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ABSTRACT 

This report describes a numerical method to calculate the flow 

of a compressible fluid in the presence of shocks. It is related to 

the method of von Neumann and Richtmyer*  and, to a lesser extent, to 

(2) 
that of P. Lax.    This method permits a number of variations which 

were compared by testing them on some analytically known one-dimensional 

flow patterns. The calculations were carried out on the Los Alamos 

"MANIAC." 
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1. General Remarks 

The one-dimensional hydrodynamic equations can be written 

in the Lagrangian form 

and 

where 

and where 

r dt }x    ' 
(1) 

Pn     *v    _    >u (2) 

ll   =    .(ow)2-^   -    -pw2-^    • (3) it (PoW)     3t /V    }x    ' {3) 

u = velocity, 

p = pressure, 

v = specific volume, 

O    = initial density, 

x = initial position of a particle, 

i Sx // > S. 

in which 

S = entropy. 

The first two of these equations are in the form of conservation 



theorems and can, with the aid of Green's theorem, be integrated in 

a shock region. The third equation is clearly wrong in the presence 

of a shock. Nevertheless, we use it to expand p for use in eq.(l): 

Upon integrating eq.(l) to a small value of t = $ t, we get 

u(x, ft) - u(x,o) -y-cTi[ P<X>°> - ^ li gt J St •  (5) 

An alternative method of integration is due to Riemann, who defined a 

quantity 

CT = - IP w dv (6) 

and showed that the quantities u + CT remain constant along the 

so-called characteristics defined as the lines 

£ - t .- (7) 

Therefore, if x and xg> xx are two points on the x-axis and if the 

forward characteristics through x±  and the backward characteristics 

through x meet a little time later at a point x, we have at that 

point 



u + er = ux + (rx (8) 

and 

u . tr = u2 - cr2    , (9) 

which yield 

u = g(u1 + u2)+|(cr]L-cr2). (10) 

This solution is related to the construction of solutions of the wave 

equation by Huygen's principle. This principle* states that a 

solution in a space of an odd number of dimensions depends only on 

the starting values at the border of the domain of dependence. In 

an even dimensional space, it depends also on the interior of this 

domain although the influence of the border is still the stronger. 

In no case do points outside of the domain of dependence have any 

effect. 

* A detailed discussion can be found in (3), Chapter 6,  para. 5.3. 
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2. Development of Method 

The computing scheme proposed here uses a rectangular lat- 

tice (x ,t ). Velocities u.n and displacements X " are defined at v i n i x 

the lattice points, whereas specific volumes v^ ±j2  and pressures 

v  n   /  are defined between them as indicated "by the i + l/2. 
+ 1'2 n + 1 

If eq.(lO) is applied to calculate u.± ,  the points 1 

and 2 lie as indicated in Fig. 1 and" can be computed from eq.(7)- 

(i,n + 1) 

•- 
i-1     1   i   2     i + 1 

Fig. 1 

One can show that the second term in eq.(10), if expressed in terms 

of quantities defined in the latter scheme, is 

"V^. 2  (Pi"- 1/2 - Pi"+ 1/2 > gt.       {11) 
2   "  fo(xi + 1 " Xi - 1; 

This expression is the same as one would get from the pressure 

derivative term in eq.(5)- The first term in eq.(lO) can be ex- 

pressed in more than one way. The choice is introduced by using 

different interpolation schemes for expressing \i±    and u2 . If one 

fits u at the three points x± _ ±,  xj,, and x± + ± by a parabola 

which has its axis parallel to the u-axis and if one fits w by a 
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line at x. _ Wo an(^ x.  , /?, then one finds that the leading terms 

are 

Ul + U2      n  2<qi"-l/2- qi"+l/2^   ,_ 

where 
/ n    n  \ 

qi + 1/2 
= 2 ^o(vi + 1/2) — "TZ" 8 * '     <13> 

' '     l + 1   l 

This is the same expression one would get from eq.(5).  If one fits 

u by two straight lines between adjacent points and w in each 

interval by its central value,, one obtains eq.(l2) but with a 

different q: 

qi"+ 1/2 =    | Co Wi\ 1/2  K  "  Ui + 1>   ' ^> 

One might think of other combinations of interpolating the two 

quantities u and w, but the two which were chosen have the virtue of 

leading to an equation of the type (12), which ensures the conserva- 

tion of momentum. 

