
Naval Research Laboratory
Washington, DC 20375-5320

NRL/MR/5707--00-8477

Cross-Platform Development:
A Difficult Necessity
A Research Project into Cross-Platform Development Tools and Techniques

MICHAEL PILONE

GREGORY STERN

BRIAN SOLAN

Effectiveness of Navy Electronic Warfare Systems (ENEWS/COMSIM) Program
Tactical Electronic Warfare Division

September 29, 2000

Approved for public release; distribution is unlimited. 20001013 048
jms mizm? m^-^ a

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

September 29, 2000

3. REPORT TYPE AND DATES COVERED

Final

4. TITLE AND SUBTITLE

Cross-Platform Development: A Difficult Necessity

A Research Project into Cross-Platform Development Tools and Techniques

5. FUNDING NUMBERS

PE —0602270N
PR —EW70103

6. AUTHOR(S)

Michael Pilone, Gregory Stern, and Brian Solan

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Research Laboratory

Washington, DC 20375-5320

8. PERFORMING ORGANIZATION
REPORT NUMBER

NRL/MR/5707-00-8477

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Office of Naval Research

800 N. Quincy Street

Arlington, VA 22217-5660

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This document provides a general overview of cross-platform development using the C++ programming language, including

motivating factors, the problems involved, and simple solutions to the most common pitfalls. This document will also compare and

contrast some of the most common commercial and freeware development toolkits which are advertised as cross-platform solutions

and discuss how to fill in the elements these toolkits don't provide. This document approaches cross-platform development using the

single source cross-platform development model.

14. SUBJECT TERMS

Cross-platform Toolkit

C++ Compare

SGI / NT / Linux Evaluation

15. NUMBER OF PAGES

33

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std 239-18
298-102

CONTENTS

Introduction 1

BACKGROUND 1

Overview of Cross-platform Development 1

Cross Platform Models 1

Problem Areas 2

CONTEXT 4

Who Is Special Projects Group? 4

Why Special Projects Group Performed this Study 4

TECHNIQUES 5

Overview 5

Categories Considered 5

Experience Details 6

EVALUATION PROCEDURE DESCRIPTION 6

FEATURE CHECKLISTS 6

Platform / Environment Checklist 7

Documentation Tools Checklist 8

Toolkits Checklist 9

Compilers Checklist • 10

Editors Checklist 10

Debuggers Checklist 11

Make Systems Checklist 12

Versioning Systems Checklist 14

Design Tools Checklist I4

COLLECTED DATA 15

Platform / Environment 15

Documentation Tools 16

Toolkits 1?

Compilers —••• *#

Editors 19
Debuggers •••••• 19

Make Systems 21
Versioning Systems 22

Design Tools • 22

in

Results 23

ELIMINATING CHOICES 23

LIMITATIONS 23

FINAL CHOICES 23

Platform / Environment ^ 24

Documentation Tools 24

Toolkits 24

Compilers 25

Editors 25

Debuggers 26

Make Systems 26

Versioning Systems 26

Design Tools 27

LIABILITIES 27

Use of Java 27

Use of Slots/Signals (Pre Compiler) 28

Borland and VC++ DLLs 28

Conclusion 29

SUMMARY 29

RECOMMENDATIONS 29

CHANGES 30

References 31

WEB RESOURCES 31

Environment 31

Documentation Tools 31

Toolkits 31

Compilers 3/

Editors 31

Debuggers 32

Make Systems 32

Versioning Systems 32

Design Tools 32

Portability Guides 32

SPG DEVELOPERS AND RESEARCHERS 32

IV

CROSS-PLATFORM DEVELOPMENT: A DIFFICULT NECESSITY

INTRODUCTION

Background

Overview of Cross-platform Development

Cross-platform development is the process of developing software that will run on more

than one operating system. It has recently become important for many reasons. The

reasons include trying to reach the largest audience possible with a piece of software,

developing for a platform that is too expensive to purchase for all the developers, or an

unknown or changing target platform for the software. The popularity of operating

systems such as Linux (freely distributed, open source Unix) and FreeBSD has been

increasing in recent years. Unix operating systems provide performance and reliability.

WinNT provides a large customer base and a low cost solution when compared to other

commercial Unixes. For these reasons it is desirable to support multiple platforms when

developing new software.

Cross Platform Models

Currently three different models of cross-platform development are widely used: double

source tree, single source tree emulation, and single source tree translation. Each of

these approaches has pros and cons associated with it, which are briefly discussed

here.

Double Source Tree

Double source tree development involves maintaining separate copies of the application

code, one for each platform supported. The name is drawn from the fact that most

applications that take this approach are written for MS Windows and Unix systems,

therefore two source trees are maintained. The problem with this approach arises when

a project is very large. Maintaining and debugging multiple copies of the same code can

become costly and difficult. This model of cross-platform development is the least

desirable when developing an application from the ground up.

