Naval Research Laboratory
Washington, DC 20375-5320

NRL/MR/5707--00-8477

Cross-Platform Development:
| A Difficult Necessity

A Research Project into Cross-Platform Development Tools and Techniques

MIicHAEL PILONE
GREGORY STERN
BRIAN SoLAN

Effectiveness of Navy Electronic Warfare Systems (ENEWS/COMSIM) Program

Tactical Electronic Warfare Division

September 29, 2000

Approved for public release; distribution is unlimited. 2 0 0 0 1 0 1 3 0 4 8

¢ T A Ao o,
DTG guarrry TEERTOR 9

REPORT DOCUMENTATION

PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Adington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

2. REPORT DATE
September 29, 2000

1. AGENCY USE ONLY (Leave Blank)

3. REPORT TYPE AND DATES COVERED

Final

4. TITLE AND SUBTITLE

Cross-Platform Development: A Difficult Necessity
A Research Project into Cross-Platform Development Tools and Techniques

6. AUTHOR(S)

Michael Pilone, Gregory Stern, and Brian Solan

5. FUNDING NUMBERS

PE — 0602270N
PR —EW70103

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Research Laboratory
Washington, DC 20375-5320

8. PERFORMING ORGANIZATION
REPORT NUMBER

NRL/MR/5707--00-8477

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217-5660

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This document provides a general overview of cross-platform development using the C++ programming language, including
motivating factors, the problems involved, and simple solutions to the most common pitfalls. This document will also compare and
contrast some of the most common commercial and freeware development toolkits which are advertised as cross-platform solutions
and discuss how to fill in the elements these toolkits don’t provide. This document approaches cross-platform development using the

single source cross-platform development model.

14. SUBJECT TERMS

15. NUMBER OF PAGES
33

16. PRICE CODE

Cross-platform Toolkit
C++ Compare
SGI / NT / Linux Evaluation
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE
UNCLASSIFIED UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI| Std 239-18
298-102

CONTENTS

Introductlon 1
BACKGROUND .veveeeeeeteeaeeeeseereeetesaasessssaesesssstsnssssassseeeeteteeetnssesrnanierasrermuassserostssteetersiettomminsionss 1
Overview of Cross-platform Developmentccoveeiveeeeniieiiiiuiinniiiniinntinisssscneseenes 1
CroSS PlAIOIN MOGEISeeeeeeeeieeeeeeiteeeeeeieeeeieeeeciaaas e ee st s s es s et bae e s e sssaatesenessnns 1
PULODICITI ATQAS ... aeeeeeeeeeeeeeeeeeeeee st ssssae st ttstsetaasasarssansasaanesannsassaaaaasassassseeerennnnissnes 2
(070 V1122 ¢ LT TTU U PO PPPPTOP P PPPPPPRTPPPPS 4
Who Is Special Projects GroUP?cecweueeumiiisiieninntetiiitiiciinie st 4
Why Special Projects Group Performed this Study..................c........ etteeeeeeeerrararrpaiiibaaane 4
TECHNIQUES .. veveeeeeeeeeeeeteeeteeeeassaeeseansseeassseeeaanseeeaneee st aesannb s s e e e e s s e aas s te e e e e aa b ee s e b e e s et e s e b e s eaes 5
OVBIVIOW ..o e eeeeee v e e e e e e e s ettt e ettt e e ee s a st st e e s n s et e e e e s e e e nnc et s e iannneaeeaaans 5
Categories CONSIAEIOAcccweuivueriaiiiiieset sttt e 5
EXperience Detailscccuiciiieniiimnnnniniecncet st e 6
EVALUATION PROCEDURE DESCRIPTION ... uuvvtreeeiiitireeaaneeesasaunnesssesaaiarnrsaassessssssiesssesssnssnnessessnnes 6
FEATURE CHECKLISTS . 11ieiiiiiiitieeeeeeeeiecetareeseeeaeaaastanatasassaaianssss s s racaaareeeeceaesaanetetstsmenmassasiannnssses 6
Platform / Environment CRECKIISTeeeeueiieieeeesiiiieeaeiiiiiii it aa e e 7
Documentation TOOIS CRECKIIS...........uueueeeeeeciiiieeeeviiiiiiisinsaeeaeasesaaaatsasibssssscesssessseesnas 8
TOOIKIES CRECKIISE ..ottt a st e e e e e e s e ee e e e e e te s e e aaaasa e e 9
ComPilers CRECKIISL............c.ccccccurimiiaiiiiainiiei e et e 10

E QOIS CRECKIISE ...ttt e e s et aatuasa s s s sa s s s e nssbettbaretnaaasbasaaaenes 10
DEbUGQEIS CRECKIISEc.ceuiiieiiitinieiieteet s 11
Make Systems CRECKIISE.............c.ccovrvimiiiiiiiietieeiceie et 12
Versioning Systems CRECKIISE...............covriiiiiiiiiiieiieiicc it 14
Design TOOIS CRECKIISEcc.coevumiiiiiiiieiieieiie et 14
COLLECTED DATA ettt e eeeeeeaeaeeeasseaeeesssneeeesiaaeessasarar e e s s e s e baaaeeseasasasnnn e e s s baaasassaans 15
PIFOIMN / ENVIFONMENL <.ttt ettt eeasasaaasesaasssssa s s iasneeaeeesaessnanene 15
DocUMENEAION TOOIS.........eeeeeeeeeeeeeeeeieeeititie ettt te e e e e e e e e s e sttt esaaaaaatareranaaaaaeees 16
TOOIKIES oottt eeeeeas e e eseeaattt e e e e et eeebaases s mas e s e e 4aasaan e s s s e senettb et e ssnaaastssasrsans 17
COMPIIEEScvveveeereerererisensiseaiaeereasisescssasssasaseaniassssasasassssssanasssessasacicseasasssssssnenssasnnarsnscs 18
o 11 (o T TSP PP PP PPP PP PP PP PP PP PPPPPPPPPPIPPPPO e 19
DEDUGGEISoeeeeeeieciecieeciiiciessreass ettt st s s s franedereeeressssssssasanen 19
MAEKE SYSEOIMIS......c.eeereeeeeieeeiicietieseee et sttt sttt e sttt et es 21
VErSiONING SYSIBMS.......c.cuceueieiieiiiieiesrassesnrtsissistss ettt sttt bea et a s st e s 22
DIESIGN TOOIS ..cevereenreiieicnisresetiressiss sttt st as et s a s e s e n s e s sae st sine s st sastes 22

