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Abstract 

The goal of the FoxNet project is to explore the advantages (and drawbacks) of implementing 
networking software using an extended version of the SML language. In this report, we document 
the performance of the FoxNet. Using the performance results as a guide, we compare small 
function overhead and memory access performance of the extended SML to the dominate systems 
programming language C. 
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Introduction 

Researchers have made great progress in the design and implementation of programming languages 
in the past twenty years. However, most systems software, and in particular most networking 
software, is still written in C and C++. The FoxNet is an experiment to create an Internet networking 
stack using an extended version of Standard ML (SML) [7]. The protocols and services provided by 
the FoxNet are defined by the Request For Comments numbers 791 and 1122 [5, 8]. The extended 
version of SML, which the FoxNet uses, is defined by the development team of the Standard ML of 
New Jersey compiler [2]. For this report, we call this extended language SML+ (leaving the term 
SML for the language defined in [7]) and we call the compiler which compiles the SML+ language the 
SML/NJ compiler. 

The goal of the FoxNet project is to explore the advantages (and drawbacks) of implementing 
networking software using SML+ and to understand how to extend the SML language to accommo- 
date systems software. Our FoxNet experience has shown us that SML provides excellent high-level 
support for producing systems software, but it lacks low-level support for producing efficient im- 
plementations. At the architectural level, the SML signatures provide concrete specifications for 
defining and discussing the modules of a large system. At the process level, the compilation man- 
ager of SML/NJ eliminates the burden of building and maintaining makefiles. At the implementation 
level, the type system catches programming mistakes which commonly occur when using C and au- 
tomatic memory management eliminates a whole class of memory-allocation bugs that plague C 
and C++. Despite these strengths, the low-level implementation support that the SML+ language 
provides has two weaknesses: 

• 

• 

Small functions: SML+ does not provide a mechanism for efficiently implementing very small 
functions — functions smaller than 20 instructions. The C language provides the #def ine 
macro mechanism for efficiently using very small functions. The C++ language gives a pro- 
grammer additional control over inlining with the inline declaration and with templates. 

Foreign memory: SML+ provides a mechanism for reading and writing raw memory from 
outside the heap managed by the SML/NJ system. The FoxNet was able to use this foreign 
memory system mechanism to interact with the operating system, but the foreign memory 
system is unacceptably slow for creating efficient networking systems. 

In this report, we compare a networking stack written in SML+ (using the term FoxNet) with 
the networking stack from Digital Unix (using the term UNIX), which is written in C. We show that 
the two implementations have similar throughput over Ethernet, but the FoxNet consumes over 
10 times the CPU resources. We continue by profiling the FoxNet and using the results to find 
the major consumer of CPU resources: the checksum routine. We use the checksum routine to 
illustrate the two disadvantages of the SML+ language when implementing system software. Finally, 
we draw our conclusions. 

Performance Measurement 

The performance measurements use two identical Digital Equipment Corporation Alpha 300/266 
computers each with 96 Mb of memory running Digital Unix 4.0. We perform the tests with the 
machines started in single-user mode, and the network interfaces activated manually using the 
if conf ig command. The FoxNet tests are compiled using version 110.5 of the Standard ML of 
New Jersey compiler. In order gain access to the network, we extended the SML/NJ runtime system 
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with an interface to the Digital Unix packet filter and the FORE ATM application interface. These 
extensions allow the FoxNet to access the Ethernet and ATM networks directly from a user process 
running the SML/NJ system. We use NetPerf version 2.1 patch level 2 to measure the performance 
of the networking stack from Digital Unix. NetPerf is a commonly used networking performance 
testing program maintained at Hewlett Packard [4]. For the remainder of the report, the unit MB 
stands for 106 bytes, and the unit Mb stands for 106 bits. 

Ethernet 10 Mb/s 

The performance measurements over Ethernet use the built in Ethernet adaptor of the Alphas and 
the machines are connected to each other using a single strand of cable forming an isolated 10 Mb/s 
network. 

TCP Throughput 

The FoxNet uses a test similar to the NetPerf TCP Stream Performance test to measure through- 
put. The TCP window sizes for both UNIX and the FoxNet are set to 65,536 bytes for these 
measurements. We measured three different payload sizes: 1 byte, 1,000 bytes and 1,000,000 bytes. 
In Figure 1, we show the results of the measurements for the throughput of both the FoxNet and 
UNIX handling different size payloads. 