Single Source Tree Emulation

Developing with the single source tree emulation model involves writing the application

for one platform, then using some type of platform emulator to run the application on

Manuscript approved July 26, 2000.

other platforms. For example, writing a full Win32 application and using WINE (A free

windows emulator) to run the application on Unix, or writing an Unix application and

using Exceed, Hummingbird, or Nutcracker to run the application under Win32. This

model leads to problems because many times the underlying libraries of a platform are

closed source, so emulators do not always support all the functionality of the original

platform. Also, since the application is relying on the emulator, a poor emulator could

make the application appear unstable. Although the application may run fast on the

original platform, the same would not be true for platforms running an emulator, where

performance would be slow. Single source tree emulation is a better model than double

source tree, but it still has problems and it is not recommended for large or complex

applications.

Single Source Tree Translation

The single source tree translation model involves putting a layer of abstraction between

the application and the underlying architecture. This layer allows the developer to write

the application once, using a platform independent API. The abstraction layer then

translates the method calls into calls that will work on the relevant platform. The

advantage of this approach is that this layer is compiled directly into the application,

which provides speed and stability. This abstraction layer is normally provided through

the use of a cross-platform toolkit. The downside to this model is that the application is

dependant upon the toolkit used, which makes it impossible to change the toolkit at a

later time. Also, since the toolkit might not directly work with the relevant platform

elements, the application could have a slightly different appearance than an application

directly written for the platform. Compared to the other two models, single source tree

translation is the best option for large applications that require high performance and

stability on all platforms. This paper will focus on the single source tree translation

approach.

Problem Areas

Writing cross-platform applications can be a difficult process depending on the

approach that is taken. Many small issues that appear when working with multiple

operating systems on multiple architectures complicate the task. Many of these issues

will be discussed in this section.

Graphical Interface

Most modern software requires a Graphical User Interface (GUI). Unfortunately, finding

a cross-platform GUI solution is one of the largest problems. It is a difficult problem

because almost every operating system uses a different mechanism for displaying

graphics and text to the user. For example, MS Windows provides the Microsoft

Foundation Class (MFC) Library as an API to the display, whereas Linux (and most

other Unix's) use the X11 windowing system. Traditionally, two sets of graphical code

would be written, one for each OS. This approach would quickly become a problem

when it comes to maintenance and when trying to create a common look and feel

across multiple operating systems for a single application.

File Input and Output (I/O)

File I/O problems can be seen in simple things like directory separators. For example,

MS Windows uses the 'V character, whereas Unix uses the 7' character. This problem

can also be seen when looking at the drive-naming scheme. MS Windows uses letters

(that is: C:\, D:\) but Unix 'mounts' everything starting from 7', no letters involved. This

means all code that assembles paths to files would need to be duplicated for MS

Windows and Unix platforms.

Advanced Data Types

The days of the 'char*' are long gone. Developers now want to use more advanced data

types to manage and manipulate data. MS Windows provides the developer with the

MFC library that has data types for such things as strings and lists, but since they are

contained in the MFC, they are obviously not cross-platform. Unix platforms don't

provide any such data types directly. A common set of data structures or libraries must

be found that allows programmers to use advanced data types cross-platform.

Software Development Tools

Some of the most important items to software development are the tools to which the

developer has access. Making a developer use different tools on different platforms

decreases productivity because of the time required to learn the particular tool, as well

as the time it takes for the developer to adjust to the switch. These tools include such

things as compilers, editors, versioning systems, debuggers, make systems, and

documentation generators. Without these tools a developer is helpless, but getting

these tools for all development platforms and getting them to work together can be a

project in itself.

Context

Who Is the Special Projects Group ?

The Special Projects Group (SPG) is a small team of programmers and researchers in

the Effectiveness of Navy Electronic Warfare Systems (ENEWS) Program Office,

Tactical Electronic Warfare Division of the Naval Research Laboratory. Our mission is

to research programming techniques and develop E.W. mission planning software and

analysis tools for the Department of Defense.

Why the Special Projects Group performed this Study

This project was undertaken for the following reasons:

1. SPG was beginning a new phase in development. Because of this, we wanted to

make sure things were designed properly, from the ground up, which lead us to the

realization that we needed to do research to determine the best underlying design

for future applications.

2. At the same time SPG started researching, our customers (including the

Department of Defense) began requiring that all software produced with their

funding would have to run on the WinNT operating system. However, we wanted to

continue supporting our original customers who are using high-end Unix machines.

3. Like any organization that relies on the products it produces to bring in funding,

SPG had to target the largest audience possible. The number of machines that can

run an application increases dramatically with support for the WinNT platform.

4. In the past SPG only supported the IRIX operating system. Most of our products

were very graphically intensive and only SGI machines could provide the

performance required. However, because of the rapid growth of personal

computers and accelerated graphics boards, a need to support these types of

computers suddenly arose. The most common operating system on these

machines was MS Windows. Since most of our developers have become

accustomed to writing applications on and for Unix, a sudden move to MS Windows

would be too difficult and require too much downtime while developers learned the

environment. Therefore a solution needed to be found that would allow a gradual

move of developers.