iii

ELIMINATING CHOICESuvviieeeeeeieeeeeeeeee e et e e ettt ee ettt eeeesseseseeeaeeaaeneneeaeeeanaaasneasssssssssessessan 23
LIMITATIONS ...ttt ettt e ettt e e e e et e e eeebaeeeeeatebabaeesesaateeeeseessaneneeeeeseaanenneeeesssnsesssn 23
FINAL CHOICES. ... tiieiiiiiteeeeitcee sttt sete e ettt e e it esanaaeasaseaeestseeeeseaeseseensaeseanasesseesnsneesnseeeanes 23
Platform / ENVIFONMENEc..ooviieiiiraeeieeeiieeeteeeeeieee et estaeeeesematassenevaesssaessesssesssieees 24
DOCUMENIALION TOOIS...........eveeieeeeiesieeectee e e ettt e e et eatt e e e et e seaaeessaeseessssreaseseen 24
TOOIKIS ...ttt ettt e et eeeeesnseeresaesesessaeessresenanes 24
COMPDIIEIS ...ttt ettt e e et e et e e tseaat s e e ssbsesseasasnassneseesnsaeens 25
EQIOTS ..ottt ettt ettt et eestseeteasenteseanteniresaraans 25
DEODUGQENS ...ttt ettt ettt et eaat e st e tsetaeaneesneesnaasaees 26
MBEKE SYSEEIMS.........eeeiieiiieectee ettt ettt aseneeetesesesaseseaeens 26
VEISIONING SYSIEMS......cc.eeiiiiieiiieiieeee ettt ettt e st st eesesesstseasessetenasessens 26
DESIGN TOOIS ...ttt e e et e ettt s saeareeeen e nereens 27
LIABILITIES .ttt citteetieiteetteetee et e ettt et e et e e staaesteesre e teeeabeesteeeebeeenseeeanteesnsssanne e naeeennneenneessesnns 27
USE Of JAVA........ooeeeeeeeeeerrrerrn, ettt s st 27
Use of S1ots/Signals (Pre COMPIIET)ueeeviuieeeeeeeeeieeeeeeeieeeeeeeeeeetaa e eeeessaaesaeasens 28
Borland @nd VIC++ DLLS........coociveeeeeeieeeeetee ettt ettt et eeeeaearseaas 28
CONCIUSION ...ttt et crne s et e s e s e e e sas e s s s e e s s s s es s s s es e sasseeesassesessnnesssessnnesssenann 29
SUMMARY ..ottt ittt eetee et e ste ettt et esaeesbeeateesssesateeatesseneeenstesatessanteeseeeeeentesaneessaneeeneessseens 29
FRRECOMMENDATIONScuititieertitteeaiteeeaeireeeeeeteeeeeeseeeeeeseaeeeessseaseeeesseessaaseneeeeseaessaseeesssaeeeen 29
CHANGES ...ttt ettt ettt e ettt e e eteeetteeeateeemteeeaeesaaeeseteeeesaneeeeneeneneeeensesnseenneens 30
REfEIENCES ...ttt ettt er e e rane e e s s s s s e s e s s s e e e s aessse s s neee s rasssassnnenesssannnns 31
WEB RESOURCESoiiiiiitiiitiie ittt ee sttt e ettt e e e eeeeaeeeneeeeeatteeseeeeeeseesereesesseeenrenneas 31
ENVIFONIMENT ..ot ettt ettt eeente e e s e eaeseaeenans 31
DOCUMENIAHON TOOIS........eevieeeeeeeeieeeeee ettt ettt e e e eeeeesaessseessessesasssenns 31
TOOIKIES ...ttt ettt ettt et e e st eessasatassasneaeseaneesenanesnas 31
COMPIIELS.......cceviieieee ettt et e e et et s et s estsentsesassesnrsnns 31
EQIOTS.oooiiiineieee ettt et e ettt et s e e teeve s s atrasasnenes 31
DEDUGGETS ...ttt e e ettt e e e teeseaatessesatassneeeas 32
MAKE SYSIEMIS.......ceeeeeeeeeeee ettt ettt e et e e e aeses st seasesssaseesssentanns 32
VErSIONING SYSIEMScceveeiieiieieeeee ettt e ettt et eete e e e srtsessesssasssesnesssessnn on 32
DBSIGN TOOIScoooneeeeeeeeeeeee ettt et ste e e e e ettt e e ettt aes s s s ssasesssssssssessaeessssnessns 32
POrADIlItY GUIEScccoeeeeiieeiieeee ettt ettt et e et et sataaseseeesesseesssessnneses 32
SPG DEVELOPERS AND RESEARCHERS........ccvttiiitreeteeeenteeeeeeeeeeasessssseneeesesseeseseseesessssesssseesns 32

v

CROSS-PLATFORM DEVELOPMENT: A DIFFICULT NECESSITY

INTRODUCTION
Background

-

Overview of Cross-platform Development .

