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Foreword 

The use of smart materials for rotorcraft control surface actuation at laboratory scale has performed large strides 
forward and the scale up of these results from laboratory into prototype demonstrations is imminent and could 
happen in the near future. However, the introduction of the smart materials technology to missile controls is 
laeeine behind Clear opportunities exist for transitioning the knowledge accumulated in the smart materials 
rotorcraft projects to missile control applications that would make the latter more agile, easier to control and 

less expensive. 
Consistent work on model-scale active-material missile control surfaces was performed at the University of 
Auburn (Barret 1993 1996) The studies were mainly focused on developing active-material actuated missile 
fins The initial'experiments were valuable because they highlighted the challenges and opportunities associated 
with the use of smart materials for missile fin actuation. Though pioneering, these experiments were not able to 
achieve the desired actuation performance. During the wind tunnel experiments, sizable actuation angles could 
onlv be obtained at the mechanical resonance. The main reason for this behavior may lie in the basic lack of 
power and energy inherent the in selected smart materials actuation solution. A few piezoelectric patches fixed 
on an airfoil skin or on a flexspar simply do not have the needed energy contents to effect the required 
displacement when aerodynamics flow is present. A careful consideration of the steady and oscillatory 
aerodynamic loads associated with the missile fin movement, and the subsequent energy availability and energy 
transfer analysis performed on the actuator/displacement amplifier assembly is needed. Such an analysis, when 
performed, would reconcile the fundamentals at the beginning of the design cycle and ensure success of the 
prototype testing, in the laboratory, in the wind tunnel, and in actual flight. 

In this report we address these fundamental questions and investigate the feasibility of using smart-materials 
technology for the missile fin control surfaces actuation from the required energy/power point of view. Due to 
the short-time small-effort characteristics of the present project, our analysis was performed at fundamental 
concept level A reduced maneuver envelope was defined at Mach 1 and zero AOA, defining the target va ues 
for the missile fin deflection, hinge moment, and actuation rate. We have also determined how these values 
translated into requirements for the energy and power of the smart material actuation device under the 
conditions of various actuation signals. Further, we investigated if commercial-off-the-shelf (COTS) smart 
materials devices exist that could satisfy these requirements. The reported research showed that present COTS 
smart materials devices are able to meet the power/energy requirements and that optimal design of the 
displacement amplification mechanism can be performed. 
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Statement of the problem studied 

Objectives 
The objective of the reported research was to evaluate the feasibility of using smart materials for actuating 
missile flight control surfaces. 

Problem description 

Reduced missile flight envelope 
The missile control surfaces are subject to airstream forces and moments generated by two concurrent factors: 
(a) missile angle of attack (AOA); and (b) control deflection, 8 (Figure 1). The angle of attack produces the 
quasi-static loading, over which the dynamic loading generated by the control deflection, S, is superposed. The 
resulting airloads also depend on control surface geometry and Mach number. For current missile technology, 
the Mach number may vary from just subsonic (M< 1) to high supersonic (M = 3). 

19-cm 

8.9-cm 

10.7-cm 

Figure 1     Missile control surface loads modeling: a) missile in flight; b) moment and deflection; c) fin plan form. 

We considered a generic missile fin of 19-cm x 10.7-cm x8.9-cm and 60-deg leading edge sweep (Figure 1). 
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Figure 2    Steering moment delivery through missile fin deflection, at zero AOA 

A required steering moment for maneuvering the missile Ms can be provided by the aerodynamic force and 
moment on the fin, Lf and ^respectively (Figure 2, (a) and (b)). For high AOA and supersonic Mach, the drag 
contribution to the steering moment should also be taken into account. Based on the equations presented in 
Figure 2, the hinge moment can be related to the required steering moment as follows: 
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For a symmetric profile at zero angle of attack (AOA), the hinge moment Mh can be expressed as a linear 
function of the missile fin deflection 8. 

Mh=S(e-Cs
L+Cs

M) 

The quantitative plot of the above equation shows the spring-like behavior of the aerodynamic control surface 
(Figure 3). A reduced actuation envelope (hinge moment vs. fin deflection), achievable with commercially-off- 
the-shelf (COTS) smart materials actuators, was identified 
based on the required steering moment (Table 1). 

Table 1 Preliminary requirements for a smart-materials actuated 
missile fin 

Moment Mpeak = 2.5 Nm ; 

Deflection 8= +/- 3 deg. 

Rate 8 = 3.5 rad/s 

In order to meet the missile fin actuation requirements, one has 
to investigate both the actuation type (e.g. sinusoidal, step, 
etc.) and the capability of the COTS devices. 

-3J 

Mach = 1 

AOA = 0 deg 

Fin deflection (deg) 

Figure 3 Moment-deflection    diagram    for 
AOA = 0° 
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Figure 4    Meeting the requirements involves input signal design and smart-materials device capabilities 

Sine, ramp and step input signal requirements for missile fin actuation 

The actuation of the missile fin can be done using harmonic, step, or ramp excitations. Alternatively, special 
amplitude-modulated signals can be used to meet the power requirements. The variations of the required energy 
and power within a cycle for the above-mentioned excitations are used to determine whether COTS smart 
materials devices are capable of actuating the missile fin with a given input signal (Figure 5). 
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Figure 5    Variation of the required actuation energy and power within a cycle: a) input signal; b) required energy 
within a cycle; c) required power within a cycle 

The peak values in terms of required energy and power (Table 2) were compared with the energy/power 
capabilities of the COTS smart material devices. 