Techniques

Overview

To research cross-platform development, SPG took a very straightforward approach.

Requirements were broken down according to categories, then for each category a list

of products was assembled. For each product, we assembled a list of desired features.

Then evaluated all the products according to their feature checklist to determine the

reasonability of using the product for future development.

Categories Considered

Special Projects Group formulated the following list of categories that we consider

important to software development. The list is in no particular order, but a cross-platform

solution had to be found to fill each category.

Category Description

Platform / Environment The machines, file system, user setup, printer setup,

and file locations.

Documentation Tools Tools to generate and format documentation for

cross platform use.

Toolkits Kits that provide basic cross-platform development

tools. They include everything from GUI components

to collection classes and advanced data types.

Compilers Compatible C++ compilers.

Editors Text editors that provide more than basic

functionality and are programming language aware.

Debuggers C++ compatible debuggers.

Make Systems Generate makefiles for different platforms, since all

compiling is done on the command line.

Versioning Systems Allow multiple developers to work on the same

project at the same time.

Design Tools UML compliant design tools.

Experience Details

Evaluation Procedure Description

Special Projects Group found that the best and most comprehensive way to evaluate

the products that filled each category was to make a checklist for each category that

contained all the features we felt were important. These commercial and freeware

products were divided among our developers and each product was tested according to

how it would be used during real software development, then each developer completed

the feature checklist. The checklists were compiled into large tables and the best

product was chosen.

If for some reason no tool could be found in a particular category, more extensive

searching for products was conducted. If no viable tool could be found, SPG took on the

task of developing that tool in-house.

Feature Checklists

The following section contains the feature checklists SPG assembled for each category.

The lists contain the features we felt were important in the selection of the product. Also,

all products were to be evaluated on their ability to run on WinNT, IRIX, and Linux,

which are the platforms we felt that we will need to run our applications. Both IRIX and

Linux pass the Platform / Environment checklist, and because of customer demand we

were forced to support WinNT.

Platform /Environment Checklist

This category includes the machines, file system, user setup, printer setup, and file
locations require for cross-platform development.

File Sharing Share files between computers. Access common

directories.

Network Aware Be compatible with standard network protocols.

Secure User levels and password limited access.

Print Sharing Share a common printer, or print to a networked printer.

Remote Loqin Allow remote login and administration.

Memory Protection All applications execute in their own memory space;

therefore renegade applications can't crash the operating

system.

Stable Long uptimes.

WWW Browsers Has some graphical application to allow for reading of

standard HTML.

PDF Viewers Has some application to allow for reading of PDF files.

FTP Applications Has some application that supports FTP. The application

doesn't have to have a graphical interface.

Telnet Clients Has some application that supports Telnet. The application

doesn't have to have a graphical interface.

Documentation Tools Checklist

This category includes the tools to generate and format documentation for cross
platform use.

Easy to Use Any developer can generate documentation

without having to use a manual for the utility.

Cross-platform Output Generates output that can be read cross-

platform. The preferred format is HTML or

PDF.

Support All Platforms Can be run on all platforms.

Search for Docs in .h and .cpp Configurable to allow documentation to appear

in either .cpp or .h files.

Clean Doc Style Minimal effect on how the developer would

normally comment code. No special macros or

odd preprocessing required.

Support for Selected Toolkit Can support the toolkit. For example, if the

toolkit uses a lot of macros, the documentation

tool can do macro expansion.

Recognize and support the

entire C / C++ language.

Can handle namespaces, templates, classes,

inner classes, etc.

Organizational Pages Generate alphabetical and/or hierarchical

pages for easy navigation.

Toolkits Checklist

This category includes kits that provide basic cross-platform development tools. They
include everything from GUI components to collection classes and advanced data

types.

OpenGL Compatible Supports or at least allows OpenGL drawing in a

widqet (drawable component).

POSIX Threads Compatible Supports or at least allows POSIX threads.

GUI Builder Has an easy graphical GUI builder, but doesn't

require one.

Documentation Has cross-platform documentation, preferably in

HTML.

Extendable w/ Custom GUI

Components

Allow developers to extend the predefined

widqets in some wav to create custom widgets.

Delegate control to non-GUI

Activities w/o Multithreading

Provides a method of doing computations that

don't affect the GUI, nor prevent proper GUI

updatinq.

C++ API Pure C++ API. Designed in an object-oriented

fashion from the qround up.

Single Library All of the toolkit is compiled into a single library to

make moving and linkinq the library easy.

High Performance Hiqh speed drawing capabilities.

Support Customer support, either via email or over the

phone.

Proven and Tested A project exists as an example of what the toolkit

is capable of doinq.

Limited use of Macros Small number of macros. Doesn't make the code

too hard to read or debug.