Cross-platform development is the process of developing software that will run on more
than one operating system. It has recently become important for many reasons. The
reasons include trying to reach the largest audience possible with a piece of software,
developing for a platform that is too expensive to purchase for all the developers, or an
unknown or changing target platform for the software. The popularity of operating
systems such as Linux (freely distributed, open source Unix) and FreeBSD has been
increasing in recent years. Unix operating systems provide performance and reliability.
WinNT provides a large customer base and a low cost solution when compared to other
commercial Unixes. For these reasons it is desirable to support multiple platforms when
developing new software.

Cross Platform Models

Currently three different models of cross-platform development are widely used: double
source tree, single source tree emulation, and single source tree translation. Each of
these approaches has pros and cons associated with it, which are briefly discussed
here.

Double Source Tree

Double source tree development involves maintaining separate copies of the application
code, one for each platform supported. The name is drawn from the fact that most
applications that take this approach are written for MS Windows and Unix systems,
therefore two source trees are maintained. The problem with this approach arises when
a project is very large. Maintaining and debugging multiple copies of the same code can
become costly and difficult. This model of cross-platform development is the least
desirable when developing an application from the ground up.

Single Source Tree Emulation

Developing with the single source tree emulation model involves writing the application
for one platform, then using some type of platform emulator to run the application on

Manuscript approved July 26, 2000.

other platforms. For example, writing a full Win32 application and using WINE (A free
windows emulator) to run the application on Unix, or writing an Unix application and
using Exceed, Hummingbird, or Nutcracker to run the application under Win32. This
model leads to problems because many times the underlying libraries of a platform are
closed source, so emulators do not always support all the functionality of the original
platform. Also, since the application is relying on the emulator, a poér emulator could
make the application appear unstable. Although the application may run fast on the
original platform, the same would not be true for platforms running an emulator, where
performance would be slow. Single source tree emulation is a better model than double
source tree, but it still has problems and it is not recommended for large or complex

applications.

Single Source Tree Translation

The single source tree translation mode! involves putting a layer of abstraction between
the application and the underlying architecture. This layer allows the developer to write
the application once, using a platform independent API. The abstraction layer then
translates the method calls into calls that will work on the relevant platform. The
advantage of this approach is that this layer is compiled directly into the application,
which provides speed and stability. This abstraction layer is normally provided through
the use of a cross-platform toolkit. The downside to this model is that the application is
dependant upon the toolkit used, which makes it impossible to change the toolkit at a
later time. Also, since the toolkit might not directly work with the relevant platform
elements, the application could have a slightly different appearance than an application
directly written for the platform. Compared to the other two models, single source tree
translation is the best option for large applications that require high performance and
stability on all platforms. This paper will focus on the single source tree translation

approach.

Problem Areas

Writing cross-platform applications can be a difficult process depending on the
approach that is taken. Many small issues that appear when working with multiple
operating systems on multiple architectures complicate the task. Many of these issues

will be discussed in this section.

Graphical Interface

Most modern software requires a Graphical User Interface (GUI). Unfortunately, finding
a cross-platform GUI solution is one of the largest problems. It is a difficult problem
because almost every operating system uses a different mechanism for displaying
graphics and text to the user. For example, MS Windows provides the Microsoft
Foundation Class (MFC) Library as an API to the display, whereas Linux (and most
other Unix’s) use the X11 windowing system. Traditionally, two sets of graphical code
would be written, one for each OS. This approach would quickly become a problem
when it comes to maintenance and when trying to create a common look and feel
across multiple operating systems for a single application.

File Input and Output (1/0)

File /O problems can be seen in simple things like directory separators. For example,
MS Windows uses the ‘\ character, whereas Unix uses the /' character. This problem
can also be seen when looking at the drive-naming scheme. MS Windows uses letters
(that is: C:\, D:\) but Unix ‘mounts’ everything starting from ¢/, no letters involved. This
means all code that assembles paths to files would need to be duplicated for MS
Windows and Unix platforms.

Advanced Data Types

The days of the ‘char*’ are long gone. Developers now want to use more advanced data
types to manage and manipulate data. MS Windows provides the developer with the
MPFC library that has data types for such things as strings and lists, but since they are
contained in the MFC, they are obviously not cross-platform. Unix platforms don’t
provide any such data types directly. A common set of data structures or libraries must
be found that allows programmers to use advanced data types cross-platform.

Software Development Tools

Some of the most important items to software development are the tools to which the
developer has access. Making a developer use different tools on different platforms
decreases productivity because of the time required to learn the particular tool, as well
as the time it takes for the developer to adjust to the switch. These tools include such
things as compilers, editors, versioning systems, debuggers, make systems, and
documentation generators. Without these tools a developer is helpless, but getting

these tools for all development platforms and getting them to work together can be a
project in itself.

Context

Who Is the Special Projects Group? .

The Special Projects Group (SPG) is a small team of programmers and researchers in
the Effectiveness of Navy Electronic Warfare Systems (ENEWS) Program Office,
Tactical Electronic Warfare Division of the Naval Research Laboratory. Our mission is
to research programming techniques and develop E.W. mission planning software and
analysis tools for the Department of Defense.

Why the Special Projects Group performed this Study

This project was undertaken for the following reasons:

1. SPG was beginning a new phase in development. Because of this, we wanted to
make sure things were designed properly, from the ground up, which lead us to the
realization that we needed to do research to determine the best underlying design

for future applications.