Size 
Throughput in Mb/s 

Ratio FoxNet UNIX 
1 MB 6.92 6.89 1 
1 KB .50 6.88 .007 
1 Byte .0006 .79 .00007 

Figure 1: Ethernet throughput measurements. The first column indicates the size of 
the payload. The second column is the throughput for the foxnet in Mb/s and the 
third column is the throughput for UNIX in Mb/s. The fourth column is the ratio of the 
FoxNet to UNIX. 

TCP Latency 

The FoxNet uses a test similar to the NetPerf TCP Request-Response test to measure latency. 
A packet with a 1 byte payload is sent to a server which responds with a packet with a 1 byte 
payload. The test counts the number of responses per second. In Figure 2, we show the results of 
the latency measurements. 



Responses/s 
Ratio FoxNet UNIX 

257 2343 .11 

Figure 2: Ethernet request-response measurement. The first two columns show the 
responses per second for the FoxNet and UNIX respectively. The third column is the 
ratio of the FoxNet to UNIX. 

ATM 155 Mb/s 

The hardware set of the ATM performance measurements consists of a FORE ForeRunner PCA200E 
ATM adaptor installed in each machine and a ForeRunner ASX200WA ATM switch connecting the 
machines together forming an isolated network. The segment size for the network is set to 65,536 
bytes. 

Test Throughput in Mb/s Ratio 
UNIX 79.15 — 
FoxNet 18.4 .23 
FoxNet no checksum 47 .59 

Figure 3: ATM Throughput. This is the 1 MB test run using an ATM network instead of an 
Ethernet network. The first column is the system being measured. The second column is the 
throughput and the third column is the ratio of the FoxNet to UNIX. We include the measurement 
of the FoxNet without the checksum routine to demonstrate how much time the checksum routine 
consumes. 

CPU Utilization and Layer Timing 

The 1 Mb/s throughput test case gives us the opportunity to compare the CPU utilization of both 
systems sustaining a throughput of 6.9 Mb/s. The NetPerf program has a feature to measure 
the CPU utilization of the UNIX networking stack running the throughput test, but its accuracy is 
dependent on the behavior of the operating system. In the throughput test, the CPU utilization 
measurement uses a tight loop — called a soaker — to consume any CPU cycles left over by the 
C networking stack. We start the workstation in single-user mode to eliminate as many processes 
as possible. While the networking test is executing, the soaker loop runs in its own process at a 
very low priority waiting for the test to block. When the network stack blocks, the soaker gets its 
chance to use the CPU until the networking test is ready to run again. It executes its loop counting 
the number of iterations. The accuracy of the utilization measurement depends upon the policy of 
the scheduler allowing the soaker to run only when the networking test is blocked. Unfortunately, 
Digital Unix suspends the networking test and gives the soaker processor cycles to try to balance 
the performance of the entire system. Therefore, we will only use the measurements for a rough 
comparison. 

In order to measure the CPU utilization of the FoxNet, we extended the SML/NJ runtime system 
with the exact code NetPerf uses to measure CPU utilization. 



UNIX FoxNet Ratio 
CPU Usage 8% 88% 11 

Figure 4: CPU utilization measurement. Both UNIX and the FoxNet are measured using 
the 10 MB Ethernet throughput test. The second column shows the utilization for UNIX 
and the third column shows the utilization for the FoxNet. The fourth column is the 
ratio of the FoxNet to UNIX CPU utilization. The FoxNet requires 11 times the resources 
of the CPU for a 6.9 Mb/s throughput. 

Our measurements show that the UNIX system consumes about 8% of the CPU while the FoxNet 
consumes about 88%. To understand why UNIX is 11 times more efficient than the FoxNet, we use 
the Alpha cycle counter [10] to measure the time it takes a packet to pass through each layer of 
the FoxNet. We accumulate this measurement information at each layer and calculate the average 
number of cycles it takes to process a packet at each layer in the network stack. 

From our experience working with the FoxNet, we know that the checksum routine consumes a 
large portion of the packet processing time. Therefore, we measured two different stacks, one with 
the TCP checksum calculation and one without. We show, in Figure 5, the average layer timings 
of the two stacks. 