The transcription of eq. (2), which expresses the conserva- 

tion of mass, can be done as follows. We introduce the position 

X. and integrate: 

vn + l    n  1/ n + 1    nxr^ /-,,-\ Xi     " Xi = 2 (ui     + ^ )bt (15) 

-9- 



and calculate the volume from 

fo -I". 1/2 - Kl". 
(16) 

As was pointed out earlier, eq.(3) is not in the form of a 

conservation theorem. In order to put the conservation of energy 

into evidence, we write 

Po-ä<E + r> --5J(p-). <«> 

where E(p,v) is the internal energy. One has to exercise care in 

performing averages in the transcription of this equation into 

difference equation form, for u, which occurs on both sides of eq. (17) 

is not defined at the half points as are p and E. It turns out that 

one can obtain a much simpler form if one alters eq.(l7) by replacing 

p on the right hand side by p + q as was done in Ref. 1. If one does 

not bother to center the right hand side of eq.(l5) in time but 

replaces it by its value at t , then the transcribed equation can be 

put into the form: 

«? I 1/2  - Ei + 1/2 
+ (P" + 1/2 + <  ♦ l/2)(Vi * i/2 " Vi + ^ 

= 0 (18) 

This equation does not exhibit the conservation, but it possesses it 

-10- 



nevertheless if one uses it in conjunction with eqs.(lO), (ll), and 

(12). Formally, the above equations look like they contain a vis- 

cosity term if one uses eq.(l4) for q; and indeed, similar to the 

viscosity method of von Neumann and Richtmyer (Ref. 1), they lend 

themselves to the treatment of not too strong shocks. On comparing 

the results obtained by using for q an expression q., which is linear 

in Au as given by eq.(l^) or an expression q2 which is quadratic in 

Au as suggested in Ref. 1, the following was found (Fig.J*, p.21). The 

use of q1 gave a fairly large overshoot behind the shock which damped 

out quite rapidly in the wake of the shock. The use of qp gave a 

smaller initial overshoot, but it damped out slower. It seemed 

advisable, therefore, to use a combination of q.. and qp in order to 

get both a small overshoot and a rapid damping. Either one does 

some violence to the equations, which has the effect of smearing out 

discontinuities such as shockfronts, interfaces, or heads of rare- 

faction waves and of introducing disturbances at boundaries which will 

be discussed in more detail later on in this paper. 

It is therefore desirable to keep this violence at a mini- 

mum, and this may be done in a number of ways. The q_ suggested by 

von Neumann and Richtmyer is of the form 

•h   =-c2^l^il  , (19) 

where 

Au = Ui + 1/2 " Ui - 1/2 • C20) 

-11- 



It was recognized quite long ago by the people who used this method 

that there was no need for a viscosity term for positiveAu,  and one 

often finds it replaced by zero for that range. This "spliced q2" 

has a continuous first derivative.  One can also adjust the parameter 

c j and, in the absence of q^  cg = 2 is about right to handle most 

cases. Of the two expressions given for q^ the one in eq.(l3) is, 

in the absence of discontinuities, correct to one order higher in & t 

than the one given by eq.(lU). One can reduce the violence done by 

applying eq.(l^) alone by mixing the two expressions, i.e., 

«1 --S^^l*«1-0!^]'        (21) 

with the indices as in eqs.(l3) and (lU). Aside from "method 1", 

which consists of the continuation of q± given by eq.(2l), and the 

spliced q2, we shall also test "method 2", which comes closer to the 

requirement of having no viscosity for positive Au. In method 2, we 

use q + q2 , with q2 given by eq.(19), up to the value of Au where 

q + q reaches its minimum and that minimum for values of ^u beyond. 

In this method, q + q2 is also a smooth function of Au. 
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3. Analytical Solution of Test Problems 

The above methods were tested on a gas for which 

E = p v/U- 1)  , (22) 

with ?"= l.k.    The specific cases to which tests were applied were as 

follows: 

A. A shock which is induced by a piston of constant velo- 

city u running into material of constant V = V, and at rest. The 

theory leads to a shock with constant values of u = u „ = u , 
v do 

V = Vp = ^r-, P = P2 = S 
pi fee'fcween tne piston and a shock front going 

with the constant velocity D. We obtain (with M = -j—r) 

u^ ( I       i fi 
p^--(^-l) ^.l       ■ (23) 

■K -£$+ • <*> 
and 

D = /Fi^ . ^i + -£_ (^TT7 (25) 

A few useful numerical values pertaining to the actual test 

problems are collected in Table 1. 