2. Atthe same time SPG started researching, our customers (including the
Department of Defense) began requiring that all software produced with their
funding would have to run on the WIinNT operating system. However, we wanted to
continue supporting our original customers who are using high-end Unix machines.

3. Like any organization that relies on the products it produces to bring in funding,
SPG had to target the largest audience possible. The number of machines that can
run an application increases dramatically with support for the WinNT platform.

4. In the past SPG only supported the IRIX operating system. Most of our products
were very graphically intensive and only SGI machines could provide the
performance required. However, because of the rapid growth of personal
computers and accelerated graphics boards, a need to support these types of
computers suddenly arose. The most common operating system on these
machines was MS Windows. Since most of our developers have become
accustomed to writing applications on and for Unix, a sudden move to MS Windows

would be too difficult and require too much downtime while developers learned the
environment. Therefore a solution needed to be found that would allow a gradual
move of developers.

Techniques ' j
Overview

To research cross-platform development, SPG took a very straightforward approach.
Requirements were broken down according to categories, then for each category a list
of products was assembled. For each product, we assembled a list of desired features.
Then evaluated all the products according to their feature checklist to determine the
reasonability of using the product for future development.

Categories Considered

Special Projects Group formulated the following list of categories that we consider
important to software development. The list is in no particular order, but a cross-platform
solution had to be found to fill each category.

Category Description

Platform / Environment The machines, file system, user setup, printer setup,
and file locations.

Documentation Tools Tools to generate and format documentation for
cross platform use.
Toolkits Kits that provide basic cross-platform development

tools. They include everything from GUI components
to collection classes and advanced data types.

Compilers Compatible C++ compilers.

Editors Text editors that provide more than basic
functionality and are programming language aware.

Debuggers C++ compatible debuggers.

Make Systems Generate makefiles for different platforms, since all
compiling is done on the command line.

Versioning Systems Allow multiple developers to work on the same
project at the same time.

Design Tools UML compliant design tools.

Experience Details

Evaluation Procedure Description

Special Projects Group found that the best and most comprehensive way to evaluate
the products that filled each category was to make a checklist for each category that
contained all the features we felt were important. These commercial and freeware
products were divided among our developers and each product was tested according to
how it would be used during real software development, then each developer completed
the feature checklist. The checklists were compiled into large tables and the best

product was chosen.

If for some reason no tool could be found in a particular category, more extensive
searching for products was conducted. If no viable tool could be found, SPG took on the

task of developing that tool in-house.

Feature Checklists

The following section contains the feature checklists SPG assembled for each category.
The lists contain the features we felt were important in the selection of the product. Also,
all products were to be evaluated on their ability to run on WinNT, IRIX, and Linux,
which are the platforms we felt that we will need to run our applications. Both IRIX and
Linux pass the Platform / Environment checklist, and because of customer demand we

were forced to support WinNT.

Platform / Environment Checklist

This category includes the machines, file system, user setup, printer setup, and file
locations require for cross-platform development.

File Sharing

Share files between computers. Access common
directories.

Network Aware

Be compatible with standard network protocols.

Secure

User levels and password limited access.

Print Sharing

Share a common printer, or print to a networked printer.

Remote Login

Allow remote login and administration.

Memory Protection

All applications execute in their own memory space;
therefore renegade applications can’t crash the operating
system.

Stable Long uptimes.

WWW Browsers Has some graphical application to allow for reading of
standard HTML.

PDF Viewers Has some application to allow for reading of PDF files.

FTP Applications

Has some application that supports FTP. The application
doesn’t have to have a graphical interface.

Telnet Clients

Has some application that supports Telnet. The application
doesn’t have to have a graphical interface.

Documentation Tools Checklist

This category includes the tools to generate and format documentation for cross

platform use.

Easy to Use

Any developer can generate documentation
without having to use a manual for the utility.

Cross-platform Output

Generates output that can be read cross-
platform. The preferred format is HTML or
PDF.

Support All Platforms

Can be run on all platforms.

Search for Docs in .h and .cpp

Configurable to allow documentation to appear
in either .cpp or .h files.

Clean Doc Style

Minimal effect on how the developer would
normally comment code. No special macros or
odd preprocessing required.

Support for Selected Toolkit

Can support the toolkit. For example, if the
toolkit uses a lot of macros, the documentation

tool can do macro expansion.

Recognize and support the
entire C / C++ language.

Can handle namespaces, templates, classes,
inner classes, etc.

Organizational Pages

Generate alphabetical and/or hierarchical
pages for easy navigation.

Toolkits Checklist

This category includes kits that provide basic cross-platform development tools. They
include everything from GUI components to collection classes and advanced data

types.

-

P

OpenGL Compatible Supports or at least allows OpenGL drawing in a
widget (drawable component).

POSIX Threads Compatible | Supports or at least allows POSIX threads.

GUI Builder Has an easy graphical GUI builder, but doesn't
require one.

Documentation Has cross-platform documentation, preferably in

HTML.

Extendable w/ Custom GUI
Components

Allow developers to extend the predefined
widgets in some way to create custom widgets.

Delegate control to non-GUI
Activities w/o Multithreading

Provides a method of doing computations that
don't affect the GUI, nor prevent proper GUI
updating.

C++ API Pure C++ API. Designed in an object-oriented
fashion from the ground up.
Single Library All of the toolkit is compiled into a single library to

make moving and linking the library easy.

High Performance

High speed drawing capabilities.