Easy to Learn A good C++ developer can learn to use the

basics of the toolkit in a day and can learn most,

if not all, of the toolkit in a week. A simple tutorial

application can teach someone all they need to

know.

Fulfillment of Least Common

Denominator of Widgets

At least provide all the widgets that are common

across all platforms.

Compilers Checklist

This category includes C++ compatible compilers.

Support Namespaces Support standard C++ namespacing. '.

Support Templates Support standard C++ templating, both in classes and

methods.

Support all Standard

C++

ANSI compliant.

Support RTTI Support Run Time Type Identification. A new C++

standard that makes identifying objects quick and

simple.

Command line only

Mode

The compiler doesn't depend on a GUI to be invoked

and documentation exists which explains command

line switches.

Generate Shared &

Static Libraries

Ability to generate standard platform libraries, both

shared and static.

Generate Native

Executables

Ability to generate standard platform executables that

behave according to the platform requirements.

Editors Checklist

This category includes text editors that provide more than basic functionality and are

programming language aware.

Syntax Highlighting Support C++ syntax highlighting.

Configurable

Indenting

Indenting can be configured to meet group-defined

standards.

Proper Integration into

OS

Conforms to OS standards when running, (i.e., Win32

applications launched from the command line should

return the command line).

10

Debuggers Checklist

This category includes C++ compatible debuggers.

GUI Interface

Step Capability

Memory Inspection

Memory Violation Detection

Performance Profiling

Multi-thread Support

The debugger uses a graphical interface.

Ability to set breakpoints and execute'«one line of

code at a time.

Ability to view the contents of any memory location.

Ability to catch a memory violation and report

where it happened.

Ability to monitor execution time of individual

functions, then report which functions are taking

too long to execute.

Ability to debug multi-threaded applications.

11

Make Systems Checklist

This category includes tools that generate makefiles for different platforms. These tools
are needed since all compiling is done on the command line.

Support Multiple Compilers Generate makefiles that are'compatible

with a various number of compilers.

Support Multiple Make Applications Generate makefiles that are compatible

with a various number of make

applications.

Command line Only Doesn't require a graphical interface to

function properly.

Predefined Configuration Files Developers only need to configure the

make system once for an application.

No Make Knowledge Needed Developer never directly has to write a

make file or any component of the make

file.

Support Toolkit Provide support for the toolkit. For

example, if the toolkit needs some type of

preprocessing or anything of that nature

the make system will generate appropriate

makefiles.

No Underlying Compiler Knowledge

Needed

Developer doesn't need to understand the

compiler flags for the given OS.

Easily Changeable New compilers and platforms can be

added without having to recompile or

reinstall the application.

Support Shared and Static Libraries Generate makefiles that tells the compiler

to make the proper library, shared or

static.

Support Executables Generate makefiles that tells the compiler

to make an executable.

Support Debug Information Generate a makefile that tells the compiler

to include debug information when

compiling.

Echo Current Command Ability to echo the command it is executing

12

Human Readable Error Messages

Query Developer for Information at
Run Time

so the developer knows what is
happening.
Any errors will cause a human readable
string to be outputted which states where
the problem occurred and what the
problem is.
Support asking the developer questions
when generating make files, so the files
are generated according to the developer's
specific system configuration.

13

Versioning Systems Checklist

This category includes tools that allow multiple developers to work on the same project

at the same time.

Tag Support Files can be tagged with a string so they can be retrieved

in that state later.

Multiple Developers Multiple developers can obtain and edit a copy of the code

at the same time.

Easy to Use Simple interface that allows a developer to learn the basic

usage in a few minutes.

Network Aware Store and retrieve files on local and remote machines,

across multiple operating systems.

Design Tools Checklist

This category includes design tools that enable the creation standard UML diagrams.

Standard Unified Modeling

Language Support, including

Class Diagrams

Allows the developer to create and edit UML

class diagrams that meet the UML standard.

Sequence Diagrams Allows developer to create and edit

Sequence Diagrams.

Use Case Diagrams Allows developer to create and edit Use

Case Diagrams.

Smart Layout/Drawing Engine Lines and objects are drawn neatly and

require little reorganization by the developer.

Reverse Code Engineering Ability to read old code and create UML

diagrams.

Printable Diagrams Ability to generate a printable document.

Ease of Use Easy to learn. A programmer should be able

to feel comfortable with the tool after only

one day of learning.

Stability Feels solid and runs without problems.

14

Collected Data

More products were tested than are displayed here due to space limitations. The
products that were close in comparison with each other are listed. Products that were

quickly eliminated are not show.

Platform /Environment

O)
c
CO
.c
CO

il

CD

cd

<

o

CD
z

CD
i_

Ü
CD

CO

c

CO
x:
CO
■4—»

c

c
o
_J

CD -*- o
E
CD

CC

c
o

%—»
Ü
CD

•4—»

O

Q_

O
E
CD

CD

.O
CO

.4—<

CO

CO

CD
CO

o
X—

CD

CO
l_

CD

5
CD

>
u_
Q
Q.

