided by the manual matches
double matchPrecision = 0.0;

// intersection of matches divided by the manual matches
double matchRecall = 0.0;

104

int simArray[] = new int[11];
int matchArrayt] = new int[11],-
double siinlncrement[] = { 0.00005, 0.00005, 0.0001, 0.0005, 0.001,

0.005, 0.01, 0.05, 0.1, 0.5, 0.9};

// loop till all manual matches have been evaluated
// against the auto matches,
while (autoEnum.hasMoreElements())
{

ReqSimObject tempObject =
(ReqSimObject) autoEnum.nextElement();

if(manMatchObject.getMatchedReqList().
containsKey(tempObj ect.getKey()

}
else
{

if (tempObject.getSimilarityValO > simlncrement [10])

++matchArray[10];

f (tempObject.getSimilarityValO > simlncrement [9])

++matchArray[9] ;

f (tempObject.getSimilarityValO > simlncrement[8])

++matchArray[8];

f (tempObject.getSimilarityValO > simlncrement[7])

++matchArray[7];

f (tempObject.getSimilarityValO > simlncrement[6])

++matchArray[6];

f (tempObject.getSimilarityValO > simlncrement[5])

++matchArray[5];

f (tempObject.getSimilarityValO > simlncrement[4])

++matchArray [4],-

f (tempObject.getSimilarityValO > simlncrement[3])

++matchArray[3];

f (tempObject.getSimilarityValO > simlncrement[2])

++matchArray[2];

f (tempObject.getSimilarityValO > simlncrement[1])

++matchArray[1] ;

f (tempObject.getSimilarityValO <= simlncrement[0])

++matchArray[0];

outputMatchList .write (tempObj ect. getBaseReqNumString () +
"," + tempObject.getMatchReqNumStringO + "," +
tempObject.getSimilarityVal0) ;

outputMatchList.newLine();

if (tempObject.getSimilarityValO > simlncrement[10];
{

++simArray[10];

105

f (tempObject.getSimilarityVal () > simlncrement [9])

++simArray[9];

f (tempObject.getSimilarityVal() > simlncrement[8])

++simArray[8];

f (tempObject.getSimilarityVal() > simlncrement[7])

++simArray[7],-

f (tempObject.getSimilarityVal() > simlncrement[6])

++simArray[6];

f (tempObject.getSimilarityVal() > simlncrement[5])

++simArray[5];

f (tempObject.getSimilarityVal() > simlncrement[4])

++simArray[4];

f (tempObject.getSimilarityVal() > simlncrement[3])

++simArray[3];

f (tempObject.getSimilarityVal() > simlncrement[2])

++simArray[2];

f (tempObject.getSimilarityVal() > simlncrement[1])

++simArray[l],-

f (tempObject.getSimilarityVal() <= simlncrement[0])

++simArray[0];

}
}
int i = 10;
while(i>=0)
{

if (manMatchObject.getMatchCount() != 0)
{

matchRecall = (double)matchArray[i]/

(double)manMatchObject.getMatchCount () ,-
}
if ((simArray[i] + matchArray[i]) != 0)
{

matchPrecision = (double)matchArrayfi]/
(double)(simArrayti] +

>
System.out .printlnO ;
System.out.println("Similiarity Value: " + simlncrement[i]);
System.out.println("Total Manual Matches = "

+
manMatchObj ect. getMatchCount ()) ; "''

System.out.printlnt"Total Matches Found by Tool (Base Cass)---
+ (simArrayti] +

matchArray[i]));
System.out.println("Intersection Count = "

+ matchArray[i]) ,-
System.out.printlnt"Precision = " + matchPrecision);
System.out .println("Recall = " + matchRecall) ,-

matchArray[i]);

106

outputText.write(matchPrecision + "," + matchRecall + "," +
matchArray[i] + "," + <simArray[i] + matchArray[i]) +
"," + manMatchObj ect.getMatchCount()) ;

outputText.newLine();

i--;
}
outputText.close() ;
outputMatchList. close () ;

} // end of try
catch(FileNotFoundException e)
{
}

catch(lOException e)
{
}
} // end of macroResultComparisonOutput

// this method takes a file containing a list of words that must
// be destemed and returns a destemmed list of words.
static public void destemPreProcess(String newDestemWordFile,

String validWordFile,
String newDestemOutputFile)

{
try // Lvl 1
{

// read in the fileName
BufferedReader inputText = new BufferedReader(

new FileReader(newDestemWordFile));