Support

Customer support, either via email or over the
phone.

Proven and Tested

A project exists as an example of what the toolkit
is capable of doing.

Limited use of Macros

Small number of macros. Doesn’t make the code
too hard to read or debug.

Easy to Learn

A good C++ developer can learn to use the
basics of the toolkit in a day and can learn most,
if not all, of the toolkit in a week. A simple tutorial
application can teach someone all they need to
know.

Fulfillment of Least Common
Denominator of Widgets

At least provide all the widgets that are common
across all platforms.

Compilers Checklist

This category includes C++ compatible compilers.

Support Namespaces

Support standard C++ namespacing. ~.

Support Templates

Support standard C++ templating, both in classes and
methods.

Support all Standard
C++

ANSI compliant.

Support RTTI

Support Run Time Type Identification. A new C++
standard that makes identifying objects quick and
simple.

Command line only
Mode

The compiler doesn’t depend on a GUI to be invoked
and documentation exists which explains command
line switches.

Generate Shared &
Static Libraries

Ability to generate standard platform libraries, both
shared and static.

Generate Native
Executables

Ability to generate standard platform executables that
behave according to the platform requirements.

Editors Checklist

This category includes text editors that provide more than basic functionality and are

programming language aware.

Syntax Highlighting

Support C++ syntax highlighting.

Configurable
Indenting

Indenting can be configured to meet group-defined
standards.

Proper Integration into
0S

Conforms to OS standards when running. (i.e., Win32
applications launched from the command line should
return the command line).

10

Debuggers Checklist

This category includes C++ compatible debuggers.

GUI Interface The debugger uses a graphical interface.

Step Capability Ability to set breakpoints and execute’one line of
code at a time.

Memory Inspection Ability to view the contents of any memory location.

Memory Violation Detection | Ability to catch a memory violation and report
where it happened.

Performance Profiling Ability to monitor execution time of individual
functions, then report which functions are taking
too long to execute.

Multi-thread Support Ability to debug multi-threaded applications.

11

Make Systems Checklist

This category includes tools that generate makefiles for different platforms. These tools

are needed since all compiling is done on the command line.

Support Multiple Compilers

Generate makefiles that are’compatible
with a various number of compilers.

Support Multiple Make Applications

Generate makefiles that are compatible
with a various number of make
applications.

Command line Only

Doesn’t require a graphical interface to
function properly.

Predefined Configuration Files

Developers only need to configure the
make system once for an application.

No Make Knowledge Needed

Developer never directly has to write a
make file or any component of the make
file.

Support Toolkit

Provide support for the toolkit. For
example, if the toolkit needs some type of
preprocessing or anything of that nature
the make system will generate appropriate
makefiles.

No Underlying Compiler Knowledge
Needed

Developer doesn’t need to understand the
compiler flags for the given OS.

Easily Changeable

New compilers and platforms can be
added without having to recompile or
reinstall the application.

Support Shared and Static Libraries

Generate makefiles that tells the compiler
to make the proper library, shared or
static.

Support Executables

Generate makefiles that tells the compiler
to make an executable.

Support Debug Information

Generate a makefile that tells the compiler
to include debug information when
compiling.

Echo Current Command

Ability to echo the command it is executing

12

so the developer knows what is
happening.

Human Readable Error Messages

Any errors will cause a human readable
string to be outputted which states where
the problem occurred and what the
problem is.

Query Developer for Information at
Run Time

Support asking the developer questions
when generating make files, so the files
are generated according to the developer’s
specific system configuration.

13

Versioning Systems Checklist

This category includes tools that allow multiple developers to work on the same project
at the same time.

Tag Support Files can be tagged with a string so they cart be retrieved
in that state later.

Multiple Developers | Multiple developers can obtain and edit a copy of the code
at the same time.

Easy to Use Simple interface that allows a developer to learn the basic
usage in a few minutes.
Network Aware Store and retrieve files on local and remote machines,

across multiple operating systems.

Design Tools Checklist

This category includes design tools that enable the creation standard UML diagrams.

Standard Unified Modeling Allows the developer to create and edit UML

Language Support, including class diagrams that meet the UML standard.

Class Diagrams

Sequence Diagrams Allows developer to create and edit
Sequence Diagrams.

Use Case Diagrams . Allows developer to create and edit Use
Case Diagrams.)

Smart Layout/Drawing Engine Lines and objects are drawn neatly and
require little reorganization by the developer.

Reverse Code Engineering Ability to read old code and create UML
diagrams.

Printable Diagrams Ability to generate a printable document.

Ease of Use Easy to learn. A programmer should be able
to feel comfortable with the tool after only
one day of learning.

Stability Feels solid and runs without problems.

14

Collected Data

More products were tested than are displayed here due to space limitations. The

products that were close in comparison with each other are listed. Products that were

quickly eliminated are not show.