CO
c
g

%—*
CO
ü

Q.
Q.
<
Q_

t

-JO
c
CD

b
CD
c
CD
1-

Win95 X X X X X X X

Win98 X X X X X X X

WinNT X X X X X X X X X X

Linux X X X X X X X X X X X

IRIX X X X X X X X X X X X

Documentation Tools

•«—<
.*

■o o CD c o ■c O)
-f-* CO H o CO
3
Q. JC X3

CD
Q.
Q.

CO

E CD

o
c
CO CD

Ü
CD

CO
c
CO
_l

o
3=

CO
Q_

CD
CO
3

E
o
(0

Ü o
Q

o
CO
Ü
O

CD
CO

o

T3
C
CO

CD
N

+ +
Ü

CO

CL

<

"cö c
g
CO

o Q. Q ■d C Ü ■c N
i-
z

X
X
3 CO

i
CO
CO o
1—

Ü

CO

c
QCÜ
Q2

o
Q.
Q.

o
Ü

CD o
Q.
Q.

C
CO

C CO CD Z> CD c ZJ 1—

£ QC _l UJ Ü CO <->0 CO DC UJ CO <J

Kdoc X X X X X X X X X

Doxygen X X X X X X X X X X X

15

Toolkits

z
c X

or

JO
V-<
03
QJ
E
o o
G
c
CD

o

o
-O.
V-•
<G
QJ
E
o
Ü
w

■o
CO
<])

.c
!-
X
co
O a.

TJ

'5
CQ

5

c
g
(0

-♦—'

c
a>
E
O
o
Q

E
o

■4-«
(0
3 _
Ü o

0)
X5
CO

X3
C
CD

-♦-»
X

LU

c
o
O
£
«5

a)
CD
Q

Q_
<
+ +
O

JO

c
0)

o
t
CD

Q_

.c
oi

o a a
z>

CO

CD
•4—»

W
CD
\-
■o
c
(0
c
CD
> o

o
CD
CO
D

T5
(D 5H

w
(0

LU

a
c

c
c
a
C
c
c
£
£
c
C
■*-

üi
a;
a

Qt X X X X X X X X X X X X

wxWindow

s

X X X X X X X X

GTK X X X X X X X

Amulet X X X X X X X

Zinc 5 X X X X X X X X X X X

Compilers

I— z
c X

X

C
8.
Q.

co : N
am

es
pa

ce
s

S
up

po
rt

 T
em

pl
at

es

-
= c

o «
°- c
&l

CO </

> DC

! §
! §
) CO

CD
c

CO <

E -

o c

-o
CD

(0 <

j w]
! 8 - : 2 _
' 0) .t
^ c •£ : (D Ü
) Ü C/ G

en
er

at
e

N
at

iv
e

-E
xe

cu
ta

bl
es

CC X X X X X X X X

VC++ X X X X X X

Borland BCC X X X X X X X X

GCC X X X X X X X X X

Intel. X X X X X X

16

Editors

-z.
c X

X

c
Li S

yn
ta

x

H
ig

hl
ig

ht
in

g

C
on

fig
ur

ab
le

In
de

nt
in

q

In
te

gr
at

io
n

in
to

 O
S

XEmacs X X X X X X

WinEdit X X X X

NotePad X X

VC++ IDE X X X

Borland IDE X X X

Write X X

Jot X X X

VI X X X

Debuggers

H
c X

X

c
_l

D
CD

5
CO
Q.
CO
ü
Q.
CD *—»

c
o
o
CD
Q.
CO
c

o
E
CD

2 M
em

or
y

V
io

la
tio

n

D
et

ec
tio

n

P
er

fo
rm

an
ce

P
ro

fil
in

g

M
ul

ti-
th

re
ad

 S
up

po
rt

Visual Studio X X X X X

SoftICE X X X X X

BoundsChecker X X X X

TrueTime X X X

Purify X X X X X

Quantify X X X

PureCoverage X X

Code Vision X X X X X

DBX X X X X

17

GDB X X X X X X

DDD X X X X X X X

Borland X X X X X

Make Systems

h-
z
c X

CC

X
D
C
_l

CO
L—
0)

'Ö.
E
o
Ü
CD
Q

'•*—>

CO
CD .*:
(0

.9
"5

o
c

x>
c
(0
E
E
o
Ü

g

o
O
T5
CD
C

»4—

CD
X3
0)