// open the output file buffer stream
BufferedWriter outputText = new BufferedWriter(

new FileWriter(newDestemOutputFile));

// declarations/initializations
String si = "Dummy String";
String delimString = "\n";

Destem newDestemObject = new Destem ();
HashSet hs = new HashSet();
newDestemObject.hashKnownWords(validWordFile, hs) ;

// loop until the readline method sets si to null
while (si != null)
{

try // Lvl 2
{

// read in a line from the file
si = inputText.readLine();

// tokenize the line
StringTokenizer st =

new StringTokenizer(si, delimString);

// loop while more tokens exist
while(st-hasMoreTokens())

// write the output from the destem method
//to the output file
outputText.write(

newDestemObject.destem(st.nextTokenO,hs));
outputText.newLine();

} // end while(hasMoreTokens)
} // end of try Lvl 2

catch(lOException e)
{

System.out.printIn("10 Exception");
}

107

catch(NullPointerException e)
{
}

} // end of while(si != null)

// close the input file
inputText. close () ,-
//close the output file
outputText.close() ;

} // end of try Lvl 1
catch(FileNotFoundException e)
{
}
catch(IOException e)
{
}

}

static public void reportMemory()
{

Runtime rt = Runtime.getRuntime();
long total = rt.totalMemory();
long free = rt.freeMemory();
long used = total - free;
System.out.printlnl "Used Memory" + used);
System.out.println("Free Memory" + free);
System.out.printlnl "Total Memory" + total) ,-

}

public static void main(String args[])
{

// stop word text file
String stopList =

"sourceText/stopList.txt";
// stop word text file
String pPStopList =

"sourceText/pPStopList.txt";
// source text file

String sourceTestFile =
"sourceText/SSS18Jan00.txt";

// "Classes/parseproj/sourceText/testinl.txt"
// "sourceText/testin2 . txt",-

String destemOutputFile =
"sourceText/destemOutputFile.txt";

// source text file
String jmpsTestFile =

"sourceText/jmpsTestFile.txt";

String newTestFile =
"sourceText/newTestFile. txt" ,-

// source text file
String ampsTestFile =
"sourceText/AMPS SSS v2 tab delim.txt";

// "sourceText/testin.txt";
// source text file
String intAmpsTestFile =

"sourceText/intAmpsTestFile.txt" ;
// source text file
String finalAmpsTestFile =

"sourceText/f inalAmpsTestFile.txt" ,-
// output text file
String outputFile =

"sourceText/outputFile. txt",-
// output text file
String jmpsOutFile =

"sourceText/jmpsOutFile.txt" ;
// output text file

108

String ampsOutFile =
"sourceText/ampsOutFile.txt";

// output text file
String ampsoutputFile =

"sourceText/ampsoutputFile.txt" ;
// output text file
String jmpsoutputFile =

"sourceText/jmpsoutputFile.txt";
// input matching text file
String manualMatchFile =

// "sourceText/AMPS JMPS Macro Matching.txt";
"sourceText/AMPS JMPS Matching.txt";

// "sourceText/spec Match File.txt";
// input matching text file
String outputManualMatchFile =

"sourceText/AMPS JMPS 1st Pass.txt";
// input matching text file
String validWordFile =

"sourceText/validwords.txt";
String jmpsPartl =

"sourceText/JMPS Part l.txt";
String jmpsPart2 =

"sourceText/JMPS Part 2.txt":
String jmpsPart3 =

"sourceText/JMPS Part 3.txt";
String recallPrecisionOutput =

"sourceText/recallPrecisionOutput.txt";
String jmpsPart4 =

"sourceText/JMPS Part 4.txt";
String jmpsPart5 =

"sourceText/JMPS Part 5.txt";
String jmpsPart6 =

"sourceText/JMPS Part 6.txt";
String jmpsPart7 =

"sourceText/JMPS Part 7.txt";
String jmpsPart8 =

"sourceText/JMPS Part 8.txt";
String jmpsPart9 =

"sourceText/JMPS Part 9.txt"
String outputMatchList =

"sourceText/outputMatchList.txt" ;
String manualMatchOutputFile =

"sourceText/manualMatchOutputFile.txt" ;
String manualMacroMatchOutputFile =

" sourceText/manualMacroMatchOutputFile.txt";
String outputMacroManualMatchFile =

"sourceText/outputMacroManualMatchFile, txt" ;
String matchOutputFile =

"sourceText/matchOutputFile.txt",-
Hashtable jmpsWordTable = new HashtableO;
Hashtable ampsWordTable = new Hashtable();
Hashtable unalteredReqList = new HashtableO;