Platform / Environment

SULTORENIT

suoneonddy 414

SIaMaIA 4ad

siesmoig MMM

X | X | X [X

X | X |X |X

||qelS

uono8jold Aowsiy

X [X [X | X [X |[X

uibo eyowey

Buueys wud

X

X X X | X [X [X |X |X

2inoeg

X [X [X [X [X | X [X |[X [X

X

asemy MJomieN

X
X

Buueys sji4

Win95
Win98

WInNT
Linux
IRIX

Documentation Tools

sebed Jeuoneziuebip

swiope|d |l Hoddng

X

abenbue ++9 / D 8iug
uoddng pue ezjubooey

1M]00 | psios|eg Joj woddng

8jA1S 00Q cmmm%

pue Y ul s00Q 10} yosees

X X (X |X
X | X (X |X

indino wiope|d-ssoud

X
X

asn o} Aseg

X

xnui

X1l

LNUIM

X | X [X |X

Kdoc

Doxygen

15

Toolkits

AUICUTIOUO(UUUWIVU JISET]

uleaT o} Aseg

X

SOIOBJ JO 9Sn payili]

X

Po1Se] pue UsAOId

poddng

XX [X [X|X

8oUeWIoyad YbiH

AreiqiT s|buis

gV ++0O

X
X

X

j0J1u0) arebsjaq

WOISNY) /M o|qepusixg

X

uoneusWno0oq

X
X

i8p|ing IND

X

Sigiedwo spesiyL XISOd

s[anedwos 1ousdo

XNuM

Xldl

X [X [X |X

LNUIM

X I X [X[X[X [X[X]|X

X [X X |X

XX I X XXX [X X

Qt

wxWindow [X | X | X | X [X |X | X [X

GTK

Amulet

Zinc 5

Compilers

SOqemosx]

SAIlBN djelausr)

® paieys sjessusy)

SEEIA L1

PO U
9UuIT puewwo)

|L1Y woddng

NSO

+OPrepues
Ile yoddng

soje|dwe] poddng
segedsouiep

~ Hoddng

XnuIT

Xidl

LNUIM

CcC

VC++

Borland BCC

GCC
Intel.

16

Editors

SO o
uonesbau|

bunuspuj
9|qeinbyuor

BunybnytIH
XejuAs

Xnur

Xdl

LNUIM

XEmacs

WinEdit
NotePad

VC++ IDE

Borland IDE
Wirite

Jot

VI

Debuggers

yoddng peaiyi-iiny

BuIoid
edouewliolsd

uonosleg
uone|oip Aowsy

uonoadsu| Alowep

Alligede) deig

NS

Xnur

Xid!

LNUIM

X

X

X

Visual Studio

SoftiICE

BoundsChecker

TrueTime

Purify
Quantify

PureCoverage

Code Vision
DBX

17

GDB
DDD

Borland

Make Systems

ledojansq Aienp

10113 9|qepeay

pUBWWOo) O4og

oju| bngeQ

Se|qenoaxg podang

SQI7 onelS R paleys

X[XX |X

XXX |X
XX [X|X

a|gebuey) Ajiseg

18)1IdWo) oN

14|00 woddng

abpajmouy| axe oN

BLUOD pauljepaid

aul] puelWwoc)

SeXeN o|dnIN

si9|ldwo) a|dijiny

XNur

X1gl

XXX XX [X[X|X]|X

XX XXX [|X[X]|X[X

LNUIM

XXX XXX |X]|X|X|X

GNU

Configure
Imake

Tmake

Versioning Systems

alemy
MOM}SN

asM 0} Ase]

siedojensqg
a|dmnN

poddng bBe |

XNuI

Xl

LINUIM

CVs
RCS

18

Design Tools

Aigers

es(Jo ese]

swelbeiq s|qejuld

X

puUnssuIbUg
8poYy) eslonsy

X

aubUug
Buimeiq / inoAe pewsg

swelbeiqg esen asn

swelbeiq eouanbag

sweibeiq sse|n

XNuI

X | X [X | X |X

Xidl

X

LNUIM

GDPro

Together

Argo

Rational Rose

19

Results

Eliminating Choices

Most of the test went as expected, the product Special Projects Group thought would be
the best was in fact the best. However there were a few surprises with some of the
products that we thought would come out on top were quickly eliminated.

The Standard Template Library (STL) was quickly ruled out because it wasn’t supported
on all platforms. Also, MS Windows uses different header files for the STL, so all of the

included header files would need to be duplicated when writing cross-platform
applications.

VC++ and Intel compilers didn't fully support the C++ standard. Language features like
templates and namespaces caused these two compilers to fail. Microsoft has
recognized some of these bugs and a fix is promised, but there is no time line
guarantee. The significance of these compiler problems warranted them being

eliminated.

Limitations

After evaluating all the products, SPG realized that there isn't a cross-platform solution
for every problem. This means that in some cases two separate products must be used,
one for each platform. This is the case with compilers, debuggers and editors. No single
application would work well cross-platform in any of those categories, however there are
different products that can be found to do the same job on different operating systems.

We also found that cross-platform applications work on many operating systems, but
can never be fully integrated into a single operating system. For example, it is not
possible to write an application that uses Microsoft's COM/DCOM because those

elements won't be supported on all platforms. Most cross-platform applications tend to
half-integrate into many operating systems, but never fully integrate into one.

Final Choices

After evaluating all the products, the best one was chosen. Below is the list of products
we felt best filled the category along with a description of why we chose that product.

20

Platform / Environment

Linux provided an inexpensive solution and when combined with Samba it is one of the
most flexible and reliable operating systems we have ever used. It can be installed on
machines ranging from high-end servers to old low-end personal computers. It has
incredible uptimes and behaves like most standard UNIXes. This makes the transition
easy for developers who have worked with UNIX before.

IRIX best supports the heavy graphics load that some of our applications require. It also
offers great administration tools and support. It is solid, reliable and secure. It offers the
best integration of tools to allow for productive developing.

WinNT provides a secure and stable environment to test Win32 applications. It can run
most Win32 applications, which means there is a large amount of available software for
the system. It also has the best networking support in the Win32 domain, which allows it
to blend into an existing network and use devices like network printers and common file
servers. WIinNT is also the platform that most of our clients are using.