CL

CD
C

T3
O

$
O
c

CD

CO

o z

o
o

tr
o
Q
Q
D

CO

0

Q
E
o
Ü
o z

CD
xi
CO
CT
c
CO
x:
Ü
_>
'55
CO

LU

CO
X)
Li
o

■—*

CO .+-1

CO
oa
•o
CD

CO
x:
CO

CO
CD
XI
CO •*-»
Ü
CD
X

LU

■c
o
Q
Q
3

CO

o
*4—

c

X)
CD
Q

n
c
CO
E
E
o
O
o
X
Ü

LU

o
LU

CD
XI
CO

■D
CO
CD

CL

CD
Q.
O
CD
>
CD
Q

CD

O

GNU

Configure

X X X X X X X X X X X X X

Imake X X X X X X X X X X X X X

Tmake X X x x X X X X X X X X X X

Versioning Systems

h- z
X
GC

X
■3
C
_l

o
CL
Q.
Z3

CO
O)
CO
h- M

ul
tip

le

D
ev

el
op

er
s CD

CO
Z)
o

CO
CO

LU N
et

w
or

k
A

w
ar

e

CVS X X X X X X X

RCS X X X X X

18

Design Tools

z
c X

X

C

CO
E
2
cü
Q
CO
CO
CO

ü

CO

E
CÖ
k_
O)
CO

b
CD
o
c
CD
13
er
CD

CO

CO

E
CO
1—

O)
CO

b
CD
CO
CO
ü
CD
CO
Z) S

m
ar

t
La

yo
ut

 /
 D

ra
w

in
g

E
ng

in
e

R
ev

er
se

 C
od

e

E
ng

in
ee

rin
g

P
ri
n
ta

b
le
 D

ia
g

ra
m

s

CD
CO
ID

O

CD
CO
CO

UJ

15
co

CO

GDPro X X X X X X

Together X X X X X X X X X X X

Argo X X X X X X X X

Rational Rose X X X X X X

19

Results

Eliminating Choices

Most of the test went as expected, the product Special Projects Group thought would be

the best was in fact the best. However there were a few surprises w-ith some of the

products that we thought would come out on top were quickly eliminated.

The Standard Template Library (STL) was quickly ruled out because it wasn't supported

on all platforms. Also, MS Windows uses different header files for the STL, so all of the

included header files would need to be duplicated when writing cross-platform

applications.

VC++ and Intel compilers didn't fully support the C++ standard. Language features like

templates and namespaces caused these two compilers to fail. Microsoft has

recognized some of these bugs and a fix is promised, but there is no time line

guarantee. The significance of these compiler problems warranted them being

eliminated.

Limitations

After evaluating all the products, SPG realized that there isn't a cross-platform solution

for every problem. This means that in some cases two separate products must be used,

one for each platform. This is the case with compilers, debuggers and editors. No single

application would work well cross-platform in any of those categories, however there are

different products that can be found to do the same job on different operating systems.

We also found that cross-platform applications work on many operating systems, but

can never be fully integrated into a single operating system. For example, it is not

possible to write an application that uses Microsoft's COM/DCOM because those

elements won't be supported on all platforms. Most cross-platform applications tend to

half-integrate into many operating systems, but never fully integrate into one.

Final Choices

After evaluating all the products, the best one was chosen. Below is the list of products

we felt best filled the category along with a description of why we chose that product.

20

Platform / Environment

Linux provided an inexpensive solution and when combined with Samba it is one of the

most flexible and reliable operating systems we have ever used. It can be installed on

machines ranging from high-end servers to old low-end personal computers. It has

incredible uptimes and behaves like most standard UNIXes. This makes the transition

easy for developers who have worked with UNIX before.

IRIX best supports the heavy graphics load that some of our applications require. It also

offers great administration tools and support. It is solid, reliable and secure. It offers the

best integration of tools to allow for productive developing.

WinNT provides a secure and stable environment to test Win32 applications. It can run

most Win32 applications, which means there is a large amount of available software for

the system. It also has the best networking support in the Win32 domain, which allows it

to blend into an existing network and use devices like network printers and common file

servers. WinNT is also the platform that most of our clients are using.

Documentation Tools

Doxygen was chosen because of the cross-platform support and clean documentation

style. It was the only tool that worked well cross-platform and supported some more

advanced features like generating inheritance diagrams and a CGI script for searching

the generated documentation. Doxygen also uses standard JavaDoc type rules with

extensions. It will create collaboration diagrams using a tool from AT&T Labs, as well as

linking multiple libraries' documentation together to allow referencing external

documentation from within a project.

KDoc was also a good tool, but it required the KDE libraries, which are not cross-

platform. These libraries lead to problems on both IRIX and WinNT since they couldn't

be compiled cleanly.

Toolkits

Qt was the toolkit of choice. It offered the largest collection of cross-platform graphical

components as well as offering a large selection of data structures, including lists,

stacks, etc. The support is great, with a one-day or less response time as well as a

mailing list offering instant answers. Qt is open source, which allows for easy debugging

21

and the ability to fix a bug before it is acknowledge by Troll Tech. It provides not only

data structures, but also elements like socket and file 10. It was proven to be extendable

by the KDE project under Linux and compiles cleanly under many operating systems.