/* // create a stop word list in a hash table
boolean stopFlag = true;
fileReadAndParse(pPStopList, jmpsWordTable, stopFlag);

String JMPSReqDelimString = "JMPS-0";
chart] reqNumPunct = {'.','-'};
String adjReqNum = "";
buildUnalteredReqList(sourceTestFile, unalteredReqList,

adjReqNum, reqNumPunct, JMPSReqDelimString);

// tokenize the source document
String delimString = ">-!@$%"*()+=|{}[]:;'<,>.? \t\n\r\f\"";
//set this value to one "1" to change all tokens to lower case
// except acronyms.
int lowerCaseSelect = 1;
preProcess(sourceTestFile, newTestFile, delimString,

jmpsWordTable,

lowerCaseSelect)

109

destemPreProcess(newTestFile, validWordFile,jmpsTestFile) ,-

// add tokens from the source file to the hashtable
stopFlag = false;

fileReadAndParse(jmpsTestFile, jmpsWordTable, stopFlag) ,-

// add unique idenitifers to the requirement number string
String searchString = "3.";

// String appendString = "amps-";
String appendString = "AMPS-";

appendPreProcess(ampsTestFile, intAmpsTestFile, searchString,
appendString);

// create another stop word list hash table
stopFlag = true;
fileReadAndParsef pPStopList, ampsWordTable, stopFlag);

// tokenize the next source file
delimString = " '~!@$%~* ()+= | {}[] : ;'<,>. ? \t\n\r\f \"" ,-
preProcess(intAmpsTestFile, ampsOutFile,

delimString, ampsWordTable, lowerCaseSelect),-

destemPreProcess(ampsOutFile, validWordFile,finalAmpsTestFile);

// add the tokens to the hash table
stopFlag = false;
fileReadAndParse(finalAmpsTestFile, ampsWordTable, stopFlag);

// add unique idenitifers to the requirement number string
String newSearchString = " 3 ." ,-
String newAppendString = "AMPS-";
appendPreProcess(manualMatchFile, outputManualMatchFile,

newSearchString, newAppendString) ,-
"I

II create the JMPS DocObject shell
DocObject jmpsDocument = new DocObject(jmpsTestFile);

// build a docObject using the two strings to indicate the token
// delimiters and the identifying string for the start of a requirement
String newdelimString = "\n";
String reqDelimString = "JMPS-0";
MasterMacroRequirement JMPSMasterMacro = new

MasterMacroRequirement(reqDelimString);

reqPreProcess(jmpsTestFile, newdelimString, reqDelimString,
jmpsDocument, JMPSMasterMacro, true);

JMPSMasterMacro.updateMacroPVals(jmpsDocument);

System.out.println("JMPS Complete");

// create the AMPS DocObject shell
DocObject ampsDocument = new DocObject(finalAmpsTestFile);

// build a docObject using the two strings to indicate the token
// delimiters and the identifying string for the start of a requirement
newdelimString = "\n";
reqDelimString = "AMPS-3";
MasterMacroRequirement AMPSMasterMacro = new

MasterMacroRequirement(reqDelimString);

reqPreProcess(finalAmpsTestFile, newdelimString, reqDelimString,
ampsDocument, AMPSMasterMacro, false);

AMPSMasterMacro.updateMacroPVals (ampsDocument) ,-

System, out. println("AMPS Complete") ,-

System, out .println (" Begin Macro-Matching") ,-

110

MacroMatchObject newMacroMatch = new MacroMatchObject!
AMPSMasterMacro, ampsDocument, JMPSMasterMacro,

jmpsDocument) ,-

newMacroMatch.matchListOutput(matchOutputFile) ;

String ampsDelimString = "AMPS-3";
String jmpsDelimString = "JMPS-0";
MacroMatchObject manualMacroMatchObject = new MacroMatchObject(

AMPSMasterMacro, JMPSMasterMacro,
outputManualMatchFile, ampsDelimString,
jmpsDelimString);

manualMacroMatchObject .matchListOutput (manualMacroMatchOutputFile) ,-

macroResultComparisonOutput(manualMacroMatchObject, newMacroMatch,
recallPrecisionOutput, outputMatchList);

System.out.println("Macro-Matching Complete");

System.exit(0);