Documentation Tools

Doxygen was chosen because of the cross-platform support and clean documentation
style. It was the only tool that worked well cross-platform and supported some more
advanced features like generating inheritance diagrams and a CGl script for searching
the generated documentation. Doxygen also uses standard JavaDoc type rules with
extensions. It will create collaboration diagrams using a tool from AT&T Labs, as well as
linking multiple libraries’ documentation together to allow referencing external
documentation from within a project.

KDoc was also a good tool, but it required the KDE libraries, which are not cross-
platform. These libraries lead to problems on both IRIX and WinNT since they couldn’t
be compiled cleanly.

Toolkits

Qt was the toolkit of choice. It offered the largest collection of cross-platform graphical
components as well as offering a large selection of data structures, including lists,
stacks, etc. The support is great, with a one-day or less response time as well as a
mailing list offering instant answers. Qt is open source, which allows for easy debugging

21

and the ability to fix a bug before it is acknowledge by Troll Tech. It provides not only
data structures, but also elements like socket and file 10. It was proven to be extendable
by the KDE project under Linux and compiles cleanly under many operating systems.
The only downside to Qt is that the event delivery mechanism requires the use of a pre
processor, which we discuss later. .

-

wxWindows was also an impressive toolkit, but it was harder to learn than Qt and the
support wasn't quite as good. If a free solution is a must, wxWindows is definitely the

recommend toolkit.

Compilers

G++ is the compiler of choice under Linux because not only is it free, but it offers great
support for the newer features of the C++ language, including namespaces, templates
and RTTI.

Under IRIX, CC was found to be the best compiler. Since the manufacturer of the
operating system develops the compiler, it is well integrated into the environment and
has great support for templates. It also offers the cleanest and most detailed error
messages when compiling goes wrong.

Borland’s CBuilder was the compiler of choice since both Intel's and Microsoft's
compiler failed the tests. Borland’s compiler is incredibly fast and very accurate to the
ANSI standard, including many things in the standard that all other compilers ignore.

Editors

Under UNIX, XEmacs was chosen because of its advanced features, including syntax
highlighting, configurable indenting, configurable shortcut keys, etc. The editor allows
multiple files to be opened at the same time and allows a server to be run to make
launching the application quick. XEmacs integrates well into the environment and allows
the developer to do things like compile and debug directly in the editor.

The selection of editors under WinNT was poor. XEmacs was our first hope, but the

project to port XEmacs to windows is still in early beta and not nearly stable enough to
be used full time. One of the few applications that proved useable was WinEdit. It allows

22

multiple documents to be opened, supports syntax highlighting, and like XEmacs, it
allows the user to run a single copy of the application to make startup time quick.

Debuggers

Under Linux, DDD is the debugger of choice. The selection of debuggers is rather small
and most are command line only. Command line compilers prove to be very difficult to
learn and rather tedious to use. DDD offers a GUI for most command line debuggers,
giving the developer the power of the command line in an easy to learn interface.

With IRIX, both DDD and CVD prove to be viable options. DDD offers all the qualities
mentioned above, while CVD offers all of the above plus great integration with the
operating system, since CVD is written by SGI. The interface to CVD is clean and easy
to use and it is both reliable and stable.

WinNT offers a larger selection of debuggers, but only a few are very usable. The
problem with most of the WinNT debuggers is that the interface is hard to use and very
cluttered. The best application found was Borland’s CBuilder. The advanced window
drawing tools Borland uses allows a developer to drag windows in and out of the main
window, making it easy to debug large applications since multiple windows can be
opened, moved and minimized individually. The application is solid and very powerful.

Make Systems

SPG found no suitable robust make system that works on all the platforms. Each
operating system provided an application to compute dependencies and invoke the
compiler, but these applications needed to be feed very detailed information. This
proved to be too tedious and difficult for our developers so we decided to take on the
task of writing an application that would run cross-platform to generate makefiles based
on simple configuration files. Our final product was called CrossMake and is freely
available under the Freedom of Information Act.

Versioning Systems

Very few cross-platform, network aware versioning systems exists. The only one that
really met our needs was CVS. Many graphical interfaces exist for CVS, but they are
not required to use the application. The application runs on both UNIX as well as WIinNT
using the Cygwin tools. CVS is fully network aware which allows machines that can't

23

mount drives to still communicate with the CVS server. The application is free under the
GNU Public License and fairly easy to use once the basic commands are understood.

Design Tools

Testing the design tools took a long period of time. The first tool tested was GDPro,
which was a good tool, but after long periods of use we found it to be unstable and the
layout algorithms used were poor, requiring the developer to constantly relay out the
diagrams. The manufacturer of GDPro informed SPG that support for IRIX would soon
be dropped because of a small demand.

Rational Rose, a very popular tool, was found to be too difficult to use and very
unstable. The C++ code generated from the application was very disorganized with
special tags strewn throughout to allow the application to reload the code later.

This led us to the choice of Together. Written in Java it works on all the platforms that
java supports. It has the best layout engine we saw as well as a simple clean interface.
It automatically generates code, the layout of which is fully customizable in a few plain
text configuration files. The tool also supports generating documentation with GIF
images of the design, which is a nice feature but we found it a little too slow for general
use. Together will update existing class diagrams automatically by reading and parsing
existing code. It supports macro expansion and can preprocess code before creating
class diagrams to be sure all variables are macros. Overall it is a great application that
is in very active development with new features being introduced regularly.

Liabilities
Special Projects Group tried to make the best choice in each category, however this led
us to some liabilities that were unexpected and as far as we are concerned

unavoidable.