Layer 
with 

checksum 
(cycles per layer) 

without 
checksum 

(cycles per layer) 
TCP 239,742 

47,448 
2,458 

34,072 

93,440 
48,236 

2,500 
30,244 

IP 
Ethernet 
Device 

Total 323,740 174,420 

Figure 5: Profile of the layers of the FoxNet TCP stack. The second column shows the 
average cycle count for processing a packet at each layer. The third column shows the 
same measurement as the second column but with the checksum calculation removed 
from the TCP layer. The fluctuations of the measurements between the second and 
third columns for the Device, Ethernet and IP layers are caused by interrupts and 
other effects of a multitasking system. The ratio of the without-checksum total to the 
with-checksum total is 54%. Therefore, the checksum accounts for 46% of the packet 
processing time. 

This test demonstrates that most of the time is spent in the TCP layer and that the TCP 
checksum calculation takes 46% of the packet processing time. The TCP checksum is calculated 
using part of the TCP header and the entire TCP payload. It treats these bytes as if they are 
an array of 16-bit words and calculates a 16-bit answer by summing the array using 16-bit one's 
complement arithmetic. The running time of the checksum routine is dominated by its inner loop. 
Therefore, this will be our focus for the remainder of the report. 



Small Functions 

Most systems software contains a few small functions, which have calling overhead that takes more 
time than executing the function itself. An example of this situation is the C Standard I/O (stdio) 
library [9]. The stdio library contains a type called FILE, which the library implementation uses to 
store the state of the internal buffering system. The f getc is a small function, which extracts the 
next character from a FILE buffer. The calling overhead of f getc is unacceptable for time critical 
code. A simple way to remove the overhead is to copy the body of the function to the function call 
site; this method of removing overhead is called manual inlining and has several problems: 

• The function body for f getc may not be available. 

• The programmer has to understand the invariants of the FILE type and how it behaves with 
respect to the rest of the stdio library. 

• Any maintenance programming performed on the stdio library must include changes to all 
the places that f getc is manually inlined. 

The stdio library solves this problem by introducing a #def ine macro called getc, which 
has the same behavior as fgetc. Using getc, the macro system automates the inlining of the 
f getc body at the function call site. By using the macros system, the calling overhead has been 
eliminated, the internal workings of the stdio library are protected and there is a single point to 
make all maintenance changes. 

In the FoxNet, the buffering mechanism is implemented as an abstract data type called a 
Word_Array. The Word_Array provides functions for extracting and manipulating the buffers in 
different word formats. These include 32-bit and 16-bit size words in big-endian or little-endian 
format. We will show that the small functions of the Word_Array add significant overhead to the 
checksum routine. We can measure the overhead by simply inlining the function checkOneEntry 
into the Word-Array function, fold. We measure the performance of the two routines by calculating 
the checksum of a buffer with a length of 222 bytes. In Figure 6, we show the inner loop of the 
FoxNet checksum routine. 

fun checkOneEntry(new,  accumulator)  = 
Word32.+  ( 

Word32.+  ( 
Word32.»  (new,  0wl6) , 
Word32.andb  (new,  Owxffff), 

accumulator) 
fun checksum buffer = Word_Array.W32Little.fold checkOne OwO buffer 

Figure 6: The inner loop of the FoxNet checksum. The notations Word32. +, Word32. >> 
and Word32. andb are 32-bit two's complement addition, logical right shift and bitwise 
and operation respectively. These functions are documented in the SML/N J web pages [1]. 
This routine takes 72.1 billion cycles to calculate checksum on the test buffer. 

In a Word-Array, a buffer is a triple (byteBuffer, first,  last) where byteBuffer is an 
array of bytes, first points to the first 32-bit word in the buffer and last points to the last 32-bit 



fun fold f b (byteBuffer, first, last) = 

let 

fun loop (index, accumulator) = 

if index > last then accumulator 

else 

loop (index + 1, f (Pack32Little.subArr(byteBuffer, index), value)) 

in 

loop (first, b) 

end 

Figure 7: The fold function from the FoxNet. We discuss the Pack32Little. subArr 
in the Foreign Memory section. 

word in the buffer. The function Word_Array.W32Little.fold interprets the bytes in the buffer 
as an array of 32-bit words and has the following definition 

fold/ b [wi,w2,...,wn] returns f(wi,f(w2,...,f(wn,b)...)) 

where the «Vs are 32-bit words in little-endian format. We display the code for the FoxNet 
Word_Array.W32Little.fold function in Figure 7. We show the results of substituting the body 
of the checkOne function for the variable f of the function fold in Figure 8. 