■13- 



TABLE 1 

Shock Relations for r = l.k  (Cases A and B) 

X n V*f D/ Vi ^S7?' u/ Vvx vx- 

k 21.303 ^.718 2.1+27 5.076 11.86 

16 309.^ 5.889 25.88 19.27 50.50 

3.862 20 k.6<yk 2.323 1+.919 11 Al 

16.275 320 5.893 26.70 19.60 51.38 
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B. Same as kf  but with the piston driven by a constant 

pressure. The  theory is the same as under A. 

C. A rarefaction wave induced by a piston receding with a 

negative velocity u • This leads to a simple wave as discussed,for 

example, in Ref. h,  para. 1*0. In this solution one has a fan in the 

x - t plane separating two regions of uniform conditions. 

t 

Fig. 2 

One obtains p    = 2; p.  and V    = — from 

and 
V       2V7-      /pJV^V 

l'"*l 

(26) 

(27) 

In the fan we have 

* =  v ifc-E- t  ir v (28) 
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and,with pV r constant as in eq.   (27), 

2 

= / */t Y*1 
(29) 

The speed of the front and rear end of the fan are obtained from (28) 

by substituting p,, V, and p , V respectively. Some numerical values 

are found in Table 2. 

D. The shock tube problem (see Ref. k,  para. 8o). Each of 

two media in contact is initially at rest and at constant density and 

pressure, but the two densities and pressures are different. Fig. 3 

gives the x,t diagram. 

Fig. 3 

Between regions 2 and 3 is what Ref. k  calls a contact discontinuity, 
P2     Vl 

i.e., p and u are continuous but V is not. We define £= — , ">| - — , 

and X = P5/Pr X is given, K and ^ are to be found. We can express 

u   2_lF  if 
3 = 7-  1  ' 

P5V5 
1 - (|)"§V 

(30) 

(3D 
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TABLE 2 

Rarefaction Wave Relations for T"= l.k  (Case C) 

u/ j/p^' 1 "7 ^$y 

- 1 

- k 

.27^ 

.00037^ 

.396 

.00356 

.390 

.00136 
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and find 5 "by equation Ug = u_. ^ and the shock velocity D can then 

he found from eqs. (2k)  and (25) and v  from 

v3 = v5(xA)
1/y . (32) 

Conditions in the fan are given "by relations like (28) and (29) with 

p , v,, and x replaced by p-, v,-, and -x. Some numerical values 

are given in Table 3» 

k.    Numerical Tests 

The method of integration was tested on the four cases treated 

analytically in the previous section. Equations (15) and (l6) were 

used for conservation of mass. Expressions (11) and (12) are entered 

into eq. (10) to give what was used for the conservation of momentum: 

o/ n      n      n      n   \ s, 
n+1    n  2(pi-l/2 + qi-l/2 ' Pi+l/2 " qi+l/2

} St 

U.     =  U. +  ' 7 ' c—' '  
Po<xi+l - xi-l' 

The equation of state (22) is entered into eq. (l8) to give the 

equations which were used for the conservation of energy: 

(33) 
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TABLE   3 

Shock Tube Relations for   7T = 1.4  (Case D) 

V'i P3/P5 V's ^5 Wi D/ZP^' 

2 .7009 .7758 .6357 .2929 1.372 

16 .2142 .3328 .1430 1.082 2.077 

32 .1381 .21+31 .08251 1.458 2.345 

64 .08711 .17^9 .0^650 1.743 2.625 

128 .05368 • 1259 .02563 2.020 2.906 

512 .01923 .059^6 .007^04 2.552 3.466 
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*W2 - * »°+i/2 ♦ <r-i><» -« &;+1/fe+ "i.i/2» .     (3I>) 

where 

,n 
Vi+l/2 

y = 153^ (35) 
Vi+l/2 

The tests were carried out with J" = l.k.    Runs were made in the one- 

medium cases A, B and C, with 30 and in the two-medium case D with 

6o mass points. 

In the cases A and B, which test the method for its treat- 

ment of shocks, the problems were run without interruption up to a 

time where one can still run 32 more cycles before the shock reaches 

the last mass point. At this time a printout was made of all physical 

variables and in the remaining 32 cycles a fluctuation calculation is 

carried out. First, the shocked region is located by going from the 

last mass point backwards and testing for the first pressure maximum. 