Use of Java

One of the major problems that we kept running across was that a lot of cross-platform
tools are written in Java. This introduces many problems because of things like slow
performance, dependency on Sun to continue Java developme'nt, and making sure that
all of the development machines have the same version of Java installed. In most cases

24

the pros of using the tool outweigh the cons of Java. This is how we justified most of our
choices that rely on Java.

Use of Slots/Signals (Pre Compiler)

Special Projects Group decided to use the Qt toolkit, which uses a mechanism of slots
and signals to manage event handling. Although the slot and signal design makes Qt
easy to learn and understand, it also requires the use of a preprocessor to translate the
slots and signals into standard C++ code. The pre compiler source is provided free from
Troll Tech (producers of Qt), which means it would be possible to modify the compiler if
for some reason we had to.

Borland and VC++ DLLs

One problem we found after testing is that most applications or developers that provide
DLLs have compiled the DLLs with VC++. This is a problem when our applications are
built with Borland’s compiler. Borland does provide a utility to convert VC++ DLLs into a
format that can be used in Borland made executables, but it isn't guaranteed to work
and the developer must rely on this tool in order to build an application.

Conclusion

Summary

Cross-platform development isn’t necessarily easy, but it can be made much easier by
using the right tools. A large software application should be developed from the ground
up with cross-platform development in mind since all of the components of the
application will need to work on more than one final operating system. Getting all the
tools a developer will need installed and configured could take days. This should be the
first step in the implementation phase. This will help prevent the developer from having
to stop and install a new piece of software or tool in the middle of the implementation

phase.

Any time that a developer uses third party solutions, dependency upon the producer of
that solution is inevitable, therefore when choosing a product the company producing
the product should be evaluated just as much as the product itself. Things like the life
expectancy of the company, quality of support, and cost of the product should be
strongly considered.

Recommendations

One of the most important things to look out for is a compiler that doesn't fully
implement the C++ standard. Things like namespaces and templates seem like simple
things, but they can easily throw a compiler into a broken state. Be sure to test all your
code on all the compilers that will be used as often as possible. Don’t assume that
something will work on one compiler just because it works on one or two others.

Compatibility is another large problem. If the application requires DLLs or shared
libraries, be sure that the compiler will generate and use components created using the
respective platform standard. This is shown in the “Borland using VC++ DLLs” problem.

There are many free, open source tools available now that out performs many of the
commercial products. SPG strongly recommends that you consider and evaluate free

software. When it comes to software, price isn’t always proportional to quality.

Try to make the migration to new platforms as easy for developers as possible. This can
be done by continuing development on older platforms even if they won’t be supported

26

in the future, then slowly work the developers to the new platforms one at a time, so
there is no down time during development.

Changes

If SPG were to do this test again, we would do a few things differently, including making
the test application we wrote a bit more complex. We would test more of the advanced
features of the compilers, toolkits, debuggers, and other tools. There were times when
we tested something, claimed it worked fine, but under a different situation it would fail.
Testing needs to be the highest priority to which most evaluation time should be
dedicated.

Shared libraries made with different compilers was something that SPG never really
though about until it was too late. If the evaluation were to be done again, a list of what
compilers produce and can use standard DLLs and shared libraries would have been a
valuable reference.

27

References

Web Resources

All web resources where current as of the writing of this document.

-

Environment

e SGI: http://www.sgi.com

e Samba: http://www.samba.org

e WIinNT (Microsoft): http://www.microsoft.com/ntserver/
o Linux: http://www.linux.org

e Cygwin: http:/sourceware.cygnus.com/cygwin/

Documentation Tools

¢ Kdoc: http://www.ph.unimelb.edu.au/~ssk/kde/kdoc/
o Doxygen: http://www.stack.nl/~dimitri/doxygen/

Toolkits

¢ Qt: http://www.troll.no

o GTK: http://www.gtk.org

o Amulet: http:/www.cs.cmu.edu/~amulet/
o wxWindows: http://www.wxwindows.org
e Zinc 5: http://www.zinc.com

Compilers

e BCC (Borland/Inprise): http://www.borland.com/bcppbuilder/

¢ VC++ (Microsoft): http:/msdn.microsoft.com/visualc/

¢ Intel: http://developer.intel.com/vtune/compilers/cpp/

o GCC: http://www.gnu.org/software/gcc/gec.html

¢ CC (SGI): http://www.sgi.com/developers/devtools/languages/c++.html

Editors

¢ XEmacs: http://www.xemacs.org
¢ WinEdit: http://www.winedit.com

28

Debuggers

DDD: http://www.gnu.org/software/ddd/ddd.html
CVD (SGl): http://www.sgi.com/developers/devtools/languages/c++.html

DBX: http://www.sgi.com/developers/
GDB: http://www.agnu.org/software/gdb/gdb.html

Make Systems

¢ iMake: hitp://www.opengroup.org
¢ GNU Configure: http://www.gnu.org/software/autoconf/autoconf.html

o tMake: hitp://www.troll.no

Versioning Systems

e CVS: htip://www.gnu.org/software/cvs/cvs.html

Design Tools

e Together: http://www.togethersoft.com
e GDPro: http://www.gdpro.com

Portability Guides

e C++ Portability Guide: http://www.mozilla.org/hacking/portable-cpp.html
e C++ Programming Style:
http://www?2.wildfire.com/~ag/Engineering/Development/C++Style/doc.html

'SPG Developers and Researchers

¢ Michael Pilone

e Gregory Stern

¢ Brian Solan

e Thomas Diepenbrock
¢ James Durbin

¢ Daniel Pilone

e Brian Calves

e Lawrence Schuette

29