}
} // end of WordParseMacroReq

111

THIS PAGE INTENTIONALLY LEFT BLANK

112

LIST OF REFERENCES

AMPS97

AORD97

ARAN93

BAT098

BERZ89

BERZ91

BJOR98

CLAR96

COHE92

DAVI94

DIAZ87

FRAK97

FRAN95

Aviation Mission Planning System (AMPS): System
Sub-System Specification, 05 August 1997
AMPS Operational Requirements Document, 5 June
1997.
Arango, G., Schon, E., Penttengill, R., "Design as
evolution and reuse", Proceedings Advances in
Software Reuse., Selected Papers from the Second
International Workshop on Software Reusability,
1993, Page(s): 9 -18
Batory, D., "Product Line Architectures", Invited
Presentation: Smalltalk and Java in Industry and
Practical Training, Erfurt, Germany, October 1998.
Berzins, V., Kopas, R., "A Student's Guide to
Spec", Naval Postgradute School, Monterey, CA.
Berzins, V., Luqi, "Software Engineering with
Abstractions," Addison-Wesley, 1991.
Bjorner, D., "Domains as a Prerequisite for
Requirements and Software Domain Perspectives &
Facets, Requirements Aspects and Software Views",
International Workshop RTSE, 1998, Page(s): 1-42
Clarke, E., Wing, J., ET AL., "Formal Methods:
State of the rt and Future Directions", ACM
Computing Surveys Vol. 28, No. 4, December 1996.
Page(s): 626 -643
Cohen,S., Stanley, J., Peterson, A., Krut, R.,
"Application of Feature-Oriented Domain Analysis
to the Army Movement Control Domain", Technical
Report, CMU/SEI-91-TR-28 ESD-91-TR-28, June, 1992.
Davis, M., Hawley, H., "Reuse of software process
and product through knowledge-based adaptation",
Proceedings., Third International Conference on
Software Reuse: Advances in Software Reusability,
1994 , Page(s): 44 -52
Prieto-Diaz, R., "Domain analysis for
Reusability," Proceedings of COMPSAC 87, The 11th
Annual International Computer Software and
Applications Conference, cat.no. 87CH2447-1 OCT.
7-9, 1987, Page(s): 23 -29
Frakes, W. , Prieto-Diaz, R. , Fox, C, "DARE-COTS.
A domain analysis support tool", Proceedings.,
XVII International Conference of the Chilean
Computer Science Society, 1997, Page(s): 73 -77
France, R., Horton, T., "Applying Domain Analysis
and Modeling: An industrial Experience",
Proceedings of the 17th International Conference

113

on Software Engineering, Symposium on Software
Reusability, April 1995, Page(s) 206-214.

FRAN97 Frankel, M., and Winant, B., "A Taxonomy for
Domain Partitioning and Reuse", Object Magazine,
March 1997.

GRAH98 Graham, I., Requirements Engineering and Rapid
Development, Addison Wesley Longman Limited, 1998

GREE94 Greenspan, S., Mylopoulos, J., Borgida, A., "On
Formal Requirements Modeling Languages:RML
Revisited", Proceedings. ICSE-16., 16th
International Conference on Software Engineering,
1994. Page(s): 135 -147

HALL96 Hall, A., "Using formal methods to develop an ATC
information system", IEEE Software, Volume: 13 2 ,
March 1996 , Page(s): 66 -76

HAMI93 Hamilton, J., "SEE integration to support
megaprogramming", Proceedings., Software
Engineering Environments Conference, 1993,
Page(s): 17 -22

IBRA96 Ibrahim, 0., A Model and Decision Support
Mechanism for Software Requirements Engineering,
Ph.D Dissertation, Naval Postgraduate School,
September 1996

INF098 Information Assembly Automation Web Site,
http://www.infoauto.com/articles/sgml/markup-
verifv.htm.1998

JACK95 Jackson, M, Software Requirements and
Specifications, ACM Press, 1995

JMPS99 Joint Mission Planning System(JMPS): System Sub-
System Specification, 15 November 1999.

JMPS99a Joint Mission Planning System Web Site,
https: //imps.chinalake.naw.mil. November 1999.

KOT098 Kotonya, G., Sommerville, I., Requirements
Engineering: Process and Technique, John Wiley &
Sons Ltd., 1998

LARM97 Larman, C, Applying UML and patterns: an
introduction to object-oriented analysis and
design, Prentice-Hall, Inc., 1997

LIM98 Lim, W., Managing Software Reuse, Prentice Hall,
Inc., 1998

LUQI97 Luqi, and Goguen, J., "Formal Methods: Promises
and Problems", IEEE Software, Vol. 14 No. 1, Jan
1997, Page(s): 73-85.