Table 2 Preliminary requirements for a smart-materials actuated missile fine 

Sine actuation Ramp actuation Step actuation 

Peak energy 
per cycle 

Epeak ~ "T "* peak"peak 

= 0.065 J 

Epeak = ^ peak" peak 

= 0.13 J 
Epeak = Mpeak"peak 

= 0.13 J 

Peak power 
per cycle 

P     -E   >•*'* 1 peak      '-'peak    « c 

= 6.87W 

Ppeak = Mpeak$ 

= 8.75 W 

- 

Figure 6 Physik Instrumente 
        P-245.70 PZT actuator 

Induced strain actuation smart materials device capabilities 
We have identified two design concepts that employ the smart materials technology to missile fin actuation. The 
direct actuation concept uses active material stacks (Figure 4) via a displacement amplification mechanism in 
order to produce sizable displacements of the actuated structure (Figure 6). This approach has the advantage of 
the very high frequency response, and high forces specific to smart material stacks. Thus, the most significant 
metric when comparing direct actuation is maximum energy available from the smart material device. The 
limitation on the available power comes mostly from the power amplifier maximum current capabilities. 

Another design concept uses the smart-materials motors that offer the advantage of far greater displacement 
output than smart-material stack of comparable mass and volume (Figure 7). The higher energy density of 
smart-material motors is attributed to the "frequency rectification" or "power ratcheting" concepts, whereby the 
considerable energy magnification per cycle is obtained through frequency devolution within the power 
conservation principle. 
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(a) (b) 

Figure 7    a) Burleigh Inchworm Linear Motors; b) Piezo Systems Ultrasonic Motor 

Displacement amplification concepts 
The inherent small strains capabilities of the smart material devices make necessary a displacement 
amplification mechanism for the case of direct actuation. A simple model (Figure 8) was consider, that 
transforms the linear motion of the active material device into rotary motion needed for the actuation of the 
missile fin. This model considered the displacement amplification mechanism as a black box with 2 variables: 
the gain G and the work efficiency rjm, defined as: 

G = ^- Vm = 
F'-u' 

We have performed feasibility calculations using the preliminary requirements outlined in Table 1 and the 
actuation scheme shown in Figure 8, with ro = 5 mm. 
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Figure 8 Schematic drawing of the displacement amplification process 



Summary of the most important results 

How the COTS smart material devices meet the reduced envelope requirements 
We have compared the preliminary requirements of the reduced envelope with the maximum attainable 
performances of the active material devices, using information from manufacturers. 

The results of this comparison for the direct actuation of the missile fin show that the required energy values fall 
within the capabilities of commercially available smart materials actuators for both sine and ramp actuation 
(Figure 9a). Due to the large bandwidth of the direct actuation devices, meeting the energy requirements ensures 
the capability of satisfying the power requirements. This statement is true within the limitations of the power 
amplifiers of providing the required input signal (i.e. shape, maximum value and frequency) to the load 
represented by the smart material devices. 
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Present commercially available actuators meeting the missile fin reduced envelope energy 
requirements: a) comparison of the direct actuation devices deliverable energy with the required 
energy for sine and ramp input; b) comparison of the smart materials motors maximum deliverable 
power with the required power for sine and ramp excitations 

Comparison of smart materials motors power capabilities with the threshold values given by the power peaks in 
Figure 5c shows that both up-to-date COTS linear and ultrasonic rotary motors fell short of fulfilling the power 
requirements (Figure 9b). 

New trends in smart materials motors are pursued in order to achieve more power at the same or lower cost as 
the rotary ultrasonic motors. One direction researched at the Pennsylvania State University is represented by the 
mechanically diode based high-torque piezoelectric rotary motor, with a measured peak-power of 3.7 Watts 
(Lesieutre et al, 2001). This direction may lead to even higher power capabilities through the bipolar excitation 
of the bending bimorphs that actuate the rotary roller clutch. 

Design of the optimum gain/energy-transfer displacement-amplification mechanism 
The design of a displacement amplifier for the case of direct actuation must address several other parameters 
besides the required energy output. This is mainly because of the necessity of a displacement amplifier with a 
non-ideal, smaller-than-unity energy transmission efficiency. For example, if we use the Physik Instrumente 
P245-70 actuator and model the aerodynamic response solely as a spring system, the displacement 
amplification shown schematically in Figure 8 should have the energy transfer efficiency rjm in excess of 0.36, 



while for the Kinetics Ceramics D12200 actuator, T]m should be greater than 0.42. These requirements outline 
the need to choose another design metric specific to the design amplification mechanism, besides the energy 
transfer coefficient which is a smart material device characteristic. 
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Figure 10 Variation of the required gain G and energy transfer coefficient with the internal stiffness of the 
actuator, considering the displacement amplification efficiency rjm=0.8. 

If the direct actuation device is not specified, the internal stiffness of the actuator can be considered as a design 
parameter. In Figure 10 we have illustrated the dependence of gain and energy transfer coefficient, defined as 
the ratio of the available energy to the maximum deliverable energy, with the internal stiffness of the actuator. 

The gain and the energy transfer coefficient are further given by 
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where rj is the kinematic gain, defined as 8-r0 / URA, and 
UISA is the maximum induced-strain displacement. 

Since an optimal design should tend toward minimum  Figure 11  Variation of the optimum metric R=Ee/G 
gain and maximum transfer energy, it is apparent from with   the   internal   stiffness   and   the 
Figure 10 that an optimum point can be achieved. If we displacement   amplification   mechanism 
define the metric to characterize the optimum point as efficiency 
the ratio of the energy transfer coefficient to the gain of the displacement amplification mechanism, an optimal 
internal stiffness can be found for any allowed energy transfer efficiency (Figure 11). 
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