The original version of the FoxNet checksum routine, from Figure 6, calculates the checksum 
in 72 billion cycles while the inlined checksum routine does the calculation in 45 billion cycles. 
Therefore, the function fold introduces an overhead of 60%. From a systems software perspective, 
a mechanism for removing the overhead of small functions gives you more freedom in dividing a 
system into modules. 

Foreign Memory 

The SML/NJ runtime system manages memory structures in its own fashion in its own heap. If SML 
is to be used as a systems programming language, it must be able to access and manipulate memory 
structures from other languages. The SML+ language has added several structures for doing this. 

100 104 108 
... ID AB 78 E3 44 67 03 Bl Fl 23 ... 

Figure 9: Memory. In this figure, we show memory as bytes starting at location 100. 

The core of the SML+ foreign memory system is the Word8Array structure [1]. This structure 
implements arrays of bytes (8-bit words) of fixed length. The SML/NJ runtime system can send and 
receive data by using arrays of bytes, implemented using Word8Arrays, as parameters to the un- 
derlying operating system calls. A program can use the functions of the Word8Array to manipulate 
the bytes of a buffer. Assuming the memory configuration in Figure 9 and a Word8Array starting 



fun inlineChecksum (byteBuffer, first, last) = 

let 

fun loop (index, accumulator) = 

if index > last then accumulator 

else 

loop ( 

index+1, 

let 

val new = Pack32Little.subArr(byteBuffer, index) 

in 

Word32.+ ( 

Word32.+ ( 

Word32.» (new, 0wl6), 

Word32.andb (new, max32)), 

accumulator) 

end 

in 

loop(first, OwO) 

end 

Figure 8: The checksum routine with the CheckOne routine manually inlined into the 
fold routine. This routine takes 45.2 billion cycles to calculate the checksum on the 
test buffer. 

at location 100 called buff er, the function Word8Array. sub (buff er, 1) will return the value 0x78 
located at address 0x101. 

The SML+ language has structures for accessing Word8Arrays in different formants and word 
lengths: Pack32Little, Pack32Big, Packl6Little and Packl6Big. For example, the structure 
Pack32Little provides functions for manipulating Word8Arrays as arrays of 32-bit values in little- 
endian format. Assuming the memory configuration from Figure 9, the call subArr (buff er, 0) 
from the Pack32Little structure would return the 32-bit value, 44 * 224 + E3 * 216 + 78 * 28 + AB, 
and the Pack32Little call subArr (buff er, 1) would return the value Fl*224+Bl*216+03*28+67. 

These structures provide the basic mechanisms for interacting with memory structures from 
outside the SML/NJ system. However, their design clashes with the alignment restrictions imposed 
by modern processors. All CPUs provide single instructions for accessing 32-bit and 16-bit words 
(on the Alpha, the instructions ldl and stl load and store 32-bit-little-endian values), but valid 
addresses are restricted to multiples of four for the 32-bit instructions and multiples of two for the 
16-bit instructions. If these restrictions are not met, the CPU generates an alignment exception. 

The SML/NJ compiler could create very efficient code if it used the multiple byte access in- 
structions. Unfortunately, the SML/NJ runtime places no alignment restrictions on the addresses of 
Word8Arrays, making these fast access instructions unsafe for implementing functions like subArr 
from the Pack32Little structure. Therefore, the 32-bit and 16-bit values must be assembled out 
of several 8-bit values obtained using single byte loads. 

We can measure the overhead of assembling 32-bit words from four individual bytes by per- 



forming the following experiment. We calculate the number of cycles the checksum routine uses to 
access memory by creating a copy of the checksum routine with the memory accesses removed. The 
difference of the running times of these two routines is amount of time spent accessing memory. We 
can do the same measurement with the checksum routines translated into C in order to calculate 
the number of cycles that C uses to access memory as 32-bit words. In Figure 10, we show the code 
for the checksum routine translated to C. In Figure 11 and Figure 12, we show the lines which we 
changed, to remove the memory accesses. 

System Original No Access Difference 

SML+ 45.2 5.6 39.6 

C 8.3 1.0 7.3 
Ratio: 5.4 

Figure 13: Foreign memory overhead. The second column shows the number of cy- 
cles that both the C implementation and the SML+ implementation take to calculate 
the checksum on the test case buffer. The third column shows the number of cycles 
that both implementations take to calculate the checksum without reading memory. 
The forth column shows the number of cycles spent accessing memory for both im- 
plementations. The ratio is the overhead imposed by the SML/NJ implementation of 
Pack32Little.subArr. 