MAID91a Maiden, N., and Sutcliffe, A., "Analogical
Matching For Specification", Proceedings., 6th
Annual Knowledge-Based Software Engineering
Conference, 1991, Page(s): 108 -116

MAID91b Maiden, N., and Sutcliffe, A., "Reuse of analogous
specifications during requirements analysis", .,
Proceedings of the Sixth International Workshop on

114

Software Specification and Design, 1991, Page(s):
220 -223

MAID93a Maiden, N., and Sutcliffe, A., "Case-based
reasoning in software engineering", IEE Colloquium
on Case-Based Reasoning, 1993 , Page(s): 2/1 -2/3

MAID93b Maiden, N., and Sutcliffe, A., "A computational
mechanism for parallel problem decomposition
during requirements engineering", Proceedings of
the 8th International Workshop on Software
Specification and Design, 1996 , Page(s): 159 -163

MAID93C Maiden, N., and Sutcliffe, A., "People-oriented
software reuse: the very thought", Proceedings
Advances in Software Reuse., Selected Papers from
the Second International Workshop on Software
Reusability, 1993, Page(s): 176 -185

MAID94a Maiden, N. , and Sutcliffe, A., "Requirements
Critiquing Using Domain Abstractions", Proceedings
of the First International Conference on .
Requirements Engineering, 1994, Page(s): 184 -193

MATH00 Mathews, Hunter, Software Engineer, Interview by
author, May 31, 2000, Huntsville, AL.

MILS96 MIL-STD-2525A, "Department of Defense Interface
Standard: Common Warfighting Symbology", 15
December 1996.

NEIL98 Neil, M.; Ostrolenk, G.; Tobin, M.; Southworth,
M., "Lessons from using Z to specify a software
tool", " IEEE Transactions on Software
Engineering", Volume: 24 Issue: 1 , Jan. 1998
Page(s): 15 -23

PORT80 Porter, M.F., "An Algorithm for Suffix Stripping",
Program, Vol.14, 1980, Page(s): 130-137

ROWE99 Rowe, N., "Precise and Efficient Retrieval of
Captioned Images: The MARIE Project", Library
Trends. Vol. 45, No. 2, Fall 1999, Page(s): 475-
495

SALT88 Salton, G., Buckley, C, "Term-Weighting
Approaches in Automatic Text Retrieval",
Information Processing and Management, Vol. 24,
1988, Page(s): 513-523

SMIT92 Smith, T., "READS: a requirements engineering tool
", Proceedings of IEEE International Symposium on
Requirements Engineering, 1993, Page(s): 94 -97

SOMM97 Sommerville, I., and Sawyer, P., Requirements
Engineering, a good practice guide, John Wiley &
Sons, Inc., 1997.

SUN99 Sun Microsystems Web Site, Java 2 Platform
Standard Edition vl.3,
http: //-Java, sun. com/-j2se/l. 3/docs/api/index.html,
April 2000.

115

SUTC94 Sutcliffe, A., and Maiden, N., "Domain modeling
for reuse", Proceedings., Third International
Conference on Software Reuse: Advances in Software
Reusability , 1994 , Page(s): 169 -177

SUTC98 Sutcliffe, A., Maiden, N., "The domain theory for
requirements engineering", IEEE Transactions on
Software Engineering, Volume: 24 3 , March 1998 ,
Page(s): 174 -196

W3C98 W3C Recommendation, Extensible Mark-up
Language(XML) 1.0, http://www.w3.org/TR/REC-xml
February 1998.

WALE99 Wales, Terry, Senior Engineer, System Dynamics
Incorporated, PM AEC, Huntsville AL. Interview by
author, Huntsville, AL., 13 Oct 99.

116

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
8725 John J. Kingman Rd., STE 0944
Fort Belvoir, Virginia 22060-6218

2

2. Dudley Knox Library, Code 52
Naval Postgraduate School
411 Dyer Rd.
Monterey, California 93943-5101

2

3. Dr. Dan Boger, Code CS
Chariman, Department of Computer Science
Department of Computer Science
Monterey, California 93943-5118

1

4. Dr. Man-Tak Shing, Code CS/Sh
Naval Postgraduate School
Department of Computer Science
Monterey, California 93943-5118

2

5. Dr. Neil Rowe, Code CS/Rp
Naval Postgraduate School
Department of Computer Science
Monterey, California 93943-5118

1

6. Mr. Terry Wales
PM, AEC
950 Explorer Blvd.
Huntsville, AL 35806

1

7. Captain Eric Stierna
SCI-TECH, Box 131
Unit 45015
APO, AP 96338-5015

117

1