The only downside to Qt is that the event delivery mechanism requires the use of a pre

processor, which we discuss later.

wxWindows was also an impressive toolkit, but it was harder to learn than Qt and the

support wasn't quite as good. If a free solution is a must, wxWindows is definitely the

recommend toolkit.

Compilers

G++ is the compiler of choice under Linux because not only is it free, but it offers great

support for the newer features of the C++ language, including namespaces, templates
and RTTI.

Under IRIX, CC was found to be the best compiler. Since the manufacturer of the

operating system develops the compiler, it is well integrated into the environment and

has great support for templates. It also offers the cleanest and most detailed error

messages when compiling goes wrong.

Borland's CBuilder was the compiler of choice since both Intel's and Microsoft's

compiler failed the tests. Borland's compiler is incredibly fast and very accurate to the

ANSI standard, including many things in the standard that all other compilers ignore.

Editors

Under UNIX, XEmacs was chosen because of its advanced features, including syntax

highlighting, configurable indenting, configurable shortcut keys, etc. The editor allows

multiple files to be opened at the same time and allows a server to be run to make

launching the application quick. XEmacs integrates well into the environment and allows

the developer to do things like compile and debug directly in the editor.

The selection of editors under WinNT was poor. XEmacs was our first hope, but the

project to port XEmacs to windows is still in early beta and not nearly stable enough to

be used full time. One of the few applications that proved useable was WinEdit. It allows

22

multiple documents to be opened, supports syntax highlighting, and like XEmacs, it

allows the user to run a single copy of the application to make startup time quick.

Debuggers

Under Linux, DDD is the debugger of choice. The selection of debuggers is rather small

and most are command line only. Command line compilers prove to be very difficult to

learn and rather tedious to use. DDD offers a GUI for most command line debuggers,

giving the developer the power of the command line in an easy to learn interface.

With IRIX, both DDD and CVD prove to be viable options. DDD offers all the qualities

mentioned above, while CVD offers all of the above plus great integration with the

operating system, since CVD is written by SGI. The interface to CVD is clean and easy

to use and it is both reliable and stable.

WinNT offers a larger selection of debuggers, but only a few are very usable. The

problem with most of the WinNT debuggers is that the interface is hard to use and very

cluttered. The best application found was Borland's CBuilder. The advanced window

drawing tools Borland uses allows a developer to drag windows in and out of the main

window, making it easy to debug large applications since multiple windows can be

opened, moved and minimized individually. The application is solid and very powerful.

Make Systems

SPG found no suitable robust make system that works on all the platforms. Each

operating system provided an application to compute dependencies and invoke the

compiler, but these applications needed to be feed very detailed information. This

proved to be too tedious and difficult for our developers so we decided to take on the

task of writing an application that would run cross-platform to generate makefiles based

on simple configuration files. Our final product was called CrossMake and is freely

available under the Freedom of Information Act.

Versioning Systems

Very few cross-platform, network aware versioning systems exists. The only one that

really met our needs was CVS. Many graphical interfaces exist for CVS, but they are

not required to use the application. The application runs on both UNIX as well as WinNT

using the Cygwin tools. CVS is fully network aware which allows machines that can't

23

mount drives to still communicate with the CVS server. The application is free under the

GNU Public License and fairly easy to use once the basic commands are understood.

Design Tools

Testing the design tools took a long period of time. The first tool tested was GDPro,

which was a good tool, but after long periods of use we found it to be unstable and the

layout algorithms used were poor, requiring the developer to constantly relay out the

diagrams. The manufacturer of GDPro informed SPG that support for IRIX would soon

be dropped because of a small demand.

Rational Rose, a very popular tool, was found to be too difficult to use and very

unstable. The C++ code generated from the application was very disorganized with

special tags strewn throughout to allow the application to reload the code later.

This led us to the choice of Together. Written in Java it works on all the platforms that

Java supports. It has the best layout engine we saw as well as a simple clean interface.

It automatically generates code, the layout of which is fully customizable in a few plain

text configuration files. The tool also supports generating documentation with GIF

images of the design, which is a nice feature but we found it a little too slow for general

use. Together will update existing class diagrams automatically by reading and parsing

existing code. It supports macro expansion and can preprocess code before creating

class diagrams to be sure all variables are macros. Overall it is a great application that

is in very active development with new features being introduced regularly.

Liabilities

Special Projects Group tried to make the best choice in each category, however this led

us to some liabilities that were unexpected and as far as we are concerned

unavoidable.

Use of Java

One of the major problems that we kept running across was that a lot of cross-platform

tools are written in Java. This introduces many problems because of things like slow

performance, dependency on Sun to continue Java development, and making sure that

all of the development machines have the same version of Java installed. In most cases

24

the pros of using the tool outweigh the cons of Java. This is how we justified most of our

choices that rely on Java.

Use of Slots/Signals (Pre Compiler)

Special Projects Group decided to use the Qt toolkit, which uses a mechanism of slots

and signals to manage event handling. Although the slot and signal design makes Qt

easy to learn and understand, it also requires the use of a preprocessor to translate the

slots and signals into standard C++ code. The pre compiler source is provided free from

Troll Tech (producers of Qt), which means it would be possible to modify the compiler if

for some reason we had to.