In the two runs presented in Fig. h,  for example, these are the en- 

circled points. From there back to the piston,the average pressure p 

as well as the maximum and the mean value of the square deviation 

?       — 2 
Ap = (p - p) are calculated in each cycle. Following this through 

—      —      — 2   2       2 
32 cycles the time averages p, (p - p) , Ap , and Ap max were calculated 

2 
and the absolute maximum Ap       was recorded. Let us define 

max max 

relative errors as follows: 

-20- 
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^^'-=-^,   £2 = f(F - F)
2 / F, l-fäf'/i 

Ek -1*£j >•  v ft-- —; , p max max 

In Fig.5» these five relative errors are plotted as a function of£t for 

a typical case. Also indicated is the Courant-Friedrichs-Levy limit, 

which is given by the relation )/   T %->\ p, v,   6 t--,,/6 x = 1. Below 

6*CFL   c 
about —p  , c is exceedingly small and positive or negative with- 

out any apparent correlation to any other factors. The quantities 

Of ^o,and c. have constant ratios for all cases considered, except 

for small random variations. £ / £_ is generally somewhat larger for 

small values of &t.    This is, however, not too significant; and for 

judging the merit of different combinations of c, and cp,we shall con- 

sider only one of the five £'s, namely £_. 

One can obtain some feeling for the merit of different com- 

binations of c, and c2 in calculating this type of flow by constructing 

lines of constant £_ in the CT*C2 plane. Such diagrams are presented 

for two shocks of different strength in Fig. 6.  Optimal smoothing 

occurs for 0-^ = 1 and for values of c2 ranging about from 1 to 2. If 

optimal smoothing were the only criterion for choosing the parameters 

c1 and c the problem would be solved with the above observation. How- 

ever, too much smoothing has also some undesirable features. Two of 

-22- 
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these can be observed in the above runs. Too much smoothing widens the 

shock region and it causes an overshooting of the entropy and therefore 

too low a density in the zone next to the piston. The origin of the 

first effect is obvious, and a numerical discussion for the quadratic 

viscosity is given in Ref. 1. Figure 7 shows how this effect depends 

on c, and cp for two piston velocities. No special graph is made 

for the pressure boundary condition (case B) because it gives the same 

result as comparable cases A. The second effect can be understood as 

follows. After a shock has travelled some distance away from the 

piston, it is essentially a steady state type solution as discussed in 

Ref. 1. One can show that the computed values of q and v are indeed 

close to the theoretical curve given by eq. (28) of Ref. 1: 

qV = LL^ll M^V. - V)(V - Vf). (36) 

This relation is established irrespective of the viscosity law, pro- 

vided only that there is enough viscosity to establish a steady state 

solution. In the first zone, on the other hand, one clearly has not 

the steady state type solution which gets established after the shock 

has run sorae distance away from the piston. In Fig. 8, the dependence 

of qV on V, as taken from an actual run, is plotted both for the 

first zone and for the interior zones and is compared to the theoretical 

expression of eq. (36). 

If we rewrite eq. (18) in differential form 

-25- 
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v/v, 

Fig. 8 Comparison of viscosity with steady state theory. 
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dE + p dV = - q dV (37) 

and multiply by the integrating factor T"  , we obtain 

MW*)    = - (af- 1)I  qV^'1 dV. (38) 

This relates q in a simple fashion to the entropy increase, and an 

inspection of Fig. 8 makes it apparent -why the entropy in the first zone 

is too large. It is also apparent that the discrepancy grows with the 

amount of viscosity. Some measure of this discrepancy is the ratio of 

the maximum of qV in the first zone, which occurs at the very start, 

i.e., for V = V,, to the theoretical maximum for the steady state 

solution as calculated from eq. (36). For small St    this ratio is 

TTx(e2 + T ^)- (39) 
O 

This of course makes sense only for strong shocks, because the entropy 

change for weak shocks is negligible anyway. In the case of Fig. 8., 

the contribution due to the quadratic term completely swamps the one 

due to the linear term. In case B, i.e., when a pressure rather than a 

velocity is maintained at the piston, the depression of the density of 

the first zone is less pronounced but nevertheless present. Fig. 9 shows 

the ratio of the density in the first zone, as actually obtained in 

some runs, to the theoretical density for the steady state solution, as 

function of the parameters c1 and c?. There are three groups of 

-28- 
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Fig. 9 Ratio of actual density in the first zone to theoretical 
density for the steady state solution. 
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curves corresponding to three different boundary conditions, two where 

the velocity is given and one where the pressure is given. 