We summarize the results of the experiment in Figure 13. As you can see, the foreign memory 
handling primitives of SML/NJ are 5.4 times slower than the memory accesses of C. The C checksum 
routine generates a single ldl instruction to read the 32-bit word. The SML/NJcompiler generates 
several instructions to read four bytes and concatenates them together to form a 32-bit word. 

Conclusions 

Matching the throughput performance of a UNIX system for large block sizes is a significant mile- 
stone for the FoxNet. Unfortunately, the FoxNet takes 11 times the CPU resources to obtain this 
performance. We have identified that the checksum calculation consumes 47% of the CPU time. 

Studying the checksum routine leads us to the conclusion that there are two significant imped- 
iments to using SML/NJ as an efficient systems programming language. First, accessing memory 
from outside the SML/NJ system is unacceptably slow. In fact, accessing 32-bit words using SML/NJ 
is 5.4 times slower than using C. The following are two possible alternatives for solving the foreign 
memory problem: 

• The current implementation of the Word32Little. subArr reads four individual bytes and 
concatenates them together forming a 32-bit word. The compiler could generate the single 
instruction for reading the 32-bit word. This code would execute quickly, but could cause an 
alignment exception. The SML/NJ runtime system could handle the exception and simulate 
the instruction. 

• Instead of basing the the foreign memory system on Word8Arrays, SML+ could base it on 
Word32Arrays.   This new system would introduce a set of coercions from Word32Arrays 



unsigned int 

inlineChecksum(byteBuffer, first, last) { 

int index = first; 

unsigned int accumulator = 0; 

while (index <= last ) { 

unsigned int w32 = byteBuffer[index]; 

index += 1; 

sum += ( (w32»16) + (w32&0xFFFF) ); 

} 
return accumulator; 

} 

Figure 10: C Checksum routine. The inlineChecksum routine from Figure 8 translated 
into C. This routine takes 8.3 billion cycles to calculate the checksum on the 224 byte 
test buffer. 

val dummy = ref 0 

fun inlineChecksum (byteBuffer, first, last) 

let 

val new =   !dummy 
in 

Figure 11: SML+ inlineChecksum without memory accesses. This figure shows just the 
portions of the inlineChecksum routine which we changed to remove memory accesses. 
This routine takes 5.6 billion cycles to calculate the checksum on the 224 byte test buffer. 

unsigned int dummy =0; 
unsigned int 
inlineChecksum(byteBuffer, first,  last)  { 

unsigned int w32 = dummy; 

Figure 12: The routine from Figure 10 with the memory references removed. The access 
to the buffer (byteBuffer[index]) is replaced with reading a variable dummy. We have 
declared the variable dummy as external to keep the compiler from optimizing the loop 
away. This routine takes 1.0 billion cycles to calculate the checksum on the 224 byte 
test buffer. 



to Wordl6Arrays and from Word32Arrays to Word8Arrays. This would allow access to the 
different word sizes while still obeying the alignment restrictions. Disallowing the reverse 
coercion would eliminate any unsafe code. 

The second impediment to using SML+ as a systems programming language is its inability to 
eliminate the function call overhead for small functions. This makes it difficult to abstract low 
level mechanisms, such as buffer handling, into their own modules. Consequently, the programming 
teams are forced to manually inline the small functions throughout the system making maintenance 
difficult. Several research projects have addressed this problem. The CAML system from Inria has 
included a macro system in their build environment. Matthias Blume is working on automatic 
inlining for the SML/NJ system [3]. Finally, the research in the field of staged computations, such 
as the work on lightweight runtime-code generation by Leone and Lee [6] and the work on modal 
ML by Wickline, Lee, Pfenning and Davies [11], can be used to eliminate small function overhead. 

In industry, performance is not the only measure of quality for systems software. Using SML+ 
for programming the FoxNet gives it many reliability benefits over C and C++. Also, we have found 
that the SHL module system and higher-order functions make good building blocks for expressing 
systems software elegantly and directly. In this report, we have identified two impediments, which 
when removed could greatly improve the efficiency of using SML+ for systems software. It is no 
longer a question of whether SML+ can be used to create systems software, but a question of making 
it efficient enough for low-level programming. 
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