Borland and VC++ DLLs

One problem we found after testing is that most applications or developers that provide

DLLs have compiled the DLLs with VC++. This is a problem when our applications are

built with Borland's compiler. Borland does provide a utility to convert VC++ DLLs into a

format that can be used in Borland made executables, but it isn't guaranteed to work

and the developer must rely on this tool in order to build an application.

25

Conclusion

Summary

Cross-platform development isn't necessarily easy, but it can be made much easier by

using the right tools. A large software application should be developed from the ground

up with cross-platform development in mind since all of the components of the

application will need to work on more than one final operating system. Getting all the

tools a developer will need installed and configured could take days. This should be the

first step in the implementation phase. This will help prevent the developer from having

to stop and install a new piece of software or tool in the middle of the implementation

phase.

Any time that a developer uses third party solutions, dependency upon the producer of

that solution is inevitable, therefore when choosing a product the company producing

the product should be evaluated just as much as the product itself. Things like the life

expectancy of the company, quality of support, and cost of the product should be

strongly considered.

Recommendations

One of the most important things to look out for is a compiler that doesn't fully

implement the C++ standard. Things like namespaces and templates seem like simple

things, but they can easily throw a compiler into a broken state. Be sure to test all your

code on all the compilers that will be used as often as possible. Don't assume that

something will work on one compiler just because it works on one or two others.

Compatibility is another large problem. If the application requires DLLs or shared

libraries, be sure that the compiler will generate and use components created using the

respective platform standard. This is shown in the "Borland using VC++ DLLs" problem.

There are many free, open source tools available now that out performs many of the

commercial products. SPG strongly recommends that you consider and evaluate free

software. When it comes to software, price isn't always proportional to quality.

Try to make the migration to new platforms as easy for developers as possible. This can

be done by continuing development on older platforms even if they won't be supported

26

in the future, then slowly work the developers to the new platforms one at a time, so
there is no down time during development.

Changes

If SPG were to do this test again, we would do a few things differently, including making
the test application we wrote a bit more complex. We would test more of the advanced
features of the compilers, toolkits, debuggers, and other tools. There were times when
we tested something, claimed it worked fine, but under a different situation it would fail.
Testing needs to be the highest priority to which most evaluation time should be

dedicated.

Shared libraries made with different compilers was something that SPG never really
though about until it was too late. If the evaluation were to be done again, a list of what
compilers produce and can use standard DLLs and shared libraries would have been a

valuable reference.

27

References

Web Resources

All web resources where current as of the writing of this document.

Environment

SGI: http://www.sgi.com

Samba: http://www.samba.org

WinNT (Microsoft): http://www.microsoft.com/ntserver/

Linux: http://www.linux.org

Cygwin: http://sourceware.cygnus.com/cygwin/

Documentation Tools

• Kdoc: http://www.ph.unimelb.edu.au/~ssk/kde/kdoc/

• Doxygen: http://www.stack.nl/~dimitri/doxygen/

Toolkits

• Qt: http://www.troll.no

• GTK: http://www.gtk.org

• Amulet: http://www.cs.cmu.edu/~amulet/

• wxWindows: http://www.wxwindows.org

• Zinc 5: http://www.zinc.com

Compilers

BCC (Borland/Inprise): http://www.borland.com/bcppbuilder/

VC++ (Microsoft): http://msdn.microsoft.com/visualc/

Intel: http://developer.intel.com/vtune/compilers/cpp/

GCC: http://www.gnu.org/software/gcc/gcc.html

CC (SGI): http://www.sgi.com/developers/devtools/languages/c++.html

Editors

• XEmacs: http://www.xemacs.org
• WinEdit: http://www.winedit.com

28

Debuggers

• DDD: http://www.gnu.org/software/dcld/ddd.html

• CVD (SGI): http://www.sgi.com/developers/devtools/languages/c++.html

• DBX: http://www.sai.com/developers/

• GDB: http://www.gnu.ora/software/gdb/gdb.html

Make Systems

• iMake: http://www.opengroup.org
• GNU Configure: http://www.gnu.org/software/autoconf/autoconf.html

• tMake: http://www.troll.no

Versioning Systems

• CVS: http://www.gnu.org/software/cvs/cvs.html

Design Tools

• Together: http://www.togethersoft.com

• GDPro: http://www.gdpro.com

Portability Guides

• C++ Portability Guide: http://www.mozilla.org/hacking/portable-cpp.html

• C++ Programming Style:
http://www2.wildfire.com/~ag/Engineering/Development/C++Style/doc.html

SPG Developers and Researchers

Michael Pilone

Gregory Stern

Brian Solan

Thomas Diepenbrock

James Durbin

Daniel Pilone

Brian Calves

Lawrence Schuette

29