Figure 10 shows some density profiles (skipping the first 8 mass 

points) for some selected combinations of c, and Cp. In both the weaker 

and the stronger shock curves the Courant-Friedrichs-Lewy number is about 

0.4. A few runs were also made for infinitely strong shock, i.e., shocks 

running into a medium with p. = 0. The results were in all respects so 

much like the runs for which u = l6Vp1 V, that it is not necessary 

to tabulate or plot them. All these data show that for the computation 

of flows containing-a shock one does well using c, = 1, i.e., as large 

as possible, and c_ = l/2. This combination gives fairly good smoothing 

without introducing excessive troubles of the kind which were discussed 

just above. 

The next point which was studied was the effect of viscosity 

pressures on the accuracy of calculating rarefaction waves (Case C). 

Most calculations here were made using method 2 [discussed just after 

eq. (21)1. In the calculations of shocks method 1 was usually employed 

but there is no significant difference if one uses method 2 instead be- 

cause the positive Au's are not large enough to reach the point where 

q is spliced. One can see from eq. (26) that the fastest velocity with 

which the material will follow a receding piston is y  ■. y P-, V, or, 

if y = 1.4, | u.| = 5»9l6 ^p, V,. The larger one chooses lu I the more 

severe a test will one have for the errors due to the viscosity pressure. 

Only one run was made with u = - ^p. V,, for which a pressure 
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Fig. 10 Density profiles for selected combinations of c^ and Cg. 
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profile is presented in Fig. 11.  The other runs were made with 

u= - k ]/p   V,. This is close to the limiting case of blowing off mater- 

ial into the vacuum and for that reason the densities and pressures at 

the "piston" are extremely small. Fig. 12 presents a log log plot of 

the density profile near the piston end of the rarefaction fan. The 

theoretical curve is obtained from eq. (26) for the plateau and from 

eq. (29) for the fan. The points are obtained from a run with q = 0. 

The differences here are entirely due to the mesh size 

&x = 1, which is large compared with the lagrange distance x = .017 

a sound signal would have traveled on the piston side of the rarefaction 

fan. If one would plot the same graph on a linear scale, the differ- 

ences would not show up. The points obtained from a run with c = 1 

and c  = 1 are so close to the points with c . = c p = 0 actually drawn 

in Fig. 12, that one cannot tell them apart.  The difference between 

runs with different q does not become significant until one reaches 

points near the head of the rarefaction wave. Fig. 13 compares some 

density profiles in that range with the theoretical curve and with the 

curve computed with no viscosity. The agreement is now poorer for 

larger c-^. It seems at first surprising that the agreement gets better 

for larger c2- This is, however, easily understood if one considers 

that q is levelled off for smaller Au and at a less negative value for 

largerc2 because of the use of method 2 (see Fig. Ik). 

The last group of problems tested the shock tube problem 

(case D). The initial density and pressure ratio was varied from 2:1 
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Fig. 11 Pressure profile for rarefaction wave. 
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Fig. 12 Density near piston end of rarefaction fan. 
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Fig. 13 Density near head of rarefaction wave. 
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q   BY   METHOD   2 

Fig. lU   Values of q determined by method 2. 
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to 512:1. The runs with a ratio of 2:1 were exceedingly close to the 

theory. Figure 15 shows a fairly typical density profile for a ratio 

of 32:1 compared with the theory. The quality of the approximation in 

the rarefaction wave agrees with the observations made on the case C 

runs. Figure 16 shows some runs for a ratio of 16:1 in and near the 

region of the density plateau (region 3 and parts of region k  of Fig. 3)« 

The plateau shows up much better in the runs made with method 2. In 

the shock region (region 2 of Fig. 3), however, method 1 is better, as 

evidence by Fig. 17, which presents the error of the average density 

and the average error of the density in that region. 
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Fig. 15 Density in shock tube. 
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Fig. 16 Density near plateau. 

-39- 



Fig. 17 Error of the average density and the average error of the 
density in the shock region. 
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